common.h 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621
  1. // Various helper functions and utilities
  2. #pragma once
  3. #include "llama.h"
  4. #include <string>
  5. #include <vector>
  6. #include <sstream>
  7. #ifdef _WIN32
  8. #define DIRECTORY_SEPARATOR '\\'
  9. #else
  10. #define DIRECTORY_SEPARATOR '/'
  11. #endif // _WIN32
  12. #define die(msg) do { fputs("error: " msg "\n", stderr); exit(1); } while (0)
  13. #define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0)
  14. #define print_build_info() do { \
  15. fprintf(stderr, "%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT); \
  16. fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET); \
  17. } while(0)
  18. #define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf"
  19. struct common_lora_adapter_info {
  20. std::string path;
  21. float scale;
  22. };
  23. struct common_lora_adapter_container : common_lora_adapter_info {
  24. struct llama_lora_adapter * adapter;
  25. };
  26. using llama_tokens = std::vector<llama_token>;
  27. // build info
  28. extern int LLAMA_BUILD_NUMBER;
  29. extern char const * LLAMA_COMMIT;
  30. extern char const * LLAMA_COMPILER;
  31. extern char const * LLAMA_BUILD_TARGET;
  32. struct common_control_vector_load_info;
  33. //
  34. // CPU utils
  35. //
  36. struct cpu_params {
  37. int n_threads = -1;
  38. bool cpumask[GGML_MAX_N_THREADS] = {false}; // CPU affinity mask.
  39. bool mask_valid = false; // Default: any CPU
  40. enum ggml_sched_priority priority = GGML_SCHED_PRIO_NORMAL; // Scheduling prio : (0 - normal, 1 - medium, 2 - high, 3 - realtime)
  41. bool strict_cpu = false; // Use strict CPU placement
  42. uint32_t poll = 50; // Polling (busywait) level (0 - no polling, 100 - mostly polling)
  43. };
  44. int32_t cpu_get_num_physical_cores();
  45. int32_t cpu_get_num_math();
  46. //
  47. // Common params
  48. //
  49. enum llama_example {
  50. LLAMA_EXAMPLE_COMMON,
  51. LLAMA_EXAMPLE_SPECULATIVE,
  52. LLAMA_EXAMPLE_MAIN,
  53. LLAMA_EXAMPLE_INFILL,
  54. LLAMA_EXAMPLE_EMBEDDING,
  55. LLAMA_EXAMPLE_PERPLEXITY,
  56. LLAMA_EXAMPLE_RETRIEVAL,
  57. LLAMA_EXAMPLE_PASSKEY,
  58. LLAMA_EXAMPLE_IMATRIX,
  59. LLAMA_EXAMPLE_BENCH,
  60. LLAMA_EXAMPLE_SERVER,
  61. LLAMA_EXAMPLE_CVECTOR_GENERATOR,
  62. LLAMA_EXAMPLE_EXPORT_LORA,
  63. LLAMA_EXAMPLE_LLAVA,
  64. LLAMA_EXAMPLE_LOOKUP,
  65. LLAMA_EXAMPLE_PARALLEL,
  66. LLAMA_EXAMPLE_COUNT,
  67. };
  68. enum common_sampler_type {
  69. COMMON_SAMPLER_TYPE_NONE = 0,
  70. COMMON_SAMPLER_TYPE_DRY = 1,
  71. COMMON_SAMPLER_TYPE_TOP_K = 2,
  72. COMMON_SAMPLER_TYPE_TOP_P = 3,
  73. COMMON_SAMPLER_TYPE_MIN_P = 4,
  74. //COMMON_SAMPLER_TYPE_TFS_Z = 5,
  75. COMMON_SAMPLER_TYPE_TYPICAL_P = 6,
  76. COMMON_SAMPLER_TYPE_TEMPERATURE = 7,
  77. COMMON_SAMPLER_TYPE_XTC = 8,
  78. COMMON_SAMPLER_TYPE_INFILL = 9,
  79. };
  80. // dimensionality reduction methods, used by cvector-generator
  81. enum dimre_method {
  82. DIMRE_METHOD_PCA,
  83. DIMRE_METHOD_MEAN,
  84. };
  85. // sampling parameters
  86. struct common_params_sampling {
  87. uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
  88. int32_t n_prev = 64; // number of previous tokens to remember
  89. int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
  90. int32_t min_keep = 0; // 0 = disabled, otherwise samplers should return at least min_keep tokens
  91. int32_t top_k = 40; // <= 0 to use vocab size
  92. float top_p = 0.95f; // 1.0 = disabled
  93. float min_p = 0.05f; // 0.0 = disabled
  94. float xtc_probability = 0.00f; // 0.0 = disabled
  95. float xtc_threshold = 0.10f; // > 0.5 disables XTC
  96. float typ_p = 1.00f; // typical_p, 1.0 = disabled
  97. float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
  98. float dynatemp_range = 0.00f; // 0.0 = disabled
  99. float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
  100. int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
  101. float penalty_repeat = 1.00f; // 1.0 = disabled
  102. float penalty_freq = 0.00f; // 0.0 = disabled
  103. float penalty_present = 0.00f; // 0.0 = disabled
  104. float dry_multiplier = 0.0f; // 0.0 = disabled; DRY repetition penalty for tokens extending repetition:
  105. float dry_base = 1.75f; // 0.0 = disabled; multiplier * base ^ (length of sequence before token - allowed length)
