llama.cpp 754 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390183911839218393183941839518396183971839818399184001840118402184031840418405184061840718408184091841018411184121841318414184151841618417184181841918420184211842218423184241842518426184271842818429184301843118432184331843418435184361843718438184391844018441184421844318444184451844618447184481844918450184511845218453184541845518456184571845818459184601846118462184631846418465184661846718468184691847018471184721847318474184751847618477184781847918480184811848218483184841848518486184871848818489184901849118492184931849418495184961849718498184991850018501185021850318504185051850618507185081850918510185111851218513185141851518516185171851818519185201852118522185231852418525185261852718528185291853018531185321853318534185351853618537185381853918540185411854218543185441854518546185471854818549185501855118552185531855418555185561855718558185591856018561185621856318564185651856618567185681856918570185711857218573185741857518576185771857818579185801858118582185831858418585185861858718588185891859018591185921859318594185951859618597185981859918600186011860218603186041860518606186071860818609186101861118612186131861418615186161861718618186191862018621186221862318624186251862618627186281862918630186311863218633186341863518636186371863818639186401864118642186431864418645186461864718648186491865018651186521865318654186551865618657186581865918660186611866218663186641866518666186671866818669186701867118672186731867418675186761867718678186791868018681
  1. #define LLAMA_API_INTERNAL
  2. #include "llama.h"
  3. #include "unicode.h"
  4. #include "ggml.h"
  5. #include "ggml-alloc.h"
  6. #include "ggml-backend.h"
  7. #ifdef GGML_USE_RPC
  8. # include "ggml-rpc.h"
  9. #endif
  10. #ifdef GGML_USE_CUDA
  11. # include "ggml-cuda.h"
  12. #elif defined(GGML_USE_VULKAN)
  13. # include "ggml-vulkan.h"
  14. #elif defined(GGML_USE_SYCL)
  15. # include "ggml-sycl.h"
  16. #elif defined(GGML_USE_KOMPUTE)
  17. # include "ggml-kompute.h"
  18. #endif
  19. #ifdef GGML_USE_BLAS
  20. # include "ggml-blas.h"
  21. #endif
  22. #ifdef GGML_USE_METAL
  23. # include "ggml-metal.h"
  24. #endif
  25. // TODO: replace with ggml API call
  26. #define QK_K 256
  27. #ifdef __has_include
  28. #if __has_include(<unistd.h>)
  29. #include <unistd.h>
  30. #if defined(_POSIX_MAPPED_FILES)
  31. #include <sys/mman.h>
  32. #include <fcntl.h>
  33. #endif
  34. #if defined(_POSIX_MEMLOCK_RANGE)
  35. #include <sys/resource.h>
  36. #endif
  37. #endif
  38. #endif
  39. #if defined(_WIN32)
  40. #define WIN32_LEAN_AND_MEAN
  41. #ifndef NOMINMAX
  42. #define NOMINMAX
  43. #endif
  44. #include <windows.h>
  45. #ifndef PATH_MAX
  46. #define PATH_MAX MAX_PATH
  47. #endif
  48. #include <io.h>
  49. #endif
  50. #include <algorithm>
  51. #include <array>
  52. #include <cassert>
  53. #include <cctype>
  54. #include <cfloat>
  55. #include <cinttypes>
  56. #include <climits>
  57. #include <cmath>
  58. #include <cstdarg>
  59. #include <cstddef>
  60. #include <cstdint>
  61. #include <cstdio>
  62. #include <cstring>
  63. #include <ctime>
  64. #include <forward_list>
  65. #include <fstream>
  66. #include <functional>
  67. #include <future>
  68. #include <initializer_list>
  69. #include <locale>
  70. #include <map>
  71. #include <memory>
  72. #include <mutex>
  73. #include <numeric>
  74. #include <queue>
  75. #include <random>
  76. #include <regex>
  77. #include <set>
  78. #include <sstream>
  79. #include <thread>
  80. #include <type_traits>
  81. #include <unordered_map>
  82. #if defined(_MSC_VER)
  83. #pragma warning(disable: 4244 4267) // possible loss of data
  84. #endif
  85. #ifdef __GNUC__
  86. #ifdef __MINGW32__
  87. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  88. #else
  89. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  90. #endif
  91. #else
  92. #define LLAMA_ATTRIBUTE_FORMAT(...)
  93. #endif
  94. #define LLAMA_MAX_NODES 8192
  95. #define LLAMA_MAX_EXPERTS 160
  96. //
  97. // logging
  98. //
  99. LLAMA_ATTRIBUTE_FORMAT(2, 3)
  100. static void llama_log_internal (ggml_log_level level, const char * format, ...);
  101. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data);
  102. #define LLAMA_LOG_INFO(...) llama_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__)
  103. #define LLAMA_LOG_WARN(...) llama_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__)
  104. #define LLAMA_LOG_ERROR(...) llama_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
  105. //
  106. // helpers
  107. //
  108. static size_t utf8_len(char src) {
  109. const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
  110. uint8_t highbits = static_cast<uint8_t>(src) >> 4;
  111. return lookup[highbits];
  112. }
  113. static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
  114. std::string result;
  115. for (size_t pos = 0; ; pos += search.length()) {
  116. auto new_pos = s.find(search, pos);
  117. if (new_pos == std::string::npos) {
  118. result += s.substr(pos, s.size() - pos);
  119. break;
  120. }
  121. result += s.substr(pos, new_pos - pos) + replace;
  122. pos = new_pos;
  123. }
  124. s = std::move(result);
  125. }
  126. static bool is_float_close(float a, float b, float abs_tol) {
  127. // Check for non-negative tolerance
  128. if (abs_tol < 0.0) {
  129. throw std::invalid_argument("Tolerance must be non-negative");
  130. }
  131. // Exact equality check
  132. if (a == b) {
  133. return true;
  134. }
  135. // Check for infinities
  136. if (std::isinf(a) || std::isinf(b)) {
  137. return false;
  138. }
  139. // Regular comparison using the provided absolute tolerance
  140. return std::fabs(b - a) <= abs_tol;
  141. }
  142. static void zeros(std::ofstream & file, size_t n) {
  143. char zero = 0;
  144. for (size_t i = 0; i < n; ++i) {
  145. file.write(&zero, 1);
  146. }
  147. }
  148. LLAMA_ATTRIBUTE_FORMAT(1, 2)
  149. static std::string format(const char * fmt, ...) {
  150. va_list ap;
  151. va_list ap2;
  152. va_start(ap, fmt);
  153. va_copy(ap2, ap);
  154. int size = vsnprintf(NULL, 0, fmt, ap);
  155. GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
  156. std::vector<char> buf(size + 1);
  157. int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
  158. GGML_ASSERT(size2 == size);
  159. va_end(ap2);
  160. va_end(ap);
  161. return std::string(buf.data(), size);
  162. }
  163. //
  164. // gguf constants (sync with gguf.py)
  165. //
  166. enum llm_arch {
  167. LLM_ARCH_LLAMA,
  168. LLM_ARCH_FALCON,
  169. LLM_ARCH_BAICHUAN,
  170. LLM_ARCH_GROK,
  171. LLM_ARCH_GPT2,
  172. LLM_ARCH_GPTJ,
  173. LLM_ARCH_GPTNEOX,
  174. LLM_ARCH_MPT,
  175. LLM_ARCH_STARCODER,
  176. LLM_ARCH_REFACT,
  177. LLM_ARCH_BERT,
  178. LLM_ARCH_NOMIC_BERT,
  179. LLM_ARCH_JINA_BERT_V2,
  180. LLM_ARCH_BLOOM,
  181. LLM_ARCH_STABLELM,
  182. LLM_ARCH_QWEN,
  183. LLM_ARCH_QWEN2,
  184. LLM_ARCH_QWEN2MOE,
  185. LLM_ARCH_PHI2,
  186. LLM_ARCH_PHI3,
  187. LLM_ARCH_PLAMO,
  188. LLM_ARCH_CODESHELL,
  189. LLM_ARCH_ORION,
  190. LLM_ARCH_INTERNLM2,
  191. LLM_ARCH_MINICPM,
  192. LLM_ARCH_GEMMA,
  193. LLM_ARCH_STARCODER2,
  194. LLM_ARCH_MAMBA,
  195. LLM_ARCH_XVERSE,
  196. LLM_ARCH_COMMAND_R,
  197. LLM_ARCH_DBRX,
  198. LLM_ARCH_OLMO,
  199. LLM_ARCH_ARCTIC,
  200. LLM_ARCH_DEEPSEEK2,
  201. LLM_ARCH_UNKNOWN,
  202. };
  203. static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
  204. { LLM_ARCH_LLAMA, "llama" },
  205. { LLM_ARCH_FALCON, "falcon" },
  206. { LLM_ARCH_GROK, "grok" },
  207. { LLM_ARCH_GPT2, "gpt2" },
  208. { LLM_ARCH_GPTJ, "gptj" },
  209. { LLM_ARCH_GPTNEOX, "gptneox" },
  210. { LLM_ARCH_MPT, "mpt" },
  211. { LLM_ARCH_BAICHUAN, "baichuan" },
  212. { LLM_ARCH_STARCODER, "starcoder" },
  213. { LLM_ARCH_REFACT, "refact" },
  214. { LLM_ARCH_BERT, "bert" },
  215. { LLM_ARCH_NOMIC_BERT, "nomic-bert" },
  216. { LLM_ARCH_JINA_BERT_V2, "jina-bert-v2" },
  217. { LLM_ARCH_BLOOM, "bloom" },
  218. { LLM_ARCH_STABLELM, "stablelm" },
  219. { LLM_ARCH_QWEN, "qwen" },
  220. { LLM_ARCH_QWEN2, "qwen2" },
  221. { LLM_ARCH_QWEN2MOE, "qwen2moe" },
  222. { LLM_ARCH_PHI2, "phi2" },
  223. { LLM_ARCH_PHI3, "phi3" },
  224. { LLM_ARCH_PLAMO, "plamo" },
  225. { LLM_ARCH_CODESHELL, "codeshell" },
  226. { LLM_ARCH_ORION, "orion" },
  227. { LLM_ARCH_INTERNLM2, "internlm2" },
  228. { LLM_ARCH_MINICPM, "minicpm" },
  229. { LLM_ARCH_GEMMA, "gemma" },
  230. { LLM_ARCH_STARCODER2, "starcoder2" },
  231. { LLM_ARCH_MAMBA, "mamba" },
  232. { LLM_ARCH_XVERSE, "xverse" },
  233. { LLM_ARCH_COMMAND_R, "command-r" },
  234. { LLM_ARCH_DBRX, "dbrx" },
  235. { LLM_ARCH_OLMO, "olmo" },
  236. { LLM_ARCH_ARCTIC, "arctic" },
  237. { LLM_ARCH_DEEPSEEK2, "deepseek2" },
  238. { LLM_ARCH_UNKNOWN, "(unknown)" },
  239. };
  240. enum llm_kv {
  241. LLM_KV_GENERAL_ARCHITECTURE,
  242. LLM_KV_GENERAL_QUANTIZATION_VERSION,
  243. LLM_KV_GENERAL_ALIGNMENT,
  244. LLM_KV_GENERAL_NAME,
  245. LLM_KV_GENERAL_AUTHOR,
  246. LLM_KV_GENERAL_VERSION,
  247. LLM_KV_GENERAL_URL,
  248. LLM_KV_GENERAL_DESCRIPTION,
  249. LLM_KV_GENERAL_LICENSE,
  250. LLM_KV_GENERAL_SOURCE_URL,
  251. LLM_KV_GENERAL_SOURCE_HF_REPO,
  252. LLM_KV_VOCAB_SIZE,
  253. LLM_KV_CONTEXT_LENGTH,
  254. LLM_KV_EMBEDDING_LENGTH,
  255. LLM_KV_BLOCK_COUNT,
  256. LLM_KV_LEADING_DENSE_BLOCK_COUNT,
  257. LLM_KV_FEED_FORWARD_LENGTH,
  258. LLM_KV_EXPERT_FEED_FORWARD_LENGTH,
  259. LLM_KV_USE_PARALLEL_RESIDUAL,
  260. LLM_KV_TENSOR_DATA_LAYOUT,
  261. LLM_KV_EXPERT_COUNT,
  262. LLM_KV_EXPERT_USED_COUNT,
  263. LLM_KV_EXPERT_SHARED_COUNT,
  264. LLM_KV_EXPERT_WEIGHTS_SCALE,
  265. LLM_KV_POOLING_TYPE,
  266. LLM_KV_LOGIT_SCALE,
  267. LLM_KV_ATTENTION_HEAD_COUNT,
  268. LLM_KV_ATTENTION_HEAD_COUNT_KV,
  269. LLM_KV_ATTENTION_MAX_ALIBI_BIAS,
  270. LLM_KV_ATTENTION_CLAMP_KQV,
  271. LLM_KV_ATTENTION_KEY_LENGTH,
  272. LLM_KV_ATTENTION_VALUE_LENGTH,
  273. LLM_KV_ATTENTION_LAYERNORM_EPS,
  274. LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,
  275. LLM_KV_ATTENTION_CAUSAL,
  276. LLM_KV_ATTENTION_Q_LORA_RANK,
  277. LLM_KV_ATTENTION_KV_LORA_RANK,
  278. LLM_KV_ROPE_DIMENSION_COUNT,
  279. LLM_KV_ROPE_FREQ_BASE,
  280. LLM_KV_ROPE_SCALE_LINEAR,
  281. LLM_KV_ROPE_SCALING_TYPE,
  282. LLM_KV_ROPE_SCALING_FACTOR,
  283. LLM_KV_ROPE_SCALING_ATTN_FACTOR,
  284. LLM_KV_ROPE_SCALING_ORIG_CTX_LEN,
  285. LLM_KV_ROPE_SCALING_FINETUNED,
  286. LLM_KV_ROPE_SCALING_YARN_LOG_MUL,
  287. LLM_KV_SPLIT_NO,
  288. LLM_KV_SPLIT_COUNT,
  289. LLM_KV_SPLIT_TENSORS_COUNT,
  290. LLM_KV_SSM_INNER_SIZE,
  291. LLM_KV_SSM_CONV_KERNEL,
  292. LLM_KV_SSM_STATE_SIZE,
  293. LLM_KV_SSM_TIME_STEP_RANK,
  294. LLM_KV_TOKENIZER_MODEL,
  295. LLM_KV_TOKENIZER_PRE,
  296. LLM_KV_TOKENIZER_LIST,
  297. LLM_KV_TOKENIZER_TOKEN_TYPE,
  298. LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT,
  299. LLM_KV_TOKENIZER_SCORES,
  300. LLM_KV_TOKENIZER_MERGES,
  301. LLM_KV_TOKENIZER_BOS_ID,
  302. LLM_KV_TOKENIZER_EOS_ID,
  303. LLM_KV_TOKENIZER_UNK_ID,
  304. LLM_KV_TOKENIZER_SEP_ID,
  305. LLM_KV_TOKENIZER_PAD_ID,
  306. LLM_KV_TOKENIZER_CLS_ID,
  307. LLM_KV_TOKENIZER_MASK_ID,
  308. LLM_KV_TOKENIZER_ADD_BOS,
  309. LLM_KV_TOKENIZER_ADD_EOS,
  310. LLM_KV_TOKENIZER_ADD_PREFIX,
  311. LLM_KV_TOKENIZER_HF_JSON,
  312. LLM_KV_TOKENIZER_RWKV,
  313. LLM_KV_TOKENIZER_PREFIX_ID,
  314. LLM_KV_TOKENIZER_SUFFIX_ID,
  315. LLM_KV_TOKENIZER_MIDDLE_ID,
  316. LLM_KV_TOKENIZER_EOT_ID,
  317. };
  318. static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
  319. { LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" },
  320. { LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" },
  321. { LLM_KV_GENERAL_ALIGNMENT, "general.alignment" },
  322. { LLM_KV_GENERAL_NAME, "general.name" },
  323. { LLM_KV_GENERAL_AUTHOR, "general.author" },
  324. { LLM_KV_GENERAL_VERSION, "general.version" },
  325. { LLM_KV_GENERAL_URL, "general.url" },
  326. { LLM_KV_GENERAL_DESCRIPTION, "general.description" },
  327. { LLM_KV_GENERAL_LICENSE, "general.license" },
  328. { LLM_KV_GENERAL_SOURCE_URL, "general.source.url" },
  329. { LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" },
  330. { LLM_KV_VOCAB_SIZE, "%s.vocab_size" },
  331. { LLM_KV_CONTEXT_LENGTH, "%s.context_length" },
  332. { LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" },
  333. { LLM_KV_BLOCK_COUNT, "%s.block_count" },
  334. { LLM_KV_LEADING_DENSE_BLOCK_COUNT, "%s.leading_dense_block_count" },
  335. { LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" },
  336. { LLM_KV_EXPERT_FEED_FORWARD_LENGTH, "%s.expert_feed_forward_length" },
  337. { LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" },
  338. { LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
  339. { LLM_KV_EXPERT_COUNT, "%s.expert_count" },
  340. { LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" },
  341. { LLM_KV_EXPERT_SHARED_COUNT, "%s.expert_shared_count" },
  342. { LLM_KV_EXPERT_WEIGHTS_SCALE, "%s.expert_weights_scale" },
  343. { LLM_KV_POOLING_TYPE , "%s.pooling_type" },
  344. { LLM_KV_LOGIT_SCALE, "%s.logit_scale" },
  345. { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
  346. { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
  347. { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
  348. { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
  349. { LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" },
  350. { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" },
  351. { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
  352. { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
  353. { LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" },
  354. { LLM_KV_ATTENTION_Q_LORA_RANK, "%s.attention.q_lora_rank" },
  355. { LLM_KV_ATTENTION_KV_LORA_RANK, "%s.attention.kv_lora_rank" },
  356. { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
  357. { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
  358. { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" },
  359. { LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" },
  360. { LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" },
  361. { LLM_KV_ROPE_SCALING_ATTN_FACTOR, "%s.rope.scaling.attn_factor" },
  362. { LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" },
  363. { LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" },
  364. { LLM_KV_ROPE_SCALING_YARN_LOG_MUL, "%s.rope.scaling.yarn_log_multiplier" },
  365. { LLM_KV_SPLIT_NO, "split.no" },
  366. { LLM_KV_SPLIT_COUNT, "split.count" },
  367. { LLM_KV_SPLIT_TENSORS_COUNT, "split.tensors.count" },
  368. { LLM_KV_SSM_CONV_KERNEL, "%s.ssm.conv_kernel" },
  369. { LLM_KV_SSM_INNER_SIZE, "%s.ssm.inner_size" },
  370. { LLM_KV_SSM_STATE_SIZE, "%s.ssm.state_size" },
  371. { LLM_KV_SSM_TIME_STEP_RANK, "%s.ssm.time_step_rank" },
  372. { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" },
  373. { LLM_KV_TOKENIZER_PRE, "tokenizer.ggml.pre" },
  374. { LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" },
  375. { LLM_KV_TOKENIZER_TOKEN_TYPE, "tokenizer.ggml.token_type" },
  376. { LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, "tokenizer.ggml.token_type_count" },
  377. { LLM_KV_TOKENIZER_SCORES, "tokenizer.ggml.scores" },
  378. { LLM_KV_TOKENIZER_MERGES, "tokenizer.ggml.merges" },
  379. { LLM_KV_TOKENIZER_BOS_ID, "tokenizer.ggml.bos_token_id" },
  380. { LLM_KV_TOKENIZER_EOS_ID, "tokenizer.ggml.eos_token_id" },
  381. { LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" },
  382. { LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" },
  383. { LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" },
  384. { LLM_KV_TOKENIZER_CLS_ID, "tokenizer.ggml.cls_token_id" },
  385. { LLM_KV_TOKENIZER_MASK_ID, "tokenizer.ggml.mask_token_id" },
  386. { LLM_KV_TOKENIZER_ADD_BOS, "tokenizer.ggml.add_bos_token" },
  387. { LLM_KV_TOKENIZER_ADD_EOS, "tokenizer.ggml.add_eos_token" },
  388. { LLM_KV_TOKENIZER_ADD_PREFIX, "tokenizer.ggml.add_space_prefix" },
  389. { LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
  390. { LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
  391. { LLM_KV_TOKENIZER_PREFIX_ID, "tokenizer.ggml.prefix_token_id" },
  392. { LLM_KV_TOKENIZER_SUFFIX_ID, "tokenizer.ggml.suffix_token_id" },
  393. { LLM_KV_TOKENIZER_MIDDLE_ID, "tokenizer.ggml.middle_token_id" },
  394. { LLM_KV_TOKENIZER_EOT_ID, "tokenizer.ggml.eot_token_id" },
  395. };
  396. struct LLM_KV {
  397. LLM_KV(llm_arch arch) : arch(arch) {}
  398. llm_arch arch;
  399. std::string operator()(llm_kv kv) const {
  400. return ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch));
  401. }
  402. };
  403. enum llm_tensor {
  404. LLM_TENSOR_TOKEN_EMBD,
  405. LLM_TENSOR_TOKEN_EMBD_NORM,
  406. LLM_TENSOR_TOKEN_TYPES,
  407. LLM_TENSOR_POS_EMBD,
  408. LLM_TENSOR_OUTPUT,
  409. LLM_TENSOR_OUTPUT_NORM,
  410. LLM_TENSOR_ROPE_FREQS,
  411. LLM_TENSOR_ROPE_FACTORS_LONG,
  412. LLM_TENSOR_ROPE_FACTORS_SHORT,
  413. LLM_TENSOR_ATTN_Q,
  414. LLM_TENSOR_ATTN_K,
  415. LLM_TENSOR_ATTN_V,
  416. LLM_TENSOR_ATTN_QKV,
  417. LLM_TENSOR_ATTN_OUT,
  418. LLM_TENSOR_ATTN_NORM,
  419. LLM_TENSOR_ATTN_NORM_2,
  420. LLM_TENSOR_ATTN_OUT_NORM,
  421. LLM_TENSOR_ATTN_ROT_EMBD,
  422. LLM_TENSOR_FFN_GATE_INP,
  423. LLM_TENSOR_FFN_GATE_INP_SHEXP,
  424. LLM_TENSOR_FFN_NORM,
  425. LLM_TENSOR_FFN_GATE,
  426. LLM_TENSOR_FFN_DOWN,
  427. LLM_TENSOR_FFN_UP,
  428. LLM_TENSOR_FFN_ACT,
  429. LLM_TENSOR_FFN_DOWN_EXP, // split experts for backward compatibility
  430. LLM_TENSOR_FFN_GATE_EXP,
  431. LLM_TENSOR_FFN_UP_EXP,
  432. LLM_TENSOR_FFN_NORM_EXPS,
  433. LLM_TENSOR_FFN_DOWN_EXPS, // merged experts
  434. LLM_TENSOR_FFN_GATE_EXPS,
  435. LLM_TENSOR_FFN_UP_EXPS,
  436. LLM_TENSOR_FFN_DOWN_SHEXP,
  437. LLM_TENSOR_FFN_GATE_SHEXP,
  438. LLM_TENSOR_FFN_UP_SHEXP,
  439. LLM_TENSOR_ATTN_Q_NORM,
  440. LLM_TENSOR_ATTN_K_NORM,
  441. LLM_TENSOR_LAYER_OUT_NORM,
  442. LLM_TENSOR_SSM_IN,
  443. LLM_TENSOR_SSM_CONV1D,
  444. LLM_TENSOR_SSM_X,
  445. LLM_TENSOR_SSM_DT,
  446. LLM_TENSOR_SSM_A,
  447. LLM_TENSOR_SSM_D,
  448. LLM_TENSOR_SSM_OUT,
  449. LLM_TENSOR_ATTN_Q_A,
  450. LLM_TENSOR_ATTN_Q_B,
  451. LLM_TENSOR_ATTN_KV_A_MQA,
  452. LLM_TENSOR_ATTN_KV_B,
  453. LLM_TENSOR_ATTN_Q_A_NORM,
  454. LLM_TENSOR_ATTN_KV_A_NORM,
  455. };
  456. static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
  457. {
  458. LLM_ARCH_LLAMA,
  459. {
  460. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  461. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  462. { LLM_TENSOR_OUTPUT, "output" },
  463. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  464. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  465. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  466. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  467. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  468. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  469. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  470. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  471. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  472. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  473. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  474. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  475. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  476. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  477. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  478. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  479. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  480. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  481. },
  482. },
  483. {
  484. LLM_ARCH_BAICHUAN,
  485. {
  486. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  487. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  488. { LLM_TENSOR_OUTPUT, "output" },
  489. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  490. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  491. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  492. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  493. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  494. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  495. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  496. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  497. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  498. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  499. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  500. },
  501. },
  502. {
  503. LLM_ARCH_FALCON,
  504. {
  505. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  506. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  507. { LLM_TENSOR_OUTPUT, "output" },
  508. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  509. { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
  510. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  511. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  512. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  513. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  514. },
  515. },
  516. {
  517. LLM_ARCH_GROK,
  518. {
  519. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  520. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  521. { LLM_TENSOR_OUTPUT, "output" },
  522. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  523. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  524. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  525. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  526. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  527. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  528. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  529. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  530. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  531. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  532. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  533. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  534. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  535. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  536. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  537. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  538. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  539. },
  540. },
  541. {
  542. LLM_ARCH_GPT2,
  543. {
  544. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  545. { LLM_TENSOR_POS_EMBD, "position_embd" },
  546. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  547. { LLM_TENSOR_OUTPUT, "output" },
  548. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  549. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  550. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  551. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  552. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  553. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  554. },
  555. },
  556. {
  557. LLM_ARCH_GPTJ,
  558. {
  559. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  560. },
  561. },
  562. {
  563. LLM_ARCH_GPTNEOX,
  564. {
  565. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  566. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  567. { LLM_TENSOR_OUTPUT, "output" },
  568. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  569. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  570. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  571. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  572. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  573. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  574. },
  575. },
  576. {
  577. LLM_ARCH_MPT,
  578. {
  579. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  580. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  581. { LLM_TENSOR_OUTPUT, "output"},
  582. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  583. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  584. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  585. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  586. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  587. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  588. { LLM_TENSOR_FFN_ACT, "blk.%d.ffn.act" },
  589. { LLM_TENSOR_POS_EMBD, "position_embd" },
  590. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
  591. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
  592. },
  593. },
  594. {
  595. LLM_ARCH_STARCODER,
  596. {
  597. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  598. { LLM_TENSOR_POS_EMBD, "position_embd" },
  599. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  600. { LLM_TENSOR_OUTPUT, "output" },
  601. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  602. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  603. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  604. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  605. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  606. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  607. },
  608. },
  609. {
  610. LLM_ARCH_REFACT,
  611. {
  612. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  613. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  614. { LLM_TENSOR_OUTPUT, "output" },
  615. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  616. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  617. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  618. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  619. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  620. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  621. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  622. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  623. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  624. },
  625. },
  626. {
  627. LLM_ARCH_BERT,
  628. {
  629. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  630. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  631. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  632. { LLM_TENSOR_POS_EMBD, "position_embd" },
  633. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  634. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  635. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  636. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  637. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  638. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  639. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  640. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  641. },
  642. },
  643. {
  644. LLM_ARCH_NOMIC_BERT,
  645. {
  646. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  647. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  648. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  649. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  650. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  651. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  652. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  653. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  654. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  655. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  656. },
  657. },
  658. {
  659. LLM_ARCH_JINA_BERT_V2,
  660. {
  661. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  662. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  663. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  664. { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
  665. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  666. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  667. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  668. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  669. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  670. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  671. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  672. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  673. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  674. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  675. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  676. },
  677. },
  678. {
  679. LLM_ARCH_BLOOM,
  680. {
  681. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  682. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  683. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  684. { LLM_TENSOR_OUTPUT, "output" },
  685. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  686. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  687. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  688. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  689. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  690. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  691. },
  692. },
  693. {
  694. LLM_ARCH_STABLELM,
  695. {
  696. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  697. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  698. { LLM_TENSOR_OUTPUT, "output" },
  699. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  700. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  701. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  702. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  703. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  704. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  705. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  706. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  707. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  708. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  709. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  710. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  711. },
  712. },
  713. {
  714. LLM_ARCH_QWEN,
  715. {
  716. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  717. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  718. { LLM_TENSOR_OUTPUT, "output" },
  719. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  720. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  721. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  722. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  723. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  724. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  725. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  726. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  727. },
  728. },
  729. {
  730. LLM_ARCH_QWEN2,
  731. {
  732. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  733. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  734. { LLM_TENSOR_OUTPUT, "output" },
  735. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  736. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  737. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  738. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  739. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  740. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  741. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  742. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  743. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  744. },
  745. },
  746. {
  747. LLM_ARCH_QWEN2MOE,
  748. {
  749. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  750. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  751. { LLM_TENSOR_OUTPUT, "output" },
  752. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  753. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  754. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  755. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  756. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  757. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  758. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  759. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  760. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  761. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  762. { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" },
  763. { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
  764. { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
  765. { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
  766. },
  767. },
  768. {
  769. LLM_ARCH_PHI2,
  770. {
  771. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  772. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  773. { LLM_TENSOR_OUTPUT, "output" },
  774. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  775. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  776. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  777. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  778. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  779. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  780. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  781. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  782. },
  783. },
  784. {
  785. LLM_ARCH_PHI3,
  786. {
  787. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  788. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  789. { LLM_TENSOR_OUTPUT, "output" },
  790. { LLM_TENSOR_ROPE_FACTORS_LONG, "rope_factors_long" },
  791. { LLM_TENSOR_ROPE_FACTORS_SHORT, "rope_factors_short" },
  792. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  793. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  794. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  795. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  796. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  797. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  798. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  799. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  800. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  801. },
  802. },
  803. {
  804. LLM_ARCH_PLAMO,
  805. {
  806. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  807. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  808. { LLM_TENSOR_OUTPUT, "output" },
  809. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  810. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  811. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  812. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  813. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  814. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  815. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  816. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  817. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  818. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  819. },
  820. },
  821. {
  822. LLM_ARCH_CODESHELL,
  823. {
  824. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  825. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  826. { LLM_TENSOR_OUTPUT, "output" },
  827. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  828. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  829. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  830. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  831. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  832. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  833. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  834. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  835. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  836. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  837. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  838. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  839. },
  840. },
  841. {
  842. LLM_ARCH_ORION,
  843. {
  844. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  845. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  846. { LLM_TENSOR_OUTPUT, "output" },
  847. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  848. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  849. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  850. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  851. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  852. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  853. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  854. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  855. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  856. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  857. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  858. },
  859. },
  860. {
  861. LLM_ARCH_INTERNLM2,
  862. {
  863. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  864. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  865. { LLM_TENSOR_OUTPUT, "output" },
  866. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  867. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  868. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  869. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  870. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  871. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  872. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  873. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  874. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  875. },
  876. },
  877. {
  878. LLM_ARCH_MINICPM,
  879. {
  880. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  881. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  882. { LLM_TENSOR_OUTPUT, "output" },
  883. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  884. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  885. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  886. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  887. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  888. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  889. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  890. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  891. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  892. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  893. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  894. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  895. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  896. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  897. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  898. },
  899. },
  900. {
  901. LLM_ARCH_GEMMA,
  902. {
  903. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  904. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  905. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  906. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  907. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  908. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  909. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  910. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  911. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  912. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  913. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  914. },
  915. },
  916. {
  917. LLM_ARCH_STARCODER2,
  918. {
  919. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  920. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  921. { LLM_TENSOR_OUTPUT, "output" },
  922. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  923. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  924. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  925. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  926. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  927. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  928. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  929. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  930. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  931. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  932. },
  933. },
  934. {
  935. LLM_ARCH_MAMBA,
  936. {
  937. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  938. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  939. { LLM_TENSOR_OUTPUT, "output" },
  940. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  941. { LLM_TENSOR_SSM_IN, "blk.%d.ssm_in" },
  942. { LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" },
  943. { LLM_TENSOR_SSM_X, "blk.%d.ssm_x" },
  944. { LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" },
  945. { LLM_TENSOR_SSM_A, "blk.%d.ssm_a" },
  946. { LLM_TENSOR_SSM_D, "blk.%d.ssm_d" },
  947. { LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
  948. },
  949. },
  950. {
  951. LLM_ARCH_XVERSE,
  952. {
  953. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  954. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  955. { LLM_TENSOR_OUTPUT, "output" },
  956. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  957. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  958. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  959. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  960. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  961. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  962. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  963. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  964. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  965. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  966. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  967. },
  968. },
  969. {
  970. LLM_ARCH_COMMAND_R,
  971. {
  972. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  973. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  974. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  975. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  976. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  977. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  978. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  979. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  980. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  981. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  982. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  983. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  984. },
  985. },
  986. {
  987. LLM_ARCH_DBRX,
  988. {
  989. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  990. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  991. { LLM_TENSOR_OUTPUT, "output" },
  992. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  993. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  994. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  995. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  996. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  997. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  998. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  999. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  1000. },
  1001. },
  1002. {
  1003. LLM_ARCH_OLMO,
  1004. {
  1005. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1006. { LLM_TENSOR_OUTPUT, "output" },
  1007. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  1008. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  1009. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  1010. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1011. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  1012. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  1013. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  1014. },
  1015. },
  1016. {
  1017. LLM_ARCH_ARCTIC,
  1018. {
  1019. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1020. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  1021. { LLM_TENSOR_OUTPUT, "output" },
  1022. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  1023. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  1024. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  1025. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  1026. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1027. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  1028. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  1029. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  1030. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  1031. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  1032. { LLM_TENSOR_FFN_NORM_EXPS, "blk.%d.ffn_norm_exps" },
  1033. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  1034. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  1035. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  1036. },
  1037. },
  1038. {
  1039. LLM_ARCH_DEEPSEEK2,
  1040. {
  1041. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1042. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  1043. { LLM_TENSOR_OUTPUT, "output" },
  1044. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  1045. { LLM_TENSOR_ATTN_Q_A_NORM, "blk.%d.attn_q_a_norm" },
  1046. { LLM_TENSOR_ATTN_KV_A_NORM, "blk.%d.attn_kv_a_norm" },
  1047. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  1048. { LLM_TENSOR_ATTN_Q_A, "blk.%d.attn_q_a" },
  1049. { LLM_TENSOR_ATTN_Q_B, "blk.%d.attn_q_b" },
  1050. { LLM_TENSOR_ATTN_KV_A_MQA, "blk.%d.attn_kv_a_mqa" },
  1051. { LLM_TENSOR_ATTN_KV_B, "blk.%d.attn_kv_b" },
  1052. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1053. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  1054. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  1055. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  1056. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  1057. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  1058. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  1059. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  1060. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  1061. { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" },
  1062. { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
  1063. { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
  1064. { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
  1065. },
  1066. },
  1067. {
  1068. LLM_ARCH_UNKNOWN,
  1069. {
  1070. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1071. },
  1072. },
  1073. };
  1074. static llm_arch llm_arch_from_string(const std::string & name) {
  1075. for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT
  1076. if (kv.second == name) {
  1077. return kv.first;
  1078. }
  1079. }
  1080. return LLM_ARCH_UNKNOWN;
  1081. }
  1082. // helper to handle gguf constants
  1083. // usage:
  1084. //
  1085. // const auto tn = LLM_TN(LLM_ARCH_LLAMA);
  1086. //
  1087. // std::string name = tn(LLM_TENSOR_OUTPUT); -> "output"
  1088. // std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias"
  1089. // std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight"
  1090. //
  1091. struct LLM_TN {
  1092. LLM_TN(llm_arch arch) : arch(arch) {}
  1093. llm_arch arch;
  1094. std::string operator()(llm_tensor tensor) const {
  1095. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1096. return "__missing__";
  1097. }
  1098. return LLM_TENSOR_NAMES.at(arch).at(tensor);
  1099. }
  1100. std::string operator()(llm_tensor tensor, const std::string & suffix) const {
  1101. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1102. return "__missing__";
  1103. }
  1104. return LLM_TENSOR_NAMES.at(arch).at(tensor) + "." + suffix;
  1105. }
  1106. std::string operator()(llm_tensor tensor, int bid) const {
  1107. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1108. return "__missing__";
  1109. }
  1110. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid);
  1111. }
  1112. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const {
  1113. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1114. return "__missing__";
  1115. }
  1116. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid) + "." + suffix;
  1117. }
  1118. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid, int xid) const {
  1119. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1120. return "__missing__";
  1121. }
  1122. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid, xid) + "." + suffix;
  1123. }
  1124. };
  1125. //
  1126. // gguf helpers
  1127. //
  1128. static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
  1129. { LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
  1130. { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
  1131. { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
  1132. };
  1133. static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
  1134. for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
  1135. if (kv.second == name) {
  1136. return (llama_rope_scaling_type) kv.first;
  1137. }
  1138. }
  1139. return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  1140. }
  1141. static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
  1142. switch (type) {
  1143. case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
  1144. case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
  1145. case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
  1146. case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
  1147. case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
  1148. case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
  1149. case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
  1150. case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
  1151. case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
  1152. case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
  1153. case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
  1154. default: return format("unknown type %d", type);
  1155. }
  1156. }
  1157. static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
  1158. const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
  1159. switch (type) {
  1160. case GGUF_TYPE_STRING:
  1161. return gguf_get_val_str(ctx_gguf, i);
  1162. case GGUF_TYPE_ARRAY:
  1163. {
  1164. const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
  1165. int arr_n = gguf_get_arr_n(ctx_gguf, i);
  1166. const void * data = gguf_get_arr_data(ctx_gguf, i);
  1167. std::stringstream ss;
  1168. ss << "[";
  1169. for (int j = 0; j < arr_n; j++) {
  1170. if (arr_type == GGUF_TYPE_STRING) {
  1171. std::string val = gguf_get_arr_str(ctx_gguf, i, j);
  1172. // escape quotes
  1173. replace_all(val, "\\", "\\\\");
  1174. replace_all(val, "\"", "\\\"");
  1175. ss << '"' << val << '"';
  1176. } else if (arr_type == GGUF_TYPE_ARRAY) {
  1177. ss << "???";
  1178. } else {
  1179. ss << gguf_data_to_str(arr_type, data, j);
  1180. }
  1181. if (j < arr_n - 1) {
  1182. ss << ", ";
  1183. }
  1184. }
  1185. ss << "]";
  1186. return ss.str();
  1187. }
  1188. default:
  1189. return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
  1190. }
  1191. }
  1192. //
  1193. // llama helpers
  1194. //
  1195. #if defined(_WIN32)
  1196. static std::string llama_format_win_err(DWORD err) {
  1197. LPSTR buf;
  1198. size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
  1199. NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
  1200. if (!size) {
  1201. return "FormatMessageA failed";
  1202. }
  1203. std::string ret(buf, size);
  1204. LocalFree(buf);
  1205. return ret;
  1206. }
  1207. #endif
  1208. template <typename T>
  1209. struct no_init {
  1210. T value;
  1211. no_init() { /* do nothing */ }
  1212. };
  1213. struct llama_file {
  1214. // use FILE * so we don't have to re-open the file to mmap
  1215. FILE * fp;
  1216. size_t size;
  1217. llama_file(const char * fname, const char * mode) {
  1218. fp = ggml_fopen(fname, mode);
  1219. if (fp == NULL) {
  1220. throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
  1221. }
  1222. seek(0, SEEK_END);
  1223. size = tell();
  1224. seek(0, SEEK_SET);
  1225. }
  1226. size_t tell() const {
  1227. #ifdef _WIN32
  1228. __int64 ret = _ftelli64(fp);
  1229. #else
  1230. long ret = std::ftell(fp);
  1231. #endif
  1232. GGML_ASSERT(ret != -1); // this really shouldn't fail
  1233. return (size_t) ret;
  1234. }
  1235. void seek(size_t offset, int whence) const {
  1236. #ifdef _WIN32
  1237. int ret = _fseeki64(fp, (__int64) offset, whence);
  1238. #else
  1239. int ret = std::fseek(fp, (long) offset, whence);
  1240. #endif
  1241. GGML_ASSERT(ret == 0); // same
  1242. }
  1243. void read_raw(void * ptr, size_t len) const {
  1244. if (len == 0) {
  1245. return;
  1246. }
  1247. errno = 0;
  1248. std::size_t ret = std::fread(ptr, len, 1, fp);
  1249. if (ferror(fp)) {
  1250. throw std::runtime_error(format("read error: %s", strerror(errno)));
  1251. }
  1252. if (ret != 1) {
  1253. throw std::runtime_error("unexpectedly reached end of file");
  1254. }
  1255. }
  1256. uint32_t read_u32() const {
  1257. uint32_t ret;
  1258. read_raw(&ret, sizeof(ret));
  1259. return ret;
  1260. }
  1261. void write_raw(const void * ptr, size_t len) const {
  1262. if (len == 0) {
  1263. return;
  1264. }
  1265. errno = 0;
  1266. size_t ret = std::fwrite(ptr, len, 1, fp);
  1267. if (ret != 1) {
  1268. throw std::runtime_error(format("write error: %s", strerror(errno)));
  1269. }
  1270. }
  1271. void write_u32(std::uint32_t val) const {
  1272. write_raw(&val, sizeof(val));
  1273. }
  1274. ~llama_file() {
  1275. if (fp) {
  1276. std::fclose(fp);
  1277. }
  1278. }
  1279. };
  1280. using llama_files = std::vector<std::unique_ptr<llama_file>>;
  1281. struct llama_mmap {
  1282. void * addr;
  1283. size_t size;
  1284. llama_mmap(const llama_mmap &) = delete;
  1285. #ifdef _POSIX_MAPPED_FILES
  1286. static constexpr bool SUPPORTED = true;
  1287. // list of mapped fragments (first_offset, last_offset)
  1288. std::vector<std::pair<size_t, size_t>> mapped_fragments;
  1289. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
  1290. size = file->size;
  1291. int fd = fileno(file->fp);
  1292. int flags = MAP_SHARED;
  1293. // prefetch/readahead impairs performance on NUMA systems
  1294. if (numa) { prefetch = 0; }
  1295. #ifdef __linux__
  1296. // advise the kernel to read the file sequentially (increases readahead)
  1297. if (posix_fadvise(fd, 0, 0, POSIX_FADV_SEQUENTIAL)) {
  1298. LLAMA_LOG_WARN("warning: posix_fadvise(.., POSIX_FADV_SEQUENTIAL) failed: %s\n",
  1299. strerror(errno));
  1300. }
  1301. if (prefetch) { flags |= MAP_POPULATE; }
  1302. #endif
  1303. addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
  1304. if (addr == MAP_FAILED) { // NOLINT
  1305. throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
  1306. }
  1307. if (prefetch > 0) {
  1308. // advise the kernel to preload the mapped memory
  1309. if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) {
  1310. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n",
  1311. strerror(errno));
  1312. }
  1313. }
  1314. if (numa) {
  1315. // advise the kernel not to use readahead
  1316. // (because the next page might not belong on the same node)
  1317. if (posix_madvise(addr, file->size, POSIX_MADV_RANDOM)) {
  1318. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n",
  1319. strerror(errno));
  1320. }
  1321. }
  1322. // initialize list of mapped_fragments
  1323. mapped_fragments.emplace_back(0, file->size);
  1324. }
  1325. static void align_range(size_t * first, size_t * last, size_t page_size) {
  1326. // align first to the next page
  1327. size_t offset_in_page = *first & (page_size - 1);
  1328. size_t offset_to_page = offset_in_page == 0 ? 0 : page_size - offset_in_page;
  1329. *first += offset_to_page;
  1330. // align last to the previous page
  1331. *last = *last & ~(page_size - 1);
  1332. if (*last <= *first) {
  1333. *last = *first;
  1334. }
  1335. }
  1336. // partially unmap the file in the range [first, last)
  1337. void unmap_fragment(size_t first, size_t last) {
  1338. // note: this function must not be called multiple times with overlapping ranges
  1339. // otherwise, there is a risk of invalidating addresses that have been repurposed for other mappings
  1340. int page_size = sysconf(_SC_PAGESIZE);
  1341. align_range(&first, &last, page_size);
  1342. size_t len = last - first;
  1343. if (len == 0) {
  1344. return;
  1345. }
  1346. GGML_ASSERT(first % page_size == 0);
  1347. GGML_ASSERT(last % page_size == 0);
  1348. GGML_ASSERT(last > first);
  1349. void * next_page_start = (uint8_t *) addr + first;
  1350. // unmap the range
  1351. if (munmap(next_page_start, len)) {
  1352. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1353. }
  1354. // update the list of mapped fragments to avoid unmapping the same range again in the destructor
  1355. std::vector<std::pair<size_t, size_t>> new_mapped_fragments;
  1356. for (const auto & frag : mapped_fragments) {
  1357. if (frag.first < first && frag.second > last) {
  1358. // the range is in the middle of the fragment, split it
  1359. new_mapped_fragments.emplace_back(frag.first, first);
  1360. new_mapped_fragments.emplace_back(last, frag.second);
  1361. } else if (frag.first < first && frag.second > first) {
  1362. // the range starts in the middle of the fragment
  1363. new_mapped_fragments.emplace_back(frag.first, first);
  1364. } else if (frag.first < last && frag.second > last) {
  1365. // the range ends in the middle of the fragment
  1366. new_mapped_fragments.emplace_back(last, frag.second);
  1367. } else if (frag.first >= first && frag.second <= last) {
  1368. // the range covers the entire fragment
  1369. } else {
  1370. // the range is outside the fragment
  1371. new_mapped_fragments.push_back(frag);
  1372. }
  1373. }
  1374. mapped_fragments = std::move(new_mapped_fragments);
  1375. }
  1376. ~llama_mmap() {
  1377. for (const auto & frag : mapped_fragments) {
  1378. if (munmap((char *) addr + frag.first, frag.second - frag.first)) {
  1379. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1380. }
  1381. }
  1382. }
  1383. #elif defined(_WIN32)
  1384. static constexpr bool SUPPORTED = true;
  1385. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1, bool numa = false) {
  1386. GGML_UNUSED(numa);
  1387. size = file->size;
  1388. HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
  1389. HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
  1390. if (hMapping == NULL) {
  1391. DWORD error = GetLastError();
  1392. throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
  1393. }
  1394. addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
  1395. DWORD error = GetLastError();
  1396. CloseHandle(hMapping);
  1397. if (addr == NULL) {
  1398. throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
  1399. }
  1400. if (prefetch > 0) {
  1401. #if _WIN32_WINNT >= 0x602
  1402. // PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it
  1403. BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
  1404. HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
  1405. // may fail on pre-Windows 8 systems
  1406. pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
  1407. if (pPrefetchVirtualMemory) {
  1408. // advise the kernel to preload the mapped memory
  1409. WIN32_MEMORY_RANGE_ENTRY range;
  1410. range.VirtualAddress = addr;
  1411. range.NumberOfBytes = (SIZE_T) std::min(size, prefetch);
  1412. if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
  1413. LLAMA_LOG_WARN("warning: PrefetchVirtualMemory failed: %s\n",
  1414. llama_format_win_err(GetLastError()).c_str());
  1415. }
  1416. }
  1417. #else
  1418. throw std::runtime_error("PrefetchVirtualMemory unavailable");
  1419. #endif
  1420. }
  1421. }
  1422. void unmap_fragment(size_t first, size_t last) {
  1423. // not supported
  1424. GGML_UNUSED(first);
  1425. GGML_UNUSED(last);
  1426. }
  1427. ~llama_mmap() {
  1428. if (!UnmapViewOfFile(addr)) {
  1429. LLAMA_LOG_WARN("warning: UnmapViewOfFile failed: %s\n",
  1430. llama_format_win_err(GetLastError()).c_str());
  1431. }
  1432. }
  1433. #else
  1434. static constexpr bool SUPPORTED = false;
  1435. llama_mmap(struct llama_file * file, size_t prefetch = -1, bool numa = false) {
  1436. GGML_UNUSED(file);
  1437. GGML_UNUSED(prefetch);
  1438. GGML_UNUSED(numa);
  1439. throw std::runtime_error("mmap not supported");
  1440. }
  1441. void unmap_fragment(size_t first, size_t last) {
  1442. GGML_UNUSED(first);
  1443. GGML_UNUSED(last);
  1444. throw std::runtime_error("mmap not supported");
  1445. }
  1446. #endif
  1447. };
  1448. using llama_mmaps = std::vector<std::unique_ptr<llama_mmap>>;
  1449. // Represents some region of memory being locked using mlock or VirtualLock;
  1450. // will automatically unlock on destruction.
  1451. struct llama_mlock {
  1452. void * addr = NULL;
  1453. size_t size = 0;
  1454. bool failed_already = false;
  1455. llama_mlock() {}
  1456. llama_mlock(const llama_mlock &) = delete;
  1457. ~llama_mlock() {
  1458. if (size) {
  1459. raw_unlock(addr, size);
  1460. }
  1461. }
  1462. void init(void * ptr) {
  1463. GGML_ASSERT(addr == NULL && size == 0); // NOLINT
  1464. addr = ptr;
  1465. }
  1466. void grow_to(size_t target_size) {
  1467. GGML_ASSERT(addr);
  1468. if (failed_already) {
  1469. return;
  1470. }
  1471. size_t granularity = lock_granularity();
  1472. target_size = (target_size + granularity - 1) & ~(granularity - 1);
  1473. if (target_size > size) {
  1474. if (raw_lock((uint8_t *) addr + size, target_size - size)) {
  1475. size = target_size;
  1476. } else {
  1477. failed_already = true;
  1478. }
  1479. }
  1480. }
  1481. #ifdef _POSIX_MEMLOCK_RANGE
  1482. static constexpr bool SUPPORTED = true;
  1483. static size_t lock_granularity() {
  1484. return (size_t) sysconf(_SC_PAGESIZE);
  1485. }
  1486. #ifdef __APPLE__
  1487. #define MLOCK_SUGGESTION \
  1488. "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
  1489. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MEMLOCK (ulimit -l).\n"
  1490. #else
  1491. #define MLOCK_SUGGESTION \
  1492. "Try increasing RLIMIT_MEMLOCK ('ulimit -l' as root).\n"
  1493. #endif
  1494. bool raw_lock(const void * addr, size_t size) const {
  1495. if (!mlock(addr, size)) {
  1496. return true;
  1497. }
  1498. char* errmsg = std::strerror(errno);
  1499. bool suggest = (errno == ENOMEM);
  1500. // Check if the resource limit is fine after all
  1501. struct rlimit lock_limit;
  1502. if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) {
  1503. suggest = false;
  1504. }
  1505. if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
  1506. suggest = false;
  1507. }
  1508. LLAMA_LOG_WARN("warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
  1509. size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
  1510. return false;
  1511. }
  1512. #undef MLOCK_SUGGESTION
  1513. static void raw_unlock(void * addr, size_t size) {
  1514. if (munlock(addr, size)) {
  1515. LLAMA_LOG_WARN("warning: failed to munlock buffer: %s\n", std::strerror(errno));
  1516. }
  1517. }
  1518. #elif defined(_WIN32)
  1519. static constexpr bool SUPPORTED = true;
  1520. static size_t lock_granularity() {
  1521. SYSTEM_INFO si;
  1522. GetSystemInfo(&si);
  1523. return (size_t) si.dwPageSize;
  1524. }
  1525. bool raw_lock(void * ptr, size_t len) const {
  1526. for (int tries = 1; ; tries++) {
  1527. if (VirtualLock(ptr, len)) {
  1528. return true;
  1529. }
  1530. if (tries == 2) {
  1531. LLAMA_LOG_WARN("warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
  1532. len, size, llama_format_win_err(GetLastError()).c_str());
  1533. return false;
  1534. }
  1535. // It failed but this was only the first try; increase the working
  1536. // set size and try again.
  1537. SIZE_T min_ws_size, max_ws_size;
  1538. if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
  1539. LLAMA_LOG_WARN("warning: GetProcessWorkingSetSize failed: %s\n",
  1540. llama_format_win_err(GetLastError()).c_str());
  1541. return false;
  1542. }
  1543. // Per MSDN: "The maximum number of pages that a process can lock
  1544. // is equal to the number of pages in its minimum working set minus
  1545. // a small overhead."
  1546. // Hopefully a megabyte is enough overhead:
  1547. size_t increment = len + 1048576;
  1548. // The minimum must be <= the maximum, so we need to increase both:
  1549. min_ws_size += increment;
  1550. max_ws_size += increment;
  1551. if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
  1552. LLAMA_LOG_WARN("warning: SetProcessWorkingSetSize failed: %s\n",
  1553. llama_format_win_err(GetLastError()).c_str());
  1554. return false;
  1555. }
  1556. }
  1557. }
  1558. static void raw_unlock(void * ptr, size_t len) {
  1559. if (!VirtualUnlock(ptr, len)) {
  1560. LLAMA_LOG_WARN("warning: failed to VirtualUnlock buffer: %s\n",
  1561. llama_format_win_err(GetLastError()).c_str());
  1562. }
  1563. }
  1564. #else
  1565. static constexpr bool SUPPORTED = false;
  1566. static size_t lock_granularity() {
  1567. return (size_t) 65536;
  1568. }
  1569. bool raw_lock(const void * addr, size_t len) const {
  1570. LLAMA_LOG_WARN("warning: mlock not supported on this system\n");
  1571. return false;
  1572. }
  1573. static void raw_unlock(const void * addr, size_t len) {}
  1574. #endif
  1575. };
  1576. using llama_mlocks = std::vector<std::unique_ptr<llama_mlock>>;
  1577. // NOTE: avoid ever using this except for building the token_to_piece caches
  1578. static std::string llama_token_to_piece(const struct llama_model * model, llama_token token, bool special) {
  1579. std::vector<char> result(8, 0);
  1580. const int n_tokens = llama_token_to_piece(model, token, result.data(), result.size(), special);
  1581. if (n_tokens < 0) {
  1582. result.resize(-n_tokens);
  1583. int check = llama_token_to_piece(model, token, result.data(), result.size(), special);
  1584. GGML_ASSERT(check == -n_tokens);
  1585. }
  1586. else {
  1587. result.resize(n_tokens);
  1588. }
  1589. return std::string(result.data(), result.size());
  1590. }
  1591. static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer) {
  1592. ggml_backend_buffer_type_t buft = nullptr;
  1593. #if defined(GGML_USE_CUDA)
  1594. // host buffers should only be used when data is expected to be copied to/from the GPU
  1595. if (host_buffer) {
  1596. buft = ggml_backend_cuda_host_buffer_type();
  1597. }
  1598. #elif defined(GGML_USE_SYCL)
  1599. if (host_buffer) {
  1600. buft = ggml_backend_sycl_host_buffer_type();
  1601. }
  1602. #elif defined(GGML_USE_CPU_HBM)
  1603. buft = ggml_backend_cpu_hbm_buffer_type();
  1604. #elif defined(GGML_USE_VULKAN)
  1605. if (host_buffer) {
  1606. buft = ggml_backend_vk_host_buffer_type();
  1607. }
  1608. #endif
  1609. if (buft == nullptr) {
  1610. buft = ggml_backend_cpu_buffer_type();
  1611. }
  1612. return buft;
  1613. GGML_UNUSED(host_buffer);
  1614. }
  1615. //
  1616. // globals
  1617. //
  1618. struct llama_state {
  1619. llama_state() {
  1620. #ifdef GGML_USE_METAL
  1621. ggml_backend_metal_log_set_callback(log_callback, log_callback_user_data);
  1622. #elif defined(GGML_USE_CUDA)
  1623. ggml_backend_cuda_log_set_callback(log_callback, log_callback_user_data);
  1624. #endif
  1625. }
  1626. // We save the log callback globally
  1627. ggml_log_callback log_callback = llama_log_callback_default;
  1628. void * log_callback_user_data = nullptr;
  1629. };
  1630. static llama_state g_state;
  1631. // available llama models
  1632. enum e_model {
  1633. MODEL_UNKNOWN,
  1634. MODEL_14M,
  1635. MODEL_17M,
  1636. MODEL_22M,
  1637. MODEL_33M,
  1638. MODEL_70M,
  1639. MODEL_109M,
  1640. MODEL_137M,
  1641. MODEL_160M,
  1642. MODEL_335M,
  1643. MODEL_410M,
  1644. MODEL_0_5B,
  1645. MODEL_1B,
  1646. MODEL_1_4B,
  1647. MODEL_2B,
  1648. MODEL_2_8B,
  1649. MODEL_3B,
  1650. MODEL_4B,
  1651. MODEL_6_9B,
  1652. MODEL_7B,
  1653. MODEL_8B,
  1654. MODEL_12B,
  1655. MODEL_13B,
  1656. MODEL_14B,
  1657. MODEL_15B,
  1658. MODEL_16B,
  1659. MODEL_20B,
  1660. MODEL_30B,
  1661. MODEL_34B,
  1662. MODEL_35B,
  1663. MODEL_40B,
  1664. MODEL_65B,
  1665. MODEL_70B,
  1666. MODEL_236B,
  1667. MODEL_314B,
  1668. MODEL_SMALL,
  1669. MODEL_MEDIUM,
  1670. MODEL_LARGE,
  1671. MODEL_XL,
  1672. MODEL_A2_7B,
  1673. MODEL_8x7B,
  1674. MODEL_8x22B,
  1675. MODEL_16x12B,
  1676. MODEL_10B_128x3_66B,
  1677. };
  1678. static const size_t kiB = 1024;
  1679. static const size_t MiB = 1024*kiB;
  1680. static const size_t GiB = 1024*MiB;
  1681. struct llama_hparams {
  1682. bool vocab_only;
  1683. bool rope_finetuned;
  1684. bool use_par_res;
  1685. uint32_t n_vocab;
  1686. uint32_t n_ctx_train; // context size the model was trained on
  1687. uint32_t n_embd;
  1688. uint32_t n_head;
  1689. uint32_t n_head_kv;
  1690. uint32_t n_layer;
  1691. uint32_t n_rot;
  1692. uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
  1693. uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
  1694. uint32_t n_ff;
  1695. uint32_t n_expert = 0;
  1696. uint32_t n_expert_used = 0;
  1697. uint32_t n_vocab_type = 0; // for BERT-style token types
  1698. uint32_t n_layer_dense_lead = 0;
  1699. uint32_t n_lora_q = 0;
  1700. uint32_t n_lora_kv = 0;
  1701. uint32_t n_ff_exp = 0;
  1702. uint32_t n_expert_shared = 0;
  1703. float expert_weights_scale = 0.0;
  1704. float f_norm_eps;
  1705. float f_norm_rms_eps;
  1706. float rope_attn_factor = 1.0f;
  1707. float rope_freq_base_train;
  1708. float rope_freq_scale_train;
  1709. uint32_t n_ctx_orig_yarn;
  1710. float rope_yarn_log_mul;
  1711. // for State Space Models
  1712. uint32_t ssm_d_conv = 0;
  1713. uint32_t ssm_d_inner = 0;
  1714. uint32_t ssm_d_state = 0;
  1715. uint32_t ssm_dt_rank = 0;
  1716. float f_clamp_kqv = 0.0f;
  1717. float f_max_alibi_bias = 0.0f;
  1718. float f_logit_scale = 0.0f;
  1719. bool causal_attn = true;
  1720. bool use_alibi = false;
  1721. enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE;
  1722. enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
  1723. enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
  1724. bool operator!=(const llama_hparams & other) const {
  1725. if (this->vocab_only != other.vocab_only) return true;
  1726. if (this->n_vocab != other.n_vocab) return true;
  1727. if (this->n_ctx_train != other.n_ctx_train) return true;
  1728. if (this->n_embd != other.n_embd) return true;
  1729. if (this->n_head != other.n_head) return true;
  1730. if (this->n_head_kv != other.n_head_kv) return true;
  1731. if (this->n_layer != other.n_layer) return true;
  1732. if (this->n_rot != other.n_rot) return true;
  1733. if (this->n_embd_head_k != other.n_embd_head_k) return true;
  1734. if (this->n_embd_head_v != other.n_embd_head_v) return true;
  1735. if (this->n_ff != other.n_ff) return true;
  1736. if (this->n_expert != other.n_expert) return true;
  1737. if (this->n_expert_used != other.n_expert_used) return true;
  1738. if (this->n_layer_dense_lead != other.n_layer_dense_lead) return true;
  1739. if (this->n_lora_q != other.n_lora_q) return true;
  1740. if (this->n_lora_kv != other.n_lora_kv) return true;
  1741. if (this->n_ff_exp != other.n_ff_exp) return true;
  1742. if (this->n_expert_shared != other.n_expert_shared) return true;
  1743. if (this->rope_finetuned != other.rope_finetuned) return true;
  1744. if (this->n_ctx_orig_yarn != other.n_ctx_orig_yarn) return true;
  1745. if (this->ssm_d_conv != other.ssm_d_conv) return true;
  1746. if (this->ssm_d_inner != other.ssm_d_inner) return true;
  1747. if (this->ssm_d_state != other.ssm_d_state) return true;
  1748. if (this->ssm_dt_rank != other.ssm_dt_rank) return true;
  1749. const float EPSILON = 1e-9f;
  1750. if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true;
  1751. if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true;
  1752. if (!is_float_close(this->rope_attn_factor, other.rope_attn_factor, EPSILON)) return true;
  1753. if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true;
  1754. if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true;
  1755. if (!is_float_close(this->expert_weights_scale, other.expert_weights_scale, EPSILON)) return true;
  1756. if (!is_float_close(this->rope_yarn_log_mul, other.rope_yarn_log_mul, EPSILON)) return true;
  1757. return false;
  1758. }
  1759. uint32_t n_gqa() const {
  1760. if (n_head_kv == 0) {
  1761. return 0;
  1762. }
  1763. return n_head/n_head_kv;
  1764. }
  1765. uint32_t n_embd_k_gqa() const { // dimension of key embeddings across all k-v heads
  1766. return n_embd_head_k * n_head_kv;
  1767. }
  1768. uint32_t n_embd_v_gqa() const { // dimension of value embeddings across all k-v heads
  1769. return n_embd_head_v * n_head_kv;
  1770. }
  1771. uint32_t n_embd_k_s() const { // dimension of the rolling state embeddings
  1772. // corresponds to Mamba's conv_states size
  1773. // TODO: maybe support other convolution strides than 1
  1774. // NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
  1775. return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner;
  1776. }
  1777. uint32_t n_embd_v_s() const { // dimension of the recurrent state embeddings
  1778. // corresponds to Mamba's ssm_states size
  1779. return ssm_d_state * ssm_d_inner;
  1780. }
  1781. };
  1782. struct llama_cparams {
  1783. uint32_t n_ctx; // context size used during inference
  1784. uint32_t n_batch;
  1785. uint32_t n_ubatch;
  1786. uint32_t n_seq_max;
  1787. uint32_t n_threads; // number of threads to use for generation
  1788. uint32_t n_threads_batch; // number of threads to use for batch processing
  1789. float rope_freq_base;
  1790. float rope_freq_scale;
  1791. uint32_t n_ctx_orig_yarn;
  1792. // These hyperparameters are not exposed in GGUF, because all
  1793. // existing YaRN models use the same values for them.
  1794. float yarn_ext_factor;
  1795. float yarn_attn_factor;
  1796. float yarn_beta_fast;
  1797. float yarn_beta_slow;
  1798. float defrag_thold;
  1799. bool embeddings;
  1800. bool causal_attn;
  1801. bool offload_kqv;
  1802. bool flash_attn;
  1803. enum llama_pooling_type pooling_type;
  1804. ggml_backend_sched_eval_callback cb_eval;
  1805. void * cb_eval_user_data;
  1806. };
  1807. struct llama_layer {
  1808. // normalization
  1809. struct ggml_tensor * attn_norm;
  1810. struct ggml_tensor * attn_norm_b;
  1811. struct ggml_tensor * attn_norm_2;
  1812. struct ggml_tensor * attn_norm_2_b;
  1813. struct ggml_tensor * attn_q_norm;
  1814. struct ggml_tensor * attn_q_norm_b;
  1815. struct ggml_tensor * attn_k_norm;
  1816. struct ggml_tensor * attn_k_norm_b;
  1817. struct ggml_tensor * attn_out_norm;
  1818. struct ggml_tensor * attn_out_norm_b;
  1819. struct ggml_tensor * attn_q_a_norm;
  1820. struct ggml_tensor * attn_kv_a_norm;
  1821. // attention
  1822. struct ggml_tensor * wq;
  1823. struct ggml_tensor * wk;
  1824. struct ggml_tensor * wv;
  1825. struct ggml_tensor * wo;
  1826. struct ggml_tensor * wqkv;
  1827. struct ggml_tensor * wq_a;
  1828. struct ggml_tensor * wq_b;
  1829. struct ggml_tensor * wkv_a_mqa;
  1830. struct ggml_tensor * wkv_b;
  1831. // attention bias
  1832. struct ggml_tensor * bq;
  1833. struct ggml_tensor * bk;
  1834. struct ggml_tensor * bv;
  1835. struct ggml_tensor * bo;
  1836. struct ggml_tensor * bqkv;
  1837. // normalization
  1838. struct ggml_tensor * ffn_norm;
  1839. struct ggml_tensor * ffn_norm_b;
  1840. struct ggml_tensor * layer_out_norm;
  1841. struct ggml_tensor * layer_out_norm_b;
  1842. struct ggml_tensor * ffn_norm_exps;
  1843. // ff
  1844. struct ggml_tensor * ffn_gate; // w1
  1845. struct ggml_tensor * ffn_down; // w2
  1846. struct ggml_tensor * ffn_up; // w3
  1847. // ff MoE
  1848. struct ggml_tensor * ffn_gate_inp;
  1849. struct ggml_tensor * ffn_gate_exps;
  1850. struct ggml_tensor * ffn_down_exps;
  1851. struct ggml_tensor * ffn_up_exps ;
  1852. // ff shared expert (shexp)
  1853. struct ggml_tensor * ffn_gate_inp_shexp;
  1854. struct ggml_tensor * ffn_gate_shexp;
  1855. struct ggml_tensor * ffn_down_shexp;
  1856. struct ggml_tensor * ffn_up_shexp;
  1857. // ff bias
  1858. struct ggml_tensor * ffn_gate_b = nullptr;
  1859. struct ggml_tensor * ffn_down_b = nullptr; // b2
  1860. struct ggml_tensor * ffn_up_b = nullptr; // b3
  1861. struct ggml_tensor * ffn_act;
  1862. // mamba proj
  1863. struct ggml_tensor * ssm_in;
  1864. struct ggml_tensor * ssm_x;
  1865. struct ggml_tensor * ssm_dt;
  1866. struct ggml_tensor * ssm_out;
  1867. // mamba
  1868. struct ggml_tensor * ssm_conv1d;
  1869. struct ggml_tensor * ssm_a;
  1870. struct ggml_tensor * ssm_d;
  1871. // mamba bias
  1872. struct ggml_tensor * ssm_conv1d_b;
  1873. struct ggml_tensor * ssm_dt_b;
  1874. // long rope factors
  1875. struct ggml_tensor * rope_long = nullptr;
  1876. struct ggml_tensor * rope_short = nullptr;
  1877. };
  1878. struct llama_kv_cell {
  1879. llama_pos pos = -1;
  1880. llama_pos delta = 0;
  1881. int32_t src = 0; // used by recurrent state models to copy states
  1882. std::set<llama_seq_id> seq_id;
  1883. bool has_seq_id(const llama_seq_id & id) const {
  1884. return seq_id.find(id) != seq_id.end();
  1885. }
  1886. bool is_empty() const {
  1887. return seq_id.empty();
  1888. }
  1889. bool is_same_seq(const llama_kv_cell & other) const {
  1890. return seq_id == other.seq_id;
  1891. }
  1892. };
  1893. // ring-buffer of cached KV data
  1894. struct llama_kv_cache {
  1895. bool has_shift = false;
  1896. bool do_defrag = false;
  1897. bool do_copy = false;
  1898. bool recurrent = false; // with recurrent state models, a cell can hold the state for more than one past token
  1899. bool v_trans = true; // the value tensor is transposed
  1900. // Note: The value of head isn't only used to optimize searching
  1901. // for a free KV slot. llama_decode_internal also uses it, so it
  1902. // cannot be freely changed after a slot has been allocated.
  1903. uint32_t head = 0;
  1904. uint32_t size = 0;
  1905. uint32_t used = 0; // used cells (i.e. at least one seq_id)
  1906. // computed before each graph build
  1907. uint32_t n = 0;
  1908. ggml_type type_k = GGML_TYPE_F16;
  1909. ggml_type type_v = GGML_TYPE_F16;
  1910. std::vector<llama_kv_cell> cells;
  1911. std::vector<struct ggml_tensor *> k_l; // per layer
  1912. std::vector<struct ggml_tensor *> v_l;
  1913. std::vector<struct ggml_context *> ctxs;
  1914. std::vector<ggml_backend_buffer_t> bufs;
  1915. size_t total_size() const {
  1916. size_t size = 0;
  1917. for (ggml_backend_buffer_t buf : bufs) {
  1918. size += ggml_backend_buffer_get_size(buf);
  1919. }
  1920. return size;
  1921. }
  1922. ~llama_kv_cache() {
  1923. for (struct ggml_context * ctx : ctxs) {
  1924. ggml_free(ctx);
  1925. }
  1926. for (ggml_backend_buffer_t buf : bufs) {
  1927. ggml_backend_buffer_free(buf);
  1928. }
  1929. }
  1930. };
  1931. struct llama_control_vector {
  1932. std::vector<struct ggml_tensor *> tensors; // per layer
  1933. std::vector<struct ggml_context *> ctxs;
  1934. std::vector<ggml_backend_buffer_t> bufs;
  1935. int32_t layer_start = -1;
  1936. int32_t layer_end = -1;
  1937. ggml_tensor * tensor_for(int il) const {
  1938. if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) {
  1939. return nullptr;
  1940. }
  1941. return tensors[il];
  1942. }
  1943. ~llama_control_vector() {
  1944. for (struct ggml_context * ctx : ctxs) {
  1945. ggml_free(ctx);
  1946. }
  1947. for (ggml_backend_buffer_t buf : bufs) {
  1948. ggml_backend_buffer_free(buf);
  1949. }
  1950. }
  1951. };
  1952. struct llama_vocab {
  1953. using id = int32_t;
  1954. using token = std::string;
  1955. using tattr = llama_token_attr;
  1956. struct token_data {
  1957. token text;
  1958. float score;
  1959. tattr attr;
  1960. };
  1961. enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
  1962. enum llama_vocab_pre_type type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  1963. std::unordered_map<token, id> token_to_id;
  1964. std::vector<token_data> id_to_token;
  1965. std::vector<id> cache_special_tokens;
  1966. std::vector<token> cache_token_to_piece; // llama_token_to_piece(special = true);
  1967. std::map<std::pair<std::string, std::string>, int> bpe_ranks;
  1968. // default LLaMA special tokens
  1969. id special_bos_id = 1;
  1970. id special_eos_id = 2;
  1971. id special_unk_id = 0;
  1972. id special_sep_id = -1;
  1973. id special_pad_id = -1;
  1974. id special_cls_id = -1;
  1975. id special_mask_id = -1;
  1976. int special_add_bos = -1; // -1 unknown, 1 add, 0 don't add.
  1977. int special_add_eos = -1; // -1 unknown, 1 add, 0 don't add.
  1978. id linefeed_id = 13;
  1979. id special_prefix_id = -1;
  1980. id special_suffix_id = -1;
  1981. id special_middle_id = -1;
  1982. id special_eot_id = -1; // TODO: move above after "eos_id", and here add "file separator" token
  1983. bool add_space_prefix = true;
  1984. int find_bpe_rank(const std::string & token_left, const std::string & token_right) const {
  1985. GGML_ASSERT(token_left.find(' ') == std::string::npos);
  1986. GGML_ASSERT(token_left.find('\n') == std::string::npos);
  1987. GGML_ASSERT(token_right.find(' ') == std::string::npos);
  1988. GGML_ASSERT(token_right.find('\n') == std::string::npos);
  1989. auto it = bpe_ranks.find(std::make_pair(token_left, token_right));
  1990. if (it == bpe_ranks.end()) {
  1991. return -1;
  1992. }
  1993. return it->second;
  1994. }
  1995. };
  1996. struct llama_model {
  1997. e_model type = MODEL_UNKNOWN;
  1998. llm_arch arch = LLM_ARCH_UNKNOWN;
  1999. llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
  2000. std::string name = "n/a";
  2001. llama_hparams hparams = {};
  2002. llama_vocab vocab;
  2003. struct ggml_tensor * tok_embd;
  2004. struct ggml_tensor * type_embd;
  2005. struct ggml_tensor * pos_embd;
  2006. struct ggml_tensor * tok_norm;
  2007. struct ggml_tensor * tok_norm_b;
  2008. struct ggml_tensor * output_norm;
  2009. struct ggml_tensor * output_norm_b;
  2010. struct ggml_tensor * output;
  2011. struct ggml_tensor * output_b;
  2012. std::vector<llama_layer> layers;
  2013. llama_split_mode split_mode;
  2014. int main_gpu;
  2015. int n_gpu_layers;
  2016. std::vector<std::string> rpc_servers;
  2017. // gguf metadata
  2018. std::unordered_map<std::string, std::string> gguf_kv;
  2019. // layer -> buffer type mapping
  2020. struct layer_buft {
  2021. layer_buft() : buft_matrix(nullptr), buft(nullptr) {}
  2022. layer_buft(ggml_backend_buffer_type_t matrix) : buft_matrix(matrix), buft(matrix) {}
  2023. layer_buft(ggml_backend_buffer_type_t matrix, ggml_backend_buffer_type_t other) : buft_matrix(matrix), buft(other) {}
  2024. ggml_backend_buffer_type_t buft_matrix; // matrices only - used by split buffers and backends that support only matrix multiplication
  2025. ggml_backend_buffer_type_t buft; // everything else
  2026. };
  2027. layer_buft buft_input;
  2028. layer_buft buft_output;
  2029. std::vector<layer_buft> buft_layer;
  2030. // contexts where the model tensors metadata is stored
  2031. std::vector<struct ggml_context *> ctxs;
  2032. // the model memory buffers for the tensor data
  2033. std::vector<ggml_backend_buffer_t> bufs;
  2034. // model memory mapped files
  2035. llama_mmaps mappings;
  2036. // objects representing data potentially being locked in memory
  2037. llama_mlocks mlock_bufs;
  2038. llama_mlocks mlock_mmaps;
  2039. // for quantize-stats only
  2040. std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
  2041. int64_t t_load_us = 0;
  2042. int64_t t_start_us = 0;
  2043. ~llama_model() {
  2044. for (struct ggml_context * ctx : ctxs) {
  2045. ggml_free(ctx);
  2046. }
  2047. for (ggml_backend_buffer_t buf : bufs) {
  2048. #ifdef GGML_USE_CUDA
  2049. if (ggml_backend_buffer_get_type(buf) == ggml_backend_cpu_buffer_type()) {
  2050. ggml_backend_cuda_unregister_host_buffer(ggml_backend_buffer_get_base(buf));
  2051. }
  2052. #endif
  2053. ggml_backend_buffer_free(buf);
  2054. }
  2055. }
  2056. };
  2057. struct llama_context {
  2058. llama_context(const llama_model & model) : model(model), t_start_us(model.t_start_us), t_load_us(model.t_load_us) {}
  2059. ~llama_context() {
  2060. ggml_backend_sched_free(sched);
  2061. for (ggml_backend_t backend : backends) {
  2062. ggml_backend_free(backend);
  2063. }
  2064. ggml_backend_buffer_free(buf_output);
  2065. }
  2066. llama_cparams cparams;
  2067. std::vector<ggml_backend_t> backends;
  2068. #ifdef GGML_USE_METAL
  2069. ggml_backend_t backend_metal = nullptr;
  2070. #endif
  2071. #ifdef GGML_USE_BLAS
  2072. ggml_backend_t backend_blas = nullptr;
  2073. #endif
  2074. ggml_backend_t backend_cpu = nullptr;
  2075. const llama_model & model;
  2076. // key + value cache for the self attention
  2077. struct llama_kv_cache kv_self;
  2078. std::mt19937 rng;
  2079. bool has_evaluated_once = false;
  2080. int64_t t_start_us;
  2081. int64_t t_load_us;
  2082. int64_t t_sample_us = 0;
  2083. int64_t t_p_eval_us = 0;
  2084. int64_t t_eval_us = 0;
  2085. int64_t t_compute_start_us = 0;
  2086. int64_t n_queued_tokens = 0;
  2087. int32_t n_sample = 0; // number of tokens sampled
  2088. int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
  2089. int32_t n_eval = 0; // number of eval calls
  2090. // host buffer for the model output (logits and embeddings)
  2091. ggml_backend_buffer_t buf_output = nullptr;
  2092. // decode output (2-dimensional array: [n_outputs][n_vocab])
  2093. size_t logits_size = 0; // capacity (of floats) for logits
  2094. float * logits = nullptr;
  2095. std::vector<int32_t> output_ids; // map batch token positions to ids of the logits and embd buffers
  2096. size_t output_size = 0; // capacity (of tokens positions) for the output buffers
  2097. int32_t n_outputs = 0; // number of actually-used outputs in the current ubatch or last logical batch
  2098. bool logits_all = false;
  2099. // embeddings output (2-dimensional array: [n_outputs][n_embd])
  2100. // populated only when pooling_type == LLAMA_POOLING_TYPE_NONE
  2101. size_t embd_size = 0; // capacity (of floats) for embeddings
  2102. float * embd = nullptr;
  2103. // sequence embeddings output (map of [n_embd] vectors)
  2104. // populated only when pooling_type != LLAMA_POOLING_TYPE_NONE
  2105. std::map<llama_seq_id, std::vector<float>> embd_seq;
  2106. // memory buffers used to evaluate the model
  2107. std::vector<uint8_t> buf_compute_meta;
  2108. ggml_backend_sched_t sched = nullptr;
  2109. ggml_abort_callback abort_callback = nullptr;
  2110. void * abort_callback_data = nullptr;
  2111. // input tensors
  2112. struct ggml_tensor * inp_tokens; // I32 [n_batch]
  2113. struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch]
  2114. struct ggml_tensor * inp_pos; // I32 [n_batch]
  2115. struct ggml_tensor * inp_out_ids; // I32 [n_outputs]
  2116. struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch]
  2117. struct ggml_tensor * inp_K_shift; // I32 [kv_size]
  2118. struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch]
  2119. struct ggml_tensor * inp_cls; // I32 [n_batch]
  2120. struct ggml_tensor * inp_s_copy; // I32 [kv_size]
  2121. struct ggml_tensor * inp_s_mask; // F32 [1, n_kv]
  2122. struct ggml_tensor * inp_s_seq; // I32 [n_kv, n_batch]
  2123. // control vectors
  2124. struct llama_control_vector cvec;
  2125. };
  2126. static size_t llama_get_device_count(const llama_model & model) {
  2127. size_t count = 1;
  2128. #if defined(GGML_USE_CUDA)
  2129. count = ggml_backend_cuda_get_device_count();
  2130. #elif defined(GGML_USE_SYCL)
  2131. count = ggml_backend_sycl_get_device_count();
  2132. #elif defined(GGML_USE_VULKAN)
  2133. count = ggml_backend_vk_get_device_count();
  2134. #endif
  2135. #if defined(GGML_USE_RPC)
  2136. count += model.rpc_servers.size();
  2137. #endif
  2138. return count;
  2139. GGML_UNUSED(model);
  2140. }
  2141. static ggml_backend_buffer_type_t llama_default_buffer_type_offload(const llama_model & model, int gpu) {
  2142. ggml_backend_buffer_type_t buft = nullptr;
  2143. #if defined(GGML_USE_RPC)
  2144. int dev_count = (int)llama_get_device_count(model);
  2145. int rpc_count = (int)model.rpc_servers.size();
  2146. if (gpu >= dev_count - rpc_count) {
  2147. const char * endpoint = model.rpc_servers[gpu - dev_count + rpc_count].c_str();
  2148. return ggml_backend_rpc_buffer_type(endpoint);
  2149. }
  2150. #endif
  2151. #if defined(GGML_USE_METAL)
  2152. buft = ggml_backend_metal_buffer_type();
  2153. #elif defined(GGML_USE_CUDA)
  2154. buft = ggml_backend_cuda_buffer_type(gpu);
  2155. #elif defined(GGML_USE_VULKAN)
  2156. buft = ggml_backend_vk_buffer_type(gpu);
  2157. #elif defined(GGML_USE_SYCL)
  2158. buft = ggml_backend_sycl_buffer_type(gpu);
  2159. #elif defined(GGML_USE_KOMPUTE)
  2160. buft = ggml_backend_kompute_buffer_type(gpu);
  2161. if (buft == nullptr) {
  2162. LLAMA_LOG_WARN("%s: cannot use GPU %d, check `vulkaninfo --summary`\n", __func__, gpu);
  2163. }
  2164. #endif
  2165. if (buft == nullptr) {
  2166. buft = llama_default_buffer_type_cpu(true);
  2167. }
  2168. return buft;
  2169. GGML_UNUSED(model);
  2170. GGML_UNUSED(gpu);
  2171. }
  2172. static ggml_backend_buffer_type_t llama_default_buffer_type_split(const llama_model & model, int fallback_gpu, const float * tensor_split) {
  2173. ggml_backend_buffer_type_t buft = nullptr;
  2174. #ifdef GGML_USE_CUDA
  2175. if (ggml_backend_cuda_get_device_count() > 1) {
  2176. buft = ggml_backend_cuda_split_buffer_type(tensor_split);
  2177. }
  2178. #endif
  2179. #ifdef GGML_USE_SYCL
  2180. if (ggml_backend_sycl_get_device_count() > 1) {
  2181. buft = ggml_backend_sycl_split_buffer_type(tensor_split);
  2182. }
  2183. #endif
  2184. if (buft == nullptr) {
  2185. buft = llama_default_buffer_type_offload(model, fallback_gpu);
  2186. }
  2187. return buft;
  2188. GGML_UNUSED(tensor_split);
  2189. }
  2190. static size_t llama_get_device_memory(const llama_model & model, int device) {
  2191. #if defined(GGML_USE_RPC)
  2192. int dev_count = (int)llama_get_device_count(model);
  2193. int rpc_count = (int)model.rpc_servers.size();
  2194. if (device >= dev_count - rpc_count) {
  2195. size_t total;
  2196. size_t free;
  2197. const char * endpoint = model.rpc_servers[device - dev_count + rpc_count].c_str();
  2198. ggml_backend_rpc_get_device_memory(endpoint, &free, &total);
  2199. return free;
  2200. }
  2201. #endif
  2202. #if defined(GGML_USE_CUDA)
  2203. size_t total;
  2204. size_t free;
  2205. ggml_backend_cuda_get_device_memory(device, &free, &total);
  2206. return free;
  2207. #elif defined(GGML_USE_SYCL)
  2208. size_t total;
  2209. size_t free;
  2210. ggml_backend_sycl_get_device_memory(device, &free, &total);
  2211. return free;
  2212. #elif defined(GGML_USE_VULKAN)
  2213. size_t total;
  2214. size_t free;
  2215. ggml_backend_vk_get_device_memory(device, &free, &total);
  2216. return free;
  2217. #else
  2218. return 1;
  2219. #endif
  2220. GGML_UNUSED(model);
  2221. GGML_UNUSED(device);
  2222. }
  2223. //
  2224. // kv cache helpers
  2225. //
  2226. static bool llama_kv_cache_init(
  2227. struct llama_kv_cache & cache,
  2228. const llama_context * ctx,
  2229. ggml_type type_k,
  2230. ggml_type type_v,
  2231. uint32_t kv_size,
  2232. bool offload) {
  2233. const llama_model & model = ctx->model;
  2234. const llama_cparams & cparams = ctx->cparams;
  2235. const struct llama_hparams & hparams = model.hparams;
  2236. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  2237. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  2238. const int64_t n_layer = hparams.n_layer;
  2239. cache.has_shift = false;
  2240. // TODO: find a nicer way to add other recurrent model architectures
  2241. cache.recurrent = model.arch == LLM_ARCH_MAMBA;
  2242. cache.v_trans = !cparams.flash_attn;
  2243. // TODO: support mixed recurrent Transformer architectures
  2244. // NOTE: (!a || b) is a logical implication (a -> b)
  2245. GGML_ASSERT(!cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_s());
  2246. GGML_ASSERT(!cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_s());
  2247. GGML_ASSERT( cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_gqa());
  2248. GGML_ASSERT( cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_gqa());
  2249. cache.head = 0;
  2250. cache.size = kv_size;
  2251. cache.used = 0;
  2252. cache.type_k = type_k;
  2253. cache.type_v = type_v;
  2254. cache.cells.clear();
  2255. cache.cells.resize(kv_size);
  2256. if (cache.recurrent) {
  2257. // init state copy sources
  2258. for (uint32_t i = 0; i < cache.size; ++i) {
  2259. cache.cells[i].src = i;
  2260. }
  2261. }
  2262. // count used buffer types
  2263. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  2264. if (offload) {
  2265. for (int64_t i = 0; i < n_layer; ++i) {
  2266. buft_layer_count[model.buft_layer[i].buft]++;
  2267. }
  2268. } else {
  2269. buft_layer_count[llama_default_buffer_type_cpu(true)] = n_layer;
  2270. }
  2271. // create a context for each buffer type
  2272. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  2273. for (auto & it : buft_layer_count) {
  2274. int n_layers = it.second;
  2275. struct ggml_init_params params = {
  2276. /*.mem_size =*/ 2u*n_layers*ggml_tensor_overhead(),
  2277. /*.mem_buffer =*/ NULL,
  2278. /*.no_alloc =*/ true,
  2279. };
  2280. ggml_context * ctx = ggml_init(params);
  2281. if (!ctx) {
  2282. LLAMA_LOG_ERROR("%s: failed to allocate context for kv cache\n", __func__);
  2283. return false;
  2284. }
  2285. ctx_map[it.first] = ctx;
  2286. cache.ctxs.push_back(ctx);
  2287. }
  2288. cache.k_l.reserve(n_layer);
  2289. cache.v_l.reserve(n_layer);
  2290. for (int i = 0; i < (int) n_layer; i++) {
  2291. struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front();
  2292. ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
  2293. ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
  2294. ggml_format_name(k, "cache_k_l%d", i);
  2295. ggml_format_name(v, "cache_v_l%d", i);
  2296. cache.k_l.push_back(k);
  2297. cache.v_l.push_back(v);
  2298. }
  2299. // allocate tensors and initialize the buffers to avoid NaNs in the padding
  2300. for (auto it : ctx_map) {
  2301. ggml_backend_buffer_type_t buft = it.first;
  2302. ggml_context * ctx = it.second;
  2303. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  2304. if (!buf) {
  2305. LLAMA_LOG_ERROR("%s: failed to allocate buffer for kv cache\n", __func__);
  2306. return false;
  2307. }
  2308. ggml_backend_buffer_clear(buf, 0);
  2309. LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
  2310. cache.bufs.push_back(buf);
  2311. }
  2312. return true;
  2313. }
  2314. // find an empty slot of size "n_tokens" in the cache
  2315. // updates the cache head
  2316. // Note: On success, it's important that cache.head points
  2317. // to the first cell of the slot.
