convert_hf_to_gguf.py 198 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. import math
  18. import numpy as np
  19. import torch
  20. if TYPE_CHECKING:
  21. from torch import Tensor
  22. if 'NO_LOCAL_GGUF' not in os.environ:
  23. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  24. import gguf
  25. logger = logging.getLogger("hf-to-gguf")
  26. ###### MODEL DEFINITIONS ######
  27. class SentencePieceTokenTypes(IntEnum):
  28. NORMAL = 1
  29. UNKNOWN = 2
  30. CONTROL = 3
  31. USER_DEFINED = 4
  32. UNUSED = 5
  33. BYTE = 6
  34. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  35. class Model:
  36. _model_classes: dict[str, type[Model]] = {}
  37. dir_model: Path
  38. ftype: gguf.LlamaFileType
  39. fname_out: Path
  40. is_big_endian: bool
  41. endianess: gguf.GGUFEndian
  42. use_temp_file: bool
  43. lazy: bool
  44. part_names: list[str]
  45. is_safetensors: bool
  46. hparams: dict[str, Any]
  47. block_count: int
  48. tensor_map: gguf.TensorNameMap
  49. tensor_names: set[str] | None
  50. gguf_writer: gguf.GGUFWriter
  51. model_name: str | None
  52. metadata_override: Path | None
  53. dir_model_card: Path
  54. # subclasses should define this!
  55. model_arch: gguf.MODEL_ARCH
  56. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False,
  57. use_temp_file: bool = False, eager: bool = False,
  58. metadata_override: Path | None = None, model_name: str | None = None,
  59. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  60. small_first_shard: bool = False, hparams: dict[str, Any] | None = None):
  61. if type(self) is Model:
  62. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  63. self.dir_model = dir_model
  64. self.ftype = ftype
  65. self.fname_out = fname_out
  66. self.is_big_endian = is_big_endian
  67. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  68. self.use_temp_file = use_temp_file
  69. self.lazy = not eager
  70. self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
  71. self.is_safetensors = len(self.part_names) > 0
  72. if not self.is_safetensors:
  73. self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  74. self.hparams = Model.load_hparams(self.dir_model) if hparams is None else hparams
  75. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  76. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  77. self.tensor_names = None
  78. self.metadata_override = metadata_override
  79. self.model_name = model_name
  80. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  81. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  82. if self.ftype == gguf.LlamaFileType.GUESSED:
  83. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  84. _, first_tensor = next(self.get_tensors())
  85. if first_tensor.dtype == torch.float16:
  86. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  87. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  88. else:
  89. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  90. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  91. # Configure GGUF Writer
  92. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  93. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  94. @classmethod
  95. def __init_subclass__(cls):
  96. # can't use an abstract property, because overriding it without type errors
  97. # would require using decorated functions instead of simply defining the property
  98. if "model_arch" not in cls.__dict__:
  99. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  100. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  101. key = next((k for k in keys if k in self.hparams), None)
  102. if key is not None:
  103. return self.hparams[key]
  104. if optional:
  105. return None
  106. raise KeyError(f"could not find any of: {keys}")
  107. def set_vocab(self):
  108. self._set_vocab_gpt2()
  109. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  110. tensor_names_from_parts: set[str] = set()
  111. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  112. index_name += ".index.json"
  113. index_file = self.dir_model / index_name
  114. if index_file.is_file():
  115. self.tensor_names = set()
  116. logger.info(f"gguf: loading model weight map from '{index_name}'")
  117. with open(index_file, "r", encoding="utf-8") as f:
  118. index: dict[str, Any] = json.load(f)
  119. weight_map = index.get("weight_map")
  120. if weight_map is None or not isinstance(weight_map, dict):
  121. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  122. self.tensor_names.update(weight_map.keys())
  123. else:
  124. self.tensor_names = tensor_names_from_parts
  125. weight_map = {}
  126. for part_name in self.part_names:
  127. logger.info(f"gguf: loading model part '{part_name}'")
  128. ctx: ContextManager[Any]
  129. if self.is_safetensors:
  130. from safetensors import safe_open
  131. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  132. else:
  133. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  134. with ctx as model_part:
  135. tensor_names_from_parts.update(model_part.keys())
  136. for name in model_part.keys():
  137. if self.is_safetensors:
  138. if self.lazy:
  139. data = model_part.get_slice(name)
  140. data = LazyTorchTensor.from_safetensors_slice(data)
  141. else:
  142. data = model_part.get_tensor(name)
  143. else:
  144. data = model_part[name]
  145. if self.lazy:
  146. data = LazyTorchTensor.from_eager(data)
  147. yield name, data
  148. # verify tensor name presence and identify potentially missing files
  149. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  150. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  151. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  152. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  153. if len(extra) == 0 and len(missing_files) > 0:
