ggml-rpc.cpp 76 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111
  1. #include "ggml-rpc.h"
  2. #include "ggml-impl.h"
  3. #include "ggml-backend-impl.h"
  4. #include "ggml-cpp.h"
  5. #include <cinttypes>
  6. #include <string>
  7. #include <vector>
  8. #include <memory>
  9. #include <mutex>
  10. #include <unordered_map>
  11. #include <unordered_set>
  12. #ifdef _WIN32
  13. # define WIN32_LEAN_AND_MEAN
  14. # ifndef NOMINMAX
  15. # define NOMINMAX
  16. # endif
  17. # include <windows.h>
  18. # include <winsock2.h>
  19. #else
  20. # include <arpa/inet.h>
  21. # include <sys/socket.h>
  22. # include <sys/types.h>
  23. # include <netinet/in.h>
  24. # include <netinet/tcp.h>
  25. # include <netdb.h>
  26. # include <unistd.h>
  27. #endif
  28. #include <cstring>
  29. #include <fstream>
  30. #include <filesystem>
  31. #include <algorithm>
  32. static const char * RPC_DEBUG = std::getenv("GGML_RPC_DEBUG");
  33. #define LOG_DBG(...) \
  34. do { if (RPC_DEBUG) GGML_LOG_DEBUG(__VA_ARGS__); } while (0)
  35. namespace fs = std::filesystem;
  36. static constexpr size_t MAX_CHUNK_SIZE = 1024ull * 1024ull * 1024ull; // 1 GiB
  37. #ifdef _WIN32
  38. typedef SOCKET sockfd_t;
  39. using ssize_t = __int64;
  40. #else
  41. typedef int sockfd_t;
  42. #endif
  43. // cross-platform socket
  44. struct socket_t {
  45. sockfd_t fd;
  46. socket_t(sockfd_t fd) : fd(fd) {}
  47. ~socket_t() {
  48. LOG_DBG("[%s] closing socket %d\n", __func__, this->fd);
  49. #ifdef _WIN32
  50. closesocket(this->fd);
  51. #else
  52. close(this->fd);
  53. #endif
  54. }
  55. };
  56. // macro for nicer error messages on server crash
  57. #define RPC_STATUS_ASSERT(x) if (!(x)) GGML_ABORT("Remote RPC server crashed or returned malformed response")
  58. // all RPC structures must be packed
  59. #pragma pack(push, 1)
  60. // ggml_tensor is serialized into rpc_tensor
  61. struct rpc_tensor {
  62. uint64_t id;
  63. uint32_t type;
  64. uint64_t buffer;
  65. uint32_t ne[GGML_MAX_DIMS];
  66. uint32_t nb[GGML_MAX_DIMS];
  67. uint32_t op;
  68. int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
  69. int32_t flags;
  70. uint64_t src[GGML_MAX_SRC];
  71. uint64_t view_src;
  72. uint64_t view_offs;
  73. uint64_t data;
  74. char name[GGML_MAX_NAME];
  75. char padding[4];
  76. };
  77. static_assert(sizeof(rpc_tensor) % 8 == 0, "rpc_tensor size must be multiple of 8");
  78. // RPC commands
  79. enum rpc_cmd {
  80. RPC_CMD_ALLOC_BUFFER = 0,
  81. RPC_CMD_GET_ALIGNMENT,
  82. RPC_CMD_GET_MAX_SIZE,
  83. RPC_CMD_BUFFER_GET_BASE,
  84. RPC_CMD_FREE_BUFFER,
  85. RPC_CMD_BUFFER_CLEAR,
  86. RPC_CMD_SET_TENSOR,
  87. RPC_CMD_SET_TENSOR_HASH,
  88. RPC_CMD_GET_TENSOR,
  89. RPC_CMD_COPY_TENSOR,
  90. RPC_CMD_GRAPH_COMPUTE,
  91. RPC_CMD_GET_DEVICE_MEMORY,
  92. RPC_CMD_INIT_TENSOR,
  93. RPC_CMD_GET_ALLOC_SIZE,
  94. RPC_CMD_HELLO,
  95. RPC_CMD_DEVICE_COUNT,
  96. RPC_CMD_GRAPH_RECOMPUTE,
  97. RPC_CMD_COUNT,
  98. };
  99. static_assert(RPC_CMD_HELLO == 14, "RPC_CMD_HELLO must be always 14");
  100. // Try RPC_CMD_SET_TENSOR_HASH first when data size is larger than this threshold
  101. const size_t HASH_THRESHOLD = 10 * 1024 * 1024;
  102. struct rpc_msg_hello_rsp {
  103. uint8_t major;
  104. uint8_t minor;
  105. uint8_t patch;
  106. };
  107. struct rpc_msg_device_count_rsp {
  108. uint32_t device_count;
  109. };
  110. struct rpc_msg_get_alloc_size_req {
  111. uint32_t device;
  112. rpc_tensor tensor;
  113. rpc_tensor srcs[GGML_MAX_SRC];
  114. };
  115. struct rpc_msg_get_alloc_size_rsp {
  116. uint64_t alloc_size;
  117. };
  118. struct rpc_msg_init_tensor_req {
  119. rpc_tensor tensor;
  120. };
  121. struct rpc_msg_alloc_buffer_req {
  122. uint32_t device;
  123. uint64_t size;
  124. };
  125. struct rpc_msg_alloc_buffer_rsp {
  126. uint64_t remote_ptr;
  127. uint64_t remote_size;
  128. };
  129. struct rpc_msg_get_alignment_req {
  130. uint32_t device;
  131. };
  132. struct rpc_msg_get_alignment_rsp {
  133. uint64_t alignment;
  134. };
  135. struct rpc_msg_get_max_size_req {
  136. uint32_t device;
  137. };
  138. struct rpc_msg_get_max_size_rsp {
  139. uint64_t max_size;
  140. };
  141. struct rpc_msg_buffer_get_base_req {
  142. uint64_t remote_ptr;
  143. };
  144. struct rpc_msg_buffer_get_base_rsp {
  145. uint64_t base_ptr;
  146. };
  147. struct rpc_msg_free_buffer_req {
  148. uint64_t remote_ptr;
  149. };
  150. struct rpc_msg_buffer_clear_req {
  151. uint64_t remote_ptr;
  152. uint8_t value;
  153. };
  154. struct rpc_msg_set_tensor_hash_req {
  155. rpc_tensor tensor;
  156. uint64_t offset;
  157. uint64_t hash;
  158. };
  159. struct rpc_msg_set_tensor_hash_rsp {
  160. uint8_t result;
  161. };
  162. struct rpc_msg_get_tensor_req {
  163. rpc_tensor tensor;
  164. uint64_t offset;
  165. uint64_t size;
  166. };
  167. struct rpc_msg_copy_tensor_req {
  168. rpc_tensor src;
  169. rpc_tensor dst;
  170. };
  171. struct rpc_msg_copy_tensor_rsp {
  172. uint8_t result;
  173. };
  174. struct rpc_msg_get_device_memory_req {
  175. uint32_t device;
  176. };
  177. struct rpc_msg_get_device_memory_rsp {
  178. uint64_t free_mem;
  179. uint64_t total_mem;
  180. };
  181. struct rpc_msg_graph_recompute_req {
  182. uint32_t device;
  183. };
  184. #pragma pack(pop)
  185. // RPC data structures
  186. static ggml_guid_t ggml_backend_rpc_guid() {
  187. static ggml_guid guid = {0x99, 0x68, 0x5b, 0x6c, 0xd2, 0x83, 0x3d, 0x24, 0x25, 0x36, 0x72, 0xe1, 0x5b, 0x0e, 0x14, 0x03};
  188. return &guid;
  189. }
  190. struct ggml_backend_rpc_buffer_type_context {
  191. std::string endpoint;
  192. uint32_t device;
  193. std::string name;
  194. size_t alignment;
  195. size_t max_size;
  196. };
  197. struct graph_cache {
  198. bool is_cached(const ggml_cgraph * cgraph) {
  199. if ((int)last_graph.size() != cgraph->n_nodes) {
  200. return false;
  201. }
  202. for (int i = 0; i < cgraph->n_nodes; i++) {
  203. if (memcmp(&last_graph[i], cgraph->nodes[i], sizeof(ggml_tensor)) != 0) {
  204. return false;
  205. }
  206. }
  207. return true;
  208. }
  209. void add(const ggml_cgraph * cgraph) {
  210. last_graph.resize(cgraph->n_nodes);
  211. for (int i = 0; i < cgraph->n_nodes; i++) {
  212. memcpy(&last_graph[i], cgraph->nodes[i], sizeof(ggml_tensor));
  213. }
  214. }
  215. std::vector<ggml_tensor> last_graph;
  216. };
  217. struct ggml_backend_rpc_context {
  218. std::string endpoint;
  219. uint32_t device;
  220. std::string name;
  221. graph_cache gc;
  222. };
  223. struct ggml_backend_rpc_buffer_context {
  224. std::shared_ptr<socket_t> sock;
  225. void * base_ptr;
  226. uint64_t remote_ptr;
  227. };
  228. // RPC helper functions
  229. // Computes FNV-1a hash of the data
  230. static uint64_t fnv_hash(const uint8_t * data, size_t len) {
  231. const uint64_t fnv_prime = 0x100000001b3ULL;
  232. uint64_t hash = 0xcbf29ce484222325ULL;
  233. for (size_t i = 0; i < len; ++i) {
  234. hash ^= data[i];
  235. hash *= fnv_prime;
  236. }
  237. return hash;
  238. }
  239. static std::shared_ptr<socket_t> make_socket(sockfd_t fd) {
  240. #ifdef _WIN32
  241. if (fd == INVALID_SOCKET) {
  242. return nullptr;
  243. }
  244. #else
  245. if (fd < 0) {
  246. return nullptr;
  247. }
  248. #endif
  249. return std::make_shared<socket_t>(fd);
  250. }
  251. static bool set_no_delay(sockfd_t sockfd) {
  252. int flag = 1;
  253. // set TCP_NODELAY to disable Nagle's algorithm
  254. int ret = setsockopt(sockfd, IPPROTO_TCP, TCP_NODELAY, (char *)&flag, sizeof(int));
  255. return ret == 0;
  256. }
  257. static bool set_reuse_addr(sockfd_t sockfd) {
  258. int flag = 1;
  259. int ret = setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, (char *)&flag, sizeof(int));
  260. return ret == 0;
  261. }
  262. static std::shared_ptr<socket_t> socket_connect(const char * host, int port) {
  263. struct sockaddr_in addr;
  264. auto sockfd = socket(AF_INET, SOCK_STREAM, 0);
  265. auto sock_ptr = make_socket(sockfd);
  266. if (sock_ptr == nullptr) {
  267. return nullptr;
  268. }
  269. if (!set_no_delay(sockfd)) {
  270. GGML_LOG_ERROR("Failed to set TCP_NODELAY\n");
  271. return nullptr;
  272. }
  273. addr.sin_family = AF_INET;
  274. addr.sin_port = htons(port);
  275. struct hostent * server = gethostbyname(host);
  276. if (server == NULL) {
  277. GGML_LOG_ERROR("Cannot resolve host '%s'\n", host);
  278. return nullptr;
  279. }
  280. memcpy(&addr.sin_addr.s_addr, server->h_addr, server->h_length);
  281. if (connect(sock_ptr->fd, (struct sockaddr *)&addr, sizeof(addr)) < 0) {
  282. return nullptr;
  283. }
  284. return sock_ptr;
  285. }
  286. static std::shared_ptr<socket_t> socket_accept(sockfd_t srv_sockfd) {
  287. auto client_socket_fd = accept(srv_sockfd, NULL, NULL);
  288. auto client_socket = make_socket(client_socket_fd);
  289. if (client_socket == nullptr) {
  290. return nullptr;
  291. }
  292. if (!set_no_delay(client_socket_fd)) {
  293. GGML_LOG_ERROR("Failed to set TCP_NODELAY\n");
  294. return nullptr;
  295. }
  296. return client_socket;
  297. }
  298. static std::shared_ptr<socket_t> create_server_socket(const char * host, int port) {
  299. auto sockfd = socket(AF_INET, SOCK_STREAM, 0);
  300. auto sock = make_socket(sockfd);
  301. if (sock == nullptr) {
  302. return nullptr;
  303. }