  2318. static bool llama_kv_cache_find_slot(
  2319. struct llama_kv_cache & cache,
  2320. const struct llama_batch & batch) {
  2321. const uint32_t n_tokens = batch.n_tokens;
  2322. if (cache.recurrent) {
  2323. // For recurrent state architectures (like Mamba),
  2324. // each KV cache cell can store the state for a whole sequence.
  2325. llama_seq_id min = cache.size - 1;
  2326. llama_seq_id max = 0;
  2327. for (uint32_t i = 0; i < n_tokens; ++i) {
  2328. for (int32_t j = 0; j < batch.n_seq_id[i]; ++j) {
  2329. llama_seq_id seq_id = batch.seq_id[i][j];
  2330. // make sure it's a valid seq_id
  2331. if ((uint32_t) seq_id < cache.size) {
  2332. if (seq_id > max) {
  2333. max = seq_id;
  2334. }
  2335. if (seq_id < min) {
  2336. min = seq_id;
  2337. }
  2338. // Assuming the tokens are in-order
  2339. if (batch.pos[i] != cache.cells[seq_id].pos + 1) {
  2340. // What should happen when the pos backtracks or skips a value?
  2341. // Clearing the state mid-batch would require special-casing which isn't done.
  2342. LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d\n",
  2343. __func__, batch.pos[i], cache.cells[seq_id].pos, seq_id);
  2344. }
  2345. if (cache.cells[seq_id].pos < 0 && 0 <= batch.pos[i]) {
  2346. cache.used += 1;
  2347. }
  2348. cache.cells[seq_id].pos = batch.pos[i];
  2349. // NOTE: seq_ids are not inserted here; they are handled when the input tensors are set
  2350. } else {
  2351. // too big seq_id
  2352. // TODO: would it be possible to resize the KV cache size instead?
  2353. LLAMA_LOG_ERROR("%s: seq_id=%d >= kv_size=%d Try using a bigger --parallel value\n", __func__, seq_id, cache.size);
  2354. return false;
  2355. }
  2356. }
  2357. }
  2358. // allow getting the range of used cells, from head to head + n
  2359. cache.head = min;
  2360. cache.n = max - min + 1;
  2361. // sanity check
  2362. return max >= min;
  2363. }
  2364. // otherwise, one cell per token.
  2365. if (n_tokens > cache.size) {
  2366. LLAMA_LOG_ERROR("%s: n_tokens=%d > cache.size=%d\n", __func__, n_tokens, cache.size);
  2367. return false;
  2368. }
  2369. uint32_t n_tested = 0;
  2370. while (true) {
  2371. if (cache.head + n_tokens > cache.size) {
  2372. n_tested += cache.size - cache.head;
  2373. cache.head = 0;
  2374. continue;
  2375. }
  2376. bool found = true;
  2377. for (uint32_t i = 0; i < n_tokens; i++) {
  2378. if (cache.cells[cache.head + i].pos >= 0) {
  2379. found = false;
  2380. cache.head += i + 1;
  2381. n_tested += i + 1;
  2382. break;
  2383. }
  2384. }
  2385. if (found) {
  2386. break;
  2387. }
  2388. if (n_tested >= cache.size) {
  2389. //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
  2390. return false;
  2391. }
  2392. }
  2393. for (uint32_t i = 0; i < n_tokens; i++) {
  2394. cache.cells[cache.head + i].pos = batch.pos[i];
  2395. for (int32_t j = 0; j < batch.n_seq_id[i]; j++) {
  2396. cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i][j]);
  2397. }
  2398. }
  2399. cache.used += n_tokens;
  2400. return true;
  2401. }
  2402. // find how many cells are currently in use
  2403. static uint32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) {
  2404. for (uint32_t i = cache.size; i > 0; --i) {
  2405. const llama_kv_cell & cell = cache.cells[i - 1];
  2406. if (cell.pos >= 0 && !cell.is_empty()) {
  2407. return i;
  2408. }
  2409. }
  2410. return 0;
  2411. }
  2412. static void llama_kv_cache_clear(struct llama_kv_cache & cache) {
  2413. for (int32_t i = 0; i < (int32_t) cache.size; ++i) {
  2414. cache.cells[i].pos = -1;
  2415. cache.cells[i].seq_id.clear();
  2416. }
  2417. cache.head = 0;
  2418. cache.used = 0;
  2419. for (auto & buf : cache.bufs) {
  2420. ggml_backend_buffer_clear(buf, 0);
  2421. }
  2422. }
  2423. static bool llama_kv_cache_seq_rm(
  2424. struct llama_kv_cache & cache,
  2425. llama_seq_id seq_id,
  2426. llama_pos p0,
  2427. llama_pos p1) {
  2428. uint32_t new_head = cache.size;
  2429. if (p0 < 0) p0 = 0;
  2430. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2431. // models like Mamba can't have a state partially erased
  2432. if (cache.recurrent) {
  2433. if (seq_id >= (int64_t) cache.size) {
  2434. // could be fatal
  2435. return false;
  2436. }
  2437. if (0 <= seq_id) {
  2438. // partial intersection is invalid
  2439. if ((0 < p0 && p0 <= cache.cells[seq_id].pos) || (0 < p1 && p1 <= cache.cells[seq_id].pos)) {
  2440. return false;
  2441. }
  2442. } else {
  2443. // seq_id is negative, then the range should include everything or nothing
  2444. if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) {
  2445. return false;
  2446. }
  2447. }
  2448. }
  2449. for (uint32_t i = 0; i < cache.size; ++i) {
  2450. if (cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2451. if (seq_id < 0) {
  2452. cache.cells[i].seq_id.clear();
  2453. } else if (cache.cells[i].has_seq_id(seq_id)) {
  2454. cache.cells[i].seq_id.erase(seq_id);
  2455. } else {
  2456. continue;
  2457. }
  2458. if (cache.cells[i].is_empty()) {
  2459. // keep count of the number of used cells
  2460. if (cache.cells[i].pos >= 0) cache.used--;
  2461. cache.cells[i].pos = -1;
  2462. if (new_head == cache.size) new_head = i;
  2463. }
  2464. }
  2465. }
  2466. // If we freed up a slot, set head to it so searching can start there.
  2467. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  2468. return true;
  2469. }
  2470. static void llama_kv_cache_seq_cp(
  2471. struct llama_kv_cache & cache,
  2472. llama_seq_id seq_id_src,
  2473. llama_seq_id seq_id_dst,
  2474. llama_pos p0,
  2475. llama_pos p1) {
  2476. if (p0 < 0) p0 = 0;
  2477. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2478. if (cache.recurrent) {
  2479. if ((uint32_t) seq_id_dst < cache.size && (uint32_t) seq_id_src < cache.size) {
  2480. seq_id_src = cache.cells[seq_id_src].src;
  2481. GGML_ASSERT((uint32_t) seq_id_src < cache.size);
  2482. // intent to "copy from"
  2483. // supports copy chains thanks to taking the source of the source
  2484. cache.cells[seq_id_dst].src = seq_id_src;
  2485. // preserve the "keep or clear" status of the copied sequence
  2486. if (cache.cells[seq_id_src].has_seq_id(seq_id_src)) {
  2487. cache.cells[seq_id_dst].seq_id.insert(seq_id_dst);
  2488. } else {
  2489. cache.cells[seq_id_dst].seq_id.erase(seq_id_dst);
  2490. }
  2491. cache.do_copy = true;
  2492. cache.cells[seq_id_dst].pos = cache.cells[seq_id_src].pos;
  2493. }
  2494. return;
  2495. }
  2496. // otherwise, this is the KV cache of a Transformer-like model
  2497. cache.head = 0;
  2498. for (uint32_t i = 0; i < cache.size; ++i) {
  2499. if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2500. cache.cells[i].seq_id.insert(seq_id_dst);
  2501. }
  2502. }
  2503. }
  2504. static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  2505. uint32_t new_head = cache.size;
  2506. for (uint32_t i = 0; i < cache.size; ++i) {
  2507. if (!cache.cells[i].has_seq_id(seq_id)) {
  2508. if (cache.cells[i].pos >= 0) cache.used--;
  2509. cache.cells[i].pos = -1;
  2510. cache.cells[i].seq_id.clear();
  2511. if (new_head == cache.size) new_head = i;
  2512. } else {
  2513. cache.cells[i].seq_id.clear();
  2514. cache.cells[i].seq_id.insert(seq_id);
  2515. }
  2516. }
  2517. // If we freed up a slot, set head to it so searching can start there.
  2518. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  2519. }
  2520. static void llama_kv_cache_seq_add(
  2521. struct llama_kv_cache & cache,
  2522. llama_seq_id seq_id,
  2523. llama_pos p0,
  2524. llama_pos p1,
  2525. llama_pos delta) {
  2526. uint32_t new_head = cache.size;
  2527. if (p0 < 0) p0 = 0;
  2528. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2529. if (cache.recurrent) {
  2530. // for Mamba-like models, only the pos needs to be shifted
  2531. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  2532. llama_kv_cell & cell = cache.cells[seq_id];
  2533. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  2534. cell.pos += delta;
  2535. }
  2536. }
  2537. return;
  2538. }
  2539. for (uint32_t i = 0; i < cache.size; ++i) {
  2540. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2541. cache.has_shift = true;
  2542. cache.cells[i].pos += delta;
  2543. cache.cells[i].delta += delta;
  2544. if (cache.cells[i].pos < 0) {
  2545. if (!cache.cells[i].is_empty()) {
  2546. cache.used--;
  2547. }
  2548. cache.cells[i].pos = -1;
  2549. cache.cells[i].seq_id.clear();
  2550. if (new_head == cache.size) {
  2551. new_head = i;
  2552. }
  2553. }
  2554. }
  2555. }
  2556. // If we freed up a slot, set head to it so searching can start there.
  2557. // Otherwise we just start the next search from the beginning.
  2558. cache.head = new_head != cache.size ? new_head : 0;
  2559. }
  2560. static void llama_kv_cache_seq_div(
  2561. struct llama_kv_cache & cache,
  2562. llama_seq_id seq_id,
  2563. llama_pos p0,
  2564. llama_pos p1,
  2565. int d) {
  2566. if (p0 < 0) p0 = 0;
  2567. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2568. if (cache.recurrent) {
  2569. // for Mamba-like models, only the pos needs to be changed
  2570. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  2571. llama_kv_cell & cell = cache.cells[seq_id];
  2572. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  2573. cell.pos /= d;
  2574. }
  2575. }
  2576. return;
  2577. }
  2578. for (uint32_t i = 0; i < cache.size; ++i) {
  2579. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2580. cache.has_shift = true;
  2581. {
  2582. llama_pos p_old = cache.cells[i].pos;
  2583. cache.cells[i].pos /= d;
  2584. cache.cells[i].delta += cache.cells[i].pos - p_old;
  2585. }
  2586. }
  2587. }
  2588. }
  2589. static llama_pos llama_kv_cache_seq_pos_max(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  2590. llama_pos result = 0;
  2591. for (uint32_t i = 0; i < cache.size; ++i) {
  2592. if (cache.cells[i].has_seq_id(seq_id)) {
  2593. result = std::max(result, cache.cells[i].pos);
  2594. }
  2595. }
  2596. return result;
  2597. }
  2598. static void llama_kv_cache_defrag(struct llama_kv_cache & cache) {
  2599. cache.do_defrag = true;
  2600. }
  2601. static uint32_t llama_kv_cache_get_padding(const struct llama_cparams & cparams) {
  2602. // the FA kernels require padding to avoid extra runtime boundary checks
  2603. return cparams.flash_attn ? 256u : 32u;
  2604. }
  2605. //
  2606. // model loading and saving
  2607. //
  2608. enum llama_fver {
  2609. GGUF_FILE_VERSION_V1 = 1,
  2610. GGUF_FILE_VERSION_V2 = 2,
  2611. GGUF_FILE_VERSION_V3 = 3,
  2612. };
  2613. static const char * llama_file_version_name(llama_fver version) {
  2614. switch (version) {
  2615. case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)";
  2616. case GGUF_FILE_VERSION_V2: return "GGUF V2";
  2617. case GGUF_FILE_VERSION_V3: return "GGUF V3 (latest)";
  2618. }
  2619. return "unknown";
  2620. }
  2621. static std::string llama_format_tensor_shape(const std::vector<int64_t> & ne) {
  2622. char buf[256];
  2623. snprintf(buf, sizeof(buf), "%5" PRId64, ne.at(0));
  2624. for (size_t i = 1; i < ne.size(); i++) {
  2625. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, ne.at(i));
  2626. }
  2627. return buf;
  2628. }
  2629. static std::string llama_format_tensor_shape(const struct ggml_tensor * t) {
  2630. char buf[256];
  2631. snprintf(buf, sizeof(buf), "%5" PRId64, t->ne[0]);
  2632. for (int i = 1; i < GGML_MAX_DIMS; i++) {
  2633. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, t->ne[i]);
  2634. }
  2635. return buf;
  2636. }
  2637. namespace GGUFMeta {
  2638. template <typename T, gguf_type gt_, T (*gfun)(const gguf_context *, const int)>
  2639. struct GKV_Base_Type {
  2640. static constexpr gguf_type gt = gt_;
  2641. static T getter(const gguf_context * ctx, const int kid) {
  2642. return gfun(ctx, kid);
  2643. }
  2644. };
  2645. template<typename T> struct GKV_Base;
  2646. template<> struct GKV_Base<bool >: GKV_Base_Type<bool, GGUF_TYPE_BOOL, gguf_get_val_bool> {};
  2647. template<> struct GKV_Base<uint8_t >: GKV_Base_Type<uint8_t, GGUF_TYPE_UINT8, gguf_get_val_u8 > {};
  2648. template<> struct GKV_Base<uint16_t >: GKV_Base_Type<uint16_t, GGUF_TYPE_UINT16, gguf_get_val_u16 > {};
  2649. template<> struct GKV_Base<uint32_t >: GKV_Base_Type<uint32_t, GGUF_TYPE_UINT32, gguf_get_val_u32 > {};
  2650. template<> struct GKV_Base<uint64_t >: GKV_Base_Type<uint64_t, GGUF_TYPE_UINT64, gguf_get_val_u64 > {};
  2651. template<> struct GKV_Base<int8_t >: GKV_Base_Type<int8_t, GGUF_TYPE_INT8, gguf_get_val_i8 > {};
  2652. template<> struct GKV_Base<int16_t >: GKV_Base_Type<int16_t, GGUF_TYPE_INT16, gguf_get_val_i16 > {};
  2653. template<> struct GKV_Base<int32_t >: GKV_Base_Type<int32_t, GGUF_TYPE_INT32, gguf_get_val_i32 > {};
  2654. template<> struct GKV_Base<int64_t >: GKV_Base_Type<int64_t, GGUF_TYPE_INT64, gguf_get_val_i64 > {};
  2655. template<> struct GKV_Base<float >: GKV_Base_Type<float, GGUF_TYPE_FLOAT32, gguf_get_val_f32 > {};
  2656. template<> struct GKV_Base<double >: GKV_Base_Type<double, GGUF_TYPE_FLOAT64, gguf_get_val_f64 > {};
  2657. template<> struct GKV_Base<const char *>: GKV_Base_Type<const char *, GGUF_TYPE_STRING, gguf_get_val_str > {};
  2658. template<> struct GKV_Base<std::string> {
  2659. static constexpr gguf_type gt = GGUF_TYPE_STRING;
  2660. static std::string getter(const gguf_context * ctx, const int kid) {
  2661. return gguf_get_val_str(ctx, kid);
  2662. }
  2663. };
  2664. struct ArrayInfo {
  2665. const gguf_type gt;
  2666. const size_t length;
  2667. const void * data;
  2668. };
  2669. template<> struct GKV_Base<ArrayInfo> {
  2670. public:
  2671. static constexpr gguf_type gt = GGUF_TYPE_ARRAY;
  2672. static ArrayInfo getter(const gguf_context *ctx, const int k) {
  2673. return ArrayInfo {
  2674. gguf_get_arr_type(ctx, k),
  2675. size_t(gguf_get_arr_n(ctx, k)),
  2676. gguf_get_arr_data(ctx, k),
  2677. };
  2678. }
  2679. };
  2680. template<typename T>
  2681. class GKV : public GKV_Base<T> {
  2682. GKV() = delete;
  2683. public:
  2684. static T get_kv(const gguf_context * ctx, const int k) {
  2685. const enum gguf_type kt = gguf_get_kv_type(ctx, k);
  2686. if (kt != GKV::gt) {
  2687. throw std::runtime_error(format("key %s has wrong type %s but expected type %s",
  2688. gguf_get_key(ctx, k), gguf_type_name(kt), gguf_type_name(GKV::gt)));
  2689. }
  2690. return GKV::getter(ctx, k);
  2691. }
  2692. static const char * override_type_to_str(const llama_model_kv_override_type ty) {
  2693. switch (ty) {
  2694. case LLAMA_KV_OVERRIDE_TYPE_BOOL: return "bool";
  2695. case LLAMA_KV_OVERRIDE_TYPE_INT: return "int";
  2696. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: return "float";
  2697. case LLAMA_KV_OVERRIDE_TYPE_STR: return "str";
  2698. }
  2699. return "unknown";
  2700. }
  2701. static bool validate_override(const llama_model_kv_override_type expected_type, const struct llama_model_kv_override * ovrd) {
  2702. if (!ovrd) { return false; }
  2703. if (ovrd->tag == expected_type) {
  2704. LLAMA_LOG_INFO("%s: Using metadata override (%5s) '%s' = ",
  2705. __func__, override_type_to_str(ovrd->tag), ovrd->key);
  2706. switch (ovrd->tag) {
  2707. case LLAMA_KV_OVERRIDE_TYPE_BOOL: {
  2708. LLAMA_LOG_INFO("%s\n", ovrd->val_bool ? "true" : "false");
  2709. } break;
  2710. case LLAMA_KV_OVERRIDE_TYPE_INT: {
  2711. LLAMA_LOG_INFO("%" PRId64 "\n", ovrd->val_i64);
  2712. } break;
  2713. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: {
  2714. LLAMA_LOG_INFO("%.6f\n", ovrd->val_f64);
  2715. } break;
  2716. case LLAMA_KV_OVERRIDE_TYPE_STR: {
  2717. LLAMA_LOG_INFO("%s\n", ovrd->val_str);
  2718. } break;
  2719. default:
  2720. // Shouldn't be possible to end up here, but just in case...
  2721. throw std::runtime_error(
  2722. format("Unsupported attempt to override %s type for metadata key %s\n",
  2723. override_type_to_str(ovrd->tag), ovrd->key));
  2724. }
  2725. return true;
  2726. }
  2727. LLAMA_LOG_WARN("%s: Warning: Bad metadata override type for key '%s', expected %s but got %s\n",
  2728. __func__, ovrd->key, override_type_to_str(expected_type), override_type_to_str(ovrd->tag));
  2729. return false;
  2730. }
  2731. template<typename OT>
  2732. static typename std::enable_if<std::is_same<OT, bool>::value, bool>::type
  2733. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  2734. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_BOOL, ovrd)) {
  2735. target = ovrd->val_bool;
  2736. return true;
  2737. }
  2738. return false;
  2739. }
  2740. template<typename OT>
  2741. static typename std::enable_if<!std::is_same<OT, bool>::value && std::is_integral<OT>::value, bool>::type
  2742. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  2743. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_INT, ovrd)) {
  2744. target = ovrd->val_i64;
  2745. return true;
  2746. }
  2747. return false;
  2748. }
  2749. template<typename OT>
  2750. static typename std::enable_if<std::is_floating_point<OT>::value, bool>::type
  2751. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  2752. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_FLOAT, ovrd)) {
  2753. target = ovrd->val_f64;
  2754. return true;
  2755. }
  2756. return false;
  2757. }
  2758. template<typename OT>
  2759. static typename std::enable_if<std::is_same<OT, std::string>::value, bool>::type
  2760. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  2761. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_STR, ovrd)) {
  2762. target = ovrd->val_str;
  2763. return true;
  2764. }
  2765. return false;
  2766. }
  2767. static bool set(const gguf_context * ctx, const int k, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2768. if (try_override<T>(target, ovrd)) {
  2769. return true;
  2770. }
  2771. if (k < 0) { return false; }
  2772. target = get_kv(ctx, k);
  2773. return true;
  2774. }
  2775. static bool set(const gguf_context * ctx, const char * key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2776. return set(ctx, gguf_find_key(ctx, key), target, ovrd);
  2777. }
  2778. static bool set(const gguf_context * ctx, const std::string & key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2779. return set(ctx, key.c_str(), target, ovrd);
  2780. }
  2781. };
  2782. }
  2783. using llama_buf_map = std::unordered_map<uint32_t, ggml_backend_buffer_t>;
  2784. struct llama_model_loader {
  2785. int n_kv = 0;
  2786. int n_tensors = 0;
  2787. int n_created = 0;
  2788. int64_t n_elements = 0;
  2789. size_t n_bytes = 0;
  2790. bool use_mmap = false;
  2791. bool check_tensors;
  2792. llama_files files;
  2793. llama_ftype ftype;
  2794. llama_fver fver;
  2795. llama_mmaps mappings;
  2796. // Holds information on a model weight
  2797. struct llama_tensor_weight {
  2798. uint16_t idx; // source file index
  2799. size_t offs; // tensor data offset in the original file
  2800. ggml_tensor * tensor;
  2801. llama_tensor_weight(const llama_file * file, uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) {
  2802. const int tensor_idx = gguf_find_tensor(gguf_ctx, name);
  2803. offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx);
  2804. if (offs + ggml_nbytes(tensor) < offs || offs + ggml_nbytes(tensor) > file->size) {
  2805. throw std::runtime_error(format("tensor '%s' data is not within the file bounds, model is corrupted or incomplete", name));
  2806. }
  2807. }
  2808. };
  2809. std::vector<llama_tensor_weight> weights;
  2810. std::unordered_map<std::string, struct llama_model_kv_override> kv_overrides;
  2811. struct gguf_context * meta = NULL;
  2812. std::vector<ggml_context *> contexts;
  2813. std::string arch_name;
  2814. LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
  2815. llama_model_loader(const std::string & fname, bool use_mmap, bool check_tensors, const struct llama_model_kv_override * param_overrides_p) {
  2816. int trace = 0;
  2817. if (getenv("LLAMA_TRACE")) {
  2818. trace = atoi(getenv("LLAMA_TRACE"));
  2819. }
  2820. if (param_overrides_p != nullptr) {
  2821. for (const struct llama_model_kv_override *p = param_overrides_p; p->key[0] != 0; p++) {
  2822. kv_overrides.insert({std::string(p->key), *p});
  2823. }
  2824. }
  2825. struct ggml_context * ctx = NULL;
  2826. struct gguf_init_params params = {
  2827. /*.no_alloc = */ true,
  2828. /*.ctx = */ &ctx,
  2829. };
  2830. meta = gguf_init_from_file(fname.c_str(), params);
  2831. if (!meta) {
  2832. throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str()));
  2833. }
  2834. get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false);
  2835. llm_kv = LLM_KV(llm_arch_from_string(arch_name));
  2836. files.emplace_back(new llama_file(fname.c_str(), "rb"));
  2837. contexts.emplace_back(ctx);
  2838. // Save tensors data offset of the main file.
  2839. // For subsidiary files, `meta` tensor data offset must not be used,
  2840. // so we build a unified tensors index for weights.
  2841. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  2842. weights.emplace_back(files.back().get(), 0, cur->name, meta, cur);
  2843. }
  2844. uint16_t n_split = 0;
  2845. get_key(llm_kv(LLM_KV_SPLIT_COUNT), n_split, false);
  2846. // Load additional GGML contexts
  2847. if (n_split > 1) {
  2848. uint16_t idx = 0;
  2849. get_key(llm_kv(LLM_KV_SPLIT_NO), idx);
  2850. if (idx != 0) {
  2851. throw std::runtime_error(format("illegal split file: %d, model must be loaded with the first split", idx));
  2852. }
  2853. char split_prefix[PATH_MAX] = {0};
  2854. if (!llama_split_prefix(split_prefix, sizeof(split_prefix), fname.c_str(), idx, n_split)) {
  2855. throw std::runtime_error(format("invalid split file: %s", fname.c_str()));
  2856. }
  2857. if (trace > 0) {
  2858. LLAMA_LOG_INFO("%s: loading additional %d GGUFs\n", __func__, n_split);
  2859. }
  2860. char split_path[PATH_MAX] = {0};
  2861. for (idx = 1; idx < n_split; idx++) {
  2862. llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split);
  2863. struct gguf_init_params split_params = {
  2864. /*.no_alloc = */ true,
  2865. /*.ctx = */ &ctx,
  2866. };
  2867. struct gguf_context * ctx_gguf = gguf_init_from_file(split_path, split_params);
  2868. if (!ctx_gguf) {
  2869. throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, split_path));
  2870. }
  2871. files.emplace_back(new llama_file(split_path, "rb"));
  2872. contexts.emplace_back(ctx);
  2873. // Save tensors data offset info of the shard.
  2874. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  2875. weights.emplace_back(files.back().get(), idx, cur->name, ctx_gguf, cur);
  2876. }
  2877. gguf_free(ctx_gguf);
  2878. }
  2879. get_key(llm_kv(LLM_KV_SPLIT_TENSORS_COUNT), n_tensors);
  2880. // sanity check
  2881. {
  2882. const int n_tensors_loaded = (int) weights.size();
  2883. if (n_tensors != n_tensors_loaded) {
  2884. throw std::runtime_error(format("corrupted model: %d tensors expected but %d found", n_tensors, n_tensors_loaded));
  2885. }
  2886. }
  2887. LLAMA_LOG_INFO("%s: additional %d GGUFs metadata loaded.\n", __func__, n_split - 1);
  2888. }
  2889. n_kv = gguf_get_n_kv(meta);
  2890. n_tensors = weights.size();
  2891. fver = (enum llama_fver) gguf_get_version(meta);
  2892. std::set<std::string> tensor_names;
  2893. for (auto & w : weights) {
  2894. n_elements += ggml_nelements(w.tensor);
  2895. n_bytes += ggml_nbytes(w.tensor);
  2896. // make sure there is no duplicated tensor names
  2897. const std::string name(w.tensor->name);
  2898. auto found = tensor_names.find(name);
  2899. if (found != tensor_names.end()) {
  2900. throw std::runtime_error(format("invalid model: tensor '%s' is duplicated", w.tensor->name));
  2901. }
  2902. tensor_names.insert(name);
  2903. }
  2904. LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
  2905. __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver));
  2906. // determine file type based on the number of tensors for each quantization and print meta data
  2907. // TODO: make optional
  2908. {
  2909. std::map<enum ggml_type, uint32_t> n_type;
  2910. uint32_t n_type_max = 0;
  2911. enum ggml_type type_max = GGML_TYPE_F32;
  2912. for (int i = 0; i < n_tensors; i++) {
  2913. const ggml_tensor * tensor = weights.at(i).tensor;
  2914. enum ggml_type type = tensor->type;
  2915. n_type[type]++;
  2916. if (n_type_max < n_type[type]) {
  2917. n_type_max = n_type[type];
  2918. type_max = type;
  2919. }
  2920. if (trace > 0) {
  2921. const uint16_t sid = weights.at(i).idx;
  2922. LLAMA_LOG_INFO("%s: - tensor %4d, split %2d: %32s %-8s [ %s ]\n", __func__, i, sid, ggml_get_name(tensor), ggml_type_name(type), llama_format_tensor_shape(tensor).c_str());
  2923. }
  2924. }
  2925. switch (type_max) {
  2926. case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break;
  2927. case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break;
  2928. case GGML_TYPE_BF16: ftype = LLAMA_FTYPE_MOSTLY_BF16; break;
  2929. case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break;
  2930. case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break;
  2931. case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break;
  2932. case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break;
  2933. case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break;
  2934. case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break;
  2935. case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break;
  2936. case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break;
  2937. case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break;
  2938. case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
  2939. case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break;
  2940. case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break;
  2941. case GGML_TYPE_IQ2_S: ftype = LLAMA_FTYPE_MOSTLY_IQ2_S; break;
  2942. case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break;
  2943. case GGML_TYPE_IQ1_S: ftype = LLAMA_FTYPE_MOSTLY_IQ1_S; break;
  2944. case GGML_TYPE_IQ1_M: ftype = LLAMA_FTYPE_MOSTLY_IQ1_M; break;
  2945. case GGML_TYPE_IQ4_NL: ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL; break;
  2946. case GGML_TYPE_IQ4_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_XS; break;
  2947. case GGML_TYPE_IQ3_S: ftype = LLAMA_FTYPE_MOSTLY_IQ3_S; break;
  2948. default:
  2949. {
  2950. LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
  2951. ftype = LLAMA_FTYPE_ALL_F32;
  2952. } break;
  2953. }
  2954. // this is a way to mark that we have "guessed" the file type
  2955. ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED);
  2956. {
  2957. const int kid = gguf_find_key(meta, "general.file_type");
  2958. if (kid >= 0) {
  2959. ftype = (llama_ftype) gguf_get_val_u32(meta, kid);
  2960. }
  2961. }
  2962. LLAMA_LOG_INFO("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
  2963. for (int i = 0; i < n_kv; i++) {
  2964. const char * name = gguf_get_key(meta, i);
  2965. const enum gguf_type type = gguf_get_kv_type(meta, i);
  2966. const std::string type_name =
  2967. type == GGUF_TYPE_ARRAY
  2968. ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta, i)), gguf_get_arr_n(meta, i))
  2969. : gguf_type_name(type);
  2970. std::string value = gguf_kv_to_str(meta, i);
  2971. const size_t MAX_VALUE_LEN = 40;
  2972. if (value.size() > MAX_VALUE_LEN) {
  2973. value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
  2974. }
  2975. replace_all(value, "\n", "\\n");
  2976. LLAMA_LOG_INFO("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
  2977. }
  2978. // print type counts
  2979. for (auto & kv : n_type) {
  2980. if (kv.second == 0) {
  2981. continue;
  2982. }
  2983. LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
  2984. }
  2985. }
  2986. if (!llama_mmap::SUPPORTED) {
  2987. LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__);
  2988. use_mmap = false;
  2989. }
  2990. this->use_mmap = use_mmap;
  2991. this->check_tensors = check_tensors;
  2992. }
  2993. ~llama_model_loader() {
  2994. if (meta) {
  2995. gguf_free(meta);
  2996. }
  2997. for (auto * ctx : contexts) {
  2998. ggml_free(ctx);
  2999. }
  3000. }
  3001. template<typename T>
  3002. typename std::enable_if<std::is_integral<T>::value, bool>::type
  3003. get_arr_n(const std::string & key, T & result, const bool required = true) {
  3004. const int kid = gguf_find_key(meta, key.c_str());
  3005. if (kid < 0) {
  3006. if (required) {
  3007. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  3008. }
  3009. return false;
  3010. }
  3011. struct GGUFMeta::ArrayInfo arr_info =
  3012. GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
  3013. result = arr_info.length;
  3014. return true;
  3015. }
  3016. template<typename T>
  3017. typename std::enable_if<std::is_integral<T>::value, bool>::type
  3018. get_arr_n(const enum llm_kv kid, T & result, const bool required = true) {
  3019. return get_arr_n(llm_kv(kid), result, required);
  3020. }
  3021. template<typename T>
  3022. bool get_arr(const std::string & key, std::vector<T> & result, const bool required = true) {
  3023. const int kid = gguf_find_key(meta, key.c_str());
  3024. if (kid < 0) {
  3025. if (required) {
  3026. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  3027. }
  3028. return false;
  3029. }
  3030. struct GGUFMeta::ArrayInfo arr_info =
  3031. GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
  3032. if (arr_info.gt != GGUF_TYPE_FLOAT32 && arr_info.gt != GGUF_TYPE_INT32) {
  3033. throw std::runtime_error(format("%s is not a float32 or int32 array", key.c_str()));
  3034. }
  3035. // GGML_ASSERT(gguf_type_size(arr_info.gt) == sizeof(T));
  3036. GGML_ASSERT((arr_info.gt != GGUF_TYPE_FLOAT32 || std::is_same<T, float>::value));
  3037. GGML_ASSERT((arr_info.gt != GGUF_TYPE_INT32 || std::is_same<T, int>::value));
  3038. result.resize(arr_info.length);
  3039. result.assign((const T*)arr_info.data, (const T *)arr_info.data + arr_info.length);
  3040. return true;
  3041. }
  3042. template<typename T>
  3043. bool get_arr(const enum llm_kv kid, T& result, const bool required = true) {
  3044. return get_arr(llm_kv(kid), result, required);
  3045. }
  3046. template<typename T>
  3047. bool get_key(const std::string & key, T & result, const bool required = true) {
  3048. auto it = kv_overrides.find(key);
  3049. const struct llama_model_kv_override * override =
  3050. it != kv_overrides.end() ? &it->second : nullptr;
  3051. const bool found = GGUFMeta::GKV<T>::set(meta, key, result, override);
  3052. if (required && !found) {
  3053. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  3054. }
  3055. return found;
  3056. }
  3057. template<typename T>
  3058. bool get_key(const enum llm_kv kid, T & result, const bool required = true) {
  3059. return get_key(llm_kv(kid), result, required);
  3060. }
  3061. std::string get_arch_name() const {
  3062. return arch_name;
  3063. }
  3064. enum llm_arch get_arch() const {
  3065. return llm_kv.arch;
  3066. }
  3067. const char * get_tensor_name(int i) const {
  3068. return weights.at(i).tensor->name;
  3069. }
  3070. const llama_tensor_weight * get_weight(const char * name) const {
  3071. for (const auto & weight : weights) {
  3072. if (strcmp(name, weight.tensor->name) == 0) {
  3073. return &weight;
  3074. }
  3075. }
  3076. return nullptr;
  3077. }
  3078. const llama_tensor_weight * get_weight(int i) const {
  3079. return get_weight(get_tensor_name(i));
  3080. }
  3081. const llama_tensor_weight & require_weight(const char * name) const {
  3082. const llama_tensor_weight * weight = get_weight(name);
  3083. if (!weight) {
  3084. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  3085. }
  3086. return *weight;
  3087. }
  3088. struct ggml_tensor * get_tensor_meta(const char * name) const {
  3089. const auto * weight = get_weight(name);
  3090. if (!weight) {
  3091. return nullptr;
  3092. }
  3093. return weight->tensor;
  3094. }
  3095. struct ggml_tensor * require_tensor_meta(const char * name) const {
  3096. struct ggml_tensor * tensor = get_tensor_meta(name);
  3097. if (!tensor) {
  3098. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  3099. }
  3100. return tensor;
  3101. }
  3102. struct ggml_tensor * get_tensor_meta(int i) const {
  3103. return get_tensor_meta(get_tensor_name(i));
  3104. }
  3105. struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, const struct ggml_tensor * cur, bool duplicated) {
  3106. struct ggml_tensor * tensor = ggml_dup_tensor(ctx, cur);
  3107. ggml_set_name(tensor, ggml_get_name(cur));
  3108. if (duplicated) {
  3109. size_data += ggml_nbytes(cur);
  3110. } else {
  3111. n_created++;
  3112. }
  3113. return tensor;
  3114. }
  3115. const struct ggml_tensor * check_tensor_dims(const std::string & name, const std::vector<int64_t> & ne, bool required) const {
  3116. const struct ggml_tensor * cur = get_tensor_meta(name.c_str());
  3117. if (cur == NULL) {
  3118. if (!required) {
  3119. return NULL;
  3120. }
  3121. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str()));
  3122. }
  3123. {
  3124. bool is_ok = true;
  3125. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  3126. if ((i < ne.size() && ne[i] != cur->ne[i]) || (i >= ne.size() && cur->ne[i] != 1)) {
  3127. is_ok = false;
  3128. break;
  3129. }
  3130. }
  3131. if (!is_ok) {
  3132. throw std::runtime_error(
  3133. format("%s: tensor '%s' has wrong shape; expected %s, got %s",
  3134. __func__, name.c_str(),
  3135. llama_format_tensor_shape(ne).c_str(),
  3136. llama_format_tensor_shape(cur).c_str()));
  3137. }
  3138. }
  3139. return cur;
  3140. }
  3141. static const int TENSOR_NOT_REQUIRED = 1;
  3142. static const int TENSOR_DUPLICATED = 2;
  3143. struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, int flags = 0) {
  3144. const struct ggml_tensor * cur = check_tensor_dims(name, ne, !(flags & TENSOR_NOT_REQUIRED));
  3145. if (cur == NULL) {
  3146. return NULL;
  3147. }
  3148. return create_tensor_for(ctx, cur, flags & TENSOR_DUPLICATED);
  3149. }
  3150. struct ggml_tensor * create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::vector<int64_t> & ne, size_t offset, bool required = true) {
  3151. const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
  3152. if (cur == NULL) {
  3153. return NULL;
  3154. }
  3155. if (cur->type != base->type) {
  3156. throw std::runtime_error(format("%s: tensor '%s' has wrong type; expected %s, got %s", __func__, name.c_str(), ggml_type_name(base->type), ggml_type_name(cur->type)));
  3157. }
  3158. std::array<int64_t, GGML_MAX_DIMS> dims;
  3159. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  3160. dims[i] = i < ne.size() ? ne[i] : 1;
  3161. }
  3162. struct ggml_tensor * tensor = ggml_view_4d(ctx, base,
  3163. dims[0], dims[1], dims[2], dims[3],
  3164. cur->nb[1], cur->nb[2], cur->nb[3],
  3165. offset);
  3166. ggml_set_name(tensor, name.c_str());
  3167. n_created++;
  3168. return tensor;
  3169. }
  3170. void done_getting_tensors() const {
  3171. if (n_created != n_tensors) {
  3172. throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created));
  3173. }
  3174. }
  3175. void init_mappings(bool prefetch = true, llama_mlocks * mlock_mmaps = nullptr) {
  3176. if (use_mmap) {
  3177. mappings.reserve(files.size());
  3178. mmaps_used.reserve(files.size());
  3179. for (const auto & file : files) {
  3180. std::unique_ptr<llama_mmap> mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, ggml_is_numa()));
  3181. mmaps_used.emplace_back(mapping->size, 0);
  3182. if (mlock_mmaps) {
  3183. std::unique_ptr<llama_mlock> mlock_mmap(new llama_mlock());
  3184. mlock_mmap->init(mapping->addr);
  3185. mlock_mmaps->emplace_back(std::move(mlock_mmap));
  3186. }
  3187. mappings.emplace_back(std::move(mapping));
  3188. }
  3189. }
  3190. // compute the total size of all tensors for progress reporting
  3191. for (auto & w : weights) {
  3192. size_data += ggml_nbytes(w.tensor);
  3193. }
  3194. }
  3195. void get_mapping_range(size_t * first, size_t * last, void ** addr, int idx, ggml_context * ctx) const {
  3196. GGML_ASSERT(!mappings.empty());
  3197. const auto & mapping = mappings.at(idx);
  3198. *first = mapping->size;
  3199. *last = 0;
  3200. *addr = mapping->addr;
  3201. for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) {
  3202. try {
  3203. const auto * weight = get_weight(ggml_get_name(tensor));
  3204. if (!weight) {
  3205. continue;
  3206. }
  3207. if (weight->idx != idx) {
  3208. continue;
  3209. }
  3210. *first = std::min(*first, weight->offs);
  3211. *last = std::max(*last, weight->offs + ggml_nbytes(tensor));
  3212. } catch(...) {
  3213. // the tensor is not in the model
  3214. }
  3215. }
  3216. }
  3217. // for backwards compatibility, does not support ggml-backend
  3218. void load_data_for(struct ggml_tensor * cur) const {
  3219. const auto & w = require_weight(ggml_get_name(cur));
  3220. if (use_mmap) {
  3221. const auto & mapping = mappings.at(w.idx);
  3222. if (cur->data == nullptr) {
  3223. cur->data = (uint8_t *)mapping->addr + w.offs;
  3224. } else {
  3225. memcpy(cur->data, (uint8_t *)mapping->addr + w.offs, ggml_nbytes(cur));
  3226. }
  3227. } else {
  3228. GGML_ASSERT(cur->data != nullptr);
  3229. GGML_ASSERT(w.idx < files.size());
  3230. const auto & file = files.at(w.idx);
  3231. file->seek(w.offs, SEEK_SET);
  3232. file->read_raw(cur->data, ggml_nbytes(cur));
  3233. }
  3234. if (check_tensors && !ggml_validate_row_data(cur->type, cur->data, ggml_nbytes(cur))) {
  3235. throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
  3236. }
  3237. }
  3238. size_t size_done = 0;
  3239. size_t size_data = 0;
  3240. std::vector<std::pair<size_t, size_t>> mmaps_used;
  3241. // Returns false if cancelled by progress_callback
  3242. bool load_all_data(
  3243. struct ggml_context * ctx,
  3244. llama_buf_map & bufs_mmap,
  3245. llama_mlocks * lmlocks,
  3246. llama_progress_callback progress_callback,
  3247. void * progress_callback_user_data) {
  3248. GGML_ASSERT(size_data != 0 && "call init_mappings() first");
  3249. std::vector<no_init<uint8_t>> read_buf;
  3250. std::vector<std::future<std::pair<ggml_tensor *, bool>>> validation_result;
  3251. for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  3252. const auto * weight = get_weight(ggml_get_name(cur));
  3253. if (weight == nullptr) {
  3254. // this can happen with split experts models
  3255. continue;
  3256. }
  3257. if (progress_callback) {
  3258. if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) {
  3259. return false;
  3260. }
  3261. }
  3262. size_t n_size = ggml_nbytes(cur);
  3263. if (use_mmap) {
  3264. const auto & mapping = mappings.at(weight->idx);
  3265. ggml_backend_buffer_t buf_mmap = nullptr;
  3266. if (bufs_mmap.count(weight->idx)) {
  3267. buf_mmap = bufs_mmap.at(weight->idx);
  3268. }
  3269. uint8_t * data = (uint8_t *) mapping->addr + weight->offs;
  3270. if (check_tensors) {
  3271. validation_result.emplace_back(std::async(std::launch::async, [cur, data, n_size] {
  3272. return std::make_pair(cur, ggml_validate_row_data(cur->type, data, n_size));
  3273. }));
  3274. }
  3275. GGML_ASSERT(buf_mmap || cur->data); // either we have a buffer to allocate the tensor in, or it is already allocated
  3276. if (buf_mmap && cur->data == nullptr) {
  3277. ggml_backend_tensor_alloc(buf_mmap, cur, data);
  3278. if (lmlocks) {
  3279. const auto & lmlock = lmlocks->at(weight->idx);
  3280. lmlock->grow_to(weight->offs + n_size);
  3281. }
  3282. auto & mmap_used = mmaps_used[weight->idx];
  3283. mmap_used.first = std::min(mmap_used.first, weight->offs);
  3284. mmap_used.second = std::max(mmap_used.second, weight->offs + n_size);
  3285. } else {
  3286. ggml_backend_tensor_set(cur, data, 0, n_size);
  3287. }
  3288. } else {
  3289. GGML_ASSERT(weight->idx < files.size());
  3290. const auto & file = files.at(weight->idx);
  3291. if (ggml_backend_buffer_is_host(cur->buffer)) {
  3292. file->seek(weight->offs, SEEK_SET);
  3293. file->read_raw(cur->data, n_size);
  3294. if (check_tensors) {
  3295. validation_result.emplace_back(std::async(std::launch::async, [cur, n_size] {
  3296. return std::make_pair(cur, ggml_validate_row_data(cur->type, cur->data, n_size));
  3297. }));
  3298. }
  3299. } else {
  3300. read_buf.resize(n_size);
  3301. file->seek(weight->offs, SEEK_SET);
  3302. file->read_raw(read_buf.data(), n_size);
  3303. ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size);
  3304. if (check_tensors && !ggml_validate_row_data(cur->type, read_buf.data(), n_size)) {
  3305. throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
  3306. }
  3307. }
  3308. }
  3309. size_done += n_size;
  3310. }
  3311. // check validation results
  3312. bool validation_failed = false;
  3313. for (auto & future : validation_result) {
  3314. auto result = future.get();
  3315. if (!result.second) {
  3316. LLAMA_LOG_ERROR("%s: tensor '%s' has invalid data\n", __func__, ggml_get_name(result.first));
  3317. validation_failed = true;
  3318. }
  3319. }
  3320. if (validation_failed) {
  3321. throw std::runtime_error("found tensors with invalid data");
  3322. }
  3323. // check if this is the last call and do final cleanup
  3324. if (size_done >= size_data) {
  3325. // unmap offloaded tensors and metadata
  3326. if (use_mmap) {
  3327. for (uint32_t idx = 0; idx < mappings.size(); idx++) {
  3328. const auto & mmap_used = mmaps_used.at(idx);
  3329. auto & mapping = mappings.at(idx);
  3330. mapping->unmap_fragment(0, mmap_used.first);
  3331. if (mmap_used.second != 0) {
  3332. mapping->unmap_fragment(mmap_used.second, mapping->size);
  3333. }
  3334. }
  3335. }
  3336. if (progress_callback) {
  3337. // Even though the model is done loading, we still honor
  3338. // cancellation since we need to free allocations.
  3339. return progress_callback(1.0f, progress_callback_user_data);
  3340. }
  3341. }
  3342. return true;
  3343. }
  3344. };
  3345. template<>
  3346. bool llama_model_loader::get_key(const enum llm_kv kid, enum llama_pooling_type & result, const bool required) {
  3347. uint32_t tmp;
  3348. const bool found = get_key(kid, tmp, required);
  3349. if (found) {
  3350. result = (enum llama_pooling_type) tmp;
  3351. } else {
  3352. result = LLAMA_POOLING_TYPE_UNSPECIFIED;
  3353. }
  3354. return found;
  3355. }
  3356. //
  3357. // load LLaMA models
  3358. //
  3359. static const char * llama_model_arch_name(llm_arch arch) {
  3360. auto it = LLM_ARCH_NAMES.find(arch);
  3361. if (it == LLM_ARCH_NAMES.end()) {
  3362. return "unknown";
  3363. }
  3364. return it->second;
  3365. }
  3366. static std::string llama_model_ftype_name(llama_ftype ftype) {
  3367. if (ftype & LLAMA_FTYPE_GUESSED) {
  3368. return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)";
  3369. }
  3370. switch (ftype) {
  3371. case LLAMA_FTYPE_ALL_F32: return "all F32";
  3372. case LLAMA_FTYPE_MOSTLY_F16: return "F16";
  3373. case LLAMA_FTYPE_MOSTLY_BF16: return "BF16";
  3374. case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0";
  3375. case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1";
  3376. case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
  3377. return "Q4_1, some F16";
  3378. case LLAMA_FTYPE_MOSTLY_Q5_0: return "Q5_0";
  3379. case LLAMA_FTYPE_MOSTLY_Q5_1: return "Q5_1";
  3380. case LLAMA_FTYPE_MOSTLY_Q8_0: return "Q8_0";
  3381. // K-quants
  3382. case LLAMA_FTYPE_MOSTLY_Q2_K: return "Q2_K - Medium";
  3383. case LLAMA_FTYPE_MOSTLY_Q2_K_S: return "Q2_K - Small";
  3384. case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "Q3_K - Small";
  3385. case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "Q3_K - Medium";
  3386. case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "Q3_K - Large";
  3387. case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "Q4_K - Small";
  3388. case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "Q4_K - Medium";
  3389. case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "Q5_K - Small";
  3390. case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "Q5_K - Medium";
  3391. case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K";
  3392. case LLAMA_FTYPE_MOSTLY_IQ2_XXS:return "IQ2_XXS - 2.0625 bpw";
  3393. case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw";
  3394. case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw";
  3395. case LLAMA_FTYPE_MOSTLY_IQ2_M: return "IQ2_M - 2.7 bpw";
  3396. case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw";
  3397. case LLAMA_FTYPE_MOSTLY_IQ3_XXS:return "IQ3_XXS - 3.0625 bpw";
  3398. case LLAMA_FTYPE_MOSTLY_IQ1_S :return "IQ1_S - 1.5625 bpw";
  3399. case LLAMA_FTYPE_MOSTLY_IQ1_M :return "IQ1_M - 1.75 bpw";
  3400. case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw";
  3401. case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw";
  3402. case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw";
  3403. case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw";
  3404. default: return "unknown, may not work";
  3405. }
  3406. }
  3407. static const char * llama_model_type_name(e_model type) {
  3408. switch (type) {
  3409. case MODEL_14M: return "14M";
  3410. case MODEL_17M: return "17M";
  3411. case MODEL_22M: return "22M";
  3412. case MODEL_33M: return "33M";
  3413. case MODEL_70M: return "70M";
  3414. case MODEL_109M: return "109M";
  3415. case MODEL_137M: return "137M";
  3416. case MODEL_160M: return "160M";
  3417. case MODEL_335M: return "335M";
  3418. case MODEL_410M: return "410M";
  3419. case MODEL_0_5B: return "0.5B";
  3420. case MODEL_1B: return "1B";
  3421. case MODEL_1_4B: return "1.4B";
  3422. case MODEL_2B: return "2B";
  3423. case MODEL_2_8B: return "2.8B";
  3424. case MODEL_3B: return "3B";
  3425. case MODEL_4B: return "4B";
  3426. case MODEL_6_9B: return "6.9B";
  3427. case MODEL_7B: return "7B";
  3428. case MODEL_8B: return "8B";
  3429. case MODEL_12B: return "12B";
  3430. case MODEL_13B: return "13B";
  3431. case MODEL_14B: return "14B";
  3432. case MODEL_15B: return "15B";
  3433. case MODEL_16B: return "16B";
  3434. case MODEL_20B: return "20B";
  3435. case MODEL_30B: return "30B";
  3436. case MODEL_34B: return "34B";
  3437. case MODEL_35B: return "35B";
  3438. case MODEL_40B: return "40B";
  3439. case MODEL_65B: return "65B";
  3440. case MODEL_70B: return "70B";
  3441. case MODEL_236B: return "236B";
  3442. case MODEL_314B: return "314B";
  3443. case MODEL_SMALL: return "0.1B";
  3444. case MODEL_MEDIUM: return "0.4B";
  3445. case MODEL_LARGE: return "0.8B";
  3446. case MODEL_XL: return "1.5B";
  3447. case MODEL_A2_7B: return "A2.7B";
  3448. case MODEL_8x7B: return "8x7B";
  3449. case MODEL_8x22B: return "8x22B";
  3450. case MODEL_16x12B: return "16x12B";
  3451. case MODEL_10B_128x3_66B: return "10B+128x3.66B";
  3452. default: return "?B";
  3453. }
  3454. }
  3455. static const char * llama_model_vocab_type_name(enum llama_vocab_type type){
  3456. switch (type) {
  3457. case LLAMA_VOCAB_TYPE_NONE: return "no vocab";
  3458. case LLAMA_VOCAB_TYPE_SPM: return "SPM";
  3459. case LLAMA_VOCAB_TYPE_BPE: return "BPE";
  3460. case LLAMA_VOCAB_TYPE_WPM: return "WPM";
  3461. default: return "unknown";
  3462. }
  3463. }
  3464. static void llm_load_arch(llama_model_loader & ml, llama_model & model) {
  3465. model.arch = ml.get_arch();
  3466. if (model.arch == LLM_ARCH_UNKNOWN) {
  3467. throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
  3468. }
  3469. }
  3470. static void llm_load_hparams(
  3471. llama_model_loader & ml,
  3472. llama_model & model) {
  3473. auto & hparams = model.hparams;
  3474. const gguf_context * ctx = ml.meta;
  3475. // get metadata as string
  3476. for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
  3477. enum gguf_type type = gguf_get_kv_type(ctx, i);
  3478. if (type == GGUF_TYPE_ARRAY) {
  3479. continue;
  3480. }
  3481. const char * name = gguf_get_key(ctx, i);
  3482. const std::string value = gguf_kv_to_str(ctx, i);
  3483. model.gguf_kv.emplace(name, value);
  3484. }
  3485. // get general kv
  3486. ml.get_key(LLM_KV_GENERAL_NAME, model.name, false);
  3487. // get hparams kv
  3488. ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab);
  3489. // everything past this point is not vocab-related
  3490. if (hparams.vocab_only) {
  3491. return;
  3492. }
  3493. ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
  3494. ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
  3495. ml.get_key(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff);
  3496. ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head);
  3497. ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
  3498. ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
  3499. ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
  3500. GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
  3501. GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
  3502. if (hparams.n_expert > 0) {
  3503. GGML_ASSERT(hparams.n_expert_used > 0);
  3504. } else {
  3505. GGML_ASSERT(hparams.n_expert_used == 0);
  3506. }
  3507. // n_head_kv is optional, default to n_head
  3508. hparams.n_head_kv = hparams.n_head;
  3509. ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv, false);
  3510. bool rope_finetuned = false;
  3511. ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
  3512. hparams.rope_finetuned = rope_finetuned;
  3513. hparams.n_ctx_orig_yarn = hparams.n_ctx_train;
  3514. ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_ctx_orig_yarn, false);
  3515. // rope_freq_base (optional)
  3516. hparams.rope_freq_base_train = 10000.0f;
  3517. ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);
  3518. std::string rope_scaling("linear");
  3519. ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
  3520. hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
  3521. GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
  3522. // rope_freq_scale (inverse of the kv) is optional
  3523. float ropescale = 0.0f;
  3524. if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
  3525. // try the old key name
  3526. ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
  3527. }
  3528. hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
  3529. ml.get_key(LLM_KV_ROPE_SCALING_ATTN_FACTOR, hparams.rope_attn_factor, false);
  3530. // sanity check for n_rot (optional)
  3531. {
  3532. hparams.n_rot = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3533. ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
  3534. if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
  3535. if (hparams.n_rot != hparams.n_embd / hparams.n_head) {
  3536. throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd / hparams.n_head));
  3537. }
  3538. }
  3539. // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
  3540. // gpt-j n_rot = rotary_dim
  3541. }
  3542. hparams.n_embd_head_k = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3543. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
  3544. hparams.n_embd_head_v = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3545. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
  3546. // arch-specific KVs
  3547. switch (model.arch) {
  3548. case LLM_ARCH_LLAMA:
  3549. {
  3550. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3551. if (hparams.n_expert == 8) {
  3552. switch (hparams.n_layer) {
  3553. case 32: model.type = e_model::MODEL_8x7B; break;
  3554. case 56: model.type = e_model::MODEL_8x22B; break;
  3555. default: model.type = e_model::MODEL_UNKNOWN;
  3556. }
  3557. } else {
  3558. switch (hparams.n_layer) {
  3559. case 22: model.type = e_model::MODEL_1B; break;
  3560. case 26: model.type = e_model::MODEL_3B; break;
  3561. // granite uses a vocab with len 49152
  3562. case 32: model.type = hparams.n_vocab == 49152 ? e_model::MODEL_3B : (hparams.n_vocab < 40000 ? e_model::MODEL_7B : e_model::MODEL_8B); break;
  3563. case 36: model.type = e_model::MODEL_8B; break; // granite
  3564. case 40: model.type = e_model::MODEL_13B; break;
  3565. case 48: model.type = e_model::MODEL_34B; break;
  3566. case 60: model.type = e_model::MODEL_30B; break;
  3567. case 80: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_65B : e_model::MODEL_70B; break;
  3568. default: model.type = e_model::MODEL_UNKNOWN;
  3569. }
  3570. }
  3571. } break;
  3572. case LLM_ARCH_MINICPM:
  3573. {
  3574. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3575. switch (hparams.n_layer) {
  3576. case 40: model.type = e_model::MODEL_2B; break;
  3577. default: model.type = e_model::MODEL_UNKNOWN;
  3578. }
  3579. } break;
  3580. case LLM_ARCH_GROK:
  3581. {
  3582. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3583. switch (hparams.n_layer) {
  3584. case 64: model.type = e_model::MODEL_314B; break;
  3585. default: model.type = e_model::MODEL_UNKNOWN;
  3586. }
  3587. } break;
  3588. case LLM_ARCH_FALCON:
  3589. {
  3590. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3591. switch (hparams.n_layer) {
  3592. case 32: model.type = e_model::MODEL_7B; break;
  3593. case 60: model.type = e_model::MODEL_40B; break;
  3594. default: model.type = e_model::MODEL_UNKNOWN;
  3595. }
  3596. } break;
  3597. case LLM_ARCH_BAICHUAN:
  3598. {
  3599. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3600. switch (hparams.n_layer) {
  3601. case 32: model.type = e_model::MODEL_7B; break;
  3602. case 40: model.type = e_model::MODEL_13B; break;
  3603. default: model.type = e_model::MODEL_UNKNOWN;
  3604. }
  3605. if (model.type == e_model::MODEL_13B) {
  3606. // TODO: become GGUF KV parameter
  3607. hparams.f_max_alibi_bias = 8.0f;
  3608. }
  3609. } break;
  3610. case LLM_ARCH_STARCODER:
  3611. {
  3612. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3613. switch (hparams.n_layer) {
  3614. case 24: model.type = e_model::MODEL_1B; break;
  3615. case 36: model.type = e_model::MODEL_3B; break;
  3616. case 42: model.type = e_model::MODEL_7B; break;
  3617. case 40: model.type = e_model::MODEL_15B; break;
  3618. default: model.type = e_model::MODEL_UNKNOWN;
  3619. }
  3620. } break;
  3621. case LLM_ARCH_REFACT:
  3622. {
  3623. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3624. switch (hparams.n_layer) {
  3625. case 32: model.type = e_model::MODEL_1B; break;
  3626. default: model.type = e_model::MODEL_UNKNOWN;
  3627. }
  3628. // TODO: become GGUF KV parameter
  3629. hparams.f_max_alibi_bias = 8.0f;
  3630. } break;
  3631. case LLM_ARCH_BERT:
  3632. {
  3633. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3634. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3635. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3636. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  3637. switch (hparams.n_layer) {
  3638. case 3:
  3639. model.type = e_model::MODEL_17M; break; // bge-micro
  3640. case 6:
  3641. model.type = e_model::MODEL_22M; break; // MiniLM-L6
  3642. case 12:
  3643. switch (hparams.n_embd) {
  3644. case 384: model.type = e_model::MODEL_33M; break; // MiniLM-L12, bge-small
  3645. case 768: model.type = e_model::MODEL_109M; break; // bge-base
  3646. } break;
  3647. case 24:
  3648. model.type = e_model::MODEL_335M; break; // bge-large
  3649. }
  3650. } break;
  3651. case LLM_ARCH_JINA_BERT_V2:
  3652. {
  3653. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3654. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3655. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3656. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  3657. hparams.f_max_alibi_bias = 8.0f;
  3658. switch (hparams.n_layer) {
  3659. case 4: model.type = e_model::MODEL_33M; break; // jina-embeddings-small
  3660. case 12: model.type = e_model::MODEL_137M; break; // jina-embeddings-base
  3661. }
  3662. } break;
  3663. case LLM_ARCH_NOMIC_BERT:
  3664. {
  3665. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3666. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3667. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3668. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  3669. if (hparams.n_layer == 12 && hparams.n_embd == 768) {
  3670. model.type = e_model::MODEL_137M;
  3671. }
  3672. } break;
  3673. case LLM_ARCH_BLOOM:
  3674. {
  3675. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3676. switch (hparams.n_layer) {
  3677. case 24: model.type = e_model::MODEL_1B; break;
  3678. case 30:
  3679. switch (hparams.n_embd) {
  3680. case 2560: model.type = e_model::MODEL_3B; break;
  3681. case 4096: model.type = e_model::MODEL_7B; break;
  3682. } break;
  3683. }
  3684. // TODO: become GGUF KV parameter
  3685. hparams.f_max_alibi_bias = 8.0f;
  3686. } break;
  3687. case LLM_ARCH_MPT:
  3688. {
  3689. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3690. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  3691. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  3692. switch (hparams.n_layer) {
  3693. case 32: model.type = e_model::MODEL_7B; break;
  3694. case 48: model.type = e_model::MODEL_30B; break;
  3695. default: model.type = e_model::MODEL_UNKNOWN;
  3696. }
  3697. } break;
  3698. case LLM_ARCH_STABLELM:
  3699. {
  3700. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3701. switch (hparams.n_layer) {
  3702. case 24: model.type = e_model::MODEL_1B; break;
  3703. case 32: model.type = e_model::MODEL_3B; break;
  3704. case 40: model.type = e_model::MODEL_12B; break;
  3705. default: model.type = e_model::MODEL_UNKNOWN;
  3706. }
  3707. } break;
  3708. case LLM_ARCH_QWEN:
  3709. {
  3710. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3711. switch (hparams.n_layer) {
  3712. case 32: model.type = e_model::MODEL_7B; break;
  3713. case 40: model.type = e_model::MODEL_13B; break;
  3714. default: model.type = e_model::MODEL_UNKNOWN;
  3715. }
  3716. } break;
  3717. case LLM_ARCH_QWEN2:
  3718. {
  3719. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3720. switch (hparams.n_layer) {
  3721. case 24: model.type = hparams.n_embd == 1024 ? e_model::MODEL_0_5B : e_model::MODEL_1B; break;
  3722. case 32: model.type = e_model::MODEL_7B; break;
  3723. case 40: model.type = hparams.n_head == 20 ? e_model::MODEL_4B : e_model::MODEL_13B; break;
  3724. case 80: model.type = e_model::MODEL_70B; break;
  3725. default: model.type = e_model::MODEL_UNKNOWN;
  3726. }
  3727. } break;
  3728. case LLM_ARCH_QWEN2MOE:
  3729. {
  3730. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3731. switch (hparams.n_layer) {
  3732. case 24: model.type = e_model::MODEL_A2_7B; break;
  3733. default: model.type = e_model::MODEL_UNKNOWN;
  3734. }
  3735. } break;
  3736. case LLM_ARCH_PHI2:
  3737. {
  3738. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3739. switch (hparams.n_layer) {
  3740. case 24: model.type = e_model::MODEL_1B; break;
  3741. case 32: model.type = e_model::MODEL_3B; break;
  3742. default: model.type = e_model::MODEL_UNKNOWN;
  3743. }
  3744. } break;
  3745. case LLM_ARCH_PHI3:
  3746. {
  3747. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3748. switch (hparams.n_layer) {
  3749. case 24: model.type = e_model::MODEL_1B; break;
  3750. case 32: model.type = e_model::MODEL_3B; break;
  3751. case 40: model.type = e_model::MODEL_14B; break;
  3752. default: model.type = e_model::MODEL_UNKNOWN;
  3753. }
  3754. } break;
  3755. case LLM_ARCH_PLAMO:
  3756. {
  3757. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3758. switch (hparams.n_layer) {
  3759. case 40: model.type = e_model::MODEL_13B; break;
  3760. default: model.type = e_model::MODEL_UNKNOWN;
  3761. }
  3762. } break;
  3763. case LLM_ARCH_GPT2:
  3764. {
  3765. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3766. switch (hparams.n_layer) {
  3767. case 12: model.type = e_model::MODEL_SMALL; break;
  3768. case 24: model.type = e_model::MODEL_MEDIUM; break;
  3769. case 36: model.type = e_model::MODEL_LARGE; break;
  3770. case 48: model.type = e_model::MODEL_XL; break;
  3771. default: model.type = e_model::MODEL_UNKNOWN;
  3772. }
  3773. } break;
  3774. case LLM_ARCH_CODESHELL:
  3775. {
  3776. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3777. switch (hparams.n_layer) {
  3778. case 42: model.type = e_model::MODEL_SMALL; break;
  3779. default: model.type = e_model::MODEL_UNKNOWN;
  3780. }
  3781. } break;
  3782. case LLM_ARCH_ORION:
  3783. {
  3784. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3785. switch (hparams.n_layer) {
  3786. case 40: model.type = e_model::MODEL_14B; break;
  3787. default: model.type = e_model::MODEL_UNKNOWN;
  3788. }
  3789. } break;
  3790. case LLM_ARCH_INTERNLM2:
  3791. {
  3792. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3793. switch (hparams.n_layer) {
  3794. case 32: model.type = e_model::MODEL_7B; break;
  3795. case 48: model.type = e_model::MODEL_20B; break;
  3796. default: model.type = e_model::MODEL_UNKNOWN;
  3797. }
  3798. } break;
  3799. case LLM_ARCH_GEMMA:
  3800. {
  3801. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3802. switch (hparams.n_layer) {
  3803. case 18: model.type = e_model::MODEL_2B; break;
  3804. case 28: model.type = e_model::MODEL_7B; break;
  3805. default: model.type = e_model::MODEL_UNKNOWN;
  3806. }
  3807. } break;
  3808. case LLM_ARCH_STARCODER2:
  3809. {
  3810. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3811. switch (hparams.n_layer) {
  3812. case 30: model.type = e_model::MODEL_3B; break;
  3813. case 32: model.type = e_model::MODEL_7B; break;
  3814. case 40: model.type = e_model::MODEL_15B; break;
  3815. case 52: model.type = e_model::MODEL_20B; break; // granite
  3816. case 88: model.type = e_model::MODEL_34B; break; // granite
  3817. default: model.type = e_model::MODEL_UNKNOWN;
  3818. }
  3819. } break;
  3820. case LLM_ARCH_MAMBA:
  3821. {
  3822. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  3823. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  3824. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  3825. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  3826. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3827. switch (hparams.n_layer) {
  3828. case 24:
  3829. switch (hparams.n_embd) {
  3830. case 768: model.type = e_model::MODEL_SMALL; break;
  3831. default: model.type = e_model::MODEL_UNKNOWN;
  3832. } break;
  3833. case 48:
  3834. switch (hparams.n_embd) {
  3835. case 1024: model.type = e_model::MODEL_MEDIUM; break;
  3836. case 1536: model.type = e_model::MODEL_LARGE; break;
  3837. case 2048: model.type = e_model::MODEL_XL; break;
  3838. default: model.type = e_model::MODEL_UNKNOWN;
  3839. } break;
  3840. case 64:
  3841. switch (hparams.n_embd) {
  3842. case 2560: model.type = e_model::MODEL_3B; break;
  3843. default: model.type = e_model::MODEL_UNKNOWN;
  3844. } break;
  3845. default: model.type = e_model::MODEL_UNKNOWN;
  3846. }
  3847. } break;
  3848. case LLM_ARCH_XVERSE:
  3849. {
  3850. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3851. switch (hparams.n_layer) {
  3852. case 32: model.type = e_model::MODEL_7B; break;
  3853. case 40: model.type = e_model::MODEL_13B; break;
  3854. case 80: model.type = e_model::MODEL_65B; break;
  3855. default: model.type = e_model::MODEL_UNKNOWN;
  3856. }
  3857. } break;
  3858. case LLM_ARCH_COMMAND_R:
  3859. {
  3860. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  3861. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3862. switch (hparams.n_layer) {
  3863. case 40: model.type = e_model::MODEL_35B; break;
  3864. default: model.type = e_model::MODEL_UNKNOWN;
  3865. }
  3866. } break;
  3867. case LLM_ARCH_DBRX:
  3868. {
  3869. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3870. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv);
  3871. switch (hparams.n_layer) {
  3872. case 40: model.type = e_model::MODEL_16x12B; break;
  3873. default: model.type = e_model::MODEL_UNKNOWN;
  3874. }
  3875. } break;
  3876. case LLM_ARCH_OLMO:
  3877. {
  3878. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3879. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  3880. switch (hparams.n_layer) {
  3881. case 22: model.type = e_model::MODEL_1B; break;
  3882. case 32: model.type = e_model::MODEL_7B; break;
  3883. case 80: model.type = e_model::MODEL_70B; break;
  3884. default: model.type = e_model::MODEL_UNKNOWN;
  3885. }
  3886. } break;
  3887. case LLM_ARCH_GPTNEOX:
  3888. {
  3889. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3890. ml.get_key(LLM_KV_USE_PARALLEL_RESIDUAL, hparams.use_par_res);
  3891. switch (hparams.n_layer) {
  3892. case 6:
  3893. switch (hparams.n_ff) {
  3894. case 512: model.type = e_model::MODEL_14M; break;
  3895. case 2048: model.type = e_model::MODEL_70M; break;
  3896. default: model.type = e_model::MODEL_UNKNOWN;
  3897. } break;
  3898. case 12:
  3899. switch (hparams.n_ff) {
  3900. case 3072: model.type = e_model::MODEL_160M; break;
  3901. default: model.type = e_model::MODEL_UNKNOWN;
  3902. } break;
  3903. case 16:
  3904. switch (hparams.n_ff) {
  3905. case 8192: model.type = e_model::MODEL_1B; break;
  3906. default: model.type = e_model::MODEL_UNKNOWN;
  3907. } break;
  3908. case 24:
  3909. switch (hparams.n_ff) {
  3910. case 4096: model.type = e_model::MODEL_410M; break;
  3911. case 8192: model.type = e_model::MODEL_1_4B; break;
  3912. default: model.type = e_model::MODEL_UNKNOWN;
  3913. } break;
  3914. case 32:
  3915. switch (hparams.n_ff) {
  3916. case 10240: model.type = e_model::MODEL_2_8B; break;
  3917. case 16384: model.type = e_model::MODEL_6_9B; break;
  3918. default: model.type = e_model::MODEL_UNKNOWN;
  3919. } break;
  3920. case 36:
  3921. switch (hparams.n_ff) {
  3922. case 20480: model.type = e_model::MODEL_12B; break;
  3923. default: model.type = e_model::MODEL_UNKNOWN;
  3924. } break;
  3925. case 44:
  3926. switch (hparams.n_ff) {
  3927. case 24576: model.type = e_model::MODEL_20B; break;
  3928. default: model.type = e_model::MODEL_UNKNOWN;
  3929. } break;
  3930. default: model.type = e_model::MODEL_UNKNOWN;
  3931. }
  3932. } break;
  3933. case LLM_ARCH_ARCTIC:
  3934. {
  3935. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3936. if (hparams.n_expert == 128) {
  3937. switch (hparams.n_layer) {
  3938. case 35: model.type = e_model::MODEL_10B_128x3_66B; break;
  3939. default: model.type = e_model::MODEL_UNKNOWN;
  3940. }
  3941. } else {
  3942. model.type = e_model::MODEL_UNKNOWN;
  3943. }
  3944. } break;
  3945. case LLM_ARCH_DEEPSEEK2:
  3946. {
  3947. bool is_lite = (hparams.n_layer == 27);
  3948. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3949. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  3950. if (!is_lite) {
  3951. ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
  3952. }
  3953. ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
  3954. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  3955. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  3956. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  3957. ml.get_key(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul);
  3958. switch (hparams.n_layer) {
  3959. case 27: model.type = e_model::MODEL_16B; break;
  3960. case 60: model.type = e_model::MODEL_236B; break;
  3961. default: model.type = e_model::MODEL_UNKNOWN;
  3962. }
  3963. } break;
  3964. default: (void)0;
  3965. }
  3966. model.ftype = ml.ftype;
  3967. if (hparams.f_max_alibi_bias > 0.0f) {
  3968. hparams.use_alibi = true;
  3969. }
  3970. hparams.rope_type = llama_rope_type(&model);
  3971. }
  3972. // TODO: This should probably be in llama.h
  3973. static std::vector<llama_vocab::id> llama_tokenize_internal(
  3974. const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special = false
  3975. );
  3976. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch);
  3977. static void llm_load_vocab(
  3978. llama_model_loader & ml,
  3979. llama_model & model) {
  3980. auto & vocab = model.vocab;
  3981. struct gguf_context * ctx = ml.meta;
  3982. const auto kv = LLM_KV(model.arch);
  3983. // determine vocab type
  3984. {
  3985. std::string tokenizer_model;
  3986. std::string tokenizer_pre;
  3987. ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_model);
  3988. ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false);
  3989. if (tokenizer_model == "no_vocab") {
  3990. vocab.type = LLAMA_VOCAB_TYPE_NONE;
  3991. // default special tokens
  3992. vocab.special_bos_id = -1;
  3993. vocab.special_eos_id = -1;
  3994. vocab.special_unk_id = -1;
  3995. vocab.special_sep_id = -1;
  3996. vocab.special_pad_id = -1;
  3997. vocab.special_cls_id = -1;
  3998. vocab.special_mask_id = -1;
  3999. vocab.linefeed_id = -1;
  4000. return;
  4001. } else if (tokenizer_model == "llama") {
  4002. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  4003. // default special tokens
  4004. vocab.special_bos_id = 1;
  4005. vocab.special_eos_id = 2;
  4006. vocab.special_unk_id = 0;
  4007. vocab.special_sep_id = -1;
  4008. vocab.special_pad_id = -1;
  4009. vocab.special_cls_id = -1;
  4010. vocab.special_mask_id = -1;
  4011. const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
  4012. if (add_space_prefix_keyidx != -1) {
  4013. vocab.add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
  4014. } // The default value of add_space_prefix is true.
