llama.cpp 706 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812
  1. #define LLAMA_API_INTERNAL
  2. #include "llama.h"
  3. #include "unicode.h"
  4. #include "ggml.h"
  5. #include "ggml-alloc.h"
  6. #include "ggml-backend.h"
  7. #ifdef GGML_USE_CUDA
  8. # include "ggml-cuda.h"
  9. #elif defined(GGML_USE_CLBLAST)
  10. # include "ggml-opencl.h"
  11. #elif defined(GGML_USE_VULKAN)
  12. # include "ggml-vulkan.h"
  13. #elif defined(GGML_USE_SYCL)
  14. # include "ggml-sycl.h"
  15. #elif defined(GGML_USE_KOMPUTE)
  16. # include "ggml-kompute.h"
  17. #endif
  18. #ifdef GGML_USE_METAL
  19. # include "ggml-metal.h"
  20. #endif
  21. #ifdef GGML_USE_MPI
  22. # include "ggml-mpi.h"
  23. #endif
  24. #ifndef QK_K
  25. # ifdef GGML_QKK_64
  26. # define QK_K 64
  27. # else
  28. # define QK_K 256
  29. # endif
  30. #endif
  31. #ifdef __has_include
  32. #if __has_include(<unistd.h>)
  33. #include <unistd.h>
  34. #if defined(_POSIX_MAPPED_FILES)
  35. #include <sys/mman.h>
  36. #include <fcntl.h>
  37. #endif
  38. #if defined(_POSIX_MEMLOCK_RANGE)
  39. #include <sys/resource.h>
  40. #endif
  41. #endif
  42. #endif
  43. #if defined(_WIN32)
  44. #define WIN32_LEAN_AND_MEAN
  45. #ifndef NOMINMAX
  46. #define NOMINMAX
  47. #endif
  48. #include <windows.h>
  49. #ifndef PATH_MAX
  50. #define PATH_MAX MAX_PATH
  51. #endif
  52. #include <io.h>
  53. #endif
  54. #include <algorithm>
  55. #include <array>
  56. #include <cassert>
  57. #include <cctype>
  58. #include <cfloat>
  59. #include <cinttypes>
  60. #include <climits>
  61. #include <cmath>
  62. #include <cstdarg>
  63. #include <cstddef>
  64. #include <cstdint>
  65. #include <cstdio>
  66. #include <cstring>
  67. #include <ctime>
  68. #include <forward_list>
  69. #include <fstream>
  70. #include <functional>
  71. #include <future>
  72. #include <initializer_list>
  73. #include <locale>
  74. #include <map>
  75. #include <memory>
  76. #include <mutex>
  77. #include <numeric>
  78. #include <queue>
  79. #include <random>
  80. #include <regex>
  81. #include <set>
  82. #include <sstream>
  83. #include <thread>
  84. #include <type_traits>
  85. #include <unordered_map>
  86. #if defined(_MSC_VER)
  87. #pragma warning(disable: 4244 4267) // possible loss of data
  88. #endif
  89. #ifdef __GNUC__
  90. #ifdef __MINGW32__
  91. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  92. #else
  93. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  94. #endif
  95. #else
  96. #define LLAMA_ATTRIBUTE_FORMAT(...)
  97. #endif
  98. #define LLAMA_MAX_NODES 8192
  99. #define LLAMA_MAX_EXPERTS 60
  100. //
  101. // logging
  102. //
  103. LLAMA_ATTRIBUTE_FORMAT(2, 3)
  104. static void llama_log_internal (ggml_log_level level, const char* format, ...);
  105. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data);
  106. #define LLAMA_LOG_INFO(...) llama_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__)
  107. #define LLAMA_LOG_WARN(...) llama_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__)
  108. #define LLAMA_LOG_ERROR(...) llama_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
  109. //
  110. // helpers
  111. //
  112. static size_t utf8_len(char src) {
  113. const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
  114. uint8_t highbits = static_cast<uint8_t>(src) >> 4;
  115. return lookup[highbits];
  116. }
  117. static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
  118. std::string result;
  119. for (size_t pos = 0; ; pos += search.length()) {
  120. auto new_pos = s.find(search, pos);
  121. if (new_pos == std::string::npos) {
  122. result += s.substr(pos, s.size() - pos);
  123. break;
  124. }
  125. result += s.substr(pos, new_pos - pos) + replace;
  126. pos = new_pos;
  127. }
  128. s = std::move(result);
  129. }
  130. static bool is_float_close(float a, float b, float abs_tol) {
  131. // Check for non-negative tolerance
  132. if (abs_tol < 0.0) {
  133. throw std::invalid_argument("Tolerance must be non-negative");
  134. }
  135. // Exact equality check
  136. if (a == b) {
  137. return true;
  138. }
  139. // Check for infinities
  140. if (std::isinf(a) || std::isinf(b)) {
  141. return false;
  142. }
  143. // Regular comparison using the provided absolute tolerance
  144. return std::fabs(b - a) <= abs_tol;
  145. }
  146. static void zeros(std::ofstream & file, size_t n) {
  147. char zero = 0;
  148. for (size_t i = 0; i < n; ++i) {
  149. file.write(&zero, 1);
  150. }
  151. }
  152. LLAMA_ATTRIBUTE_FORMAT(1, 2)
  153. static std::string format(const char * fmt, ...) {
  154. va_list ap;
  155. va_list ap2;
  156. va_start(ap, fmt);
  157. va_copy(ap2, ap);
  158. int size = vsnprintf(NULL, 0, fmt, ap);
  159. GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
  160. std::vector<char> buf(size + 1);
  161. int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
  162. GGML_ASSERT(size2 == size);
  163. va_end(ap2);
  164. va_end(ap);
  165. return std::string(buf.data(), size);
  166. }
  167. //
  168. // gguf constants (sync with gguf.py)
  169. //
  170. enum llm_arch {
  171. LLM_ARCH_LLAMA,
  172. LLM_ARCH_FALCON,
  173. LLM_ARCH_BAICHUAN,
  174. LLM_ARCH_GROK,
  175. LLM_ARCH_GPT2,
  176. LLM_ARCH_GPTJ,
  177. LLM_ARCH_GPTNEOX,
  178. LLM_ARCH_MPT,
  179. LLM_ARCH_STARCODER,
  180. LLM_ARCH_PERSIMMON,
  181. LLM_ARCH_REFACT,
  182. LLM_ARCH_BERT,
  183. LLM_ARCH_NOMIC_BERT,
  184. LLM_ARCH_BLOOM,
  185. LLM_ARCH_STABLELM,
  186. LLM_ARCH_QWEN,
  187. LLM_ARCH_QWEN2,
  188. LLM_ARCH_QWEN2MOE,
  189. LLM_ARCH_PHI2,
  190. LLM_ARCH_PHI3,
  191. LLM_ARCH_PLAMO,
  192. LLM_ARCH_CODESHELL,
  193. LLM_ARCH_ORION,
  194. LLM_ARCH_INTERNLM2,
  195. LLM_ARCH_MINICPM,
  196. LLM_ARCH_GEMMA,
  197. LLM_ARCH_STARCODER2,
  198. LLM_ARCH_MAMBA,
  199. LLM_ARCH_XVERSE,
  200. LLM_ARCH_COMMAND_R,
  201. LLM_ARCH_DBRX,
  202. LLM_ARCH_OLMO,
  203. LLM_ARCH_UNKNOWN,
  204. };
  205. static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
  206. { LLM_ARCH_LLAMA, "llama" },
  207. { LLM_ARCH_FALCON, "falcon" },
  208. { LLM_ARCH_GROK, "grok" },
  209. { LLM_ARCH_GPT2, "gpt2" },
  210. { LLM_ARCH_GPTJ, "gptj" },
  211. { LLM_ARCH_GPTNEOX, "gptneox" },
  212. { LLM_ARCH_MPT, "mpt" },
  213. { LLM_ARCH_BAICHUAN, "baichuan" },
  214. { LLM_ARCH_STARCODER, "starcoder" },
  215. { LLM_ARCH_PERSIMMON, "persimmon" },
  216. { LLM_ARCH_REFACT, "refact" },
  217. { LLM_ARCH_BERT, "bert" },
  218. { LLM_ARCH_NOMIC_BERT, "nomic-bert" },
  219. { LLM_ARCH_BLOOM, "bloom" },
  220. { LLM_ARCH_STABLELM, "stablelm" },
  221. { LLM_ARCH_QWEN, "qwen" },
  222. { LLM_ARCH_QWEN2, "qwen2" },
  223. { LLM_ARCH_QWEN2MOE, "qwen2moe" },
  224. { LLM_ARCH_PHI2, "phi2" },
  225. { LLM_ARCH_PHI3, "phi3" },
  226. { LLM_ARCH_PLAMO, "plamo" },
  227. { LLM_ARCH_CODESHELL, "codeshell" },
  228. { LLM_ARCH_ORION, "orion" },
  229. { LLM_ARCH_INTERNLM2, "internlm2" },
  230. { LLM_ARCH_MINICPM, "minicpm" },
  231. { LLM_ARCH_GEMMA, "gemma" },
  232. { LLM_ARCH_STARCODER2, "starcoder2" },
  233. { LLM_ARCH_MAMBA, "mamba" },
  234. { LLM_ARCH_XVERSE, "xverse" },
  235. { LLM_ARCH_COMMAND_R, "command-r" },
  236. { LLM_ARCH_DBRX, "dbrx" },
  237. { LLM_ARCH_OLMO, "olmo" },
  238. { LLM_ARCH_UNKNOWN, "(unknown)" },
  239. };
  240. enum llm_kv {
  241. LLM_KV_GENERAL_ARCHITECTURE,
  242. LLM_KV_GENERAL_QUANTIZATION_VERSION,
  243. LLM_KV_GENERAL_ALIGNMENT,
  244. LLM_KV_GENERAL_NAME,
  245. LLM_KV_GENERAL_AUTHOR,
  246. LLM_KV_GENERAL_VERSION,
  247. LLM_KV_GENERAL_URL,
  248. LLM_KV_GENERAL_DESCRIPTION,
  249. LLM_KV_GENERAL_LICENSE,
  250. LLM_KV_GENERAL_SOURCE_URL,
  251. LLM_KV_GENERAL_SOURCE_HF_REPO,
  252. LLM_KV_VOCAB_SIZE,
  253. LLM_KV_CONTEXT_LENGTH,
  254. LLM_KV_EMBEDDING_LENGTH,
  255. LLM_KV_BLOCK_COUNT,
  256. LLM_KV_FEED_FORWARD_LENGTH,
  257. LLM_KV_USE_PARALLEL_RESIDUAL,
  258. LLM_KV_TENSOR_DATA_LAYOUT,
  259. LLM_KV_EXPERT_COUNT,
  260. LLM_KV_EXPERT_USED_COUNT,
  261. LLM_KV_POOLING_TYPE,
  262. LLM_KV_LOGIT_SCALE,
  263. LLM_KV_ATTENTION_HEAD_COUNT,
  264. LLM_KV_ATTENTION_HEAD_COUNT_KV,
  265. LLM_KV_ATTENTION_MAX_ALIBI_BIAS,
  266. LLM_KV_ATTENTION_CLAMP_KQV,
  267. LLM_KV_ATTENTION_KEY_LENGTH,
  268. LLM_KV_ATTENTION_VALUE_LENGTH,
  269. LLM_KV_ATTENTION_LAYERNORM_EPS,
  270. LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,
  271. LLM_KV_ATTENTION_CAUSAL,
  272. LLM_KV_ROPE_DIMENSION_COUNT,
  273. LLM_KV_ROPE_FREQ_BASE,
  274. LLM_KV_ROPE_SCALE_LINEAR,
  275. LLM_KV_ROPE_SCALING_TYPE,
  276. LLM_KV_ROPE_SCALING_FACTOR,
  277. LLM_KV_ROPE_SCALING_ORIG_CTX_LEN,
  278. LLM_KV_ROPE_SCALING_FINETUNED,
  279. LLM_KV_SPLIT_NO,
  280. LLM_KV_SPLIT_COUNT,
  281. LLM_KV_SPLIT_TENSORS_COUNT,
  282. LLM_KV_SSM_INNER_SIZE,
  283. LLM_KV_SSM_CONV_KERNEL,
  284. LLM_KV_SSM_STATE_SIZE,
  285. LLM_KV_SSM_TIME_STEP_RANK,
  286. LLM_KV_TOKENIZER_MODEL,
  287. LLM_KV_TOKENIZER_LIST,
  288. LLM_KV_TOKENIZER_TOKEN_TYPE,
  289. LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT,
  290. LLM_KV_TOKENIZER_SCORES,
  291. LLM_KV_TOKENIZER_MERGES,
  292. LLM_KV_TOKENIZER_BOS_ID,
  293. LLM_KV_TOKENIZER_EOS_ID,
  294. LLM_KV_TOKENIZER_UNK_ID,
  295. LLM_KV_TOKENIZER_SEP_ID,
  296. LLM_KV_TOKENIZER_PAD_ID,
  297. LLM_KV_TOKENIZER_CLS_ID,
  298. LLM_KV_TOKENIZER_MASK_ID,
  299. LLM_KV_TOKENIZER_ADD_BOS,
  300. LLM_KV_TOKENIZER_ADD_EOS,
  301. LLM_KV_TOKENIZER_ADD_PREFIX,
  302. LLM_KV_TOKENIZER_HF_JSON,
  303. LLM_KV_TOKENIZER_RWKV,
  304. LLM_KV_TOKENIZER_PREFIX_ID,
  305. LLM_KV_TOKENIZER_SUFFIX_ID,
  306. LLM_KV_TOKENIZER_MIDDLE_ID,
  307. LLM_KV_TOKENIZER_EOT_ID,
  308. };
  309. static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
  310. { LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" },
  311. { LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" },
  312. { LLM_KV_GENERAL_ALIGNMENT, "general.alignment" },
  313. { LLM_KV_GENERAL_NAME, "general.name" },
  314. { LLM_KV_GENERAL_AUTHOR, "general.author" },
  315. { LLM_KV_GENERAL_VERSION, "general.version" },
  316. { LLM_KV_GENERAL_URL, "general.url" },
  317. { LLM_KV_GENERAL_DESCRIPTION, "general.description" },
  318. { LLM_KV_GENERAL_LICENSE, "general.license" },
  319. { LLM_KV_GENERAL_SOURCE_URL, "general.source.url" },
  320. { LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" },
  321. { LLM_KV_VOCAB_SIZE, "%s.vocab_size" },
  322. { LLM_KV_CONTEXT_LENGTH, "%s.context_length" },
  323. { LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" },
  324. { LLM_KV_BLOCK_COUNT, "%s.block_count" },
  325. { LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" },
  326. { LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" },
  327. { LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
  328. { LLM_KV_EXPERT_COUNT, "%s.expert_count" },
  329. { LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" },
  330. { LLM_KV_POOLING_TYPE , "%s.pooling_type" },
  331. { LLM_KV_LOGIT_SCALE, "%s.logit_scale" },
  332. { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
  333. { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
  334. { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
  335. { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
  336. { LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" },
  337. { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" },
  338. { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
  339. { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
  340. { LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" },
  341. { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
  342. { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
  343. { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" },
  344. { LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" },
  345. { LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" },
  346. { LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" },
  347. { LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" },
  348. { LLM_KV_SPLIT_NO, "split.no" },
  349. { LLM_KV_SPLIT_COUNT, "split.count" },
  350. { LLM_KV_SPLIT_TENSORS_COUNT, "split.tensors.count" },
  351. { LLM_KV_SSM_CONV_KERNEL, "%s.ssm.conv_kernel" },
  352. { LLM_KV_SSM_INNER_SIZE, "%s.ssm.inner_size" },
  353. { LLM_KV_SSM_STATE_SIZE, "%s.ssm.state_size" },
  354. { LLM_KV_SSM_TIME_STEP_RANK, "%s.ssm.time_step_rank" },
  355. { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" },
  356. { LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" },
  357. { LLM_KV_TOKENIZER_TOKEN_TYPE, "tokenizer.ggml.token_type" },
  358. { LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, "tokenizer.ggml.token_type_count" },
  359. { LLM_KV_TOKENIZER_SCORES, "tokenizer.ggml.scores" },
  360. { LLM_KV_TOKENIZER_MERGES, "tokenizer.ggml.merges" },
  361. { LLM_KV_TOKENIZER_BOS_ID, "tokenizer.ggml.bos_token_id" },
  362. { LLM_KV_TOKENIZER_EOS_ID, "tokenizer.ggml.eos_token_id" },
  363. { LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" },
  364. { LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" },
  365. { LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" },
  366. { LLM_KV_TOKENIZER_CLS_ID, "tokenizer.ggml.cls_token_id" },
  367. { LLM_KV_TOKENIZER_MASK_ID, "tokenizer.ggml.mask_token_id" },
  368. { LLM_KV_TOKENIZER_ADD_BOS, "tokenizer.ggml.add_bos_token" },
  369. { LLM_KV_TOKENIZER_ADD_EOS, "tokenizer.ggml.add_eos_token" },
  370. { LLM_KV_TOKENIZER_ADD_PREFIX, "tokenizer.ggml.add_space_prefix" },
  371. { LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
  372. { LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
  373. { LLM_KV_TOKENIZER_PREFIX_ID, "tokenizer.ggml.prefix_token_id" },
  374. { LLM_KV_TOKENIZER_SUFFIX_ID, "tokenizer.ggml.suffix_token_id" },
  375. { LLM_KV_TOKENIZER_MIDDLE_ID, "tokenizer.ggml.middle_token_id" },
  376. { LLM_KV_TOKENIZER_EOT_ID, "tokenizer.ggml.eot_token_id" },
  377. };
  378. struct LLM_KV {
  379. LLM_KV(llm_arch arch) : arch(arch) {}
  380. llm_arch arch;
  381. std::string operator()(llm_kv kv) const {
  382. return ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch));
  383. }
  384. };
  385. enum llm_tensor {
  386. LLM_TENSOR_TOKEN_EMBD,
  387. LLM_TENSOR_TOKEN_EMBD_NORM,
  388. LLM_TENSOR_TOKEN_TYPES,
  389. LLM_TENSOR_POS_EMBD,
  390. LLM_TENSOR_OUTPUT,
  391. LLM_TENSOR_OUTPUT_NORM,
  392. LLM_TENSOR_ROPE_FREQS,
  393. LLM_TENSOR_ATTN_Q,
  394. LLM_TENSOR_ATTN_K,
  395. LLM_TENSOR_ATTN_V,
  396. LLM_TENSOR_ATTN_QKV,
  397. LLM_TENSOR_ATTN_OUT,
  398. LLM_TENSOR_ATTN_NORM,
  399. LLM_TENSOR_ATTN_NORM_2,
  400. LLM_TENSOR_ATTN_OUT_NORM,
  401. LLM_TENSOR_ATTN_ROT_EMBD,
  402. LLM_TENSOR_FFN_GATE_INP,
  403. LLM_TENSOR_FFN_GATE_INP_SHEXP,
  404. LLM_TENSOR_FFN_NORM,
  405. LLM_TENSOR_FFN_GATE,
  406. LLM_TENSOR_FFN_DOWN,
  407. LLM_TENSOR_FFN_UP,
  408. LLM_TENSOR_FFN_ACT,
  409. LLM_TENSOR_FFN_DOWN_EXP, // split experts for backward compatibility
  410. LLM_TENSOR_FFN_GATE_EXP,
  411. LLM_TENSOR_FFN_UP_EXP,
  412. LLM_TENSOR_FFN_DOWN_EXPS, // merged experts
  413. LLM_TENSOR_FFN_GATE_EXPS,
  414. LLM_TENSOR_FFN_UP_EXPS,
  415. LLM_TENSOR_FFN_DOWN_SHEXP,
  416. LLM_TENSOR_FFN_GATE_SHEXP,
  417. LLM_TENSOR_FFN_UP_SHEXP,
  418. LLM_TENSOR_ATTN_Q_NORM,
  419. LLM_TENSOR_ATTN_K_NORM,
  420. LLM_TENSOR_LAYER_OUT_NORM,
  421. LLM_TENSOR_SSM_IN,
  422. LLM_TENSOR_SSM_CONV1D,
  423. LLM_TENSOR_SSM_X,
  424. LLM_TENSOR_SSM_DT,
  425. LLM_TENSOR_SSM_A,
  426. LLM_TENSOR_SSM_D,
  427. LLM_TENSOR_SSM_OUT,
  428. };
  429. static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
  430. {
  431. LLM_ARCH_LLAMA,
  432. {
  433. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  434. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  435. { LLM_TENSOR_OUTPUT, "output" },
  436. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  437. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  438. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  439. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  440. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  441. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  442. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  443. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  444. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  445. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  446. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  447. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  448. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  449. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  450. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  451. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  452. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  453. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  454. },
  455. },
  456. {
  457. LLM_ARCH_BAICHUAN,
  458. {
  459. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  460. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  461. { LLM_TENSOR_OUTPUT, "output" },
  462. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  463. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  464. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  465. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  466. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  467. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  468. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  469. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  470. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  471. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  472. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  473. },
  474. },
  475. {
  476. LLM_ARCH_FALCON,
  477. {
  478. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  479. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  480. { LLM_TENSOR_OUTPUT, "output" },
  481. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  482. { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
  483. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  484. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  485. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  486. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  487. },
  488. },
  489. {
  490. LLM_ARCH_GROK,
  491. {
  492. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  493. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  494. { LLM_TENSOR_OUTPUT, "output" },
  495. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  496. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  497. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  498. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  499. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  500. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  501. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  502. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  503. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  504. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  505. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  506. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  507. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  508. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  509. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  510. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  511. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  512. },
  513. },
  514. {
  515. LLM_ARCH_GPT2,
  516. {
  517. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  518. { LLM_TENSOR_POS_EMBD, "position_embd" },
  519. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  520. { LLM_TENSOR_OUTPUT, "output" },
  521. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  522. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  523. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  524. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  525. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  526. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  527. },
  528. },
  529. {
  530. LLM_ARCH_GPTJ,
  531. {
  532. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  533. },
  534. },
  535. {
  536. LLM_ARCH_GPTNEOX,
  537. {
  538. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  539. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  540. { LLM_TENSOR_OUTPUT, "output" },
  541. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  542. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  543. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  544. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  545. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  546. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  547. },
  548. },
  549. {
  550. LLM_ARCH_PERSIMMON,
  551. {
  552. { LLM_TENSOR_TOKEN_EMBD, "token_embd"},
  553. { LLM_TENSOR_OUTPUT_NORM, "output_norm"},
  554. { LLM_TENSOR_OUTPUT, "output"},
  555. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm"},
  556. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv"},
  557. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output"},
  558. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
  559. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
  560. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm"},
  561. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down"},
  562. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up"},
  563. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd"},
  564. },
  565. },
  566. {
  567. LLM_ARCH_MPT,
  568. {
  569. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  570. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  571. { LLM_TENSOR_OUTPUT, "output"},
  572. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  573. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  574. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  575. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  576. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  577. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  578. { LLM_TENSOR_FFN_ACT, "blk.%d.ffn.act" },
  579. { LLM_TENSOR_POS_EMBD, "position_embd" },
  580. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
  581. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
  582. },
  583. },
  584. {
  585. LLM_ARCH_STARCODER,
  586. {
  587. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  588. { LLM_TENSOR_POS_EMBD, "position_embd" },
  589. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  590. { LLM_TENSOR_OUTPUT, "output" },
  591. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  592. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  593. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  594. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  595. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  596. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  597. },
  598. },
  599. {
  600. LLM_ARCH_REFACT,
  601. {
  602. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  603. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  604. { LLM_TENSOR_OUTPUT, "output" },
  605. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  606. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  607. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  608. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  609. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  610. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  611. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  612. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  613. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  614. },
  615. },
  616. {
  617. LLM_ARCH_BERT,
  618. {
  619. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  620. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  621. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  622. { LLM_TENSOR_POS_EMBD, "position_embd" },
  623. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  624. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  625. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  626. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  627. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  628. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  629. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  630. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  631. },
  632. },
  633. {
  634. LLM_ARCH_NOMIC_BERT,
  635. {
  636. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  637. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  638. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  639. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  640. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  641. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  642. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  643. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  644. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  645. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  646. },
  647. },
  648. {
  649. LLM_ARCH_BLOOM,
  650. {
  651. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  652. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  653. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  654. { LLM_TENSOR_OUTPUT, "output" },
  655. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  656. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  657. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  658. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  659. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  660. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  661. },
  662. },
  663. {
  664. LLM_ARCH_STABLELM,
  665. {
  666. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  667. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  668. { LLM_TENSOR_OUTPUT, "output" },
  669. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  670. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  671. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  672. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  673. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  674. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  675. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  676. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  677. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  678. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  679. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  680. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  681. },
  682. },
  683. {
  684. LLM_ARCH_QWEN,
  685. {
  686. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  687. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  688. { LLM_TENSOR_OUTPUT, "output" },
  689. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  690. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  691. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  692. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  693. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  694. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  695. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  696. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  697. },
  698. },
  699. {
  700. LLM_ARCH_QWEN2,
  701. {
  702. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  703. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  704. { LLM_TENSOR_OUTPUT, "output" },
  705. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  706. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  707. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  708. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  709. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  710. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  711. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  712. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  713. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  714. },
  715. },
  716. {
  717. LLM_ARCH_QWEN2MOE,
  718. {
  719. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  720. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  721. { LLM_TENSOR_OUTPUT, "output" },
  722. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  723. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  724. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  725. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  726. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  727. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  728. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  729. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  730. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  731. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  732. { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" },
  733. { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
  734. { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
  735. { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
  736. },
  737. },
  738. {
  739. LLM_ARCH_PHI2,
  740. {
  741. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  742. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  743. { LLM_TENSOR_OUTPUT, "output" },
  744. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  745. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  746. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  747. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  748. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  749. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  750. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  751. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  752. },
  753. },
  754. {
  755. LLM_ARCH_PHI3,
  756. {
  757. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  758. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  759. { LLM_TENSOR_OUTPUT, "output" },
  760. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  761. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  762. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  763. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  764. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  765. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  766. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  767. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  768. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  769. },
  770. },
  771. {
  772. LLM_ARCH_PLAMO,
  773. {
  774. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  775. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  776. { LLM_TENSOR_OUTPUT, "output" },
  777. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  778. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  779. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  780. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  781. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  782. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  783. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  784. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  785. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  786. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  787. },
  788. },
  789. {
  790. LLM_ARCH_CODESHELL,
  791. {
  792. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  793. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  794. { LLM_TENSOR_OUTPUT, "output" },
  795. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  796. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  797. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  798. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  799. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  800. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  801. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  802. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  803. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  804. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  805. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  806. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  807. },
  808. },
  809. {
  810. LLM_ARCH_ORION,
  811. {
  812. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  813. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  814. { LLM_TENSOR_OUTPUT, "output" },
  815. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  816. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  817. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  818. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  819. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  820. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  821. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  822. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  823. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  824. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  825. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  826. },
  827. },
  828. {
  829. LLM_ARCH_INTERNLM2,
  830. {
  831. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  832. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  833. { LLM_TENSOR_OUTPUT, "output" },
  834. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  835. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  836. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  837. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  838. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  839. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  840. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  841. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  842. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  843. },
  844. },
  845. {
  846. LLM_ARCH_MINICPM,
  847. {
  848. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  849. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  850. { LLM_TENSOR_OUTPUT, "output" },
  851. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  852. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  853. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  854. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  855. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  856. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  857. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  858. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  859. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  860. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  861. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  862. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  863. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  864. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  865. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  866. },
  867. },
  868. {
  869. LLM_ARCH_GEMMA,
  870. {
  871. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  872. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  873. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  874. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  875. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  876. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  877. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  878. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  879. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  880. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  881. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  882. },
  883. },
  884. {
  885. LLM_ARCH_STARCODER2,
  886. {
  887. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  888. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  889. { LLM_TENSOR_OUTPUT, "output" },
  890. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  891. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  892. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  893. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  894. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  895. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  896. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  897. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  898. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  899. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  900. },
  901. },
  902. {
  903. LLM_ARCH_MAMBA,
  904. {
  905. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  906. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  907. { LLM_TENSOR_OUTPUT, "output" },
  908. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  909. { LLM_TENSOR_SSM_IN, "blk.%d.ssm_in" },
  910. { LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" },
  911. { LLM_TENSOR_SSM_X, "blk.%d.ssm_x" },
  912. { LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" },
  913. { LLM_TENSOR_SSM_A, "blk.%d.ssm_a" },
  914. { LLM_TENSOR_SSM_D, "blk.%d.ssm_d" },
  915. { LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
  916. },
  917. },
  918. {
  919. LLM_ARCH_XVERSE,
  920. {
  921. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  922. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  923. { LLM_TENSOR_OUTPUT, "output" },
  924. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  925. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  926. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  927. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  928. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  929. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  930. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  931. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  932. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  933. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  934. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  935. },
  936. },
  937. {
  938. LLM_ARCH_COMMAND_R,
  939. {
  940. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  941. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  942. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  943. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  944. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  945. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  946. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  947. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  948. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  949. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  950. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  951. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  952. },
  953. },
  954. {
  955. LLM_ARCH_DBRX,
  956. {
  957. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  958. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  959. { LLM_TENSOR_OUTPUT, "output" },
  960. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  961. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  962. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  963. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  964. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  965. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  966. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  967. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  968. },
  969. },
  970. {
  971. LLM_ARCH_OLMO,
  972. {
  973. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  974. { LLM_TENSOR_OUTPUT, "output" },
  975. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  976. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  977. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  978. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  979. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  980. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  981. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  982. },
  983. },
  984. {
  985. LLM_ARCH_UNKNOWN,
  986. {
  987. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  988. },
  989. },
  990. };
  991. static llm_arch llm_arch_from_string(const std::string & name) {
  992. for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT
  993. if (kv.second == name) {
  994. return kv.first;
  995. }
  996. }
  997. return LLM_ARCH_UNKNOWN;
  998. }
  999. // helper to handle gguf constants
  1000. // usage:
  1001. //
  1002. // const auto tn = LLM_TN(LLM_ARCH_LLAMA);
  1003. //
  1004. // std::string name = tn(LLM_TENSOR_OUTPUT); -> "output"
  1005. // std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias"
  1006. // std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight"
  1007. //
  1008. struct LLM_TN {
  1009. LLM_TN(llm_arch arch) : arch(arch) {}
  1010. llm_arch arch;
  1011. std::string operator()(llm_tensor tensor) const {
  1012. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1013. return "__missing__";
  1014. }
  1015. return LLM_TENSOR_NAMES.at(arch).at(tensor);
  1016. }
  1017. std::string operator()(llm_tensor tensor, const std::string & suffix) const {
  1018. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1019. return "__missing__";
  1020. }
  1021. return LLM_TENSOR_NAMES.at(arch).at(tensor) + "." + suffix;
  1022. }
  1023. std::string operator()(llm_tensor tensor, int bid) const {
  1024. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1025. return "__missing__";
  1026. }
  1027. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid);
  1028. }
  1029. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const {
  1030. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1031. return "__missing__";
  1032. }
  1033. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid) + "." + suffix;
  1034. }
  1035. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid, int xid) const {
  1036. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1037. return "__missing__";
  1038. }
  1039. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid, xid) + "." + suffix;
  1040. }
  1041. };
  1042. //
  1043. // gguf helpers
  1044. //
  1045. static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
  1046. { LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
  1047. { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
  1048. { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
  1049. };
  1050. static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
  1051. for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
  1052. if (kv.second == name) {
  1053. return (llama_rope_scaling_type) kv.first;
  1054. }
  1055. }
  1056. return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  1057. }
  1058. static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
  1059. switch (type) {
  1060. case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
  1061. case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
  1062. case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
  1063. case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
  1064. case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
  1065. case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
  1066. case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
  1067. case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
  1068. case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
  1069. case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
  1070. case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
  1071. default: return format("unknown type %d", type);
  1072. }
  1073. }
  1074. static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
  1075. const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
  1076. switch (type) {
  1077. case GGUF_TYPE_STRING:
  1078. return gguf_get_val_str(ctx_gguf, i);
  1079. case GGUF_TYPE_ARRAY:
  1080. {
  1081. const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
  1082. int arr_n = gguf_get_arr_n(ctx_gguf, i);
  1083. const void * data = gguf_get_arr_data(ctx_gguf, i);
  1084. std::stringstream ss;
  1085. ss << "[";
  1086. for (int j = 0; j < arr_n; j++) {
  1087. if (arr_type == GGUF_TYPE_STRING) {
  1088. std::string val = gguf_get_arr_str(ctx_gguf, i, j);
  1089. // escape quotes
  1090. replace_all(val, "\\", "\\\\");
  1091. replace_all(val, "\"", "\\\"");
  1092. ss << '"' << val << '"';
  1093. } else if (arr_type == GGUF_TYPE_ARRAY) {
  1094. ss << "???";
  1095. } else {
  1096. ss << gguf_data_to_str(arr_type, data, j);
  1097. }
  1098. if (j < arr_n - 1) {
  1099. ss << ", ";
  1100. }
  1101. }
  1102. ss << "]";
  1103. return ss.str();
  1104. }
  1105. default:
  1106. return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
  1107. }
  1108. }
  1109. //
  1110. // llama helpers
  1111. //
  1112. #if defined(_WIN32)
  1113. static std::string llama_format_win_err(DWORD err) {
  1114. LPSTR buf;
  1115. size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
  1116. NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
  1117. if (!size) {
  1118. return "FormatMessageA failed";
  1119. }
  1120. std::string ret(buf, size);
  1121. LocalFree(buf);
  1122. return ret;
  1123. }
  1124. #endif
  1125. template <typename T>
  1126. struct no_init {
  1127. T value;
  1128. no_init() { /* do nothing */ }
  1129. };
  1130. struct llama_file {
  1131. // use FILE * so we don't have to re-open the file to mmap
  1132. FILE * fp;
  1133. size_t size;
  1134. llama_file(const char * fname, const char * mode) {
  1135. fp = ggml_fopen(fname, mode);
  1136. if (fp == NULL) {
  1137. throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
  1138. }
  1139. seek(0, SEEK_END);
  1140. size = tell();
  1141. seek(0, SEEK_SET);
  1142. }
  1143. size_t tell() const {
  1144. #ifdef _WIN32
  1145. __int64 ret = _ftelli64(fp);
  1146. #else
  1147. long ret = std::ftell(fp);
  1148. #endif
  1149. GGML_ASSERT(ret != -1); // this really shouldn't fail
  1150. return (size_t) ret;
  1151. }
  1152. void seek(size_t offset, int whence) const {
  1153. #ifdef _WIN32
  1154. int ret = _fseeki64(fp, (__int64) offset, whence);
  1155. #else
  1156. int ret = std::fseek(fp, (long) offset, whence);
  1157. #endif
  1158. GGML_ASSERT(ret == 0); // same
  1159. }
  1160. void read_raw(void * ptr, size_t len) const {
  1161. if (len == 0) {
  1162. return;
  1163. }
  1164. errno = 0;
  1165. std::size_t ret = std::fread(ptr, len, 1, fp);
  1166. if (ferror(fp)) {
  1167. throw std::runtime_error(format("read error: %s", strerror(errno)));
  1168. }
  1169. if (ret != 1) {
  1170. throw std::runtime_error("unexpectedly reached end of file");
  1171. }
  1172. }
  1173. uint32_t read_u32() const {
  1174. uint32_t ret;
  1175. read_raw(&ret, sizeof(ret));
  1176. return ret;
  1177. }
  1178. void write_raw(const void * ptr, size_t len) const {
  1179. if (len == 0) {
  1180. return;
  1181. }
  1182. errno = 0;
  1183. size_t ret = std::fwrite(ptr, len, 1, fp);
  1184. if (ret != 1) {
  1185. throw std::runtime_error(format("write error: %s", strerror(errno)));
  1186. }
  1187. }
  1188. void write_u32(std::uint32_t val) const {
  1189. write_raw(&val, sizeof(val));
  1190. }
  1191. ~llama_file() {
  1192. if (fp) {
  1193. std::fclose(fp);
  1194. }
  1195. }
  1196. };
  1197. using llama_files = std::vector<std::unique_ptr<llama_file>>;
  1198. struct llama_mmap {
  1199. void * addr;
  1200. size_t size;
  1201. llama_mmap(const llama_mmap &) = delete;
  1202. #ifdef _POSIX_MAPPED_FILES
  1203. static constexpr bool SUPPORTED = true;
  1204. // list of mapped fragments (first_offset, last_offset)
  1205. std::vector<std::pair<size_t, size_t>> mapped_fragments;
  1206. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
  1207. size = file->size;
  1208. int fd = fileno(file->fp);
  1209. int flags = MAP_SHARED;
  1210. // prefetch/readahead impairs performance on NUMA systems
  1211. if (numa) { prefetch = 0; }
  1212. #ifdef __linux__
  1213. // advise the kernel to read the file sequentially (increases readahead)
  1214. if (posix_fadvise(fd, 0, 0, POSIX_FADV_SEQUENTIAL)) {
  1215. LLAMA_LOG_WARN("warning: posix_fadvise(.., POSIX_FADV_SEQUENTIAL) failed: %s\n",
  1216. strerror(errno));
  1217. }
  1218. if (prefetch) { flags |= MAP_POPULATE; }
  1219. #endif
  1220. addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
  1221. if (addr == MAP_FAILED) { // NOLINT
  1222. throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
  1223. }
  1224. if (prefetch > 0) {
  1225. // advise the kernel to preload the mapped memory
  1226. if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) {
  1227. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n",
  1228. strerror(errno));
  1229. }
  1230. }
  1231. if (numa) {
  1232. // advise the kernel not to use readahead
  1233. // (because the next page might not belong on the same node)
  1234. if (posix_madvise(addr, file->size, POSIX_MADV_RANDOM)) {
  1235. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n",
  1236. strerror(errno));
  1237. }
  1238. }
  1239. // initialize list of mapped_fragments
  1240. mapped_fragments.emplace_back(0, file->size);
  1241. }
  1242. static void align_range(size_t * first, size_t * last, size_t page_size) {
  1243. // align first to the next page
  1244. size_t offset_in_page = *first & (page_size - 1);
  1245. size_t offset_to_page = offset_in_page == 0 ? 0 : page_size - offset_in_page;
  1246. *first += offset_to_page;
  1247. // align last to the previous page
  1248. *last = *last & ~(page_size - 1);
  1249. if (*last <= *first) {
  1250. *last = *first;
  1251. }
  1252. }
  1253. // partially unmap the file in the range [first, last)
  1254. void unmap_fragment(size_t first, size_t last) {
  1255. // note: this function must not be called multiple times with overlapping ranges
  1256. // otherwise, there is a risk of invalidating addresses that have been repurposed for other mappings
  1257. int page_size = sysconf(_SC_PAGESIZE);
  1258. align_range(&first, &last, page_size);
  1259. size_t len = last - first;
  1260. if (len == 0) {
  1261. return;
  1262. }
  1263. GGML_ASSERT(first % page_size == 0);
  1264. GGML_ASSERT(last % page_size == 0);
  1265. GGML_ASSERT(last > first);
  1266. void * next_page_start = (uint8_t *) addr + first;
  1267. // unmap the range
  1268. if (munmap(next_page_start, len)) {
  1269. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1270. }
  1271. // update the list of mapped fragments to avoid unmapping the same range again in the destructor
  1272. std::vector<std::pair<size_t, size_t>> new_mapped_fragments;
  1273. for (const auto & frag : mapped_fragments) {
  1274. if (frag.first < first && frag.second > last) {
  1275. // the range is in the middle of the fragment, split it
  1276. new_mapped_fragments.emplace_back(frag.first, first);
  1277. new_mapped_fragments.emplace_back(last, frag.second);
  1278. } else if (frag.first < first && frag.second > first) {
  1279. // the range starts in the middle of the fragment
  1280. new_mapped_fragments.emplace_back(frag.first, first);
  1281. } else if (frag.first < last && frag.second > last) {
  1282. // the range ends in the middle of the fragment
  1283. new_mapped_fragments.emplace_back(last, frag.second);
  1284. } else if (frag.first >= first && frag.second <= last) {
  1285. // the range covers the entire fragment
  1286. } else {
  1287. // the range is outside the fragment
  1288. new_mapped_fragments.push_back(frag);
  1289. }
  1290. }
  1291. mapped_fragments = std::move(new_mapped_fragments);
  1292. }
  1293. ~llama_mmap() {
  1294. for (const auto & frag : mapped_fragments) {
  1295. if (munmap((char *) addr + frag.first, frag.second - frag.first)) {
  1296. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1297. }
  1298. }
  1299. }
  1300. #elif defined(_WIN32)
  1301. static constexpr bool SUPPORTED = true;
  1302. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1, bool numa = false) {
  1303. GGML_UNUSED(numa);
  1304. size = file->size;
  1305. HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
  1306. HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
  1307. if (hMapping == NULL) {
  1308. DWORD error = GetLastError();
  1309. throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
  1310. }
  1311. addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
  1312. DWORD error = GetLastError();
  1313. CloseHandle(hMapping);
  1314. if (addr == NULL) {
  1315. throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
  1316. }
  1317. if (prefetch > 0) {
  1318. #if _WIN32_WINNT >= 0x602
  1319. // PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it
  1320. BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
  1321. HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
  1322. // may fail on pre-Windows 8 systems
  1323. pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
  1324. if (pPrefetchVirtualMemory) {
  1325. // advise the kernel to preload the mapped memory
  1326. WIN32_MEMORY_RANGE_ENTRY range;
  1327. range.VirtualAddress = addr;
  1328. range.NumberOfBytes = (SIZE_T) std::min(size, prefetch);
  1329. if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
  1330. LLAMA_LOG_WARN("warning: PrefetchVirtualMemory failed: %s\n",
  1331. llama_format_win_err(GetLastError()).c_str());
  1332. }
  1333. }
  1334. #else
  1335. throw std::runtime_error("PrefetchVirtualMemory unavailable");
  1336. #endif
  1337. }
  1338. }
  1339. void unmap_fragment(size_t first, size_t last) {
  1340. // not supported
  1341. GGML_UNUSED(first);
  1342. GGML_UNUSED(last);
  1343. }
  1344. ~llama_mmap() {
  1345. if (!UnmapViewOfFile(addr)) {
  1346. LLAMA_LOG_WARN("warning: UnmapViewOfFile failed: %s\n",
  1347. llama_format_win_err(GetLastError()).c_str());
  1348. }
  1349. }
  1350. #else
  1351. static constexpr bool SUPPORTED = false;
  1352. llama_mmap(struct llama_file * file, size_t prefetch = -1, bool numa = false) {
  1353. GGML_UNUSED(file);
  1354. GGML_UNUSED(prefetch);
  1355. GGML_UNUSED(numa);
  1356. throw std::runtime_error("mmap not supported");
  1357. }
  1358. void unmap_fragment(size_t first, size_t last) {
  1359. GGML_UNUSED(first);
  1360. GGML_UNUSED(last);
  1361. throw std::runtime_error("mmap not supported");
  1362. }
  1363. #endif
  1364. };
  1365. using llama_mmaps = std::vector<std::unique_ptr<llama_mmap>>;
  1366. // Represents some region of memory being locked using mlock or VirtualLock;
  1367. // will automatically unlock on destruction.
  1368. struct llama_mlock {
  1369. void * addr = NULL;
  1370. size_t size = 0;
  1371. bool failed_already = false;
  1372. llama_mlock() {}
  1373. llama_mlock(const llama_mlock &) = delete;
  1374. ~llama_mlock() {
  1375. if (size) {
  1376. raw_unlock(addr, size);
  1377. }
  1378. }
  1379. void init(void * ptr) {
  1380. GGML_ASSERT(addr == NULL && size == 0); // NOLINT
  1381. addr = ptr;
  1382. }
  1383. void grow_to(size_t target_size) {
  1384. GGML_ASSERT(addr);
  1385. if (failed_already) {
  1386. return;
  1387. }
  1388. size_t granularity = lock_granularity();
  1389. target_size = (target_size + granularity - 1) & ~(granularity - 1);
  1390. if (target_size > size) {
  1391. if (raw_lock((uint8_t *) addr + size, target_size - size)) {
  1392. size = target_size;
  1393. } else {
  1394. failed_already = true;
  1395. }
  1396. }
  1397. }
  1398. #ifdef _POSIX_MEMLOCK_RANGE
  1399. static constexpr bool SUPPORTED = true;
  1400. static size_t lock_granularity() {
  1401. return (size_t) sysconf(_SC_PAGESIZE);
  1402. }
  1403. #ifdef __APPLE__
  1404. #define MLOCK_SUGGESTION \
  1405. "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
  1406. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MEMLOCK (ulimit -l).\n"
  1407. #else
  1408. #define MLOCK_SUGGESTION \
  1409. "Try increasing RLIMIT_MEMLOCK ('ulimit -l' as root).\n"
  1410. #endif
  1411. bool raw_lock(const void * addr, size_t size) const {
  1412. if (!mlock(addr, size)) {
  1413. return true;
  1414. }
  1415. char* errmsg = std::strerror(errno);
  1416. bool suggest = (errno == ENOMEM);
  1417. // Check if the resource limit is fine after all
  1418. struct rlimit lock_limit;
  1419. if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) {
  1420. suggest = false;
  1421. }
  1422. if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
  1423. suggest = false;
  1424. }
  1425. LLAMA_LOG_WARN("warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
  1426. size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
  1427. return false;
  1428. }
  1429. #undef MLOCK_SUGGESTION
  1430. static void raw_unlock(void * addr, size_t size) {
  1431. if (munlock(addr, size)) {
  1432. LLAMA_LOG_WARN("warning: failed to munlock buffer: %s\n", std::strerror(errno));
  1433. }
  1434. }
  1435. #elif defined(_WIN32)
  1436. static constexpr bool SUPPORTED = true;
  1437. static size_t lock_granularity() {
  1438. SYSTEM_INFO si;
  1439. GetSystemInfo(&si);
  1440. return (size_t) si.dwPageSize;
  1441. }
  1442. bool raw_lock(void * ptr, size_t len) const {
  1443. for (int tries = 1; ; tries++) {
  1444. if (VirtualLock(ptr, len)) {
  1445. return true;
  1446. }
  1447. if (tries == 2) {
  1448. LLAMA_LOG_WARN("warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
  1449. len, size, llama_format_win_err(GetLastError()).c_str());
  1450. return false;
  1451. }
  1452. // It failed but this was only the first try; increase the working
  1453. // set size and try again.
  1454. SIZE_T min_ws_size, max_ws_size;
  1455. if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
  1456. LLAMA_LOG_WARN("warning: GetProcessWorkingSetSize failed: %s\n",
  1457. llama_format_win_err(GetLastError()).c_str());
  1458. return false;
  1459. }
  1460. // Per MSDN: "The maximum number of pages that a process can lock
  1461. // is equal to the number of pages in its minimum working set minus
  1462. // a small overhead."
  1463. // Hopefully a megabyte is enough overhead:
  1464. size_t increment = len + 1048576;
  1465. // The minimum must be <= the maximum, so we need to increase both:
  1466. min_ws_size += increment;
  1467. max_ws_size += increment;
  1468. if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
  1469. LLAMA_LOG_WARN("warning: SetProcessWorkingSetSize failed: %s\n",
  1470. llama_format_win_err(GetLastError()).c_str());
  1471. return false;
  1472. }
  1473. }
  1474. }
  1475. static void raw_unlock(void * ptr, size_t len) {
  1476. if (!VirtualUnlock(ptr, len)) {
  1477. LLAMA_LOG_WARN("warning: failed to VirtualUnlock buffer: %s\n",
  1478. llama_format_win_err(GetLastError()).c_str());
  1479. }
  1480. }
  1481. #else
  1482. static constexpr bool SUPPORTED = false;
  1483. static size_t lock_granularity() {
  1484. return (size_t) 65536;
  1485. }
  1486. bool raw_lock(const void * addr, size_t len) const {
  1487. LLAMA_LOG_WARN("warning: mlock not supported on this system\n");
  1488. return false;
  1489. }
  1490. static void raw_unlock(const void * addr, size_t len) {}
  1491. #endif
  1492. };
  1493. using llama_mlocks = std::vector<std::unique_ptr<llama_mlock>>;
  1494. static std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) {
  1495. std::vector<char> result(8, 0);
  1496. const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special);
  1497. if (n_tokens < 0) {
  1498. result.resize(-n_tokens);
  1499. int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special);
  1500. GGML_ASSERT(check == -n_tokens);
  1501. }
  1502. else {
  1503. result.resize(n_tokens);
  1504. }
  1505. return std::string(result.data(), result.size());
  1506. }
  1507. static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer) {
  1508. ggml_backend_buffer_type_t buft = nullptr;
  1509. #if defined(GGML_USE_CUDA)
  1510. // host buffers should only be used when data is expected to be copied to/from the GPU
  1511. if (host_buffer) {
  1512. buft = ggml_backend_cuda_host_buffer_type();
  1513. }
  1514. #elif defined(GGML_USE_SYCL)
  1515. if (host_buffer) {
  1516. buft = ggml_backend_sycl_host_buffer_type();
  1517. }
  1518. #elif defined(GGML_USE_CPU_HBM)
  1519. buft = ggml_backend_cpu_hbm_buffer_type();
  1520. #elif defined(GGML_USE_VULKAN)
  1521. if (host_buffer) {
  1522. buft = ggml_backend_vk_host_buffer_type();
  1523. }
  1524. #endif
  1525. if (buft == nullptr) {
  1526. buft = ggml_backend_cpu_buffer_type();
  1527. }
  1528. return buft;
  1529. GGML_UNUSED(host_buffer);
  1530. }
  1531. static ggml_backend_buffer_type_t llama_default_buffer_type_offload(int gpu) {
  1532. ggml_backend_buffer_type_t buft = nullptr;
  1533. #ifdef GGML_USE_METAL
  1534. buft = ggml_backend_metal_buffer_type();
  1535. #elif defined(GGML_USE_CUDA)
  1536. buft = ggml_backend_cuda_buffer_type(gpu);
  1537. #elif defined(GGML_USE_VULKAN)
  1538. buft = ggml_backend_vk_buffer_type(gpu);
  1539. #elif defined(GGML_USE_SYCL)
  1540. buft = ggml_backend_sycl_buffer_type(gpu);
  1541. #elif defined(GGML_USE_CLBLAST)
  1542. buft = ggml_backend_opencl_buffer_type();
  1543. #elif defined(GGML_USE_KOMPUTE)
  1544. buft = ggml_backend_kompute_buffer_type(gpu);
  1545. if (buft == nullptr) {
  1546. LLAMA_LOG_WARN("%s: cannot use GPU %d, check `vulkaninfo --summary`\n", __func__, gpu);
  1547. }
  1548. #endif
  1549. if (buft == nullptr) {
  1550. buft = llama_default_buffer_type_cpu(true);
  1551. }
  1552. return buft;
  1553. GGML_UNUSED(gpu);
  1554. }
  1555. static ggml_backend_buffer_type_t llama_default_buffer_type_split(int fallback_gpu, const float * tensor_split) {
  1556. ggml_backend_buffer_type_t buft = nullptr;
  1557. #ifdef GGML_USE_CUDA
  1558. if (ggml_backend_cuda_get_device_count() > 1) {
  1559. buft = ggml_backend_cuda_split_buffer_type(tensor_split);
  1560. }
  1561. #endif
  1562. #ifdef GGML_USE_SYCL
  1563. if (ggml_backend_sycl_get_device_count() > 1) {
  1564. buft = ggml_backend_sycl_split_buffer_type(tensor_split);
  1565. }
  1566. #endif
  1567. if (buft == nullptr) {
  1568. buft = llama_default_buffer_type_offload(fallback_gpu);
  1569. }
  1570. return buft;
  1571. GGML_UNUSED(tensor_split);
  1572. }
  1573. static size_t llama_get_device_count() {
  1574. #if defined(GGML_USE_CUDA)
  1575. return ggml_backend_cuda_get_device_count();
  1576. #elif defined(GGML_USE_SYCL)
  1577. return ggml_backend_sycl_get_device_count();
  1578. #elif defined(GGML_USE_VULKAN)
  1579. return ggml_backend_vk_get_device_count();
  1580. #else
  1581. return 1;
  1582. #endif
  1583. }
  1584. static size_t llama_get_device_memory(int device) {
  1585. #if defined(GGML_USE_CUDA)
  1586. size_t total;
  1587. size_t free;
  1588. ggml_backend_cuda_get_device_memory(device, &free, &total);
  1589. return free;
  1590. #elif defined(GGML_USE_SYCL)
  1591. size_t total;
  1592. size_t free;
  1593. ggml_backend_sycl_get_device_memory(device, &free, &total);
  1594. return free;
  1595. #elif defined(GGML_USE_VULKAN)
  1596. size_t total;
  1597. size_t free;
  1598. ggml_backend_vk_get_device_memory(device, &free, &total);
  1599. return free;
  1600. #else
  1601. return 1;
  1602. GGML_UNUSED(device);
  1603. #endif
  1604. }
  1605. //
  1606. // globals
  1607. //
  1608. struct llama_state {
  1609. llama_state() {
  1610. #ifdef GGML_USE_METAL
  1611. ggml_backend_metal_log_set_callback(log_callback, log_callback_user_data);
  1612. #endif
  1613. }
  1614. // We save the log callback globally
  1615. ggml_log_callback log_callback = llama_log_callback_default;
  1616. void * log_callback_user_data = nullptr;
  1617. };
  1618. static llama_state g_state;
  1619. // available llama models
  1620. enum e_model {
  1621. MODEL_UNKNOWN,
  1622. MODEL_17M,
  1623. MODEL_22M,
  1624. MODEL_33M,
  1625. MODEL_109M,
  1626. MODEL_137M,
  1627. MODEL_335M,
  1628. MODEL_0_5B,
  1629. MODEL_1B,
  1630. MODEL_2B,
  1631. MODEL_3B,
  1632. MODEL_4B,
  1633. MODEL_7B,
  1634. MODEL_8B,
  1635. MODEL_12B,
  1636. MODEL_13B,
  1637. MODEL_14B,
  1638. MODEL_15B,
  1639. MODEL_20B,
  1640. MODEL_30B,
  1641. MODEL_34B,
  1642. MODEL_35B,
  1643. MODEL_40B,
  1644. MODEL_65B,
  1645. MODEL_70B,
  1646. MODEL_314B,
  1647. MODEL_SMALL,
  1648. MODEL_MEDIUM,
  1649. MODEL_LARGE,
  1650. MODEL_XL,
  1651. MODEL_A2_7B,
  1652. MODEL_8x7B,
  1653. MODEL_8x22B,
  1654. MODEL_16x12B,
  1655. };
  1656. static const size_t kiB = 1024;
  1657. static const size_t MiB = 1024*kiB;
  1658. static const size_t GiB = 1024*MiB;
  1659. struct llama_hparams {
  1660. bool vocab_only;
  1661. bool rope_finetuned;
  1662. uint32_t n_vocab;
  1663. uint32_t n_ctx_train; // context size the model was trained on
  1664. uint32_t n_embd;
  1665. uint32_t n_head;
  1666. uint32_t n_head_kv;
  1667. uint32_t n_layer;
  1668. uint32_t n_rot;
  1669. uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
  1670. uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
  1671. uint32_t n_ff;
  1672. uint32_t n_expert = 0;
  1673. uint32_t n_expert_used = 0;
  1674. uint32_t n_vocab_type = 0; // for BERT-style token types
  1675. float f_norm_eps;
  1676. float f_norm_rms_eps;
  1677. float rope_freq_base_train;
  1678. float rope_freq_scale_train;
  1679. uint32_t n_yarn_orig_ctx;
  1680. // for State Space Models
  1681. uint32_t ssm_d_conv = 0;
  1682. uint32_t ssm_d_inner = 0;
  1683. uint32_t ssm_d_state = 0;
  1684. uint32_t ssm_dt_rank = 0;
  1685. float f_clamp_kqv = 0.0f;
  1686. float f_max_alibi_bias = 0.0f;
  1687. float f_logit_scale = 0.0f;
  1688. bool causal_attn = true;
  1689. bool need_kq_pos = false;
  1690. enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE;
  1691. enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
  1692. enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
  1693. bool operator!=(const llama_hparams & other) const {
  1694. if (this->vocab_only != other.vocab_only) return true;
  1695. if (this->n_vocab != other.n_vocab) return true;
  1696. if (this->n_ctx_train != other.n_ctx_train) return true;
  1697. if (this->n_embd != other.n_embd) return true;
  1698. if (this->n_head != other.n_head) return true;
  1699. if (this->n_head_kv != other.n_head_kv) return true;
  1700. if (this->n_layer != other.n_layer) return true;
  1701. if (this->n_rot != other.n_rot) return true;
  1702. if (this->n_embd_head_k != other.n_embd_head_k) return true;
  1703. if (this->n_embd_head_v != other.n_embd_head_v) return true;
  1704. if (this->n_ff != other.n_ff) return true;
  1705. if (this->n_expert != other.n_expert) return true;
  1706. if (this->n_expert_used != other.n_expert_used) return true;
  1707. if (this->rope_finetuned != other.rope_finetuned) return true;
  1708. if (this->n_yarn_orig_ctx != other.n_yarn_orig_ctx) return true;
  1709. if (this->ssm_d_conv != other.ssm_d_conv) return true;
  1710. if (this->ssm_d_inner != other.ssm_d_inner) return true;
  1711. if (this->ssm_d_state != other.ssm_d_state) return true;
  1712. if (this->ssm_dt_rank != other.ssm_dt_rank) return true;
  1713. const float EPSILON = 1e-9f;
  1714. if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true;
  1715. if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true;
  1716. if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true;
  1717. if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true;
  1718. return false;
  1719. }
  1720. uint32_t n_gqa() const {
  1721. if (n_head_kv == 0) {
  1722. return 0;
  1723. }
  1724. return n_head/n_head_kv;
  1725. }
  1726. uint32_t n_embd_k_gqa() const { // dimension of key embeddings across all k-v heads
  1727. return n_embd_head_k * n_head_kv;
  1728. }
  1729. uint32_t n_embd_v_gqa() const { // dimension of value embeddings across all k-v heads
  1730. return n_embd_head_v * n_head_kv;
  1731. }
  1732. uint32_t n_embd_k_s() const { // dimension of the rolling state embeddings
  1733. // corresponds to Mamba's conv_states size
  1734. // TODO: maybe support other convolution strides than 1
  1735. // NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
  1736. return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner;
  1737. }
  1738. uint32_t n_embd_v_s() const { // dimension of the recurrent state embeddings
  1739. // corresponds to Mamba's ssm_states size
  1740. return ssm_d_state * ssm_d_inner;
  1741. }
  1742. };
  1743. struct llama_cparams {
  1744. uint32_t n_ctx; // context size used during inference
  1745. uint32_t n_batch;
  1746. uint32_t n_ubatch;
  1747. uint32_t n_seq_max;
  1748. uint32_t n_threads; // number of threads to use for generation
  1749. uint32_t n_threads_batch; // number of threads to use for batch processing
  1750. float rope_freq_base;
  1751. float rope_freq_scale;
  1752. uint32_t n_yarn_orig_ctx;
  1753. // These hyperparameters are not exposed in GGUF, because all
  1754. // existing YaRN models use the same values for them.
  1755. float yarn_ext_factor;
  1756. float yarn_attn_factor;
  1757. float yarn_beta_fast;
  1758. float yarn_beta_slow;
  1759. float defrag_thold;
  1760. bool embeddings;
  1761. bool causal_attn;
  1762. bool offload_kqv;
  1763. enum llama_pooling_type pooling_type;
  1764. ggml_backend_sched_eval_callback cb_eval;
  1765. void * cb_eval_user_data;
  1766. };
  1767. struct llama_layer {
  1768. // normalization
  1769. struct ggml_tensor * attn_norm;
  1770. struct ggml_tensor * attn_norm_b;
  1771. struct ggml_tensor * attn_norm_2;
  1772. struct ggml_tensor * attn_norm_2_b;
  1773. struct ggml_tensor * attn_q_norm;
  1774. struct ggml_tensor * attn_q_norm_b;
  1775. struct ggml_tensor * attn_k_norm;
  1776. struct ggml_tensor * attn_k_norm_b;
  1777. struct ggml_tensor * attn_out_norm;
  1778. struct ggml_tensor * attn_out_norm_b;
  1779. // attention
  1780. struct ggml_tensor * wq;
  1781. struct ggml_tensor * wk;
  1782. struct ggml_tensor * wv;
  1783. struct ggml_tensor * wo;
  1784. struct ggml_tensor * wqkv;
  1785. // attention bias
  1786. struct ggml_tensor * bq;
  1787. struct ggml_tensor * bk;
  1788. struct ggml_tensor * bv;
  1789. struct ggml_tensor * bo;
  1790. struct ggml_tensor * bqkv;
  1791. // normalization
  1792. struct ggml_tensor * ffn_norm;
  1793. struct ggml_tensor * ffn_norm_b;
  1794. struct ggml_tensor * layer_out_norm;
  1795. struct ggml_tensor * layer_out_norm_b;
  1796. // ff
  1797. struct ggml_tensor * ffn_gate; // w1
  1798. struct ggml_tensor * ffn_down; // w2
  1799. struct ggml_tensor * ffn_up; // w3
  1800. // ff MoE
  1801. struct ggml_tensor * ffn_gate_inp;
  1802. struct ggml_tensor * ffn_gate_exps;
  1803. struct ggml_tensor * ffn_down_exps;
  1804. struct ggml_tensor * ffn_up_exps ;
  1805. // ff shared expert (shexp)
  1806. struct ggml_tensor * ffn_gate_inp_shexp;
  1807. struct ggml_tensor * ffn_gate_shexp;
  1808. struct ggml_tensor * ffn_down_shexp;
  1809. struct ggml_tensor * ffn_up_shexp;
  1810. // ff bias
  1811. struct ggml_tensor * ffn_down_b; // b2
  1812. struct ggml_tensor * ffn_up_b; // b3
  1813. struct ggml_tensor * ffn_act;
  1814. // mamba proj
  1815. struct ggml_tensor * ssm_in;
  1816. struct ggml_tensor * ssm_x;
  1817. struct ggml_tensor * ssm_dt;
  1818. struct ggml_tensor * ssm_out;
  1819. // mamba
  1820. struct ggml_tensor * ssm_conv1d;
  1821. struct ggml_tensor * ssm_a;
  1822. struct ggml_tensor * ssm_d;
  1823. // mamba bias
  1824. struct ggml_tensor * ssm_conv1d_b;
  1825. struct ggml_tensor * ssm_dt_b;
  1826. };
  1827. struct llama_kv_cell {
  1828. llama_pos pos = -1;
  1829. llama_pos delta = 0;
  1830. int32_t src = 0; // used by recurrent state models to copy states
  1831. std::set<llama_seq_id> seq_id;
  1832. bool has_seq_id(const llama_seq_id & id) const {
  1833. return seq_id.find(id) != seq_id.end();
  1834. }
  1835. bool is_empty() const {
  1836. return seq_id.empty();
  1837. }
  1838. bool is_same_seq(const llama_kv_cell & other) const {
  1839. return seq_id == other.seq_id;
  1840. }
  1841. };
  1842. // ring-buffer of cached KV data
  1843. struct llama_kv_cache {
  1844. bool has_shift = false;
  1845. bool do_defrag = false;
  1846. bool do_copy = false;
  1847. // with recurrent state models, a cell can hold the state for more than one past token
  1848. bool recurrent = false;
  1849. // Note: The value of head isn't only used to optimize searching
  1850. // for a free KV slot. llama_decode_internal also uses it, so it
  1851. // cannot be freely changed after a slot has been allocated.
  1852. uint32_t head = 0;
  1853. uint32_t size = 0;
  1854. uint32_t used = 0; // used cells (i.e. at least one seq_id)
  1855. // computed before each graph build
  1856. uint32_t n = 0;
  1857. ggml_type type_k = GGML_TYPE_F16;
  1858. ggml_type type_v = GGML_TYPE_F16;
  1859. std::vector<llama_kv_cell> cells;
  1860. std::vector<struct ggml_tensor *> k_l; // per layer
  1861. std::vector<struct ggml_tensor *> v_l;
  1862. std::vector<struct ggml_context *> ctxs;
  1863. std::vector<ggml_backend_buffer_t> bufs;
  1864. size_t total_size() const {
  1865. size_t size = 0;
  1866. for (ggml_backend_buffer_t buf : bufs) {
  1867. size += ggml_backend_buffer_get_size(buf);
  1868. }
  1869. return size;
  1870. }
  1871. ~llama_kv_cache() {
  1872. for (struct ggml_context * ctx : ctxs) {
  1873. ggml_free(ctx);
  1874. }
  1875. for (ggml_backend_buffer_t buf : bufs) {
  1876. ggml_backend_buffer_free(buf);
  1877. }
  1878. }
  1879. };
  1880. struct llama_control_vector {
  1881. std::vector<struct ggml_tensor *> tensors; // per layer
  1882. std::vector<struct ggml_context *> ctxs;
  1883. std::vector<ggml_backend_buffer_t> bufs;
  1884. int32_t layer_start = -1;
  1885. int32_t layer_end = -1;
  1886. ggml_tensor * tensor_for(int il) const {
  1887. if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) {
  1888. return nullptr;
  1889. }
  1890. return tensors[il];
  1891. }
  1892. ~llama_control_vector() {
  1893. for (struct ggml_context * ctx : ctxs) {
  1894. ggml_free(ctx);
  1895. }
  1896. for (ggml_backend_buffer_t buf : bufs) {
  1897. ggml_backend_buffer_free(buf);
  1898. }
  1899. }
  1900. };
  1901. struct llama_vocab {
  1902. using id = int32_t;
  1903. using token = std::string;
  1904. using ttype = llama_token_type;
  1905. struct token_data {
  1906. token text;
  1907. float score;
  1908. ttype type;
  1909. };
  1910. enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
  1911. std::unordered_map<token, id> token_to_id;
  1912. std::vector<token_data> id_to_token;
  1913. std::unordered_map<token, id> special_tokens_cache;
  1914. std::map<std::pair<std::string, std::string>, int> bpe_ranks;
  1915. // default LLaMA special tokens
  1916. id special_bos_id = 1;
  1917. id special_eos_id = 2;
  1918. id special_unk_id = 0;
  1919. id special_sep_id = -1;
  1920. id special_pad_id = -1;
  1921. id special_cls_id = -1;
  1922. id special_mask_id = -1;
  1923. int special_add_bos = -1; // -1 unknown, 1 add, 0 don't add.
  1924. int special_add_eos = -1; // -1 unknown, 1 add, 0 don't add.
  1925. id linefeed_id = 13;
  1926. id special_prefix_id = -1;
  1927. id special_suffix_id = -1;
  1928. id special_middle_id = -1;
  1929. id special_eot_id = -1; // TODO: move above after "eos_id", and here add "file separator" token
  1930. bool add_space_prefix = true;
  1931. int find_bpe_rank(const std::string & token_left, const std::string & token_right) const {
  1932. GGML_ASSERT(token_left.find(' ') == std::string::npos);
  1933. GGML_ASSERT(token_left.find('\n') == std::string::npos);
  1934. GGML_ASSERT(token_right.find(' ') == std::string::npos);
  1935. GGML_ASSERT(token_right.find('\n') == std::string::npos);
  1936. auto it = bpe_ranks.find(std::make_pair(token_left, token_right));
  1937. if (it == bpe_ranks.end()) {
  1938. return -1;
  1939. }
  1940. return it->second;
  1941. }
  1942. };
  1943. struct llama_model {
  1944. e_model type = MODEL_UNKNOWN;
  1945. llm_arch arch = LLM_ARCH_UNKNOWN;
  1946. llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
  1947. std::string name = "n/a";
  1948. llama_hparams hparams = {};
  1949. llama_vocab vocab;
  1950. struct ggml_tensor * tok_embd;
  1951. struct ggml_tensor * type_embd;
  1952. struct ggml_tensor * pos_embd;
  1953. struct ggml_tensor * tok_norm;
  1954. struct ggml_tensor * tok_norm_b;
  1955. struct ggml_tensor * output_norm;
  1956. struct ggml_tensor * output_norm_b;
  1957. struct ggml_tensor * output;
  1958. struct ggml_tensor * output_b;
  1959. std::vector<llama_layer> layers;
  1960. llama_split_mode split_mode;
  1961. int main_gpu;
  1962. int n_gpu_layers;
  1963. // gguf metadata
  1964. std::unordered_map<std::string, std::string> gguf_kv;
  1965. // layer -> buffer type mapping
  1966. struct layer_buft {
  1967. layer_buft() : buft_matrix(nullptr), buft(nullptr) {}
  1968. layer_buft(ggml_backend_buffer_type_t matrix) : buft_matrix(matrix), buft(matrix) {}
  1969. layer_buft(ggml_backend_buffer_type_t matrix, ggml_backend_buffer_type_t other) : buft_matrix(matrix), buft(other) {}
  1970. ggml_backend_buffer_type_t buft_matrix; // matrices only - used by split buffers and backends that support only matrix multiplication
  1971. ggml_backend_buffer_type_t buft; // everything else
  1972. };
  1973. layer_buft buft_input;
  1974. layer_buft buft_output;
  1975. std::vector<layer_buft> buft_layer;
  1976. // contexts where the model tensors metadata is stored
  1977. std::vector<struct ggml_context *> ctxs;
  1978. // the model memory buffers for the tensor data
  1979. std::vector<ggml_backend_buffer_t> bufs;
  1980. // model memory mapped files
  1981. llama_mmaps mappings;
  1982. // objects representing data potentially being locked in memory
  1983. llama_mlocks mlock_bufs;
  1984. llama_mlocks mlock_mmaps;
  1985. // for quantize-stats only
  1986. std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
  1987. int64_t t_load_us = 0;
  1988. int64_t t_start_us = 0;
  1989. ~llama_model() {
  1990. for (struct ggml_context * ctx : ctxs) {
  1991. ggml_free(ctx);
  1992. }
  1993. for (ggml_backend_buffer_t buf : bufs) {
  1994. #ifdef GGML_USE_CUDA
  1995. if (ggml_backend_buffer_get_type(buf) == ggml_backend_cpu_buffer_type()) {
  1996. ggml_backend_cuda_unregister_host_buffer(ggml_backend_buffer_get_base(buf));
  1997. }
  1998. #endif
  1999. ggml_backend_buffer_free(buf);
  2000. }
  2001. }
  2002. };
  2003. struct llama_context {
  2004. llama_context(const llama_model & model) : model(model), t_start_us(model.t_start_us), t_load_us(model.t_load_us) {}
  2005. ~llama_context() {
  2006. ggml_backend_sched_free(sched);
  2007. for (ggml_backend_t backend : backends) {
  2008. ggml_backend_free(backend);
  2009. }
  2010. ggml_backend_buffer_free(buf_output);
  2011. }
  2012. llama_cparams cparams;
  2013. std::vector<ggml_backend_t> backends;
  2014. #ifdef GGML_USE_METAL
  2015. ggml_backend_t backend_metal = nullptr;
  2016. #endif
  2017. ggml_backend_t backend_cpu = nullptr;
  2018. const llama_model & model;
  2019. // key + value cache for the self attention
  2020. struct llama_kv_cache kv_self;
  2021. std::mt19937 rng;
  2022. bool has_evaluated_once = false;
  2023. int64_t t_start_us;
  2024. int64_t t_load_us;
  2025. int64_t t_sample_us = 0;
  2026. int64_t t_p_eval_us = 0;
  2027. int64_t t_eval_us = 0;
  2028. int64_t t_compute_start_us = 0;
  2029. int64_t n_queued_tokens = 0;
  2030. int32_t n_sample = 0; // number of tokens sampled
  2031. int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
  2032. int32_t n_eval = 0; // number of eval calls
  2033. // host buffer for the model output (logits and embeddings)
  2034. ggml_backend_buffer_t buf_output = nullptr;
  2035. // decode output (2-dimensional array: [n_outputs][n_vocab])
  2036. size_t logits_size = 0; // capacity (of floats) for logits
  2037. float * logits = nullptr;
  2038. std::vector<int32_t> output_ids; // map batch token positions to ids of the logits and embd buffers
  2039. size_t output_size = 0; // capacity (of tokens positions) for the output buffers
  2040. int32_t n_outputs = 0; // number of actually-used outputs in the current ubatch or last logical batch
  2041. bool logits_all = false;
  2042. // embeddings output (2-dimensional array: [n_outputs][n_embd])
  2043. // populated only when pooling_type == LLAMA_POOLING_TYPE_NONE
  2044. size_t embd_size = 0; // capacity (of floats) for embeddings
  2045. float * embd = nullptr;
  2046. // sequence embeddings output (map of [n_embd] vectors)
  2047. // populated only when pooling_type != LLAMA_POOLING_TYPE_NONE
  2048. std::map<llama_seq_id, std::vector<float>> embd_seq;
  2049. // memory buffers used to evaluate the model
  2050. std::vector<uint8_t> buf_compute_meta;
  2051. ggml_backend_sched_t sched = nullptr;
  2052. ggml_abort_callback abort_callback = nullptr;
  2053. void * abort_callback_data = nullptr;
  2054. // input tensors
  2055. struct ggml_tensor * inp_tokens; // I32 [n_batch]
  2056. struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch]
  2057. struct ggml_tensor * inp_pos; // I32 [n_batch]
  2058. struct ggml_tensor * inp_out_ids; // I32 [n_outputs]
  2059. struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch]
  2060. struct ggml_tensor * inp_KQ_pos; // F32 [n_kv]
  2061. struct ggml_tensor * inp_K_shift; // I32 [kv_size]
  2062. struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch]
  2063. struct ggml_tensor * inp_cls; // I32 [n_batch]
  2064. struct ggml_tensor * inp_s_copy; // I32 [kv_size]
  2065. struct ggml_tensor * inp_s_mask; // F32 [1, n_kv]
  2066. struct ggml_tensor * inp_s_seq; // I32 [n_kv, n_batch]
  2067. // control vectors
  2068. struct llama_control_vector cvec;
  2069. #ifdef GGML_USE_MPI
  2070. ggml_mpi_context * ctx_mpi = NULL;
  2071. #endif
  2072. };
  2073. //
  2074. // kv cache helpers
  2075. //
  2076. static bool llama_kv_cache_init(
  2077. struct llama_kv_cache & cache,
  2078. const llama_model & model,
  2079. ggml_type type_k,
  2080. ggml_type type_v,
  2081. uint32_t kv_size,
  2082. bool offload) {
  2083. const struct llama_hparams & hparams = model.hparams;
  2084. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  2085. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  2086. const int64_t n_layer = hparams.n_layer;
  2087. cache.has_shift = false;
  2088. // TODO: find a nicer way to add other recurrent model architectures
  2089. cache.recurrent = model.arch == LLM_ARCH_MAMBA;
  2090. // TODO: support mixed reccurent Transformer architectues
  2091. // NOTE: (!a || b) is a logical implication (a -> b)
  2092. GGML_ASSERT(!cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_s());
  2093. GGML_ASSERT(!cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_s());
  2094. GGML_ASSERT( cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_gqa());
  2095. GGML_ASSERT( cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_gqa());
  2096. cache.head = 0;
  2097. cache.size = kv_size;
  2098. cache.used = 0;
  2099. cache.type_k = type_k;
  2100. cache.type_v = type_v;
  2101. cache.cells.clear();
  2102. cache.cells.resize(kv_size);
  2103. if (cache.recurrent) {
  2104. // init state copy sources
  2105. for (uint32_t i = 0; i < cache.size; ++i) {
  2106. cache.cells[i].src = i;
  2107. }
  2108. }
  2109. #ifdef GGML_USE_CLBLAST
  2110. offload = false;
  2111. #endif
  2112. // count used buffer types
  2113. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  2114. if (offload) {
  2115. for (int64_t i = 0; i < n_layer; ++i) {
  2116. buft_layer_count[model.buft_layer[i].buft]++;
  2117. }
  2118. } else {
  2119. buft_layer_count[llama_default_buffer_type_cpu(true)] = n_layer;
  2120. }
  2121. // create a context for each buffer type
  2122. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  2123. for (auto & it : buft_layer_count) {
  2124. int n_layers = it.second;
  2125. struct ggml_init_params params = {
  2126. /*.mem_size =*/ 2u*n_layers*ggml_tensor_overhead(),
  2127. /*.mem_buffer =*/ NULL,
  2128. /*.no_alloc =*/ true,
  2129. };
  2130. ggml_context * ctx = ggml_init(params);
  2131. if (!ctx) {
  2132. LLAMA_LOG_ERROR("%s: failed to allocate context for kv cache\n", __func__);
  2133. return false;
  2134. }
  2135. ctx_map[it.first] = ctx;
  2136. cache.ctxs.push_back(ctx);
  2137. }
  2138. cache.k_l.reserve(n_layer);
  2139. cache.v_l.reserve(n_layer);
  2140. for (int i = 0; i < (int) n_layer; i++) {
  2141. struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front();
  2142. ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
  2143. ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
  2144. ggml_format_name(k, "cache_k_l%d", i);
  2145. ggml_format_name(v, "cache_v_l%d", i);
  2146. cache.k_l.push_back(k);
  2147. cache.v_l.push_back(v);
  2148. }
  2149. // allocate tensors and initialize the buffers to avoid NaNs in the padding
  2150. for (auto it : ctx_map) {
  2151. ggml_backend_buffer_type_t buft = it.first;
  2152. ggml_context * ctx = it.second;
  2153. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  2154. if (!buf) {
  2155. LLAMA_LOG_ERROR("%s: failed to allocate buffer for kv cache\n", __func__);
  2156. return false;
  2157. }
  2158. ggml_backend_buffer_clear(buf, 0);
  2159. LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
  2160. cache.bufs.push_back(buf);
  2161. }
  2162. return true;
  2163. }
  2164. // find an empty slot of size "n_tokens" in the cache
  2165. // updates the cache head
  2166. // Note: On success, it's important that cache.head points
  2167. // to the first cell of the slot.