  106. int32_t dry_allowed_length = 2; // tokens extending repetitions beyond this receive penalty
  107. int32_t dry_penalty_last_n = -1; // how many tokens to scan for repetitions (0 = disable penalty, -1 = context size)
  108. int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
  109. float mirostat_tau = 5.00f; // target entropy
  110. float mirostat_eta = 0.10f; // learning rate
  111. bool penalize_nl = false; // consider newlines as a repeatable token
  112. bool ignore_eos = false;
  113. bool no_perf = false; // disable performance metrics
  114. std::vector<std::string> dry_sequence_breakers = {"\n", ":", "\"", "*"}; // default sequence breakers for DRY
  115. std::vector<enum common_sampler_type> samplers = {
  116. COMMON_SAMPLER_TYPE_DRY,
  117. COMMON_SAMPLER_TYPE_TOP_K,
  118. COMMON_SAMPLER_TYPE_TYPICAL_P,
  119. COMMON_SAMPLER_TYPE_TOP_P,
  120. COMMON_SAMPLER_TYPE_MIN_P,
  121. COMMON_SAMPLER_TYPE_XTC,
  122. COMMON_SAMPLER_TYPE_TEMPERATURE,
  123. };
  124. std::string grammar; // optional BNF-like grammar to constrain sampling
  125. std::vector<llama_logit_bias> logit_bias; // logit biases to apply
  126. // print the parameters into a string
  127. std::string print() const;
  128. };
  129. struct common_params_speculative {
  130. std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
  131. int32_t n_ctx = 0; // draft context size
  132. int32_t n_max = 16; // maximum number of tokens to draft during speculative decoding
  133. int32_t n_min = 5; // minimum number of draft tokens to use for speculative decoding
  134. int32_t n_gpu_layers = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
  135. float p_split = 0.1f; // speculative decoding split probability
  136. float p_min = 0.9f; // minimum speculative decoding probability (greedy)
  137. struct cpu_params cpuparams;
  138. struct cpu_params cpuparams_batch;
  139. std::string model = ""; // draft model for speculative decoding // NOLINT
  140. };
  141. struct common_params {
  142. int32_t n_predict = -1; // new tokens to predict
  143. int32_t n_ctx = 4096; // context size
  144. int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
  145. int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
  146. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  147. int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
  148. int32_t n_parallel = 1; // number of parallel sequences to decode
  149. int32_t n_sequences = 1; // number of sequences to decode
  150. int32_t grp_attn_n = 1; // group-attention factor
  151. int32_t grp_attn_w = 512; // group-attention width
  152. int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
  153. float rope_freq_base = 0.0f; // RoPE base frequency
  154. float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
  155. float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
  156. float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor
  157. float yarn_beta_fast = 32.0f; // YaRN low correction dim
  158. float yarn_beta_slow = 1.0f; // YaRN high correction dim
  159. int32_t yarn_orig_ctx = 0; // YaRN original context length
  160. float defrag_thold = 0.1f; // KV cache defragmentation threshold
  161. // offload params
  162. std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
  163. int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
  164. int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
  165. float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
  166. enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
  167. struct cpu_params cpuparams;
  168. struct cpu_params cpuparams_batch;
  169. ggml_backend_sched_eval_callback cb_eval = nullptr;
  170. void * cb_eval_user_data = nullptr;
  171. ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;
  172. enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  173. enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
  174. enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings
  175. struct common_params_sampling sampling;
  176. struct common_params_speculative speculative;
  177. std::string model = ""; // model path // NOLINT
  178. std::string model_alias = "unknown"; // model alias // NOLINT
  179. std::string model_url = ""; // model url to download // NOLINT