  4015. } else if (tokenizer_model == "bert") {
  4016. vocab.type = LLAMA_VOCAB_TYPE_WPM;
  4017. // default special tokens
  4018. vocab.special_bos_id = -1;
  4019. vocab.special_eos_id = -1;
  4020. vocab.special_unk_id = 100;
  4021. vocab.special_sep_id = 102;
  4022. vocab.special_pad_id = 0;
  4023. vocab.special_cls_id = 101;
  4024. vocab.special_mask_id = 103;
  4025. vocab.add_space_prefix = false;
  4026. } else if (tokenizer_model == "gpt2") {
  4027. vocab.type = LLAMA_VOCAB_TYPE_BPE;
  4028. const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
  4029. if (add_space_prefix_keyidx != -1) {
  4030. vocab.add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
  4031. }
  4032. // read bpe merges and populate bpe ranks
  4033. const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
  4034. if (merges_keyidx == -1) {
  4035. throw std::runtime_error("cannot find tokenizer merges in model file\n");
  4036. }
  4037. const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
  4038. for (int i = 0; i < n_merges; i++) {
  4039. const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
  4040. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  4041. std::string first;
  4042. std::string second;
  4043. const size_t pos = word.find(' ', 1);
  4044. if (pos != std::string::npos) {
  4045. first = word.substr(0, pos);
  4046. second = word.substr(pos + 1);
  4047. }
  4048. vocab.bpe_ranks.emplace(std::make_pair(first, second), i);
  4049. }
  4050. // default special tokens
  4051. vocab.special_bos_id = 11;
  4052. vocab.special_eos_id = 11;
  4053. vocab.special_unk_id = -1;
  4054. vocab.special_sep_id = -1;
  4055. vocab.special_pad_id = -1;
  4056. vocab.special_cls_id = -1;
  4057. vocab.special_mask_id = -1;
  4058. } else {
  4059. throw std::runtime_error(format("unknown tokenizer: '%s'", tokenizer_model.c_str()));
  4060. }
  4061. // for now, only BPE models have pre-tokenizers
  4062. if (vocab.type == LLAMA_VOCAB_TYPE_BPE) {
  4063. if (tokenizer_pre.empty()) {
  4064. LLAMA_LOG_WARN("%s: missing pre-tokenizer type, using: 'default'\n", __func__);
  4065. LLAMA_LOG_WARN("%s: \n", __func__);
  4066. LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
  4067. LLAMA_LOG_WARN("%s: GENERATION QUALITY WILL BE DEGRADED! \n", __func__);
  4068. LLAMA_LOG_WARN("%s: CONSIDER REGENERATING THE MODEL \n", __func__);
  4069. LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
  4070. LLAMA_LOG_WARN("%s: \n", __func__);
  4071. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  4072. } else if (tokenizer_pre == "default") {
  4073. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  4074. } else if (
  4075. tokenizer_pre == "llama3" ||
  4076. tokenizer_pre == "llama-v3" ||
  4077. tokenizer_pre == "llama-bpe") {
  4078. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_LLAMA3;
  4079. } else if (
  4080. tokenizer_pre == "deepseek-llm") {
  4081. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM;
  4082. } else if (
  4083. tokenizer_pre == "deepseek-coder") {
  4084. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER;
  4085. } else if (
  4086. tokenizer_pre == "falcon") {
  4087. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_FALCON;
  4088. } else if (
  4089. tokenizer_pre == "mpt") {
  4090. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_MPT;
  4091. } else if (
  4092. tokenizer_pre == "starcoder") {
  4093. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STARCODER;
  4094. } else if (
  4095. tokenizer_pre == "gpt-2" ||
  4096. tokenizer_pre == "jina-es" ||
  4097. tokenizer_pre == "jina-de" ||
  4098. tokenizer_pre == "jina-v2-es" ||
  4099. tokenizer_pre == "jina-v2-de" ||
  4100. tokenizer_pre == "jina-v2-code") {
  4101. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_GPT2;
  4102. } else if (
  4103. tokenizer_pre == "refact") {
  4104. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_REFACT;
  4105. } else if (
  4106. tokenizer_pre == "command-r") {
  4107. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_COMMAND_R;
  4108. } else if (
  4109. tokenizer_pre == "qwen2") {
  4110. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_QWEN2;
  4111. } else if (
  4112. tokenizer_pre == "stablelm2") {
  4113. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STABLELM2;
  4114. } else if (
  4115. tokenizer_pre == "olmo") {
  4116. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_OLMO;
  4117. } else if (
  4118. tokenizer_pre == "dbrx") {
  4119. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DBRX;
  4120. } else if (
  4121. tokenizer_pre == "smaug-bpe") {
  4122. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_SMAUG;
  4123. } else if (
  4124. tokenizer_pre == "poro-chat") {
  4125. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_PORO;
  4126. } else {
  4127. throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
  4128. }
  4129. } else {
  4130. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  4131. }
  4132. }
  4133. const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str());
  4134. if (token_idx == -1) {
  4135. throw std::runtime_error("cannot find tokenizer vocab in model file\n");
  4136. }
  4137. const float * scores = nullptr;
  4138. const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str());
  4139. if (score_idx != -1) {
  4140. scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
  4141. }
  4142. const int * toktypes = nullptr;
  4143. const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str());
  4144. if (toktype_idx != -1) {
  4145. toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
  4146. }
  4147. const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
  4148. vocab.id_to_token.resize(n_vocab);
  4149. for (uint32_t i = 0; i < n_vocab; i++) {
  4150. std::string word = gguf_get_arr_str(ctx, token_idx, i);
  4151. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  4152. vocab.token_to_id[word] = i;
  4153. auto & token_data = vocab.id_to_token[i];
  4154. token_data.text = std::move(word);
  4155. token_data.score = scores ? scores[i] : 0.0f;
  4156. token_data.attr = LLAMA_TOKEN_ATTR_NORMAL;
  4157. if (toktypes) { //TODO: remove, required until per token attributes are available from GGUF file
  4158. switch(toktypes[i]) {
  4159. case LLAMA_TOKEN_TYPE_UNKNOWN: token_data.attr = LLAMA_TOKEN_ATTR_UNKNOWN; break;
  4160. case LLAMA_TOKEN_TYPE_UNUSED: token_data.attr = LLAMA_TOKEN_ATTR_UNUSED; break;
  4161. case LLAMA_TOKEN_TYPE_NORMAL: token_data.attr = LLAMA_TOKEN_ATTR_NORMAL; break;
  4162. case LLAMA_TOKEN_TYPE_CONTROL: token_data.attr = LLAMA_TOKEN_ATTR_CONTROL; break;
  4163. case LLAMA_TOKEN_TYPE_USER_DEFINED: token_data.attr = LLAMA_TOKEN_ATTR_USER_DEFINED; break;
  4164. case LLAMA_TOKEN_TYPE_BYTE: token_data.attr = LLAMA_TOKEN_ATTR_BYTE; break;
  4165. case LLAMA_TOKEN_TYPE_UNDEFINED: token_data.attr = LLAMA_TOKEN_ATTR_UNDEFINED; break;
  4166. default: token_data.attr = LLAMA_TOKEN_ATTR_UNDEFINED; break;
  4167. }
  4168. }
  4169. }
  4170. GGML_ASSERT(vocab.id_to_token.size() == vocab.token_to_id.size());
  4171. // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
  4172. if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
  4173. // For Fill-In-the-Middle (FIM)/infill models which where converted
  4174. // prior to support of FIM special tokens in GGUF, the following
  4175. // will allow those models to continue to work. The general names
  4176. // of the known models are currently CodeLlama (LLM_ARCH_LLAMA) and
  4177. // CodeGemma (LLM_ARCH_GEMMA). This can potentially be removed once
  4178. // new versions of these models have been published.
  4179. std::string gen_name;
  4180. ml.get_key(LLM_KV_GENERAL_NAME, gen_name, false);
  4181. std::transform(gen_name.begin(), gen_name.end(), gen_name.begin(),
  4182. [](unsigned char c){ return std::tolower(c); });
  4183. if (gen_name.find("code") != std::string::npos) {
  4184. if (model.arch == LLM_ARCH_LLAMA
  4185. && 32010 < vocab.id_to_token.size()
  4186. && vocab.id_to_token[32007].text == "<PRE>"
  4187. && vocab.id_to_token[32008].text == "<SUF>"
  4188. && vocab.id_to_token[32009].text == "<MID>"
  4189. && vocab.id_to_token[32010].text == "<EOT>") {
  4190. vocab.special_prefix_id = 32007;
  4191. vocab.special_suffix_id = 32008;
  4192. vocab.special_middle_id = 32009;
  4193. vocab.special_eot_id = 32010;
  4194. } else if (model.arch == LLM_ARCH_GEMMA
  4195. && 107 < vocab.id_to_token.size()
  4196. && vocab.id_to_token[67].text == "<|fim_prefix|>"
  4197. && vocab.id_to_token[69].text == "<|fim_suffix|>"
  4198. && vocab.id_to_token[68].text == "<|fim_middle|>"
  4199. && vocab.id_to_token[107].text == "<end_of_turn>") {
  4200. vocab.special_prefix_id = 67;
  4201. vocab.special_suffix_id = 69;
  4202. vocab.special_middle_id = 68;
  4203. // TODO: this is not EOT, it is "file separator" token, needs fix
  4204. // https://huggingface.co/google/codegemma-7b-it/blob/9b1d9231388358c04d90bd003458f5070d97db44/tokenizer_config.json#L565-L572
  4205. //vocab.special_eot_id = 70;
  4206. vocab.special_eot_id = 107;
  4207. }
  4208. }
  4209. try {
  4210. vocab.linefeed_id = llama_byte_to_token(vocab, '\n');
  4211. } catch (const std::exception & e) {
  4212. LLAMA_LOG_WARN("%s: SPM vocabulary, but newline token not found: %s! Using special_pad_id instead.", __func__, e.what());
  4213. vocab.linefeed_id = vocab.special_pad_id;
  4214. }
  4215. } else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) {
  4216. vocab.linefeed_id = vocab.special_pad_id;
  4217. } else {
  4218. const std::vector<int> ids = llama_tokenize_internal(vocab, "\xC4\x8A", false); // U+010A
  4219. GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
  4220. vocab.linefeed_id = ids[0];
  4221. }
  4222. // special tokens
  4223. {
  4224. const std::vector<std::pair<enum llm_kv, int32_t &>> special_token_types = {
  4225. { LLM_KV_TOKENIZER_BOS_ID, vocab.special_bos_id },
  4226. { LLM_KV_TOKENIZER_EOS_ID, vocab.special_eos_id },
  4227. { LLM_KV_TOKENIZER_UNK_ID, vocab.special_unk_id },
  4228. { LLM_KV_TOKENIZER_SEP_ID, vocab.special_sep_id },
  4229. { LLM_KV_TOKENIZER_PAD_ID, vocab.special_pad_id },
  4230. { LLM_KV_TOKENIZER_CLS_ID, vocab.special_cls_id },
  4231. { LLM_KV_TOKENIZER_MASK_ID, vocab.special_mask_id },
  4232. { LLM_KV_TOKENIZER_PREFIX_ID, vocab.special_prefix_id },
  4233. { LLM_KV_TOKENIZER_SUFFIX_ID, vocab.special_suffix_id },
  4234. { LLM_KV_TOKENIZER_MIDDLE_ID, vocab.special_middle_id },
  4235. { LLM_KV_TOKENIZER_EOT_ID, vocab.special_eot_id },
  4236. };
  4237. for (const auto & it : special_token_types) {
  4238. const std::string & key = kv(std::get<0>(it));
  4239. int32_t & id = std::get<1>(it);
  4240. uint32_t new_id;
  4241. if (!ml.get_key(std::get<0>(it), new_id, false)) {
  4242. continue;
  4243. }
  4244. if (new_id >= vocab.id_to_token.size()) {
  4245. LLAMA_LOG_WARN("%s: bad special token: '%s' = %ud, using default id %d\n",
  4246. __func__, key.c_str(), new_id, id);
  4247. } else {
  4248. id = new_id;
  4249. }
  4250. }
  4251. // Handle add_bos_token and add_eos_token
  4252. {
  4253. bool temp = true;
  4254. if (ml.get_key(LLM_KV_TOKENIZER_ADD_BOS, temp, false)) {
  4255. vocab.special_add_bos = int(temp);
  4256. }
  4257. if (ml.get_key(LLM_KV_TOKENIZER_ADD_EOS, temp, false)) {
  4258. vocab.special_add_eos = int(temp);
  4259. }
  4260. }
  4261. // find EOT token: "<|eot_id|>", "<|im_end|>", "<end_of_turn>", etc.
  4262. //
  4263. // TODO: convert scripts should provide this token through the KV metadata LLAMA_KV_TOKENIZER_EOT_ID
  4264. // for now, we apply this workaround to find the EOT token based on its text
  4265. if (vocab.special_eot_id == -1) {
  4266. for (const auto & t : vocab.token_to_id) {
  4267. if (
  4268. // TODO: gemma "<end_of_turn>" is exported as a normal token, so the following check does not work
  4269. // need to fix convert script
  4270. //vocab.id_to_token[t.second].type == LLAMA_TOKEN_TYPE_CONTROL &&
  4271. (t.first == "<|eot_id|>" ||
  4272. t.first == "<|im_end|>" ||
  4273. t.first == "<|end|>" ||
  4274. t.first == "<end_of_turn>" ||
  4275. t.first == "<|endoftext|>"
  4276. )
  4277. ) {
  4278. vocab.special_eot_id = t.second;
  4279. break;
  4280. }
  4281. }
  4282. }
  4283. }
  4284. // build special tokens cache
  4285. {
  4286. for (llama_vocab::id id = 0; id < (llama_vocab::id)n_vocab; ++id) {
  4287. if (!(vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_NORMAL)) {
  4288. vocab.cache_special_tokens.push_back(id);
  4289. }
  4290. }
  4291. std::sort( vocab.cache_special_tokens.begin(), vocab.cache_special_tokens.end(),
  4292. [&] (const llama_vocab::id a, const llama_vocab::id b) {
  4293. return vocab.id_to_token[a].text.size() > vocab.id_to_token[b].text.size();
  4294. }
  4295. );
  4296. LLAMA_LOG_INFO("%s: special tokens cache size = %u\n", __func__, (uint32_t)vocab.cache_special_tokens.size());
  4297. }
  4298. // build token to piece cache
  4299. {
  4300. size_t size_cache = 0;
  4301. std::vector<llama_vocab::token> cache_token_to_piece(n_vocab);
  4302. for (uint32_t id = 0; id < n_vocab; ++id) {
  4303. cache_token_to_piece[id] = llama_token_to_piece(&model, id, true);
  4304. size_cache += cache_token_to_piece[id].size();
  4305. }
  4306. std::swap(vocab.cache_token_to_piece, cache_token_to_piece);
  4307. LLAMA_LOG_INFO("%s: token to piece cache size = %.4f MB\n", __func__, size_cache / 1024.0 / 1024.0);
  4308. }
  4309. // Handle per token attributes
  4310. //NOTE: Each model customizes per token attributes.
  4311. //NOTE: Per token attributes are missing from the GGUF file.
  4312. //TODO: Extract attributes from GGUF file.
  4313. {
  4314. auto _contains_any = [] (const std::string &str, const std::vector<std::string> &substrs) -> bool {
  4315. for (auto substr : substrs) {
  4316. if (str.find(substr) < std::string::npos) {
  4317. return true;
  4318. }
  4319. }
  4320. return false;
  4321. };
  4322. auto _set_tokenid_attr = [&] (const llama_vocab::id id, llama_token_attr attr, bool value) {
  4323. uint32_t current = vocab.id_to_token.at(id).attr;
  4324. current = value ? (current | attr) : (current & ~attr);
  4325. vocab.id_to_token[id].attr = (llama_token_attr) current;
  4326. };
  4327. auto _set_token_attr = [&] (const std::string & token, llama_token_attr attr, bool value) {
  4328. _set_tokenid_attr(vocab.token_to_id.at(token), attr, value);
  4329. };
  4330. std::string model_name;
  4331. std::string tokenizer_pre;
  4332. ml.get_key(LLM_KV_GENERAL_NAME, model_name, false);
  4333. ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false);
  4334. // model name to lowercase
  4335. std::transform(model_name.begin(), model_name.end(), model_name.begin(),
  4336. [] (const std::string::value_type x) {
  4337. return std::tolower(x);
  4338. }
  4339. );
  4340. // set attributes by model/tokenizer name
  4341. if (_contains_any(tokenizer_pre, {"jina-v2-es", "jina-v2-de"})) {
  4342. _set_token_attr("<mask>", LLAMA_TOKEN_ATTR_LSTRIP, true);
  4343. } else if (_contains_any(model_name, {"phi-3", "phi3"})) {
  4344. for (auto id : vocab.cache_special_tokens) {
  4345. _set_tokenid_attr(id, LLAMA_TOKEN_ATTR_RSTRIP, true);
  4346. }
  4347. for (auto token : {"</s>"}) {
  4348. _set_token_attr(token, LLAMA_TOKEN_ATTR_RSTRIP, true);
  4349. }
  4350. for (auto token : {"<unk>", "<s>", "<|endoftext|>"}) {
  4351. _set_token_attr(token, LLAMA_TOKEN_ATTR_RSTRIP, false);
  4352. }
  4353. }
  4354. }
  4355. }
  4356. static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
  4357. const auto & hparams = model.hparams;
  4358. const auto & vocab = model.vocab;
  4359. const char * rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train);
  4360. // hparams
  4361. LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver));
  4362. LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch));
  4363. LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, llama_model_vocab_type_name(vocab.type));
  4364. LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab);
  4365. LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size());
  4366. LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
  4367. LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
  4368. LLAMA_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head);
  4369. LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv);
  4370. LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
  4371. LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
  4372. LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
  4373. LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
  4374. LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa());
  4375. LLAMA_LOG_INFO("%s: n_embd_k_gqa = %u\n", __func__, hparams.n_embd_k_gqa());
  4376. LLAMA_LOG_INFO("%s: n_embd_v_gqa = %u\n", __func__, hparams.n_embd_v_gqa());
  4377. LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
  4378. LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
  4379. LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
  4380. LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
  4381. LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale);
  4382. LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff);
  4383. LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
  4384. LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
  4385. LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
  4386. LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
  4387. LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
  4388. LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type);
  4389. LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
  4390. LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
  4391. LLAMA_LOG_INFO("%s: n_ctx_orig_yarn = %u\n", __func__, hparams.n_ctx_orig_yarn);
  4392. LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
  4393. LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
  4394. LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
  4395. LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
  4396. LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
  4397. LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
  4398. LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
  4399. if (ml.n_elements >= 1e12) {
  4400. LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, ml.n_elements*1e-12);
  4401. } else if (ml.n_elements >= 1e9) {
  4402. LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9);
  4403. } else if (ml.n_elements >= 1e6) {
  4404. LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, ml.n_elements*1e-6);
  4405. } else {
  4406. LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, ml.n_elements*1e-3);
  4407. }
  4408. if (ml.n_bytes < GiB) {
  4409. LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  4410. } else {
  4411. LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  4412. }
  4413. // general kv
  4414. LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, model.name.c_str());
  4415. // special tokens
  4416. if (vocab.special_bos_id != -1) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].text.c_str() ); }
  4417. if (vocab.special_eos_id != -1) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].text.c_str() ); }
  4418. if (vocab.special_unk_id != -1) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].text.c_str() ); }
  4419. if (vocab.special_sep_id != -1) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].text.c_str() ); }
  4420. if (vocab.special_pad_id != -1) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].text.c_str() ); }
  4421. if (vocab.special_cls_id != -1) { LLAMA_LOG_INFO( "%s: CLS token = %d '%s'\n", __func__, vocab.special_cls_id, vocab.id_to_token[vocab.special_cls_id].text.c_str() ); }
  4422. if (vocab.special_mask_id != -1) { LLAMA_LOG_INFO( "%s: MASK token = %d '%s'\n", __func__, vocab.special_mask_id, vocab.id_to_token[vocab.special_mask_id].text.c_str() ); }
  4423. if (vocab.linefeed_id != -1) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, vocab.linefeed_id, vocab.id_to_token[vocab.linefeed_id].text.c_str() ); }
  4424. if (vocab.special_prefix_id != -1) { LLAMA_LOG_INFO( "%s: PRE token = %d '%s'\n", __func__, vocab.special_prefix_id, vocab.id_to_token[vocab.special_prefix_id].text.c_str() ); }
  4425. if (vocab.special_suffix_id != -1) { LLAMA_LOG_INFO( "%s: SUF token = %d '%s'\n", __func__, vocab.special_suffix_id, vocab.id_to_token[vocab.special_suffix_id].text.c_str() ); }
  4426. if (vocab.special_middle_id != -1) { LLAMA_LOG_INFO( "%s: MID token = %d '%s'\n", __func__, vocab.special_middle_id, vocab.id_to_token[vocab.special_middle_id].text.c_str() ); }
  4427. if (vocab.special_eot_id != -1) { LLAMA_LOG_INFO( "%s: EOT token = %d '%s'\n", __func__, vocab.special_eot_id, vocab.id_to_token[vocab.special_eot_id].text.c_str() ); }
  4428. if (model.arch == LLM_ARCH_DEEPSEEK2) {
  4429. LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
  4430. LLAMA_LOG_INFO("%s: n_lora_q = %d\n", __func__, hparams.n_lora_q);
  4431. LLAMA_LOG_INFO("%s: n_lora_kv = %d\n", __func__, hparams.n_lora_kv);
  4432. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  4433. LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
  4434. LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
  4435. LLAMA_LOG_INFO("%s: rope_yarn_log_mul = %.4f\n", __func__, hparams.rope_yarn_log_mul);
  4436. }
  4437. }
  4438. // Returns false if cancelled by progress_callback
  4439. static bool llm_load_tensors(
  4440. llama_model_loader & ml,
  4441. llama_model & model,
  4442. int n_gpu_layers,
  4443. enum llama_split_mode split_mode,
  4444. int main_gpu,
  4445. const float * tensor_split,
  4446. bool use_mlock,
  4447. llama_progress_callback progress_callback,
  4448. void * progress_callback_user_data) {
  4449. model.t_start_us = ggml_time_us();
  4450. auto & hparams = model.hparams;
  4451. #ifdef GGML_USE_SYCL
  4452. // disable MoE with SYCL until mul_mat_id is updated
  4453. if (hparams.n_expert > 0) {
  4454. n_gpu_layers = 0;
  4455. }
  4456. #endif
  4457. model.split_mode = split_mode;
  4458. model.main_gpu = main_gpu;
  4459. model.n_gpu_layers = n_gpu_layers;
  4460. const int64_t n_layer = hparams.n_layer;
  4461. const int64_t i_gpu_start = std::max((int64_t) hparams.n_layer - n_gpu_layers, (int64_t) 0);
  4462. bool use_mmap_buffer = true;
  4463. // there is very little benefit to offloading the input layer, so always keep it on the CPU
  4464. model.buft_input = llama_default_buffer_type_cpu(true);
  4465. //model.buft_input = llama_default_buffer_type_offload(main_gpu);
  4466. model.buft_layer.resize(n_layer);
  4467. // assign cpu layers
  4468. for (int64_t i = 0; i < i_gpu_start; ++i) {
  4469. model.buft_layer[i] = llama_default_buffer_type_cpu(true);
  4470. }
  4471. if (split_mode == LLAMA_SPLIT_MODE_LAYER) {
  4472. // calculate the split points
  4473. int device_count = llama_get_device_count(model);
  4474. bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + device_count, [](float x) { return x == 0.0f; });
  4475. std::vector<float> splits(device_count);
  4476. if (all_zero) {
  4477. // default split, by free memory
  4478. for (int i = 0; i < device_count; ++i) {
  4479. splits[i] = llama_get_device_memory(model, i);
  4480. }
  4481. } else {
  4482. std::copy(tensor_split, tensor_split + device_count, splits.begin());
  4483. }
  4484. // sum and normalize the splits to get the split points
  4485. float split_sum = 0.0f;
  4486. for (int i = 0; i < device_count; ++i) {
  4487. split_sum += splits[i];
  4488. splits[i] = split_sum;
  4489. }
  4490. for (int i = 0; i < device_count; ++i) {
  4491. splits[i] /= split_sum;
  4492. }
  4493. // assign the repeating layers to the devices according to the splits
  4494. int act_gpu_layers = std::min(n_gpu_layers, (int)n_layer + 1);
  4495. for (int64_t i = i_gpu_start; i < n_layer; ++i) {
  4496. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(i - i_gpu_start)/act_gpu_layers) - splits.begin();
  4497. model.buft_layer[i] = llama_default_buffer_type_offload(model, layer_gpu);
  4498. }
  4499. // assign the output layer
  4500. if (n_gpu_layers > n_layer) {
  4501. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(act_gpu_layers - 1)/act_gpu_layers) - splits.begin();
  4502. model.buft_output = llama_default_buffer_type_offload(model, layer_gpu);
  4503. } else {
  4504. model.buft_output = llama_default_buffer_type_cpu(true);
  4505. }
  4506. } else {
  4507. ggml_backend_buffer_type_t split_buft;
  4508. if (split_mode == LLAMA_SPLIT_MODE_ROW) {
  4509. split_buft = llama_default_buffer_type_split(model, main_gpu, tensor_split);
  4510. } else {
  4511. // LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_LAYER in backends where it is not supported
  4512. split_buft = llama_default_buffer_type_offload(model, main_gpu);
  4513. }
  4514. // assign the repeating layers
  4515. for (int64_t i = i_gpu_start; i < n_layer; ++i) {
  4516. model.buft_layer[i] = {
  4517. split_buft,
  4518. llama_default_buffer_type_offload(model, main_gpu)
  4519. };
  4520. }
  4521. // assign the output layer
  4522. if (n_gpu_layers > n_layer) {
  4523. model.buft_output = {
  4524. split_buft,
  4525. llama_default_buffer_type_offload(model, main_gpu)
  4526. };
  4527. } else {
  4528. model.buft_output = llama_default_buffer_type_cpu(true);
  4529. }
  4530. }
  4531. // count used buffer types
  4532. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  4533. buft_layer_count[model.buft_input.buft]++;
  4534. buft_layer_count[model.buft_input.buft_matrix]++;
  4535. buft_layer_count[model.buft_output.buft]++;
  4536. buft_layer_count[model.buft_output.buft_matrix]++;
  4537. for (int64_t i = 0; i < n_layer; ++i) {
  4538. buft_layer_count[model.buft_layer[i].buft]++;
  4539. buft_layer_count[model.buft_layer[i].buft_matrix]++;
  4540. }
  4541. // create one context per buffer type
  4542. size_t ctx_size = ggml_tensor_overhead()*(ml.n_tensors + 1); // +1 for models where tok_embd is duplicated as output
  4543. // for moe merged tensors
  4544. ctx_size += ggml_tensor_overhead()*n_layer*3;
  4545. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  4546. for (auto & it : buft_layer_count) {
  4547. struct ggml_init_params params = {
  4548. /*.mem_size =*/ ctx_size,
  4549. /*.mem_buffer =*/ NULL,
  4550. /*.no_alloc =*/ true,
  4551. };
  4552. ggml_context * ctx = ggml_init(params);
  4553. if (!ctx) {
  4554. throw std::runtime_error(format("failed to create context"));
  4555. }
  4556. ctx_map[it.first] = ctx;
  4557. model.ctxs.push_back(ctx);
  4558. }
  4559. LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MiB\n", __func__, model.ctxs.size()*ctx_size/1024.0/1024.0);
  4560. // create tensors for the weights
  4561. {
  4562. const int64_t n_embd = hparams.n_embd;
  4563. const int64_t n_embd_head = n_embd / hparams.n_head;
  4564. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  4565. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  4566. const int64_t n_embd_gqa = n_embd_v_gqa;
  4567. const int64_t n_vocab = hparams.n_vocab;
  4568. const int64_t n_vocab_type = hparams.n_vocab_type;
  4569. const int64_t n_ff = hparams.n_ff;
  4570. const int64_t n_expert = hparams.n_expert;
  4571. if (n_expert > 0 && hparams.n_expert_used == 0) {
  4572. throw std::runtime_error("model has expert layers but no expert layers are used");
  4573. }
  4574. ggml_context * ctx_input = ctx_map.at(model.buft_input.buft);
  4575. ggml_context * ctx_output = ctx_map.at(model.buft_output.buft);
  4576. ggml_context * ctx_output_split = ctx_map.at(model.buft_output.buft_matrix);
  4577. auto ctx_for_layer = [&](int i) { return ctx_map.at(model.buft_layer[i].buft); };
  4578. auto ctx_for_layer_split = [&](int i) { return ctx_map.at(model.buft_layer[i].buft_matrix); };
  4579. model.layers.resize(n_layer);
  4580. const auto tn = LLM_TN(model.arch);
  4581. switch (model.arch) {
  4582. case LLM_ARCH_LLAMA:
  4583. case LLM_ARCH_REFACT:
  4584. case LLM_ARCH_MINICPM:
  4585. {
  4586. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4587. // output
  4588. {
  4589. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4590. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4591. // if output is NULL, init from the input tok embed
  4592. if (model.output == NULL) {
  4593. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  4594. }
  4595. }
  4596. for (int i = 0; i < n_layer; ++i) {
  4597. ggml_context * ctx_layer = ctx_for_layer(i);
  4598. ggml_context * ctx_split = ctx_for_layer_split(i);
  4599. auto & layer = model.layers[i];
  4600. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4601. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4602. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4603. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4604. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4605. // optional bias tensors
  4606. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4607. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4608. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4609. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4610. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4611. if (n_expert == 0) {
  4612. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4613. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4614. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4615. // optional MLP bias
  4616. layer.ffn_gate_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4617. layer.ffn_down_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4618. layer.ffn_up_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4619. } else {
  4620. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4621. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4622. if (layer.ffn_gate_exps) {
  4623. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  4624. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4625. } else {
  4626. // merge split expert into a single tensor for compatibility with older models
  4627. // requires disabling mmap
  4628. use_mmap_buffer = false;
  4629. ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
  4630. ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
  4631. ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
  4632. layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
  4633. layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
  4634. layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
  4635. ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
  4636. ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
  4637. ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
  4638. for (uint32_t x = 0; x < n_expert; ++x) {
  4639. // the individual experts are loaded into a view of the merged tensor
  4640. ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
  4641. ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
  4642. ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
  4643. }
  4644. }
  4645. }
  4646. }
  4647. } break;
  4648. case LLM_ARCH_GROK:
  4649. {
  4650. if (n_expert == 0) {
  4651. throw std::runtime_error("Grok model cannot have zero experts");
  4652. }
  4653. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4654. // output
  4655. {
  4656. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4657. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4658. // if output is NULL, init from the input tok embed
  4659. if (model.output == NULL) {
  4660. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  4661. }
  4662. }
  4663. for (int i = 0; i < n_layer; ++i) {
  4664. ggml_context * ctx_layer = ctx_for_layer(i);
  4665. ggml_context * ctx_split = ctx_for_layer_split(i);
  4666. auto & layer = model.layers[i];
  4667. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4668. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4669. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4670. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4671. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4672. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4673. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4674. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4675. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4676. if (layer.ffn_gate_exps) {
  4677. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  4678. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4679. } else {
  4680. // merge split expert into a single tensor for compatibility with older models
  4681. // requires disabling mmap
  4682. use_mmap_buffer = false;
  4683. ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
  4684. ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
  4685. ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
  4686. layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
  4687. layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
  4688. layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
  4689. ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
  4690. ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
  4691. ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
  4692. for (uint32_t x = 0; x < n_expert; ++x) {
  4693. // the individual experts are loaded into a view of the merged tensor
  4694. ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
  4695. ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
  4696. ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
  4697. }
  4698. }
  4699. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4700. }
  4701. } break;
  4702. case LLM_ARCH_DBRX:
  4703. {
  4704. if (n_expert == 0) {
  4705. throw std::runtime_error("DBRX model cannot have zero experts");
  4706. }
  4707. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4708. // output
  4709. {
  4710. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4711. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4712. }
  4713. for (int i = 0; i < n_layer; ++i) {
  4714. ggml_context * ctx_layer = ctx_for_layer(i);
  4715. ggml_context * ctx_split = ctx_for_layer_split(i);
  4716. auto & layer = model.layers[i];
  4717. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4718. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4719. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4720. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4721. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4722. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4723. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert});
  4724. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4725. }
  4726. } break;
  4727. case LLM_ARCH_BAICHUAN:
  4728. {
  4729. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4730. {
  4731. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4732. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4733. }
  4734. for (int i = 0; i < n_layer; ++i) {
  4735. ggml_context * ctx_layer = ctx_for_layer(i);
  4736. ggml_context * ctx_split = ctx_for_layer_split(i);
  4737. auto & layer = model.layers[i];
  4738. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4739. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4740. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4741. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4742. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4743. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4744. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4745. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4746. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4747. }
  4748. } break;
  4749. case LLM_ARCH_FALCON:
  4750. {
  4751. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4752. // output
  4753. {
  4754. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4755. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4756. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4757. if (!model.output) {
  4758. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // needs to be on GPU
  4759. }
  4760. }
  4761. for (int i = 0; i < n_layer; ++i) {
  4762. ggml_context * ctx_layer = ctx_for_layer(i);
  4763. ggml_context * ctx_split = ctx_for_layer_split(i);
  4764. auto & layer = model.layers[i];
  4765. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4766. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4767. layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4768. layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4769. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4770. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4771. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4772. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4773. }
  4774. } break;
  4775. case LLM_ARCH_STARCODER:
  4776. {
  4777. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4778. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4779. // output
  4780. {
  4781. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4782. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4783. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4784. if (!model.output) {
  4785. // needs to be on GPU
  4786. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  4787. }
  4788. }
  4789. for (int i = 0; i < n_layer; ++i) {
  4790. ggml_context * ctx_layer = ctx_for_layer(i);
  4791. ggml_context * ctx_split = ctx_for_layer_split(i);
  4792. auto & layer = model.layers[i];
  4793. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4794. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4795. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4796. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4797. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4798. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4799. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4800. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4801. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4802. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4803. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4804. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4805. }
  4806. } break;
  4807. case LLM_ARCH_BERT:
  4808. case LLM_ARCH_NOMIC_BERT:
  4809. {
  4810. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4811. model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type});
  4812. if (model.arch == LLM_ARCH_BERT) {
  4813. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4814. }
  4815. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  4816. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  4817. for (int i = 0; i < n_layer; ++i) {
  4818. ggml_context * ctx_layer = ctx_for_layer(i);
  4819. ggml_context * ctx_split = ctx_for_layer_split(i);
  4820. auto & layer = model.layers[i];
  4821. if (model.arch == LLM_ARCH_BERT) {
  4822. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4823. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4824. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4825. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4826. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4827. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4828. } else {
  4829. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4830. }
  4831. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4832. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4833. layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
  4834. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4835. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4836. if (model.arch == LLM_ARCH_BERT) {
  4837. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4838. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4839. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4840. } else {
  4841. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4842. }
  4843. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4844. layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
  4845. }
  4846. } break;
  4847. case LLM_ARCH_JINA_BERT_V2:
  4848. {
  4849. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // word_embeddings
  4850. model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type}); //token_type_embeddings
  4851. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}); // LayerNorm
  4852. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}); //LayerNorm bias
  4853. for (int i = 0; i < n_layer; ++i) {
  4854. ggml_context * ctx_layer = ctx_for_layer(i);
  4855. ggml_context * ctx_split = ctx_for_layer_split(i);
  4856. auto & layer = model.layers[i]; // JinaBertLayer
  4857. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4858. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4859. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4860. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4861. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4862. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4863. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4864. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4865. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4866. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4867. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); //output_dens
  4868. layer.bo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); //output_dens
  4869. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}); //output_norm
  4870. layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
  4871. layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4872. layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4873. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4874. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4875. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4876. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4877. layer.layer_out_norm = ml.create_tensor(ctx_split, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4878. layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
  4879. }
  4880. } break;
  4881. case LLM_ARCH_BLOOM:
  4882. {
  4883. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4884. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  4885. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  4886. // output
  4887. {
  4888. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4889. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4890. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4891. }
  4892. for (int i = 0; i < n_layer; ++i) {
  4893. ggml_context * ctx_layer = ctx_for_layer(i);
  4894. ggml_context * ctx_split = ctx_for_layer_split(i);
  4895. auto & layer = model.layers[i];
  4896. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4897. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4898. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4899. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4900. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4901. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4902. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4903. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4904. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4905. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4906. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4907. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4908. }
  4909. } break;
  4910. case LLM_ARCH_MPT:
  4911. {
  4912. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4913. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4914. // output
  4915. {
  4916. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4917. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4918. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4919. if (!model.output) {
  4920. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // needs to be on GPU
  4921. }
  4922. }
  4923. for (int i = 0; i < n_layer; ++i) {
  4924. ggml_context * ctx_layer = ctx_for_layer(i);
  4925. ggml_context * ctx_split = ctx_for_layer_split(i);
  4926. auto & layer = model.layers[i];
  4927. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4928. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4929. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4930. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4931. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4932. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4933. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4934. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4935. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4936. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4937. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4938. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4939. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4940. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4941. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4942. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4943. // AWQ ScaleActivation layer
  4944. layer.ffn_act = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4945. }
  4946. } break;
  4947. case LLM_ARCH_STABLELM:
  4948. {
  4949. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4950. // output
  4951. {
  4952. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4953. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4954. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4955. }
  4956. for (int i = 0; i < n_layer; ++i) {
  4957. ggml_context * ctx_layer = ctx_for_layer(i);
  4958. ggml_context * ctx_split = ctx_for_layer_split(i);
  4959. auto & layer = model.layers[i];
  4960. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4961. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4962. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4963. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4964. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4965. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4966. // optional bias tensors, present in Stable LM 2 1.6B
  4967. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4968. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4969. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4970. // optional q and k layernorms, present in StableLM 2 12B
  4971. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4972. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4973. // optional FFN norm, not present in StableLM 2 12B which uses parallel residual
  4974. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4975. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4976. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4977. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4978. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4979. }
  4980. } break;
  4981. case LLM_ARCH_QWEN:
  4982. {
  4983. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4984. // output
  4985. {
  4986. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4987. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4988. }
  4989. for (int i = 0; i < n_layer; ++i) {
  4990. ggml_context * ctx_layer = ctx_for_layer(i);
  4991. ggml_context * ctx_split = ctx_for_layer_split(i);
  4992. auto & layer = model.layers[i];
  4993. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4994. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3});
  4995. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3});
  4996. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4997. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4998. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2});
  4999. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd});
  5000. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2});
  5001. }
  5002. } break;
  5003. case LLM_ARCH_QWEN2:
  5004. {
  5005. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5006. // output
  5007. {
  5008. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5009. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5010. // if output is NULL, init from the input tok embed
  5011. if (model.output == NULL) {
  5012. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5013. }
  5014. }
  5015. for (int i = 0; i < n_layer; ++i) {
  5016. ggml_context * ctx_layer = ctx_for_layer(i);
  5017. ggml_context * ctx_split = ctx_for_layer_split(i);
  5018. auto & layer = model.layers[i];
  5019. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5020. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5021. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5022. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5023. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5024. // optional bias tensors
  5025. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  5026. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  5027. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  5028. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5029. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5030. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5031. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5032. }
  5033. } break;
  5034. case LLM_ARCH_QWEN2MOE:
  5035. {
  5036. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5037. // output
  5038. {
  5039. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5040. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5041. }
  5042. for (int i = 0; i < n_layer; ++i) {
  5043. ggml_context * ctx_layer = ctx_for_layer(i);
  5044. ggml_context * ctx_split = ctx_for_layer_split(i);
  5045. auto & layer = model.layers[i];
  5046. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5047. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5048. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5049. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5050. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5051. // optional bias tensors
  5052. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  5053. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  5054. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  5055. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5056. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  5057. GGML_ASSERT(hparams.n_expert > 0);
  5058. GGML_ASSERT(hparams.n_expert_used > 0);
  5059. // MoE branch
  5060. auto n_ff_exp = n_ff / hparams.n_expert_used;
  5061. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  5062. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert});
  5063. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  5064. // Shared expert branch
  5065. layer.ffn_gate_inp_shexp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd});
  5066. layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff});
  5067. layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff, n_embd});
  5068. layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff});
  5069. }
  5070. } break;
  5071. case LLM_ARCH_PHI2:
  5072. {
  5073. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5074. // output
  5075. {
  5076. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5077. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5078. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5079. model.output_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab});
  5080. }
  5081. for (int i = 0; i < n_layer; ++i) {
  5082. ggml_context * ctx_layer = ctx_for_layer(i);
  5083. ggml_context * ctx_split = ctx_for_layer_split(i);
  5084. auto & layer = model.layers[i];
  5085. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5086. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5087. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5088. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5089. if (layer.wqkv == nullptr) {
  5090. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5091. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  5092. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5093. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  5094. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5095. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  5096. }
  5097. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5098. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5099. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5100. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5101. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5102. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  5103. }
  5104. } break;
  5105. case LLM_ARCH_PHI3:
  5106. {
  5107. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab });
  5108. // output
  5109. {
  5110. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd });
  5111. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab });
  5112. }
  5113. for (int i = 0; i < n_layer; ++i) {
  5114. ggml_context* ctx_layer = ctx_for_layer(i);
  5115. ggml_context* ctx_split = ctx_for_layer_split(i);
  5116. auto & layer = model.layers[i];
  5117. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd });
  5118. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, llama_model_loader::TENSOR_NOT_REQUIRED);
  5119. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd });
  5120. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd });
  5121. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd });
  5122. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff });
  5123. layer.rope_long = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight"), { n_embd_head/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
  5124. layer.rope_short = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight"), { n_embd_head/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
  5125. }
  5126. } break;
  5127. case LLM_ARCH_PLAMO:
  5128. {
  5129. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5130. // output
  5131. {
  5132. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5133. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5134. }
  5135. for (int i = 0; i < n_layer; ++i) {
  5136. ggml_context * ctx_layer = ctx_for_layer(i);
  5137. ggml_context * ctx_split = ctx_for_layer_split(i);
  5138. auto & layer = model.layers[i];
  5139. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5140. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5141. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5142. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5143. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5144. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5145. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5146. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5147. }
  5148. } break;
  5149. case LLM_ARCH_GPT2:
  5150. {
  5151. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5152. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  5153. // output
  5154. {
  5155. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5156. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5157. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5158. }
  5159. for (int i = 0; i < n_layer; ++i) {
  5160. ggml_context * ctx_layer = ctx_for_layer(i);
  5161. ggml_context * ctx_split = ctx_for_layer_split(i);
  5162. auto & layer = model.layers[i];
  5163. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5164. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5165. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5166. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  5167. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5168. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5169. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5170. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5171. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5172. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5173. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5174. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  5175. }
  5176. } break;
  5177. case LLM_ARCH_CODESHELL:
  5178. {
  5179. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5180. // output
  5181. {
  5182. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5183. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5184. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5185. }
  5186. for (int i = 0; i < n_layer; ++i) {
  5187. ggml_context * ctx_layer = ctx_for_layer(i);
  5188. ggml_context * ctx_split = ctx_for_layer_split(i);
  5189. auto & layer = model.layers[i];
  5190. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5191. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5192. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5193. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  5194. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5195. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5196. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5197. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5198. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5199. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5200. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5201. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  5202. }
  5203. } break;
  5204. case LLM_ARCH_ORION:
  5205. {
  5206. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5207. {
  5208. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5209. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5210. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5211. }
  5212. for (int i = 0; i < n_layer; ++i) {
  5213. ggml_context * ctx_layer = ctx_for_layer(i);
  5214. ggml_context * ctx_split = ctx_for_layer_split(i);
  5215. auto & layer = model.layers[i];
  5216. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5217. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5218. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5219. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5220. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5221. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5222. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5223. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5224. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5225. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5226. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5227. }
  5228. } break;
  5229. case LLM_ARCH_INTERNLM2:
  5230. {
  5231. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5232. // output
  5233. {
  5234. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5235. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5236. }
  5237. for (int i = 0; i < n_layer; ++i) {
  5238. ggml_context * ctx_layer = ctx_for_layer(i);
  5239. ggml_context * ctx_split = ctx_for_layer_split(i);
  5240. auto & layer = model.layers[i];
  5241. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5242. // layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5243. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5244. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5245. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5246. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5247. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5248. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5249. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5250. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5251. }
  5252. } break;
  5253. case LLM_ARCH_GEMMA:
  5254. {
  5255. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5256. // output
  5257. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5258. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
  5259. const int64_t n_ff = hparams.n_ff;
  5260. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  5261. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5262. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  5263. for (uint32_t i = 0; i < n_layer; ++i) {
  5264. ggml_context * ctx_layer = ctx_for_layer(i);
  5265. ggml_context * ctx_split = ctx_for_layer_split(i);
  5266. auto & layer = model.layers[i];
  5267. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5268. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * hparams.n_head});
  5269. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
  5270. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
  5271. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * hparams.n_head, n_embd});
  5272. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5273. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5274. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5275. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5276. }
  5277. } break;
  5278. case LLM_ARCH_STARCODER2:
  5279. {
  5280. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5281. // output
  5282. {
  5283. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5284. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5285. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5286. // if output is NULL, init from the input tok embed
  5287. if (model.output == NULL) {
  5288. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5289. }
  5290. }
  5291. for (int i = 0; i < n_layer; ++i) {
  5292. ggml_context * ctx_layer = ctx_for_layer(i);
  5293. ggml_context * ctx_split = ctx_for_layer_split(i);
  5294. auto & layer = model.layers[i];
  5295. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5296. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5297. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5298. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5299. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5300. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5301. // optional bias tensors
  5302. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  5303. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  5304. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  5305. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5306. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5307. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5308. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5309. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5310. // optional bias tensors
  5311. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5312. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff});
  5313. }
  5314. } break;
  5315. case LLM_ARCH_MAMBA:
  5316. {
  5317. const int64_t d_conv = hparams.ssm_d_conv;
  5318. const int64_t d_inner = hparams.ssm_d_inner;
  5319. const int64_t d_state = hparams.ssm_d_state;
  5320. const int64_t dt_rank = hparams.ssm_dt_rank;
  5321. // only an expansion factor of 2 is supported for now
  5322. GGML_ASSERT(2 * n_embd == d_inner);
  5323. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5324. // output
  5325. {
  5326. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5327. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5328. // if output is NULL, init from the input tok embed, duplicated to allow offloading
  5329. if (model.output == NULL) {
  5330. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5331. }
  5332. }
  5333. for (int i = 0; i < n_layer; ++i) {
  5334. ggml_context * ctx_layer = ctx_for_layer(i);
  5335. ggml_context * ctx_split = ctx_for_layer_split(i);
  5336. auto & layer = model.layers[i];
  5337. // norm
  5338. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5339. layer.ssm_in = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner});
  5340. layer.ssm_conv1d = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner});
  5341. layer.ssm_conv1d_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner});
  5342. layer.ssm_x = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state});
  5343. layer.ssm_dt = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner});
  5344. layer.ssm_dt_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner});
  5345. // no "weight" suffix for these
  5346. layer.ssm_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner});
  5347. layer.ssm_d = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_D, i), {d_inner});
  5348. // out_proj
  5349. layer.ssm_out = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd});
  5350. }
  5351. } break;
  5352. case LLM_ARCH_XVERSE:
  5353. {
  5354. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5355. {
  5356. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5357. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5358. }
  5359. for (int i = 0; i < n_layer; ++i) {
  5360. ggml_context * ctx_layer = ctx_for_layer(i);
  5361. ggml_context * ctx_split = ctx_for_layer_split(i);
  5362. auto & layer = model.layers[i];
  5363. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5364. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5365. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5366. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5367. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5368. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5369. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5370. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5371. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5372. }
  5373. } break;
  5374. case LLM_ARCH_COMMAND_R:
  5375. {
  5376. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5377. // output
  5378. {
  5379. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5380. // init output from the input tok embed
  5381. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5382. }
  5383. for (int i = 0; i < n_layer; ++i) {
  5384. ggml_context * ctx_layer = ctx_for_layer(i);
  5385. ggml_context * ctx_split = ctx_for_layer_split(i);
  5386. auto & layer = model.layers[i];
  5387. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5388. if (n_layer >= 64){
  5389. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head});
  5390. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv});
  5391. }
  5392. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5393. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5394. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5395. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5396. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5397. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5398. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5399. }
  5400. } break;
  5401. case LLM_ARCH_OLMO: // adapted from LLM_ARCH_LLAMA with norm params removed
  5402. {
  5403. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5404. // output
  5405. {
  5406. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5407. // if output is NULL, init from the input tok embed
  5408. if (model.output == NULL) {
  5409. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5410. }
  5411. }
  5412. for (int i = 0; i < n_layer; ++i) {
  5413. ggml_context * ctx_split = ctx_for_layer_split(i);
  5414. auto & layer = model.layers[i];
  5415. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5416. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5417. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5418. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5419. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5420. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5421. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5422. }
  5423. } break;
  5424. case LLM_ARCH_GPTNEOX:
  5425. {
  5426. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5427. // output
  5428. {
  5429. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5430. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5431. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5432. }
  5433. for (int i = 0; i < n_layer; ++i) {
  5434. ggml_context * ctx_layer = ctx_for_layer(i);
  5435. ggml_context * ctx_split = ctx_for_layer_split(i);
  5436. auto & layer = model.layers[i];
  5437. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5438. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5439. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5440. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  5441. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5442. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5443. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5444. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5445. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5446. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5447. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5448. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  5449. }
  5450. } break;
  5451. case LLM_ARCH_ARCTIC:
  5452. {
  5453. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5454. // output
  5455. {
  5456. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5457. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5458. // if output is NULL, init from the input tok embed
  5459. if (model.output == NULL) {
  5460. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5461. }
  5462. }
  5463. for (int i = 0; i < n_layer; ++i) {
  5464. ggml_context * ctx_layer = ctx_for_layer(i);
  5465. ggml_context * ctx_split = ctx_for_layer_split(i);
  5466. auto & layer = model.layers[i];
  5467. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5468. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5469. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5470. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5471. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5472. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5473. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_embd});
  5474. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_embd, n_embd});
  5475. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_embd});
  5476. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  5477. layer.ffn_norm_exps = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM_EXPS, "weight", i), {n_embd});
  5478. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
  5479. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  5480. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  5481. }
  5482. } break;
  5483. case LLM_ARCH_DEEPSEEK2:
  5484. {
  5485. bool is_lite = (hparams.n_layer == 27);
  5486. const uint32_t n_embd_head_qk_rope = hparams.n_rot;
  5487. const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  5488. const uint32_t q_lora_rank = hparams.n_lora_q;
  5489. const uint32_t kv_lora_rank = hparams.n_lora_kv;
  5490. const uint32_t n_ff_exp = hparams.n_ff_exp;
  5491. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5492. // output
  5493. {
  5494. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5495. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5496. }
  5497. for (int i = 0; i < n_layer; ++i) {
  5498. ggml_context * ctx_layer = ctx_for_layer(i);
  5499. ggml_context * ctx_split = ctx_for_layer_split(i);
  5500. auto & layer = model.layers[i];
  5501. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5502. if (!is_lite) {
  5503. layer.attn_q_a_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank});
  5504. }
  5505. layer.attn_kv_a_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank});
  5506. if (!is_lite) {
  5507. layer.wq_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank});
  5508. layer.wq_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, hparams.n_head * hparams.n_embd_head_k});
  5509. } else {
  5510. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa});
  5511. }
  5512. layer.wkv_a_mqa = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + n_embd_head_qk_rope});
  5513. layer.wkv_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, hparams.n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)});
  5514. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {hparams.n_head * hparams.n_embd_head_v, n_embd});
  5515. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5516. if ((uint32_t) i < hparams.n_layer_dense_lead) {
  5517. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5518. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5519. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5520. } else {
  5521. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  5522. GGML_ASSERT(hparams.n_expert > 0);
  5523. GGML_ASSERT(hparams.n_expert_used > 0);
  5524. // MoE branch
  5525. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  5526. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert});
  5527. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  5528. // Shared expert branch
  5529. layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * hparams.n_expert_shared});
  5530. layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * hparams.n_expert_shared, n_embd});
  5531. layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * hparams.n_expert_shared});
  5532. }
  5533. }
  5534. } break;
  5535. default:
  5536. throw std::runtime_error("unknown architecture");
  5537. }
  5538. }
  5539. ml.done_getting_tensors();
  5540. ml.init_mappings(true, use_mlock ? &model.mlock_mmaps : nullptr);
  5541. model.mappings.reserve(ml.mappings.size());
  5542. // create the backend buffers
  5543. std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_bufs;
  5544. ctx_bufs.reserve(ctx_map.size());
  5545. // Ensure we have enough capacity for the maximum backend buffer we will potentially create
  5546. size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
  5547. model.bufs.reserve(n_max_backend_buffer);
  5548. for (auto & it : ctx_map) {
  5549. ggml_backend_buffer_type_t buft = it.first;
  5550. ggml_context * ctx = it.second;
  5551. llama_buf_map bufs;
  5552. bufs.reserve(n_max_backend_buffer);
  5553. // only the mmap region containing the tensors in the model is mapped to the backend buffer
  5554. // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
  5555. // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
  5556. if (ml.use_mmap && use_mmap_buffer && buft == llama_default_buffer_type_cpu(true)) {
  5557. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5558. void * addr = nullptr;
  5559. size_t first, last;
  5560. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  5561. if (first >= last) {
  5562. continue;
  5563. }
  5564. ggml_backend_buffer_t buf = ggml_backend_cpu_buffer_from_ptr((char *) addr + first, last - first);
  5565. if (buf == nullptr) {
  5566. throw std::runtime_error("unable to allocate backend CPU buffer");
  5567. }
  5568. model.bufs.push_back(buf);
  5569. bufs.emplace(idx, buf);
  5570. #ifdef GGML_USE_CUDA
  5571. if (n_layer >= n_gpu_layers) {
  5572. ggml_backend_cuda_register_host_buffer(
  5573. ggml_backend_buffer_get_base(buf),
  5574. ggml_backend_buffer_get_size(buf));
  5575. }
  5576. #endif
  5577. }
  5578. }
  5579. #ifdef GGML_USE_METAL
  5580. else if (ml.use_mmap && use_mmap_buffer && buft == ggml_backend_metal_buffer_type()) {
  5581. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5582. const size_t max_size = ggml_get_max_tensor_size(ctx);
  5583. void * addr = nullptr;
  5584. size_t first, last;
  5585. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  5586. if (first >= last) {
  5587. continue;
  5588. }
  5589. ggml_backend_buffer_t buf = ggml_backend_metal_buffer_from_ptr((char *) addr + first, last - first, max_size);
  5590. if (buf == nullptr) {
  5591. throw std::runtime_error("unable to allocate backend metal buffer");
  5592. }
  5593. model.bufs.push_back(buf);
  5594. bufs.emplace(idx, buf);
  5595. }
  5596. }
  5597. #endif
  5598. else {
  5599. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  5600. if (buf == nullptr) {
  5601. throw std::runtime_error("unable to allocate backend buffer");
  5602. }
  5603. model.bufs.push_back(buf);
  5604. if (use_mlock && ggml_backend_buffer_is_host(buf)) {
  5605. model.mlock_bufs.emplace_back(new llama_mlock);
  5606. auto & mlock_buf = model.mlock_bufs.back();
  5607. mlock_buf->init (ggml_backend_buffer_get_base(buf));
  5608. mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
  5609. }
  5610. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5611. bufs.emplace(idx, buf);
  5612. }
  5613. }
  5614. if (bufs.empty()) {
  5615. throw std::runtime_error("failed to allocate buffer");
  5616. }
  5617. for (auto & buf : bufs) {
  5618. // indicate that this buffer contains weights
  5619. // this is used by ggml_backend_sched to improve op scheduling -> ops that use a weight are preferably scheduled to the backend that contains the weight
  5620. ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  5621. }
  5622. ctx_bufs.emplace_back(ctx, bufs);
  5623. }
  5624. if (llama_supports_gpu_offload()) {
  5625. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  5626. LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
  5627. if (n_gpu_layers > (int) hparams.n_layer) {
  5628. LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__);
  5629. }
  5630. const int max_backend_supported_layers = hparams.n_layer + 1;
  5631. const int max_offloadable_layers = hparams.n_layer + 1;
  5632. LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
  5633. }
  5634. // print memory requirements
  5635. for (ggml_backend_buffer_t buf : model.bufs) {
  5636. LLAMA_LOG_INFO("%s: %10s buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf) / 1024.0 / 1024.0);
  5637. }
  5638. // populate tensors_by_name
  5639. for (ggml_context * ctx : model.ctxs) {
  5640. for (auto * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  5641. model.tensors_by_name.emplace_back(ggml_get_name(cur), cur);
  5642. }
  5643. }
  5644. // load tensor data
  5645. for (auto & it : ctx_bufs) {
  5646. ggml_context * ctx = it.first;
  5647. auto & bufs = it.second;
  5648. if (!ml.load_all_data(ctx, bufs, use_mlock ? &model.mlock_mmaps : NULL, progress_callback, progress_callback_user_data)) {
  5649. return false;
  5650. }
  5651. }
  5652. if (use_mmap_buffer) {
  5653. for (auto & mapping : ml.mappings) {
  5654. model.mappings.emplace_back(std::move(mapping));
  5655. }
  5656. }
  5657. // loading time will be recalculate after the first eval, so
  5658. // we take page faults deferred by mmap() into consideration
  5659. model.t_load_us = ggml_time_us() - model.t_start_us;
  5660. return true;
  5661. }
  5662. // Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback
  5663. static int llama_model_load(const std::string & fname, llama_model & model, llama_model_params & params) {
  5664. try {
  5665. llama_model_loader ml(fname, params.use_mmap, params.check_tensors, params.kv_overrides);
  5666. model.hparams.vocab_only = params.vocab_only;
  5667. try {
  5668. llm_load_arch(ml, model);
  5669. } catch(const std::exception & e) {
  5670. throw std::runtime_error("error loading model architecture: " + std::string(e.what()));
  5671. }
  5672. try {
  5673. llm_load_hparams(ml, model);
  5674. } catch(const std::exception & e) {
  5675. throw std::runtime_error("error loading model hyperparameters: " + std::string(e.what()));
  5676. }
  5677. try {
  5678. llm_load_vocab(ml, model);
  5679. } catch(const std::exception & e) {
  5680. throw std::runtime_error("error loading model vocabulary: " + std::string(e.what()));
  5681. }
  5682. llm_load_print_meta(ml, model);
  5683. if (model.vocab.type != LLAMA_VOCAB_TYPE_NONE &&
  5684. model.hparams.n_vocab != model.vocab.id_to_token.size()) {
  5685. throw std::runtime_error("vocab size mismatch");
  5686. }
  5687. if (params.vocab_only) {
  5688. LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__);
  5689. return 0;
  5690. }
  5691. #ifdef GGML_USE_KOMPUTE
  5692. if (params.n_gpu_layers > 0 && (
  5693. !(model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON)
  5694. || !(
  5695. model.ftype == LLAMA_FTYPE_ALL_F32 ||
  5696. model.ftype == LLAMA_FTYPE_MOSTLY_F16 ||
  5697. model.ftype == LLAMA_FTYPE_MOSTLY_BF16 ||
  5698. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
  5699. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_1
  5700. )
  5701. )) {
  5702. // TODO(cebtenzzre): propagate this error outside of llama_load_model_from_file
  5703. LLAMA_LOG_WARN("%s: disabling Kompute due to unsupported model arch or quantization\n", __func__);
  5704. params.n_gpu_layers = 0;
  5705. }
  5706. #endif
  5707. if (!llm_load_tensors(
  5708. ml, model, params.n_gpu_layers, params.split_mode, params.main_gpu, params.tensor_split, params.use_mlock,
  5709. params.progress_callback, params.progress_callback_user_data
  5710. )) {
  5711. return -2;
  5712. }
  5713. } catch (const std::exception & err) {
  5714. LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what());
  5715. return -1;
  5716. }
  5717. return 0;
  5718. }
  5719. //
  5720. // llm_build
  5721. //
  5722. using llm_build_cb = std::function<void(struct ggml_tensor * cur, const char * name, int nl)>;
  5723. enum llm_ffn_op_type {
  5724. LLM_FFN_SILU,
  5725. LLM_FFN_GELU,
  5726. LLM_FFN_RELU,
  5727. LLM_FFN_RELU_SQR,
  5728. };
  5729. enum llm_ffn_gate_type {
  5730. LLM_FFN_SEQ,
  5731. LLM_FFN_PAR, // ffn_gate is parallel to ffn_up
  5732. };
  5733. enum llm_norm_type {
  5734. LLM_NORM,
  5735. LLM_NORM_RMS,
  5736. };
  5737. static struct ggml_tensor * llm_build_inp_embd(
  5738. struct ggml_context * ctx,
  5739. struct llama_context & lctx,
  5740. const llama_hparams & hparams,
  5741. const llama_batch & batch,
  5742. struct ggml_tensor * tok_embd,
  5743. const llm_build_cb & cb) {
  5744. const int64_t n_embd = hparams.n_embd;
  5745. struct ggml_tensor * inpL;
  5746. if (batch.token) {
  5747. lctx.inp_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, batch.n_tokens);
  5748. cb(lctx.inp_tokens, "inp_tokens", -1);
  5749. ggml_set_input(lctx.inp_tokens);
  5750. inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens);
  5751. } else {
  5752. lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
  5753. inpL = lctx.inp_embd;
  5754. ggml_set_input(lctx.inp_embd);
  5755. }
  5756. cb(inpL, "inp_embd", -1);
  5757. return inpL;
  5758. }
  5759. static void llm_build_kv_store(
  5760. struct ggml_context * ctx,
  5761. const llama_hparams & hparams,
  5762. const llama_cparams & cparams,
  5763. const llama_kv_cache & kv,
  5764. struct ggml_cgraph * graph,
  5765. struct ggml_tensor * k_cur,
  5766. struct ggml_tensor * v_cur,
  5767. int32_t n_tokens,
  5768. int32_t kv_head,
  5769. const llm_build_cb & cb,
  5770. int64_t il) {
  5771. const int64_t n_ctx = cparams.n_ctx;
  5772. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5773. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  5774. GGML_ASSERT(kv.size == n_ctx);
  5775. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k_l[il], n_tokens*n_embd_k_gqa,
  5776. (ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa))*kv_head);
  5777. cb(k_cache_view, "k_cache_view", il);
  5778. // note: storing RoPE-ed version of K in the KV cache
  5779. ggml_build_forward_expand(graph, ggml_cpy(ctx, k_cur, k_cache_view));
  5780. assert(v_cur->ne[0] == n_embd_v_gqa && v_cur->ne[1] == n_tokens);
  5781. struct ggml_tensor * v_cache_view = nullptr;
  5782. if (cparams.flash_attn) {
  5783. v_cache_view = ggml_view_1d(ctx, kv.v_l[il], n_tokens*n_embd_v_gqa,
  5784. (kv_head)*ggml_row_size(kv.v_l[il]->type, n_embd_v_gqa));
  5785. } else {
  5786. // note: the V cache is transposed when not using flash attention
  5787. v_cache_view = ggml_view_2d(ctx, kv.v_l[il], n_tokens, n_embd_v_gqa,
  5788. ( n_ctx)*ggml_element_size(kv.v_l[il]),
  5789. (kv_head)*ggml_element_size(kv.v_l[il]));
  5790. v_cur = ggml_transpose(ctx, v_cur);
  5791. }
  5792. cb(v_cache_view, "v_cache_view", il);
  5793. ggml_build_forward_expand(graph, ggml_cpy(ctx, v_cur, v_cache_view));
  5794. }
  5795. static struct ggml_tensor * llm_build_norm(
  5796. struct ggml_context * ctx,
  5797. struct ggml_tensor * cur,
  5798. const llama_hparams & hparams,
  5799. struct ggml_tensor * mw,
  5800. struct ggml_tensor * mb,
  5801. llm_norm_type type,
  5802. const llm_build_cb & cb,
  5803. int il) {
  5804. switch (type) {
  5805. case LLM_NORM: cur = ggml_norm (ctx, cur, hparams.f_norm_eps); break;
  5806. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hparams.f_norm_rms_eps); break;
  5807. }
  5808. if (mw || mb) {
  5809. cb(cur, "norm", il);
  5810. }
  5811. if (mw) {
  5812. cur = ggml_mul(ctx, cur, mw);
  5813. if (mb) {
  5814. cb(cur, "norm_w", il);
  5815. }
  5816. }
  5817. if (mb) {
  5818. cur = ggml_add(ctx, cur, mb);
  5819. }
  5820. return cur;
  5821. }
  5822. static struct ggml_tensor * llm_build_ffn(
  5823. struct ggml_context * ctx,
  5824. struct ggml_tensor * cur,
  5825. struct ggml_tensor * up,
  5826. struct ggml_tensor * up_b,
  5827. struct ggml_tensor * gate,
  5828. struct ggml_tensor * gate_b,
  5829. struct ggml_tensor * down,
  5830. struct ggml_tensor * down_b,
  5831. struct ggml_tensor * act_scales,
  5832. llm_ffn_op_type type_op,
  5833. llm_ffn_gate_type type_gate,
  5834. const llm_build_cb & cb,
  5835. int il) {
  5836. struct ggml_tensor * tmp = up ? ggml_mul_mat(ctx, up, cur) : cur;
  5837. cb(tmp, "ffn_up", il);
  5838. if (up_b) {
  5839. tmp = ggml_add(ctx, tmp, up_b);
  5840. cb(tmp, "ffn_up_b", il);
  5841. }
  5842. if (gate) {
  5843. switch (type_gate) {
  5844. case LLM_FFN_SEQ:
  5845. {
  5846. cur = ggml_mul_mat(ctx, gate, tmp);
  5847. cb(cur, "ffn_gate", il);
  5848. } break;
  5849. case LLM_FFN_PAR:
  5850. {
  5851. cur = ggml_mul_mat(ctx, gate, cur);
  5852. cb(cur, "ffn_gate", il);
  5853. } break;
  5854. }
  5855. if (gate_b) {
  5856. cur = ggml_add(ctx, cur, gate_b);
  5857. cb(cur, "ffn_gate_b", il);
  5858. }
  5859. } else {
  5860. cur = tmp;
  5861. }
  5862. switch (type_op) {
  5863. case LLM_FFN_SILU:
  5864. {
  5865. cur = ggml_silu(ctx, cur);
  5866. cb(cur, "ffn_silu", il);
  5867. } break;
  5868. case LLM_FFN_GELU:
  5869. {
  5870. cur = ggml_gelu(ctx, cur);
  5871. cb(cur, "ffn_gelu", il);
  5872. if (act_scales != NULL) {
  5873. cur = ggml_div(ctx, cur, act_scales);
  5874. cb(cur, "ffn_act", il);
  5875. }
  5876. } break;
  5877. case LLM_FFN_RELU:
  5878. {
  5879. cur = ggml_relu(ctx, cur);
  5880. cb(cur, "ffn_relu", il);
  5881. } break;
  5882. case LLM_FFN_RELU_SQR:
  5883. {
  5884. cur = ggml_relu(ctx, cur);
  5885. cb(cur, "ffn_relu", il);
  5886. cur = ggml_sqr(ctx, cur);
  5887. cb(cur, "ffn_sqr(relu)", il);
  5888. } break;
  5889. }
  5890. if (type_gate == LLM_FFN_PAR) {
  5891. cur = ggml_mul(ctx, cur, tmp);
  5892. cb(cur, "ffn_gate_par", il);
  5893. }
  5894. cur = ggml_mul_mat(ctx, down, cur);
  5895. if (down_b) {
  5896. cb(cur, "ffn_down", il);
  5897. }
  5898. if (down_b) {
  5899. cur = ggml_add(ctx, cur, down_b);
  5900. }
  5901. return cur;
  5902. }
  5903. static struct ggml_tensor * llm_build_moe_ffn(
  5904. struct ggml_context * ctx,
  5905. struct ggml_tensor * cur,
  5906. struct ggml_tensor * gate_inp,
  5907. struct ggml_tensor * up_exps,
  5908. struct ggml_tensor * gate_exps,
  5909. struct ggml_tensor * down_exps,
  5910. int64_t n_expert,
  5911. int64_t n_expert_used,
  5912. llm_ffn_op_type type_op,
  5913. bool norm_w,
  5914. bool scale_w,
  5915. float w_scale,
  5916. const llm_build_cb & cb,
  5917. int il) {
  5918. int64_t n_embd = cur->ne[0];
  5919. int64_t n_tokens = cur->ne[1];
  5920. ggml_tensor * logits = ggml_mul_mat(ctx, gate_inp, cur); // [n_expert, n_tokens]
  5921. cb(logits, "ffn_moe_logits", il);
  5922. ggml_tensor * probs = ggml_soft_max(ctx, logits); // [n_expert, n_tokens]
  5923. cb(probs, "ffn_moe_probs", il);
  5924. // select experts
  5925. ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_expert_used); // [n_expert_used, n_tokens]
  5926. cb(selected_experts->src[0], "ffn_moe_argsort", il);
  5927. cb(selected_experts, "ffn_moe_topk", il);
  5928. ggml_tensor * weights = ggml_get_rows(ctx,
  5929. ggml_reshape_3d(ctx, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
  5930. cb(weights, "ffn_moe_weights", il);
  5931. if (norm_w) {
  5932. weights = ggml_reshape_2d(ctx, weights, n_expert_used, n_tokens);
  5933. ggml_tensor * weights_sum = ggml_sum_rows(ctx, weights); // [1, n_tokens]
  5934. cb(weights_sum, "ffn_moe_weights_sum", il);
  5935. weights = ggml_div(ctx, weights, weights_sum); // [n_expert_used, n_tokens]
  5936. cb(weights, "ffn_moe_weights_norm", il);
  5937. weights = ggml_reshape_3d(ctx, weights, 1, n_expert_used, n_tokens);
  5938. }
  5939. if (scale_w) {
  5940. weights = ggml_scale(ctx, weights, w_scale);
  5941. cb(weights, "ffn_moe_weights_scaled", il);
  5942. }
  5943. cur = ggml_reshape_3d(ctx, cur, n_embd, 1, n_tokens);
  5944. ggml_tensor * up = ggml_mul_mat_id(ctx, up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
  5945. cb(up, "ffn_moe_up", il);
  5946. ggml_tensor * gate = ggml_mul_mat_id(ctx, gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
  5947. cb(gate, "ffn_moe_gate", il);
  5948. switch (type_op) {
  5949. case LLM_FFN_SILU:
  5950. {
  5951. gate = ggml_silu(ctx, gate);
  5952. cb(gate, "ffn_moe_silu", il);
  5953. } break;
  5954. case LLM_FFN_GELU:
  5955. {
  5956. gate = ggml_gelu(ctx, gate);
  5957. cb(gate, "ffn_moe_gelu", il);
  5958. } break;
  5959. default:
  5960. GGML_ASSERT(false);
  5961. }
  5962. ggml_tensor * par = ggml_mul(ctx, up, gate); // [n_ff, n_expert_used, n_tokens]
  5963. cb(par, "ffn_moe_gate_par", il);
  5964. ggml_tensor * experts = ggml_mul_mat_id(ctx, down_exps, par, selected_experts); // [n_embd, n_expert_used, n_tokens]
  5965. cb(experts, "ffn_moe_down", il);
  5966. experts = ggml_mul(ctx, experts, weights);
  5967. // aggregate experts
  5968. ggml_tensor * moe_out = nullptr;
  5969. for (int i = 0; i < n_expert_used; ++i) {
  5970. ggml_tensor * cur_expert = ggml_view_2d(ctx, experts, n_embd, n_tokens,
  5971. experts->nb[2], i*experts->nb[1]);
  5972. if (i == 0) {
  5973. moe_out = cur_expert;
  5974. } else {
  5975. moe_out = ggml_add(ctx, moe_out, cur_expert);
  5976. }
  5977. }
  5978. if (n_expert_used == 1) {
  5979. // avoid returning a non-contiguous tensor
  5980. moe_out = ggml_cont(ctx, moe_out);
  5981. }
  5982. return moe_out;
  5983. }
  5984. static struct ggml_tensor * llm_build_kqv(
  5985. struct ggml_context * ctx,
  5986. const llama_model & model,
  5987. const llama_hparams & hparams,
  5988. const llama_cparams & cparams,
  5989. const llama_kv_cache & kv,
  5990. struct ggml_cgraph * graph,
  5991. struct ggml_tensor * wo,
  5992. struct ggml_tensor * wo_b,
  5993. struct ggml_tensor * q_cur,
  5994. struct ggml_tensor * kq_mask,
  5995. int32_t n_tokens,
  5996. int32_t n_kv,
  5997. float kq_scale,
  5998. const llm_build_cb & cb,
  5999. int il) {
  6000. const int64_t n_ctx = cparams.n_ctx;
  6001. const int64_t n_head = hparams.n_head;
  6002. const int64_t n_head_kv = hparams.n_head_kv;
  6003. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  6004. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  6005. const int64_t n_embd_head_v = hparams.n_embd_head_v;
  6006. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  6007. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  6008. cb(q, "q", il);
  6009. struct ggml_tensor * k =
  6010. ggml_view_3d(ctx, kv.k_l[il],
  6011. n_embd_head_k, n_kv, n_head_kv,
  6012. ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa),
  6013. ggml_row_size(kv.k_l[il]->type, n_embd_head_k),
  6014. 0);
  6015. cb(k, "k", il);
  6016. struct ggml_tensor * cur;
  6017. if (cparams.flash_attn) {
  6018. GGML_UNUSED(model);
  6019. GGML_UNUSED(n_ctx);
  6020. // split cached v into n_head heads (not transposed)
  6021. struct ggml_tensor * v =
  6022. ggml_view_3d(ctx, kv.v_l[il],
  6023. n_embd_head_v, n_kv, n_head_kv,
  6024. ggml_row_size(kv.v_l[il]->type, n_embd_v_gqa),
  6025. ggml_row_size(kv.v_l[il]->type, n_embd_head_v),
  6026. 0);
  6027. cb(v, "v", il);
  6028. cur = ggml_flash_attn_ext(ctx, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias);
  6029. if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX) {
  6030. ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
  6031. }
  6032. cur = ggml_reshape_2d(ctx, cur, n_embd_head_v*n_head, n_tokens);
  6033. } else {
  6034. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  6035. cb(kq, "kq", il);
  6036. if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX) {
  6037. // for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs
  6038. // ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847
  6039. ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  6040. }
  6041. if (model.arch == LLM_ARCH_GROK) {
  6042. // need to do the following:
  6043. // multiply by attn_output_multiplyer of 0.08838834764831845
  6044. // and then :
  6045. // kq = 30 * tanh(kq / 30)
  6046. // before the softmax below
  6047. //try from phi2
  6048. //ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  6049. kq = ggml_tanh(ctx, ggml_scale(ctx, kq, 0.08838834764831845f/30.0f));
  6050. kq = ggml_scale(ctx, kq, 30);
  6051. }
  6052. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, hparams.f_max_alibi_bias);
  6053. cb(kq, "kq_soft_max_ext", il);
  6054. GGML_ASSERT(kv.size == n_ctx);
  6055. // split cached v into n_head heads
  6056. struct ggml_tensor * v =
  6057. ggml_view_3d(ctx, kv.v_l[il],
  6058. n_kv, n_embd_head_v, n_head_kv,
  6059. ggml_element_size(kv.v_l[il])*n_ctx,
  6060. ggml_element_size(kv.v_l[il])*n_ctx*n_embd_head_v,
  6061. 0);
  6062. cb(v, "v", il);
  6063. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  6064. cb(kqv, "kqv", il);
  6065. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  6066. cb(kqv_merged, "kqv_merged", il);
  6067. cur = ggml_cont_2d(ctx, kqv_merged, n_embd_head_v*n_head, n_tokens);
  6068. cb(cur, "kqv_merged_cont", il);
  6069. }
  6070. ggml_build_forward_expand(graph, cur);
  6071. cur = ggml_mul_mat(ctx, wo, cur);
  6072. if (wo_b) {
  6073. cb(cur, "kqv_wo", il);
  6074. }
  6075. if (wo_b) {
  6076. cur = ggml_add(ctx, cur, wo_b);
  6077. }
  6078. return cur;
  6079. }
  6080. static struct ggml_tensor * llm_build_kv(
  6081. struct ggml_context * ctx,
  6082. const llama_model & model,
  6083. const llama_hparams & hparams,
  6084. const llama_cparams & cparams,
  6085. const llama_kv_cache & kv,
  6086. struct ggml_cgraph * graph,
  6087. struct ggml_tensor * wo,
  6088. struct ggml_tensor * wo_b,
  6089. struct ggml_tensor * k_cur,
  6090. struct ggml_tensor * v_cur,
  6091. struct ggml_tensor * q_cur,
  6092. struct ggml_tensor * kq_mask,
  6093. int32_t n_tokens,
  6094. int32_t kv_head,
  6095. int32_t n_kv,
  6096. float kq_scale,
  6097. const llm_build_cb & cb,
  6098. int il) {
  6099. // these nodes are added to the graph together so that they are not reordered
  6100. // by doing so, the number of splits in the graph is reduced
  6101. ggml_build_forward_expand(graph, q_cur);
  6102. ggml_build_forward_expand(graph, k_cur);
  6103. ggml_build_forward_expand(graph, v_cur);
  6104. llm_build_kv_store(ctx, hparams, cparams, kv, graph, k_cur, v_cur, n_tokens, kv_head, cb, il);
  6105. struct ggml_tensor * cur;
  6106. cur = llm_build_kqv(ctx, model, hparams, cparams, kv, graph, wo, wo_b,
  6107. q_cur, kq_mask, n_tokens, n_kv, kq_scale, cb, il);
  6108. cb(cur, "kqv_out", il);
  6109. return cur;
  6110. }
  6111. struct llm_build_context {
  6112. const llama_model & model;
  6113. llama_context & lctx;
  6114. const llama_hparams & hparams;
  6115. const llama_cparams & cparams;
  6116. const llama_batch & batch;
  6117. const llama_kv_cache & kv_self;
  6118. const int64_t n_embd;
  6119. const int64_t n_layer;
  6120. const int64_t n_rot;
  6121. const int64_t n_ctx; // user-specified context size (can be different from n_ctx_train)
  6122. const int64_t n_head;
  6123. const int64_t n_head_kv;
  6124. const int64_t n_embd_head_k;
  6125. const int64_t n_embd_k_gqa;
  6126. const int64_t n_embd_head_v;
  6127. const int64_t n_embd_v_gqa;
  6128. const int64_t n_expert;
  6129. const int64_t n_expert_used;
  6130. const float freq_base;
  6131. const float freq_scale;
  6132. const float ext_factor;
  6133. const float attn_factor;
  6134. const float beta_fast;
  6135. const float beta_slow;
  6136. const float norm_eps;
  6137. const float norm_rms_eps;
  6138. const int32_t n_tokens;
  6139. const int32_t n_kv; // size of KV cache to consider (n_kv <= kv_self.size)
  6140. const int32_t n_outputs;
  6141. const int32_t kv_head; // index of where we store new KV data in the cache
  6142. const int32_t n_ctx_orig;
  6143. const bool flash_attn;
  6144. const enum llama_pooling_type pooling_type;
  6145. const enum llama_rope_type rope_type;
  6146. const llm_build_cb & cb;
  6147. std::vector<uint8_t> & buf_compute_meta;
  6148. struct ggml_context * ctx0 = nullptr;
  6149. // TODO: consider making the entire interface noexcept
  6150. llm_build_context(
  6151. llama_context & lctx,
  6152. const llama_batch & batch,
  6153. const llm_build_cb & cb,
  6154. bool worst_case) :
  6155. model (lctx.model),
  6156. lctx (lctx),
  6157. hparams (model.hparams),
  6158. cparams (lctx.cparams),
  6159. batch (batch),
  6160. kv_self (lctx.kv_self),
  6161. n_embd (hparams.n_embd),
  6162. n_layer (hparams.n_layer),
  6163. n_rot (hparams.n_rot),
  6164. n_ctx (cparams.n_ctx),
  6165. n_head (hparams.n_head),
  6166. n_head_kv (hparams.n_head_kv),
  6167. n_embd_head_k (hparams.n_embd_head_k),
  6168. n_embd_k_gqa (hparams.n_embd_k_gqa()),
  6169. n_embd_head_v (hparams.n_embd_head_v),
  6170. n_embd_v_gqa (hparams.n_embd_v_gqa()),
  6171. n_expert (hparams.n_expert),
  6172. n_expert_used (hparams.n_expert_used),
  6173. freq_base (cparams.rope_freq_base),
  6174. freq_scale (cparams.rope_freq_scale),
  6175. ext_factor (cparams.yarn_ext_factor),
  6176. attn_factor (cparams.yarn_attn_factor),
  6177. beta_fast (cparams.yarn_beta_fast),
  6178. beta_slow (cparams.yarn_beta_slow),
  6179. norm_eps (hparams.f_norm_eps),
  6180. norm_rms_eps (hparams.f_norm_rms_eps),
  6181. n_tokens (batch.n_tokens),
  6182. n_kv (worst_case ? kv_self.size : kv_self.n),
  6183. n_outputs (worst_case ? n_tokens : lctx.n_outputs),
  6184. kv_head (worst_case ? (kv_self.recurrent ? 0 : kv_self.size - n_tokens) : kv_self.head),
  6185. n_ctx_orig (cparams.n_ctx_orig_yarn),
  6186. flash_attn (cparams.flash_attn),
  6187. pooling_type (cparams.pooling_type),
  6188. rope_type (hparams.rope_type),
  6189. cb (cb),
  6190. buf_compute_meta (lctx.buf_compute_meta) {
  6191. // all initializations should be done in init()
  6192. }
  6193. void init() {
  6194. struct ggml_init_params params = {
  6195. /*.mem_size =*/ buf_compute_meta.size(),
  6196. /*.mem_buffer =*/ buf_compute_meta.data(),
  6197. /*.no_alloc =*/ true,
  6198. };
  6199. ctx0 = ggml_init(params);
  6200. lctx.inp_tokens = nullptr;
  6201. lctx.inp_embd = nullptr;
  6202. lctx.inp_pos = nullptr;
  6203. lctx.inp_out_ids = nullptr;
  6204. lctx.inp_KQ_mask = nullptr;
  6205. lctx.inp_K_shift = nullptr;
  6206. lctx.inp_mean = nullptr;
  6207. lctx.inp_cls = nullptr;
  6208. lctx.inp_s_copy = nullptr;
  6209. lctx.inp_s_mask = nullptr;
  6210. lctx.inp_s_seq = nullptr;
  6211. }
  6212. void free() {
  6213. if (ctx0) {
  6214. ggml_free(ctx0);
  6215. ctx0 = nullptr;
  6216. }
  6217. }
  6218. struct ggml_cgraph * build_k_shift() {
  6219. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6220. GGML_ASSERT(kv_self.size == n_ctx);
  6221. lctx.inp_K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
  6222. cb(lctx.inp_K_shift, "K_shift", -1);
  6223. ggml_set_input(lctx.inp_K_shift);
  6224. for (int il = 0; il < n_layer; ++il) {
  6225. struct ggml_tensor * rope_factors = build_rope_factors(il);
  6226. struct ggml_tensor * tmp =
  6227. // we rotate only the first n_rot dimensions
  6228. ggml_rope_ext_inplace(ctx0,
  6229. ggml_view_3d(ctx0, kv_self.k_l[il],
  6230. n_embd_head_k, n_head_kv, n_ctx,
  6231. ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
  6232. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  6233. 0),
  6234. lctx.inp_K_shift, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6235. ext_factor, attn_factor, beta_fast, beta_slow);
  6236. cb(tmp, "K_shifted", il);
  6237. ggml_build_forward_expand(gf, tmp);
  6238. }
  6239. return gf;
  6240. }
  6241. struct ggml_cgraph * build_s_copy() {
  6242. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6243. GGML_ASSERT(kv_self.recurrent);
  6244. struct ggml_tensor * state_copy = build_inp_s_copy();
  6245. for (int il = 0; il < n_layer; ++il) {
  6246. struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
  6247. struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
  6248. conv_states = ggml_get_rows(ctx0, conv_states, state_copy);
  6249. ssm_states = ggml_get_rows(ctx0, ssm_states, state_copy);
  6250. // TODO: name the intermediate tensors with cb()
  6251. ggml_build_forward_expand(gf, ggml_cpy(ctx0, conv_states, kv_self.k_l[il]));
  6252. ggml_build_forward_expand(gf, ggml_cpy(ctx0, ssm_states, kv_self.v_l[il]));
  6253. }
  6254. return gf;
  6255. }
  6256. struct ggml_cgraph * build_defrag(const std::vector<uint32_t> & ids) {
  6257. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6258. for (uint32_t i = 0; i < ids.size(); ++i) {
  6259. const uint32_t id = ids[i];
  6260. if (i == id || id == ids.size()) {
  6261. continue;
  6262. }
  6263. uint32_t nm = 1;
  6264. while (i + nm < ids.size() && ids[i + nm] == id + nm) {
  6265. nm++;
  6266. }
  6267. for (int il = 0; il < n_layer; ++il) {
  6268. ggml_tensor * view_k_src = ggml_view_2d(ctx0, kv_self.k_l[il],
  6269. n_embd_k_gqa, nm,
  6270. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  6271. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*i));
  6272. ggml_tensor * view_k_dst = ggml_view_2d(ctx0, kv_self.k_l[il],
  6273. n_embd_k_gqa, nm,
  6274. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  6275. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*id));
  6276. ggml_tensor * view_v_src;
  6277. ggml_tensor * view_v_dst;
  6278. if (flash_attn) {
  6279. // NOTE: the V cache is not transposed when using flash attention