  2168. static bool llama_kv_cache_find_slot(
  2169. struct llama_kv_cache & cache,
  2170. const struct llama_batch & batch) {
  2171. const uint32_t n_ctx = cache.size;
  2172. const uint32_t n_tokens = batch.n_tokens;
  2173. if (cache.recurrent) {
  2174. // For recurrent state architectures (like Mamba),
  2175. // each KV cache cell can store the state for a whole sequence.
  2176. llama_seq_id min = cache.size - 1;
  2177. llama_seq_id max = 0;
  2178. for (uint32_t i = 0; i < n_tokens; ++i) {
  2179. for (int32_t j = 0; j < batch.n_seq_id[i]; ++j) {
  2180. llama_seq_id seq_id = batch.seq_id[i][j];
  2181. // make sure it's a valid seq_id
  2182. if ((uint32_t) seq_id < cache.size) {
  2183. if (seq_id > max) {
  2184. max = seq_id;
  2185. }
  2186. if (seq_id < min) {
  2187. min = seq_id;
  2188. }
  2189. // Assuming the tokens are in-order
  2190. if (batch.pos[i] != cache.cells[seq_id].pos + 1) {
  2191. // What should happen when the pos backtracks or skips a value?
  2192. // Clearing the state mid-batch would require special-casing which isn't done.
  2193. LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d\n",
  2194. __func__, batch.pos[i], cache.cells[seq_id].pos, seq_id);
  2195. }
  2196. if (cache.cells[seq_id].pos < 0 && 0 <= batch.pos[i]) {
  2197. cache.used += 1;
  2198. }
  2199. cache.cells[seq_id].pos = batch.pos[i];
  2200. // NOTE: seq_ids are not inserted here; they are handled when the input tensors are set
  2201. } else {
  2202. // too big seq_id
  2203. // TODO: would it be possible to resize the KV cache size instead?
  2204. LLAMA_LOG_ERROR("%s: seq_id=%d >= kv_size=%d Try using a bigger --parallel value\n", __func__, seq_id, cache.size);
  2205. return false;
  2206. }
  2207. }
  2208. }
  2209. // allow getting the range of used cells, from head to head + n
  2210. cache.head = min;
  2211. cache.n = max - min + 1;
  2212. // sanity check
  2213. return max >= min;
  2214. }
  2215. // otherwise, one cell per token.
  2216. if (n_tokens > n_ctx) {
  2217. LLAMA_LOG_ERROR("%s: n_tokens=%d > n_ctx=%d\n", __func__, n_tokens, n_ctx);
  2218. return false;
  2219. }
  2220. uint32_t n_tested = 0;
  2221. while (true) {
  2222. if (cache.head + n_tokens > n_ctx) {
  2223. n_tested += n_ctx - cache.head;
  2224. cache.head = 0;
  2225. continue;
  2226. }
  2227. bool found = true;
  2228. for (uint32_t i = 0; i < n_tokens; i++) {
  2229. if (cache.cells[cache.head + i].pos >= 0) {
  2230. found = false;
  2231. cache.head += i + 1;
  2232. n_tested += i + 1;
  2233. break;
  2234. }
  2235. }
  2236. if (found) {
  2237. break;
  2238. }
  2239. if (n_tested >= n_ctx) {
  2240. //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
  2241. return false;
  2242. }
  2243. }
  2244. for (uint32_t i = 0; i < n_tokens; i++) {
  2245. cache.cells[cache.head + i].pos = batch.pos[i];
  2246. for (int32_t j = 0; j < batch.n_seq_id[i]; j++) {
  2247. cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i][j]);
  2248. }
  2249. }
  2250. cache.used += n_tokens;
  2251. return true;
  2252. }
  2253. // find how many cells are currently in use
  2254. static uint32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) {
  2255. for (uint32_t i = cache.size; i > 0; --i) {
  2256. const llama_kv_cell & cell = cache.cells[i - 1];
  2257. if (cell.pos >= 0 && !cell.is_empty()) {
  2258. return i;
  2259. }
  2260. }
  2261. return 0;
  2262. }
  2263. static void llama_kv_cache_clear(struct llama_kv_cache & cache) {
  2264. for (int32_t i = 0; i < (int32_t) cache.size; ++i) {
  2265. cache.cells[i].pos = -1;
  2266. cache.cells[i].seq_id.clear();
  2267. }
  2268. cache.head = 0;
  2269. cache.used = 0;
  2270. }
  2271. static bool llama_kv_cache_seq_rm(
  2272. struct llama_kv_cache & cache,
  2273. llama_seq_id seq_id,
  2274. llama_pos p0,
  2275. llama_pos p1) {
  2276. uint32_t new_head = cache.size;
  2277. if (p0 < 0) p0 = 0;
  2278. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2279. // models like Mamba can't have a state partially erased
  2280. if (cache.recurrent) {
  2281. if (seq_id >= (int64_t) cache.size) {
  2282. // could be fatal
  2283. return false;
  2284. }
  2285. if (0 <= seq_id) {
  2286. // partial intersection is invalid
  2287. if ((0 < p0 && p0 <= cache.cells[seq_id].pos) || (0 < p1 && p1 <= cache.cells[seq_id].pos)) {
  2288. return false;
  2289. }
  2290. } else {
  2291. // seq_id is negative, then the range should include everything or nothing
  2292. if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) {
  2293. return false;
  2294. }
  2295. }
  2296. }
  2297. for (uint32_t i = 0; i < cache.size; ++i) {
  2298. if (cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2299. if (seq_id < 0) {
  2300. cache.cells[i].seq_id.clear();
  2301. } else if (cache.cells[i].has_seq_id(seq_id)) {
  2302. cache.cells[i].seq_id.erase(seq_id);
  2303. } else {
  2304. continue;
  2305. }
  2306. if (cache.cells[i].is_empty()) {
  2307. // keep count of the number of used cells
  2308. if (cache.cells[i].pos >= 0) cache.used--;
  2309. cache.cells[i].pos = -1;
  2310. if (new_head == cache.size) new_head = i;
  2311. }
  2312. }
  2313. }
  2314. // If we freed up a slot, set head to it so searching can start there.
  2315. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  2316. return true;
  2317. }
  2318. static void llama_kv_cache_seq_cp(
  2319. struct llama_kv_cache & cache,
  2320. llama_seq_id seq_id_src,
  2321. llama_seq_id seq_id_dst,
  2322. llama_pos p0,
  2323. llama_pos p1) {
  2324. if (p0 < 0) p0 = 0;
  2325. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2326. if (cache.recurrent) {
  2327. if ((uint32_t) seq_id_dst < cache.size && (uint32_t) seq_id_src < cache.size) {
  2328. seq_id_src = cache.cells[seq_id_src].src;
  2329. GGML_ASSERT((uint32_t) seq_id_src < cache.size);
  2330. // intent to "copy from"
  2331. // supports copy chains thanks to taking the source of the source
  2332. cache.cells[seq_id_dst].src = seq_id_src;
  2333. // preserve the "keep or clear" status of the copied sequence
  2334. if (cache.cells[seq_id_src].has_seq_id(seq_id_src)) {
  2335. cache.cells[seq_id_dst].seq_id.insert(seq_id_dst);
  2336. } else {
  2337. cache.cells[seq_id_dst].seq_id.erase(seq_id_dst);
  2338. }
  2339. cache.do_copy = true;
  2340. cache.cells[seq_id_dst].pos = cache.cells[seq_id_src].pos;
  2341. }
  2342. return;
  2343. }
  2344. // otherwise, this is the KV cache of a Transformer-like model
  2345. cache.head = 0;
  2346. for (uint32_t i = 0; i < cache.size; ++i) {
  2347. if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2348. cache.cells[i].seq_id.insert(seq_id_dst);
  2349. }
  2350. }
  2351. }
  2352. static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  2353. uint32_t new_head = cache.size;
  2354. for (uint32_t i = 0; i < cache.size; ++i) {
  2355. if (!cache.cells[i].has_seq_id(seq_id)) {
  2356. if (cache.cells[i].pos >= 0) cache.used--;
  2357. cache.cells[i].pos = -1;
  2358. cache.cells[i].seq_id.clear();
  2359. if (new_head == cache.size) new_head = i;
  2360. } else {
  2361. cache.cells[i].seq_id.clear();
  2362. cache.cells[i].seq_id.insert(seq_id);
  2363. }
  2364. }
  2365. // If we freed up a slot, set head to it so searching can start there.
  2366. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  2367. }
  2368. static void llama_kv_cache_seq_add(
  2369. struct llama_kv_cache & cache,
  2370. llama_seq_id seq_id,
  2371. llama_pos p0,
  2372. llama_pos p1,
  2373. llama_pos delta) {
  2374. uint32_t new_head = cache.size;
  2375. if (p0 < 0) p0 = 0;
  2376. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2377. if (cache.recurrent) {
  2378. // for Mamba-like models, only the pos needs to be shifted
  2379. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  2380. llama_kv_cell & cell = cache.cells[seq_id];
  2381. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  2382. cell.pos += delta;
  2383. }
  2384. }
  2385. return;
  2386. }
  2387. for (uint32_t i = 0; i < cache.size; ++i) {
  2388. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2389. cache.has_shift = true;
  2390. cache.cells[i].pos += delta;
  2391. cache.cells[i].delta += delta;
  2392. if (cache.cells[i].pos < 0) {
  2393. if (!cache.cells[i].is_empty()) {
  2394. cache.used--;
  2395. }
  2396. cache.cells[i].pos = -1;
  2397. cache.cells[i].seq_id.clear();
  2398. if (new_head == cache.size) {
  2399. new_head = i;
  2400. }
  2401. }
  2402. }
  2403. }
  2404. // If we freed up a slot, set head to it so searching can start there.
  2405. // Otherwise we just start the next search from the beginning.
  2406. cache.head = new_head != cache.size ? new_head : 0;
  2407. }
  2408. static void llama_kv_cache_seq_div(
  2409. struct llama_kv_cache & cache,
  2410. llama_seq_id seq_id,
  2411. llama_pos p0,
  2412. llama_pos p1,
  2413. int d) {
  2414. if (p0 < 0) p0 = 0;
  2415. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2416. if (cache.recurrent) {
  2417. // for Mamba-like models, only the pos needs to be changed
  2418. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  2419. llama_kv_cell & cell = cache.cells[seq_id];
  2420. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  2421. cell.pos /= d;
  2422. }
  2423. }
  2424. return;
  2425. }
  2426. for (uint32_t i = 0; i < cache.size; ++i) {
  2427. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2428. cache.has_shift = true;
  2429. {
  2430. llama_pos p_old = cache.cells[i].pos;
  2431. cache.cells[i].pos /= d;
  2432. cache.cells[i].delta += cache.cells[i].pos - p_old;
  2433. }
  2434. }
  2435. }
  2436. }
  2437. static llama_pos llama_kv_cache_seq_pos_max(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  2438. llama_pos result = 0;
  2439. for (uint32_t i = 0; i < cache.size; ++i) {
  2440. if (cache.cells[i].has_seq_id(seq_id)) {
  2441. result = std::max(result, cache.cells[i].pos);
  2442. }
  2443. }
  2444. return result;
  2445. }
  2446. static void llama_kv_cache_defrag(struct llama_kv_cache & cache) {
  2447. cache.do_defrag = true;
  2448. }
  2449. //
  2450. // model loading and saving
  2451. //
  2452. enum llama_fver {
  2453. GGUF_FILE_VERSION_V1 = 1,
  2454. GGUF_FILE_VERSION_V2 = 2,
  2455. GGUF_FILE_VERSION_V3 = 3,
  2456. };
  2457. static const char * llama_file_version_name(llama_fver version) {
  2458. switch (version) {
  2459. case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)";
  2460. case GGUF_FILE_VERSION_V2: return "GGUF V2";
  2461. case GGUF_FILE_VERSION_V3: return "GGUF V3 (latest)";
  2462. }
  2463. return "unknown";
  2464. }
  2465. static std::string llama_format_tensor_shape(const std::vector<int64_t> & ne) {
  2466. char buf[256];
  2467. snprintf(buf, sizeof(buf), "%5" PRId64, ne.at(0));
  2468. for (size_t i = 1; i < ne.size(); i++) {
  2469. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, ne.at(i));
  2470. }
  2471. return buf;
  2472. }
  2473. static std::string llama_format_tensor_shape(const struct ggml_tensor * t) {
  2474. char buf[256];
  2475. snprintf(buf, sizeof(buf), "%5" PRId64, t->ne[0]);
  2476. for (int i = 1; i < GGML_MAX_DIMS; i++) {
  2477. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, t->ne[i]);
  2478. }
  2479. return buf;
  2480. }
  2481. namespace GGUFMeta {
  2482. template <typename T, gguf_type gt_, T (*gfun)(const gguf_context *, const int)>
  2483. struct GKV_Base_Type {
  2484. static constexpr gguf_type gt = gt_;
  2485. static T getter(const gguf_context * ctx, const int kid) {
  2486. return gfun(ctx, kid);
  2487. }
  2488. };
  2489. template<typename T> struct GKV_Base;
  2490. template<> struct GKV_Base<bool >: GKV_Base_Type<bool, GGUF_TYPE_BOOL, gguf_get_val_bool> {};
  2491. template<> struct GKV_Base<uint8_t >: GKV_Base_Type<uint8_t, GGUF_TYPE_UINT8, gguf_get_val_u8 > {};
  2492. template<> struct GKV_Base<uint16_t >: GKV_Base_Type<uint16_t, GGUF_TYPE_UINT16, gguf_get_val_u16 > {};
  2493. template<> struct GKV_Base<uint32_t >: GKV_Base_Type<uint32_t, GGUF_TYPE_UINT32, gguf_get_val_u32 > {};
  2494. template<> struct GKV_Base<uint64_t >: GKV_Base_Type<uint64_t, GGUF_TYPE_UINT64, gguf_get_val_u64 > {};
  2495. template<> struct GKV_Base<int8_t >: GKV_Base_Type<int8_t, GGUF_TYPE_INT8, gguf_get_val_i8 > {};
  2496. template<> struct GKV_Base<int16_t >: GKV_Base_Type<int16_t, GGUF_TYPE_INT16, gguf_get_val_i16 > {};
  2497. template<> struct GKV_Base<int32_t >: GKV_Base_Type<int32_t, GGUF_TYPE_INT32, gguf_get_val_i32 > {};
  2498. template<> struct GKV_Base<int64_t >: GKV_Base_Type<int64_t, GGUF_TYPE_INT64, gguf_get_val_i64 > {};
  2499. template<> struct GKV_Base<float >: GKV_Base_Type<float, GGUF_TYPE_FLOAT32, gguf_get_val_f32 > {};
  2500. template<> struct GKV_Base<double >: GKV_Base_Type<double, GGUF_TYPE_FLOAT64, gguf_get_val_f64 > {};
  2501. template<> struct GKV_Base<const char *>: GKV_Base_Type<const char *, GGUF_TYPE_STRING, gguf_get_val_str > {};
  2502. template<> struct GKV_Base<std::string> {
  2503. static constexpr gguf_type gt = GGUF_TYPE_STRING;
  2504. static std::string getter(const gguf_context * ctx, const int kid) {
  2505. return gguf_get_val_str(ctx, kid);
  2506. }
  2507. };
  2508. struct ArrayInfo {
  2509. const gguf_type gt;
  2510. const size_t length;
  2511. const void * data;
  2512. };
  2513. template<> struct GKV_Base<ArrayInfo> {
  2514. public:
  2515. static constexpr gguf_type gt = GGUF_TYPE_ARRAY;
  2516. static ArrayInfo getter(const gguf_context *ctx, const int k) {
  2517. return ArrayInfo {
  2518. gguf_get_arr_type(ctx, k),
  2519. size_t(gguf_get_arr_n(ctx, k)),
  2520. gguf_get_arr_data(ctx, k),
  2521. };
  2522. }
  2523. };
  2524. template<typename T>
  2525. class GKV : public GKV_Base<T> {
  2526. GKV() = delete;
  2527. public:
  2528. static T get_kv(const gguf_context * ctx, const int k) {
  2529. const enum gguf_type kt = gguf_get_kv_type(ctx, k);
  2530. if (kt != GKV::gt) {
  2531. throw std::runtime_error(format("key %s has wrong type %s but expected type %s",
  2532. gguf_get_key(ctx, k), gguf_type_name(kt), gguf_type_name(GKV::gt)));
  2533. }
  2534. return GKV::getter(ctx, k);
  2535. }
  2536. static const char * override_type_to_str(const llama_model_kv_override_type ty) {
  2537. switch (ty) {
  2538. case LLAMA_KV_OVERRIDE_TYPE_BOOL: return "bool";
  2539. case LLAMA_KV_OVERRIDE_TYPE_INT: return "int";
  2540. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: return "float";
  2541. case LLAMA_KV_OVERRIDE_TYPE_STR: return "str";
  2542. }
  2543. return "unknown";
  2544. }
  2545. static bool validate_override(const llama_model_kv_override_type expected_type, const struct llama_model_kv_override * ovrd) {
  2546. if (!ovrd) { return false; }
  2547. if (ovrd->tag == expected_type) {
  2548. LLAMA_LOG_INFO("%s: Using metadata override (%5s) '%s' = ",
  2549. __func__, override_type_to_str(ovrd->tag), ovrd->key);
  2550. switch (ovrd->tag) {
  2551. case LLAMA_KV_OVERRIDE_TYPE_BOOL: {
  2552. LLAMA_LOG_INFO("%s\n", ovrd->val_bool ? "true" : "false");
  2553. } break;
  2554. case LLAMA_KV_OVERRIDE_TYPE_INT: {
  2555. LLAMA_LOG_INFO("%" PRId64 "\n", ovrd->val_i64);
  2556. } break;
  2557. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: {
  2558. LLAMA_LOG_INFO("%.6f\n", ovrd->val_f64);
  2559. } break;
  2560. case LLAMA_KV_OVERRIDE_TYPE_STR: {
  2561. LLAMA_LOG_INFO("%s\n", ovrd->val_str);
  2562. } break;
  2563. default:
  2564. // Shouldn't be possible to end up here, but just in case...
  2565. throw std::runtime_error(
  2566. format("Unsupported attempt to override %s type for metadata key %s\n",
  2567. override_type_to_str(ovrd->tag), ovrd->key));
  2568. }
  2569. return true;
  2570. }
  2571. LLAMA_LOG_WARN("%s: Warning: Bad metadata override type for key '%s', expected %s but got %s\n",
  2572. __func__, ovrd->key, override_type_to_str(expected_type), override_type_to_str(ovrd->tag));
  2573. return false;
  2574. }
  2575. template<typename OT>
  2576. static typename std::enable_if<std::is_same<OT, bool>::value, bool>::type
  2577. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  2578. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_BOOL, ovrd)) {
  2579. target = ovrd->val_bool;
  2580. return true;
  2581. }
  2582. return false;
  2583. }
  2584. template<typename OT>
  2585. static typename std::enable_if<!std::is_same<OT, bool>::value && std::is_integral<OT>::value, bool>::type
  2586. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  2587. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_INT, ovrd)) {
  2588. target = ovrd->val_i64;
  2589. return true;
  2590. }
  2591. return false;
  2592. }
  2593. template<typename OT>
  2594. static typename std::enable_if<std::is_floating_point<OT>::value, bool>::type
  2595. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  2596. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_FLOAT, ovrd)) {
  2597. target = ovrd->val_f64;
  2598. return true;
  2599. }
  2600. return false;
  2601. }
  2602. template<typename OT>
  2603. static typename std::enable_if<std::is_same<OT, std::string>::value, bool>::type
  2604. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  2605. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_STR, ovrd)) {
  2606. target = ovrd->val_str;
  2607. return true;
  2608. }
  2609. return false;
  2610. }
  2611. static bool set(const gguf_context * ctx, const int k, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2612. if (try_override<T>(target, ovrd)) {
  2613. return true;
  2614. }
  2615. if (k < 0) { return false; }
  2616. target = get_kv(ctx, k);
  2617. return true;
  2618. }
  2619. static bool set(const gguf_context * ctx, const char * key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2620. return set(ctx, gguf_find_key(ctx, key), target, ovrd);
  2621. }
  2622. static bool set(const gguf_context * ctx, const std::string & key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2623. return set(ctx, key.c_str(), target, ovrd);
  2624. }
  2625. };
  2626. }
  2627. using llama_buf_map = std::unordered_map<uint32_t, ggml_backend_buffer_t>;
  2628. struct llama_model_loader {
  2629. int n_kv = 0;
  2630. int n_tensors = 0;
  2631. int n_created = 0;
  2632. int64_t n_elements = 0;
  2633. size_t n_bytes = 0;
  2634. bool use_mmap = false;
  2635. bool check_tensors;
  2636. llama_files files;
  2637. llama_ftype ftype;
  2638. llama_fver fver;
  2639. llama_mmaps mappings;
  2640. // Holds information on a model weight
  2641. struct llama_tensor_weight {
  2642. uint16_t idx; // source file index
  2643. size_t offs; // tensor data offset in the original file
  2644. ggml_tensor * tensor;
  2645. llama_tensor_weight(const llama_file * file, uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) {
  2646. const int tensor_idx = gguf_find_tensor(gguf_ctx, name);
  2647. offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx);
  2648. if (offs + ggml_nbytes(tensor) < offs || offs + ggml_nbytes(tensor) > file->size) {
  2649. throw std::runtime_error(format("tensor '%s' data is not within the file bounds, model is corrupted or incomplete", name));
  2650. }
  2651. }
  2652. };
  2653. std::vector<llama_tensor_weight> weights;
  2654. std::unordered_map<std::string, struct llama_model_kv_override> kv_overrides;
  2655. struct gguf_context * meta = NULL;
  2656. std::vector<ggml_context *> contexts;
  2657. std::string arch_name;
  2658. LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
  2659. llama_model_loader(const std::string & fname, bool use_mmap, bool check_tensors, const struct llama_model_kv_override * param_overrides_p) {
  2660. int trace = 0;
  2661. if (getenv("LLAMA_TRACE")) {
  2662. trace = atoi(getenv("LLAMA_TRACE"));
  2663. }
  2664. if (param_overrides_p != nullptr) {
  2665. for (const struct llama_model_kv_override *p = param_overrides_p; p->key[0] != 0; p++) {
  2666. kv_overrides.insert({std::string(p->key), *p});
  2667. }
  2668. }
  2669. struct ggml_context * ctx = NULL;
  2670. struct gguf_init_params params = {
  2671. /*.no_alloc = */ true,
  2672. /*.ctx = */ &ctx,
  2673. };
  2674. meta = gguf_init_from_file(fname.c_str(), params);
  2675. if (!meta) {
  2676. throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str()));
  2677. }
  2678. get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false);
  2679. llm_kv = LLM_KV(llm_arch_from_string(arch_name));
  2680. files.emplace_back(new llama_file(fname.c_str(), "rb"));
  2681. contexts.emplace_back(ctx);
  2682. // Save tensors data offset of the main file.
  2683. // For subsidiary files, `meta` tensor data offset must not be used,
  2684. // so we build a unified tensors index for weights.
  2685. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  2686. weights.emplace_back(files.back().get(), 0, cur->name, meta, cur);
  2687. }
  2688. uint16_t n_split = 0;
  2689. get_key(llm_kv(LLM_KV_SPLIT_COUNT), n_split, false);
  2690. // Load additional GGML contexts
  2691. if (n_split > 1) {
  2692. uint16_t idx = 0;
  2693. get_key(llm_kv(LLM_KV_SPLIT_NO), idx);
  2694. if (idx != 0) {
  2695. throw std::runtime_error(format("illegal split file: %d, model must be loaded with the first split", idx));
  2696. }
  2697. char split_prefix[PATH_MAX] = {0};
  2698. if (!llama_split_prefix(split_prefix, sizeof(split_prefix), fname.c_str(), idx, n_split)) {
  2699. throw std::runtime_error(format("invalid split file: %s", fname.c_str()));
  2700. }
  2701. if (trace > 0) {
  2702. LLAMA_LOG_INFO("%s: loading additional %d GGUFs\n", __func__, n_split);
  2703. }
  2704. char split_path[PATH_MAX] = {0};
  2705. for (idx = 1; idx < n_split; idx++) {
  2706. llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split);
  2707. struct gguf_init_params split_params = {
  2708. /*.no_alloc = */ true,
  2709. /*.ctx = */ &ctx,
  2710. };
  2711. struct gguf_context * ctx_gguf = gguf_init_from_file(split_path, split_params);
  2712. if (!ctx_gguf) {
  2713. throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, split_path));
  2714. }
  2715. files.emplace_back(new llama_file(split_path, "rb"));
  2716. contexts.emplace_back(ctx);
  2717. // Save tensors data offset info of the shard.
  2718. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  2719. weights.emplace_back(files.back().get(), idx, cur->name, ctx_gguf, cur);
  2720. }
  2721. gguf_free(ctx_gguf);
  2722. }
  2723. get_key(llm_kv(LLM_KV_SPLIT_TENSORS_COUNT), n_tensors);
  2724. // sanity check
  2725. {
  2726. const int n_tensors_loaded = (int) weights.size();
  2727. if (n_tensors != n_tensors_loaded) {
  2728. throw std::runtime_error(format("corrupted model: %d tensors expected but %d found", n_tensors, n_tensors_loaded));
  2729. }
  2730. }
  2731. LLAMA_LOG_INFO("%s: additional %d GGUFs metadata loaded.\n", __func__, n_split - 1);
  2732. }
  2733. n_kv = gguf_get_n_kv(meta);
  2734. n_tensors = weights.size();
  2735. fver = (enum llama_fver) gguf_get_version(meta);
  2736. std::set<std::string> tensor_names;
  2737. for (auto & w : weights) {
  2738. n_elements += ggml_nelements(w.tensor);
  2739. n_bytes += ggml_nbytes(w.tensor);
  2740. // make sure there is no duplicated tensor names
  2741. const std::string name(w.tensor->name);
  2742. auto found = tensor_names.find(name);
  2743. if (found != tensor_names.end()) {
  2744. throw std::runtime_error(format("invalid model: tensor '%s' is duplicated", w.tensor->name));
  2745. }
  2746. tensor_names.insert(name);
  2747. }
  2748. LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
  2749. __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver));
  2750. // determine file type based on the number of tensors for each quantization and print meta data
  2751. // TODO: make optional
  2752. {
  2753. std::map<enum ggml_type, uint32_t> n_type;
  2754. uint32_t n_type_max = 0;
  2755. enum ggml_type type_max = GGML_TYPE_F32;
  2756. for (int i = 0; i < n_tensors; i++) {
  2757. const ggml_tensor * tensor = weights.at(i).tensor;
  2758. enum ggml_type type = tensor->type;
  2759. n_type[type]++;
  2760. if (n_type_max < n_type[type]) {
  2761. n_type_max = n_type[type];
  2762. type_max = type;
  2763. }
  2764. if (trace > 0) {
  2765. const uint16_t sid = weights.at(i).idx;
  2766. LLAMA_LOG_INFO("%s: - tensor %4d, split %2d: %32s %-8s [ %s ]\n", __func__, i, sid, ggml_get_name(tensor), ggml_type_name(type), llama_format_tensor_shape(tensor).c_str());
  2767. }
  2768. }
  2769. switch (type_max) {
  2770. case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break;
  2771. case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break;
  2772. case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break;
  2773. case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break;
  2774. case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break;
  2775. case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break;
  2776. case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break;
  2777. case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break;
  2778. case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break;
  2779. case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break;
  2780. case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break;
  2781. case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
  2782. case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break;
  2783. case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break;
  2784. case GGML_TYPE_IQ2_S: ftype = LLAMA_FTYPE_MOSTLY_IQ2_S; break;
  2785. case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break;
  2786. case GGML_TYPE_IQ1_S: ftype = LLAMA_FTYPE_MOSTLY_IQ1_S; break;
  2787. case GGML_TYPE_IQ1_M: ftype = LLAMA_FTYPE_MOSTLY_IQ1_M; break;
  2788. case GGML_TYPE_IQ4_NL: ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL; break;
  2789. case GGML_TYPE_IQ4_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_XS; break;
  2790. case GGML_TYPE_IQ3_S: ftype = LLAMA_FTYPE_MOSTLY_IQ3_S; break;
  2791. default:
  2792. {
  2793. LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
  2794. ftype = LLAMA_FTYPE_ALL_F32;
  2795. } break;
  2796. }
  2797. // this is a way to mark that we have "guessed" the file type
  2798. ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED);
  2799. {
  2800. const int kid = gguf_find_key(meta, "general.file_type");
  2801. if (kid >= 0) {
  2802. ftype = (llama_ftype) gguf_get_val_u32(meta, kid);
  2803. }
  2804. }
  2805. LLAMA_LOG_INFO("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
  2806. for (int i = 0; i < n_kv; i++) {
  2807. const char * name = gguf_get_key(meta, i);
  2808. const enum gguf_type type = gguf_get_kv_type(meta, i);
  2809. const std::string type_name =
  2810. type == GGUF_TYPE_ARRAY
  2811. ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta, i)), gguf_get_arr_n(meta, i))
  2812. : gguf_type_name(type);
  2813. std::string value = gguf_kv_to_str(meta, i);
  2814. const size_t MAX_VALUE_LEN = 40;
  2815. if (value.size() > MAX_VALUE_LEN) {
  2816. value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
  2817. }
  2818. replace_all(value, "\n", "\\n");
  2819. LLAMA_LOG_INFO("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
  2820. }
  2821. // print type counts
  2822. for (auto & kv : n_type) {
  2823. if (kv.second == 0) {
  2824. continue;
  2825. }
  2826. LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
  2827. }
  2828. }
  2829. if (!llama_mmap::SUPPORTED) {
  2830. LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__);
  2831. use_mmap = false;
  2832. }
  2833. this->use_mmap = use_mmap;
  2834. this->check_tensors = check_tensors;
  2835. }
  2836. ~llama_model_loader() {
  2837. if (meta) {
  2838. gguf_free(meta);
  2839. }
  2840. for (auto * ctx : contexts) {
  2841. ggml_free(ctx);
  2842. }
  2843. }
  2844. template<typename T>
  2845. typename std::enable_if<std::is_integral<T>::value, bool>::type
  2846. get_arr_n(const std::string & key, T & result, const bool required = true) {
  2847. const int kid = gguf_find_key(meta, key.c_str());
  2848. if (kid < 0) {
  2849. if (required) {
  2850. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  2851. }
  2852. return false;
  2853. }
  2854. struct GGUFMeta::ArrayInfo arr_info =
  2855. GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
  2856. result = arr_info.length;
  2857. return true;
  2858. }
  2859. template<typename T>
  2860. typename std::enable_if<std::is_integral<T>::value, bool>::type
  2861. get_arr_n(const enum llm_kv kid, T & result, const bool required = true) {
  2862. return get_arr_n(llm_kv(kid), result, required);
  2863. }
  2864. template<typename T>
  2865. bool get_key(const std::string & key, T & result, const bool required = true) {
  2866. auto it = kv_overrides.find(key);
  2867. const struct llama_model_kv_override * override =
  2868. it != kv_overrides.end() ? &it->second : nullptr;
  2869. const bool found = GGUFMeta::GKV<T>::set(meta, key, result, override);
  2870. if (required && !found) {
  2871. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  2872. }
  2873. return found;
  2874. }
  2875. template<typename T>
  2876. bool get_key(const enum llm_kv kid, T & result, const bool required = true) {
  2877. return get_key(llm_kv(kid), result, required);
  2878. }
  2879. std::string get_arch_name() const {
  2880. return arch_name;
  2881. }
  2882. enum llm_arch get_arch() const {
  2883. return llm_kv.arch;
  2884. }
  2885. const char * get_tensor_name(int i) const {
  2886. return weights.at(i).tensor->name;
  2887. }
  2888. const llama_tensor_weight * get_weight(const char * name) const {
  2889. for (const auto & weight : weights) {
  2890. if (strcmp(name, weight.tensor->name) == 0) {
  2891. return &weight;
  2892. }
  2893. }
  2894. return nullptr;
  2895. }
  2896. const llama_tensor_weight * get_weight(int i) const {
  2897. return get_weight(get_tensor_name(i));
  2898. }
  2899. const llama_tensor_weight & require_weight(const char * name) const {
  2900. const llama_tensor_weight * weight = get_weight(name);
  2901. if (!weight) {
  2902. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  2903. }
  2904. return *weight;
  2905. }
  2906. struct ggml_tensor * get_tensor_meta(const char * name) const {
  2907. const auto * weight = get_weight(name);
  2908. if (!weight) {
  2909. return nullptr;
  2910. }
  2911. return weight->tensor;
  2912. }
  2913. struct ggml_tensor * require_tensor_meta(const char * name) const {
  2914. struct ggml_tensor * tensor = get_tensor_meta(name);
  2915. if (!tensor) {
  2916. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  2917. }
  2918. return tensor;
  2919. }
  2920. struct ggml_tensor * get_tensor_meta(int i) const {
  2921. return get_tensor_meta(get_tensor_name(i));
  2922. }
  2923. struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, const struct ggml_tensor * cur) {
  2924. struct ggml_tensor * tensor = ggml_dup_tensor(ctx, cur);
  2925. ggml_set_name(tensor, ggml_get_name(cur));
  2926. n_created++;
  2927. return tensor;
  2928. }
  2929. const struct ggml_tensor * check_tensor_dims(const std::string & name, const std::vector<int64_t> & ne, bool required) const {
  2930. const struct ggml_tensor * cur = get_tensor_meta(name.c_str());
  2931. if (cur == NULL) {
  2932. if (!required) {
  2933. return NULL;
  2934. }
  2935. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str()));
  2936. }
  2937. {
  2938. bool is_ok = true;
  2939. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  2940. if ((i < ne.size() && ne[i] != cur->ne[i]) || (i >= ne.size() && cur->ne[i] != 1)) {
  2941. is_ok = false;
  2942. break;
  2943. }
  2944. }
  2945. if (!is_ok) {
  2946. throw std::runtime_error(
  2947. format("%s: tensor '%s' has wrong shape; expected %s, got %s",
  2948. __func__, name.c_str(),
  2949. llama_format_tensor_shape(ne).c_str(),
  2950. llama_format_tensor_shape(cur).c_str()));
  2951. }
  2952. }
  2953. return cur;
  2954. }
  2955. struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, bool required = true) {
  2956. const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
  2957. if (cur == NULL) {
  2958. return NULL;
  2959. }
  2960. return create_tensor_for(ctx, cur);
  2961. }
  2962. struct ggml_tensor * create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::vector<int64_t> & ne, size_t offset, bool required = true) {
  2963. const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
  2964. if (cur == NULL) {
  2965. return NULL;
  2966. }
  2967. if (cur->type != base->type) {
  2968. throw std::runtime_error(format("%s: tensor '%s' has wrong type; expected %s, got %s", __func__, name.c_str(), ggml_type_name(base->type), ggml_type_name(cur->type)));
  2969. }
  2970. std::array<int64_t, GGML_MAX_DIMS> dims;
  2971. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  2972. dims[i] = i < ne.size() ? ne[i] : 1;
  2973. }
  2974. struct ggml_tensor * tensor = ggml_view_4d(ctx, base,
  2975. dims[0], dims[1], dims[2], dims[3],
  2976. cur->nb[1], cur->nb[2], cur->nb[3],
  2977. offset);
  2978. ggml_set_name(tensor, name.c_str());
  2979. n_created++;
  2980. return tensor;
  2981. }
  2982. void done_getting_tensors() const {
  2983. if (n_created != n_tensors) {
  2984. throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created));
  2985. }
  2986. }
  2987. void init_mappings(bool prefetch = true, llama_mlocks * mlock_mmaps = nullptr) {
  2988. if (use_mmap) {
  2989. mappings.reserve(files.size());
  2990. mmaps_used.reserve(files.size());
  2991. for (const auto & file : files) {
  2992. std::unique_ptr<llama_mmap> mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, ggml_is_numa()));
  2993. mmaps_used.emplace_back(mapping->size, 0);
  2994. if (mlock_mmaps) {
  2995. std::unique_ptr<llama_mlock> mlock_mmap(new llama_mlock());
  2996. mlock_mmap->init(mapping->addr);
  2997. mlock_mmaps->emplace_back(std::move(mlock_mmap));
  2998. }
  2999. mappings.emplace_back(std::move(mapping));
  3000. }
  3001. }
  3002. // compute the total size of all tensors for progress reporting
  3003. for (auto & w : weights) {
  3004. size_data += ggml_nbytes(w.tensor);
  3005. }
  3006. }
  3007. void get_mapping_range(size_t * first, size_t * last, void ** addr, int idx, ggml_context * ctx) const {
  3008. GGML_ASSERT(!mappings.empty());
  3009. const auto & mapping = mappings.at(idx);
  3010. *first = mapping->size;
  3011. *last = 0;
  3012. *addr = mapping->addr;
  3013. for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) {
  3014. try {
  3015. const auto * weight = get_weight(ggml_get_name(tensor));
  3016. if (!weight) {
  3017. continue;
  3018. }
  3019. if (weight->idx != idx) {
  3020. continue;
  3021. }
  3022. *first = std::min(*first, weight->offs);
  3023. *last = std::max(*last, weight->offs + ggml_nbytes(tensor));
  3024. } catch(...) {
  3025. // the tensor is not in the model
  3026. }
  3027. }
  3028. }
  3029. // for backwards compatibility, does not support ggml-backend
  3030. void load_data_for(struct ggml_tensor * cur) const {
  3031. const auto & w = require_weight(ggml_get_name(cur));
  3032. if (use_mmap) {
  3033. const auto & mapping = mappings.at(w.idx);
  3034. if (cur->data == nullptr) {
  3035. cur->data = (uint8_t *)mapping->addr + w.offs;
  3036. } else {
  3037. memcpy(cur->data, (uint8_t *)mapping->addr + w.offs, ggml_nbytes(cur));
  3038. }
  3039. } else {
  3040. GGML_ASSERT(cur->data != nullptr);
  3041. GGML_ASSERT(w.idx < files.size());
  3042. const auto & file = files.at(w.idx);
  3043. file->seek(w.offs, SEEK_SET);
  3044. file->read_raw(cur->data, ggml_nbytes(cur));
  3045. }
  3046. if (check_tensors && !ggml_validate_row_data(cur->type, cur->data, ggml_nbytes(cur))) {
  3047. throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
  3048. }
  3049. }
  3050. size_t size_done = 0;
  3051. size_t size_data = 0;
  3052. std::vector<std::pair<size_t, size_t>> mmaps_used;
  3053. // Returns false if cancelled by progress_callback
  3054. bool load_all_data(
  3055. struct ggml_context * ctx,
  3056. llama_buf_map & bufs_mmap,
  3057. llama_mlocks * lmlocks,
  3058. llama_progress_callback progress_callback,
  3059. void * progress_callback_user_data) {
  3060. GGML_ASSERT(size_data != 0 && "call init_mappings() first");
  3061. std::vector<no_init<uint8_t>> read_buf;
  3062. std::vector<std::future<std::pair<ggml_tensor *, bool>>> validation_result;
  3063. for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  3064. const auto * weight = get_weight(ggml_get_name(cur));
  3065. if (weight == nullptr) {
  3066. // this can happen with split experts models
  3067. continue;
  3068. }
  3069. if (progress_callback) {
  3070. if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) {
  3071. return false;
  3072. }
  3073. }
  3074. size_t n_size = ggml_nbytes(cur);
  3075. if (use_mmap) {
  3076. const auto & mapping = mappings.at(weight->idx);
  3077. ggml_backend_buffer_t buf_mmap = nullptr;
  3078. if (bufs_mmap.count(weight->idx)) {
  3079. buf_mmap = bufs_mmap.at(weight->idx);
  3080. }
  3081. uint8_t * data = (uint8_t *) mapping->addr + weight->offs;
  3082. if (check_tensors) {
  3083. validation_result.emplace_back(std::async(std::launch::async, [cur, data, n_size] {
  3084. return std::make_pair(cur, ggml_validate_row_data(cur->type, data, n_size));
  3085. }));
  3086. }
  3087. GGML_ASSERT(buf_mmap || cur->data); // either we have a buffer to allocate the tensor in, or it is already allocated
  3088. if (buf_mmap && cur->data == nullptr) {
  3089. ggml_backend_tensor_alloc(buf_mmap, cur, data);
  3090. if (lmlocks) {
  3091. const auto & lmlock = lmlocks->at(weight->idx);
  3092. lmlock->grow_to(weight->offs + n_size);
  3093. }
  3094. auto & mmap_used = mmaps_used[weight->idx];
  3095. mmap_used.first = std::min(mmap_used.first, weight->offs);
  3096. mmap_used.second = std::max(mmap_used.second, weight->offs + n_size);
  3097. } else {
  3098. ggml_backend_tensor_set(cur, data, 0, n_size);
  3099. }
  3100. } else {
  3101. GGML_ASSERT(weight->idx < files.size());
  3102. const auto & file = files.at(weight->idx);
  3103. if (ggml_backend_buffer_is_host(cur->buffer)) {
  3104. file->seek(weight->offs, SEEK_SET);
  3105. file->read_raw(cur->data, n_size);
  3106. if (check_tensors) {
  3107. validation_result.emplace_back(std::async(std::launch::async, [cur, n_size] {
  3108. return std::make_pair(cur, ggml_validate_row_data(cur->type, cur->data, n_size));
  3109. }));
  3110. }
  3111. } else {
  3112. read_buf.resize(n_size);
  3113. file->seek(weight->offs, SEEK_SET);
  3114. file->read_raw(read_buf.data(), n_size);
  3115. ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size);
  3116. if (check_tensors && !ggml_validate_row_data(cur->type, read_buf.data(), n_size)) {
  3117. throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
  3118. }
  3119. }
  3120. }
  3121. size_done += n_size;
  3122. }
  3123. // check validation results
  3124. bool validation_failed = false;
  3125. for (auto & future : validation_result) {
  3126. auto result = future.get();
  3127. if (!result.second) {
  3128. LLAMA_LOG_ERROR("%s: tensor '%s' has invalid data\n", __func__, ggml_get_name(result.first));
  3129. validation_failed = true;
  3130. }
  3131. }
  3132. if (validation_failed) {
  3133. throw std::runtime_error("found tensors with invalid data");
  3134. }
  3135. // check if this is the last call and do final cleanup
  3136. if (size_done >= size_data) {
  3137. // unmap offloaded tensors and metadata
  3138. if (use_mmap) {
  3139. for (uint32_t idx = 0; idx < mappings.size(); idx++) {
  3140. const auto & mmap_used = mmaps_used.at(idx);
  3141. auto & mapping = mappings.at(idx);
  3142. mapping->unmap_fragment(0, mmap_used.first);
  3143. if (mmap_used.second != 0) {
  3144. mapping->unmap_fragment(mmap_used.second, mapping->size);
  3145. }
  3146. }
  3147. }
  3148. if (progress_callback) {
  3149. // Even though the model is done loading, we still honor
  3150. // cancellation since we need to free allocations.
  3151. return progress_callback(1.0f, progress_callback_user_data);
  3152. }
  3153. }
  3154. return true;
  3155. }
  3156. };
  3157. template<>
  3158. bool llama_model_loader::get_key(const enum llm_kv kid, enum llama_pooling_type & result, const bool required) {
  3159. uint32_t tmp;
  3160. const bool found = get_key(kid, tmp, required);
  3161. if (found) {
  3162. result = (enum llama_pooling_type) tmp;
  3163. } else {
  3164. result = LLAMA_POOLING_TYPE_UNSPECIFIED;
  3165. }
  3166. return found;
  3167. }
  3168. //
  3169. // load LLaMA models
  3170. //
  3171. static const char * llama_model_arch_name(llm_arch arch) {
  3172. auto it = LLM_ARCH_NAMES.find(arch);
  3173. if (it == LLM_ARCH_NAMES.end()) {
  3174. return "unknown";
  3175. }
  3176. return it->second;
  3177. }
  3178. static std::string llama_model_ftype_name(llama_ftype ftype) {
  3179. if (ftype & LLAMA_FTYPE_GUESSED) {
  3180. return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)";
  3181. }
  3182. switch (ftype) {
  3183. case LLAMA_FTYPE_ALL_F32: return "all F32";
  3184. case LLAMA_FTYPE_MOSTLY_F16: return "F16";
  3185. case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0";
  3186. case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1";
  3187. case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
  3188. return "Q4_1, some F16";
  3189. case LLAMA_FTYPE_MOSTLY_Q5_0: return "Q5_0";
  3190. case LLAMA_FTYPE_MOSTLY_Q5_1: return "Q5_1";
  3191. case LLAMA_FTYPE_MOSTLY_Q8_0: return "Q8_0";
  3192. // K-quants
  3193. case LLAMA_FTYPE_MOSTLY_Q2_K: return "Q2_K - Medium";
  3194. case LLAMA_FTYPE_MOSTLY_Q2_K_S: return "Q2_K - Small";
  3195. case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "Q3_K - Small";
  3196. case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "Q3_K - Medium";
  3197. case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "Q3_K - Large";
  3198. case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "Q4_K - Small";
  3199. case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "Q4_K - Medium";
  3200. case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "Q5_K - Small";
  3201. case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "Q5_K - Medium";
  3202. case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K";
  3203. case LLAMA_FTYPE_MOSTLY_IQ2_XXS:return "IQ2_XXS - 2.0625 bpw";
  3204. case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw";
  3205. case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw";
  3206. case LLAMA_FTYPE_MOSTLY_IQ2_M: return "IQ2_M - 2.7 bpw";
  3207. case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw";
  3208. case LLAMA_FTYPE_MOSTLY_IQ3_XXS:return "IQ3_XXS - 3.0625 bpw";
  3209. case LLAMA_FTYPE_MOSTLY_IQ1_S :return "IQ1_S - 1.5625 bpw";
  3210. case LLAMA_FTYPE_MOSTLY_IQ1_M :return "IQ1_M - 1.75 bpw";
  3211. case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw";
  3212. case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw";
  3213. case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw";
  3214. case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw";
  3215. default: return "unknown, may not work";
  3216. }
  3217. }
  3218. static const char * llama_model_type_name(e_model type) {
  3219. switch (type) {
  3220. case MODEL_22M: return "22M";
  3221. case MODEL_33M: return "33M";
  3222. case MODEL_109M: return "109M";
  3223. case MODEL_137M: return "137M";
  3224. case MODEL_0_5B: return "0.5B";
  3225. case MODEL_1B: return "1B";
  3226. case MODEL_2B: return "2B";
  3227. case MODEL_3B: return "3B";
  3228. case MODEL_7B: return "7B";
  3229. case MODEL_8B: return "8B";
  3230. case MODEL_12B: return "12B";
  3231. case MODEL_13B: return "13B";
  3232. case MODEL_14B: return "14B";
  3233. case MODEL_15B: return "15B";
  3234. case MODEL_20B: return "20B";
  3235. case MODEL_30B: return "30B";
  3236. case MODEL_34B: return "34B";
  3237. case MODEL_35B: return "35B";
  3238. case MODEL_40B: return "40B";
  3239. case MODEL_65B: return "65B";
  3240. case MODEL_70B: return "70B";
  3241. case MODEL_314B: return "314B";
  3242. case MODEL_SMALL: return "0.1B";
  3243. case MODEL_MEDIUM: return "0.4B";
  3244. case MODEL_LARGE: return "0.8B";
  3245. case MODEL_XL: return "1.5B";
  3246. case MODEL_A2_7B: return "A2.7B";
  3247. case MODEL_8x7B: return "8x7B";
  3248. case MODEL_8x22B: return "8x22B";
  3249. case MODEL_16x12B: return "16x12B";
  3250. default: return "?B";
  3251. }
  3252. }
  3253. static const char * llama_model_vocab_type_name(enum llama_vocab_type type){
  3254. switch (type) {
  3255. case LLAMA_VOCAB_TYPE_NONE: return "no vocab";
  3256. case LLAMA_VOCAB_TYPE_SPM: return "SPM";
  3257. case LLAMA_VOCAB_TYPE_BPE: return "BPE";
  3258. case LLAMA_VOCAB_TYPE_WPM: return "WPM";
  3259. default: return "unknown";
  3260. }
  3261. }
  3262. static void llm_load_arch(llama_model_loader & ml, llama_model & model) {
  3263. model.arch = ml.get_arch();
  3264. if (model.arch == LLM_ARCH_UNKNOWN) {
  3265. throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
  3266. }
  3267. }
  3268. static void llm_load_hparams(
  3269. llama_model_loader & ml,
  3270. llama_model & model) {
  3271. auto & hparams = model.hparams;
  3272. const gguf_context * ctx = ml.meta;
  3273. // get metadata as string
  3274. for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
  3275. enum gguf_type type = gguf_get_kv_type(ctx, i);
  3276. if (type == GGUF_TYPE_ARRAY) {
  3277. continue;
  3278. }
  3279. const char * name = gguf_get_key(ctx, i);
  3280. const std::string value = gguf_kv_to_str(ctx, i);
  3281. model.gguf_kv.emplace(name, value);
  3282. }
  3283. // get general kv
  3284. ml.get_key(LLM_KV_GENERAL_NAME, model.name, false);
  3285. // get hparams kv
  3286. ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab);
  3287. ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
  3288. ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
  3289. ml.get_key(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff);
  3290. ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head);
  3291. ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
  3292. ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
  3293. ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
  3294. GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
  3295. GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
  3296. if (hparams.n_expert > 0) {
  3297. GGML_ASSERT(hparams.n_expert_used > 0);
  3298. } else {
  3299. GGML_ASSERT(hparams.n_expert_used == 0);
  3300. }
  3301. // n_head_kv is optional, default to n_head
  3302. hparams.n_head_kv = hparams.n_head;
  3303. ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv, false);
  3304. bool rope_finetuned = false;
  3305. ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
  3306. hparams.rope_finetuned = rope_finetuned;
  3307. hparams.n_yarn_orig_ctx = hparams.n_ctx_train;
  3308. ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_yarn_orig_ctx, false);
  3309. // rope_freq_base (optional)
  3310. hparams.rope_freq_base_train = 10000.0f;
  3311. ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);
  3312. std::string rope_scaling("linear");
  3313. ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
  3314. hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
  3315. GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
  3316. // rope_freq_scale (inverse of the kv) is optional
  3317. float ropescale = 0.0f;
  3318. if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
  3319. // try the old key name
  3320. ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
  3321. }
  3322. hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
  3323. // sanity check for n_rot (optional)
  3324. {
  3325. hparams.n_rot = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3326. ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
  3327. if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
  3328. if (hparams.n_rot != hparams.n_embd / hparams.n_head) {
  3329. throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd / hparams.n_head));
  3330. }
  3331. }
  3332. // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
  3333. // gpt-j n_rot = rotary_dim
  3334. }
  3335. hparams.n_embd_head_k = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3336. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
  3337. hparams.n_embd_head_v = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3338. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
  3339. // arch-specific KVs
  3340. switch (model.arch) {
  3341. case LLM_ARCH_LLAMA:
  3342. {
  3343. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3344. if (hparams.n_expert == 8) {
  3345. switch (hparams.n_layer) {
  3346. case 32: model.type = e_model::MODEL_8x7B; break;
  3347. case 56: model.type = e_model::MODEL_8x22B; break;
  3348. default: model.type = e_model::MODEL_UNKNOWN;
  3349. }
  3350. } else {
  3351. switch (hparams.n_layer) {
  3352. case 22: model.type = e_model::MODEL_1B; break;
  3353. case 26: model.type = e_model::MODEL_3B; break;
  3354. case 32: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_7B : e_model::MODEL_8B; break; // LLaMa 8B v3 uses GQA
  3355. case 40: model.type = e_model::MODEL_13B; break;
  3356. case 48: model.type = e_model::MODEL_34B; break;
  3357. case 60: model.type = e_model::MODEL_30B; break;
  3358. case 80: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_65B : e_model::MODEL_70B; break;
  3359. default: model.type = e_model::MODEL_UNKNOWN;
  3360. }
  3361. }
  3362. } break;
  3363. case LLM_ARCH_MINICPM:
  3364. {
  3365. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3366. switch (hparams.n_layer) {
  3367. case 40: model.type = e_model::MODEL_2B; break;
  3368. default: model.type = e_model::MODEL_UNKNOWN;
  3369. }
  3370. } break;
  3371. case LLM_ARCH_GROK:
  3372. {
  3373. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3374. switch (hparams.n_layer) {
  3375. case 64: model.type = e_model::MODEL_314B; break;
  3376. default: model.type = e_model::MODEL_UNKNOWN;
  3377. }
  3378. } break;
  3379. case LLM_ARCH_FALCON:
  3380. {
  3381. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3382. switch (hparams.n_layer) {
  3383. case 32: model.type = e_model::MODEL_7B; break;
  3384. case 60: model.type = e_model::MODEL_40B; break;
  3385. default: model.type = e_model::MODEL_UNKNOWN;
  3386. }
  3387. } break;
  3388. case LLM_ARCH_BAICHUAN:
  3389. {
  3390. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3391. switch (hparams.n_layer) {
  3392. case 32: model.type = e_model::MODEL_7B; break;
  3393. case 40: model.type = e_model::MODEL_13B; break;
  3394. default: model.type = e_model::MODEL_UNKNOWN;
  3395. }
  3396. if (model.type == e_model::MODEL_13B) {
  3397. // TODO: become GGUF KV parameter
  3398. hparams.f_max_alibi_bias = 8.0f;
  3399. }
  3400. } break;
  3401. case LLM_ARCH_STARCODER:
  3402. {
  3403. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3404. switch (hparams.n_layer) {
  3405. case 24: model.type = e_model::MODEL_1B; break;
  3406. case 36: model.type = e_model::MODEL_3B; break;
  3407. case 42: model.type = e_model::MODEL_7B; break;
  3408. case 40: model.type = e_model::MODEL_15B; break;
  3409. default: model.type = e_model::MODEL_UNKNOWN;
  3410. }
  3411. } break;
  3412. case LLM_ARCH_PERSIMMON:
  3413. {
  3414. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3415. switch (hparams.n_layer) {
  3416. case 36: model.type = e_model::MODEL_8B; break;
  3417. default: model.type = e_model::MODEL_UNKNOWN;
  3418. }
  3419. } break;
  3420. case LLM_ARCH_REFACT:
  3421. {
  3422. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3423. switch (hparams.n_layer) {
  3424. case 32: model.type = e_model::MODEL_1B; break;
  3425. default: model.type = e_model::MODEL_UNKNOWN;
  3426. }
  3427. // TODO: become GGUF KV parameter
  3428. hparams.f_max_alibi_bias = 8.0f;
  3429. } break;
  3430. case LLM_ARCH_BERT:
  3431. {
  3432. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3433. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3434. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3435. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  3436. switch (hparams.n_layer) {
  3437. case 3:
  3438. model.type = e_model::MODEL_17M; break; // bge-micro
  3439. case 6:
  3440. model.type = e_model::MODEL_22M; break; // MiniLM-L6
  3441. case 12:
  3442. switch (hparams.n_embd) {
  3443. case 384: model.type = e_model::MODEL_33M; break; // MiniLM-L12, bge-small
  3444. case 768: model.type = e_model::MODEL_109M; break; // bge-base
  3445. } break;
  3446. case 24:
  3447. model.type = e_model::MODEL_335M; break; // bge-large
  3448. }
  3449. } break;
  3450. case LLM_ARCH_NOMIC_BERT:
  3451. {
  3452. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3453. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3454. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3455. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  3456. if (hparams.n_layer == 12 && hparams.n_embd == 768) {
  3457. model.type = e_model::MODEL_137M;
  3458. }
  3459. } break;
  3460. case LLM_ARCH_BLOOM:
  3461. {
  3462. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3463. switch (hparams.n_layer) {
  3464. case 24: model.type = e_model::MODEL_1B; break;
  3465. case 30:
  3466. switch (hparams.n_embd) {
  3467. case 2560: model.type = e_model::MODEL_3B; break;
  3468. case 4096: model.type = e_model::MODEL_7B; break;
  3469. } break;
  3470. }
  3471. // TODO: become GGUF KV parameter
  3472. hparams.f_max_alibi_bias = 8.0f;
  3473. } break;
  3474. case LLM_ARCH_MPT:
  3475. {
  3476. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3477. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  3478. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  3479. switch (hparams.n_layer) {
  3480. case 32: model.type = e_model::MODEL_7B; break;
  3481. case 48: model.type = e_model::MODEL_30B; break;
  3482. default: model.type = e_model::MODEL_UNKNOWN;
  3483. }
  3484. } break;
  3485. case LLM_ARCH_STABLELM:
  3486. {
  3487. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3488. switch (hparams.n_layer) {
  3489. case 24: model.type = e_model::MODEL_1B; break;
  3490. case 32: model.type = e_model::MODEL_3B; break;
  3491. case 40: model.type = e_model::MODEL_12B; break;
  3492. default: model.type = e_model::MODEL_UNKNOWN;
  3493. }
  3494. } break;
  3495. case LLM_ARCH_QWEN:
  3496. {
  3497. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3498. switch (hparams.n_layer) {
  3499. case 32: model.type = e_model::MODEL_7B; break;
  3500. case 40: model.type = e_model::MODEL_13B; break;
  3501. default: model.type = e_model::MODEL_UNKNOWN;
  3502. }
  3503. } break;
  3504. case LLM_ARCH_QWEN2:
  3505. {
  3506. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3507. switch (hparams.n_layer) {
  3508. case 24: model.type = hparams.n_embd == 1024 ? e_model::MODEL_0_5B : e_model::MODEL_1B; break;
  3509. case 32: model.type = e_model::MODEL_7B; break;
  3510. case 40: model.type = hparams.n_head == 20 ? e_model::MODEL_4B : e_model::MODEL_13B; break;
  3511. case 80: model.type = e_model::MODEL_70B; break;
  3512. default: model.type = e_model::MODEL_UNKNOWN;
  3513. }
  3514. } break;
  3515. case LLM_ARCH_QWEN2MOE:
  3516. {
  3517. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3518. switch (hparams.n_layer) {
  3519. case 24: model.type = e_model::MODEL_A2_7B; break;
  3520. default: model.type = e_model::MODEL_UNKNOWN;
  3521. }
  3522. } break;
  3523. case LLM_ARCH_PHI2:
  3524. {
  3525. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3526. switch (hparams.n_layer) {
  3527. case 24: model.type = e_model::MODEL_1B; break;
  3528. case 32: model.type = e_model::MODEL_3B; break;
  3529. default: model.type = e_model::MODEL_UNKNOWN;
  3530. }
  3531. } break;
  3532. case LLM_ARCH_PHI3:
  3533. {
  3534. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3535. switch (hparams.n_layer) {
  3536. case 24: model.type = e_model::MODEL_1B; break;
  3537. case 32: model.type = e_model::MODEL_3B; break;
  3538. default: model.type = e_model::MODEL_UNKNOWN;
  3539. }
  3540. } break;
  3541. case LLM_ARCH_PLAMO:
  3542. {
  3543. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3544. switch (hparams.n_layer) {
  3545. case 40: model.type = e_model::MODEL_13B; break;
  3546. default: model.type = e_model::MODEL_UNKNOWN;
  3547. }
  3548. } break;
  3549. case LLM_ARCH_GPT2:
  3550. {
  3551. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3552. switch (hparams.n_layer) {
  3553. case 12: model.type = e_model::MODEL_SMALL; break;
  3554. case 24: model.type = e_model::MODEL_MEDIUM; break;
  3555. case 36: model.type = e_model::MODEL_LARGE; break;
  3556. case 48: model.type = e_model::MODEL_XL; break;
  3557. default: model.type = e_model::MODEL_UNKNOWN;
  3558. }
  3559. } break;
  3560. case LLM_ARCH_CODESHELL:
  3561. {
  3562. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3563. switch (hparams.n_layer) {
  3564. case 42: model.type = e_model::MODEL_SMALL; break;
  3565. default: model.type = e_model::MODEL_UNKNOWN;
  3566. }
  3567. } break;
  3568. case LLM_ARCH_ORION:
  3569. {
  3570. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3571. switch (hparams.n_layer) {
  3572. case 40: model.type = e_model::MODEL_14B; break;
  3573. default: model.type = e_model::MODEL_UNKNOWN;
  3574. }
  3575. } break;
  3576. case LLM_ARCH_INTERNLM2:
  3577. {
  3578. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3579. switch (hparams.n_layer) {
  3580. case 32: model.type = e_model::MODEL_7B; break;
  3581. case 48: model.type = e_model::MODEL_20B; break;
  3582. default: model.type = e_model::MODEL_UNKNOWN;
  3583. }
  3584. } break;
  3585. case LLM_ARCH_GEMMA:
  3586. {
  3587. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3588. switch (hparams.n_layer) {
  3589. case 18: model.type = e_model::MODEL_2B; break;
  3590. case 28: model.type = e_model::MODEL_7B; break;
  3591. default: model.type = e_model::MODEL_UNKNOWN;
  3592. }
  3593. } break;
  3594. case LLM_ARCH_STARCODER2:
  3595. {
  3596. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3597. switch (hparams.n_layer) {
  3598. case 30: model.type = e_model::MODEL_3B; break;
  3599. case 32: model.type = e_model::MODEL_7B; break;
  3600. case 40: model.type = e_model::MODEL_15B; break;
  3601. default: model.type = e_model::MODEL_UNKNOWN;
  3602. }
  3603. } break;
  3604. case LLM_ARCH_MAMBA:
  3605. {
  3606. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  3607. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  3608. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  3609. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  3610. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3611. switch (hparams.n_layer) {
  3612. case 24:
  3613. switch (hparams.n_embd) {
  3614. case 768: model.type = e_model::MODEL_SMALL; break;
  3615. default: model.type = e_model::MODEL_UNKNOWN;
  3616. } break;
  3617. case 48:
  3618. switch (hparams.n_embd) {
  3619. case 1024: model.type = e_model::MODEL_MEDIUM; break;
  3620. case 1536: model.type = e_model::MODEL_LARGE; break;
  3621. case 2048: model.type = e_model::MODEL_XL; break;
  3622. default: model.type = e_model::MODEL_UNKNOWN;
  3623. } break;
  3624. case 64:
  3625. switch (hparams.n_embd) {
  3626. case 2560: model.type = e_model::MODEL_3B; break;
  3627. default: model.type = e_model::MODEL_UNKNOWN;
  3628. } break;
  3629. default: model.type = e_model::MODEL_UNKNOWN;
  3630. }
  3631. } break;
  3632. case LLM_ARCH_XVERSE:
  3633. {
  3634. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3635. switch (hparams.n_layer) {
  3636. case 32: model.type = e_model::MODEL_7B; break;
  3637. case 40: model.type = e_model::MODEL_13B; break;
  3638. case 80: model.type = e_model::MODEL_65B; break;
  3639. default: model.type = e_model::MODEL_UNKNOWN;
  3640. }
  3641. } break;
  3642. case LLM_ARCH_COMMAND_R:
  3643. {
  3644. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  3645. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3646. switch (hparams.n_layer) {
  3647. case 40: model.type = e_model::MODEL_35B; break;
  3648. default: model.type = e_model::MODEL_UNKNOWN;
  3649. }
  3650. } break;
  3651. case LLM_ARCH_DBRX:
  3652. {
  3653. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3654. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv);
  3655. switch (hparams.n_layer) {
  3656. case 40: model.type = e_model::MODEL_16x12B; break;
  3657. default: model.type = e_model::MODEL_UNKNOWN;
  3658. }
  3659. } break;
  3660. case LLM_ARCH_OLMO:
  3661. {
  3662. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3663. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  3664. switch (hparams.n_layer) {
  3665. case 22: model.type = e_model::MODEL_1B; break;
  3666. case 32: model.type = e_model::MODEL_7B; break;
  3667. case 80: model.type = e_model::MODEL_70B; break;
  3668. default: model.type = e_model::MODEL_UNKNOWN;
  3669. }
  3670. } break;
  3671. default: (void)0;
  3672. }
  3673. model.ftype = ml.ftype;
  3674. if (hparams.f_max_alibi_bias > 0.0f) {
  3675. hparams.need_kq_pos = true;
  3676. }
  3677. hparams.rope_type = llama_rope_type(&model);
  3678. }
  3679. // TODO: This should probably be in llama.h
  3680. static std::vector<llama_vocab::id> llama_tokenize_internal(
  3681. const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special = false
  3682. );
  3683. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch);
  3684. static void llm_load_vocab(
  3685. llama_model_loader & ml,
  3686. llama_model & model) {
  3687. auto & vocab = model.vocab;
  3688. struct gguf_context * ctx = ml.meta;
  3689. const auto kv = LLM_KV(model.arch);
  3690. // determine vocab type
  3691. {
  3692. std::string tokenizer_name;
  3693. ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_name);
  3694. if (tokenizer_name == "no_vocab") {
  3695. vocab.type = LLAMA_VOCAB_TYPE_NONE;
  3696. // default special tokens
  3697. vocab.special_bos_id = -1;
  3698. vocab.special_eos_id = -1;
  3699. vocab.special_unk_id = -1;
  3700. vocab.special_sep_id = -1;
  3701. vocab.special_pad_id = -1;
  3702. vocab.special_cls_id = -1;
  3703. vocab.special_mask_id = -1;
  3704. vocab.linefeed_id = -1;
  3705. return;
  3706. } else if (tokenizer_name == "llama") {
  3707. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  3708. // default special tokens
  3709. vocab.special_bos_id = 1;
  3710. vocab.special_eos_id = 2;
  3711. vocab.special_unk_id = 0;
  3712. vocab.special_sep_id = -1;
  3713. vocab.special_pad_id = -1;
  3714. vocab.special_cls_id = -1;
  3715. vocab.special_mask_id = -1;
  3716. // For Fill-In-the-Middle (FIM)/infill models which where converted
  3717. // prior to support of FIM special tokens in GGUF, the following
  3718. // will allow those models to continue to work. The general names
  3719. // of the known models are currently CodeLlama (LLM_ARCH_LLAMA) and
  3720. // CodeGemma (LLM_ARCH_GEMMA). This can potentially be removed once
  3721. // new versions of these models have been published.
  3722. std::string gen_name;
  3723. ml.get_key(LLM_KV_GENERAL_NAME, gen_name, false);
  3724. std::transform(gen_name.begin(), gen_name.end(), gen_name.begin(),
  3725. [](unsigned char c){ return std::tolower(c); });
  3726. if (gen_name.find("code") != std::string::npos) {
  3727. if (model.arch == LLM_ARCH_LLAMA) {
  3728. vocab.special_prefix_id = 32007;
  3729. vocab.special_suffix_id = 32008;
  3730. vocab.special_middle_id = 32009;
  3731. vocab.special_eot_id = 32010;
  3732. } else if (model.arch == LLM_ARCH_GEMMA) {
  3733. vocab.special_prefix_id = 67;
  3734. vocab.special_suffix_id = 69;
  3735. vocab.special_middle_id = 68;
  3736. // TODO: this is not EOT, it is "file separator" token, needs fix
  3737. // https://huggingface.co/google/codegemma-7b-it/blob/9b1d9231388358c04d90bd003458f5070d97db44/tokenizer_config.json#L565-L572
  3738. //vocab.special_eot_id = 70;
  3739. vocab.special_eot_id = 107;
  3740. }
  3741. }
  3742. const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
  3743. if (add_space_prefix_keyidx != -1) {
  3744. vocab.add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
  3745. } // The default value of add_space_prefix is true.
  3746. } else if (tokenizer_name == "gpt2") {
  3747. vocab.type = LLAMA_VOCAB_TYPE_BPE;
  3748. // read bpe merges and populate bpe ranks
  3749. const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
  3750. if (merges_keyidx == -1) {
  3751. throw std::runtime_error("cannot find tokenizer merges in model file\n");
  3752. }
  3753. const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
  3754. for (int i = 0; i < n_merges; i++) {
  3755. const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
  3756. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  3757. std::string first;
  3758. std::string second;
  3759. const size_t pos = word.find(' ', 1);
  3760. if (pos != std::string::npos) {
  3761. first = word.substr(0, pos);
  3762. second = word.substr(pos + 1);
  3763. }
  3764. vocab.bpe_ranks.emplace(std::make_pair(first, second), i);
  3765. }
  3766. // default special tokens
  3767. vocab.special_bos_id = 11;
  3768. vocab.special_eos_id = 11;
  3769. vocab.special_unk_id = -1;
  3770. vocab.special_sep_id = -1;
  3771. vocab.special_pad_id = -1;
  3772. vocab.special_cls_id = -1;
  3773. vocab.special_mask_id = -1;
  3774. } else if (tokenizer_name == "bert") {
  3775. vocab.type = LLAMA_VOCAB_TYPE_WPM;
  3776. // default special tokens
  3777. vocab.special_bos_id = -1;
  3778. vocab.special_eos_id = -1;
  3779. vocab.special_unk_id = 100;
  3780. vocab.special_sep_id = 102;
  3781. vocab.special_pad_id = 0;
  3782. vocab.special_cls_id = 101;
  3783. vocab.special_mask_id = 103;
  3784. vocab.add_space_prefix = false;
  3785. } else {
  3786. LLAMA_LOG_WARN("%s: unknown tokenizer: '%s'", __func__, tokenizer_name.c_str());
  3787. LLAMA_LOG_WARN("%s: using default tokenizer: 'llama'", __func__);
  3788. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  3789. }
  3790. }
  3791. const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str());
  3792. if (token_idx == -1) {
  3793. throw std::runtime_error("cannot find tokenizer vocab in model file\n");
  3794. }
  3795. const float * scores = nullptr;
  3796. const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str());
  3797. if (score_idx != -1) {
  3798. scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
  3799. }
  3800. const int * toktypes = nullptr;
  3801. const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str());
  3802. if (toktype_idx != -1) {
  3803. toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
  3804. }
  3805. const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
  3806. vocab.id_to_token.resize(n_vocab);
  3807. for (uint32_t i = 0; i < n_vocab; i++) {
  3808. std::string word = gguf_get_arr_str(ctx, token_idx, i);
  3809. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  3810. vocab.token_to_id[word] = i;
  3811. auto & token_data = vocab.id_to_token[i];
  3812. token_data.text = std::move(word);
  3813. token_data.score = scores ? scores[i] : 0.0f;
  3814. token_data.type = toktypes ? (llama_token_type) toktypes[i] : LLAMA_TOKEN_TYPE_NORMAL;
  3815. }
  3816. GGML_ASSERT(vocab.id_to_token.size() == vocab.token_to_id.size());
  3817. // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
  3818. if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
  3819. try {
  3820. vocab.linefeed_id = llama_byte_to_token(vocab, '\n');
  3821. } catch (const std::exception & e) {
  3822. LLAMA_LOG_WARN("%s: SPM vocabulary, but newline token not found: %s! Using special_pad_id instead.", __func__, e.what());
  3823. vocab.linefeed_id = vocab.special_pad_id;
  3824. }
  3825. } else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) {
  3826. vocab.linefeed_id = vocab.special_pad_id;
  3827. } else {
  3828. const std::vector<int> ids = llama_tokenize_internal(vocab, "\xC4\x8A", false); // U+010A
  3829. GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
  3830. vocab.linefeed_id = ids[0];
  3831. }
  3832. // special tokens
  3833. {
  3834. const std::vector<std::pair<enum llm_kv, int32_t &>> special_token_types = {
  3835. { LLM_KV_TOKENIZER_BOS_ID, vocab.special_bos_id },
  3836. { LLM_KV_TOKENIZER_EOS_ID, vocab.special_eos_id },
  3837. { LLM_KV_TOKENIZER_UNK_ID, vocab.special_unk_id },
  3838. { LLM_KV_TOKENIZER_SEP_ID, vocab.special_sep_id },
  3839. { LLM_KV_TOKENIZER_PAD_ID, vocab.special_pad_id },
  3840. { LLM_KV_TOKENIZER_CLS_ID, vocab.special_cls_id },
  3841. { LLM_KV_TOKENIZER_MASK_ID, vocab.special_mask_id },
  3842. { LLM_KV_TOKENIZER_PREFIX_ID, vocab.special_prefix_id },
  3843. { LLM_KV_TOKENIZER_SUFFIX_ID, vocab.special_suffix_id },
  3844. { LLM_KV_TOKENIZER_MIDDLE_ID, vocab.special_middle_id },
  3845. { LLM_KV_TOKENIZER_EOT_ID, vocab.special_eot_id },
  3846. };
  3847. for (const auto & it : special_token_types) {
  3848. const std::string & key = kv(std::get<0>(it));
  3849. int32_t & id = std::get<1>(it);
  3850. uint32_t new_id;
  3851. if (!ml.get_key(std::get<0>(it), new_id, false)) {
  3852. continue;
  3853. }
  3854. if (new_id >= vocab.id_to_token.size()) {
  3855. LLAMA_LOG_WARN("%s: bad special token: '%s' = %ud, using default id %d\n",
  3856. __func__, key.c_str(), new_id, id);
  3857. } else {
  3858. id = new_id;
  3859. }
  3860. }
  3861. // Handle add_bos_token and add_eos_token
  3862. {
  3863. bool temp = true;
  3864. if (ml.get_key(LLM_KV_TOKENIZER_ADD_BOS, temp, false)) {
  3865. vocab.special_add_bos = int(temp);
  3866. }
  3867. if (ml.get_key(LLM_KV_TOKENIZER_ADD_EOS, temp, false)) {
  3868. vocab.special_add_eos = int(temp);
  3869. }
  3870. }
  3871. // find EOT token: "<|eot_id|>", "<|im_end|>", "<end_of_turn>", etc.