  304. if (!set_reuse_addr(sockfd)) {
  305. GGML_LOG_ERROR("Failed to set SO_REUSEADDR\n");
  306. return nullptr;
  307. }
  308. if (inet_addr(host) == INADDR_NONE) {
  309. GGML_LOG_ERROR("Invalid host address: %s\n", host);
  310. return nullptr;
  311. }
  312. struct sockaddr_in serv_addr;
  313. serv_addr.sin_family = AF_INET;
  314. serv_addr.sin_addr.s_addr = inet_addr(host);
  315. serv_addr.sin_port = htons(port);
  316. if (bind(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0) {
  317. return nullptr;
  318. }
  319. if (listen(sockfd, 1) < 0) {
  320. return nullptr;
  321. }
  322. return sock;
  323. }
  324. static bool send_data(sockfd_t sockfd, const void * data, size_t size) {
  325. size_t bytes_sent = 0;
  326. while (bytes_sent < size) {
  327. size_t size_to_send = std::min(size - bytes_sent, MAX_CHUNK_SIZE);
  328. ssize_t n = send(sockfd, (const char *)data + bytes_sent, size_to_send, 0);
  329. if (n < 0) {
  330. GGML_LOG_ERROR("send failed (bytes_sent=%zu, size_to_send=%zu)\n",
  331. bytes_sent, size_to_send);
  332. return false;
  333. }
  334. bytes_sent += (size_t)n;
  335. }
  336. return true;
  337. }
  338. static bool recv_data(sockfd_t sockfd, void * data, size_t size) {
  339. size_t bytes_recv = 0;
  340. while (bytes_recv < size) {
  341. size_t size_to_recv = std::min(size - bytes_recv, MAX_CHUNK_SIZE);
  342. ssize_t n = recv(sockfd, (char *)data + bytes_recv, size_to_recv, 0);
  343. if (n < 0) {
  344. GGML_LOG_ERROR("recv failed (bytes_recv=%zu, size_to_recv=%zu)\n",
  345. bytes_recv, size_to_recv);
  346. return false;
  347. }
  348. if (n == 0) {
  349. LOG_DBG("recv returned 0 (peer closed?)\n");
  350. return false;
  351. }
  352. bytes_recv += (size_t)n;
  353. }
  354. return true;
  355. }
  356. static bool send_msg(sockfd_t sockfd, const void * msg, size_t msg_size) {
  357. if (!send_data(sockfd, &msg_size, sizeof(msg_size))) {
  358. return false;
  359. }
  360. return send_data(sockfd, msg, msg_size);
  361. }
  362. static bool recv_msg(sockfd_t sockfd, void * msg, size_t msg_size) {
  363. uint64_t size;
  364. if (!recv_data(sockfd, &size, sizeof(size))) {
  365. return false;
  366. }
  367. if (size != msg_size) {
  368. return false;
  369. }
  370. return recv_data(sockfd, msg, msg_size);
  371. }
  372. static bool recv_msg(sockfd_t sockfd, std::vector<uint8_t> & input) {
  373. uint64_t size;
  374. if (!recv_data(sockfd, &size, sizeof(size))) {
  375. return false;
  376. }
  377. try {
  378. input.resize(size);
  379. } catch (const std::bad_alloc & e) {
  380. GGML_LOG_ERROR("Failed to allocate input buffer of size %" PRIu64 "\n", size);
  381. return false;
  382. }
  383. return recv_data(sockfd, input.data(), size);
  384. }
  385. static bool parse_endpoint(const std::string & endpoint, std::string & host, int & port) {
  386. size_t pos = endpoint.find(':');
  387. if (pos == std::string::npos) {
  388. return false;
  389. }
  390. host = endpoint.substr(0, pos);
  391. port = std::stoi(endpoint.substr(pos + 1));
  392. return true;
  393. }
  394. // RPC request : | rpc_cmd (1 byte) | request_size (8 bytes) | request_data (request_size bytes) |
  395. // No response
  396. static bool send_rpc_cmd(const std::shared_ptr<socket_t> & sock, enum rpc_cmd cmd, const void * input, size_t input_size) {
  397. uint8_t cmd_byte = cmd;
  398. if (!send_data(sock->fd, &cmd_byte, sizeof(cmd_byte))) {
  399. return false;
  400. }
  401. if (!send_data(sock->fd, &input_size, sizeof(input_size))) {
  402. return false;
  403. }
  404. if (!send_data(sock->fd, input, input_size)) {
  405. return false;
  406. }
  407. return true;
  408. }
  409. // RPC request : | rpc_cmd (1 byte) | request_size (8 bytes) | request_data (request_size bytes) |
  410. // RPC response: | response_size (8 bytes) | response_data (response_size bytes) |
  411. static bool send_rpc_cmd(const std::shared_ptr<socket_t> & sock, enum rpc_cmd cmd, const void * input, size_t input_size, void * output, size_t output_size) {
  412. if (!send_rpc_cmd(sock, cmd, input, input_size)) {
  413. return false;
  414. }
  415. // TODO: currently the output_size is always known, do we need support for commands with variable output size?
  416. // even if we do, we can skip sending output_size from the server for commands with known output size
  417. uint64_t out_size;
  418. if (!recv_data(sock->fd, &out_size, sizeof(out_size))) {
  419. return false;
  420. }
  421. if (out_size != output_size) {
  422. return false;
  423. }
  424. if (!recv_data(sock->fd, output, output_size)) {
  425. return false;
  426. }
  427. return true;
  428. }
  429. // RPC client-side implementation
  430. static bool check_server_version(const std::shared_ptr<socket_t> & sock) {
  431. rpc_msg_hello_rsp response;
  432. bool status = send_rpc_cmd(sock, RPC_CMD_HELLO, nullptr, 0, &response, sizeof(response));
  433. RPC_STATUS_ASSERT(status);
  434. if (response.major != RPC_PROTO_MAJOR_VERSION || response.minor > RPC_PROTO_MINOR_VERSION) {
  435. GGML_LOG_ERROR("RPC server version mismatch: %d.%d.%d\n", response.major, response.minor, response.patch);
  436. return false;
  437. }
  438. if (response.minor != RPC_PROTO_MINOR_VERSION || response.patch != RPC_PROTO_PATCH_VERSION) {
  439. GGML_LOG_INFO("WARNING: RPC server version mismatch: %d.%d.%d\n", response.major, response.minor, response.patch);
  440. }
  441. return true;
  442. }
  443. static std::shared_ptr<socket_t> get_socket(const std::string & endpoint) {
  444. static std::mutex mutex;
  445. std::lock_guard<std::mutex> lock(mutex);
  446. static std::unordered_map<std::string, std::weak_ptr<socket_t>> sockets;
  447. static bool initialized = false;
  448. auto it = sockets.find(endpoint);
  449. if (it != sockets.end()) {
  450. if (auto sock = it->second.lock()) {
  451. return sock;
  452. }
  453. }
  454. std::string host;
  455. int port;
  456. if (!parse_endpoint(endpoint, host, port)) {
  457. return nullptr;
  458. }
  459. #ifdef _WIN32
  460. if (!initialized) {
  461. WSADATA wsaData;
  462. int res = WSAStartup(MAKEWORD(2, 2), &wsaData);
  463. if (res != 0) {
  464. return nullptr;
  465. }
  466. initialized = true;
  467. }
  468. #else
  469. GGML_UNUSED(initialized);
  470. #endif
  471. auto sock = socket_connect(host.c_str(), port);
  472. if (sock == nullptr) {
  473. return nullptr;
  474. }
  475. if (!check_server_version(sock)) {
  476. return nullptr;
  477. }
  478. LOG_DBG("[%s] connected to %s, sockfd=%d\n", __func__, endpoint.c_str(), sock->fd);
  479. sockets[endpoint] = sock;
  480. return sock;
  481. }
  482. static void ggml_backend_rpc_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  483. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  484. rpc_msg_free_buffer_req request = {ctx->remote_ptr};
  485. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_FREE_BUFFER, &request, sizeof(request), nullptr, 0);
  486. RPC_STATUS_ASSERT(status);
  487. delete ctx;
  488. }
  489. static void * ggml_backend_rpc_buffer_get_base(ggml_backend_buffer_t buffer) {
  490. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  491. if (ctx->base_ptr != nullptr) {
  492. return ctx->base_ptr;
  493. }
  494. rpc_msg_buffer_get_base_req request = {ctx->remote_ptr};
  495. rpc_msg_buffer_get_base_rsp response;
  496. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_BUFFER_GET_BASE, &request, sizeof(request), &response, sizeof(response));
  497. RPC_STATUS_ASSERT(status);
  498. ctx->base_ptr = reinterpret_cast<void *>(response.base_ptr);
  499. return ctx->base_ptr;
  500. }
  501. static rpc_tensor serialize_tensor(const ggml_tensor * tensor) {
  502. rpc_tensor result;
  503. if (!tensor) {
  504. memset(&result, 0, sizeof(result));
  505. return result;
  506. }
  507. result.id = reinterpret_cast<uint64_t>(tensor);
  508. result.type = tensor->type;
  509. if (tensor->buffer) {
  510. ggml_backend_buffer_t buffer = tensor->buffer;
  511. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  512. result.buffer = ctx->remote_ptr;
  513. } else {
  514. result.buffer = 0;
  515. }
  516. for (uint32_t i = 0; i < GGML_MAX_DIMS; i++) {
  517. result.ne[i] = tensor->ne[i];
  518. result.nb[i] = tensor->nb[i];
  519. }
  520. result.op = tensor->op;
  521. for (uint32_t i = 0; i < GGML_MAX_OP_PARAMS / sizeof(int32_t); i++) {
  522. result.op_params[i] = tensor->op_params[i];
  523. }
  524. result.flags = tensor->flags;
  525. for (uint32_t i = 0; i < GGML_MAX_SRC; i++) {
  526. result.src[i] = reinterpret_cast<uint64_t>(tensor->src[i]);
  527. }
  528. result.view_src = reinterpret_cast<uint64_t>(tensor->view_src);
  529. result.view_offs = tensor->view_offs;
  530. result.data = reinterpret_cast<uint64_t>(tensor->data);
  531. // Avoid sending uninitialized data over the wire
  532. memset(result.name, 0, sizeof(result.name));
  533. memset(result.padding, 0, sizeof(result.padding));
  534. snprintf(result.name, GGML_MAX_NAME, "%s", tensor->name);
  535. return result;
  536. }
  537. static enum ggml_status ggml_backend_rpc_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
  538. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  539. // CUDA backend on the server pads everything to 512 due to CUDA limitations.
  540. // Due to bandwidth constraints, we only call the server init tensor functions if necessary.