  6280. view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
  6281. n_embd_v_gqa, nm,
  6282. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
  6283. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*i));
  6284. view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
  6285. n_embd_v_gqa, nm,
  6286. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
  6287. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*id));
  6288. } else {
  6289. view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
  6290. nm, n_embd_v_gqa,
  6291. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  6292. ggml_row_size(kv_self.v_l[il]->type, i));
  6293. view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
  6294. nm, n_embd_v_gqa,
  6295. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  6296. ggml_row_size(kv_self.v_l[il]->type, id));
  6297. }
  6298. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_k_src, view_k_dst));
  6299. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_v_src, view_v_dst));
  6300. }
  6301. i += nm - 1;
  6302. }
  6303. //LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
  6304. return gf;
  6305. }
  6306. struct ggml_tensor * build_inp_pos() {
  6307. lctx.inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  6308. cb(lctx.inp_pos, "inp_pos", -1);
  6309. ggml_set_input(lctx.inp_pos);
  6310. return lctx.inp_pos;
  6311. }
  6312. struct ggml_tensor * build_rope_factors(int il) {
  6313. // choose long/short freq factors based on the context size
  6314. const auto n_ctx_pre_seq = cparams.n_ctx / cparams.n_seq_max;
  6315. if (n_ctx_pre_seq > hparams.n_ctx_orig_yarn) {
  6316. return model.layers[il].rope_long;
  6317. }
  6318. return model.layers[il].rope_short;
  6319. }
  6320. struct ggml_tensor * build_inp_out_ids() {
  6321. lctx.inp_out_ids = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs);
  6322. cb(lctx.inp_out_ids, "inp_out_ids", -1);
  6323. ggml_set_input(lctx.inp_out_ids);
  6324. return lctx.inp_out_ids;
  6325. }
  6326. struct ggml_tensor * build_inp_KQ_mask(bool causal = true) {
  6327. if (causal) {
  6328. lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
  6329. } else {
  6330. lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
  6331. }
  6332. cb(lctx.inp_KQ_mask, "KQ_mask", -1);
  6333. ggml_set_input(lctx.inp_KQ_mask);
  6334. return flash_attn ? ggml_cast(ctx0, lctx.inp_KQ_mask, GGML_TYPE_F16) : lctx.inp_KQ_mask;
  6335. }
  6336. struct ggml_tensor * build_inp_mean() {
  6337. lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
  6338. cb(lctx.inp_mean, "inp_mean", -1);
  6339. ggml_set_input(lctx.inp_mean);
  6340. return lctx.inp_mean;
  6341. }
  6342. struct ggml_tensor * build_inp_cls() {
  6343. lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  6344. cb(lctx.inp_cls, "inp_cls", -1);
  6345. ggml_set_input(lctx.inp_cls);
  6346. return lctx.inp_cls;
  6347. }
  6348. struct ggml_tensor * build_inp_s_copy() {
  6349. lctx.inp_s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, kv_self.size);
  6350. cb(lctx.inp_s_copy, "inp_s_copy", -1);
  6351. ggml_set_input(lctx.inp_s_copy);
  6352. return lctx.inp_s_copy;
  6353. }
  6354. struct ggml_tensor * build_inp_s_mask() {
  6355. lctx.inp_s_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_kv);
  6356. cb(lctx.inp_s_mask, "inp_s_mask", -1);
  6357. ggml_set_input(lctx.inp_s_mask);
  6358. return lctx.inp_s_mask;
  6359. }
  6360. struct ggml_tensor * build_inp_s_seq() {
  6361. lctx.inp_s_seq = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens);
  6362. cb(lctx.inp_s_seq, "inp_s_seq", -1);
  6363. ggml_set_input(lctx.inp_s_seq);
  6364. return lctx.inp_s_seq;
  6365. }
  6366. struct ggml_cgraph * build_llama() {
  6367. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6368. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6369. int32_t n_tokens = this->n_tokens;
  6370. const int64_t n_embd_head = hparams.n_embd_head_v;
  6371. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6372. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6373. struct ggml_tensor * cur;
  6374. struct ggml_tensor * inpL;
  6375. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6376. // inp_pos - contains the positions
  6377. struct ggml_tensor * inp_pos = build_inp_pos();
  6378. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6379. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6380. for (int il = 0; il < n_layer; ++il) {
  6381. struct ggml_tensor * inpSA = inpL;
  6382. // norm
  6383. cur = llm_build_norm(ctx0, inpL, hparams,
  6384. model.layers[il].attn_norm, NULL,
  6385. LLM_NORM_RMS, cb, il);
  6386. cb(cur, "attn_norm", il);
  6387. // self-attention
  6388. {
  6389. // compute Q and K and RoPE them
  6390. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6391. cb(Qcur, "Qcur", il);
  6392. if (model.layers[il].bq) {
  6393. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6394. cb(Qcur, "Qcur", il);
  6395. }
  6396. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6397. cb(Kcur, "Kcur", il);
  6398. if (model.layers[il].bk) {
  6399. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6400. cb(Kcur, "Kcur", il);
  6401. }
  6402. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6403. cb(Vcur, "Vcur", il);
  6404. if (model.layers[il].bv) {
  6405. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6406. cb(Vcur, "Vcur", il);
  6407. }
  6408. Qcur = ggml_rope_ext(
  6409. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6410. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6411. ext_factor, attn_factor, beta_fast, beta_slow
  6412. );
  6413. cb(Qcur, "Qcur", il);
  6414. Kcur = ggml_rope_ext(
  6415. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6416. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6417. ext_factor, attn_factor, beta_fast, beta_slow
  6418. );
  6419. cb(Kcur, "Kcur", il);
  6420. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6421. model.layers[il].wo, model.layers[il].bo,
  6422. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6423. }
  6424. if (il == n_layer - 1) {
  6425. // skip computing output for unused tokens
  6426. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6427. n_tokens = n_outputs;
  6428. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6429. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6430. }
  6431. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6432. cb(ffn_inp, "ffn_inp", il);
  6433. // feed-forward network
  6434. if (model.layers[il].ffn_gate_inp == nullptr) {
  6435. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6436. model.layers[il].ffn_norm, NULL,
  6437. LLM_NORM_RMS, cb, il);
  6438. cb(cur, "ffn_norm", il);
  6439. cur = llm_build_ffn(ctx0, cur,
  6440. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6441. model.layers[il].ffn_gate, model.layers[il].ffn_gate_b,
  6442. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6443. NULL,
  6444. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6445. cb(cur, "ffn_out", il);
  6446. } else {
  6447. // MoE branch
  6448. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6449. model.layers[il].ffn_norm, NULL,
  6450. LLM_NORM_RMS, cb, il);
  6451. cb(cur, "ffn_norm", il);
  6452. cur = llm_build_moe_ffn(ctx0, cur,
  6453. model.layers[il].ffn_gate_inp,
  6454. model.layers[il].ffn_up_exps,
  6455. model.layers[il].ffn_gate_exps,
  6456. model.layers[il].ffn_down_exps,
  6457. n_expert, n_expert_used,
  6458. LLM_FFN_SILU, true,
  6459. false, 0.0,
  6460. cb, il);
  6461. cb(cur, "ffn_moe_out", il);
  6462. }
  6463. cur = ggml_add(ctx0, cur, ffn_inp);
  6464. cb(cur, "ffn_out", il);
  6465. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  6466. if (layer_dir != nullptr) {
  6467. cur = ggml_add(ctx0, cur, layer_dir);
  6468. }
  6469. cb(cur, "l_out", il);
  6470. // input for next layer
  6471. inpL = cur;
  6472. }
  6473. cur = inpL;
  6474. cur = llm_build_norm(ctx0, cur, hparams,
  6475. model.output_norm, NULL,
  6476. LLM_NORM_RMS, cb, -1);
  6477. cb(cur, "result_norm", -1);
  6478. // lm_head
  6479. cur = ggml_mul_mat(ctx0, model.output, cur);
  6480. cb(cur, "result_output", -1);
  6481. ggml_build_forward_expand(gf, cur);
  6482. return gf;
  6483. }
  6484. struct ggml_cgraph * build_baichuan() {
  6485. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6486. const int64_t n_embd_head = hparams.n_embd_head_v;
  6487. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6488. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6489. struct ggml_tensor * cur;
  6490. struct ggml_tensor * inpL;
  6491. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6492. // inp_pos - contains the positions
  6493. struct ggml_tensor * inp_pos = model.type == MODEL_7B ? build_inp_pos() : nullptr;
  6494. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6495. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6496. for (int il = 0; il < n_layer; ++il) {
  6497. struct ggml_tensor * inpSA = inpL;
  6498. cur = llm_build_norm(ctx0, inpL, hparams,
  6499. model.layers[il].attn_norm, NULL,
  6500. LLM_NORM_RMS, cb, il);
  6501. cb(cur, "attn_norm", il);
  6502. // self-attention
  6503. {
  6504. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6505. cb(Qcur, "Qcur", il);
  6506. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6507. cb(Kcur, "Kcur", il);
  6508. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6509. cb(Vcur, "Vcur", il);
  6510. switch (model.type) {
  6511. case MODEL_7B:
  6512. Qcur = ggml_rope_ext(
  6513. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6514. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6515. ext_factor, attn_factor, beta_fast, beta_slow
  6516. );
  6517. Kcur = ggml_rope_ext(
  6518. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6519. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6520. ext_factor, attn_factor, beta_fast, beta_slow
  6521. );
  6522. break;
  6523. case MODEL_13B:
  6524. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd/n_head, n_head, n_tokens);
  6525. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd/n_head, n_head, n_tokens);
  6526. break;
  6527. default:
  6528. GGML_ASSERT(false);
  6529. }
  6530. cb(Qcur, "Qcur", il);
  6531. cb(Kcur, "Kcur", il);
  6532. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6533. model.layers[il].wo, NULL,
  6534. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6535. }
  6536. if (il == n_layer - 1) {
  6537. // skip computing output for unused tokens
  6538. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6539. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6540. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6541. }
  6542. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6543. cb(ffn_inp, "ffn_inp", il);
  6544. // feed-forward network
  6545. {
  6546. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6547. model.layers[il].ffn_norm, NULL,
  6548. LLM_NORM_RMS, cb, il);
  6549. cb(cur, "ffn_norm", il);
  6550. cur = llm_build_ffn(ctx0, cur,
  6551. model.layers[il].ffn_up, NULL,
  6552. model.layers[il].ffn_gate, NULL,
  6553. model.layers[il].ffn_down, NULL,
  6554. NULL,
  6555. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6556. cb(cur, "ffn_out", il);
  6557. }
  6558. cur = ggml_add(ctx0, cur, ffn_inp);
  6559. cb(cur, "l_out", il);
  6560. // input for next layer
  6561. inpL = cur;
  6562. }
  6563. cur = inpL;
  6564. cur = llm_build_norm(ctx0, cur, hparams,
  6565. model.output_norm, NULL,
  6566. LLM_NORM_RMS, cb, -1);
  6567. cb(cur, "result_norm", -1);
  6568. // lm_head
  6569. cur = ggml_mul_mat(ctx0, model.output, cur);
  6570. cb(cur, "result_output", -1);
  6571. ggml_build_forward_expand(gf, cur);
  6572. return gf;
  6573. }
  6574. struct ggml_cgraph * build_xverse() {
  6575. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6576. const int64_t n_embd_head = hparams.n_embd_head_v;
  6577. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6578. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6579. struct ggml_tensor * cur;
  6580. struct ggml_tensor * inpL;
  6581. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6582. // inp_pos - contains the positions
  6583. struct ggml_tensor * inp_pos = build_inp_pos();
  6584. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6585. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6586. for (int il = 0; il < n_layer; ++il) {
  6587. struct ggml_tensor * inpSA = inpL;
  6588. cur = llm_build_norm(ctx0, inpL, hparams,
  6589. model.layers[il].attn_norm, NULL,
  6590. LLM_NORM_RMS, cb, il);
  6591. cb(cur, "attn_norm", il);
  6592. // self-attention
  6593. {
  6594. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6595. cb(Qcur, "Qcur", il);
  6596. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6597. cb(Kcur, "Kcur", il);
  6598. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6599. cb(Vcur, "Vcur", il);
  6600. Qcur = ggml_rope_ext(
  6601. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6602. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6603. ext_factor, attn_factor, beta_fast, beta_slow
  6604. );
  6605. cb(Qcur, "Qcur", il);
  6606. Kcur = ggml_rope_ext(
  6607. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6608. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6609. ext_factor, attn_factor, beta_fast, beta_slow
  6610. );
  6611. cb(Kcur, "Kcur", il);
  6612. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6613. model.layers[il].wo, NULL,
  6614. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6615. }
  6616. if (il == n_layer - 1) {
  6617. // skip computing output for unused tokens
  6618. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6619. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6620. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6621. }
  6622. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6623. cb(ffn_inp, "ffn_inp", il);
  6624. // feed-forward network
  6625. {
  6626. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6627. model.layers[il].ffn_norm, NULL,
  6628. LLM_NORM_RMS, cb, il);
  6629. cb(cur, "ffn_norm", il);
  6630. cur = llm_build_ffn(ctx0, cur,
  6631. model.layers[il].ffn_up, NULL,
  6632. model.layers[il].ffn_gate, NULL,
  6633. model.layers[il].ffn_down, NULL,
  6634. NULL,
  6635. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6636. cb(cur, "ffn_out", il);
  6637. }
  6638. cur = ggml_add(ctx0, cur, ffn_inp);
  6639. cb(cur, "l_out", il);
  6640. // input for next layer
  6641. inpL = cur;
  6642. }
  6643. cur = inpL;
  6644. cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1);
  6645. cb(cur, "result_norm", -1);
  6646. // lm_head
  6647. cur = ggml_mul_mat(ctx0, model.output, cur);
  6648. cb(cur, "result_output", -1);
  6649. ggml_build_forward_expand(gf, cur);
  6650. return gf;
  6651. }
  6652. struct ggml_cgraph * build_falcon() {
  6653. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6654. const int64_t n_embd_head = hparams.n_embd_head_v;
  6655. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6656. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6657. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6658. struct ggml_tensor * cur;
  6659. struct ggml_tensor * inpL;
  6660. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6661. // inp_pos - contains the positions
  6662. struct ggml_tensor * inp_pos = build_inp_pos();
  6663. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6664. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6665. for (int il = 0; il < n_layer; ++il) {
  6666. struct ggml_tensor * attn_norm;
  6667. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  6668. model.layers[il].attn_norm,
  6669. model.layers[il].attn_norm_b,
  6670. LLM_NORM, cb, il);
  6671. cb(attn_norm, "attn_norm", il);
  6672. // self-attention
  6673. {
  6674. if (model.layers[il].attn_norm_2) {
  6675. // Falcon-40B
  6676. cur = llm_build_norm(ctx0, inpL, hparams,
  6677. model.layers[il].attn_norm_2,
  6678. model.layers[il].attn_norm_2_b,
  6679. LLM_NORM, cb, il);
  6680. cb(cur, "attn_norm_2", il);
  6681. } else {
  6682. cur = attn_norm;
  6683. }
  6684. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6685. cb(cur, "wqkv", il);
  6686. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6687. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6688. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6689. cb(Qcur, "Qcur", il);
  6690. cb(Kcur, "Kcur", il);
  6691. cb(Vcur, "Vcur", il);
  6692. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6693. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6694. // using mode = 2 for neox mode
  6695. Qcur = ggml_rope_ext(
  6696. ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
  6697. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6698. );
  6699. cb(Qcur, "Qcur", il);
  6700. Kcur = ggml_rope_ext(
  6701. ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
  6702. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6703. );
  6704. cb(Kcur, "Kcur", il);
  6705. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6706. model.layers[il].wo, NULL,
  6707. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6708. }
  6709. if (il == n_layer - 1) {
  6710. // skip computing output for unused tokens
  6711. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6712. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6713. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6714. attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids);
  6715. }
  6716. struct ggml_tensor * ffn_inp = cur;
  6717. // feed forward
  6718. {
  6719. cur = llm_build_ffn(ctx0, attn_norm, // !! use the attn norm, not the result
  6720. model.layers[il].ffn_up, NULL,
  6721. NULL, NULL,
  6722. model.layers[il].ffn_down, NULL,
  6723. NULL,
  6724. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6725. cb(cur, "ffn_out", il);
  6726. }
  6727. cur = ggml_add(ctx0, cur, ffn_inp);
  6728. cb(cur, "l_out", il);
  6729. cur = ggml_add(ctx0, cur, inpL);
  6730. cb(cur, "l_out", il);
  6731. // input for next layer
  6732. inpL = cur;
  6733. }
  6734. cur = inpL;
  6735. // norm
  6736. cur = llm_build_norm(ctx0, cur, hparams,
  6737. model.output_norm,
  6738. model.output_norm_b,
  6739. LLM_NORM, cb, -1);
  6740. cb(cur, "result_norm", -1);
  6741. cur = ggml_mul_mat(ctx0, model.output, cur);
  6742. cb(cur, "result_output", -1);
  6743. ggml_build_forward_expand(gf, cur);
  6744. return gf;
  6745. }
  6746. struct ggml_cgraph * build_grok() {
  6747. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6748. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6749. int32_t n_tokens = this->n_tokens;
  6750. const int64_t n_embd_head = hparams.n_embd_head_v;
  6751. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6752. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6753. struct ggml_tensor * cur;
  6754. struct ggml_tensor * inpL;
  6755. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6756. // multiply by embedding_multiplier_scale of 78.38367176906169
  6757. inpL = ggml_scale(ctx0, inpL, 78.38367176906169f);
  6758. // inp_pos - contains the positions
  6759. struct ggml_tensor * inp_pos = build_inp_pos();
  6760. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6761. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6762. for (int il = 0; il < n_layer; ++il) {
  6763. struct ggml_tensor * inpSA = inpL;
  6764. // norm
  6765. cur = llm_build_norm(ctx0, inpL, hparams,
  6766. model.layers[il].attn_norm, NULL,
  6767. LLM_NORM_RMS, cb, il);
  6768. cb(cur, "attn_norm", il);
  6769. // self-attention
  6770. {
  6771. // compute Q and K and RoPE them
  6772. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6773. cb(Qcur, "Qcur", il);
  6774. if (model.layers[il].bq) {
  6775. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6776. cb(Qcur, "Qcur", il);
  6777. }
  6778. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6779. cb(Kcur, "Kcur", il);
  6780. if (model.layers[il].bk) {
  6781. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6782. cb(Kcur, "Kcur", il);
  6783. }
  6784. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6785. cb(Vcur, "Vcur", il);
  6786. if (model.layers[il].bv) {
  6787. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6788. cb(Vcur, "Vcur", il);
  6789. }
  6790. Qcur = ggml_rope_ext(
  6791. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6792. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6793. ext_factor, attn_factor, beta_fast, beta_slow
  6794. );
  6795. cb(Qcur, "Qcur", il);
  6796. Kcur = ggml_rope_ext(
  6797. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6798. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6799. ext_factor, attn_factor, beta_fast, beta_slow
  6800. );
  6801. cb(Kcur, "Kcur", il);
  6802. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6803. model.layers[il].wo, model.layers[il].bo,
  6804. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  6805. }
  6806. if (il == n_layer - 1) {
  6807. // skip computing output for unused tokens
  6808. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6809. n_tokens = n_outputs;
  6810. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6811. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6812. }
  6813. // Grok
  6814. // if attn_out_norm is present then apply it before adding the input
  6815. if (model.layers[il].attn_out_norm) {
  6816. cur = llm_build_norm(ctx0, cur, hparams,
  6817. model.layers[il].attn_out_norm, NULL,
  6818. LLM_NORM_RMS, cb, il);
  6819. cb(cur, "attn_out_norm", il);
  6820. }
  6821. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6822. cb(ffn_inp, "ffn_inp", il);
  6823. // feed-forward network
  6824. // MoE branch
  6825. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6826. model.layers[il].ffn_norm, NULL,
  6827. LLM_NORM_RMS, cb, il);
  6828. cb(cur, "ffn_norm", il);
  6829. cur = llm_build_moe_ffn(ctx0, cur,
  6830. model.layers[il].ffn_gate_inp,
  6831. model.layers[il].ffn_up_exps,
  6832. model.layers[il].ffn_gate_exps,
  6833. model.layers[il].ffn_down_exps,
  6834. n_expert, n_expert_used,
  6835. LLM_FFN_GELU, true,
  6836. false, 0.0,
  6837. cb, il);
  6838. cb(cur, "ffn_moe_out", il);
  6839. // Grok
  6840. // if layer_out_norm is present then apply it before adding the input
  6841. // Idea: maybe ffn_out_norm is a better name
  6842. if (model.layers[il].layer_out_norm) {
  6843. cur = llm_build_norm(ctx0, cur, hparams,
  6844. model.layers[il].layer_out_norm, NULL,
  6845. LLM_NORM_RMS, cb, il);
  6846. cb(cur, "layer_out_norm", il);
  6847. }
  6848. cur = ggml_add(ctx0, cur, ffn_inp);
  6849. cb(cur, "ffn_out", il);
  6850. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  6851. if (layer_dir != nullptr) {
  6852. cur = ggml_add(ctx0, cur, layer_dir);
  6853. }
  6854. cb(cur, "l_out", il);
  6855. // input for next layer
  6856. inpL = cur;
  6857. }
  6858. cur = inpL;
  6859. cur = llm_build_norm(ctx0, cur, hparams,
  6860. model.output_norm, NULL,
  6861. LLM_NORM_RMS, cb, -1);
  6862. cb(cur, "result_norm", -1);
  6863. // lm_head
  6864. cur = ggml_mul_mat(ctx0, model.output, cur);
  6865. // Grok
  6866. // multiply logits by output_multiplier_scale of 0.5773502691896257
  6867. cur = ggml_scale(ctx0, cur, 0.5773502691896257f);
  6868. cb(cur, "result_output", -1);
  6869. ggml_build_forward_expand(gf, cur);
  6870. return gf;
  6871. }
  6872. struct ggml_cgraph * build_dbrx() {
  6873. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6874. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6875. int32_t n_tokens = this->n_tokens;
  6876. const int64_t n_embd_head = hparams.n_embd_head_v;
  6877. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6878. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6879. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6880. struct ggml_tensor * cur;
  6881. struct ggml_tensor * inpL;
  6882. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6883. // inp_pos - contains the positions
  6884. struct ggml_tensor * inp_pos = build_inp_pos();
  6885. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6886. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6887. for (int il = 0; il < n_layer; ++il) {
  6888. struct ggml_tensor * inpSA = inpL;
  6889. // norm
  6890. cur = llm_build_norm(ctx0, inpL, hparams,
  6891. model.layers[il].attn_norm, NULL,
  6892. LLM_NORM, cb, il);
  6893. cb(cur, "attn_norm", il);
  6894. // self-attention
  6895. {
  6896. struct ggml_tensor * Qcur = nullptr;
  6897. struct ggml_tensor * Kcur = nullptr;
  6898. struct ggml_tensor * Vcur = nullptr;
  6899. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6900. cb(cur, "wqkv", il);
  6901. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  6902. cb(cur, "wqkv_clamped", il);
  6903. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6904. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6905. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6906. cb(Qcur, "Qcur", il);
  6907. cb(Kcur, "Kcur", il);
  6908. cb(Vcur, "Vcur", il);
  6909. Qcur = ggml_rope_ext(
  6910. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6911. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6912. ext_factor, attn_factor, beta_fast, beta_slow
  6913. );
  6914. cb(Qcur, "Qcur", il);
  6915. Kcur = ggml_rope_ext(
  6916. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6917. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6918. ext_factor, attn_factor, beta_fast, beta_slow
  6919. );
  6920. cb(Kcur, "Kcur", il);
  6921. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6922. model.layers[il].wo, NULL,
  6923. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6924. }
  6925. if (il == n_layer - 1) {
  6926. // skip computing output for unused tokens
  6927. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6928. n_tokens = n_outputs;
  6929. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6930. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6931. }
  6932. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6933. cb(ffn_inp, "ffn_inp", il);
  6934. // feed-forward network
  6935. // MoE branch
  6936. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6937. model.layers[il].attn_out_norm, NULL,
  6938. LLM_NORM, cb, il);
  6939. cb(cur, "attn_out_norm", il);
  6940. cur = llm_build_moe_ffn(ctx0, cur,
  6941. model.layers[il].ffn_gate_inp,
  6942. model.layers[il].ffn_up_exps,
  6943. model.layers[il].ffn_gate_exps,
  6944. model.layers[il].ffn_down_exps,
  6945. n_expert, n_expert_used,
  6946. LLM_FFN_SILU, true,
  6947. false, 0.0,
  6948. cb, il);
  6949. cb(cur, "ffn_moe_out", il);
  6950. cur = ggml_add(ctx0, cur, ffn_inp);
  6951. cb(cur, "ffn_out", il);
  6952. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  6953. if (layer_dir != nullptr) {
  6954. cur = ggml_add(ctx0, cur, layer_dir);
  6955. }
  6956. cb(cur, "l_out", il);
  6957. // input for next layer
  6958. inpL = cur;
  6959. }
  6960. cur = inpL;
  6961. cur = llm_build_norm(ctx0, cur, hparams,
  6962. model.output_norm, NULL,
  6963. LLM_NORM, cb, -1);
  6964. cb(cur, "result_norm", -1);
  6965. // lm_head
  6966. cur = ggml_mul_mat(ctx0, model.output, cur);
  6967. cb(cur, "result_output", -1);
  6968. ggml_build_forward_expand(gf, cur);
  6969. return gf;
  6970. }
  6971. struct ggml_cgraph * build_starcoder() {
  6972. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6973. const int64_t n_embd_head = hparams.n_embd_head_v;
  6974. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6975. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6976. struct ggml_tensor * cur;
  6977. struct ggml_tensor * inpL;
  6978. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6979. // inp_pos - contains the positions
  6980. struct ggml_tensor * inp_pos = build_inp_pos();
  6981. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6982. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6983. struct ggml_tensor * pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  6984. cb(pos, "pos_embd", -1);
  6985. inpL = ggml_add(ctx0, inpL, pos);
  6986. cb(inpL, "inpL", -1);
  6987. for (int il = 0; il < n_layer; ++il) {
  6988. cur = llm_build_norm(ctx0, inpL, hparams,
  6989. model.layers[il].attn_norm,
  6990. model.layers[il].attn_norm_b,
  6991. LLM_NORM, cb, il);
  6992. cb(cur, "attn_norm", il);
  6993. // self-attention
  6994. {
  6995. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6996. cb(cur, "wqkv", il);
  6997. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6998. cb(cur, "bqkv", il);
  6999. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7000. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7001. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7002. cb(Qcur, "Qcur", il);
  7003. cb(Kcur, "Kcur", il);
  7004. cb(Vcur, "Vcur", il);
  7005. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7006. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7007. model.layers[il].wo, model.layers[il].bo,
  7008. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7009. }
  7010. if (il == n_layer - 1) {
  7011. // skip computing output for unused tokens
  7012. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7013. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7014. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7015. }
  7016. // add the input
  7017. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7018. cb(ffn_inp, "ffn_inp", il);
  7019. // FF
  7020. {
  7021. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7022. model.layers[il].ffn_norm,
  7023. model.layers[il].ffn_norm_b,
  7024. LLM_NORM, cb, il);
  7025. cb(cur, "ffn_norm", il);
  7026. cur = llm_build_ffn(ctx0, cur,
  7027. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7028. NULL, NULL,
  7029. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7030. NULL,
  7031. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7032. cb(cur, "ffn_out", il);
  7033. }
  7034. inpL = ggml_add(ctx0, cur, ffn_inp);
  7035. cb(inpL, "l_out", il);
  7036. }
  7037. cur = llm_build_norm(ctx0, inpL, hparams,
  7038. model.output_norm,
  7039. model.output_norm_b,
  7040. LLM_NORM, cb, -1);
  7041. cb(cur, "result_norm", -1);
  7042. cur = ggml_mul_mat(ctx0, model.output, cur);
  7043. cb(cur, "result_output", -1);
  7044. ggml_build_forward_expand(gf, cur);
  7045. return gf;
  7046. }
  7047. struct ggml_cgraph * build_refact() {
  7048. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7049. const int64_t n_embd_head = hparams.n_embd_head_v;
  7050. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7051. struct ggml_tensor * cur;
  7052. struct ggml_tensor * inpL;
  7053. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7054. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7055. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7056. for (int il = 0; il < n_layer; ++il) {
  7057. struct ggml_tensor * inpSA = inpL;
  7058. cur = llm_build_norm(ctx0, inpL, hparams,
  7059. model.layers[il].attn_norm, NULL,
  7060. LLM_NORM_RMS, cb, il);
  7061. cb(cur, "attn_norm", il);
  7062. // self-attention
  7063. {
  7064. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7065. cb(Qcur, "Qcur", il);
  7066. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7067. cb(Kcur, "Kcur", il);
  7068. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7069. cb(Vcur, "Vcur", il);
  7070. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7071. cb(Kcur, "Kcur", il);
  7072. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7073. cb(Qcur, "Qcur", il);
  7074. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7075. model.layers[il].wo, NULL,
  7076. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7077. }
  7078. if (il == n_layer - 1) {
  7079. // skip computing output for unused tokens
  7080. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7081. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7082. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7083. }
  7084. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7085. cb(ffn_inp, "ffn_inp", il);
  7086. // feed-forward network
  7087. {
  7088. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7089. model.layers[il].ffn_norm, NULL,
  7090. LLM_NORM_RMS, cb, il);
  7091. cb(cur, "ffn_norm", il);
  7092. cur = llm_build_ffn(ctx0, cur,
  7093. model.layers[il].ffn_up, NULL,
  7094. model.layers[il].ffn_gate, NULL,
  7095. model.layers[il].ffn_down, NULL,
  7096. NULL,
  7097. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7098. cb(cur, "ffn_out", il);
  7099. }
  7100. cur = ggml_add(ctx0, cur, ffn_inp);
  7101. cb(cur, "l_out", il);
  7102. // input for next layer
  7103. inpL = cur;
  7104. }
  7105. cur = inpL;
  7106. cur = llm_build_norm(ctx0, cur, hparams,
  7107. model.output_norm, NULL,
  7108. LLM_NORM_RMS, cb, -1);
  7109. cb(cur, "result_norm", -1);
  7110. // lm_head
  7111. cur = ggml_mul_mat(ctx0, model.output, cur);
  7112. cb(cur, "result_output", -1);
  7113. ggml_build_forward_expand(gf, cur);
  7114. return gf;
  7115. }
  7116. struct ggml_cgraph * build_bert() {
  7117. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7118. const int64_t n_embd_head = hparams.n_embd_head_v;
  7119. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7120. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7121. struct ggml_tensor * cur;
  7122. struct ggml_tensor * inpL;
  7123. struct ggml_tensor * inp_pos = nullptr;
  7124. if (model.arch != LLM_ARCH_JINA_BERT_V2) {
  7125. inp_pos = build_inp_pos();
  7126. }
  7127. struct ggml_tensor * inp_mean = build_inp_mean();
  7128. struct ggml_tensor * inp_cls = build_inp_cls();
  7129. // construct input embeddings (token, type, position)
  7130. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7131. // token types are hardcoded to zero ("Sentence A")
  7132. struct ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
  7133. inpL = ggml_add(ctx0, inpL, type_row0);
  7134. if (model.arch == LLM_ARCH_BERT) {
  7135. inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
  7136. }
  7137. cb(inpL, "inp_embd", -1);
  7138. // embed layer norm
  7139. inpL = llm_build_norm(ctx0, inpL, hparams, model.tok_norm, model.tok_norm_b, LLM_NORM, cb, -1);
  7140. cb(inpL, "inp_norm", -1);
  7141. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7142. struct ggml_tensor * KQ_mask = build_inp_KQ_mask(false);
  7143. // iterate layers
  7144. for (int il = 0; il < n_layer; ++il) {
  7145. struct ggml_tensor * cur = inpL;
  7146. struct ggml_tensor * Qcur;
  7147. struct ggml_tensor * Kcur;
  7148. struct ggml_tensor * Vcur;
  7149. // self-attention
  7150. if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_JINA_BERT_V2) {
  7151. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, cur), model.layers[il].bq);
  7152. cb(Qcur, "Qcur", il);
  7153. if (model.layers[il].attn_q_norm) {
  7154. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  7155. model.layers[il].attn_q_norm,
  7156. model.layers[il].attn_q_norm_b,
  7157. LLM_NORM, cb, il);
  7158. }
  7159. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, cur), model.layers[il].bk);
  7160. cb(Kcur, "Kcur", il);
  7161. if (model.layers[il].attn_k_norm) {
  7162. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  7163. model.layers[il].attn_k_norm,
  7164. model.layers[il].attn_k_norm_b,
  7165. LLM_NORM, cb, il);
  7166. }
  7167. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, cur), model.layers[il].bv);
  7168. cb(Vcur, "Vcur", il);
  7169. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7170. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7171. } else {
  7172. // compute Q and K and RoPE them
  7173. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7174. cb(cur, "wqkv", il);
  7175. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7176. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7177. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7178. cb(Qcur, "Qcur", il);
  7179. cb(Kcur, "Kcur", il);
  7180. cb(Vcur, "Vcur", il);
  7181. Qcur = ggml_rope_ext(
  7182. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  7183. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7184. ext_factor, attn_factor, beta_fast, beta_slow
  7185. );
  7186. cb(Qcur, "Qcur", il);
  7187. Kcur = ggml_rope_ext(
  7188. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  7189. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7190. ext_factor, attn_factor, beta_fast, beta_slow
  7191. );
  7192. cb(Kcur, "Kcur", il);
  7193. }
  7194. struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  7195. struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
  7196. struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  7197. cb(kq, "kq", il);
  7198. kq = ggml_soft_max_ext(ctx0, kq, KQ_mask, 1.0f/sqrtf(float(n_embd_head)), hparams.f_max_alibi_bias);
  7199. cb(kq, "kq_soft_max_ext", il);
  7200. struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_tokens)));
  7201. cb(v, "v", il);
  7202. struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_tokens, n_embd_head, n_head_kv), kq);
  7203. cb(kqv, "kqv", il);
  7204. struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  7205. cb(kqv_merged, "kqv_merged", il);
  7206. cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
  7207. cb(cur, "kqv_merged_cont", il);
  7208. ggml_build_forward_expand(gf, cur);
  7209. cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
  7210. if (model.layers[il].bo) {
  7211. cb(cur, "kqv_wo", il);
  7212. }
  7213. if (model.layers[il].bo) {
  7214. cur = ggml_add(ctx0, cur, model.layers[il].bo);
  7215. }
  7216. cb(cur, "kqv_out", il);
  7217. if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) {
  7218. // skip computing output for unused tokens
  7219. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7220. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7221. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7222. }
  7223. // re-add the layer input
  7224. cur = ggml_add(ctx0, cur, inpL);
  7225. // attention layer norm
  7226. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, cb, il);
  7227. if (model.layers[il].attn_norm_2 != nullptr) {
  7228. cur = ggml_add(ctx0, cur, inpL); // re-add the layer input
  7229. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_norm_2, model.layers[il].attn_norm_2_b, LLM_NORM, cb, il);
  7230. }
  7231. struct ggml_tensor * ffn_inp = cur;
  7232. cb(ffn_inp, "ffn_inp", il);
  7233. // feed-forward network
  7234. if (model.arch == LLM_ARCH_BERT) {
  7235. cur = llm_build_ffn(ctx0, cur,
  7236. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7237. NULL, NULL,
  7238. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7239. NULL,
  7240. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7241. } else if (model.arch == LLM_ARCH_JINA_BERT_V2) {
  7242. cur = llm_build_ffn(ctx0, cur,
  7243. model.layers[il].ffn_up, NULL,
  7244. model.layers[il].ffn_gate, NULL,
  7245. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7246. NULL,
  7247. LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
  7248. } else {
  7249. cur = llm_build_ffn(ctx0, cur,
  7250. model.layers[il].ffn_up, NULL,
  7251. model.layers[il].ffn_gate, NULL,
  7252. model.layers[il].ffn_down, NULL,
  7253. NULL,
  7254. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7255. }
  7256. cb(cur, "ffn_out", il);
  7257. // attentions bypass the intermediate layer
  7258. cur = ggml_add(ctx0, cur, ffn_inp);
  7259. // output layer norm
  7260. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, cb, il);
  7261. // input for next layer
  7262. inpL = cur;
  7263. }
  7264. // final output
  7265. cur = inpL;
  7266. cb(cur, "result_embd", -1);
  7267. // pooling layer
  7268. switch (pooling_type) {
  7269. case LLAMA_POOLING_TYPE_NONE:
  7270. {
  7271. // nop
  7272. } break;
  7273. case LLAMA_POOLING_TYPE_MEAN:
  7274. {
  7275. cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, cur)), inp_mean);
  7276. cb(cur, "result_embd_pooled", -1);
  7277. } break;
  7278. case LLAMA_POOLING_TYPE_CLS:
  7279. {
  7280. cur = ggml_get_rows(ctx0, cur, inp_cls);
  7281. cb(cur, "result_embd_pooled", -1);
  7282. } break;
  7283. case LLAMA_POOLING_TYPE_UNSPECIFIED:
  7284. {
  7285. GGML_ASSERT(false && "Invalid pooling type");
  7286. } break;
  7287. }
  7288. ggml_build_forward_expand(gf, cur);
  7289. return gf;
  7290. }
  7291. struct ggml_cgraph * build_bloom() {
  7292. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7293. const int64_t n_embd_head = hparams.n_embd_head_v;
  7294. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7295. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7296. struct ggml_tensor * cur;
  7297. struct ggml_tensor * inpL;
  7298. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7299. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7300. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7301. inpL = llm_build_norm(ctx0, inpL, hparams,
  7302. model.tok_norm,
  7303. model.tok_norm_b,
  7304. LLM_NORM, cb, -1);
  7305. cb(inpL, "inp_norm", -1);
  7306. for (int il = 0; il < n_layer; ++il) {
  7307. cur = llm_build_norm(ctx0, inpL, hparams,
  7308. model.layers[il].attn_norm,
  7309. model.layers[il].attn_norm_b,
  7310. LLM_NORM, cb, il);
  7311. cb(cur, "attn_norm", il);
  7312. // self-attention
  7313. {
  7314. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7315. cb(cur, "wqkv", il);
  7316. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7317. cb(cur, "bqkv", il);
  7318. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7319. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7320. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7321. cb(Qcur, "Qcur", il);
  7322. cb(Kcur, "Kcur", il);
  7323. cb(Vcur, "Vcur", il);
  7324. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7325. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7326. model.layers[il].wo, model.layers[il].bo,
  7327. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7328. }
  7329. if (il == n_layer - 1) {
  7330. // skip computing output for unused tokens
  7331. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7332. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7333. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7334. }
  7335. // Add the input
  7336. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7337. cb(ffn_inp, "ffn_inp", il);
  7338. // FF
  7339. {
  7340. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7341. model.layers[il].ffn_norm,
  7342. model.layers[il].ffn_norm_b,
  7343. LLM_NORM, cb, il);
  7344. cb(cur, "ffn_norm", il);
  7345. cur = llm_build_ffn(ctx0, cur,
  7346. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7347. NULL, NULL,
  7348. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7349. NULL,
  7350. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7351. cb(cur, "ffn_out", il);
  7352. }
  7353. inpL = ggml_add(ctx0, cur, ffn_inp);
  7354. cb(inpL, "l_out", il);
  7355. }
  7356. cur = llm_build_norm(ctx0, inpL, hparams,
  7357. model.output_norm,
  7358. model.output_norm_b,
  7359. LLM_NORM, cb, -1);
  7360. cb(cur, "result_norm", -1);
  7361. cur = ggml_mul_mat(ctx0, model.output, cur);
  7362. cb(cur, "result_output", -1);
  7363. ggml_build_forward_expand(gf, cur);
  7364. return gf;
  7365. }
  7366. struct ggml_cgraph * build_mpt() {
  7367. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7368. const int64_t n_embd_head = hparams.n_embd_head_v;
  7369. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7370. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7371. struct ggml_tensor * cur;
  7372. struct ggml_tensor * pos;
  7373. struct ggml_tensor * inpL;
  7374. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7375. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7376. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7377. if (model.pos_embd) {
  7378. // inp_pos - contains the positions
  7379. struct ggml_tensor * inp_pos = build_inp_pos();
  7380. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  7381. cb(pos, "pos_embd", -1);
  7382. inpL = ggml_add(ctx0, inpL, pos);
  7383. cb(inpL, "inpL", -1);
  7384. }
  7385. for (int il = 0; il < n_layer; ++il) {
  7386. struct ggml_tensor * attn_norm;
  7387. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  7388. model.layers[il].attn_norm,
  7389. model.layers[il].attn_norm_b,
  7390. LLM_NORM, cb, il);
  7391. cb(attn_norm, "attn_norm", il);
  7392. // self-attention
  7393. {
  7394. cur = attn_norm;
  7395. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7396. cb(cur, "wqkv", il);
  7397. if (model.layers[il].bqkv){
  7398. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7399. cb(cur, "bqkv", il);
  7400. }
  7401. if (hparams.f_clamp_kqv > 0.0f) {
  7402. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  7403. cb(cur, "wqkv_clamped", il);
  7404. }
  7405. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7406. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7407. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7408. cb(Qcur, "Qcur", il);
  7409. cb(Kcur, "Kcur", il);
  7410. cb(Vcur, "Vcur", il);
  7411. // Q/K Layernorm
  7412. if (model.layers[il].attn_q_norm) {
  7413. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  7414. model.layers[il].attn_q_norm,
  7415. model.layers[il].attn_q_norm_b,
  7416. LLM_NORM, cb, il);
  7417. cb(Qcur, "Qcur", il);
  7418. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  7419. model.layers[il].attn_k_norm,
  7420. model.layers[il].attn_k_norm_b,
  7421. LLM_NORM, cb, il);
  7422. cb(Kcur, "Kcur", il);
  7423. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7424. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7425. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7426. model.layers[il].wo, model.layers[il].bo,
  7427. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7428. } else {
  7429. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7430. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7431. model.layers[il].wo, model.layers[il].bo,
  7432. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7433. }
  7434. }
  7435. if (il == n_layer - 1) {
  7436. // skip computing output for unused tokens
  7437. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7438. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7439. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7440. }
  7441. // Add the input
  7442. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7443. cb(ffn_inp, "ffn_inp", il);
  7444. // feed forward
  7445. {
  7446. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7447. model.layers[il].ffn_norm,
  7448. model.layers[il].ffn_norm_b,
  7449. LLM_NORM, cb, il);
  7450. cb(cur, "ffn_norm", il);
  7451. cur = llm_build_ffn(ctx0, cur,
  7452. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7453. NULL, NULL,
  7454. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7455. model.layers[il].ffn_act,
  7456. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7457. cb(cur, "ffn_out", il);
  7458. }
  7459. cur = ggml_add(ctx0, cur, ffn_inp);
  7460. cb(cur, "l_out", il);
  7461. // input for next layer
  7462. inpL = cur;
  7463. }
  7464. cur = inpL;
  7465. cur = llm_build_norm(ctx0, cur, hparams,
  7466. model.output_norm,
  7467. model.output_norm_b,
  7468. LLM_NORM, cb, -1);
  7469. cb(cur, "result_norm", -1);
  7470. cur = ggml_mul_mat(ctx0, model.output, cur);
  7471. cb(cur, "result_output", -1);
  7472. ggml_build_forward_expand(gf, cur);
  7473. return gf;
  7474. }
  7475. struct ggml_cgraph * build_stablelm() {
  7476. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  7477. const int64_t n_embd_head = hparams.n_embd_head_v;
  7478. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7479. struct ggml_tensor * cur;
  7480. struct ggml_tensor * inpL;
  7481. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7482. // inp_pos - contains the positions
  7483. struct ggml_tensor * inp_pos = build_inp_pos();
  7484. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7485. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7486. for (int il = 0; il < n_layer; ++il) {
  7487. // norm
  7488. cur = llm_build_norm(ctx0, inpL, hparams,
  7489. model.layers[il].attn_norm,
  7490. model.layers[il].attn_norm_b,
  7491. LLM_NORM, cb, il);
  7492. cb(cur, "attn_norm", il);
  7493. struct ggml_tensor * inpSA = cur;
  7494. // self-attention
  7495. {
  7496. // compute Q and K and RoPE them
  7497. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7498. cb(Qcur, "Qcur", il);
  7499. if (model.layers[il].bq) {
  7500. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7501. cb(Qcur, "Qcur", il);
  7502. }
  7503. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7504. cb(Kcur, "Kcur", il);
  7505. if (model.layers[il].bk) {
  7506. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7507. cb(Kcur, "Kcur", il);
  7508. }
  7509. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7510. cb(Vcur, "Vcur", il);
  7511. if (model.layers[il].bv) {
  7512. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7513. cb(Vcur, "Vcur", il);
  7514. }
  7515. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7516. cb(Qcur, "Qcur", il);
  7517. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7518. cb(Kcur, "Kcur", il);
  7519. if (model.layers[il].attn_q_norm) {
  7520. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  7521. model.layers[il].attn_q_norm,
  7522. NULL,
  7523. LLM_NORM, cb, il);
  7524. cb(Qcur, "Qcur", il);
  7525. }
  7526. if (model.layers[il].attn_k_norm) {
  7527. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  7528. model.layers[il].attn_k_norm,
  7529. NULL,
  7530. LLM_NORM, cb, il);
  7531. cb(Kcur, "Kcur", il);
  7532. }
  7533. Qcur = ggml_rope_ext(
  7534. ctx0, Qcur, inp_pos, nullptr,
  7535. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7536. ext_factor, attn_factor, beta_fast, beta_slow
  7537. );
  7538. cb(Qcur, "Qcur", il);
  7539. Kcur = ggml_rope_ext(
  7540. ctx0, Kcur, inp_pos, nullptr,
  7541. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7542. ext_factor, attn_factor, beta_fast, beta_slow
  7543. );
  7544. cb(Kcur, "Kcur", il);
  7545. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7546. model.layers[il].wo, NULL,
  7547. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7548. }
  7549. if (il == n_layer - 1) {
  7550. // skip computing output for unused tokens
  7551. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7552. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7553. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7554. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7555. }
  7556. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7557. cb(ffn_inp, "ffn_inp", il);
  7558. // feed-forward network
  7559. {
  7560. if (model.layers[il].ffn_norm) {
  7561. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7562. model.layers[il].ffn_norm,
  7563. model.layers[il].ffn_norm_b,
  7564. LLM_NORM, cb, il);
  7565. cb(cur, "ffn_norm", il);
  7566. } else {
  7567. // parallel residual
  7568. cur = inpSA;
  7569. }
  7570. cur = llm_build_ffn(ctx0, cur,
  7571. model.layers[il].ffn_up, NULL,
  7572. model.layers[il].ffn_gate, NULL,
  7573. model.layers[il].ffn_down, NULL,
  7574. NULL,
  7575. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7576. cb(cur, "ffn_out", il);
  7577. }
  7578. cur = ggml_add(ctx0, cur, ffn_inp);
  7579. cb(cur, "l_out", il);
  7580. // input for next layer
  7581. inpL = cur;
  7582. }
  7583. cur = inpL;
  7584. cur = llm_build_norm(ctx0, cur, hparams,
  7585. model.output_norm,
  7586. model.output_norm_b,
  7587. LLM_NORM, cb, -1);
  7588. cb(cur, "result_norm", -1);
  7589. // lm_head
  7590. cur = ggml_mul_mat(ctx0, model.output, cur);
  7591. cb(cur, "result_output", -1);
  7592. ggml_build_forward_expand(gf, cur);
  7593. return gf;
  7594. }
  7595. struct ggml_cgraph * build_qwen() {
  7596. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7597. const int64_t n_embd_head = hparams.n_embd_head_v;
  7598. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7599. struct ggml_tensor * cur;
  7600. struct ggml_tensor * inpL;
  7601. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7602. // inp_pos - contains the positions
  7603. struct ggml_tensor * inp_pos = build_inp_pos();
  7604. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7605. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7606. for (int il = 0; il < n_layer; ++il) {
  7607. struct ggml_tensor * inpSA = inpL;
  7608. cur = llm_build_norm(ctx0, inpL, hparams,
  7609. model.layers[il].attn_norm, NULL,
  7610. LLM_NORM_RMS, cb, il);
  7611. cb(cur, "attn_norm", il);
  7612. // self-attention
  7613. {
  7614. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7615. cb(cur, "wqkv", il);
  7616. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7617. cb(cur, "bqkv", il);
  7618. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7619. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7620. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*(n_embd)));
  7621. cb(Qcur, "Qcur", il);
  7622. cb(Kcur, "Kcur", il);
  7623. cb(Vcur, "Vcur", il);
  7624. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7625. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7626. // using mode = 2 for neox mode
  7627. Qcur = ggml_rope_ext(
  7628. ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
  7629. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7630. );
  7631. cb(Qcur, "Qcur", il);
  7632. Kcur = ggml_rope_ext(
  7633. ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
  7634. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7635. );
  7636. cb(Kcur, "Kcur", il);
  7637. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7638. model.layers[il].wo, NULL,
  7639. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7640. }
  7641. if (il == n_layer - 1) {
  7642. // skip computing output for unused tokens
  7643. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7644. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7645. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7646. }
  7647. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7648. cb(ffn_inp, "ffn_inp", il);
  7649. // feed-forward forward
  7650. {
  7651. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7652. model.layers[il].ffn_norm, NULL,
  7653. LLM_NORM_RMS, cb, il);
  7654. cb(cur, "ffn_norm", il);
  7655. cur = llm_build_ffn(ctx0, cur,
  7656. model.layers[il].ffn_up, NULL,
  7657. model.layers[il].ffn_gate, NULL,
  7658. model.layers[il].ffn_down, NULL,
  7659. NULL,
  7660. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7661. cb(cur, "ffn_out", il);
  7662. }
  7663. cur = ggml_add(ctx0, cur, ffn_inp);
  7664. cb(cur, "l_out", il);
  7665. // input for next layer
  7666. inpL = cur;
  7667. }
  7668. cur = inpL;
  7669. cur = llm_build_norm(ctx0, cur, hparams,
  7670. model.output_norm, NULL,
  7671. LLM_NORM_RMS, cb, -1);
  7672. cb(cur, "result_norm", -1);
  7673. // lm_head
  7674. cur = ggml_mul_mat(ctx0, model.output, cur);
  7675. cb(cur, "result_output", -1);
  7676. ggml_build_forward_expand(gf, cur);
  7677. return gf;
  7678. }
  7679. struct ggml_cgraph * build_qwen2() {
  7680. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7681. const int64_t n_embd_head = hparams.n_embd_head_v;
  7682. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7683. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7684. struct ggml_tensor * cur;
  7685. struct ggml_tensor * inpL;
  7686. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7687. // inp_pos - contains the positions
  7688. struct ggml_tensor * inp_pos = build_inp_pos();
  7689. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7690. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7691. for (int il = 0; il < n_layer; ++il) {
  7692. struct ggml_tensor * inpSA = inpL;
  7693. // norm
  7694. cur = llm_build_norm(ctx0, inpL, hparams,
  7695. model.layers[il].attn_norm, NULL,
  7696. LLM_NORM_RMS, cb, il);
  7697. cb(cur, "attn_norm", il);
  7698. // self-attention
  7699. {
  7700. // compute Q and K and RoPE them
  7701. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7702. cb(Qcur, "Qcur", il);
  7703. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7704. cb(Qcur, "Qcur", il);
  7705. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7706. cb(Kcur, "Kcur", il);
  7707. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7708. cb(Kcur, "Kcur", il);
  7709. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7710. cb(Vcur, "Vcur", il);
  7711. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7712. cb(Vcur, "Vcur", il);
  7713. Qcur = ggml_rope_ext(
  7714. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  7715. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7716. ext_factor, attn_factor, beta_fast, beta_slow
  7717. );
  7718. cb(Qcur, "Qcur", il);
  7719. Kcur = ggml_rope_ext(
  7720. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  7721. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7722. ext_factor, attn_factor, beta_fast, beta_slow
  7723. );
  7724. cb(Kcur, "Kcur", il);
  7725. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7726. model.layers[il].wo, model.layers[il].bo,
  7727. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7728. }
  7729. if (il == n_layer - 1) {
  7730. // skip computing output for unused tokens
  7731. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7732. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7733. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7734. }
  7735. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7736. cb(ffn_inp, "ffn_inp", il);
  7737. // feed-forward network
  7738. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7739. model.layers[il].ffn_norm, NULL,
  7740. LLM_NORM_RMS, cb, il);
  7741. cb(cur, "ffn_norm", il);
  7742. cur = llm_build_ffn(ctx0, cur,
  7743. model.layers[il].ffn_up, NULL,
  7744. model.layers[il].ffn_gate, NULL,
  7745. model.layers[il].ffn_down, NULL,
  7746. NULL,
  7747. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7748. cb(cur, "ffn_out", il);
  7749. cur = ggml_add(ctx0, cur, ffn_inp);
  7750. cb(cur, "l_out", il);
  7751. // input for next layer
  7752. inpL = cur;
  7753. }
  7754. cur = inpL;
  7755. cur = llm_build_norm(ctx0, cur, hparams,
  7756. model.output_norm, NULL,
  7757. LLM_NORM_RMS, cb, -1);
  7758. cb(cur, "result_norm", -1);
  7759. // lm_head
  7760. cur = ggml_mul_mat(ctx0, model.output, cur);
  7761. cb(cur, "result_output", -1);
  7762. ggml_build_forward_expand(gf, cur);
  7763. return gf;
  7764. }
  7765. struct ggml_cgraph * build_qwen2moe() {
  7766. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7767. // mutable variable, needed during the last layer of the computation to skip unused tokens
  7768. int32_t n_tokens = this->n_tokens;
  7769. const int64_t n_embd_head = hparams.n_embd_head_v;
  7770. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7771. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7772. struct ggml_tensor * cur;
  7773. struct ggml_tensor * inpL;
  7774. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7775. // inp_pos - contains the positions
  7776. struct ggml_tensor * inp_pos = build_inp_pos();
  7777. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7778. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7779. for (int il = 0; il < n_layer; ++il) {
  7780. struct ggml_tensor * inpSA = inpL;
  7781. // norm
  7782. cur = llm_build_norm(ctx0, inpL, hparams,
  7783. model.layers[il].attn_norm, NULL,
  7784. LLM_NORM_RMS, cb, il);
  7785. cb(cur, "attn_norm", il);
  7786. // self_attention
  7787. {
  7788. // compute Q and K and RoPE them
  7789. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7790. cb(Qcur, "Qcur", il);
  7791. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7792. cb(Qcur, "Qcur", il);
  7793. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7794. cb(Kcur, "Kcur", il);
  7795. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7796. cb(Kcur, "Kcur", il);
  7797. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7798. cb(Vcur, "Vcur", il);
  7799. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7800. cb(Vcur, "Vcur", il);
  7801. Qcur = ggml_rope_ext(
  7802. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  7803. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7804. ext_factor, attn_factor, beta_fast, beta_slow
  7805. );
  7806. cb(Qcur, "Qcur", il);
  7807. Kcur = ggml_rope_ext(
  7808. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  7809. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7810. ext_factor, attn_factor, beta_fast, beta_slow
  7811. );
  7812. cb(Kcur, "Kcur", il);
  7813. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7814. model.layers[il].wo, model.layers[il].bo,
  7815. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7816. }
  7817. if (il == n_layer - 1) {
  7818. // skip computing output for unused tokens
  7819. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7820. n_tokens = n_outputs;
  7821. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7822. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7823. }
  7824. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7825. cb(ffn_inp, "ffn_inp", il);
  7826. // MoE branch
  7827. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7828. model.layers[il].ffn_norm, NULL,
  7829. LLM_NORM_RMS, cb, il);
  7830. cb(cur, "ffn_norm", il);
  7831. ggml_tensor * moe_out =
  7832. llm_build_moe_ffn(ctx0, cur,
  7833. model.layers[il].ffn_gate_inp,
  7834. model.layers[il].ffn_up_exps,
  7835. model.layers[il].ffn_gate_exps,
  7836. model.layers[il].ffn_down_exps,
  7837. n_expert, n_expert_used,
  7838. LLM_FFN_SILU, false,
  7839. false, 0.0,
  7840. cb, il);
  7841. cb(cur, "ffn_moe_out", il);
  7842. // FFN shared expert
  7843. {
  7844. ggml_tensor * cur_gate_inp = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp_shexp, cur);
  7845. cb(cur_gate_inp, "ffn_shexp_gate_inp", il);
  7846. // sigmoid
  7847. ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp);
  7848. cb(cur_gate, "ffn_shexp_gate", il);
  7849. ggml_tensor * cur_ffn = llm_build_ffn(ctx0, cur,
  7850. model.layers[il].ffn_up_shexp, NULL,
  7851. model.layers[il].ffn_gate_shexp, NULL,
  7852. model.layers[il].ffn_down_shexp, NULL,
  7853. NULL,
  7854. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7855. cb(cur_ffn, "ffn_shexp", il);
  7856. ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate);
  7857. cb(ffn_shexp_out, "ffn_shexp_out", il);
  7858. moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out);
  7859. cb(moe_out, "ffn_out", il);
  7860. cur = moe_out;
  7861. }
  7862. cur = ggml_add(ctx0, cur, ffn_inp);
  7863. cb(cur, "l_out", il);
  7864. // input for next layer
  7865. inpL = cur;
  7866. }
  7867. cur = inpL;
  7868. cur = llm_build_norm(ctx0, cur, hparams,
  7869. model.output_norm, NULL,
  7870. LLM_NORM_RMS, cb, -1);
  7871. cb(cur, "result_norm", -1);
  7872. // lm_head
  7873. cur = ggml_mul_mat(ctx0, model.output, cur);
  7874. cb(cur, "result_output", -1);
  7875. ggml_build_forward_expand(gf, cur);
  7876. return gf;
  7877. }
  7878. struct ggml_cgraph * build_phi2() {
  7879. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7880. const int64_t n_embd_head = hparams.n_embd_head_v;
  7881. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7882. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7883. struct ggml_tensor * cur;
  7884. struct ggml_tensor * attn_norm_output;
  7885. struct ggml_tensor * ffn_output;
  7886. struct ggml_tensor * inpL;
  7887. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7888. // inp_pos - contains the positions
  7889. struct ggml_tensor * inp_pos = build_inp_pos();
  7890. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7891. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7892. for (int il = 0; il < n_layer; ++il) {
  7893. attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
  7894. model.layers[il].attn_norm,
  7895. model.layers[il].attn_norm_b,
  7896. LLM_NORM, cb, il);
  7897. cb(attn_norm_output, "attn_norm", il);
  7898. // self-attention
  7899. {
  7900. struct ggml_tensor * Qcur = nullptr;
  7901. struct ggml_tensor * Kcur = nullptr;
  7902. struct ggml_tensor * Vcur = nullptr;
  7903. if (model.layers[il].wqkv) {
  7904. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
  7905. cb(cur, "wqkv", il);
  7906. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7907. cb(cur, "bqkv", il);
  7908. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7909. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7910. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7911. } else {
  7912. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  7913. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  7914. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  7915. }
  7916. cb(Qcur, "Qcur", il);
  7917. cb(Kcur, "Kcur", il);
  7918. cb(Vcur, "Vcur", il);
  7919. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7920. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7921. Qcur = ggml_rope_ext(
  7922. ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
  7923. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7924. );
  7925. cb(Qcur, "Qcur", il);
  7926. // with phi2, we scale the Q to avoid precision issues
  7927. // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
  7928. Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head)));
  7929. cb(Qcur, "Qcur", il);
  7930. Kcur = ggml_rope_ext(
  7931. ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
  7932. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7933. );
  7934. cb(Kcur, "Kcur", il);
  7935. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7936. model.layers[il].wo, model.layers[il].bo,
  7937. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  7938. }
  7939. if (il == n_layer - 1) {
  7940. // skip computing output for unused tokens
  7941. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7942. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7943. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7944. attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids);
  7945. }
  7946. // FF
  7947. {
  7948. ffn_output = llm_build_ffn(ctx0, attn_norm_output,
  7949. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7950. NULL, NULL,
  7951. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7952. NULL,
  7953. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7954. cb(ffn_output, "ffn_out", il);
  7955. }
  7956. cur = ggml_add(ctx0, cur, ffn_output);
  7957. cb(cur, "l_out", il);
  7958. cur = ggml_add(ctx0, cur, inpL);
  7959. cb(cur, "l_out", il);
  7960. inpL = cur;
  7961. }
  7962. cur = llm_build_norm(ctx0, inpL, hparams,
  7963. model.output_norm,
  7964. model.output_norm_b,
  7965. LLM_NORM, cb, -1);
  7966. cb(cur, "result_norm", -1);
  7967. cur = ggml_mul_mat(ctx0, model.output, cur);
  7968. cb(cur, "result_output_no_bias", -1);
  7969. cur = ggml_add(ctx0, cur, model.output_b);
  7970. cb(cur, "result_output", -1);
  7971. ggml_build_forward_expand(gf, cur);
  7972. return gf;
  7973. }
  7974. struct ggml_cgraph * build_phi3() {
  7975. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7976. const int64_t n_embd_head = hparams.n_embd_head_v;
  7977. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7978. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7979. struct ggml_tensor * cur;
  7980. struct ggml_tensor * inpL;
  7981. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7982. // inp_pos - contains the positions
  7983. struct ggml_tensor * inp_pos = build_inp_pos();
  7984. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7985. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7986. for (int il = 0; il < n_layer; ++il) {
  7987. auto residual = inpL;
  7988. // self-attention
  7989. {
  7990. // rope freq factors for 128k context
  7991. struct ggml_tensor * rope_factors = build_rope_factors(il);
  7992. struct ggml_tensor* attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
  7993. model.layers[il].attn_norm,
  7994. NULL,
  7995. LLM_NORM_RMS, cb, il);
  7996. cb(attn_norm_output, "attn_norm", il);
  7997. struct ggml_tensor * Qcur = nullptr;
  7998. struct ggml_tensor * Kcur = nullptr;
  7999. struct ggml_tensor * Vcur = nullptr;
  8000. if (model.layers[il].wqkv) {
  8001. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
  8002. cb(cur, "wqkv", il);
  8003. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0 * sizeof(float) * (n_embd)));
  8004. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd)));
  8005. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa)));
  8006. }
  8007. else {
  8008. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  8009. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  8010. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  8011. }
  8012. cb(Qcur, "Qcur", il);
  8013. cb(Kcur, "Kcur", il);
  8014. cb(Vcur, "Vcur", il);
  8015. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8016. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8017. Qcur = ggml_rope_ext(
  8018. ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig,
  8019. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  8020. );
  8021. cb(Qcur, "Qcur", il);
  8022. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
  8023. cb(Qcur, "Qcur", il);
  8024. Kcur = ggml_rope_ext(
  8025. ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig,
  8026. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  8027. );
  8028. cb(Kcur, "Kcur", il);
  8029. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8030. model.layers[il].wo, model.layers[il].bo,
  8031. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  8032. }
  8033. if (il == n_layer - 1) {
  8034. // skip computing output for unused tokens
  8035. struct ggml_tensor* inp_out_ids = build_inp_out_ids();
  8036. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8037. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  8038. }
  8039. cur = ggml_add(ctx0, cur, residual);
  8040. residual = cur;
  8041. cur = llm_build_norm(ctx0, cur, hparams,
  8042. model.layers[il].ffn_norm, NULL,
  8043. LLM_NORM_RMS, cb, il);
  8044. cb(cur, "ffn_norm", il);
  8045. // FF
  8046. // special-case: the up and gate tensors are merged into a single tensor
  8047. // TOOD: support into llm_build_ffn
  8048. {
  8049. struct ggml_tensor* up = ggml_mul_mat(ctx0, model.layers[il].ffn_up, cur);
  8050. cb(up, "ffn_up", il);
  8051. auto g = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), 0));
  8052. auto y = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), up->nb[1] / 2));
  8053. y = ggml_mul(ctx0, y, ggml_silu(ctx0, g));
  8054. cb(y, "ffn_gate", il);
  8055. auto down = ggml_mul_mat(ctx0, model.layers[il].ffn_down, y);
  8056. cb(down, "ffn_down", il);
  8057. cur = down;
  8058. cb(cur, "ffn_out", il);
  8059. }
  8060. cur = ggml_add(ctx0, residual, cur);
  8061. cb(cur, "l_out", il);
  8062. inpL = cur;
  8063. }
  8064. cur = llm_build_norm(ctx0, inpL, hparams,
  8065. model.output_norm,
  8066. NULL,
  8067. LLM_NORM_RMS, cb, -1);
  8068. cb(cur, "result_norm", -1);
  8069. cur = ggml_mul_mat(ctx0, model.output, cur);
  8070. cb(cur, "result_output", -1);
  8071. ggml_build_forward_expand(gf, cur);
  8072. return gf;
  8073. }
  8074. struct ggml_cgraph * build_plamo() {
  8075. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  8076. const int64_t n_embd_head = hparams.n_embd_head_v;
  8077. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8078. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8079. struct ggml_tensor * cur;
  8080. struct ggml_tensor * inpL;
  8081. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8082. // inp_pos - contains the positions
  8083. struct ggml_tensor * inp_pos = build_inp_pos();
  8084. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8085. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8086. for (int il = 0; il < n_layer; ++il) {
  8087. // norm
  8088. cur = llm_build_norm(ctx0, inpL, hparams,
  8089. model.layers[il].attn_norm, NULL,
  8090. LLM_NORM_RMS, cb, il);
  8091. cb(cur, "attn_norm", il);
  8092. struct ggml_tensor * attention_norm = cur;
  8093. // self-attention
  8094. {
  8095. // compute Q and K and RoPE them
  8096. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8097. cb(Qcur, "Qcur", il);
  8098. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8099. cb(Kcur, "Kcur", il);
  8100. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8101. cb(Vcur, "Vcur", il);
  8102. Qcur = ggml_rope_ext(
  8103. ctx0, ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens), inp_pos, nullptr,
  8104. n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
  8105. ext_factor, attn_factor, beta_fast, beta_slow);
  8106. cb(Qcur, "Qcur", il);
  8107. Kcur = ggml_rope_ext(
  8108. ctx0, ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens), inp_pos, nullptr,
  8109. n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
  8110. ext_factor, attn_factor, beta_fast, beta_slow);
  8111. cb(Kcur, "Kcur", il);
  8112. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8113. model.layers[il].wo, NULL,
  8114. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8115. }
  8116. struct ggml_tensor * sa_out = cur;
  8117. cur = attention_norm;
  8118. if (il == n_layer - 1) {
  8119. // skip computing output for unused tokens
  8120. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8121. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8122. sa_out = ggml_get_rows(ctx0, sa_out, inp_out_ids);
  8123. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8124. }
  8125. // feed-forward network
  8126. {
  8127. cur = llm_build_ffn(ctx0, cur,
  8128. model.layers[il].ffn_up, NULL,
  8129. model.layers[il].ffn_gate, NULL,
  8130. model.layers[il].ffn_down, NULL,
  8131. NULL,
  8132. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8133. cb(cur, "ffn_out", il);
  8134. }
  8135. cur = ggml_add(ctx0, cur, sa_out);
  8136. cb(cur, "l_out", il);
  8137. cur = ggml_add(ctx0, cur, inpL);
  8138. cb(cur, "l_out", il);
  8139. // input for next layer
  8140. inpL = cur;
  8141. }
  8142. cur = inpL;
  8143. cur = llm_build_norm(ctx0, cur, hparams,
  8144. model.output_norm, NULL,
  8145. LLM_NORM_RMS, cb, -1);
  8146. cb(cur, "result_norm", -1);
  8147. // lm_head
  8148. cur = ggml_mul_mat(ctx0, model.output, cur);
  8149. cb(cur, "result_output", -1);
  8150. ggml_build_forward_expand(gf, cur);
  8151. return gf;
  8152. }
  8153. struct ggml_cgraph * build_gpt2() {
  8154. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8155. const int64_t n_embd_head = hparams.n_embd_head_v;
  8156. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8157. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8158. struct ggml_tensor * cur;
  8159. struct ggml_tensor * pos;
  8160. struct ggml_tensor * inpL;
  8161. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8162. // inp_pos - contains the positions
  8163. struct ggml_tensor * inp_pos = build_inp_pos();
  8164. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8165. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8166. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  8167. cb(pos, "pos_embd", -1);
  8168. inpL = ggml_add(ctx0, inpL, pos);
  8169. cb(inpL, "inpL", -1);
  8170. for (int il = 0; il < n_layer; ++il) {
  8171. cur = llm_build_norm(ctx0, inpL, hparams,
  8172. model.layers[il].attn_norm,
  8173. model.layers[il].attn_norm_b,
  8174. LLM_NORM, cb, il);
  8175. cb(cur, "attn_norm", il);
  8176. // self-attention
  8177. {
  8178. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  8179. cb(cur, "wqkv", il);
  8180. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8181. cb(cur, "bqkv", il);
  8182. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  8183. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  8184. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  8185. cb(Qcur, "Qcur", il);
  8186. cb(Kcur, "Kcur", il);
  8187. cb(Vcur, "Vcur", il);
  8188. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8189. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8190. model.layers[il].wo, model.layers[il].bo,
  8191. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8192. }
  8193. if (il == n_layer - 1) {
  8194. // skip computing output for unused tokens
  8195. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8196. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8197. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8198. }
  8199. // add the input
  8200. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  8201. cb(ffn_inp, "ffn_inp", il);
  8202. // FF
  8203. {
  8204. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8205. model.layers[il].ffn_norm,
  8206. model.layers[il].ffn_norm_b,
  8207. LLM_NORM, cb, il);
  8208. cb(cur, "ffn_norm", il);
  8209. cur = llm_build_ffn(ctx0, cur,
  8210. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  8211. NULL, NULL,
  8212. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  8213. NULL,
  8214. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8215. cb(cur, "ffn_out", il);
  8216. }
  8217. inpL = ggml_add(ctx0, cur, ffn_inp);
  8218. cb(inpL, "l_out", il);
  8219. }
  8220. cur = llm_build_norm(ctx0, inpL, hparams,
  8221. model.output_norm,
  8222. model.output_norm_b,
  8223. LLM_NORM, cb, -1);
  8224. cb(cur, "result_norm", -1);
  8225. cur = ggml_mul_mat(ctx0, model.output, cur);
  8226. cb(cur, "result_output", -1);
  8227. ggml_build_forward_expand(gf, cur);
  8228. return gf;
  8229. }
  8230. struct ggml_cgraph * build_codeshell() {
  8231. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8232. const int64_t n_embd_head = hparams.n_embd_head_v;
  8233. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8234. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8235. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8236. struct ggml_tensor * cur;
  8237. struct ggml_tensor * inpL;
  8238. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8239. // inp_pos - contains the positions
  8240. struct ggml_tensor * inp_pos = build_inp_pos();
  8241. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8242. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8243. for (int il = 0; il < n_layer; ++il) {
  8244. cur = llm_build_norm(ctx0, inpL, hparams,
  8245. model.layers[il].attn_norm,
  8246. model.layers[il].attn_norm_b,
  8247. LLM_NORM, cb, il);
  8248. cb(cur, "attn_norm", il);
  8249. // self-attention
  8250. {
  8251. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  8252. cb(cur, "wqkv", il);
  8253. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8254. cb(cur, "bqkv", il);
  8255. struct ggml_tensor * tmpq = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  8256. struct ggml_tensor * tmpk = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  8257. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  8258. cb(tmpq, "tmpq", il);
  8259. cb(tmpk, "tmpk", il);
  8260. cb(Vcur, "Vcur", il);
  8261. struct ggml_tensor * Qcur = ggml_rope_ext(
  8262. ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8263. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8264. ext_factor, attn_factor, beta_fast, beta_slow
  8265. );
  8266. cb(Qcur, "Qcur", il);
  8267. struct ggml_tensor * Kcur = ggml_rope_ext(
  8268. ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8269. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8270. ext_factor, attn_factor, beta_fast, beta_slow
  8271. );
  8272. cb(Kcur, "Kcur", il);
  8273. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8274. model.layers[il].wo, model.layers[il].bo,
  8275. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8276. }
  8277. if (il == n_layer - 1) {
  8278. // skip computing output for unused tokens
  8279. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8280. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8281. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8282. }
  8283. // add the input
  8284. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  8285. cb(ffn_inp, "ffn_inp", il);
  8286. // FF
  8287. {
  8288. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8289. model.layers[il].ffn_norm,
  8290. model.layers[il].ffn_norm_b,
  8291. LLM_NORM, cb, il);
  8292. cb(cur, "ffn_norm", il);
  8293. cur = llm_build_ffn(ctx0, cur,
  8294. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  8295. NULL, NULL,
  8296. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  8297. NULL,
  8298. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8299. cb(cur, "ffn_out", il);
  8300. }
  8301. inpL = ggml_add(ctx0, cur, ffn_inp);
  8302. cb(inpL, "l_out", il);
  8303. }
  8304. cur = llm_build_norm(ctx0, inpL, hparams,
  8305. model.output_norm,
  8306. model.output_norm_b,
  8307. LLM_NORM, cb, -1);
  8308. cb(cur, "result_norm", -1);
  8309. cur = ggml_mul_mat(ctx0, model.output, cur);
  8310. cb(cur, "result_output", -1);
  8311. ggml_build_forward_expand(gf, cur);
  8312. return gf;
  8313. }
  8314. struct ggml_cgraph * build_orion() {
  8315. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8316. const int64_t n_embd_head = hparams.n_embd_head_v;
  8317. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8318. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8319. struct ggml_tensor * cur;
  8320. struct ggml_tensor * inpL;
  8321. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8322. // inp_pos - contains the positions
  8323. struct ggml_tensor * inp_pos = build_inp_pos();
  8324. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8325. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8326. for (int il = 0; il < n_layer; ++il) {
  8327. struct ggml_tensor * inpSA = inpL;
  8328. // norm
  8329. cur = llm_build_norm(ctx0, inpL, hparams,
  8330. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  8331. LLM_NORM, cb, il);
  8332. cb(cur, "attn_norm", il);
  8333. // self-attention
  8334. {
  8335. // compute Q and K and RoPE them
  8336. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8337. cb(Qcur, "Qcur", il);
  8338. // if (model.layers[il].bq) {
  8339. // Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8340. // cb(Qcur, "Qcur", il);
  8341. // }
  8342. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8343. cb(Kcur, "Kcur", il);
  8344. // if (model.layers[il].bk) {
  8345. // Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8346. // cb(Kcur, "Kcur", il);
  8347. // }
  8348. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8349. cb(Vcur, "Vcur", il);
  8350. // if (model.layers[il].bv) {
  8351. // Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8352. // cb(Vcur, "Vcur", il);
  8353. // }
  8354. Qcur = ggml_rope_ext(
  8355. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8356. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8357. ext_factor, attn_factor, beta_fast, beta_slow
  8358. );
  8359. cb(Qcur, "Qcur", il);
  8360. Kcur = ggml_rope_ext(
  8361. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8362. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8363. ext_factor, attn_factor, beta_fast, beta_slow
  8364. );
  8365. cb(Kcur, "Kcur", il);
  8366. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8367. model.layers[il].wo, NULL,
  8368. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8369. }
  8370. if (il == n_layer - 1) {
  8371. // skip computing output for unused tokens
  8372. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8373. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8374. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8375. }
  8376. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8377. cb(ffn_inp, "ffn_inp", il);
  8378. // feed-forward network
  8379. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8380. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  8381. LLM_NORM, cb, il);
  8382. cb(cur, "ffn_norm", il);
  8383. cur = llm_build_ffn(ctx0, cur,
  8384. model.layers[il].ffn_up, NULL,
  8385. model.layers[il].ffn_gate, NULL,
  8386. model.layers[il].ffn_down, NULL,
  8387. NULL,
  8388. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8389. cb(cur, "ffn_out", il);
  8390. cur = ggml_add(ctx0, cur, ffn_inp);
  8391. cb(cur, "l_out", il);
  8392. // input for next layer
  8393. inpL = cur;
  8394. }
  8395. cur = inpL;
  8396. cur = llm_build_norm(ctx0, cur, hparams,
  8397. model.output_norm, model.output_norm_b,
  8398. LLM_NORM, cb, -1);
  8399. cb(cur, "result_norm", -1);
  8400. // lm_head
  8401. cur = ggml_mul_mat(ctx0, model.output, cur);
  8402. cb(cur, "result_output", -1);
  8403. ggml_build_forward_expand(gf, cur);
  8404. return gf;
  8405. }
  8406. struct ggml_cgraph * build_internlm2() {
  8407. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8408. const int64_t n_embd_head = hparams.n_embd_head_v;
  8409. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8410. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8411. struct ggml_tensor * cur;
  8412. struct ggml_tensor * inpL;
  8413. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8414. // inp_pos - contains the positions
  8415. struct ggml_tensor * inp_pos = build_inp_pos();
  8416. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8417. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8418. for (int il = 0; il < n_layer; ++il) {
  8419. struct ggml_tensor * inpSA = inpL;
  8420. // norm
  8421. cur = llm_build_norm(ctx0, inpL, hparams,
  8422. model.layers[il].attn_norm, NULL,
  8423. LLM_NORM_RMS, cb, il);
  8424. cb(cur, "attn_norm", il);
  8425. // self-attention
  8426. {
  8427. // compute Q and K and RoPE them
  8428. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8429. cb(Qcur, "Qcur", il);
  8430. if (model.layers[il].bq) {
  8431. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8432. cb(Qcur, "Qcur", il);
  8433. }
  8434. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8435. cb(Kcur, "Kcur", il);
  8436. if (model.layers[il].bk) {
  8437. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8438. cb(Kcur, "Kcur", il);
  8439. }
  8440. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8441. cb(Vcur, "Vcur", il);
  8442. if (model.layers[il].bv) {
  8443. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8444. cb(Vcur, "Vcur", il);
  8445. }
  8446. Qcur = ggml_rope_ext(
  8447. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8448. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8449. ext_factor, attn_factor, beta_fast, beta_slow
  8450. );
  8451. cb(Qcur, "Qcur", il);
  8452. Kcur = ggml_rope_ext(
  8453. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8454. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8455. ext_factor, attn_factor, beta_fast, beta_slow
  8456. );
  8457. cb(Kcur, "Kcur", il);
  8458. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8459. model.layers[il].wo, model.layers[il].bo,
  8460. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8461. }
  8462. if (il == n_layer - 1) {
  8463. // skip computing output for unused tokens
  8464. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8465. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8466. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8467. }
  8468. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8469. cb(ffn_inp, "ffn_inp", il);
  8470. // feed-forward network
  8471. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8472. model.layers[il].ffn_norm, NULL,
  8473. LLM_NORM_RMS, cb, il);
  8474. cb(cur, "ffn_norm", il);
  8475. cur = llm_build_ffn(ctx0, cur,
  8476. model.layers[il].ffn_up, NULL,
  8477. model.layers[il].ffn_gate, NULL,
  8478. model.layers[il].ffn_down, NULL,
  8479. NULL,
  8480. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8481. cb(cur, "ffn_out", il);
  8482. cur = ggml_add(ctx0, cur, ffn_inp);
  8483. cb(cur, "l_out", il);
  8484. // input for next layer
  8485. inpL = cur;
  8486. }
  8487. cur = inpL;
  8488. cur = llm_build_norm(ctx0, cur, hparams,
  8489. model.output_norm, NULL,
  8490. LLM_NORM_RMS, cb, -1);
  8491. cb(cur, "result_norm", -1);
  8492. // lm_head
  8493. cur = ggml_mul_mat(ctx0, model.output, cur);
  8494. cb(cur, "result_output", -1);
  8495. ggml_build_forward_expand(gf, cur);
  8496. return gf;
  8497. }
  8498. // ref: https://arxiv.org/abs/2203.03466
  8499. // https://github.com/ggerganov/llama.cpp/issues/5276#issuecomment-1925774738
  8500. // based on the original build_llama() function
  8501. struct ggml_cgraph * build_minicpm() {
  8502. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8503. const int64_t n_embd_head = hparams.n_embd_head_v;
  8504. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8505. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8506. const int64_t n_embd = hparams.n_embd;
  8507. //TODO: if the model varies, these parameters need to be read from the model
  8508. const int64_t n_embd_base = 256;
  8509. const float scale_embd = 12.0f;
  8510. const float scale_depth = 1.4f;
  8511. struct ggml_tensor * cur;
  8512. struct ggml_tensor * inpL;
  8513. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8514. // scale the input embeddings
  8515. inpL = ggml_scale(ctx0, inpL, scale_embd);
  8516. cb(inpL, "inp_scaled", -1);
  8517. // inp_pos - contains the positions
  8518. struct ggml_tensor * inp_pos = build_inp_pos();
  8519. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8520. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8521. for (int il = 0; il < n_layer; ++il) {
  8522. struct ggml_tensor * inpSA = inpL;
  8523. // norm
  8524. cur = llm_build_norm(ctx0, inpL, hparams,
  8525. model.layers[il].attn_norm, NULL,
  8526. LLM_NORM_RMS, cb, il);
  8527. cb(cur, "attn_norm", il);
  8528. // self-attention
  8529. {
  8530. // compute Q and K and RoPE them
  8531. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8532. cb(Qcur, "Qcur", il);
  8533. if (model.layers[il].bq) {
  8534. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8535. cb(Qcur, "Qcur", il);
  8536. }
  8537. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8538. cb(Kcur, "Kcur", il);
  8539. if (model.layers[il].bk) {
  8540. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8541. cb(Kcur, "Kcur", il);
  8542. }
  8543. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8544. cb(Vcur, "Vcur", il);
  8545. if (model.layers[il].bv) {
  8546. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8547. cb(Vcur, "Vcur", il);
  8548. }
  8549. Qcur = ggml_rope_ext(
  8550. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8551. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8552. ext_factor, attn_factor, beta_fast, beta_slow
  8553. );
  8554. cb(Qcur, "Qcur", il);
  8555. Kcur = ggml_rope_ext(
  8556. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8557. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8558. ext_factor, attn_factor, beta_fast, beta_slow
  8559. );
  8560. cb(Kcur, "Kcur", il);
  8561. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8562. model.layers[il].wo, model.layers[il].bo,
  8563. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8564. }
  8565. if (il == n_layer - 1) {
  8566. // skip computing output for unused tokens
  8567. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8568. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8569. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8570. }
  8571. // scale_res - scale the hidden states for residual connection
  8572. const float scale_res = scale_depth/sqrtf(float(n_layer));
  8573. cur = ggml_scale(ctx0, cur, scale_res);
  8574. cb(cur, "hidden_scaled", -1);
  8575. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8576. cb(ffn_inp, "ffn_inp", il);
  8577. // feed-forward network
  8578. {
  8579. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8580. model.layers[il].ffn_norm, NULL,
  8581. LLM_NORM_RMS, cb, il);
  8582. cb(cur, "ffn_norm", il);
  8583. cur = llm_build_ffn(ctx0, cur,
  8584. model.layers[il].ffn_up, NULL,
  8585. model.layers[il].ffn_gate, NULL,
  8586. model.layers[il].ffn_down, NULL,
  8587. NULL,
  8588. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8589. cb(cur, "ffn_out", il);
  8590. }
  8591. // scale the hidden states for residual connection
  8592. cur = ggml_scale(ctx0, cur, scale_res);
  8593. cb(cur, "hidden_scaled_ffn", -1);
  8594. cur = ggml_add(ctx0, cur, ffn_inp);
  8595. cb(cur, "l_out", il);
  8596. // input for next layer
  8597. inpL = cur;
  8598. }
  8599. cur = inpL;
  8600. cur = llm_build_norm(ctx0, cur, hparams,
  8601. model.output_norm, NULL,
  8602. LLM_NORM_RMS, cb, -1);
  8603. cb(cur, "result_norm", -1);
  8604. // lm_head scaling
  8605. const float scale_lmhead = float(n_embd_base)/float(n_embd);
  8606. cur = ggml_scale(ctx0, cur, scale_lmhead);
  8607. cb(cur, "lmhead_scaling", -1);
  8608. // lm_head
  8609. cur = ggml_mul_mat(ctx0, model.output, cur);
  8610. cb(cur, "result_output", -1);
  8611. ggml_build_forward_expand(gf, cur);
  8612. return gf;
  8613. }
  8614. struct ggml_cgraph * build_gemma() {
  8615. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8616. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  8617. struct ggml_tensor * cur;
  8618. struct ggml_tensor * inpL;
  8619. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8620. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  8621. cb(inpL, "inp_scaled", -1);
  8622. // inp_pos - contains the positions
  8623. struct ggml_tensor * inp_pos = build_inp_pos();
  8624. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8625. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8626. for (int il = 0; il < n_layer; ++il) {
  8627. // norm
  8628. cur = llm_build_norm(ctx0, inpL, hparams,
  8629. model.layers[il].attn_norm, NULL,
  8630. LLM_NORM_RMS, cb, il);
  8631. cb(cur, "attn_norm", il);
  8632. // self-attention
  8633. {
  8634. // compute Q and K and RoPE them
  8635. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8636. cb(Qcur, "Qcur", il);
  8637. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8638. cb(Kcur, "Kcur", il);
  8639. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8640. cb(Vcur, "Vcur", il);
  8641. Qcur = ggml_rope_ext(
  8642. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos, nullptr,
  8643. n_embd_head_k, rope_type, n_ctx_orig, freq_base, freq_scale,
  8644. ext_factor, attn_factor, beta_fast, beta_slow);
  8645. cb(Qcur, "Qcur", il);
  8646. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
  8647. cb(Qcur, "Qcur_scaled", il);
  8648. Kcur = ggml_rope_ext(
  8649. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos, nullptr,
  8650. n_embd_head_k, rope_type, n_ctx_orig, freq_base, freq_scale,
  8651. ext_factor, attn_factor, beta_fast, beta_slow);
  8652. cb(Kcur, "Kcur", il);
  8653. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8654. model.layers[il].wo, NULL,
  8655. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  8656. }
  8657. if (il == n_layer - 1) {
  8658. // skip computing output for unused tokens
  8659. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8660. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8661. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8662. }
  8663. struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  8664. cb(sa_out, "sa_out", il);
  8665. cur = llm_build_norm(ctx0, sa_out, hparams,
  8666. model.layers[il].ffn_norm, NULL,
  8667. LLM_NORM_RMS, cb, il);
  8668. cb(cur, "ffn_norm", il);
  8669. // feed-forward network
  8670. {
  8671. cur = llm_build_ffn(ctx0, cur,
  8672. model.layers[il].ffn_up, NULL,
  8673. model.layers[il].ffn_gate, NULL,
  8674. model.layers[il].ffn_down, NULL,
  8675. NULL,
  8676. LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
  8677. cb(cur, "ffn_out", il);
  8678. }
  8679. cur = ggml_add(ctx0, cur, sa_out);
  8680. cb(cur, "l_out", il);
  8681. // input for next layer
  8682. inpL = cur;
  8683. }
  8684. cur = inpL;
  8685. cur = llm_build_norm(ctx0, cur, hparams,
  8686. model.output_norm, NULL,
  8687. LLM_NORM_RMS, cb, -1);
  8688. cb(cur, "result_norm", -1);
  8689. // lm_head
  8690. cur = ggml_mul_mat(ctx0, model.output, cur);
  8691. cb(cur, "result_output", -1);
  8692. ggml_build_forward_expand(gf, cur);
  8693. return gf;
  8694. }
  8695. struct ggml_cgraph * build_starcoder2() {
  8696. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8697. const int64_t n_embd_head = hparams.n_embd_head_v;
  8698. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8699. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8700. struct ggml_tensor * cur;
  8701. struct ggml_tensor * inpL;
  8702. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8703. // inp_pos - contains the positions
  8704. struct ggml_tensor * inp_pos = build_inp_pos();
  8705. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8706. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8707. for (int il = 0; il < n_layer; ++il) {
  8708. struct ggml_tensor * inpSA = inpL;
  8709. // norm
  8710. cur = llm_build_norm(ctx0, inpL, hparams,
  8711. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  8712. LLM_NORM, cb, il);
  8713. cb(cur, "attn_norm", il);
  8714. // self-attention
  8715. {
  8716. // compute Q and K and RoPE them
  8717. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8718. cb(Qcur, "Qcur", il);
  8719. if (model.layers[il].bq) {
  8720. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8721. cb(Qcur, "Qcur", il);
  8722. }
  8723. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8724. cb(Kcur, "Kcur", il);
  8725. if (model.layers[il].bk) {
  8726. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8727. cb(Kcur, "Kcur", il);
  8728. }
  8729. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8730. cb(Vcur, "Vcur", il);
  8731. if (model.layers[il].bv) {
  8732. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8733. cb(Vcur, "Vcur", il);
  8734. }
  8735. Qcur = ggml_rope_ext(
  8736. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8737. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8738. ext_factor, attn_factor, beta_fast, beta_slow
  8739. );
  8740. cb(Qcur, "Qcur", il);
  8741. Kcur = ggml_rope_ext(
  8742. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8743. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8744. ext_factor, attn_factor, beta_fast, beta_slow
  8745. );
  8746. cb(Kcur, "Kcur", il);
  8747. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8748. model.layers[il].wo, model.layers[il].bo,
  8749. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8750. }
  8751. if (il == n_layer - 1) {
  8752. // skip computing output for unused tokens
  8753. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8754. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8755. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8756. }
  8757. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8758. cb(ffn_inp, "ffn_inp", il);
  8759. // feed-forward network
  8760. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8761. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  8762. LLM_NORM, cb, il);
  8763. cb(cur, "ffn_norm", il);
  8764. cur = llm_build_ffn(ctx0, cur,
  8765. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  8766. NULL, NULL,
  8767. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  8768. NULL,
  8769. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8770. cb(cur, "ffn_out", il);
  8771. cur = ggml_add(ctx0, cur, ffn_inp);
  8772. cb(cur, "l_out", il);
  8773. // input for next layer
  8774. inpL = cur;
  8775. }
  8776. cur = inpL;
  8777. cur = llm_build_norm(ctx0, cur, hparams,
  8778. model.output_norm, model.output_norm_b,
  8779. LLM_NORM, cb, -1);
  8780. cb(cur, "result_norm", -1);
  8781. // lm_head
  8782. cur = ggml_mul_mat(ctx0, model.output, cur);
  8783. cb(cur, "result_output", -1);
  8784. ggml_build_forward_expand(gf, cur);
  8785. return gf;
  8786. }
  8787. struct ggml_cgraph * build_mamba() {
  8788. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8789. const int64_t d_model = n_embd;
  8790. const int64_t d_conv = hparams.ssm_d_conv;
  8791. const int64_t d_inner = hparams.ssm_d_inner;
  8792. GGML_ASSERT(2 * d_model == d_inner);
  8793. const int64_t d_state = hparams.ssm_d_state;
  8794. const int64_t dt_rank = hparams.ssm_dt_rank;
  8795. struct ggml_tensor * cur;
  8796. struct ggml_tensor * inpL;
  8797. // {n_embd, n_tokens}
  8798. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8799. struct ggml_tensor * state_mask = build_inp_s_mask();
  8800. struct ggml_tensor * state_seq = build_inp_s_seq();
  8801. for (int il = 0; il < n_layer; ++il) {
  8802. // (ab)using the KV cache to store the states
  8803. struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
  8804. struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
  8805. // clear states of sequences which are starting at the beginning of this batch
  8806. {
  8807. conv_states = ggml_mul(ctx0,
  8808. ggml_view_2d(ctx0, conv_states, conv_states->ne[0], n_kv, conv_states->nb[1], kv_head*conv_states->nb[1]),
  8809. state_mask);
  8810. ssm_states = ggml_mul(ctx0,
  8811. ggml_view_2d(ctx0, ssm_states, ssm_states->ne[0], n_kv, ssm_states->nb[1], kv_head*ssm_states->nb[1]),
  8812. state_mask);
  8813. }
  8814. conv_states = ggml_reshape_3d(ctx0, conv_states, d_conv - 1, d_inner, n_kv);
  8815. ssm_states = ggml_reshape_3d(ctx0, ssm_states, d_state, d_inner, n_kv);
  8816. // norm
  8817. cur = llm_build_norm(ctx0, inpL, hparams,
  8818. model.layers[il].attn_norm, NULL,
  8819. LLM_NORM_RMS, cb, il);
  8820. cb(cur, "attn_norm", il);
  8821. // {n_embd, 2*d_inner} * {n_embd, n_tokens} => {2*d_inner, n_tokens}
  8822. struct ggml_tensor * xz = ggml_mul_mat(ctx0, model.layers[il].ssm_in, cur);
  8823. // split the above in two
  8824. // => {d_inner, n_tokens}
  8825. struct ggml_tensor * x = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], 0);
  8826. struct ggml_tensor * z = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], ggml_element_size(xz)*d_inner);
  8827. // conv
  8828. {
  8829. // Custom operator which is needed only to ease simultaneous sequence processing.
