ernie4-5.cpp 3.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110
  1. #include "models.h"
  2. llm_build_ernie4_5::llm_build_ernie4_5(const llama_model & model, const llm_graph_params & params) :
  3. llm_graph_context(params) {
  4. const int64_t n_embd_head = hparams.n_embd_head_v;
  5. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7. ggml_tensor * cur;
  8. ggml_tensor * inpL;
  9. inpL = build_inp_embd(model.tok_embd);
  10. // inp_pos - contains the positions
  11. ggml_tensor * inp_pos = build_inp_pos();
  12. auto * inp_attn = build_attn_inp_kv();
  13. ggml_tensor * inp_out_ids = build_inp_out_ids();
  14. for (int il = 0; il < n_layer; ++il) {
  15. ggml_tensor * inpSA = inpL;
  16. // norm
  17. {
  18. cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
  19. cb(cur, "attn_norm", il);
  20. }
  21. // self-attention
  22. {
  23. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  24. cb(Qcur, "Qcur", il);
  25. if (model.layers[il].bq) {
  26. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  27. cb(Qcur, "Qcur", il);
  28. }
  29. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  30. cb(Kcur, "Kcur", il);
  31. if (model.layers[il].bk) {
  32. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  33. cb(Kcur, "Kcur", il);
  34. }
  35. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  36. cb(Vcur, "Vcur", il);
  37. if (model.layers[il].bv) {
  38. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  39. cb(Vcur, "Vcur", il);
  40. }
  41. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  42. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  43. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  44. Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  45. ext_factor, attn_factor, beta_fast, beta_slow);
  46. Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  47. ext_factor, attn_factor, beta_fast, beta_slow);
  48. cb(Qcur, "Qcur", il);
  49. cb(Kcur, "Kcur", il);
  50. cb(Vcur, "Vcur", il);
  51. cur = build_attn(inp_attn,
  52. model.layers[il].wo, NULL,
  53. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
  54. }
  55. if (il == n_layer - 1) {
  56. // skip computing output for unused tokens
  57. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  58. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  59. }
  60. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  61. cb(ffn_inp, "ffn_inp", il);
  62. // feed-forward network
  63. {
  64. cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
  65. cb(cur, "ffn_norm", il);
  66. cur = build_ffn(cur,
  67. model.layers[il].ffn_up, NULL, NULL,
  68. model.layers[il].ffn_gate, NULL, NULL,
  69. model.layers[il].ffn_down, NULL, NULL,
  70. NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
  71. cb(cur, "ffn_out", il);
  72. }
  73. cur = ggml_add(ctx0, cur, ffn_inp);
  74. cur = build_cvec(cur, il);
  75. cb(cur, "l_out", il);
  76. // input for next layer
  77. inpL = cur;
  78. }
  79. cur = inpL;
  80. cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
  81. cb(cur, "result_norm", -1);
  82. res->t_embd = cur;
  83. // lm_head
  84. cur = build_lora_mm(model.output, cur);
  85. cb(cur, "result_output", -1);
  86. res->t_logits = cur;
  87. ggml_build_forward_expand(gf, cur);
  88. }