  541. // In particular, only quantized tensors need padding
  542. if (ggml_is_quantized(tensor->type) && (tensor->ne[0] % 512 != 0) && (tensor->view_src == nullptr)) {
  543. rpc_msg_init_tensor_req request;
  544. request.tensor = serialize_tensor(tensor);
  545. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_INIT_TENSOR, &request, sizeof(request), nullptr, 0);
  546. RPC_STATUS_ASSERT(status);
  547. }
  548. return GGML_STATUS_SUCCESS;
  549. }
  550. static void ggml_backend_rpc_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  551. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  552. rpc_tensor rpc_tensor = serialize_tensor(tensor);
  553. if (size > HASH_THRESHOLD) {
  554. rpc_msg_set_tensor_hash_req request;
  555. request.tensor = rpc_tensor;
  556. request.offset = offset;
  557. request.hash = fnv_hash((const uint8_t*)data, size);
  558. rpc_msg_set_tensor_hash_rsp response;
  559. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_SET_TENSOR_HASH, &request, sizeof(request), &response, sizeof(response));
  560. RPC_STATUS_ASSERT(status);
  561. if (response.result) {
  562. // the server has the same data, no need to send it
  563. return;
  564. }
  565. }
  566. // input serialization format: | rpc_tensor | offset (8 bytes) | data (size bytes)
  567. size_t input_size = sizeof(rpc_tensor) + sizeof(uint64_t) + size;
  568. std::vector<uint8_t> input(input_size, 0);
  569. memcpy(input.data(), &rpc_tensor, sizeof(rpc_tensor));
  570. memcpy(input.data() + sizeof(rpc_tensor), &offset, sizeof(offset));
  571. memcpy(input.data() + sizeof(rpc_tensor) + sizeof(offset), data, size);
  572. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_SET_TENSOR, input.data(), input.size());
  573. RPC_STATUS_ASSERT(status);
  574. }
  575. static void ggml_backend_rpc_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  576. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  577. rpc_msg_get_tensor_req request;
  578. request.tensor = serialize_tensor(tensor);
  579. request.offset = offset;
  580. request.size = size;
  581. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_GET_TENSOR, &request, sizeof(request), data, size);
  582. RPC_STATUS_ASSERT(status);
  583. }
  584. static bool ggml_backend_buffer_is_rpc(ggml_backend_buffer_t buffer) {
  585. return buffer->iface.free_buffer == ggml_backend_rpc_buffer_free_buffer;
  586. }
  587. static bool ggml_backend_rpc_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
  588. if (ggml_backend_buffer_is_rpc(src->buffer)) {
  589. // check if src and dst are on the same server
  590. ggml_backend_buffer_t src_buffer = src->buffer;
  591. ggml_backend_rpc_buffer_context * src_ctx = (ggml_backend_rpc_buffer_context *)src_buffer->context;
  592. ggml_backend_buffer_t dst_buffer = dst->buffer;
  593. ggml_backend_rpc_buffer_context * dst_ctx = (ggml_backend_rpc_buffer_context *)dst_buffer->context;
  594. if (src_ctx->sock != dst_ctx->sock) {
  595. return false;
  596. }
  597. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  598. rpc_msg_copy_tensor_req request;
  599. request.src = serialize_tensor(src);
  600. request.dst = serialize_tensor(dst);
  601. rpc_msg_copy_tensor_rsp response;
  602. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_COPY_TENSOR, &request, sizeof(request), &response, sizeof(response));
  603. RPC_STATUS_ASSERT(status);
  604. return response.result;
  605. }
  606. return false;
  607. }
  608. static void ggml_backend_rpc_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  609. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  610. rpc_msg_buffer_clear_req request = {ctx->remote_ptr, value};
  611. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_BUFFER_CLEAR, &request, sizeof(request), nullptr, 0);
  612. RPC_STATUS_ASSERT(status);
  613. }
  614. static ggml_backend_buffer_i ggml_backend_rpc_buffer_interface = {
  615. /* .free_buffer = */ ggml_backend_rpc_buffer_free_buffer,
  616. /* .get_base = */ ggml_backend_rpc_buffer_get_base,
  617. /* .init_tensor = */ ggml_backend_rpc_buffer_init_tensor,
  618. /* .memset_tensor = */ NULL,
  619. /* .set_tensor = */ ggml_backend_rpc_buffer_set_tensor,
  620. /* .get_tensor = */ ggml_backend_rpc_buffer_get_tensor,
  621. /* .cpy_tensor = */ ggml_backend_rpc_buffer_cpy_tensor,
  622. /* .clear = */ ggml_backend_rpc_buffer_clear,
  623. /* .reset = */ NULL,
  624. };
  625. static const char * ggml_backend_rpc_buffer_type_name(ggml_backend_buffer_type_t buft) {
  626. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
  627. return buft_ctx->name.c_str();
  628. }
  629. static ggml_backend_buffer_t ggml_backend_rpc_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  630. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
  631. rpc_msg_alloc_buffer_req request = {buft_ctx->device, size};
  632. rpc_msg_alloc_buffer_rsp response;
  633. auto sock = get_socket(buft_ctx->endpoint);
  634. bool status = send_rpc_cmd(sock, RPC_CMD_ALLOC_BUFFER, &request, sizeof(request), &response, sizeof(response));
  635. RPC_STATUS_ASSERT(status);
  636. if (response.remote_ptr != 0) {
  637. ggml_backend_buffer_t buffer = ggml_backend_buffer_init(buft,
  638. ggml_backend_rpc_buffer_interface,
  639. new ggml_backend_rpc_buffer_context{sock, nullptr, response.remote_ptr},
  640. response.remote_size);
  641. return buffer;
  642. } else {
  643. return nullptr;
  644. }
  645. }
  646. static size_t get_alignment(const std::shared_ptr<socket_t> & sock, uint32_t device) {
  647. rpc_msg_get_alignment_req request = {device};
  648. rpc_msg_get_alignment_rsp response;
  649. bool status = send_rpc_cmd(sock, RPC_CMD_GET_ALIGNMENT, &request, sizeof(request), &response, sizeof(response));
  650. RPC_STATUS_ASSERT(status);
  651. return response.alignment;
  652. }
  653. static size_t ggml_backend_rpc_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
  654. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
  655. return buft_ctx->alignment;
  656. }
  657. static size_t get_max_size(const std::shared_ptr<socket_t> & sock, uint32_t device) {
  658. rpc_msg_get_max_size_req request = {device};
  659. rpc_msg_get_max_size_rsp response;
  660. bool status = send_rpc_cmd(sock, RPC_CMD_GET_MAX_SIZE, &request, sizeof(request), &response, sizeof(response));
  661. RPC_STATUS_ASSERT(status);
  662. return response.max_size;
  663. }
  664. static size_t ggml_backend_rpc_get_max_size(ggml_backend_buffer_type_t buft) {
  665. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
  666. return buft_ctx->max_size;
  667. }
  668. static size_t ggml_backend_rpc_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
  669. // should we query the remote server for the actual size
  670. bool rpc_get = false;
  671. // See comments in init_tensor.
  672. rpc_get |= ggml_is_quantized(tensor->type) && (tensor->ne[0] % 512 != 0) && (tensor->view_src == nullptr);
  673. // ops that require additional memory for fleeting data on certain backends
  674. // ref: https://github.com/ggml-org/llama.cpp/pull/15966
  675. rpc_get |= tensor->op == GGML_OP_FLASH_ATTN_EXT;
  676. rpc_get |= tensor->op == GGML_OP_MUL_MAT_ID;
  677. if (rpc_get) {
  678. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
  679. auto sock = get_socket(buft_ctx->endpoint);
  680. rpc_msg_get_alloc_size_req request = {
  681. /*.device =*/ buft_ctx->device,
  682. /*.tensor =*/ serialize_tensor(tensor),
  683. /*.srcs =*/ {},
  684. };
  685. // .get_alloc_size could be a function of the tensor's srcs, so we must serialize them as well
  686. for (int i = 0; i < GGML_MAX_SRC; i++) {
  687. request.srcs[i] = serialize_tensor(tensor->src[i]);
  688. }
  689. // TODO: cache the alloc responses to avoid extra RPC calls?
  690. rpc_msg_get_alloc_size_rsp response;
  691. bool status = send_rpc_cmd(sock, RPC_CMD_GET_ALLOC_SIZE, &request, sizeof(request), &response, sizeof(response));
  692. RPC_STATUS_ASSERT(status);
  693. return response.alloc_size;
  694. }
  695. return ggml_nbytes(tensor);
  696. }
  697. static ggml_backend_buffer_type_i ggml_backend_rpc_buffer_type_interface = {
  698. /* .get_name = */ ggml_backend_rpc_buffer_type_name,
  699. /* .alloc_buffer = */ ggml_backend_rpc_buffer_type_alloc_buffer,
  700. /* .get_alignment = */ ggml_backend_rpc_buffer_type_get_alignment,
  701. /* .get_max_size = */ ggml_backend_rpc_get_max_size,
  702. /* .get_alloc_size = */ ggml_backend_rpc_buffer_type_get_alloc_size,
  703. /* .is_host = */ NULL,
  704. };
  705. static const char * ggml_backend_rpc_name(ggml_backend_t backend) {
  706. ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
  707. return rpc_ctx->name.c_str();
  708. }
  709. static void ggml_backend_rpc_free(ggml_backend_t backend) {
  710. ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
  711. delete rpc_ctx;
  712. delete backend;
  713. }
  714. static void ggml_backend_rpc_synchronize(ggml_backend_t backend) {
  715. GGML_UNUSED(backend);
  716. // this is no-op because we don't have any async operations
  717. }
  718. static void add_tensor(ggml_tensor * tensor, std::vector<rpc_tensor> & tensors, std::unordered_set<ggml_tensor*> & visited) {
  719. if (tensor == nullptr) {
  720. return;
  721. }
  722. if (visited.find(tensor) != visited.end()) {
  723. return;
  724. }
  725. visited.insert(tensor);
  726. for (int i = 0; i < GGML_MAX_SRC; i++) {
  727. add_tensor(tensor->src[i], tensors, visited);
  728. }
  729. add_tensor(tensor->view_src, tensors, visited);
  730. tensors.push_back(serialize_tensor(tensor));
  731. }
  732. static void serialize_graph(uint32_t device, const ggml_cgraph * cgraph, std::vector<uint8_t> & output) {
  733. uint32_t n_nodes = cgraph->n_nodes;
  734. std::vector<rpc_tensor> tensors;