  8830. // For a single sequence, the equivalent is to concatenate the columns of conv_states and x,
  8831. // then make a self-overlapping view of that over d_conv columns at each stride in the 3rd dimension,
  8832. // then element-wise multiply that with the conv1d weigth,
  8833. // then sum the elements of each row,
  8834. // (the last two steps are a dot product over rows (also doable with mul_mat))
  8835. // then permute away the ne[0] dimension,
  8836. // and then you're left with the resulting x tensor.
  8837. // The new conv_states is the last (d_conv - 1) columns
  8838. // of the last 3rd dimensional "layer" of the self-overlapping view.
  8839. // For simultaneous sequences, it's more complicated.
  8840. struct ggml_tensor * x_conv = ggml_ssm_conv(ctx0, conv_states, x, model.layers[il].ssm_conv1d, state_seq);
  8841. // store last (d_conv - 1) columns of the conv_state part of x_conv back into the KV cache
  8842. ggml_build_forward_expand(gf,
  8843. ggml_cpy(ctx0,
  8844. ggml_view_2d(ctx0, x_conv, d_conv - 1, d_inner*n_kv, d_conv*ggml_element_size(x_conv), (1+d_inner*n_tokens)*ggml_element_size(x_conv)),
  8845. ggml_view_1d(ctx0, kv_self.k_l[il], (d_conv - 1)*(d_inner)*(n_kv), kv_head*(d_conv - 1)*(d_inner)*ggml_element_size(x_conv))));
  8846. // extract x from x_conv
  8847. x = ggml_view_2d(ctx0, x_conv, d_inner, n_tokens, d_inner*ggml_element_size(x_conv), 0);
  8848. // bias
  8849. x = ggml_add(ctx0, x, model.layers[il].ssm_conv1d_b);
  8850. x = ggml_silu(ctx0, x);
  8851. }
  8852. // ssm
  8853. {
  8854. // {d_inner, dt_rank + 2*d_state} * {d_inner, n_tokens} => {dt_rank + 2*d_state, n_tokens}
  8855. struct ggml_tensor * x_db = ggml_mul_mat(ctx0, model.layers[il].ssm_x, x);
  8856. // split
  8857. struct ggml_tensor * dt = ggml_view_2d(ctx0, x_db, dt_rank, n_tokens, x_db->nb[1], 0);
  8858. struct ggml_tensor * B = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*dt_rank);
  8859. struct ggml_tensor * C = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*(dt_rank+d_state));
  8860. // {dt_rank, d_inner} * {dt_rank, n_tokens} => {d_inner, n_tokens}
  8861. dt = ggml_mul_mat(ctx0, model.layers[il].ssm_dt, dt);
  8862. dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
  8863. // Custom operator to optimize the parallel associative scan
  8864. // as described in the Annex D of the Mamba paper.
  8865. // => {d_inner, n_tokens} and {d_state, d_inner, n_kv} combined,
  8866. // because only a single tensor can be returned.
  8867. struct ggml_tensor * y_ssm_states = ggml_ssm_scan(ctx0, ssm_states, x, dt, model.layers[il].ssm_a, B, C, state_seq);
  8868. // store last states (the second part of y_ssm_states)
  8869. ggml_build_forward_expand(gf,
  8870. ggml_cpy(ctx0,
  8871. ggml_view_1d(ctx0, y_ssm_states, d_state*d_inner*n_kv, d_inner*n_tokens*ggml_element_size(y_ssm_states)),
  8872. ggml_view_1d(ctx0, kv_self.v_l[il], d_state*d_inner*n_kv, kv_head*d_state*d_inner*ggml_element_size(ssm_states))));
  8873. struct ggml_tensor * y = ggml_view_2d(ctx0, y_ssm_states, d_inner, n_tokens, d_inner*ggml_element_size(y_ssm_states), 0);
  8874. if (il == n_layer - 1) {
  8875. // skip computing output for unused tokens
  8876. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8877. x = ggml_get_rows(ctx0, x, inp_out_ids);
  8878. y = ggml_get_rows(ctx0, y, inp_out_ids);
  8879. z = ggml_get_rows(ctx0, z, inp_out_ids);
  8880. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8881. }
  8882. // {d_inner, n_tokens} * {d_inner} => {d_inner, n_tokens}
  8883. y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
  8884. y = ggml_mul(ctx0, y, ggml_silu(ctx0, z));
  8885. // {d_inner, n_embd} * {d_inner, n_tokens} => {n_embd, n_tokens}
  8886. cur = ggml_mul_mat(ctx0, model.layers[il].ssm_out, y);
  8887. }
  8888. // residual
  8889. cur = ggml_add(ctx0, cur, inpL);
  8890. cb(cur, "l_out", il);
  8891. // input for next layer
  8892. inpL = cur;
  8893. }
  8894. // final rmsnorm
  8895. cur = llm_build_norm(ctx0, inpL, hparams,
  8896. model.output_norm, NULL,
  8897. LLM_NORM_RMS, cb, -1);
  8898. cb(cur, "result_norm", -1);
  8899. // lm_head
  8900. cur = ggml_mul_mat(ctx0, model.output, cur);
  8901. cb(cur, "result_output", -1);
  8902. ggml_build_forward_expand(gf, cur);
  8903. return gf;
  8904. }
  8905. struct ggml_cgraph * build_command_r() {
  8906. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8907. const int64_t n_embd_head = hparams.n_embd_head_v;
  8908. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8909. const float f_logit_scale = hparams.f_logit_scale;
  8910. struct ggml_tensor * cur;
  8911. struct ggml_tensor * inpL;
  8912. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8913. // inp_pos - contains the positions
  8914. struct ggml_tensor * inp_pos = build_inp_pos();
  8915. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8916. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8917. for (int il = 0; il < n_layer; ++il) {
  8918. // norm
  8919. cur = llm_build_norm(ctx0, inpL, hparams,
  8920. model.layers[il].attn_norm, NULL,
  8921. LLM_NORM, cb, il);
  8922. cb(cur, "attn_norm", il);
  8923. struct ggml_tensor * ffn_inp = cur;
  8924. // self-attention
  8925. {
  8926. // compute Q and K and RoPE them
  8927. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8928. cb(Qcur, "Qcur", il);
  8929. if (model.layers[il].bq) {
  8930. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8931. cb(Qcur, "Qcur", il);
  8932. }
  8933. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8934. cb(Kcur, "Kcur", il);
  8935. if (model.layers[il].bk) {
  8936. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8937. cb(Kcur, "Kcur", il);
  8938. }
  8939. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8940. cb(Vcur, "Vcur", il);
  8941. if (model.layers[il].bv) {
  8942. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8943. cb(Vcur, "Vcur", il);
  8944. }
  8945. if (model.layers[il].attn_q_norm) {
  8946. Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens,
  8947. ggml_element_size(Qcur) * n_embd_head,
  8948. ggml_element_size(Qcur) * n_embd_head * n_head,
  8949. 0);
  8950. cb(Qcur, "Qcur", il);
  8951. Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens,
  8952. ggml_element_size(Kcur) * n_embd_head,
  8953. ggml_element_size(Kcur) * n_embd_head * n_head_kv,
  8954. 0);
  8955. cb(Kcur, "Kcur", il);
  8956. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  8957. model.layers[il].attn_q_norm,
  8958. NULL,
  8959. LLM_NORM, cb, il);
  8960. cb(Qcur, "Qcur", il);
  8961. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  8962. model.layers[il].attn_k_norm,
  8963. NULL,
  8964. LLM_NORM, cb, il);
  8965. cb(Kcur, "Kcur", il);
  8966. }
  8967. Qcur = ggml_rope_ext(
  8968. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8969. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8970. ext_factor, attn_factor, beta_fast, beta_slow
  8971. );
  8972. cb(Qcur, "Qcur", il);
  8973. Kcur = ggml_rope_ext(
  8974. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8975. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8976. ext_factor, attn_factor, beta_fast, beta_slow
  8977. );
  8978. cb(Kcur, "Kcur", il);
  8979. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8980. model.layers[il].wo, model.layers[il].bo,
  8981. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8982. }
  8983. if (il == n_layer - 1) {
  8984. // skip computing output for unused tokens
  8985. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8986. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8987. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8988. ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
  8989. }
  8990. struct ggml_tensor * attn_out = cur;
  8991. // feed-forward network
  8992. {
  8993. cur = llm_build_ffn(ctx0, ffn_inp,
  8994. model.layers[il].ffn_up, NULL,
  8995. model.layers[il].ffn_gate, NULL,
  8996. model.layers[il].ffn_down, NULL,
  8997. NULL,
  8998. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8999. cb(cur, "ffn_out", il);
  9000. }
  9001. // add together residual + FFN + self-attention
  9002. cur = ggml_add(ctx0, cur, inpL);
  9003. cur = ggml_add(ctx0, cur, attn_out);
  9004. cb(cur, "l_out", il);
  9005. // input for next layer
  9006. inpL = cur;
  9007. }
  9008. cur = inpL;
  9009. cur = llm_build_norm(ctx0, cur, hparams,
  9010. model.output_norm, NULL,
  9011. LLM_NORM, cb, -1);
  9012. cb(cur, "result_norm", -1);
  9013. // lm_head
  9014. cur = ggml_mul_mat(ctx0, model.output, cur);
  9015. if (f_logit_scale) {
  9016. cur = ggml_scale(ctx0, cur, f_logit_scale);
  9017. }
  9018. cb(cur, "result_output", -1);
  9019. ggml_build_forward_expand(gf, cur);
  9020. return gf;
  9021. }
  9022. // ref: https://allenai.org/olmo
  9023. // based on the original build_llama() function, changes:
  9024. // * non-parametric layer norm
  9025. // * clamp qkv
  9026. // * removed bias
  9027. // * removed MoE
  9028. struct ggml_cgraph * build_olmo() {
  9029. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  9030. // mutable variable, needed during the last layer of the computation to skip unused tokens
  9031. int32_t n_tokens = this->n_tokens;
  9032. const int64_t n_embd_head = hparams.n_embd_head_v;
  9033. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9034. GGML_ASSERT(n_embd_head == hparams.n_rot);
  9035. struct ggml_tensor * cur;
  9036. struct ggml_tensor * inpL;
  9037. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9038. // inp_pos - contains the positions
  9039. struct ggml_tensor * inp_pos = build_inp_pos();
  9040. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9041. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  9042. for (int il = 0; il < n_layer; ++il) {
  9043. struct ggml_tensor * inpSA = inpL;
  9044. // norm
  9045. cur = llm_build_norm(ctx0, inpL, hparams,
  9046. NULL, NULL,
  9047. LLM_NORM, cb, il);
  9048. cb(cur, "attn_norm", il);
  9049. // self-attention
  9050. {
  9051. // compute Q and K and RoPE them
  9052. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  9053. cb(Qcur, "Qcur", il);
  9054. if (hparams.f_clamp_kqv > 0.0f) {
  9055. Qcur = ggml_clamp(ctx0, Qcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  9056. cb(Qcur, "Qcur", il);
  9057. }
  9058. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  9059. cb(Kcur, "Kcur", il);
  9060. if (hparams.f_clamp_kqv > 0.0f) {
  9061. Kcur = ggml_clamp(ctx0, Kcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  9062. cb(Kcur, "Kcur", il);
  9063. }
  9064. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  9065. cb(Vcur, "Vcur", il);
  9066. if (hparams.f_clamp_kqv > 0.0f) {
  9067. Vcur = ggml_clamp(ctx0, Vcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  9068. cb(Vcur, "Vcur", il);
  9069. }
  9070. Qcur = ggml_rope_ext(
  9071. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  9072. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9073. ext_factor, attn_factor, beta_fast, beta_slow
  9074. );
  9075. cb(Qcur, "Qcur", il);
  9076. Kcur = ggml_rope_ext(
  9077. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  9078. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9079. ext_factor, attn_factor, beta_fast, beta_slow
  9080. );
  9081. cb(Kcur, "Kcur", il);
  9082. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  9083. model.layers[il].wo, nullptr,
  9084. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  9085. }
  9086. if (il == n_layer - 1) {
  9087. // skip computing output for unused tokens
  9088. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9089. n_tokens = n_outputs;
  9090. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9091. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9092. }
  9093. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9094. cb(ffn_inp, "ffn_inp", il);
  9095. // feed-forward network
  9096. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9097. NULL, NULL,
  9098. LLM_NORM, cb, il);
  9099. cb(cur, "ffn_norm", il);
  9100. cur = llm_build_ffn(ctx0, cur,
  9101. model.layers[il].ffn_up, NULL,
  9102. model.layers[il].ffn_gate, NULL,
  9103. model.layers[il].ffn_down, NULL,
  9104. NULL,
  9105. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  9106. cb(cur, "ffn_out", il);
  9107. cur = ggml_add(ctx0, cur, ffn_inp);
  9108. cb(cur, "ffn_out", il);
  9109. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  9110. if (layer_dir != nullptr) {
  9111. cur = ggml_add(ctx0, cur, layer_dir);
  9112. }
  9113. cb(cur, "l_out", il);
  9114. // input for next layer
  9115. inpL = cur;
  9116. }
  9117. cur = inpL;
  9118. cur = llm_build_norm(ctx0, cur, hparams,
  9119. NULL, NULL,
  9120. LLM_NORM, cb, -1);
  9121. cb(cur, "result_norm", -1);
  9122. // lm_head
  9123. cur = ggml_mul_mat(ctx0, model.output, cur);
  9124. cb(cur, "result_output", -1);
  9125. ggml_build_forward_expand(gf, cur);
  9126. return gf;
  9127. }
  9128. struct ggml_cgraph * build_gptneox() {
  9129. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  9130. const int64_t n_embd_head = hparams.n_embd_head_v;
  9131. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  9132. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9133. struct ggml_tensor * cur;
  9134. struct ggml_tensor * inpL;
  9135. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9136. // inp_pos - contains the positions
  9137. struct ggml_tensor * inp_pos = build_inp_pos();
  9138. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9139. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  9140. for (int il = 0; il < n_layer; ++il) {
  9141. cur = llm_build_norm(ctx0, inpL, hparams,
  9142. model.layers[il].attn_norm,
  9143. model.layers[il].attn_norm_b,
  9144. LLM_NORM, cb, il);
  9145. cb(cur, "attn_norm", il);
  9146. // self-attention
  9147. {
  9148. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  9149. cb(cur, "wqkv", il);
  9150. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  9151. cb(cur, "bqkv", il);
  9152. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  9153. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  9154. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  9155. cb(Qcur, "Qcur", il);
  9156. cb(Kcur, "Kcur", il);
  9157. cb(Vcur, "Vcur", il);
  9158. Qcur = ggml_rope_ext(
  9159. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  9160. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9161. ext_factor, attn_factor, beta_fast, beta_slow
  9162. );
  9163. cb(Qcur, "Qcur", il);
  9164. Kcur = ggml_rope_ext(
  9165. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  9166. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9167. ext_factor, attn_factor, beta_fast, beta_slow
  9168. );
  9169. cb(Kcur, "Kcur", il);
  9170. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  9171. model.layers[il].wo, model.layers[il].bo,
  9172. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  9173. }
  9174. if (il == n_layer - 1) {
  9175. // skip computing output for unused tokens
  9176. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9177. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9178. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  9179. }
  9180. // ffn
  9181. if (hparams.use_par_res) {
  9182. // attention and ffn are computed in parallel
  9183. // x = x + attn(ln1(x)) + ffn(ln2(x))
  9184. struct ggml_tensor * attn_out = cur;
  9185. cur = llm_build_norm(ctx0, inpL, hparams,
  9186. model.layers[il].ffn_norm,
  9187. model.layers[il].ffn_norm_b,
  9188. LLM_NORM, cb, il);
  9189. cb(cur, "ffn_norm", il);
  9190. cur = llm_build_ffn(ctx0, cur,
  9191. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  9192. NULL, NULL,
  9193. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  9194. NULL,
  9195. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  9196. cb(cur, "ffn_out", il);
  9197. cur = ggml_add(ctx0, cur, inpL);
  9198. cb(cur, "ffn_out", il);
  9199. inpL = ggml_add(ctx0, cur, attn_out);
  9200. cb(inpL, "l_out", il);
  9201. } else {
  9202. // attention and ffn are computed sequentially
  9203. // x = x + attn(ln1(x))
  9204. // x = x + ffn(ln2(x))
  9205. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  9206. cb(ffn_inp, "ffn_inp", il);
  9207. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9208. model.layers[il].ffn_norm,
  9209. model.layers[il].ffn_norm_b,
  9210. LLM_NORM, cb, il);
  9211. cb(cur, "ffn_norm", il);
  9212. cur = llm_build_ffn(ctx0, cur,
  9213. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  9214. NULL, NULL,
  9215. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  9216. NULL,
  9217. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  9218. cb(cur, "ffn_out", il);
  9219. inpL = ggml_add(ctx0, cur, ffn_inp);
  9220. cb(inpL, "l_out", il);
  9221. }
  9222. }
  9223. cur = llm_build_norm(ctx0, inpL, hparams,
  9224. model.output_norm,
  9225. model.output_norm_b,
  9226. LLM_NORM, cb, -1);
  9227. cb(cur, "result_norm", -1);
  9228. cur = ggml_mul_mat(ctx0, model.output, cur);
  9229. cb(cur, "result_output", -1);
  9230. ggml_build_forward_expand(gf, cur);
  9231. return gf;
  9232. }
  9233. struct ggml_cgraph * build_arctic() {
  9234. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  9235. // mutable variable, needed during the last layer of the computation to skip unused tokens
  9236. int32_t n_tokens = this->n_tokens;
  9237. const int64_t n_embd_head = hparams.n_embd_head_v;
  9238. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9239. GGML_ASSERT(n_embd_head == hparams.n_rot);
  9240. struct ggml_tensor * cur;
  9241. struct ggml_tensor * inpL;
  9242. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9243. // inp_pos - contains the positions
  9244. struct ggml_tensor * inp_pos = build_inp_pos();
  9245. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9246. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  9247. for (int il = 0; il < n_layer; ++il) {
  9248. struct ggml_tensor * inpSA = inpL;
  9249. // norm
  9250. cur = llm_build_norm(ctx0, inpL, hparams,
  9251. model.layers[il].attn_norm, NULL,
  9252. LLM_NORM_RMS, cb, il);
  9253. cb(cur, "attn_norm", il);
  9254. // self-attention
  9255. {
  9256. // compute Q and K and RoPE them
  9257. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  9258. cb(Qcur, "Qcur", il);
  9259. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  9260. cb(Kcur, "Kcur", il);
  9261. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  9262. cb(Vcur, "Vcur", il);
  9263. Qcur = ggml_rope_ext(
  9264. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  9265. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9266. ext_factor, attn_factor, beta_fast, beta_slow
  9267. );
  9268. cb(Qcur, "Qcur", il);
  9269. Kcur = ggml_rope_ext(
  9270. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  9271. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9272. ext_factor, attn_factor, beta_fast, beta_slow
  9273. );
  9274. cb(Kcur, "Kcur", il);
  9275. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  9276. model.layers[il].wo, NULL,
  9277. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  9278. }
  9279. if (il == n_layer - 1) {
  9280. // skip computing output for unused tokens
  9281. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9282. n_tokens = n_outputs;
  9283. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9284. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9285. }
  9286. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9287. cb(ffn_inp, "ffn_inp", il);
  9288. // feed-forward network
  9289. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9290. model.layers[il].ffn_norm, NULL,
  9291. LLM_NORM_RMS, cb, il);
  9292. cb(cur, "ffn_norm", il);
  9293. cur = llm_build_ffn(ctx0, cur,
  9294. model.layers[il].ffn_up, NULL,
  9295. model.layers[il].ffn_gate, NULL,
  9296. model.layers[il].ffn_down, NULL,
  9297. NULL,
  9298. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  9299. cb(cur, "ffn_out", il);
  9300. struct ggml_tensor * ffn_out = ggml_add(ctx0, cur, ffn_inp);
  9301. cb(ffn_out, "ffn_out", il);
  9302. // MoE
  9303. cur = llm_build_norm(ctx0, inpSA, hparams,
  9304. model.layers[il].ffn_norm_exps, NULL,
  9305. LLM_NORM_RMS, cb, il);
  9306. cb(cur, "ffn_norm_exps", il);
  9307. cur = llm_build_moe_ffn(ctx0, cur,
  9308. model.layers[il].ffn_gate_inp,
  9309. model.layers[il].ffn_up_exps,
  9310. model.layers[il].ffn_gate_exps,
  9311. model.layers[il].ffn_down_exps,
  9312. n_expert, n_expert_used,
  9313. LLM_FFN_SILU, true,
  9314. false, 0.0,
  9315. cb, il);
  9316. cb(cur, "ffn_moe_out", il);
  9317. cur = ggml_add(ctx0, cur, ffn_out);
  9318. cb(cur, "ffn_out", il);
  9319. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  9320. if (layer_dir != nullptr) {
  9321. cur = ggml_add(ctx0, cur, layer_dir);
  9322. }
  9323. cb(cur, "l_out", il);
  9324. // input for next layer
  9325. inpL = cur;
  9326. }
  9327. cur = inpL;
  9328. cur = llm_build_norm(ctx0, cur, hparams,
  9329. model.output_norm, NULL,
  9330. LLM_NORM_RMS, cb, -1);
  9331. cb(cur, "result_norm", -1);
  9332. // lm_head
  9333. cur = ggml_mul_mat(ctx0, model.output, cur);
  9334. cb(cur, "result_output", -1);
  9335. ggml_build_forward_expand(gf, cur);
  9336. return gf;
  9337. }
  9338. struct ggml_cgraph * build_deepseek2() {
  9339. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  9340. // mutable variable, needed during the last layer of the computation to skip unused tokens
  9341. int32_t n_tokens = this->n_tokens;
  9342. bool is_lite = (hparams.n_layer == 27);
  9343. // We have to pre-scale kq_scale and attn_factor to make the YaRN RoPE work correctly.
  9344. // See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation.
  9345. const float mscale = attn_factor * (1.0f + hparams.rope_yarn_log_mul * logf(1.0f / freq_scale));
  9346. const float kq_scale = 1.0f*mscale*mscale/sqrtf(float(hparams.n_embd_head_k));
  9347. const float attn_factor_scaled = 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale));
  9348. const uint32_t n_embd_head_qk_rope = hparams.n_rot;
  9349. const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  9350. const uint32_t kv_lora_rank = hparams.n_lora_kv;
  9351. struct ggml_tensor * cur;
  9352. struct ggml_tensor * inpL;
  9353. // {n_embd, n_tokens}
  9354. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9355. // inp_pos - contains the positions
  9356. struct ggml_tensor * inp_pos = build_inp_pos();
  9357. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9358. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  9359. for (int il = 0; il < n_layer; ++il) {
  9360. struct ggml_tensor * inpSA = inpL;
  9361. // norm
  9362. cur = llm_build_norm(ctx0, inpL, hparams,
  9363. model.layers[il].attn_norm, NULL,
  9364. LLM_NORM_RMS, cb, il);
  9365. cb(cur, "attn_norm", il);
  9366. // self_attention
  9367. {
  9368. struct ggml_tensor * q = NULL;
  9369. if (!is_lite) {
  9370. // {n_embd, q_lora_rank} * {n_embd, n_tokens} -> {q_lora_rank, n_tokens}
  9371. q = ggml_mul_mat(ctx0, model.layers[il].wq_a, cur);
  9372. cb(q, "q", il);
  9373. q = llm_build_norm(ctx0, q, hparams,
  9374. model.layers[il].attn_q_a_norm, NULL,
  9375. LLM_NORM_RMS, cb, il);
  9376. cb(q, "q", il);
  9377. // {q_lora_rank, n_head * hparams.n_embd_head_k} * {q_lora_rank, n_tokens} -> {n_head * hparams.n_embd_head_k, n_tokens}
  9378. q = ggml_mul_mat(ctx0, model.layers[il].wq_b, q);
  9379. cb(q, "q", il);
  9380. } else {
  9381. q = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  9382. cb(q, "q", il);
  9383. }
  9384. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  9385. struct ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens,
  9386. ggml_row_size(q->type, hparams.n_embd_head_k),
  9387. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  9388. 0);
  9389. cb(q_nope, "q_nope", il);
  9390. // and {n_head * n_embd_head_qk_rope, n_tokens}
  9391. struct ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens,
  9392. ggml_row_size(q->type, hparams.n_embd_head_k),
  9393. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  9394. ggml_row_size(q->type, n_embd_head_qk_nope));
  9395. cb(q_pe, "q_pe", il);
  9396. // {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens}
  9397. struct ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
  9398. cb(kv_pe_compresseed, "kv_pe_compresseed", il);
  9399. // split into {kv_lora_rank, n_tokens}
  9400. struct ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens,
  9401. kv_pe_compresseed->nb[1],
  9402. 0);
  9403. cb(kv_compressed, "kv_compressed", il);
  9404. // and {n_embd_head_qk_rope, n_tokens}
  9405. struct ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens,
  9406. kv_pe_compresseed->nb[1],
  9407. kv_pe_compresseed->nb[1],
  9408. ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
  9409. cb(k_pe, "k_pe", il);
  9410. kv_compressed = ggml_cont(ctx0, kv_compressed); // TODO: the CUDA backend does not support non-contiguous norm
  9411. kv_compressed = llm_build_norm(ctx0, kv_compressed, hparams,
  9412. model.layers[il].attn_kv_a_norm, NULL,
  9413. LLM_NORM_RMS, cb, il);
  9414. cb(kv_compressed, "kv_compressed", il);
  9415. // {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens}
  9416. struct ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed);
  9417. cb(kv, "kv", il);
  9418. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  9419. struct ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
  9420. ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v),
  9421. ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  9422. 0);
  9423. cb(k_nope, "k_nope", il);
  9424. // and {n_head * n_embd_head_v, n_tokens}
  9425. struct ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens,
  9426. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  9427. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head),
  9428. ggml_row_size(kv->type, (n_embd_head_qk_nope)));
  9429. cb(v_states, "v_states", il);
  9430. v_states = ggml_cont(ctx0, v_states);
  9431. cb(v_states, "v_states", il);
  9432. v_states = ggml_view_2d(ctx0, v_states, hparams.n_embd_head_v * n_head, n_tokens,
  9433. ggml_row_size(kv->type, hparams.n_embd_head_v * n_head),
  9434. 0);
  9435. cb(v_states, "v_states", il);
  9436. q_pe = ggml_cont(ctx0, q_pe); // TODO: the CUDA backend does not support non-contiguous RoPE
  9437. q_pe = ggml_rope_ext(
  9438. ctx0, q_pe, inp_pos, nullptr,
  9439. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9440. ext_factor, attn_factor_scaled, beta_fast, beta_slow
  9441. );
  9442. cb(q_pe, "q_pe", il);
  9443. // shared RoPE key
  9444. k_pe = ggml_cont(ctx0, k_pe); // TODO: the CUDA backend does not support non-contiguous RoPE
  9445. k_pe = ggml_rope_ext(
  9446. ctx0, k_pe, inp_pos, nullptr,
  9447. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9448. ext_factor, attn_factor_scaled, beta_fast, beta_slow
  9449. );
  9450. cb(k_pe, "k_pe", il);
  9451. struct ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0);
  9452. cb(q_states, "q_states", il);
  9453. struct ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0);
  9454. cb(k_states, "k_states", il);
  9455. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  9456. model.layers[il].wo, NULL,
  9457. k_states, v_states, q_states, KQ_mask, n_tokens, kv_head, n_kv, kq_scale, cb, il);
  9458. }
  9459. if (il == n_layer - 1) {
  9460. // skip computing output for unused tokens
  9461. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9462. n_tokens = n_outputs;
  9463. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9464. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9465. }
  9466. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9467. cb(ffn_inp, "ffn_inp", il);
  9468. if ((uint32_t) il < hparams.n_layer_dense_lead) {
  9469. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9470. model.layers[il].ffn_norm, NULL,
  9471. LLM_NORM_RMS, cb, il);
  9472. cb(cur, "ffn_norm", il);
  9473. cur = llm_build_ffn(ctx0, cur,
  9474. model.layers[il].ffn_up, NULL,
  9475. model.layers[il].ffn_gate, NULL,
  9476. model.layers[il].ffn_down, NULL,
  9477. NULL,
  9478. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  9479. cb(cur, "ffn_out", il);
  9480. } else {
  9481. // MoE branch
  9482. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9483. model.layers[il].ffn_norm, NULL,
  9484. LLM_NORM_RMS, cb, il);
  9485. cb(cur, "ffn_norm", il);
  9486. ggml_tensor * moe_out =
  9487. llm_build_moe_ffn(ctx0, cur,
  9488. model.layers[il].ffn_gate_inp,
  9489. model.layers[il].ffn_up_exps,
  9490. model.layers[il].ffn_gate_exps,
  9491. model.layers[il].ffn_down_exps,
  9492. n_expert, n_expert_used,
  9493. LLM_FFN_SILU, false,
  9494. true, hparams.expert_weights_scale,
  9495. cb, il);
  9496. cb(moe_out, "ffn_moe_out", il);
  9497. // FFN shared expert
  9498. {
  9499. ggml_tensor * ffn_shexp = llm_build_ffn(ctx0, cur,
  9500. model.layers[il].ffn_up_shexp, NULL,
  9501. model.layers[il].ffn_gate_shexp, NULL,
  9502. model.layers[il].ffn_down_shexp, NULL,
  9503. NULL,
  9504. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  9505. cb(ffn_shexp, "ffn_shexp", il);
  9506. cur = ggml_add(ctx0, moe_out, ffn_shexp);
  9507. cb(cur, "ffn_out", il);
  9508. }
  9509. }
  9510. cur = ggml_add(ctx0, cur, ffn_inp);
  9511. cb(cur, "l_out", il);
  9512. // input for next layer
  9513. inpL = cur;
  9514. }
  9515. cur = inpL;
  9516. cur = llm_build_norm(ctx0, cur, hparams,
  9517. model.output_norm, NULL,
  9518. LLM_NORM_RMS, cb, -1);
  9519. cb(cur, "result_norm", -1);
  9520. // lm_head
  9521. cur = ggml_mul_mat(ctx0, model.output, cur);
  9522. cb(cur, "result_output", -1);
  9523. ggml_build_forward_expand(gf, cur);
  9524. return gf;
  9525. }
  9526. };
  9527. static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
  9528. llama_batch dummy;
  9529. dummy.n_tokens = 0;
  9530. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  9531. struct llm_build_context llm(lctx, dummy, cb, false);
  9532. llm.init();
  9533. struct ggml_cgraph * result = llm.build_defrag(ids);
  9534. llm.free();
  9535. return result;
  9536. }
  9537. static struct ggml_cgraph * llama_build_graph_k_shift(llama_context & lctx) {
  9538. llama_batch dummy;
  9539. dummy.n_tokens = 0;
  9540. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  9541. struct llm_build_context llm(lctx, dummy, cb, false);
  9542. llm.init();
  9543. struct ggml_cgraph * result = llm.build_k_shift();
  9544. llm.free();
  9545. return result;
  9546. }
  9547. static struct ggml_cgraph * llama_build_graph_s_copy(llama_context & lctx) {
  9548. llama_batch dummy;
  9549. dummy.n_tokens = 0;
  9550. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  9551. struct llm_build_context llm(lctx, dummy, cb, false);
  9552. llm.init();
  9553. struct ggml_cgraph * result = llm.build_s_copy();
  9554. llm.free();
  9555. return result;
  9556. }
  9557. static struct ggml_cgraph * llama_build_graph(
  9558. llama_context & lctx,
  9559. const llama_batch & batch,
  9560. bool worst_case) {
  9561. const auto & model = lctx.model;
  9562. // this callback allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
  9563. llm_build_cb cb = [&](struct ggml_tensor * cur, const char * name, int il) {
  9564. if (il >= 0) {
  9565. ggml_format_name(cur, "%s-%d", name, il);
  9566. } else {
  9567. ggml_set_name(cur, name);
  9568. }
  9569. if (!lctx.cparams.offload_kqv) {
  9570. if (strcmp(name, "kqv_merged_cont") == 0) {
  9571. // all nodes between the KV store and the attention output are run on the CPU
  9572. ggml_backend_sched_set_tensor_backend(lctx.sched, cur, lctx.backend_cpu);
  9573. }
  9574. }
  9575. // norm may be automatically assigned to the backend of the previous layer, increasing data transfer between backends
  9576. // FIXME: fix in ggml_backend_sched
  9577. const bool full_offload = lctx.model.n_gpu_layers > (int)lctx.model.hparams.n_layer;
  9578. if (batch.n_tokens < 32 || full_offload) {
  9579. if (il != -1 && strcmp(name, "norm") == 0) {
  9580. for (auto * backend : lctx.backends) {
  9581. if (ggml_backend_supports_buft(backend, lctx.model.buft_layer[il].buft) &&
  9582. (ggml_backend_supports_op(backend, cur) || ggml_backend_offload_op(backend, cur))) {
  9583. ggml_backend_sched_set_tensor_backend(lctx.sched, cur, backend);
  9584. break;
  9585. }
  9586. }
  9587. }
  9588. }
  9589. };
  9590. struct ggml_cgraph * result = NULL;
  9591. struct llm_build_context llm(lctx, batch, cb, worst_case);
  9592. llm.init();
  9593. switch (model.arch) {
  9594. case LLM_ARCH_LLAMA:
  9595. {
  9596. result = llm.build_llama();
  9597. } break;
  9598. case LLM_ARCH_BAICHUAN:
  9599. {
  9600. result = llm.build_baichuan();
  9601. } break;
  9602. case LLM_ARCH_FALCON:
  9603. {
  9604. result = llm.build_falcon();
  9605. } break;
  9606. case LLM_ARCH_GROK:
  9607. {
  9608. result = llm.build_grok();
  9609. } break;
  9610. case LLM_ARCH_STARCODER:
  9611. {
  9612. result = llm.build_starcoder();
  9613. } break;
  9614. case LLM_ARCH_REFACT:
  9615. {
  9616. result = llm.build_refact();
  9617. } break;
  9618. case LLM_ARCH_BERT:
  9619. case LLM_ARCH_JINA_BERT_V2:
  9620. case LLM_ARCH_NOMIC_BERT:
  9621. {
  9622. result = llm.build_bert();
  9623. } break;
  9624. case LLM_ARCH_BLOOM:
  9625. {
  9626. result = llm.build_bloom();
  9627. } break;
  9628. case LLM_ARCH_MPT:
  9629. {
  9630. result = llm.build_mpt();
  9631. } break;
  9632. case LLM_ARCH_STABLELM:
  9633. {
  9634. result = llm.build_stablelm();
  9635. } break;
  9636. case LLM_ARCH_QWEN:
  9637. {
  9638. result = llm.build_qwen();
  9639. } break;
  9640. case LLM_ARCH_QWEN2:
  9641. {
  9642. result = llm.build_qwen2();
  9643. } break;
  9644. case LLM_ARCH_QWEN2MOE:
  9645. {
  9646. result = llm.build_qwen2moe();
  9647. } break;
  9648. case LLM_ARCH_PHI2:
  9649. {
  9650. result = llm.build_phi2();
  9651. } break;
  9652. case LLM_ARCH_PHI3:
  9653. {
  9654. result = llm.build_phi3();
  9655. } break;
  9656. case LLM_ARCH_PLAMO:
  9657. {
  9658. result = llm.build_plamo();
  9659. } break;
  9660. case LLM_ARCH_GPT2:
  9661. {
  9662. result = llm.build_gpt2();
  9663. } break;
  9664. case LLM_ARCH_CODESHELL:
  9665. {
  9666. result = llm.build_codeshell();
  9667. } break;
  9668. case LLM_ARCH_ORION:
  9669. {
  9670. result = llm.build_orion();
  9671. } break;
  9672. case LLM_ARCH_INTERNLM2:
  9673. {
  9674. result = llm.build_internlm2();
  9675. } break;
  9676. case LLM_ARCH_MINICPM:
  9677. {
  9678. result = llm.build_minicpm();
  9679. } break;
  9680. case LLM_ARCH_GEMMA:
  9681. {
  9682. result = llm.build_gemma();
  9683. } break;
  9684. case LLM_ARCH_STARCODER2:
  9685. {
  9686. result = llm.build_starcoder2();
  9687. } break;
  9688. case LLM_ARCH_MAMBA:
  9689. {
  9690. result = llm.build_mamba();
  9691. } break;
  9692. case LLM_ARCH_XVERSE:
  9693. {
  9694. result = llm.build_xverse();
  9695. } break;
  9696. case LLM_ARCH_COMMAND_R:
  9697. {
  9698. result = llm.build_command_r();
  9699. } break;
  9700. case LLM_ARCH_DBRX:
  9701. {
  9702. result = llm.build_dbrx();
  9703. } break;
  9704. case LLM_ARCH_OLMO:
  9705. {
  9706. result = llm.build_olmo();
  9707. } break;
  9708. case LLM_ARCH_GPTNEOX:
  9709. {
  9710. result = llm.build_gptneox();
  9711. } break;
  9712. case LLM_ARCH_ARCTIC:
  9713. {
  9714. result = llm.build_arctic();
  9715. } break;
  9716. case LLM_ARCH_DEEPSEEK2:
  9717. {
  9718. result = llm.build_deepseek2();
  9719. } break;
  9720. default:
  9721. GGML_ASSERT(false);
  9722. }
  9723. llm.free();
  9724. return result;
  9725. }
  9726. static void llama_set_k_shift(llama_context & lctx) {
  9727. const int64_t kv_size = lctx.kv_self.size;
  9728. assert(ggml_backend_buffer_is_host(lctx.inp_K_shift->buffer));
  9729. int32_t * data = (int32_t *) lctx.inp_K_shift->data;
  9730. for (int i = 0; i < kv_size; ++i) {
  9731. data[i] = lctx.kv_self.cells[i].delta;
  9732. }
  9733. }
  9734. static void llama_set_s_copy(llama_context & lctx) {
  9735. const int64_t kv_size = lctx.kv_self.size;
  9736. assert(ggml_backend_buffer_is_host(lctx.inp_s_copy->buffer));
  9737. int32_t * data = (int32_t *) lctx.inp_s_copy->data;
  9738. for (int i = 0; i < kv_size; ++i) {
  9739. data[i] = lctx.kv_self.cells[i].src;
  9740. }
  9741. }
  9742. static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
  9743. //
  9744. // set input data
  9745. //
  9746. const auto & hparams = lctx.model.hparams;
  9747. const auto & cparams = lctx.cparams;
  9748. const auto & kv_self = lctx.kv_self;
  9749. if (batch.token) {
  9750. const int64_t n_tokens = batch.n_tokens;
  9751. ggml_backend_tensor_set(lctx.inp_tokens, batch.token, 0, n_tokens*ggml_element_size(lctx.inp_tokens));
  9752. }
  9753. if (batch.embd) {
  9754. const int64_t n_embd = hparams.n_embd;
  9755. const int64_t n_tokens = batch.n_tokens;
  9756. ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
  9757. }
  9758. if (batch.pos && lctx.inp_pos) {
  9759. const int64_t n_tokens = batch.n_tokens;
  9760. ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos));
  9761. }
  9762. if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) {
  9763. GGML_ASSERT(lctx.inp_out_ids && "every model that can must skip unused outputs");
  9764. const int64_t n_tokens = batch.n_tokens;
  9765. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_out_ids->buffer));
  9766. int32_t * data = (int32_t *) lctx.inp_out_ids->data;
  9767. if (lctx.n_outputs == n_tokens) {
  9768. for (int i = 0; i < n_tokens; ++i) {
  9769. data[i] = i;
  9770. }
  9771. } else if (batch.logits) {
  9772. int32_t n_outputs = 0;
  9773. for (int i = 0; i < n_tokens; ++i) {
  9774. if (batch.logits[i]) {
  9775. data[n_outputs++] = i;
  9776. }
  9777. }
  9778. // the graph needs to have been passed the correct number of outputs
  9779. GGML_ASSERT(lctx.n_outputs == n_outputs);
  9780. } else if (lctx.n_outputs == 1) {
  9781. // only keep last output
  9782. data[0] = n_tokens - 1;
  9783. } else {
  9784. GGML_ASSERT(lctx.n_outputs == 0);
  9785. }
  9786. }
  9787. GGML_ASSERT(
  9788. // (!a || b) is a logical implication (a -> b)
  9789. // !hparams.causal_attn -> !cparams.causal_attn
  9790. (hparams.causal_attn || !cparams.causal_attn) &&
  9791. "causal attention with embedding models is not supported"
  9792. );
  9793. if (lctx.inp_KQ_mask) {
  9794. // NOTE: hparams.causal_attn indicates the model is capable of generation and uses the kv cache.
  9795. if (cparams.causal_attn) {
  9796. const int64_t n_kv = kv_self.n;
  9797. const int64_t n_tokens = batch.n_tokens;
  9798. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  9799. float * data = (float *) lctx.inp_KQ_mask->data;
  9800. // For causal attention, use only the previous KV cells
  9801. // of the correct sequence for each token of the batch.
  9802. // It's assumed that if a token in the batch has multiple sequences, they are equivalent.
  9803. for (int h = 0; h < 1; ++h) {
  9804. for (int j = 0; j < n_tokens; ++j) {
  9805. const llama_pos pos = batch.pos[j];
  9806. const llama_seq_id seq_id = batch.seq_id[j][0];
  9807. for (int i = 0; i < n_kv; ++i) {
  9808. float f;
  9809. if (!lctx.kv_self.cells[i].has_seq_id(seq_id) || lctx.kv_self.cells[i].pos > pos) {
  9810. f = -INFINITY;
  9811. } else {
  9812. if (hparams.use_alibi) {
  9813. f = -fabs(lctx.kv_self.cells[i].pos - pos);
  9814. } else {
  9815. f = 0.0f;
  9816. }
  9817. }
  9818. data[h*(n_kv*n_tokens) + j*n_kv + i] = f;
  9819. }
  9820. }
  9821. for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
  9822. for (int j = 0; j < n_kv; ++j) {
  9823. data[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY;
  9824. }
  9825. }
  9826. }
  9827. } else {
  9828. // when using kv cache, the mask needs to match the kv cache size
  9829. const int64_t n_tokens = batch.n_tokens;
  9830. const int64_t n_stride = hparams.causal_attn ? kv_self.n : n_tokens;
  9831. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  9832. float * data = (float *) lctx.inp_KQ_mask->data;
  9833. for (int h = 0; h < 1; ++h) {
  9834. for (int j = 0; j < n_tokens; ++j) {
  9835. const llama_seq_id seq_id = batch.seq_id[j][0];
  9836. for (int i = 0; i < n_tokens; ++i) {
  9837. float f = -INFINITY;
  9838. for (int s = 0; s < batch.n_seq_id[i]; ++s) {
  9839. if (batch.seq_id[i][s] == seq_id) {
  9840. if (hparams.use_alibi) {
  9841. f = -fabs(batch.pos[i] - batch.pos[j]);
  9842. } else {
  9843. f = 0.0f;
  9844. }
  9845. break;
  9846. }
  9847. }
  9848. data[h*(n_tokens*n_tokens) + j*n_stride + i] = f;
  9849. }
  9850. for (int i = n_tokens; i < n_stride; ++i) {
  9851. data[h*(n_tokens*n_tokens) + j*n_stride + i] = -INFINITY;
  9852. }
  9853. }
  9854. }
  9855. }
  9856. }
  9857. if (cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
  9858. const int64_t n_tokens = batch.n_tokens;
  9859. GGML_ASSERT(lctx.inp_mean);
  9860. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer));
  9861. float * data = (float *) lctx.inp_mean->data;
  9862. memset(lctx.inp_mean->data, 0, n_tokens * n_tokens * ggml_element_size(lctx.inp_mean));
  9863. std::vector<uint64_t> sum(n_tokens, 0);
  9864. for (int i = 0; i < n_tokens; ++i) {
  9865. const llama_seq_id seq_id = batch.seq_id[i][0];
  9866. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN");
  9867. sum[seq_id] += 1;
  9868. }
  9869. std::vector<float> div(n_tokens, 0.0f);
  9870. for (int i = 0; i < n_tokens; ++i) {
  9871. const uint64_t s = sum[i];
  9872. if (s > 0) {
  9873. div[i] = 1.0f/float(s);
  9874. }
  9875. }
  9876. for (int i = 0; i < n_tokens; ++i) {
  9877. const llama_seq_id seq_id = batch.seq_id[i][0];
  9878. data[seq_id*n_tokens + i] = div[seq_id];
  9879. }
  9880. }
  9881. if (cparams.pooling_type == LLAMA_POOLING_TYPE_CLS) {
  9882. const int64_t n_tokens = batch.n_tokens;
  9883. GGML_ASSERT(lctx.inp_cls);
  9884. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
  9885. uint32_t * data = (uint32_t *) lctx.inp_cls->data;
  9886. memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
  9887. for (int i = 0; i < n_tokens; ++i) {
  9888. const llama_seq_id seq_id = batch.seq_id[i][0];
  9889. const llama_pos pos = batch.pos[i];
  9890. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS");
  9891. if (pos == 0) {
  9892. data[seq_id] = i;
  9893. }
  9894. }
  9895. }
  9896. if (kv_self.recurrent) {
  9897. const int64_t n_kv = kv_self.n;
  9898. if (lctx.inp_s_mask) {
  9899. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_mask->buffer));
  9900. float * data = (float *) lctx.inp_s_mask->data;
  9901. // states which are not affected by the current batch are left untouched
  9902. for (int i = 0; i < n_kv; ++i) {
  9903. llama_seq_id seq_id = i + lctx.kv_self.head;
  9904. llama_kv_cell & kv_cell = lctx.kv_self.cells[seq_id];
  9905. bool has_self_seq = kv_cell.has_seq_id(seq_id);
  9906. data[i] = (float) has_self_seq;
  9907. // ensure current sequences will be kept
  9908. if (!has_self_seq && kv_cell.pos >= 0) {
  9909. kv_cell.seq_id.insert(seq_id);
  9910. }
  9911. }
  9912. }
  9913. // For Mamba (and other recurrent architectures),
  9914. // update the correct state(s)/sequence(s) for each token of the batch.
  9915. // Like with the KQ_mask, if a token in the batch has multiple sequences,
  9916. // they are assumed to be equivalent (not here, but in ggml_ssm_scan and ggml_ssm_conv).
  9917. if (lctx.inp_s_seq) {
  9918. const int64_t n_tokens = batch.n_tokens;
  9919. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_seq->buffer));
  9920. int32_t * data = (int32_t *) lctx.inp_s_seq->data;
  9921. for (int j = 0; j < n_tokens; ++j) {
  9922. const int32_t n_seq = batch.n_seq_id[j];
  9923. GGML_ASSERT(0 < n_seq); // a token should be part of at least 1 sequence
  9924. for (int i = 0; i < n_kv; ++i) {
  9925. if (i < n_seq) {
  9926. // for this type of model, the head is the minimum seq_id of the batch
  9927. data[j*n_kv + i] = batch.seq_id[j][i] - kv_self.head;
  9928. } else {
  9929. data[j*n_kv + i] = -1;
  9930. }
  9931. }
  9932. }
  9933. }
  9934. }
  9935. }
  9936. // Make sure enough space is available for outputs.
  9937. // Returns max number of outputs for which space was reserved.
  9938. static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) {
  9939. const auto & cparams = lctx.cparams;
  9940. const auto & hparams = lctx.model.hparams;
  9941. const size_t n_outputs_max = std::max(n_outputs, (size_t) cparams.n_seq_max);
  9942. const auto n_batch = cparams.n_batch;
  9943. const auto n_vocab = hparams.n_vocab;
  9944. const auto n_embd = hparams.n_embd;
  9945. // TODO: use a per-batch flag for logits presence instead
  9946. const bool has_logits = cparams.causal_attn;
  9947. const bool has_embd = cparams.embeddings && (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE);
  9948. const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0;
  9949. const size_t embd_size = has_embd ? n_embd*n_outputs_max : 0;
  9950. if (lctx.output_ids.empty()) {
  9951. // init, never resized afterwards
  9952. lctx.output_ids.resize(n_batch);
  9953. }
  9954. const size_t prev_size = lctx.buf_output ? ggml_backend_buffer_get_size(lctx.buf_output) : 0;
  9955. const size_t new_size = (logits_size + embd_size) * sizeof(float);
  9956. // alloc only when more than the current capacity is required
  9957. // TODO: also consider shrinking the buffer
  9958. if (!lctx.buf_output || prev_size < new_size) {
  9959. if (lctx.buf_output) {
  9960. #ifndef NDEBUG
  9961. // This doesn't happen often, but may be annoying in some cases (like the HellaSwag benchmark)
  9962. LLAMA_LOG_INFO("%s: reallocating output buffer from size %.02f MiB to %.02f MiB\n", __func__, prev_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
  9963. #endif
  9964. ggml_backend_buffer_free(lctx.buf_output);
  9965. lctx.buf_output = nullptr;
  9966. lctx.logits = nullptr;
  9967. lctx.embd = nullptr;
  9968. }
  9969. lctx.buf_output = ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), new_size);
  9970. if (lctx.buf_output == nullptr) {
  9971. LLAMA_LOG_ERROR("%s: failed to allocate output buffer of size %.2f MiB\n", __func__, new_size / (1024.0 * 1024.0));
  9972. return 0;
  9973. }
  9974. }
  9975. float * output_base = (float *) ggml_backend_buffer_get_base(lctx.buf_output);
  9976. lctx.logits = has_logits ? output_base : nullptr;
  9977. lctx.embd = has_embd ? output_base + logits_size : nullptr;
  9978. lctx.output_size = n_outputs_max;
  9979. lctx.logits_size = logits_size;
  9980. lctx.embd_size = embd_size;
  9981. // set all ids as invalid (negative)
  9982. std::fill(lctx.output_ids.begin(), lctx.output_ids.end(), -1);
  9983. ggml_backend_buffer_clear(lctx.buf_output, 0);
  9984. lctx.n_outputs = 0;
  9985. return n_outputs_max;
  9986. }
  9987. static void llama_graph_compute(
  9988. llama_context & lctx,
  9989. ggml_cgraph * gf,
  9990. int n_threads) {
  9991. #ifdef GGML_USE_METAL
  9992. if (ggml_backend_is_metal(lctx.backend_metal)) {
  9993. ggml_backend_metal_set_n_cb(lctx.backend_metal, n_threads);
  9994. }
  9995. #endif
  9996. if (lctx.backend_cpu != nullptr) {
  9997. ggml_backend_cpu_set_n_threads(lctx.backend_cpu, n_threads);
  9998. ggml_backend_cpu_set_abort_callback(lctx.backend_cpu, lctx.abort_callback, lctx.abort_callback_data);
  9999. }
  10000. #ifdef GGML_USE_BLAS
  10001. if (lctx.backend_blas != nullptr) {
  10002. ggml_backend_blas_set_n_threads(lctx.backend_blas, n_threads);
  10003. }
  10004. #endif
  10005. ggml_backend_sched_graph_compute_async(lctx.sched, gf);
  10006. // fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched));
  10007. }
  10008. // decode a batch of tokens by evaluating the transformer
  10009. //
  10010. // - lctx: llama context
  10011. // - batch: batch to evaluate
  10012. //
  10013. // return 0 on success
  10014. // return positive int on warning
  10015. // return negative int on error
  10016. //
  10017. static int llama_decode_internal(
  10018. llama_context & lctx,
  10019. llama_batch batch_all) { // TODO: rename back to batch
  10020. const uint32_t n_tokens_all = batch_all.n_tokens;
  10021. if (n_tokens_all == 0) {
  10022. LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__);
  10023. return -1;
  10024. }
  10025. const auto & model = lctx.model;
  10026. const auto & hparams = model.hparams;
  10027. const auto & cparams = lctx.cparams;
  10028. GGML_ASSERT((!batch_all.token && batch_all.embd) || (batch_all.token && !batch_all.embd)); // NOLINT
  10029. GGML_ASSERT(n_tokens_all <= cparams.n_batch);
  10030. GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens");
  10031. if (lctx.t_compute_start_us == 0) {
  10032. lctx.t_compute_start_us = ggml_time_us();
  10033. }
  10034. lctx.n_queued_tokens += n_tokens_all;
  10035. auto & kv_self = lctx.kv_self;
  10036. const int64_t n_embd = hparams.n_embd;
  10037. const int64_t n_vocab = hparams.n_vocab;
  10038. uint32_t n_outputs = 0;
  10039. uint32_t n_outputs_prev = 0;
  10040. const auto n_ubatch = cparams.n_ubatch;
  10041. std::vector<llama_pos> pos;
  10042. std::vector<int32_t> n_seq_id;
  10043. std::vector<llama_seq_id *> seq_id_arr;
  10044. std::vector<std::vector<llama_seq_id>> seq_id;
  10045. // count outputs
  10046. if (batch_all.logits) {
  10047. for (uint32_t i = 0; i < n_tokens_all; ++i) {
  10048. n_outputs += batch_all.logits[i] != 0;
  10049. }
  10050. } else if (lctx.logits_all || (cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE)) {
  10051. n_outputs = n_tokens_all;
  10052. } else {
  10053. // keep last output only
  10054. n_outputs = 1;
  10055. }
  10056. // reserve output buffer
  10057. if (llama_output_reserve(lctx, n_outputs) < n_outputs) {
  10058. LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_outputs);
  10059. return -2;
  10060. };
  10061. // set output mappings
  10062. if (batch_all.logits) {
  10063. int32_t i_logits = 0;
  10064. for (uint32_t i = 0; i < n_tokens_all; ++i) {
  10065. if (batch_all.logits[i]) {
  10066. lctx.output_ids[i] = i_logits++;
  10067. }
  10068. }
  10069. } else {
  10070. for (uint32_t i = 0; i < n_outputs; ++i) {
  10071. lctx.output_ids[i] = i;
  10072. }
  10073. }
  10074. for (uint32_t cur_token = 0; cur_token < n_tokens_all; cur_token += n_ubatch) {
  10075. const uint32_t n_tokens = std::min(n_ubatch, n_tokens_all - cur_token);
  10076. llama_batch u_batch = {
  10077. /* .n_tokens = */ (int32_t) n_tokens,
  10078. /* .token = */ batch_all.token ? batch_all.token + cur_token : nullptr,
  10079. /* .embd = */ batch_all.embd ? batch_all.embd + cur_token*n_embd : nullptr,
  10080. /* .pos = */ batch_all.pos ? batch_all.pos + cur_token : nullptr,
  10081. /* .n_seq_id = */ batch_all.n_seq_id ? batch_all.n_seq_id + cur_token : nullptr,
  10082. /* .seq_id = */ batch_all.seq_id ? batch_all.seq_id + cur_token : nullptr,
  10083. /* .logits = */ batch_all.logits ? batch_all.logits + cur_token : nullptr,
  10084. /* .all_pos_0 = */ batch_all.all_pos_0 + (llama_pos) cur_token*batch_all.all_pos_1,
  10085. /* .all_pos_1 = */ batch_all.all_pos_1,
  10086. /* .all_seq_id = */ batch_all.all_seq_id,
  10087. };
  10088. // count the outputs in this u_batch
  10089. {
  10090. int32_t n_outputs_new = 0;
  10091. if (u_batch.logits) {
  10092. for (uint32_t i = 0; i < n_tokens; i++) {
  10093. n_outputs_new += u_batch.logits[i] != 0;
  10094. }
  10095. } else if (n_outputs == n_tokens_all) {
  10096. n_outputs_new = n_tokens;
  10097. } else {
  10098. // keep last output only
  10099. if (cur_token + n_tokens >= n_tokens_all) {
  10100. n_outputs_new = 1;
  10101. }
  10102. }
  10103. // needs to happen before the graph is built
  10104. lctx.n_outputs = n_outputs_new;
  10105. }
  10106. int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
  10107. GGML_ASSERT(n_threads > 0);
  10108. // helpers for smoother batch API transition
  10109. // after deprecating the llama_eval calls, these will be removed
  10110. if (u_batch.pos == nullptr) {
  10111. pos.resize(n_tokens);
  10112. for (uint32_t i = 0; i < n_tokens; i++) {
  10113. pos[i] = u_batch.all_pos_0 + i*u_batch.all_pos_1;
  10114. }
  10115. u_batch.pos = pos.data();
  10116. }
  10117. if (u_batch.seq_id == nullptr) {
  10118. n_seq_id.resize(n_tokens);
  10119. seq_id.resize(n_tokens);
  10120. seq_id_arr.resize(n_tokens);
  10121. for (uint32_t i = 0; i < n_tokens; i++) {
  10122. n_seq_id[i] = 1;
  10123. seq_id[i].resize(1);
  10124. seq_id[i][0] = u_batch.all_seq_id;
  10125. seq_id_arr[i] = seq_id[i].data();
  10126. }
  10127. u_batch.n_seq_id = n_seq_id.data();
  10128. u_batch.seq_id = seq_id_arr.data();
  10129. }
  10130. // non-causal masks do not use the KV cache
  10131. if (hparams.causal_attn) {
  10132. llama_kv_cache_update(&lctx);
  10133. // if we have enough unused cells before the current head ->
  10134. // better to start searching from the beginning of the cache, hoping to fill it
  10135. if (kv_self.head > kv_self.used + 2*n_tokens) {
  10136. kv_self.head = 0;
  10137. }
  10138. if (!llama_kv_cache_find_slot(kv_self, u_batch)) {
  10139. return 1;
  10140. }
  10141. if (!kv_self.recurrent) {
  10142. // a heuristic, to avoid attending the full cache if it is not yet utilized
  10143. // after enough generations, the benefit from this heuristic disappears
  10144. // if we start defragmenting the cache, the benefit from this will be more important
  10145. const uint32_t pad = llama_kv_cache_get_padding(cparams);
  10146. kv_self.n = std::min(kv_self.size, std::max(pad, GGML_PAD(llama_kv_cache_cell_max(kv_self), pad)));
  10147. //kv_self.n = llama_kv_cache_cell_max(kv_self);
  10148. }
  10149. }
  10150. //printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head);
  10151. ggml_backend_sched_reset(lctx.sched);
  10152. ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);
  10153. ggml_cgraph * gf = llama_build_graph(lctx, u_batch, false);
  10154. // the output is always the last tensor in the graph
  10155. struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
  10156. struct ggml_tensor * embd = gf->nodes[gf->n_nodes - 2];
  10157. if (lctx.n_outputs == 0) {
  10158. // no output
  10159. res = nullptr;
  10160. embd = nullptr;
  10161. } else if (!hparams.causal_attn) {
  10162. res = nullptr; // do not extract logits for embedding models such as BERT
  10163. // token or sequence embeddings
  10164. embd = gf->nodes[gf->n_nodes - 1];
  10165. GGML_ASSERT(strcmp(embd->name, "result_embd") == 0 || strcmp(embd->name, "result_embd_pooled") == 0);
  10166. } else if (cparams.embeddings) {
  10167. // the embeddings could be in the second to last tensor, or any of the previous tensors
  10168. int i_embd = gf->n_nodes - 2;
  10169. for (int i = 3; strcmp(embd->name, "result_norm") != 0; ++i) {
  10170. i_embd = gf->n_nodes - i;
  10171. if (i_embd < 0) { break; }
  10172. embd = gf->nodes[i_embd];
  10173. }
  10174. GGML_ASSERT(i_embd >= 0 && "missing result_norm tensor");
  10175. // TODO: use a per-batch flag to know when to skip logits while keeping embeddings
  10176. if (!cparams.causal_attn) {
  10177. res = nullptr; // do not extract logits when not needed
  10178. // skip computing logits
  10179. // TODO: is this safe?