  3872. //
  3873. // TODO: convert scripts should provide this token through the KV metadata LLAMA_KV_TOKENIZER_EOT_ID
  3874. // for now, we apply this workaround to find the EOT token based on its text
  3875. if (vocab.special_eot_id == -1) {
  3876. for (const auto & t : vocab.token_to_id) {
  3877. if (
  3878. // TODO: gemma "<end_of_turn>" is exported as a normal token, so the following check does not work
  3879. // need to fix convert script
  3880. //vocab.id_to_token[t.second].type == LLAMA_TOKEN_TYPE_CONTROL &&
  3881. (t.first == "<|eot_id|>" ||
  3882. t.first == "<|im_end|>" ||
  3883. t.first == "<|end|>" ||
  3884. t.first == "<end_of_turn>"
  3885. )
  3886. ) {
  3887. vocab.special_eot_id = t.second;
  3888. break;
  3889. }
  3890. }
  3891. }
  3892. }
  3893. // build special tokens cache
  3894. {
  3895. // TODO: It is unclear (to me) at this point, whether special tokes are guaranteed to be of a deterministic type,
  3896. // and will always be correctly labeled in 'added_tokens.json' etc.
  3897. // The assumption is, since special tokens aren't meant to be exposed to end user, they are designed
  3898. // to be unmatchable by the tokenizer, therefore tokens from the vocab, which are unmatchable by the tokenizer
  3899. // are special tokens.
  3900. // From testing, this appears to correlate 1:1 with special tokens.
  3901. //
  3902. // Counting special tokens and verifying in only one direction
  3903. // is sufficient to detect difference in those two sets.
  3904. //
  3905. uint32_t special_tokens_count_by_type = 0;
  3906. uint32_t special_tokens_count_from_verification = 0;
  3907. bool special_tokens_definition_mismatch = false;
  3908. for (const auto & t : vocab.token_to_id) {
  3909. const auto & token = t.first;
  3910. const auto & id = t.second;
  3911. // Count all non-normal tokens in the vocab while iterating
  3912. if (vocab.id_to_token[id].type != LLAMA_TOKEN_TYPE_NORMAL) {
  3913. special_tokens_count_by_type++;
  3914. }
  3915. // Skip single character tokens
  3916. if (token.length() > 1) {
  3917. bool is_tokenizable = false;
  3918. // Split token string representation in two, in all possible ways
  3919. // and check if both halves can be matched to a valid token
  3920. for (unsigned i = 1; i < token.length();) {
  3921. const auto left = token.substr(0, i);
  3922. const auto right = token.substr(i);
  3923. // check if we didnt partition in the middle of a utf sequence
  3924. auto utf = utf8_len(left.at(left.length() - 1));
  3925. if (utf == 1) {
  3926. if (vocab.token_to_id.find(left) != vocab.token_to_id.end() &&
  3927. vocab.token_to_id.find(right) != vocab.token_to_id.end() ) {
  3928. is_tokenizable = true;
  3929. break;
  3930. }
  3931. i++;
  3932. } else {
  3933. // skip over the rest of multibyte utf sequence
  3934. i += utf - 1;
  3935. }
  3936. }
  3937. if (!is_tokenizable) {
  3938. // Some tokens are multibyte, but they are utf sequences with equivalent text length of 1
  3939. // it's faster to re-filter them here, since there are way less candidates now
  3940. // Calculate a total "utf" length of a token string representation
  3941. size_t utf8_str_len = 0;
  3942. for (unsigned i = 0; i < token.length();) {
  3943. utf8_str_len++;
  3944. i += utf8_len(token.at(i));
  3945. }
  3946. // And skip the ones which are one character
  3947. if (utf8_str_len > 1) {
  3948. // At this point what we have left are special tokens only
  3949. vocab.special_tokens_cache[token] = id;
  3950. // Count manually found special tokens
  3951. special_tokens_count_from_verification++;
  3952. // If this manually found special token is not marked as such, flag a mismatch
  3953. if (vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL) {
  3954. special_tokens_definition_mismatch = true;
  3955. }
  3956. }
  3957. }
  3958. }
  3959. }
  3960. if (special_tokens_definition_mismatch || special_tokens_count_from_verification != special_tokens_count_by_type) {
  3961. LLAMA_LOG_WARN("%s: mismatch in special tokens definition ( %u/%zu vs %u/%zu ).\n",
  3962. __func__,
  3963. special_tokens_count_from_verification, vocab.id_to_token.size(),
  3964. special_tokens_count_by_type, vocab.id_to_token.size()
  3965. );
  3966. } else {
  3967. LLAMA_LOG_INFO("%s: special tokens definition check successful ( %u/%zu ).\n",
  3968. __func__,
  3969. special_tokens_count_from_verification, vocab.id_to_token.size()
  3970. );
  3971. }
  3972. }
  3973. }
  3974. static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
  3975. const auto & hparams = model.hparams;
  3976. const auto & vocab = model.vocab;
  3977. const char * rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train);
  3978. // hparams
  3979. LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver));
  3980. LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch));
  3981. LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, llama_model_vocab_type_name(vocab.type));
  3982. LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab);
  3983. LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size());
  3984. LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
  3985. LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
  3986. LLAMA_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head);
  3987. LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv);
  3988. LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
  3989. LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
  3990. LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
  3991. LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
  3992. LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa());
  3993. LLAMA_LOG_INFO("%s: n_embd_k_gqa = %u\n", __func__, hparams.n_embd_k_gqa());
  3994. LLAMA_LOG_INFO("%s: n_embd_v_gqa = %u\n", __func__, hparams.n_embd_v_gqa());
  3995. LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
  3996. LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
  3997. LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
  3998. LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
  3999. LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale);
  4000. LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff);
  4001. LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
  4002. LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
  4003. LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
  4004. LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
  4005. LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
  4006. LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type);
  4007. LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
  4008. LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
  4009. LLAMA_LOG_INFO("%s: n_yarn_orig_ctx = %u\n", __func__, hparams.n_yarn_orig_ctx);
  4010. LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
  4011. LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
  4012. LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
  4013. LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
  4014. LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
  4015. LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
  4016. LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
  4017. if (ml.n_elements >= 1e12) {
  4018. LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, ml.n_elements*1e-12);
  4019. } else if (ml.n_elements >= 1e9) {
  4020. LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9);
  4021. } else if (ml.n_elements >= 1e6) {
  4022. LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, ml.n_elements*1e-6);
  4023. } else {
  4024. LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, ml.n_elements*1e-3);
  4025. }
  4026. if (ml.n_bytes < GiB) {
  4027. LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  4028. } else {
  4029. LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  4030. }
  4031. // general kv
  4032. LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, model.name.c_str());
  4033. // special tokens
  4034. if (vocab.special_bos_id != -1) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].text.c_str() ); }
  4035. if (vocab.special_eos_id != -1) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].text.c_str() ); }
  4036. if (vocab.special_unk_id != -1) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].text.c_str() ); }
  4037. if (vocab.special_sep_id != -1) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].text.c_str() ); }
  4038. if (vocab.special_pad_id != -1) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].text.c_str() ); }
  4039. if (vocab.special_cls_id != -1) { LLAMA_LOG_INFO( "%s: CLS token = %d '%s'\n", __func__, vocab.special_cls_id, vocab.id_to_token[vocab.special_cls_id].text.c_str() ); }
  4040. if (vocab.special_mask_id != -1) { LLAMA_LOG_INFO( "%s: MASK token = %d '%s'\n", __func__, vocab.special_mask_id, vocab.id_to_token[vocab.special_mask_id].text.c_str() ); }
  4041. if (vocab.linefeed_id != -1) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, vocab.linefeed_id, vocab.id_to_token[vocab.linefeed_id].text.c_str() ); }
  4042. if (vocab.special_prefix_id != -1) { LLAMA_LOG_INFO( "%s: PRE token = %d '%s'\n", __func__, vocab.special_prefix_id, vocab.id_to_token[vocab.special_prefix_id].text.c_str() ); }
  4043. if (vocab.special_suffix_id != -1) { LLAMA_LOG_INFO( "%s: SUF token = %d '%s'\n", __func__, vocab.special_suffix_id, vocab.id_to_token[vocab.special_suffix_id].text.c_str() ); }
  4044. if (vocab.special_middle_id != -1) { LLAMA_LOG_INFO( "%s: MID token = %d '%s'\n", __func__, vocab.special_middle_id, vocab.id_to_token[vocab.special_middle_id].text.c_str() ); }
  4045. if (vocab.special_eot_id != -1) { LLAMA_LOG_INFO( "%s: EOT token = %d '%s'\n", __func__, vocab.special_eot_id, vocab.id_to_token[vocab.special_eot_id].text.c_str() ); }
  4046. }
  4047. // Returns false if cancelled by progress_callback
  4048. static bool llm_load_tensors(
  4049. llama_model_loader & ml,
  4050. llama_model & model,
  4051. int n_gpu_layers,
  4052. enum llama_split_mode split_mode,
  4053. int main_gpu,
  4054. const float * tensor_split,
  4055. bool use_mlock,
  4056. llama_progress_callback progress_callback,
  4057. void * progress_callback_user_data) {
  4058. model.t_start_us = ggml_time_us();
  4059. auto & hparams = model.hparams;
  4060. #ifdef GGML_USE_SYCL
  4061. // disable MoE with SYCL until mul_mat_id is updated
  4062. if (hparams.n_expert > 0) {
  4063. n_gpu_layers = 0;
  4064. }
  4065. #endif
  4066. model.split_mode = split_mode;
  4067. model.main_gpu = main_gpu;
  4068. model.n_gpu_layers = n_gpu_layers;
  4069. const int64_t n_layer = hparams.n_layer;
  4070. const int64_t i_gpu_start = std::max((int64_t) hparams.n_layer - n_gpu_layers, (int64_t) 0);
  4071. bool use_mmap_buffer = true;
  4072. // there is very little benefit to offloading the input layer, so always keep it on the CPU
  4073. model.buft_input = llama_default_buffer_type_cpu(true);
  4074. //model.buft_input = llama_default_buffer_type_offload(main_gpu);
  4075. model.buft_layer.resize(n_layer);
  4076. // assign cpu layers
  4077. for (int64_t i = 0; i < i_gpu_start; ++i) {
  4078. model.buft_layer[i] = llama_default_buffer_type_cpu(true);
  4079. }
  4080. if (split_mode == LLAMA_SPLIT_MODE_LAYER) {
  4081. // calculate the split points
  4082. int device_count = llama_get_device_count();
  4083. bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + device_count, [](float x) { return x == 0.0f; });
  4084. std::vector<float> splits(device_count);
  4085. if (all_zero) {
  4086. // default split, by free memory
  4087. for (int i = 0; i < device_count; ++i) {
  4088. splits[i] = llama_get_device_memory(i);
  4089. }
  4090. } else {
  4091. std::copy(tensor_split, tensor_split + device_count, splits.begin());
  4092. }
  4093. // sum and normalize the splits to get the split points
  4094. float split_sum = 0.0f;
  4095. for (int i = 0; i < device_count; ++i) {
  4096. split_sum += splits[i];
  4097. splits[i] = split_sum;
  4098. }
  4099. for (int i = 0; i < device_count; ++i) {
  4100. splits[i] /= split_sum;
  4101. }
  4102. // assign the repeating layers to the devices according to the splits
  4103. int act_gpu_layers = std::min(n_gpu_layers, (int)n_layer + 1);
  4104. for (int64_t i = i_gpu_start; i < n_layer; ++i) {
  4105. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(i - i_gpu_start)/act_gpu_layers) - splits.begin();
  4106. model.buft_layer[i] = llama_default_buffer_type_offload(layer_gpu);
  4107. }
  4108. // assign the output layer
  4109. if (n_gpu_layers > n_layer) {
  4110. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(act_gpu_layers - 1)/act_gpu_layers) - splits.begin();
  4111. model.buft_output = llama_default_buffer_type_offload(layer_gpu);
  4112. } else {
  4113. model.buft_output = llama_default_buffer_type_cpu(true);
  4114. }
  4115. } else {
  4116. ggml_backend_buffer_type_t split_buft;
  4117. if (split_mode == LLAMA_SPLIT_MODE_ROW) {
  4118. split_buft = llama_default_buffer_type_split(main_gpu, tensor_split);
  4119. } else {
  4120. // LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_LAYER in backends where it is not supported
  4121. split_buft = llama_default_buffer_type_offload(main_gpu);
  4122. }
  4123. // assign the repeating layers
  4124. for (int64_t i = i_gpu_start; i < n_layer; ++i) {
  4125. model.buft_layer[i] = {
  4126. split_buft,
  4127. llama_default_buffer_type_offload(main_gpu)
  4128. };
  4129. }
  4130. // assign the output layer
  4131. if (n_gpu_layers > n_layer) {
  4132. model.buft_output = {
  4133. split_buft,
  4134. llama_default_buffer_type_offload(main_gpu)
  4135. };
  4136. } else {
  4137. model.buft_output = llama_default_buffer_type_cpu(true);
  4138. }
  4139. }
  4140. // count used buffer types
  4141. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  4142. buft_layer_count[model.buft_input.buft]++;
  4143. buft_layer_count[model.buft_input.buft_matrix]++;
  4144. buft_layer_count[model.buft_output.buft]++;
  4145. buft_layer_count[model.buft_output.buft_matrix]++;
  4146. for (int64_t i = 0; i < n_layer; ++i) {
  4147. buft_layer_count[model.buft_layer[i].buft]++;
  4148. buft_layer_count[model.buft_layer[i].buft_matrix]++;
  4149. }
  4150. // create one context per buffer type
  4151. size_t ctx_size = ggml_tensor_overhead()*(ml.n_tensors + 1); // +1 for models where tok_embd is duplicated as output
  4152. // for moe merged tensors
  4153. ctx_size += ggml_tensor_overhead()*n_layer*3;
  4154. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  4155. for (auto & it : buft_layer_count) {
  4156. struct ggml_init_params params = {
  4157. /*.mem_size =*/ ctx_size,
  4158. /*.mem_buffer =*/ NULL,
  4159. /*.no_alloc =*/ true,
  4160. };
  4161. ggml_context * ctx = ggml_init(params);
  4162. if (!ctx) {
  4163. throw std::runtime_error(format("failed to create context"));
  4164. }
  4165. ctx_map[it.first] = ctx;
  4166. model.ctxs.push_back(ctx);
  4167. }
  4168. LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MiB\n", __func__, model.ctxs.size()*ctx_size/1024.0/1024.0);
  4169. // create tensors for the weights
  4170. {
  4171. const int64_t n_embd = hparams.n_embd;
  4172. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  4173. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  4174. const int64_t n_embd_gqa = n_embd_v_gqa;
  4175. const int64_t n_vocab = hparams.n_vocab;
  4176. const int64_t n_vocab_type = hparams.n_vocab_type;
  4177. const int64_t n_ff = hparams.n_ff;
  4178. const int64_t n_expert = hparams.n_expert;
  4179. if (n_expert > 0 && hparams.n_expert_used == 0) {
  4180. throw std::runtime_error("model has expert layers but no expert layers are used");
  4181. }
  4182. GGML_ASSERT(n_embd_gqa == n_embd_k_gqa);
  4183. ggml_context * ctx_input = ctx_map.at(model.buft_input.buft);
  4184. ggml_context * ctx_output = ctx_map.at(model.buft_output.buft);
  4185. ggml_context * ctx_output_split = ctx_map.at(model.buft_output.buft_matrix);
  4186. auto ctx_for_layer = [&](int i) { return ctx_map.at(model.buft_layer[i].buft); };
  4187. auto ctx_for_layer_split = [&](int i) { return ctx_map.at(model.buft_layer[i].buft_matrix); };
  4188. model.layers.resize(n_layer);
  4189. const auto tn = LLM_TN(model.arch);
  4190. switch (model.arch) {
  4191. case LLM_ARCH_LLAMA:
  4192. case LLM_ARCH_REFACT:
  4193. case LLM_ARCH_MINICPM:
  4194. {
  4195. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4196. // output
  4197. {
  4198. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4199. if (model.arch != LLM_ARCH_MINICPM){
  4200. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4201. // if output is NULL, init from the input tok embed
  4202. if (model.output == NULL) {
  4203. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4204. ml.n_created--; // artificial tensor
  4205. ml.size_data += ggml_nbytes(model.output);
  4206. }
  4207. }
  4208. }
  4209. for (int i = 0; i < n_layer; ++i) {
  4210. ggml_context * ctx_layer = ctx_for_layer(i);
  4211. ggml_context * ctx_split = ctx_for_layer_split(i);
  4212. auto & layer = model.layers[i];
  4213. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4214. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4215. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4216. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4217. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4218. // optional bias tensors
  4219. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, false);
  4220. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, false);
  4221. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, false);
  4222. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, false);
  4223. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4224. if (n_expert == 0) {
  4225. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4226. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4227. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4228. } else {
  4229. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4230. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
  4231. if (layer.ffn_gate_exps) {
  4232. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  4233. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4234. } else {
  4235. // merge split expert into a single tensor for compatibility with older models
  4236. // requires disabling mmap
  4237. use_mmap_buffer = false;
  4238. ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
  4239. ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
  4240. ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
  4241. layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
  4242. layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
  4243. layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
  4244. ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
  4245. ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
  4246. ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
  4247. for (uint32_t x = 0; x < n_expert; ++x) {
  4248. // the individual experts are loaded into a view of the merged tensor
  4249. ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
  4250. ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
  4251. ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
  4252. }
  4253. }
  4254. }
  4255. }
  4256. } break;
  4257. case LLM_ARCH_GROK:
  4258. {
  4259. if (n_expert == 0) {
  4260. throw std::runtime_error("Grok model cannot have zero experts");
  4261. }
  4262. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4263. // output
  4264. {
  4265. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4266. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4267. // if output is NULL, init from the input tok embed
  4268. if (model.output == NULL) {
  4269. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4270. ml.n_created--; // artificial tensor
  4271. ml.size_data += ggml_nbytes(model.output);
  4272. }
  4273. }
  4274. for (int i = 0; i < n_layer; ++i) {
  4275. ggml_context * ctx_layer = ctx_for_layer(i);
  4276. ggml_context * ctx_split = ctx_for_layer_split(i);
  4277. auto & layer = model.layers[i];
  4278. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4279. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4280. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4281. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4282. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4283. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4284. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4285. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4286. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
  4287. if (layer.ffn_gate_exps) {
  4288. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  4289. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4290. } else {
  4291. // merge split expert into a single tensor for compatibility with older models
  4292. // requires disabling mmap
  4293. use_mmap_buffer = false;
  4294. ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
  4295. ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
  4296. ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
  4297. layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
  4298. layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
  4299. layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
  4300. ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
  4301. ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
  4302. ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
  4303. for (uint32_t x = 0; x < n_expert; ++x) {
  4304. // the individual experts are loaded into a view of the merged tensor
  4305. ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
  4306. ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
  4307. ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
  4308. }
  4309. }
  4310. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4311. }
  4312. } break;
  4313. case LLM_ARCH_DBRX:
  4314. {
  4315. if (n_expert == 0) {
  4316. throw std::runtime_error("DBRX model cannot have zero experts");
  4317. }
  4318. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4319. // output
  4320. {
  4321. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4322. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4323. }
  4324. for (int i = 0; i < n_layer; ++i) {
  4325. ggml_context * ctx_layer = ctx_for_layer(i);
  4326. ggml_context * ctx_split = ctx_for_layer_split(i);
  4327. auto & layer = model.layers[i];
  4328. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4329. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4330. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4331. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4332. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4333. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4334. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert});
  4335. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4336. }
  4337. } break;
  4338. case LLM_ARCH_BAICHUAN:
  4339. {
  4340. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4341. {
  4342. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4343. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4344. }
  4345. for (int i = 0; i < n_layer; ++i) {
  4346. ggml_context * ctx_layer = ctx_for_layer(i);
  4347. ggml_context * ctx_split = ctx_for_layer_split(i);
  4348. auto & layer = model.layers[i];
  4349. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4350. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4351. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4352. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4353. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4354. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4355. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4356. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4357. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4358. }
  4359. } break;
  4360. case LLM_ARCH_FALCON:
  4361. {
  4362. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4363. // output
  4364. {
  4365. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4366. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4367. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4368. if (!model.output) {
  4369. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU
  4370. ml.n_created--; // artificial tensor
  4371. ml.size_data += ggml_nbytes(model.output);
  4372. }
  4373. }
  4374. for (int i = 0; i < n_layer; ++i) {
  4375. ggml_context * ctx_layer = ctx_for_layer(i);
  4376. ggml_context * ctx_split = ctx_for_layer_split(i);
  4377. auto & layer = model.layers[i];
  4378. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4379. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4380. layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, false);
  4381. layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, false);
  4382. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4383. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4384. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4385. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4386. }
  4387. } break;
  4388. case LLM_ARCH_STARCODER:
  4389. {
  4390. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4391. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4392. // output
  4393. {
  4394. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4395. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4396. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4397. }
  4398. for (int i = 0; i < n_layer; ++i) {
  4399. ggml_context * ctx_layer = ctx_for_layer(i);
  4400. ggml_context * ctx_split = ctx_for_layer_split(i);
  4401. auto & layer = model.layers[i];
  4402. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4403. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4404. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4405. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4406. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4407. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4408. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4409. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4410. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4411. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4412. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4413. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4414. }
  4415. } break;
  4416. case LLM_ARCH_PERSIMMON:
  4417. {
  4418. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4419. {
  4420. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4421. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4422. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4423. }
  4424. for (int i = 0; i < n_layer; ++i) {
  4425. ggml_context * ctx_layer = ctx_for_layer(i);
  4426. ggml_context * ctx_split = ctx_for_layer_split(i);
  4427. auto & layer = model.layers[i];
  4428. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4429. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4430. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4431. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4432. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4433. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4434. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4435. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4436. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4437. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4438. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4439. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4440. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {64});
  4441. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {64});
  4442. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {64});
  4443. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {64});
  4444. }
  4445. } break;
  4446. case LLM_ARCH_BERT:
  4447. case LLM_ARCH_NOMIC_BERT:
  4448. {
  4449. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4450. model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type});
  4451. if (model.arch == LLM_ARCH_BERT) {
  4452. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4453. }
  4454. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  4455. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  4456. for (int i = 0; i < n_layer; ++i) {
  4457. ggml_context * ctx_layer = ctx_for_layer(i);
  4458. ggml_context * ctx_split = ctx_for_layer_split(i);
  4459. auto & layer = model.layers[i];
  4460. if (model.arch == LLM_ARCH_BERT) {
  4461. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4462. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4463. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4464. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4465. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4466. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4467. } else {
  4468. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4469. }
  4470. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4471. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4472. layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
  4473. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4474. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4475. if (model.arch == LLM_ARCH_BERT) {
  4476. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4477. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4478. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4479. } else {
  4480. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4481. }
  4482. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4483. layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
  4484. }
  4485. } break;
  4486. case LLM_ARCH_BLOOM:
  4487. {
  4488. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4489. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  4490. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  4491. // output
  4492. {
  4493. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4494. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4495. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4496. }
  4497. for (int i = 0; i < n_layer; ++i) {
  4498. ggml_context * ctx_layer = ctx_for_layer(i);
  4499. ggml_context * ctx_split = ctx_for_layer_split(i);
  4500. auto & layer = model.layers[i];
  4501. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4502. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4503. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4504. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4505. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4506. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4507. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4508. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4509. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4510. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4511. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4512. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4513. }
  4514. } break;
  4515. case LLM_ARCH_MPT:
  4516. {
  4517. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4518. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}, false);
  4519. // output
  4520. {
  4521. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4522. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, false);
  4523. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4524. if (!model.output) {
  4525. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU
  4526. ml.n_created--; // artificial tensor
  4527. ml.size_data += ggml_nbytes(model.output);
  4528. }
  4529. }
  4530. for (int i = 0; i < n_layer; ++i) {
  4531. ggml_context * ctx_layer = ctx_for_layer(i);
  4532. ggml_context * ctx_split = ctx_for_layer_split(i);
  4533. auto & layer = model.layers[i];
  4534. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4535. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, false);
  4536. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4537. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, false);
  4538. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4539. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, false);
  4540. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4541. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, false);
  4542. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4543. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, false);
  4544. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4545. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, false);
  4546. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, false);
  4547. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, false);
  4548. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, false);
  4549. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, false);
  4550. // AWQ ScaleActivation layer
  4551. layer.ffn_act = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, false);
  4552. }
  4553. } break;
  4554. case LLM_ARCH_STABLELM:
  4555. {
  4556. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4557. // output
  4558. {
  4559. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4560. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4561. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4562. }
  4563. for (int i = 0; i < n_layer; ++i) {
  4564. ggml_context * ctx_layer = ctx_for_layer(i);
  4565. ggml_context * ctx_split = ctx_for_layer_split(i);
  4566. auto & layer = model.layers[i];
  4567. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4568. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4569. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4570. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4571. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4572. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4573. // optional bias tensors, present in Stable LM 2 1.6B
  4574. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, false);
  4575. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, false);
  4576. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, false);
  4577. // optional q and k layernorms, present in StableLM 2 12B
  4578. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head}, false);
  4579. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv}, false);
  4580. // optional FFN norm, not present in StableLM 2 12B which uses parallel residual
  4581. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, false);
  4582. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, false);
  4583. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4584. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4585. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4586. }
  4587. } break;
  4588. case LLM_ARCH_QWEN:
  4589. {
  4590. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4591. // output
  4592. {
  4593. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4594. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4595. }
  4596. for (int i = 0; i < n_layer; ++i) {
  4597. ggml_context * ctx_layer = ctx_for_layer(i);
  4598. ggml_context * ctx_split = ctx_for_layer_split(i);
  4599. auto & layer = model.layers[i];
  4600. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4601. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3});
  4602. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3});
  4603. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4604. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4605. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2});
  4606. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd});
  4607. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2});
  4608. }
  4609. } break;
  4610. case LLM_ARCH_QWEN2:
  4611. {
  4612. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4613. // output
  4614. {
  4615. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4616. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4617. // if output is NULL, init from the input tok embed
  4618. if (model.output == NULL) {
  4619. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4620. ml.n_created--; // artificial tensor
  4621. ml.size_data += ggml_nbytes(model.output);
  4622. }
  4623. }
  4624. for (int i = 0; i < n_layer; ++i) {
  4625. ggml_context * ctx_layer = ctx_for_layer(i);
  4626. ggml_context * ctx_split = ctx_for_layer_split(i);
  4627. auto & layer = model.layers[i];
  4628. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4629. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4630. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4631. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4632. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4633. // optional bias tensors
  4634. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4635. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4636. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4637. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4638. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4639. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4640. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4641. }
  4642. } break;
  4643. case LLM_ARCH_QWEN2MOE:
  4644. {
  4645. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4646. // output
  4647. {
  4648. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4649. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4650. }
  4651. for (int i = 0; i < n_layer; ++i) {
  4652. ggml_context * ctx_layer = ctx_for_layer(i);
  4653. ggml_context * ctx_split = ctx_for_layer_split(i);
  4654. auto & layer = model.layers[i];
  4655. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4656. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4657. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4658. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4659. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4660. // optional bias tensors
  4661. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4662. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4663. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4664. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4665. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4666. GGML_ASSERT(hparams.n_expert > 0);
  4667. GGML_ASSERT(hparams.n_expert_used > 0);
  4668. // MoE branch
  4669. auto n_ff_exp = n_ff / hparams.n_expert_used;
  4670. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  4671. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert});
  4672. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  4673. // Shared expert branch
  4674. layer.ffn_gate_inp_shexp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd});
  4675. layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff});
  4676. layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff, n_embd});
  4677. layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff});
  4678. }
  4679. } break;
  4680. case LLM_ARCH_PHI2:
  4681. {
  4682. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4683. // output
  4684. {
  4685. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4686. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4687. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4688. model.output_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab});
  4689. }
  4690. for (int i = 0; i < n_layer; ++i) {
  4691. ggml_context * ctx_layer = ctx_for_layer(i);
  4692. ggml_context * ctx_split = ctx_for_layer_split(i);
  4693. auto & layer = model.layers[i];
  4694. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4695. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4696. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, false);
  4697. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, false);
  4698. if (layer.wqkv == nullptr) {
  4699. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4700. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4701. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4702. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4703. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4704. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4705. }
  4706. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4707. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4708. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4709. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4710. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4711. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4712. }
  4713. } break;
  4714. case LLM_ARCH_PHI3:
  4715. {
  4716. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab });
  4717. // output
  4718. {
  4719. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd });
  4720. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab });
  4721. }
  4722. for (int i = 0; i < n_layer; ++i) {
  4723. ggml_context* ctx_layer = ctx_for_layer(i);
  4724. ggml_context* ctx_split = ctx_for_layer_split(i);
  4725. auto& layer = model.layers[i];
  4726. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd });
  4727. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, false);
  4728. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd });
  4729. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd });
  4730. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd });
  4731. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff });
  4732. }
  4733. } break;
  4734. case LLM_ARCH_PLAMO:
  4735. {
  4736. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4737. // output
  4738. {
  4739. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4740. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4741. }
  4742. for (int i = 0; i < n_layer; ++i) {
  4743. ggml_context * ctx_layer = ctx_for_layer(i);
  4744. ggml_context * ctx_split = ctx_for_layer_split(i);
  4745. auto & layer = model.layers[i];
  4746. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4747. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4748. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4749. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4750. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4751. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4752. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4753. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4754. }
  4755. } break;
  4756. case LLM_ARCH_GPT2:
  4757. {
  4758. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4759. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4760. // output
  4761. {
  4762. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4763. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4764. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4765. }
  4766. for (int i = 0; i < n_layer; ++i) {
  4767. ggml_context * ctx_layer = ctx_for_layer(i);
  4768. ggml_context * ctx_split = ctx_for_layer_split(i);
  4769. auto & layer = model.layers[i];
  4770. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4771. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4772. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4773. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4774. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4775. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4776. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4777. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4778. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4779. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4780. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4781. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4782. }
  4783. } break;
  4784. case LLM_ARCH_CODESHELL:
  4785. {
  4786. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4787. // output
  4788. {
  4789. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4790. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4791. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4792. }
  4793. for (int i = 0; i < n_layer; ++i) {
  4794. ggml_context * ctx_layer = ctx_for_layer(i);
  4795. ggml_context * ctx_split = ctx_for_layer_split(i);
  4796. auto & layer = model.layers[i];
  4797. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4798. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4799. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4800. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4801. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4802. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4803. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4804. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4805. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4806. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4807. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4808. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4809. }
  4810. } break;
  4811. case LLM_ARCH_ORION:
  4812. {
  4813. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4814. {
  4815. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4816. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4817. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4818. }
  4819. for (int i = 0; i < n_layer; ++i) {
  4820. ggml_context * ctx_layer = ctx_for_layer(i);
  4821. ggml_context * ctx_split = ctx_for_layer_split(i);
  4822. auto & layer = model.layers[i];
  4823. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4824. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4825. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4826. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4827. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4828. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4829. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4830. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4831. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4832. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4833. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4834. }
  4835. } break;
  4836. case LLM_ARCH_INTERNLM2:
  4837. {
  4838. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4839. // output
  4840. {
  4841. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4842. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4843. }
  4844. for (int i = 0; i < n_layer; ++i) {
  4845. ggml_context * ctx_layer = ctx_for_layer(i);
  4846. ggml_context * ctx_split = ctx_for_layer_split(i);
  4847. auto & layer = model.layers[i];
  4848. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4849. // layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4850. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4851. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4852. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4853. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4854. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4855. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4856. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4857. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4858. }
  4859. } break;
  4860. case LLM_ARCH_GEMMA:
  4861. {
  4862. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4863. // output
  4864. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4865. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // same as tok_embd, duplicated to allow offloading
  4866. ml.n_created--; // artificial tensor
  4867. ml.size_data += ggml_nbytes(model.output);
  4868. const int64_t n_ff = hparams.n_ff;
  4869. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  4870. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  4871. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  4872. for (uint32_t i = 0; i < n_layer; ++i) {
  4873. ggml_context * ctx_layer = ctx_for_layer(i);
  4874. ggml_context * ctx_split = ctx_for_layer_split(i);
  4875. auto & layer = model.layers[i];
  4876. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4877. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * hparams.n_head});
  4878. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
  4879. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
  4880. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * hparams.n_head, n_embd});
  4881. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4882. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4883. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4884. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4885. }
  4886. } break;
  4887. case LLM_ARCH_STARCODER2:
  4888. {
  4889. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4890. // output
  4891. {
  4892. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4893. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4894. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4895. // if output is NULL, init from the input tok embed
  4896. if (model.output == NULL) {
  4897. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4898. ml.n_created--; // artificial tensor
  4899. ml.size_data += ggml_nbytes(model.output);
  4900. }
  4901. }
  4902. for (int i = 0; i < n_layer; ++i) {
  4903. ggml_context * ctx_layer = ctx_for_layer(i);
  4904. ggml_context * ctx_split = ctx_for_layer_split(i);
  4905. auto & layer = model.layers[i];
  4906. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4907. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4908. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4909. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4910. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4911. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4912. // optional bias tensors
  4913. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4914. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4915. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4916. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4917. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4918. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4919. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4920. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4921. // optional bias tensors
  4922. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4923. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff});
  4924. }
  4925. } break;
  4926. case LLM_ARCH_MAMBA:
  4927. {
  4928. const int64_t d_conv = hparams.ssm_d_conv;
  4929. const int64_t d_inner = hparams.ssm_d_inner;
  4930. const int64_t d_state = hparams.ssm_d_state;
  4931. const int64_t dt_rank = hparams.ssm_dt_rank;
  4932. // only an expansion factor of 2 is supported for now
  4933. GGML_ASSERT(2 * n_embd == d_inner);
  4934. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4935. // output
  4936. {
  4937. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4938. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4939. // if output is NULL, init from the input tok embed, duplicated to allow offloading
  4940. if (model.output == NULL) {
  4941. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4942. ml.n_created--; // artificial tensor
  4943. ml.size_data += ggml_nbytes(model.output);
  4944. }
  4945. }
  4946. for (int i = 0; i < n_layer; ++i) {
  4947. ggml_context * ctx_layer = ctx_for_layer(i);
  4948. ggml_context * ctx_split = ctx_for_layer_split(i);
  4949. auto & layer = model.layers[i];
  4950. // norm
  4951. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4952. layer.ssm_in = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner});
  4953. layer.ssm_conv1d = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner});
  4954. layer.ssm_conv1d_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner});
  4955. layer.ssm_x = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state});
  4956. layer.ssm_dt = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner});
  4957. layer.ssm_dt_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner});
  4958. // no "weight" suffix for these
  4959. layer.ssm_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner});
  4960. layer.ssm_d = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_D, i), {d_inner});
  4961. // out_proj
  4962. layer.ssm_out = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd});
  4963. }
  4964. } break;
  4965. case LLM_ARCH_XVERSE:
  4966. {
  4967. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4968. {
  4969. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4970. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4971. }
  4972. for (int i = 0; i < n_layer; ++i) {
  4973. ggml_context * ctx_layer = ctx_for_layer(i);
  4974. ggml_context * ctx_split = ctx_for_layer_split(i);
  4975. auto & layer = model.layers[i];
  4976. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4977. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4978. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4979. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4980. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4981. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4982. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4983. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4984. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4985. }
  4986. } break;
  4987. case LLM_ARCH_COMMAND_R:
  4988. {
  4989. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4990. // output
  4991. {
  4992. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4993. // init output from the input tok embed
  4994. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4995. ml.n_created--; // artificial tensor
  4996. ml.size_data += ggml_nbytes(model.output);
  4997. }
  4998. for (int i = 0; i < n_layer; ++i) {
  4999. ggml_context * ctx_layer = ctx_for_layer(i);
  5000. ggml_context * ctx_split = ctx_for_layer_split(i);
  5001. auto & layer = model.layers[i];
  5002. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5003. if (n_layer >= 64){
  5004. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head});
  5005. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv});
  5006. }
  5007. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5008. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5009. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5010. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5011. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5012. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5013. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5014. }
  5015. } break;
  5016. case LLM_ARCH_OLMO: // adapted from LLM_ARCH_LLAMA with norm params removed
  5017. {
  5018. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5019. // output
  5020. {
  5021. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  5022. // if output is NULL, init from the input tok embed
  5023. if (model.output == NULL) {
  5024. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5025. ml.n_created--; // artificial tensor
  5026. ml.size_data += ggml_nbytes(model.output);
  5027. }
  5028. }
  5029. for (int i = 0; i < n_layer; ++i) {
  5030. ggml_context * ctx_split = ctx_for_layer_split(i);
  5031. auto & layer = model.layers[i];
  5032. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5033. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5034. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5035. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5036. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5037. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5038. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5039. }
  5040. } break;
  5041. default:
  5042. throw std::runtime_error("unknown architecture");
  5043. }
  5044. }
  5045. ml.done_getting_tensors();
  5046. ml.init_mappings(true, use_mlock ? &model.mlock_mmaps : nullptr);
  5047. model.mappings.reserve(ml.mappings.size());
  5048. // create the backend buffers
  5049. std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_bufs;
  5050. ctx_bufs.reserve(ctx_map.size());
  5051. // Ensure we have enough capacity for the maximum backend buffer we will potentially create
  5052. size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
  5053. model.bufs.reserve(n_max_backend_buffer);
  5054. for (auto & it : ctx_map) {
  5055. ggml_backend_buffer_type_t buft = it.first;
  5056. ggml_context * ctx = it.second;
  5057. llama_buf_map bufs;
  5058. bufs.reserve(n_max_backend_buffer);
  5059. // only the mmap region containing the tensors in the model is mapped to the backend buffer
  5060. // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
  5061. // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
  5062. if (ml.use_mmap && use_mmap_buffer && buft == llama_default_buffer_type_cpu(true)) {
  5063. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5064. void * addr = nullptr;
  5065. size_t first, last;
  5066. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  5067. if (first >= last) {
  5068. continue;
  5069. }
  5070. ggml_backend_buffer_t buf = ggml_backend_cpu_buffer_from_ptr((char *) addr + first, last - first);
  5071. if (buf == nullptr) {
  5072. throw std::runtime_error("unable to allocate backend CPU buffer");
  5073. }
  5074. model.bufs.push_back(buf);
  5075. bufs.emplace(idx, buf);
  5076. #ifdef GGML_USE_CUDA
  5077. if (n_layer >= n_gpu_layers) {
  5078. ggml_backend_cuda_register_host_buffer(
  5079. ggml_backend_buffer_get_base(buf),
  5080. ggml_backend_buffer_get_size(buf));
  5081. }
  5082. #endif
  5083. }
  5084. }
  5085. #ifdef GGML_USE_METAL
  5086. else if (ml.use_mmap && use_mmap_buffer && buft == ggml_backend_metal_buffer_type()) {
  5087. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5088. const size_t max_size = ggml_get_max_tensor_size(ctx);
  5089. void * addr = nullptr;
  5090. size_t first, last;
  5091. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  5092. if (first >= last) {
  5093. continue;
  5094. }
  5095. ggml_backend_buffer_t buf = ggml_backend_metal_buffer_from_ptr((char *) addr + first, last - first, max_size);
  5096. if (buf == nullptr) {
  5097. throw std::runtime_error("unable to allocate backend metal buffer");
  5098. }
  5099. model.bufs.push_back(buf);
  5100. bufs.emplace(idx, buf);
  5101. }
  5102. }
  5103. #endif
  5104. else {
  5105. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  5106. if (buf == nullptr) {
  5107. throw std::runtime_error("unable to allocate backend buffer");
  5108. }
  5109. model.bufs.push_back(buf);
  5110. if (use_mlock && ggml_backend_buffer_is_host(buf)) {
  5111. model.mlock_bufs.emplace_back(new llama_mlock);
  5112. auto & mlock_buf = model.mlock_bufs.back();
  5113. mlock_buf->init (ggml_backend_buffer_get_base(buf));
  5114. mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
  5115. }
  5116. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5117. bufs.emplace(idx, buf);
  5118. }
  5119. }
  5120. if (bufs.empty()) {
  5121. throw std::runtime_error("failed to allocate buffer");
  5122. }
  5123. for (auto & buf : bufs) {
  5124. // indicate that this buffer contains weights
  5125. // this is used by ggml_backend_sched to improve op scheduling -> ops that use a weight are preferably scheduled to the backend that contains the weight
  5126. ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  5127. }
  5128. ctx_bufs.emplace_back(ctx, bufs);
  5129. }
  5130. if (llama_supports_gpu_offload()) {
  5131. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  5132. LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
  5133. if (n_gpu_layers > (int) hparams.n_layer) {
  5134. LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__);
  5135. }
  5136. const int max_backend_supported_layers = hparams.n_layer + 1;
  5137. const int max_offloadable_layers = hparams.n_layer + 1;
  5138. LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
  5139. }
  5140. // print memory requirements
  5141. for (ggml_backend_buffer_t buf : model.bufs) {
  5142. LLAMA_LOG_INFO("%s: %10s buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf) / 1024.0 / 1024.0);
  5143. }
  5144. // populate tensors_by_name
  5145. for (ggml_context * ctx : model.ctxs) {
  5146. for (auto * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  5147. model.tensors_by_name.emplace_back(ggml_get_name(cur), cur);
  5148. }
  5149. }
  5150. // load tensor data
  5151. for (auto & it : ctx_bufs) {
  5152. ggml_context * ctx = it.first;
  5153. auto & bufs = it.second;
  5154. if (!ml.load_all_data(ctx, bufs, use_mlock ? &model.mlock_mmaps : NULL, progress_callback, progress_callback_user_data)) {
  5155. return false;
  5156. }
  5157. }
  5158. if (use_mmap_buffer) {
  5159. for (auto & mapping : ml.mappings) {
  5160. model.mappings.emplace_back(std::move(mapping));
  5161. }
  5162. }
  5163. // loading time will be recalculate after the first eval, so
  5164. // we take page faults deferred by mmap() into consideration
  5165. model.t_load_us = ggml_time_us() - model.t_start_us;
  5166. return true;
  5167. }
  5168. // Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback
  5169. static int llama_model_load(const std::string & fname, llama_model & model, llama_model_params & params) {
  5170. try {
  5171. llama_model_loader ml(fname, params.use_mmap, params.check_tensors, params.kv_overrides);
  5172. model.hparams.vocab_only = params.vocab_only;
  5173. try {
  5174. llm_load_arch(ml, model);
  5175. } catch(const std::exception & e) {
  5176. throw std::runtime_error("error loading model architecture: " + std::string(e.what()));
  5177. }
  5178. try {
  5179. llm_load_hparams(ml, model);
  5180. } catch(const std::exception & e) {
  5181. throw std::runtime_error("error loading model hyperparameters: " + std::string(e.what()));
  5182. }
  5183. try {
  5184. llm_load_vocab(ml, model);
  5185. } catch(const std::exception & e) {
  5186. throw std::runtime_error("error loading model vocabulary: " + std::string(e.what()));
  5187. }
  5188. llm_load_print_meta(ml, model);
  5189. if (model.vocab.type != LLAMA_VOCAB_TYPE_NONE &&
  5190. model.hparams.n_vocab != model.vocab.id_to_token.size()) {
  5191. throw std::runtime_error("vocab size mismatch");
  5192. }
  5193. if (params.vocab_only) {
  5194. LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__);
  5195. return 0;
  5196. }
  5197. #ifdef GGML_USE_KOMPUTE
  5198. if (params.n_gpu_layers > 0 && (
  5199. !(model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON)
  5200. || !(
  5201. model.ftype == LLAMA_FTYPE_ALL_F32 ||
  5202. model.ftype == LLAMA_FTYPE_MOSTLY_F16 ||
  5203. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
  5204. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_1
  5205. )
  5206. )) {
  5207. // TODO(cebtenzzre): propagate this error outside of llama_load_model_from_file
  5208. LLAMA_LOG_WARN("%s: disabling Kompute due to unsupported model arch or quantization\n", __func__);
  5209. params.n_gpu_layers = 0;
  5210. }
  5211. #endif
  5212. #ifdef GGML_USE_SYCL
  5213. if (params.split_mode == LLAMA_SPLIT_MODE_NONE) {
  5214. ggml_backend_sycl_set_single_device_mode(params.main_gpu);
  5215. //SYCL use device index (0, 1, 2) directly, uer input device id, then convert to device index.
  5216. params.main_gpu = ggml_backend_sycl_get_device_index(params.main_gpu);
  5217. } else {
  5218. ggml_backend_sycl_set_mul_device_mode();
  5219. }
  5220. #endif
  5221. if (!llm_load_tensors(
  5222. ml, model, params.n_gpu_layers, params.split_mode, params.main_gpu, params.tensor_split, params.use_mlock,
  5223. params.progress_callback, params.progress_callback_user_data
  5224. )) {
  5225. return -2;
  5226. }
  5227. } catch (const std::exception & err) {
  5228. LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what());
  5229. return -1;
  5230. }
  5231. return 0;
  5232. }
  5233. //
  5234. // llm_build
  5235. //
  5236. using llm_build_cb = std::function<void(struct ggml_tensor * cur, const char * name, int nl)>;
  5237. enum llm_ffn_op_type {
  5238. LLM_FFN_SILU,
  5239. LLM_FFN_GELU,
  5240. LLM_FFN_RELU,
  5241. LLM_FFN_RELU_SQR,
  5242. };
  5243. enum llm_ffn_gate_type {
  5244. LLM_FFN_SEQ,
  5245. LLM_FFN_PAR, // ffn_gate is parallel to ffn_up
  5246. };
  5247. enum llm_norm_type {
  5248. LLM_NORM,
  5249. LLM_NORM_RMS,
  5250. };
  5251. static struct ggml_tensor * llm_build_inp_embd(
  5252. struct ggml_context * ctx,
  5253. struct llama_context & lctx,
  5254. const llama_hparams & hparams,
  5255. const llama_batch & batch,
  5256. struct ggml_tensor * tok_embd,
  5257. const llm_build_cb & cb) {
  5258. const int64_t n_embd = hparams.n_embd;
  5259. struct ggml_tensor * inpL;
  5260. if (batch.token) {
  5261. lctx.inp_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, batch.n_tokens);
  5262. cb(lctx.inp_tokens, "inp_tokens", -1);
  5263. ggml_set_input(lctx.inp_tokens);
  5264. inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens);
  5265. } else {
  5266. #ifdef GGML_USE_MPI
  5267. GGML_ASSERT(false && "not implemented");
  5268. #endif
  5269. lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
  5270. inpL = lctx.inp_embd;
  5271. ggml_set_input(lctx.inp_embd);
  5272. }
  5273. cb(inpL, "inp_embd", -1);
  5274. return inpL;
  5275. }
  5276. static void llm_build_kv_store(
  5277. struct ggml_context * ctx,
  5278. const llama_hparams & hparams,
  5279. const llama_kv_cache & kv,
  5280. struct ggml_cgraph * graph,
  5281. struct ggml_tensor * k_cur,
  5282. struct ggml_tensor * v_cur,
  5283. int64_t n_ctx,
  5284. int32_t n_tokens,
  5285. int32_t kv_head,
  5286. const llm_build_cb & cb,
  5287. int64_t il) {
  5288. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5289. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  5290. GGML_ASSERT(kv.size == n_ctx);
  5291. // compute the transposed [n_tokens, n_embd] V matrix
  5292. assert(v_cur->ne[0] == n_embd_v_gqa && v_cur->ne[1] == n_tokens);
  5293. struct ggml_tensor * v_cur_t = ggml_transpose(ctx, v_cur);
  5294. cb(v_cur_t, "v_cur_t", il);
  5295. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k_l[il], n_tokens*n_embd_k_gqa,
  5296. (ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa))*kv_head);
  5297. cb(k_cache_view, "k_cache_view", il);
  5298. struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, kv.v_l[il], n_tokens, n_embd_v_gqa,
  5299. ( n_ctx)*ggml_element_size(kv.v_l[il]),
  5300. (kv_head)*ggml_element_size(kv.v_l[il]));
  5301. cb(v_cache_view, "v_cache_view", il);
  5302. // important: storing RoPE-ed version of K in the KV cache!
  5303. ggml_build_forward_expand(graph, ggml_cpy(ctx, k_cur, k_cache_view));
  5304. ggml_build_forward_expand(graph, ggml_cpy(ctx, v_cur_t, v_cache_view));
  5305. }
  5306. static struct ggml_tensor * llm_build_norm(
  5307. struct ggml_context * ctx,
  5308. struct ggml_tensor * cur,
  5309. const llama_hparams & hparams,
  5310. struct ggml_tensor * mw,
  5311. struct ggml_tensor * mb,
  5312. llm_norm_type type,
  5313. const llm_build_cb & cb,
  5314. int il) {
  5315. switch (type) {
  5316. case LLM_NORM: cur = ggml_norm (ctx, cur, hparams.f_norm_eps); break;
  5317. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hparams.f_norm_rms_eps); break;
  5318. }
  5319. if (mw || mb) {
  5320. cb(cur, "norm", il);
  5321. }
  5322. if (mw) {
  5323. cur = ggml_mul(ctx, cur, mw);
  5324. if (mb) {
  5325. cb(cur, "norm_w", il);
  5326. }
  5327. }
  5328. if (mb) {
  5329. cur = ggml_add(ctx, cur, mb);
  5330. }
  5331. return cur;
  5332. }
  5333. static struct ggml_tensor * llm_build_ffn(
  5334. struct ggml_context * ctx,
  5335. struct ggml_tensor * cur,
  5336. struct ggml_tensor * up,
  5337. struct ggml_tensor * up_b,
  5338. struct ggml_tensor * gate,
  5339. struct ggml_tensor * gate_b,
  5340. struct ggml_tensor * down,
  5341. struct ggml_tensor * down_b,
  5342. struct ggml_tensor * act_scales,
  5343. llm_ffn_op_type type_op,
  5344. llm_ffn_gate_type type_gate,
  5345. const llm_build_cb & cb,
  5346. int il) {
  5347. struct ggml_tensor * tmp = ggml_mul_mat(ctx, up, cur);
  5348. cb(tmp, "ffn_up", il);
  5349. if (up_b) {
  5350. tmp = ggml_add(ctx, tmp, up_b);
  5351. cb(tmp, "ffn_up_b", il);
  5352. }
  5353. if (gate) {
  5354. switch (type_gate) {
  5355. case LLM_FFN_SEQ:
  5356. {
  5357. cur = ggml_mul_mat(ctx, gate, tmp);
  5358. cb(cur, "ffn_gate", il);
  5359. } break;
  5360. case LLM_FFN_PAR:
  5361. {
  5362. cur = ggml_mul_mat(ctx, gate, cur);
  5363. cb(cur, "ffn_gate", il);
  5364. } break;
  5365. }
  5366. if (gate_b) {
  5367. cur = ggml_add(ctx, cur, gate_b);
  5368. cb(cur, "ffn_gate_b", il);
  5369. }
  5370. } else {
  5371. cur = tmp;
  5372. }
  5373. switch (type_op) {
  5374. case LLM_FFN_SILU:
  5375. {
  5376. cur = ggml_silu(ctx, cur);
  5377. cb(cur, "ffn_silu", il);
  5378. } break;
  5379. case LLM_FFN_GELU:
  5380. {
  5381. cur = ggml_gelu(ctx, cur);
  5382. cb(cur, "ffn_gelu", il);
  5383. if (act_scales != NULL) {
  5384. cur = ggml_div(ctx, cur, act_scales);
  5385. cb(cur, "ffn_act", il);
  5386. }
  5387. } break;
  5388. case LLM_FFN_RELU:
  5389. {
  5390. cur = ggml_relu(ctx, cur);
  5391. cb(cur, "ffn_relu", il);
  5392. } break;
  5393. case LLM_FFN_RELU_SQR:
  5394. {
  5395. cur = ggml_relu(ctx, cur);
  5396. cb(cur, "ffn_relu", il);
  5397. cur = ggml_sqr(ctx, cur);
  5398. cb(cur, "ffn_sqr(relu)", il);
  5399. } break;
  5400. }
  5401. if (type_gate == LLM_FFN_PAR) {
  5402. cur = ggml_mul(ctx, cur, tmp);
  5403. cb(cur, "ffn_gate_par", il);
  5404. }
  5405. cur = ggml_mul_mat(ctx, down, cur);
  5406. if (down_b) {
  5407. cb(cur, "ffn_down", il);
  5408. }
  5409. if (down_b) {
  5410. cur = ggml_add(ctx, cur, down_b);
  5411. }
  5412. return cur;
  5413. }
  5414. static struct ggml_tensor * llm_build_moe_ffn(
  5415. struct ggml_context * ctx,
  5416. struct ggml_tensor * cur,
  5417. struct ggml_tensor * gate_inp,
  5418. struct ggml_tensor * up_exps,
  5419. struct ggml_tensor * gate_exps,
  5420. struct ggml_tensor * down_exps,
  5421. int64_t n_expert,
  5422. int64_t n_expert_used,
  5423. llm_ffn_op_type type_op,
  5424. bool norm_w,
  5425. const llm_build_cb & cb,
  5426. int il) {
  5427. int64_t n_embd = cur->ne[0];
  5428. int64_t n_tokens = cur->ne[1];
  5429. ggml_tensor * logits = ggml_mul_mat(ctx, gate_inp, cur); // [n_expert, n_tokens]
  5430. cb(logits, "ffn_moe_logits", il);
  5431. ggml_tensor * probs = ggml_soft_max(ctx, logits); // [n_expert, n_tokens]
  5432. cb(probs, "ffn_moe_probs", il);
  5433. // select experts
  5434. ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_expert_used); // [n_expert_used, n_tokens]
  5435. cb(selected_experts->src[0], "ffn_moe_argsort", il);
  5436. cb(selected_experts, "ffn_moe_topk", il);
  5437. ggml_tensor * weights = ggml_get_rows(ctx,
  5438. ggml_reshape_3d(ctx, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
  5439. cb(weights, "ffn_moe_weights", il);
  5440. if (norm_w) {
  5441. weights = ggml_reshape_2d(ctx, weights, n_expert_used, n_tokens);
  5442. ggml_tensor * weights_sum = ggml_sum_rows(ctx, weights); // [1, n_tokens]
  5443. cb(weights_sum, "ffn_moe_weights_sum", il);
  5444. weights = ggml_div(ctx, weights, weights_sum); // [n_expert_used, n_tokens]
  5445. cb(weights, "ffn_moe_weights_norm", il);
  5446. weights = ggml_reshape_3d(ctx, weights, 1, n_expert_used, n_tokens);
  5447. }
  5448. cur = ggml_reshape_3d(ctx, cur, n_embd, 1, n_tokens);
  5449. ggml_tensor * up = ggml_mul_mat_id(ctx, up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
  5450. cb(up, "ffn_moe_up", il);
  5451. ggml_tensor * gate = ggml_mul_mat_id(ctx, gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
  5452. cb(gate, "ffn_moe_gate", il);
  5453. switch (type_op) {
  5454. case LLM_FFN_SILU:
  5455. {
  5456. gate = ggml_silu(ctx, gate);
  5457. cb(gate, "ffn_moe_silu", il);
  5458. } break;
  5459. case LLM_FFN_GELU:
  5460. {
  5461. gate = ggml_gelu(ctx, gate);
  5462. cb(gate, "ffn_moe_gelu", il);
  5463. } break;
  5464. default:
  5465. GGML_ASSERT(false);
  5466. }
  5467. ggml_tensor * par = ggml_mul(ctx, up, gate); // [n_ff, n_expert_used, n_tokens]
  5468. cb(par, "ffn_moe_gate_par", il);
  5469. ggml_tensor * experts = ggml_mul_mat_id(ctx, down_exps, par, selected_experts); // [n_embd, n_expert_used, n_tokens]
  5470. cb(experts, "ffn_moe_down", il);
  5471. experts = ggml_mul(ctx, experts, weights);
  5472. // aggregate experts
  5473. ggml_tensor * moe_out = nullptr;
  5474. for (int i = 0; i < n_expert_used; ++i) {
  5475. ggml_tensor * cur_expert = ggml_view_2d(ctx, experts, n_embd, n_tokens,
  5476. experts->nb[2], i*experts->nb[1]);
  5477. if (i == 0) {
  5478. moe_out = cur_expert;
  5479. } else {
  5480. moe_out = ggml_add(ctx, moe_out, cur_expert);
  5481. }
  5482. }
  5483. if (n_expert_used == 1) {
  5484. // avoid returning a non-contiguous tensor
  5485. moe_out = ggml_cont(ctx, moe_out);
  5486. }
  5487. return moe_out;
  5488. }
  5489. // if max_alibi_bias > 0 then apply ALiBi
  5490. static struct ggml_tensor * llm_build_kqv(
  5491. struct ggml_context * ctx,
  5492. const llama_model & model,
  5493. const llama_hparams & hparams,
  5494. const llama_kv_cache & kv,
  5495. struct ggml_cgraph * graph,
  5496. struct ggml_tensor * wo,
  5497. struct ggml_tensor * wo_b,
  5498. struct ggml_tensor * q_cur,
  5499. struct ggml_tensor * kq_mask,
  5500. struct ggml_tensor * kq_pos,
  5501. int64_t n_ctx,
  5502. int32_t n_tokens,
  5503. int32_t n_kv,
  5504. float kq_scale,
  5505. const llm_build_cb & cb,
  5506. int il) {
  5507. const int64_t n_head = hparams.n_head;
  5508. const int64_t n_head_kv = hparams.n_head_kv;
  5509. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  5510. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5511. const int64_t n_embd_head_v = hparams.n_embd_head_v;
  5512. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  5513. cb(q, "q", il);
  5514. struct ggml_tensor * k =
  5515. ggml_view_3d(ctx, kv.k_l[il],
  5516. n_embd_head_k, n_kv, n_head_kv,
  5517. ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa),
  5518. ggml_row_size(kv.k_l[il]->type, n_embd_head_k),
  5519. 0);
  5520. cb(k, "k", il);
  5521. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  5522. cb(kq, "kq", il);
  5523. if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3) {
  5524. // for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs
  5525. // ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847
  5526. ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  5527. }
  5528. if (model.arch == LLM_ARCH_GROK) {
  5529. // need to do the following:
  5530. // multiply by attn_output_multiplyer of 0.08838834764831845
  5531. // and then :
  5532. // kq = 30 * tanh(kq / 30)
  5533. // before the softmax below
  5534. //try from phi2
  5535. //ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  5536. kq = ggml_tanh(ctx, ggml_scale(ctx, kq, 0.08838834764831845f/30.0f));
  5537. kq = ggml_scale(ctx, kq, 30);
  5538. }
  5539. #if defined(GGML_USE_KOMPUTE)
  5540. #pragma message("TODO: ALiBi support in ggml_soft_max_ext is not implemented for Kompute")
  5541. #pragma message(" Falling back to ggml_alibi(). Will become an error in Mar 2024")
  5542. #pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5488")
  5543. if (hparams.f_max_alibi_bias > 0.0f) {
  5544. kq = ggml_scale(ctx, kq, kq_scale);
  5545. cb(kq, "kq_scaled", il);
  5546. kq = ggml_alibi(ctx, kq, /*n_past*/ 0, n_head, hparams.f_max_alibi_bias);
  5547. cb(kq, "kq_scaled_alibi", il);
  5548. kq = ggml_add(ctx, kq, kq_mask);
  5549. cb(kq, "kq_masked", il);
  5550. kq = ggml_soft_max(ctx, kq);
  5551. cb(kq, "kq_soft_max", il);
  5552. } else
  5553. #endif
  5554. {
  5555. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_pos, kq_scale, hparams.f_max_alibi_bias);
  5556. cb(kq, "kq_soft_max_ext", il);
  5557. }
  5558. GGML_ASSERT(kv.size == n_ctx);
  5559. // split cached v into n_head heads
  5560. struct ggml_tensor * v =
  5561. ggml_view_3d(ctx, kv.v_l[il],
  5562. n_kv, n_embd_head_v, n_head_kv,
  5563. ggml_element_size(kv.v_l[il])*n_ctx,
  5564. ggml_element_size(kv.v_l[il])*n_ctx*n_embd_head_v,
  5565. 0);
  5566. cb(v, "v", il);
  5567. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  5568. cb(kqv, "kqv", il);
  5569. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  5570. cb(kqv_merged, "kqv_merged", il);
  5571. struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, n_embd_head_k*n_head, n_tokens);
  5572. cb(cur, "kqv_merged_cont", il);
  5573. ggml_build_forward_expand(graph, cur);
  5574. cur = ggml_mul_mat(ctx, wo, cur);
  5575. if (wo_b) {
  5576. cb(cur, "kqv_wo", il);
  5577. }
  5578. if (wo_b) {
  5579. cur = ggml_add(ctx, cur, wo_b);
  5580. }
  5581. return cur;
  5582. }
  5583. static struct ggml_tensor * llm_build_kv(
  5584. struct ggml_context * ctx,
  5585. const llama_model & model,
  5586. const llama_hparams & hparams,
  5587. const llama_kv_cache & kv,
  5588. struct ggml_cgraph * graph,
  5589. struct ggml_tensor * wo,
  5590. struct ggml_tensor * wo_b,
  5591. struct ggml_tensor * k_cur,
  5592. struct ggml_tensor * v_cur,
  5593. struct ggml_tensor * q_cur,
  5594. struct ggml_tensor * kq_mask,
  5595. struct ggml_tensor * kq_pos,
  5596. int64_t n_ctx,
  5597. int32_t n_tokens,
  5598. int32_t kv_head,
  5599. int32_t n_kv,
  5600. float kq_scale,
  5601. const llm_build_cb & cb,
  5602. int il) {
  5603. // these nodes are added to the graph together so that they are not reordered
  5604. // by doing so, the number of splits in the graph is reduced
  5605. ggml_build_forward_expand(graph, q_cur);
  5606. ggml_build_forward_expand(graph, k_cur);
  5607. ggml_build_forward_expand(graph, v_cur);
  5608. llm_build_kv_store(ctx, hparams, kv, graph, k_cur, v_cur, n_ctx, n_tokens, kv_head, cb, il);
  5609. struct ggml_tensor * cur;
  5610. cur = llm_build_kqv(ctx, model, hparams, kv, graph, wo, wo_b,
  5611. q_cur, kq_mask, kq_pos, n_ctx, n_tokens, n_kv, kq_scale, cb, il);
  5612. cb(cur, "kqv_out", il);
  5613. return cur;
  5614. }
  5615. struct llm_build_context {
  5616. const llama_model & model;
  5617. llama_context & lctx;
  5618. const llama_hparams & hparams;
  5619. const llama_cparams & cparams;
  5620. const llama_batch & batch;
  5621. const llama_kv_cache & kv_self;
  5622. const int64_t n_embd;
  5623. const int64_t n_layer;
  5624. const int64_t n_rot;
  5625. const int64_t n_ctx; // user-specified context size (can be different from n_ctx_train)
  5626. const int64_t n_head;
  5627. const int64_t n_head_kv;
  5628. const int64_t n_embd_head_k;
  5629. const int64_t n_embd_k_gqa;
  5630. const int64_t n_embd_head_v;
  5631. const int64_t n_embd_v_gqa;
  5632. const int64_t n_expert;
  5633. const int64_t n_expert_used;
  5634. const float freq_base;
  5635. const float freq_scale;
  5636. const float ext_factor;
  5637. const float attn_factor;
  5638. const float beta_fast;
  5639. const float beta_slow;
  5640. const float norm_eps;
  5641. const float norm_rms_eps;
  5642. const int32_t n_tokens;
  5643. const int32_t n_kv; // size of KV cache to consider (n_kv <= kv_self.size)
  5644. const int32_t n_outputs;
  5645. const int32_t kv_head; // index of where we store new KV data in the cache
  5646. const int32_t n_orig_ctx;
  5647. const enum llama_pooling_type pooling_type;
  5648. const enum llama_rope_type rope_type;
  5649. const llm_build_cb & cb;
  5650. std::vector<uint8_t> & buf_compute_meta;
  5651. struct ggml_context * ctx0 = nullptr;
  5652. // TODO: consider making the entire interface noexcept
  5653. llm_build_context(
  5654. llama_context & lctx,
  5655. const llama_batch & batch,
  5656. const llm_build_cb & cb,
  5657. bool worst_case) :
  5658. model (lctx.model),
  5659. lctx (lctx),
  5660. hparams (model.hparams),
  5661. cparams (lctx.cparams),
  5662. batch (batch),
  5663. kv_self (lctx.kv_self),
  5664. n_embd (hparams.n_embd),
  5665. n_layer (hparams.n_layer),
  5666. n_rot (hparams.n_rot),
  5667. n_ctx (cparams.n_ctx),
  5668. n_head (hparams.n_head),
  5669. n_head_kv (hparams.n_head_kv),
  5670. n_embd_head_k (hparams.n_embd_head_k),
  5671. n_embd_k_gqa (hparams.n_embd_k_gqa()),
  5672. n_embd_head_v (hparams.n_embd_head_v),
  5673. n_embd_v_gqa (hparams.n_embd_v_gqa()),
  5674. n_expert (hparams.n_expert),
  5675. n_expert_used (hparams.n_expert_used),
  5676. freq_base (cparams.rope_freq_base),
  5677. freq_scale (cparams.rope_freq_scale),
  5678. ext_factor (cparams.yarn_ext_factor),
  5679. attn_factor (cparams.yarn_attn_factor),
  5680. beta_fast (cparams.yarn_beta_fast),
  5681. beta_slow (cparams.yarn_beta_slow),
  5682. norm_eps (hparams.f_norm_eps),
  5683. norm_rms_eps (hparams.f_norm_rms_eps),
  5684. n_tokens (batch.n_tokens),
  5685. n_kv (worst_case ? kv_self.size : kv_self.n),
  5686. n_outputs (worst_case ? n_tokens : lctx.n_outputs),
  5687. kv_head (worst_case ? (kv_self.recurrent ? 0 : kv_self.size - n_tokens) : kv_self.head),
  5688. n_orig_ctx (cparams.n_yarn_orig_ctx),
  5689. pooling_type (cparams.pooling_type),
  5690. rope_type (hparams.rope_type),
  5691. cb (cb),
  5692. buf_compute_meta (lctx.buf_compute_meta) {
  5693. // all initializations should be done in init()
  5694. }
  5695. void init() {
  5696. struct ggml_init_params params = {
  5697. /*.mem_size =*/ buf_compute_meta.size(),
  5698. /*.mem_buffer =*/ buf_compute_meta.data(),
  5699. /*.no_alloc =*/ true,
  5700. };
  5701. ctx0 = ggml_init(params);
  5702. lctx.inp_tokens = nullptr;
  5703. lctx.inp_embd = nullptr;
  5704. lctx.inp_pos = nullptr;
  5705. lctx.inp_out_ids = nullptr;
  5706. lctx.inp_KQ_mask = nullptr;
  5707. lctx.inp_KQ_pos = nullptr;
  5708. lctx.inp_K_shift = nullptr;
  5709. lctx.inp_mean = nullptr;
  5710. lctx.inp_cls = nullptr;
  5711. lctx.inp_s_copy = nullptr;
  5712. lctx.inp_s_mask = nullptr;
  5713. lctx.inp_s_seq = nullptr;
  5714. }
  5715. void free() {
  5716. if (ctx0) {
  5717. ggml_free(ctx0);
  5718. ctx0 = nullptr;
  5719. }
  5720. }
  5721. struct ggml_cgraph * build_k_shift() {
  5722. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5723. GGML_ASSERT(kv_self.size == n_ctx);
  5724. lctx.inp_K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
  5725. cb(lctx.inp_K_shift, "K_shift", -1);
  5726. ggml_set_input(lctx.inp_K_shift);
  5727. for (int il = 0; il < n_layer; ++il) {
  5728. struct ggml_tensor * tmp =
  5729. // we rotate only the first n_rot dimensions
  5730. ggml_rope_custom_inplace(ctx0,
  5731. ggml_view_3d(ctx0, kv_self.k_l[il],
  5732. n_embd_head_k, n_head_kv, n_ctx,
  5733. ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
  5734. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  5735. 0),
  5736. lctx.inp_K_shift, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5737. ext_factor, attn_factor, beta_fast, beta_slow);
  5738. cb(tmp, "K_shifted", il);
  5739. ggml_build_forward_expand(gf, tmp);
  5740. }
  5741. return gf;
  5742. }
  5743. struct ggml_cgraph * build_s_copy() {
  5744. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5745. GGML_ASSERT(kv_self.recurrent);
  5746. struct ggml_tensor * state_copy = build_inp_s_copy();
  5747. for (int il = 0; il < n_layer; ++il) {
  5748. struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
  5749. struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
  5750. conv_states = ggml_get_rows(ctx0, conv_states, state_copy);
  5751. ssm_states = ggml_get_rows(ctx0, ssm_states, state_copy);
  5752. // TODO: name the intermediate tensors with cb()
  5753. ggml_build_forward_expand(gf, ggml_cpy(ctx0, conv_states, kv_self.k_l[il]));
  5754. ggml_build_forward_expand(gf, ggml_cpy(ctx0, ssm_states, kv_self.v_l[il]));
  5755. }
  5756. return gf;
  5757. }
  5758. struct ggml_cgraph * build_defrag(const std::vector<uint32_t> & ids) {
  5759. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5760. for (uint32_t i = 0; i < ids.size(); ++i) {
  5761. const uint32_t id = ids[i];
  5762. if (i == id || id == ids.size()) {
  5763. continue;
  5764. }
  5765. uint32_t nm = 1;
  5766. while (i + nm < ids.size() && ids[i + nm] == id + nm) {
  5767. nm++;
  5768. }
  5769. for (int il = 0; il < n_layer; ++il) {
  5770. ggml_tensor * view_k_src = ggml_view_2d(ctx0, kv_self.k_l[il],
  5771. n_embd_k_gqa, nm,
  5772. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  5773. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*i));
  5774. ggml_tensor * view_k_dst = ggml_view_2d(ctx0, kv_self.k_l[il],
  5775. n_embd_k_gqa, nm,
  5776. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  5777. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*id));
  5778. ggml_tensor * view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
  5779. nm, n_embd_v_gqa,
  5780. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  5781. ggml_row_size(kv_self.v_l[il]->type, i));
  5782. ggml_tensor * view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
  5783. nm, n_embd_v_gqa,
  5784. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  5785. ggml_row_size(kv_self.v_l[il]->type, id));
  5786. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_k_src, view_k_dst));
  5787. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_v_src, view_v_dst));
  5788. }
  5789. i += nm - 1;
  5790. }
  5791. //LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
  5792. return gf;
  5793. }
  5794. struct ggml_tensor * build_inp_pos() {
  5795. lctx.inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  5796. cb(lctx.inp_pos, "inp_pos", -1);
  5797. ggml_set_input(lctx.inp_pos);
  5798. return lctx.inp_pos;
  5799. }
  5800. struct ggml_tensor * build_inp_out_ids() {
  5801. lctx.inp_out_ids = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs);
  5802. cb(lctx.inp_out_ids, "inp_out_ids", -1);
  5803. ggml_set_input(lctx.inp_out_ids);
  5804. return lctx.inp_out_ids;
  5805. }
  5806. struct ggml_tensor * build_inp_KQ_mask(bool causal = true) {
  5807. if (causal) {
  5808. lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, n_tokens);
  5809. } else {
  5810. lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
  5811. }
  5812. cb(lctx.inp_KQ_mask, "KQ_mask", -1);
  5813. ggml_set_input(lctx.inp_KQ_mask);
  5814. return lctx.inp_KQ_mask;
  5815. }
  5816. struct ggml_tensor * build_inp_KQ_pos() {
  5817. lctx.inp_KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, n_kv);
  5818. cb(lctx.inp_KQ_pos, "KQ_pos", -1);
  5819. ggml_set_input(lctx.inp_KQ_pos);
  5820. return lctx.inp_KQ_pos;
  5821. }
  5822. struct ggml_tensor * build_inp_mean() {
  5823. lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
  5824. cb(lctx.inp_mean, "inp_mean", -1);
  5825. ggml_set_input(lctx.inp_mean);
  5826. return lctx.inp_mean;
  5827. }
  5828. struct ggml_tensor * build_inp_cls() {
  5829. lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  5830. cb(lctx.inp_cls, "inp_cls", -1);
  5831. ggml_set_input(lctx.inp_cls);
  5832. return lctx.inp_cls;
  5833. }
  5834. struct ggml_tensor * build_inp_s_copy() {
  5835. lctx.inp_s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, kv_self.size);
  5836. cb(lctx.inp_s_copy, "inp_s_copy", -1);
  5837. ggml_set_input(lctx.inp_s_copy);
  5838. return lctx.inp_s_copy;
  5839. }
  5840. struct ggml_tensor * build_inp_s_mask() {
  5841. lctx.inp_s_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_kv);
  5842. cb(lctx.inp_s_mask, "inp_s_mask", -1);
  5843. ggml_set_input(lctx.inp_s_mask);
  5844. return lctx.inp_s_mask;
  5845. }
  5846. struct ggml_tensor * build_inp_s_seq() {
  5847. lctx.inp_s_seq = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens);
  5848. cb(lctx.inp_s_seq, "inp_s_seq", -1);
  5849. ggml_set_input(lctx.inp_s_seq);
  5850. return lctx.inp_s_seq;
  5851. }
  5852. struct ggml_cgraph * build_llama() {
  5853. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5854. // mutable variable, needed during the last layer of the computation to skip unused tokens
  5855. int32_t n_tokens = this->n_tokens;
  5856. const int64_t n_embd_head = hparams.n_embd_head_v;
  5857. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5858. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5859. struct ggml_tensor * cur;
  5860. struct ggml_tensor * inpL;
  5861. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  5862. // inp_pos - contains the positions
  5863. struct ggml_tensor * inp_pos = build_inp_pos();
  5864. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5865. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  5866. for (int il = 0; il < n_layer; ++il) {
  5867. struct ggml_tensor * inpSA = inpL;
  5868. // norm
  5869. cur = llm_build_norm(ctx0, inpL, hparams,
  5870. model.layers[il].attn_norm, NULL,
  5871. LLM_NORM_RMS, cb, il);
  5872. cb(cur, "attn_norm", il);
  5873. // self-attention
  5874. {
  5875. // compute Q and K and RoPE them
  5876. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  5877. cb(Qcur, "Qcur", il);
  5878. if (model.layers[il].bq) {
  5879. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5880. cb(Qcur, "Qcur", il);
  5881. }
  5882. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  5883. cb(Kcur, "Kcur", il);
  5884. if (model.layers[il].bk) {
  5885. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5886. cb(Kcur, "Kcur", il);
  5887. }
  5888. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  5889. cb(Vcur, "Vcur", il);
  5890. if (model.layers[il].bv) {
  5891. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5892. cb(Vcur, "Vcur", il);
  5893. }
  5894. Qcur = ggml_rope_custom(
  5895. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  5896. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5897. ext_factor, attn_factor, beta_fast, beta_slow
  5898. );
  5899. cb(Qcur, "Qcur", il);
  5900. Kcur = ggml_rope_custom(
  5901. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  5902. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5903. ext_factor, attn_factor, beta_fast, beta_slow
  5904. );
  5905. cb(Kcur, "Kcur", il);
  5906. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  5907. model.layers[il].wo, model.layers[il].bo,
  5908. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  5909. }
  5910. if (il == n_layer - 1) {
  5911. // skip computing output for unused tokens
  5912. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  5913. n_tokens = n_outputs;
  5914. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5915. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5916. }
  5917. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5918. cb(ffn_inp, "ffn_inp", il);
  5919. // feed-forward network
  5920. if (model.layers[il].ffn_gate_inp == nullptr) {
  5921. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  5922. model.layers[il].ffn_norm, NULL,
  5923. LLM_NORM_RMS, cb, il);
  5924. cb(cur, "ffn_norm", il);
  5925. cur = llm_build_ffn(ctx0, cur,
  5926. model.layers[il].ffn_up, NULL,
  5927. model.layers[il].ffn_gate, NULL,
  5928. model.layers[il].ffn_down, NULL,
  5929. NULL,
  5930. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  5931. cb(cur, "ffn_out", il);
  5932. } else {
  5933. // MoE branch
  5934. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  5935. model.layers[il].ffn_norm, NULL,
  5936. LLM_NORM_RMS, cb, il);
  5937. cb(cur, "ffn_norm", il);
  5938. cur = llm_build_moe_ffn(ctx0, cur,
  5939. model.layers[il].ffn_gate_inp,
  5940. model.layers[il].ffn_up_exps,
  5941. model.layers[il].ffn_gate_exps,
  5942. model.layers[il].ffn_down_exps,
  5943. n_expert, n_expert_used,
  5944. LLM_FFN_SILU, true,
  5945. cb, il);
  5946. cb(cur, "ffn_moe_out", il);
  5947. }
  5948. cur = ggml_add(ctx0, cur, ffn_inp);
  5949. cb(cur, "ffn_out", il);
  5950. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  5951. if (layer_dir != nullptr) {
  5952. cur = ggml_add(ctx0, cur, layer_dir);
  5953. }
  5954. cb(cur, "l_out", il);
  5955. // input for next layer
  5956. inpL = cur;
  5957. }
  5958. cur = inpL;
  5959. cur = llm_build_norm(ctx0, cur, hparams,
  5960. model.output_norm, NULL,
  5961. LLM_NORM_RMS, cb, -1);
  5962. cb(cur, "result_norm", -1);
  5963. // lm_head
  5964. cur = ggml_mul_mat(ctx0, model.output, cur);
  5965. cb(cur, "result_output", -1);
  5966. ggml_build_forward_expand(gf, cur);
  5967. return gf;
  5968. }
  5969. struct ggml_cgraph * build_baichuan() {
  5970. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5971. const int64_t n_embd_head = hparams.n_embd_head_v;
  5972. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5973. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5974. struct ggml_tensor * cur;
  5975. struct ggml_tensor * inpL;
  5976. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  5977. // inp_pos - contains the positions
  5978. struct ggml_tensor * inp_pos = model.type == MODEL_7B ? build_inp_pos() : nullptr;
  5979. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5980. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  5981. // positions of the tokens in the KV cache
  5982. struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
  5983. for (int il = 0; il < n_layer; ++il) {
  5984. struct ggml_tensor * inpSA = inpL;
  5985. cur = llm_build_norm(ctx0, inpL, hparams,
  5986. model.layers[il].attn_norm, NULL,
  5987. LLM_NORM_RMS, cb, il);
  5988. cb(cur, "attn_norm", il);
  5989. // self-attention
  5990. {
  5991. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  5992. cb(Qcur, "Qcur", il);
  5993. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  5994. cb(Kcur, "Kcur", il);
  5995. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  5996. cb(Vcur, "Vcur", il);
  5997. switch (model.type) {
  5998. case MODEL_7B:
  5999. Qcur = ggml_rope_custom(
  6000. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6001. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6002. ext_factor, attn_factor, beta_fast, beta_slow
  6003. );
  6004. Kcur = ggml_rope_custom(
  6005. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6006. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6007. ext_factor, attn_factor, beta_fast, beta_slow
  6008. );
  6009. break;
  6010. case MODEL_13B:
  6011. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd/n_head, n_head, n_tokens);
  6012. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd/n_head, n_head, n_tokens);
  6013. break;
  6014. default:
  6015. GGML_ASSERT(false);
  6016. }
  6017. cb(Qcur, "Qcur", il);
  6018. cb(Kcur, "Kcur", il);
  6019. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6020. model.layers[il].wo, NULL,
  6021. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6022. }
  6023. if (il == n_layer - 1) {
  6024. // skip computing output for unused tokens
  6025. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6026. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6027. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6028. }
  6029. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6030. cb(ffn_inp, "ffn_inp", il);
  6031. // feed-forward network
  6032. {
  6033. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6034. model.layers[il].ffn_norm, NULL,
  6035. LLM_NORM_RMS, cb, il);
  6036. cb(cur, "ffn_norm", il);
  6037. cur = llm_build_ffn(ctx0, cur,
  6038. model.layers[il].ffn_up, NULL,
  6039. model.layers[il].ffn_gate, NULL,
  6040. model.layers[il].ffn_down, NULL,
  6041. NULL,
  6042. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6043. cb(cur, "ffn_out", il);
  6044. }
  6045. cur = ggml_add(ctx0, cur, ffn_inp);
  6046. cb(cur, "l_out", il);
  6047. // input for next layer
  6048. inpL = cur;
  6049. }
  6050. cur = inpL;
  6051. cur = llm_build_norm(ctx0, cur, hparams,
  6052. model.output_norm, NULL,
  6053. LLM_NORM_RMS, cb, -1);
  6054. cb(cur, "result_norm", -1);
  6055. // lm_head
  6056. cur = ggml_mul_mat(ctx0, model.output, cur);
  6057. cb(cur, "result_output", -1);
  6058. ggml_build_forward_expand(gf, cur);
  6059. return gf;
  6060. }
  6061. struct ggml_cgraph * build_xverse() {
  6062. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6063. const int64_t n_embd_head = hparams.n_embd_head_v;