  735. std::unordered_set<ggml_tensor*> visited;
  736. for (uint32_t i = 0; i < n_nodes; i++) {
  737. add_tensor(cgraph->nodes[i], tensors, visited);
  738. }
  739. // serialization format:
  740. // | device (4 bytes) | n_nodes (4 bytes) | nodes (n_nodes * sizeof(uint64_t) | n_tensors (4 bytes) | tensors (n_tensors * sizeof(rpc_tensor)) |
  741. uint32_t n_tensors = tensors.size();
  742. int output_size = 2*sizeof(uint32_t) + n_nodes * sizeof(uint64_t) + sizeof(uint32_t) + n_tensors * sizeof(rpc_tensor);
  743. output.resize(output_size, 0);
  744. uint8_t * dest = output.data();
  745. memcpy(dest, &device, sizeof(device));
  746. dest += sizeof(device);
  747. memcpy(dest, &n_nodes, sizeof(n_nodes));
  748. dest += sizeof(n_nodes);
  749. for (uint32_t i = 0; i < n_nodes; i++) {
  750. memcpy(dest + i * sizeof(uint64_t), &cgraph->nodes[i], sizeof(uint64_t));
  751. }
  752. dest += n_nodes * sizeof(uint64_t);
  753. memcpy(dest, &n_tensors, sizeof(n_tensors));
  754. dest += sizeof(n_tensors);
  755. rpc_tensor * out_tensors = (rpc_tensor *)dest;
  756. memcpy(out_tensors, tensors.data(), n_tensors * sizeof(rpc_tensor));
  757. }
  758. static enum ggml_status ggml_backend_rpc_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
  759. ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
  760. GGML_ASSERT(cgraph->n_nodes > 0);
  761. bool reuse = rpc_ctx->gc.is_cached(cgraph);
  762. if (reuse) {
  763. rpc_msg_graph_recompute_req request;
  764. request.device = rpc_ctx->device;
  765. auto sock = get_socket(rpc_ctx->endpoint);
  766. bool status = send_rpc_cmd(sock, RPC_CMD_GRAPH_RECOMPUTE, &request, sizeof(request));
  767. RPC_STATUS_ASSERT(status);
  768. } else {
  769. rpc_ctx->gc.add(cgraph);
  770. std::vector<uint8_t> input;
  771. serialize_graph(rpc_ctx->device, cgraph, input);
  772. auto sock = get_socket(rpc_ctx->endpoint);
  773. bool status = send_rpc_cmd(sock, RPC_CMD_GRAPH_COMPUTE, input.data(), input.size());
  774. RPC_STATUS_ASSERT(status);
  775. }
  776. return GGML_STATUS_SUCCESS;
  777. }
  778. static ggml_backend_i ggml_backend_rpc_interface = {
  779. /* .get_name = */ ggml_backend_rpc_name,
  780. /* .free = */ ggml_backend_rpc_free,
  781. /* .set_tensor_async = */ NULL,
  782. /* .get_tensor_async = */ NULL,
  783. /* .cpy_tensor_async = */ NULL,
  784. /* .synchronize = */ ggml_backend_rpc_synchronize,
  785. /* .graph_plan_create = */ NULL,
  786. /* .graph_plan_free = */ NULL,
  787. /* .graph_plan_update = */ NULL,
  788. /* .graph_plan_compute = */ NULL,
  789. /* .graph_compute = */ ggml_backend_rpc_graph_compute,
  790. /* .event_record = */ NULL,
  791. /* .event_wait = */ NULL,
  792. /* .graph_optimize = */ NULL,
  793. };
  794. ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint, uint32_t device) {
  795. static std::mutex mutex;
  796. std::lock_guard<std::mutex> lock(mutex);
  797. std::string buft_name = "RPC" + std::to_string(device) + "[" + std::string(endpoint) + "]";
  798. // NOTE: buffer types are allocated and never freed; this is by design
  799. static std::unordered_map<std::string, ggml_backend_buffer_type_t> buft_map;
  800. auto it = buft_map.find(buft_name);
  801. if (it != buft_map.end()) {
  802. return it->second;
  803. }
  804. auto sock = get_socket(endpoint);
  805. if (sock == nullptr) {
  806. GGML_LOG_ERROR("Failed to connect to %s\n", endpoint);
  807. return nullptr;
  808. }
  809. size_t alignment = get_alignment(sock, device);
  810. size_t max_size = get_max_size(sock, device);
  811. ggml_backend_rpc_buffer_type_context * buft_ctx = new ggml_backend_rpc_buffer_type_context {
  812. /* .endpoint = */ endpoint,
  813. /* .device = */ device,
  814. /* .name = */ buft_name,
  815. /* .alignment = */ alignment,
  816. /* .max_size = */ max_size
  817. };
  818. auto reg = ggml_backend_rpc_add_server(endpoint);
  819. ggml_backend_buffer_type_t buft = new ggml_backend_buffer_type {
  820. /* .iface = */ ggml_backend_rpc_buffer_type_interface,
  821. /* .device = */ ggml_backend_reg_dev_get(reg, device),
  822. /* .context = */ buft_ctx
  823. };
  824. buft_map[buft_name] = buft;
  825. return buft;
  826. }
  827. ggml_backend_t ggml_backend_rpc_init(const char * endpoint, uint32_t device) {
  828. std::string dev_name = "RPC" + std::to_string(device) + "[" + std::string(endpoint) + "]";
  829. ggml_backend_rpc_context * ctx = new ggml_backend_rpc_context {
  830. /* .endpoint = */ endpoint,
  831. /* .device = */ device,
  832. /* .name = */ dev_name,
  833. /* .gc = */ {},
  834. };
  835. auto reg = ggml_backend_rpc_add_server(endpoint);
  836. ggml_backend_t backend = new ggml_backend {
  837. /* .guid = */ ggml_backend_rpc_guid(),
  838. /* .iface = */ ggml_backend_rpc_interface,
  839. /* .device = */ ggml_backend_reg_dev_get(reg, device),
  840. /* .context = */ ctx
  841. };
  842. return backend;
  843. }
  844. bool ggml_backend_is_rpc(ggml_backend_t backend) {
  845. return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_rpc_guid());
  846. }
  847. static void get_device_memory(const std::shared_ptr<socket_t> & sock, uint32_t device, size_t * free, size_t * total) {
  848. rpc_msg_get_device_memory_req request;
  849. request.device = device;
  850. rpc_msg_get_device_memory_rsp response;
  851. bool status = send_rpc_cmd(sock, RPC_CMD_GET_DEVICE_MEMORY, &request, sizeof(request), &response, sizeof(response));
  852. RPC_STATUS_ASSERT(status);
  853. *free = response.free_mem;
  854. *total = response.total_mem;
  855. }
  856. void ggml_backend_rpc_get_device_memory(const char * endpoint, uint32_t device, size_t * free, size_t * total) {
  857. auto sock = get_socket(endpoint);
  858. if (sock == nullptr) {
  859. *free = 0;
  860. *total = 0;
  861. return;
  862. }
  863. get_device_memory(sock, device, free, total);
  864. }
  865. // RPC server-side implementation
  866. class rpc_server {
  867. public:
  868. rpc_server(std::vector<ggml_backend_t> all_backends, const char * cache_dir)
  869. : backends(std::move(all_backends)), cache_dir(cache_dir) {
  870. stored_graphs.resize(backends.size());
  871. }
  872. ~rpc_server();
  873. void hello(rpc_msg_hello_rsp & response);
  874. bool alloc_buffer(const rpc_msg_alloc_buffer_req & request, rpc_msg_alloc_buffer_rsp & response);
  875. bool get_alignment(const rpc_msg_get_alignment_req & request, rpc_msg_get_alignment_rsp & response);
  876. bool get_max_size(const rpc_msg_get_max_size_req & request, rpc_msg_get_max_size_rsp & response);
  877. bool buffer_get_base(const rpc_msg_buffer_get_base_req & request, rpc_msg_buffer_get_base_rsp & response);
  878. bool free_buffer(const rpc_msg_free_buffer_req & request);
  879. bool buffer_clear(const rpc_msg_buffer_clear_req & request);
  880. bool set_tensor(const std::vector<uint8_t> & input);
  881. bool set_tensor_hash(const rpc_msg_set_tensor_hash_req & request, rpc_msg_set_tensor_hash_rsp & response);
  882. bool get_tensor(const rpc_msg_get_tensor_req & request, std::vector<uint8_t> & response);
  883. bool copy_tensor(const rpc_msg_copy_tensor_req & request, rpc_msg_copy_tensor_rsp & response);
  884. bool graph_compute(const std::vector<uint8_t> & input);
  885. bool graph_recompute(const rpc_msg_graph_recompute_req & request);
  886. bool init_tensor(const rpc_msg_init_tensor_req & request);
  887. bool get_alloc_size(const rpc_msg_get_alloc_size_req & request, rpc_msg_get_alloc_size_rsp & response);
  888. bool get_device_memory(const rpc_msg_get_device_memory_req & request, rpc_msg_get_device_memory_rsp & response);
  889. struct stored_graph {
  890. ggml_context_ptr ctx_ptr;
  891. ggml_cgraph * graph;
  892. };
  893. private:
  894. bool get_cached_file(uint64_t hash, std::vector<uint8_t> & data);
  895. ggml_tensor * deserialize_tensor(struct ggml_context * ctx, const rpc_tensor * tensor);
  896. ggml_tensor * create_node(uint64_t id,
  897. struct ggml_context * ctx,
  898. const std::unordered_map<uint64_t, const rpc_tensor*> & tensor_ptrs,
  899. std::unordered_map<uint64_t, struct ggml_tensor*> & tensor_map);
  900. std::vector<ggml_backend_t> backends;
  901. const char * cache_dir;
  902. std::unordered_set<ggml_backend_buffer_t> buffers;
  903. // store the last computed graph for each backend
  904. std::vector<stored_graph> stored_graphs;
  905. };
  906. void rpc_server::hello(rpc_msg_hello_rsp & response) {
  907. response.major = RPC_PROTO_MAJOR_VERSION;
  908. response.minor = RPC_PROTO_MINOR_VERSION;
  909. response.patch = RPC_PROTO_PATCH_VERSION;
  910. LOG_DBG("[%s] version: %d.%d.%d\n", __func__, response.major, response.minor, response.patch);
  911. }
  912. bool rpc_server::get_alloc_size(const rpc_msg_get_alloc_size_req & request, rpc_msg_get_alloc_size_rsp & response) {
  913. uint32_t dev_id = request.device;
  914. if (dev_id >= backends.size()) {
  915. return false;
  916. }
  917. ggml_backend_buffer_type_t buft;
  918. struct ggml_init_params params {
  919. /*.mem_size =*/ ggml_tensor_overhead()*(1 + GGML_MAX_SRC),
  920. /*.mem_buffer =*/ NULL,
  921. /*.no_alloc =*/ true,
  922. };
  923. ggml_context_ptr ctx_ptr { ggml_init(params) };
  924. GGML_ASSERT(ctx_ptr != nullptr);
  925. ggml_context * ctx = ctx_ptr.get();
  926. ggml_tensor * tensor = deserialize_tensor(ctx, &request.tensor);
  927. if (tensor == nullptr) {
  928. GGML_LOG_ERROR("Null tensor pointer passed to server get_alloc_size function.\n");
  929. return false;
  930. }
  931. for (int i = 0; i < GGML_MAX_SRC; i++) {
  932. if (request.srcs[i].id != 0) {
  933. tensor->src[i] = deserialize_tensor(ctx, &request.srcs[i]);
  934. }
  935. }
  936. LOG_DBG("[%s] device: %d, buffer: %p, data: %p\n", __func__, dev_id, (void*)tensor->buffer, tensor->data);
  937. if (tensor->buffer == nullptr) {
  938. //No buffer allocated.