  180. std::string hf_token = ""; // HF token // NOLINT
  181. std::string hf_repo = ""; // HF repo // NOLINT
  182. std::string hf_file = ""; // HF file // NOLINT
  183. std::string prompt = ""; // NOLINT
  184. std::string prompt_file = ""; // store the external prompt file name // NOLINT
  185. std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state // NOLINT
  186. std::string input_prefix = ""; // string to prefix user inputs with // NOLINT
  187. std::string input_suffix = ""; // string to suffix user inputs with // NOLINT
  188. std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding // NOLINT
  189. std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding // NOLINT
  190. std::string logits_file = ""; // file for saving *all* logits // NOLINT
  191. std::string rpc_servers = ""; // comma separated list of RPC servers // NOLINT
  192. std::vector<std::string> in_files; // all input files
  193. std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
  194. std::vector<llama_model_kv_override> kv_overrides;
  195. bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_lora_adapter_apply)
  196. std::vector<common_lora_adapter_info> lora_adapters; // lora adapter path with user defined scale
  197. std::vector<common_control_vector_load_info> control_vectors; // control vector with user defined scale
  198. int32_t verbosity = 0;
  199. int32_t control_vector_layer_start = -1; // layer range for control vector
  200. int32_t control_vector_layer_end = -1; // layer range for control vector
  201. int32_t ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
  202. int32_t ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
  203. // (which is more convenient to use for plotting)
  204. //
  205. bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
  206. size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
  207. bool winogrande = false; // compute Winogrande score over random tasks from datafile supplied in prompt
  208. size_t winogrande_tasks = 0; // number of tasks to use when computing the Winogrande score. If 0, all tasks will be computed
  209. bool multiple_choice = false; // compute TruthfulQA score over random tasks from datafile supplied in prompt
  210. size_t multiple_choice_tasks = 0; // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed
  211. bool kl_divergence = false; // compute KL divergence
  212. bool usage = false; // print usage
  213. bool use_color = false; // use color to distinguish generations and inputs
  214. bool special = false; // enable special token output
  215. bool interactive = false; // interactive mode
  216. bool interactive_first = false; // wait for user input immediately
  217. bool conversation = false; // conversation mode (does not print special tokens and suffix/prefix)
  218. bool prompt_cache_all = false; // save user input and generations to prompt cache
  219. bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
  220. bool escape = true; // escape "\n", "\r", "\t", "\'", "\"", and "\\"
  221. bool multiline_input = false; // reverse the usage of `\`
  222. bool simple_io = false; // improves compatibility with subprocesses and limited consoles
  223. bool cont_batching = true; // insert new sequences for decoding on-the-fly
  224. bool flash_attn = false; // flash attention
  225. bool no_perf = false; // disable performance metrics
  226. bool ctx_shift = true; // context shift on inifinite text generation
  227. bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
  228. bool logits_all = false; // return logits for all tokens in the batch
  229. bool use_mmap = true; // use mmap for faster loads
  230. bool use_mlock = false; // use mlock to keep model in memory
  231. bool verbose_prompt = false; // print prompt tokens before generation
  232. bool display_prompt = true; // print prompt before generation
  233. bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes
  234. bool no_kv_offload = false; // disable KV offloading
  235. bool warmup = true; // warmup run
  236. bool check_tensors = false; // validate tensor data
  237. std::string cache_type_k = "f16"; // KV cache data type for the K
  238. std::string cache_type_v = "f16"; // KV cache data type for the V
  239. // multimodal models (see examples/llava)