  6064. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6065. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6066. struct ggml_tensor * cur;
  6067. struct ggml_tensor * inpL;
  6068. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6069. // inp_pos - contains the positions
  6070. struct ggml_tensor * inp_pos = build_inp_pos();
  6071. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6072. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6073. // positions of the tokens in the KV cache
  6074. struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
  6075. for (int il = 0; il < n_layer; ++il) {
  6076. struct ggml_tensor * inpSA = inpL;
  6077. cur = llm_build_norm(ctx0, inpL, hparams,
  6078. model.layers[il].attn_norm, NULL,
  6079. LLM_NORM_RMS, cb, il);
  6080. cb(cur, "attn_norm", il);
  6081. // self-attention
  6082. {
  6083. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6084. cb(Qcur, "Qcur", il);
  6085. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6086. cb(Kcur, "Kcur", il);
  6087. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6088. cb(Vcur, "Vcur", il);
  6089. Qcur = ggml_rope_custom(
  6090. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6091. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6092. ext_factor, attn_factor, beta_fast, beta_slow
  6093. );
  6094. cb(Qcur, "Qcur", il);
  6095. Kcur = ggml_rope_custom(
  6096. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6097. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6098. ext_factor, attn_factor, beta_fast, beta_slow
  6099. );
  6100. cb(Kcur, "Kcur", il);
  6101. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6102. model.layers[il].wo, NULL,
  6103. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6104. }
  6105. if (il == n_layer - 1) {
  6106. // skip computing output for unused tokens
  6107. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6108. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6109. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6110. }
  6111. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6112. cb(ffn_inp, "ffn_inp", il);
  6113. // feed-forward network
  6114. {
  6115. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6116. model.layers[il].ffn_norm, NULL,
  6117. LLM_NORM_RMS, cb, il);
  6118. cb(cur, "ffn_norm", il);
  6119. cur = llm_build_ffn(ctx0, cur,
  6120. model.layers[il].ffn_up, NULL,
  6121. model.layers[il].ffn_gate, NULL,
  6122. model.layers[il].ffn_down, NULL,
  6123. NULL,
  6124. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6125. cb(cur, "ffn_out", il);
  6126. }
  6127. cur = ggml_add(ctx0, cur, ffn_inp);
  6128. cb(cur, "l_out", il);
  6129. // input for next layer
  6130. inpL = cur;
  6131. }
  6132. cur = inpL;
  6133. cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1);
  6134. cb(cur, "result_norm", -1);
  6135. // lm_head
  6136. cur = ggml_mul_mat(ctx0, model.output, cur);
  6137. cb(cur, "result_output", -1);
  6138. ggml_build_forward_expand(gf, cur);
  6139. return gf;
  6140. }
  6141. struct ggml_cgraph * build_falcon() {
  6142. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6143. const int64_t n_embd_head = hparams.n_embd_head_v;
  6144. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6145. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6146. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6147. struct ggml_tensor * cur;
  6148. struct ggml_tensor * inpL;
  6149. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6150. // inp_pos - contains the positions
  6151. struct ggml_tensor * inp_pos = build_inp_pos();
  6152. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6153. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6154. for (int il = 0; il < n_layer; ++il) {
  6155. struct ggml_tensor * attn_norm;
  6156. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  6157. model.layers[il].attn_norm,
  6158. model.layers[il].attn_norm_b,
  6159. LLM_NORM, cb, il);
  6160. cb(attn_norm, "attn_norm", il);
  6161. // self-attention
  6162. {
  6163. if (model.layers[il].attn_norm_2) {
  6164. // Falcon-40B
  6165. cur = llm_build_norm(ctx0, inpL, hparams,
  6166. model.layers[il].attn_norm_2,
  6167. model.layers[il].attn_norm_2_b,
  6168. LLM_NORM, cb, il);
  6169. cb(cur, "attn_norm_2", il);
  6170. } else {
  6171. cur = attn_norm;
  6172. }
  6173. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6174. cb(cur, "wqkv", il);
  6175. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6176. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6177. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6178. cb(Qcur, "Qcur", il);
  6179. cb(Kcur, "Kcur", il);
  6180. cb(Vcur, "Vcur", il);
  6181. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6182. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6183. // using mode = 2 for neox mode
  6184. Qcur = ggml_rope_custom(
  6185. ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6186. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6187. );
  6188. cb(Qcur, "Qcur", il);
  6189. Kcur = ggml_rope_custom(
  6190. ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6191. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6192. );
  6193. cb(Kcur, "Kcur", il);
  6194. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6195. model.layers[il].wo, NULL,
  6196. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6197. }
  6198. if (il == n_layer - 1) {
  6199. // skip computing output for unused tokens
  6200. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6201. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6202. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6203. attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids);
  6204. }
  6205. struct ggml_tensor * ffn_inp = cur;
  6206. // feed forward
  6207. {
  6208. cur = llm_build_ffn(ctx0, attn_norm, // !! use the attn norm, not the result
  6209. model.layers[il].ffn_up, NULL,
  6210. NULL, NULL,
  6211. model.layers[il].ffn_down, NULL,
  6212. NULL,
  6213. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6214. cb(cur, "ffn_out", il);
  6215. }
  6216. cur = ggml_add(ctx0, cur, ffn_inp);
  6217. cb(cur, "l_out", il);
  6218. cur = ggml_add(ctx0, cur, inpL);
  6219. cb(cur, "l_out", il);
  6220. // input for next layer
  6221. inpL = cur;
  6222. }
  6223. cur = inpL;
  6224. // norm
  6225. cur = llm_build_norm(ctx0, cur, hparams,
  6226. model.output_norm,
  6227. model.output_norm_b,
  6228. LLM_NORM, cb, -1);
  6229. cb(cur, "result_norm", -1);
  6230. cur = ggml_mul_mat(ctx0, model.output, cur);
  6231. cb(cur, "result_output", -1);
  6232. ggml_build_forward_expand(gf, cur);
  6233. return gf;
  6234. }
  6235. struct ggml_cgraph * build_grok() {
  6236. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6237. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6238. int32_t n_tokens = this->n_tokens;
  6239. const int64_t n_embd_head = hparams.n_embd_head_v;
  6240. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6241. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6242. struct ggml_tensor * cur;
  6243. struct ggml_tensor * inpL;
  6244. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6245. // multiply by embedding_multiplier_scale of 78.38367176906169
  6246. inpL = ggml_scale(ctx0, inpL, 78.38367176906169f);
  6247. // inp_pos - contains the positions
  6248. struct ggml_tensor * inp_pos = build_inp_pos();
  6249. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6250. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6251. for (int il = 0; il < n_layer; ++il) {
  6252. struct ggml_tensor * inpSA = inpL;
  6253. // norm
  6254. cur = llm_build_norm(ctx0, inpL, hparams,
  6255. model.layers[il].attn_norm, NULL,
  6256. LLM_NORM_RMS, cb, il);
  6257. cb(cur, "attn_norm", il);
  6258. // self-attention
  6259. {
  6260. // compute Q and K and RoPE them
  6261. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6262. cb(Qcur, "Qcur", il);
  6263. if (model.layers[il].bq) {
  6264. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6265. cb(Qcur, "Qcur", il);
  6266. }
  6267. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6268. cb(Kcur, "Kcur", il);
  6269. if (model.layers[il].bk) {
  6270. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6271. cb(Kcur, "Kcur", il);
  6272. }
  6273. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6274. cb(Vcur, "Vcur", il);
  6275. if (model.layers[il].bv) {
  6276. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6277. cb(Vcur, "Vcur", il);
  6278. }
  6279. Qcur = ggml_rope_custom(
  6280. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6281. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6282. ext_factor, attn_factor, beta_fast, beta_slow
  6283. );
  6284. cb(Qcur, "Qcur", il);
  6285. Kcur = ggml_rope_custom(
  6286. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6287. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6288. ext_factor, attn_factor, beta_fast, beta_slow
  6289. );
  6290. cb(Kcur, "Kcur", il);
  6291. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6292. model.layers[il].wo, model.layers[il].bo,
  6293. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  6294. }
  6295. if (il == n_layer - 1) {
  6296. // skip computing output for unused tokens
  6297. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6298. n_tokens = n_outputs;
  6299. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6300. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6301. }
  6302. // Grok
  6303. // if attn_out_norm is present then apply it before adding the input
  6304. if (model.layers[il].attn_out_norm) {
  6305. cur = llm_build_norm(ctx0, cur, hparams,
  6306. model.layers[il].attn_out_norm, NULL,
  6307. LLM_NORM_RMS, cb, il);
  6308. cb(cur, "attn_out_norm", il);
  6309. }
  6310. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6311. cb(ffn_inp, "ffn_inp", il);
  6312. // feed-forward network
  6313. // MoE branch
  6314. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6315. model.layers[il].ffn_norm, NULL,
  6316. LLM_NORM_RMS, cb, il);
  6317. cb(cur, "ffn_norm", il);
  6318. cur = llm_build_moe_ffn(ctx0, cur,
  6319. model.layers[il].ffn_gate_inp,
  6320. model.layers[il].ffn_up_exps,
  6321. model.layers[il].ffn_gate_exps,
  6322. model.layers[il].ffn_down_exps,
  6323. n_expert, n_expert_used,
  6324. LLM_FFN_GELU, true,
  6325. cb, il);
  6326. cb(cur, "ffn_moe_out", il);
  6327. // Grok
  6328. // if layer_out_norm is present then apply it before adding the input
  6329. // Idea: maybe ffn_out_norm is a better name
  6330. if (model.layers[il].layer_out_norm) {
  6331. cur = llm_build_norm(ctx0, cur, hparams,
  6332. model.layers[il].layer_out_norm, NULL,
  6333. LLM_NORM_RMS, cb, il);
  6334. cb(cur, "layer_out_norm", il);
  6335. }
  6336. cur = ggml_add(ctx0, cur, ffn_inp);
  6337. cb(cur, "ffn_out", il);
  6338. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  6339. if (layer_dir != nullptr) {
  6340. cur = ggml_add(ctx0, cur, layer_dir);
  6341. }
  6342. cb(cur, "l_out", il);
  6343. // input for next layer
  6344. inpL = cur;
  6345. }
  6346. cur = inpL;
  6347. cur = llm_build_norm(ctx0, cur, hparams,
  6348. model.output_norm, NULL,
  6349. LLM_NORM_RMS, cb, -1);
  6350. cb(cur, "result_norm", -1);
  6351. // lm_head
  6352. cur = ggml_mul_mat(ctx0, model.output, cur);
  6353. // Grok
  6354. // multiply logits by output_multiplier_scale of 0.5773502691896257
  6355. cur = ggml_scale(ctx0, cur, 0.5773502691896257f);
  6356. cb(cur, "result_output", -1);
  6357. ggml_build_forward_expand(gf, cur);
  6358. return gf;
  6359. }
  6360. struct ggml_cgraph * build_dbrx() {
  6361. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6362. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6363. int32_t n_tokens = this->n_tokens;
  6364. const int64_t n_embd_head = hparams.n_embd_head_v;
  6365. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6366. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6367. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6368. struct ggml_tensor * cur;
  6369. struct ggml_tensor * inpL;
  6370. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6371. // inp_pos - contains the positions
  6372. struct ggml_tensor * inp_pos = build_inp_pos();
  6373. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6374. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6375. for (int il = 0; il < n_layer; ++il) {
  6376. struct ggml_tensor * inpSA = inpL;
  6377. // norm
  6378. cur = llm_build_norm(ctx0, inpL, hparams,
  6379. model.layers[il].attn_norm, NULL,
  6380. LLM_NORM, cb, il);
  6381. cb(cur, "attn_norm", il);
  6382. // self-attention
  6383. {
  6384. struct ggml_tensor * Qcur = nullptr;
  6385. struct ggml_tensor * Kcur = nullptr;
  6386. struct ggml_tensor * Vcur = nullptr;
  6387. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6388. cb(cur, "wqkv", il);
  6389. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  6390. cb(cur, "wqkv_clamped", il);
  6391. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6392. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6393. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6394. cb(Qcur, "Qcur", il);
  6395. cb(Kcur, "Kcur", il);
  6396. cb(Vcur, "Vcur", il);
  6397. Qcur = ggml_rope_custom(
  6398. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6399. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6400. ext_factor, attn_factor, beta_fast, beta_slow
  6401. );
  6402. cb(Qcur, "Qcur", il);
  6403. Kcur = ggml_rope_custom(
  6404. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6405. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6406. ext_factor, attn_factor, beta_fast, beta_slow
  6407. );
  6408. cb(Kcur, "Kcur", il);
  6409. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6410. model.layers[il].wo, NULL,
  6411. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6412. }
  6413. if (il == n_layer - 1) {
  6414. // skip computing output for unused tokens
  6415. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6416. n_tokens = n_outputs;
  6417. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6418. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6419. }
  6420. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6421. cb(ffn_inp, "ffn_inp", il);
  6422. // feed-forward network
  6423. // MoE branch
  6424. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6425. model.layers[il].attn_out_norm, NULL,
  6426. LLM_NORM, cb, il);
  6427. cb(cur, "attn_out_norm", il);
  6428. cur = llm_build_moe_ffn(ctx0, cur,
  6429. model.layers[il].ffn_gate_inp,
  6430. model.layers[il].ffn_up_exps,
  6431. model.layers[il].ffn_gate_exps,
  6432. model.layers[il].ffn_down_exps,
  6433. n_expert, n_expert_used,
  6434. LLM_FFN_SILU, true,
  6435. cb, il);
  6436. cb(cur, "ffn_moe_out", il);
  6437. cur = ggml_add(ctx0, cur, ffn_inp);
  6438. cb(cur, "ffn_out", il);
  6439. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  6440. if (layer_dir != nullptr) {
  6441. cur = ggml_add(ctx0, cur, layer_dir);
  6442. }
  6443. cb(cur, "l_out", il);
  6444. // input for next layer
  6445. inpL = cur;
  6446. }
  6447. cur = inpL;
  6448. cur = llm_build_norm(ctx0, cur, hparams,
  6449. model.output_norm, NULL,
  6450. LLM_NORM, cb, -1);
  6451. cb(cur, "result_norm", -1);
  6452. // lm_head
  6453. cur = ggml_mul_mat(ctx0, model.output, cur);
  6454. cb(cur, "result_output", -1);
  6455. ggml_build_forward_expand(gf, cur);
  6456. return gf;
  6457. }
  6458. struct ggml_cgraph * build_starcoder() {
  6459. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6460. const int64_t n_embd_head = hparams.n_embd_head_v;
  6461. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6462. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6463. struct ggml_tensor * cur;
  6464. struct ggml_tensor * inpL;
  6465. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6466. // inp_pos - contains the positions
  6467. struct ggml_tensor * inp_pos = build_inp_pos();
  6468. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6469. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6470. struct ggml_tensor * pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  6471. cb(pos, "pos_embd", -1);
  6472. inpL = ggml_add(ctx0, inpL, pos);
  6473. cb(inpL, "inpL", -1);
  6474. for (int il = 0; il < n_layer; ++il) {
  6475. cur = llm_build_norm(ctx0, inpL, hparams,
  6476. model.layers[il].attn_norm,
  6477. model.layers[il].attn_norm_b,
  6478. LLM_NORM, cb, il);
  6479. cb(cur, "attn_norm", il);
  6480. // self-attention
  6481. {
  6482. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6483. cb(cur, "wqkv", il);
  6484. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6485. cb(cur, "bqkv", il);
  6486. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6487. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6488. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6489. cb(Qcur, "Qcur", il);
  6490. cb(Kcur, "Kcur", il);
  6491. cb(Vcur, "Vcur", il);
  6492. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6493. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6494. model.layers[il].wo, model.layers[il].bo,
  6495. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6496. }
  6497. if (il == n_layer - 1) {
  6498. // skip computing output for unused tokens
  6499. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6500. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6501. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6502. }
  6503. // add the input
  6504. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  6505. cb(ffn_inp, "ffn_inp", il);
  6506. // FF
  6507. {
  6508. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6509. model.layers[il].ffn_norm,
  6510. model.layers[il].ffn_norm_b,
  6511. LLM_NORM, cb, il);
  6512. cb(cur, "ffn_norm", il);
  6513. cur = llm_build_ffn(ctx0, cur,
  6514. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6515. NULL, NULL,
  6516. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6517. NULL,
  6518. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6519. cb(cur, "ffn_out", il);
  6520. }
  6521. inpL = ggml_add(ctx0, cur, ffn_inp);
  6522. cb(inpL, "l_out", il);
  6523. }
  6524. cur = llm_build_norm(ctx0, inpL, hparams,
  6525. model.output_norm,
  6526. model.output_norm_b,
  6527. LLM_NORM, cb, -1);
  6528. cb(cur, "result_norm", -1);
  6529. cur = ggml_mul_mat(ctx0, model.output, cur);
  6530. cb(cur, "result_output", -1);
  6531. ggml_build_forward_expand(gf, cur);
  6532. return gf;
  6533. }
  6534. struct ggml_cgraph * build_persimmon() {
  6535. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6536. const int64_t n_embd_head = hparams.n_embd_head_v;
  6537. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6538. GGML_ASSERT(n_embd_head/2 == hparams.n_rot);
  6539. struct ggml_tensor * cur;
  6540. struct ggml_tensor * inpL;
  6541. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6542. // inp_pos - contains the positions
  6543. struct ggml_tensor * inp_pos = build_inp_pos();
  6544. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6545. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6546. for (int il = 0; il < n_layer; ++il) {
  6547. struct ggml_tensor * residual = inpL;
  6548. cur = llm_build_norm(ctx0, inpL, hparams,
  6549. model.layers[il].attn_norm,
  6550. model.layers[il].attn_norm_b,
  6551. LLM_NORM, cb, il);
  6552. cb(cur, "attn_norm", il);
  6553. // self attention
  6554. {
  6555. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6556. cb(cur, "wqkv", il);
  6557. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6558. cb(cur, "bqkv", il);
  6559. // split qkv
  6560. GGML_ASSERT(n_head_kv == n_head);
  6561. struct ggml_tensor * tmpqkv = ggml_reshape_4d(ctx0, cur, n_embd_head, 3, n_head, n_tokens);
  6562. cb(tmpqkv, "tmpqkv", il);
  6563. struct ggml_tensor * tmpqkv_perm = ggml_cont(ctx0, ggml_permute(ctx0, tmpqkv, 0, 3, 1, 2));
  6564. cb(tmpqkv_perm, "tmpqkv", il);
  6565. struct ggml_tensor * tmpq = ggml_view_3d(
  6566. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  6567. ggml_element_size(tmpqkv_perm) * n_embd_head,
  6568. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  6569. 0
  6570. );
  6571. cb(tmpq, "tmpq", il);
  6572. struct ggml_tensor * tmpk = ggml_view_3d(
  6573. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  6574. ggml_element_size(tmpqkv_perm) * n_embd_head,
  6575. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  6576. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens
  6577. );
  6578. cb(tmpk, "tmpk", il);
  6579. // Q/K Layernorm
  6580. tmpq = llm_build_norm(ctx0, tmpq, hparams,
  6581. model.layers[il].attn_q_norm,
  6582. model.layers[il].attn_q_norm_b,
  6583. LLM_NORM, cb, il);
  6584. cb(tmpq, "tmpq", il);
  6585. tmpk = llm_build_norm(ctx0, tmpk, hparams,
  6586. model.layers[il].attn_k_norm,
  6587. model.layers[il].attn_k_norm_b,
  6588. LLM_NORM, cb, il);
  6589. cb(tmpk, "tmpk", il);
  6590. // RoPE the first n_rot of q/k, pass the other half, and concat.
  6591. struct ggml_tensor * qrot = ggml_view_3d(
  6592. ctx0, tmpq, n_rot, n_head, n_tokens,
  6593. ggml_element_size(tmpq) * n_embd_head,
  6594. ggml_element_size(tmpq) * n_embd_head * n_head,
  6595. 0
  6596. );
  6597. cb(qrot, "qrot", il);
  6598. struct ggml_tensor * krot = ggml_view_3d(
  6599. ctx0, tmpk, n_rot, n_head, n_tokens,
  6600. ggml_element_size(tmpk) * n_embd_head,
  6601. ggml_element_size(tmpk) * n_embd_head * n_head,
  6602. 0
  6603. );
  6604. cb(krot, "krot", il);
  6605. // get the second half of tmpq, e.g tmpq[n_rot:, :, :]
  6606. struct ggml_tensor * qpass = ggml_view_3d(
  6607. ctx0, tmpq, n_rot, n_head, n_tokens,
  6608. ggml_element_size(tmpq) * n_embd_head,
  6609. ggml_element_size(tmpq) * n_embd_head * n_head,
  6610. ggml_element_size(tmpq) * n_rot
  6611. );
  6612. cb(qpass, "qpass", il);
  6613. struct ggml_tensor * kpass = ggml_view_3d(
  6614. ctx0, tmpk, n_rot, n_head, n_tokens,
  6615. ggml_element_size(tmpk) * n_embd_head,
  6616. ggml_element_size(tmpk) * n_embd_head * n_head,
  6617. ggml_element_size(tmpk) * n_rot
  6618. );
  6619. cb(kpass, "kpass", il);
  6620. struct ggml_tensor * qrotated = ggml_rope_custom(
  6621. ctx0, qrot, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6622. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6623. );
  6624. cb(qrotated, "qrotated", il);
  6625. struct ggml_tensor * krotated = ggml_rope_custom(
  6626. ctx0, krot, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6627. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6628. );
  6629. cb(krotated, "krotated", il);
  6630. // ggml currently only supports concatenation on dim=2
  6631. // so we need to permute qrot, qpass, concat, then permute back.
  6632. qrotated = ggml_cont(ctx0, ggml_permute(ctx0, qrotated, 2, 1, 0, 3));
  6633. cb(qrotated, "qrotated", il);
  6634. krotated = ggml_cont(ctx0, ggml_permute(ctx0, krotated, 2, 1, 0, 3));
  6635. cb(krotated, "krotated", il);
  6636. qpass = ggml_cont(ctx0, ggml_permute(ctx0, qpass, 2, 1, 0, 3));
  6637. cb(qpass, "qpass", il);
  6638. kpass = ggml_cont(ctx0, ggml_permute(ctx0, kpass, 2, 1, 0, 3));
  6639. cb(kpass, "kpass", il);
  6640. struct ggml_tensor * Qcur = ggml_concat(ctx0, qrotated, qpass);
  6641. cb(Qcur, "Qcur", il);
  6642. struct ggml_tensor * Kcur = ggml_concat(ctx0, krotated, kpass);
  6643. cb(Kcur, "Kcur", il);
  6644. struct ggml_tensor * Q = ggml_cont(ctx0, ggml_permute(ctx0, Qcur, 2, 1, 0, 3));
  6645. cb(Q, "Q", il);
  6646. Kcur = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 2, 1, 0, 3));
  6647. cb(Kcur, "Kcur", il);
  6648. struct ggml_tensor * Vcur = ggml_view_3d(
  6649. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  6650. ggml_element_size(tmpqkv_perm) * n_embd_head,
  6651. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  6652. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens * 2
  6653. );
  6654. cb(Vcur, "Vcur", il);
  6655. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6656. model.layers[il].wo, model.layers[il].bo,
  6657. Kcur, Vcur, Q, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6658. }
  6659. if (il == n_layer - 1) {
  6660. // skip computing output for unused tokens
  6661. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6662. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6663. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  6664. }
  6665. struct ggml_tensor * ffn_inp = ggml_add(ctx0, residual, cur);
  6666. cb(ffn_inp, "ffn_inp", il);
  6667. // feed-forward network
  6668. {
  6669. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6670. model.layers[il].ffn_norm,
  6671. model.layers[il].ffn_norm_b,
  6672. LLM_NORM, cb, il);
  6673. cb(cur, "ffn_norm", il);
  6674. cur = llm_build_ffn(ctx0, cur,
  6675. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6676. NULL, NULL,
  6677. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6678. NULL,
  6679. LLM_FFN_RELU_SQR, LLM_FFN_SEQ, cb, il);
  6680. cb(cur, "ffn_out", il);
  6681. }
  6682. cur = ggml_add(ctx0, cur, ffn_inp);
  6683. cb(cur, "l_out", il);
  6684. inpL = cur;
  6685. }
  6686. cur = inpL;
  6687. cur = llm_build_norm(ctx0, cur, hparams,
  6688. model.output_norm,
  6689. model.output_norm_b,
  6690. LLM_NORM, cb, -1);
  6691. cb(cur, "result_norm", -1);
  6692. cur = ggml_mul_mat(ctx0, model.output, cur);
  6693. cb(cur, "result_output", -1);
  6694. ggml_build_forward_expand(gf, cur);
  6695. return gf;
  6696. }
  6697. struct ggml_cgraph * build_refact() {
  6698. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6699. const int64_t n_embd_head = hparams.n_embd_head_v;
  6700. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6701. struct ggml_tensor * cur;
  6702. struct ggml_tensor * inpL;
  6703. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6704. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6705. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6706. // positions of the tokens in the KV cache
  6707. struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
  6708. for (int il = 0; il < n_layer; ++il) {
  6709. struct ggml_tensor * inpSA = inpL;
  6710. cur = llm_build_norm(ctx0, inpL, hparams,
  6711. model.layers[il].attn_norm, NULL,
  6712. LLM_NORM_RMS, cb, il);
  6713. cb(cur, "attn_norm", il);
  6714. // self-attention
  6715. {
  6716. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6717. cb(Qcur, "Qcur", il);
  6718. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6719. cb(Kcur, "Kcur", il);
  6720. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6721. cb(Vcur, "Vcur", il);
  6722. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6723. cb(Kcur, "Kcur", il);
  6724. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6725. cb(Qcur, "Qcur", il);
  6726. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6727. model.layers[il].wo, NULL,
  6728. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6729. }
  6730. if (il == n_layer - 1) {
  6731. // skip computing output for unused tokens
  6732. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6733. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6734. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6735. }
  6736. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6737. cb(ffn_inp, "ffn_inp", il);
  6738. // feed-forward network
  6739. {
  6740. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6741. model.layers[il].ffn_norm, NULL,
  6742. LLM_NORM_RMS, cb, il);
  6743. cb(cur, "ffn_norm", il);
  6744. cur = llm_build_ffn(ctx0, cur,
  6745. model.layers[il].ffn_up, NULL,
  6746. model.layers[il].ffn_gate, NULL,
  6747. model.layers[il].ffn_down, NULL,
  6748. NULL,
  6749. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6750. cb(cur, "ffn_out", il);
  6751. }
  6752. cur = ggml_add(ctx0, cur, ffn_inp);
  6753. cb(cur, "l_out", il);
  6754. // input for next layer
  6755. inpL = cur;
  6756. }
  6757. cur = inpL;
  6758. cur = llm_build_norm(ctx0, cur, hparams,
  6759. model.output_norm, NULL,
  6760. LLM_NORM_RMS, cb, -1);
  6761. cb(cur, "result_norm", -1);
  6762. // lm_head
  6763. cur = ggml_mul_mat(ctx0, model.output, cur);
  6764. cb(cur, "result_output", -1);
  6765. ggml_build_forward_expand(gf, cur);
  6766. return gf;
  6767. }
  6768. struct ggml_cgraph * build_bert() {
  6769. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6770. const int64_t n_embd_head = hparams.n_embd_head_v;
  6771. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6772. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6773. struct ggml_tensor * cur;
  6774. struct ggml_tensor * inpL;
  6775. struct ggml_tensor * inp_pos = build_inp_pos();
  6776. struct ggml_tensor * inp_mean = build_inp_mean();
  6777. struct ggml_tensor * inp_cls = build_inp_cls();
  6778. // construct input embeddings (token, type, position)
  6779. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6780. // token types are hardcoded to zero ("Sentence A")
  6781. struct ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
  6782. inpL = ggml_add(ctx0, inpL, type_row0);
  6783. if (model.arch == LLM_ARCH_BERT) {
  6784. inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
  6785. }
  6786. cb(inpL, "inp_embd", -1);
  6787. // embed layer norm
  6788. inpL = llm_build_norm(ctx0, inpL, hparams, model.tok_norm, model.tok_norm_b, LLM_NORM, cb, -1);
  6789. cb(inpL, "inp_norm", -1);
  6790. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6791. struct ggml_tensor * KQ_mask = build_inp_KQ_mask(false);
  6792. // iterate layers
  6793. for (int il = 0; il < n_layer; ++il) {
  6794. struct ggml_tensor * cur = inpL;
  6795. struct ggml_tensor * Qcur;
  6796. struct ggml_tensor * Kcur;
  6797. struct ggml_tensor * Vcur;
  6798. // self-attention
  6799. if (model.arch == LLM_ARCH_BERT) {
  6800. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, cur), model.layers[il].bq);
  6801. cb(Qcur, "Qcur", il);
  6802. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, cur), model.layers[il].bk);
  6803. cb(Kcur, "Kcur", il);
  6804. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, cur), model.layers[il].bv);
  6805. cb(Vcur, "Vcur", il);
  6806. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6807. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6808. } else {
  6809. // compute Q and K and RoPE them
  6810. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6811. cb(cur, "wqkv", il);
  6812. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6813. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6814. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6815. cb(Qcur, "Qcur", il);
  6816. cb(Kcur, "Kcur", il);
  6817. cb(Vcur, "Vcur", il);
  6818. Qcur = ggml_rope_custom(
  6819. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6820. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6821. ext_factor, attn_factor, beta_fast, beta_slow
  6822. );
  6823. cb(Qcur, "Qcur", il);
  6824. Kcur = ggml_rope_custom(
  6825. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6826. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6827. ext_factor, attn_factor, beta_fast, beta_slow
  6828. );
  6829. cb(Kcur, "Kcur", il);
  6830. }
  6831. struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  6832. struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
  6833. struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  6834. cb(kq, "kq", il);
  6835. kq = ggml_soft_max_ext(ctx0, kq, KQ_mask, nullptr, 1.0f/sqrtf(float(n_embd_head)), hparams.f_max_alibi_bias);
  6836. cb(kq, "kq_soft_max_ext", il);
  6837. struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_tokens)));
  6838. cb(v, "v", il);
  6839. struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_tokens, n_embd_head, n_head_kv), kq);
  6840. cb(kqv, "kqv", il);
  6841. struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  6842. cb(kqv_merged, "kqv_merged", il);
  6843. cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
  6844. cb(cur, "kqv_merged_cont", il);
  6845. ggml_build_forward_expand(gf, cur);
  6846. cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
  6847. if (model.layers[il].bo) {
  6848. cb(cur, "kqv_wo", il);
  6849. }
  6850. if (model.layers[il].bo) {
  6851. cur = ggml_add(ctx0, cur, model.layers[il].bo);
  6852. }
  6853. cb(cur, "kqv_out", il);
  6854. if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) {
  6855. // skip computing output for unused tokens
  6856. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6857. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6858. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6859. }
  6860. // re-add the layer input
  6861. cur = ggml_add(ctx0, cur, inpL);
  6862. // attention layer norm
  6863. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, cb, il);
  6864. struct ggml_tensor * ffn_inp = cur;
  6865. cb(ffn_inp, "ffn_inp", il);
  6866. // feed-forward network
  6867. if (model.arch == LLM_ARCH_BERT) {
  6868. cur = llm_build_ffn(ctx0, cur,
  6869. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6870. NULL, NULL,
  6871. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6872. NULL,
  6873. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6874. } else {
  6875. cur = llm_build_ffn(ctx0, cur,
  6876. model.layers[il].ffn_up, NULL,
  6877. model.layers[il].ffn_gate, NULL,
  6878. model.layers[il].ffn_down, NULL,
  6879. NULL,
  6880. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6881. }
  6882. cb(cur, "ffn_out", il);
  6883. // attentions bypass the intermediate layer
  6884. cur = ggml_add(ctx0, cur, ffn_inp);
  6885. // output layer norm
  6886. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, cb, il);
  6887. // input for next layer
  6888. inpL = cur;
  6889. }
  6890. // final output
  6891. cur = inpL;
  6892. cb(cur, "result_embd", -1);
  6893. // pooling layer
  6894. switch (pooling_type) {
  6895. case LLAMA_POOLING_TYPE_NONE:
  6896. {
  6897. // nop
  6898. } break;
  6899. case LLAMA_POOLING_TYPE_MEAN:
  6900. {
  6901. cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, cur)), inp_mean);
  6902. cb(cur, "result_embd_pooled", -1);
  6903. } break;
  6904. case LLAMA_POOLING_TYPE_CLS:
  6905. {
  6906. cur = ggml_get_rows(ctx0, cur, inp_cls);
  6907. cb(cur, "result_embd_pooled", -1);
  6908. } break;
  6909. case LLAMA_POOLING_TYPE_UNSPECIFIED:
  6910. {
  6911. GGML_ASSERT(false && "Invalid pooling type");
  6912. } break;
  6913. }
  6914. ggml_build_forward_expand(gf, cur);
  6915. return gf;
  6916. }
  6917. struct ggml_cgraph * build_bloom() {
  6918. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6919. const int64_t n_embd_head = hparams.n_embd_head_v;
  6920. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6921. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6922. struct ggml_tensor * cur;
  6923. struct ggml_tensor * inpL;
  6924. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6925. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6926. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6927. // positions of the tokens in the KV cache
  6928. struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
  6929. inpL = llm_build_norm(ctx0, inpL, hparams,
  6930. model.tok_norm,
  6931. model.tok_norm_b,
  6932. LLM_NORM, cb, -1);
  6933. cb(inpL, "inp_norm", -1);
  6934. for (int il = 0; il < n_layer; ++il) {
  6935. cur = llm_build_norm(ctx0, inpL, hparams,
  6936. model.layers[il].attn_norm,
  6937. model.layers[il].attn_norm_b,
  6938. LLM_NORM, cb, il);
  6939. cb(cur, "attn_norm", il);
  6940. // self-attention
  6941. {
  6942. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6943. cb(cur, "wqkv", il);
  6944. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6945. cb(cur, "bqkv", il);
  6946. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6947. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6948. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6949. cb(Qcur, "Qcur", il);
  6950. cb(Kcur, "Kcur", il);
  6951. cb(Vcur, "Vcur", il);
  6952. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6953. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6954. model.layers[il].wo, model.layers[il].bo,
  6955. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6956. }
  6957. if (il == n_layer - 1) {
  6958. // skip computing output for unused tokens
  6959. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6960. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6961. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6962. }
  6963. // Add the input
  6964. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  6965. cb(ffn_inp, "ffn_inp", il);
  6966. // FF
  6967. {
  6968. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6969. model.layers[il].ffn_norm,
  6970. model.layers[il].ffn_norm_b,
  6971. LLM_NORM, cb, il);
  6972. cb(cur, "ffn_norm", il);
  6973. cur = llm_build_ffn(ctx0, cur,
  6974. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6975. NULL, NULL,
  6976. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6977. NULL,
  6978. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6979. cb(cur, "ffn_out", il);
  6980. }
  6981. inpL = ggml_add(ctx0, cur, ffn_inp);
  6982. cb(inpL, "l_out", il);
  6983. }
  6984. cur = llm_build_norm(ctx0, inpL, hparams,
  6985. model.output_norm,
  6986. model.output_norm_b,
  6987. LLM_NORM, cb, -1);
  6988. cb(cur, "result_norm", -1);
  6989. cur = ggml_mul_mat(ctx0, model.output, cur);
  6990. cb(cur, "result_output", -1);
  6991. ggml_build_forward_expand(gf, cur);
  6992. return gf;
  6993. }
  6994. struct ggml_cgraph * build_mpt() {
  6995. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6996. const int64_t n_embd_head = hparams.n_embd_head_v;
  6997. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6998. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6999. struct ggml_tensor * cur;
  7000. struct ggml_tensor * pos;
  7001. struct ggml_tensor * inpL;
  7002. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7003. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7004. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7005. // positions of the tokens in the KV cache
  7006. struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
  7007. if (model.pos_embd) {
  7008. // inp_pos - contains the positions
  7009. struct ggml_tensor * inp_pos = build_inp_pos();
  7010. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  7011. cb(pos, "pos_embd", -1);
  7012. inpL = ggml_add(ctx0, inpL, pos);
  7013. cb(inpL, "inpL", -1);
  7014. }
  7015. for (int il = 0; il < n_layer; ++il) {
  7016. struct ggml_tensor * attn_norm;
  7017. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  7018. model.layers[il].attn_norm,
  7019. model.layers[il].attn_norm_b,
  7020. LLM_NORM, cb, il);
  7021. cb(attn_norm, "attn_norm", il);
  7022. // self-attention
  7023. {
  7024. cur = attn_norm;
  7025. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7026. cb(cur, "wqkv", il);
  7027. if (model.layers[il].bqkv){
  7028. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7029. cb(cur, "bqkv", il);
  7030. }
  7031. if (hparams.f_clamp_kqv > 0.0f) {
  7032. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  7033. cb(cur, "wqkv_clamped", il);
  7034. }
  7035. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7036. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7037. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7038. cb(Qcur, "Qcur", il);
  7039. cb(Kcur, "Kcur", il);
  7040. cb(Vcur, "Vcur", il);
  7041. // Q/K Layernorm
  7042. if (model.layers[il].attn_q_norm) {
  7043. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  7044. model.layers[il].attn_q_norm,
  7045. model.layers[il].attn_q_norm_b,
  7046. LLM_NORM, cb, il);
  7047. cb(Qcur, "Qcur", il);
  7048. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  7049. model.layers[il].attn_k_norm,
  7050. model.layers[il].attn_k_norm_b,
  7051. LLM_NORM, cb, il);
  7052. cb(Kcur, "Kcur", il);
  7053. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7054. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7055. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7056. model.layers[il].wo, model.layers[il].bo,
  7057. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7058. } else {
  7059. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7060. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7061. model.layers[il].wo, model.layers[il].bo,
  7062. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7063. }
  7064. }
  7065. if (il == n_layer - 1) {
  7066. // skip computing output for unused tokens
  7067. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7068. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7069. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7070. }
  7071. // Add the input
  7072. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7073. cb(ffn_inp, "ffn_inp", il);
  7074. // feed forward
  7075. {
  7076. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7077. model.layers[il].ffn_norm,
  7078. model.layers[il].ffn_norm_b,
  7079. LLM_NORM, cb, il);
  7080. cb(cur, "ffn_norm", il);
  7081. cur = llm_build_ffn(ctx0, cur,
  7082. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7083. NULL, NULL,
  7084. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7085. model.layers[il].ffn_act,
  7086. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7087. cb(cur, "ffn_out", il);
  7088. }
  7089. cur = ggml_add(ctx0, cur, ffn_inp);
  7090. cb(cur, "l_out", il);
  7091. // input for next layer
  7092. inpL = cur;
  7093. }
  7094. cur = inpL;
  7095. cur = llm_build_norm(ctx0, cur, hparams,
  7096. model.output_norm,
  7097. model.output_norm_b,
  7098. LLM_NORM, cb, -1);
  7099. cb(cur, "result_norm", -1);
  7100. cur = ggml_mul_mat(ctx0, model.output, cur);
  7101. cb(cur, "result_output", -1);
  7102. ggml_build_forward_expand(gf, cur);
  7103. return gf;
  7104. }
  7105. struct ggml_cgraph * build_stablelm() {
  7106. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  7107. const int64_t n_embd_head = hparams.n_embd_head_v;
  7108. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7109. struct ggml_tensor * cur;
  7110. struct ggml_tensor * inpL;
  7111. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7112. // inp_pos - contains the positions
  7113. struct ggml_tensor * inp_pos = build_inp_pos();
  7114. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7115. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7116. for (int il = 0; il < n_layer; ++il) {
  7117. // norm
  7118. cur = llm_build_norm(ctx0, inpL, hparams,
  7119. model.layers[il].attn_norm,
  7120. model.layers[il].attn_norm_b,
  7121. LLM_NORM, cb, il);
  7122. cb(cur, "attn_norm", il);
  7123. struct ggml_tensor * inpSA = cur;
  7124. // self-attention
  7125. {
  7126. // compute Q and K and RoPE them
  7127. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7128. cb(Qcur, "Qcur", il);
  7129. if (model.layers[il].bq) {
  7130. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7131. cb(Qcur, "Qcur", il);
  7132. }
  7133. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7134. cb(Kcur, "Kcur", il);
  7135. if (model.layers[il].bk) {
  7136. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7137. cb(Kcur, "Kcur", il);
  7138. }
  7139. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7140. cb(Vcur, "Vcur", il);
  7141. if (model.layers[il].bv) {
  7142. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7143. cb(Vcur, "Vcur", il);
  7144. }
  7145. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7146. cb(Qcur, "Qcur", il);
  7147. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7148. cb(Kcur, "Kcur", il);
  7149. if (model.layers[il].attn_q_norm) {
  7150. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  7151. model.layers[il].attn_q_norm,
  7152. NULL,
  7153. LLM_NORM, cb, il);
  7154. cb(Qcur, "Qcur", il);
  7155. }
  7156. if (model.layers[il].attn_k_norm) {
  7157. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  7158. model.layers[il].attn_k_norm,
  7159. NULL,
  7160. LLM_NORM, cb, il);
  7161. cb(Kcur, "Kcur", il);
  7162. }
  7163. Qcur = ggml_rope_custom(
  7164. ctx0, Qcur, inp_pos,
  7165. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7166. ext_factor, attn_factor, beta_fast, beta_slow
  7167. );
  7168. cb(Qcur, "Qcur", il);
  7169. Kcur = ggml_rope_custom(
  7170. ctx0, Kcur, inp_pos,
  7171. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7172. ext_factor, attn_factor, beta_fast, beta_slow
  7173. );
  7174. cb(Kcur, "Kcur", il);
  7175. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7176. model.layers[il].wo, NULL,
  7177. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7178. }
  7179. if (il == n_layer - 1) {
  7180. // skip computing output for unused tokens
  7181. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7182. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7183. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7184. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7185. }
  7186. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7187. cb(ffn_inp, "ffn_inp", il);
  7188. // feed-forward network
  7189. {
  7190. if (model.layers[il].ffn_norm) {
  7191. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7192. model.layers[il].ffn_norm,
  7193. model.layers[il].ffn_norm_b,
  7194. LLM_NORM, cb, il);
  7195. cb(cur, "ffn_norm", il);
  7196. } else {
  7197. // parallel residual
  7198. cur = inpSA;
  7199. }
  7200. cur = llm_build_ffn(ctx0, cur,
  7201. model.layers[il].ffn_up, NULL,
  7202. model.layers[il].ffn_gate, NULL,
  7203. model.layers[il].ffn_down, NULL,
  7204. NULL,
  7205. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7206. cb(cur, "ffn_out", il);
  7207. }
  7208. cur = ggml_add(ctx0, cur, ffn_inp);
  7209. cb(cur, "l_out", il);
  7210. // input for next layer
  7211. inpL = cur;
  7212. }
  7213. cur = inpL;
  7214. cur = llm_build_norm(ctx0, cur, hparams,
  7215. model.output_norm,
  7216. model.output_norm_b,
  7217. LLM_NORM, cb, -1);
  7218. cb(cur, "result_norm", -1);
  7219. // lm_head
  7220. cur = ggml_mul_mat(ctx0, model.output, cur);
  7221. cb(cur, "result_output", -1);
  7222. ggml_build_forward_expand(gf, cur);
  7223. return gf;
  7224. }
  7225. struct ggml_cgraph * build_qwen() {
  7226. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7227. const int64_t n_embd_head = hparams.n_embd_head_v;
  7228. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7229. struct ggml_tensor * cur;
  7230. struct ggml_tensor * inpL;
  7231. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7232. // inp_pos - contains the positions
  7233. struct ggml_tensor * inp_pos = build_inp_pos();
  7234. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7235. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7236. for (int il = 0; il < n_layer; ++il) {
  7237. struct ggml_tensor * inpSA = inpL;
  7238. cur = llm_build_norm(ctx0, inpL, hparams,
  7239. model.layers[il].attn_norm, NULL,
  7240. LLM_NORM_RMS, cb, il);
  7241. cb(cur, "attn_norm", il);
  7242. // self-attention
  7243. {
  7244. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7245. cb(cur, "wqkv", il);
  7246. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7247. cb(cur, "bqkv", il);
  7248. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7249. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7250. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*(n_embd)));
  7251. cb(Qcur, "Qcur", il);
  7252. cb(Kcur, "Kcur", il);
  7253. cb(Vcur, "Vcur", il);
  7254. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7255. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7256. // using mode = 2 for neox mode
  7257. Qcur = ggml_rope_custom(
  7258. ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7259. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7260. );
  7261. cb(Qcur, "Qcur", il);
  7262. Kcur = ggml_rope_custom(
  7263. ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7264. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7265. );
  7266. cb(Kcur, "Kcur", il);
  7267. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7268. model.layers[il].wo, NULL,
  7269. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7270. }
  7271. if (il == n_layer - 1) {
  7272. // skip computing output for unused tokens
  7273. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7274. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7275. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7276. }
  7277. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7278. cb(ffn_inp, "ffn_inp", il);
  7279. // feed-forward forward
  7280. {
  7281. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7282. model.layers[il].ffn_norm, NULL,
  7283. LLM_NORM_RMS, cb, il);
  7284. cb(cur, "ffn_norm", il);
  7285. cur = llm_build_ffn(ctx0, cur,
  7286. model.layers[il].ffn_up, NULL,
  7287. model.layers[il].ffn_gate, NULL,
  7288. model.layers[il].ffn_down, NULL,
  7289. NULL,
  7290. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7291. cb(cur, "ffn_out", il);
  7292. }
  7293. cur = ggml_add(ctx0, cur, ffn_inp);
  7294. cb(cur, "l_out", il);
  7295. // input for next layer
  7296. inpL = cur;
  7297. }
  7298. cur = inpL;
  7299. cur = llm_build_norm(ctx0, cur, hparams,
  7300. model.output_norm, NULL,
  7301. LLM_NORM_RMS, cb, -1);
  7302. cb(cur, "result_norm", -1);
  7303. // lm_head
  7304. cur = ggml_mul_mat(ctx0, model.output, cur);
  7305. cb(cur, "result_output", -1);
  7306. ggml_build_forward_expand(gf, cur);
  7307. return gf;
  7308. }
  7309. struct ggml_cgraph * build_qwen2() {
  7310. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7311. const int64_t n_embd_head = hparams.n_embd_head_v;
  7312. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7313. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7314. struct ggml_tensor * cur;
  7315. struct ggml_tensor * inpL;
  7316. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7317. // inp_pos - contains the positions
  7318. struct ggml_tensor * inp_pos = build_inp_pos();
  7319. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7320. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7321. for (int il = 0; il < n_layer; ++il) {
  7322. struct ggml_tensor * inpSA = inpL;
  7323. // norm
  7324. cur = llm_build_norm(ctx0, inpL, hparams,
  7325. model.layers[il].attn_norm, NULL,
  7326. LLM_NORM_RMS, cb, il);
  7327. cb(cur, "attn_norm", il);
  7328. // self-attention
  7329. {
  7330. // compute Q and K and RoPE them
  7331. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7332. cb(Qcur, "Qcur", il);
  7333. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7334. cb(Qcur, "Qcur", il);
  7335. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7336. cb(Kcur, "Kcur", il);
  7337. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7338. cb(Kcur, "Kcur", il);
  7339. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7340. cb(Vcur, "Vcur", il);
  7341. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7342. cb(Vcur, "Vcur", il);
  7343. Qcur = ggml_rope_custom(
  7344. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  7345. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7346. ext_factor, attn_factor, beta_fast, beta_slow
  7347. );
  7348. cb(Qcur, "Qcur", il);
  7349. Kcur = ggml_rope_custom(
  7350. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  7351. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7352. ext_factor, attn_factor, beta_fast, beta_slow
  7353. );
  7354. cb(Kcur, "Kcur", il);
  7355. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7356. model.layers[il].wo, model.layers[il].bo,
  7357. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7358. }
  7359. if (il == n_layer - 1) {
  7360. // skip computing output for unused tokens
  7361. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7362. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7363. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7364. }
  7365. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7366. cb(ffn_inp, "ffn_inp", il);
  7367. // feed-forward network
  7368. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7369. model.layers[il].ffn_norm, NULL,
  7370. LLM_NORM_RMS, cb, il);
  7371. cb(cur, "ffn_norm", il);
  7372. cur = llm_build_ffn(ctx0, cur,
  7373. model.layers[il].ffn_up, NULL,
  7374. model.layers[il].ffn_gate, NULL,
  7375. model.layers[il].ffn_down, NULL,
  7376. NULL,
  7377. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7378. cb(cur, "ffn_out", il);
  7379. cur = ggml_add(ctx0, cur, ffn_inp);
  7380. cb(cur, "l_out", il);
  7381. // input for next layer
  7382. inpL = cur;
  7383. }
  7384. cur = inpL;
  7385. cur = llm_build_norm(ctx0, cur, hparams,
  7386. model.output_norm, NULL,
  7387. LLM_NORM_RMS, cb, -1);
  7388. cb(cur, "result_norm", -1);
  7389. // lm_head
  7390. cur = ggml_mul_mat(ctx0, model.output, cur);
  7391. cb(cur, "result_output", -1);
  7392. ggml_build_forward_expand(gf, cur);
  7393. return gf;
  7394. }
  7395. struct ggml_cgraph * build_qwen2moe() {
  7396. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7397. // mutable variable, needed during the last layer of the computation to skip unused tokens
  7398. int32_t n_tokens = this->n_tokens;
  7399. const int64_t n_embd_head = hparams.n_embd_head_v;
  7400. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7401. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7402. struct ggml_tensor * cur;
  7403. struct ggml_tensor * inpL;
  7404. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7405. // inp_pos - contains the positions
  7406. struct ggml_tensor * inp_pos = build_inp_pos();
  7407. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7408. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7409. for (int il = 0; il < n_layer; ++il) {
  7410. struct ggml_tensor * inpSA = inpL;
  7411. // norm
  7412. cur = llm_build_norm(ctx0, inpL, hparams,
  7413. model.layers[il].attn_norm, NULL,
  7414. LLM_NORM_RMS, cb, il);
  7415. cb(cur, "attn_norm", il);
  7416. // self_attention
  7417. {
  7418. // compute Q and K and RoPE them
  7419. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7420. cb(Qcur, "Qcur", il);
  7421. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7422. cb(Qcur, "Qcur", il);
  7423. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7424. cb(Kcur, "Kcur", il);
  7425. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7426. cb(Kcur, "Kcur", il);
  7427. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7428. cb(Vcur, "Vcur", il);
  7429. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7430. cb(Vcur, "Vcur", il);
  7431. Qcur = ggml_rope_custom(
  7432. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  7433. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7434. ext_factor, attn_factor, beta_fast, beta_slow
  7435. );
  7436. cb(Qcur, "Qcur", il);
  7437. Kcur = ggml_rope_custom(
  7438. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  7439. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7440. ext_factor, attn_factor, beta_fast, beta_slow
  7441. );
  7442. cb(Kcur, "Kcur", il);
  7443. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7444. model.layers[il].wo, model.layers[il].bo,
  7445. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7446. }
  7447. if (il == n_layer - 1) {
  7448. // skip computing output for unused tokens
  7449. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7450. n_tokens = n_outputs;
  7451. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7452. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7453. }
  7454. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7455. cb(ffn_inp, "ffn_inp", il);
  7456. // MoE branch
  7457. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7458. model.layers[il].ffn_norm, NULL,
  7459. LLM_NORM_RMS, cb, il);
  7460. cb(cur, "ffn_norm", il);
  7461. ggml_tensor * moe_out =
  7462. llm_build_moe_ffn(ctx0, cur,
  7463. model.layers[il].ffn_gate_inp,
  7464. model.layers[il].ffn_up_exps,
  7465. model.layers[il].ffn_gate_exps,
  7466. model.layers[il].ffn_down_exps,
  7467. n_expert, n_expert_used,
  7468. LLM_FFN_SILU, false,
  7469. cb, il);
  7470. cb(cur, "ffn_moe_out", il);
  7471. // FFN shared expert
  7472. {
  7473. ggml_tensor * cur_gate_inp = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp_shexp, cur);
  7474. cb(cur_gate_inp, "ffn_shexp_gate_inp", il);
  7475. // sigmoid
  7476. ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp);
  7477. cb(cur_gate, "ffn_shexp_gate", il);
  7478. ggml_tensor * cur_ffn = llm_build_ffn(ctx0, cur,
  7479. model.layers[il].ffn_up_shexp, NULL,
  7480. model.layers[il].ffn_gate_shexp, NULL,
  7481. model.layers[il].ffn_down_shexp, NULL,
  7482. NULL,
  7483. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7484. cb(cur_ffn, "ffn_shexp", il);
  7485. ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate);
  7486. cb(ffn_shexp_out, "ffn_shexp_out", il);
  7487. moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out);
  7488. cb(moe_out, "ffn_out", il);
  7489. cur = moe_out;
  7490. }
  7491. cur = ggml_add(ctx0, cur, ffn_inp);
  7492. cb(cur, "l_out", il);
  7493. // input for next layer
  7494. inpL = cur;
  7495. }
  7496. cur = inpL;
  7497. cur = llm_build_norm(ctx0, cur, hparams,
  7498. model.output_norm, NULL,
  7499. LLM_NORM_RMS, cb, -1);
  7500. cb(cur, "result_norm", -1);
  7501. // lm_head
  7502. cur = ggml_mul_mat(ctx0, model.output, cur);
  7503. cb(cur, "result_output", -1);
  7504. ggml_build_forward_expand(gf, cur);
  7505. return gf;
  7506. }
  7507. struct ggml_cgraph * build_phi2() {
  7508. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7509. const int64_t n_embd_head = hparams.n_embd_head_v;
  7510. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7511. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7512. struct ggml_tensor * cur;
  7513. struct ggml_tensor * attn_norm_output;
  7514. struct ggml_tensor * ffn_output;
  7515. struct ggml_tensor * inpL;
  7516. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7517. // inp_pos - contains the positions
  7518. struct ggml_tensor * inp_pos = build_inp_pos();
  7519. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7520. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7521. for (int il = 0; il < n_layer; ++il) {
  7522. attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
  7523. model.layers[il].attn_norm,
  7524. model.layers[il].attn_norm_b,
  7525. LLM_NORM, cb, il);
  7526. cb(attn_norm_output, "attn_norm", il);
  7527. // self-attention
  7528. {
  7529. struct ggml_tensor * Qcur = nullptr;
  7530. struct ggml_tensor * Kcur = nullptr;
  7531. struct ggml_tensor * Vcur = nullptr;
  7532. if (model.layers[il].wqkv) {
  7533. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
  7534. cb(cur, "wqkv", il);
  7535. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7536. cb(cur, "bqkv", il);
  7537. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7538. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7539. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7540. } else {
  7541. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  7542. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  7543. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  7544. }
  7545. cb(Qcur, "Qcur", il);
  7546. cb(Kcur, "Kcur", il);
  7547. cb(Vcur, "Vcur", il);
  7548. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7549. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7550. Qcur = ggml_rope_custom(
  7551. ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7552. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7553. );
  7554. cb(Qcur, "Qcur", il);
  7555. // with phi2, we scale the Q to avoid precision issues
  7556. // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
  7557. Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head)));
  7558. cb(Qcur, "Qcur", il);
  7559. Kcur = ggml_rope_custom(
  7560. ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7561. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7562. );
  7563. cb(Kcur, "Kcur", il);
  7564. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7565. model.layers[il].wo, model.layers[il].bo,
  7566. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  7567. }
  7568. if (il == n_layer - 1) {
  7569. // skip computing output for unused tokens
  7570. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7571. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7572. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7573. attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids);
  7574. }
  7575. // FF
  7576. {
  7577. ffn_output = llm_build_ffn(ctx0, attn_norm_output,
  7578. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7579. NULL, NULL,
  7580. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7581. NULL,
  7582. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7583. cb(ffn_output, "ffn_out", il);
  7584. }
  7585. cur = ggml_add(ctx0, cur, ffn_output);
  7586. cb(cur, "l_out", il);
  7587. cur = ggml_add(ctx0, cur, inpL);
  7588. cb(cur, "l_out", il);
  7589. inpL = cur;
  7590. }
  7591. cur = llm_build_norm(ctx0, inpL, hparams,
  7592. model.output_norm,
  7593. model.output_norm_b,
  7594. LLM_NORM, cb, -1);
  7595. cb(cur, "result_norm", -1);
  7596. cur = ggml_mul_mat(ctx0, model.output, cur);
  7597. cb(cur, "result_output_no_bias", -1);
  7598. cur = ggml_add(ctx0, cur, model.output_b);
  7599. cb(cur, "result_output", -1);
  7600. ggml_build_forward_expand(gf, cur);
  7601. return gf;
  7602. }
  7603. struct ggml_cgraph * build_phi3() {
  7604. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7605. const int64_t n_embd_head = hparams.n_embd_head_v;
  7606. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7607. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7608. struct ggml_tensor * cur;
  7609. struct ggml_tensor * inpL;
  7610. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7611. // inp_pos - contains the positions
  7612. struct ggml_tensor * inp_pos = build_inp_pos();
  7613. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7614. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7615. for (int il = 0; il < n_layer; ++il) {
  7616. auto residual = inpL;
  7617. // self-attention
  7618. {
  7619. struct ggml_tensor* attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
  7620. model.layers[il].attn_norm,
  7621. NULL,
  7622. LLM_NORM_RMS, cb, il);
  7623. cb(attn_norm_output, "attn_norm", il);
  7624. struct ggml_tensor * Qcur = nullptr;
  7625. struct ggml_tensor * Kcur = nullptr;
  7626. struct ggml_tensor * Vcur = nullptr;
  7627. if (model.layers[il].wqkv) {
  7628. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
  7629. cb(cur, "wqkv", il);
  7630. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0 * sizeof(float) * (n_embd)));
  7631. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd)));
  7632. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa)));
  7633. }
  7634. else {
  7635. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  7636. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  7637. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  7638. }
  7639. cb(Qcur, "Qcur", il);
  7640. cb(Kcur, "Kcur", il);
  7641. cb(Vcur, "Vcur", il);
  7642. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7643. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7644. Qcur = ggml_rope_custom(
  7645. ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7646. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7647. );
  7648. cb(Qcur, "Qcur", il);
  7649. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
  7650. cb(Qcur, "Qcur", il);
  7651. Kcur = ggml_rope_custom(
  7652. ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7653. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7654. );
  7655. cb(Kcur, "Kcur", il);
  7656. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7657. model.layers[il].wo, NULL,
  7658. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  7659. }
  7660. if (il == n_layer - 1) {
  7661. // skip computing output for unused tokens
  7662. struct ggml_tensor* inp_out_ids = build_inp_out_ids();
  7663. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7664. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  7665. }
  7666. cur = ggml_add(ctx0, cur, residual);
  7667. residual = cur;
  7668. cur = llm_build_norm(ctx0, cur, hparams,
  7669. model.layers[il].ffn_norm, NULL,
  7670. LLM_NORM_RMS, cb, il);
  7671. cb(cur, "ffn_norm", il);
  7672. // FF
  7673. // special-case: the up and gate tensors are merged into a single tensor
  7674. // TOOD: support into llm_build_ffn
  7675. {
  7676. struct ggml_tensor* up = ggml_mul_mat(ctx0, model.layers[il].ffn_up, cur);
  7677. cb(up, "ffn_up", il);
  7678. auto g = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), 0));
  7679. auto y = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), up->nb[1] / 2));
  7680. y = ggml_mul(ctx0, y, ggml_silu(ctx0, g));
  7681. cb(y, "ffn_gate", il);
  7682. auto down = ggml_mul_mat(ctx0, model.layers[il].ffn_down, y);
  7683. cb(down, "ffn_down", il);
  7684. cur = down;
  7685. cb(cur, "ffn_out", il);
  7686. }
  7687. cur = ggml_add(ctx0, residual, cur);
  7688. cb(cur, "l_out", il);
  7689. inpL = cur;
  7690. }
  7691. cur = llm_build_norm(ctx0, inpL, hparams,
  7692. model.output_norm,
  7693. NULL,
  7694. LLM_NORM_RMS, cb, -1);
  7695. cb(cur, "result_norm", -1);
  7696. cur = ggml_mul_mat(ctx0, model.output, cur);
  7697. cb(cur, "result_output", -1);
  7698. ggml_build_forward_expand(gf, cur);
  7699. return gf;
  7700. }
  7701. struct ggml_cgraph * build_plamo() {
  7702. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  7703. const int64_t n_embd_head = hparams.n_embd_head_v;
  7704. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7705. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7706. struct ggml_tensor * cur;
  7707. struct ggml_tensor * inpL;
  7708. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7709. // inp_pos - contains the positions
  7710. struct ggml_tensor * inp_pos = build_inp_pos();
  7711. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7712. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7713. for (int il = 0; il < n_layer; ++il) {
  7714. // norm
  7715. cur = llm_build_norm(ctx0, inpL, hparams,
  7716. model.layers[il].attn_norm, NULL,
  7717. LLM_NORM_RMS, cb, il);
  7718. cb(cur, "attn_norm", il);
  7719. struct ggml_tensor * attention_norm = cur;
  7720. // self-attention
  7721. {
  7722. // compute Q and K and RoPE them
  7723. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7724. cb(Qcur, "Qcur", il);
  7725. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7726. cb(Kcur, "Kcur", il);
  7727. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7728. cb(Vcur, "Vcur", il);
  7729. Qcur = ggml_rope_custom(
  7730. ctx0, ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens), inp_pos,
  7731. n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7732. ext_factor, attn_factor, beta_fast, beta_slow);
  7733. cb(Qcur, "Qcur", il);
  7734. Kcur = ggml_rope_custom(
  7735. ctx0, ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens), inp_pos,
  7736. n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7737. ext_factor, attn_factor, beta_fast, beta_slow);
  7738. cb(Kcur, "Kcur", il);
  7739. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7740. model.layers[il].wo, NULL,
  7741. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7742. }
  7743. struct ggml_tensor * sa_out = cur;
  7744. cur = attention_norm;
  7745. if (il == n_layer - 1) {
  7746. // skip computing output for unused tokens
  7747. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7748. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7749. sa_out = ggml_get_rows(ctx0, sa_out, inp_out_ids);
  7750. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7751. }
  7752. // feed-forward network
  7753. {
  7754. cur = llm_build_ffn(ctx0, cur,
  7755. model.layers[il].ffn_up, NULL,
  7756. model.layers[il].ffn_gate, NULL,
  7757. model.layers[il].ffn_down, NULL,
  7758. NULL,
  7759. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7760. cb(cur, "ffn_out", il);
  7761. }
  7762. cur = ggml_add(ctx0, cur, sa_out);
  7763. cb(cur, "l_out", il);
  7764. cur = ggml_add(ctx0, cur, inpL);
  7765. cb(cur, "l_out", il);
  7766. // input for next layer
  7767. inpL = cur;
  7768. }
  7769. cur = inpL;
  7770. cur = llm_build_norm(ctx0, cur, hparams,
  7771. model.output_norm, NULL,
  7772. LLM_NORM_RMS, cb, -1);
  7773. cb(cur, "result_norm", -1);
  7774. // lm_head
  7775. cur = ggml_mul_mat(ctx0, model.output, cur);
  7776. cb(cur, "result_output", -1);
  7777. ggml_build_forward_expand(gf, cur);
  7778. return gf;
  7779. }
  7780. struct ggml_cgraph * build_gpt2() {
  7781. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7782. const int64_t n_embd_head = hparams.n_embd_head_v;
  7783. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7784. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7785. struct ggml_tensor * cur;
  7786. struct ggml_tensor * pos;
  7787. struct ggml_tensor * inpL;
  7788. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7789. // inp_pos - contains the positions
  7790. struct ggml_tensor * inp_pos = build_inp_pos();
  7791. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7792. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7793. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  7794. cb(pos, "pos_embd", -1);
  7795. inpL = ggml_add(ctx0, inpL, pos);
  7796. cb(inpL, "inpL", -1);
  7797. for (int il = 0; il < n_layer; ++il) {
  7798. cur = llm_build_norm(ctx0, inpL, hparams,
  7799. model.layers[il].attn_norm,
  7800. model.layers[il].attn_norm_b,
  7801. LLM_NORM, cb, il);
  7802. cb(cur, "attn_norm", il);
  7803. // self-attention
  7804. {
  7805. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7806. cb(cur, "wqkv", il);
  7807. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7808. cb(cur, "bqkv", il);
  7809. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7810. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7811. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7812. cb(Qcur, "Qcur", il);
  7813. cb(Kcur, "Kcur", il);
  7814. cb(Vcur, "Vcur", il);
  7815. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7816. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7817. model.layers[il].wo, model.layers[il].bo,
  7818. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7819. }
  7820. if (il == n_layer - 1) {
  7821. // skip computing output for unused tokens
  7822. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7823. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7824. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7825. }
  7826. // add the input
  7827. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7828. cb(ffn_inp, "ffn_inp", il);
  7829. // FF
  7830. {
  7831. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7832. model.layers[il].ffn_norm,
  7833. model.layers[il].ffn_norm_b,
  7834. LLM_NORM, cb, il);
  7835. cb(cur, "ffn_norm", il);
  7836. cur = llm_build_ffn(ctx0, cur,
  7837. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7838. NULL, NULL,
  7839. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7840. NULL,
  7841. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7842. cb(cur, "ffn_out", il);
  7843. }
  7844. inpL = ggml_add(ctx0, cur, ffn_inp);
  7845. cb(inpL, "l_out", il);
  7846. }
  7847. cur = llm_build_norm(ctx0, inpL, hparams,
  7848. model.output_norm,
  7849. model.output_norm_b,
  7850. LLM_NORM, cb, -1);
  7851. cb(cur, "result_norm", -1);
  7852. cur = ggml_mul_mat(ctx0, model.output, cur);
  7853. cb(cur, "result_output", -1);
  7854. ggml_build_forward_expand(gf, cur);
  7855. return gf;
  7856. }
  7857. struct ggml_cgraph * build_codeshell() {
  7858. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7859. const int64_t n_embd_head = hparams.n_embd_head_v;
  7860. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7861. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7862. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7863. struct ggml_tensor * cur;
  7864. struct ggml_tensor * inpL;
  7865. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7866. // inp_pos - contains the positions
  7867. struct ggml_tensor * inp_pos = build_inp_pos();
  7868. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7869. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7870. for (int il = 0; il < n_layer; ++il) {
  7871. cur = llm_build_norm(ctx0, inpL, hparams,
  7872. model.layers[il].attn_norm,
  7873. model.layers[il].attn_norm_b,
  7874. LLM_NORM, cb, il);
  7875. cb(cur, "attn_norm", il);
  7876. // self-attention
  7877. {
  7878. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7879. cb(cur, "wqkv", il);
  7880. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7881. cb(cur, "bqkv", il);
  7882. struct ggml_tensor * tmpq = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7883. struct ggml_tensor * tmpk = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7884. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7885. cb(tmpq, "tmpq", il);
  7886. cb(tmpk, "tmpk", il);
  7887. cb(Vcur, "Vcur", il);
  7888. struct ggml_tensor * Qcur = ggml_rope_custom(
  7889. ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), inp_pos,
  7890. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7891. ext_factor, attn_factor, beta_fast, beta_slow
  7892. );
  7893. cb(Qcur, "Qcur", il);
  7894. struct ggml_tensor * Kcur = ggml_rope_custom(
  7895. ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), inp_pos,
  7896. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7897. ext_factor, attn_factor, beta_fast, beta_slow
  7898. );
  7899. cb(Kcur, "Kcur", il);
  7900. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7901. model.layers[il].wo, model.layers[il].bo,
  7902. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7903. }
  7904. if (il == n_layer - 1) {
  7905. // skip computing output for unused tokens
  7906. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7907. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7908. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7909. }
  7910. // add the input
  7911. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7912. cb(ffn_inp, "ffn_inp", il);
  7913. // FF
  7914. {
  7915. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7916. model.layers[il].ffn_norm,
  7917. model.layers[il].ffn_norm_b,
  7918. LLM_NORM, cb, il);
  7919. cb(cur, "ffn_norm", il);
  7920. cur = llm_build_ffn(ctx0, cur,
  7921. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7922. NULL, NULL,
  7923. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7924. NULL,
  7925. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7926. cb(cur, "ffn_out", il);
  7927. }
  7928. inpL = ggml_add(ctx0, cur, ffn_inp);
  7929. cb(inpL, "l_out", il);
  7930. }
  7931. cur = llm_build_norm(ctx0, inpL, hparams,
  7932. model.output_norm,
  7933. model.output_norm_b,
  7934. LLM_NORM, cb, -1);
  7935. cb(cur, "result_norm", -1);
  7936. cur = ggml_mul_mat(ctx0, model.output, cur);
  7937. cb(cur, "result_output", -1);
  7938. ggml_build_forward_expand(gf, cur);
  7939. return gf;
  7940. }
  7941. struct ggml_cgraph * build_orion() {
  7942. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7943. const int64_t n_embd_head = hparams.n_embd_head_v;
  7944. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7945. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7946. struct ggml_tensor * cur;
  7947. struct ggml_tensor * inpL;
  7948. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7949. // inp_pos - contains the positions
  7950. struct ggml_tensor * inp_pos = build_inp_pos();
  7951. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7952. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7953. for (int il = 0; il < n_layer; ++il) {
  7954. struct ggml_tensor * inpSA = inpL;
  7955. // norm
  7956. cur = llm_build_norm(ctx0, inpL, hparams,
  7957. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  7958. LLM_NORM, cb, il);
  7959. cb(cur, "attn_norm", il);
  7960. // self-attention
  7961. {
  7962. // compute Q and K and RoPE them
  7963. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7964. cb(Qcur, "Qcur", il);
  7965. // if (model.layers[il].bq) {
  7966. // Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7967. // cb(Qcur, "Qcur", il);
  7968. // }
  7969. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7970. cb(Kcur, "Kcur", il);
  7971. // if (model.layers[il].bk) {
  7972. // Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7973. // cb(Kcur, "Kcur", il);
  7974. // }
  7975. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7976. cb(Vcur, "Vcur", il);
  7977. // if (model.layers[il].bv) {
  7978. // Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7979. // cb(Vcur, "Vcur", il);
  7980. // }
  7981. Qcur = ggml_rope_custom(
  7982. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  7983. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7984. ext_factor, attn_factor, beta_fast, beta_slow
  7985. );
  7986. cb(Qcur, "Qcur", il);
  7987. Kcur = ggml_rope_custom(
  7988. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  7989. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7990. ext_factor, attn_factor, beta_fast, beta_slow
  7991. );
  7992. cb(Kcur, "Kcur", il);
  7993. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7994. model.layers[il].wo, NULL,
  7995. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7996. }
  7997. if (il == n_layer - 1) {
  7998. // skip computing output for unused tokens
  7999. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8000. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8001. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8002. }
  8003. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8004. cb(ffn_inp, "ffn_inp", il);
  8005. // feed-forward network
  8006. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8007. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  8008. LLM_NORM, cb, il);
  8009. cb(cur, "ffn_norm", il);
  8010. cur = llm_build_ffn(ctx0, cur,
  8011. model.layers[il].ffn_up, NULL,
  8012. model.layers[il].ffn_gate, NULL,
  8013. model.layers[il].ffn_down, NULL,
  8014. NULL,
  8015. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8016. cb(cur, "ffn_out", il);
  8017. cur = ggml_add(ctx0, cur, ffn_inp);
  8018. cb(cur, "l_out", il);
  8019. // input for next layer
  8020. inpL = cur;
  8021. }
  8022. cur = inpL;
  8023. cur = llm_build_norm(ctx0, cur, hparams,
  8024. model.output_norm, model.output_norm_b,
  8025. LLM_NORM, cb, -1);
  8026. cb(cur, "result_norm", -1);
  8027. // lm_head
  8028. cur = ggml_mul_mat(ctx0, model.output, cur);
  8029. cb(cur, "result_output", -1);
  8030. ggml_build_forward_expand(gf, cur);
  8031. return gf;
  8032. }
  8033. struct ggml_cgraph * build_internlm2() {
  8034. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8035. const int64_t n_embd_head = hparams.n_embd_head_v;
  8036. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8037. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8038. struct ggml_tensor * cur;
  8039. struct ggml_tensor * inpL;
  8040. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8041. // inp_pos - contains the positions
  8042. struct ggml_tensor * inp_pos = build_inp_pos();
  8043. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8044. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8045. for (int il = 0; il < n_layer; ++il) {
  8046. struct ggml_tensor * inpSA = inpL;
  8047. // norm
  8048. cur = llm_build_norm(ctx0, inpL, hparams,
  8049. model.layers[il].attn_norm, NULL,
  8050. LLM_NORM_RMS, cb, il);
  8051. cb(cur, "attn_norm", il);
  8052. // self-attention
  8053. {
  8054. // compute Q and K and RoPE them
  8055. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8056. cb(Qcur, "Qcur", il);
  8057. if (model.layers[il].bq) {
  8058. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8059. cb(Qcur, "Qcur", il);
  8060. }
  8061. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8062. cb(Kcur, "Kcur", il);
  8063. if (model.layers[il].bk) {
  8064. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8065. cb(Kcur, "Kcur", il);
  8066. }
  8067. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8068. cb(Vcur, "Vcur", il);
  8069. if (model.layers[il].bv) {
  8070. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8071. cb(Vcur, "Vcur", il);
  8072. }
  8073. Qcur = ggml_rope_custom(
  8074. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  8075. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8076. ext_factor, attn_factor, beta_fast, beta_slow
  8077. );
  8078. cb(Qcur, "Qcur", il);
  8079. Kcur = ggml_rope_custom(
  8080. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8081. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8082. ext_factor, attn_factor, beta_fast, beta_slow
  8083. );
  8084. cb(Kcur, "Kcur", il);
  8085. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  8086. model.layers[il].wo, model.layers[il].bo,
  8087. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8088. }
  8089. if (il == n_layer - 1) {
  8090. // skip computing output for unused tokens
  8091. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8092. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8093. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8094. }
  8095. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8096. cb(ffn_inp, "ffn_inp", il);
  8097. // feed-forward network
  8098. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8099. model.layers[il].ffn_norm, NULL,
  8100. LLM_NORM_RMS, cb, il);
  8101. cb(cur, "ffn_norm", il);
  8102. cur = llm_build_ffn(ctx0, cur,
  8103. model.layers[il].ffn_up, NULL,
  8104. model.layers[il].ffn_gate, NULL,
  8105. model.layers[il].ffn_down, NULL,
  8106. NULL,
  8107. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8108. cb(cur, "ffn_out", il);
  8109. cur = ggml_add(ctx0, cur, ffn_inp);
  8110. cb(cur, "l_out", il);
  8111. // input for next layer
  8112. inpL = cur;
  8113. }
  8114. cur = inpL;
  8115. cur = llm_build_norm(ctx0, cur, hparams,
  8116. model.output_norm, NULL,
  8117. LLM_NORM_RMS, cb, -1);
  8118. cb(cur, "result_norm", -1);
  8119. // lm_head
  8120. cur = ggml_mul_mat(ctx0, model.output, cur);
  8121. cb(cur, "result_output", -1);
  8122. ggml_build_forward_expand(gf, cur);
  8123. return gf;
  8124. }
  8125. // ref: https://arxiv.org/abs/2203.03466
  8126. // https://github.com/ggerganov/llama.cpp/issues/5276#issuecomment-1925774738
  8127. // based on the original build_llama() function
  8128. struct ggml_cgraph * build_minicpm() {
  8129. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8130. const int64_t n_embd_head = hparams.n_embd_head_v;
  8131. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8132. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8133. const int64_t n_embd = hparams.n_embd;
  8134. //TODO: if the model varies, these parameters need to be read from the model
  8135. const int64_t n_embd_base = 256;
  8136. const float scale_embd = 12.0f;
  8137. const float scale_depth = 1.4f;
  8138. struct ggml_tensor * cur;
  8139. struct ggml_tensor * inpL;
  8140. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8141. // scale the input embeddings
  8142. inpL = ggml_scale(ctx0, inpL, scale_embd);
  8143. cb(inpL, "inp_scaled", -1);
  8144. // inp_pos - contains the positions
  8145. struct ggml_tensor * inp_pos = build_inp_pos();
  8146. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8147. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8148. for (int il = 0; il < n_layer; ++il) {
  8149. struct ggml_tensor * inpSA = inpL;
  8150. // norm
  8151. cur = llm_build_norm(ctx0, inpL, hparams,
  8152. model.layers[il].attn_norm, NULL,
  8153. LLM_NORM_RMS, cb, il);
  8154. cb(cur, "attn_norm", il);
  8155. // self-attention
  8156. {
  8157. // compute Q and K and RoPE them
  8158. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8159. cb(Qcur, "Qcur", il);
  8160. if (model.layers[il].bq) {
  8161. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8162. cb(Qcur, "Qcur", il);
  8163. }
  8164. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8165. cb(Kcur, "Kcur", il);
  8166. if (model.layers[il].bk) {
  8167. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8168. cb(Kcur, "Kcur", il);
  8169. }
  8170. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8171. cb(Vcur, "Vcur", il);
  8172. if (model.layers[il].bv) {
  8173. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8174. cb(Vcur, "Vcur", il);
  8175. }
  8176. Qcur = ggml_rope_custom(
  8177. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  8178. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8179. ext_factor, attn_factor, beta_fast, beta_slow
  8180. );
  8181. cb(Qcur, "Qcur", il);
  8182. Kcur = ggml_rope_custom(
  8183. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8184. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8185. ext_factor, attn_factor, beta_fast, beta_slow
  8186. );
  8187. cb(Kcur, "Kcur", il);
  8188. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  8189. model.layers[il].wo, model.layers[il].bo,
  8190. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8191. }
  8192. if (il == n_layer - 1) {
  8193. // skip computing output for unused tokens
  8194. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8195. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8196. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8197. }
  8198. // scale_res - scale the hidden states for residual connection
  8199. const float scale_res = scale_depth/sqrtf(float(n_layer));
  8200. cur = ggml_scale(ctx0, cur, scale_res);
  8201. cb(cur, "hidden_scaled", -1);
  8202. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8203. cb(ffn_inp, "ffn_inp", il);
  8204. // feed-forward network
  8205. {
  8206. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8207. model.layers[il].ffn_norm, NULL,
  8208. LLM_NORM_RMS, cb, il);
  8209. cb(cur, "ffn_norm", il);
  8210. cur = llm_build_ffn(ctx0, cur,
  8211. model.layers[il].ffn_up, NULL,
  8212. model.layers[il].ffn_gate, NULL,
  8213. model.layers[il].ffn_down, NULL,
  8214. NULL,
  8215. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8216. cb(cur, "ffn_out", il);
  8217. }
  8218. // scale the hidden states for residual connection
  8219. cur = ggml_scale(ctx0, cur, scale_res);
  8220. cb(cur, "hidden_scaled_ffn", -1);
  8221. cur = ggml_add(ctx0, cur, ffn_inp);
  8222. cb(cur, "l_out", il);
  8223. // input for next layer
  8224. inpL = cur;
  8225. }
  8226. cur = inpL;
  8227. cur = llm_build_norm(ctx0, cur, hparams,
  8228. model.output_norm, NULL,
  8229. LLM_NORM_RMS, cb, -1);
  8230. cb(cur, "result_norm", -1);
  8231. // lm_head scaling
  8232. const float scale_lmhead = float(n_embd_base)/float(n_embd);
  8233. cur = ggml_scale(ctx0, cur, scale_lmhead);
  8234. cb(cur, "lmhead_scaling", -1);
  8235. // lm_head
  8236. cur = ggml_mul_mat(ctx0, model.tok_embd, cur);
  8237. cb(cur, "result_output", -1);
  8238. ggml_build_forward_expand(gf, cur);
  8239. return gf;
  8240. }
  8241. struct ggml_cgraph * build_gemma() {
  8242. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8243. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  8244. struct ggml_tensor * cur;
  8245. struct ggml_tensor * inpL;
  8246. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8247. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  8248. cb(inpL, "inp_scaled", -1);
  8249. // inp_pos - contains the positions
  8250. struct ggml_tensor * inp_pos = build_inp_pos();
  8251. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8252. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8253. for (int il = 0; il < n_layer; ++il) {
  8254. // norm
  8255. cur = llm_build_norm(ctx0, inpL, hparams,
  8256. model.layers[il].attn_norm, NULL,
  8257. LLM_NORM_RMS, cb, il);
  8258. cb(cur, "attn_norm", il);
  8259. // self-attention
  8260. {
  8261. // compute Q and K and RoPE them
  8262. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8263. cb(Qcur, "Qcur", il);
  8264. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8265. cb(Kcur, "Kcur", il);
  8266. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8267. cb(Vcur, "Vcur", il);
  8268. Qcur = ggml_rope_custom(
  8269. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos,
  8270. n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8271. ext_factor, attn_factor, beta_fast, beta_slow);
  8272. cb(Qcur, "Qcur", il);
  8273. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
  8274. cb(Qcur, "Qcur_scaled", il);
  8275. Kcur = ggml_rope_custom(
  8276. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos,
  8277. n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8278. ext_factor, attn_factor, beta_fast, beta_slow);
  8279. cb(Kcur, "Kcur", il);
  8280. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  8281. model.layers[il].wo, NULL,
  8282. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  8283. }
  8284. if (il == n_layer - 1) {
  8285. // skip computing output for unused tokens
  8286. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8287. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8288. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8289. }
  8290. struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  8291. cb(sa_out, "sa_out", il);
  8292. cur = llm_build_norm(ctx0, sa_out, hparams,
  8293. model.layers[il].ffn_norm, NULL,
  8294. LLM_NORM_RMS, cb, il);
  8295. cb(cur, "ffn_norm", il);
  8296. // feed-forward network
  8297. {
  8298. cur = llm_build_ffn(ctx0, cur,
  8299. model.layers[il].ffn_up, NULL,
  8300. model.layers[il].ffn_gate, NULL,
  8301. model.layers[il].ffn_down, NULL,
  8302. NULL,
  8303. LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
  8304. cb(cur, "ffn_out", il);
  8305. }
  8306. cur = ggml_add(ctx0, cur, sa_out);
  8307. cb(cur, "l_out", il);
  8308. // input for next layer
  8309. inpL = cur;
  8310. }
  8311. cur = inpL;
  8312. cur = llm_build_norm(ctx0, cur, hparams,
  8313. model.output_norm, NULL,
  8314. LLM_NORM_RMS, cb, -1);
  8315. cb(cur, "result_norm", -1);
  8316. // lm_head
  8317. cur = ggml_mul_mat(ctx0, model.output, cur);
  8318. cb(cur, "result_output", -1);
  8319. ggml_build_forward_expand(gf, cur);
  8320. return gf;
  8321. }
  8322. struct ggml_cgraph * build_starcoder2() {
  8323. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8324. const int64_t n_embd_head = hparams.n_embd_head_v;
  8325. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8326. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8327. struct ggml_tensor * cur;
  8328. struct ggml_tensor * inpL;
  8329. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8330. // inp_pos - contains the positions
  8331. struct ggml_tensor * inp_pos = build_inp_pos();
  8332. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8333. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8334. for (int il = 0; il < n_layer; ++il) {
  8335. struct ggml_tensor * inpSA = inpL;
  8336. // norm
  8337. cur = llm_build_norm(ctx0, inpL, hparams,
  8338. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  8339. LLM_NORM, cb, il);
  8340. cb(cur, "attn_norm", il);
  8341. // self-attention
  8342. {
  8343. // compute Q and K and RoPE them
  8344. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8345. cb(Qcur, "Qcur", il);
  8346. if (model.layers[il].bq) {
  8347. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8348. cb(Qcur, "Qcur", il);
  8349. }
  8350. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8351. cb(Kcur, "Kcur", il);
  8352. if (model.layers[il].bk) {
  8353. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8354. cb(Kcur, "Kcur", il);
  8355. }
  8356. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8357. cb(Vcur, "Vcur", il);
  8358. if (model.layers[il].bv) {
  8359. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8360. cb(Vcur, "Vcur", il);
  8361. }
  8362. Qcur = ggml_rope_custom(
  8363. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  8364. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8365. ext_factor, attn_factor, beta_fast, beta_slow
  8366. );
  8367. cb(Qcur, "Qcur", il);
  8368. Kcur = ggml_rope_custom(
  8369. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8370. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8371. ext_factor, attn_factor, beta_fast, beta_slow
  8372. );
  8373. cb(Kcur, "Kcur", il);
  8374. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  8375. model.layers[il].wo, model.layers[il].bo,
  8376. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8377. }
  8378. if (il == n_layer - 1) {
  8379. // skip computing output for unused tokens
  8380. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8381. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8382. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8383. }
  8384. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8385. cb(ffn_inp, "ffn_inp", il);
  8386. // feed-forward network
  8387. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8388. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  8389. LLM_NORM, cb, il);
  8390. cb(cur, "ffn_norm", il);
  8391. cur = llm_build_ffn(ctx0, cur,
  8392. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  8393. NULL, NULL,
  8394. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  8395. NULL,
  8396. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8397. cb(cur, "ffn_out", il);
  8398. cur = ggml_add(ctx0, cur, ffn_inp);
  8399. cb(cur, "l_out", il);
  8400. // input for next layer
  8401. inpL = cur;
  8402. }
  8403. cur = inpL;
  8404. cur = llm_build_norm(ctx0, cur, hparams,
  8405. model.output_norm, model.output_norm_b,
  8406. LLM_NORM, cb, -1);
  8407. cb(cur, "result_norm", -1);
  8408. // lm_head
  8409. cur = ggml_mul_mat(ctx0, model.output, cur);
  8410. cb(cur, "result_output", -1);
  8411. ggml_build_forward_expand(gf, cur);
  8412. return gf;
  8413. }
  8414. struct ggml_cgraph * build_mamba() {
  8415. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8416. const int64_t d_model = n_embd;
  8417. const int64_t d_conv = hparams.ssm_d_conv;
  8418. const int64_t d_inner = hparams.ssm_d_inner;
  8419. GGML_ASSERT(2 * d_model == d_inner);
  8420. const int64_t d_state = hparams.ssm_d_state;
  8421. const int64_t dt_rank = hparams.ssm_dt_rank;
  8422. struct ggml_tensor * cur;
  8423. struct ggml_tensor * inpL;
  8424. // {n_embd, n_tokens}
  8425. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8426. struct ggml_tensor * state_mask = build_inp_s_mask();
  8427. struct ggml_tensor * state_seq = build_inp_s_seq();
  8428. for (int il = 0; il < n_layer; ++il) {
  8429. // (ab)using the KV cache to store the states
  8430. struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
  8431. struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
  8432. // clear states of sequences which are starting at the beginning of this batch
  8433. {
  8434. conv_states = ggml_mul(ctx0,
  8435. ggml_view_2d(ctx0, conv_states, conv_states->ne[0], n_kv, conv_states->nb[1], kv_head*conv_states->nb[1]),
  8436. state_mask);
  8437. ssm_states = ggml_mul(ctx0,
  8438. ggml_view_2d(ctx0, ssm_states, ssm_states->ne[0], n_kv, ssm_states->nb[1], kv_head*ssm_states->nb[1]),
  8439. state_mask);
  8440. }
  8441. conv_states = ggml_reshape_3d(ctx0, conv_states, d_conv - 1, d_inner, n_kv);
  8442. ssm_states = ggml_reshape_3d(ctx0, ssm_states, d_state, d_inner, n_kv);
  8443. // norm
  8444. cur = llm_build_norm(ctx0, inpL, hparams,
  8445. model.layers[il].attn_norm, NULL,
  8446. LLM_NORM_RMS, cb, il);
  8447. cb(cur, "attn_norm", il);
  8448. // {n_embd, 2*d_inner} * {n_embd, n_tokens} => {2*d_inner, n_tokens}
  8449. struct ggml_tensor * xz = ggml_mul_mat(ctx0, model.layers[il].ssm_in, cur);
  8450. // split the above in two
  8451. // => {d_inner, n_tokens}
  8452. struct ggml_tensor * x = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], 0);
  8453. struct ggml_tensor * z = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], ggml_element_size(xz)*d_inner);
  8454. // conv
  8455. {
  8456. // Custom operator which is needed only to ease simultaneous sequence processing.