  10180. gf->n_nodes = i_embd + 1;
  10181. }
  10182. } else {
  10183. embd = nullptr; // do not extract embeddings when not needed
  10184. GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor");
  10185. }
  10186. // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
  10187. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  10188. llama_set_inputs(lctx, u_batch);
  10189. llama_graph_compute(lctx, gf, n_threads);
  10190. // update the kv ring buffer
  10191. {
  10192. kv_self.head += n_tokens;
  10193. // Ensure kv cache head points to a valid index.
  10194. if (kv_self.head >= kv_self.size) {
  10195. kv_self.head = 0;
  10196. }
  10197. }
  10198. #ifdef GGML_PERF
  10199. // print timing information per ggml operation (for debugging purposes)
  10200. // requires GGML_PERF to be defined
  10201. ggml_graph_print(gf);
  10202. #endif
  10203. // plot the computation graph in dot format (for debugging purposes)
  10204. //if (n_past%100 == 0) {
  10205. // ggml_graph_dump_dot(gf, NULL, "llama.dot");
  10206. //}
  10207. // extract logits
  10208. if (res) {
  10209. ggml_backend_t backend_res = ggml_backend_sched_get_tensor_backend(lctx.sched, res);
  10210. GGML_ASSERT(backend_res != nullptr);
  10211. GGML_ASSERT(lctx.logits != nullptr);
  10212. float * logits_out = lctx.logits + n_outputs_prev*n_vocab;
  10213. const int32_t n_outputs_new = lctx.n_outputs;
  10214. if (n_outputs_new) {
  10215. GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
  10216. GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_vocab <= (int64_t) lctx.logits_size);
  10217. ggml_backend_tensor_get_async(backend_res, res, logits_out, 0, n_outputs_new*n_vocab*sizeof(float));
  10218. }
  10219. }
  10220. // extract embeddings
  10221. if (embd) {
  10222. ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(lctx.sched, embd);
  10223. GGML_ASSERT(backend_embd != nullptr);
  10224. switch (cparams.pooling_type) {
  10225. case LLAMA_POOLING_TYPE_NONE:
  10226. {
  10227. // extract token embeddings
  10228. GGML_ASSERT(lctx.embd != nullptr);
  10229. float * embd_out = lctx.embd + n_outputs_prev*n_embd;
  10230. const int32_t n_outputs_new = lctx.n_outputs;
  10231. if (n_outputs_new) {
  10232. GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
  10233. GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_embd <= (int64_t) lctx.embd_size);
  10234. ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_outputs_new*n_embd*sizeof(float));
  10235. }
  10236. } break;
  10237. case LLAMA_POOLING_TYPE_CLS:
  10238. case LLAMA_POOLING_TYPE_MEAN:
  10239. {
  10240. GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0);
  10241. // extract sequence embeddings
  10242. auto & embd_seq_out = lctx.embd_seq;
  10243. embd_seq_out.clear();
  10244. for (uint32_t i = 0; i < n_tokens; i++) {
  10245. const llama_seq_id seq_id = u_batch.seq_id[i][0];
  10246. if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
  10247. continue;
  10248. }
  10249. embd_seq_out[seq_id].resize(n_embd);
  10250. ggml_backend_tensor_get_async(backend_embd, embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float));
  10251. }
  10252. } break;
  10253. case LLAMA_POOLING_TYPE_UNSPECIFIED:
  10254. {
  10255. GGML_ASSERT(false && "unknown pooling type");
  10256. } break;
  10257. }
  10258. }
  10259. n_outputs_prev += lctx.n_outputs;
  10260. }
  10261. // set to total number of outputs in the batch, for use in llama_get_logits_ith
  10262. lctx.n_outputs = n_outputs;
  10263. // wait for the computation to finish (automatically done when obtaining the model output)
  10264. //llama_synchronize(&lctx);
  10265. // decide if we need to defrag the kv cache
  10266. if (cparams.causal_attn && cparams.defrag_thold >= 0.0f) {
  10267. const float fragmentation = kv_self.n >= 128 ? 1.0f - float(kv_self.used)/float(kv_self.n) : 0.0f;
  10268. // queue defragmentation for next llama_kv_cache_update
  10269. if (fragmentation > cparams.defrag_thold) {
  10270. //LLAMA_LOG_INFO("fragmentation: %.2f\n", fragmentation);
  10271. llama_kv_cache_defrag(kv_self);
  10272. }
  10273. }
  10274. // Reset state for the next token before backend sync, to allow the CPU activities in the reset to
  10275. // overlap with device computation.
  10276. ggml_backend_sched_reset(lctx.sched);
  10277. return 0;
  10278. }
  10279. // find holes from the beginning of the KV cache and fill them by moving data from the end of the cache
  10280. static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
  10281. auto & kv_self = lctx.kv_self;
  10282. const auto & hparams = lctx.model.hparams;
  10283. const uint32_t n_layer = hparams.n_layer;
  10284. const uint32_t n_kv = llama_kv_cache_cell_max(kv_self);
  10285. const uint32_t n_used = kv_self.used;
  10286. assert(n_used <= n_kv);
  10287. //const int64_t t_start = ggml_time_us();
  10288. // number of cells moved
  10289. uint32_t n_moves = 0;
  10290. // each move requires 6*n_layer tensors (see build_defrag)
  10291. // - source view, destination view, copy operation
  10292. // - x2 for keys and values
  10293. //const uint32_t max_moves = LLAMA_MAX_NODES/(6*n_layer);
  10294. // TODO: tmp fix https://github.com/ggerganov/llama.cpp/issues/6685#issuecomment-2057579516
  10295. const uint32_t max_moves = (LLAMA_MAX_NODES - 2*n_layer)/(6*n_layer);
  10296. // determine which KV cells to move where
  10297. //
  10298. // cell i moves to ids[i]
  10299. //
  10300. // if ids[i] == i || ids[i] == n_kv, then cell i is not moved
  10301. //
  10302. std::vector<uint32_t> ids(n_kv, n_kv);
  10303. for (uint32_t i0 = 0; i0 < n_used; ++i0) {
  10304. const auto & cell0 = kv_self.cells[i0];
  10305. if (!cell0.is_empty()) {
  10306. ids[i0] = i0;
  10307. continue;
  10308. }
  10309. // found a hole - fill it with data from the end of the cache
  10310. uint32_t nh = 1;
  10311. // determine the size of the hole
  10312. while (i0 + nh < n_used && kv_self.cells[i0 + nh].is_empty()) {
  10313. nh++;
  10314. }
  10315. uint32_t nf = 0;
  10316. uint32_t is = n_kv - 1;
  10317. // starting from the end, find nh non-empty cells
  10318. for (; is > i0; --is) {
  10319. const auto & cell1 = kv_self.cells[is];
  10320. if (cell1.is_empty() || ids[is] != n_kv) {
  10321. continue;
  10322. }
  10323. // non-empty cell which is not yet moved
  10324. nf++;
  10325. if (nf == nh) {
  10326. break;
  10327. }
  10328. }
  10329. // this can only happen if `n_used` is not accurate, which would be a bug
  10330. GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh");
  10331. nf = 0;
  10332. uint32_t i1 = is;
  10333. // are we moving a continuous block of memory?
  10334. bool cont = false;
  10335. // should we stop searching for the next move?
  10336. bool stop = false;
  10337. // go back and move the nf cells to the hole
  10338. for (; i1 < n_kv; ++i1) {
  10339. auto & cell1 = kv_self.cells[i1];
  10340. if (cell1.is_empty() || ids[i1] != n_kv) {
  10341. if (n_moves == max_moves) {
  10342. stop = true;
  10343. break;
  10344. }
  10345. cont = false;
  10346. continue;
  10347. }
  10348. // this cell goes to (i0 + nf)
  10349. ids[i1] = i0 + nf;
  10350. // move the cell meta data
  10351. kv_self.cells[i0 + nf] = cell1;
  10352. // clear the old cell and move the head there
  10353. cell1 = llama_kv_cell();
  10354. kv_self.head = n_used;
  10355. if (!cont) {
  10356. n_moves++;
  10357. cont = true;
  10358. }
  10359. nf++;
  10360. if (nf == nh) {
  10361. break;
  10362. }
  10363. }
  10364. if (stop || n_moves == max_moves) {
  10365. break;
  10366. }
  10367. //LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh);
  10368. i0 += nh - 1;
  10369. }
  10370. if (n_moves == 0) {
  10371. return;
  10372. }
  10373. //LLAMA_LOG_INFO("(tmp log) KV defrag cell moves: %u\n", n_moves);
  10374. //LLAMA_LOG_INFO("expected gf nodes: %u\n", 6*n_moves*n_layer);
  10375. #if 0
  10376. // CPU defrag
  10377. //
  10378. // TODO: optimizations are possible:
  10379. // - multiple threads
  10380. // - avoid copying to the host memory when already there
  10381. //
  10382. // likely not worth the effort, as we have ggml_graph based defrag
  10383. //
  10384. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  10385. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  10386. const uint32_t kv_size = kv_self.size;
  10387. std::vector<uint8_t> buf_k;
  10388. std::vector<uint8_t> buf_v;
  10389. for (uint32_t il = 0; il < n_layer; ++il) {
  10390. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  10391. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_size);
  10392. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  10393. const size_t v_size = ggml_row_size (kv_self.v_l[il]->type, n_embd_v_gqa*kv_size);
  10394. buf_k.resize(k_size);
  10395. buf_v.resize(v_size);
  10396. ggml_backend_tensor_get(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  10397. ggml_backend_tensor_get(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  10398. // batch move [i, i+nm) to [id, id+nm)
  10399. // note: cells can move only to a lower index
  10400. for (uint32_t i = 0; i < n_kv; ++i) {
  10401. const uint32_t id = ids[i];
  10402. if (i == id || id == n_kv) {
  10403. continue;
  10404. }
  10405. uint32_t nm = 1;
  10406. while (i + nm < n_kv && ids[i + nm] == id + nm) {
  10407. nm++;
  10408. }
  10409. // move keys
  10410. {
  10411. const int64_t os = i*k_size_row;
  10412. const int64_t od = id*k_size_row;
  10413. memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
  10414. }
  10415. // move values (note: they are transposed)
  10416. {
  10417. const int64_t os = i;
  10418. const int64_t od = id;
  10419. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  10420. memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
  10421. }
  10422. }
  10423. i += nm - 1;
  10424. }
  10425. ggml_backend_tensor_set(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  10426. ggml_backend_tensor_set(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  10427. }
  10428. #else
  10429. // ggml_graph defrag
  10430. ggml_backend_sched_reset(lctx.sched);
  10431. ggml_cgraph * gf = llama_build_graph_defrag(lctx, ids);
  10432. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  10433. #endif
  10434. //const int64_t t_end = ggml_time_us();
  10435. //LLAMA_LOG_INFO("(tmp log) KV defrag time: %.3f ms\n", (t_end - t_start)/1000.0);
  10436. }
  10437. static void llama_kv_cache_update_internal(struct llama_context & lctx) {
  10438. bool need_reserve = false;
  10439. // apply K-shift if needed
  10440. if (lctx.model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE && lctx.kv_self.has_shift) {
  10441. {
  10442. ggml_backend_sched_reset(lctx.sched);
  10443. ggml_cgraph * gf = llama_build_graph_k_shift(lctx);
  10444. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  10445. llama_set_k_shift(lctx);
  10446. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  10447. need_reserve = true;
  10448. }
  10449. {
  10450. auto & kv_self = lctx.kv_self;
  10451. kv_self.has_shift = false;
  10452. for (uint32_t i = 0; i < kv_self.size; ++i) {
  10453. kv_self.cells[i].delta = 0;
  10454. }
  10455. }
  10456. }
  10457. if (lctx.kv_self.recurrent && lctx.kv_self.do_copy) {
  10458. {
  10459. ggml_backend_sched_reset(lctx.sched);
  10460. ggml_cgraph * gf = llama_build_graph_s_copy(lctx);
  10461. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  10462. llama_set_s_copy(lctx);
  10463. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  10464. need_reserve = true;
  10465. }
  10466. {
  10467. auto & kv_self = lctx.kv_self;
  10468. kv_self.do_copy = false;
  10469. for (uint32_t i = 0; i < kv_self.size; ++i) {
  10470. kv_self.cells[i].src = i;
  10471. }
  10472. }
  10473. }
  10474. // defragment the KV cache if needed
  10475. if (lctx.kv_self.do_defrag) {
  10476. llama_kv_cache_defrag_internal(lctx);
  10477. need_reserve = true;
  10478. lctx.kv_self.do_defrag = false;
  10479. }
  10480. // reserve a worst case graph again
  10481. if (need_reserve) {
  10482. // TODO: extract to a function
  10483. // build worst-case graph
  10484. int n_tokens = (int)std::min(lctx.cparams.n_ctx, lctx.cparams.n_ubatch);
  10485. int n_past = lctx.cparams.n_ctx - n_tokens;
  10486. llama_token token = llama_token_bos(&lctx.model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  10487. ggml_cgraph * gf = llama_build_graph(lctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
  10488. // initialize scheduler with the worst-case graph
  10489. ggml_backend_sched_reset(lctx.sched);
  10490. if (!ggml_backend_sched_reserve(lctx.sched, gf)) {
  10491. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  10492. }
  10493. }
  10494. }
  10495. //
  10496. // tokenizer
  10497. //
  10498. static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) {
  10499. return vocab.type;
  10500. }
  10501. static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) {
  10502. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  10503. return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_NORMAL;
  10504. }
  10505. static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) {
  10506. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  10507. return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_UNKNOWN;
  10508. }
  10509. static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) {
  10510. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  10511. return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_CONTROL;
  10512. }
  10513. static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
  10514. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  10515. return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_BYTE;
  10516. }
  10517. static bool llama_is_user_defined_token(const llama_vocab& vocab, llama_token id) {
  10518. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  10519. return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_USER_DEFINED;
  10520. }
  10521. static uint8_t llama_token_to_byte(const llama_vocab& vocab, llama_token id) {
  10522. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  10523. GGML_ASSERT(llama_is_byte_token(vocab, id));
  10524. const auto & token_data = vocab.id_to_token.at(id);
  10525. switch (llama_vocab_get_type(vocab)) {
  10526. case LLAMA_VOCAB_TYPE_SPM: {
  10527. auto buf = token_data.text.substr(3, 2);
  10528. return strtol(buf.c_str(), NULL, 16);
  10529. }
  10530. case LLAMA_VOCAB_TYPE_BPE: {
  10531. GGML_ASSERT(false);
  10532. return unicode_utf8_to_byte(token_data.text); // TODO: why is this here after GGML_ASSERT?
  10533. }
  10534. case LLAMA_VOCAB_TYPE_WPM: {
  10535. GGML_ASSERT(false);
  10536. }
  10537. default:
  10538. GGML_ASSERT(false);
  10539. }
  10540. }
  10541. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) {
  10542. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  10543. static const char * hex = "0123456789ABCDEF";
  10544. switch (llama_vocab_get_type(vocab)) {
  10545. case LLAMA_VOCAB_TYPE_SPM: {
  10546. const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 };
  10547. auto token = vocab.token_to_id.find(buf);
  10548. if (token != vocab.token_to_id.end()) {
  10549. return (*token).second;
  10550. }
  10551. // Try to fall back to just the byte as a string
  10552. const char buf2[2] = { (char)ch, 0 };
  10553. return vocab.token_to_id.at(buf2);
  10554. }
  10555. case LLAMA_VOCAB_TYPE_WPM:
  10556. case LLAMA_VOCAB_TYPE_BPE: {
  10557. return vocab.token_to_id.at(unicode_byte_to_utf8(ch));
  10558. }
  10559. default:
  10560. GGML_ASSERT(false);
  10561. }
  10562. }
  10563. static void llama_escape_whitespace(std::string & text) {
  10564. replace_all(text, " ", "\xe2\x96\x81");
  10565. }
  10566. static void llama_unescape_whitespace(std::string & word) {
  10567. replace_all(word, "\xe2\x96\x81", " ");
  10568. }
  10569. struct llm_symbol {
  10570. using index = int;
  10571. index prev;
  10572. index next;
  10573. const char * text;
  10574. size_t n;
  10575. };
  10576. static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");
  10577. // SPM tokenizer
  10578. // original implementation:
  10579. // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
  10580. struct llm_bigram_spm {
  10581. struct comparator {
  10582. bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
  10583. return (l.score < r.score) || (l.score == r.score && l.left > r.left);
  10584. }
  10585. };
  10586. using queue_storage = std::vector<llm_bigram_spm>;
  10587. using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
  10588. llm_symbol::index left;
  10589. llm_symbol::index right;
  10590. float score;
  10591. size_t size;
  10592. };
  10593. struct llm_tokenizer_spm {
  10594. llm_tokenizer_spm(const llama_vocab & vocab) : vocab(vocab) {}
  10595. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  10596. // split string into utf8 chars
  10597. int index = 0;
  10598. size_t offs = 0;
  10599. while (offs < text.size()) {
  10600. llm_symbol sym;
  10601. size_t len = utf8_len(text[offs]);
  10602. sym.text = text.c_str() + offs;
  10603. sym.n = std::min(len, text.size() - offs);
  10604. offs += sym.n;
  10605. sym.prev = index - 1;
  10606. sym.next = offs == text.size() ? -1 : index + 1;
  10607. index++;
  10608. symbols.emplace_back(sym);
  10609. }
  10610. // seed the work queue with all possible 2-character tokens.
  10611. for (size_t i = 1; i < symbols.size(); ++i) {
  10612. try_add_bigram(i - 1, i);
  10613. }
  10614. // keep substituting the highest frequency pairs for as long as we can.
  10615. while (!work_queue.empty()) {
  10616. auto bigram = work_queue.top();
  10617. work_queue.pop();
  10618. auto & left_sym = symbols[bigram.left];
  10619. auto & right_sym = symbols[bigram.right];
  10620. // if one of the symbols already got merged, skip it.
  10621. if (left_sym.n == 0 || right_sym.n == 0 ||
  10622. left_sym.n + right_sym.n != bigram.size) {
  10623. continue;
  10624. }
  10625. // merge the right sym into the left one
  10626. left_sym.n += right_sym.n;
  10627. right_sym.n = 0;
  10628. //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
  10629. // remove the right sym from the chain
  10630. left_sym.next = right_sym.next;
  10631. if (right_sym.next >= 0) {
  10632. symbols[right_sym.next].prev = bigram.left;
  10633. }
  10634. // find more substitutions
  10635. try_add_bigram(left_sym.prev, bigram.left);
  10636. try_add_bigram(bigram.left, left_sym.next);
  10637. }
  10638. for (int i = 0; i != -1; i = symbols[i].next) {
  10639. auto & symbol = symbols[i];
  10640. resegment(symbol, output);
  10641. }
  10642. }
  10643. private:
  10644. void resegment(llm_symbol & symbol, std::vector<llama_vocab::id> & output) {
  10645. auto text = std::string(symbol.text, symbol.n);
  10646. auto token = vocab.token_to_id.find(text);
  10647. // Do we need to support is_unused?
  10648. if (token != vocab.token_to_id.end()) {
  10649. output.push_back((*token).second);
  10650. return;
  10651. }
  10652. const auto p = rev_merge.find(text);
  10653. if (p == rev_merge.end()) {
  10654. // output any symbols that did not form tokens as bytes.
  10655. output.reserve(output.size() + symbol.n);
  10656. for (int j = 0; j < (int)symbol.n; ++j) {
  10657. llama_vocab::id token_id = llama_byte_to_token(vocab, symbol.text[j]);
  10658. output.push_back(token_id);
  10659. }
  10660. return;
  10661. }
  10662. resegment(symbols[p->second.first], output);
  10663. resegment(symbols[p->second.second], output);
  10664. }
  10665. void try_add_bigram(int left, int right) {
  10666. if (left == -1 || right == -1) {
  10667. return;
  10668. }
  10669. const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
  10670. auto token = vocab.token_to_id.find(text);
  10671. if (token == vocab.token_to_id.end()) {
  10672. return;
  10673. }
  10674. if (static_cast<size_t>((*token).second) >= vocab.id_to_token.size()) {
  10675. return;
  10676. }
  10677. const auto & tok_data = vocab.id_to_token[(*token).second];
  10678. llm_bigram_spm bigram;
  10679. bigram.left = left;
  10680. bigram.right = right;
  10681. bigram.score = tok_data.score;
  10682. bigram.size = text.size();
  10683. work_queue.push(bigram);
  10684. // Do we need to support is_unused?
  10685. rev_merge[text] = std::make_pair(left, right);
  10686. }
  10687. const llama_vocab & vocab;
  10688. std::vector<llm_symbol> symbols;
  10689. llm_bigram_spm::queue work_queue;
  10690. std::map<std::string, std::pair<int, int>> rev_merge;
  10691. };
  10692. // BPE tokenizer
  10693. // adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License]
  10694. // tried to simplify unicode stuff, so most likely does not work 100% correctly!
  10695. // TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused
  10696. struct llm_bigram_bpe {
  10697. struct comparator {
  10698. bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const {
  10699. return l.rank > r.rank || (l.rank == r.rank && l.left > r.left);
  10700. }
  10701. };
  10702. using queue_storage = std::vector<llm_bigram_bpe>;
  10703. using queue = std::priority_queue<llm_bigram_bpe, queue_storage, comparator>;
  10704. llm_symbol::index left;
  10705. llm_symbol::index right;
  10706. std::string text;
  10707. int rank;
  10708. size_t size;
  10709. };
  10710. struct llm_tokenizer_bpe {
  10711. llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) {}
  10712. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  10713. int final_prev_index = -1;
  10714. bool ignore_merges = false;
  10715. std::vector<std::string> word_collection;
  10716. switch (vocab.type) {
  10717. case LLAMA_VOCAB_TYPE_BPE:
  10718. switch (vocab.type_pre) {
  10719. case LLAMA_VOCAB_PRE_TYPE_LLAMA3:
  10720. ignore_merges = true;
  10721. word_collection = unicode_regex_split(text, {
  10722. // original regex from tokenizer.json
  10723. //"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  10724. // adapted: https://github.com/ggerganov/llama.cpp/pull/6920#issuecomment-2080233989
  10725. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  10726. });
  10727. break;
  10728. case LLAMA_VOCAB_PRE_TYPE_DBRX:
  10729. case LLAMA_VOCAB_PRE_TYPE_SMAUG:
  10730. word_collection = unicode_regex_split(text, {
  10731. // same as llama3
  10732. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  10733. });
  10734. break;
  10735. case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM:
  10736. word_collection = unicode_regex_split(text, {
  10737. "[\r\n]",
  10738. "\\s?[A-Za-zµÀ-ÖØ-öø-ƺƼ-ƿDŽ-ʓʕ-ʯͰ-ͳͶͷͻ-ͽͿΆΈ-ΊΌΎ-ΡΣ-ϵϷ-ҁҊ-ԯԱ-ՖႠ-ჅᎠ-Ᏽᏸ-ᏽᲐ-ᲺᲽ-Ჿᴀ-ᴫᵫ-ᵷᵹ-ᶚḀ-ἕἘ-Ἕἠ-ὅὈ-Ὅὐ-ὗὙὛὝὟ-ώᾀ-ᾴᾶ-ᾼιῂ-ῄῆ-ῌῐ-ΐῖ-Ίῠ-Ῥῲ-ῴῶ-ῼℂℇℊ-ℓℕℙ-ℝℤΩℨK-ℭℯ-ℴℹℼ-ℿⅅ-ⅉⅎↃↄⰀ-ⱻⱾ-ⳤⳫ-ⳮⳲⳳꙀ-ꙭꚀ-ꚛꜢ-ꝯꝱ-ꞇꞋ-ꞎꭰ-ꮿff-stﬓ-ﬗA-Za-z𐐀-𐑏𐒰-𐓓𐓘-𐓻𐲀-𐲲𐳀-𐳲𑢠-𑣟𞤀-𞥃]+",
  10739. "\\s?[!-/:-~!-/:-~‘-‟ -。]+",
  10740. "\\s+$",
  10741. "[一-龥ࠀ-一가-퟿]+",
  10742. "\\p{N}+",
  10743. });
  10744. break;
  10745. case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER:
  10746. word_collection = unicode_regex_split(text, {
  10747. "[\r\n]",
  10748. "\\s?\\p{L}+",
  10749. "\\s?\\p{P}+",
  10750. "[一-龥ࠀ-一가-퟿]+",
  10751. "\\p{N}",
  10752. });
  10753. break;
  10754. case LLAMA_VOCAB_PRE_TYPE_FALCON:
  10755. word_collection = unicode_regex_split(text, {
  10756. "[\\p{P}\\$\\+<=>\\^~\\|]+",
  10757. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10758. "[0-9][0-9][0-9]",
  10759. });
  10760. break;
  10761. case LLAMA_VOCAB_PRE_TYPE_MPT:
  10762. // TODO: MPT pre-tokenization regexes are unknown
  10763. // the following are close, but not exact. run the following:
  10764. // ./bin/test-tokenizer-0 ../models/ggml-vocab-mpt.gguf
  10765. GGML_ASSERT("MPT pre-tokenization regexes are unknown - fixes needed");
  10766. word_collection = unicode_regex_split(text, {
  10767. "\\s?\\p{L}+",
  10768. "\\s?\\p{P}+",
  10769. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10770. });
  10771. break;
  10772. case LLAMA_VOCAB_PRE_TYPE_STARCODER:
  10773. case LLAMA_VOCAB_PRE_TYPE_REFACT:
  10774. case LLAMA_VOCAB_PRE_TYPE_COMMAND_R:
  10775. word_collection = unicode_regex_split(text, {
  10776. "\\p{N}",
  10777. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10778. });
  10779. break;
  10780. case LLAMA_VOCAB_PRE_TYPE_GPT2:
  10781. case LLAMA_VOCAB_PRE_TYPE_OLMO:
  10782. word_collection = unicode_regex_split(text, {
  10783. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10784. });
  10785. break;
  10786. case LLAMA_VOCAB_PRE_TYPE_STABLELM2:
  10787. case LLAMA_VOCAB_PRE_TYPE_QWEN2:
  10788. word_collection = unicode_regex_split(text, {
  10789. // original regex from tokenizer.json
  10790. // "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
  10791. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  10792. });
  10793. break;
  10794. case LLAMA_VOCAB_PRE_TYPE_PORO:
  10795. word_collection = unicode_regex_split(text, {
  10796. " ?[^(\\s|.,!?…。,、।۔،)]+",
  10797. });
  10798. break;
  10799. default:
  10800. // default regex for BPE tokenization pre-processing
  10801. word_collection = unicode_regex_split(text, {
  10802. "[\\p{P}\\$\\+<=>\\^~\\|]+",
  10803. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10804. "\\p{N}+",
  10805. "[0-9][0-9][0-9]",
  10806. });
  10807. break;
  10808. }
  10809. break;
  10810. default:
  10811. GGML_ASSERT(false);
  10812. break;
  10813. }
  10814. symbols_final.clear();
  10815. for (auto & word : word_collection) {
  10816. work_queue = llm_bigram_bpe::queue();
  10817. symbols.clear();
  10818. int index = 0;
  10819. size_t offset = 0;
  10820. if (ignore_merges && vocab.token_to_id.find(word) != vocab.token_to_id.end()) {
  10821. symbols.emplace_back(llm_symbol{-1, -1, word.c_str(), word.size()});
  10822. offset = word.size();
  10823. }
  10824. while (offset < word.size()) {
  10825. llm_symbol sym;
  10826. size_t char_len = std::min(word.size() - offset, (size_t) ::utf8_len(word[offset]));
  10827. sym.text = word.c_str() + offset;
  10828. sym.n = char_len;
  10829. offset += sym.n;
  10830. sym.prev = index - 1;
  10831. sym.next = offset == word.size() ? -1 : index + 1;
  10832. index++;
  10833. symbols.emplace_back(sym);
  10834. }
  10835. for (size_t i = 1; i < symbols.size(); ++i) {
  10836. add_new_bigram(i - 1, i);
  10837. }
  10838. // build token(s)
  10839. while (!work_queue.empty()) {
  10840. auto bigram = work_queue.top();
  10841. work_queue.pop();
  10842. auto & left_symbol = symbols[bigram.left];
  10843. auto & right_symbol = symbols[bigram.right];
  10844. if (left_symbol.n == 0 || right_symbol.n == 0) {
  10845. continue;
  10846. }
  10847. std::string left_token = std::string(left_symbol.text, left_symbol.n);
  10848. std::string right_token = std::string(right_symbol.text, right_symbol.n);
  10849. if (left_token + right_token != bigram.text) {
  10850. continue; // Skip this bigram if it's outdated
  10851. }
  10852. // merge the right sym into the left one
  10853. left_symbol.n += right_symbol.n;
  10854. right_symbol.n = 0;
  10855. // remove the right sym from the chain
  10856. left_symbol.next = right_symbol.next;
  10857. if (right_symbol.next >= 0) {
  10858. symbols[right_symbol.next].prev = bigram.left;
  10859. }
  10860. add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol
  10861. add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol
  10862. }
  10863. // add the finished tokens to the final list keeping correct order for next and prev
  10864. for (auto & sym : symbols) {
  10865. if (sym.n > 0) {
  10866. sym.prev = final_prev_index;
  10867. sym.next = -1;
  10868. if (final_prev_index != -1) {
  10869. symbols_final[final_prev_index].next = symbols_final.size();
  10870. }
  10871. symbols_final.emplace_back(sym);
  10872. final_prev_index = symbols_final.size() - 1;
  10873. }
  10874. }
  10875. }
  10876. symbols = symbols_final;
  10877. if (!symbols.empty()) {
  10878. for (int i = 0; i != -1; i = symbols[i].next) {
  10879. auto & symbol = symbols[i];
  10880. if (symbol.n == 0) {
  10881. continue;
  10882. }
  10883. const std::string str = std::string(symbol.text, symbol.n);
  10884. const auto token = vocab.token_to_id.find(str);
  10885. if (token == vocab.token_to_id.end()) {
  10886. for (auto j = str.begin(); j != str.end(); ++j) {
  10887. std::string byte_str(1, *j);
  10888. auto token_multibyte = vocab.token_to_id.find(byte_str);
  10889. if (token_multibyte == vocab.token_to_id.end()) {
  10890. throw std::runtime_error("ERROR: byte not found in vocab");
  10891. }
  10892. output.push_back((*token_multibyte).second);
  10893. }
  10894. } else {
  10895. output.push_back((*token).second);
  10896. }
  10897. }
  10898. }
  10899. }
  10900. private:
  10901. void add_new_bigram(int left, int right) {
  10902. if (left == -1 || right == -1) {
  10903. return;
  10904. }
  10905. std::string left_token = std::string(symbols[left].text, symbols[left].n);
  10906. std::string right_token = std::string(symbols[right].text, symbols[right].n);
  10907. int rank_found = -1;
  10908. rank_found = vocab.find_bpe_rank(left_token, right_token);
  10909. if (rank_found < 0) {
  10910. return;
  10911. }
  10912. llm_bigram_bpe bigram;
  10913. bigram.left = left;
  10914. bigram.right = right;
  10915. bigram.text = left_token + right_token;
  10916. bigram.size = left_token.size() + right_token.size();
  10917. bigram.rank = rank_found;
  10918. work_queue.push(bigram);
  10919. }
  10920. const llama_vocab & vocab;
  10921. std::vector<llm_symbol> symbols;
  10922. std::vector<llm_symbol> symbols_final;
  10923. llm_bigram_bpe::queue work_queue;
  10924. };
  10925. struct llm_tokenizer_wpm {
  10926. llm_tokenizer_wpm(const llama_vocab & vocab): vocab(vocab) {}
  10927. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  10928. const auto & token_map = vocab.token_to_id;
  10929. // normalize and split by whitespace
  10930. std::vector<std::string> words = preprocess(text);
  10931. // bos token prepended already
  10932. // find the longest tokens that form the words
  10933. for (const std::string &word : words) {
  10934. // skip empty words
  10935. if (word.size() == 0) {
  10936. continue;
  10937. }
  10938. // prepend phantom space
  10939. const std::string word1 = "\xe2\x96\x81" + word;
  10940. const int n = word1.size();
  10941. const size_t current_tokens = output.size();
  10942. // we're at the start of a new word
  10943. // move through character position in word
  10944. for (int i = 0; i < n; ++i) {
  10945. // loop through possible match length
  10946. bool match = false;
  10947. for (int j = n; j > i; j--) {
  10948. auto it = token_map.find(word1.substr(i, j - i));
  10949. if (it != token_map.end()) {
  10950. output.push_back(it->second);
  10951. match = true;
  10952. i = j - 1;
  10953. break;
  10954. }
  10955. }
  10956. if (!match) { // discard all
  10957. output.resize(current_tokens);
  10958. break; // and discard next tokens
  10959. }
  10960. }
  10961. // we didn't find any matches for this word
  10962. if (current_tokens == output.size()) {
  10963. output.push_back(vocab.special_unk_id);
  10964. }
  10965. }
  10966. }
  10967. std::vector<std::string> preprocess(const std::string & text) {
  10968. const std::vector<uint32_t> cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text));
  10969. std::vector<std::string> words(1, "");
  10970. for (const char32_t cpt : cpts_nfd) {
  10971. const auto flags = unicode_cpt_flags(cpt);
  10972. if (flags.is_whitespace) {
  10973. if (words.back().size()) { // finish previous word if any
  10974. words.emplace_back();
  10975. }
  10976. continue;
  10977. }
  10978. assert (!flags.is_separator);
  10979. if (cpt == 0 || cpt == 0xFFFD || flags.is_control) {
  10980. continue;
  10981. }
  10982. const std::string s = unicode_cpt_to_utf8(unicode_tolower(cpt));
  10983. if (flags.is_punctuation || ( cpt < 0x7F && flags.is_symbol ) || is_chinese_char(cpt)) {
  10984. if (words.back().size()) { // finish previous word if any
  10985. words.emplace_back();
  10986. }
  10987. words.back() = s; // single char word
  10988. words.emplace_back(); // start a new word
  10989. } else {
  10990. words.back() += s; // append char to word
  10991. }
  10992. }
  10993. if (!words.back().size()) {
  10994. words.pop_back();
  10995. }
  10996. return words;
  10997. }
  10998. static bool is_chinese_char(uint32_t cpt) {
  10999. return
  11000. (cpt >= 0x04E00 && cpt <= 0x09FFF) ||
  11001. (cpt >= 0x03400 && cpt <= 0x04DBF) ||
  11002. (cpt >= 0x20000 && cpt <= 0x2A6DF) ||
  11003. (cpt >= 0x2A700 && cpt <= 0x2B73F) ||
  11004. (cpt >= 0x2B740 && cpt <= 0x2B81F) ||
  11005. (cpt >= 0x2B920 && cpt <= 0x2CEAF) || // this should be 0x2B820 but in hf rust code it is 0x2B920
  11006. (cpt >= 0x0F900 && cpt <= 0x0FAFF) ||
  11007. (cpt >= 0x2F800 && cpt <= 0x2FA1F);
  11008. //(cpt >= 0x3000 && cpt <= 0x303F) ||
  11009. //(cpt >= 0xFF00 && cpt <= 0xFFEF);
  11010. }
  11011. const llama_vocab & vocab;
  11012. };
  11013. typedef enum FRAGMENT_BUFFER_VARIANT_TYPE {
  11014. FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN,
  11015. FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT
  11016. } FRAGMENT_BUFFER_VARIANT_TYPE;
  11017. struct fragment_buffer_variant {
  11018. fragment_buffer_variant(llama_vocab::id _token)
  11019. :
  11020. type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN),
  11021. token(_token),
  11022. raw_text(_dummy),
  11023. offset(0),
  11024. length(0) {}
  11025. fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length)
  11026. :
  11027. type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT),
  11028. token((llama_vocab::id) - 1),
  11029. raw_text(_raw_text),
  11030. offset(_offset),
  11031. length(_length){
  11032. GGML_ASSERT(_offset >= 0);
  11033. GGML_ASSERT(_length >= 1);
  11034. GGML_ASSERT(offset + length <= raw_text.length());
  11035. }
  11036. const FRAGMENT_BUFFER_VARIANT_TYPE type;
  11037. const llama_vocab::id token;
  11038. const std::string _dummy;
  11039. const std::string & raw_text;
  11040. const uint64_t offset;
  11041. const uint64_t length;
  11042. };
  11043. // #define PRETOKENIZERDEBUG
  11044. static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<fragment_buffer_variant> & buffer) {
  11045. // for each special token
  11046. for (const llama_vocab::id special_id : vocab.cache_special_tokens) {
  11047. const auto & data = vocab.id_to_token[special_id];
  11048. const auto & special_token = data.text;
  11049. // for each text fragment
  11050. std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin();
  11051. while (it != buffer.end()) {
  11052. auto & fragment = (*it);
  11053. // if a fragment is text ( not yet processed )
  11054. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  11055. auto & raw_text = fragment.raw_text;
  11056. auto raw_text_base_offset = fragment.offset;
  11057. auto raw_text_base_length = fragment.length;
  11058. // loop over the text
  11059. while (true) {
  11060. // find the first occurrence of a given special token in this fragment
  11061. // passing offset argument only limit the "search area" but match coordinates
  11062. // are still relative to the source full raw_text
  11063. auto match = raw_text.find(special_token, raw_text_base_offset);
  11064. // no occurrences found, stop processing this fragment for a given special token
  11065. if (match == std::string::npos) break;
  11066. // check if match is within bounds of offset <-> length
  11067. if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break;
  11068. #ifdef PRETOKENIZERDEBUG
  11069. LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  11070. #endif
  11071. auto source = std::distance(buffer.begin(), it);
  11072. // if match is further than base offset
  11073. // then we have some text to the left of it
  11074. if (match > raw_text_base_offset) {
  11075. // left
  11076. const int64_t left_reminder_offset = raw_text_base_offset + 0;
  11077. int64_t left_reminder_length = match - raw_text_base_offset;
  11078. if (data.attr & LLAMA_TOKEN_ATTR_LSTRIP) {
  11079. while (left_reminder_length > 0 && isspace(raw_text[left_reminder_offset + left_reminder_length - 1])) {
  11080. left_reminder_length--;
  11081. }
  11082. }
  11083. if (left_reminder_length > 0) {
  11084. buffer.emplace_after(it, raw_text, left_reminder_offset, left_reminder_length);
  11085. it++;
  11086. }
  11087. #ifdef PRETOKENIZERDEBUG
  11088. LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
  11089. #endif
  11090. }
  11091. // special token
  11092. buffer.emplace_after(it, special_id);
  11093. it++;
  11094. // right
  11095. if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) {
  11096. int64_t right_reminder_offset = match + special_token.length();
  11097. int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length());
  11098. if (data.attr & LLAMA_TOKEN_ATTR_RSTRIP) {
  11099. while (right_reminder_length > 0 && isspace(raw_text[right_reminder_offset])) {
  11100. right_reminder_offset++;
  11101. right_reminder_length--;
  11102. }
  11103. }
  11104. if (right_reminder_length > 0) {
  11105. buffer.emplace_after(it, raw_text, right_reminder_offset, right_reminder_length);
  11106. it++;
  11107. }
  11108. #ifdef PRETOKENIZERDEBUG
  11109. LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
  11110. #endif
  11111. if (source == 0) {
  11112. buffer.erase_after(buffer.before_begin());
  11113. } else {
  11114. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  11115. }
  11116. // repeat for the right side
  11117. raw_text_base_offset = right_reminder_offset;
  11118. raw_text_base_length = right_reminder_length;
  11119. #ifdef PRETOKENIZERDEBUG
  11120. LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  11121. #endif
  11122. } else {
  11123. if (source == 0) {
  11124. buffer.erase_after(buffer.before_begin());
  11125. } else {
  11126. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  11127. }
  11128. break;
  11129. }
  11130. }
  11131. }
  11132. it++;
  11133. }
  11134. }
  11135. }
  11136. static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special) {
  11137. std::vector<llama_vocab::id> output;
  11138. std::forward_list<fragment_buffer_variant> fragment_buffer;
  11139. if (!raw_text.empty()) {
  11140. fragment_buffer.emplace_front(raw_text, 0, raw_text.length());
  11141. if (parse_special) tokenizer_st_partition(vocab, fragment_buffer);
  11142. }
  11143. switch (vocab.type) {
  11144. case LLAMA_VOCAB_TYPE_SPM:
  11145. {
  11146. // OG tokenizer behavior:
  11147. //
  11148. // tokenizer.encode('', add_special_tokens=True) returns [1]
  11149. // tokenizer.encode('', add_special_tokens=False) returns []
  11150. bool is_prev_special = false;
  11151. if (add_special && vocab.special_add_bos != 0) {
  11152. GGML_ASSERT(vocab.special_bos_id != -1);
  11153. output.push_back(vocab.special_bos_id);
  11154. is_prev_special = true;
  11155. }
  11156. for (const auto & fragment : fragment_buffer) {
  11157. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  11158. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  11159. if (vocab.add_space_prefix) {
  11160. if (!output.size() || is_prev_special) { // prefix with space if first token
  11161. raw_text = " " + raw_text;
  11162. }
  11163. }
  11164. #ifdef PRETOKENIZERDEBUG
  11165. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  11166. #endif
  11167. llm_tokenizer_spm tokenizer(vocab);
  11168. llama_escape_whitespace(raw_text);
  11169. tokenizer.tokenize(raw_text, output);
  11170. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  11171. output.push_back(fragment.token);
  11172. is_prev_special = true;
  11173. }
  11174. }
  11175. if (add_special && vocab.special_add_bos != 0 && output.size() >= 2 && output[1] == vocab.special_bos_id) {
  11176. LLAMA_LOG_WARN(
  11177. "%s: Added a BOS token to the prompt as specified by the model but the prompt "
  11178. "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
  11179. "Are you sure this is what you want?\n", __FUNCTION__);
  11180. }
  11181. if (add_special && vocab.special_add_eos == 1) {
  11182. GGML_ASSERT(vocab.special_eos_id != -1);
  11183. output.push_back(vocab.special_eos_id);
  11184. }
  11185. } break;
  11186. case LLAMA_VOCAB_TYPE_BPE:
  11187. {
  11188. if (add_special && vocab.special_add_bos != 0) {
  11189. GGML_ASSERT(vocab.special_bos_id != -1);
  11190. output.push_back(vocab.special_bos_id);
  11191. }
  11192. for (const auto & fragment : fragment_buffer) {
  11193. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  11194. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  11195. #ifdef PRETOKENIZERDEBUG
  11196. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  11197. #endif
  11198. llm_tokenizer_bpe tokenizer(vocab);
  11199. tokenizer.tokenize(raw_text, output);
  11200. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  11201. output.push_back(fragment.token);
  11202. }
  11203. }
  11204. if (add_special && vocab.special_add_bos != 0 && output.size() >= 2 && output[1] == vocab.special_bos_id) {
  11205. LLAMA_LOG_WARN(
  11206. "%s: Added a BOS token to the prompt as specified by the model but the prompt "
  11207. "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
  11208. "Are you sure this is what you want?\n", __FUNCTION__);
  11209. }
  11210. if (add_special && vocab.special_add_eos == 1) {
  11211. GGML_ASSERT(vocab.special_add_eos != -1);
  11212. output.push_back(vocab.special_eos_id);
  11213. }
  11214. } break;
  11215. case LLAMA_VOCAB_TYPE_WPM:
  11216. {
  11217. if (add_special) {
  11218. GGML_ASSERT(vocab.special_cls_id != -1);
  11219. output.push_back(vocab.special_cls_id);
  11220. }
  11221. for (const auto & fragment : fragment_buffer) {
  11222. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  11223. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  11224. #ifdef PRETOKENIZERDEBUG
  11225. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  11226. #endif
  11227. llm_tokenizer_wpm tokenizer(vocab);
  11228. tokenizer.tokenize(raw_text, output);
  11229. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  11230. output.push_back(fragment.token);
  11231. }
  11232. }
  11233. if (add_special) {
  11234. GGML_ASSERT(vocab.special_sep_id != -1);
  11235. output.push_back(vocab.special_sep_id);
  11236. }
  11237. } break;
  11238. case LLAMA_VOCAB_TYPE_NONE:
  11239. GGML_ASSERT(false);
  11240. }
  11241. return output;
  11242. }
  11243. //
  11244. // grammar - internal
  11245. //
  11246. // Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as
  11247. // pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`.
  11248. std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
  11249. const std::string & src,
  11250. llama_partial_utf8 partial_start) {
  11251. static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 };
  11252. const char * pos = src.c_str();
  11253. std::vector<uint32_t> code_points;
  11254. // common english strings have the same number of codepoints and bytes. `+ 1` for the terminating 0.
  11255. code_points.reserve(src.size() + 1);
  11256. uint32_t value = partial_start.value;
  11257. int n_remain = partial_start.n_remain;
  11258. // continue previous decode, if applicable
  11259. while (*pos != 0 && n_remain > 0) {
  11260. uint8_t next_byte = static_cast<uint8_t>(*pos);
  11261. if ((next_byte >> 6) != 2) {
  11262. // invalid sequence, abort
  11263. code_points.push_back(0);
  11264. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, -1 });
  11265. }
  11266. value = (value << 6) + (next_byte & 0x3F);
  11267. ++pos;
  11268. --n_remain;
  11269. }
  11270. if (partial_start.n_remain > 0 && n_remain == 0) {
  11271. code_points.push_back(value);
  11272. }
  11273. // decode any subsequent utf-8 sequences, which may end in an incomplete one
  11274. while (*pos != 0) {
  11275. uint8_t first_byte = static_cast<uint8_t>(*pos);
  11276. uint8_t highbits = first_byte >> 4;
  11277. n_remain = lookup[highbits] - 1;
  11278. if (n_remain < 0) {
  11279. // invalid sequence, abort
  11280. code_points.clear();
  11281. code_points.push_back(0);
  11282. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, n_remain });
  11283. }
  11284. uint8_t mask = (1 << (7 - n_remain)) - 1;
  11285. value = first_byte & mask;
  11286. ++pos;
  11287. while (*pos != 0 && n_remain > 0) {
  11288. value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
  11289. ++pos;
  11290. --n_remain;
  11291. }
  11292. if (n_remain == 0) {
  11293. code_points.push_back(value);
  11294. }
  11295. }
  11296. code_points.push_back(0);
  11297. return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain });
  11298. }
  11299. // returns true iff pos points to the end of one of the definitions of a rule
  11300. static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) {
  11301. switch (pos->type) {
  11302. case LLAMA_GRETYPE_END: return true; // NOLINT
  11303. case LLAMA_GRETYPE_ALT: return true; // NOLINT
  11304. default: return false;
  11305. }
  11306. }
  11307. // returns true iff chr satisfies the char range at pos (regular or inverse range)
  11308. // asserts that pos is pointing to a char range element
  11309. static std::pair<bool, const llama_grammar_element *> llama_grammar_match_char(
  11310. const llama_grammar_element * pos,
  11311. const uint32_t chr) {
  11312. bool found = false;
  11313. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR || pos->type == LLAMA_GRETYPE_CHAR_ANY;
  11314. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); // NOLINT
  11315. do {
  11316. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  11317. // inclusive range, e.g. [a-z]
  11318. found = found || (pos->value <= chr && chr <= pos[1].value);
  11319. pos += 2;
  11320. } else if (pos->type == LLAMA_GRETYPE_CHAR_ANY) {
  11321. // Any character matches "."
  11322. found = true;
  11323. pos += 1;
  11324. } else {
  11325. // exact char match, e.g. [a] or "a"
  11326. found = found || pos->value == chr;
  11327. pos += 1;
  11328. }
  11329. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  11330. return std::make_pair(found == is_positive_char, pos);
  11331. }
  11332. // returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char
  11333. // range at pos (regular or inverse range)
  11334. // asserts that pos is pointing to a char range element
  11335. static bool llama_grammar_match_partial_char(
  11336. const llama_grammar_element * pos,
  11337. const llama_partial_utf8 partial_utf8) {
  11338. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR || pos->type == LLAMA_GRETYPE_CHAR_ANY;
  11339. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT);
  11340. uint32_t partial_value = partial_utf8.value;
  11341. int n_remain = partial_utf8.n_remain;
  11342. // invalid sequence or 7-bit char split across 2 bytes (overlong)
  11343. if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) {
  11344. return false;
  11345. }
  11346. // range of possible code points this partial UTF-8 sequence could complete to
  11347. uint32_t low = partial_value << (n_remain * 6);
  11348. uint32_t high = low | ((1 << (n_remain * 6)) - 1);
  11349. if (low == 0) {
  11350. if (n_remain == 2) {
  11351. low = 1 << 11;
  11352. } else if (n_remain == 3) {
  11353. low = 1 << 16;
  11354. }
  11355. }
  11356. do {
  11357. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  11358. // inclusive range, e.g. [a-z]
  11359. if (pos->value <= high && low <= pos[1].value) {
  11360. return is_positive_char;
  11361. }
  11362. pos += 2;
  11363. } else if (pos->type == LLAMA_GRETYPE_CHAR_ANY) {
  11364. // Any character matches "."
  11365. return true;
  11366. } else {
  11367. // exact char match, e.g. [a] or "a"
  11368. if (low <= pos->value && pos->value <= high) {
  11369. return is_positive_char;
  11370. }
  11371. pos += 1;
  11372. }
  11373. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  11374. return !is_positive_char;
  11375. }
  11376. // transforms a grammar pushdown stack into N possible stacks, all ending
  11377. // at a character range (terminal element)
  11378. static void llama_grammar_advance_stack(
  11379. const std::vector<std::vector<llama_grammar_element>> & rules,
  11380. const std::vector<const llama_grammar_element *> & stack,
  11381. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  11382. if (stack.empty()) {
  11383. if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
  11384. new_stacks.emplace_back(stack);
  11385. }
  11386. return;
  11387. }
  11388. const llama_grammar_element * pos = stack.back();
  11389. switch (pos->type) {
  11390. case LLAMA_GRETYPE_RULE_REF: {
  11391. const size_t rule_id = static_cast<size_t>(pos->value);
  11392. const llama_grammar_element * subpos = rules[rule_id].data();
  11393. do {
  11394. // init new stack without the top (pos)
  11395. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  11396. if (!llama_grammar_is_end_of_sequence(pos + 1)) {
  11397. // if this rule ref is followed by another element, add that to stack
  11398. new_stack.push_back(pos + 1);
  11399. }
  11400. if (!llama_grammar_is_end_of_sequence(subpos)) {
  11401. // if alternate is nonempty, add to stack
  11402. new_stack.push_back(subpos);
  11403. }
  11404. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  11405. while (!llama_grammar_is_end_of_sequence(subpos)) {
  11406. // scan to end of alternate def
  11407. subpos++;
  11408. }
  11409. if (subpos->type == LLAMA_GRETYPE_ALT) {
  11410. // there's another alternate def of this rule to process
  11411. subpos++;
  11412. } else {
  11413. break;
  11414. }
  11415. } while (true);
  11416. break;
  11417. }
  11418. case LLAMA_GRETYPE_CHAR:
  11419. case LLAMA_GRETYPE_CHAR_NOT:
  11420. case LLAMA_GRETYPE_CHAR_ANY:
  11421. if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
  11422. // only add the stack if it's not a duplicate of one we already have
  11423. new_stacks.emplace_back(stack);
  11424. }
  11425. break;
  11426. default:
  11427. // end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range
  11428. // (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on
  11429. // those
  11430. GGML_ASSERT(false);
  11431. }
  11432. }
  11433. // takes a set of possible pushdown stacks on a grammar, which are required to
  11434. // be positioned at a character range (see `llama_grammar_advance_stack`), and
  11435. // produces the N possible stacks if the given char is accepted at those
  11436. // positions
  11437. void llama_grammar_accept(
  11438. const std::vector<std::vector<llama_grammar_element>> & rules,
  11439. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  11440. const uint32_t chr,
  11441. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  11442. new_stacks.clear();
  11443. for (const auto & stack : stacks) {
  11444. if (stack.empty()) {
  11445. continue;
  11446. }
  11447. auto match = llama_grammar_match_char(stack.back(), chr);
  11448. if (match.first) {
  11449. const llama_grammar_element * pos = match.second;
  11450. // update top of stack to next element, if any
  11451. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  11452. if (!llama_grammar_is_end_of_sequence(pos)) {
  11453. new_stack.push_back(pos);
  11454. }
  11455. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  11456. }
  11457. }
  11458. }
  11459. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  11460. const std::vector<std::vector<llama_grammar_element>> & rules,
  11461. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  11462. const std::vector<llama_grammar_candidate> & candidates);
  11463. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
  11464. const std::vector<std::vector<llama_grammar_element>> & rules,
  11465. const std::vector<const llama_grammar_element *> & stack,
  11466. const std::vector<llama_grammar_candidate> & candidates) {
  11467. std::vector<llama_grammar_candidate> rejects;
  11468. rejects.reserve(candidates.size());
  11469. if (stack.empty()) {
  11470. for (const auto & tok : candidates) {
  11471. if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) {
  11472. rejects.push_back(tok);
  11473. }
  11474. }
  11475. return rejects;
  11476. }
  11477. const llama_grammar_element * stack_pos = stack.back();
  11478. std::vector<llama_grammar_candidate> next_candidates;
  11479. next_candidates.reserve(candidates.size());
  11480. for (const auto & tok : candidates) {
  11481. if (*tok.code_points == 0) {
  11482. // reached end of full codepoints in token, reject iff it ended in a partial sequence
  11483. // that cannot satisfy this position in grammar
  11484. if (tok.partial_utf8.n_remain != 0 &&
  11485. !llama_grammar_match_partial_char(stack_pos, tok.partial_utf8)) {
  11486. rejects.push_back(tok);
  11487. }
  11488. } else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) {
  11489. next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 });
  11490. } else {
  11491. rejects.push_back(tok);
  11492. }
  11493. }
  11494. const auto * stack_pos_after = llama_grammar_match_char(stack_pos, 0).second;
  11495. // update top of stack to next element, if any
  11496. std::vector<const llama_grammar_element *> stack_after(stack.begin(), stack.end() - 1);
  11497. if (!llama_grammar_is_end_of_sequence(stack_pos_after)) {
  11498. stack_after.push_back(stack_pos_after);
  11499. }
  11500. std::vector<std::vector<const llama_grammar_element *>> next_stacks;
  11501. llama_grammar_advance_stack(rules, stack_after, next_stacks);
  11502. auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
  11503. for (const auto & tok : next_rejects) {
  11504. rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 });
  11505. }
  11506. return rejects;
  11507. }
  11508. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  11509. const std::vector<std::vector<llama_grammar_element>> & rules,
  11510. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  11511. const std::vector<llama_grammar_candidate> & candidates) {
  11512. GGML_ASSERT(!stacks.empty()); // REVIEW
  11513. if (candidates.empty()) {
  11514. return std::vector<llama_grammar_candidate>();
  11515. }
  11516. auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates);
  11517. for (size_t i = 1, size = stacks.size(); i < size; ++i) {
  11518. rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects);
  11519. }
  11520. return rejects;
  11521. }
  11522. static bool llama_grammar_detect_left_recursion(
  11523. const std::vector<std::vector<llama_grammar_element>> & rules,
  11524. size_t rule_index,
  11525. std::vector<bool> * rules_visited,
  11526. std::vector<bool> * rules_in_progress,
  11527. std::vector<bool> * rules_may_be_empty) {
  11528. if ((*rules_in_progress)[rule_index]) {
  11529. return true;
  11530. }
  11531. (*rules_in_progress)[rule_index] = true;
  11532. const std::vector<llama_grammar_element> & rule = rules[rule_index];
  11533. // First check if the rule might produce the empty string. This could be done combined with the second
  11534. // step but it's more readable as two steps.
  11535. bool at_rule_start = true;
  11536. for (size_t i = 0; i < rule.size(); i++) {
  11537. if (llama_grammar_is_end_of_sequence(&rule[i])) {
  11538. if (at_rule_start) {
  11539. (*rules_may_be_empty)[rule_index] = true;
  11540. break;
  11541. }
  11542. at_rule_start = true;
  11543. } else {
  11544. at_rule_start = false;
  11545. }
  11546. }
  11547. // Second, recurse into leftmost nonterminals (or next-leftmost as long as the previous nonterminal may
  11548. // be empty)
  11549. bool recurse_into_nonterminal = true;
  11550. for (size_t i = 0; i < rule.size(); i++) {
  11551. if (rule[i].type == LLAMA_GRETYPE_RULE_REF && recurse_into_nonterminal) {
  11552. if (llama_grammar_detect_left_recursion(rules, (size_t)rule[i].value, rules_visited, rules_in_progress, rules_may_be_empty)) {
  11553. return true;
  11554. }
  11555. if (!((*rules_may_be_empty)[(size_t)rule[i].value])) {
  11556. recurse_into_nonterminal = false;
  11557. }
  11558. } else if (llama_grammar_is_end_of_sequence(&rule[i])) {
  11559. recurse_into_nonterminal = true;
  11560. } else {
  11561. recurse_into_nonterminal = false;
  11562. }
  11563. }
  11564. (*rules_in_progress)[rule_index] = false;
  11565. (*rules_visited)[rule_index] = true;
  11566. return false;
  11567. }
  11568. //
  11569. // grammar - external
  11570. //
  11571. struct llama_grammar * llama_grammar_init(
  11572. const llama_grammar_element ** rules,
  11573. size_t n_rules,
  11574. size_t start_rule_index) {
  11575. const llama_grammar_element * pos;
  11576. // copy rule definitions into vectors
  11577. std::vector<std::vector<llama_grammar_element>> vec_rules(n_rules);
  11578. for (size_t i = 0; i < n_rules; i++) {
  11579. for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) {
  11580. vec_rules[i].push_back(*pos);
  11581. }
  11582. vec_rules[i].push_back({LLAMA_GRETYPE_END, 0});
  11583. }
  11584. // Check for left recursion
  11585. std::vector<bool> rules_visited(n_rules);
  11586. std::vector<bool> rules_in_progress(n_rules);
  11587. std::vector<bool> rules_may_be_empty(n_rules);
  11588. for (size_t i = 0; i < n_rules; i++) {
  11589. if (rules_visited[i]) {
  11590. continue;
  11591. }
  11592. if (llama_grammar_detect_left_recursion(vec_rules, i, &rules_visited, &rules_in_progress, &rules_may_be_empty)) {
  11593. throw std::runtime_error(format("unsupported grammar, left recursion detected for nonterminal at index %zu", i));
  11594. }
  11595. }
  11596. // loop over alternates of start rule to build initial stacks
  11597. std::vector<std::vector<const llama_grammar_element *>> stacks;
  11598. pos = vec_rules[start_rule_index].data();
  11599. do {
  11600. std::vector<const llama_grammar_element *> stack;
  11601. if (!llama_grammar_is_end_of_sequence(pos)) {
  11602. // if alternate is nonempty, add to stack
  11603. stack.push_back(pos);
  11604. }
  11605. llama_grammar_advance_stack(vec_rules, stack, stacks);
  11606. while (!llama_grammar_is_end_of_sequence(pos)) {
  11607. // scan to end of alternate def
  11608. pos++;
  11609. }
  11610. if (pos->type == LLAMA_GRETYPE_ALT) {
  11611. // there's another alternate def of this rule to process
  11612. pos++;
  11613. } else {
  11614. break;
  11615. }
  11616. } while (true);
  11617. // Important: vec_rules has to be moved here, not copied, because stacks contains
  11618. // pointers to elements of vec_rules. If vec_rules were copied into llama_grammar
  11619. // then the pointers would be invalidated when the local vec_rules goes out of scope.
  11620. return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} };
  11621. }
  11622. void llama_grammar_free(struct llama_grammar * grammar) {
  11623. delete grammar;
  11624. }
  11625. struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) {
  11626. llama_grammar * result = new llama_grammar{ grammar->rules, grammar->stacks, grammar->partial_utf8 };
  11627. // redirect elements in stacks to point to new rules
  11628. for (size_t is = 0; is < result->stacks.size(); is++) {
  11629. for (size_t ie = 0; ie < result->stacks[is].size(); ie++) {
  11630. for (size_t ir0 = 0; ir0 < grammar->rules.size(); ir0++) {
  11631. for (size_t ir1 = 0; ir1 < grammar->rules[ir0].size(); ir1++) {
  11632. if (grammar->stacks[is][ie] == &grammar->rules[ir0][ir1]) {
  11633. result->stacks[is][ie] = &result->rules[ir0][ir1];
  11634. }
  11635. }
  11636. }
  11637. }
  11638. }
  11639. return result;
  11640. }
  11641. //
  11642. // sampling
  11643. //
  11644. void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) {
  11645. if (seed == LLAMA_DEFAULT_SEED) {
  11646. seed = time(NULL);
  11647. }
  11648. ctx->rng.seed(seed);
  11649. }
  11650. void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
  11651. GGML_ASSERT(candidates->size > 0);
  11652. const int64_t t_start_sample_us = ggml_time_us();
  11653. // Sort the logits in descending order
  11654. if (!candidates->sorted) {
  11655. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  11656. return a.logit > b.logit;
  11657. });
  11658. candidates->sorted = true;
  11659. }
  11660. float max_l = candidates->data[0].logit;
  11661. float cum_sum = 0.0f;
  11662. for (size_t i = 0; i < candidates->size; ++i) {
  11663. float p = expf(candidates->data[i].logit - max_l);
  11664. candidates->data[i].p = p;
  11665. cum_sum += p;
  11666. }
  11667. for (size_t i = 0; i < candidates->size; ++i) {
  11668. candidates->data[i].p /= cum_sum;
  11669. }
  11670. if (ctx) {
  11671. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11672. }
  11673. }
  11674. void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int32_t k, size_t min_keep) {
  11675. // TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast
  11676. // if (k >= (int32_t)candidates->size) {
  11677. // return;
  11678. // }
  11679. const int64_t t_start_sample_us = ggml_time_us();
  11680. if (k <= 0) {
  11681. k = candidates->size;
  11682. }
  11683. k = std::max(k, (int) min_keep);
  11684. k = std::min(k, (int) candidates->size);
  11685. // Sort scores in descending order
  11686. if (!candidates->sorted) {
  11687. auto comp = [](const llama_token_data & a, const llama_token_data & b) {
  11688. return a.logit > b.logit;
  11689. };
  11690. if (k <= 128) {
  11691. std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
  11692. } else {
  11693. constexpr int nbuckets = 128;
  11694. constexpr float bucket_low = -10.0f;
  11695. constexpr float bucket_high = 10.0f;
  11696. constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low);
  11697. constexpr float bucker_inter = -bucket_low * bucket_scale;
  11698. std::vector<int> bucket_idx(candidates->size);
  11699. std::vector<int> histo(nbuckets, 0);
  11700. for (int i = 0; i < (int)candidates->size; ++i) {
  11701. const float val = candidates->data[i].logit;
  11702. int ib = int(bucket_scale * val + bucker_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
  11703. ib = std::max(0, std::min(nbuckets-1, ib));
  11704. bucket_idx[i] = ib;
  11705. ++histo[ib];
  11706. }
  11707. int nhave = 0;
  11708. int ib = nbuckets - 1;
  11709. for ( ; ib >= 0; --ib) {
  11710. nhave += histo[ib];
  11711. if (nhave >= k) break;
  11712. }
  11713. std::vector<llama_token_data> tmp_tokens(nhave);
  11714. auto ptr = tmp_tokens.data();
  11715. std::vector<llama_token_data*> bucket_ptrs;
  11716. bucket_ptrs.reserve(nbuckets - ib);
  11717. for (int j = nbuckets - 1; j >= ib; --j) {
  11718. bucket_ptrs.push_back(ptr);
  11719. ptr += histo[j];
  11720. }
  11721. for (int i = 0; i < (int)candidates->size; ++i) {
  11722. int j = bucket_idx[i];
  11723. if (j >= ib) {
  11724. *bucket_ptrs[nbuckets-1-j]++ = candidates->data[i];
  11725. }
  11726. }
  11727. ptr = tmp_tokens.data();
  11728. int ndone = 0;
  11729. for (int j = nbuckets-1; j > ib; --j) {
  11730. std::sort(ptr, ptr + histo[j], comp);
  11731. ptr += histo[j];
  11732. ndone += histo[j];
  11733. }
  11734. std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp);
  11735. std::memcpy(candidates->data, tmp_tokens.data(), k*sizeof(llama_token_data));
  11736. }
  11737. candidates->sorted = true;
  11738. }
  11739. candidates->size = k;
  11740. if (ctx) {
  11741. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11742. }
  11743. }
  11744. void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  11745. if (p >= 1.0f) {
  11746. return;
  11747. }
  11748. llama_sample_softmax(ctx, candidates);
  11749. const int64_t t_start_sample_us = ggml_time_us();
  11750. // Compute the cumulative probabilities
  11751. float cum_sum = 0.0f;
  11752. size_t last_idx = candidates->size;
  11753. for (size_t i = 0; i < candidates->size; ++i) {
  11754. cum_sum += candidates->data[i].p;
  11755. // Check if the running sum is at least p or if we have kept at least min_keep tokens
  11756. // we set the last index to i+1 to indicate that the current iterate should be included in the set
  11757. if (cum_sum >= p && i + 1 >= min_keep) {
  11758. last_idx = i + 1;
  11759. break;
  11760. }
  11761. }
  11762. // Resize the output vector to keep only the top-p tokens
  11763. candidates->size = last_idx;
  11764. if (ctx) {
  11765. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11766. }
  11767. }
  11768. void llama_sample_min_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  11769. if (p <= 0.0f || !candidates->size) {
  11770. return;
  11771. }
  11772. const int64_t t_start_sample_us = ggml_time_us();
  11773. bool min_p_applied = false;
  11774. // if the candidates aren't sorted, try the unsorted implementation first
  11775. if (!candidates->sorted) {
  11776. std::vector<llama_token_data> filtered_tokens;
  11777. float max_logit = -FLT_MAX;
  11778. for (size_t i = 0; i < candidates->size; ++i) {
  11779. max_logit = std::max(max_logit, candidates->data[i].logit);
  11780. }
  11781. const float min_logit = max_logit + logf(p); // min logit for p_i >= p * p_max
  11782. for (size_t i = 0; i < candidates->size; ++i) {
  11783. if (candidates->data[i].logit >= min_logit) {
  11784. filtered_tokens.push_back(candidates->data[i]);
  11785. }
  11786. }
  11787. // if we have enough values the operation was a success
  11788. if (filtered_tokens.size() >= min_keep) {
  11789. memcpy(candidates->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data));
  11790. candidates->size = filtered_tokens.size();
  11791. min_p_applied = true;
  11792. }
  11793. }
  11794. // if the candidates are sorted or the unsorted implementation failed, use this implementation
  11795. if (!min_p_applied) {
  11796. // Sort the logits in descending order
  11797. if (!candidates->sorted) {
  11798. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  11799. return a.logit > b.logit;
  11800. });
  11801. candidates->sorted = true;
  11802. }
  11803. const float min_logit = candidates->data[0].logit + logf(p); // min logit for p_i >= p * p_max
  11804. size_t i = 1; // first token always matches
  11805. for (; i < candidates->size; ++i) {
  11806. if (candidates->data[i].logit < min_logit && i >= min_keep) {
  11807. break; // prob too small
  11808. }
  11809. }
  11810. // Resize the output vector to keep only the matching tokens
  11811. candidates->size = i;
  11812. }
  11813. if (ctx) {
  11814. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11815. }
  11816. }
  11817. void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
  11818. if (z >= 1.0f || candidates->size <= 2) {
  11819. return;
  11820. }
  11821. llama_sample_softmax(nullptr, candidates);
  11822. const int64_t t_start_sample_us = ggml_time_us();
  11823. // Compute the first and second derivatives
  11824. std::vector<float> first_derivatives(candidates->size - 1);
  11825. std::vector<float> second_derivatives(candidates->size - 2);
  11826. for (size_t i = 0; i < first_derivatives.size(); ++i) {
  11827. first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
  11828. }
  11829. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  11830. second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
  11831. }
  11832. // Calculate absolute value of second derivatives
  11833. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  11834. second_derivatives[i] = std::abs(second_derivatives[i]);
  11835. }
  11836. // Normalize the second derivatives
  11837. {
  11838. const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
  11839. if (second_derivatives_sum > 1e-6f) {
  11840. for (float & value : second_derivatives) {
  11841. value /= second_derivatives_sum;
  11842. }
  11843. } else {
  11844. for (float & value : second_derivatives) {
  11845. value = 1.0f / second_derivatives.size();
  11846. }
  11847. }
  11848. }
  11849. float cum_sum = 0.0f;
  11850. size_t last_idx = candidates->size;
  11851. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  11852. cum_sum += second_derivatives[i];
  11853. // Check if the running sum is greater than z or if we have kept at least min_keep tokens
  11854. if (cum_sum > z && i >= min_keep) {
  11855. last_idx = i;
  11856. break;
  11857. }
  11858. }
  11859. // Resize the output vector to keep only the tokens above the tail location
  11860. candidates->size = last_idx;
  11861. if (ctx) {
  11862. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11863. }
  11864. }
  11865. void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  11866. // Reference implementation:
  11867. // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
  11868. if (p >= 1.0f) {
  11869. return;
  11870. }
  11871. // Compute the softmax of logits and calculate entropy
  11872. llama_sample_softmax(nullptr, candidates);
  11873. const int64_t t_start_sample_us = ggml_time_us();
  11874. float entropy = 0.0f;
  11875. for (size_t i = 0; i < candidates->size; ++i) {
  11876. entropy += -candidates->data[i].p * logf(candidates->data[i].p);
  11877. }
  11878. // Compute the absolute difference between negative log probability and entropy for each candidate
  11879. std::vector<float> shifted_scores;
  11880. for (size_t i = 0; i < candidates->size; ++i) {
  11881. float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
  11882. shifted_scores.push_back(shifted_score);
  11883. }
  11884. // Sort tokens based on the shifted_scores and their corresponding indices
  11885. std::vector<size_t> indices(candidates->size);
  11886. std::iota(indices.begin(), indices.end(), 0);
  11887. std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
  11888. return shifted_scores[a] < shifted_scores[b];
  11889. });
  11890. // Compute the cumulative probabilities
  11891. float cum_sum = 0.0f;
  11892. size_t last_idx = indices.size();
  11893. for (size_t i = 0; i < indices.size(); ++i) {
  11894. size_t idx = indices[i];
  11895. cum_sum += candidates->data[idx].p;
  11896. // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
  11897. if (cum_sum > p && i >= min_keep - 1) {
  11898. last_idx = i + 1;
  11899. break;
  11900. }
  11901. }
  11902. // Resize the output vector to keep only the locally typical tokens
  11903. std::vector<llama_token_data> new_candidates;
  11904. for (size_t i = 0; i < last_idx; ++i) {
  11905. size_t idx = indices[i];
  11906. new_candidates.push_back(candidates->data[idx]);
  11907. }
  11908. // Replace the data in candidates with the new_candidates data
  11909. std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
  11910. candidates->size = new_candidates.size();
  11911. candidates->sorted = false;
  11912. if (ctx) {
  11913. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11914. }
  11915. }
  11916. void llama_sample_entropy(struct llama_context * ctx, llama_token_data_array * candidates_p, float min_temp, float max_temp, float exponent_val) {
  11917. const int64_t t_start_sample_us = ggml_time_us();
  11918. // no need to do anything if there is only one (or zero) candidates
  11919. if(candidates_p->size <= 1) {
  11920. return;
  11921. }
  11922. // Calculate maximum possible entropy
  11923. float max_entropy = -logf(1.0f / candidates_p->size);
  11924. llama_sample_softmax(nullptr, candidates_p);
  11925. // Calculate entropy of the softmax probabilities
  11926. float entropy = 0.0f;
  11927. for (size_t i = 0; i < candidates_p->size; ++i) {
  11928. float prob = candidates_p->data[i].p;
  11929. if (prob > 0.0f) { // Ensure no log(0)
  11930. entropy -= prob * logf(prob);
  11931. }
  11932. }
  11933. // Normalize the entropy (max_entropy cannot be 0 here because we checked candidates_p->size != 1 above)
  11934. float normalized_entropy = entropy / max_entropy;
  11935. // Map the normalized entropy to the desired temperature range using the power function
  11936. float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val);
  11937. #ifdef DEBUG
  11938. LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp);
  11939. LLAMA_LOG_INFO("Entropy: %f\n", entropy);
  11940. LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy);
  11941. LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy);
  11942. LLAMA_LOG_INFO("Exponent: %f\n", exponent_val);
  11943. LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp);
  11944. #endif
  11945. // Apply the dynamically calculated temperature scaling
  11946. for (size_t i = 0; i < candidates_p->size; ++i) {
  11947. candidates_p->data[i].logit /= dyn_temp;
  11948. }
  11949. // Re-compute softmax probabilities after scaling logits with dynamic temperature
  11950. double max_l_double = candidates_p->data[0].logit;
  11951. double cum_sum_double = 0.0;
  11952. for (size_t i = 0; i < candidates_p->size; ++i) {
  11953. double p = exp(candidates_p->data[i].logit - max_l_double);
  11954. candidates_p->data[i].p = p; // Store the scaled probability
  11955. cum_sum_double += p;
  11956. }
  11957. for (size_t i = 0; i < candidates_p->size; ++i) {
  11958. candidates_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities
  11959. }
  11960. #ifdef DEBUG
  11961. // Print the updated top 25 probabilities after temperature scaling
  11962. LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n");
  11963. for (size_t i = 0; i < 25 && i < candidates_p->size; ++i) {
  11964. LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, candidates_p->data[i].p * 100.0f);
  11965. }
  11966. #endif
  11967. if (ctx) {
  11968. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11969. }
  11970. }
  11971. void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
  11972. const int64_t t_start_sample_us = ggml_time_us();
  11973. for (size_t i = 0; i < candidates_p->size; ++i) {
  11974. candidates_p->data[i].logit /= temp;
  11975. }
  11976. if (ctx) {
  11977. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11978. }
  11979. }
  11980. void llama_sample_repetition_penalties(
  11981. struct llama_context * ctx,
  11982. llama_token_data_array * candidates,
  11983. const llama_token * last_tokens,
  11984. size_t penalty_last_n,
  11985. float penalty_repeat,
  11986. float penalty_freq,
  11987. float penalty_present) {
  11988. if (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f)) {
  11989. return;
  11990. }
  11991. const int64_t t_start_sample_us = ggml_time_us();
  11992. // Create a frequency map to count occurrences of each token in last_tokens
  11993. std::unordered_map<llama_token, int> token_count;
  11994. for (size_t i = 0; i < penalty_last_n; ++i) {
  11995. token_count[last_tokens[i]]++;
  11996. }
  11997. // Apply frequency and presence penalties to the candidates
  11998. for (size_t i = 0; i < candidates->size; ++i) {
  11999. const auto token_iter = token_count.find(candidates->data[i].id);
  12000. if (token_iter == token_count.end()) {
  12001. continue;
  12002. }
  12003. const int count = token_iter->second;
  12004. // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
  12005. // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
  12006. if (candidates->data[i].logit <= 0) {
  12007. candidates->data[i].logit *= penalty_repeat;
  12008. } else {
  12009. candidates->data[i].logit /= penalty_repeat;
  12010. }
  12011. candidates->data[i].logit -= float(count) * penalty_freq + float(count > 0) * penalty_present;
  12012. }
  12013. candidates->sorted = false;
  12014. if (ctx) {
  12015. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12016. }
  12017. }
  12018. void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) {
  12019. GGML_ASSERT(ctx);
  12020. int64_t t_start_sample_us = ggml_time_us();
  12021. bool allow_eog = false;
  12022. for (const auto & stack : grammar->stacks) {
  12023. if (stack.empty()) {
  12024. allow_eog = true;
  12025. break;
  12026. }
  12027. }
  12028. std::vector<std::pair<std::vector<uint32_t>, llama_partial_utf8>> candidates_decoded;
  12029. candidates_decoded.reserve(candidates->size);
  12030. std::vector<llama_grammar_candidate> candidates_grammar;
  12031. candidates_grammar.reserve(candidates->size);
  12032. for (size_t i = 0; i < candidates->size; ++i) {
  12033. const llama_token id = candidates->data[i].id;
  12034. const std::string & piece = ctx->model.vocab.cache_token_to_piece.at(id);
  12035. if (llama_token_is_eog(&ctx->model, id)) {
  12036. if (!allow_eog) {
  12037. candidates->data[i].logit = -INFINITY;
  12038. }
  12039. } else if (piece.empty() || piece[0] == 0) {
  12040. candidates->data[i].logit = -INFINITY;
  12041. } else {
  12042. candidates_decoded.push_back(decode_utf8(piece, grammar->partial_utf8));
  12043. candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second });
  12044. }
  12045. }
  12046. const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar);
  12047. for (const auto & reject : rejects) {
  12048. candidates->data[reject.index].logit = -INFINITY;
  12049. }
  12050. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12051. }
  12052. static void llama_log_softmax(float * array, size_t size) {
  12053. float max_l = *std::max_element(array, array + size);
  12054. float sum = 0.f;
  12055. for (size_t i = 0; i < size; ++i) {
  12056. float p = expf(array[i] - max_l);
  12057. sum += p;
  12058. array[i] = p;
  12059. }
  12060. for (size_t i = 0; i < size; ++i) {
  12061. array[i] = logf(array[i] / sum);
  12062. }
  12063. }
  12064. void llama_sample_apply_guidance(
  12065. struct llama_context * ctx,
  12066. float * logits,
  12067. float * logits_guidance,
  12068. float scale) {
  12069. GGML_ASSERT(ctx);
  12070. const auto t_start_sample_us = ggml_time_us();
  12071. const auto n_vocab = llama_n_vocab(llama_get_model(ctx));
  12072. llama_log_softmax(logits, n_vocab);
  12073. llama_log_softmax(logits_guidance, n_vocab);
  12074. for (int i = 0; i < n_vocab; ++i) {
  12075. auto & l = logits[i];
  12076. const auto & g = logits_guidance[i];
  12077. l = scale * (l - g) + g;
  12078. }
  12079. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12080. }
  12081. llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) {
  12082. GGML_ASSERT(ctx);
  12083. auto N = float(llama_n_vocab(llama_get_model(ctx)));
  12084. int64_t t_start_sample_us;
  12085. t_start_sample_us = ggml_time_us();
  12086. llama_sample_softmax(nullptr, candidates);
  12087. // Estimate s_hat using the most probable m tokens
  12088. float s_hat = 0.0;
  12089. float sum_ti_bi = 0.0;
  12090. float sum_ti_sq = 0.0;
  12091. for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
  12092. float t_i = logf(float(i + 2) / float(i + 1));
  12093. float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
  12094. sum_ti_bi += t_i * b_i;
  12095. sum_ti_sq += t_i * t_i;
  12096. }
  12097. s_hat = sum_ti_bi / sum_ti_sq;
  12098. // Compute k from the estimated s_hat and target surprise value
  12099. float epsilon_hat = s_hat - 1;
  12100. float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
  12101. // Sample the next word X using top-k sampling
  12102. llama_sample_top_k(nullptr, candidates, int(k), 1);
  12103. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12104. llama_token X = llama_sample_token(ctx, candidates);
  12105. t_start_sample_us = ggml_time_us();
  12106. // Compute error as the difference between observed surprise and target surprise value
  12107. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  12108. return candidate.id == X;
  12109. }));
  12110. float observed_surprise = -log2f(candidates->data[X_idx].p);
  12111. float e = observed_surprise - tau;
  12112. // Update mu using the learning rate and error
  12113. *mu = *mu - eta * e;
  12114. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12115. return X;
  12116. }
  12117. llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
  12118. int64_t t_start_sample_us;
  12119. t_start_sample_us = ggml_time_us();
  12120. llama_sample_softmax(ctx, candidates);
  12121. // Truncate the words with surprise values greater than mu
  12122. candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  12123. return -log2f(candidate.p) > *mu;
  12124. }));
  12125. if (candidates->size == 0) {
  12126. candidates->size = 1;
  12127. }
  12128. if (ctx) {
  12129. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12130. }
  12131. // Normalize the probabilities of the remaining words
  12132. llama_sample_softmax(ctx, candidates);
  12133. // Sample the next word X from the remaining words
  12134. llama_token X = llama_sample_token(ctx, candidates);
  12135. t_start_sample_us = ggml_time_us();
  12136. // Compute error as the difference between observed surprise and target surprise value
  12137. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  12138. return candidate.id == X;
  12139. }));
  12140. float observed_surprise = -log2f(candidates->data[X_idx].p);
  12141. float e = observed_surprise - tau;
  12142. // Update mu using the learning rate and error
  12143. *mu = *mu - eta * e;
  12144. if (ctx) {
  12145. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12146. }
  12147. return X;
  12148. }
  12149. llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
  12150. const int64_t t_start_sample_us = ggml_time_us();
  12151. // Find max element
  12152. auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  12153. return a.logit < b.logit;
  12154. });
  12155. llama_token result = max_iter->id;
  12156. if (ctx) {
  12157. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12158. ctx->n_sample++;
  12159. }
  12160. return result;
  12161. }
  12162. llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng) {
  12163. GGML_ASSERT(ctx);
  12164. const int64_t t_start_sample_us = ggml_time_us();
  12165. llama_sample_softmax(nullptr, candidates);
  12166. std::vector<float> probs;
  12167. probs.reserve(candidates->size);
  12168. for (size_t i = 0; i < candidates->size; ++i) {
  12169. probs.push_back(candidates->data[i].p);
  12170. }
  12171. std::discrete_distribution<> dist(probs.begin(), probs.end());
  12172. int idx = dist(rng);
  12173. llama_token result = candidates->data[idx].id;
  12174. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12175. ctx->n_sample++;
  12176. return result;
  12177. }
  12178. llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
  12179. return llama_sample_token_with_rng(ctx, candidates, ctx->rng);
  12180. }
  12181. void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token) {
  12182. const int64_t t_start_sample_us = ggml_time_us();
  12183. if (llama_token_is_eog(&ctx->model, token)) {
  12184. for (const auto & stack : grammar->stacks) {
  12185. if (stack.empty()) {
  12186. return;
  12187. }
  12188. }
  12189. GGML_ASSERT(false);
  12190. }
  12191. const std::string & piece = ctx->model.vocab.cache_token_to_piece.at(token);
  12192. // Note terminating 0 in decoded string
  12193. const auto decoded = decode_utf8(piece, grammar->partial_utf8);
  12194. const auto & code_points = decoded.first;
  12195. std::vector<std::vector<const llama_grammar_element *>> tmp_new_stacks;
  12196. for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
  12197. llama_grammar_accept(grammar->rules, grammar->stacks, *it, tmp_new_stacks);
  12198. grammar->stacks = tmp_new_stacks;
  12199. }
  12200. grammar->partial_utf8 = decoded.second;
  12201. GGML_ASSERT(!grammar->stacks.empty());
  12202. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12203. }
  12204. //
  12205. // quantization
  12206. //
  12207. struct quantize_state_internal {
  12208. const llama_model & model;
  12209. const llama_model_quantize_params * params;
  12210. int n_attention_wv = 0;
  12211. int n_ffn_down = 0;
  12212. int n_ffn_gate = 0;
  12213. int n_ffn_up = 0;
  12214. int i_attention_wv = 0;
  12215. int i_ffn_down = 0;
  12216. int i_ffn_gate = 0;
  12217. int i_ffn_up = 0;
  12218. int n_k_quantized = 0;
  12219. int n_fallback = 0;
  12220. bool has_imatrix = false;
  12221. // used to figure out if a model shares tok_embd with the output weight
  12222. bool has_output = false;
  12223. quantize_state_internal(const llama_model & model, const llama_model_quantize_params * params)
  12224. : model(model)
  12225. , params(params)
  12226. {}
  12227. };
  12228. static void llama_tensor_dequantize_internal(
  12229. struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
  12230. const size_t nelements, const int nthread
  12231. ) {
  12232. if (output.size() < nelements) {
  12233. output.resize(nelements);
  12234. }
  12235. float * f32_output = (float *) output.data();
  12236. ggml_type_traits_t qtype;
  12237. if (ggml_is_quantized(tensor->type)) {
  12238. qtype = ggml_internal_get_type_traits(tensor->type);
  12239. if (qtype.to_float == NULL) {
  12240. throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
  12241. }
  12242. } else if (tensor->type != GGML_TYPE_F16 &&
  12243. tensor->type != GGML_TYPE_BF16) {
  12244. throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
  12245. }
  12246. if (nthread < 2) {
  12247. if (tensor->type == GGML_TYPE_F16) {
  12248. ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
  12249. } else if (tensor->type == GGML_TYPE_BF16) {
  12250. ggml_bf16_to_fp32_row((ggml_bf16_t *)tensor->data, f32_output, nelements);
  12251. } else if (ggml_is_quantized(tensor->type)) {
  12252. qtype.to_float(tensor->data, f32_output, nelements);
  12253. } else {
  12254. GGML_ASSERT(false); // unreachable
  12255. }
  12256. return;
  12257. }
  12258. size_t block_size;
  12259. if (tensor->type == GGML_TYPE_F16 ||
  12260. tensor->type == GGML_TYPE_BF16) {
  12261. block_size = 1;
  12262. } else {
  12263. block_size = (size_t)ggml_blck_size(tensor->type);
  12264. }
  12265. size_t block_size_bytes = ggml_type_size(tensor->type);
  12266. GGML_ASSERT(nelements % block_size == 0);
  12267. size_t nblocks = nelements / block_size;
  12268. size_t blocks_per_thread = nblocks / nthread;
  12269. size_t spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
  12270. size_t in_buff_offs = 0;
  12271. size_t out_buff_offs = 0;
  12272. for (int tnum = 0; tnum < nthread; tnum++) {
  12273. size_t thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
  12274. size_t thr_elems = thr_blocks * block_size; // number of elements for this thread
  12275. size_t thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
  12276. auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
  12277. if (typ == GGML_TYPE_F16) {
  12278. ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
  12279. } else if (typ == GGML_TYPE_BF16) {
  12280. ggml_bf16_to_fp32_row((ggml_bf16_t *)inbuf, outbuf, nels);
  12281. } else {
  12282. qtype.to_float(inbuf, outbuf, nels);
  12283. }
  12284. };
  12285. workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems);
  12286. in_buff_offs += thr_block_bytes;
  12287. out_buff_offs += thr_elems;
  12288. }
  12289. for (auto & w : workers) { w.join(); }
  12290. workers.clear();
  12291. }
  12292. static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
  12293. const std::string name = ggml_get_name(tensor);
  12294. // TODO: avoid hardcoded tensor names - use the TN_* constants
  12295. const llm_arch arch = qs.model.arch;
  12296. const auto tn = LLM_TN(arch);
  12297. auto use_more_bits = [](int i_layer, int num_layers) -> bool {
  12298. return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
  12299. };
  12300. const int n_expert = std::max(1, (int)qs.model.hparams.n_expert);
  12301. auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) {
  12302. if (n_expert > 1) {
  12303. // Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but iccasionally randomly
  12304. // sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work
  12305. // for getting the current layer as I initially thought, and we need to resort to parsing the
  12306. // tensor name.