  939. buft = ggml_backend_get_default_buffer_type(backends[dev_id]);
  940. } else {
  941. buft = tensor->buffer->buft;
  942. }
  943. response.alloc_size = ggml_backend_buft_get_alloc_size(buft, tensor);
  944. return true;
  945. }
  946. bool rpc_server::alloc_buffer(const rpc_msg_alloc_buffer_req & request, rpc_msg_alloc_buffer_rsp & response) {
  947. uint32_t dev_id = request.device;
  948. if (dev_id >= backends.size()) {
  949. return false;
  950. }
  951. ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backends[dev_id]);
  952. ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, request.size);
  953. response.remote_ptr = 0;
  954. response.remote_size = 0;
  955. if (buffer != nullptr) {
  956. response.remote_ptr = reinterpret_cast<uint64_t>(buffer);
  957. response.remote_size = buffer->size;
  958. LOG_DBG("[%s] device: %d, size: %" PRIu64 " -> remote_ptr: %" PRIx64 ", remote_size: %" PRIu64 "\n",
  959. __func__, dev_id, request.size, response.remote_ptr, response.remote_size);
  960. buffers.insert(buffer);
  961. } else {
  962. LOG_DBG("[%s] device: %d, size: %" PRIu64 " -> failed\n", __func__, dev_id, request.size);
  963. }
  964. return true;
  965. }
  966. bool rpc_server::get_alignment(const rpc_msg_get_alignment_req & request, rpc_msg_get_alignment_rsp & response) {
  967. uint32_t dev_id = request.device;
  968. if (dev_id >= backends.size()) {
  969. return false;
  970. }
  971. ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backends[dev_id]);
  972. size_t alignment = ggml_backend_buft_get_alignment(buft);
  973. LOG_DBG("[%s] device: %d, alignment: %lu\n", __func__, dev_id, alignment);
  974. response.alignment = alignment;
  975. return true;
  976. }
  977. bool rpc_server::get_max_size(const rpc_msg_get_max_size_req & request, rpc_msg_get_max_size_rsp & response) {
  978. uint32_t dev_id = request.device;
  979. if (dev_id >= backends.size()) {
  980. return false;
  981. }
  982. ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backends[dev_id]);
  983. size_t max_size = ggml_backend_buft_get_max_size(buft);
  984. LOG_DBG("[%s] device: %d, max_size: %lu\n", __func__, dev_id, max_size);
  985. response.max_size = max_size;
  986. return true;
  987. }
  988. bool rpc_server::buffer_get_base(const rpc_msg_buffer_get_base_req & request, rpc_msg_buffer_get_base_rsp & response) {
  989. LOG_DBG("[%s] remote_ptr: %" PRIx64 "\n", __func__, request.remote_ptr);
  990. ggml_backend_buffer_t buffer = reinterpret_cast<ggml_backend_buffer_t>(request.remote_ptr);
  991. if (buffers.find(buffer) == buffers.end()) {
  992. GGML_LOG_ERROR("[%s] buffer not found\n", __func__);
  993. return false;
  994. }
  995. void * base = ggml_backend_buffer_get_base(buffer);
  996. response.base_ptr = reinterpret_cast<uint64_t>(base);
  997. return true;
  998. }
  999. bool rpc_server::free_buffer(const rpc_msg_free_buffer_req & request) {
  1000. LOG_DBG("[%s] remote_ptr: %" PRIx64 "\n", __func__, request.remote_ptr);
  1001. ggml_backend_buffer_t buffer = reinterpret_cast<ggml_backend_buffer_t>(request.remote_ptr);
  1002. if (buffers.find(buffer) == buffers.end()) {
  1003. GGML_LOG_ERROR("[%s] buffer not found\n", __func__);
  1004. return false;
  1005. }
  1006. ggml_backend_buffer_free(buffer);
  1007. buffers.erase(buffer);
  1008. return true;
  1009. }
  1010. bool rpc_server::buffer_clear(const rpc_msg_buffer_clear_req & request) {
  1011. LOG_DBG("[%s] remote_ptr: %" PRIx64 ", value: %u\n", __func__, request.remote_ptr, request.value);
  1012. ggml_backend_buffer_t buffer = reinterpret_cast<ggml_backend_buffer_t>(request.remote_ptr);
  1013. if (buffers.find(buffer) == buffers.end()) {
  1014. GGML_LOG_ERROR("[%s] buffer not found\n", __func__);
  1015. return false;
  1016. }
  1017. ggml_backend_buffer_clear(buffer, request.value);
  1018. return true;
  1019. }
  1020. ggml_tensor * rpc_server::deserialize_tensor(struct ggml_context * ctx, const rpc_tensor * tensor) {
  1021. // Validate tensor type before using it
  1022. if (tensor->type >= GGML_TYPE_COUNT) {
  1023. GGML_LOG_ERROR("[%s] invalid tensor type received: %u\n", __func__, tensor->type);
  1024. return nullptr;
  1025. }
  1026. ggml_tensor * result = ggml_new_tensor_4d(ctx, (ggml_type) tensor->type,
  1027. tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]);
  1028. // ggml_new_tensor_4d might fail if dimensions are invalid, although less likely to crash than invalid type
  1029. if (result == nullptr) {
  1030. GGML_LOG_ERROR("[%s] ggml_new_tensor_4d failed for type %u\\n", __func__, tensor->type);
  1031. return nullptr;
  1032. }
  1033. for (uint32_t i = 0; i < GGML_MAX_DIMS; i++) {
  1034. result->nb[i] = tensor->nb[i];
  1035. }
  1036. result->buffer = reinterpret_cast<ggml_backend_buffer_t>(tensor->buffer);
  1037. if (result->buffer && buffers.find(result->buffer) == buffers.end()) {
  1038. result->buffer = nullptr;
  1039. }
  1040. if (result->buffer) {
  1041. // require that the tensor data does not go beyond the buffer end
  1042. uint64_t tensor_size = (uint64_t) ggml_nbytes(result);
  1043. uint64_t buffer_start = (uint64_t) ggml_backend_buffer_get_base(result->buffer);
  1044. uint64_t buffer_size = (uint64_t) ggml_backend_buffer_get_size(result->buffer);
  1045. GGML_ASSERT(tensor->data + tensor_size >= tensor->data); // check for overflow
  1046. GGML_ASSERT(tensor->data >= buffer_start && tensor->data + tensor_size <= buffer_start + buffer_size);
  1047. }
  1048. result->op = (ggml_op) tensor->op;
  1049. for (uint32_t i = 0; i < GGML_MAX_OP_PARAMS / sizeof(int32_t); i++) {
  1050. result->op_params[i] = tensor->op_params[i];
  1051. }
  1052. result->flags = tensor->flags;
  1053. result->data = reinterpret_cast<void *>(tensor->data);
  1054. ggml_set_name(result, tensor->name);
  1055. return result;
  1056. }
  1057. bool rpc_server::set_tensor(const std::vector<uint8_t> & input) {
  1058. // serialization format: | rpc_tensor | offset (8 bytes) | data (size bytes) |
  1059. if (input.size() < sizeof(rpc_tensor) + sizeof(uint64_t)) {
  1060. return false;
  1061. }
  1062. const rpc_tensor * in_tensor = (const rpc_tensor *)input.data();
  1063. uint64_t offset;
  1064. memcpy(&offset, input.data() + sizeof(rpc_tensor), sizeof(offset));
  1065. const size_t size = input.size() - sizeof(rpc_tensor) - sizeof(offset);
  1066. struct ggml_init_params params {
  1067. /*.mem_size =*/ ggml_tensor_overhead(),
  1068. /*.mem_buffer =*/ NULL,
  1069. /*.no_alloc =*/ true,
  1070. };
  1071. ggml_context_ptr ctx_ptr { ggml_init(params) };
  1072. GGML_ASSERT(ctx_ptr != nullptr);
  1073. ggml_context * ctx = ctx_ptr.get();
  1074. ggml_tensor * tensor = deserialize_tensor(ctx, in_tensor);
  1075. if (tensor == nullptr || tensor->buffer == nullptr) {
  1076. GGML_LOG_ERROR("[%s] error deserializing tensor\n", __func__);
  1077. return false;
  1078. }
  1079. LOG_DBG("[%s] buffer: %p, data: %p, offset: %" PRIu64 ", size: %zu\n", __func__, (void*)tensor->buffer, tensor->data, offset, size);
  1080. // sanitize tensor->data
  1081. {
  1082. const size_t p0 = (size_t) ggml_backend_buffer_get_base(tensor->buffer);
  1083. const size_t p1 = p0 + ggml_backend_buffer_get_size(tensor->buffer);
  1084. if (in_tensor->data + offset < p0 || in_tensor->data + offset >= p1 || size > (p1 - in_tensor->data - offset)) {
  1085. GGML_LOG_ERROR("[%s] tensor data region (data=0x%" PRIx64 ", offset=%" PRIu64 ", size=%zu) out of buffer bounds [0x%zx, 0x%zx)\n",
  1086. __func__, in_tensor->data, offset, size, p0, p1);
  1087. return false;
  1088. }
  1089. }
  1090. const void * data = input.data() + sizeof(rpc_tensor) + sizeof(offset);
  1091. if (cache_dir && size > HASH_THRESHOLD) {
  1092. uint64_t hash = fnv_hash((const uint8_t*)data, size);
  1093. char hash_str[17];
  1094. snprintf(hash_str, sizeof(hash_str), "%016" PRIx64, hash);
  1095. // save to cache_dir/hash_str
  1096. fs::path cache_file = fs::path(cache_dir) / hash_str;
  1097. std::ofstream ofs(cache_file, std::ios::binary);
  1098. ofs.write((const char *)data, size);
  1099. GGML_LOG_INFO("[%s] saved to '%s'\n", __func__, cache_file.c_str());
  1100. }
  1101. ggml_backend_tensor_set(tensor, data, offset, size);
  1102. return true;
  1103. }
  1104. bool rpc_server::get_cached_file(uint64_t hash, std::vector<uint8_t> & data) {
  1105. if (!cache_dir) {
  1106. return false;
  1107. }
  1108. char hash_str[17];
  1109. snprintf(hash_str, sizeof(hash_str), "%016" PRIx64, hash);
  1110. fs::path cache_file = fs::path(cache_dir) / hash_str;
  1111. std::error_code ec;
  1112. if (!fs::exists(cache_file, ec)) {
  1113. return false;
  1114. }
  1115. std::ifstream ifs(cache_file, std::ios::binary);
  1116. ifs.seekg(0, std::ios::end);
  1117. size_t size = ifs.tellg();
  1118. ifs.seekg(0, std::ios::beg);
  1119. data.resize(size);
  1120. ifs.read((char *)data.data(), size);
  1121. return true;
  1122. }
  1123. bool rpc_server::set_tensor_hash(const rpc_msg_set_tensor_hash_req & request, rpc_msg_set_tensor_hash_rsp & response)
  1124. {
  1125. std::vector<uint8_t> cached_file;
  1126. if (!get_cached_file(request.hash, cached_file)) {
  1127. response.result = 0;
  1128. return true;
  1129. }
  1130. size_t size = cached_file.size();
  1131. struct ggml_init_params params {
  1132. /*.mem_size =*/ ggml_tensor_overhead(),
  1133. /*.mem_buffer =*/ NULL,
  1134. /*.no_alloc =*/ true,
  1135. };
  1136. ggml_context_ptr ctx_ptr { ggml_init(params) };
  1137. GGML_ASSERT(ctx_ptr != nullptr);
  1138. ggml_context * ctx = ctx_ptr.get();
  1139. ggml_tensor * tensor = deserialize_tensor(ctx, &request.tensor);
  1140. if (tensor == nullptr || tensor->buffer == nullptr) {
  1141. GGML_LOG_ERROR("[%s] error deserializing tensor\n", __func__);
  1142. return false;
  1143. }
  1144. LOG_DBG("[%s] buffer: %p, data: %p, offset: %" PRIu64 ", size: %zu, hash: %" PRIx64 "\n",
  1145. __func__, (void*)tensor->buffer, tensor->data, request.offset, size, request.hash);
  1146. // sanitize tensor->data
  1147. {
  1148. const size_t p0 = (size_t) ggml_backend_buffer_get_base(tensor->buffer);
  1149. const size_t p1 = p0 + ggml_backend_buffer_get_size(tensor->buffer);
  1150. if (request.tensor.data + request.offset < p0
  1151. || request.tensor.data + request.offset >= p1
  1152. || size > (p1 - request.tensor.data - request.offset)) {
  1153. GGML_LOG_ERROR("[%s] tensor data region (data=0x%" PRIx64 ", offset=%" PRIu64 ", size=%zu, hash=0x%" PRIx64 ") out of buffer bounds [0x%zx, 0x%zx)\n",
  1154. __func__, request.tensor.data, request.offset, size, request.hash, p0, p1);
  1155. return false;
  1156. }
  1157. }
  1158. ggml_backend_tensor_set(tensor, cached_file.data(), request.offset, size);
  1159. response.result = 1;
  1160. return true;
  1161. }
  1162. bool rpc_server::init_tensor(const rpc_msg_init_tensor_req & request) {
  1163. struct ggml_init_params params {
  1164. /*.mem_size =*/ ggml_tensor_overhead(),
  1165. /*.mem_buffer =*/ NULL,
  1166. /*.no_alloc =*/ true,
  1167. };
  1168. ggml_context_ptr ctx_ptr { ggml_init(params) };
  1169. GGML_ASSERT(ctx_ptr != nullptr);
  1170. ggml_context * ctx = ctx_ptr.get();
  1171. ggml_tensor * tensor = deserialize_tensor(ctx, &request.tensor);
  1172. if (tensor == nullptr) {
  1173. GGML_LOG_ERROR("Null tensor pointer passed to server init_tensor function.\n");
  1174. return false;
  1175. }
  1176. LOG_DBG("[%s] buffer: %p, data: %p\n", __func__, (void*)tensor->buffer, tensor->data);
  1177. // Call the backend's buffer_init_tensor function
  1178. ggml_backend_buffer_t buffer = tensor->buffer;
  1179. if (buffer && buffer->iface.init_tensor) {
  1180. buffer->iface.init_tensor(buffer, tensor);
  1181. } else {
  1182. GGML_LOG_ERROR("Null buffer for tensor passed to init_tensor function\n");
  1183. }
  1184. if (tensor->extra != nullptr) {
  1185. // This pointer can either be passed around client/server, or probably better stored server-side and kept track of.