  8457. // For a single sequence, the equivalent is to concatenate the columns of conv_states and x,
  8458. // then make a self-overlapping view of that over d_conv columns at each stride in the 3rd dimension,
  8459. // then element-wise multiply that with the conv1d weigth,
  8460. // then sum the elements of each row,
  8461. // (the last two steps are a dot product over rows (also doable with mul_mat))
  8462. // then permute away the ne[0] dimension,
  8463. // and then you're left with the resulting x tensor.
  8464. // The new conv_states is the last (d_conv - 1) columns
  8465. // of the last 3rd dimensional "layer" of the self-overlapping view.
  8466. // For simultaneous sequences, it's more complicated.
  8467. struct ggml_tensor * x_conv = ggml_ssm_conv(ctx0, conv_states, x, model.layers[il].ssm_conv1d, state_seq);
  8468. // store last (d_conv - 1) columns of the conv_state part of x_conv back into the KV cache
  8469. ggml_build_forward_expand(gf,
  8470. ggml_cpy(ctx0,
  8471. ggml_view_2d(ctx0, x_conv, d_conv - 1, d_inner*n_kv, d_conv*ggml_element_size(x_conv), (1+d_inner*n_tokens)*ggml_element_size(x_conv)),
  8472. ggml_view_1d(ctx0, kv_self.k_l[il], (d_conv - 1)*(d_inner)*(n_kv), kv_head*(d_conv - 1)*(d_inner)*ggml_element_size(x_conv))));
  8473. // extract x from x_conv
  8474. x = ggml_view_2d(ctx0, x_conv, d_inner, n_tokens, d_inner*ggml_element_size(x_conv), 0);
  8475. // bias
  8476. x = ggml_add(ctx0, x, model.layers[il].ssm_conv1d_b);
  8477. x = ggml_silu(ctx0, x);
  8478. }
  8479. // ssm
  8480. {
  8481. // {d_inner, dt_rank + 2*d_state} * {d_inner, n_tokens} => {dt_rank + 2*d_state, n_tokens}
  8482. struct ggml_tensor * x_db = ggml_mul_mat(ctx0, model.layers[il].ssm_x, x);
  8483. // split
  8484. struct ggml_tensor * dt = ggml_view_2d(ctx0, x_db, dt_rank, n_tokens, x_db->nb[1], 0);
  8485. struct ggml_tensor * B = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*dt_rank);
  8486. struct ggml_tensor * C = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*(dt_rank+d_state));
  8487. // {dt_rank, d_inner} * {dt_rank, n_tokens} => {d_inner, n_tokens}
  8488. dt = ggml_mul_mat(ctx0, model.layers[il].ssm_dt, dt);
  8489. dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
  8490. // Custom operator to optimize the parallel associative scan
  8491. // as described in the Annex D of the Mamba paper.
  8492. // => {d_inner, n_tokens} and {d_state, d_inner, n_kv} combined,
  8493. // because only a single tensor can be returned.
  8494. struct ggml_tensor * y_ssm_states = ggml_ssm_scan(ctx0, ssm_states, x, dt, model.layers[il].ssm_a, B, C, state_seq);
  8495. // store last states (the second part of y_ssm_states)
  8496. ggml_build_forward_expand(gf,
  8497. ggml_cpy(ctx0,
  8498. ggml_view_1d(ctx0, y_ssm_states, d_state*d_inner*n_kv, d_inner*n_tokens*ggml_element_size(y_ssm_states)),
  8499. ggml_view_1d(ctx0, kv_self.v_l[il], d_state*d_inner*n_kv, kv_head*d_state*d_inner*ggml_element_size(ssm_states))));
  8500. struct ggml_tensor * y = ggml_view_2d(ctx0, y_ssm_states, d_inner, n_tokens, d_inner*ggml_element_size(y_ssm_states), 0);
  8501. if (il == n_layer - 1) {
  8502. // skip computing output for unused tokens
  8503. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8504. x = ggml_get_rows(ctx0, x, inp_out_ids);
  8505. y = ggml_get_rows(ctx0, y, inp_out_ids);
  8506. z = ggml_get_rows(ctx0, z, inp_out_ids);
  8507. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8508. }
  8509. // {d_inner, n_tokens} * {d_inner} => {d_inner, n_tokens}
  8510. y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
  8511. y = ggml_mul(ctx0, y, ggml_silu(ctx0, z));
  8512. // {d_inner, n_embd} * {d_inner, n_tokens} => {n_embd, n_tokens}
  8513. cur = ggml_mul_mat(ctx0, model.layers[il].ssm_out, y);
  8514. }
  8515. // residual
  8516. cur = ggml_add(ctx0, cur, inpL);
  8517. cb(cur, "l_out", il);
  8518. // input for next layer
  8519. inpL = cur;
  8520. }
  8521. // final rmsnorm
  8522. cur = llm_build_norm(ctx0, inpL, hparams,
  8523. model.output_norm, NULL,
  8524. LLM_NORM_RMS, cb, -1);
  8525. cb(cur, "result_norm", -1);
  8526. // lm_head
  8527. cur = ggml_mul_mat(ctx0, model.output, cur);
  8528. cb(cur, "result_output", -1);
  8529. ggml_build_forward_expand(gf, cur);
  8530. return gf;
  8531. }
  8532. struct ggml_cgraph * build_command_r() {
  8533. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8534. const int64_t n_embd_head = hparams.n_embd_head_v;
  8535. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8536. const float f_logit_scale = hparams.f_logit_scale;
  8537. struct ggml_tensor * cur;
  8538. struct ggml_tensor * inpL;
  8539. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8540. // inp_pos - contains the positions
  8541. struct ggml_tensor * inp_pos = build_inp_pos();
  8542. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8543. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8544. for (int il = 0; il < n_layer; ++il) {
  8545. // norm
  8546. cur = llm_build_norm(ctx0, inpL, hparams,
  8547. model.layers[il].attn_norm, NULL,
  8548. LLM_NORM, cb, il);
  8549. cb(cur, "attn_norm", il);
  8550. struct ggml_tensor * ffn_inp = cur;
  8551. // self-attention
  8552. {
  8553. // compute Q and K and RoPE them
  8554. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8555. cb(Qcur, "Qcur", il);
  8556. if (model.layers[il].bq) {
  8557. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8558. cb(Qcur, "Qcur", il);
  8559. }
  8560. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8561. cb(Kcur, "Kcur", il);
  8562. if (model.layers[il].bk) {
  8563. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8564. cb(Kcur, "Kcur", il);
  8565. }
  8566. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8567. cb(Vcur, "Vcur", il);
  8568. if (model.layers[il].bv) {
  8569. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8570. cb(Vcur, "Vcur", il);
  8571. }
  8572. if (model.layers[il].attn_q_norm) {
  8573. Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens,
  8574. ggml_element_size(Qcur) * n_embd_head,
  8575. ggml_element_size(Qcur) * n_embd_head * n_head,
  8576. 0);
  8577. cb(Qcur, "Qcur", il);
  8578. Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens,
  8579. ggml_element_size(Kcur) * n_embd_head,
  8580. ggml_element_size(Kcur) * n_embd_head * n_head_kv,
  8581. 0);
  8582. cb(Kcur, "Kcur", il);
  8583. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  8584. model.layers[il].attn_q_norm,
  8585. NULL,
  8586. LLM_NORM, cb, il);
  8587. cb(Qcur, "Qcur", il);
  8588. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  8589. model.layers[il].attn_k_norm,
  8590. NULL,
  8591. LLM_NORM, cb, il);
  8592. cb(Kcur, "Kcur", il);
  8593. }
  8594. Qcur = ggml_rope_custom(
  8595. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  8596. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8597. ext_factor, attn_factor, beta_fast, beta_slow
  8598. );
  8599. cb(Qcur, "Qcur", il);
  8600. Kcur = ggml_rope_custom(
  8601. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8602. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8603. ext_factor, attn_factor, beta_fast, beta_slow
  8604. );
  8605. cb(Kcur, "Kcur", il);
  8606. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  8607. model.layers[il].wo, model.layers[il].bo,
  8608. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8609. }
  8610. if (il == n_layer - 1) {
  8611. // skip computing output for unused tokens
  8612. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8613. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8614. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8615. ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
  8616. }
  8617. struct ggml_tensor * attn_out = cur;
  8618. // feed-forward network
  8619. {
  8620. cur = llm_build_ffn(ctx0, ffn_inp,
  8621. model.layers[il].ffn_up, NULL,
  8622. model.layers[il].ffn_gate, NULL,
  8623. model.layers[il].ffn_down, NULL,
  8624. NULL,
  8625. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8626. cb(cur, "ffn_out", il);
  8627. }
  8628. // add together residual + FFN + self-attention
  8629. cur = ggml_add(ctx0, cur, inpL);
  8630. cur = ggml_add(ctx0, cur, attn_out);
  8631. cb(cur, "l_out", il);
  8632. // input for next layer
  8633. inpL = cur;
  8634. }
  8635. cur = inpL;
  8636. cur = llm_build_norm(ctx0, cur, hparams,
  8637. model.output_norm, NULL,
  8638. LLM_NORM, cb, -1);
  8639. cb(cur, "result_norm", -1);
  8640. // lm_head
  8641. cur = ggml_mul_mat(ctx0, model.output, cur);
  8642. if (f_logit_scale) {
  8643. cur = ggml_scale(ctx0, cur, f_logit_scale);
  8644. }
  8645. cb(cur, "result_output", -1);
  8646. ggml_build_forward_expand(gf, cur);
  8647. return gf;
  8648. }
  8649. // ref: https://allenai.org/olmo
  8650. // based on the original build_llama() function, changes:
  8651. // * non-parametric layer norm
  8652. // * clamp qkv
  8653. // * removed bias
  8654. // * removed MoE
  8655. struct ggml_cgraph * build_olmo() {
  8656. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8657. // mutable variable, needed during the last layer of the computation to skip unused tokens
  8658. int32_t n_tokens = this->n_tokens;
  8659. const int64_t n_embd_head = hparams.n_embd_head_v;
  8660. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8661. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8662. struct ggml_tensor * cur;
  8663. struct ggml_tensor * inpL;
  8664. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8665. // inp_pos - contains the positions
  8666. struct ggml_tensor * inp_pos = build_inp_pos();
  8667. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8668. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8669. for (int il = 0; il < n_layer; ++il) {
  8670. struct ggml_tensor * inpSA = inpL;
  8671. // norm
  8672. cur = llm_build_norm(ctx0, inpL, hparams,
  8673. NULL, NULL,
  8674. LLM_NORM, cb, il);
  8675. cb(cur, "attn_norm", il);
  8676. // self-attention
  8677. {
  8678. // compute Q and K and RoPE them
  8679. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8680. cb(Qcur, "Qcur", il);
  8681. if (hparams.f_clamp_kqv > 0.0f) {
  8682. Qcur = ggml_clamp(ctx0, Qcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  8683. cb(Qcur, "Qcur", il);
  8684. }
  8685. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8686. cb(Kcur, "Kcur", il);
  8687. if (hparams.f_clamp_kqv > 0.0f) {
  8688. Kcur = ggml_clamp(ctx0, Kcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  8689. cb(Kcur, "Kcur", il);
  8690. }
  8691. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8692. cb(Vcur, "Vcur", il);
  8693. if (hparams.f_clamp_kqv > 0.0f) {
  8694. Vcur = ggml_clamp(ctx0, Vcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  8695. cb(Vcur, "Vcur", il);
  8696. }
  8697. Qcur = ggml_rope_custom(
  8698. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  8699. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8700. ext_factor, attn_factor, beta_fast, beta_slow
  8701. );
  8702. cb(Qcur, "Qcur", il);
  8703. Kcur = ggml_rope_custom(
  8704. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8705. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8706. ext_factor, attn_factor, beta_fast, beta_slow
  8707. );
  8708. cb(Kcur, "Kcur", il);
  8709. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  8710. model.layers[il].wo, nullptr,
  8711. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8712. }
  8713. if (il == n_layer - 1) {
  8714. // skip computing output for unused tokens
  8715. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8716. n_tokens = n_outputs;
  8717. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8718. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8719. }
  8720. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8721. cb(ffn_inp, "ffn_inp", il);
  8722. // feed-forward network
  8723. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8724. NULL, NULL,
  8725. LLM_NORM, cb, il);
  8726. cb(cur, "ffn_norm", il);
  8727. cur = llm_build_ffn(ctx0, cur,
  8728. model.layers[il].ffn_up, NULL,
  8729. model.layers[il].ffn_gate, NULL,
  8730. model.layers[il].ffn_down, NULL,
  8731. NULL,
  8732. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8733. cb(cur, "ffn_out", il);
  8734. cur = ggml_add(ctx0, cur, ffn_inp);
  8735. cb(cur, "ffn_out", il);
  8736. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  8737. if (layer_dir != nullptr) {
  8738. cur = ggml_add(ctx0, cur, layer_dir);
  8739. }
  8740. cb(cur, "l_out", il);
  8741. // input for next layer
  8742. inpL = cur;
  8743. }
  8744. cur = inpL;
  8745. cur = llm_build_norm(ctx0, cur, hparams,
  8746. NULL, NULL,
  8747. LLM_NORM, cb, -1);
  8748. cb(cur, "result_norm", -1);
  8749. // lm_head
  8750. cur = ggml_mul_mat(ctx0, model.output, cur);
  8751. cb(cur, "result_output", -1);
  8752. ggml_build_forward_expand(gf, cur);
  8753. return gf;
  8754. }
  8755. };
  8756. static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
  8757. llama_batch dummy;
  8758. dummy.n_tokens = 0;
  8759. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  8760. struct llm_build_context llm(lctx, dummy, cb, false);
  8761. llm.init();
  8762. struct ggml_cgraph * result = llm.build_defrag(ids);
  8763. llm.free();
  8764. return result;
  8765. }
  8766. static struct ggml_cgraph * llama_build_graph_k_shift(llama_context & lctx) {
  8767. llama_batch dummy;
  8768. dummy.n_tokens = 0;
  8769. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  8770. struct llm_build_context llm(lctx, dummy, cb, false);
  8771. llm.init();
  8772. struct ggml_cgraph * result = llm.build_k_shift();
  8773. llm.free();
  8774. return result;
  8775. }
  8776. static struct ggml_cgraph * llama_build_graph_s_copy(llama_context & lctx) {
  8777. llama_batch dummy;
  8778. dummy.n_tokens = 0;
  8779. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  8780. struct llm_build_context llm(lctx, dummy, cb, false);
  8781. llm.init();
  8782. struct ggml_cgraph * result = llm.build_s_copy();
  8783. llm.free();
  8784. return result;
  8785. }
  8786. static struct ggml_cgraph * llama_build_graph(
  8787. llama_context & lctx,
  8788. const llama_batch & batch,
  8789. bool worst_case) {
  8790. const auto & model = lctx.model;
  8791. // this callback allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
  8792. llm_build_cb cb = [&](struct ggml_tensor * cur, const char * name, int il) {
  8793. if (il >= 0) {
  8794. ggml_format_name(cur, "%s-%d", name, il);
  8795. } else {
  8796. ggml_set_name(cur, name);
  8797. }
  8798. if (!lctx.cparams.offload_kqv) {
  8799. if (strcmp(name, "kqv_merged_cont") == 0) {
  8800. // all nodes between the KV store and the attention output are run on the CPU
  8801. ggml_backend_sched_set_tensor_backend(lctx.sched, cur, lctx.backend_cpu);
  8802. }
  8803. }
  8804. // norm may be automatically assigned to the backend of the previous layer, increasing data transfer between backends
  8805. // FIXME: fix in ggml_backend_sched
  8806. const bool full_offload = lctx.model.n_gpu_layers > (int)lctx.model.hparams.n_layer;
  8807. if (batch.n_tokens < 32 || full_offload) {
  8808. if (il != -1 && strcmp(name, "norm") == 0) {
  8809. for (auto * backend : lctx.backends) {
  8810. if (ggml_backend_buft_supports_backend(lctx.model.buft_layer[il].buft, backend)) {
  8811. ggml_backend_sched_set_tensor_backend(lctx.sched, cur, backend);
  8812. break;
  8813. }
  8814. }
  8815. }
  8816. }
  8817. };
  8818. struct ggml_cgraph * result = NULL;
  8819. struct llm_build_context llm(lctx, batch, cb, worst_case);
  8820. llm.init();
  8821. switch (model.arch) {
  8822. case LLM_ARCH_LLAMA:
  8823. {
  8824. result = llm.build_llama();
  8825. } break;
  8826. case LLM_ARCH_BAICHUAN:
  8827. {
  8828. result = llm.build_baichuan();
  8829. } break;
  8830. case LLM_ARCH_FALCON:
  8831. {
  8832. result = llm.build_falcon();
  8833. } break;
  8834. case LLM_ARCH_GROK:
  8835. {
  8836. result = llm.build_grok();
  8837. } break;
  8838. case LLM_ARCH_STARCODER:
  8839. {
  8840. result = llm.build_starcoder();
  8841. } break;
  8842. case LLM_ARCH_PERSIMMON:
  8843. {
  8844. result = llm.build_persimmon();
  8845. } break;
  8846. case LLM_ARCH_REFACT:
  8847. {
  8848. result = llm.build_refact();
  8849. } break;
  8850. case LLM_ARCH_BERT:
  8851. case LLM_ARCH_NOMIC_BERT:
  8852. {
  8853. result = llm.build_bert();
  8854. } break;
  8855. case LLM_ARCH_BLOOM:
  8856. {
  8857. result = llm.build_bloom();
  8858. } break;
  8859. case LLM_ARCH_MPT:
  8860. {
  8861. result = llm.build_mpt();
  8862. } break;
  8863. case LLM_ARCH_STABLELM:
  8864. {
  8865. result = llm.build_stablelm();
  8866. } break;
  8867. case LLM_ARCH_QWEN:
  8868. {
  8869. result = llm.build_qwen();
  8870. } break;
  8871. case LLM_ARCH_QWEN2:
  8872. {
  8873. result = llm.build_qwen2();
  8874. } break;
  8875. case LLM_ARCH_QWEN2MOE:
  8876. {
  8877. result = llm.build_qwen2moe();
  8878. } break;
  8879. case LLM_ARCH_PHI2:
  8880. {
  8881. result = llm.build_phi2();
  8882. } break;
  8883. case LLM_ARCH_PHI3:
  8884. {
  8885. result = llm.build_phi3();
  8886. } break;
  8887. case LLM_ARCH_PLAMO:
  8888. {
  8889. result = llm.build_plamo();
  8890. } break;
  8891. case LLM_ARCH_GPT2:
  8892. {
  8893. result = llm.build_gpt2();
  8894. } break;
  8895. case LLM_ARCH_CODESHELL:
  8896. {
  8897. result = llm.build_codeshell();
  8898. } break;
  8899. case LLM_ARCH_ORION:
  8900. {
  8901. result = llm.build_orion();
  8902. } break;
  8903. case LLM_ARCH_INTERNLM2:
  8904. {
  8905. result = llm.build_internlm2();
  8906. } break;
  8907. case LLM_ARCH_MINICPM:
  8908. {
  8909. result = llm.build_minicpm();
  8910. } break;
  8911. case LLM_ARCH_GEMMA:
  8912. {
  8913. result = llm.build_gemma();
  8914. } break;
  8915. case LLM_ARCH_STARCODER2:
  8916. {
  8917. result = llm.build_starcoder2();
  8918. } break;
  8919. case LLM_ARCH_MAMBA:
  8920. {
  8921. result = llm.build_mamba();
  8922. } break;
  8923. case LLM_ARCH_XVERSE:
  8924. {
  8925. result = llm.build_xverse();
  8926. } break;
  8927. case LLM_ARCH_COMMAND_R:
  8928. {
  8929. result = llm.build_command_r();
  8930. } break;
  8931. case LLM_ARCH_DBRX:
  8932. {
  8933. result = llm.build_dbrx();
  8934. } break;
  8935. case LLM_ARCH_OLMO:
  8936. {
  8937. result = llm.build_olmo();
  8938. } break;
  8939. default:
  8940. GGML_ASSERT(false);
  8941. }
  8942. llm.free();
  8943. return result;
  8944. }
  8945. static void llama_set_k_shift(llama_context & lctx) {
  8946. const int64_t kv_size = lctx.kv_self.size;
  8947. assert(ggml_backend_buffer_is_host(lctx.inp_K_shift->buffer));
  8948. int32_t * data = (int32_t *) lctx.inp_K_shift->data;
  8949. for (int i = 0; i < kv_size; ++i) {
  8950. data[i] = lctx.kv_self.cells[i].delta;
  8951. }
  8952. }
  8953. static void llama_set_s_copy(llama_context & lctx) {
  8954. const int64_t kv_size = lctx.kv_self.size;
  8955. assert(ggml_backend_buffer_is_host(lctx.inp_s_copy->buffer));
  8956. int32_t * data = (int32_t *) lctx.inp_s_copy->data;
  8957. for (int i = 0; i < kv_size; ++i) {
  8958. data[i] = lctx.kv_self.cells[i].src;
  8959. }
  8960. }
  8961. static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
  8962. //
  8963. // set input data
  8964. //
  8965. const auto & hparams = lctx.model.hparams;
  8966. const auto & cparams = lctx.cparams;
  8967. const auto & kv_self = lctx.kv_self;
  8968. if (batch.token) {
  8969. const int64_t n_tokens = batch.n_tokens;
  8970. ggml_backend_tensor_set(lctx.inp_tokens, batch.token, 0, n_tokens*ggml_element_size(lctx.inp_tokens));
  8971. }
  8972. if (batch.embd) {
  8973. const int64_t n_embd = hparams.n_embd;
  8974. const int64_t n_tokens = batch.n_tokens;
  8975. ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
  8976. }
  8977. if (batch.pos && lctx.inp_pos) {
  8978. const int64_t n_tokens = batch.n_tokens;
  8979. ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos));
  8980. }
  8981. if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) {
  8982. GGML_ASSERT(lctx.inp_out_ids && "every model that can must skip unused outputs");
  8983. const int64_t n_tokens = batch.n_tokens;
  8984. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_out_ids->buffer));
  8985. int32_t * data = (int32_t *) lctx.inp_out_ids->data;
  8986. if (lctx.n_outputs == n_tokens) {
  8987. for (int i = 0; i < n_tokens; ++i) {
  8988. data[i] = i;
  8989. }
  8990. } else if (batch.logits) {
  8991. int32_t n_outputs = 0;
  8992. for (int i = 0; i < n_tokens; ++i) {
  8993. if (batch.logits[i]) {
  8994. data[n_outputs++] = i;
  8995. }
  8996. }
  8997. // the graph needs to have been passed the correct number of outputs
  8998. GGML_ASSERT(lctx.n_outputs == n_outputs);
  8999. } else if (lctx.n_outputs == 1) {
  9000. // only keep last output
  9001. data[0] = n_tokens - 1;
  9002. } else {
  9003. GGML_ASSERT(lctx.n_outputs == 0);
  9004. }
  9005. }
  9006. GGML_ASSERT(
  9007. // (!a || b) is a logical implication (a -> b)
  9008. // !hparams.causal_attn -> !cparams.causal_attn
  9009. (hparams.causal_attn || !cparams.causal_attn) &&
  9010. "causal attention with embedding models is not supported"
  9011. );
  9012. if (lctx.inp_KQ_mask) {
  9013. // NOTE: hparams.causal_attn indicates the model is capable of generation and uses the kv cache.
  9014. if (cparams.causal_attn) {
  9015. const int64_t n_kv = kv_self.n;
  9016. const int64_t n_tokens = batch.n_tokens;
  9017. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  9018. float * data = (float *) lctx.inp_KQ_mask->data;
  9019. // For causal attention, use only the previous KV cells
  9020. // of the correct sequence for each token of the batch.
  9021. // It's assumed that if a token in the batch has multiple sequences, they are equivalent.
  9022. for (int h = 0; h < 1; ++h) {
  9023. for (int j = 0; j < n_tokens; ++j) {
  9024. const llama_pos pos = batch.pos[j];
  9025. const llama_seq_id seq_id = batch.seq_id[j][0];
  9026. for (int i = 0; i < n_kv; ++i) {
  9027. float f;
  9028. if (!lctx.kv_self.cells[i].has_seq_id(seq_id) || lctx.kv_self.cells[i].pos > pos) {
  9029. f = -INFINITY;
  9030. } else {
  9031. f = 0.0f;
  9032. }
  9033. data[h*(n_kv*n_tokens) + j*n_kv + i] = f;
  9034. }
  9035. }
  9036. }
  9037. } else {
  9038. // when using kv cache, the mask needs to match the kv cache size
  9039. const int64_t n_tokens = batch.n_tokens;
  9040. const int64_t n_stride = hparams.causal_attn ? kv_self.n : n_tokens;
  9041. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  9042. float * data = (float *) lctx.inp_KQ_mask->data;
  9043. for (int h = 0; h < 1; ++h) {
  9044. for (int j = 0; j < n_tokens; ++j) {
  9045. const llama_seq_id seq_id = batch.seq_id[j][0];
  9046. for (int i = 0; i < n_tokens; ++i) {
  9047. float f = -INFINITY;
  9048. for (int s = 0; s < batch.n_seq_id[i]; ++s) {
  9049. if (batch.seq_id[i][s] == seq_id) {
  9050. f = 0.0f;
  9051. break;
  9052. }
  9053. }
  9054. data[h*(n_tokens*n_tokens) + j*n_stride + i] = f;
  9055. }
  9056. for (int i = n_tokens; i < n_stride; ++i) {
  9057. data[h*(n_tokens*n_tokens) + j*n_stride + i] = -INFINITY;
  9058. }
  9059. }
  9060. }
  9061. }
  9062. }
  9063. if (hparams.need_kq_pos) {
  9064. const int64_t n_kv = kv_self.n;
  9065. GGML_ASSERT(lctx.inp_KQ_pos);
  9066. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_pos->buffer));
  9067. float * data = (float *) lctx.inp_KQ_pos->data;
  9068. for (int i = 0; i < n_kv; ++i) {
  9069. data[i] = float(lctx.kv_self.cells[i].pos);
  9070. }
  9071. }
  9072. if (cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
  9073. const int64_t n_tokens = batch.n_tokens;
  9074. GGML_ASSERT(lctx.inp_mean);
  9075. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer));
  9076. float * data = (float *) lctx.inp_mean->data;
  9077. memset(lctx.inp_mean->data, 0, n_tokens * n_tokens * ggml_element_size(lctx.inp_mean));
  9078. std::vector<uint64_t> sum(n_tokens, 0);
  9079. for (int i = 0; i < n_tokens; ++i) {
  9080. const llama_seq_id seq_id = batch.seq_id[i][0];
  9081. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN");
  9082. sum[seq_id] += 1;
  9083. }
  9084. std::vector<float> div(n_tokens, 0.0f);
  9085. for (int i = 0; i < n_tokens; ++i) {
  9086. const uint64_t s = sum[i];
  9087. if (s > 0) {
  9088. div[i] = 1.0f/float(s);
  9089. }
  9090. }
  9091. for (int i = 0; i < n_tokens; ++i) {
  9092. const llama_seq_id seq_id = batch.seq_id[i][0];
  9093. data[seq_id*n_tokens + i] = div[seq_id];
  9094. }
  9095. }
  9096. if (cparams.pooling_type == LLAMA_POOLING_TYPE_CLS) {
  9097. const int64_t n_tokens = batch.n_tokens;
  9098. GGML_ASSERT(lctx.inp_cls);
  9099. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
  9100. uint32_t * data = (uint32_t *) lctx.inp_cls->data;
  9101. memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
  9102. for (int i = 0; i < n_tokens; ++i) {
  9103. const llama_seq_id seq_id = batch.seq_id[i][0];
  9104. const llama_pos pos = batch.pos[i];
  9105. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS");
  9106. if (pos == 0) {
  9107. data[seq_id] = i;
  9108. }
  9109. }
  9110. }
  9111. if (kv_self.recurrent) {
  9112. const int64_t n_kv = kv_self.n;
  9113. if (lctx.inp_s_mask) {
  9114. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_mask->buffer));
  9115. float * data = (float *) lctx.inp_s_mask->data;
  9116. // states which are not affected by the current batch are left untouched
  9117. for (int i = 0; i < n_kv; ++i) {
  9118. llama_seq_id seq_id = i + lctx.kv_self.head;
  9119. llama_kv_cell & kv_cell = lctx.kv_self.cells[seq_id];
  9120. bool has_self_seq = kv_cell.has_seq_id(seq_id);
  9121. data[i] = (float) has_self_seq;
  9122. // ensure current sequences will be kept
  9123. if (!has_self_seq && kv_cell.pos >= 0) {
  9124. kv_cell.seq_id.insert(seq_id);
  9125. }
  9126. }
  9127. }
  9128. // For Mamba (and other recurrent architectures),
  9129. // update the correct state(s)/sequence(s) for each token of the batch.
  9130. // Like with the KQ_mask, if a token in the batch has multiple sequences,
  9131. // they are assumed to be equivalent (not here, but in ggml_ssm_scan and ggml_ssm_conv).
  9132. if (lctx.inp_s_seq) {
  9133. const int64_t n_tokens = batch.n_tokens;
  9134. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_seq->buffer));
  9135. int32_t * data = (int32_t *) lctx.inp_s_seq->data;
  9136. for (int j = 0; j < n_tokens; ++j) {
  9137. const int32_t n_seq = batch.n_seq_id[j];
  9138. GGML_ASSERT(0 < n_seq); // a token should be part of at least 1 sequence
  9139. for (int i = 0; i < n_kv; ++i) {
  9140. if (i < n_seq) {
  9141. // for this type of model, the head is the minimum seq_id of the batch
  9142. data[j*n_kv + i] = batch.seq_id[j][i] - kv_self.head;
  9143. } else {
  9144. data[j*n_kv + i] = -1;
  9145. }
  9146. }
  9147. }
  9148. }
  9149. }
  9150. }
  9151. // Make sure enough space is available for outputs.
  9152. // Returns max number of outputs for which space was reserved.
  9153. static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) {
  9154. const auto & cparams = lctx.cparams;
  9155. const auto & hparams = lctx.model.hparams;
  9156. const size_t n_outputs_max = std::max(n_outputs, (size_t) cparams.n_seq_max);
  9157. const auto n_batch = cparams.n_batch;
  9158. const auto n_vocab = hparams.n_vocab;
  9159. const auto n_embd = hparams.n_embd;
  9160. // TODO: use a per-batch flag for logits presence instead
  9161. const bool has_logits = cparams.causal_attn;
  9162. const bool has_embd = cparams.embeddings && (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE);
  9163. const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0;
  9164. const size_t embd_size = has_embd ? n_embd*n_outputs_max : 0;
  9165. if (lctx.output_ids.empty()) {
  9166. // init, never resized afterwards
  9167. lctx.output_ids.resize(n_batch);
  9168. }
  9169. const size_t prev_size = lctx.buf_output ? ggml_backend_buffer_get_size(lctx.buf_output) : 0;
  9170. const size_t new_size = (logits_size + embd_size) * sizeof(float);
  9171. // alloc only when more than the current capacity is required
  9172. // TODO: also consider shrinking the buffer
  9173. if (!lctx.buf_output || prev_size < new_size) {
  9174. if (lctx.buf_output) {
  9175. #ifndef NDEBUG
  9176. // This doesn't happen often, but may be annoying in some cases (like the HellaSwag benchmark)
  9177. LLAMA_LOG_INFO("%s: reallocating output buffer from size %.02f MiB to %.02f MiB\n", __func__, prev_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
  9178. #endif
  9179. ggml_backend_buffer_free(lctx.buf_output);
  9180. lctx.buf_output = nullptr;
  9181. lctx.logits = nullptr;
  9182. lctx.embd = nullptr;
  9183. }
  9184. lctx.buf_output = ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), new_size);
  9185. if (lctx.buf_output == nullptr) {
  9186. LLAMA_LOG_ERROR("%s: failed to allocate output buffer of size %.2f MiB\n", __func__, new_size / (1024.0 * 1024.0));
  9187. return 0;
  9188. }
  9189. }
  9190. float * output_base = (float *) ggml_backend_buffer_get_base(lctx.buf_output);
  9191. lctx.logits = has_logits ? output_base : nullptr;
  9192. lctx.embd = has_embd ? output_base + logits_size : nullptr;
  9193. lctx.output_size = n_outputs_max;
  9194. lctx.logits_size = logits_size;
  9195. lctx.embd_size = embd_size;
  9196. // set all ids as invalid (negative)
  9197. std::fill(lctx.output_ids.begin(), lctx.output_ids.end(), -1);
  9198. ggml_backend_buffer_clear(lctx.buf_output, 0);
  9199. lctx.n_outputs = 0;
  9200. return n_outputs_max;
  9201. }
  9202. static void llama_graph_compute(
  9203. llama_context & lctx,
  9204. ggml_cgraph * gf,
  9205. int n_threads) {
  9206. #ifdef GGML_USE_MPI
  9207. const int64_t n_layer = lctx.model.hparams.n_layer;
  9208. ggml_mpi_graph_compute_pre(lctx.ctx_mpi, gf, n_layer);
  9209. #endif
  9210. #ifdef GGML_USE_METAL
  9211. if (ggml_backend_is_metal(lctx.backend_metal)) {
  9212. ggml_backend_metal_set_n_cb(lctx.backend_metal, n_threads);
  9213. }
  9214. #endif
  9215. if (lctx.backend_cpu != nullptr) {
  9216. ggml_backend_cpu_set_n_threads(lctx.backend_cpu, n_threads);
  9217. ggml_backend_cpu_set_abort_callback(lctx.backend_cpu, lctx.abort_callback, lctx.abort_callback_data);
  9218. }
  9219. ggml_backend_sched_graph_compute_async(lctx.sched, gf);
  9220. // fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched));
  9221. #ifdef GGML_USE_MPI
  9222. ggml_mpi_graph_compute_post(lctx.ctx_mpi, gf, n_layer);
  9223. #endif
  9224. }
  9225. // decode a batch of tokens by evaluating the transformer
  9226. //
  9227. // - lctx: llama context
  9228. // - batch: batch to evaluate
  9229. //
  9230. // return 0 on success
  9231. // return positive int on warning
  9232. // return negative int on error
  9233. //
  9234. static int llama_decode_internal(
  9235. llama_context & lctx,
  9236. llama_batch batch_all) { // TODO: rename back to batch
  9237. const uint32_t n_tokens_all = batch_all.n_tokens;
  9238. if (n_tokens_all == 0) {
  9239. LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__);
  9240. return -1;
  9241. }
  9242. const auto & model = lctx.model;
  9243. const auto & hparams = model.hparams;
  9244. const auto & cparams = lctx.cparams;
  9245. GGML_ASSERT((!batch_all.token && batch_all.embd) || (batch_all.token && !batch_all.embd)); // NOLINT
  9246. GGML_ASSERT(n_tokens_all <= cparams.n_batch);
  9247. GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens");
  9248. if (lctx.t_compute_start_us == 0) {
  9249. lctx.t_compute_start_us = ggml_time_us();
  9250. }
  9251. lctx.n_queued_tokens += n_tokens_all;
  9252. #ifdef GGML_USE_MPI
  9253. // TODO: needs fix after #3228
  9254. GGML_ASSERT(false && "not implemented");
  9255. //ggml_mpi_eval_init(lctx.ctx_mpi, &n_tokens, &n_past, &n_threads);
  9256. #endif
  9257. auto & kv_self = lctx.kv_self;
  9258. const int64_t n_embd = hparams.n_embd;
  9259. const int64_t n_vocab = hparams.n_vocab;
  9260. uint32_t n_outputs = 0;
  9261. uint32_t n_outputs_prev = 0;
  9262. const auto n_ubatch = cparams.n_ubatch;
  9263. std::vector<llama_pos> pos;
  9264. std::vector<int32_t> n_seq_id;
  9265. std::vector<llama_seq_id *> seq_id_arr;
  9266. std::vector<std::vector<llama_seq_id>> seq_id;
  9267. // count outputs
  9268. if (batch_all.logits) {
  9269. for (uint32_t i = 0; i < n_tokens_all; ++i) {
  9270. n_outputs += batch_all.logits[i] != 0;
  9271. }
  9272. } else if (lctx.logits_all || (cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE)) {
  9273. n_outputs = n_tokens_all;
  9274. } else {
  9275. // keep last output only
  9276. n_outputs = 1;
  9277. }
  9278. // reserve output buffer
  9279. if (llama_output_reserve(lctx, n_outputs) < n_outputs) {
  9280. LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_outputs);
  9281. return -2;
  9282. };
  9283. // set output mappings
  9284. if (batch_all.logits) {
  9285. int32_t i_logits = 0;
  9286. for (uint32_t i = 0; i < n_tokens_all; ++i) {
  9287. if (batch_all.logits[i]) {
  9288. lctx.output_ids[i] = i_logits++;
  9289. }
  9290. }
  9291. } else {
  9292. for (uint32_t i = 0; i < n_outputs; ++i) {
  9293. lctx.output_ids[i] = i;
  9294. }
  9295. }
  9296. for (uint32_t cur_token = 0; cur_token < n_tokens_all; cur_token += n_ubatch) {
  9297. const uint32_t n_tokens = std::min(n_ubatch, n_tokens_all - cur_token);
  9298. llama_batch u_batch = {
  9299. /* .n_tokens = */ (int32_t) n_tokens,
  9300. /* .token = */ batch_all.token ? batch_all.token + cur_token : nullptr,
  9301. /* .embd = */ batch_all.embd ? batch_all.embd + cur_token*n_embd : nullptr,
  9302. /* .pos = */ batch_all.pos ? batch_all.pos + cur_token : nullptr,
  9303. /* .n_seq_id = */ batch_all.n_seq_id ? batch_all.n_seq_id + cur_token : nullptr,
  9304. /* .seq_id = */ batch_all.seq_id ? batch_all.seq_id + cur_token : nullptr,
  9305. /* .logits = */ batch_all.logits ? batch_all.logits + cur_token : nullptr,
  9306. /* .all_pos_0 = */ batch_all.all_pos_0 + (llama_pos) cur_token*batch_all.all_pos_1,
  9307. /* .all_pos_1 = */ batch_all.all_pos_1,
  9308. /* .all_seq_id = */ batch_all.all_seq_id,
  9309. };
  9310. // count the outputs in this u_batch
  9311. {
  9312. int32_t n_outputs_new = 0;
  9313. if (u_batch.logits) {
  9314. for (uint32_t i = 0; i < n_tokens; i++) {
  9315. n_outputs_new += u_batch.logits[i] != 0;
  9316. }
  9317. } else if (n_outputs == n_tokens_all) {
  9318. n_outputs_new = n_tokens;
  9319. } else {
  9320. // keep last output only
  9321. if (cur_token + n_tokens >= n_tokens_all) {
  9322. n_outputs_new = 1;
  9323. }
  9324. }
  9325. // needs to happen before the graph is built
  9326. lctx.n_outputs = n_outputs_new;
  9327. }
  9328. int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
  9329. GGML_ASSERT(n_threads > 0);
  9330. // helpers for smoother batch API transition
  9331. // after deprecating the llama_eval calls, these will be removed
  9332. if (u_batch.pos == nullptr) {
  9333. pos.resize(n_tokens);
  9334. for (uint32_t i = 0; i < n_tokens; i++) {
  9335. pos[i] = u_batch.all_pos_0 + i*u_batch.all_pos_1;
  9336. }
  9337. u_batch.pos = pos.data();
  9338. }
  9339. if (u_batch.seq_id == nullptr) {
  9340. n_seq_id.resize(n_tokens);
  9341. seq_id.resize(n_tokens);
  9342. seq_id_arr.resize(n_tokens);
  9343. for (uint32_t i = 0; i < n_tokens; i++) {
  9344. n_seq_id[i] = 1;
  9345. seq_id[i].resize(1);
  9346. seq_id[i][0] = u_batch.all_seq_id;
  9347. seq_id_arr[i] = seq_id[i].data();
  9348. }
  9349. u_batch.n_seq_id = n_seq_id.data();
  9350. u_batch.seq_id = seq_id_arr.data();
  9351. }
  9352. // non-causal masks do not use the KV cache
  9353. if (hparams.causal_attn) {
  9354. llama_kv_cache_update(&lctx);
  9355. // if we have enough unused cells before the current head ->
  9356. // better to start searching from the beginning of the cache, hoping to fill it
  9357. if (kv_self.head > kv_self.used + 2*n_tokens) {
  9358. kv_self.head = 0;
  9359. }
  9360. if (!llama_kv_cache_find_slot(kv_self, u_batch)) {
  9361. return 1;
  9362. }
  9363. if (!kv_self.recurrent) {
  9364. // a heuristic, to avoid attending the full cache if it is not yet utilized
  9365. // after enough generations, the benefit from this heuristic disappears
  9366. // if we start defragmenting the cache, the benefit from this will be more important
  9367. kv_self.n = std::min(kv_self.size, std::max(32u, GGML_PAD(llama_kv_cache_cell_max(kv_self), 32)));
  9368. //kv_self.n = llama_kv_cache_cell_max(kv_self);
  9369. }
  9370. }
  9371. //printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head);
  9372. ggml_backend_sched_reset(lctx.sched);
  9373. ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);
  9374. ggml_cgraph * gf = llama_build_graph(lctx, u_batch, false);
  9375. // the output is always the last tensor in the graph
  9376. struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
  9377. struct ggml_tensor * embd = gf->nodes[gf->n_nodes - 2];
  9378. if (lctx.n_outputs == 0) {
  9379. // no output
  9380. res = nullptr;
  9381. embd = nullptr;
  9382. } else if (!hparams.causal_attn) {
  9383. res = nullptr; // do not extract logits for embedding models such as BERT
  9384. // token or sequence embeddings
  9385. embd = gf->nodes[gf->n_nodes - 1];
  9386. GGML_ASSERT(strcmp(embd->name, "result_embd") == 0 || strcmp(embd->name, "result_embd_pooled") == 0);
  9387. } else if (cparams.embeddings) {
  9388. // the embeddings could be in the second to last tensor, or any of the previous tensors
  9389. int i_embd = gf->n_nodes - 2;
  9390. for (int i = 3; strcmp(embd->name, "result_norm") != 0; ++i) {
  9391. i_embd = gf->n_nodes - i;
  9392. if (i_embd < 0) { break; }
  9393. embd = gf->nodes[i_embd];
  9394. }
  9395. GGML_ASSERT(i_embd >= 0 && "missing result_norm tensor");
  9396. // TODO: use a per-batch flag to know when to skip logits while keeping embeddings
  9397. if (!cparams.causal_attn) {
  9398. res = nullptr; // do not extract logits when not needed
  9399. // skip computing logits
  9400. // TODO: is this safe?
  9401. gf->n_nodes = i_embd + 1;
  9402. }
  9403. } else {
  9404. embd = nullptr; // do not extract embeddings when not needed
  9405. GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor");
  9406. }
  9407. // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
  9408. // for big prompts, if BLAS is enabled, it is better to use only one thread
  9409. // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
  9410. // TODO: this is mostly important for Apple Silicon where CBLAS is still performing very well
  9411. // we still need some threads to process all non-mul_mat ops, but not too much to avoid interfering
  9412. // with the BLAS calls. need a better solution
  9413. // MoE Special Case: This logic applies when hparams.n_expert == 0, i.e. the model is NOT an MoE model. When an MoE is
  9414. // being processed then Accelerate/BLAS will not be involved, so capping would limit performance.
  9415. if (n_tokens >= 32 && hparams.n_expert == 0 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas()) {
  9416. n_threads = std::min(4, n_threads);
  9417. }
  9418. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  9419. llama_set_inputs(lctx, u_batch);
  9420. llama_graph_compute(lctx, gf, n_threads);
  9421. // update the kv ring buffer
  9422. {
  9423. kv_self.head += n_tokens;
  9424. // Ensure kv cache head points to a valid index.
  9425. if (kv_self.head >= kv_self.size) {
  9426. kv_self.head = 0;
  9427. }
  9428. }
  9429. #ifdef GGML_PERF
  9430. // print timing information per ggml operation (for debugging purposes)
  9431. // requires GGML_PERF to be defined
  9432. ggml_graph_print(gf);
  9433. #endif
  9434. // plot the computation graph in dot format (for debugging purposes)
  9435. //if (n_past%100 == 0) {
  9436. // ggml_graph_dump_dot(gf, NULL, "llama.dot");
  9437. //}
  9438. // extract logits
  9439. if (res) {
  9440. ggml_backend_t backend_res = ggml_backend_sched_get_tensor_backend(lctx.sched, res);
  9441. GGML_ASSERT(backend_res != nullptr);
  9442. GGML_ASSERT(lctx.logits != nullptr);
  9443. float * logits_out = lctx.logits + n_outputs_prev*n_vocab;
  9444. const int32_t n_outputs_new = lctx.n_outputs;
  9445. if (n_outputs_new) {
  9446. GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
  9447. GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_vocab <= (int64_t) lctx.logits_size);
  9448. ggml_backend_tensor_get_async(backend_res, res, logits_out, 0, n_outputs_new*n_vocab*sizeof(float));
  9449. }
  9450. }
  9451. // extract embeddings
  9452. if (embd) {
  9453. ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(lctx.sched, embd);
  9454. GGML_ASSERT(backend_embd != nullptr);
  9455. switch (cparams.pooling_type) {
  9456. case LLAMA_POOLING_TYPE_NONE:
  9457. {
  9458. // extract token embeddings
  9459. GGML_ASSERT(lctx.embd != nullptr);
  9460. float * embd_out = lctx.embd + n_outputs_prev*n_embd;
  9461. const int32_t n_outputs_new = lctx.n_outputs;
  9462. if (n_outputs_new) {
  9463. GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
  9464. GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_embd <= (int64_t) lctx.embd_size);
  9465. ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_outputs_new*n_embd*sizeof(float));
  9466. }
  9467. } break;
  9468. case LLAMA_POOLING_TYPE_CLS:
  9469. case LLAMA_POOLING_TYPE_MEAN:
  9470. {
  9471. GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0);
  9472. // extract sequence embeddings
  9473. auto & embd_seq_out = lctx.embd_seq;
  9474. embd_seq_out.clear();
  9475. for (uint32_t i = 0; i < n_tokens; i++) {
  9476. const llama_seq_id seq_id = u_batch.seq_id[i][0];
  9477. if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
  9478. continue;
  9479. }
  9480. embd_seq_out[seq_id].resize(n_embd);
  9481. ggml_backend_tensor_get_async(backend_embd, embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float));
  9482. }
  9483. } break;
  9484. case LLAMA_POOLING_TYPE_UNSPECIFIED:
  9485. {
  9486. GGML_ASSERT(false && "unknown pooling type");
  9487. } break;
  9488. }
  9489. }
  9490. n_outputs_prev += lctx.n_outputs;
  9491. }
  9492. // set to total number of outputs in the batch, for use in llama_get_logits_ith
  9493. lctx.n_outputs = n_outputs;
  9494. // wait for the computation to finish (automatically done when obtaining the model output)
  9495. //llama_synchronize(&lctx);
  9496. // decide if we need to defrag the kv cache
  9497. if (cparams.causal_attn && cparams.defrag_thold >= 0.0f) {
  9498. const float fragmentation = kv_self.n >= 128 ? 1.0f - float(kv_self.used)/float(kv_self.n) : 0.0f;
  9499. // queue defragmentation for next llama_kv_cache_update
  9500. if (fragmentation > cparams.defrag_thold) {
  9501. //LLAMA_LOG_INFO("fragmentation: %.2f\n", fragmentation);
  9502. llama_kv_cache_defrag(kv_self);
  9503. }
  9504. }
  9505. // Reset state for the next token before backend sync, to allow the CPU activities in the reset to
  9506. // overlap with device computation.
  9507. ggml_backend_sched_reset(lctx.sched);
  9508. return 0;
  9509. }
  9510. // find holes from the beginning of the KV cache and fill them by moving data from the end of the cache
  9511. static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
  9512. auto & kv_self = lctx.kv_self;
  9513. const auto & hparams = lctx.model.hparams;
  9514. const uint32_t n_layer = hparams.n_layer;
  9515. const uint32_t n_kv = llama_kv_cache_cell_max(kv_self);
  9516. const uint32_t n_used = kv_self.used;
  9517. assert(n_used <= n_kv);
  9518. //const int64_t t_start = ggml_time_us();
  9519. // number of cells moved
  9520. uint32_t n_moves = 0;
  9521. // each move requires 6*n_layer tensors (see build_defrag)
  9522. // - source view, destination view, copy operation
  9523. // - x2 for keys and values
  9524. const uint32_t max_moves = LLAMA_MAX_NODES/(6*n_layer);
  9525. // determine which KV cells to move where
  9526. //
  9527. // cell i moves to ids[i]
  9528. //
  9529. // if ids[i] == i || ids[i] == n_kv, then cell i is not moved
  9530. //
  9531. std::vector<uint32_t> ids(n_kv, n_kv);
  9532. for (uint32_t i0 = 0; i0 < n_used; ++i0) {
  9533. const auto & cell0 = kv_self.cells[i0];
  9534. if (!cell0.is_empty()) {
  9535. ids[i0] = i0;
  9536. continue;
  9537. }
  9538. // found a hole - fill it with data from the end of the cache
  9539. uint32_t nh = 1;
  9540. // determine the size of the hole
  9541. while (i0 + nh < n_used && kv_self.cells[i0 + nh].is_empty()) {
  9542. nh++;
  9543. }
  9544. uint32_t nf = 0;
  9545. uint32_t is = n_kv - 1;
  9546. // starting from the end, find nh non-empty cells
  9547. for (; is > i0; --is) {
  9548. const auto & cell1 = kv_self.cells[is];
  9549. if (cell1.is_empty() || ids[is] != n_kv) {
  9550. continue;
  9551. }
  9552. // non-empty cell which is not yet moved
  9553. nf++;
  9554. if (nf == nh) {
  9555. break;
  9556. }
  9557. }
  9558. // this can only happen if `n_used` is not accurate, which would be a bug
  9559. GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh");
  9560. nf = 0;
  9561. uint32_t i1 = is;
  9562. // are we moving a continuous block of memory?
  9563. bool cont = false;
  9564. // should we stop searching for the next move?