  240. std::string mmproj = ""; // path to multimodal projector // NOLINT
  241. std::vector<std::string> image; // path to image file(s)
  242. // embedding
  243. bool embedding = false; // get only sentence embedding
  244. int32_t embd_normalize = 2; // normalisation for embeddings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
  245. std::string embd_out = ""; // empty = default, "array" = [[],[]...], "json" = openai style, "json+" = same "json" + cosine similarity matrix
  246. std::string embd_sep = "\n"; // separator of embeddings
  247. bool reranking = false; // enable reranking support on server
  248. // server params
  249. int32_t port = 8080; // server listens on this network port
  250. int32_t timeout_read = 600; // http read timeout in seconds
  251. int32_t timeout_write = timeout_read; // http write timeout in seconds
  252. int32_t n_threads_http = -1; // number of threads to process HTTP requests (TODO: support threadpool)
  253. int32_t n_cache_reuse = 0; // min chunk size to reuse from the cache via KV shifting
  254. std::string hostname = "127.0.0.1";
  255. std::string public_path = ""; // NOLINT
  256. std::string chat_template = ""; // NOLINT
  257. bool enable_chat_template = true;
  258. std::vector<std::string> api_keys;
  259. std::string ssl_file_key = ""; // NOLINT
  260. std::string ssl_file_cert = ""; // NOLINT
  261. // "advanced" endpoints are disabled by default for better security
  262. bool webui = true;
  263. bool endpoint_slots = false;
  264. bool endpoint_props = false; // only control POST requests, not GET
  265. bool endpoint_metrics = false;
  266. bool log_json = false;
  267. std::string slot_save_path;
  268. float slot_prompt_similarity = 0.5f;
  269. // batched-bench params
  270. bool is_pp_shared = false;
  271. std::vector<int32_t> n_pp;
  272. std::vector<int32_t> n_tg;
  273. std::vector<int32_t> n_pl;
  274. // retrieval params
  275. std::vector<std::string> context_files; // context files to embed
  276. int32_t chunk_size = 64; // chunk size for context embedding
  277. std::string chunk_separator = "\n"; // chunk separator for context embedding
  278. // passkey params
  279. int32_t n_junk = 250; // number of times to repeat the junk text
  280. int32_t i_pos = -1; // position of the passkey in the junk text
  281. // imatrix params
  282. std::string out_file = "imatrix.dat"; // save the resulting imatrix to this file
  283. int32_t n_out_freq = 10; // output the imatrix every n_out_freq iterations
  284. int32_t n_save_freq = 0; // save the imatrix every n_save_freq iterations
  285. int32_t i_chunk = 0; // start processing from this chunk
  286. bool process_output = false; // collect data for the output tensor
  287. bool compute_ppl = true; // whether to compute perplexity
  288. // cvector-generator params
  289. int n_pca_batch = 100;
  290. int n_pca_iterations = 1000;
  291. dimre_method cvector_dimre_method = DIMRE_METHOD_PCA;
  292. std::string cvector_outfile = "control_vector.gguf";
  293. std::string cvector_positive_file = "examples/cvector-generator/positive.txt";
  294. std::string cvector_negative_file = "examples/cvector-generator/negative.txt";
  295. bool spm_infill = false; // suffix/prefix/middle pattern for infill
  296. std::string lora_outfile = "ggml-lora-merged-f16.gguf";
  297. // batched-bench params
  298. bool batched_bench_output_jsonl = false;
  299. };
  300. // call once at the start of a program if it uses libcommon
  301. // initializes the logging system and prints info about the build
  302. void common_init();
  303. std::string common_params_get_system_info(const common_params & params);
  304. bool parse_cpu_range(const std::string & range, bool(&boolmask)[GGML_MAX_N_THREADS]);
  305. bool parse_cpu_mask(const std::string & mask, bool(&boolmask)[GGML_MAX_N_THREADS]);
  306. void postprocess_cpu_params(cpu_params & cpuparams, const cpu_params * role_model = nullptr);
  307. bool set_process_priority(enum ggml_sched_priority prio);
  308. //
  309. // String utils
  310. //
  311. #ifdef __GNUC__
  312. #ifdef __MINGW32__
  313. #define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  314. #else
  315. #define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  316. #endif
  317. #else
  318. #define LLAMA_COMMON_ATTRIBUTE_FORMAT(...)