  1186. // Currently unimplemented.
  1187. GGML_LOG_ERROR("tensor->extra populated by the backend, this is currently unsupported.\n");
  1188. return false;
  1189. }
  1190. return true;
  1191. }
  1192. bool rpc_server::get_tensor(const rpc_msg_get_tensor_req & request, std::vector<uint8_t> & response) {
  1193. struct ggml_init_params params {
  1194. /*.mem_size =*/ ggml_tensor_overhead(),
  1195. /*.mem_buffer =*/ NULL,
  1196. /*.no_alloc =*/ true,
  1197. };
  1198. ggml_context_ptr ctx_ptr { ggml_init(params) };
  1199. GGML_ASSERT(ctx_ptr != nullptr);
  1200. ggml_context * ctx = ctx_ptr.get();
  1201. ggml_tensor * tensor = deserialize_tensor(ctx, &request.tensor);
  1202. if (tensor == nullptr || tensor->buffer == nullptr) {
  1203. GGML_LOG_ERROR("[%s] error deserializing tensor\n", __func__);
  1204. return false;
  1205. }
  1206. LOG_DBG("[%s] buffer: %p, data: %p, offset: %" PRIu64 ", size: %" PRIu64 "\n", __func__, (void*)tensor->buffer, tensor->data, request.offset, request.size);
  1207. // sanitize tensor->data
  1208. {
  1209. const size_t p0 = (size_t) ggml_backend_buffer_get_base(tensor->buffer);
  1210. const size_t p1 = p0 + ggml_backend_buffer_get_size(tensor->buffer);
  1211. if (request.tensor.data + request.offset < p0 ||
  1212. request.tensor.data + request.offset >= p1 ||
  1213. request.size > (p1 - request.tensor.data - request.offset)) {
  1214. GGML_LOG_ERROR("[%s] requested tensor region (data=0x%" PRIx64 ", offset=%" PRIu64 ", size=%" PRIu64 ") out of buffer bounds [0x%zx, 0x%zx)\n",
  1215. __func__, request.tensor.data, request.offset, request.size, p0, p1);
  1216. return false;
  1217. }
  1218. }
  1219. response.resize(request.size, 0);
  1220. ggml_backend_tensor_get(tensor, response.data(), request.offset, request.size);
  1221. return true;
  1222. }
  1223. bool rpc_server::copy_tensor(const rpc_msg_copy_tensor_req & request, rpc_msg_copy_tensor_rsp & response) {
  1224. struct ggml_init_params params {
  1225. /*.mem_size =*/ 2*ggml_tensor_overhead(),
  1226. /*.mem_buffer =*/ NULL,
  1227. /*.no_alloc =*/ true,
  1228. };
  1229. ggml_context_ptr ctx_ptr { ggml_init(params) };
  1230. GGML_ASSERT(ctx_ptr != nullptr);
  1231. ggml_context * ctx = ctx_ptr.get();
  1232. ggml_tensor * src = deserialize_tensor(ctx, &request.src);
  1233. ggml_tensor * dst = deserialize_tensor(ctx, &request.dst);
  1234. if (src == nullptr || dst == nullptr || src->buffer == nullptr || dst->buffer == nullptr) {
  1235. GGML_LOG_ERROR("[%s] error deserializing tensors\n", __func__);
  1236. return false;
  1237. }
  1238. uint64_t src_size = (uint64_t) ggml_nbytes(src);
  1239. uint64_t dst_data = (uint64_t) dst->data;
  1240. uint64_t dst_base = (uint64_t) ggml_backend_buffer_get_base(dst->buffer);
  1241. uint64_t dst_buf_sz = (uint64_t) ggml_backend_buffer_get_size(dst->buffer);
  1242. if (dst_data + src_size > dst_base + dst_buf_sz) {
  1243. GGML_LOG_ERROR("[%s] out-of-bounds write in rpc_server::copy_tensor:\n"
  1244. " write range : [0x%" PRIx64 ", 0x%" PRIx64 "]\n"
  1245. " buffer base: [0x%" PRIx64 ", 0x%" PRIx64 "]\n",
  1246. __func__,
  1247. dst_data,
  1248. dst_data + src_size,
  1249. dst_base,
  1250. dst_base + dst_buf_sz);
  1251. return false;
  1252. }
  1253. LOG_DBG("[%s] src->buffer: %p, dst->buffer: %p\n",
  1254. __func__, (void*) src->buffer, (void*) dst->buffer);
  1255. response.result = ggml_backend_buffer_copy_tensor(src, dst);
  1256. return true;
  1257. }
  1258. ggml_tensor * rpc_server::create_node(uint64_t id,
  1259. struct ggml_context * ctx,
  1260. const std::unordered_map<uint64_t, const rpc_tensor*> & tensor_ptrs,
  1261. std::unordered_map<uint64_t, struct ggml_tensor*> & tensor_map) {
  1262. if (tensor_map.find(id) != tensor_map.end()) {
  1263. return tensor_map[id];
  1264. }
  1265. // Safely find the tensor pointer
  1266. auto it_ptr = tensor_ptrs.find(id);
  1267. if (it_ptr == tensor_ptrs.end()) {
  1268. return nullptr;
  1269. }
  1270. const rpc_tensor * tensor = it_ptr->second;
  1271. struct ggml_tensor * result = deserialize_tensor(ctx, tensor);
  1272. if (result == nullptr) {
  1273. return nullptr;
  1274. }
  1275. tensor_map[id] = result;
  1276. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1277. // Check if the source ID is 0 before calling create_node recursively
  1278. if (tensor->src[i] == 0) {
  1279. result->src[i] = nullptr;
  1280. } else {
  1281. result->src[i] = create_node(tensor->src[i], ctx, tensor_ptrs, tensor_map);
  1282. // If the recursive call failed for a non-zero ID, propagate the error
  1283. if (result->src[i] == nullptr) {
  1284. GGML_LOG_ERROR("[%s] failed to create source node %d (src_id=%" PRIu64 ") for node id %" PRIu64 "\n",
  1285. __func__, i, tensor->src[i], id);
  1286. // Must return nullptr to signal failure up the call stack
  1287. return nullptr;
  1288. }
  1289. }
  1290. }
  1291. // Handle view_src similarly
  1292. if (tensor->view_src == 0) {
  1293. result->view_src = nullptr;
  1294. } else {
  1295. result->view_src = create_node(tensor->view_src, ctx, tensor_ptrs, tensor_map);
  1296. // If the recursive call failed for a non-zero ID, propagate the error
  1297. if (result->view_src == nullptr) {
  1298. GGML_LOG_ERROR("[%s] failed to create view_src node (view_src_id=%" PRIu64 ") for node id %" PRIu64 "\n",
  1299. __func__, tensor->view_src, id);
  1300. // Must return nullptr to signal failure up the call stack
  1301. return nullptr;
  1302. }
  1303. }
  1304. result->view_offs = tensor->view_offs;
  1305. return result;
  1306. }
  1307. bool rpc_server::graph_compute(const std::vector<uint8_t> & input) {
  1308. // serialization format:
  1309. // | device (4 bytes) | n_nodes (4 bytes) | nodes (n_nodes * sizeof(uint64_t) | n_tensors (4 bytes) | tensors (n_tensors * sizeof(rpc_tensor)) |
  1310. if (input.size() < 2*sizeof(uint32_t)) {
  1311. return false;
  1312. }
  1313. const uint8_t * src = input.data();
  1314. uint32_t device;
  1315. memcpy(&device, src, sizeof(device));
  1316. src += sizeof(device);
  1317. if (device >= backends.size()) {
  1318. return false;
  1319. }
  1320. uint32_t n_nodes;
  1321. memcpy(&n_nodes, src, sizeof(n_nodes));
  1322. src += sizeof(n_nodes);
  1323. if (input.size() < 2*sizeof(uint32_t) + n_nodes*sizeof(uint64_t) + sizeof(uint32_t)) {
  1324. return false;
  1325. }
  1326. const uint64_t * nodes = (const uint64_t *)src;
  1327. src += n_nodes*sizeof(uint64_t);
  1328. uint32_t n_tensors;
  1329. memcpy(&n_tensors, src, sizeof(n_tensors));
  1330. src += sizeof(n_tensors);
  1331. if (input.size() < 2*sizeof(uint32_t) + n_nodes*sizeof(uint64_t) + sizeof(uint32_t) + n_tensors*sizeof(rpc_tensor)) {
  1332. return false;
  1333. }
  1334. const rpc_tensor * tensors = (const rpc_tensor *)src;
  1335. LOG_DBG("[%s] device: %u, n_nodes: %u, n_tensors: %u\n", __func__, device, n_nodes, n_tensors);
  1336. size_t buf_size = ggml_tensor_overhead()*(n_nodes + n_tensors) + ggml_graph_overhead_custom(n_nodes, false);
  1337. struct ggml_init_params params = {
  1338. /*.mem_size =*/ buf_size,
  1339. /*.mem_buffer =*/ NULL,
  1340. /*.no_alloc =*/ true,
  1341. };
  1342. ggml_context_ptr ctx_ptr { ggml_init(params) };
  1343. GGML_ASSERT(ctx_ptr != nullptr);
  1344. ggml_context * ctx = ctx_ptr.get();
  1345. struct ggml_cgraph * graph = ggml_new_graph_custom(ctx, n_nodes, false);
  1346. graph->n_nodes = n_nodes;
  1347. std::unordered_map<uint64_t, const rpc_tensor*> tensor_ptrs;
  1348. for (uint32_t i = 0; i < n_tensors; i++) {
  1349. tensor_ptrs[tensors[i].id] = &tensors[i];
  1350. }
  1351. std::unordered_map<uint64_t, ggml_tensor*> tensor_map;
  1352. for (uint32_t i = 0; i < n_nodes; i++) {
  1353. int64_t id;
  1354. memcpy(&id, &nodes[i], sizeof(id));
  1355. graph->nodes[i] = create_node(id, ctx, tensor_ptrs, tensor_map);
  1356. // Check if create_node failed for a *non-zero* ID.
  1357. // If id was 0, create_node returning nullptr is expected.
  1358. // If id was non-zero and create_node returned nullptr, it indicates a deserialization error.