  154. raise ValueError(f"Missing or incomplete model files: {missing_files}")
  155. else:
  156. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  157. f"Missing tensors: {missing}\n"
  158. f"Extra tensors: {extra}")
  159. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  160. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  161. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  162. name: str = gguf.TENSOR_NAMES[key]
  163. if "{bid}" in name:
  164. assert bid is not None
  165. name = name.format(bid=bid)
  166. return name + suffix
  167. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  168. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  169. return False
  170. key_name: str = gguf.TENSOR_NAMES[key]
  171. if "{bid}" in key_name:
  172. if bid is None:
  173. return False
  174. key_name = key_name.format(bid=bid)
  175. else:
  176. if bid is not None:
  177. return False
  178. return name == (key_name + suffix)
  179. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  180. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  181. if new_name is None:
  182. raise ValueError(f"Can not map tensor {name!r}")
  183. return new_name
  184. def set_gguf_parameters(self):
  185. self.gguf_writer.add_block_count(self.block_count)
  186. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  187. self.gguf_writer.add_context_length(n_ctx)
  188. logger.info(f"gguf: context length = {n_ctx}")
  189. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  190. self.gguf_writer.add_embedding_length(n_embd)
  191. logger.info(f"gguf: embedding length = {n_embd}")
  192. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  193. self.gguf_writer.add_feed_forward_length(n_ff)
  194. logger.info(f"gguf: feed forward length = {n_ff}")
  195. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  196. self.gguf_writer.add_head_count(n_head)
  197. logger.info(f"gguf: head count = {n_head}")
  198. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  199. self.gguf_writer.add_head_count_kv(n_head_kv)
  200. logger.info(f"gguf: key-value head count = {n_head_kv}")
  201. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  202. self.gguf_writer.add_rope_freq_base(rope_theta)
  203. logger.info(f"gguf: rope theta = {rope_theta}")
  204. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  205. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  206. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  207. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  208. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  209. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  210. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  211. self.gguf_writer.add_expert_count(n_experts)
  212. logger.info(f"gguf: expert count = {n_experts}")
  213. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  214. self.gguf_writer.add_expert_used_count(n_experts_used)
  215. logger.info(f"gguf: experts used count = {n_experts_used}")
  216. if (head_dim := self.hparams.get("head_dim")) is not None:
  217. self.gguf_writer.add_key_length(head_dim)
  218. self.gguf_writer.add_value_length(head_dim)
  219. self.gguf_writer.add_file_type(self.ftype)
  220. logger.info(f"gguf: file type = {self.ftype}")
  221. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  222. del bid # unused
  223. return [(self.map_tensor_name(name), data_torch)]
  224. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  225. del name, new_name, bid, n_dims # unused
  226. return False
  227. # some models need extra generated tensors (like rope_freqs)
  228. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  229. return ()
  230. def prepare_tensors(self):
  231. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  232. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  233. # we don't need these
  234. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  235. continue
  236. old_dtype = data_torch.dtype
  237. # convert any unsupported data types to float32
  238. if data_torch.dtype not in (torch.float16, torch.float32):
  239. data_torch = data_torch.to(torch.float32)
  240. # use the first number-like part of the tensor name as the block id
  241. bid = None
  242. for part in name.split("."):
  243. if part.isdecimal():
  244. bid = int(part)
  245. break
  246. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  247. data = data_torch.squeeze().numpy()
  248. # if data ends up empty, it means data_torch was a scalar tensor -> restore
  249. if len(data.shape) == 0:
  250. data = data_torch.numpy()
  251. n_dims = len(data.shape)
  252. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  253. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  254. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  255. data_qtype = gguf.GGMLQuantizationType.F32
  256. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  257. # Some tensor types are always in float32
  258. if data_qtype is False and (
  259. any(
  260. self.match_model_tensor_name(new_name, key, bid)
  261. for key in (
  262. gguf.MODEL_TENSOR.FFN_GATE_INP,
  263. gguf.MODEL_TENSOR.POS_EMBD,
  264. gguf.MODEL_TENSOR.TOKEN_TYPES,
  265. gguf.MODEL_TENSOR.SSM_CONV1D,
  266. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  267. gguf.MODEL_TENSOR.TIME_MIX_W1,
  268. gguf.MODEL_TENSOR.TIME_MIX_W2,
  269. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  270. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  271. )
  272. )
  273. or not new_name.endswith(".weight")
  274. ):
  275. data_qtype = gguf.GGMLQuantizationType.F32
  276. if data_qtype is False and any(