  9565. bool stop = false;
  9566. // go back and move the nf cells to the hole
  9567. for (; i1 < n_kv; ++i1) {
  9568. auto & cell1 = kv_self.cells[i1];
  9569. if (cell1.is_empty() || ids[i1] != n_kv) {
  9570. if (n_moves == max_moves) {
  9571. stop = true;
  9572. break;
  9573. }
  9574. cont = false;
  9575. continue;
  9576. }
  9577. // this cell goes to (i0 + nf)
  9578. ids[i1] = i0 + nf;
  9579. // move the cell meta data
  9580. kv_self.cells[i0 + nf] = cell1;
  9581. // clear the old cell and move the head there
  9582. cell1 = llama_kv_cell();
  9583. kv_self.head = n_used;
  9584. if (!cont) {
  9585. n_moves++;
  9586. cont = true;
  9587. }
  9588. nf++;
  9589. if (nf == nh) {
  9590. break;
  9591. }
  9592. }
  9593. if (stop || n_moves == max_moves) {
  9594. break;
  9595. }
  9596. //LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh);
  9597. i0 += nh - 1;
  9598. }
  9599. if (n_moves == 0) {
  9600. return;
  9601. }
  9602. //LLAMA_LOG_INFO("(tmp log) KV defrag cell moves: %u\n", n_moves);
  9603. //LLAMA_LOG_INFO("expected gf nodes: %u\n", 6*n_moves*n_layer);
  9604. #if 0
  9605. // CPU defrag
  9606. //
  9607. // TODO: optimizations are possible:
  9608. // - multiple threads
  9609. // - avoid copying to the host memory when already there
  9610. //
  9611. // likely not worth the effort, as we have ggml_graph based defrag
  9612. //
  9613. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  9614. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  9615. const uint32_t kv_size = kv_self.size;
  9616. std::vector<uint8_t> buf_k;
  9617. std::vector<uint8_t> buf_v;
  9618. for (uint32_t il = 0; il < n_layer; ++il) {
  9619. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  9620. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_size);
  9621. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  9622. const size_t v_size = ggml_row_size (kv_self.v_l[il]->type, n_embd_v_gqa*kv_size);
  9623. buf_k.resize(k_size);
  9624. buf_v.resize(v_size);
  9625. ggml_backend_tensor_get(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  9626. ggml_backend_tensor_get(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  9627. // batch move [i, i+nm) to [id, id+nm)
  9628. // note: cells can move only to a lower index
  9629. for (uint32_t i = 0; i < n_kv; ++i) {
  9630. const uint32_t id = ids[i];
  9631. if (i == id || id == n_kv) {
  9632. continue;
  9633. }
  9634. uint32_t nm = 1;
  9635. while (i + nm < n_kv && ids[i + nm] == id + nm) {
  9636. nm++;
  9637. }
  9638. // move keys
  9639. {
  9640. const int64_t os = i*k_size_row;
  9641. const int64_t od = id*k_size_row;
  9642. memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
  9643. }
  9644. // move values (note: they are transposed)
  9645. {
  9646. const int64_t os = i;
  9647. const int64_t od = id;
  9648. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  9649. memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
  9650. }
  9651. }
  9652. i += nm - 1;
  9653. }
  9654. ggml_backend_tensor_set(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  9655. ggml_backend_tensor_set(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  9656. }
  9657. #else
  9658. // ggml_graph defrag
  9659. ggml_backend_sched_reset(lctx.sched);
  9660. ggml_cgraph * gf = llama_build_graph_defrag(lctx, ids);
  9661. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  9662. #endif
  9663. //const int64_t t_end = ggml_time_us();
  9664. //LLAMA_LOG_INFO("(tmp log) KV defrag time: %.3f ms\n", (t_end - t_start)/1000.0);
  9665. }
  9666. static void llama_kv_cache_update_internal(struct llama_context & lctx) {
  9667. bool need_reserve = false;
  9668. // apply K-shift if needed
  9669. if (lctx.model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE && lctx.kv_self.has_shift) {
  9670. {
  9671. ggml_backend_sched_reset(lctx.sched);
  9672. ggml_cgraph * gf = llama_build_graph_k_shift(lctx);
  9673. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  9674. llama_set_k_shift(lctx);
  9675. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  9676. need_reserve = true;
  9677. }
  9678. {
  9679. auto & kv_self = lctx.kv_self;
  9680. kv_self.has_shift = false;
  9681. for (uint32_t i = 0; i < kv_self.size; ++i) {
  9682. kv_self.cells[i].delta = 0;
  9683. }
  9684. }
  9685. }
  9686. if (lctx.kv_self.recurrent && lctx.kv_self.do_copy) {
  9687. {
  9688. ggml_backend_sched_reset(lctx.sched);
  9689. ggml_cgraph * gf = llama_build_graph_s_copy(lctx);
  9690. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  9691. llama_set_s_copy(lctx);
  9692. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  9693. need_reserve = true;
  9694. }
  9695. {
  9696. auto & kv_self = lctx.kv_self;
  9697. kv_self.do_copy = false;
  9698. for (uint32_t i = 0; i < kv_self.size; ++i) {
  9699. kv_self.cells[i].src = i;
  9700. }
  9701. }
  9702. }
  9703. // defragment the KV cache if needed
  9704. if (lctx.kv_self.do_defrag) {
  9705. llama_kv_cache_defrag_internal(lctx);
  9706. need_reserve = true;
  9707. lctx.kv_self.do_defrag = false;
  9708. }
  9709. // reserve a worst case graph again
  9710. if (need_reserve) {
  9711. // TODO: extract to a function
  9712. // build worst-case graph
  9713. int n_tokens = (int)std::min(lctx.cparams.n_ctx, lctx.cparams.n_ubatch);
  9714. int n_past = lctx.cparams.n_ctx - n_tokens;
  9715. llama_token token = llama_token_bos(&lctx.model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  9716. ggml_cgraph * gf = llama_build_graph(lctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
  9717. // initialize scheduler with the worst-case graph
  9718. ggml_backend_sched_reset(lctx.sched);
  9719. if (!ggml_backend_sched_reserve(lctx.sched, gf)) {
  9720. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  9721. }
  9722. }
  9723. }
  9724. //
  9725. // tokenizer
  9726. //
  9727. static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) {
  9728. return vocab.type;
  9729. }
  9730. static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) {
  9731. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9732. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL;
  9733. }
  9734. static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) {
  9735. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9736. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_UNKNOWN;
  9737. }
  9738. static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) {
  9739. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9740. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_CONTROL;
  9741. }
  9742. static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
  9743. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9744. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_BYTE;
  9745. }
  9746. static bool llama_is_user_defined_token(const llama_vocab& vocab, llama_token id) {
  9747. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9748. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_USER_DEFINED;
  9749. }
  9750. static uint8_t llama_token_to_byte(const llama_vocab& vocab, llama_token id) {
  9751. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  9752. GGML_ASSERT(llama_is_byte_token(vocab, id));
  9753. const auto& token_data = vocab.id_to_token.at(id);
  9754. switch (llama_vocab_get_type(vocab)) {
  9755. case LLAMA_VOCAB_TYPE_SPM: {
  9756. auto buf = token_data.text.substr(3, 2);
  9757. return strtol(buf.c_str(), NULL, 16);
  9758. }
  9759. case LLAMA_VOCAB_TYPE_BPE: {
  9760. GGML_ASSERT(false);
  9761. return unicode_utf8_to_byte(token_data.text);
  9762. }
  9763. case LLAMA_VOCAB_TYPE_WPM: {
  9764. GGML_ASSERT(false);
  9765. }
  9766. default:
  9767. GGML_ASSERT(false);
  9768. }
  9769. }
  9770. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) {
  9771. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  9772. static const char * hex = "0123456789ABCDEF";
  9773. switch (llama_vocab_get_type(vocab)) {
  9774. case LLAMA_VOCAB_TYPE_SPM: {
  9775. const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 };
  9776. auto token = vocab.token_to_id.find(buf);
  9777. if (token != vocab.token_to_id.end()) {
  9778. return (*token).second;
  9779. }
  9780. // Try to fall back to just the byte as a string
  9781. const char buf2[2] = { (char)ch, 0 };
  9782. return vocab.token_to_id.at(buf2);
  9783. }
  9784. case LLAMA_VOCAB_TYPE_WPM:
  9785. case LLAMA_VOCAB_TYPE_BPE: {
  9786. return vocab.token_to_id.at(unicode_byte_to_utf8(ch));
  9787. }
  9788. default:
  9789. GGML_ASSERT(false);
  9790. }
  9791. }
  9792. static void llama_escape_whitespace(std::string & text) {
  9793. replace_all(text, " ", "\xe2\x96\x81");
  9794. }
  9795. static void llama_unescape_whitespace(std::string & word) {
  9796. replace_all(word, "\xe2\x96\x81", " ");
  9797. }
  9798. struct llm_symbol {
  9799. using index = int;
  9800. index prev;
  9801. index next;
  9802. const char * text;
  9803. size_t n;
  9804. };
  9805. static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");
  9806. // SPM tokenizer
  9807. // original implementation:
  9808. // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
  9809. struct llm_bigram_spm {
  9810. struct comparator {
  9811. bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
  9812. return (l.score < r.score) || (l.score == r.score && l.left > r.left);
  9813. }
  9814. };
  9815. using queue_storage = std::vector<llm_bigram_spm>;
  9816. using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
  9817. llm_symbol::index left;
  9818. llm_symbol::index right;
  9819. float score;
  9820. size_t size;
  9821. };
  9822. struct llm_tokenizer_spm {
  9823. llm_tokenizer_spm(const llama_vocab & vocab) : vocab(vocab) {}
  9824. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  9825. // split string into utf8 chars
  9826. int index = 0;
  9827. size_t offs = 0;
  9828. while (offs < text.size()) {
  9829. llm_symbol sym;
  9830. size_t len = utf8_len(text[offs]);
  9831. sym.text = text.c_str() + offs;
  9832. sym.n = std::min(len, text.size() - offs);
  9833. offs += sym.n;
  9834. sym.prev = index - 1;
  9835. sym.next = offs == text.size() ? -1 : index + 1;
  9836. index++;
  9837. symbols.emplace_back(sym);
  9838. }
  9839. // seed the work queue with all possible 2-character tokens.
  9840. for (size_t i = 1; i < symbols.size(); ++i) {
  9841. try_add_bigram(i - 1, i);
  9842. }
  9843. // keep substituting the highest frequency pairs for as long as we can.
  9844. while (!work_queue.empty()) {
  9845. auto bigram = work_queue.top();
  9846. work_queue.pop();
  9847. auto & left_sym = symbols[bigram.left];
  9848. auto & right_sym = symbols[bigram.right];
  9849. // if one of the symbols already got merged, skip it.
  9850. if (left_sym.n == 0 || right_sym.n == 0 ||
  9851. left_sym.n + right_sym.n != bigram.size) {
  9852. continue;
  9853. }
  9854. // merge the right sym into the left one
  9855. left_sym.n += right_sym.n;
  9856. right_sym.n = 0;
  9857. //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
  9858. // remove the right sym from the chain
  9859. left_sym.next = right_sym.next;
  9860. if (right_sym.next >= 0) {
  9861. symbols[right_sym.next].prev = bigram.left;
  9862. }
  9863. // find more substitutions
  9864. try_add_bigram(left_sym.prev, bigram.left);
  9865. try_add_bigram(bigram.left, left_sym.next);
  9866. }
  9867. for (int i = 0; i != -1; i = symbols[i].next) {
  9868. auto & symbol = symbols[i];
  9869. resegment(symbol, output);
  9870. }
  9871. }
  9872. private:
  9873. void resegment(llm_symbol & symbol, std::vector<llama_vocab::id> & output) {
  9874. auto text = std::string(symbol.text, symbol.n);
  9875. auto token = vocab.token_to_id.find(text);
  9876. // Do we need to support is_unused?
  9877. if (token != vocab.token_to_id.end()) {
  9878. output.push_back((*token).second);
  9879. return;
  9880. }
  9881. const auto p = rev_merge.find(text);
  9882. if (p == rev_merge.end()) {
  9883. // output any symbols that did not form tokens as bytes.
  9884. output.reserve(output.size() + symbol.n);
  9885. for (int j = 0; j < (int)symbol.n; ++j) {
  9886. llama_vocab::id token_id = llama_byte_to_token(vocab, symbol.text[j]);
  9887. output.push_back(token_id);
  9888. }
  9889. return;
  9890. }
  9891. resegment(symbols[p->second.first], output);
  9892. resegment(symbols[p->second.second], output);
  9893. }
  9894. void try_add_bigram(int left, int right) {
  9895. if (left == -1 || right == -1) {
  9896. return;
  9897. }
  9898. const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
  9899. auto token = vocab.token_to_id.find(text);
  9900. if (token == vocab.token_to_id.end()) {
  9901. return;
  9902. }
  9903. if (static_cast<size_t>((*token).second) >= vocab.id_to_token.size()) {
  9904. return;
  9905. }
  9906. const auto & tok_data = vocab.id_to_token[(*token).second];
  9907. llm_bigram_spm bigram;
  9908. bigram.left = left;
  9909. bigram.right = right;
  9910. bigram.score = tok_data.score;
  9911. bigram.size = text.size();
  9912. work_queue.push(bigram);
  9913. // Do we need to support is_unused?
  9914. rev_merge[text] = std::make_pair(left, right);
  9915. }
  9916. const llama_vocab & vocab;
  9917. std::vector<llm_symbol> symbols;
  9918. llm_bigram_spm::queue work_queue;
  9919. std::map<std::string, std::pair<int, int>> rev_merge;
  9920. };
  9921. // BPE tokenizer
  9922. // adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License]
  9923. // tried to simplify unicode stuff, so most likely does not work 100% correctly!
  9924. // TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused
  9925. struct llm_bigram_bpe {
  9926. struct comparator {
  9927. bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const {
  9928. return l.rank > r.rank || (l.rank == r.rank && l.left > r.left);
  9929. }
  9930. };
  9931. using queue_storage = std::vector<llm_bigram_bpe>;
  9932. using queue = std::priority_queue<llm_bigram_bpe, queue_storage, comparator>;
  9933. llm_symbol::index left;
  9934. llm_symbol::index right;
  9935. std::string text;
  9936. int rank;
  9937. size_t size;
  9938. };
  9939. struct llm_tokenizer_bpe {
  9940. llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) {}
  9941. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  9942. int final_prev_index = -1;
  9943. auto word_collection = bpe_gpt2_preprocess(text);
  9944. symbols_final.clear();
  9945. for (auto & word : word_collection) {
  9946. work_queue = llm_bigram_bpe::queue();
  9947. symbols.clear();
  9948. int index = 0;
  9949. size_t offset = 0;
  9950. while (offset < word.size()) {
  9951. llm_symbol sym;
  9952. size_t char_len = std::min(word.size() - offset, (size_t) ::utf8_len(word[offset]));
  9953. sym.text = word.c_str() + offset;
  9954. sym.n = char_len;
  9955. offset += sym.n;
  9956. sym.prev = index - 1;
  9957. sym.next = offset == word.size() ? -1 : index + 1;
  9958. index++;
  9959. symbols.emplace_back(sym);
  9960. }
  9961. for (size_t i = 1; i < symbols.size(); ++i) {
  9962. add_new_bigram(i - 1, i);
  9963. }
  9964. // build token(s)
  9965. while (!work_queue.empty()) {
  9966. auto bigram = work_queue.top();
  9967. work_queue.pop();
  9968. auto & left_symbol = symbols[bigram.left];
  9969. auto & right_symbol = symbols[bigram.right];
  9970. if (left_symbol.n == 0 || right_symbol.n == 0) {
  9971. continue;
  9972. }
  9973. std::string left_token = std::string(left_symbol.text, left_symbol.n);
  9974. std::string right_token = std::string(right_symbol.text, right_symbol.n);
  9975. if (left_token + right_token != bigram.text) {
  9976. continue; // Skip this bigram if it's outdated
  9977. }
  9978. // merge the right sym into the left one
  9979. left_symbol.n += right_symbol.n;
  9980. right_symbol.n = 0;
  9981. // remove the right sym from the chain
  9982. left_symbol.next = right_symbol.next;
  9983. if (right_symbol.next >= 0) {
  9984. symbols[right_symbol.next].prev = bigram.left;
  9985. }
  9986. add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol
  9987. add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol
  9988. }
  9989. // add the finished tokens to the final list keeping correct order for next and prev
  9990. for (auto & sym : symbols) {
  9991. if (sym.n > 0) {
  9992. sym.prev = final_prev_index;
  9993. sym.next = -1;
  9994. if (final_prev_index != -1) {
  9995. symbols_final[final_prev_index].next = symbols_final.size();
  9996. }
  9997. symbols_final.emplace_back(sym);
  9998. final_prev_index = symbols_final.size() - 1;
  9999. }
  10000. }
  10001. }
  10002. symbols = symbols_final;
  10003. if (!symbols.empty()) {
  10004. for (int i = 0; i != -1; i = symbols[i].next) {
  10005. auto & symbol = symbols[i];
  10006. if (symbol.n == 0) {
  10007. continue;
  10008. }
  10009. const std::string str = std::string(symbol.text, symbol.n);
  10010. const auto token = vocab.token_to_id.find(str);
  10011. if (token == vocab.token_to_id.end()) {
  10012. for (auto j = str.begin(); j != str.end(); ++j) {
  10013. std::string byte_str(1, *j);
  10014. auto token_multibyte = vocab.token_to_id.find(byte_str);
  10015. if (token_multibyte == vocab.token_to_id.end()) {
  10016. throw std::runtime_error("ERROR: byte not found in vocab");
  10017. }
  10018. output.push_back((*token_multibyte).second);
  10019. }
  10020. } else {
  10021. output.push_back((*token).second);
  10022. }
  10023. }
  10024. }
  10025. }
  10026. private:
  10027. void add_new_bigram(int left, int right) {
  10028. if (left == -1 || right == -1) {
  10029. return;
  10030. }
  10031. std::string left_token = std::string(symbols[left].text, symbols[left].n);
  10032. std::string right_token = std::string(symbols[right].text, symbols[right].n);
  10033. int rank_found = -1;
  10034. rank_found = vocab.find_bpe_rank(left_token, right_token);
  10035. if (rank_found < 0) {
  10036. return;
  10037. }
  10038. llm_bigram_bpe bigram;
  10039. bigram.left = left;
  10040. bigram.right = right;
  10041. bigram.text = left_token + right_token;
  10042. bigram.size = left_token.size() + right_token.size();
  10043. bigram.rank = rank_found;
  10044. work_queue.push(bigram);
  10045. }
  10046. std::vector<std::string> bpe_gpt2_preprocess(const std::string & text) {
  10047. std::vector<std::string> bpe_words;
  10048. std::vector<std::string> bpe_encoded_words;
  10049. std::string token = "";
  10050. // GPT2 system regex: 's|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+
  10051. bool collecting_numeric = false;
  10052. bool collecting_letter = false;
  10053. bool collecting_special = false;
  10054. bool collecting_whitespace_lookahead = false;
  10055. bool collecting = false;
  10056. std::vector<std::string> text_utf;
  10057. text_utf.reserve(text.size());
  10058. bpe_words.reserve(text.size());
  10059. bpe_encoded_words.reserve(text.size());
  10060. const auto cpts = unicode_cpts_from_utf8(text);
  10061. for (size_t i = 0; i < cpts.size(); ++i)
  10062. text_utf.emplace_back(unicode_cpt_to_utf8(cpts[i]));
  10063. for (int i = 0; i < (int)text_utf.size(); i++) {
  10064. const std::string & utf_char = text_utf[i];
  10065. bool split_condition = false;
  10066. int bytes_remain = text_utf.size() - i;
  10067. // forward backward lookups
  10068. const std::string & utf_char_next = (i + 1 < (int)text_utf.size()) ? text_utf[i + 1] : "";
  10069. const std::string & utf_char_next_next = (i + 2 < (int)text_utf.size()) ? text_utf[i + 2] : "";
  10070. // handling contractions
  10071. if (!split_condition && bytes_remain >= 2) {
  10072. // 's|'t|'m|'d
  10073. if (utf_char == "\'" && (utf_char_next == "s" || utf_char_next == "t" || utf_char_next == "m" || utf_char_next == "d")) {
  10074. split_condition = true;
  10075. }
  10076. if (split_condition) {
  10077. if (token.size()) {
  10078. bpe_words.emplace_back(token); // push previous content as token
  10079. }
  10080. token = utf_char + utf_char_next;
  10081. bpe_words.emplace_back(token);
  10082. token = "";
  10083. i++;
  10084. continue;
  10085. }
  10086. }
  10087. if (!split_condition && bytes_remain >= 3) {
  10088. // 're|'ve|'ll
  10089. if (utf_char == "\'" && (
  10090. (utf_char_next == "r" && utf_char_next_next == "e") ||
  10091. (utf_char_next == "v" && utf_char_next_next == "e") ||
  10092. (utf_char_next == "l" && utf_char_next_next == "l"))
  10093. ) {
  10094. split_condition = true;
  10095. }
  10096. if (split_condition) {
  10097. // current token + next token can be defined
  10098. if (token.size()) {
  10099. bpe_words.emplace_back(token); // push previous content as token
  10100. }
  10101. token = utf_char + utf_char_next + utf_char_next_next;
  10102. bpe_words.emplace_back(token); // the contraction
  10103. token = "";
  10104. i += 2;
  10105. continue;
  10106. }
  10107. }
  10108. if (!split_condition && !collecting) {
  10109. if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_LETTER || (!token.size() && utf_char == " " && unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_LETTER)) {
  10110. collecting_letter = true;
  10111. collecting = true;
  10112. }
  10113. else if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_DIGIT || (!token.size() && utf_char == " " && unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_DIGIT)) {
  10114. collecting_numeric = true;
  10115. collecting = true;
  10116. }
  10117. else if (
  10118. ((unicode_cpt_type(utf_char) != CODEPOINT_TYPE_LETTER && unicode_cpt_type(utf_char) != CODEPOINT_TYPE_DIGIT) && (unicode_cpt_type(utf_char) != CODEPOINT_TYPE_WHITESPACE)) ||
  10119. (!token.size() && utf_char == " " && unicode_cpt_type(utf_char_next) != CODEPOINT_TYPE_LETTER && unicode_cpt_type(utf_char_next) != CODEPOINT_TYPE_DIGIT && unicode_cpt_type(utf_char_next) != CODEPOINT_TYPE_WHITESPACE)
  10120. ) {
  10121. collecting_special = true;
  10122. collecting = true;
  10123. }
  10124. else if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_WHITESPACE && unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_WHITESPACE) {
  10125. collecting_whitespace_lookahead = true;
  10126. collecting = true;
  10127. }
  10128. else if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_WHITESPACE) {
  10129. split_condition = true;
  10130. }
  10131. }
  10132. else if (!split_condition && collecting) {
  10133. if (collecting_letter && unicode_cpt_type(utf_char) != CODEPOINT_TYPE_LETTER) {
  10134. split_condition = true;
  10135. }
  10136. else if (collecting_numeric && unicode_cpt_type(utf_char) != CODEPOINT_TYPE_DIGIT) {
  10137. split_condition = true;
  10138. }
  10139. else if (collecting_special && (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_LETTER || unicode_cpt_type(utf_char) == CODEPOINT_TYPE_DIGIT || unicode_cpt_type(utf_char) == CODEPOINT_TYPE_WHITESPACE)) {
  10140. split_condition = true;
  10141. }
  10142. else if (collecting_whitespace_lookahead && (unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_LETTER || unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_DIGIT)) {
  10143. split_condition = true;
  10144. }
  10145. }
  10146. if (utf_char_next == "") {
  10147. split_condition = true; // final
  10148. token += utf_char;
  10149. }
  10150. if (split_condition) {
  10151. if (token.size()) {
  10152. bpe_words.emplace_back(token);
  10153. }
  10154. token = utf_char;
  10155. collecting = false;
  10156. collecting_letter = false;
  10157. collecting_numeric = false;
  10158. collecting_special = false;
  10159. collecting_whitespace_lookahead = false;
  10160. }
  10161. else {
  10162. token += utf_char;
  10163. }
  10164. }
  10165. for (std::string & word : bpe_words) {
  10166. std::string encoded_token = "";
  10167. for (char & c : word) {
  10168. encoded_token += unicode_byte_to_utf8(c);
  10169. }
  10170. bpe_encoded_words.emplace_back(encoded_token);
  10171. }
  10172. return bpe_encoded_words;
  10173. }
  10174. const llama_vocab & vocab;
  10175. std::vector<llm_symbol> symbols;
  10176. std::vector<llm_symbol> symbols_final;
  10177. llm_bigram_bpe::queue work_queue;
  10178. };
  10179. struct llm_tokenizer_wpm {
  10180. llm_tokenizer_wpm(const llama_vocab & vocab): vocab(vocab) {}
  10181. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  10182. auto * token_map = &vocab.token_to_id;
  10183. // normalize and split by whitespace
  10184. std::vector<std::string> words = preprocess(text);
  10185. // bos token prepended already
  10186. // find the longest tokens that form the words
  10187. for (const std::string &word : words) {
  10188. // skip empty words
  10189. if (word.size() == 0) {
  10190. continue;
  10191. }
  10192. // prepend phantom space
  10193. std::string word1 = "\xe2\x96\x81" + word;
  10194. int n = word1.size();
  10195. // we're at the start of a new word
  10196. int i = 0;
  10197. bool match_any = false;
  10198. // move through character position in word
  10199. while (i < n) {
  10200. // loop through possible match length
  10201. bool match = false;
  10202. for (int j = n; j > i; j--) {
  10203. auto it = token_map->find(word1.substr(i, j - i));
  10204. if (it != token_map->end()) {
  10205. output.push_back(it->second);
  10206. match = true;
  10207. match_any = true;
  10208. i = j;
  10209. break;
  10210. }
  10211. }
  10212. // must be an unknown character
  10213. if (!match) {
  10214. i++;
  10215. }
  10216. }
  10217. // we didn't find any matches for this word
  10218. if (!match_any) {
  10219. output.push_back(vocab.special_unk_id);
  10220. }
  10221. }
  10222. }
  10223. std::vector<std::string> preprocess(const std::string & text) {
  10224. std::vector<uint32_t> cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text));
  10225. // strip accents, strip control, uniformize whitespace,
  10226. // to lowercase, pad chinese characters, pad punctuation
  10227. std::string new_str = "";
  10228. for (uint32_t code : cpts_nfd) {
  10229. int type = unicode_cpt_type(code);
  10230. if (type == CODEPOINT_TYPE_ACCENT_MARK || type == CODEPOINT_TYPE_CONTROL) {
  10231. continue;
  10232. }
  10233. code = unicode_tolower(code);
  10234. if (type == CODEPOINT_TYPE_WHITESPACE) {
  10235. code = ' ';
  10236. }
  10237. std::string s = unicode_cpt_to_utf8(code);
  10238. if (type == CODEPOINT_TYPE_PUNCTUATION || is_ascii_punct(code) || is_chinese_char(code)) {
  10239. new_str += " ";
  10240. new_str += s;
  10241. new_str += " ";
  10242. } else {
  10243. new_str += s;
  10244. }
  10245. }
  10246. // split by whitespace
  10247. uint64_t l = 0;
  10248. uint64_t r = 0;
  10249. std::vector<std::string> words;
  10250. while (r < new_str.size()) {
  10251. // if is whitespace
  10252. if (isspace(new_str[r], std::locale::classic())) {
  10253. if (r > l) words.push_back(new_str.substr(l, (r - l)));
  10254. l = r + 1;
  10255. r = l;
  10256. } else {
  10257. r += 1;
  10258. }
  10259. }
  10260. if (r > l) {
  10261. words.push_back(new_str.substr(l, (r - l)));
  10262. }
  10263. return words;
  10264. }
  10265. bool is_ascii_punct(uint32_t code) {
  10266. if (code > 0xFF) {
  10267. return false;
  10268. }
  10269. auto c = char(static_cast<unsigned char>(code));
  10270. return ispunct(c, std::locale::classic());
  10271. }
  10272. bool is_chinese_char(uint32_t cpt) {
  10273. if ((cpt >= 0x4E00 && cpt <= 0x9FFF) ||
  10274. (cpt >= 0x3400 && cpt <= 0x4DBF) ||
  10275. (cpt >= 0x20000 && cpt <= 0x2A6DF) ||
  10276. (cpt >= 0x2A700 && cpt <= 0x2B73F) ||
  10277. (cpt >= 0x2B740 && cpt <= 0x2B81F) ||
  10278. (cpt >= 0x2B920 && cpt <= 0x2CEAF) || // this should be 0x2B820 but in hf rust code it is 0x2B920
  10279. (cpt >= 0xF900 && cpt <= 0xFAFF) ||
  10280. (cpt >= 0x2F800 && cpt <= 0x2FA1F) ||
  10281. (cpt >= 0x3000 && cpt <= 0x303F) ||
  10282. (cpt >= 0xFF00 && cpt <= 0xFFEF)) {
  10283. return true; // NOLINT
  10284. }
  10285. return false;
  10286. }
  10287. const llama_vocab & vocab;
  10288. };
  10289. typedef enum FRAGMENT_BUFFER_VARIANT_TYPE {
  10290. FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN,
  10291. FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT
  10292. } FRAGMENT_BUFFER_VARIANT_TYPE;
  10293. struct fragment_buffer_variant {
  10294. fragment_buffer_variant(llama_vocab::id _token)
  10295. :
  10296. type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN),
  10297. token(_token),
  10298. raw_text(_dummy),
  10299. offset(0),
  10300. length(0) {}
  10301. fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length)
  10302. :
  10303. type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT),
  10304. token((llama_vocab::id) - 1),
  10305. raw_text(_raw_text),
  10306. offset(_offset),
  10307. length(_length){
  10308. GGML_ASSERT(_offset >= 0);
  10309. GGML_ASSERT(_length >= 1);
  10310. GGML_ASSERT(offset + length <= raw_text.length());
  10311. }
  10312. const FRAGMENT_BUFFER_VARIANT_TYPE type;
  10313. const llama_vocab::id token;
  10314. const std::string _dummy;
  10315. const std::string & raw_text;
  10316. const uint64_t offset;
  10317. const uint64_t length;
  10318. };
  10319. // #define PRETOKENIZERDEBUG
  10320. static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<fragment_buffer_variant> & buffer) {
  10321. // for each special token
  10322. for (const auto & st: vocab.special_tokens_cache) {
  10323. const auto & special_token = st.first;
  10324. const auto & special_id = st.second;
  10325. // for each text fragment
  10326. std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin();
  10327. while (it != buffer.end()) {
  10328. auto & fragment = (*it);
  10329. // if a fragment is text ( not yet processed )
  10330. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10331. auto * raw_text = &(fragment.raw_text);
  10332. auto raw_text_base_offset = fragment.offset;
  10333. auto raw_text_base_length = fragment.length;
  10334. // loop over the text
  10335. while (true) {
  10336. // find the first occurrence of a given special token in this fragment
  10337. // passing offset argument only limit the "search area" but match coordinates
  10338. // are still relative to the source full raw_text
  10339. auto match = raw_text->find(special_token, raw_text_base_offset);
  10340. // no occurrences found, stop processing this fragment for a given special token
  10341. if (match == std::string::npos) break;
  10342. // check if match is within bounds of offset <-> length
  10343. if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break;
  10344. #ifdef PRETOKENIZERDEBUG
  10345. LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  10346. #endif
  10347. auto source = std::distance(buffer.begin(), it);
  10348. // if match is further than base offset
  10349. // then we have some text to the left of it
  10350. if (match > raw_text_base_offset) {
  10351. // left
  10352. const int64_t left_reminder_offset = raw_text_base_offset + 0;
  10353. const int64_t left_reminder_length = match - raw_text_base_offset;
  10354. buffer.emplace_after(it, (*raw_text), left_reminder_offset, left_reminder_length);
  10355. #ifdef PRETOKENIZERDEBUG
  10356. LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
  10357. #endif
  10358. it++;
  10359. }
  10360. // special token
  10361. buffer.emplace_after(it, special_id);
  10362. it++;
  10363. // right
  10364. if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) {
  10365. const int64_t right_reminder_offset = match + special_token.length();
  10366. const int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length());
  10367. buffer.emplace_after(it, (*raw_text), right_reminder_offset, right_reminder_length);
  10368. #ifdef PRETOKENIZERDEBUG
  10369. LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
  10370. #endif
  10371. it++;
  10372. if (source == 0) {
  10373. buffer.erase_after(buffer.before_begin());
  10374. } else {
  10375. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  10376. }
  10377. // repeat for the right side
  10378. raw_text_base_offset = right_reminder_offset;
  10379. raw_text_base_length = right_reminder_length;
  10380. #ifdef PRETOKENIZERDEBUG
  10381. LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  10382. #endif
  10383. } else {
  10384. if (source == 0) {
  10385. buffer.erase_after(buffer.before_begin());
  10386. } else {
  10387. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  10388. }
  10389. break;
  10390. }
  10391. }
  10392. }
  10393. it++;
  10394. }
  10395. }
  10396. }
  10397. static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special) {
  10398. std::vector<llama_vocab::id> output;
  10399. std::forward_list<fragment_buffer_variant> fragment_buffer;
  10400. if (!raw_text.empty()) {
  10401. fragment_buffer.emplace_front(raw_text, 0, raw_text.length());
  10402. if (parse_special) tokenizer_st_partition(vocab, fragment_buffer);
  10403. }
  10404. switch (vocab.type) {
  10405. case LLAMA_VOCAB_TYPE_SPM:
  10406. {
  10407. // OG tokenizer behavior:
  10408. //
  10409. // tokenizer.encode('', add_special_tokens=True) returns [1]
  10410. // tokenizer.encode('', add_special_tokens=False) returns []
  10411. if (add_special && vocab.special_add_bos != 0) {
  10412. GGML_ASSERT(vocab.special_bos_id != -1);
  10413. output.push_back(vocab.special_bos_id);
  10414. }
  10415. for (const auto & fragment : fragment_buffer) {
  10416. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10417. // without adding this leading whitespace, we do not get the same results as the original tokenizer
  10418. // TODO: It's likely possible to get rid of this string copy entirely
  10419. // by modifying llm_tokenizer_x to operate with string offsets like pre-tokenizer
  10420. // and passing 'add space prefix' as bool argument
  10421. //
  10422. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  10423. if (&fragment == &fragment_buffer.front()) {
  10424. if (vocab.add_space_prefix) {
  10425. raw_text = " " + raw_text; // prefix with space if the first token is not special
  10426. }
  10427. }
  10428. #ifdef PRETOKENIZERDEBUG
  10429. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  10430. #endif
  10431. llm_tokenizer_spm tokenizer(vocab);
  10432. llama_escape_whitespace(raw_text);
  10433. tokenizer.tokenize(raw_text, output);
  10434. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  10435. output.push_back(fragment.token);
  10436. }
  10437. }
  10438. if (add_special && vocab.special_add_eos == 1) {
  10439. GGML_ASSERT(vocab.special_eos_id != -1);
  10440. output.push_back(vocab.special_eos_id);
  10441. }
  10442. } break;
  10443. case LLAMA_VOCAB_TYPE_BPE:
  10444. {
  10445. if (add_special && vocab.special_add_bos == 1) {
  10446. GGML_ASSERT(vocab.special_bos_id != -1);
  10447. output.push_back(vocab.special_bos_id);
  10448. }
  10449. for (const auto & fragment : fragment_buffer) {
  10450. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10451. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  10452. #ifdef PRETOKENIZERDEBUG
  10453. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  10454. #endif
  10455. llm_tokenizer_bpe tokenizer(vocab);
  10456. tokenizer.tokenize(raw_text, output);
  10457. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  10458. output.push_back(fragment.token);
  10459. }
  10460. }
  10461. GGML_ASSERT(vocab.special_add_eos != 1);
  10462. } break;
  10463. case LLAMA_VOCAB_TYPE_WPM:
  10464. {
  10465. if (add_special) {
  10466. GGML_ASSERT(vocab.special_cls_id != -1);
  10467. output.push_back(vocab.special_cls_id);
  10468. }
  10469. for (const auto & fragment : fragment_buffer) {
  10470. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10471. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  10472. #ifdef PRETOKENIZERDEBUG
  10473. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  10474. #endif
  10475. llm_tokenizer_wpm tokenizer(vocab);
  10476. tokenizer.tokenize(raw_text, output);
  10477. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  10478. output.push_back(fragment.token);
  10479. }
  10480. }
  10481. if (add_special) {
  10482. GGML_ASSERT(vocab.special_sep_id != -1);
  10483. output.push_back(vocab.special_sep_id);
  10484. }
  10485. } break;
  10486. case LLAMA_VOCAB_TYPE_NONE:
  10487. GGML_ASSERT(false);
  10488. }
  10489. return output;
  10490. }
  10491. //
  10492. // grammar - internal
  10493. //
  10494. // Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as
  10495. // pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`.
  10496. std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
  10497. const std::string & src,
  10498. llama_partial_utf8 partial_start) {
  10499. static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 };
  10500. const char * pos = src.c_str();
  10501. std::vector<uint32_t> code_points;
  10502. // common english strings have the same number of codepoints and bytes. `+ 1` for the terminating 0.
  10503. code_points.reserve(src.size() + 1);
  10504. uint32_t value = partial_start.value;
  10505. int n_remain = partial_start.n_remain;
  10506. // continue previous decode, if applicable
  10507. while (*pos != 0 && n_remain > 0) {
  10508. uint8_t next_byte = static_cast<uint8_t>(*pos);
  10509. if ((next_byte >> 6) != 2) {
  10510. // invalid sequence, abort
  10511. code_points.push_back(0);
  10512. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, -1 });
  10513. }
  10514. value = (value << 6) + (next_byte & 0x3F);
  10515. ++pos;
  10516. --n_remain;
  10517. }
  10518. if (partial_start.n_remain > 0 && n_remain == 0) {
  10519. code_points.push_back(value);
  10520. }
  10521. // decode any subsequent utf-8 sequences, which may end in an incomplete one
  10522. while (*pos != 0) {
  10523. uint8_t first_byte = static_cast<uint8_t>(*pos);
  10524. uint8_t highbits = first_byte >> 4;
  10525. n_remain = lookup[highbits] - 1;
  10526. if (n_remain < 0) {
  10527. // invalid sequence, abort
  10528. code_points.clear();
  10529. code_points.push_back(0);
  10530. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, n_remain });
  10531. }
  10532. uint8_t mask = (1 << (7 - n_remain)) - 1;
  10533. value = first_byte & mask;
  10534. ++pos;
  10535. while (*pos != 0 && n_remain > 0) {
  10536. value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
  10537. ++pos;
  10538. --n_remain;
  10539. }
  10540. if (n_remain == 0) {
  10541. code_points.push_back(value);
  10542. }
  10543. }
  10544. code_points.push_back(0);
  10545. return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain });
  10546. }
  10547. // returns true iff pos points to the end of one of the definitions of a rule
  10548. static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) {
  10549. switch (pos->type) {
  10550. case LLAMA_GRETYPE_END: return true; // NOLINT
  10551. case LLAMA_GRETYPE_ALT: return true; // NOLINT
  10552. default: return false;
  10553. }
  10554. }
  10555. // returns true iff chr satisfies the char range at pos (regular or inverse range)
  10556. // asserts that pos is pointing to a char range element
  10557. static std::pair<bool, const llama_grammar_element *> llama_grammar_match_char(
  10558. const llama_grammar_element * pos,
  10559. const uint32_t chr) {
  10560. bool found = false;
  10561. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  10562. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); // NOLINT
  10563. do {
  10564. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  10565. // inclusive range, e.g. [a-z]
  10566. found = found || (pos->value <= chr && chr <= pos[1].value);
  10567. pos += 2;
  10568. } else {
  10569. // exact char match, e.g. [a] or "a"
  10570. found = found || pos->value == chr;
  10571. pos += 1;
  10572. }
  10573. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  10574. return std::make_pair(found == is_positive_char, pos);
  10575. }
  10576. // returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char
  10577. // range at pos (regular or inverse range)
  10578. // asserts that pos is pointing to a char range element
  10579. static bool llama_grammar_match_partial_char(
  10580. const llama_grammar_element * pos,
  10581. const llama_partial_utf8 partial_utf8) {
  10582. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  10583. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT);
  10584. uint32_t partial_value = partial_utf8.value;
  10585. int n_remain = partial_utf8.n_remain;
  10586. // invalid sequence or 7-bit char split across 2 bytes (overlong)
  10587. if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) {
  10588. return false;
  10589. }
  10590. // range of possible code points this partial UTF-8 sequence could complete to
  10591. uint32_t low = partial_value << (n_remain * 6);
  10592. uint32_t high = low | ((1 << (n_remain * 6)) - 1);
  10593. if (low == 0) {
  10594. if (n_remain == 2) {
  10595. low = 1 << 11;
  10596. } else if (n_remain == 3) {
  10597. low = 1 << 16;
  10598. }
  10599. }
  10600. do {
  10601. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  10602. // inclusive range, e.g. [a-z]
  10603. if (pos->value <= high && low <= pos[1].value) {
  10604. return is_positive_char;
  10605. }
  10606. pos += 2;
  10607. } else {
  10608. // exact char match, e.g. [a] or "a"
  10609. if (low <= pos->value && pos->value <= high) {
  10610. return is_positive_char;
  10611. }
  10612. pos += 1;
  10613. }
  10614. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  10615. return !is_positive_char;
  10616. }
  10617. // transforms a grammar pushdown stack into N possible stacks, all ending
  10618. // at a character range (terminal element)
  10619. static void llama_grammar_advance_stack(
  10620. const std::vector<std::vector<llama_grammar_element>> & rules,
  10621. const std::vector<const llama_grammar_element *> & stack,
  10622. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  10623. if (stack.empty()) {
  10624. if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
  10625. new_stacks.emplace_back(stack);
  10626. }
  10627. return;
  10628. }
  10629. const llama_grammar_element * pos = stack.back();
  10630. switch (pos->type) {
  10631. case LLAMA_GRETYPE_RULE_REF: {
  10632. const size_t rule_id = static_cast<size_t>(pos->value);
  10633. const llama_grammar_element * subpos = rules[rule_id].data();
  10634. do {
  10635. // init new stack without the top (pos)
  10636. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  10637. if (!llama_grammar_is_end_of_sequence(pos + 1)) {
  10638. // if this rule ref is followed by another element, add that to stack
  10639. new_stack.push_back(pos + 1);
  10640. }
  10641. if (!llama_grammar_is_end_of_sequence(subpos)) {
  10642. // if alternate is nonempty, add to stack
  10643. new_stack.push_back(subpos);
  10644. }
  10645. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  10646. while (!llama_grammar_is_end_of_sequence(subpos)) {
  10647. // scan to end of alternate def
  10648. subpos++;
  10649. }
  10650. if (subpos->type == LLAMA_GRETYPE_ALT) {
  10651. // there's another alternate def of this rule to process
  10652. subpos++;
  10653. } else {
  10654. break;
  10655. }
  10656. } while (true);
  10657. break;
  10658. }
  10659. case LLAMA_GRETYPE_CHAR:
  10660. case LLAMA_GRETYPE_CHAR_NOT:
  10661. if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
  10662. // only add the stack if it's not a duplicate of one we already have
  10663. new_stacks.emplace_back(stack);
  10664. }
  10665. break;
  10666. default:
  10667. // end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range
  10668. // (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on
  10669. // those
  10670. GGML_ASSERT(false);
  10671. }
  10672. }
  10673. // takes a set of possible pushdown stacks on a grammar, which are required to
  10674. // be positioned at a character range (see `llama_grammar_advance_stack`), and
  10675. // produces the N possible stacks if the given char is accepted at those
  10676. // positions
  10677. void llama_grammar_accept(
  10678. const std::vector<std::vector<llama_grammar_element>> & rules,
  10679. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  10680. const uint32_t chr,
  10681. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  10682. new_stacks.clear();
  10683. for (const auto & stack : stacks) {
  10684. if (stack.empty()) {
  10685. continue;
  10686. }
  10687. auto match = llama_grammar_match_char(stack.back(), chr);
  10688. if (match.first) {
  10689. const llama_grammar_element * pos = match.second;
  10690. // update top of stack to next element, if any
  10691. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  10692. if (!llama_grammar_is_end_of_sequence(pos)) {
  10693. new_stack.push_back(pos);
  10694. }
  10695. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  10696. }
  10697. }
  10698. }
  10699. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  10700. const std::vector<std::vector<llama_grammar_element>> & rules,
  10701. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  10702. const std::vector<llama_grammar_candidate> & candidates);
  10703. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
  10704. const std::vector<std::vector<llama_grammar_element>> & rules,
  10705. const std::vector<const llama_grammar_element *> & stack,
  10706. const std::vector<llama_grammar_candidate> & candidates) {
  10707. std::vector<llama_grammar_candidate> rejects;
  10708. rejects.reserve(candidates.size());
  10709. if (stack.empty()) {
  10710. for (const auto & tok : candidates) {
  10711. if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) {
  10712. rejects.push_back(tok);
  10713. }
  10714. }
  10715. return rejects;
  10716. }
  10717. const llama_grammar_element * stack_pos = stack.back();
  10718. std::vector<llama_grammar_candidate> next_candidates;
  10719. next_candidates.reserve(candidates.size());
  10720. for (const auto & tok : candidates) {
  10721. if (*tok.code_points == 0) {
  10722. // reached end of full codepoints in token, reject iff it ended in a partial sequence
  10723. // that cannot satisfy this position in grammar
  10724. if (tok.partial_utf8.n_remain != 0 &&
  10725. !llama_grammar_match_partial_char(stack_pos, tok.partial_utf8)) {
  10726. rejects.push_back(tok);
  10727. }
  10728. } else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) {
  10729. next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 });
  10730. } else {
  10731. rejects.push_back(tok);
  10732. }
  10733. }
  10734. const auto * stack_pos_after = llama_grammar_match_char(stack_pos, 0).second;
  10735. // update top of stack to next element, if any
  10736. std::vector<const llama_grammar_element *> stack_after(stack.begin(), stack.end() - 1);
  10737. if (!llama_grammar_is_end_of_sequence(stack_pos_after)) {
  10738. stack_after.push_back(stack_pos_after);
  10739. }
  10740. std::vector<std::vector<const llama_grammar_element *>> next_stacks;
  10741. llama_grammar_advance_stack(rules, stack_after, next_stacks);
  10742. auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
  10743. for (const auto & tok : next_rejects) {
  10744. rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 });
  10745. }
  10746. return rejects;
  10747. }
  10748. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  10749. const std::vector<std::vector<llama_grammar_element>> & rules,
  10750. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  10751. const std::vector<llama_grammar_candidate> & candidates) {
  10752. GGML_ASSERT(!stacks.empty()); // REVIEW
  10753. if (candidates.empty()) {
  10754. return std::vector<llama_grammar_candidate>();
  10755. }
  10756. auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates);
  10757. for (size_t i = 1, size = stacks.size(); i < size; ++i) {
  10758. rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects);
  10759. }
  10760. return rejects;
  10761. }
  10762. //
  10763. // grammar - external
  10764. //
  10765. struct llama_grammar * llama_grammar_init(
  10766. const llama_grammar_element ** rules,
  10767. size_t n_rules,
  10768. size_t start_rule_index) {
  10769. const llama_grammar_element * pos;
  10770. // copy rule definitions into vectors
  10771. std::vector<std::vector<llama_grammar_element>> vec_rules(n_rules);
  10772. for (size_t i = 0; i < n_rules; i++) {
  10773. for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) {
  10774. vec_rules[i].push_back(*pos);
  10775. }
  10776. vec_rules[i].push_back({LLAMA_GRETYPE_END, 0});
  10777. }
  10778. // loop over alternates of start rule to build initial stacks
  10779. std::vector<std::vector<const llama_grammar_element *>> stacks;
  10780. pos = vec_rules[start_rule_index].data();
  10781. do {
  10782. std::vector<const llama_grammar_element *> stack;
  10783. if (!llama_grammar_is_end_of_sequence(pos)) {
  10784. // if alternate is nonempty, add to stack
  10785. stack.push_back(pos);
  10786. }
  10787. llama_grammar_advance_stack(vec_rules, stack, stacks);
  10788. while (!llama_grammar_is_end_of_sequence(pos)) {
  10789. // scan to end of alternate def
  10790. pos++;
  10791. }
  10792. if (pos->type == LLAMA_GRETYPE_ALT) {
  10793. // there's another alternate def of this rule to process
  10794. pos++;
  10795. } else {
  10796. break;
  10797. }
  10798. } while (true);
  10799. return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} };
  10800. }
  10801. void llama_grammar_free(struct llama_grammar * grammar) {
  10802. delete grammar;
  10803. }
  10804. struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) {
  10805. llama_grammar * result = new llama_grammar{ grammar->rules, grammar->stacks, grammar->partial_utf8 };
  10806. // redirect elements in stacks to point to new rules
  10807. for (size_t is = 0; is < result->stacks.size(); is++) {
  10808. for (size_t ie = 0; ie < result->stacks[is].size(); ie++) {
  10809. for (size_t ir0 = 0; ir0 < grammar->rules.size(); ir0++) {
  10810. for (size_t ir1 = 0; ir1 < grammar->rules[ir0].size(); ir1++) {
  10811. if (grammar->stacks[is][ie] == &grammar->rules[ir0][ir1]) {
  10812. result->stacks[is][ie] = &result->rules[ir0][ir1];
  10813. }
  10814. }
  10815. }
  10816. }
  10817. }
  10818. return result;
  10819. }
  10820. //
  10821. // sampling
  10822. //
  10823. void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) {
  10824. if (seed == LLAMA_DEFAULT_SEED) {
  10825. seed = time(NULL);
  10826. }
  10827. ctx->rng.seed(seed);
  10828. }
  10829. void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
  10830. GGML_ASSERT(candidates->size > 0);
  10831. const int64_t t_start_sample_us = ggml_time_us();
  10832. // Sort the logits in descending order
  10833. if (!candidates->sorted) {
  10834. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  10835. return a.logit > b.logit;
  10836. });
  10837. candidates->sorted = true;
  10838. }
  10839. float max_l = candidates->data[0].logit;
  10840. float cum_sum = 0.0f;
  10841. for (size_t i = 0; i < candidates->size; ++i) {
  10842. float p = expf(candidates->data[i].logit - max_l);
  10843. candidates->data[i].p = p;
  10844. cum_sum += p;
  10845. }
  10846. for (size_t i = 0; i < candidates->size; ++i) {
  10847. candidates->data[i].p /= cum_sum;
  10848. }
  10849. if (ctx) {
  10850. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10851. }
  10852. }
  10853. void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int32_t k, size_t min_keep) {
  10854. // TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast
  10855. // if (k >= (int32_t)candidates->size) {
  10856. // return;
  10857. // }
  10858. const int64_t t_start_sample_us = ggml_time_us();
  10859. if (k <= 0) {
  10860. k = candidates->size;
  10861. }
  10862. k = std::max(k, (int) min_keep);
  10863. k = std::min(k, (int) candidates->size);
  10864. // Sort scores in descending order
  10865. if (!candidates->sorted) {
  10866. auto comp = [](const llama_token_data & a, const llama_token_data & b) {
  10867. return a.logit > b.logit;
  10868. };
  10869. if (k <= 128) {
  10870. std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
  10871. } else {
  10872. constexpr int nbuckets = 128;
  10873. constexpr float bucket_low = -10.0f;
  10874. constexpr float bucket_high = 10.0f;
  10875. constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low);
  10876. constexpr float bucker_inter = -bucket_low * bucket_scale;
  10877. std::vector<int> bucket_idx(candidates->size);
  10878. std::vector<int> histo(nbuckets, 0);
  10879. for (int i = 0; i < (int)candidates->size; ++i) {
  10880. const float val = candidates->data[i].logit;
  10881. int ib = int(bucket_scale * val + bucker_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
  10882. ib = std::max(0, std::min(nbuckets-1, ib));
  10883. bucket_idx[i] = ib;
  10884. ++histo[ib];
  10885. }
  10886. int nhave = 0;
  10887. int ib = nbuckets - 1;
  10888. for ( ; ib >= 0; --ib) {
  10889. nhave += histo[ib];
  10890. if (nhave >= k) break;
  10891. }
  10892. std::vector<llama_token_data> tmp_tokens(nhave);
  10893. auto ptr = tmp_tokens.data();
  10894. std::vector<llama_token_data*> bucket_ptrs;
  10895. bucket_ptrs.reserve(nbuckets - ib);
  10896. for (int j = nbuckets - 1; j >= ib; --j) {
  10897. bucket_ptrs.push_back(ptr);
  10898. ptr += histo[j];
  10899. }
  10900. for (int i = 0; i < (int)candidates->size; ++i) {
  10901. int j = bucket_idx[i];
  10902. if (j >= ib) {
  10903. *bucket_ptrs[nbuckets-1-j]++ = candidates->data[i];
  10904. }
  10905. }
  10906. ptr = tmp_tokens.data();
  10907. int ndone = 0;
  10908. for (int j = nbuckets-1; j > ib; --j) {
  10909. std::sort(ptr, ptr + histo[j], comp);
  10910. ptr += histo[j];
  10911. ndone += histo[j];
  10912. }
  10913. std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp);
  10914. std::memcpy(candidates->data, tmp_tokens.data(), k*sizeof(llama_token_data));
  10915. }
  10916. candidates->sorted = true;
  10917. }
  10918. candidates->size = k;
  10919. if (ctx) {
  10920. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10921. }
  10922. }
  10923. void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  10924. if (p >= 1.0f) {
  10925. return;
  10926. }
  10927. llama_sample_softmax(ctx, candidates);
  10928. const int64_t t_start_sample_us = ggml_time_us();
  10929. // Compute the cumulative probabilities
  10930. float cum_sum = 0.0f;
  10931. size_t last_idx = candidates->size;
  10932. for (size_t i = 0; i < candidates->size; ++i) {
  10933. cum_sum += candidates->data[i].p;
  10934. // Check if the running sum is at least p or if we have kept at least min_keep tokens
  10935. // we set the last index to i+1 to indicate that the current iterate should be included in the set
  10936. if (cum_sum >= p && i + 1 >= min_keep) {
  10937. last_idx = i + 1;
  10938. break;
  10939. }
  10940. }
  10941. // Resize the output vector to keep only the top-p tokens
  10942. candidates->size = last_idx;
  10943. if (ctx) {
  10944. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10945. }
  10946. }
  10947. void llama_sample_min_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  10948. if (p <= 0.0f || !candidates->size) {
  10949. return;
  10950. }
  10951. const int64_t t_start_sample_us = ggml_time_us();
  10952. bool min_p_applied = false;
  10953. // if the candidates aren't sorted, try the unsorted implementation first
  10954. if (!candidates->sorted) {
  10955. std::vector<llama_token_data> filtered_tokens;
  10956. float max_logit = -FLT_MAX;
  10957. for (size_t i = 0; i < candidates->size; ++i) {
  10958. max_logit = std::max(max_logit, candidates->data[i].logit);
  10959. }
  10960. const float min_logit = max_logit + logf(p); // min logit for p_i >= p * p_max
  10961. for (size_t i = 0; i < candidates->size; ++i) {
  10962. if (candidates->data[i].logit >= min_logit) {
  10963. filtered_tokens.push_back(candidates->data[i]);
  10964. }
  10965. }
  10966. // if we have enough values the operation was a success
  10967. if (filtered_tokens.size() >= min_keep) {
  10968. memcpy(candidates->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data));
  10969. candidates->size = filtered_tokens.size();
  10970. min_p_applied = true;
  10971. }
  10972. }
  10973. // if the candidates are sorted or the unsorted implementation failed, use this implementation
  10974. if (!min_p_applied) {
  10975. // Sort the logits in descending order
  10976. if (!candidates->sorted) {
  10977. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  10978. return a.logit > b.logit;
  10979. });
  10980. candidates->sorted = true;
  10981. }
  10982. const float min_logit = candidates->data[0].logit + logf(p); // min logit for p_i >= p * p_max
  10983. size_t i = 1; // first token always matches
  10984. for (; i < candidates->size; ++i) {
  10985. if (candidates->data[i].logit < min_logit && i >= min_keep) {
  10986. break; // prob too small
  10987. }
  10988. }
  10989. // Resize the output vector to keep only the matching tokens
  10990. candidates->size = i;
  10991. }
  10992. if (ctx) {
  10993. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10994. }
  10995. }
  10996. void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
  10997. if (z >= 1.0f || candidates->size <= 2) {
  10998. return;
  10999. }
  11000. llama_sample_softmax(nullptr, candidates);
  11001. const int64_t t_start_sample_us = ggml_time_us();
  11002. // Compute the first and second derivatives
  11003. std::vector<float> first_derivatives(candidates->size - 1);
  11004. std::vector<float> second_derivatives(candidates->size - 2);
  11005. for (size_t i = 0; i < first_derivatives.size(); ++i) {
  11006. first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
  11007. }
  11008. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  11009. second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
  11010. }
  11011. // Calculate absolute value of second derivatives
  11012. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  11013. second_derivatives[i] = std::abs(second_derivatives[i]);
  11014. }
  11015. // Normalize the second derivatives
  11016. {
  11017. const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
  11018. if (second_derivatives_sum > 1e-6f) {
  11019. for (float & value : second_derivatives) {
  11020. value /= second_derivatives_sum;
  11021. }
  11022. } else {
  11023. for (float & value : second_derivatives) {
  11024. value = 1.0f / second_derivatives.size();
  11025. }
  11026. }
  11027. }
  11028. float cum_sum = 0.0f;
  11029. size_t last_idx = candidates->size;
  11030. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  11031. cum_sum += second_derivatives[i];
  11032. // Check if the running sum is greater than z or if we have kept at least min_keep tokens
  11033. if (cum_sum > z && i >= min_keep) {
  11034. last_idx = i;
  11035. break;
  11036. }
  11037. }
  11038. // Resize the output vector to keep only the tokens above the tail location
  11039. candidates->size = last_idx;
  11040. if (ctx) {
  11041. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11042. }
  11043. }
  11044. void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  11045. // Reference implementation:
  11046. // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
  11047. if (p >= 1.0f) {
  11048. return;
  11049. }
  11050. // Compute the softmax of logits and calculate entropy
  11051. llama_sample_softmax(nullptr, candidates);
  11052. const int64_t t_start_sample_us = ggml_time_us();
  11053. float entropy = 0.0f;
  11054. for (size_t i = 0; i < candidates->size; ++i) {
  11055. entropy += -candidates->data[i].p * logf(candidates->data[i].p);
  11056. }
  11057. // Compute the absolute difference between negative log probability and entropy for each candidate
  11058. std::vector<float> shifted_scores;
  11059. for (size_t i = 0; i < candidates->size; ++i) {
  11060. float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
  11061. shifted_scores.push_back(shifted_score);
  11062. }
  11063. // Sort tokens based on the shifted_scores and their corresponding indices
  11064. std::vector<size_t> indices(candidates->size);
  11065. std::iota(indices.begin(), indices.end(), 0);
  11066. std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
  11067. return shifted_scores[a] < shifted_scores[b];
  11068. });
  11069. // Compute the cumulative probabilities
  11070. float cum_sum = 0.0f;
  11071. size_t last_idx = indices.size();
  11072. for (size_t i = 0; i < indices.size(); ++i) {
  11073. size_t idx = indices[i];
  11074. cum_sum += candidates->data[idx].p;
  11075. // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
  11076. if (cum_sum > p && i >= min_keep - 1) {
  11077. last_idx = i + 1;
  11078. break;
  11079. }
  11080. }
  11081. // Resize the output vector to keep only the locally typical tokens
  11082. std::vector<llama_token_data> new_candidates;
  11083. for (size_t i = 0; i < last_idx; ++i) {
  11084. size_t idx = indices[i];
  11085. new_candidates.push_back(candidates->data[idx]);
  11086. }
  11087. // Replace the data in candidates with the new_candidates data
  11088. std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
  11089. candidates->size = new_candidates.size();
  11090. candidates->sorted = false;
  11091. if (ctx) {
  11092. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11093. }
  11094. }
  11095. void llama_sample_entropy(struct llama_context * ctx, llama_token_data_array * candidates_p, float min_temp, float max_temp, float exponent_val) {
  11096. const int64_t t_start_sample_us = ggml_time_us();
  11097. // no need to do anything if there is only one (or zero) candidates
  11098. if(candidates_p->size <= 1) {
  11099. return;
  11100. }
  11101. // Calculate maximum possible entropy
  11102. float max_entropy = -logf(1.0f / candidates_p->size);
  11103. llama_sample_softmax(nullptr, candidates_p);
  11104. // Calculate entropy of the softmax probabilities
  11105. float entropy = 0.0f;
  11106. for (size_t i = 0; i < candidates_p->size; ++i) {
  11107. float prob = candidates_p->data[i].p;
  11108. if (prob > 0.0f) { // Ensure no log(0)
  11109. entropy -= prob * logf(prob);
  11110. }
  11111. }
  11112. // Normalize the entropy (max_entropy cannot be 0 here because we checked candidates_p->size != 1 above)
  11113. float normalized_entropy = entropy / max_entropy;
  11114. // Map the normalized entropy to the desired temperature range using the power function
  11115. float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val);
  11116. #ifdef DEBUG
  11117. LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp);
  11118. LLAMA_LOG_INFO("Entropy: %f\n", entropy);
  11119. LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy);
  11120. LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy);
  11121. LLAMA_LOG_INFO("Exponent: %f\n", exponent_val);
  11122. LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp);
  11123. #endif
  11124. // Apply the dynamically calculated temperature scaling
  11125. for (size_t i = 0; i < candidates_p->size; ++i) {
  11126. candidates_p->data[i].logit /= dyn_temp;
  11127. }
  11128. // Re-compute softmax probabilities after scaling logits with dynamic temperature
  11129. double max_l_double = candidates_p->data[0].logit;
  11130. double cum_sum_double = 0.0;
  11131. for (size_t i = 0; i < candidates_p->size; ++i) {
  11132. double p = exp(candidates_p->data[i].logit - max_l_double);
  11133. candidates_p->data[i].p = p; // Store the scaled probability
  11134. cum_sum_double += p;
  11135. }
  11136. for (size_t i = 0; i < candidates_p->size; ++i) {
  11137. candidates_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities
  11138. }
  11139. #ifdef DEBUG
  11140. // Print the updated top 25 probabilities after temperature scaling
  11141. LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n");
  11142. for (size_t i = 0; i < 25 && i < candidates_p->size; ++i) {
  11143. LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, candidates_p->data[i].p * 100.0f);
  11144. }
  11145. #endif
  11146. if (ctx) {
  11147. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11148. }
  11149. }
  11150. void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
  11151. const int64_t t_start_sample_us = ggml_time_us();
  11152. for (size_t i = 0; i < candidates_p->size; ++i) {
  11153. candidates_p->data[i].logit /= temp;
  11154. }
  11155. if (ctx) {
  11156. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11157. }
  11158. }
  11159. void llama_sample_repetition_penalties(
  11160. struct llama_context * ctx,
  11161. llama_token_data_array * candidates,
  11162. const llama_token * last_tokens,
  11163. size_t penalty_last_n,
  11164. float penalty_repeat,
  11165. float penalty_freq,
  11166. float penalty_present) {
  11167. if (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f)) {
  11168. return;
  11169. }
  11170. const int64_t t_start_sample_us = ggml_time_us();
  11171. // Create a frequency map to count occurrences of each token in last_tokens
  11172. std::unordered_map<llama_token, int> token_count;
  11173. for (size_t i = 0; i < penalty_last_n; ++i) {
  11174. token_count[last_tokens[i]]++;
  11175. }
  11176. // Apply frequency and presence penalties to the candidates
  11177. for (size_t i = 0; i < candidates->size; ++i) {
  11178. const auto token_iter = token_count.find(candidates->data[i].id);
  11179. if (token_iter == token_count.end()) {
  11180. continue;
  11181. }
  11182. const int count = token_iter->second;
  11183. // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
  11184. // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
  11185. if (candidates->data[i].logit <= 0) {
  11186. candidates->data[i].logit *= penalty_repeat;
  11187. } else {
  11188. candidates->data[i].logit /= penalty_repeat;
  11189. }
  11190. candidates->data[i].logit -= float(count) * penalty_freq + float(count > 0) * penalty_present;
  11191. }
  11192. candidates->sorted = false;
  11193. if (ctx) {
  11194. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11195. }
  11196. }
  11197. void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) {
  11198. GGML_ASSERT(ctx);
  11199. const int64_t t_start_sample_us = ggml_time_us();
  11200. bool allow_eog = false;
  11201. for (const auto & stack : grammar->stacks) {
  11202. if (stack.empty()) {
  11203. allow_eog = true;
  11204. break;
  11205. }
  11206. }
  11207. std::vector<std::pair<std::vector<uint32_t>, llama_partial_utf8>> candidates_decoded;
  11208. candidates_decoded.reserve(candidates->size);
  11209. std::vector<llama_grammar_candidate> candidates_grammar;
  11210. candidates_grammar.reserve(candidates->size);
  11211. for (size_t i = 0; i < candidates->size; ++i) {
  11212. const llama_token id = candidates->data[i].id;
  11213. const std::string piece = llama_token_to_piece(ctx, id, false);
  11214. if (llama_token_is_eog(&ctx->model, id)) {
  11215. if (!allow_eog) {
  11216. candidates->data[i].logit = -INFINITY;
  11217. }
  11218. } else if (piece.empty() || piece[0] == 0) {
  11219. candidates->data[i].logit = -INFINITY;
  11220. } else {
  11221. candidates_decoded.push_back(decode_utf8(piece, grammar->partial_utf8));
  11222. candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second });
  11223. }
  11224. }
  11225. const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar);
  11226. for (const auto & reject : rejects) {
  11227. candidates->data[reject.index].logit = -INFINITY;
  11228. }
  11229. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11230. }
  11231. static void llama_log_softmax(float * array, size_t size) {
  11232. float max_l = *std::max_element(array, array + size);
  11233. float sum = 0.f;
  11234. for (size_t i = 0; i < size; ++i) {
  11235. float p = expf(array[i] - max_l);
  11236. sum += p;
  11237. array[i] = p;
  11238. }
  11239. for (size_t i = 0; i < size; ++i) {
  11240. array[i] = logf(array[i] / sum);
  11241. }
  11242. }
  11243. void llama_sample_apply_guidance(
  11244. struct llama_context * ctx,
  11245. float * logits,
  11246. float * logits_guidance,
  11247. float scale) {
  11248. GGML_ASSERT(ctx);
  11249. const auto t_start_sample_us = ggml_time_us();
  11250. const auto n_vocab = llama_n_vocab(llama_get_model(ctx));
  11251. llama_log_softmax(logits, n_vocab);
  11252. llama_log_softmax(logits_guidance, n_vocab);
  11253. for (int i = 0; i < n_vocab; ++i) {
  11254. auto & l = logits[i];
  11255. const auto & g = logits_guidance[i];
  11256. l = scale * (l - g) + g;
  11257. }
  11258. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11259. }
  11260. llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) {
  11261. GGML_ASSERT(ctx);
  11262. auto N = float(llama_n_vocab(llama_get_model(ctx)));
  11263. int64_t t_start_sample_us;
  11264. t_start_sample_us = ggml_time_us();
  11265. llama_sample_softmax(nullptr, candidates);
  11266. // Estimate s_hat using the most probable m tokens
  11267. float s_hat = 0.0;
  11268. float sum_ti_bi = 0.0;
  11269. float sum_ti_sq = 0.0;
  11270. for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
  11271. float t_i = logf(float(i + 2) / float(i + 1));
  11272. float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
  11273. sum_ti_bi += t_i * b_i;
  11274. sum_ti_sq += t_i * t_i;
  11275. }
  11276. s_hat = sum_ti_bi / sum_ti_sq;
  11277. // Compute k from the estimated s_hat and target surprise value
  11278. float epsilon_hat = s_hat - 1;
  11279. float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
  11280. // Sample the next word X using top-k sampling
  11281. llama_sample_top_k(nullptr, candidates, int(k), 1);
  11282. if (ctx) {
  11283. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11284. }
  11285. llama_token X = llama_sample_token(ctx, candidates);
  11286. t_start_sample_us = ggml_time_us();
  11287. // Compute error as the difference between observed surprise and target surprise value
  11288. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  11289. return candidate.id == X;
  11290. }));
  11291. float observed_surprise = -log2f(candidates->data[X_idx].p);
  11292. float e = observed_surprise - tau;
  11293. // Update mu using the learning rate and error
  11294. *mu = *mu - eta * e;
  11295. if (ctx) {
  11296. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11297. }
  11298. return X;
  11299. }
  11300. llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
  11301. int64_t t_start_sample_us;
  11302. t_start_sample_us = ggml_time_us();
  11303. llama_sample_softmax(ctx, candidates);
  11304. // Truncate the words with surprise values greater than mu
  11305. candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  11306. return -log2f(candidate.p) > *mu;
  11307. }));
  11308. if (candidates->size == 0) {
  11309. candidates->size = 1;
  11310. }
  11311. if (ctx) {
  11312. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11313. }
  11314. // Normalize the probabilities of the remaining words
  11315. llama_sample_softmax(ctx, candidates);
  11316. // Sample the next word X from the remaining words
  11317. llama_token X = llama_sample_token(ctx, candidates);
  11318. t_start_sample_us = ggml_time_us();
  11319. // Compute error as the difference between observed surprise and target surprise value
  11320. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  11321. return candidate.id == X;
  11322. }));
  11323. float observed_surprise = -log2f(candidates->data[X_idx].p);
  11324. float e = observed_surprise - tau;
  11325. // Update mu using the learning rate and error
  11326. *mu = *mu - eta * e;
  11327. if (ctx) {
  11328. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11329. }
  11330. return X;
  11331. }
  11332. llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
  11333. const int64_t t_start_sample_us = ggml_time_us();
  11334. // Find max element
  11335. auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  11336. return a.logit < b.logit;
  11337. });
  11338. llama_token result = max_iter->id;
  11339. if (ctx) {
  11340. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11341. ctx->n_sample++;
  11342. }
  11343. return result;
  11344. }
  11345. llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng) {
  11346. GGML_ASSERT(ctx);
  11347. const int64_t t_start_sample_us = ggml_time_us();
  11348. llama_sample_softmax(nullptr, candidates);
  11349. std::vector<float> probs;
  11350. probs.reserve(candidates->size);
  11351. for (size_t i = 0; i < candidates->size; ++i) {
  11352. probs.push_back(candidates->data[i].p);
  11353. }
  11354. std::discrete_distribution<> dist(probs.begin(), probs.end());
  11355. int idx = dist(rng);
  11356. llama_token result = candidates->data[idx].id;
  11357. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11358. ctx->n_sample++;
  11359. return result;
  11360. }
  11361. llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
  11362. return llama_sample_token_with_rng(ctx, candidates, ctx->rng);
  11363. }
  11364. void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token) {
  11365. const int64_t t_start_sample_us = ggml_time_us();
  11366. if (llama_token_is_eog(&ctx->model, token)) {
  11367. for (const auto & stack : grammar->stacks) {
  11368. if (stack.empty()) {
  11369. return;
  11370. }
  11371. }
  11372. GGML_ASSERT(false);
  11373. }
  11374. const std::string piece = llama_token_to_piece(ctx, token, false);
  11375. // Note terminating 0 in decoded string
  11376. const auto decoded = decode_utf8(piece, grammar->partial_utf8);
  11377. const auto & code_points = decoded.first;
  11378. std::vector<std::vector<const llama_grammar_element *>> tmp_new_stacks;
  11379. for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
  11380. llama_grammar_accept(grammar->rules, grammar->stacks, *it, tmp_new_stacks);
  11381. grammar->stacks = tmp_new_stacks;
  11382. }
  11383. grammar->partial_utf8 = decoded.second;
  11384. GGML_ASSERT(!grammar->stacks.empty());
  11385. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11386. }
  11387. //
  11388. // Beam search
  11389. //
  11390. struct llama_beam {
  11391. std::vector<llama_token> tokens;
  11392. float p; // Cumulative beam probability (renormalized relative to all beams)
  11393. bool eob; // Initialize end-of-beam to false. Callback sets this to true.
  11394. // Sort beams by probability. In case of ties, prefer beams at eob.
  11395. bool operator<(const llama_beam & rhs) const {
  11396. return std::make_pair(p, eob) < std::make_pair(rhs.p, rhs.eob);
  11397. }
  11398. // Shift off first n tokens and discard them.
  11399. void shift_tokens(const size_t n) {
  11400. if (n) {
  11401. std::copy(tokens.begin() + n, tokens.end(), tokens.begin());
  11402. tokens.resize(tokens.size() - n);
  11403. }
  11404. }
  11405. llama_beam_view view() const { return {tokens.data(), tokens.size(), p, eob}; }
  11406. };
  11407. // A struct for calculating logit-related info.
  11408. struct llama_logit_info {
  11409. const float * const logits;
  11410. const int n_vocab;
  11411. const float max_l;
  11412. const float normalizer;
  11413. struct sum_exp {
  11414. float max_l;
  11415. float operator()(float sum, float l) const { return sum + std::exp(l - max_l); }
  11416. };
  11417. llama_logit_info(llama_context * ctx)
  11418. : logits(llama_get_logits(ctx))
  11419. , n_vocab(llama_n_vocab(llama_get_model(ctx)))
  11420. , max_l(*std::max_element(logits, logits + n_vocab))
  11421. , normalizer(1.0f / std::accumulate(logits, logits + n_vocab, 0.0f, sum_exp{max_l}))
  11422. { }
  11423. llama_token_data get_token_data(const llama_token token_id) const {
  11424. constexpr auto p = std::numeric_limits<float>::quiet_NaN(); // never used
  11425. return {token_id, logits[token_id], p};
  11426. }
  11427. // Return top k token_data by logit.
  11428. std::vector<llama_token_data> top_k(size_t k) {
  11429. std::vector<llama_token_data> min_heap; // min-heap by logit
  11430. const llama_token k_min = std::min(static_cast<llama_token>(k), n_vocab);
  11431. min_heap.reserve(k_min);
  11432. for (llama_token token_id = 0 ; token_id < k_min ; ++token_id) {
  11433. min_heap.push_back(get_token_data(token_id));
  11434. }
  11435. auto comp = [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; };
  11436. std::make_heap(min_heap.begin(), min_heap.end(), comp);
  11437. for (llama_token token_id = k_min ; token_id < n_vocab ; ++token_id) {
  11438. if (min_heap.front().logit < logits[token_id]) {
  11439. std::pop_heap(min_heap.begin(), min_heap.end(), comp);
  11440. min_heap.back().id = token_id;
  11441. min_heap.back().logit = logits[token_id];
  11442. std::push_heap(min_heap.begin(), min_heap.end(), comp);
  11443. }
  11444. }
  11445. return min_heap;
  11446. }
  11447. float probability_from_logit(float logit) const {
  11448. return normalizer * std::exp(logit - max_l);
  11449. }
  11450. };
  11451. struct llama_beam_search_data {
  11452. llama_context * ctx;
  11453. size_t n_beams;
  11454. int n_past;
  11455. int n_predict;
  11456. std::vector<llama_beam> beams;
  11457. std::vector<llama_beam> next_beams;
  11458. // Re-calculated on each loop iteration
  11459. size_t common_prefix_length;
  11460. // Used to communicate to/from callback on beams state.
  11461. std::vector<llama_beam_view> beam_views;
  11462. llama_beam_search_data(llama_context * ctx, size_t n_beams, int n_past, int n_predict)
  11463. : ctx(ctx)
  11464. , n_beams(n_beams)
  11465. , n_past(n_past)
  11466. , n_predict(n_predict)
  11467. , beam_views(n_beams) {
  11468. beams.reserve(n_beams);
  11469. next_beams.reserve(n_beams);
  11470. }
  11471. // Collapse beams to a single beam given by index.
  11472. void collapse_beams(const size_t beam_idx) {
  11473. if (0u < beam_idx) {
  11474. std::swap(beams[0], beams[beam_idx]);
  11475. }
  11476. beams.resize(1);
  11477. }
  11478. // Min-heaps are used to efficiently collect the top-k elements (k=n_beams).
  11479. // The repetitive patterns below reflect the 2 stages of heaps:
  11480. // * Gather elements until the vector is full, then call std::make_heap() on it.
  11481. // * If the heap is full and a new element is found that should be included, pop the
  11482. // least element to the back(), replace it with the new, then push it into the heap.
  11483. void fill_next_beams_by_top_probabilities(llama_beam & beam) {
  11484. // Min-heaps use a greater-than comparator.
  11485. const auto comp = [](const llama_beam & a, const llama_beam & b) { return a.p > b.p; };
  11486. if (beam.eob) {
  11487. // beam is at end-of-sentence, so just copy it to next_beams if its probability is high enough.
  11488. if (next_beams.size() < n_beams) {
  11489. next_beams.push_back(std::move(beam));
  11490. if (next_beams.size() == n_beams) {
  11491. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  11492. }
  11493. } else if (next_beams.front().p < beam.p) {
  11494. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  11495. next_beams.back() = std::move(beam);
  11496. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  11497. }
  11498. } else {
  11499. // beam is not at end-of-sentence, so branch with next top_k tokens.
  11500. if (!beam.tokens.empty()) {
  11501. llama_decode(ctx, llama_batch_get_one(beam.tokens.data(), beam.tokens.size(), n_past, 0));
  11502. }
  11503. llama_logit_info logit_info(ctx);
  11504. std::vector<llama_token_data> next_tokens = logit_info.top_k(n_beams);
  11505. // Clear the kv slot so that other beams may try different tokens at this position. The llama_decode()
  11506. // call in loop() will conclusively fill in the kv slot once the beams converge at this position.
  11507. llama_kv_cache_seq_rm(ctx, 0, n_past, -1);
  11508. size_t i=0;
  11509. if (next_beams.size() < n_beams) {
  11510. for (; next_beams.size() < n_beams ; ++i) {
  11511. llama_beam next_beam = beam;
  11512. next_beam.tokens.push_back(next_tokens[i].id);
  11513. next_beam.p *= logit_info.probability_from_logit(next_tokens[i].logit);
  11514. next_beams.push_back(std::move(next_beam));
  11515. }
  11516. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  11517. } else {
  11518. for (; next_beams.front().p == 0.0f ; ++i) {
  11519. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  11520. next_beams.back() = beam;
  11521. next_beams.back().tokens.push_back(next_tokens[i].id);
  11522. next_beams.back().p *= logit_info.probability_from_logit(next_tokens[i].logit);
  11523. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  11524. }
  11525. }
  11526. for (; i < n_beams ; ++i) {
  11527. const float next_p = beam.p * logit_info.probability_from_logit(next_tokens[i].logit);
  11528. if (next_beams.front().p < next_p) {
  11529. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  11530. next_beams.back() = beam;
  11531. next_beams.back().tokens.push_back(next_tokens[i].id);
  11532. next_beams.back().p = next_p;
  11533. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  11534. }
  11535. }
  11536. }
  11537. }
  11538. // Find common_prefix_length based on beams.