  319. #endif
  320. LLAMA_COMMON_ATTRIBUTE_FORMAT(1, 2)
  321. std::string string_format(const char * fmt, ...);
  322. std::string string_strip(const std::string & str);
  323. std::string string_get_sortable_timestamp();
  324. void string_replace_all(std::string & s, const std::string & search, const std::string & replace);
  325. template<class T>
  326. static std::vector<T> string_split(const std::string & str, char delim) {
  327. static_assert(!std::is_same<T, std::string>::value, "Please use the specialized version for std::string");
  328. std::vector<T> values;
  329. std::istringstream str_stream(str);
  330. std::string token;
  331. while (std::getline(str_stream, token, delim)) {
  332. T value;
  333. std::istringstream token_stream(token);
  334. token_stream >> value;
  335. values.push_back(value);
  336. }
  337. return values;
  338. }
  339. template<>
  340. std::vector<std::string> string_split<std::string>(const std::string & input, char separator)
  341. {
  342. std::vector<std::string> parts;
  343. size_t begin_pos = 0;
  344. size_t separator_pos = input.find(separator);
  345. while (separator_pos != std::string::npos) {
  346. std::string part = input.substr(begin_pos, separator_pos - begin_pos);
  347. parts.emplace_back(part);
  348. begin_pos = separator_pos + 1;
  349. separator_pos = input.find(separator, begin_pos);
  350. }
  351. parts.emplace_back(input.substr(begin_pos, separator_pos - begin_pos));
  352. return parts;
  353. }
  354. bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
  355. void string_process_escapes(std::string & input);
  356. std::string string_from(bool value);
  357. std::string string_from(const std::vector<int> & values);
  358. std::string string_from(const struct llama_context * ctx, const std::vector<llama_token> & tokens);
  359. std::string string_from(const struct llama_context * ctx, const struct llama_batch & batch);
  360. //
  361. // Filesystem utils
  362. //
  363. bool fs_validate_filename(const std::string & filename);
  364. bool fs_create_directory_with_parents(const std::string & path);
  365. std::string fs_get_cache_directory();
  366. std::string fs_get_cache_file(const std::string & filename);
  367. //
  368. // Model utils
  369. //
  370. struct common_init_result {
  371. struct llama_model * model = nullptr;
  372. struct llama_context * context = nullptr;
  373. std::vector<common_lora_adapter_container> lora_adapters;
  374. };
  375. struct common_init_result common_init_from_params(common_params & params);
  376. struct llama_model_params common_model_params_to_llama ( common_params & params);
  377. struct llama_context_params common_context_params_to_llama(const common_params & params);
  378. struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params);
  379. struct llama_model * common_load_model_from_url(
  380. const std::string & model_url,
  381. const std::string & local_path,
  382. const std::string & hf_token,
  383. const struct llama_model_params & params);
  384. struct llama_model * common_load_model_from_hf(
  385. const std::string & repo,
  386. const std::string & remote_path,
  387. const std::string & local_path,
  388. const std::string & hf_token,
  389. const struct llama_model_params & params);
  390. // clear LoRA adapters from context, then apply new list of adapters
  391. void common_lora_adapters_apply(struct llama_context * ctx, std::vector<common_lora_adapter_container> & lora_adapters);
  392. //
  393. // Batch utils
  394. //
  395. void common_batch_clear(struct llama_batch & batch);
  396. void common_batch_add(
  397. struct llama_batch & batch,
  398. llama_token id,
  399. llama_pos pos,
  400. const std::vector<llama_seq_id> & seq_ids,
  401. bool logits);
  402. //
  403. // Token utils
  404. //
  405. // longest common prefix
  406. size_t common_lcp(const llama_tokens & a, const llama_tokens & b);