  1359. if (graph->nodes[i] == nullptr && id != 0) {
  1360. GGML_LOG_ERROR("[%s] failed to create graph node %d (id=%" PRId64 ")\n", __func__, i, id);
  1361. return false;
  1362. }
  1363. }
  1364. ggml_status status = ggml_backend_graph_compute(backends[device], graph);
  1365. GGML_ASSERT(status == GGML_STATUS_SUCCESS && "Unsuccessful graph computations are not supported with RPC");
  1366. stored_graphs[device].ctx_ptr.swap(ctx_ptr);
  1367. stored_graphs[device].graph = graph;
  1368. return true;
  1369. }
  1370. bool rpc_server::graph_recompute(const rpc_msg_graph_recompute_req & request) {
  1371. uint32_t device = request.device;
  1372. if (device >= backends.size()) {
  1373. return false;
  1374. }
  1375. if (stored_graphs[device].graph == nullptr) {
  1376. return false;
  1377. }
  1378. ggml_cgraph * graph = stored_graphs[device].graph;
  1379. LOG_DBG("[%s] device: %u\n", __func__, device);
  1380. ggml_status status = ggml_backend_graph_compute(backends[device], graph);
  1381. GGML_ASSERT(status == GGML_STATUS_SUCCESS && "Unsuccessful graph computations are not supported with RPC");
  1382. return true;
  1383. }
  1384. bool rpc_server::get_device_memory(const rpc_msg_get_device_memory_req & request, rpc_msg_get_device_memory_rsp & response) {
  1385. uint32_t dev_id = request.device;
  1386. if (dev_id >= backends.size()) {
  1387. return false;
  1388. }
  1389. size_t free, total;
  1390. ggml_backend_dev_t dev = ggml_backend_get_device(backends[dev_id]);
  1391. ggml_backend_dev_memory(dev, &free, &total);
  1392. response.free_mem = free;
  1393. response.total_mem = total;
  1394. LOG_DBG("[%s] device: %u, free_mem: %" PRIu64 ", total_mem: %" PRIu64 "\n", __func__, dev_id, response.free_mem, response.total_mem);
  1395. return true;
  1396. }
  1397. rpc_server::~rpc_server() {
  1398. for (auto buffer : buffers) {
  1399. ggml_backend_buffer_free(buffer);
  1400. }
  1401. }
  1402. static void rpc_serve_client(const std::vector<ggml_backend_t> & backends, const char * cache_dir,
  1403. sockfd_t sockfd) {
  1404. rpc_server server(backends, cache_dir);
  1405. uint8_t cmd;
  1406. if (!recv_data(sockfd, &cmd, 1)) {
  1407. return;
  1408. }
  1409. // the first command sent by the client must be HELLO
  1410. if (cmd != RPC_CMD_HELLO) {
  1411. GGML_LOG_ERROR("Expected HELLO command, update client\n");
  1412. return;
  1413. }
  1414. if (!recv_msg(sockfd, nullptr, 0)) {
  1415. return;
  1416. }
  1417. rpc_msg_hello_rsp response;
  1418. server.hello(response);
  1419. if (!send_msg(sockfd, &response, sizeof(response))) {
  1420. return;
  1421. }
  1422. while (true) {
  1423. if (!recv_data(sockfd, &cmd, 1)) {
  1424. break;
  1425. }
  1426. if (cmd >= RPC_CMD_COUNT) {
  1427. // fail fast if the command is invalid
  1428. GGML_LOG_ERROR("Unknown command: %d\n", cmd);
  1429. break;
  1430. }
  1431. switch (cmd) {
  1432. case RPC_CMD_HELLO: {
  1433. // HELLO command is handled above
  1434. return;
  1435. }
  1436. case RPC_CMD_DEVICE_COUNT: {
  1437. if (!recv_msg(sockfd, nullptr, 0)) {
  1438. return;
  1439. }
  1440. rpc_msg_device_count_rsp response;
  1441. response.device_count = backends.size();
  1442. if (!send_msg(sockfd, &response, sizeof(response))) {
  1443. return;
  1444. }
  1445. break;
  1446. }
  1447. case RPC_CMD_ALLOC_BUFFER: {
  1448. rpc_msg_alloc_buffer_req request;
  1449. if (!recv_msg(sockfd, &request, sizeof(request))) {
  1450. return;
  1451. }
  1452. rpc_msg_alloc_buffer_rsp response;
  1453. if (!server.alloc_buffer(request, response)) {
  1454. return;
  1455. }
  1456. if (!send_msg(sockfd, &response, sizeof(response))) {
  1457. return;
  1458. }
  1459. break;
  1460. }
  1461. case RPC_CMD_GET_ALLOC_SIZE: {
  1462. rpc_msg_get_alloc_size_req request;
  1463. if (!recv_msg(sockfd, &request, sizeof(request))) {
  1464. return;
  1465. }
  1466. rpc_msg_get_alloc_size_rsp response;
  1467. if (!server.get_alloc_size(request, response)) {
  1468. return;
  1469. }
  1470. if (!send_msg(sockfd, &response, sizeof(response))) {
  1471. return;
  1472. }
  1473. break;
  1474. }
  1475. case RPC_CMD_GET_ALIGNMENT: {
  1476. rpc_msg_get_alignment_req request;
  1477. if (!recv_msg(sockfd, &request, sizeof(request))) {
  1478. return;
  1479. }
  1480. rpc_msg_get_alignment_rsp response;
  1481. if (!server.get_alignment(request, response)) {
  1482. return;
  1483. }
  1484. if (!send_msg(sockfd, &response, sizeof(response))) {
  1485. return;
  1486. }
  1487. break;
  1488. }
  1489. case RPC_CMD_GET_MAX_SIZE: {
  1490. rpc_msg_get_max_size_req request;
  1491. if (!recv_msg(sockfd, &request, sizeof(request))) {
  1492. return;
  1493. }
  1494. rpc_msg_get_max_size_rsp response;
  1495. if (!server.get_max_size(request, response)) {
  1496. return;
  1497. }
  1498. if (!send_msg(sockfd, &response, sizeof(response))) {
  1499. return;
  1500. }
  1501. break;
  1502. }
  1503. case RPC_CMD_BUFFER_GET_BASE: {
  1504. rpc_msg_buffer_get_base_req request;
  1505. if (!recv_msg(sockfd, &request, sizeof(request))) {
  1506. return;
  1507. }
  1508. rpc_msg_buffer_get_base_rsp response;
  1509. if (!server.buffer_get_base(request, response)) {
  1510. return;
  1511. }
  1512. if (!send_msg(sockfd, &response, sizeof(response))) {
  1513. return;
  1514. }
  1515. break;
  1516. }
  1517. case RPC_CMD_FREE_BUFFER: {
  1518. rpc_msg_free_buffer_req request;
  1519. if (!recv_msg(sockfd, &request, sizeof(request))) {
  1520. return;
  1521. }
  1522. if (!server.free_buffer(request)) {
  1523. return;
  1524. }
  1525. if (!send_msg(sockfd, nullptr, 0)) {
  1526. return;
  1527. }
  1528. break;
  1529. }
  1530. case RPC_CMD_BUFFER_CLEAR: {
  1531. rpc_msg_buffer_clear_req request;
  1532. if (!recv_msg(sockfd, &request, sizeof(request))) {
  1533. return;
  1534. }
  1535. if (!server.buffer_clear(request)) {
  1536. return;
  1537. }
  1538. if (!send_msg(sockfd, nullptr, 0)) {
  1539. return;
  1540. }
  1541. break;
  1542. }
  1543. case RPC_CMD_SET_TENSOR: {
  1544. std::vector<uint8_t> input;
  1545. if (!recv_msg(sockfd, input)) {
  1546. return;
  1547. }
  1548. if (!server.set_tensor(input)) {
  1549. return;
  1550. }
  1551. break;
  1552. }
  1553. case RPC_CMD_SET_TENSOR_HASH: {
  1554. rpc_msg_set_tensor_hash_req request;
  1555. if (!recv_msg(sockfd, &request, sizeof(request))) {
  1556. return;
  1557. }
  1558. rpc_msg_set_tensor_hash_rsp response;
  1559. if (!server.set_tensor_hash(request, response)) {
  1560. return;
  1561. }
  1562. if (!send_msg(sockfd, &response, sizeof(response))) {
  1563. return;
  1564. }
  1565. break;
  1566. }
  1567. case RPC_CMD_INIT_TENSOR: {
  1568. rpc_msg_init_tensor_req request;
  1569. if (!recv_msg(sockfd, &request,sizeof(request))) {
  1570. return;
  1571. }
  1572. if (!server.init_tensor(request)) {
  1573. return;
  1574. }
  1575. if (!send_msg(sockfd, nullptr, 0)) {
  1576. return;
  1577. }
  1578. break;
  1579. }
  1580. case RPC_CMD_GET_TENSOR: {
  1581. rpc_msg_get_tensor_req request;
  1582. if (!recv_msg(sockfd, &request, sizeof(request))) {
  1583. return;
  1584. }
  1585. std::vector<uint8_t> response;
  1586. if (!server.get_tensor(request, response)) {
  1587. return;
  1588. }
  1589. if (!send_msg(sockfd, response.data(), response.size())) {
  1590. return;
  1591. }
  1592. break;
  1593. }
  1594. case RPC_CMD_COPY_TENSOR: {
  1595. rpc_msg_copy_tensor_req request;
  1596. if (!recv_msg(sockfd, &request, sizeof(request))) {
  1597. return;
  1598. }
  1599. rpc_msg_copy_tensor_rsp response;
  1600. if (!server.copy_tensor(request, response)) {
  1601. return;
  1602. }
  1603. if (!send_msg(sockfd, &response, sizeof(response))) {
  1604. return;
  1605. }
  1606. break;
  1607. }
  1608. case RPC_CMD_GRAPH_COMPUTE: {
  1609. std::vector<uint8_t> input;
  1610. if (!recv_msg(sockfd, input)) {
  1611. return;
  1612. }
  1613. if (!server.graph_compute(input)) {
  1614. return;
  1615. }
  1616. break;
  1617. }
  1618. case RPC_CMD_GRAPH_RECOMPUTE: {
  1619. rpc_msg_graph_recompute_req request;
  1620. if (!recv_msg(sockfd, &request, sizeof(request))) {
  1621. return;
  1622. }
  1623. if (!server.graph_recompute(request)) {
  1624. return;
  1625. }
  1626. break;
  1627. }
  1628. case RPC_CMD_GET_DEVICE_MEMORY: {
  1629. rpc_msg_get_device_memory_req request;
  1630. if (!recv_msg(sockfd, &request, sizeof(request))) {
  1631. return;
  1632. }
  1633. rpc_msg_get_device_memory_rsp response;
  1634. if (!server.get_device_memory(request, response)) {
  1635. return;
  1636. }
  1637. if (!send_msg(sockfd, &response, sizeof(response))) {
  1638. return;
  1639. }
  1640. break;
  1641. }
  1642. default: {
  1643. GGML_LOG_ERROR("Unknown command: %d\n", cmd);
  1644. return;
  1645. }
  1646. }
  1647. }
  1648. }
  1649. void ggml_backend_rpc_start_server(const char * endpoint, const char * cache_dir,
  1650. size_t n_threads, size_t n_devices, ggml_backend_dev_t * devices) {
  1651. if (n_devices == 0 || devices == nullptr) {
  1652. fprintf(stderr, "Invalid arguments to ggml_backend_rpc_start_server\n");
  1653. return;
  1654. }
  1655. std::vector<ggml_backend_t> backends;
  1656. printf("Starting RPC server v%d.%d.%d\n",
  1657. RPC_PROTO_MAJOR_VERSION,
  1658. RPC_PROTO_MINOR_VERSION,
  1659. RPC_PROTO_PATCH_VERSION);
  1660. printf(" endpoint : %s\n", endpoint);
  1661. printf(" local cache : %s\n", cache_dir ? cache_dir : "n/a");
  1662. printf("Devices:\n");
  1663. for (size_t i = 0; i < n_devices; i++) {
  1664. auto dev = devices[i];
  1665. size_t free, total;
  1666. ggml_backend_dev_memory(dev, &free, &total);
  1667. printf(" %s: %s (%zu MiB, %zu MiB free)\n", ggml_backend_dev_name(dev), ggml_backend_dev_description(dev),
  1668. total / 1024 / 1024, free / 1024 / 1024);
  1669. auto backend = ggml_backend_dev_init(dev, nullptr);
  1670. if (!backend) {
  1671. fprintf(stderr, "Failed to create backend for device %s\n", dev->iface.get_name(dev));
  1672. return;
  1673. }