  11539. // Requires beams is not empty.
  11540. size_t find_common_prefix_length() {
  11541. size_t common_prefix_length = beams[0].tokens.size();
  11542. for (size_t i = 1 ; i < beams.size() ; ++i) {
  11543. common_prefix_length = std::min(common_prefix_length, beams[i].tokens.size());
  11544. for (size_t j = 0 ; j < common_prefix_length ; ++j) {
  11545. if (beams[0].tokens[j] != beams[i].tokens[j]) {
  11546. common_prefix_length = j;
  11547. break;
  11548. }
  11549. }
  11550. }
  11551. return common_prefix_length;
  11552. }
  11553. // Construct beams_state to send back to caller via the callback function.
  11554. // Side effect: set common_prefix_length = find_common_prefix_length();
  11555. llama_beams_state get_beams_state(const bool last_call) {
  11556. for (size_t i = 0 ; i < beams.size() ; ++i) {
  11557. beam_views[i] = beams[i].view();
  11558. }
  11559. common_prefix_length = find_common_prefix_length();
  11560. return {beam_views.data(), beams.size(), common_prefix_length, last_call};
  11561. }
  11562. // Loop:
  11563. // * while i < n_predict, AND
  11564. // * any of the beams have not yet reached end-of-beam (eob), AND
  11565. // * the highest probability beam(s) (plural in case of ties) are not at end-of-sentence
  11566. // (since all other beam probabilities can only decrease)
  11567. void loop(const llama_beam_search_callback_fn_t callback, void * const callback_data) {
  11568. beams.push_back({{}, 1.0f, false}); // Start with one empty beam w/ probability = 1.0 and !eob.
  11569. const auto not_eob = [](const llama_beam & beam) { return !beam.eob; };
  11570. for (int i = 0 ; i < n_predict && std::any_of(beams.begin(),beams.end(),not_eob) &&
  11571. !beams[top_beam_index()].eob ; ++i) {
  11572. callback(callback_data, get_beams_state(false)); // Sets common_prefix_length
  11573. update_beams_from_beam_views(); // Update values (p,eob) that callback may have changed.
  11574. if (common_prefix_length) {
  11575. llama_decode(ctx, llama_batch_get_one(beams[0].tokens.data(), common_prefix_length, n_past, 0));
  11576. n_past += common_prefix_length;
  11577. }
  11578. // Zero-out next_beam probabilities to place them last in following min-heap.
  11579. std::for_each(next_beams.begin(), next_beams.end(), [](llama_beam & beam) { beam.p = 0.0f; });
  11580. for (llama_beam & beam : beams) {
  11581. beam.shift_tokens(common_prefix_length);
  11582. fill_next_beams_by_top_probabilities(beam);
  11583. }
  11584. // next_beams become the beams of next/final iteration. Swap them to re-use memory.
  11585. beams.swap(next_beams);
  11586. renormalize_beam_probabilities(beams);
  11587. }
  11588. collapse_beams(top_beam_index());
  11589. callback(callback_data, get_beams_state(true));
  11590. }
  11591. // As beams grow, the cumulative probabilities decrease.
  11592. // Renormalize them to avoid floating point underflow.
  11593. static void renormalize_beam_probabilities(std::vector<llama_beam> & beams) {
  11594. const auto sum_p = [](float sum, llama_beam & beam) { return sum + beam.p; };
  11595. const float inv_sum = 1.0f / std::accumulate(beams.begin(), beams.end(), 0.0f, sum_p);
  11596. std::for_each(beams.begin(), beams.end(), [=](llama_beam & beam) { beam.p *= inv_sum; });
  11597. }
  11598. // Assumes beams is non-empty. Uses llama_beam::operator<() for ordering.
  11599. size_t top_beam_index() {
  11600. return std::max_element(beams.begin(), beams.end()) - beams.begin();
  11601. }
  11602. // Copy (p,eob) for each beam which may have been changed by the callback.
  11603. void update_beams_from_beam_views() {
  11604. for (size_t i = 0 ; i < beams.size() ; ++i) {
  11605. beams[i].p = beam_views[i].p;
  11606. beams[i].eob = beam_views[i].eob;
  11607. }
  11608. }
  11609. };
  11610. void llama_beam_search(llama_context * ctx,
  11611. llama_beam_search_callback_fn_t callback, void * callback_data,
  11612. size_t n_beams, int n_past, int n_predict) {
  11613. assert(ctx);
  11614. const int64_t t_start_sample_us = ggml_time_us();
  11615. llama_beam_search_data beam_search_data(ctx, n_beams, n_past, n_predict);
  11616. beam_search_data.loop(callback, callback_data);
  11617. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11618. ctx->n_sample++;
  11619. }
  11620. //
  11621. // quantization
  11622. //
  11623. struct quantize_state_internal {
  11624. const llama_model & model;
  11625. const llama_model_quantize_params * params;
  11626. int n_attention_wv = 0;
  11627. int n_ffn_down = 0;
  11628. int n_ffn_gate = 0;
  11629. int n_ffn_up = 0;
  11630. int i_attention_wv = 0;
  11631. int i_ffn_down = 0;
  11632. int i_ffn_gate = 0;
  11633. int i_ffn_up = 0;
  11634. int n_k_quantized = 0;
  11635. int n_fallback = 0;
  11636. bool has_imatrix = false;
  11637. // used to figure out if a model shares tok_embd with the output weight
  11638. bool has_output = false;
  11639. quantize_state_internal(const llama_model & model, const llama_model_quantize_params * params)
  11640. : model(model)
  11641. , params(params)
  11642. {}
  11643. };
  11644. static void llama_tensor_dequantize_internal(
  11645. struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
  11646. const size_t nelements, const int nthread
  11647. ) {
  11648. if (output.size() < nelements) {
  11649. output.resize(nelements);
  11650. }
  11651. float * f32_output = (float *) output.data();
  11652. ggml_type_traits_t qtype;
  11653. if (ggml_is_quantized(tensor->type)) {
  11654. qtype = ggml_internal_get_type_traits(tensor->type);
  11655. if (qtype.to_float == NULL) {
  11656. throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
  11657. }
  11658. } else if (tensor->type != GGML_TYPE_F16) {
  11659. throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
  11660. }
  11661. if (nthread < 2) {
  11662. if (tensor->type == GGML_TYPE_F16) {
  11663. ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
  11664. } else if (ggml_is_quantized(tensor->type)) {
  11665. qtype.to_float(tensor->data, f32_output, nelements);
  11666. } else {
  11667. GGML_ASSERT(false); // unreachable
  11668. }
  11669. return;
  11670. }
  11671. size_t block_size = tensor->type == GGML_TYPE_F16 ? 1 : (size_t)ggml_blck_size(tensor->type);
  11672. size_t block_size_bytes = ggml_type_size(tensor->type);
  11673. GGML_ASSERT(nelements % block_size == 0);
  11674. size_t nblocks = nelements / block_size;
  11675. size_t blocks_per_thread = nblocks / nthread;
  11676. size_t spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
  11677. size_t in_buff_offs = 0;
  11678. size_t out_buff_offs = 0;
  11679. for (int tnum = 0; tnum < nthread; tnum++) {
  11680. size_t thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
  11681. size_t thr_elems = thr_blocks * block_size; // number of elements for this thread
  11682. size_t thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
  11683. auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
  11684. if (typ == GGML_TYPE_F16) {
  11685. ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
  11686. } else {
  11687. qtype.to_float(inbuf, outbuf, nels);
  11688. }
  11689. };
  11690. workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems);
  11691. in_buff_offs += thr_block_bytes;
  11692. out_buff_offs += thr_elems;
  11693. }
  11694. for (auto & w : workers) { w.join(); }
  11695. workers.clear();
  11696. }
  11697. static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
  11698. const std::string name = ggml_get_name(tensor);
  11699. // TODO: avoid hardcoded tensor names - use the TN_* constants
  11700. const llm_arch arch = qs.model.arch;
  11701. const auto tn = LLM_TN(arch);
  11702. auto use_more_bits = [](int i_layer, int num_layers) -> bool {
  11703. return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
  11704. };
  11705. const int n_expert = std::max(1, (int)qs.model.hparams.n_expert);
  11706. auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) {
  11707. if (n_expert > 1) {
  11708. // Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but iccasionally randomly
  11709. // sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work
  11710. // for getting the current layer as I initially thought, and we need to resort to parsing the
  11711. // tensor name.
  11712. if (sscanf(name, "blk.%d.", &i_layer) != 1) {
  11713. throw std::runtime_error(format("Failed to determine layer for tensor %s", name));
  11714. }
  11715. if (i_layer < 0 || i_layer >= n_layer) {
  11716. throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name, n_layer));
  11717. }
  11718. }
  11719. return std::make_pair(i_layer, n_layer);
  11720. };
  11721. // for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings
  11722. // with the quantization of the output tensor
  11723. if (name == tn(LLM_TENSOR_OUTPUT, "weight") || (!qs.has_output && name == tn(LLM_TENSOR_TOKEN_EMBD, "weight"))) {
  11724. if (qs.params->output_tensor_type < GGML_TYPE_COUNT) {
  11725. new_type = qs.params->output_tensor_type;
  11726. } else {
  11727. int nx = tensor->ne[0];
  11728. if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
  11729. new_type = GGML_TYPE_Q8_0;
  11730. }
  11731. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  11732. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ||
  11733. ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  11734. new_type = GGML_TYPE_Q5_K;
  11735. }
  11736. else if (new_type != GGML_TYPE_Q8_0) {
  11737. new_type = GGML_TYPE_Q6_K;
  11738. }
  11739. }
  11740. } else if (name == "token_embd.weight") {
  11741. if (qs.params->token_embedding_type < GGML_TYPE_COUNT) {
  11742. new_type = qs.params->token_embedding_type;
  11743. } else {
  11744. if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS ||
  11745. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  11746. new_type = GGML_TYPE_Q2_K;
  11747. }
  11748. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
  11749. new_type = GGML_TYPE_IQ3_S;
  11750. }
  11751. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  11752. new_type = GGML_TYPE_IQ3_S;
  11753. }
  11754. }
  11755. } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
  11756. ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  11757. if (name.find("attn_v.weight") != std::string::npos) {
  11758. if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
  11759. else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  11760. ++qs.i_attention_wv;
  11761. }
  11762. else if (qs.model.hparams.n_expert == 8 && name.find("attn_k.weight") != std::string::npos) {
  11763. new_type = GGML_TYPE_Q4_K;
  11764. }
  11765. else if (name.find("ffn_down") != std::string::npos) {
  11766. if (qs.i_ffn_down < qs.n_ffn_down/8) {
  11767. new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  11768. }
  11769. ++qs.i_ffn_down;
  11770. }
  11771. else if (name.find("attn_output.weight") != std::string::npos) {
  11772. if (qs.model.hparams.n_expert == 8) {
  11773. new_type = GGML_TYPE_Q5_K;
  11774. } else {
  11775. if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) new_type = GGML_TYPE_IQ2_XXS;
  11776. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S;
  11777. }
  11778. }
  11779. } else if (name.find("attn_v.weight") != std::string::npos) {
  11780. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) {
  11781. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  11782. }
  11783. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && qs.model.hparams.n_gqa() >= 4) {
  11784. new_type = GGML_TYPE_Q4_K;
  11785. }
  11786. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  11787. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS;
  11788. }
  11789. else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S) && qs.model.hparams.n_gqa() >= 4) {
  11790. new_type = GGML_TYPE_Q4_K;
  11791. }
  11792. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  11793. new_type = GGML_TYPE_Q4_K;
  11794. }
  11795. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  11796. new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  11797. }
  11798. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  11799. else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && qs.model.hparams.n_gqa() >= 4) {
  11800. new_type = GGML_TYPE_Q5_K;
  11801. }
  11802. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
  11803. use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
  11804. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
  11805. else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) &&
  11806. (qs.i_attention_wv < qs.n_attention_wv/8 || qs.i_attention_wv >= 7*qs.n_attention_wv/8)) new_type = GGML_TYPE_Q6_K;
  11807. if (qs.model.type == MODEL_70B) {
  11808. // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
  11809. // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
  11810. // nearly negligible increase in model size by quantizing this tensor with more bits:
  11811. if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
  11812. }
  11813. if (qs.model.hparams.n_expert == 8) {
  11814. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  11815. // TODO: explore better strategies
  11816. new_type = GGML_TYPE_Q8_0;
  11817. }
  11818. ++qs.i_attention_wv;
  11819. } else if (name.find("attn_k.weight") != std::string::npos) {
  11820. if (qs.model.hparams.n_expert == 8) {
  11821. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  11822. // TODO: explore better strategies
  11823. new_type = GGML_TYPE_Q8_0;
  11824. }
  11825. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  11826. new_type = GGML_TYPE_IQ3_XXS;
  11827. }
  11828. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  11829. new_type = GGML_TYPE_IQ2_S;
  11830. }
  11831. } else if (name.find("attn_q.weight") != std::string::npos) {
  11832. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  11833. new_type = GGML_TYPE_IQ3_XXS;
  11834. }
  11835. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  11836. new_type = GGML_TYPE_IQ2_S;
  11837. }
  11838. } else if (name.find("ffn_down") != std::string::npos) {
  11839. auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str());
  11840. int i_layer = info.first, n_layer = info.second;
  11841. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  11842. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) {
  11843. if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K;
  11844. }
  11845. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && !qs.has_imatrix) {
  11846. new_type = i_layer < n_layer/8 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  11847. }
  11848. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  11849. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K
  11850. : arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K
  11851. : GGML_TYPE_Q3_K;
  11852. }
  11853. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M && (i_layer < n_layer/8 ||
  11854. (qs.model.hparams.n_expert == 8 && use_more_bits(i_layer, n_layer)))) {
  11855. new_type = GGML_TYPE_Q4_K;
  11856. }
  11857. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
  11858. new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
  11859. }
  11860. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
  11861. if (arch == LLM_ARCH_FALCON) {
  11862. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K :
  11863. use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  11864. } else {
  11865. if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  11866. }
  11867. }
  11868. else if (i_layer < n_layer/8 && (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && !qs.has_imatrix) {
  11869. new_type = GGML_TYPE_Q5_K;
  11870. }
  11871. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  11872. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) {
  11873. new_type = GGML_TYPE_Q5_K;
  11874. }
  11875. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || ftype == LLAMA_FTYPE_MOSTLY_Q5_0)
  11876. && qs.has_imatrix && i_layer < n_layer/8) {
  11877. // Guard against craziness in the first few ffn_down layers that can happen even with imatrix for Q4_0/Q5_0.
  11878. // We only do it when an imatrix is provided because a) we want to make sure that one can always get the
  11879. // same quantization as before imatrix stuff, and b) Q4_1/Q5_1 do go crazy on ffn_down without an imatrix.
  11880. new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1;
  11881. }
  11882. ++qs.i_ffn_down;
  11883. } else if (name.find("attn_output.weight") != std::string::npos) {
  11884. if (arch != LLM_ARCH_FALCON) {
  11885. if (qs.model.hparams.n_expert == 8) {
  11886. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  11887. ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL ||
  11888. ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S ||
  11889. ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) {
  11890. new_type = GGML_TYPE_Q5_K;
  11891. }
  11892. } else {
  11893. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
  11894. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_IQ3_S;
  11895. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ) new_type = GGML_TYPE_Q4_K;
  11896. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q5_K;
  11897. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M ) new_type = GGML_TYPE_Q4_K;
  11898. }
  11899. } else {
  11900. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
  11901. }
  11902. }
  11903. else if (name.find("attn_qkv.weight") != std::string::npos) {
  11904. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  11905. new_type = GGML_TYPE_Q4_K;
  11906. }
  11907. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
  11908. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
  11909. }
  11910. else if (name.find("ffn_gate") != std::string::npos) {
  11911. auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str());
  11912. int i_layer = info.first, n_layer = info.second;
  11913. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  11914. new_type = GGML_TYPE_IQ3_XXS;
  11915. }
  11916. ++qs.i_ffn_gate;
  11917. }
  11918. else if (name.find("ffn_up") != std::string::npos) {
  11919. auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str());
  11920. int i_layer = info.first, n_layer = info.second;
  11921. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  11922. new_type = GGML_TYPE_IQ3_XXS;
  11923. }
  11924. ++qs.i_ffn_up;
  11925. }
  11926. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  11927. //}
  11928. // IK: let's remove this, else Q2_K is almost the same as Q3_K_S
  11929. //else if (name.find("ffn_gate") != std::string::npos || name.find("ffn_up") != std::string::npos) {
  11930. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  11931. //}
  11932. // This can be used to reduce the size of the Q5_K_S model.
  11933. // The associated PPL increase is fully in line with the size reduction
  11934. //else {
  11935. // if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
  11936. //}
  11937. bool convert_incompatible_tensor = false;
  11938. if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
  11939. new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K || new_type == GGML_TYPE_IQ4_XS ||
  11940. new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_S ||
  11941. new_type == GGML_TYPE_IQ3_XXS || new_type == GGML_TYPE_IQ1_S || new_type == GGML_TYPE_IQ3_S ||
  11942. new_type == GGML_TYPE_IQ1_M) {
  11943. int nx = tensor->ne[0];
  11944. int ny = tensor->ne[1];
  11945. if (nx % QK_K != 0) {
  11946. LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type));
  11947. convert_incompatible_tensor = true;
  11948. } else {
  11949. ++qs.n_k_quantized;
  11950. }
  11951. }
  11952. if (convert_incompatible_tensor) {
  11953. switch (new_type) {
  11954. case GGML_TYPE_IQ2_XXS:
  11955. case GGML_TYPE_IQ2_XS:
  11956. case GGML_TYPE_IQ2_S:
  11957. case GGML_TYPE_IQ3_XXS:
  11958. case GGML_TYPE_IQ3_S:
  11959. case GGML_TYPE_IQ1_S:
  11960. case GGML_TYPE_IQ1_M:
  11961. case GGML_TYPE_Q2_K:
  11962. case GGML_TYPE_Q3_K:
  11963. case GGML_TYPE_IQ4_XS: new_type = GGML_TYPE_IQ4_NL; break;
  11964. case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break;
  11965. case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break;
  11966. case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break;
  11967. default: throw std::runtime_error("\nUnsupported tensor size encountered\n");
  11968. }
  11969. LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type));
  11970. ++qs.n_fallback;
  11971. }
  11972. return new_type;
  11973. }
  11974. static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
  11975. if (nthread < 2) {
  11976. // single-thread
  11977. size_t new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix);
  11978. if (!ggml_validate_row_data(new_type, new_data, new_size)) {
  11979. throw std::runtime_error("quantized data validation failed");
  11980. }
  11981. return new_size;
  11982. }
  11983. std::mutex mutex;
  11984. int64_t counter = 0;
  11985. size_t new_size = 0;
  11986. bool valid = true;
  11987. auto compute = [&mutex, &counter, &new_size, &valid, new_type, f32_data, new_data, chunk_size,
  11988. nrows, n_per_row, imatrix]() {
  11989. const int64_t nrows_per_chunk = chunk_size / n_per_row;
  11990. size_t local_size = 0;
  11991. while (true) {
  11992. std::unique_lock<std::mutex> lock(mutex);
  11993. int64_t first_row = counter; counter += nrows_per_chunk;
  11994. if (first_row >= nrows) {
  11995. if (local_size > 0) {
  11996. new_size += local_size;
  11997. }
  11998. break;
  11999. }
  12000. lock.unlock();
  12001. const int64_t this_nrow = std::min(nrows - first_row, nrows_per_chunk);
  12002. size_t this_size = ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix);
  12003. local_size += this_size;
  12004. // validate the quantized data
  12005. const size_t row_size = ggml_row_size(new_type, n_per_row);
  12006. void * this_data = (char *) new_data + first_row * row_size;
  12007. if (!ggml_validate_row_data(new_type, this_data, this_size)) {
  12008. std::unique_lock<std::mutex> lock(mutex);
  12009. valid = false;
  12010. break;
  12011. }
  12012. }
  12013. };
  12014. for (int it = 0; it < nthread - 1; ++it) {
  12015. workers.emplace_back(compute);
  12016. }
  12017. compute();
  12018. for (auto & w : workers) { w.join(); }
  12019. workers.clear();
  12020. if (!valid) {
  12021. throw std::runtime_error("quantized data validation failed");
  12022. }
  12023. return new_size;
  12024. }
  12025. static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
  12026. ggml_type default_type;
  12027. llama_ftype ftype = params->ftype;
  12028. switch (params->ftype) {
  12029. case LLAMA_FTYPE_MOSTLY_Q4_0: default_type = GGML_TYPE_Q4_0; break;
  12030. case LLAMA_FTYPE_MOSTLY_Q4_1: default_type = GGML_TYPE_Q4_1; break;
  12031. case LLAMA_FTYPE_MOSTLY_Q5_0: default_type = GGML_TYPE_Q5_0; break;
  12032. case LLAMA_FTYPE_MOSTLY_Q5_1: default_type = GGML_TYPE_Q5_1; break;
  12033. case LLAMA_FTYPE_MOSTLY_Q8_0: default_type = GGML_TYPE_Q8_0; break;
  12034. case LLAMA_FTYPE_MOSTLY_F16: default_type = GGML_TYPE_F16; break;
  12035. case LLAMA_FTYPE_ALL_F32: default_type = GGML_TYPE_F32; break;
  12036. // K-quants
  12037. case LLAMA_FTYPE_MOSTLY_Q2_K_S:
  12038. case LLAMA_FTYPE_MOSTLY_Q2_K: default_type = GGML_TYPE_Q2_K; break;
  12039. case LLAMA_FTYPE_MOSTLY_IQ3_XS: default_type = GGML_TYPE_IQ3_S; break;
  12040. case LLAMA_FTYPE_MOSTLY_Q3_K_S:
  12041. case LLAMA_FTYPE_MOSTLY_Q3_K_M:
  12042. case LLAMA_FTYPE_MOSTLY_Q3_K_L: default_type = GGML_TYPE_Q3_K; break;
  12043. case LLAMA_FTYPE_MOSTLY_Q4_K_S:
  12044. case LLAMA_FTYPE_MOSTLY_Q4_K_M: default_type = GGML_TYPE_Q4_K; break;
  12045. case LLAMA_FTYPE_MOSTLY_Q5_K_S:
  12046. case LLAMA_FTYPE_MOSTLY_Q5_K_M: default_type = GGML_TYPE_Q5_K; break;
  12047. case LLAMA_FTYPE_MOSTLY_Q6_K: default_type = GGML_TYPE_Q6_K; break;
  12048. case LLAMA_FTYPE_MOSTLY_IQ2_XXS: default_type = GGML_TYPE_IQ2_XXS; break;
  12049. case LLAMA_FTYPE_MOSTLY_IQ2_XS: default_type = GGML_TYPE_IQ2_XS; break;
  12050. case LLAMA_FTYPE_MOSTLY_IQ2_S: default_type = GGML_TYPE_IQ2_XS; break;
  12051. case LLAMA_FTYPE_MOSTLY_IQ2_M: default_type = GGML_TYPE_IQ2_S; break;
  12052. case LLAMA_FTYPE_MOSTLY_IQ3_XXS: default_type = GGML_TYPE_IQ3_XXS; break;
  12053. case LLAMA_FTYPE_MOSTLY_IQ1_S: default_type = GGML_TYPE_IQ1_S; break;
  12054. case LLAMA_FTYPE_MOSTLY_IQ1_M: default_type = GGML_TYPE_IQ1_M; break;
  12055. case LLAMA_FTYPE_MOSTLY_IQ4_NL: default_type = GGML_TYPE_IQ4_NL; break;
  12056. case LLAMA_FTYPE_MOSTLY_IQ4_XS: default_type = GGML_TYPE_IQ4_XS; break;
  12057. case LLAMA_FTYPE_MOSTLY_IQ3_S: default_type = GGML_TYPE_IQ3_S; break;
  12058. case LLAMA_FTYPE_MOSTLY_IQ3_M: default_type = GGML_TYPE_IQ3_S; break;
  12059. default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
  12060. }
  12061. int nthread = params->nthread;
  12062. if (nthread <= 0) {
  12063. nthread = std::thread::hardware_concurrency();
  12064. }
  12065. // mmap consistently increases speed Linux, and also increases speed on Windows with
  12066. // hot cache. It may cause a slowdown on macOS, possibly related to free memory.
  12067. #if defined(__linux__) || defined(_WIN32)
  12068. constexpr bool use_mmap = true;
  12069. #else
  12070. constexpr bool use_mmap = false;
  12071. #endif
  12072. llama_model_kv_override * kv_overrides = nullptr;
  12073. if (params->kv_overrides) {
  12074. auto v = (std::vector<llama_model_kv_override>*)params->kv_overrides;
  12075. kv_overrides = v->data();
  12076. }
  12077. llama_model_loader ml(fname_inp, use_mmap, /*check_tensors*/ true, kv_overrides);
  12078. ml.init_mappings(false); // no prefetching
  12079. llama_model model;
  12080. llm_load_arch(ml, model);
  12081. llm_load_hparams(ml, model);
  12082. struct quantize_state_internal qs(model, params);
  12083. if (params->only_copy) {
  12084. ftype = model.ftype;
  12085. }
  12086. const std::unordered_map<std::string, std::vector<float>> * imatrix_data = nullptr;
  12087. if (params->imatrix) {
  12088. imatrix_data = static_cast<const std::unordered_map<std::string, std::vector<float>>*>(params->imatrix);
  12089. if (imatrix_data) {
  12090. LLAMA_LOG_INFO("================================ Have weights data with %d entries\n",int(imatrix_data->size()));
  12091. qs.has_imatrix = true;
  12092. }
  12093. }
  12094. const size_t align = GGUF_DEFAULT_ALIGNMENT;
  12095. struct gguf_context * ctx_out = gguf_init_empty();
  12096. // copy the KV pairs from the input file
  12097. gguf_set_kv (ctx_out, ml.meta);
  12098. gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
  12099. gguf_set_val_u32(ctx_out, "general.file_type", ftype);
  12100. // Remove split metadata
  12101. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_NO).c_str());
  12102. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str());
  12103. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str());
  12104. if (params->kv_overrides) {
  12105. const std::vector<llama_model_kv_override> & overrides = *(const std::vector<llama_model_kv_override> *)params->kv_overrides;
  12106. for (auto & o : overrides) {
  12107. if (o.key[0] == 0) break;
  12108. if (o.tag == LLAMA_KV_OVERRIDE_TYPE_FLOAT) {
  12109. gguf_set_val_f32(ctx_out, o.key, o.val_f64);
  12110. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) {
  12111. gguf_set_val_i32(ctx_out, o.key, o.val_i64);
  12112. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) {
  12113. gguf_set_val_bool(ctx_out, o.key, o.val_bool);
  12114. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_STR) {
  12115. gguf_set_val_str(ctx_out, o.key, o.val_str);
  12116. } else {
  12117. LLAMA_LOG_WARN("%s: unknown KV override type for key %s\n", __func__, o.key);
  12118. }
  12119. }
  12120. }
  12121. for (int i = 0; i < ml.n_tensors; ++i) {
  12122. const struct ggml_tensor * meta = ml.get_tensor_meta(i);
  12123. const std::string name = ggml_get_name(meta);
  12124. // TODO: avoid hardcoded tensor names - use the TN_* constants
  12125. if (name.find("attn_v.weight") != std::string::npos ||
  12126. name.find("attn_qkv.weight") != std::string::npos) {
  12127. ++qs.n_attention_wv;
  12128. } else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) {
  12129. qs.has_output = true;
  12130. }
  12131. }
  12132. qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer;
  12133. // sanity checks
  12134. //
  12135. // - qs.n_attention_wv == 0 for Mamba models
  12136. // - qs.n_attention_wv == model.hparams.n_layer for Transformer models
  12137. //
  12138. GGML_ASSERT((qs.n_attention_wv == 0 || qs.n_attention_wv == (int)model.hparams.n_layer) && "n_attention_wv is unexpected");
  12139. size_t total_size_org = 0;
  12140. size_t total_size_new = 0;
  12141. std::vector<std::thread> workers;
  12142. workers.reserve(nthread);
  12143. int idx = 0;
  12144. std::vector<no_init<uint8_t>> read_data;
  12145. std::vector<no_init<uint8_t>> work;
  12146. std::vector<no_init<float>> f32_conv_buf;
  12147. uint16_t n_split = 1;
  12148. // Assume split index is continuous
  12149. if (params->keep_split) {
  12150. for (int i = 0; i < ml.n_tensors; ++i) {
  12151. n_split = std::max(uint16_t(ml.get_weight(i)->idx+1), n_split);
  12152. }
  12153. }
  12154. std::vector<gguf_context*> ctx_outs(n_split, NULL);
  12155. ctx_outs[0] = ctx_out;
  12156. // populate the original tensors so we get an initial meta data
  12157. for (int i = 0; i < ml.n_tensors; ++i) {
  12158. auto weight = ml.get_weight(i);
  12159. uint16_t i_split = params->keep_split ? weight->idx : 0;
  12160. struct ggml_tensor * tensor = weight->tensor;
  12161. if (ctx_outs[i_split] == NULL) {
  12162. ctx_outs[i_split] = gguf_init_empty();
  12163. }
  12164. gguf_add_tensor(ctx_outs[i_split], tensor);
  12165. }
  12166. // Set split info if needed
  12167. if (n_split > 1) {
  12168. for (size_t i = 0; i < ctx_outs.size(); ++i) {
  12169. gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_NO).c_str(), i);
  12170. gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str(), n_split);
  12171. gguf_set_val_i32(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str(), ml.n_tensors);
  12172. }
  12173. }
  12174. int cur_split = -1;
  12175. std::ofstream fout;
  12176. auto close_ofstream = [&]() {
  12177. // Write metadata and close file handler
  12178. if (fout.is_open()) {
  12179. fout.seekp(0);
  12180. std::vector<uint8_t> data(gguf_get_meta_size(ctx_outs[cur_split]));
  12181. gguf_get_meta_data(ctx_outs[cur_split], data.data());
  12182. fout.write((const char *) data.data(), data.size());
  12183. fout.close();
  12184. }
  12185. };
  12186. auto new_ofstream = [&](int index) {
  12187. cur_split = index;
  12188. GGML_ASSERT(ctx_outs[cur_split] && "Find uninitialized gguf_context");
  12189. std::string fname = fname_out;
  12190. if (params->keep_split) {
  12191. char split_path[PATH_MAX] = {0};
  12192. llama_split_path(split_path, sizeof(split_path), fname_out.c_str(), cur_split, n_split);
  12193. fname = std::string(split_path);
  12194. }
  12195. fout = std::ofstream(fname, std::ios::binary);
  12196. fout.exceptions(std::ofstream::failbit); // fail fast on write errors
  12197. const size_t meta_size = gguf_get_meta_size(ctx_outs[cur_split]);
  12198. // placeholder for the meta data
  12199. ::zeros(fout, meta_size);
  12200. };
  12201. const auto tn = LLM_TN(model.arch);
  12202. new_ofstream(0);
  12203. for (int i = 0; i < ml.n_tensors; ++i) {
  12204. auto weight = ml.get_weight(i);
  12205. struct ggml_tensor * tensor = weight->tensor;
  12206. if (weight->idx != cur_split && params->keep_split) {
  12207. close_ofstream();
  12208. new_ofstream(weight->idx);
  12209. }
  12210. const std::string name = ggml_get_name(tensor);
  12211. if (!ml.use_mmap) {
  12212. if (read_data.size() < ggml_nbytes(tensor)) {
  12213. read_data.resize(ggml_nbytes(tensor));
  12214. }
  12215. tensor->data = read_data.data();
  12216. }
  12217. ml.load_data_for(tensor);
  12218. LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ",
  12219. ++idx, ml.n_tensors,
  12220. ggml_get_name(tensor),
  12221. llama_format_tensor_shape(tensor).c_str(),
  12222. ggml_type_name(tensor->type));
  12223. // This used to be a regex, but <regex> has an extreme cost to compile times.
  12224. bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
  12225. // quantize only 2D and 3D tensors (experts)
  12226. quantize &= (ggml_n_dims(tensor) >= 2);
  12227. // do not quantize norm tensors
  12228. quantize &= name.find("_norm.weight") == std::string::npos;
  12229. quantize &= params->quantize_output_tensor || name != "output.weight";
  12230. quantize &= !params->only_copy;
  12231. // do not quantize expert gating tensors
  12232. // NOTE: can't use LLM_TN here because the layer number is not known
  12233. quantize &= name.find("ffn_gate_inp.weight") == std::string::npos;
  12234. // do not quantize positional embeddings and token types (BERT)
  12235. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD, "weight");
  12236. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_TOKEN_TYPES, "weight");
  12237. // do not quantize Mamba's small yet 2D weights
  12238. // NOTE: can't use LLM_TN here because the layer number is not known
  12239. quantize &= name.find("ssm_conv1d.weight") == std::string::npos;
  12240. quantize &= name.find("ssm_x.weight") == std::string::npos;
  12241. quantize &= name.find("ssm_dt.weight") == std::string::npos;
  12242. enum ggml_type new_type;
  12243. void * new_data;
  12244. size_t new_size;
  12245. if (quantize) {
  12246. new_type = default_type;
  12247. // get more optimal quantization type based on the tensor shape, layer, etc.
  12248. if (!params->pure && ggml_is_quantized(default_type)) {
  12249. new_type = llama_tensor_get_type(qs, new_type, tensor, ftype);
  12250. }
  12251. if (params->token_embedding_type < GGML_TYPE_COUNT && strcmp(tensor->name, "token_embd.weight") == 0) {
  12252. new_type = params->token_embedding_type;
  12253. }
  12254. if (params->output_tensor_type < GGML_TYPE_COUNT && strcmp(tensor->name, "output.weight") == 0) {
  12255. new_type = params->output_tensor_type;
  12256. }
  12257. // If we've decided to quantize to the same type the tensor is already
  12258. // in then there's nothing to do.
  12259. quantize = tensor->type != new_type;
  12260. }
  12261. if (!quantize) {
  12262. new_type = tensor->type;
  12263. new_data = tensor->data;
  12264. new_size = ggml_nbytes(tensor);
  12265. LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
  12266. } else {
  12267. const int64_t nelements = ggml_nelements(tensor);
  12268. const float * imatrix = nullptr;
  12269. if (imatrix_data) {
  12270. auto it = imatrix_data->find(tensor->name);
  12271. if (it == imatrix_data->end()) {
  12272. LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name);
  12273. } else {
  12274. if (it->second.size() == (size_t)tensor->ne[0]*tensor->ne[2]) {
  12275. imatrix = it->second.data();
  12276. } else {
  12277. LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__,
  12278. int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name);
  12279. // this can happen when quantizing an old mixtral model with split tensors with a new incompatible imatrix
  12280. // this is a significant error and it may be good idea to abort the process if this happens,
  12281. // since many people will miss the error and not realize that most of the model is being quantized without an imatrix
  12282. // tok_embd should be ignored in this case, since it always causes this warning
  12283. if (name != tn(LLM_TENSOR_TOKEN_EMBD, "weight")) {
  12284. throw std::runtime_error(format("imatrix size %d is different from tensor size %d for %s",
  12285. int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name));
  12286. }
  12287. }
  12288. }
  12289. }
  12290. if ((new_type == GGML_TYPE_IQ2_XXS ||
  12291. new_type == GGML_TYPE_IQ2_XS ||
  12292. new_type == GGML_TYPE_IQ2_S ||
  12293. new_type == GGML_TYPE_IQ1_S ||
  12294. (new_type == GGML_TYPE_IQ1_M && strcmp(tensor->name, "token_embd.weight") && strcmp(tensor->name, "output.weight")) ||
  12295. (new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) {
  12296. LLAMA_LOG_ERROR("\n\n============================================================\n");
  12297. LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name);
  12298. LLAMA_LOG_ERROR("The result will be garbage, so bailing out\n");
  12299. LLAMA_LOG_ERROR("============================================================\n\n");
  12300. throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name));
  12301. }
  12302. float * f32_data;
  12303. if (tensor->type == GGML_TYPE_F32) {
  12304. f32_data = (float *) tensor->data;
  12305. } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
  12306. throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
  12307. } else {
  12308. llama_tensor_dequantize_internal(tensor, f32_conv_buf, workers, nelements, nthread);
  12309. f32_data = (float *) f32_conv_buf.data();
  12310. }
  12311. LLAMA_LOG_INFO("converting to %s .. ", ggml_type_name(new_type));
  12312. fflush(stdout);
  12313. if (work.size() < (size_t)nelements * 4) {
  12314. work.resize(nelements * 4); // upper bound on size
  12315. }
  12316. new_data = work.data();
  12317. const int64_t n_per_row = tensor->ne[0];
  12318. const int64_t nrows = tensor->ne[1];
  12319. static const int64_t min_chunk_size = 32 * 512;
  12320. const int64_t chunk_size = n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row);
  12321. const int64_t nelements_matrix = tensor->ne[0] * tensor->ne[1];
  12322. const int64_t nchunk = (nelements_matrix + chunk_size - 1)/chunk_size;
  12323. const int64_t nthread_use = nthread > 1 ? std::max((int64_t)1, std::min((int64_t)nthread, nchunk)) : 1;
  12324. // quantize each expert separately since they have different importance matrices
  12325. new_size = 0;
  12326. for (int64_t i03 = 0; i03 < tensor->ne[2]; ++i03) {
  12327. const float * f32_data_03 = f32_data + i03 * nelements_matrix;
  12328. void * new_data_03 = (char *)new_data + ggml_row_size(new_type, n_per_row) * i03 * nrows;
  12329. const float * imatrix_03 = imatrix ? imatrix + i03 * n_per_row : nullptr;
  12330. new_size += llama_tensor_quantize_internal(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use);
  12331. }
  12332. LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
  12333. }
  12334. total_size_org += ggml_nbytes(tensor);
  12335. total_size_new += new_size;
  12336. // update the gguf meta data as we go
  12337. gguf_set_tensor_type(ctx_outs[cur_split], name.c_str(), new_type);
  12338. gguf_set_tensor_data(ctx_outs[cur_split], name.c_str(), new_data, new_size);
  12339. // write tensor data + padding
  12340. fout.write((const char *) new_data, new_size);
  12341. zeros(fout, GGML_PAD(new_size, align) - new_size);
  12342. }
  12343. close_ofstream();
  12344. for (auto & c:ctx_outs) {
  12345. gguf_free(c);
  12346. }
  12347. LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
  12348. LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
  12349. if (qs.n_fallback > 0) {
  12350. LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) required fallback quantization\n",
  12351. __func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback);
  12352. }
  12353. }
  12354. static int llama_apply_lora_from_file_internal(
  12355. const struct llama_model & model, const char * path_lora, float scale, const char * path_base_model, int n_threads
  12356. ) {
  12357. LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
  12358. const int64_t t_start_lora_us = ggml_time_us();
  12359. llama_file fin(path_lora, "rb");
  12360. // verify magic and version
  12361. {
  12362. uint32_t magic = fin.read_u32();
  12363. if (magic != LLAMA_FILE_MAGIC_GGLA) {
  12364. LLAMA_LOG_ERROR("%s: bad file magic\n", __func__);
  12365. return 1;
  12366. }
  12367. uint32_t format_version = fin.read_u32();
  12368. if (format_version != 1) {
  12369. LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ );
  12370. return 1;
  12371. }
  12372. }
  12373. int32_t lora_r = fin.read_u32();
  12374. int32_t lora_alpha = fin.read_u32();
  12375. float scaling = scale * (float)lora_alpha / (float)lora_r;
  12376. LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
  12377. // load base model
  12378. std::unique_ptr<llama_model_loader> ml;
  12379. if (path_base_model) {
  12380. LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
  12381. ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*check_tensors*/ false, /*kv_overrides*/ nullptr));
  12382. ml->init_mappings(/*prefetch*/ false); // no prefetching
  12383. }
  12384. struct tensor_meta {
  12385. std::string name;
  12386. ggml_type type;
  12387. int32_t ne[2];
  12388. size_t offset;
  12389. };
  12390. std::map<std::string, tensor_meta> tensor_meta_map;
  12391. // load all tensor meta
  12392. while (true) {
  12393. if (fin.tell() == fin.size) {
  12394. // eof
  12395. break;
  12396. }
  12397. int32_t n_dims;
  12398. int32_t name_len;
  12399. int32_t ftype;
  12400. fin.read_raw(&n_dims, sizeof(n_dims));
  12401. fin.read_raw(&name_len, sizeof(name_len));
  12402. fin.read_raw(&ftype, sizeof(ftype));
  12403. if (n_dims != 1 && n_dims != 2) {
  12404. LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims);
  12405. return 1;
  12406. }
  12407. int32_t ne[2] = { 1, 1 };
  12408. for (int i = 0; i < n_dims; ++i) {
  12409. fin.read_raw(&ne[i], sizeof(ne[i]));
  12410. }
  12411. std::string name;
  12412. {
  12413. GGML_ASSERT(name_len < GGML_MAX_NAME);
  12414. char buf[GGML_MAX_NAME];
  12415. fin.read_raw(buf, name_len);
  12416. name = std::string(buf, name_len);
  12417. }
  12418. // check for lora suffix
  12419. std::string lora_suffix;
  12420. if (name.length() > 6) {
  12421. lora_suffix = name.substr(name.length() - 6);
  12422. }
  12423. if (lora_suffix != ".loraA" && lora_suffix != ".loraB") {
  12424. LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
  12425. return 1;
  12426. }
  12427. // tensor type
  12428. ggml_type wtype;
  12429. switch (ftype) {
  12430. case 0: wtype = GGML_TYPE_F32; break;
  12431. case 1: wtype = GGML_TYPE_F16; break;
  12432. default:
  12433. {
  12434. LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n",
  12435. __func__, ftype);
  12436. return 1;
  12437. }
  12438. }
  12439. // data offset
  12440. size_t offset = fin.tell();
  12441. offset = (offset + 31) & -32;
  12442. // skip tensor data
  12443. fin.seek(offset + ggml_row_size(wtype, ne[0]) * ne[1], SEEK_SET);
  12444. tensor_meta_map.emplace(name, tensor_meta{ name, wtype, { ne[0], ne[1] }, offset });
  12445. }
  12446. bool warned = false;
  12447. int n_tensors = 0;
  12448. // apply
  12449. ggml_backend_t backend_cpu = ggml_backend_cpu_init();
  12450. if (backend_cpu == nullptr) {
  12451. LLAMA_LOG_ERROR("%s: error: failed to initialize cpu backend\n", __func__);
  12452. return 1;
  12453. }
  12454. ggml_backend_cpu_set_n_threads(backend_cpu, n_threads);
  12455. std::vector<no_init<uint8_t>> read_buf;
  12456. for (const auto & it : model.tensors_by_name) {
  12457. const std::string & base_name = it.first;
  12458. ggml_tensor * model_t = it.second;
  12459. if (tensor_meta_map.find(base_name + ".loraA") == tensor_meta_map.end() ||
  12460. tensor_meta_map.find(base_name + ".loraB") == tensor_meta_map.end()) {
  12461. continue;
  12462. }
  12463. tensor_meta & metaA = tensor_meta_map.at(base_name + ".loraA");
  12464. tensor_meta & metaB = tensor_meta_map.at(base_name + ".loraB");
  12465. ggml_init_params lora_init_params = {
  12466. /* .mem_size */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  12467. /* .mem_buffer */ nullptr,
  12468. /* .no_alloc */ true,
  12469. };
  12470. ggml_context * lora_ctx = ggml_init(lora_init_params);
  12471. if (lora_ctx == nullptr) {
  12472. LLAMA_LOG_ERROR("%s: error: failed to initialize lora context\n", __func__);
  12473. ggml_backend_free(backend_cpu);
  12474. return 1;
  12475. }
  12476. // create tensors
  12477. ggml_tensor * loraA = ggml_new_tensor_2d(lora_ctx, metaA.type, metaA.ne[0], metaA.ne[1]);
  12478. ggml_tensor * loraB = ggml_new_tensor_2d(lora_ctx, metaB.type, metaB.ne[0], metaB.ne[1]);
  12479. ggml_set_name(loraA, metaA.name.c_str());
  12480. ggml_set_name(loraB, metaB.name.c_str());
  12481. ggml_tensor * base_t;
  12482. if (ml) {
  12483. if (!ml->get_tensor_meta(base_name.c_str())) {
  12484. LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
  12485. return 1;
  12486. }
  12487. base_t = ggml_dup_tensor(lora_ctx, ml->get_tensor_meta(base_name.c_str()));
  12488. } else {
  12489. base_t = ggml_dup_tensor(lora_ctx, model_t);
  12490. }
  12491. ggml_set_name(base_t, base_name.c_str());
  12492. // allocate in backend buffer
  12493. ggml_backend_buffer_t lora_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  12494. if (lora_buf == nullptr) {
  12495. LLAMA_LOG_ERROR("%s: error: failed to allocate lora tensors\n", __func__);
  12496. return 1;
  12497. }
  12498. // load tensor data
  12499. auto load_tensor = [&read_buf, &fin](const tensor_meta & tensor_meta, ggml_tensor * tensor) {
  12500. read_buf.resize(ggml_nbytes(tensor));
  12501. fin.seek(tensor_meta.offset, SEEK_SET);
  12502. fin.read_raw(read_buf.data(), ggml_nbytes(tensor));
  12503. ggml_backend_tensor_set(tensor, read_buf.data(), 0, read_buf.size());
  12504. };
  12505. load_tensor(metaA, loraA);
  12506. load_tensor(metaB, loraB);
  12507. // load base model tensor data
  12508. if (ml) {
  12509. ml->load_data_for(base_t);
  12510. } else {
  12511. ggml_backend_tensor_copy(model_t, base_t);
  12512. }
  12513. if (ggml_is_quantized(base_t->type) && !warned) {
  12514. LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, "
  12515. "use a f16 or f32 base model with --lora-base\n", __func__);
  12516. warned = true;
  12517. }
  12518. if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
  12519. LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
  12520. " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
  12521. ggml_free(lora_ctx);
  12522. ggml_backend_buffer_free(lora_buf);
  12523. ggml_backend_free(backend_cpu);
  12524. return 1;
  12525. }
  12526. auto build_lora_graph = [&]() {
  12527. // w = w + BA*s
  12528. ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
  12529. ggml_set_name(BA, "BA");
  12530. if (scaling != 1.0f) {
  12531. BA = ggml_scale(lora_ctx, BA, scaling);
  12532. ggml_set_name(BA, "BA_scaled");
  12533. }
  12534. ggml_tensor * r;
  12535. r = ggml_add_inplace(lora_ctx, base_t, BA);
  12536. ggml_set_name(r, "r_add");
  12537. if (base_t->type != model_t->type) {
  12538. // convert the result to the model type
  12539. r = ggml_cast(lora_ctx, r, model_t->type);
  12540. ggml_set_name(r, "r_cast");
  12541. }
  12542. return r;
  12543. };
  12544. ggml_cgraph * gf = ggml_new_graph(lora_ctx);
  12545. ggml_tensor * r = build_lora_graph();
  12546. ggml_build_forward_expand(gf, r);
  12547. ggml_backend_buffer_t graph_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  12548. if (graph_buf == nullptr) {
  12549. LLAMA_LOG_ERROR("%s: error: failed to allocate graph tensors\n", __func__);
  12550. ggml_free(lora_ctx);
  12551. ggml_backend_buffer_free(lora_buf);
  12552. ggml_backend_free(backend_cpu);
  12553. return 1;
  12554. }
  12555. ggml_backend_graph_compute(backend_cpu, gf);
  12556. ggml_backend_tensor_set(model_t, r->data, 0, ggml_nbytes(r));
  12557. #if 0
  12558. // TODO: use scheduler with fallback to CPU for less copies between CPU and GPU
  12559. //ggml_backend_sched_t sched = ggml_backend_sched_new(backends.data(), backends.size(), GGML_DEFAULT_GRAPH_SIZE);
  12560. // sched compute
  12561. ggml_build_forward_expand(gf, build_graph());
  12562. ggml_backend_sched_init_measure(sched, gf);
  12563. // create the graph again, since the previous one was destroyed by the measure
  12564. ggml_graph_clear(gf);
  12565. ggml_build_forward_expand(gf, build_graph());
  12566. ggml_backend_sched_graph_compute(sched, gf);
  12567. ggml_backend_sched_free(sched);
  12568. #endif
  12569. ggml_backend_buffer_free(lora_buf);
  12570. ggml_backend_buffer_free(graph_buf);
  12571. ggml_free(lora_ctx);
  12572. n_tensors++;
  12573. if (n_tensors % 4 == 0) {
  12574. LLAMA_LOG_INFO(".");
  12575. }
  12576. }
  12577. ggml_backend_free(backend_cpu);
  12578. const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
  12579. LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0);
  12580. return 0;
  12581. }
  12582. //
  12583. // interface implementation
  12584. //
  12585. struct llama_model_params llama_model_default_params() {
  12586. struct llama_model_params result = {
  12587. /*.n_gpu_layers =*/ 0,
  12588. /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
  12589. /*.main_gpu =*/ 0,
  12590. /*.tensor_split =*/ nullptr,
  12591. /*.progress_callback =*/ nullptr,
  12592. /*.progress_callback_user_data =*/ nullptr,
  12593. /*.kv_overrides =*/ nullptr,
  12594. /*.vocab_only =*/ false,
  12595. /*.use_mmap =*/ true,
  12596. /*.use_mlock =*/ false,
  12597. /*.check_tensors =*/ false,
  12598. };
  12599. #ifdef GGML_USE_METAL
  12600. // note: we usually have plenty of VRAM, so by default offload all layers to the GPU
  12601. result.n_gpu_layers = 999;
  12602. #endif
  12603. return result;
  12604. }
  12605. struct llama_context_params llama_context_default_params() {
  12606. struct llama_context_params result = {
  12607. /*.seed =*/ LLAMA_DEFAULT_SEED,
  12608. /*.n_ctx =*/ 512,
  12609. /*.n_batch =*/ 2048,
  12610. /*.n_ubatch =*/ 512,
  12611. /*.n_seq_max =*/ 1,
  12612. /*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default
  12613. /*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS,
  12614. /*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
  12615. /*.pooling_type =*/ LLAMA_POOLING_TYPE_UNSPECIFIED,
  12616. /*.rope_freq_base =*/ 0.0f,
  12617. /*.rope_freq_scale =*/ 0.0f,
  12618. /*.yarn_ext_factor =*/ -1.0f,
  12619. /*.yarn_attn_factor =*/ 1.0f,
  12620. /*.yarn_beta_fast =*/ 32.0f,
  12621. /*.yarn_beta_slow =*/ 1.0f,
  12622. /*.yarn_orig_ctx =*/ 0,
  12623. /*.defrag_thold =*/ -1.0f,
  12624. /*.cb_eval =*/ nullptr,
  12625. /*.cb_eval_user_data =*/ nullptr,
  12626. /*.type_k =*/ GGML_TYPE_F16,
  12627. /*.type_v =*/ GGML_TYPE_F16,
  12628. /*.logits_all =*/ false,
  12629. /*.embeddings =*/ false,
  12630. /*.offload_kqv =*/ true,
  12631. /*.abort_callback =*/ nullptr,
  12632. /*.abort_callback_data =*/ nullptr,
  12633. };
  12634. return result;
  12635. }
  12636. struct llama_model_quantize_params llama_model_quantize_default_params() {
  12637. struct llama_model_quantize_params result = {
  12638. /*.nthread =*/ 0,
  12639. /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
  12640. /*.output_tensor_type =*/ GGML_TYPE_COUNT,
  12641. /*.token_embedding_type =*/ GGML_TYPE_COUNT,
  12642. /*.allow_requantize =*/ false,
  12643. /*.quantize_output_tensor =*/ true,
  12644. /*.only_copy =*/ false,
  12645. /*.pure =*/ false,
  12646. /*.keep_split =*/ false,
  12647. /*.imatrix =*/ nullptr,
  12648. /*.kv_overrides =*/ nullptr,
  12649. };
  12650. return result;
  12651. }
  12652. size_t llama_max_devices(void) {
  12653. #if defined(GGML_USE_METAL)
  12654. return 1;
  12655. #elif defined(GGML_USE_CUDA)
  12656. return GGML_CUDA_MAX_DEVICES;
  12657. #elif defined(GGML_USE_SYCL)
  12658. return GGML_SYCL_MAX_DEVICES;
  12659. #elif defined(GGML_USE_VULKAN)
  12660. return GGML_VK_MAX_DEVICES;
  12661. #else
  12662. return 1;
  12663. #endif
  12664. }
  12665. bool llama_supports_mmap(void) {
  12666. return llama_mmap::SUPPORTED;
  12667. }
  12668. bool llama_supports_mlock(void) {
  12669. return llama_mlock::SUPPORTED;
  12670. }
  12671. bool llama_supports_gpu_offload(void) {
  12672. #if defined(GGML_USE_CUDA) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
  12673. defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE)
  12674. // Defined when llama.cpp is compiled with support for offloading model layers to GPU.
  12675. return true;
  12676. #else
  12677. return false;
  12678. #endif
  12679. }
  12680. void llama_backend_init(void) {
  12681. ggml_time_init();
  12682. // needed to initialize f16 tables
  12683. {
  12684. struct ggml_init_params params = { 0, NULL, false };
  12685. struct ggml_context * ctx = ggml_init(params);
  12686. ggml_free(ctx);
  12687. }
  12688. #ifdef GGML_USE_MPI
  12689. ggml_mpi_backend_init();
  12690. #endif
  12691. }
  12692. void llama_numa_init(enum ggml_numa_strategy numa) {
  12693. if (numa != GGML_NUMA_STRATEGY_DISABLED) {
  12694. ggml_numa_init(numa);
  12695. }
  12696. }
  12697. void llama_backend_free(void) {
  12698. #ifdef GGML_USE_MPI
  12699. ggml_mpi_backend_free();
  12700. #endif
  12701. ggml_quantize_free();
  12702. }
  12703. int64_t llama_time_us(void) {
  12704. return ggml_time_us();
  12705. }
  12706. struct llama_model * llama_load_model_from_file(
  12707. const char * path_model,
  12708. struct llama_model_params params) {
  12709. ggml_time_init();
  12710. llama_model * model = new llama_model;
  12711. unsigned cur_percentage = 0;
  12712. if (params.progress_callback == NULL) {
  12713. params.progress_callback_user_data = &cur_percentage;
  12714. params.progress_callback = [](float progress, void * ctx) {
  12715. unsigned * cur_percentage_p = (unsigned *) ctx;
  12716. unsigned percentage = (unsigned) (100 * progress);
  12717. while (percentage > *cur_percentage_p) {
  12718. *cur_percentage_p = percentage;
  12719. LLAMA_LOG_INFO(".");
  12720. if (percentage >= 100) {
  12721. LLAMA_LOG_INFO("\n");
  12722. }
  12723. }
  12724. return true;
  12725. };
  12726. }
  12727. int status = llama_model_load(path_model, *model, params);
  12728. GGML_ASSERT(status <= 0);
  12729. if (status < 0) {
  12730. if (status == -1) {
  12731. LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
  12732. } else if (status == -2) {
  12733. LLAMA_LOG_INFO("%s: cancelled model load\n", __func__);
  12734. }
  12735. delete model;
  12736. return nullptr;
  12737. }
  12738. return model;
  12739. }
  12740. void llama_free_model(struct llama_model * model) {
  12741. delete model;
  12742. }
  12743. struct llama_context * llama_new_context_with_model(
  12744. struct llama_model * model,
  12745. struct llama_context_params params) {
  12746. if (!model) {
  12747. LLAMA_LOG_ERROR("%s: model cannot be NULL\n", __func__);
  12748. return nullptr;
  12749. }
  12750. if (params.n_batch == 0 && params.n_ubatch == 0) {
  12751. LLAMA_LOG_ERROR("%s: n_batch and n_ubatch cannot both be zero\n", __func__);
  12752. return nullptr;
  12753. }
  12754. if (params.n_ctx == 0 && model->hparams.n_ctx_train == 0) {
  12755. LLAMA_LOG_ERROR("%s: n_ctx and model->hparams.n_ctx_train cannot both be zero\n", __func__);
  12756. return nullptr;
  12757. }
  12758. llama_context * ctx = new llama_context(*model);
  12759. const auto & hparams = model->hparams;
  12760. auto & cparams = ctx->cparams;
  12761. cparams.n_seq_max = std::max(1u, params.n_seq_max);
  12762. cparams.n_threads = params.n_threads;
  12763. cparams.n_threads_batch = params.n_threads_batch;
  12764. cparams.yarn_ext_factor = params.yarn_ext_factor;
  12765. cparams.yarn_attn_factor = params.yarn_attn_factor;
  12766. cparams.yarn_beta_fast = params.yarn_beta_fast;
  12767. cparams.yarn_beta_slow = params.yarn_beta_slow;
  12768. cparams.defrag_thold = params.defrag_thold;
  12769. cparams.embeddings = params.embeddings;
  12770. cparams.offload_kqv = params.offload_kqv;
  12771. cparams.pooling_type = params.pooling_type;
  12772. cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx;
  12773. cparams.rope_freq_base = params.rope_freq_base == 0.0f ? hparams.rope_freq_base_train : params.rope_freq_base;
  12774. cparams.rope_freq_scale = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale;
  12775. // this is necessary due to kv_self.n being padded later during inference
  12776. cparams.n_ctx = GGML_PAD(cparams.n_ctx, 32);
  12777. // with causal attention, the batch size is limited by the context size
  12778. cparams.n_batch = hparams.causal_attn ? std::min(cparams.n_ctx, params.n_batch) : params.n_batch;
  12779. cparams.n_ubatch = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch);
  12780. cparams.n_yarn_orig_ctx = params.yarn_orig_ctx != 0 ? params.yarn_orig_ctx :
  12781. hparams.n_yarn_orig_ctx != 0 ? hparams.n_yarn_orig_ctx :
  12782. hparams.n_ctx_train;
  12783. cparams.cb_eval = params.cb_eval;
  12784. cparams.cb_eval_user_data = params.cb_eval_user_data;
  12785. auto rope_scaling_type = params.rope_scaling_type;
  12786. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED) {
  12787. rope_scaling_type = hparams.rope_scaling_type_train;
  12788. }
  12789. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_NONE) {
  12790. cparams.rope_freq_scale = 1.0f; // never scale if scaling type is none
  12791. }
  12792. if (cparams.yarn_ext_factor < 0.0f) { // negative indicates 'not set'
  12793. cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_YARN ? 1.0f : 0.0f;
  12794. }
  12795. cparams.causal_attn = hparams.causal_attn;
  12796. if (cparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  12797. if (hparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  12798. cparams.pooling_type = LLAMA_POOLING_TYPE_NONE;
  12799. } else {
  12800. cparams.pooling_type = hparams.pooling_type;
  12801. }
  12802. }
  12803. if (params.seed == LLAMA_DEFAULT_SEED) {
  12804. params.seed = time(NULL);
  12805. }
  12806. LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx);
  12807. LLAMA_LOG_INFO("%s: n_batch = %u\n", __func__, cparams.n_batch);
  12808. LLAMA_LOG_INFO("%s: n_ubatch = %u\n", __func__, cparams.n_ubatch);
  12809. LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base);
  12810. LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale);
  12811. ctx->abort_callback = params.abort_callback;
  12812. ctx->abort_callback_data = params.abort_callback_data;
  12813. ctx->rng = std::mt19937(params.seed);
  12814. ctx->logits_all = params.logits_all;
  12815. uint32_t kv_size = cparams.n_ctx;
  12816. ggml_type type_k = params.type_k;
  12817. ggml_type type_v = params.type_v;
  12818. // Mamba only needs a constant number of KV cache cells per sequence
  12819. if (model->arch == LLM_ARCH_MAMBA) {
  12820. // Mamba needs at least as many KV cells as there are sequences kept at any time
  12821. kv_size = std::max((uint32_t) 1, params.n_seq_max);
  12822. // it's probably best to keep as much precision as possible for the states
  12823. type_k = GGML_TYPE_F32; // required by ggml_ssm_conv for Mamba's conv_states
  12824. type_v = GGML_TYPE_F32; // required by ggml_ssm_scan for Mamba's ssm_states
  12825. }
  12826. GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0);
  12827. GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0);
  12828. if (!hparams.vocab_only) {
  12829. // initialize backends
  12830. #ifdef GGML_USE_METAL
  12831. if (model->n_gpu_layers > 0) {
  12832. ctx->backend_metal = ggml_backend_metal_init();
  12833. if (ctx->backend_metal == nullptr) {
  12834. LLAMA_LOG_ERROR("%s: failed to initialize Metal backend\n", __func__);
  12835. llama_free(ctx);
  12836. return nullptr;
  12837. }
  12838. ctx->backends.push_back(ctx->backend_metal);
  12839. }
  12840. #elif defined(GGML_USE_CUDA)
  12841. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  12842. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  12843. ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu);
  12844. if (backend == nullptr) {
  12845. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu);
  12846. llama_free(ctx);
  12847. return nullptr;
  12848. }
  12849. ctx->backends.push_back(backend);
  12850. } else {
  12851. // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
  12852. for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) {
  12853. ggml_backend_t backend = ggml_backend_cuda_init(device);
  12854. if (backend == nullptr) {
  12855. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, device);
  12856. llama_free(ctx);
  12857. return nullptr;
  12858. }
  12859. ctx->backends.push_back(backend);
  12860. }
  12861. }
  12862. #elif defined(GGML_USE_VULKAN)
  12863. if (model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  12864. LLAMA_LOG_ERROR("%s: Row split not supported. Failed to initialize Vulkan backend\n", __func__);
  12865. llama_free(ctx);
  12866. return nullptr;
  12867. }
  12868. if (model->split_mode == LLAMA_SPLIT_MODE_NONE) {
  12869. ggml_backend_t backend = ggml_backend_vk_init(0);
  12870. if (backend == nullptr) {
  12871. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan backend\n", __func__);
  12872. llama_free(ctx);
  12873. return nullptr;
  12874. }
  12875. ctx->backends.push_back(backend);
  12876. } else {
  12877. for (int device = 0; device < ggml_backend_vk_get_device_count(); ++device) {
  12878. ggml_backend_t backend = ggml_backend_vk_init(device);
  12879. if (backend == nullptr) {
  12880. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan%d backend\n", __func__, device);
  12881. llama_free(ctx);
  12882. return nullptr;
  12883. }
  12884. ctx->backends.push_back(backend);
  12885. }
  12886. }
  12887. #elif defined(GGML_USE_SYCL)
  12888. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  12889. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  12890. ggml_backend_t backend = ggml_backend_sycl_init(model->main_gpu);
  12891. if (backend == nullptr) {
  12892. int main_gpu_id = ggml_backend_sycl_get_device_id(model->main_gpu);
  12893. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, main_gpu_id, model->main_gpu);
  12894. llama_free(ctx);
  12895. return nullptr;
  12896. }
  12897. ctx->backends.push_back(backend);
  12898. } else {
  12899. // LLAMA_SPLIT_LAYER requires a backend for each GPU
  12900. for (int i = 0; i < ggml_backend_sycl_get_device_count(); ++i) {
  12901. ggml_backend_t backend = ggml_backend_sycl_init(i);
  12902. if (backend == nullptr) {
  12903. int id_list[GGML_SYCL_MAX_DEVICES];
  12904. ggml_sycl_get_gpu_list(id_list, GGML_SYCL_MAX_DEVICES);
  12905. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, id_list[i], i);
  12906. llama_free(ctx);
  12907. return nullptr;
  12908. }
  12909. ctx->backends.push_back(backend);
  12910. }
  12911. }
  12912. #elif defined(GGML_USE_KOMPUTE)
  12913. if (model->n_gpu_layers > 0) {
  12914. auto * backend = ggml_backend_kompute_init(model->main_gpu);
  12915. if (backend == nullptr) {
  12916. LLAMA_LOG_ERROR("%s: failed to initialize Kompute backend\n", __func__);
  12917. llama_free(ctx);
  12918. return nullptr;
  12919. }
  12920. ctx->backends.push_back(backend);
  12921. }
  12922. #endif
  12923. ctx->backend_cpu = ggml_backend_cpu_init();
  12924. if (ctx->backend_cpu == nullptr) {
  12925. LLAMA_LOG_ERROR("%s: failed to initialize CPU backend\n", __func__);
  12926. llama_free(ctx);
  12927. return nullptr;
  12928. }
  12929. ctx->backends.push_back(ctx->backend_cpu);
  12930. if (!llama_kv_cache_init(ctx->kv_self, ctx->model, type_k, type_v, kv_size, cparams.offload_kqv)) {
  12931. LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__);
  12932. llama_free(ctx);
  12933. return nullptr;
  12934. }
  12935. {
  12936. size_t memory_size_k = 0;
  12937. size_t memory_size_v = 0;
  12938. for (auto & k : ctx->kv_self.k_l) {
  12939. memory_size_k += ggml_nbytes(k);
  12940. }
  12941. for (auto & v : ctx->kv_self.v_l) {
  12942. memory_size_v += ggml_nbytes(v);
  12943. }
  12944. LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
  12945. (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
  12946. ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
  12947. ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
  12948. }
  12949. // graph outputs buffer
  12950. {
  12951. // resized during inference when a batch uses more outputs
  12952. if (llama_output_reserve(*ctx, params.n_seq_max) < params.n_seq_max) {
  12953. LLAMA_LOG_ERROR("%s: failed to reserve initial output buffer\n", __func__);
  12954. llama_free(ctx);
  12955. return nullptr;
  12956. }
  12957. LLAMA_LOG_INFO("%s: %10s output buffer size = %8.2f MiB\n", __func__,
  12958. ggml_backend_buffer_name(ctx->buf_output),
  12959. ggml_backend_buffer_get_size(ctx->buf_output) / 1024.0 / 1024.0);
  12960. }
  12961. // scheduler and compute buffers
  12962. {
  12963. // buffer types used for the compute buffer of each backend
  12964. std::vector<ggml_backend_buffer_type_t> backend_buft;
  12965. for (auto * backend : ctx->backends) {
  12966. if (ggml_backend_is_cpu(backend)) {
  12967. // use host buffers for the CPU backend compute buffer
  12968. backend_buft.push_back(llama_default_buffer_type_cpu(true));
  12969. } else {
  12970. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
  12971. }
  12972. }
  12973. // buffer used to store the computation graph and the tensor meta data
  12974. ctx->buf_compute_meta.resize(ggml_tensor_overhead()*LLAMA_MAX_NODES + ggml_graph_overhead_custom(LLAMA_MAX_NODES, false));
  12975. // enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary
  12976. bool pipeline_parallel = llama_get_device_count() > 1 && model->n_gpu_layers > (int)model->hparams.n_layer && model->split_mode == LLAMA_SPLIT_MODE_LAYER;
  12977. #ifndef GGML_USE_CUDA
  12978. // pipeline parallelism requires support for async compute and events
  12979. // currently this is only implemented in the CUDA backend
  12980. pipeline_parallel = false;
  12981. #endif
  12982. ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), LLAMA_MAX_NODES, pipeline_parallel);
  12983. if (pipeline_parallel) {
  12984. LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(ctx->sched));
  12985. }
  12986. // build worst-case graph
  12987. int n_tokens = (int)std::min(cparams.n_ctx, cparams.n_ubatch);
  12988. int n_past = cparams.n_ctx - n_tokens;
  12989. llama_token token = llama_token_bos(&ctx->model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  12990. ggml_cgraph * gf = llama_build_graph(*ctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
  12991. // initialize scheduler with the worst-case graph
  12992. if (!ggml_backend_sched_reserve(ctx->sched, gf)) {
  12993. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  12994. llama_free(ctx);
  12995. return nullptr;
  12996. }
  12997. for (size_t i = 0; i < ctx->backends.size(); i++) {
  12998. ggml_backend_t backend = ctx->backends[i];
  12999. ggml_backend_buffer_type_t buft = backend_buft[i];
  13000. size_t size = ggml_backend_sched_get_buffer_size(ctx->sched, backend);
  13001. if (size > 1) {
  13002. LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
  13003. ggml_backend_buft_name(buft),
  13004. size / 1024.0 / 1024.0);
  13005. }
  13006. }
  13007. // note: the number of splits during measure is higher than during inference due to the kv shift
  13008. int n_splits = ggml_backend_sched_get_n_splits(ctx->sched);
  13009. LLAMA_LOG_INFO("%s: graph nodes = %d\n", __func__, gf->n_nodes);
  13010. LLAMA_LOG_INFO("%s: graph splits = %d\n", __func__, n_splits);
  13011. }
  13012. }
  13013. #ifdef GGML_USE_MPI
  13014. ctx->ctx_mpi = ggml_mpi_init();
  13015. if (ggml_mpi_rank(ctx->ctx_mpi) > 0) {
  13016. // Enter a blocking eval loop with dummy input, letting rank=0 drive the process
  13017. // TODO: needs fix after #3228
  13018. GGML_ASSERT(false && "not implemented");
  13019. //const std::vector<llama_token> tmp(ctx->model.hparams.n_ctx, llama_token_bos(ctx));
  13020. //while (!llama_eval(ctx, tmp.data(), tmp.size(), 0, 0)) {};
  13021. llama_backend_free();
  13022. exit(1);
  13023. }
  13024. #endif
  13025. return ctx;
  13026. }
  13027. void llama_free(struct llama_context * ctx) {
  13028. delete ctx;
  13029. }
  13030. const llama_model * llama_get_model(const struct llama_context * ctx) {
  13031. return &ctx->model;
  13032. }
  13033. uint32_t llama_n_ctx(const struct llama_context * ctx) {
  13034. return ctx->cparams.n_ctx;
  13035. }
  13036. uint32_t llama_n_batch(const struct llama_context * ctx) {
  13037. return ctx->cparams.n_batch;
  13038. }
  13039. uint32_t llama_n_ubatch(const struct llama_context * ctx) {
  13040. return ctx->cparams.n_ubatch;
  13041. }
  13042. uint32_t llama_n_seq_max(const struct llama_context * ctx) {
  13043. return ctx->kv_self.size;
  13044. }
  13045. enum llama_vocab_type llama_vocab_type(const struct llama_model * model) {
  13046. return model->vocab.type;
  13047. }
  13048. enum llama_rope_type llama_rope_type(const struct llama_model * model) {
  13049. switch (model->arch) {
  13050. // these models do not use RoPE
  13051. case LLM_ARCH_GPT2:
  13052. case LLM_ARCH_GPTJ:
  13053. case LLM_ARCH_GPTNEOX:
  13054. case LLM_ARCH_MPT:
  13055. case LLM_ARCH_REFACT:
  13056. case LLM_ARCH_BLOOM:
  13057. case LLM_ARCH_MAMBA:
  13058. return LLAMA_ROPE_TYPE_NONE;
  13059. // use what we call a normal RoPE, operating on pairs of consecutive head values
  13060. case LLM_ARCH_LLAMA:
  13061. case LLM_ARCH_BAICHUAN:
  13062. case LLM_ARCH_STARCODER:
  13063. case LLM_ARCH_PLAMO:
  13064. case LLM_ARCH_CODESHELL:
  13065. case LLM_ARCH_ORION:
  13066. case LLM_ARCH_INTERNLM2:
  13067. case LLM_ARCH_MINICPM:
  13068. case LLM_ARCH_XVERSE:
  13069. case LLM_ARCH_COMMAND_R:
  13070. case LLM_ARCH_OLMO:
  13071. return LLAMA_ROPE_TYPE_NORM;
  13072. // the pairs of head values are offset by n_rot/2
  13073. case LLM_ARCH_FALCON:
  13074. case LLM_ARCH_GROK:
  13075. case LLM_ARCH_DBRX:
  13076. case LLM_ARCH_PERSIMMON:
  13077. case LLM_ARCH_BERT:
  13078. case LLM_ARCH_NOMIC_BERT:
  13079. case LLM_ARCH_STABLELM:
  13080. case LLM_ARCH_QWEN:
  13081. case LLM_ARCH_QWEN2:
  13082. case LLM_ARCH_QWEN2MOE:
  13083. case LLM_ARCH_PHI2:
  13084. case LLM_ARCH_PHI3:
  13085. case LLM_ARCH_GEMMA:
  13086. case LLM_ARCH_STARCODER2:
  13087. return LLAMA_ROPE_TYPE_NEOX;
  13088. // all model arches should be listed explicitly here
  13089. case LLM_ARCH_UNKNOWN:
  13090. GGML_ASSERT(false && "unknown architecture");
  13091. break;
  13092. }
  13093. return LLAMA_ROPE_TYPE_NONE;
  13094. }
  13095. enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx) {
  13096. return ctx->cparams.pooling_type;
  13097. }
  13098. int32_t llama_n_vocab(const struct llama_model * model) {
  13099. return model->hparams.n_vocab;
  13100. }
  13101. int32_t llama_n_ctx_train(const struct llama_model * model) {
  13102. return model->hparams.n_ctx_train;
  13103. }
  13104. int32_t llama_n_embd(const struct llama_model * model) {
  13105. return model->hparams.n_embd;
  13106. }
  13107. int32_t llama_n_layer(const struct llama_model * model) {
  13108. return model->hparams.n_layer;
  13109. }
  13110. float llama_rope_freq_scale_train(const struct llama_model * model) {
  13111. return model->hparams.rope_freq_scale_train;
  13112. }
  13113. int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size) {
  13114. const auto & it = model->gguf_kv.find(key);
  13115. if (it == model->gguf_kv.end()) {
  13116. if (buf_size > 0) {
  13117. buf[0] = '\0';
  13118. }
  13119. return -1;
  13120. }
  13121. return snprintf(buf, buf_size, "%s", it->second.c_str());
  13122. }
  13123. int32_t llama_model_meta_count(const struct llama_model * model) {
  13124. return (int)model->gguf_kv.size();
  13125. }
  13126. int32_t llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size) {
  13127. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  13128. if (buf_size > 0) {
  13129. buf[0] = '\0';
  13130. }
  13131. return -1;
  13132. }
  13133. auto it = model->gguf_kv.begin();
  13134. std::advance(it, i);
  13135. return snprintf(buf, buf_size, "%s", it->first.c_str());
  13136. }
  13137. int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size) {
  13138. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  13139. if (buf_size > 0) {
  13140. buf[0] = '\0';
  13141. }
  13142. return -1;
  13143. }
  13144. auto it = model->gguf_kv.begin();
  13145. std::advance(it, i);
  13146. return snprintf(buf, buf_size, "%s", it->second.c_str());
  13147. }
  13148. int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
  13149. return snprintf(buf, buf_size, "%s %s %s",
  13150. llama_model_arch_name(model->arch),
  13151. llama_model_type_name(model->type),
  13152. llama_model_ftype_name(model->ftype).c_str());
  13153. }
  13154. uint64_t llama_model_size(const struct llama_model * model) {
  13155. uint64_t size = 0;
  13156. for (const auto & it : model->tensors_by_name) {
  13157. size += ggml_nbytes(it.second);
  13158. }
  13159. return size;
  13160. }
  13161. uint64_t llama_model_n_params(const struct llama_model * model) {
  13162. uint64_t nparams = 0;
  13163. for (const auto & it : model->tensors_by_name) {
  13164. nparams += ggml_nelements(it.second);
  13165. }
  13166. return nparams;
  13167. }
  13168. struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) {
  13169. auto it = std::find_if(model->tensors_by_name.begin(), model->tensors_by_name.end(),
  13170. [name](const std::pair<std::string, struct ggml_tensor *> & it) {
  13171. return it.first == name;
  13172. });
  13173. if (it == model->tensors_by_name.end()) {
  13174. return nullptr;
  13175. }
  13176. return it->second;
  13177. }
  13178. uint32_t llama_model_quantize(
  13179. const char * fname_inp,
  13180. const char * fname_out,
  13181. const llama_model_quantize_params * params) {
  13182. try {
  13183. llama_model_quantize_internal(fname_inp, fname_out, params);
  13184. return 0;
  13185. } catch (const std::exception & err) {
  13186. LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
  13187. return 1;
  13188. }
  13189. }
  13190. int32_t llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, float scale, const char * path_base_model, int32_t n_threads) {
  13191. try {
  13192. return llama_apply_lora_from_file_internal(*model, path_lora, scale, path_base_model, n_threads);
  13193. } catch (const std::exception & err) {
  13194. LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
  13195. return 1;
  13196. }
  13197. }
  13198. static bool llama_control_vector_init(struct llama_control_vector & cvec, const llama_model & model) {
  13199. GGML_ASSERT(cvec.tensors.empty());
  13200. GGML_ASSERT(cvec.ctxs.empty());
  13201. GGML_ASSERT(cvec.bufs.empty());
  13202. // count layer buffer types
  13203. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  13204. for (int64_t i = 0; i < model.hparams.n_layer; i++) {
  13205. buft_layer_count[model.buft_layer[i].buft]++;
  13206. }
  13207. // allocate contexts
  13208. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  13209. for (auto & it : buft_layer_count) {
  13210. int n_layers = it.second;
  13211. struct ggml_init_params params = {
  13212. /*.mem_size =*/ n_layers * ggml_tensor_overhead(),
  13213. /*.mem_buffer =*/ NULL,
  13214. /*.no_alloc =*/ true,
  13215. };
  13216. ggml_context * ctx = ggml_init(params);
  13217. if (!ctx) {
  13218. LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__);
  13219. return 1;
  13220. }
  13221. ctx_map[it.first] = ctx;
  13222. }
  13223. // make tensors
  13224. cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0
  13225. for (size_t il = 1; il < model.hparams.n_layer; il++) {
  13226. struct ggml_context * ctx = ctx_map.at(model.buft_layer[il].buft);
  13227. ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_embd);
  13228. cvec.tensors.push_back(tensor);
  13229. }
  13230. // allocate tensors / buffers and zero
  13231. for (auto it : ctx_map) {
  13232. ggml_backend_buffer_type_t buft = it.first;
  13233. ggml_context * ctx = it.second;
  13234. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  13235. if (!buf) {
  13236. LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n", __func__);
  13237. return false;
  13238. }
  13239. ggml_backend_buffer_clear(buf, 0);
  13240. cvec.ctxs.push_back(ctx);
  13241. cvec.bufs.push_back(buf);
  13242. }
  13243. return true;
  13244. }
  13245. int32_t llama_control_vector_apply(struct llama_context * lctx, const float * data, size_t len, int32_t n_embd, int32_t il_start, int32_t il_end) {
  13246. const llama_model & model = lctx->model;
  13247. llama_control_vector & cvec = lctx->cvec;
  13248. if (data == nullptr) {
  13249. // disable the current control vector (but leave allocated for later)
  13250. cvec.layer_start = -1;
  13251. cvec.layer_end = -1;
  13252. return 0;
  13253. }
  13254. if (n_embd != (int) model.hparams.n_embd) {
  13255. LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__);
  13256. return 1;
  13257. }
  13258. if (cvec.tensors.empty()) {
  13259. if (!llama_control_vector_init(cvec, model)) {
  13260. return 1;
  13261. }
  13262. }
  13263. cvec.layer_start = il_start;
  13264. cvec.layer_end = il_end;
  13265. for (size_t il = 1; il < model.hparams.n_layer; il++) {
  13266. assert(cvec.tensors[il] != nullptr);
  13267. const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present
  13268. if (off + n_embd <= len) {
  13269. ggml_backend_tensor_set(cvec.tensors[il], data + off, 0, n_embd * ggml_element_size(cvec.tensors[il]));
  13270. }
  13271. }
  13272. return 0;
  13273. }
  13274. struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max) {
  13275. struct llama_kv_cache_view result = {
  13276. /*.n_cells = */ 0,
  13277. /*.n_seq_max = */ n_seq_max,
  13278. /*.token_count = */ 0,
  13279. /*.used_cells = */ llama_get_kv_cache_used_cells(ctx),
  13280. /*.max_contiguous = */ 0,
  13281. /*.max_contiguous_idx = */ -1,
  13282. /*.cells = */ nullptr,
  13283. /*.cells_sequences = */ nullptr,
  13284. };
  13285. return result;
  13286. }
  13287. void llama_kv_cache_view_free(struct llama_kv_cache_view * view) {
  13288. if (view->cells != nullptr) {
  13289. free(view->cells);
  13290. view->cells = nullptr;
  13291. }
  13292. if (view->cells_sequences != nullptr) {
  13293. free(view->cells_sequences);
  13294. view->cells_sequences = nullptr;
  13295. }
  13296. }
  13297. void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view) {
  13298. if (uint32_t(view->n_cells) < ctx->kv_self.size || view->cells == nullptr) {
  13299. view->n_cells = int32_t(ctx->kv_self.size);
  13300. void * p = realloc(view->cells, sizeof(struct llama_kv_cache_view_cell) * view->n_cells);
  13301. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells");
  13302. view->cells = (struct llama_kv_cache_view_cell *)p;
  13303. p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_seq_max * view->n_cells);
  13304. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences");
  13305. view->cells_sequences = (llama_seq_id *)p;
  13306. }
  13307. const std::vector<llama_kv_cell> & kv_cells = ctx->kv_self.cells;
  13308. llama_kv_cache_view_cell * c_curr = view->cells;
  13309. llama_seq_id * cs_curr = view->cells_sequences;
  13310. int32_t used_cells = 0;
  13311. int32_t token_count = 0;
  13312. int32_t curr_contig_idx = -1;
  13313. uint32_t max_contig = 0;
  13314. int32_t max_contig_idx = -1;
  13315. for (int32_t i = 0; i < int32_t(ctx->kv_self.size); i++, c_curr++, cs_curr += view->n_seq_max) {
  13316. const size_t curr_size = kv_cells[i].seq_id.size();
  13317. token_count += curr_size;
  13318. c_curr->pos = kv_cells[i].pos + kv_cells[i].delta;
  13319. if (curr_size > 0) {
  13320. if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) {
  13321. max_contig = i - curr_contig_idx;
  13322. max_contig_idx = curr_contig_idx;
  13323. }
  13324. curr_contig_idx = -1;
  13325. } else if (curr_contig_idx < 0) {
  13326. curr_contig_idx = i;
  13327. }
  13328. int seq_idx = 0;
  13329. for (const llama_seq_id it : kv_cells[i].seq_id) {
  13330. if (seq_idx >= view->n_seq_max) {
  13331. break;
  13332. }
  13333. cs_curr[seq_idx] = it;
  13334. seq_idx++;
  13335. }
  13336. if (seq_idx != 0) {
  13337. used_cells++;
  13338. }
  13339. for (; seq_idx < view->n_seq_max; seq_idx++) {
  13340. cs_curr[seq_idx] = -1;
  13341. }
  13342. }
  13343. if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) {
  13344. max_contig_idx = curr_contig_idx;
  13345. max_contig = kv_cells.size() - curr_contig_idx;
  13346. }
  13347. view->max_contiguous = max_contig;
  13348. view->max_contiguous_idx = max_contig_idx;
  13349. view->token_count = token_count;
  13350. view->used_cells = used_cells;
  13351. if (uint32_t(used_cells) != ctx->kv_self.used) {
  13352. LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n",
  13353. __func__, ctx->kv_self.used, used_cells);
  13354. }
  13355. }
  13356. int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx) {
  13357. int result = 0;
  13358. for (uint32_t i = 0; i < ctx->kv_self.size; i++) {
  13359. result += ctx->kv_self.cells[i].seq_id.size();
  13360. }
  13361. return result;
  13362. }
  13363. int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx) {
  13364. return ctx->kv_self.used;
  13365. }
  13366. void llama_kv_cache_clear(struct llama_context * ctx) {
  13367. llama_kv_cache_clear(ctx->kv_self);
  13368. }
  13369. bool llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
  13370. return llama_kv_cache_seq_rm(ctx->kv_self, seq_id, p0, p1);
  13371. }
  13372. void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
  13373. if (seq_id_src == seq_id_dst) {
  13374. return;
  13375. }
  13376. llama_kv_cache_seq_cp(ctx->kv_self, seq_id_src, seq_id_dst, p0, p1);
  13377. }
  13378. void llama_kv_cache_seq_keep(struct llama_context * ctx, llama_seq_id seq_id) {
  13379. llama_kv_cache_seq_keep(ctx->kv_self, seq_id);
  13380. }
  13381. void llama_kv_cache_seq_add(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) {
  13382. if (delta == 0) {
  13383. return;
  13384. }
  13385. llama_kv_cache_seq_add(ctx->kv_self, seq_id, p0, p1, delta);
  13386. }
  13387. void llama_kv_cache_seq_div(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
  13388. if (d == 1) {
  13389. return;
  13390. }
  13391. llama_kv_cache_seq_div(ctx->kv_self, seq_id, p0, p1, d);
  13392. }
  13393. llama_pos llama_kv_cache_seq_pos_max(struct llama_context * ctx, llama_seq_id seq_id) {
  13394. return llama_kv_cache_seq_pos_max(ctx->kv_self, seq_id);
  13395. }
  13396. void llama_kv_cache_defrag(struct llama_context * ctx) {
  13397. llama_kv_cache_defrag(ctx->kv_self);
  13398. }
  13399. void llama_kv_cache_update(struct llama_context * ctx) {
  13400. llama_kv_cache_update_internal(*ctx);
  13401. }
  13402. // deprecated
  13403. size_t llama_get_state_size(const struct llama_context * ctx) {
  13404. return llama_state_get_size(ctx);
  13405. }
  13406. // deprecated
  13407. size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
  13408. return llama_state_get_data(ctx, dst);
  13409. }
  13410. // deprecated
  13411. size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
  13412. return llama_state_set_data(ctx, src);
  13413. }
  13414. // deprecated
  13415. bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  13416. return llama_state_load_file(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  13417. }
  13418. // deprecated
  13419. bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  13420. return llama_state_save_file(ctx, path_session, tokens, n_token_count);
  13421. }
  13422. // Returns the *maximum* size of the state
  13423. size_t llama_state_get_size(const struct llama_context * ctx) {
  13424. const auto & cparams = ctx->cparams;
  13425. const auto & hparams = ctx->model.hparams;
  13426. // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
  13427. // for reference, std::mt19937(1337) serializes to 6701 bytes.