  277. self.match_model_tensor_name(new_name, key, bid)
  278. for key in (
  279. gguf.MODEL_TENSOR.TOKEN_EMBD,
  280. gguf.MODEL_TENSOR.OUTPUT,
  281. )
  282. ):
  283. if self.ftype in (
  284. gguf.LlamaFileType.MOSTLY_TQ1_0,
  285. gguf.LlamaFileType.MOSTLY_TQ2_0,
  286. ):
  287. # TODO: use Q4_K and Q6_K
  288. data_qtype = gguf.GGMLQuantizationType.F16
  289. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  290. if isinstance(data_qtype, bool):
  291. if self.ftype == gguf.LlamaFileType.ALL_F32:
  292. data_qtype = gguf.GGMLQuantizationType.F32
  293. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  294. data_qtype = gguf.GGMLQuantizationType.F16
  295. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  296. data_qtype = gguf.GGMLQuantizationType.BF16
  297. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  298. data_qtype = gguf.GGMLQuantizationType.Q8_0
  299. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  300. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  301. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  302. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  303. else:
  304. raise ValueError(f"Unknown file type: {self.ftype.name}")
  305. try:
  306. data = gguf.quants.quantize(data, data_qtype)
  307. except gguf.QuantError as e:
  308. logger.warning("%s, %s", e, "falling back to F16")
  309. data_qtype = gguf.GGMLQuantizationType.F16
  310. data = gguf.quants.quantize(data, data_qtype)
  311. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  312. # reverse shape to make it similar to the internal ggml dimension order
  313. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  314. # n_dims is implicit in the shape
  315. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  316. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  317. def set_type(self):
  318. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  319. def prepare_metadata(self, vocab_only: bool):
  320. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  321. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  322. # Fallback to model directory name if metadata name is still missing
  323. if self.metadata.name is None:
  324. self.metadata.name = self.dir_model.name
  325. # Generate parameter weight class (useful for leader boards) if not yet determined
  326. if self.metadata.size_label is None and total_params > 0:
  327. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  328. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  329. output_type: str = self.ftype.name.partition("_")[2]
  330. # Filename Output
  331. if self.fname_out.is_dir():
  332. # Generate default filename based on model specification and available metadata
  333. if not vocab_only:
  334. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  335. else:
  336. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  337. # Use the default filename
  338. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  339. else:
  340. # Output path is a custom defined templated filename
  341. # Note: `not is_dir()` is used because `.is_file()` will not detect
  342. # file template strings as it doesn't actually exist as a file
  343. # Process templated file name with the output ftype, useful with the "auto" ftype
  344. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  345. self.set_type()
  346. logger.info("Set meta model")
  347. self.metadata.set_gguf_meta_model(self.gguf_writer)
  348. logger.info("Set model parameters")
  349. self.set_gguf_parameters()
  350. logger.info("Set model tokenizer")
  351. self.set_vocab()
  352. logger.info("Set model quantization version")
  353. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  354. def write(self):
  355. self.prepare_tensors()
  356. self.prepare_metadata(vocab_only=False)
  357. self.gguf_writer.write_header_to_file(path=self.fname_out)
  358. self.gguf_writer.write_kv_data_to_file()
  359. self.gguf_writer.write_tensors_to_file(progress=True)
  360. self.gguf_writer.close()
  361. def write_vocab(self):
  362. if len(self.gguf_writer.tensors) != 1:
  363. raise ValueError('Splitting the vocabulary is not supported')
  364. self.prepare_metadata(vocab_only=True)
  365. self.gguf_writer.write_header_to_file(path=self.fname_out)
  366. self.gguf_writer.write_kv_data_to_file()
  367. self.gguf_writer.close()
  368. @staticmethod
  369. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  370. part_names: list[str] = []
  371. for filename in os.listdir(dir_model):
  372. if filename.startswith(prefix) and filename.endswith(suffix):
  373. part_names.append(filename)
  374. part_names.sort()
  375. return part_names
  376. @staticmethod
  377. def load_hparams(dir_model: Path):
  378. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  379. return json.load(f)
  380. @classmethod
  381. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  382. assert names
  383. def func(modelcls: AnyModel) -> AnyModel:
  384. for name in names:
  385. cls._model_classes[name] = modelcls
  386. return modelcls
  387. return func
  388. @classmethod
  389. def from_model_architecture(cls, arch: str) -> type[Model]:
  390. try:
  391. return cls._model_classes[arch]
  392. except KeyError:
  393. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  394. def does_token_look_special(self, token: str | bytes) -> bool:
  395. if isinstance(token, (bytes, bytearray)):
  396. token_text = token.decode(encoding="utf-8")
  397. elif isinstance(token, memoryview):
  398. token_text = token.tobytes().decode(encoding="utf-8")
  399. else:
  400. token_text = token
  401. # Some models mark some added tokens which ought to be control tokens as not special.