  12307. if (sscanf(name, "blk.%d.", &i_layer) != 1) {
  12308. throw std::runtime_error(format("Failed to determine layer for tensor %s", name));
  12309. }
  12310. if (i_layer < 0 || i_layer >= n_layer) {
  12311. throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name, n_layer));
  12312. }
  12313. }
  12314. return std::make_pair(i_layer, n_layer);
  12315. };
  12316. // for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings
  12317. // with the quantization of the output tensor
  12318. if (name == tn(LLM_TENSOR_OUTPUT, "weight") || (!qs.has_output && name == tn(LLM_TENSOR_TOKEN_EMBD, "weight"))) {
  12319. if (qs.params->output_tensor_type < GGML_TYPE_COUNT) {
  12320. new_type = qs.params->output_tensor_type;
  12321. } else {
  12322. int nx = tensor->ne[0];
  12323. if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
  12324. new_type = GGML_TYPE_Q8_0;
  12325. }
  12326. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  12327. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ||
  12328. ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  12329. new_type = GGML_TYPE_Q5_K;
  12330. }
  12331. else if (new_type != GGML_TYPE_Q8_0) {
  12332. new_type = GGML_TYPE_Q6_K;
  12333. }
  12334. }
  12335. } else if (name == "token_embd.weight") {
  12336. if (qs.params->token_embedding_type < GGML_TYPE_COUNT) {
  12337. new_type = qs.params->token_embedding_type;
  12338. } else {
  12339. if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS ||
  12340. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  12341. new_type = GGML_TYPE_Q2_K;
  12342. }
  12343. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
  12344. new_type = GGML_TYPE_IQ3_S;
  12345. }
  12346. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  12347. new_type = GGML_TYPE_IQ3_S;
  12348. }
  12349. }
  12350. } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
  12351. ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  12352. if (name.find("attn_v.weight") != std::string::npos) {
  12353. if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
  12354. else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  12355. ++qs.i_attention_wv;
  12356. }
  12357. else if (qs.model.hparams.n_expert == 8 && name.find("attn_k.weight") != std::string::npos) {
  12358. new_type = GGML_TYPE_Q4_K;
  12359. }
  12360. else if (name.find("ffn_down") != std::string::npos) {
  12361. if (qs.i_ffn_down < qs.n_ffn_down/8) {
  12362. new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  12363. }
  12364. ++qs.i_ffn_down;
  12365. }
  12366. else if (name.find("attn_output.weight") != std::string::npos) {
  12367. if (qs.model.hparams.n_expert == 8) {
  12368. new_type = GGML_TYPE_Q5_K;
  12369. } else {
  12370. if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) new_type = GGML_TYPE_IQ2_XXS;
  12371. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S;
  12372. }
  12373. }
  12374. } else if (name.find("attn_v.weight") != std::string::npos) {
  12375. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) {
  12376. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  12377. }
  12378. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && qs.model.hparams.n_gqa() >= 4) {
  12379. new_type = GGML_TYPE_Q4_K;
  12380. }
  12381. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  12382. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS;
  12383. }
  12384. else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S) && qs.model.hparams.n_gqa() >= 4) {
  12385. new_type = GGML_TYPE_Q4_K;
  12386. }
  12387. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  12388. new_type = GGML_TYPE_Q4_K;
  12389. }
  12390. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  12391. new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  12392. }
  12393. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  12394. else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && qs.model.hparams.n_gqa() >= 4) {
  12395. new_type = GGML_TYPE_Q5_K;
  12396. }
  12397. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
  12398. use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
  12399. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
  12400. if (qs.model.type == MODEL_70B) {
  12401. // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
  12402. // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
  12403. // nearly negligible increase in model size by quantizing this tensor with more bits:
  12404. if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
  12405. }
  12406. if (qs.model.hparams.n_expert == 8) {
  12407. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  12408. // TODO: explore better strategies
  12409. new_type = GGML_TYPE_Q8_0;
  12410. }
  12411. ++qs.i_attention_wv;
  12412. } else if (name.find("attn_k.weight") != std::string::npos) {
  12413. if (qs.model.hparams.n_expert == 8) {
  12414. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  12415. // TODO: explore better strategies
  12416. new_type = GGML_TYPE_Q8_0;
  12417. }
  12418. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  12419. new_type = GGML_TYPE_IQ3_XXS;
  12420. }
  12421. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  12422. new_type = GGML_TYPE_IQ2_S;
  12423. }
  12424. } else if (name.find("attn_q.weight") != std::string::npos) {
  12425. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  12426. new_type = GGML_TYPE_IQ3_XXS;
  12427. }
  12428. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  12429. new_type = GGML_TYPE_IQ2_S;
  12430. }
  12431. } else if (name.find("ffn_down") != std::string::npos) {
  12432. auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str());
  12433. int i_layer = info.first, n_layer = info.second;
  12434. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  12435. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) {
  12436. if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K;
  12437. }
  12438. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && !qs.has_imatrix) {
  12439. new_type = i_layer < n_layer/8 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  12440. }
  12441. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  12442. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K
  12443. : arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K
  12444. : GGML_TYPE_Q3_K;
  12445. }
  12446. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M && (i_layer < n_layer/8 ||
  12447. (qs.model.hparams.n_expert == 8 && use_more_bits(i_layer, n_layer)))) {
  12448. new_type = GGML_TYPE_Q4_K;
  12449. }
  12450. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
  12451. new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
  12452. }
  12453. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
  12454. if (arch == LLM_ARCH_FALCON) {
  12455. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K :
  12456. use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  12457. } else {
  12458. if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  12459. }
  12460. }
  12461. else if (i_layer < n_layer/8 && (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && !qs.has_imatrix) {
  12462. new_type = GGML_TYPE_Q5_K;
  12463. }
  12464. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  12465. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) {
  12466. new_type = GGML_TYPE_Q5_K;
  12467. }
  12468. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || ftype == LLAMA_FTYPE_MOSTLY_Q5_0)
  12469. && qs.has_imatrix && i_layer < n_layer/8) {
  12470. // Guard against craziness in the first few ffn_down layers that can happen even with imatrix for Q4_0/Q5_0.
  12471. // We only do it when an imatrix is provided because a) we want to make sure that one can always get the
  12472. // same quantization as before imatrix stuff, and b) Q4_1/Q5_1 do go crazy on ffn_down without an imatrix.
  12473. new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1;
  12474. }
  12475. ++qs.i_ffn_down;
  12476. } else if (name.find("attn_output.weight") != std::string::npos) {
  12477. if (arch != LLM_ARCH_FALCON) {
  12478. if (qs.model.hparams.n_expert == 8) {
  12479. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  12480. ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL ||
  12481. ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S ||
  12482. ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) {
  12483. new_type = GGML_TYPE_Q5_K;
  12484. }
  12485. } else {
  12486. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
  12487. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_IQ3_S;
  12488. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ) new_type = GGML_TYPE_Q4_K;
  12489. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q5_K;
  12490. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M ) new_type = GGML_TYPE_Q4_K;
  12491. }
  12492. } else {
  12493. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
  12494. }
  12495. }
  12496. else if (name.find("attn_qkv.weight") != std::string::npos) {
  12497. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  12498. new_type = GGML_TYPE_Q4_K;
  12499. }
  12500. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
  12501. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
  12502. }
  12503. else if (name.find("ffn_gate") != std::string::npos) {
  12504. auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str());
  12505. int i_layer = info.first, n_layer = info.second;
  12506. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  12507. new_type = GGML_TYPE_IQ3_XXS;
  12508. }
  12509. ++qs.i_ffn_gate;
  12510. }
  12511. else if (name.find("ffn_up") != std::string::npos) {
  12512. auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str());
  12513. int i_layer = info.first, n_layer = info.second;
  12514. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  12515. new_type = GGML_TYPE_IQ3_XXS;
  12516. }
  12517. ++qs.i_ffn_up;
  12518. }
  12519. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  12520. //}
  12521. // IK: let's remove this, else Q2_K is almost the same as Q3_K_S
  12522. //else if (name.find("ffn_gate") != std::string::npos || name.find("ffn_up") != std::string::npos) {
  12523. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  12524. //}
  12525. // This can be used to reduce the size of the Q5_K_S model.
  12526. // The associated PPL increase is fully in line with the size reduction
  12527. //else {
  12528. // if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
  12529. //}
  12530. bool convert_incompatible_tensor = false;
  12531. if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
  12532. new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K || new_type == GGML_TYPE_IQ4_XS ||
  12533. new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_S ||
  12534. new_type == GGML_TYPE_IQ3_XXS || new_type == GGML_TYPE_IQ1_S || new_type == GGML_TYPE_IQ3_S ||
  12535. new_type == GGML_TYPE_IQ1_M) {
  12536. int nx = tensor->ne[0];
  12537. int ny = tensor->ne[1];
  12538. if (nx % QK_K != 0) {
  12539. LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type));
  12540. convert_incompatible_tensor = true;
  12541. } else {
  12542. ++qs.n_k_quantized;
  12543. }
  12544. }
  12545. if (convert_incompatible_tensor) {
  12546. switch (new_type) {
  12547. case GGML_TYPE_IQ2_XXS:
  12548. case GGML_TYPE_IQ2_XS:
  12549. case GGML_TYPE_IQ2_S:
  12550. case GGML_TYPE_IQ3_XXS:
  12551. case GGML_TYPE_IQ3_S:
  12552. case GGML_TYPE_IQ1_S:
  12553. case GGML_TYPE_IQ1_M:
  12554. case GGML_TYPE_Q2_K:
  12555. case GGML_TYPE_Q3_K:
  12556. case GGML_TYPE_IQ4_XS: new_type = GGML_TYPE_IQ4_NL; break;
  12557. case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break;
  12558. case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break;
  12559. case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break;
  12560. default: throw std::runtime_error("\nUnsupported tensor size encountered\n");
  12561. }
  12562. LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type));
  12563. ++qs.n_fallback;
  12564. }
  12565. return new_type;
  12566. }
  12567. static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
  12568. if (nthread < 2) {
  12569. // single-thread
  12570. size_t new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix);
  12571. if (!ggml_validate_row_data(new_type, new_data, new_size)) {
  12572. throw std::runtime_error("quantized data validation failed");
  12573. }
  12574. return new_size;
  12575. }
  12576. std::mutex mutex;
  12577. int64_t counter = 0;
  12578. size_t new_size = 0;
  12579. bool valid = true;
  12580. auto compute = [&mutex, &counter, &new_size, &valid, new_type, f32_data, new_data, chunk_size,
  12581. nrows, n_per_row, imatrix]() {
  12582. const int64_t nrows_per_chunk = chunk_size / n_per_row;
  12583. size_t local_size = 0;
  12584. while (true) {
  12585. std::unique_lock<std::mutex> lock(mutex);
  12586. int64_t first_row = counter; counter += nrows_per_chunk;
  12587. if (first_row >= nrows) {
  12588. if (local_size > 0) {
  12589. new_size += local_size;
  12590. }
  12591. break;
  12592. }
  12593. lock.unlock();
  12594. const int64_t this_nrow = std::min(nrows - first_row, nrows_per_chunk);
  12595. size_t this_size = ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix);
  12596. local_size += this_size;
  12597. // validate the quantized data
  12598. const size_t row_size = ggml_row_size(new_type, n_per_row);
  12599. void * this_data = (char *) new_data + first_row * row_size;
  12600. if (!ggml_validate_row_data(new_type, this_data, this_size)) {
  12601. std::unique_lock<std::mutex> lock(mutex);
  12602. valid = false;
  12603. break;
  12604. }
  12605. }
  12606. };
  12607. for (int it = 0; it < nthread - 1; ++it) {
  12608. workers.emplace_back(compute);
  12609. }
  12610. compute();
  12611. for (auto & w : workers) { w.join(); }
  12612. workers.clear();
  12613. if (!valid) {
  12614. throw std::runtime_error("quantized data validation failed");
  12615. }
  12616. return new_size;
  12617. }
  12618. static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
  12619. ggml_type default_type;
  12620. llama_ftype ftype = params->ftype;
  12621. switch (params->ftype) {
  12622. case LLAMA_FTYPE_MOSTLY_Q4_0: default_type = GGML_TYPE_Q4_0; break;
  12623. case LLAMA_FTYPE_MOSTLY_Q4_1: default_type = GGML_TYPE_Q4_1; break;
  12624. case LLAMA_FTYPE_MOSTLY_Q5_0: default_type = GGML_TYPE_Q5_0; break;
  12625. case LLAMA_FTYPE_MOSTLY_Q5_1: default_type = GGML_TYPE_Q5_1; break;
  12626. case LLAMA_FTYPE_MOSTLY_Q8_0: default_type = GGML_TYPE_Q8_0; break;
  12627. case LLAMA_FTYPE_MOSTLY_F16: default_type = GGML_TYPE_F16; break;
  12628. case LLAMA_FTYPE_MOSTLY_BF16: default_type = GGML_TYPE_BF16; break;
  12629. case LLAMA_FTYPE_ALL_F32: default_type = GGML_TYPE_F32; break;
  12630. // K-quants
  12631. case LLAMA_FTYPE_MOSTLY_Q2_K_S:
  12632. case LLAMA_FTYPE_MOSTLY_Q2_K: default_type = GGML_TYPE_Q2_K; break;
  12633. case LLAMA_FTYPE_MOSTLY_IQ3_XS: default_type = GGML_TYPE_IQ3_S; break;
  12634. case LLAMA_FTYPE_MOSTLY_Q3_K_S:
  12635. case LLAMA_FTYPE_MOSTLY_Q3_K_M:
  12636. case LLAMA_FTYPE_MOSTLY_Q3_K_L: default_type = GGML_TYPE_Q3_K; break;
  12637. case LLAMA_FTYPE_MOSTLY_Q4_K_S:
  12638. case LLAMA_FTYPE_MOSTLY_Q4_K_M: default_type = GGML_TYPE_Q4_K; break;
  12639. case LLAMA_FTYPE_MOSTLY_Q5_K_S:
  12640. case LLAMA_FTYPE_MOSTLY_Q5_K_M: default_type = GGML_TYPE_Q5_K; break;
  12641. case LLAMA_FTYPE_MOSTLY_Q6_K: default_type = GGML_TYPE_Q6_K; break;
  12642. case LLAMA_FTYPE_MOSTLY_IQ2_XXS: default_type = GGML_TYPE_IQ2_XXS; break;
  12643. case LLAMA_FTYPE_MOSTLY_IQ2_XS: default_type = GGML_TYPE_IQ2_XS; break;
  12644. case LLAMA_FTYPE_MOSTLY_IQ2_S: default_type = GGML_TYPE_IQ2_XS; break;
  12645. case LLAMA_FTYPE_MOSTLY_IQ2_M: default_type = GGML_TYPE_IQ2_S; break;
  12646. case LLAMA_FTYPE_MOSTLY_IQ3_XXS: default_type = GGML_TYPE_IQ3_XXS; break;
  12647. case LLAMA_FTYPE_MOSTLY_IQ1_S: default_type = GGML_TYPE_IQ1_S; break;
  12648. case LLAMA_FTYPE_MOSTLY_IQ1_M: default_type = GGML_TYPE_IQ1_M; break;
  12649. case LLAMA_FTYPE_MOSTLY_IQ4_NL: default_type = GGML_TYPE_IQ4_NL; break;
  12650. case LLAMA_FTYPE_MOSTLY_IQ4_XS: default_type = GGML_TYPE_IQ4_XS; break;
  12651. case LLAMA_FTYPE_MOSTLY_IQ3_S: default_type = GGML_TYPE_IQ3_S; break;
  12652. case LLAMA_FTYPE_MOSTLY_IQ3_M: default_type = GGML_TYPE_IQ3_S; break;
  12653. default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
  12654. }
  12655. int nthread = params->nthread;
  12656. if (nthread <= 0) {
  12657. nthread = std::thread::hardware_concurrency();
  12658. }
  12659. // mmap consistently increases speed Linux, and also increases speed on Windows with
  12660. // hot cache. It may cause a slowdown on macOS, possibly related to free memory.
  12661. #if defined(__linux__) || defined(_WIN32)
  12662. constexpr bool use_mmap = true;
  12663. #else
  12664. constexpr bool use_mmap = false;
  12665. #endif
  12666. llama_model_kv_override * kv_overrides = nullptr;
  12667. if (params->kv_overrides) {
  12668. auto v = (std::vector<llama_model_kv_override>*)params->kv_overrides;
  12669. kv_overrides = v->data();
  12670. }
  12671. llama_model_loader ml(fname_inp, use_mmap, /*check_tensors*/ true, kv_overrides);
  12672. ml.init_mappings(false); // no prefetching
  12673. llama_model model;
  12674. llm_load_arch(ml, model);
  12675. llm_load_hparams(ml, model);
  12676. struct quantize_state_internal qs(model, params);
  12677. if (params->only_copy) {
  12678. ftype = model.ftype;
  12679. }
  12680. const std::unordered_map<std::string, std::vector<float>> * imatrix_data = nullptr;
  12681. if (params->imatrix) {
  12682. imatrix_data = static_cast<const std::unordered_map<std::string, std::vector<float>>*>(params->imatrix);
  12683. if (imatrix_data) {
  12684. LLAMA_LOG_INFO("================================ Have weights data with %d entries\n",int(imatrix_data->size()));
  12685. qs.has_imatrix = true;
  12686. // check imatrix for nans or infs
  12687. for (const auto & kv : *imatrix_data) {
  12688. for (float f : kv.second) {
  12689. if (!std::isfinite(f)) {
  12690. throw std::runtime_error(format("imatrix contains non-finite value %f\n", f));
  12691. }
  12692. }
  12693. }
  12694. }
  12695. }
  12696. const size_t align = GGUF_DEFAULT_ALIGNMENT;
  12697. struct gguf_context * ctx_out = gguf_init_empty();
  12698. // copy the KV pairs from the input file
  12699. gguf_set_kv (ctx_out, ml.meta);
  12700. gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
  12701. gguf_set_val_u32(ctx_out, "general.file_type", ftype);
  12702. // Remove split metadata
  12703. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_NO).c_str());
  12704. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str());
  12705. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str());
  12706. if (params->kv_overrides) {
  12707. const std::vector<llama_model_kv_override> & overrides = *(const std::vector<llama_model_kv_override> *)params->kv_overrides;
  12708. for (auto & o : overrides) {
  12709. if (o.key[0] == 0) break;
  12710. if (o.tag == LLAMA_KV_OVERRIDE_TYPE_FLOAT) {
  12711. gguf_set_val_f32(ctx_out, o.key, o.val_f64);
  12712. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) {
  12713. gguf_set_val_i32(ctx_out, o.key, o.val_i64);
  12714. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) {
  12715. gguf_set_val_bool(ctx_out, o.key, o.val_bool);
  12716. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_STR) {
  12717. gguf_set_val_str(ctx_out, o.key, o.val_str);
  12718. } else {
  12719. LLAMA_LOG_WARN("%s: unknown KV override type for key %s\n", __func__, o.key);
  12720. }
  12721. }
  12722. }
  12723. for (int i = 0; i < ml.n_tensors; ++i) {
  12724. const struct ggml_tensor * meta = ml.get_tensor_meta(i);
  12725. const std::string name = ggml_get_name(meta);
  12726. // TODO: avoid hardcoded tensor names - use the TN_* constants
  12727. if (name.find("attn_v.weight") != std::string::npos ||
  12728. name.find("attn_qkv.weight") != std::string::npos) {
  12729. ++qs.n_attention_wv;
  12730. } else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) {
  12731. qs.has_output = true;
  12732. }
  12733. }
  12734. qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer;
  12735. // sanity checks
  12736. //
  12737. // - qs.n_attention_wv == 0 for Mamba models
  12738. // - qs.n_attention_wv == model.hparams.n_layer for Transformer models
  12739. //
  12740. GGML_ASSERT((qs.n_attention_wv == 0 || qs.n_attention_wv == (int)model.hparams.n_layer) && "n_attention_wv is unexpected");
  12741. size_t total_size_org = 0;
  12742. size_t total_size_new = 0;
  12743. std::vector<std::thread> workers;
  12744. workers.reserve(nthread);
  12745. int idx = 0;
  12746. std::vector<no_init<uint8_t>> read_data;
  12747. std::vector<no_init<uint8_t>> work;
  12748. std::vector<no_init<float>> f32_conv_buf;
  12749. uint16_t n_split = 1;
  12750. // Assume split index is continuous
  12751. if (params->keep_split) {
  12752. for (int i = 0; i < ml.n_tensors; ++i) {
  12753. n_split = std::max(uint16_t(ml.get_weight(i)->idx+1), n_split);
  12754. }
  12755. }
  12756. std::vector<gguf_context*> ctx_outs(n_split, NULL);
  12757. ctx_outs[0] = ctx_out;
  12758. // populate the original tensors so we get an initial meta data
  12759. for (int i = 0; i < ml.n_tensors; ++i) {
  12760. auto weight = ml.get_weight(i);
  12761. uint16_t i_split = params->keep_split ? weight->idx : 0;
  12762. struct ggml_tensor * tensor = weight->tensor;
  12763. if (ctx_outs[i_split] == NULL) {
  12764. ctx_outs[i_split] = gguf_init_empty();
  12765. }
  12766. gguf_add_tensor(ctx_outs[i_split], tensor);
  12767. }
  12768. // Set split info if needed
  12769. if (n_split > 1) {
  12770. for (size_t i = 0; i < ctx_outs.size(); ++i) {
  12771. gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_NO).c_str(), i);
  12772. gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str(), n_split);
  12773. gguf_set_val_i32(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str(), ml.n_tensors);
  12774. }
  12775. }
  12776. int cur_split = -1;
  12777. std::ofstream fout;
  12778. auto close_ofstream = [&]() {
  12779. // Write metadata and close file handler
  12780. if (fout.is_open()) {
  12781. fout.seekp(0);
  12782. std::vector<uint8_t> data(gguf_get_meta_size(ctx_outs[cur_split]));
  12783. gguf_get_meta_data(ctx_outs[cur_split], data.data());
  12784. fout.write((const char *) data.data(), data.size());
  12785. fout.close();
  12786. }
  12787. };
  12788. auto new_ofstream = [&](int index) {
  12789. cur_split = index;
  12790. GGML_ASSERT(ctx_outs[cur_split] && "Find uninitialized gguf_context");
  12791. std::string fname = fname_out;
  12792. if (params->keep_split) {
  12793. char split_path[PATH_MAX] = {0};
  12794. llama_split_path(split_path, sizeof(split_path), fname_out.c_str(), cur_split, n_split);
  12795. fname = std::string(split_path);
  12796. }
  12797. fout = std::ofstream(fname, std::ios::binary);
  12798. fout.exceptions(std::ofstream::failbit); // fail fast on write errors
  12799. const size_t meta_size = gguf_get_meta_size(ctx_outs[cur_split]);
  12800. // placeholder for the meta data
  12801. ::zeros(fout, meta_size);
  12802. };
  12803. const auto tn = LLM_TN(model.arch);
  12804. new_ofstream(0);
  12805. for (int i = 0; i < ml.n_tensors; ++i) {
  12806. auto weight = ml.get_weight(i);
  12807. struct ggml_tensor * tensor = weight->tensor;
  12808. if (weight->idx != cur_split && params->keep_split) {
  12809. close_ofstream();
  12810. new_ofstream(weight->idx);
  12811. }
  12812. const std::string name = ggml_get_name(tensor);
  12813. if (!ml.use_mmap) {
  12814. if (read_data.size() < ggml_nbytes(tensor)) {
  12815. read_data.resize(ggml_nbytes(tensor));
  12816. }
  12817. tensor->data = read_data.data();
  12818. }
  12819. ml.load_data_for(tensor);
  12820. LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ",
  12821. ++idx, ml.n_tensors,
  12822. ggml_get_name(tensor),
  12823. llama_format_tensor_shape(tensor).c_str(),
  12824. ggml_type_name(tensor->type));
  12825. // This used to be a regex, but <regex> has an extreme cost to compile times.
  12826. bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
  12827. // quantize only 2D and 3D tensors (experts)
  12828. quantize &= (ggml_n_dims(tensor) >= 2);
  12829. // do not quantize norm tensors
  12830. quantize &= name.find("_norm.weight") == std::string::npos;
  12831. quantize &= params->quantize_output_tensor || name != "output.weight";
  12832. quantize &= !params->only_copy;
  12833. // do not quantize expert gating tensors
  12834. // NOTE: can't use LLM_TN here because the layer number is not known
  12835. quantize &= name.find("ffn_gate_inp.weight") == std::string::npos;
  12836. // do not quantize positional embeddings and token types (BERT)
  12837. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD, "weight");
  12838. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_TOKEN_TYPES, "weight");
  12839. // do not quantize Mamba's small yet 2D weights
  12840. // NOTE: can't use LLM_TN here because the layer number is not known
  12841. quantize &= name.find("ssm_conv1d.weight") == std::string::npos;
  12842. quantize &= name.find("ssm_x.weight") == std::string::npos;
  12843. quantize &= name.find("ssm_dt.weight") == std::string::npos;
  12844. enum ggml_type new_type;
  12845. void * new_data;
  12846. size_t new_size;
  12847. if (quantize) {
  12848. new_type = default_type;
  12849. // get more optimal quantization type based on the tensor shape, layer, etc.
  12850. if (!params->pure && ggml_is_quantized(default_type)) {
  12851. new_type = llama_tensor_get_type(qs, new_type, tensor, ftype);
  12852. }
  12853. if (params->token_embedding_type < GGML_TYPE_COUNT && strcmp(tensor->name, "token_embd.weight") == 0) {
  12854. new_type = params->token_embedding_type;
  12855. }
  12856. if (params->output_tensor_type < GGML_TYPE_COUNT && strcmp(tensor->name, "output.weight") == 0) {
  12857. new_type = params->output_tensor_type;
  12858. }
  12859. // If we've decided to quantize to the same type the tensor is already
  12860. // in then there's nothing to do.
  12861. quantize = tensor->type != new_type;
  12862. }
  12863. if (!quantize) {
  12864. new_type = tensor->type;
  12865. new_data = tensor->data;
  12866. new_size = ggml_nbytes(tensor);
  12867. LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
  12868. } else {
  12869. const int64_t nelements = ggml_nelements(tensor);
  12870. const float * imatrix = nullptr;
  12871. if (imatrix_data) {
  12872. auto it = imatrix_data->find(tensor->name);
  12873. if (it == imatrix_data->end()) {
  12874. LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name);
  12875. } else {
  12876. if (it->second.size() == (size_t)tensor->ne[0]*tensor->ne[2]) {
  12877. imatrix = it->second.data();
  12878. } else {
  12879. LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__,
  12880. int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name);
  12881. // this can happen when quantizing an old mixtral model with split tensors with a new incompatible imatrix
  12882. // this is a significant error and it may be good idea to abort the process if this happens,
  12883. // since many people will miss the error and not realize that most of the model is being quantized without an imatrix
  12884. // tok_embd should be ignored in this case, since it always causes this warning
  12885. if (name != tn(LLM_TENSOR_TOKEN_EMBD, "weight")) {
  12886. throw std::runtime_error(format("imatrix size %d is different from tensor size %d for %s",
  12887. int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name));
  12888. }
  12889. }
  12890. }
  12891. }
  12892. if ((new_type == GGML_TYPE_IQ2_XXS ||
  12893. new_type == GGML_TYPE_IQ2_XS ||
  12894. new_type == GGML_TYPE_IQ2_S ||
  12895. new_type == GGML_TYPE_IQ1_S ||
  12896. (new_type == GGML_TYPE_IQ1_M && strcmp(tensor->name, "token_embd.weight") && strcmp(tensor->name, "output.weight")) ||
  12897. (new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) {
  12898. LLAMA_LOG_ERROR("\n\n============================================================\n");
  12899. LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name);
  12900. LLAMA_LOG_ERROR("The result will be garbage, so bailing out\n");
  12901. LLAMA_LOG_ERROR("============================================================\n\n");
  12902. throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name));
  12903. }
  12904. float * f32_data;
  12905. if (tensor->type == GGML_TYPE_F32) {
  12906. f32_data = (float *) tensor->data;
  12907. } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
  12908. throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
  12909. } else {
  12910. llama_tensor_dequantize_internal(tensor, f32_conv_buf, workers, nelements, nthread);
  12911. f32_data = (float *) f32_conv_buf.data();
  12912. }
  12913. LLAMA_LOG_INFO("converting to %s .. ", ggml_type_name(new_type));
  12914. fflush(stdout);
  12915. if (work.size() < (size_t)nelements * 4) {
  12916. work.resize(nelements * 4); // upper bound on size
  12917. }
  12918. new_data = work.data();
  12919. const int64_t n_per_row = tensor->ne[0];
  12920. const int64_t nrows = tensor->ne[1];
  12921. static const int64_t min_chunk_size = 32 * 512;
  12922. const int64_t chunk_size = n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row);
  12923. const int64_t nelements_matrix = tensor->ne[0] * tensor->ne[1];
  12924. const int64_t nchunk = (nelements_matrix + chunk_size - 1)/chunk_size;
  12925. const int64_t nthread_use = nthread > 1 ? std::max((int64_t)1, std::min((int64_t)nthread, nchunk)) : 1;
  12926. // quantize each expert separately since they have different importance matrices
  12927. new_size = 0;
  12928. for (int64_t i03 = 0; i03 < tensor->ne[2]; ++i03) {
  12929. const float * f32_data_03 = f32_data + i03 * nelements_matrix;
  12930. void * new_data_03 = (char *)new_data + ggml_row_size(new_type, n_per_row) * i03 * nrows;
  12931. const float * imatrix_03 = imatrix ? imatrix + i03 * n_per_row : nullptr;
  12932. new_size += llama_tensor_quantize_internal(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use);
  12933. }
  12934. LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
  12935. }
  12936. total_size_org += ggml_nbytes(tensor);
  12937. total_size_new += new_size;
  12938. // update the gguf meta data as we go
  12939. gguf_set_tensor_type(ctx_outs[cur_split], name.c_str(), new_type);
  12940. gguf_set_tensor_data(ctx_outs[cur_split], name.c_str(), new_data, new_size);
  12941. // write tensor data + padding
  12942. fout.write((const char *) new_data, new_size);
  12943. zeros(fout, GGML_PAD(new_size, align) - new_size);
  12944. }
  12945. close_ofstream();
  12946. for (auto & c:ctx_outs) {
  12947. gguf_free(c);
  12948. }
  12949. LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
  12950. LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
  12951. if (qs.n_fallback > 0) {
  12952. LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) required fallback quantization\n",
  12953. __func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback);
  12954. }
  12955. }
  12956. static int llama_apply_lora_from_file_internal(
  12957. const struct llama_model & model, const char * path_lora, float scale, const char * path_base_model, int n_threads
  12958. ) {
  12959. LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
  12960. const int64_t t_start_lora_us = ggml_time_us();
  12961. llama_file fin(path_lora, "rb");
  12962. // verify magic and version
  12963. {
  12964. uint32_t magic = fin.read_u32();
  12965. if (magic != LLAMA_FILE_MAGIC_GGLA) {
  12966. LLAMA_LOG_ERROR("%s: bad file magic\n", __func__);
  12967. return 1;
  12968. }
  12969. uint32_t format_version = fin.read_u32();
  12970. if (format_version != 1) {
  12971. LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ );
  12972. return 1;
  12973. }
  12974. }
  12975. int32_t lora_r = fin.read_u32();
  12976. int32_t lora_alpha = fin.read_u32();
  12977. float scaling = scale * (float)lora_alpha / (float)lora_r;
  12978. LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
  12979. // load base model
  12980. std::unique_ptr<llama_model_loader> ml;
  12981. if (path_base_model) {
  12982. LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
  12983. ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*check_tensors*/ false, /*kv_overrides*/ nullptr));
  12984. ml->init_mappings(/*prefetch*/ false); // no prefetching
  12985. }
  12986. struct tensor_meta {
  12987. std::string name;
  12988. ggml_type type;
  12989. int32_t ne[2];
  12990. size_t offset;
  12991. };
  12992. std::map<std::string, tensor_meta> tensor_meta_map;
  12993. // load all tensor meta
  12994. while (true) {
  12995. if (fin.tell() == fin.size) {
  12996. // eof
  12997. break;
  12998. }
  12999. int32_t n_dims;
  13000. int32_t name_len;
  13001. int32_t ftype;
  13002. fin.read_raw(&n_dims, sizeof(n_dims));
  13003. fin.read_raw(&name_len, sizeof(name_len));
  13004. fin.read_raw(&ftype, sizeof(ftype));
  13005. if (n_dims != 1 && n_dims != 2) {
  13006. LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims);
  13007. return 1;
  13008. }
  13009. int32_t ne[2] = { 1, 1 };
  13010. for (int i = 0; i < n_dims; ++i) {
  13011. fin.read_raw(&ne[i], sizeof(ne[i]));
  13012. }
  13013. std::string name;
  13014. {
  13015. GGML_ASSERT(name_len < GGML_MAX_NAME);
  13016. char buf[GGML_MAX_NAME];
  13017. fin.read_raw(buf, name_len);
  13018. name = std::string(buf, name_len);
  13019. }
  13020. // check for lora suffix
  13021. std::string lora_suffix;
  13022. if (name.length() > 6) {
  13023. lora_suffix = name.substr(name.length() - 6);
  13024. }
  13025. if (lora_suffix != ".loraA" && lora_suffix != ".loraB") {
  13026. LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
  13027. return 1;
  13028. }
  13029. // tensor type
  13030. ggml_type wtype;
  13031. switch (ftype) {
  13032. case 0: wtype = GGML_TYPE_F32; break;
  13033. case 1: wtype = GGML_TYPE_F16; break;
  13034. default:
  13035. {
  13036. LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n",
  13037. __func__, ftype);
  13038. return 1;
  13039. }
  13040. }
  13041. // data offset
  13042. size_t offset = fin.tell();
  13043. offset = (offset + 31) & -32;
  13044. // skip tensor data
  13045. fin.seek(offset + ggml_row_size(wtype, ne[0]) * ne[1], SEEK_SET);
  13046. tensor_meta_map.emplace(name, tensor_meta{ name, wtype, { ne[0], ne[1] }, offset });
  13047. }
  13048. bool warned = false;
  13049. int n_tensors = 0;
  13050. // apply
  13051. ggml_backend_t backend_cpu = ggml_backend_cpu_init();
  13052. if (backend_cpu == nullptr) {
  13053. LLAMA_LOG_ERROR("%s: error: failed to initialize cpu backend\n", __func__);
  13054. return 1;
  13055. }
  13056. ggml_backend_cpu_set_n_threads(backend_cpu, n_threads);
  13057. std::vector<no_init<uint8_t>> read_buf;
  13058. for (const auto & it : model.tensors_by_name) {
  13059. const std::string & base_name = it.first;
  13060. ggml_tensor * model_t = it.second;
  13061. if (tensor_meta_map.find(base_name + ".loraA") == tensor_meta_map.end() ||
  13062. tensor_meta_map.find(base_name + ".loraB") == tensor_meta_map.end()) {
  13063. continue;
  13064. }
  13065. tensor_meta & metaA = tensor_meta_map.at(base_name + ".loraA");
  13066. tensor_meta & metaB = tensor_meta_map.at(base_name + ".loraB");
  13067. ggml_init_params lora_init_params = {
  13068. /* .mem_size */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  13069. /* .mem_buffer */ nullptr,
  13070. /* .no_alloc */ true,
  13071. };
  13072. ggml_context * lora_ctx = ggml_init(lora_init_params);
  13073. if (lora_ctx == nullptr) {
  13074. LLAMA_LOG_ERROR("%s: error: failed to initialize lora context\n", __func__);
  13075. ggml_backend_free(backend_cpu);
  13076. return 1;
  13077. }
  13078. // create tensors
  13079. ggml_tensor * loraA = ggml_new_tensor_2d(lora_ctx, metaA.type, metaA.ne[0], metaA.ne[1]);
  13080. ggml_tensor * loraB = ggml_new_tensor_2d(lora_ctx, metaB.type, metaB.ne[0], metaB.ne[1]);
  13081. ggml_set_name(loraA, metaA.name.c_str());
  13082. ggml_set_name(loraB, metaB.name.c_str());
  13083. ggml_tensor * base_t;
  13084. if (ml) {
  13085. if (!ml->get_tensor_meta(base_name.c_str())) {
  13086. LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
  13087. return 1;
  13088. }
  13089. base_t = ggml_dup_tensor(lora_ctx, ml->get_tensor_meta(base_name.c_str()));
  13090. } else {
  13091. base_t = ggml_dup_tensor(lora_ctx, model_t);
  13092. }
  13093. ggml_set_name(base_t, base_name.c_str());
  13094. // allocate in backend buffer
  13095. ggml_backend_buffer_t lora_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  13096. if (lora_buf == nullptr) {
  13097. LLAMA_LOG_ERROR("%s: error: failed to allocate lora tensors\n", __func__);
  13098. return 1;
  13099. }
  13100. // load tensor data
  13101. auto load_tensor = [&read_buf, &fin](const tensor_meta & tensor_meta, ggml_tensor * tensor) {
  13102. read_buf.resize(ggml_nbytes(tensor));
  13103. fin.seek(tensor_meta.offset, SEEK_SET);
  13104. fin.read_raw(read_buf.data(), ggml_nbytes(tensor));
  13105. ggml_backend_tensor_set(tensor, read_buf.data(), 0, read_buf.size());
  13106. };
  13107. load_tensor(metaA, loraA);
  13108. load_tensor(metaB, loraB);
  13109. // load base model tensor data
  13110. if (ml) {
  13111. ml->load_data_for(base_t);
  13112. } else {
  13113. ggml_backend_tensor_copy(model_t, base_t);
  13114. }
  13115. if (ggml_is_quantized(base_t->type) && !warned) {
  13116. LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, "
  13117. "use a f16 or f32 base model with --lora-base\n", __func__);
  13118. warned = true;
  13119. }
  13120. if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
  13121. LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
  13122. " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
  13123. ggml_free(lora_ctx);
  13124. ggml_backend_buffer_free(lora_buf);
  13125. ggml_backend_free(backend_cpu);
  13126. return 1;
  13127. }
  13128. auto build_lora_graph = [&]() {
  13129. // w = w + BA*s
  13130. ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
  13131. ggml_set_name(BA, "BA");
  13132. if (scaling != 1.0f) {
  13133. BA = ggml_scale(lora_ctx, BA, scaling);
  13134. ggml_set_name(BA, "BA_scaled");
  13135. }
  13136. ggml_tensor * r;
  13137. r = ggml_add_inplace(lora_ctx, base_t, BA);
  13138. ggml_set_name(r, "r_add");
  13139. if (base_t->type != model_t->type) {
  13140. // convert the result to the model type
  13141. r = ggml_cast(lora_ctx, r, model_t->type);
  13142. ggml_set_name(r, "r_cast");
  13143. }
  13144. return r;
  13145. };
  13146. ggml_cgraph * gf = ggml_new_graph(lora_ctx);
  13147. ggml_tensor * r = build_lora_graph();
  13148. ggml_build_forward_expand(gf, r);
  13149. ggml_backend_buffer_t graph_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  13150. if (graph_buf == nullptr) {
  13151. LLAMA_LOG_ERROR("%s: error: failed to allocate graph tensors\n", __func__);
  13152. ggml_free(lora_ctx);
  13153. ggml_backend_buffer_free(lora_buf);
  13154. ggml_backend_free(backend_cpu);
  13155. return 1;
  13156. }
  13157. ggml_backend_graph_compute(backend_cpu, gf);
  13158. ggml_backend_tensor_set(model_t, r->data, 0, ggml_nbytes(r));
  13159. #if 0
  13160. // TODO: use scheduler with fallback to CPU for less copies between CPU and GPU
  13161. //ggml_backend_sched_t sched = ggml_backend_sched_new(backends.data(), backends.size(), GGML_DEFAULT_GRAPH_SIZE);
  13162. // sched compute
  13163. ggml_build_forward_expand(gf, build_graph());
  13164. ggml_backend_sched_init_measure(sched, gf);
  13165. // create the graph again, since the previous one was destroyed by the measure
  13166. ggml_graph_clear(gf);
  13167. ggml_build_forward_expand(gf, build_graph());
  13168. ggml_backend_sched_graph_compute(sched, gf);
  13169. ggml_backend_sched_free(sched);
  13170. #endif
  13171. ggml_backend_buffer_free(lora_buf);
  13172. ggml_backend_buffer_free(graph_buf);
  13173. ggml_free(lora_ctx);
  13174. n_tensors++;
  13175. if (n_tensors % 4 == 0) {
  13176. LLAMA_LOG_INFO(".");
  13177. }
  13178. }
  13179. ggml_backend_free(backend_cpu);
  13180. const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
  13181. LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0);
  13182. return 0;
  13183. }
  13184. //
  13185. // interface implementation
  13186. //
  13187. struct llama_model_params llama_model_default_params() {
  13188. struct llama_model_params result = {
  13189. /*.n_gpu_layers =*/ 0,
  13190. /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
  13191. /*.main_gpu =*/ 0,
  13192. /*.tensor_split =*/ nullptr,
  13193. /*.rpc_servers =*/ nullptr,
  13194. /*.progress_callback =*/ nullptr,
  13195. /*.progress_callback_user_data =*/ nullptr,
  13196. /*.kv_overrides =*/ nullptr,
  13197. /*.vocab_only =*/ false,
  13198. /*.use_mmap =*/ true,
  13199. /*.use_mlock =*/ false,
  13200. /*.check_tensors =*/ false,
  13201. };
  13202. #ifdef GGML_USE_METAL
  13203. // note: we usually have plenty of VRAM, so by default offload all layers to the GPU
  13204. result.n_gpu_layers = 999;
  13205. #endif
  13206. return result;
  13207. }
  13208. struct llama_context_params llama_context_default_params() {
  13209. struct llama_context_params result = {
  13210. /*.seed =*/ LLAMA_DEFAULT_SEED,
  13211. /*.n_ctx =*/ 512,
  13212. /*.n_batch =*/ 2048,
  13213. /*.n_ubatch =*/ 512,
  13214. /*.n_seq_max =*/ 1,
  13215. /*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default
  13216. /*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS,
  13217. /*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
  13218. /*.pooling_type =*/ LLAMA_POOLING_TYPE_UNSPECIFIED,
  13219. /*.rope_freq_base =*/ 0.0f,
  13220. /*.rope_freq_scale =*/ 0.0f,
  13221. /*.yarn_ext_factor =*/ -1.0f,
  13222. /*.yarn_attn_factor =*/ 1.0f,
  13223. /*.yarn_beta_fast =*/ 32.0f,
  13224. /*.yarn_beta_slow =*/ 1.0f,
  13225. /*.yarn_orig_ctx =*/ 0,
  13226. /*.defrag_thold =*/ -1.0f,
  13227. /*.cb_eval =*/ nullptr,
  13228. /*.cb_eval_user_data =*/ nullptr,
  13229. /*.type_k =*/ GGML_TYPE_F16,
  13230. /*.type_v =*/ GGML_TYPE_F16,
  13231. /*.logits_all =*/ false,
  13232. /*.embeddings =*/ false,
  13233. /*.offload_kqv =*/ true,
  13234. /*.flash_attn =*/ false,
  13235. /*.abort_callback =*/ nullptr,
  13236. /*.abort_callback_data =*/ nullptr,
  13237. };
  13238. return result;
  13239. }
  13240. struct llama_model_quantize_params llama_model_quantize_default_params() {
  13241. struct llama_model_quantize_params result = {
  13242. /*.nthread =*/ 0,
  13243. /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
  13244. /*.output_tensor_type =*/ GGML_TYPE_COUNT,
  13245. /*.token_embedding_type =*/ GGML_TYPE_COUNT,
  13246. /*.allow_requantize =*/ false,
  13247. /*.quantize_output_tensor =*/ true,
  13248. /*.only_copy =*/ false,
  13249. /*.pure =*/ false,
  13250. /*.keep_split =*/ false,
  13251. /*.imatrix =*/ nullptr,
  13252. /*.kv_overrides =*/ nullptr,
  13253. };
  13254. return result;
  13255. }
  13256. size_t llama_max_devices(void) {
  13257. #if defined(GGML_USE_RPC)
  13258. return GGML_RPC_MAX_SERVERS;
  13259. #elif defined(GGML_USE_METAL)
  13260. return 1;
  13261. #elif defined(GGML_USE_CUDA)
  13262. return GGML_CUDA_MAX_DEVICES;
  13263. #elif defined(GGML_USE_SYCL)
  13264. return GGML_SYCL_MAX_DEVICES;
  13265. #elif defined(GGML_USE_VULKAN)
  13266. return GGML_VK_MAX_DEVICES;
  13267. #else
  13268. return 1;
  13269. #endif
  13270. }
  13271. bool llama_supports_mmap(void) {
  13272. return llama_mmap::SUPPORTED;
  13273. }
  13274. bool llama_supports_mlock(void) {
  13275. return llama_mlock::SUPPORTED;
  13276. }
  13277. bool llama_supports_gpu_offload(void) {
  13278. #if defined(GGML_USE_CUDA) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
  13279. defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE) || defined(GGML_USE_RPC)
  13280. // Defined when llama.cpp is compiled with support for offloading model layers to GPU.
  13281. return true;
  13282. #else
  13283. return false;
  13284. #endif
  13285. }
  13286. void llama_backend_init(void) {
  13287. ggml_time_init();
  13288. // needed to initialize f16 tables
  13289. {
  13290. struct ggml_init_params params = { 0, NULL, false };
  13291. struct ggml_context * ctx = ggml_init(params);
  13292. ggml_free(ctx);
  13293. }
  13294. }
  13295. void llama_numa_init(enum ggml_numa_strategy numa) {
  13296. if (numa != GGML_NUMA_STRATEGY_DISABLED) {
  13297. ggml_numa_init(numa);
  13298. }
  13299. }
  13300. void llama_backend_free(void) {
  13301. ggml_quantize_free();
  13302. }
  13303. int64_t llama_time_us(void) {
  13304. return ggml_time_us();
  13305. }
  13306. struct llama_model * llama_load_model_from_file(
  13307. const char * path_model,
  13308. struct llama_model_params params) {
  13309. ggml_time_init();
  13310. llama_model * model = new llama_model;
  13311. unsigned cur_percentage = 0;
  13312. if (params.progress_callback == NULL) {
  13313. params.progress_callback_user_data = &cur_percentage;
  13314. params.progress_callback = [](float progress, void * ctx) {
  13315. unsigned * cur_percentage_p = (unsigned *) ctx;
  13316. unsigned percentage = (unsigned) (100 * progress);
  13317. while (percentage > *cur_percentage_p) {
  13318. *cur_percentage_p = percentage;
  13319. LLAMA_LOG_INFO(".");
  13320. if (percentage >= 100) {
  13321. LLAMA_LOG_INFO("\n");
  13322. }
  13323. }
  13324. return true;
  13325. };
  13326. }
  13327. if (params.rpc_servers != nullptr && params.rpc_servers[0] != '\0') {
  13328. // split the servers set them into model->rpc_servers
  13329. std::string servers(params.rpc_servers);
  13330. size_t pos = 0;
  13331. while ((pos = servers.find(",")) != std::string::npos) {
  13332. std::string server = servers.substr(0, pos);
  13333. model->rpc_servers.push_back(server);
  13334. servers.erase(0, pos + 1);
  13335. }
  13336. model->rpc_servers.push_back(servers);
  13337. }
  13338. int status = llama_model_load(path_model, *model, params);
  13339. GGML_ASSERT(status <= 0);
  13340. if (status < 0) {
  13341. if (status == -1) {
  13342. LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
  13343. } else if (status == -2) {
  13344. LLAMA_LOG_INFO("%s: cancelled model load\n", __func__);
  13345. }
  13346. delete model;
  13347. return nullptr;
  13348. }
  13349. return model;
  13350. }
  13351. void llama_free_model(struct llama_model * model) {
  13352. delete model;
  13353. }
  13354. struct llama_context * llama_new_context_with_model(
  13355. struct llama_model * model,
  13356. struct llama_context_params params) {
  13357. if (!model) {
  13358. LLAMA_LOG_ERROR("%s: model cannot be NULL\n", __func__);
  13359. return nullptr;
  13360. }
  13361. if (params.n_batch == 0 && params.n_ubatch == 0) {
  13362. LLAMA_LOG_ERROR("%s: n_batch and n_ubatch cannot both be zero\n", __func__);
  13363. return nullptr;
  13364. }
  13365. if (params.n_ctx == 0 && model->hparams.n_ctx_train == 0) {
  13366. LLAMA_LOG_ERROR("%s: n_ctx and model->hparams.n_ctx_train cannot both be zero\n", __func__);
  13367. return nullptr;
  13368. }
  13369. if (params.flash_attn && model->arch == LLM_ARCH_GROK) {
  13370. LLAMA_LOG_WARN("%s: flash_attn is not compatible with Grok - forcing off\n", __func__);
  13371. params.flash_attn = false;
  13372. }
  13373. if (params.type_v != GGML_TYPE_F16 && !params.flash_attn) {
  13374. LLAMA_LOG_ERROR("%s: V cache quantization requires flash_attn\n", __func__);
  13375. return nullptr;
  13376. }
  13377. llama_context * ctx = new llama_context(*model);
  13378. const auto & hparams = model->hparams;
  13379. auto & cparams = ctx->cparams;
  13380. cparams.n_seq_max = std::max(1u, params.n_seq_max);
  13381. cparams.n_threads = params.n_threads;
  13382. cparams.n_threads_batch = params.n_threads_batch;
  13383. cparams.yarn_ext_factor = params.yarn_ext_factor;
  13384. cparams.yarn_attn_factor = params.yarn_attn_factor;
  13385. cparams.yarn_beta_fast = params.yarn_beta_fast;
  13386. cparams.yarn_beta_slow = params.yarn_beta_slow;
  13387. cparams.defrag_thold = params.defrag_thold;
  13388. cparams.embeddings = params.embeddings;
  13389. cparams.offload_kqv = params.offload_kqv;
  13390. cparams.flash_attn = params.flash_attn;
  13391. cparams.pooling_type = params.pooling_type;
  13392. cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx;
  13393. cparams.rope_freq_base = params.rope_freq_base == 0.0f ? hparams.rope_freq_base_train : params.rope_freq_base;
  13394. cparams.rope_freq_scale = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale;
  13395. // this is necessary due to kv_self.n being padded later during inference
  13396. cparams.n_ctx = GGML_PAD(cparams.n_ctx, llama_kv_cache_get_padding(cparams));
  13397. // with causal attention, the batch size is limited by the context size
  13398. cparams.n_batch = hparams.causal_attn ? std::min(cparams.n_ctx, params.n_batch) : params.n_batch;
  13399. // the batch has to be at least GGML_KQ_MASK_PAD because we will be padding the KQ_mask
  13400. // this is required by GPU kernels in order to avoid out-of-bounds accesses (e.g. ggml_flash_attn_ext)
  13401. // ref: https://github.com/ggerganov/llama.cpp/pull/5021
  13402. if (cparams.n_batch < GGML_KQ_MASK_PAD) {
  13403. LLAMA_LOG_WARN("%s: n_batch is less than GGML_KQ_MASK_PAD - increasing to %d\n", __func__, GGML_KQ_MASK_PAD);
  13404. cparams.n_batch = GGML_KQ_MASK_PAD;
  13405. }
  13406. cparams.n_ubatch = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch);
  13407. cparams.n_ctx_orig_yarn = params.yarn_orig_ctx != 0 ? params.yarn_orig_ctx :
  13408. hparams.n_ctx_orig_yarn != 0 ? hparams.n_ctx_orig_yarn :
  13409. hparams.n_ctx_train;
  13410. cparams.cb_eval = params.cb_eval;
  13411. cparams.cb_eval_user_data = params.cb_eval_user_data;
  13412. auto rope_scaling_type = params.rope_scaling_type;
  13413. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED) {
  13414. rope_scaling_type = hparams.rope_scaling_type_train;
  13415. }
  13416. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_NONE) {
  13417. cparams.rope_freq_scale = 1.0f; // never scale if scaling type is none
  13418. }
  13419. if (cparams.yarn_ext_factor < 0.0f) { // negative indicates 'not set'
  13420. cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_YARN ? 1.0f : 0.0f;
  13421. }
  13422. cparams.yarn_attn_factor *= hparams.rope_attn_factor;
  13423. cparams.causal_attn = hparams.causal_attn;
  13424. if (cparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  13425. if (hparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  13426. cparams.pooling_type = LLAMA_POOLING_TYPE_NONE;
  13427. } else {
  13428. cparams.pooling_type = hparams.pooling_type;
  13429. }
  13430. }
  13431. if (params.seed == LLAMA_DEFAULT_SEED) {
  13432. params.seed = time(NULL);
  13433. }
  13434. LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx);
  13435. LLAMA_LOG_INFO("%s: n_batch = %u\n", __func__, cparams.n_batch);
  13436. LLAMA_LOG_INFO("%s: n_ubatch = %u\n", __func__, cparams.n_ubatch);
  13437. LLAMA_LOG_INFO("%s: flash_attn = %d\n", __func__, cparams.flash_attn);
  13438. LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base);
  13439. LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale);
  13440. ctx->abort_callback = params.abort_callback;
  13441. ctx->abort_callback_data = params.abort_callback_data;
  13442. ctx->rng = std::mt19937(params.seed);
  13443. ctx->logits_all = params.logits_all;
  13444. uint32_t kv_size = cparams.n_ctx;
  13445. ggml_type type_k = params.type_k;
  13446. ggml_type type_v = params.type_v;
  13447. // Mamba only needs a constant number of KV cache cells per sequence
  13448. if (model->arch == LLM_ARCH_MAMBA) {
  13449. // Mamba needs at least as many KV cells as there are sequences kept at any time
  13450. kv_size = std::max((uint32_t) 1, params.n_seq_max);
  13451. // it's probably best to keep as much precision as possible for the states
  13452. type_k = GGML_TYPE_F32; // required by ggml_ssm_conv for Mamba's conv_states
  13453. type_v = GGML_TYPE_F32; // required by ggml_ssm_scan for Mamba's ssm_states
  13454. }
  13455. GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0);
  13456. GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0);
  13457. if (!hparams.vocab_only) {
  13458. // initialize backends
  13459. #if defined(GGML_USE_METAL)
  13460. if (model->n_gpu_layers > 0) {
  13461. ctx->backend_metal = ggml_backend_metal_init();
  13462. if (ctx->backend_metal == nullptr) {
  13463. LLAMA_LOG_ERROR("%s: failed to initialize Metal backend\n", __func__);
  13464. llama_free(ctx);
  13465. return nullptr;
  13466. }
  13467. ctx->backends.push_back(ctx->backend_metal);
  13468. }
  13469. #elif defined(GGML_USE_CUDA)
  13470. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  13471. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  13472. ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu);
  13473. if (backend == nullptr) {
  13474. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu);
  13475. llama_free(ctx);
  13476. return nullptr;
  13477. }
  13478. ctx->backends.push_back(backend);
  13479. } else {
  13480. // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
  13481. for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) {
  13482. ggml_backend_t backend = ggml_backend_cuda_init(device);
  13483. if (backend == nullptr) {
  13484. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, device);
  13485. llama_free(ctx);
  13486. return nullptr;
  13487. }
  13488. ctx->backends.push_back(backend);
  13489. }
  13490. }
  13491. #elif defined(GGML_USE_VULKAN)
  13492. if (model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  13493. LLAMA_LOG_ERROR("%s: Row split not supported. Failed to initialize Vulkan backend\n", __func__);
  13494. llama_free(ctx);
  13495. return nullptr;
  13496. }
  13497. if (model->split_mode == LLAMA_SPLIT_MODE_NONE) {
  13498. ggml_backend_t backend = ggml_backend_vk_init(model->main_gpu);
  13499. if (backend == nullptr) {
  13500. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan backend\n", __func__);
  13501. llama_free(ctx);
  13502. return nullptr;
  13503. }
  13504. ctx->backends.push_back(backend);
  13505. } else {
  13506. for (int device = 0; device < ggml_backend_vk_get_device_count(); ++device) {
  13507. ggml_backend_t backend = ggml_backend_vk_init(device);
  13508. if (backend == nullptr) {
  13509. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan%d backend\n", __func__, device);
  13510. llama_free(ctx);
  13511. return nullptr;
  13512. }
  13513. ctx->backends.push_back(backend);
  13514. }
  13515. }
  13516. #elif defined(GGML_USE_SYCL)
  13517. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  13518. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  13519. ggml_backend_t backend = ggml_backend_sycl_init(model->main_gpu);
  13520. if (backend == nullptr) {
  13521. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d backend\n", __func__, model->main_gpu);
  13522. llama_free(ctx);
  13523. return nullptr;
  13524. }
  13525. ctx->backends.push_back(backend);
  13526. } else {
  13527. // LLAMA_SPLIT_LAYER requires a backend for each GPU
  13528. for (int i = 0; i < ggml_backend_sycl_get_device_count(); ++i) {
  13529. ggml_backend_t backend = ggml_backend_sycl_init(i);
  13530. if (backend == nullptr) {
  13531. int id_list[GGML_SYCL_MAX_DEVICES];
  13532. ggml_sycl_get_gpu_list(id_list, GGML_SYCL_MAX_DEVICES);
  13533. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, id_list[i], i);
  13534. llama_free(ctx);
  13535. return nullptr;
  13536. }
  13537. ctx->backends.push_back(backend);
  13538. }
  13539. }
  13540. #elif defined(GGML_USE_KOMPUTE)
  13541. if (model->n_gpu_layers > 0) {
  13542. auto * backend = ggml_backend_kompute_init(model->main_gpu);
  13543. if (backend == nullptr) {
  13544. LLAMA_LOG_ERROR("%s: failed to initialize Kompute backend\n", __func__);
  13545. llama_free(ctx);
  13546. return nullptr;
  13547. }
  13548. ctx->backends.push_back(backend);
  13549. }
  13550. #endif
  13551. #ifdef GGML_USE_BLAS
  13552. ctx->backend_blas = ggml_backend_blas_init();
  13553. if (ctx->backend_blas == nullptr) {
  13554. LLAMA_LOG_WARN("%s: failed to initialize BLAS backend\n", __func__);
  13555. } else {
  13556. ctx->backends.push_back(ctx->backend_blas);
  13557. }
  13558. #endif
  13559. #if defined(GGML_USE_RPC)
  13560. if (model->n_gpu_layers > 0) {
  13561. for (const auto & endpoint : model->rpc_servers) {
  13562. ggml_backend_t backend = ggml_backend_rpc_init(endpoint.c_str());
  13563. if (backend == nullptr) {
  13564. LLAMA_LOG_ERROR("%s: failed to initialize RPC to '%s'\n", __func__, endpoint.c_str());
  13565. llama_free(ctx);
  13566. return nullptr;
  13567. }
  13568. ctx->backends.push_back(backend);
  13569. }
  13570. }
  13571. #endif
  13572. ctx->backend_cpu = ggml_backend_cpu_init();
  13573. if (ctx->backend_cpu == nullptr) {
  13574. LLAMA_LOG_ERROR("%s: failed to initialize CPU backend\n", __func__);
  13575. llama_free(ctx);
  13576. return nullptr;
  13577. }
  13578. ctx->backends.push_back(ctx->backend_cpu);
  13579. if (!llama_kv_cache_init(ctx->kv_self, ctx, type_k, type_v, kv_size, cparams.offload_kqv)) {
  13580. LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__);
  13581. llama_free(ctx);
  13582. return nullptr;
  13583. }
  13584. {
  13585. size_t memory_size_k = 0;
  13586. size_t memory_size_v = 0;
  13587. for (auto & k : ctx->kv_self.k_l) {
  13588. memory_size_k += ggml_nbytes(k);
  13589. }
  13590. for (auto & v : ctx->kv_self.v_l) {
  13591. memory_size_v += ggml_nbytes(v);
  13592. }
  13593. LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
  13594. (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
  13595. ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
  13596. ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
  13597. }
  13598. // graph outputs buffer
  13599. {
  13600. // resized during inference when a batch uses more outputs
  13601. if (llama_output_reserve(*ctx, params.n_seq_max) < params.n_seq_max) {
  13602. LLAMA_LOG_ERROR("%s: failed to reserve initial output buffer\n", __func__);
  13603. llama_free(ctx);
  13604. return nullptr;
  13605. }
  13606. LLAMA_LOG_INFO("%s: %10s output buffer size = %8.2f MiB\n", __func__,
  13607. ggml_backend_buffer_name(ctx->buf_output),
  13608. ggml_backend_buffer_get_size(ctx->buf_output) / 1024.0 / 1024.0);
  13609. }
  13610. // scheduler and compute buffers
  13611. {
  13612. // buffer types used for the compute buffer of each backend
  13613. std::vector<ggml_backend_buffer_type_t> backend_buft;
  13614. for (auto * backend : ctx->backends) {
  13615. if (ggml_backend_is_cpu(backend)) {
  13616. // use host buffers for the CPU backend compute buffer
  13617. backend_buft.push_back(llama_default_buffer_type_cpu(true));
  13618. } else {
  13619. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
  13620. }
  13621. }
  13622. // buffer used to store the computation graph and the tensor meta data
  13623. ctx->buf_compute_meta.resize(ggml_tensor_overhead()*LLAMA_MAX_NODES + ggml_graph_overhead_custom(LLAMA_MAX_NODES, false));
  13624. // enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary
  13625. bool pipeline_parallel =
  13626. llama_get_device_count(*model) > 1 &&
  13627. model->n_gpu_layers > (int)model->hparams.n_layer &&
  13628. model->split_mode == LLAMA_SPLIT_MODE_LAYER &&
  13629. params.offload_kqv;
  13630. #ifndef GGML_USE_CUDA
  13631. // pipeline parallelism requires support for async compute and events
  13632. // currently this is only implemented in the CUDA backend
  13633. pipeline_parallel = false;
  13634. #endif
  13635. ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), LLAMA_MAX_NODES, pipeline_parallel);
  13636. if (pipeline_parallel) {
  13637. LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(ctx->sched));
  13638. }
  13639. // build worst-case graph
  13640. int n_tokens = (int)std::min(cparams.n_ctx, cparams.n_ubatch);
  13641. int n_past = cparams.n_ctx - n_tokens;
  13642. llama_token token = llama_token_bos(&ctx->model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  13643. ggml_cgraph * gf = llama_build_graph(*ctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
  13644. // initialize scheduler with the worst-case graph
  13645. if (!ggml_backend_sched_reserve(ctx->sched, gf)) {
  13646. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  13647. llama_free(ctx);
  13648. return nullptr;
  13649. }
  13650. for (size_t i = 0; i < ctx->backends.size(); i++) {
  13651. ggml_backend_t backend = ctx->backends[i];
  13652. ggml_backend_buffer_type_t buft = backend_buft[i];
  13653. size_t size = ggml_backend_sched_get_buffer_size(ctx->sched, backend);
  13654. if (size > 1) {
  13655. LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
  13656. ggml_backend_buft_name(buft),
  13657. size / 1024.0 / 1024.0);
  13658. }
  13659. }
  13660. // note: the number of splits during measure is higher than during inference due to the kv shift
  13661. int n_splits = ggml_backend_sched_get_n_splits(ctx->sched);
  13662. LLAMA_LOG_INFO("%s: graph nodes = %d\n", __func__, gf->n_nodes);
  13663. LLAMA_LOG_INFO("%s: graph splits = %d\n", __func__, n_splits);
  13664. }
  13665. }
  13666. return ctx;
  13667. }
  13668. void llama_free(struct llama_context * ctx) {
  13669. delete ctx;
  13670. }
  13671. const llama_model * llama_get_model(const struct llama_context * ctx) {
  13672. return &ctx->model;
  13673. }
  13674. uint32_t llama_n_ctx(const struct llama_context * ctx) {
  13675. return ctx->cparams.n_ctx;
  13676. }
  13677. uint32_t llama_n_batch(const struct llama_context * ctx) {
  13678. return ctx->cparams.n_batch;
  13679. }
  13680. uint32_t llama_n_ubatch(const struct llama_context * ctx) {
  13681. return ctx->cparams.n_ubatch;
  13682. }
  13683. uint32_t llama_n_seq_max(const struct llama_context * ctx) {
  13684. return ctx->kv_self.size;
  13685. }
  13686. enum llama_vocab_type llama_vocab_type(const struct llama_model * model) {
  13687. return model->vocab.type;
  13688. }
  13689. enum llama_rope_type llama_rope_type(const struct llama_model * model) {
  13690. switch (model->arch) {
  13691. // these models do not use RoPE
  13692. case LLM_ARCH_GPT2:
  13693. case LLM_ARCH_GPTJ:
  13694. case LLM_ARCH_MPT:
  13695. case LLM_ARCH_REFACT:
  13696. case LLM_ARCH_BLOOM:
  13697. case LLM_ARCH_MAMBA:
  13698. case LLM_ARCH_JINA_BERT_V2:
  13699. return LLAMA_ROPE_TYPE_NONE;
  13700. // use what we call a normal RoPE, operating on pairs of consecutive head values
  13701. case LLM_ARCH_LLAMA:
  13702. case LLM_ARCH_BAICHUAN:
  13703. case LLM_ARCH_STARCODER:
  13704. case LLM_ARCH_PLAMO:
  13705. case LLM_ARCH_CODESHELL:
  13706. case LLM_ARCH_ORION:
  13707. case LLM_ARCH_INTERNLM2:
  13708. case LLM_ARCH_MINICPM:
  13709. case LLM_ARCH_XVERSE:
  13710. case LLM_ARCH_COMMAND_R:
  13711. case LLM_ARCH_OLMO:
  13712. case LLM_ARCH_ARCTIC:
  13713. case LLM_ARCH_DEEPSEEK2:
  13714. return LLAMA_ROPE_TYPE_NORM;
  13715. // the pairs of head values are offset by n_rot/2
  13716. case LLM_ARCH_FALCON:
  13717. case LLM_ARCH_GROK:
  13718. case LLM_ARCH_DBRX:
  13719. case LLM_ARCH_BERT:
  13720. case LLM_ARCH_NOMIC_BERT:
  13721. case LLM_ARCH_STABLELM:
  13722. case LLM_ARCH_QWEN:
  13723. case LLM_ARCH_QWEN2:
  13724. case LLM_ARCH_QWEN2MOE:
  13725. case LLM_ARCH_PHI2:
  13726. case LLM_ARCH_PHI3:
  13727. case LLM_ARCH_GEMMA:
  13728. case LLM_ARCH_STARCODER2:
  13729. case LLM_ARCH_GPTNEOX:
  13730. return LLAMA_ROPE_TYPE_NEOX;
  13731. // all model arches should be listed explicitly here
  13732. case LLM_ARCH_UNKNOWN:
  13733. GGML_ASSERT(false && "unknown architecture");
  13734. break;
  13735. }
  13736. return LLAMA_ROPE_TYPE_NONE;
  13737. }
  13738. enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx) {
  13739. return ctx->cparams.pooling_type;
  13740. }
  13741. int32_t llama_n_vocab(const struct llama_model * model) {
  13742. return model->hparams.n_vocab;
  13743. }
  13744. int32_t llama_n_ctx_train(const struct llama_model * model) {
  13745. return model->hparams.n_ctx_train;
  13746. }
  13747. int32_t llama_n_embd(const struct llama_model * model) {
  13748. return model->hparams.n_embd;
  13749. }
  13750. int32_t llama_n_layer(const struct llama_model * model) {
  13751. return model->hparams.n_layer;
  13752. }
  13753. float llama_rope_freq_scale_train(const struct llama_model * model) {
  13754. return model->hparams.rope_freq_scale_train;
  13755. }
  13756. int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size) {
  13757. const auto & it = model->gguf_kv.find(key);
  13758. if (it == model->gguf_kv.end()) {
  13759. if (buf_size > 0) {
  13760. buf[0] = '\0';
  13761. }
  13762. return -1;
  13763. }
  13764. return snprintf(buf, buf_size, "%s", it->second.c_str());
  13765. }
  13766. int32_t llama_model_meta_count(const struct llama_model * model) {
  13767. return (int)model->gguf_kv.size();
  13768. }
  13769. int32_t llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size) {
  13770. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  13771. if (buf_size > 0) {
  13772. buf[0] = '\0';
  13773. }
  13774. return -1;
  13775. }
  13776. auto it = model->gguf_kv.begin();
  13777. std::advance(it, i);
  13778. return snprintf(buf, buf_size, "%s", it->first.c_str());
  13779. }
  13780. int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size) {
  13781. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  13782. if (buf_size > 0) {
  13783. buf[0] = '\0';
  13784. }
  13785. return -1;
  13786. }
  13787. auto it = model->gguf_kv.begin();
  13788. std::advance(it, i);
  13789. return snprintf(buf, buf_size, "%s", it->second.c_str());
  13790. }
  13791. int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
  13792. return snprintf(buf, buf_size, "%s %s %s",
  13793. llama_model_arch_name(model->arch),
  13794. llama_model_type_name(model->type),
  13795. llama_model_ftype_name(model->ftype).c_str());
  13796. }
  13797. uint64_t llama_model_size(const struct llama_model * model) {
  13798. uint64_t size = 0;
  13799. for (const auto & it : model->tensors_by_name) {
  13800. size += ggml_nbytes(it.second);
  13801. }
  13802. return size;
  13803. }
  13804. uint64_t llama_model_n_params(const struct llama_model * model) {
  13805. uint64_t nparams = 0;
  13806. for (const auto & it : model->tensors_by_name) {
  13807. nparams += ggml_nelements(it.second);
  13808. }
  13809. return nparams;
  13810. }
  13811. struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) {
  13812. auto it = std::find_if(model->tensors_by_name.begin(), model->tensors_by_name.end(),
  13813. [name](const std::pair<std::string, struct ggml_tensor *> & it) {
  13814. return it.first == name;
  13815. });
  13816. if (it == model->tensors_by_name.end()) {
  13817. return nullptr;
  13818. }
  13819. return it->second;
  13820. }
  13821. uint32_t llama_model_quantize(
  13822. const char * fname_inp,
  13823. const char * fname_out,
  13824. const llama_model_quantize_params * params) {
  13825. try {
  13826. llama_model_quantize_internal(fname_inp, fname_out, params);
  13827. return 0;
  13828. } catch (const std::exception & err) {
  13829. LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
  13830. return 1;
  13831. }
  13832. }
  13833. int32_t llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, float scale, const char * path_base_model, int32_t n_threads) {
  13834. try {
  13835. return llama_apply_lora_from_file_internal(*model, path_lora, scale, path_base_model, n_threads);
  13836. } catch (const std::exception & err) {
  13837. LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
  13838. return 1;
  13839. }
  13840. }
  13841. static bool llama_control_vector_init(struct llama_control_vector & cvec, const llama_model & model) {
  13842. GGML_ASSERT(cvec.tensors.empty());
  13843. GGML_ASSERT(cvec.ctxs.empty());
  13844. GGML_ASSERT(cvec.bufs.empty());
  13845. // count layer buffer types
  13846. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  13847. for (int64_t i = 0; i < model.hparams.n_layer; i++) {
  13848. buft_layer_count[model.buft_layer[i].buft]++;
  13849. }
  13850. // allocate contexts
  13851. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  13852. for (auto & it : buft_layer_count) {
  13853. int n_layers = it.second;
  13854. struct ggml_init_params params = {
  13855. /*.mem_size =*/ n_layers * ggml_tensor_overhead(),
  13856. /*.mem_buffer =*/ NULL,
  13857. /*.no_alloc =*/ true,
  13858. };
  13859. ggml_context * ctx = ggml_init(params);
  13860. if (!ctx) {
  13861. LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__);
  13862. return 1;
  13863. }
  13864. ctx_map[it.first] = ctx;
  13865. }
  13866. // make tensors
  13867. cvec.tensors.reserve(model.hparams.n_layer);
  13868. cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0
  13869. for (size_t il = 1; il < model.hparams.n_layer; il++) {
  13870. struct ggml_context * ctx = ctx_map.at(model.buft_layer[il].buft);
  13871. ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_embd);
  13872. cvec.tensors.push_back(tensor);
  13873. }
  13874. // allocate tensors / buffers and zero
  13875. cvec.ctxs.reserve(ctx_map.size());
  13876. cvec.bufs.reserve(ctx_map.size());
  13877. for (auto it : ctx_map) {
  13878. ggml_backend_buffer_type_t buft = it.first;
  13879. ggml_context * ctx = it.second;
  13880. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  13881. if (!buf) {
  13882. LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n", __func__);
  13883. return false;
  13884. }
  13885. ggml_backend_buffer_clear(buf, 0);
  13886. cvec.ctxs.push_back(ctx);
  13887. cvec.bufs.push_back(buf);
  13888. }
  13889. return true;
  13890. }
  13891. int32_t llama_control_vector_apply(struct llama_context * lctx, const float * data, size_t len, int32_t n_embd, int32_t il_start, int32_t il_end) {
  13892. const llama_model & model = lctx->model;
  13893. llama_control_vector & cvec = lctx->cvec;
  13894. if (data == nullptr) {
  13895. // disable the current control vector (but leave allocated for later)
  13896. cvec.layer_start = -1;
  13897. cvec.layer_end = -1;
  13898. return 0;
  13899. }
  13900. if (n_embd != (int) model.hparams.n_embd) {
  13901. LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__);
  13902. return 1;
  13903. }
  13904. if (cvec.tensors.empty()) {
  13905. if (!llama_control_vector_init(cvec, model)) {
  13906. return 1;
  13907. }
  13908. }
  13909. cvec.layer_start = il_start;
  13910. cvec.layer_end = il_end;
  13911. for (size_t il = 1; il < model.hparams.n_layer; il++) {
  13912. assert(cvec.tensors[il] != nullptr);
  13913. const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present
  13914. if (off + n_embd <= len) {
  13915. ggml_backend_tensor_set(cvec.tensors[il], data + off, 0, n_embd * ggml_element_size(cvec.tensors[il]));
  13916. }
  13917. }
  13918. return 0;
  13919. }
  13920. struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max) {
  13921. struct llama_kv_cache_view result = {
  13922. /*.n_cells = */ 0,
  13923. /*.n_seq_max = */ n_seq_max,
  13924. /*.token_count = */ 0,
  13925. /*.used_cells = */ llama_get_kv_cache_used_cells(ctx),
  13926. /*.max_contiguous = */ 0,
  13927. /*.max_contiguous_idx = */ -1,
  13928. /*.cells = */ nullptr,
  13929. /*.cells_sequences = */ nullptr,
  13930. };
  13931. return result;
  13932. }
  13933. void llama_kv_cache_view_free(struct llama_kv_cache_view * view) {
  13934. if (view->cells != nullptr) {
  13935. free(view->cells);
  13936. view->cells = nullptr;
  13937. }
  13938. if (view->cells_sequences != nullptr) {
  13939. free(view->cells_sequences);
  13940. view->cells_sequences = nullptr;
  13941. }
  13942. }
  13943. void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view) {
  13944. if (uint32_t(view->n_cells) < ctx->kv_self.size || view->cells == nullptr) {
  13945. view->n_cells = int32_t(ctx->kv_self.size);
  13946. void * p = realloc(view->cells, sizeof(struct llama_kv_cache_view_cell) * view->n_cells);
  13947. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells");
  13948. view->cells = (struct llama_kv_cache_view_cell *)p;
  13949. p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_seq_max * view->n_cells);
  13950. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences");
  13951. view->cells_sequences = (llama_seq_id *)p;
  13952. }
  13953. const std::vector<llama_kv_cell> & kv_cells = ctx->kv_self.cells;
  13954. llama_kv_cache_view_cell * c_curr = view->cells;
  13955. llama_seq_id * cs_curr = view->cells_sequences;
  13956. int32_t used_cells = 0;
  13957. int32_t token_count = 0;
  13958. int32_t curr_contig_idx = -1;
  13959. uint32_t max_contig = 0;
  13960. int32_t max_contig_idx = -1;
  13961. for (int32_t i = 0; i < int32_t(ctx->kv_self.size); i++, c_curr++, cs_curr += view->n_seq_max) {
  13962. const size_t curr_size = kv_cells[i].seq_id.size();
  13963. token_count += curr_size;
  13964. c_curr->pos = kv_cells[i].pos + kv_cells[i].delta;
  13965. if (curr_size > 0) {
  13966. if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) {
  13967. max_contig = i - curr_contig_idx;
  13968. max_contig_idx = curr_contig_idx;
  13969. }
  13970. curr_contig_idx = -1;
  13971. } else if (curr_contig_idx < 0) {
  13972. curr_contig_idx = i;
  13973. }
  13974. int seq_idx = 0;
  13975. for (const llama_seq_id it : kv_cells[i].seq_id) {
  13976. if (seq_idx >= view->n_seq_max) {
  13977. break;
  13978. }
  13979. cs_curr[seq_idx] = it;
  13980. seq_idx++;
  13981. }
  13982. if (seq_idx != 0) {
  13983. used_cells++;
  13984. }
  13985. for (; seq_idx < view->n_seq_max; seq_idx++) {
  13986. cs_curr[seq_idx] = -1;
  13987. }
  13988. }
  13989. if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) {
  13990. max_contig_idx = curr_contig_idx;
  13991. max_contig = kv_cells.size() - curr_contig_idx;
  13992. }
  13993. view->max_contiguous = max_contig;
  13994. view->max_contiguous_idx = max_contig_idx;
  13995. view->token_count = token_count;
  13996. view->used_cells = used_cells;
  13997. if (uint32_t(used_cells) != ctx->kv_self.used) {
  13998. LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n",
  13999. __func__, ctx->kv_self.used, used_cells);
  14000. }
  14001. }
  14002. int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx) {
  14003. int result = 0;
  14004. for (uint32_t i = 0; i < ctx->kv_self.size; i++) {
  14005. result += ctx->kv_self.cells[i].seq_id.size();
  14006. }
  14007. return result;
  14008. }
  14009. int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx) {
  14010. return ctx->kv_self.used;
  14011. }
  14012. void llama_kv_cache_clear(struct llama_context * ctx) {
  14013. llama_kv_cache_clear(ctx->kv_self);
  14014. }
  14015. bool llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
  14016. return llama_kv_cache_seq_rm(ctx->kv_self, seq_id, p0, p1);
  14017. }
  14018. void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
  14019. if (seq_id_src == seq_id_dst) {
  14020. return;
  14021. }
  14022. llama_kv_cache_seq_cp(ctx->kv_self, seq_id_src, seq_id_dst, p0, p1);
  14023. }
  14024. void llama_kv_cache_seq_keep(struct llama_context * ctx, llama_seq_id seq_id) {
  14025. llama_kv_cache_seq_keep(ctx->kv_self, seq_id);
  14026. }
  14027. void llama_kv_cache_seq_add(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) {
  14028. if (delta == 0) {
  14029. return;
  14030. }
  14031. llama_kv_cache_seq_add(ctx->kv_self, seq_id, p0, p1, delta);
  14032. }
  14033. void llama_kv_cache_seq_div(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
  14034. if (d == 1) {
  14035. return;
  14036. }
  14037. llama_kv_cache_seq_div(ctx->kv_self, seq_id, p0, p1, d);
  14038. }
  14039. llama_pos llama_kv_cache_seq_pos_max(struct llama_context * ctx, llama_seq_id seq_id) {
  14040. return llama_kv_cache_seq_pos_max(ctx->kv_self, seq_id);
  14041. }
  14042. void llama_kv_cache_defrag(struct llama_context * ctx) {
  14043. llama_kv_cache_defrag(ctx->kv_self);
  14044. }
  14045. void llama_kv_cache_update(struct llama_context * ctx) {
  14046. llama_kv_cache_update_internal(*ctx);
  14047. }
  14048. // deprecated
  14049. size_t llama_get_state_size(const struct llama_context * ctx) {
  14050. return llama_state_get_size(ctx);
  14051. }
  14052. // deprecated
  14053. size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
  14054. return llama_state_get_data(ctx, dst);
  14055. }
  14056. // deprecated
  14057. size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
  14058. return llama_state_set_data(ctx, src);
  14059. }
  14060. // deprecated
  14061. bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14062. return llama_state_load_file(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  14063. }
  14064. // deprecated
  14065. bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  14066. return llama_state_save_file(ctx, path_session, tokens, n_token_count);
  14067. }
  14068. // Returns the *maximum* size of the state
  14069. size_t llama_state_get_size(const struct llama_context * ctx) {
  14070. const auto & cparams = ctx->cparams;
  14071. const auto & hparams = ctx->model.hparams;
  14072. // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
  14073. // for reference, std::mt19937(1337) serializes to 6701 bytes.