  407. // longet common subsequence
  408. size_t common_lcs(const llama_tokens & a, const llama_tokens & b);
  409. //
  410. // Vocab utils
  411. //
  412. // tokenizes a string into a vector of tokens
  413. // should work similar to Python's `tokenizer.encode`
  414. std::vector<llama_token> common_tokenize(
  415. const struct llama_context * ctx,
  416. const std::string & text,
  417. bool add_special,
  418. bool parse_special = false);
  419. std::vector<llama_token> common_tokenize(
  420. const struct llama_model * model,
  421. const std::string & text,
  422. bool add_special,
  423. bool parse_special = false);
  424. // tokenizes a token into a piece, optionally renders special/control tokens
  425. // should work similar to Python's `tokenizer.id_to_piece`
  426. std::string common_token_to_piece(
  427. const struct llama_context * ctx,
  428. llama_token token,
  429. bool special = true);
  430. // detokenizes a vector of tokens into a string
  431. // should work similar to Python's `tokenizer.decode`
  432. // optionally renders special/control tokens
  433. std::string common_detokenize(
  434. llama_context * ctx,
  435. const std::vector<llama_token> & tokens,
  436. bool special = true);
  437. //
  438. // Chat template utils
  439. //
  440. // same with llama_chat_message, but uses std::string
  441. struct common_chat_msg {
  442. std::string role;
  443. std::string content;
  444. };
  445. // Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
  446. bool common_chat_verify_template(const std::string & tmpl);
  447. // CPP wrapper for llama_chat_apply_template
  448. // If the built-in template is not supported, we default to chatml
  449. // If the custom "tmpl" is not supported, we throw an error
  450. std::string common_chat_apply_template(const struct llama_model * model,
  451. const std::string & tmpl,
  452. const std::vector<common_chat_msg> & chat,
  453. bool add_ass);
  454. // Format single message, while taking into account the position of that message in chat history
  455. std::string common_chat_format_single(const struct llama_model * model,
  456. const std::string & tmpl,
  457. const std::vector<common_chat_msg> & past_msg,
  458. const common_chat_msg & new_msg,
  459. bool add_ass);
  460. // Returns an example of formatted chat
  461. std::string common_chat_format_example(const struct llama_model * model,
  462. const std::string & tmpl);
  463. //
  464. // KV cache utils
  465. //
  466. // Dump the KV cache view with the number of sequences per cell.
  467. void common_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size = 80);
  468. // Dump the KV cache view showing individual sequences in each cell (long output).
  469. void common_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
  470. //
  471. // Embedding utils
  472. //
  473. void common_embd_normalize(const float * inp, float * out, int n, int embd_norm = 2);
  474. float common_embd_similarity_cos(const float * embd1, const float * embd2, int n);
  475. //
  476. // Control vector utils
  477. //
  478. struct common_control_vector_data {
  479. int n_embd;
  480. // stores data for layers [1, n_layer] where n_layer = data.size() / n_embd
  481. std::vector<float> data;
  482. };
  483. struct common_control_vector_load_info {
  484. float strength;
  485. std::string fname;
  486. };
  487. // Load control vectors, scale each by strength, and add them together.
  488. // On error, returns {-1, empty}
  489. common_control_vector_data common_control_vector_load(const std::vector<common_control_vector_load_info> & load_infos);
  490. //
  491. // Split utils
  492. //
  493. static const char * const LLM_KV_SPLIT_NO = "split.no";
  494. static const char * const LLM_KV_SPLIT_COUNT = "split.count";
  495. static const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";