  13428. const size_t s_rng_size = sizeof(size_t);
  13429. const size_t s_rng = LLAMA_MAX_RNG_STATE;
  13430. const size_t s_n_outputs = sizeof(size_t);
  13431. // assume worst case for outputs although only currently set ones are serialized
  13432. const size_t s_output_pos = ctx->cparams.n_batch * sizeof(int32_t);
  13433. const size_t s_logits_size = sizeof(size_t);
  13434. const size_t s_logits = ctx->logits_size ? cparams.n_batch * hparams.n_vocab * sizeof(float) : 0;
  13435. const size_t s_embedding_size = sizeof(size_t);
  13436. const size_t s_embedding = ctx->embd_size ? cparams.n_batch * hparams.n_embd * sizeof(float) : 0;
  13437. const size_t s_kv_buf_size = sizeof(size_t);
  13438. const size_t s_kv_head = sizeof(uint32_t);
  13439. const size_t s_kv_size = sizeof(uint32_t);
  13440. const size_t s_kv_used = sizeof(uint32_t);
  13441. const size_t s_kv = ctx->kv_self.total_size();
  13442. const size_t s_kv_cell = sizeof(llama_pos) + sizeof(size_t) + cparams.n_seq_max*sizeof(llama_seq_id);
  13443. const size_t s_kv_cells = ctx->kv_self.size * s_kv_cell;
  13444. const size_t s_total = (
  13445. + s_rng_size
  13446. + s_rng
  13447. + s_n_outputs
  13448. + s_output_pos
  13449. + s_logits_size
  13450. + s_logits
  13451. + s_embedding_size
  13452. + s_embedding
  13453. + s_kv_buf_size
  13454. + s_kv_head
  13455. + s_kv_size
  13456. + s_kv_used
  13457. + s_kv
  13458. + s_kv_cells
  13459. );
  13460. return s_total;
  13461. }
  13462. // llama_context_data
  13463. struct llama_data_context {
  13464. virtual void write(const void * src, size_t size) = 0;
  13465. virtual size_t get_size_written() = 0;
  13466. virtual ~llama_data_context() = default;
  13467. };
  13468. struct llama_data_buffer_context : llama_data_context {
  13469. uint8_t * ptr;
  13470. size_t size_written = 0;
  13471. llama_data_buffer_context(uint8_t * p) : ptr(p) {}
  13472. void write(const void * src, size_t size) override {
  13473. memcpy(ptr, src, size);
  13474. ptr += size;
  13475. size_written += size;
  13476. }
  13477. size_t get_size_written() override {
  13478. return size_written;
  13479. }
  13480. };
  13481. struct llama_data_file_context : llama_data_context {
  13482. llama_file * file;
  13483. size_t size_written = 0;
  13484. llama_data_file_context(llama_file * f) : file(f) {}
  13485. void write(const void * src, size_t size) override {
  13486. file->write_raw(src, size);
  13487. size_written += size;
  13488. }
  13489. size_t get_size_written() override {
  13490. return size_written;
  13491. }
  13492. };
  13493. /** copy state data into either a buffer or file depending on the passed in context
  13494. *
  13495. * file context:
  13496. * llama_file file("/path", "wb");
  13497. * llama_data_file_context data_ctx(&file);
  13498. * llama_state_get_data(ctx, &data_ctx);
  13499. *
  13500. * buffer context:
  13501. * std::vector<uint8_t> buf(max_size, 0);
  13502. * llama_data_buffer_context data_ctx(&buf.data());
  13503. * llama_state_get_data(ctx, &data_ctx);
  13504. *
  13505. */
  13506. static void llama_state_get_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) {
  13507. llama_synchronize(ctx);
  13508. // copy rng
  13509. {
  13510. std::ostringstream rng_ss;
  13511. rng_ss << ctx->rng;
  13512. const std::string & rng_str = rng_ss.str();
  13513. const size_t rng_size = rng_str.size();
  13514. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  13515. data_ctx->write(&rng_size, sizeof(rng_size));
  13516. data_ctx->write(rng_str.data(), rng_size);
  13517. }
  13518. // copy outputs
  13519. {
  13520. // Can't use ctx->n_outputs because it's not for the
  13521. // entire last batch when n_ubatch is smaller than n_batch
  13522. size_t n_outputs = 0;
  13523. // copy output ids
  13524. {
  13525. std::vector<int32_t> output_pos;
  13526. const size_t n_batch = ctx->cparams.n_batch;
  13527. const auto & output_ids = ctx->output_ids;
  13528. output_pos.resize(ctx->output_size);
  13529. // build a more compact representation of the output ids
  13530. for (size_t i = 0; i < n_batch; ++i) {
  13531. // map an output id to a position in the batch
  13532. int32_t pos = output_ids[i];
  13533. if (pos >= 0) {
  13534. if ((size_t) pos >= n_outputs) {
  13535. n_outputs = pos + 1;
  13536. }
  13537. GGML_ASSERT((size_t) pos < ctx->output_size);
  13538. output_pos[pos] = i;
  13539. }
  13540. }
  13541. data_ctx->write(&n_outputs, sizeof(n_outputs));
  13542. if (n_outputs) {
  13543. data_ctx->write(output_pos.data(), n_outputs * sizeof(int32_t));
  13544. }
  13545. }
  13546. // copy logits
  13547. {
  13548. const size_t logits_size = std::min(ctx->logits_size, n_outputs * ctx->model.hparams.n_vocab);
  13549. data_ctx->write(&logits_size, sizeof(logits_size));
  13550. if (logits_size) {
  13551. data_ctx->write(ctx->logits, logits_size * sizeof(float));
  13552. }
  13553. }
  13554. // copy embeddings
  13555. {
  13556. const size_t embeddings_size = std::min(ctx->embd_size, n_outputs * ctx->model.hparams.n_embd);
  13557. data_ctx->write(&embeddings_size, sizeof(embeddings_size));
  13558. if (embeddings_size) {
  13559. data_ctx->write(ctx->embd, embeddings_size * sizeof(float));
  13560. }
  13561. }
  13562. }
  13563. // copy kv cache
  13564. {
  13565. const auto & kv_self = ctx->kv_self;
  13566. const auto & hparams = ctx->model.hparams;
  13567. const uint32_t n_layer = hparams.n_layer;
  13568. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  13569. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  13570. // NOTE: kv_size and kv_buf_size are mostly used for sanity checks
  13571. const uint32_t kv_head = llama_kv_cache_cell_max(kv_self);
  13572. const uint32_t kv_size = kv_self.size;
  13573. const size_t kv_buf_size = kv_self.total_size() / (kv_size ? kv_size : 1) * kv_head;
  13574. const uint32_t kv_used = kv_self.used;
  13575. data_ctx->write(&kv_buf_size, sizeof(kv_buf_size));
  13576. data_ctx->write(&kv_head, sizeof(kv_head));
  13577. data_ctx->write(&kv_size, sizeof(kv_size));
  13578. data_ctx->write(&kv_used, sizeof(kv_used));
  13579. if (kv_buf_size) {
  13580. const size_t pre_kv_buf_size = data_ctx->get_size_written();
  13581. std::vector<uint8_t> tmp_buf;
  13582. for (int il = 0; il < (int) n_layer; ++il) {
  13583. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  13584. tmp_buf.resize(k_size);
  13585. ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), 0, tmp_buf.size());
  13586. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  13587. if (kv_self.recurrent) {
  13588. // v is contiguous for recurrent models
  13589. // TODO: use other tensors for state models than k and v
  13590. const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
  13591. tmp_buf.resize(v_size);
  13592. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), 0, tmp_buf.size());
  13593. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  13594. continue;
  13595. }
  13596. // v is not contiguous, copy row by row
  13597. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  13598. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_size);
  13599. tmp_buf.resize(v_row_size);
  13600. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  13601. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), ir*v_row_stride, tmp_buf.size());
  13602. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  13603. }
  13604. }
  13605. GGML_ASSERT(kv_buf_size == data_ctx->get_size_written() - pre_kv_buf_size);
  13606. }
  13607. for (uint32_t i = 0; i < kv_head; ++i) {
  13608. const auto & cell = kv_self.cells[i];
  13609. const llama_pos pos = cell.pos;
  13610. const size_t seq_id_size = cell.seq_id.size();
  13611. data_ctx->write(&pos, sizeof(pos));
  13612. data_ctx->write(&seq_id_size, sizeof(seq_id_size));
  13613. for (auto seq_id : cell.seq_id) {
  13614. data_ctx->write(&seq_id, sizeof(seq_id));
  13615. }
  13616. }
  13617. }
  13618. }
  13619. size_t llama_state_get_data(struct llama_context * ctx, uint8_t * dst) {
  13620. llama_data_buffer_context data_ctx(dst);
  13621. llama_state_get_data_internal(ctx, &data_ctx);
  13622. return data_ctx.get_size_written();
  13623. }
  13624. // Sets the state reading from the specified source address
  13625. size_t llama_state_set_data(struct llama_context * ctx, const uint8_t * src) {
  13626. llama_synchronize(ctx);
  13627. const uint8_t * inp = src;
  13628. // set rng
  13629. {
  13630. size_t rng_size;
  13631. memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
  13632. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  13633. std::string rng_str((const char *)inp, rng_size); inp += rng_size;
  13634. std::istringstream rng_ss(rng_str);
  13635. rng_ss >> ctx->rng;
  13636. GGML_ASSERT(!rng_ss.fail());
  13637. }
  13638. // set output ids
  13639. {
  13640. size_t n_outputs;
  13641. std::vector<int32_t> output_pos;
  13642. memcpy(&n_outputs, inp, sizeof(n_outputs)); inp += sizeof(n_outputs);
  13643. GGML_ASSERT(n_outputs <= llama_output_reserve(*ctx, n_outputs));
  13644. if (n_outputs) {
  13645. output_pos.resize(n_outputs);
  13646. memcpy(output_pos.data(), inp, n_outputs * sizeof(int32_t));
  13647. inp += n_outputs * sizeof(int32_t);
  13648. for (int32_t i = 0; i < (int32_t) output_pos.size(); ++i) {
  13649. int32_t id = output_pos[i];
  13650. GGML_ASSERT((uint32_t) id < ctx->cparams.n_batch);
  13651. ctx->output_ids[id] = i;
  13652. }
  13653. ctx->n_outputs = n_outputs;
  13654. }
  13655. }
  13656. // set logits
  13657. {
  13658. size_t logits_size;
  13659. memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
  13660. GGML_ASSERT(ctx->logits_size >= logits_size);
  13661. if (logits_size) {
  13662. memcpy(ctx->logits, inp, logits_size * sizeof(float));
  13663. inp += logits_size * sizeof(float);
  13664. }
  13665. }
  13666. // set embeddings
  13667. {
  13668. size_t embeddings_size;
  13669. memcpy(&embeddings_size, inp, sizeof(embeddings_size)); inp += sizeof(embeddings_size);
  13670. GGML_ASSERT(ctx->embd_size >= embeddings_size);
  13671. if (embeddings_size) {
  13672. memcpy(ctx->embd, inp, embeddings_size * sizeof(float));
  13673. inp += embeddings_size * sizeof(float);
  13674. }
  13675. }
  13676. // set kv cache
  13677. {
  13678. const auto & kv_self = ctx->kv_self;
  13679. const auto & hparams = ctx->model.hparams;
  13680. const uint32_t n_layer = hparams.n_layer;
  13681. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  13682. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  13683. size_t kv_buf_size;
  13684. uint32_t kv_head;
  13685. uint32_t kv_size;
  13686. uint32_t kv_used;
  13687. memcpy(&kv_buf_size, inp, sizeof(kv_buf_size)); inp += sizeof(kv_buf_size);
  13688. memcpy(&kv_head, inp, sizeof(kv_head)); inp += sizeof(kv_head);
  13689. memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
  13690. memcpy(&kv_used, inp, sizeof(kv_used)); inp += sizeof(kv_used);
  13691. if (kv_self.size != kv_size) {
  13692. // the KV cache needs to be big enough to load all the KV cells from the saved state
  13693. GGML_ASSERT(kv_self.size >= kv_head);
  13694. LLAMA_LOG_INFO("%s: state contains %d KV cells, was saved with kv_size=%d, but is loaded with kv_size=%d (fine, but different)\n",
  13695. __func__, kv_head, kv_size, kv_self.size);
  13696. }
  13697. if (kv_buf_size) {
  13698. const size_t pre_kv_buf_size = inp - src;
  13699. GGML_ASSERT(kv_self.total_size() >= kv_buf_size);
  13700. for (int il = 0; il < (int) n_layer; ++il) {
  13701. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  13702. ggml_backend_tensor_set(kv_self.k_l[il], inp, 0, k_size);
  13703. inp += k_size;
  13704. if (kv_self.recurrent) {
  13705. // v is contiguous for recurrent models
  13706. // TODO: use other tensors for state models than k and v
  13707. const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
  13708. ggml_backend_tensor_set(kv_self.v_l[il], inp, 0, v_size);
  13709. inp += v_size;
  13710. continue;
  13711. }
  13712. // v is not contiguous, copy row by row
  13713. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  13714. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_self.size);
  13715. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  13716. ggml_backend_tensor_set(kv_self.v_l[il], inp, ir*v_row_stride, v_row_size);
  13717. inp += v_row_size;
  13718. }
  13719. }
  13720. GGML_ASSERT(kv_buf_size == inp - src - pre_kv_buf_size);
  13721. }
  13722. llama_kv_cache_clear(ctx);
  13723. ctx->kv_self.head = kv_head;
  13724. ctx->kv_self.used = kv_used;
  13725. for (uint32_t i = 0; i < kv_head; ++i) {
  13726. llama_pos pos;
  13727. size_t seq_id_size;
  13728. memcpy(&pos, inp, sizeof(pos)); inp += sizeof(pos);
  13729. memcpy(&seq_id_size, inp, sizeof(seq_id_size)); inp += sizeof(seq_id_size);
  13730. ctx->kv_self.cells[i].pos = pos;
  13731. llama_seq_id seq_id;
  13732. for (size_t j = 0; j < seq_id_size; ++j) {
  13733. memcpy(&seq_id, inp, sizeof(seq_id)); inp += sizeof(seq_id);
  13734. ctx->kv_self.cells[i].seq_id.insert(seq_id);
  13735. }
  13736. }
  13737. }
  13738. const size_t nread = inp - src;
  13739. const size_t max_size = llama_state_get_size(ctx);
  13740. GGML_ASSERT(nread <= max_size);
  13741. return nread;
  13742. }
  13743. static bool llama_state_load_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  13744. llama_file file(path_session, "rb");
  13745. // sanity checks
  13746. {
  13747. const uint32_t magic = file.read_u32();
  13748. const uint32_t version = file.read_u32();
  13749. if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
  13750. LLAMA_LOG_ERROR("%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
  13751. return false;
  13752. }
  13753. llama_hparams session_hparams;
  13754. file.read_raw(&session_hparams, sizeof(llama_hparams));
  13755. if (session_hparams != ctx->model.hparams) {
  13756. LLAMA_LOG_INFO("%s : model hparams didn't match from session file!\n", __func__);
  13757. return false;
  13758. }
  13759. }
  13760. // load the prompt
  13761. {
  13762. const uint32_t n_token_count = file.read_u32();
  13763. if (n_token_count > n_token_capacity) {
  13764. LLAMA_LOG_ERROR("%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  13765. return false;
  13766. }
  13767. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  13768. *n_token_count_out = n_token_count;
  13769. }
  13770. // restore the context state
  13771. {
  13772. const size_t n_state_size_cur = file.size - file.tell();
  13773. const size_t n_state_size_max = llama_state_get_size(ctx);
  13774. if (n_state_size_cur > n_state_size_max) {
  13775. LLAMA_LOG_ERROR("%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
  13776. return false;
  13777. }
  13778. std::vector<uint8_t> state_data(n_state_size_max);
  13779. file.read_raw(state_data.data(), n_state_size_cur);
  13780. llama_state_set_data(ctx, state_data.data());
  13781. }
  13782. return true;
  13783. }
  13784. bool llama_state_load_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  13785. try {
  13786. return llama_state_load_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  13787. } catch (const std::exception & err) {
  13788. LLAMA_LOG_ERROR("error loading session file: %s\n", err.what());
  13789. return false;
  13790. }
  13791. }
  13792. static bool llama_state_save_file_internal(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  13793. llama_file file(path_session, "wb");
  13794. file.write_u32(LLAMA_SESSION_MAGIC);
  13795. file.write_u32(LLAMA_SESSION_VERSION);
  13796. file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
  13797. // save the prompt
  13798. file.write_u32((uint32_t) n_token_count);
  13799. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  13800. // save the context state using stream saving
  13801. llama_data_file_context data_ctx(&file);
  13802. llama_state_get_data_internal(ctx, &data_ctx);
  13803. return true;
  13804. }
  13805. bool llama_state_save_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  13806. try {
  13807. return llama_state_save_file_internal(ctx, path_session, tokens, n_token_count);
  13808. } catch (const std::exception & err) {
  13809. LLAMA_LOG_ERROR("error saving session file: %s\n", err.what());
  13810. return false;
  13811. }
  13812. }
  13813. size_t llama_state_seq_get_size(struct llama_context* ctx, llama_seq_id seq_id) {
  13814. // save the size of size_t as a uint32_t for safety check
  13815. const size_t size_t_size_size = sizeof(uint32_t);
  13816. // other values
  13817. const size_t s_cell_count_size = sizeof(uint32_t);
  13818. const size_t s_layer_count_size = sizeof(uint32_t);
  13819. const size_t n_embd_v_gqa_size = sizeof(uint32_t);
  13820. size_t s_cell_count = 0;
  13821. size_t s_cell_data_size = 0;
  13822. const auto & kv_self = ctx->kv_self;
  13823. const auto & hparams = ctx->model.hparams;
  13824. const uint32_t n_layer = hparams.n_layer;
  13825. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  13826. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  13827. for (uint32_t i = 0; i < kv_self.size; ++i) {
  13828. const auto & cell = kv_self.cells[i];
  13829. if (cell.seq_id.count(seq_id) > 0) {
  13830. ++s_cell_count;
  13831. s_cell_data_size += sizeof(llama_pos);
  13832. }
  13833. }
  13834. for (int il = 0; il < (int)n_layer; ++il) {
  13835. // types of keys and values
  13836. s_cell_data_size += sizeof(int32_t) * 2;
  13837. // k_size_row and v_size_el values of layer
  13838. s_cell_data_size += sizeof(size_t) * 2;
  13839. // keys
  13840. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  13841. s_cell_data_size += k_size_row * s_cell_count;
  13842. // values (transposed)
  13843. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  13844. s_cell_data_size += v_size_el * s_cell_count * n_embd_v_gqa;
  13845. }
  13846. const size_t s_total = (
  13847. size_t_size_size +
  13848. s_cell_count_size +
  13849. s_layer_count_size +
  13850. n_embd_v_gqa_size +
  13851. s_cell_data_size
  13852. );
  13853. return s_total;
  13854. }
  13855. static size_t llama_state_seq_get_data_internal(struct llama_context * ctx, llama_data_context & data_ctx, llama_seq_id seq_id) {
  13856. llama_synchronize(ctx);
  13857. const auto & kv_self = ctx->kv_self;
  13858. GGML_ASSERT(!kv_self.recurrent); // not implemented
  13859. // Save the size of size_t as a uint32_t for safety check
  13860. const uint32_t size_t_size = sizeof(size_t);
  13861. data_ctx.write(&size_t_size, sizeof(size_t_size));
  13862. std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive
  13863. uint32_t cell_count = 0;
  13864. // Count the number of cells with the specified seq_id
  13865. // Find all the ranges of cells with this seq id
  13866. {
  13867. uint32_t cell_range_begin = kv_self.size;
  13868. for (uint32_t i = 0; i < kv_self.size; ++i) {
  13869. const auto & cell = kv_self.cells[i];
  13870. if (cell.has_seq_id(seq_id)) {
  13871. ++cell_count;
  13872. if (cell_range_begin == kv_self.size) {
  13873. cell_range_begin = i;
  13874. }
  13875. }
  13876. else {
  13877. if (cell_range_begin != kv_self.size) {
  13878. cell_ranges.push_back({ cell_range_begin, i });
  13879. cell_range_begin = kv_self.size;
  13880. }
  13881. }
  13882. }
  13883. if (cell_range_begin != kv_self.size) {
  13884. cell_ranges.push_back({ cell_range_begin, kv_self.size });
  13885. }
  13886. // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count
  13887. uint32_t cell_count_check = 0;
  13888. for (const auto & range : cell_ranges) {
  13889. cell_count_check += range.second - range.first;
  13890. }
  13891. GGML_ASSERT(cell_count == cell_count_check);
  13892. }
  13893. // Write the cell count
  13894. data_ctx.write(&cell_count, sizeof(cell_count));
  13895. const auto & hparams = ctx->model.hparams;
  13896. const uint32_t n_layer = hparams.n_layer;
  13897. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  13898. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  13899. // Write the layer count
  13900. data_ctx.write(&n_layer, sizeof(n_layer));
  13901. // Write n_embd_v_gqa
  13902. data_ctx.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa));
  13903. // Iterate the ranges and write all the pos (this is the token position in the prompt)
  13904. for (const auto & range : cell_ranges) {
  13905. for (uint32_t i = range.first; i < range.second; ++i) {
  13906. const auto & cell = kv_self.cells[i];
  13907. data_ctx.write(&cell.pos, sizeof(cell.pos));
  13908. }
  13909. }
  13910. // Iterate and write all the keys first, each row is a cell
  13911. // Get whole range at a time
  13912. std::vector<uint8_t> tmp_buf;
  13913. for (int il = 0; il < (int)n_layer; ++il) {
  13914. // Write key type
  13915. const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
  13916. data_ctx.write(&k_type_i, sizeof(k_type_i));
  13917. // Write row size of key
  13918. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  13919. data_ctx.write(&k_size_row, sizeof(k_size_row));
  13920. // Read each range of cells of k_size length each into tmp_buf and write out
  13921. for (const auto & range : cell_ranges) {
  13922. const size_t range_size = range.second - range.first;
  13923. tmp_buf.resize(range_size * k_size_row);
  13924. ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), range.first * k_size_row, range_size * k_size_row);
  13925. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  13926. }
  13927. }
  13928. // For the values, they are transposed, so we also need the element size and get the element ranges from each row
  13929. const uint32_t kv_size = kv_self.size;
  13930. for (int il = 0; il < (int)n_layer; ++il) {
  13931. // Write value type
  13932. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  13933. data_ctx.write(&v_type_i, sizeof(v_type_i));
  13934. // Write element size
  13935. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  13936. data_ctx.write(&v_size_el, sizeof(v_size_el));
  13937. // For each row, we get the element values of each cell
  13938. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  13939. // Read each range of cells of v_size_el length each into tmp_buf and write out
  13940. for (const auto & range : cell_ranges) {
  13941. const size_t range_size = range.second - range.first;
  13942. const size_t src_offset = (range.first + j * kv_size) * v_size_el;
  13943. tmp_buf.resize(range_size * v_size_el);
  13944. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), src_offset, tmp_buf.size());
  13945. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  13946. }
  13947. }
  13948. }
  13949. return data_ctx.get_size_written();
  13950. }
  13951. size_t llama_state_seq_get_data(struct llama_context* ctx, uint8_t* dst, llama_seq_id seq_id) {
  13952. llama_data_buffer_context data_ctx(dst);
  13953. return llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
  13954. }
  13955. size_t llama_state_seq_set_data(struct llama_context * ctx, const uint8_t * src, llama_seq_id dest_seq_id) {
  13956. llama_synchronize(ctx);
  13957. auto & kv_self = ctx->kv_self;
  13958. GGML_ASSERT(!kv_self.recurrent); // not implemented
  13959. // Wipe the slot
  13960. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  13961. const uint8_t * inp = src;
  13962. // Read size of size_t
  13963. uint32_t size_t_size;
  13964. memcpy(&size_t_size, inp, sizeof(size_t_size));
  13965. inp += sizeof(size_t_size);
  13966. if (size_t_size != sizeof(size_t)) {
  13967. LLAMA_LOG_ERROR("%s: size_t size mismatch\n", __func__);
  13968. return 0;
  13969. }
  13970. // Read the cell count
  13971. uint32_t cell_count;
  13972. memcpy(&cell_count, inp, sizeof(cell_count));
  13973. inp += sizeof(cell_count);
  13974. // Read the layer count
  13975. uint32_t n_layer_ref;
  13976. memcpy(&n_layer_ref, inp, sizeof(n_layer_ref));
  13977. inp += sizeof(n_layer_ref);
  13978. // Read n_embd_v_gqa
  13979. uint32_t n_embd_v_gqa_ref;
  13980. memcpy(&n_embd_v_gqa_ref, inp, sizeof(n_embd_v_gqa_ref));
  13981. inp += sizeof(n_embd_v_gqa_ref);
  13982. // Sanity check model compatibility
  13983. const auto & hparams = ctx->model.hparams;
  13984. const uint32_t n_layer = hparams.n_layer;
  13985. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  13986. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  13987. if (n_layer != n_layer_ref) {
  13988. LLAMA_LOG_ERROR("%s: mismatched n_layer (%d != %d)\n", __func__, n_layer, n_layer_ref);
  13989. return 0;
  13990. }
  13991. if (n_embd_v_gqa != n_embd_v_gqa_ref) {
  13992. LLAMA_LOG_ERROR("%s: mismatched n_embd_v_gqa (%d != %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref);
  13993. return 0;
  13994. }
  13995. // Allocate the new cells for the slot
  13996. if (cell_count) {
  13997. llama_batch batch = llama_batch_init(cell_count, 0, 1);
  13998. batch.n_tokens = cell_count;
  13999. for (uint32_t i = 0; i < cell_count; ++i) {
  14000. llama_pos pos;
  14001. memcpy(&pos, inp, sizeof(pos));
  14002. inp += sizeof(pos);
  14003. batch.pos[i] = pos;
  14004. batch.n_seq_id[i] = 1;
  14005. batch.seq_id[i][0] = dest_seq_id;
  14006. }
  14007. if (!llama_kv_cache_find_slot(kv_self, batch)) {
  14008. llama_batch_free(batch);
  14009. LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
  14010. return 0;
  14011. }
  14012. // DEBUG CHECK: kv_self.head should be our first cell, kv_self.head + cell_count - 1 should be our last cell (verify seq_id and pos values)
  14013. // Assume that this is one contiguous block of cells
  14014. GGML_ASSERT(kv_self.head + cell_count <= kv_self.size);
  14015. GGML_ASSERT(kv_self.cells[kv_self.head].pos == batch.pos[0]);
  14016. GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].pos == batch.pos[cell_count - 1]);
  14017. GGML_ASSERT(kv_self.cells[kv_self.head].has_seq_id(dest_seq_id));
  14018. GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].has_seq_id(dest_seq_id));
  14019. // Cleanup
  14020. llama_batch_free(batch);
  14021. }
  14022. const uint32_t kv_size = kv_self.size;
  14023. const uint32_t kv_head = kv_self.head;
  14024. // For each layer, read the keys for each cell, one row is one cell, read as one contiguous blo
  14025. for (int il = 0; il < (int)n_layer; ++il) {
  14026. // Read type of key
  14027. int32_t k_type_i_ref;
  14028. memcpy(&k_type_i_ref, inp, sizeof(k_type_i_ref));
  14029. inp += sizeof(k_type_i_ref);
  14030. const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
  14031. if (k_type_i != k_type_i_ref) {
  14032. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14033. LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il);
  14034. return 0;
  14035. }
  14036. // Read row size of key
  14037. size_t k_size_row_ref;
  14038. memcpy(&k_size_row_ref, inp, sizeof(k_size_row_ref));
  14039. inp += sizeof(k_size_row_ref);
  14040. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  14041. if (k_size_row != k_size_row_ref) {
  14042. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14043. LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, k_size_row_ref, il);
  14044. return 0;
  14045. }
  14046. if (cell_count) {
  14047. // Read and set the keys for the whole cell range
  14048. ggml_backend_tensor_set(kv_self.k_l[il], inp, kv_head * k_size_row, cell_count * k_size_row);
  14049. inp += cell_count * k_size_row;
  14050. }
  14051. }
  14052. // For each layer, read the values for each cell (transposed)
  14053. for (int il = 0; il < (int)n_layer; ++il) {
  14054. // Read type of value
  14055. int32_t v_type_i_ref;
  14056. memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref));
  14057. inp += sizeof(v_type_i_ref);
  14058. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14059. if (v_type_i != v_type_i_ref) {
  14060. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14061. LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
  14062. return 0;
  14063. }
  14064. // Read element size of value
  14065. size_t v_size_el_ref;
  14066. memcpy(&v_size_el_ref, inp, sizeof(v_size_el_ref));
  14067. inp += sizeof(v_size_el_ref);
  14068. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  14069. if (v_size_el != v_size_el_ref) {
  14070. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14071. LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, v_size_el_ref, il);
  14072. return 0;
  14073. }
  14074. if (cell_count) {
  14075. // For each row in the transposed matrix, read the values for the whole cell range
  14076. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  14077. const size_t dst_offset = (kv_head + j * kv_size) * v_size_el;
  14078. ggml_backend_tensor_set(kv_self.v_l[il], inp, dst_offset, cell_count * v_size_el);
  14079. inp += cell_count * v_size_el;
  14080. }
  14081. }
  14082. }
  14083. const size_t nread = inp - src;
  14084. return nread;
  14085. }
  14086. static size_t llama_state_seq_save_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
  14087. llama_file file(filepath, "wb");
  14088. file.write_u32(LLAMA_STATE_SEQ_MAGIC);
  14089. file.write_u32(LLAMA_STATE_SEQ_VERSION);
  14090. // save the prompt
  14091. file.write_u32((uint32_t)n_token_count);
  14092. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  14093. // save the context state using stream saving
  14094. llama_data_file_context data_ctx(&file);
  14095. llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
  14096. const size_t res = file.tell();
  14097. GGML_ASSERT(res == sizeof(uint32_t) * 3 + sizeof(llama_token) * n_token_count + data_ctx.get_size_written());
  14098. return res;
  14099. }
  14100. static size_t llama_state_seq_load_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14101. llama_file file(filepath, "rb");
  14102. // version checks
  14103. {
  14104. const uint32_t magic = file.read_u32();
  14105. const uint32_t version = file.read_u32();
  14106. if (magic != LLAMA_STATE_SEQ_MAGIC || version != LLAMA_STATE_SEQ_VERSION) {
  14107. LLAMA_LOG_ERROR("%s: unknown (magic, version) for sequence state file: %08x, %08x\n", __func__, magic, version);
  14108. return 0;
  14109. }
  14110. }
  14111. // load the prompt
  14112. {
  14113. const uint32_t n_token_count = file.read_u32();
  14114. if (n_token_count > n_token_capacity) {
  14115. LLAMA_LOG_ERROR("%s: token count in sequence state file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  14116. return 0;
  14117. }
  14118. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  14119. *n_token_count_out = n_token_count;
  14120. }
  14121. // restore the context state
  14122. {
  14123. const size_t state_size = file.size - file.tell();
  14124. std::vector<uint8_t> state_data(state_size);
  14125. file.read_raw(state_data.data(), state_size);
  14126. const size_t nread = llama_state_seq_set_data(ctx, state_data.data(), dest_seq_id);
  14127. if (!nread) {
  14128. LLAMA_LOG_ERROR("%s: failed to restore sequence state\n", __func__);
  14129. return 0;
  14130. }
  14131. GGML_ASSERT(nread <= state_size);
  14132. GGML_ASSERT(nread + sizeof(uint32_t) * 3 + sizeof(llama_token) * *n_token_count_out == file.tell());
  14133. }
  14134. return file.tell();
  14135. }
  14136. size_t llama_state_seq_save_file(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
  14137. try {
  14138. return llama_state_seq_save_file_internal(ctx, filepath, seq_id, tokens, n_token_count);
  14139. } catch (const std::exception & err) {
  14140. LLAMA_LOG_ERROR("error saving sequence state file: %s\n", err.what());
  14141. return 0;
  14142. }
  14143. }
  14144. size_t llama_state_seq_load_file(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14145. try {
  14146. return llama_state_seq_load_file_internal(ctx, filepath, dest_seq_id, tokens_out, n_token_capacity, n_token_count_out);
  14147. } catch (const std::exception & err) {
  14148. LLAMA_LOG_ERROR("error loading sequence state file: %s\n", err.what());
  14149. return 0;
  14150. }
  14151. }
  14152. void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch) {
  14153. ctx->cparams.n_threads = n_threads;
  14154. ctx->cparams.n_threads_batch = n_threads_batch;
  14155. }
  14156. void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) {
  14157. ctx->abort_callback = abort_callback;
  14158. ctx->abort_callback_data = abort_callback_data;
  14159. }
  14160. void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) {
  14161. ctx->cparams.causal_attn = causal_attn;
  14162. }
  14163. struct llama_batch llama_batch_get_one(
  14164. llama_token * tokens,
  14165. int32_t n_tokens,
  14166. llama_pos pos_0,
  14167. llama_seq_id seq_id) {
  14168. return {
  14169. /*n_tokens =*/ n_tokens,
  14170. /*tokens =*/ tokens,
  14171. /*embd =*/ nullptr,
  14172. /*pos =*/ nullptr,
  14173. /*n_seq_id =*/ nullptr,
  14174. /*seq_id =*/ nullptr,
  14175. /*logits =*/ nullptr,
  14176. /*all_pos_0 =*/ pos_0,
  14177. /*all_pos_1 =*/ 1,
  14178. /*all_seq_id =*/ seq_id,
  14179. };
  14180. }
  14181. struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_t n_seq_max) {
  14182. llama_batch batch = { 0, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, 0, 0, };
  14183. if (embd) {
  14184. batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
  14185. } else {
  14186. batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
  14187. }
  14188. batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens_alloc);
  14189. batch.n_seq_id = (int32_t *) malloc(sizeof(int32_t) * n_tokens_alloc);
  14190. batch.seq_id = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * (n_tokens_alloc + 1));
  14191. for (int i = 0; i < n_tokens_alloc; ++i) {
  14192. batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max);
  14193. }
  14194. batch.seq_id[n_tokens_alloc] = nullptr;
  14195. batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens_alloc);
  14196. return batch;
  14197. }
  14198. void llama_batch_free(struct llama_batch batch) {
  14199. if (batch.token) free(batch.token);
  14200. if (batch.embd) free(batch.embd);
  14201. if (batch.pos) free(batch.pos);
  14202. if (batch.n_seq_id) free(batch.n_seq_id);
  14203. if (batch.seq_id) {
  14204. for (int i = 0; batch.seq_id[i] != nullptr; ++i) {
  14205. free(batch.seq_id[i]);
  14206. }
  14207. free(batch.seq_id);
  14208. }
  14209. if (batch.logits) free(batch.logits);
  14210. }
  14211. int32_t llama_decode(
  14212. struct llama_context * ctx,
  14213. struct llama_batch batch) {
  14214. const int ret = llama_decode_internal(*ctx, batch);
  14215. if (ret < 0) {
  14216. LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
  14217. }
  14218. return ret;
  14219. }
  14220. void llama_synchronize(struct llama_context * ctx) {
  14221. ggml_backend_sched_synchronize(ctx->sched);
  14222. // FIXME: if multiple single tokens are evaluated without a synchronization,
  14223. // the stats will be added to the prompt evaluation stats
  14224. // this should only happen when using batch size 1 to evaluate a batch
  14225. // add the evaluation to the stats
  14226. if (ctx->n_queued_tokens == 1) {
  14227. ctx->t_eval_us += ggml_time_us() - ctx->t_compute_start_us;
  14228. ctx->n_eval++;
  14229. } else if (ctx->n_queued_tokens > 1) {
  14230. ctx->t_p_eval_us += ggml_time_us() - ctx->t_compute_start_us;
  14231. ctx->n_p_eval += ctx->n_queued_tokens;
  14232. }
  14233. // get a more accurate load time, upon first eval
  14234. if (ctx->n_queued_tokens > 0 && !ctx->has_evaluated_once) {
  14235. ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
  14236. ctx->has_evaluated_once = true;
  14237. }
  14238. ctx->n_queued_tokens = 0;
  14239. ctx->t_compute_start_us = 0;
  14240. }
  14241. float * llama_get_logits(struct llama_context * ctx) {
  14242. llama_synchronize(ctx);
  14243. return ctx->logits;
  14244. }
  14245. float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
  14246. int32_t j = -1;
  14247. llama_synchronize(ctx);
  14248. try {
  14249. if (ctx->logits == nullptr) {
  14250. throw std::runtime_error("no logits");
  14251. }
  14252. if (i < 0) {
  14253. j = ctx->n_outputs + i;
  14254. if (j < 0) {
  14255. throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
  14256. }
  14257. } else if ((size_t) i >= ctx->output_ids.size()) {
  14258. throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
  14259. } else {
  14260. j = ctx->output_ids[i];
  14261. }
  14262. if (j < 0) {
  14263. throw std::runtime_error(format("batch.logits[%d] != true", i));
  14264. }
  14265. if (j >= ctx->n_outputs) {
  14266. // This should not happen
  14267. throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
  14268. }
  14269. return ctx->logits + j*ctx->model.hparams.n_vocab;
  14270. } catch (const std::exception & err) {
  14271. LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what());
  14272. #ifndef NDEBUG
  14273. GGML_ASSERT(false);
  14274. #endif
  14275. return nullptr;
  14276. }
  14277. }
  14278. float * llama_get_embeddings(struct llama_context * ctx) {
  14279. llama_synchronize(ctx);
  14280. return ctx->embd;
  14281. }
  14282. float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i) {
  14283. int32_t j = -1;
  14284. llama_synchronize(ctx);
  14285. try {
  14286. if (ctx->embd == nullptr) {
  14287. throw std::runtime_error("no embeddings");
  14288. }
  14289. if (i < 0) {
  14290. j = ctx->n_outputs + i;
  14291. if (j < 0) {
  14292. throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
  14293. }
  14294. } else if ((size_t) i >= ctx->output_ids.size()) {
  14295. throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
  14296. } else {
  14297. j = ctx->output_ids[i];
  14298. }
  14299. if (j < 0) {
  14300. throw std::runtime_error(format("batch.logits[%d] != true", i));
  14301. }
  14302. if (j >= ctx->n_outputs) {
  14303. // This should not happen
  14304. throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
  14305. }
  14306. return ctx->embd + j*ctx->model.hparams.n_embd;
  14307. } catch (const std::exception & err) {
  14308. LLAMA_LOG_ERROR("%s: invalid embeddings id %d, reason: %s\n", __func__, i, err.what());
  14309. #ifndef NDEBUG
  14310. GGML_ASSERT(false);
  14311. #endif
  14312. return nullptr;
  14313. }
  14314. }
  14315. float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id) {
  14316. llama_synchronize(ctx);
  14317. auto it = ctx->embd_seq.find(seq_id);
  14318. if (it == ctx->embd_seq.end()) {
  14319. return nullptr;
  14320. }
  14321. return it->second.data();
  14322. }
  14323. const char * llama_token_get_text(const struct llama_model * model, llama_token token) {
  14324. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  14325. return model->vocab.id_to_token[token].text.c_str();
  14326. }
  14327. float llama_token_get_score(const struct llama_model * model, llama_token token) {
  14328. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  14329. return model->vocab.id_to_token[token].score;
  14330. }
  14331. llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token) {
  14332. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  14333. return model->vocab.id_to_token[token].type;
  14334. }
  14335. bool llama_token_is_eog(const struct llama_model * model, llama_token token) {
  14336. return token != -1 && (
  14337. token == llama_token_eos(model) ||
  14338. token == llama_token_eot(model)
  14339. );
  14340. }
  14341. llama_token llama_token_bos(const struct llama_model * model) {
  14342. return model->vocab.special_bos_id;
  14343. }
  14344. llama_token llama_token_eos(const struct llama_model * model) {
  14345. return model->vocab.special_eos_id;
  14346. }
  14347. llama_token llama_token_cls(const struct llama_model * model) {
  14348. return model->vocab.special_cls_id;
  14349. }
  14350. llama_token llama_token_sep(const struct llama_model * model) {
  14351. return model->vocab.special_sep_id;
  14352. }
  14353. llama_token llama_token_nl(const struct llama_model * model) {
  14354. return model->vocab.linefeed_id;
  14355. }
  14356. int32_t llama_add_bos_token(const struct llama_model * model) {
  14357. return model->vocab.special_add_bos;
  14358. }
  14359. int32_t llama_add_eos_token(const struct llama_model * model) {
  14360. return model->vocab.special_add_eos;
  14361. }
  14362. llama_token llama_token_prefix(const struct llama_model * model) {
  14363. return model->vocab.special_prefix_id;
  14364. }
  14365. llama_token llama_token_middle(const struct llama_model * model) {
  14366. return model->vocab.special_middle_id;
  14367. }
  14368. llama_token llama_token_suffix(const struct llama_model * model) {
  14369. return model->vocab.special_suffix_id;
  14370. }
  14371. llama_token llama_token_eot(const struct llama_model * model) {
  14372. return model->vocab.special_eot_id;
  14373. }
  14374. int32_t llama_tokenize(
  14375. const struct llama_model * model,
  14376. const char * text,
  14377. int32_t text_len,
  14378. llama_token * tokens,
  14379. int32_t n_tokens_max,
  14380. bool add_special,
  14381. bool parse_special) {
  14382. auto res = llama_tokenize_internal(model->vocab, std::string(text, text_len), add_special, parse_special);
  14383. if (n_tokens_max < (int) res.size()) {
  14384. // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
  14385. return -((int) res.size());
  14386. }
  14387. for (size_t i = 0; i < res.size(); i++) {
  14388. tokens[i] = res[i];
  14389. }
  14390. return res.size();
  14391. }
  14392. static std::string llama_decode_text(const std::string & text) {
  14393. std::string decoded_text;
  14394. auto unicode_sequences = unicode_cpts_from_utf8(text);
  14395. for (auto & unicode_sequence : unicode_sequences) {
  14396. decoded_text += unicode_utf8_to_byte(unicode_cpt_to_utf8(unicode_sequence));
  14397. }
  14398. return decoded_text;
  14399. }
  14400. // does not write null-terminator to buf
  14401. int32_t llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int32_t length, bool special) {
  14402. if (0 <= token && token < llama_n_vocab(model)) {
  14403. switch (llama_vocab_get_type(model->vocab)) {
  14404. case LLAMA_VOCAB_TYPE_WPM:
  14405. case LLAMA_VOCAB_TYPE_SPM: {
  14406. // NOTE: we accept all unsupported token types,
  14407. // suppressing them like CONTROL tokens.
  14408. if (llama_is_normal_token(model->vocab, token)) {
  14409. std::string result = model->vocab.id_to_token[token].text;
  14410. llama_unescape_whitespace(result);
  14411. if (length < (int) result.length()) {
  14412. return -(int) result.length();
  14413. }
  14414. memcpy(buf, result.c_str(), result.length());
  14415. return result.length();
  14416. } else if (
  14417. (llama_is_user_defined_token(model->vocab, token)) ||
  14418. (llama_is_control_token (model->vocab, token) && special)) {
  14419. std::string result = model->vocab.id_to_token[token].text;
  14420. if (length < (int) result.length()) {
  14421. return -(int) result.length();
  14422. }
  14423. memcpy(buf, result.c_str(), result.length());
  14424. return result.length();
  14425. } else if (llama_is_unknown_token(model->vocab, token)) { // NOLINT
  14426. if (length < 3) {
  14427. return -3;
  14428. }
  14429. memcpy(buf, "\xe2\x96\x85", 3);
  14430. return 3;
  14431. } else if (llama_is_byte_token(model->vocab, token)) {
  14432. if (length < 1) {
  14433. return -1;
  14434. }
  14435. buf[0] = llama_token_to_byte(model->vocab, token);
  14436. return 1;
  14437. }
  14438. break;
  14439. }
  14440. case LLAMA_VOCAB_TYPE_BPE: {
  14441. // NOTE: we accept all unsupported token types,
  14442. // suppressing them like CONTROL tokens.
  14443. if (llama_is_normal_token(model->vocab, token)) {
  14444. std::string result = model->vocab.id_to_token[token].text;
  14445. result = llama_decode_text(result);
  14446. if (length < (int) result.length()) {
  14447. return -(int) result.length();
  14448. }
  14449. memcpy(buf, result.c_str(), result.length());
  14450. return result.length();
  14451. } else if (
  14452. (llama_is_user_defined_token(model->vocab, token)) ||
  14453. (llama_is_control_token (model->vocab, token) && special)) {
  14454. std::string result = model->vocab.id_to_token[token].text;
  14455. if (length < (int) result.length()) {
  14456. return -(int) result.length();
  14457. }
  14458. memcpy(buf, result.c_str(), result.length());
  14459. return result.length();
  14460. }
  14461. break;
  14462. }
  14463. default:
  14464. GGML_ASSERT(false);
  14465. }
  14466. }
  14467. return 0;
  14468. }
  14469. // trim whitespace from the beginning and end of a string
  14470. static std::string trim(const std::string & str) {
  14471. size_t start = 0;
  14472. size_t end = str.size();
  14473. while (start < end && isspace(str[start])) {
  14474. start += 1;
  14475. }
  14476. while (end > start && isspace(str[end - 1])) {
  14477. end -= 1;
  14478. }
  14479. return str.substr(start, end - start);
  14480. }
  14481. // Simple version of "llama_apply_chat_template" that only works with strings
  14482. // This function uses heuristic checks to determine commonly used template. It is not a jinja parser.
  14483. static int32_t llama_chat_apply_template_internal(
  14484. const std::string & tmpl,
  14485. const std::vector<const llama_chat_message *> & chat,
  14486. std::string & dest, bool add_ass) {
  14487. // Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527
  14488. std::stringstream ss;
  14489. if (tmpl == "chatml" || tmpl.find("<|im_start|>") != std::string::npos) {
  14490. // chatml template
  14491. for (auto message : chat) {
  14492. ss << "<|im_start|>" << message->role << "\n" << message->content << "<|im_end|>\n";
  14493. }
  14494. if (add_ass) {
  14495. ss << "<|im_start|>assistant\n";
  14496. }
  14497. } else if (tmpl == "llama2" || tmpl.find("[INST]") != std::string::npos) {
  14498. // llama2 template and its variants
  14499. // [variant] support system message
  14500. bool support_system_message = tmpl.find("<<SYS>>") != std::string::npos;
  14501. // [variant] space before + after response
  14502. bool space_around_response = tmpl.find("' ' + eos_token") != std::string::npos;
  14503. // [variant] add BOS inside history
  14504. bool add_bos_inside_history = tmpl.find("bos_token + '[INST]") != std::string::npos;
  14505. // [variant] trim spaces from the input message
  14506. bool strip_message = tmpl.find("content.strip()") != std::string::npos;
  14507. // construct the prompt
  14508. bool is_inside_turn = true; // skip BOS at the beginning
  14509. ss << "[INST] ";
  14510. for (auto message : chat) {
  14511. std::string content = strip_message ? trim(message->content) : message->content;
  14512. std::string role(message->role);
  14513. if (!is_inside_turn) {
  14514. is_inside_turn = true;
  14515. ss << (add_bos_inside_history ? "<s>[INST] " : "[INST] ");
  14516. }
  14517. if (role == "system") {
  14518. if (support_system_message) {
  14519. ss << "<<SYS>>\n" << content << "\n<</SYS>>\n\n";
  14520. } else {
  14521. // if the model does not support system message, we still include it in the first message, but without <<SYS>>
  14522. ss << content << "\n";
  14523. }
  14524. } else if (role == "user") {
  14525. ss << content << " [/INST]";
  14526. } else {
  14527. ss << (space_around_response ? " " : "") << content << (space_around_response ? " " : "") << "</s>";
  14528. is_inside_turn = false;
  14529. }
  14530. }
  14531. // llama2 templates seem to not care about "add_generation_prompt"
  14532. } else if (tmpl == "zephyr" || tmpl.find("<|user|>") != std::string::npos) {
  14533. // zephyr template
  14534. for (auto message : chat) {
  14535. ss << "<|" << message->role << "|>" << "\n" << message->content << "<|endoftext|>\n";
  14536. }
  14537. if (add_ass) {
  14538. ss << "<|assistant|>\n";
  14539. }
  14540. } else if (tmpl == "monarch" || tmpl.find("bos_token + message['role']") != std::string::npos) {
  14541. // mlabonne/AlphaMonarch-7B template (the <s> is included inside history)
  14542. for (auto message : chat) {
  14543. std::string bos = (message == chat.front()) ? "" : "<s>"; // skip BOS for first message
  14544. ss << bos << message->role << "\n" << message->content << "</s>\n";
  14545. }
  14546. if (add_ass) {
  14547. ss << "<s>assistant\n";
  14548. }
  14549. } else if (tmpl == "gemma" || tmpl.find("<start_of_turn>") != std::string::npos) {
  14550. // google/gemma-7b-it
  14551. std::string system_prompt = "";
  14552. for (auto message : chat) {
  14553. std::string role(message->role);
  14554. if (role == "system") {
  14555. // there is no system message for gemma, but we will merge it with user prompt, so nothing is broken
  14556. system_prompt = trim(message->content);
  14557. continue;
  14558. }
  14559. // in gemma, "assistant" is "model"
  14560. role = role == "assistant" ? "model" : message->role;
  14561. ss << "<start_of_turn>" << role << "\n";
  14562. if (!system_prompt.empty() && role != "model") {
  14563. ss << system_prompt << "\n\n";
  14564. system_prompt = "";
  14565. }
  14566. ss << trim(message->content) << "<end_of_turn>\n";
  14567. }
  14568. if (add_ass) {
  14569. ss << "<start_of_turn>model\n";
  14570. }
  14571. } else if (tmpl == "orion" || tmpl.find("'\\n\\nAssistant: ' + eos_token") != std::string::npos) {
  14572. // OrionStarAI/Orion-14B-Chat
  14573. std::string system_prompt = "";
  14574. for (auto message : chat) {
  14575. std::string role(message->role);
  14576. if (role == "system") {
  14577. // there is no system message support, we will merge it with user prompt
  14578. system_prompt = message->content;
  14579. continue;
  14580. } else if (role == "user") {
  14581. ss << "Human: ";
  14582. if (!system_prompt.empty()) {
  14583. ss << system_prompt << "\n\n";
  14584. system_prompt = "";
  14585. }
  14586. ss << message->content << "\n\nAssistant: </s>";
  14587. } else {
  14588. ss << message->content << "</s>";
  14589. }
  14590. }
  14591. } else if (tmpl == "openchat" || tmpl.find("GPT4 Correct ") != std::string::npos) {
  14592. // openchat/openchat-3.5-0106,
  14593. for (auto message : chat) {
  14594. std::string role(message->role);
  14595. if (role == "system") {
  14596. ss << message->content << "<|end_of_turn|>";
  14597. } else {
  14598. role[0] = toupper(role[0]);
  14599. ss << "GPT4 Correct " << role << ": " << message->content << "<|end_of_turn|>";
  14600. }
  14601. }
  14602. if (add_ass) {
  14603. ss << "GPT4 Correct Assistant:";
  14604. }
  14605. } else if (tmpl == "vicuna" || tmpl == "vicuna-orca" || (tmpl.find("USER: ") != std::string::npos && tmpl.find("ASSISTANT: ") != std::string::npos)) {
  14606. // eachadea/vicuna-13b-1.1 (and Orca variant)
  14607. for (auto message : chat) {
  14608. std::string role(message->role);
  14609. if (role == "system") {
  14610. // Orca-Vicuna variant uses a system prefix
  14611. if (tmpl == "vicuna-orca" || tmpl.find("SYSTEM: ") != std::string::npos) {
  14612. ss << "SYSTEM: " << message->content << "\n";
  14613. } else {
  14614. ss << message->content << "\n\n";
  14615. }
  14616. } else if (role == "user") {
  14617. ss << "USER: " << message->content << "\n";
  14618. } else if (role == "assistant") {
  14619. ss << "ASSISTANT: " << message->content << "</s>\n";
  14620. }
  14621. }
  14622. if (add_ass) {
  14623. ss << "ASSISTANT:";
  14624. }
  14625. } else if (tmpl == "deepseek" || (tmpl.find("### Instruction:") != std::string::npos && tmpl.find("<|EOT|>") != std::string::npos)) {
  14626. // deepseek-ai/deepseek-coder-33b-instruct
  14627. for (auto message : chat) {
  14628. std::string role(message->role);
  14629. if (role == "system") {
  14630. ss << message->content;
  14631. } else if (role == "user") {
  14632. ss << "### Instruction:\n" << message->content << "\n";
  14633. } else if (role == "assistant") {
  14634. ss << "### Response:\n" << message->content << "\n<|EOT|>\n";
  14635. }
  14636. }
  14637. if (add_ass) {
  14638. ss << "### Response:\n";
  14639. }
  14640. } else if (tmpl == "command-r" || (tmpl.find("<|START_OF_TURN_TOKEN|>") != std::string::npos && tmpl.find("<|USER_TOKEN|>") != std::string::npos)) {
  14641. // CohereForAI/c4ai-command-r-plus
  14642. for (auto message : chat) {
  14643. std::string role(message->role);
  14644. if (role == "system") {
  14645. ss << "<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  14646. } else if (role == "user") {
  14647. ss << "<|START_OF_TURN_TOKEN|><|USER_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  14648. } else if (role == "assistant") {
  14649. ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  14650. }
  14651. }
  14652. if (add_ass) {
  14653. ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>";
  14654. }
  14655. } else if (tmpl == "llama3" || (tmpl.find("<|start_header_id|>") != std::string::npos && tmpl.find("<|end_header_id|>") != std::string::npos)) {
  14656. // Llama 3
  14657. for (auto message : chat) {
  14658. std::string role(message->role);
  14659. ss << "<|start_header_id|>" << role << "<|end_header_id|>\n\n" << trim(message->content) << "<|eot_id|>";
  14660. }
  14661. if (add_ass) {
  14662. ss << "<|start_header_id|>assistant<|end_header_id|>\n\n";
  14663. }
  14664. } else if (tmpl == "phi3" || (tmpl.find("<|assistant|>") != std::string::npos && tmpl.find("<|end|>") != std::string::npos )) {
  14665. // Phi 3
  14666. for (auto message : chat) {
  14667. std::string role(message->role);
  14668. ss << "<|" << role << "|>\n" << trim(message->content) << "<|end|>\n";
  14669. }
  14670. if (add_ass) {
  14671. ss << "<|assistant|>\n";
  14672. }
  14673. } else {
  14674. // template not supported
  14675. return -1;
  14676. }
  14677. dest = ss.str();
  14678. return dest.size();
  14679. }
  14680. LLAMA_API int32_t llama_chat_apply_template(
  14681. const struct llama_model * model,
  14682. const char * tmpl,
  14683. const struct llama_chat_message * chat,
  14684. size_t n_msg,
  14685. bool add_ass,
  14686. char * buf,
  14687. int32_t length) {
  14688. std::string curr_tmpl(tmpl == nullptr ? "" : tmpl);
  14689. if (tmpl == nullptr) {
  14690. GGML_ASSERT(model != nullptr);
  14691. // load template from model
  14692. std::vector<char> model_template(2048, 0); // longest known template is about 1200 bytes
  14693. std::string template_key = "tokenizer.chat_template";
  14694. int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
  14695. if (res < 0) {
  14696. // worst case: there is no information about template, we will use chatml by default
  14697. curr_tmpl = "chatml"; // see llama_chat_apply_template_internal
  14698. } else {
  14699. curr_tmpl = std::string(model_template.data(), model_template.size());
  14700. }
  14701. }
  14702. // format the chat to string
  14703. std::vector<const llama_chat_message *> chat_vec;
  14704. chat_vec.resize(n_msg);
  14705. for (size_t i = 0; i < n_msg; i++) {
  14706. chat_vec[i] = &chat[i];
  14707. }
  14708. std::string formatted_chat;
  14709. int32_t res = llama_chat_apply_template_internal(curr_tmpl, chat_vec, formatted_chat, add_ass);
  14710. if (res < 0) {
  14711. return res;
  14712. }
  14713. if (buf && length > 0) {
  14714. strncpy(buf, formatted_chat.c_str(), length);
  14715. }
  14716. return res;
  14717. }
  14718. LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count) {
  14719. static const char * const SPLIT_PATH_FORMAT = "%s-%05d-of-%05d.gguf";
  14720. if (snprintf(split_path, maxlen, SPLIT_PATH_FORMAT, path_prefix, split_no + 1, split_count)) {
  14721. return strlen(split_path);
  14722. }
  14723. return 0;
  14724. }
  14725. int llama_split_prefix(char * dest, size_t maxlen, const char * split_path, int split_no, int split_count) {
  14726. std::string str_split_path(split_path);
  14727. char postfix[32];
  14728. snprintf(postfix, 32, "-%05d-of-%05d.gguf", split_no + 1, split_count);
  14729. std::string str_postfix(postfix);
  14730. // check if dest ends with postfix
  14731. int size_prefix = str_split_path.size() - str_postfix.size();
  14732. if (size_prefix > 0 && str_split_path.find(str_postfix, size_prefix) != std::string::npos) {
  14733. snprintf(dest, std::min((size_t) size_prefix + 1, maxlen), "%s", split_path);
  14734. return size_prefix;
  14735. }
  14736. return 0;
  14737. }
  14738. struct llama_timings llama_get_timings(struct llama_context * ctx) {
  14739. struct llama_timings result = {
  14740. /*.t_start_ms =*/ 1e-3 * ctx->t_start_us,
  14741. /*.t_end_ms =*/ 1.00 * ggml_time_ms(),
  14742. /*.t_load_ms =*/ 1e-3 * ctx->t_load_us,
  14743. /*.t_sample_ms =*/ 1e-3 * ctx->t_sample_us,
  14744. /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us,
  14745. /*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us,
  14746. /*.n_sample =*/ std::max(1, ctx->n_sample),
  14747. /*.n_p_eval =*/ std::max(1, ctx->n_p_eval),
  14748. /*.n_eval =*/ std::max(1, ctx->n_eval),
  14749. };
  14750. return result;
  14751. }
  14752. void llama_print_timings(struct llama_context * ctx) {
  14753. const llama_timings timings = llama_get_timings(ctx);
  14754. LLAMA_LOG_INFO("\n");
  14755. LLAMA_LOG_INFO("%s: load time = %10.2f ms\n", __func__, timings.t_load_ms);
  14756. LLAMA_LOG_INFO("%s: sample time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  14757. __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
  14758. LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
  14759. __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
  14760. LLAMA_LOG_INFO("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  14761. __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
  14762. LLAMA_LOG_INFO("%s: total time = %10.2f ms / %5d tokens\n", __func__, (timings.t_end_ms - timings.t_start_ms), (timings.n_p_eval + timings.n_eval));
  14763. }
  14764. void llama_reset_timings(struct llama_context * ctx) {
  14765. ctx->t_start_us = ggml_time_us();
  14766. ctx->t_sample_us = ctx->n_sample = 0;
  14767. ctx->t_eval_us = ctx->n_eval = 0;
  14768. ctx->t_p_eval_us = ctx->n_p_eval = 0;
  14769. }
  14770. const char * llama_print_system_info(void) {
  14771. static std::string s;
  14772. s = "";
  14773. s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
  14774. s += "AVX_VNNI = " + std::to_string(ggml_cpu_has_avx_vnni()) + " | ";
  14775. s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
  14776. s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
  14777. s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
  14778. s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
  14779. s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
  14780. s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
  14781. s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
  14782. s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
  14783. s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
  14784. s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
  14785. s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
  14786. s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
  14787. s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
  14788. s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
  14789. s += "MATMUL_INT8 = " + std::to_string(ggml_cpu_has_matmul_int8()) + " | ";
  14790. #ifdef GGML_USE_LLAMAFILE
  14791. s += "LAMMAFILE = 1 | ";
  14792. #else
  14793. s += "LAMMAFILE = 0 | ";
  14794. #endif
  14795. return s.c_str();
  14796. }
  14797. void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) {
  14798. fprintf(stream, "\n");
  14799. fprintf(stream, "###########\n");
  14800. fprintf(stream, "# Timings #\n");
  14801. fprintf(stream, "###########\n");
  14802. fprintf(stream, "\n");
  14803. fprintf(stream, "mst_eval: %.2f # ms / token during generation\n",
  14804. 1.0e-3 * ctx->t_eval_us / ctx->n_eval);
  14805. fprintf(stream, "mst_p_eval: %.2f # ms / token during prompt processing\n",
  14806. 1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval);
  14807. fprintf(stream, "mst_sample: %.2f # ms / token during sampling\n",
  14808. 1.0e-3 * ctx->t_sample_us / ctx->n_sample);
  14809. fprintf(stream, "n_eval: %d # number of tokens generated (excluding the first one)\n", ctx->n_eval);
  14810. fprintf(stream, "n_p_eval: %d # number of tokens processed in batches at the beginning\n", ctx->n_p_eval);
  14811. fprintf(stream, "n_sample: %d # number of sampled tokens\n", ctx->n_sample);
  14812. fprintf(stream, "t_eval_us: %" PRId64 " # total microseconds spent generating tokens\n", ctx->t_eval_us);
  14813. fprintf(stream, "t_load_us: %" PRId64 " # total microseconds spent loading the model\n", ctx->t_load_us);
  14814. fprintf(stream, "t_p_eval_us: %" PRId64 " # total microseconds spent prompt processing\n", ctx->t_p_eval_us);
  14815. fprintf(stream, "t_sample_us: %" PRId64 " # total microseconds spent sampling\n", ctx->t_sample_us);
  14816. fprintf(stream, "ts_eval: %.2f # tokens / second during generation\n",
  14817. 1.0e6 * ctx->n_eval / ctx->t_eval_us);
  14818. fprintf(stream, "ts_p_eval: %.2f # tokens / second during prompt processing\n",
  14819. 1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us);
  14820. fprintf(stream, "ts_sample: %.2f # tokens / second during sampling\n",
  14821. 1.0e6 * ctx->n_sample / ctx->t_sample_us);
  14822. }
  14823. // For internal test use
  14824. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  14825. struct llama_context * ctx
  14826. ) {
  14827. return ctx->model.tensors_by_name;
  14828. }
  14829. void llama_log_set(ggml_log_callback log_callback, void * user_data) {
  14830. g_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
  14831. g_state.log_callback_user_data = user_data;
  14832. #ifdef GGML_USE_METAL
  14833. ggml_backend_metal_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
  14834. #endif
  14835. }
  14836. static void llama_log_internal_v(ggml_log_level level, const char * format, va_list args) {
  14837. va_list args_copy;
  14838. va_copy(args_copy, args);
  14839. char buffer[128];
  14840. int len = vsnprintf(buffer, 128, format, args);
  14841. if (len < 128) {
  14842. g_state.log_callback(level, buffer, g_state.log_callback_user_data);
  14843. } else {
  14844. char* buffer2 = new char[len+1];
  14845. vsnprintf(buffer2, len+1, format, args_copy);
  14846. buffer2[len] = 0;
  14847. g_state.log_callback(level, buffer2, g_state.log_callback_user_data);
  14848. delete[] buffer2;
  14849. }
  14850. va_end(args_copy);
  14851. }
  14852. static void llama_log_internal(ggml_log_level level, const char * format, ...) {
  14853. va_list args;
  14854. va_start(args, format);
  14855. llama_log_internal_v(level, format, args);
  14856. va_end(args);
  14857. }
  14858. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
  14859. (void) level;
  14860. (void) user_data;
  14861. fputs(text, stderr);
  14862. fflush(stderr);
  14863. }