  14074. const size_t s_rng_size = sizeof(size_t);
  14075. const size_t s_rng = LLAMA_MAX_RNG_STATE;
  14076. const size_t s_n_outputs = sizeof(size_t);
  14077. // assume worst case for outputs although only currently set ones are serialized
  14078. const size_t s_output_pos = ctx->cparams.n_batch * sizeof(int32_t);
  14079. const size_t s_logits_size = sizeof(size_t);
  14080. const size_t s_logits = ctx->logits_size ? cparams.n_batch * hparams.n_vocab * sizeof(float) : 0;
  14081. const size_t s_embedding_size = sizeof(size_t);
  14082. const size_t s_embedding = ctx->embd_size ? cparams.n_batch * hparams.n_embd * sizeof(float) : 0;
  14083. const size_t s_kv_buf_size = sizeof(size_t);
  14084. const size_t s_kv_head = sizeof(uint32_t);
  14085. const size_t s_kv_size = sizeof(uint32_t);
  14086. const size_t s_kv_used = sizeof(uint32_t);
  14087. const size_t s_v_trans = sizeof(uint32_t);
  14088. const size_t s_kv = ctx->kv_self.total_size();
  14089. const size_t s_kv_cell = sizeof(llama_pos) + sizeof(size_t) + cparams.n_seq_max*sizeof(llama_seq_id);
  14090. const size_t s_kv_cells = ctx->kv_self.size * s_kv_cell;
  14091. const size_t s_total = (
  14092. + s_rng_size
  14093. + s_rng
  14094. + s_n_outputs
  14095. + s_output_pos
  14096. + s_logits_size
  14097. + s_logits
  14098. + s_embedding_size
  14099. + s_embedding
  14100. + s_kv_buf_size
  14101. + s_kv_head
  14102. + s_kv_size
  14103. + s_kv_used
  14104. + s_v_trans
  14105. + s_kv
  14106. + s_kv_cells
  14107. );
  14108. // on session change it is very likely that the state size has changed - so we need to update this function
  14109. static_assert(LLAMA_SESSION_VERSION == 6, "So you just bumped the session version - good. But did you remember to update llama_state_get_size?");
  14110. return s_total;
  14111. }
  14112. // llama_context_data
  14113. struct llama_data_context {
  14114. virtual void write(const void * src, size_t size) = 0;
  14115. virtual size_t get_size_written() = 0;
  14116. virtual ~llama_data_context() = default;
  14117. };
  14118. struct llama_data_buffer_context : llama_data_context {
  14119. uint8_t * ptr;
  14120. size_t size_written = 0;
  14121. llama_data_buffer_context(uint8_t * p) : ptr(p) {}
  14122. void write(const void * src, size_t size) override {
  14123. memcpy(ptr, src, size);
  14124. ptr += size;
  14125. size_written += size;
  14126. }
  14127. size_t get_size_written() override {
  14128. return size_written;
  14129. }
  14130. };
  14131. struct llama_data_file_context : llama_data_context {
  14132. llama_file * file;
  14133. size_t size_written = 0;
  14134. llama_data_file_context(llama_file * f) : file(f) {}
  14135. void write(const void * src, size_t size) override {
  14136. file->write_raw(src, size);
  14137. size_written += size;
  14138. }
  14139. size_t get_size_written() override {
  14140. return size_written;
  14141. }
  14142. };
  14143. /** copy state data into either a buffer or file depending on the passed in context
  14144. *
  14145. * file context:
  14146. * llama_file file("/path", "wb");
  14147. * llama_data_file_context data_ctx(&file);
  14148. * llama_state_get_data(ctx, &data_ctx);
  14149. *
  14150. * buffer context:
  14151. * std::vector<uint8_t> buf(max_size, 0);
  14152. * llama_data_buffer_context data_ctx(&buf.data());
  14153. * llama_state_get_data(ctx, &data_ctx);
  14154. *
  14155. */
  14156. static void llama_state_get_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) {
  14157. llama_synchronize(ctx);
  14158. // copy rng
  14159. {
  14160. std::ostringstream rng_ss;
  14161. rng_ss << ctx->rng;
  14162. const std::string & rng_str = rng_ss.str();
  14163. const size_t rng_size = rng_str.size();
  14164. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  14165. data_ctx->write(&rng_size, sizeof(rng_size));
  14166. data_ctx->write(rng_str.data(), rng_size);
  14167. }
  14168. // copy outputs
  14169. {
  14170. // Can't use ctx->n_outputs because it's not for the
  14171. // entire last batch when n_ubatch is smaller than n_batch
  14172. size_t n_outputs = 0;
  14173. // copy output ids
  14174. {
  14175. std::vector<int32_t> output_pos;
  14176. const size_t n_batch = ctx->cparams.n_batch;
  14177. const auto & output_ids = ctx->output_ids;
  14178. output_pos.resize(ctx->output_size);
  14179. // build a more compact representation of the output ids
  14180. for (size_t i = 0; i < n_batch; ++i) {
  14181. // map an output id to a position in the batch
  14182. int32_t pos = output_ids[i];
  14183. if (pos >= 0) {
  14184. if ((size_t) pos >= n_outputs) {
  14185. n_outputs = pos + 1;
  14186. }
  14187. GGML_ASSERT((size_t) pos < ctx->output_size);
  14188. output_pos[pos] = i;
  14189. }
  14190. }
  14191. data_ctx->write(&n_outputs, sizeof(n_outputs));
  14192. if (n_outputs) {
  14193. data_ctx->write(output_pos.data(), n_outputs * sizeof(int32_t));
  14194. }
  14195. }
  14196. // copy logits
  14197. {
  14198. const size_t logits_size = std::min(ctx->logits_size, n_outputs * ctx->model.hparams.n_vocab);
  14199. data_ctx->write(&logits_size, sizeof(logits_size));
  14200. if (logits_size) {
  14201. data_ctx->write(ctx->logits, logits_size * sizeof(float));
  14202. }
  14203. }
  14204. // copy embeddings
  14205. {
  14206. const size_t embeddings_size = std::min(ctx->embd_size, n_outputs * ctx->model.hparams.n_embd);
  14207. data_ctx->write(&embeddings_size, sizeof(embeddings_size));
  14208. if (embeddings_size) {
  14209. data_ctx->write(ctx->embd, embeddings_size * sizeof(float));
  14210. }
  14211. }
  14212. }
  14213. // copy kv cache
  14214. {
  14215. const auto & kv_self = ctx->kv_self;
  14216. const auto & hparams = ctx->model.hparams;
  14217. const uint32_t n_layer = hparams.n_layer;
  14218. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14219. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14220. // NOTE: kv_size and kv_buf_size are mostly used for sanity checks
  14221. const uint32_t kv_head = llama_kv_cache_cell_max(kv_self);
  14222. const uint32_t kv_size = kv_self.size;
  14223. const size_t kv_buf_size = kv_self.total_size() / (kv_size ? kv_size : 1) * kv_head;
  14224. const uint32_t kv_used = kv_self.used;
  14225. const uint32_t v_trans = kv_self.v_trans ? 1 : 0;
  14226. data_ctx->write(&kv_buf_size, sizeof(kv_buf_size));
  14227. data_ctx->write(&kv_head, sizeof(kv_head));
  14228. data_ctx->write(&kv_size, sizeof(kv_size));
  14229. data_ctx->write(&kv_used, sizeof(kv_used));
  14230. data_ctx->write(&v_trans, sizeof(v_trans));
  14231. if (kv_buf_size) {
  14232. const size_t pre_kv_buf_size = data_ctx->get_size_written();
  14233. std::vector<uint8_t> tmp_buf;
  14234. for (int il = 0; il < (int) n_layer; ++il) {
  14235. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  14236. tmp_buf.resize(k_size);
  14237. ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), 0, tmp_buf.size());
  14238. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  14239. if (kv_self.recurrent || !kv_self.v_trans) {
  14240. // v is contiguous for recurrent models
  14241. // TODO: use other tensors for state models than k and v
  14242. const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
  14243. tmp_buf.resize(v_size);
  14244. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), 0, tmp_buf.size());
  14245. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  14246. continue;
  14247. }
  14248. // v is not contiguous, copy row by row
  14249. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  14250. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_size);
  14251. tmp_buf.resize(v_row_size);
  14252. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  14253. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), ir*v_row_stride, tmp_buf.size());
  14254. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  14255. }
  14256. }
  14257. GGML_ASSERT(kv_buf_size == data_ctx->get_size_written() - pre_kv_buf_size);
  14258. }
  14259. for (uint32_t i = 0; i < kv_head; ++i) {
  14260. const auto & cell = kv_self.cells[i];
  14261. const llama_pos pos = cell.pos;
  14262. const size_t seq_id_size = cell.seq_id.size();
  14263. data_ctx->write(&pos, sizeof(pos));
  14264. data_ctx->write(&seq_id_size, sizeof(seq_id_size));
  14265. for (auto seq_id : cell.seq_id) {
  14266. data_ctx->write(&seq_id, sizeof(seq_id));
  14267. }
  14268. }
  14269. }
  14270. }
  14271. size_t llama_state_get_data(struct llama_context * ctx, uint8_t * dst) {
  14272. llama_data_buffer_context data_ctx(dst);
  14273. llama_state_get_data_internal(ctx, &data_ctx);
  14274. return data_ctx.get_size_written();
  14275. }
  14276. // Sets the state reading from the specified source address
  14277. size_t llama_state_set_data(struct llama_context * ctx, const uint8_t * src) {
  14278. llama_synchronize(ctx);
  14279. const uint8_t * inp = src;
  14280. // set rng
  14281. {
  14282. size_t rng_size;
  14283. memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
  14284. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  14285. std::string rng_str((const char *)inp, rng_size); inp += rng_size;
  14286. std::istringstream rng_ss(rng_str);
  14287. rng_ss >> ctx->rng;
  14288. GGML_ASSERT(!rng_ss.fail());
  14289. }
  14290. // set output ids
  14291. {
  14292. size_t n_outputs;
  14293. std::vector<int32_t> output_pos;
  14294. memcpy(&n_outputs, inp, sizeof(n_outputs)); inp += sizeof(n_outputs);
  14295. GGML_ASSERT(n_outputs <= llama_output_reserve(*ctx, n_outputs));
  14296. if (n_outputs) {
  14297. output_pos.resize(n_outputs);
  14298. memcpy(output_pos.data(), inp, n_outputs * sizeof(int32_t));
  14299. inp += n_outputs * sizeof(int32_t);
  14300. for (int32_t i = 0; i < (int32_t) output_pos.size(); ++i) {
  14301. int32_t id = output_pos[i];
  14302. GGML_ASSERT((uint32_t) id < ctx->cparams.n_batch);
  14303. ctx->output_ids[id] = i;
  14304. }
  14305. ctx->n_outputs = n_outputs;
  14306. }
  14307. }
  14308. // set logits
  14309. {
  14310. size_t logits_size;
  14311. memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
  14312. GGML_ASSERT(ctx->logits_size >= logits_size);
  14313. if (logits_size) {
  14314. memcpy(ctx->logits, inp, logits_size * sizeof(float));
  14315. inp += logits_size * sizeof(float);
  14316. }
  14317. }
  14318. // set embeddings
  14319. {
  14320. size_t embeddings_size;
  14321. memcpy(&embeddings_size, inp, sizeof(embeddings_size)); inp += sizeof(embeddings_size);
  14322. GGML_ASSERT(ctx->embd_size >= embeddings_size);
  14323. if (embeddings_size) {
  14324. memcpy(ctx->embd, inp, embeddings_size * sizeof(float));
  14325. inp += embeddings_size * sizeof(float);
  14326. }
  14327. }
  14328. // set kv cache
  14329. {
  14330. const auto & kv_self = ctx->kv_self;
  14331. const auto & hparams = ctx->model.hparams;
  14332. const uint32_t n_layer = hparams.n_layer;
  14333. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14334. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14335. size_t kv_buf_size;
  14336. uint32_t kv_head;
  14337. uint32_t kv_size;
  14338. uint32_t kv_used;
  14339. uint32_t v_trans;
  14340. memcpy(&kv_buf_size, inp, sizeof(kv_buf_size)); inp += sizeof(kv_buf_size);
  14341. memcpy(&kv_head, inp, sizeof(kv_head)); inp += sizeof(kv_head);
  14342. memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
  14343. memcpy(&kv_used, inp, sizeof(kv_used)); inp += sizeof(kv_used);
  14344. memcpy(&v_trans, inp, sizeof(v_trans)); inp += sizeof(v_trans);
  14345. GGML_ASSERT(kv_self.v_trans == (bool) v_trans); // incompatible V transposition
  14346. if (kv_self.size != kv_size) {
  14347. // the KV cache needs to be big enough to load all the KV cells from the saved state
  14348. GGML_ASSERT(kv_self.size >= kv_head);
  14349. LLAMA_LOG_INFO("%s: state contains %d KV cells, was saved with kv_size=%d, but is loaded with kv_size=%d (fine, but different)\n",
  14350. __func__, kv_head, kv_size, kv_self.size);
  14351. }
  14352. llama_kv_cache_clear(ctx);
  14353. if (kv_buf_size) {
  14354. const size_t pre_kv_buf_size = inp - src;
  14355. GGML_ASSERT(kv_self.total_size() >= kv_buf_size);
  14356. for (int il = 0; il < (int) n_layer; ++il) {
  14357. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  14358. ggml_backend_tensor_set(kv_self.k_l[il], inp, 0, k_size);
  14359. inp += k_size;
  14360. if (kv_self.recurrent || !kv_self.v_trans) {
  14361. // v is contiguous for recurrent models
  14362. // TODO: use other tensors for state models than k and v
  14363. const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
  14364. ggml_backend_tensor_set(kv_self.v_l[il], inp, 0, v_size);
  14365. inp += v_size;
  14366. continue;
  14367. }
  14368. // v is not contiguous, copy row by row
  14369. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  14370. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_self.size);
  14371. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  14372. ggml_backend_tensor_set(kv_self.v_l[il], inp, ir*v_row_stride, v_row_size);
  14373. inp += v_row_size;
  14374. }
  14375. }
  14376. GGML_ASSERT(kv_buf_size == inp - src - pre_kv_buf_size);
  14377. }
  14378. ctx->kv_self.head = kv_head;
  14379. ctx->kv_self.used = kv_used;
  14380. for (uint32_t i = 0; i < kv_head; ++i) {
  14381. llama_pos pos;
  14382. size_t seq_id_size;
  14383. memcpy(&pos, inp, sizeof(pos)); inp += sizeof(pos);
  14384. memcpy(&seq_id_size, inp, sizeof(seq_id_size)); inp += sizeof(seq_id_size);
  14385. ctx->kv_self.cells[i].pos = pos;
  14386. llama_seq_id seq_id;
  14387. for (size_t j = 0; j < seq_id_size; ++j) {
  14388. memcpy(&seq_id, inp, sizeof(seq_id)); inp += sizeof(seq_id);
  14389. ctx->kv_self.cells[i].seq_id.insert(seq_id);
  14390. }
  14391. }
  14392. }
  14393. const size_t nread = inp - src;
  14394. const size_t max_size = llama_state_get_size(ctx);
  14395. GGML_ASSERT(nread <= max_size);
  14396. return nread;
  14397. }
  14398. static bool llama_state_load_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14399. llama_file file(path_session, "rb");
  14400. // sanity checks
  14401. {
  14402. const uint32_t magic = file.read_u32();
  14403. const uint32_t version = file.read_u32();
  14404. if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
  14405. LLAMA_LOG_ERROR("%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
  14406. return false;
  14407. }
  14408. llama_hparams session_hparams;
  14409. file.read_raw(&session_hparams, sizeof(llama_hparams));
  14410. if (session_hparams != ctx->model.hparams) {
  14411. LLAMA_LOG_INFO("%s : model hparams didn't match from session file!\n", __func__);
  14412. return false;
  14413. }
  14414. }
  14415. // load the prompt
  14416. {
  14417. const uint32_t n_token_count = file.read_u32();
  14418. if (n_token_count > n_token_capacity) {
  14419. LLAMA_LOG_ERROR("%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  14420. return false;
  14421. }
  14422. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  14423. *n_token_count_out = n_token_count;
  14424. }
  14425. // restore the context state
  14426. {
  14427. const size_t n_state_size_cur = file.size - file.tell();
  14428. const size_t n_state_size_max = llama_state_get_size(ctx);
  14429. if (n_state_size_cur > n_state_size_max) {
  14430. LLAMA_LOG_ERROR("%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
  14431. return false;
  14432. }
  14433. std::vector<uint8_t> state_data(n_state_size_max);
  14434. file.read_raw(state_data.data(), n_state_size_cur);
  14435. llama_state_set_data(ctx, state_data.data());
  14436. }
  14437. return true;
  14438. }
  14439. bool llama_state_load_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14440. try {
  14441. return llama_state_load_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  14442. } catch (const std::exception & err) {
  14443. LLAMA_LOG_ERROR("error loading session file: %s\n", err.what());
  14444. return false;
  14445. }
  14446. }
  14447. static bool llama_state_save_file_internal(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  14448. llama_file file(path_session, "wb");
  14449. file.write_u32(LLAMA_SESSION_MAGIC);
  14450. file.write_u32(LLAMA_SESSION_VERSION);
  14451. file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
  14452. // save the prompt
  14453. file.write_u32((uint32_t) n_token_count);
  14454. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  14455. // save the context state using stream saving
  14456. llama_data_file_context data_ctx(&file);
  14457. llama_state_get_data_internal(ctx, &data_ctx);
  14458. return true;
  14459. }
  14460. bool llama_state_save_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  14461. try {
  14462. return llama_state_save_file_internal(ctx, path_session, tokens, n_token_count);
  14463. } catch (const std::exception & err) {
  14464. LLAMA_LOG_ERROR("error saving session file: %s\n", err.what());
  14465. return false;
  14466. }
  14467. }
  14468. size_t llama_state_seq_get_size(struct llama_context* ctx, llama_seq_id seq_id) {
  14469. // save the size of size_t as a uint32_t for safety check
  14470. const size_t size_t_size_size = sizeof(uint32_t);
  14471. // other values
  14472. const size_t s_cell_count_size = sizeof(uint32_t);
  14473. const size_t s_layer_count_size = sizeof(uint32_t);
  14474. const size_t n_embd_v_gqa_size = sizeof(uint32_t);
  14475. size_t s_cell_count = 0;
  14476. size_t s_cell_data_size = 0;
  14477. const auto & kv_self = ctx->kv_self;
  14478. const auto & hparams = ctx->model.hparams;
  14479. const uint32_t n_layer = hparams.n_layer;
  14480. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14481. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14482. for (uint32_t i = 0; i < kv_self.size; ++i) {
  14483. const auto & cell = kv_self.cells[i];
  14484. if (cell.seq_id.count(seq_id) > 0) {
  14485. ++s_cell_count;
  14486. s_cell_data_size += sizeof(llama_pos);
  14487. }
  14488. }
  14489. for (int il = 0; il < (int)n_layer; ++il) {
  14490. // types of keys and values
  14491. s_cell_data_size += sizeof(int32_t) * 2;
  14492. // k_size_row and v_size_el values of layer
  14493. s_cell_data_size += sizeof(size_t) * 2;
  14494. // keys
  14495. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  14496. s_cell_data_size += k_size_row * s_cell_count;
  14497. // values (transposed)
  14498. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  14499. s_cell_data_size += v_size_el * s_cell_count * n_embd_v_gqa;
  14500. }
  14501. const size_t s_total = (
  14502. size_t_size_size +
  14503. s_cell_count_size +
  14504. s_layer_count_size +
  14505. n_embd_v_gqa_size +
  14506. s_cell_data_size
  14507. );
  14508. return s_total;
  14509. }
  14510. static size_t llama_state_seq_get_data_internal(struct llama_context * ctx, llama_data_context & data_ctx, llama_seq_id seq_id) {
  14511. llama_synchronize(ctx);
  14512. const auto & kv_self = ctx->kv_self;
  14513. GGML_ASSERT(!kv_self.recurrent); // not implemented
  14514. // Save the size of size_t as a uint32_t for safety check
  14515. const uint32_t size_t_size = sizeof(size_t);
  14516. data_ctx.write(&size_t_size, sizeof(size_t_size));
  14517. std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive
  14518. uint32_t cell_count = 0;
  14519. // Count the number of cells with the specified seq_id
  14520. // Find all the ranges of cells with this seq id
  14521. {
  14522. uint32_t cell_range_begin = kv_self.size;
  14523. for (uint32_t i = 0; i < kv_self.size; ++i) {
  14524. const auto & cell = kv_self.cells[i];
  14525. if (cell.has_seq_id(seq_id)) {
  14526. ++cell_count;
  14527. if (cell_range_begin == kv_self.size) {
  14528. cell_range_begin = i;
  14529. }
  14530. }
  14531. else {
  14532. if (cell_range_begin != kv_self.size) {
  14533. cell_ranges.emplace_back(cell_range_begin, i);
  14534. cell_range_begin = kv_self.size;
  14535. }
  14536. }
  14537. }
  14538. if (cell_range_begin != kv_self.size) {
  14539. cell_ranges.emplace_back(cell_range_begin, kv_self.size);
  14540. }
  14541. // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count
  14542. uint32_t cell_count_check = 0;
  14543. for (const auto & range : cell_ranges) {
  14544. cell_count_check += range.second - range.first;
  14545. }
  14546. GGML_ASSERT(cell_count == cell_count_check);
  14547. }
  14548. // Write the cell count
  14549. data_ctx.write(&cell_count, sizeof(cell_count));
  14550. const auto & hparams = ctx->model.hparams;
  14551. const uint32_t n_layer = hparams.n_layer;
  14552. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14553. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14554. // Write the layer count
  14555. data_ctx.write(&n_layer, sizeof(n_layer));
  14556. // Write n_embd_v_gqa
  14557. data_ctx.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa));
  14558. // Iterate the ranges and write all the pos (this is the token position in the prompt)
  14559. for (const auto & range : cell_ranges) {
  14560. for (uint32_t i = range.first; i < range.second; ++i) {
  14561. const auto & cell = kv_self.cells[i];
  14562. data_ctx.write(&cell.pos, sizeof(cell.pos));
  14563. }
  14564. }
  14565. // Iterate and write all the keys first, each row is a cell
  14566. // Get whole range at a time
  14567. std::vector<uint8_t> tmp_buf;
  14568. for (int il = 0; il < (int)n_layer; ++il) {
  14569. // Write key type
  14570. const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
  14571. data_ctx.write(&k_type_i, sizeof(k_type_i));
  14572. // Write row size of key
  14573. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  14574. data_ctx.write(&k_size_row, sizeof(k_size_row));
  14575. // Read each range of cells of k_size length each into tmp_buf and write out
  14576. for (const auto & range : cell_ranges) {
  14577. const size_t range_size = range.second - range.first;
  14578. tmp_buf.resize(range_size * k_size_row);
  14579. ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), range.first * k_size_row, range_size * k_size_row);
  14580. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  14581. }
  14582. }
  14583. // TODO: simplify, reduce copy-paste
  14584. if (!kv_self.v_trans) {
  14585. for (int il = 0; il < (int)n_layer; ++il) {
  14586. // Write value type
  14587. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14588. data_ctx.write(&v_type_i, sizeof(v_type_i));
  14589. // Write row size of value
  14590. const size_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa);
  14591. data_ctx.write(&v_size_row, sizeof(v_size_row));
  14592. // Read each range of cells of v_size length each into tmp_buf and write out
  14593. for (const auto & range : cell_ranges) {
  14594. const size_t range_size = range.second - range.first;
  14595. tmp_buf.resize(range_size * v_size_row);
  14596. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), range.first * v_size_row, range_size * v_size_row);
  14597. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  14598. }
  14599. }
  14600. } else {
  14601. // For the values, they are transposed, so we also need the element size and get the element ranges from each row
  14602. const uint32_t kv_size = kv_self.size;
  14603. for (int il = 0; il < (int)n_layer; ++il) {
  14604. // Write value type
  14605. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14606. data_ctx.write(&v_type_i, sizeof(v_type_i));
  14607. // Write element size
  14608. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  14609. data_ctx.write(&v_size_el, sizeof(v_size_el));
  14610. // For each row, we get the element values of each cell
  14611. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  14612. // Read each range of cells of v_size_el length each into tmp_buf and write out
  14613. for (const auto & range : cell_ranges) {
  14614. const size_t range_size = range.second - range.first;
  14615. const size_t src_offset = (range.first + j * kv_size) * v_size_el;
  14616. tmp_buf.resize(range_size * v_size_el);
  14617. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), src_offset, tmp_buf.size());
  14618. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  14619. }
  14620. }
  14621. }
  14622. }
  14623. return data_ctx.get_size_written();
  14624. }
  14625. size_t llama_state_seq_get_data(struct llama_context* ctx, uint8_t* dst, llama_seq_id seq_id) {
  14626. llama_data_buffer_context data_ctx(dst);
  14627. return llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
  14628. }
  14629. size_t llama_state_seq_set_data(struct llama_context * ctx, const uint8_t * src, llama_seq_id dest_seq_id) {
  14630. llama_synchronize(ctx);
  14631. auto & kv_self = ctx->kv_self;
  14632. GGML_ASSERT(!kv_self.recurrent); // not implemented
  14633. // Wipe the slot
  14634. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14635. const uint8_t * inp = src;
  14636. // Read size of size_t
  14637. uint32_t size_t_size;
  14638. memcpy(&size_t_size, inp, sizeof(size_t_size));
  14639. inp += sizeof(size_t_size);
  14640. if (size_t_size != sizeof(size_t)) {
  14641. LLAMA_LOG_ERROR("%s: size_t size mismatch\n", __func__);
  14642. return 0;
  14643. }
  14644. // Read the cell count
  14645. uint32_t cell_count;
  14646. memcpy(&cell_count, inp, sizeof(cell_count));
  14647. inp += sizeof(cell_count);
  14648. // Read the layer count
  14649. uint32_t n_layer_ref;
  14650. memcpy(&n_layer_ref, inp, sizeof(n_layer_ref));
  14651. inp += sizeof(n_layer_ref);
  14652. // Read n_embd_v_gqa
  14653. uint32_t n_embd_v_gqa_ref;
  14654. memcpy(&n_embd_v_gqa_ref, inp, sizeof(n_embd_v_gqa_ref));
  14655. inp += sizeof(n_embd_v_gqa_ref);
  14656. // Sanity check model compatibility
  14657. const auto & hparams = ctx->model.hparams;
  14658. const uint32_t n_layer = hparams.n_layer;
  14659. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14660. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14661. if (n_layer != n_layer_ref) {
  14662. LLAMA_LOG_ERROR("%s: mismatched n_layer (%d != %d)\n", __func__, n_layer, n_layer_ref);
  14663. return 0;
  14664. }
  14665. if (n_embd_v_gqa != n_embd_v_gqa_ref) {
  14666. LLAMA_LOG_ERROR("%s: mismatched n_embd_v_gqa (%d != %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref);
  14667. return 0;
  14668. }
  14669. // Allocate the new cells for the slot
  14670. if (cell_count) {
  14671. llama_batch batch = llama_batch_init(cell_count, 0, 1);
  14672. batch.n_tokens = cell_count;
  14673. for (uint32_t i = 0; i < cell_count; ++i) {
  14674. llama_pos pos;
  14675. memcpy(&pos, inp, sizeof(pos));
  14676. inp += sizeof(pos);
  14677. batch.pos[i] = pos;
  14678. batch.n_seq_id[i] = 1;
  14679. batch.seq_id[i][0] = dest_seq_id;
  14680. }
  14681. if (!llama_kv_cache_find_slot(kv_self, batch)) {
  14682. llama_batch_free(batch);
  14683. LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
  14684. return 0;
  14685. }
  14686. // DEBUG CHECK: kv_self.head should be our first cell, kv_self.head + cell_count - 1 should be our last cell (verify seq_id and pos values)
  14687. // Assume that this is one contiguous block of cells
  14688. GGML_ASSERT(kv_self.head + cell_count <= kv_self.size);
  14689. GGML_ASSERT(kv_self.cells[kv_self.head].pos == batch.pos[0]);
  14690. GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].pos == batch.pos[cell_count - 1]);
  14691. GGML_ASSERT(kv_self.cells[kv_self.head].has_seq_id(dest_seq_id));
  14692. GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].has_seq_id(dest_seq_id));
  14693. // Cleanup
  14694. llama_batch_free(batch);
  14695. }
  14696. const uint32_t kv_size = kv_self.size;
  14697. const uint32_t kv_head = kv_self.head;
  14698. // For each layer, read the keys for each cell, one row is one cell, read as one contiguous blo
  14699. for (int il = 0; il < (int)n_layer; ++il) {
  14700. // Read type of key
  14701. int32_t k_type_i_ref;
  14702. memcpy(&k_type_i_ref, inp, sizeof(k_type_i_ref));
  14703. inp += sizeof(k_type_i_ref);
  14704. const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
  14705. if (k_type_i != k_type_i_ref) {
  14706. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14707. LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il);
  14708. return 0;
  14709. }
  14710. // Read row size of key
  14711. size_t k_size_row_ref;
  14712. memcpy(&k_size_row_ref, inp, sizeof(k_size_row_ref));
  14713. inp += sizeof(k_size_row_ref);
  14714. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  14715. if (k_size_row != k_size_row_ref) {
  14716. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14717. LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, k_size_row_ref, il);
  14718. return 0;
  14719. }
  14720. if (cell_count) {
  14721. // Read and set the keys for the whole cell range
  14722. ggml_backend_tensor_set(kv_self.k_l[il], inp, kv_head * k_size_row, cell_count * k_size_row);
  14723. inp += cell_count * k_size_row;
  14724. }
  14725. }
  14726. // TODO: simplify, reduce copy-paste
  14727. if (!kv_self.v_trans) {
  14728. for (int il = 0; il < (int)n_layer; ++il) {
  14729. // Read type of value
  14730. int32_t v_type_i_ref;
  14731. memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref));
  14732. inp += sizeof(v_type_i_ref);
  14733. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14734. if (v_type_i != v_type_i_ref) {
  14735. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14736. LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
  14737. return 0;
  14738. }
  14739. // Read row size of value
  14740. size_t v_size_row_ref;
  14741. memcpy(&v_size_row_ref, inp, sizeof(v_size_row_ref));
  14742. inp += sizeof(v_size_row_ref);
  14743. const size_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa);
  14744. if (v_size_row != v_size_row_ref) {
  14745. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14746. LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, v_size_row_ref, il);
  14747. return 0;
  14748. }
  14749. if (cell_count) {
  14750. // Read and set the values for the whole cell range
  14751. ggml_backend_tensor_set(kv_self.v_l[il], inp, kv_head * v_size_row, cell_count * v_size_row);
  14752. inp += cell_count * v_size_row;
  14753. }
  14754. }
  14755. } else {
  14756. // For each layer, read the values for each cell (transposed)
  14757. for (int il = 0; il < (int)n_layer; ++il) {
  14758. // Read type of value
  14759. int32_t v_type_i_ref;
  14760. memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref));
  14761. inp += sizeof(v_type_i_ref);
  14762. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14763. if (v_type_i != v_type_i_ref) {
  14764. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14765. LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
  14766. return 0;
  14767. }
  14768. // Read element size of value
  14769. size_t v_size_el_ref;
  14770. memcpy(&v_size_el_ref, inp, sizeof(v_size_el_ref));
  14771. inp += sizeof(v_size_el_ref);
  14772. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  14773. if (v_size_el != v_size_el_ref) {
  14774. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14775. LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, v_size_el_ref, il);
  14776. return 0;
  14777. }
  14778. if (cell_count) {
  14779. // For each row in the transposed matrix, read the values for the whole cell range
  14780. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  14781. const size_t dst_offset = (kv_head + j * kv_size) * v_size_el;
  14782. ggml_backend_tensor_set(kv_self.v_l[il], inp, dst_offset, cell_count * v_size_el);
  14783. inp += cell_count * v_size_el;
  14784. }
  14785. }
  14786. }
  14787. }
  14788. const size_t nread = inp - src;
  14789. return nread;
  14790. }
  14791. static size_t llama_state_seq_save_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
  14792. llama_file file(filepath, "wb");
  14793. file.write_u32(LLAMA_STATE_SEQ_MAGIC);
  14794. file.write_u32(LLAMA_STATE_SEQ_VERSION);
  14795. // save the prompt
  14796. file.write_u32((uint32_t)n_token_count);
  14797. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  14798. // save the context state using stream saving
  14799. llama_data_file_context data_ctx(&file);
  14800. llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
  14801. const size_t res = file.tell();
  14802. GGML_ASSERT(res == sizeof(uint32_t) * 3 + sizeof(llama_token) * n_token_count + data_ctx.get_size_written());
  14803. return res;
  14804. }
  14805. static size_t llama_state_seq_load_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14806. llama_file file(filepath, "rb");
  14807. // version checks
  14808. {
  14809. const uint32_t magic = file.read_u32();
  14810. const uint32_t version = file.read_u32();
  14811. if (magic != LLAMA_STATE_SEQ_MAGIC || version != LLAMA_STATE_SEQ_VERSION) {
  14812. LLAMA_LOG_ERROR("%s: unknown (magic, version) for sequence state file: %08x, %08x\n", __func__, magic, version);
  14813. return 0;
  14814. }
  14815. }
  14816. // load the prompt
  14817. {
  14818. const uint32_t n_token_count = file.read_u32();
  14819. if (n_token_count > n_token_capacity) {
  14820. LLAMA_LOG_ERROR("%s: token count in sequence state file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  14821. return 0;
  14822. }
  14823. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  14824. *n_token_count_out = n_token_count;
  14825. }
  14826. // restore the context state
  14827. {
  14828. const size_t state_size = file.size - file.tell();
  14829. std::vector<uint8_t> state_data(state_size);
  14830. file.read_raw(state_data.data(), state_size);
  14831. const size_t nread = llama_state_seq_set_data(ctx, state_data.data(), dest_seq_id);
  14832. if (!nread) {
  14833. LLAMA_LOG_ERROR("%s: failed to restore sequence state\n", __func__);
  14834. return 0;
  14835. }
  14836. GGML_ASSERT(nread <= state_size);
  14837. GGML_ASSERT(nread + sizeof(uint32_t) * 3 + sizeof(llama_token) * *n_token_count_out == file.tell());
  14838. }
  14839. return file.tell();
  14840. }
  14841. size_t llama_state_seq_save_file(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
  14842. try {
  14843. return llama_state_seq_save_file_internal(ctx, filepath, seq_id, tokens, n_token_count);
  14844. } catch (const std::exception & err) {
  14845. LLAMA_LOG_ERROR("error saving sequence state file: %s\n", err.what());
  14846. return 0;
  14847. }
  14848. }
  14849. size_t llama_state_seq_load_file(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14850. try {
  14851. return llama_state_seq_load_file_internal(ctx, filepath, dest_seq_id, tokens_out, n_token_capacity, n_token_count_out);
  14852. } catch (const std::exception & err) {
  14853. LLAMA_LOG_ERROR("error loading sequence state file: %s\n", err.what());
  14854. return 0;
  14855. }
  14856. }
  14857. void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch) {
  14858. ctx->cparams.n_threads = n_threads;
  14859. ctx->cparams.n_threads_batch = n_threads_batch;
  14860. }
  14861. uint32_t llama_n_threads(struct llama_context * ctx) {
  14862. return ctx->cparams.n_threads;
  14863. }
  14864. uint32_t llama_n_threads_batch(struct llama_context * ctx) {
  14865. return ctx->cparams.n_threads_batch;
  14866. }
  14867. void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) {
  14868. ctx->abort_callback = abort_callback;
  14869. ctx->abort_callback_data = abort_callback_data;
  14870. }
  14871. void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) {
  14872. ctx->cparams.causal_attn = causal_attn;
  14873. }
  14874. struct llama_batch llama_batch_get_one(
  14875. llama_token * tokens,
  14876. int32_t n_tokens,
  14877. llama_pos pos_0,
  14878. llama_seq_id seq_id) {
  14879. return {
  14880. /*n_tokens =*/ n_tokens,
  14881. /*tokens =*/ tokens,
  14882. /*embd =*/ nullptr,
  14883. /*pos =*/ nullptr,
  14884. /*n_seq_id =*/ nullptr,
  14885. /*seq_id =*/ nullptr,
  14886. /*logits =*/ nullptr,
  14887. /*all_pos_0 =*/ pos_0,
  14888. /*all_pos_1 =*/ 1,
  14889. /*all_seq_id =*/ seq_id,
  14890. };
  14891. }
  14892. struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_t n_seq_max) {
  14893. llama_batch batch = { 0, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, 0, 0, };
  14894. if (embd) {
  14895. batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
  14896. } else {
  14897. batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
  14898. }
  14899. batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens_alloc);
  14900. batch.n_seq_id = (int32_t *) malloc(sizeof(int32_t) * n_tokens_alloc);
  14901. batch.seq_id = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * (n_tokens_alloc + 1));
  14902. for (int i = 0; i < n_tokens_alloc; ++i) {
  14903. batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max);
  14904. }
  14905. batch.seq_id[n_tokens_alloc] = nullptr;
  14906. batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens_alloc);
  14907. return batch;
  14908. }
  14909. void llama_batch_free(struct llama_batch batch) {
  14910. if (batch.token) free(batch.token);
  14911. if (batch.embd) free(batch.embd);
  14912. if (batch.pos) free(batch.pos);
  14913. if (batch.n_seq_id) free(batch.n_seq_id);
  14914. if (batch.seq_id) {
  14915. for (int i = 0; batch.seq_id[i] != nullptr; ++i) {
  14916. free(batch.seq_id[i]);
  14917. }
  14918. free(batch.seq_id);
  14919. }
  14920. if (batch.logits) free(batch.logits);
  14921. }
  14922. int32_t llama_decode(
  14923. struct llama_context * ctx,
  14924. struct llama_batch batch) {
  14925. const int ret = llama_decode_internal(*ctx, batch);
  14926. if (ret < 0) {
  14927. LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
  14928. }
  14929. return ret;
  14930. }
  14931. void llama_synchronize(struct llama_context * ctx) {
  14932. ggml_backend_sched_synchronize(ctx->sched);
  14933. // FIXME: if multiple single tokens are evaluated without a synchronization,
  14934. // the stats will be added to the prompt evaluation stats
  14935. // this should only happen when using batch size 1 to evaluate a batch
  14936. // add the evaluation to the stats
  14937. if (ctx->n_queued_tokens == 1) {
  14938. ctx->t_eval_us += ggml_time_us() - ctx->t_compute_start_us;
  14939. ctx->n_eval++;
  14940. } else if (ctx->n_queued_tokens > 1) {
  14941. ctx->t_p_eval_us += ggml_time_us() - ctx->t_compute_start_us;
  14942. ctx->n_p_eval += ctx->n_queued_tokens;
  14943. }
  14944. // get a more accurate load time, upon first eval
  14945. if (ctx->n_queued_tokens > 0 && !ctx->has_evaluated_once) {
  14946. ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
  14947. ctx->has_evaluated_once = true;
  14948. }
  14949. ctx->n_queued_tokens = 0;
  14950. ctx->t_compute_start_us = 0;
  14951. }
  14952. float * llama_get_logits(struct llama_context * ctx) {
  14953. llama_synchronize(ctx);
  14954. return ctx->logits;
  14955. }
  14956. float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
  14957. int32_t j = -1;
  14958. llama_synchronize(ctx);
  14959. try {
  14960. if (ctx->logits == nullptr) {
  14961. throw std::runtime_error("no logits");
  14962. }
  14963. if (i < 0) {
  14964. j = ctx->n_outputs + i;
  14965. if (j < 0) {
  14966. throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
  14967. }
  14968. } else if ((size_t) i >= ctx->output_ids.size()) {
  14969. throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
  14970. } else {
  14971. j = ctx->output_ids[i];
  14972. }
  14973. if (j < 0) {
  14974. throw std::runtime_error(format("batch.logits[%d] != true", i));
  14975. }
  14976. if (j >= ctx->n_outputs) {
  14977. // This should not happen
  14978. throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
  14979. }
  14980. return ctx->logits + j*ctx->model.hparams.n_vocab;
  14981. } catch (const std::exception & err) {
  14982. LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what());
  14983. #ifndef NDEBUG
  14984. GGML_ASSERT(false);
  14985. #endif
  14986. return nullptr;
  14987. }
  14988. }
  14989. float * llama_get_embeddings(struct llama_context * ctx) {
  14990. llama_synchronize(ctx);
  14991. return ctx->embd;
  14992. }
  14993. float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i) {
  14994. int32_t j = -1;
  14995. llama_synchronize(ctx);
  14996. try {
  14997. if (ctx->embd == nullptr) {
  14998. throw std::runtime_error("no embeddings");
  14999. }
  15000. if (i < 0) {
  15001. j = ctx->n_outputs + i;
  15002. if (j < 0) {
  15003. throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
  15004. }
  15005. } else if ((size_t) i >= ctx->output_ids.size()) {
  15006. throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
  15007. } else {
  15008. j = ctx->output_ids[i];
  15009. }
  15010. if (j < 0) {
  15011. throw std::runtime_error(format("batch.logits[%d] != true", i));
  15012. }
  15013. if (j >= ctx->n_outputs) {
  15014. // This should not happen
  15015. throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
  15016. }
  15017. return ctx->embd + j*ctx->model.hparams.n_embd;
  15018. } catch (const std::exception & err) {
  15019. LLAMA_LOG_ERROR("%s: invalid embeddings id %d, reason: %s\n", __func__, i, err.what());
  15020. #ifndef NDEBUG
  15021. GGML_ASSERT(false);
  15022. #endif
  15023. return nullptr;
  15024. }
  15025. }
  15026. float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id) {
  15027. llama_synchronize(ctx);
  15028. auto it = ctx->embd_seq.find(seq_id);
  15029. if (it == ctx->embd_seq.end()) {
  15030. return nullptr;
  15031. }
  15032. return it->second.data();
  15033. }
  15034. const char * llama_token_get_text(const struct llama_model * model, llama_token token) {
  15035. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  15036. return model->vocab.id_to_token[token].text.c_str();
  15037. }
  15038. float llama_token_get_score(const struct llama_model * model, llama_token token) {
  15039. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  15040. return model->vocab.id_to_token[token].score;
  15041. }
  15042. llama_token_attr llama_token_get_attr(const struct llama_model * model, llama_token token) {
  15043. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  15044. return model->vocab.id_to_token[token].attr;
  15045. }
  15046. bool llama_token_is_eog(const struct llama_model * model, llama_token token) {
  15047. return token != -1 && (
  15048. token == llama_token_eos(model) ||
  15049. token == llama_token_eot(model)
  15050. );
  15051. }
  15052. bool llama_token_is_control(const struct llama_model * model, llama_token token) {
  15053. return llama_is_control_token(model->vocab, token);
  15054. }
  15055. llama_token llama_token_bos(const struct llama_model * model) {
  15056. return model->vocab.special_bos_id;
  15057. }
  15058. llama_token llama_token_eos(const struct llama_model * model) {
  15059. return model->vocab.special_eos_id;
  15060. }
  15061. llama_token llama_token_cls(const struct llama_model * model) {
  15062. return model->vocab.special_cls_id;
  15063. }
  15064. llama_token llama_token_sep(const struct llama_model * model) {
  15065. return model->vocab.special_sep_id;
  15066. }
  15067. llama_token llama_token_nl(const struct llama_model * model) {
  15068. return model->vocab.linefeed_id;
  15069. }
  15070. int32_t llama_add_bos_token(const struct llama_model * model) {
  15071. return model->vocab.special_add_bos;
  15072. }
  15073. int32_t llama_add_eos_token(const struct llama_model * model) {
  15074. return model->vocab.special_add_eos;
  15075. }
  15076. llama_token llama_token_prefix(const struct llama_model * model) {
  15077. return model->vocab.special_prefix_id;
  15078. }
  15079. llama_token llama_token_middle(const struct llama_model * model) {
  15080. return model->vocab.special_middle_id;
  15081. }
  15082. llama_token llama_token_suffix(const struct llama_model * model) {
  15083. return model->vocab.special_suffix_id;
  15084. }
  15085. llama_token llama_token_eot(const struct llama_model * model) {
  15086. return model->vocab.special_eot_id;
  15087. }
  15088. int32_t llama_tokenize(
  15089. const struct llama_model * model,
  15090. const char * text,
  15091. int32_t text_len,
  15092. llama_token * tokens,
  15093. int32_t n_tokens_max,
  15094. bool add_special,
  15095. bool parse_special) {
  15096. auto res = llama_tokenize_internal(model->vocab, std::string(text, text_len), add_special, parse_special);
  15097. if (n_tokens_max < (int) res.size()) {
  15098. // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
  15099. return -((int) res.size());
  15100. }
  15101. for (size_t i = 0; i < res.size(); i++) {
  15102. tokens[i] = res[i];
  15103. }
  15104. return res.size();
  15105. }
  15106. static std::string llama_decode_text(const std::string & text) {
  15107. std::string decoded_text;
  15108. const auto cpts = unicode_cpts_from_utf8(text);
  15109. for (const auto cpt : cpts) {
  15110. const auto utf8 = unicode_cpt_to_utf8(cpt);
  15111. try {
  15112. decoded_text += unicode_utf8_to_byte(utf8);
  15113. } catch (const std::out_of_range & e) {
  15114. decoded_text += "[UNK_BYTE_0x";
  15115. for (const auto c : utf8) {
  15116. decoded_text += format("%02x", (uint8_t) c);
  15117. }
  15118. decoded_text += text + "]";
  15119. }
  15120. }
  15121. return decoded_text;
  15122. }
  15123. // does not write null-terminator to buf
  15124. int32_t llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int32_t length, bool special) {
  15125. // ref: https://github.com/ggerganov/llama.cpp/pull/7587#discussion_r1620983843
  15126. if (!special && llama_is_control_token(model->vocab, token)) {
  15127. return 0;
  15128. }
  15129. // if we have a cache - use it
  15130. {
  15131. const auto & cache = model->vocab.cache_token_to_piece;
  15132. if (!cache.empty()) {
  15133. const auto & res = cache.at(token);
  15134. if (length < (int) res.size()) {
  15135. return -(int) res.size();
  15136. }
  15137. memcpy(buf, res.c_str(), res.size());
  15138. return res.size();
  15139. }
  15140. }
  15141. if (0 <= token && token < llama_n_vocab(model)) {
  15142. switch (llama_vocab_get_type(model->vocab)) {
  15143. case LLAMA_VOCAB_TYPE_WPM:
  15144. case LLAMA_VOCAB_TYPE_SPM: {
  15145. // NOTE: we accept all unsupported token types,
  15146. // suppressing them like CONTROL tokens.
  15147. if (llama_is_normal_token(model->vocab, token)) {
  15148. std::string result = model->vocab.id_to_token[token].text;
  15149. llama_unescape_whitespace(result);
  15150. if (length < (int) result.length()) {
  15151. return -(int) result.length();
  15152. }
  15153. memcpy(buf, result.c_str(), result.length());
  15154. return result.length();
  15155. } else if (
  15156. (llama_is_user_defined_token(model->vocab, token)) ||
  15157. (llama_is_control_token (model->vocab, token) && special)) {
  15158. std::string result = model->vocab.id_to_token[token].text;
  15159. if (length < (int) result.length()) {
  15160. return -(int) result.length();
  15161. }
  15162. memcpy(buf, result.c_str(), result.length());
  15163. return result.length();
  15164. } else if (llama_is_unknown_token(model->vocab, token)) { // NOLINT
  15165. if (length < 3) {
  15166. return -3;
  15167. }
  15168. memcpy(buf, "\xe2\x96\x85", 3);
  15169. return 3;
  15170. } else if (llama_is_byte_token(model->vocab, token)) {
  15171. if (length < 1) {
  15172. return -1;
  15173. }
  15174. buf[0] = llama_token_to_byte(model->vocab, token);
  15175. return 1;
  15176. }
  15177. break;
  15178. }
  15179. case LLAMA_VOCAB_TYPE_BPE: {
  15180. // NOTE: we accept all unsupported token types,
  15181. // suppressing them like CONTROL tokens.
  15182. if (llama_is_normal_token(model->vocab, token)) {
  15183. std::string result = model->vocab.id_to_token[token].text;
  15184. result = llama_decode_text(result);
  15185. if (length < (int) result.length()) {
  15186. return -(int) result.length();
  15187. }
  15188. memcpy(buf, result.c_str(), result.length());
  15189. return result.length();
  15190. } else if (
  15191. (llama_is_user_defined_token(model->vocab, token)) ||
  15192. (llama_is_control_token (model->vocab, token) && special)) {
  15193. std::string result = model->vocab.id_to_token[token].text;
  15194. if (length < (int) result.length()) {
  15195. return -(int) result.length();
  15196. }
  15197. memcpy(buf, result.c_str(), result.length());
  15198. return result.length();
  15199. }
  15200. break;
  15201. }
  15202. default:
  15203. GGML_ASSERT(false);
  15204. }
  15205. }
  15206. return 0;
  15207. }
  15208. // trim whitespace from the beginning and end of a string
  15209. static std::string trim(const std::string & str) {
  15210. size_t start = 0;
  15211. size_t end = str.size();
  15212. while (start < end && isspace(str[start])) {
  15213. start += 1;
  15214. }
  15215. while (end > start && isspace(str[end - 1])) {
  15216. end -= 1;
  15217. }
  15218. return str.substr(start, end - start);
  15219. }
  15220. // Simple version of "llama_apply_chat_template" that only works with strings
  15221. // This function uses heuristic checks to determine commonly used template. It is not a jinja parser.
  15222. static int32_t llama_chat_apply_template_internal(
  15223. const std::string & tmpl,
  15224. const std::vector<const llama_chat_message *> & chat,
  15225. std::string & dest, bool add_ass) {
  15226. // Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527
  15227. std::stringstream ss;
  15228. if (tmpl == "chatml" || tmpl.find("<|im_start|>") != std::string::npos) {
  15229. // chatml template
  15230. for (auto message : chat) {
  15231. ss << "<|im_start|>" << message->role << "\n" << message->content << "<|im_end|>\n";
  15232. }
  15233. if (add_ass) {
  15234. ss << "<|im_start|>assistant\n";
  15235. }
  15236. } else if (tmpl == "llama2" || tmpl.find("[INST]") != std::string::npos) {
  15237. // llama2 template and its variants
  15238. // [variant] support system message
  15239. bool support_system_message = tmpl.find("<<SYS>>") != std::string::npos;
  15240. // [variant] space before + after response
  15241. bool space_around_response = tmpl.find("' ' + eos_token") != std::string::npos;
  15242. // [variant] add BOS inside history
  15243. bool add_bos_inside_history = tmpl.find("bos_token + '[INST]") != std::string::npos;
  15244. // [variant] trim spaces from the input message
  15245. bool strip_message = tmpl.find("content.strip()") != std::string::npos;
  15246. // construct the prompt
  15247. bool is_inside_turn = true; // skip BOS at the beginning
  15248. ss << "[INST] ";
  15249. for (auto message : chat) {
  15250. std::string content = strip_message ? trim(message->content) : message->content;
  15251. std::string role(message->role);
  15252. if (!is_inside_turn) {
  15253. is_inside_turn = true;
  15254. ss << (add_bos_inside_history ? "<s>[INST] " : "[INST] ");
  15255. }
  15256. if (role == "system") {
  15257. if (support_system_message) {
  15258. ss << "<<SYS>>\n" << content << "\n<</SYS>>\n\n";
  15259. } else {
  15260. // if the model does not support system message, we still include it in the first message, but without <<SYS>>
  15261. ss << content << "\n";
  15262. }
  15263. } else if (role == "user") {
  15264. ss << content << " [/INST]";
  15265. } else {
  15266. ss << (space_around_response ? " " : "") << content << (space_around_response ? " " : "") << "</s>";
  15267. is_inside_turn = false;
  15268. }
  15269. }
  15270. // llama2 templates seem to not care about "add_generation_prompt"
  15271. } else if (tmpl == "phi3" || (tmpl.find("<|assistant|>") != std::string::npos && tmpl.find("<|end|>") != std::string::npos)) {
  15272. // Phi 3
  15273. for (auto message : chat) {
  15274. std::string role(message->role);
  15275. ss << "<|" << role << "|>\n" << message->content << "<|end|>\n";
  15276. }
  15277. if (add_ass) {
  15278. ss << "<|assistant|>\n";
  15279. }
  15280. } else if (tmpl == "zephyr" || tmpl.find("<|user|>") != std::string::npos) {
  15281. // zephyr template
  15282. for (auto message : chat) {
  15283. ss << "<|" << message->role << "|>" << "\n" << message->content << "<|endoftext|>\n";
  15284. }
  15285. if (add_ass) {
  15286. ss << "<|assistant|>\n";
  15287. }
  15288. } else if (tmpl == "monarch" || tmpl.find("bos_token + message['role']") != std::string::npos) {
  15289. // mlabonne/AlphaMonarch-7B template (the <s> is included inside history)
  15290. for (auto message : chat) {
  15291. std::string bos = (message == chat.front()) ? "" : "<s>"; // skip BOS for first message
  15292. ss << bos << message->role << "\n" << message->content << "</s>\n";
  15293. }
  15294. if (add_ass) {
  15295. ss << "<s>assistant\n";
  15296. }
  15297. } else if (tmpl == "gemma" || tmpl.find("<start_of_turn>") != std::string::npos) {
  15298. // google/gemma-7b-it
  15299. std::string system_prompt = "";
  15300. for (auto message : chat) {
  15301. std::string role(message->role);
  15302. if (role == "system") {
  15303. // there is no system message for gemma, but we will merge it with user prompt, so nothing is broken
  15304. system_prompt = trim(message->content);
  15305. continue;
  15306. }
  15307. // in gemma, "assistant" is "model"
  15308. role = role == "assistant" ? "model" : message->role;
  15309. ss << "<start_of_turn>" << role << "\n";
  15310. if (!system_prompt.empty() && role != "model") {
  15311. ss << system_prompt << "\n\n";
  15312. system_prompt = "";
  15313. }
  15314. ss << trim(message->content) << "<end_of_turn>\n";
  15315. }
  15316. if (add_ass) {
  15317. ss << "<start_of_turn>model\n";
  15318. }
  15319. } else if (tmpl == "orion" || tmpl.find("'\\n\\nAssistant: ' + eos_token") != std::string::npos) {
  15320. // OrionStarAI/Orion-14B-Chat
  15321. std::string system_prompt = "";
  15322. for (auto message : chat) {
  15323. std::string role(message->role);
  15324. if (role == "system") {
  15325. // there is no system message support, we will merge it with user prompt
  15326. system_prompt = message->content;
  15327. continue;
  15328. } else if (role == "user") {
  15329. ss << "Human: ";
  15330. if (!system_prompt.empty()) {
  15331. ss << system_prompt << "\n\n";
  15332. system_prompt = "";
  15333. }
  15334. ss << message->content << "\n\nAssistant: </s>";
  15335. } else {
  15336. ss << message->content << "</s>";
  15337. }
  15338. }
  15339. } else if (tmpl == "openchat" || tmpl.find("GPT4 Correct ") != std::string::npos) {
  15340. // openchat/openchat-3.5-0106,
  15341. for (auto message : chat) {
  15342. std::string role(message->role);
  15343. if (role == "system") {
  15344. ss << message->content << "<|end_of_turn|>";
  15345. } else {
  15346. role[0] = toupper(role[0]);
  15347. ss << "GPT4 Correct " << role << ": " << message->content << "<|end_of_turn|>";
  15348. }
  15349. }
  15350. if (add_ass) {
  15351. ss << "GPT4 Correct Assistant:";
  15352. }
  15353. } else if (tmpl == "vicuna" || tmpl == "vicuna-orca" || (tmpl.find("USER: ") != std::string::npos && tmpl.find("ASSISTANT: ") != std::string::npos)) {
  15354. // eachadea/vicuna-13b-1.1 (and Orca variant)
  15355. for (auto message : chat) {
  15356. std::string role(message->role);
  15357. if (role == "system") {
  15358. // Orca-Vicuna variant uses a system prefix
  15359. if (tmpl == "vicuna-orca" || tmpl.find("SYSTEM: ") != std::string::npos) {
  15360. ss << "SYSTEM: " << message->content << "\n";
  15361. } else {
  15362. ss << message->content << "\n\n";
  15363. }
  15364. } else if (role == "user") {
  15365. ss << "USER: " << message->content << "\n";
  15366. } else if (role == "assistant") {
  15367. ss << "ASSISTANT: " << message->content << "</s>\n";
  15368. }
  15369. }
  15370. if (add_ass) {
  15371. ss << "ASSISTANT:";
  15372. }
  15373. } else if (tmpl == "deepseek" || (tmpl.find("### Instruction:") != std::string::npos && tmpl.find("<|EOT|>") != std::string::npos)) {
  15374. // deepseek-ai/deepseek-coder-33b-instruct
  15375. for (auto message : chat) {
  15376. std::string role(message->role);
  15377. if (role == "system") {
  15378. ss << message->content;
  15379. } else if (role == "user") {
  15380. ss << "### Instruction:\n" << message->content << "\n";
  15381. } else if (role == "assistant") {
  15382. ss << "### Response:\n" << message->content << "\n<|EOT|>\n";
  15383. }
  15384. }
  15385. if (add_ass) {
  15386. ss << "### Response:\n";
  15387. }
  15388. } else if (tmpl == "command-r" || (tmpl.find("<|START_OF_TURN_TOKEN|>") != std::string::npos && tmpl.find("<|USER_TOKEN|>") != std::string::npos)) {
  15389. // CohereForAI/c4ai-command-r-plus
  15390. for (auto message : chat) {
  15391. std::string role(message->role);
  15392. if (role == "system") {
  15393. ss << "<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  15394. } else if (role == "user") {
  15395. ss << "<|START_OF_TURN_TOKEN|><|USER_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  15396. } else if (role == "assistant") {
  15397. ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  15398. }
  15399. }
  15400. if (add_ass) {
  15401. ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>";
  15402. }
  15403. } else if (tmpl == "llama3" || (tmpl.find("<|start_header_id|>") != std::string::npos && tmpl.find("<|end_header_id|>") != std::string::npos)) {
  15404. // Llama 3
  15405. for (auto message : chat) {
  15406. std::string role(message->role);
  15407. ss << "<|start_header_id|>" << role << "<|end_header_id|>\n\n" << trim(message->content) << "<|eot_id|>";
  15408. }
  15409. if (add_ass) {
  15410. ss << "<|start_header_id|>assistant<|end_header_id|>\n\n";
  15411. }
  15412. } else {
  15413. // template not supported
  15414. return -1;
  15415. }
  15416. dest = ss.str();
  15417. return dest.size();
  15418. }
  15419. LLAMA_API int32_t llama_chat_apply_template(
  15420. const struct llama_model * model,
  15421. const char * tmpl,
  15422. const struct llama_chat_message * chat,
  15423. size_t n_msg,
  15424. bool add_ass,
  15425. char * buf,
  15426. int32_t length) {
  15427. std::string curr_tmpl(tmpl == nullptr ? "" : tmpl);
  15428. if (tmpl == nullptr) {
  15429. GGML_ASSERT(model != nullptr);
  15430. // load template from model
  15431. std::vector<char> model_template(2048, 0); // longest known template is about 1200 bytes
  15432. std::string template_key = "tokenizer.chat_template";
  15433. int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
  15434. if (res < 0) {
  15435. // worst case: there is no information about template, we will use chatml by default
  15436. curr_tmpl = "chatml"; // see llama_chat_apply_template_internal
  15437. } else {
  15438. curr_tmpl = std::string(model_template.data(), model_template.size());
  15439. }
  15440. }
  15441. // format the chat to string
  15442. std::vector<const llama_chat_message *> chat_vec;
  15443. chat_vec.resize(n_msg);
  15444. for (size_t i = 0; i < n_msg; i++) {
  15445. chat_vec[i] = &chat[i];
  15446. }
  15447. std::string formatted_chat;
  15448. int32_t res = llama_chat_apply_template_internal(curr_tmpl, chat_vec, formatted_chat, add_ass);
  15449. if (res < 0) {
  15450. return res;
  15451. }
  15452. if (buf && length > 0) {
  15453. strncpy(buf, formatted_chat.c_str(), length);
  15454. }
  15455. return res;
  15456. }
  15457. LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count) {
  15458. static const char * const SPLIT_PATH_FORMAT = "%s-%05d-of-%05d.gguf";
  15459. if (snprintf(split_path, maxlen, SPLIT_PATH_FORMAT, path_prefix, split_no + 1, split_count)) {
  15460. return strlen(split_path);
  15461. }
  15462. return 0;
  15463. }
  15464. int llama_split_prefix(char * dest, size_t maxlen, const char * split_path, int split_no, int split_count) {
  15465. std::string str_split_path(split_path);
  15466. char postfix[32];
  15467. snprintf(postfix, 32, "-%05d-of-%05d.gguf", split_no + 1, split_count);
  15468. std::string str_postfix(postfix);
  15469. // check if dest ends with postfix
  15470. int size_prefix = str_split_path.size() - str_postfix.size();
  15471. if (size_prefix > 0 && str_split_path.find(str_postfix, size_prefix) != std::string::npos) {
  15472. snprintf(dest, std::min((size_t) size_prefix + 1, maxlen), "%s", split_path);
  15473. return size_prefix;
  15474. }
  15475. return 0;
  15476. }
  15477. struct llama_timings llama_get_timings(struct llama_context * ctx) {
  15478. struct llama_timings result = {
  15479. /*.t_start_ms =*/ 1e-3 * ctx->t_start_us,
  15480. /*.t_end_ms =*/ 1.00 * ggml_time_ms(),
  15481. /*.t_load_ms =*/ 1e-3 * ctx->t_load_us,
  15482. /*.t_sample_ms =*/ 1e-3 * ctx->t_sample_us,
  15483. /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us,
  15484. /*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us,
  15485. /*.n_sample =*/ std::max(1, ctx->n_sample),
  15486. /*.n_p_eval =*/ std::max(0, ctx->n_p_eval),
  15487. /*.n_eval =*/ std::max(1, ctx->n_eval),
  15488. };
  15489. return result;
  15490. }
  15491. void llama_print_timings(struct llama_context * ctx) {
  15492. const llama_timings timings = llama_get_timings(ctx);
  15493. LLAMA_LOG_INFO("\n");
  15494. LLAMA_LOG_INFO("%s: load time = %10.2f ms\n", __func__, timings.t_load_ms);
  15495. LLAMA_LOG_INFO("%s: sample time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  15496. __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
  15497. LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
  15498. __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
  15499. LLAMA_LOG_INFO("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  15500. __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
  15501. LLAMA_LOG_INFO("%s: total time = %10.2f ms / %5d tokens\n", __func__, (timings.t_end_ms - timings.t_start_ms), (timings.n_p_eval + timings.n_eval));
  15502. }
  15503. void llama_reset_timings(struct llama_context * ctx) {
  15504. ctx->t_start_us = ggml_time_us();
  15505. ctx->t_sample_us = ctx->n_sample = 0;
  15506. ctx->t_eval_us = ctx->n_eval = 0;
  15507. ctx->t_p_eval_us = ctx->n_p_eval = 0;
  15508. }
  15509. const char * llama_print_system_info(void) {
  15510. static std::string s;
  15511. s = "";
  15512. s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
  15513. s += "AVX_VNNI = " + std::to_string(ggml_cpu_has_avx_vnni()) + " | ";
  15514. s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
  15515. s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
  15516. s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
  15517. s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
  15518. s += "AVX512_BF16 = " + std::to_string(ggml_cpu_has_avx512_bf16()) + " | ";
  15519. s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
  15520. s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
  15521. s += "SVE = " + std::to_string(ggml_cpu_has_sve()) + " | ";
  15522. s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
  15523. s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
  15524. s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
  15525. s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
  15526. s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
  15527. s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
  15528. s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
  15529. s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
  15530. s += "MATMUL_INT8 = " + std::to_string(ggml_cpu_has_matmul_int8()) + " | ";
  15531. #ifdef GGML_USE_LLAMAFILE
  15532. s += "LLAMAFILE = 1 | ";
  15533. #else
  15534. s += "LLAMAFILE = 0 | ";
  15535. #endif
  15536. return s.c_str();
  15537. }
  15538. void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) {
  15539. fprintf(stream, "\n");
  15540. fprintf(stream, "###########\n");
  15541. fprintf(stream, "# Timings #\n");
  15542. fprintf(stream, "###########\n");
  15543. fprintf(stream, "\n");
  15544. fprintf(stream, "mst_eval: %.2f # ms / token during generation\n",
  15545. 1.0e-3 * ctx->t_eval_us / ctx->n_eval);
  15546. fprintf(stream, "mst_p_eval: %.2f # ms / token during prompt processing\n",
  15547. 1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval);
  15548. fprintf(stream, "mst_sample: %.2f # ms / token during sampling\n",
  15549. 1.0e-3 * ctx->t_sample_us / ctx->n_sample);
  15550. fprintf(stream, "n_eval: %d # number of tokens generated (excluding the first one)\n", ctx->n_eval);
  15551. fprintf(stream, "n_p_eval: %d # number of tokens processed in batches at the beginning\n", ctx->n_p_eval);
  15552. fprintf(stream, "n_sample: %d # number of sampled tokens\n", ctx->n_sample);
  15553. fprintf(stream, "t_eval_us: %" PRId64 " # total microseconds spent generating tokens\n", ctx->t_eval_us);
  15554. fprintf(stream, "t_load_us: %" PRId64 " # total microseconds spent loading the model\n", ctx->t_load_us);
  15555. fprintf(stream, "t_p_eval_us: %" PRId64 " # total microseconds spent prompt processing\n", ctx->t_p_eval_us);
  15556. fprintf(stream, "t_sample_us: %" PRId64 " # total microseconds spent sampling\n", ctx->t_sample_us);
  15557. fprintf(stream, "ts_eval: %.2f # tokens / second during generation\n",
  15558. 1.0e6 * ctx->n_eval / ctx->t_eval_us);
  15559. fprintf(stream, "ts_p_eval: %.2f # tokens / second during prompt processing\n",
  15560. 1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us);
  15561. fprintf(stream, "ts_sample: %.2f # tokens / second during sampling\n",
  15562. 1.0e6 * ctx->n_sample / ctx->t_sample_us);
  15563. }
  15564. // For internal test use
  15565. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  15566. struct llama_context * ctx
  15567. ) {
  15568. return ctx->model.tensors_by_name;
  15569. }
  15570. void llama_log_set(ggml_log_callback log_callback, void * user_data) {
  15571. g_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
  15572. g_state.log_callback_user_data = user_data;
  15573. #ifdef GGML_USE_METAL
  15574. ggml_backend_metal_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
  15575. #elif defined(GGML_USE_CUDA)
  15576. ggml_backend_cuda_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
  15577. #endif
  15578. }
  15579. static void llama_log_internal_v(ggml_log_level level, const char * format, va_list args) {
  15580. va_list args_copy;
  15581. va_copy(args_copy, args);
  15582. char buffer[128];
  15583. int len = vsnprintf(buffer, 128, format, args);
  15584. if (len < 128) {
  15585. g_state.log_callback(level, buffer, g_state.log_callback_user_data);
  15586. } else {
  15587. char* buffer2 = new char[len+1];
  15588. vsnprintf(buffer2, len+1, format, args_copy);
  15589. buffer2[len] = 0;
  15590. g_state.log_callback(level, buffer2, g_state.log_callback_user_data);
  15591. delete[] buffer2;
  15592. }
  15593. va_end(args_copy);
  15594. }
  15595. static void llama_log_internal(ggml_log_level level, const char * format, ...) {
  15596. va_list args;
  15597. va_start(args, format);
  15598. llama_log_internal_v(level, format, args);
  15599. va_end(args);
  15600. }
  15601. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
  15602. (void) level;
  15603. (void) user_data;
  15604. fputs(text, stderr);
  15605. fflush(stderr);
  15606. }