  1674. backends.push_back(backend);
  1675. ggml_backend_reg_t reg = dev ? ggml_backend_dev_backend_reg(dev) : nullptr;
  1676. if (reg) {
  1677. auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
  1678. if (ggml_backend_set_n_threads_fn) {
  1679. ggml_backend_set_n_threads_fn(backend, n_threads);
  1680. }
  1681. }
  1682. }
  1683. std::string host;
  1684. int port;
  1685. if (!parse_endpoint(endpoint, host, port)) {
  1686. return;
  1687. }
  1688. #ifdef _WIN32
  1689. {
  1690. WSADATA wsaData;
  1691. int res = WSAStartup(MAKEWORD(2, 2), &wsaData);
  1692. if (res != 0) {
  1693. fprintf(stderr, "WSAStartup failed: %d\n", res);
  1694. return;
  1695. }
  1696. }
  1697. #endif
  1698. auto server_socket = create_server_socket(host.c_str(), port);
  1699. if (server_socket == nullptr) {
  1700. fprintf(stderr, "Failed to create server socket\n");
  1701. return;
  1702. }
  1703. while (true) {
  1704. auto client_socket = socket_accept(server_socket->fd);
  1705. if (client_socket == nullptr) {
  1706. fprintf(stderr, "Failed to accept client connection\n");
  1707. return;
  1708. }
  1709. printf("Accepted client connection\n");
  1710. fflush(stdout);
  1711. rpc_serve_client(backends, cache_dir, client_socket->fd);
  1712. printf("Client connection closed\n");
  1713. fflush(stdout);
  1714. }
  1715. #ifdef _WIN32
  1716. WSACleanup();
  1717. #endif
  1718. for (auto backend : backends) {
  1719. ggml_backend_free(backend);
  1720. }
  1721. }
  1722. // device interface
  1723. struct ggml_backend_rpc_device_context {
  1724. std::string endpoint;
  1725. uint32_t device;
  1726. std::string name;
  1727. std::string description;
  1728. };
  1729. static const char * ggml_backend_rpc_device_get_name(ggml_backend_dev_t dev) {
  1730. ggml_backend_rpc_device_context * ctx = (ggml_backend_rpc_device_context *)dev->context;
  1731. return ctx->name.c_str();
  1732. }
  1733. static const char * ggml_backend_rpc_device_get_description(ggml_backend_dev_t dev) {
  1734. ggml_backend_rpc_device_context * ctx = (ggml_backend_rpc_device_context *)dev->context;
  1735. return ctx->description.c_str();
  1736. }
  1737. static void ggml_backend_rpc_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
  1738. ggml_backend_rpc_device_context * ctx = (ggml_backend_rpc_device_context *)dev->context;
  1739. ggml_backend_rpc_get_device_memory(ctx->endpoint.c_str(), ctx->device, free, total);
  1740. }
  1741. static enum ggml_backend_dev_type ggml_backend_rpc_device_get_type(ggml_backend_dev_t dev) {
  1742. // TODO: obtain value from the server
  1743. return GGML_BACKEND_DEVICE_TYPE_GPU;
  1744. GGML_UNUSED(dev);
  1745. }
  1746. static void ggml_backend_rpc_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
  1747. props->name = ggml_backend_rpc_device_get_name(dev);
  1748. props->description = ggml_backend_rpc_device_get_description(dev);
  1749. props->type = ggml_backend_rpc_device_get_type(dev);
  1750. ggml_backend_rpc_device_get_memory(dev, &props->memory_free, &props->memory_total);
  1751. props->caps = {
  1752. /* .async = */ false,
  1753. /* .host_buffer = */ false,
  1754. /* .buffer_from_host_ptr = */ false,
  1755. /* .events = */ false,
  1756. };
  1757. }
  1758. static ggml_backend_t ggml_backend_rpc_device_init(ggml_backend_dev_t dev, const char * params) {
  1759. ggml_backend_rpc_device_context * ctx = (ggml_backend_rpc_device_context *)dev->context;
  1760. return ggml_backend_rpc_init(ctx->endpoint.c_str(), ctx->device);
  1761. GGML_UNUSED(params);
  1762. }
  1763. static ggml_backend_buffer_type_t ggml_backend_rpc_device_get_buffer_type(ggml_backend_dev_t dev) {
  1764. ggml_backend_rpc_device_context * ctx = (ggml_backend_rpc_device_context *)dev->context;
  1765. return ggml_backend_rpc_buffer_type(ctx->endpoint.c_str(), ctx->device);
  1766. GGML_UNUSED(dev);
  1767. }
  1768. static bool ggml_backend_rpc_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
  1769. GGML_UNUSED(dev);
  1770. GGML_UNUSED(op);
  1771. //TODO: call the remote backend and cache the results
  1772. return true;
  1773. }
  1774. static bool ggml_backend_rpc_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
  1775. if (!buft || buft->iface.get_name != ggml_backend_rpc_buffer_type_name) {
  1776. return false;
  1777. }
  1778. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
  1779. ggml_backend_rpc_device_context * dev_ctx = (ggml_backend_rpc_device_context *)dev->context;
  1780. return buft_ctx->endpoint == dev_ctx->endpoint && buft_ctx->device == dev_ctx->device;
  1781. }
  1782. static const struct ggml_backend_device_i ggml_backend_rpc_device_i = {
  1783. /* .get_name = */ ggml_backend_rpc_device_get_name,
  1784. /* .get_description = */ ggml_backend_rpc_device_get_description,
  1785. /* .get_memory = */ ggml_backend_rpc_device_get_memory,
  1786. /* .get_type = */ ggml_backend_rpc_device_get_type,
  1787. /* .get_props = */ ggml_backend_rpc_device_get_props,
  1788. /* .init_backend = */ ggml_backend_rpc_device_init,
  1789. /* .get_buffer_type = */ ggml_backend_rpc_device_get_buffer_type,
  1790. /* .get_host_buffer_type = */ NULL,
  1791. /* .buffer_from_host_ptr = */ NULL,
  1792. /* .supports_op = */ ggml_backend_rpc_device_supports_op,
  1793. /* .supports_buft = */ ggml_backend_rpc_device_supports_buft,
  1794. /* .offload_op = */ NULL,
  1795. /* .event_new = */ NULL,
  1796. /* .event_free = */ NULL,
  1797. /* .event_synchronize = */ NULL,
  1798. };
  1799. // backend reg interface
  1800. struct ggml_backend_rpc_reg_context {
  1801. std::string name;
  1802. std::vector<ggml_backend_dev_t> devices;
  1803. };
  1804. static const char * ggml_backend_rpc_reg_get_name(ggml_backend_reg_t reg) {
  1805. ggml_backend_rpc_reg_context * ctx = (ggml_backend_rpc_reg_context *)reg->context;
  1806. return ctx ? ctx->name.c_str() : "RPC";
  1807. }
  1808. static size_t ggml_backend_rpc_reg_get_device_count(ggml_backend_reg_t reg) {
  1809. ggml_backend_rpc_reg_context * ctx = (ggml_backend_rpc_reg_context *)reg->context;
  1810. return ctx ? ctx->devices.size() : 0;
  1811. }
  1812. static ggml_backend_dev_t ggml_backend_rpc_reg_get_device(ggml_backend_reg_t reg, size_t index) {
  1813. ggml_backend_rpc_reg_context * ctx = (ggml_backend_rpc_reg_context *)reg->context;
  1814. if (ctx == nullptr) {
  1815. GGML_ABORT("The RPC backend does not have enumerated devices - use ggml_backend_rpc_add_server instead");
  1816. } else {
  1817. GGML_ASSERT(index < ctx->devices.size());
  1818. return ctx->devices[index];
  1819. }
  1820. }
  1821. static void * ggml_backend_rpc_get_proc_address(ggml_backend_reg_t reg, const char * name) {
  1822. if (std::strcmp(name, "ggml_backend_rpc_add_server") == 0) {
  1823. return (void *)ggml_backend_rpc_add_server;
  1824. }
  1825. if (std::strcmp(name, "ggml_backend_rpc_start_server") == 0) {
  1826. return (void *)ggml_backend_rpc_start_server;
  1827. }
  1828. return NULL;
  1829. GGML_UNUSED(reg);
  1830. }
  1831. static const struct ggml_backend_reg_i ggml_backend_rpc_reg_i = {
  1832. /* .get_name = */ ggml_backend_rpc_reg_get_name,
  1833. /* .get_device_count = */ ggml_backend_rpc_reg_get_device_count,
  1834. /* .get_device = */ ggml_backend_rpc_reg_get_device,
  1835. /* .get_proc_address = */ ggml_backend_rpc_get_proc_address,
  1836. };
  1837. ggml_backend_reg_t ggml_backend_rpc_reg(void) {
  1838. static struct ggml_backend_reg ggml_backend_rpc_reg = {
  1839. /* .api_version = */ GGML_BACKEND_API_VERSION,
  1840. /* .iface = */ ggml_backend_rpc_reg_i,
  1841. /* .context = */ NULL,
  1842. };
  1843. return &ggml_backend_rpc_reg;
  1844. }
  1845. static uint32_t ggml_backend_rpc_get_device_count(const char * endpoint) {
  1846. auto sock = get_socket(endpoint);
  1847. rpc_msg_device_count_rsp response;
  1848. bool status = send_rpc_cmd(sock, RPC_CMD_DEVICE_COUNT, nullptr, 0, &response, sizeof(response));
  1849. RPC_STATUS_ASSERT(status);
  1850. return response.device_count;
  1851. }
  1852. static const ggml_backend_reg_i ggml_backend_rpc_reg_interface = {
  1853. /* .get_name = */ ggml_backend_rpc_reg_get_name,
  1854. /* .get_device_count = */ ggml_backend_rpc_reg_get_device_count,
  1855. /* .get_device = */ ggml_backend_rpc_reg_get_device,
  1856. /* .get_proc_address = */ ggml_backend_rpc_get_proc_address,
  1857. };
  1858. ggml_backend_reg_t ggml_backend_rpc_add_server(const char * endpoint) {
  1859. static std::unordered_map<std::string, ggml_backend_reg_t> reg_map;
  1860. static std::mutex mutex;
  1861. static uint32_t dev_id = 0;
  1862. std::lock_guard<std::mutex> lock(mutex);
  1863. if (reg_map.find(endpoint) != reg_map.end()) {
  1864. return reg_map[endpoint];
  1865. }
  1866. uint32_t dev_count = ggml_backend_rpc_get_device_count(endpoint);
  1867. if (dev_count == 0) {
  1868. return nullptr;
  1869. }
  1870. ggml_backend_rpc_reg_context * ctx = new ggml_backend_rpc_reg_context;
  1871. ctx->name = "RPC[" + std::string(endpoint) + "]";
  1872. for (uint32_t ind = 0; ind < dev_count; ind++) {
  1873. std::string dev_name = "RPC" + std::to_string(dev_id);
  1874. std::string dev_desc = std::string(endpoint);
  1875. ggml_backend_rpc_device_context * dev_ctx = new ggml_backend_rpc_device_context {
  1876. /* .endpoint = */ endpoint,
  1877. /* .device = */ ind,
  1878. /* .name = */ dev_name,
  1879. /* .description = */ dev_desc
  1880. };
  1881. ggml_backend_dev_t dev = new ggml_backend_device {
  1882. /* .iface = */ ggml_backend_rpc_device_i,
  1883. /* .reg = */ ggml_backend_rpc_reg(),
  1884. /* .context = */ dev_ctx,
  1885. };
  1886. ctx->devices.push_back(dev);
  1887. dev_id++;
  1888. }
  1889. ggml_backend_reg_t reg = new ggml_backend_reg {
  1890. /* .api_version = */ GGML_BACKEND_API_VERSION,
  1891. /* .iface = */ ggml_backend_rpc_reg_interface,
  1892. /* .context = */ ctx
  1893. };
  1894. reg_map[endpoint] = reg;
  1895. return reg;
  1896. }
  1897. GGML_BACKEND_DL_IMPL(ggml_backend_rpc_reg)