  402. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  403. seems_special = token_text in (
  404. "<pad>", # deepseek-coder
  405. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  406. )
  407. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  408. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  409. # TODO: should these be marked as UNUSED instead? (maybe not)
  410. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  411. return seems_special
  412. # used for GPT-2 BPE and WordPiece vocabs
  413. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  414. tokens: list[str] = []
  415. toktypes: list[int] = []
  416. from transformers import AutoTokenizer
  417. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  418. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  419. assert max(tokenizer.vocab.values()) < vocab_size
  420. tokpre = self.get_vocab_base_pre(tokenizer)
  421. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  422. added_vocab = tokenizer.get_added_vocab()
  423. for i in range(vocab_size):
  424. if i not in reverse_vocab:
  425. tokens.append(f"[PAD{i}]")
  426. toktypes.append(gguf.TokenType.UNUSED)
  427. else:
  428. token: str = reverse_vocab[i]
  429. if token in added_vocab:
  430. if tokenizer.added_tokens_decoder[i].special or self.does_token_look_special(token):
  431. toktypes.append(gguf.TokenType.CONTROL)
  432. else:
  433. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  434. toktypes.append(gguf.TokenType.USER_DEFINED)
  435. else:
  436. toktypes.append(gguf.TokenType.NORMAL)
  437. tokens.append(token)
  438. return tokens, toktypes, tokpre
  439. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  440. # do not modify it manually!
  441. # ref: https://github.com/ggerganov/llama.cpp/pull/6920
  442. # Marker: Start get_vocab_base_pre
  443. def get_vocab_base_pre(self, tokenizer) -> str:
  444. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  445. # is specific for the BPE pre-tokenizer used by the model
  446. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  447. # use in llama.cpp to implement the same pre-tokenizer
  448. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  449. chktok = tokenizer.encode(chktxt)
  450. chkhsh = sha256(str(chktok).encode()).hexdigest()
  451. logger.debug(f"chktok: {chktok}")
  452. logger.debug(f"chkhsh: {chkhsh}")
  453. res = None
  454. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  455. # or pull the latest version of the model from Huggingface
  456. # don't edit the hashes manually!
  457. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  458. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  459. res = "llama-bpe"
  460. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  461. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  462. res = "deepseek-llm"
  463. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  464. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  465. res = "deepseek-coder"
  466. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  467. # ref: https://huggingface.co/tiiuae/falcon-7b
  468. res = "falcon"
  469. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  470. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  471. res = "bert-bge"
  472. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  473. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  474. res = "bert-bge-large"
  475. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  476. # ref: https://huggingface.co/mosaicml/mpt-7b
  477. res = "mpt"
  478. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  479. # ref: https://huggingface.co/bigcode/starcoder2-3b
  480. res = "starcoder"
  481. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  482. # ref: https://huggingface.co/openai-community/gpt2
  483. res = "gpt-2"
  484. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  485. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  486. res = "stablelm2"
  487. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  488. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  489. res = "refact"
  490. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  491. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  492. res = "command-r"
  493. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  494. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  495. res = "qwen2"
  496. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  497. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  498. res = "olmo"
  499. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  500. # ref: https://huggingface.co/databricks/dbrx-base
  501. res = "dbrx"
  502. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  503. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  504. res = "jina-v1-en"
  505. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  506. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  507. res = "jina-v2-en"
  508. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  509. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  510. res = "jina-v2-es"
  511. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  512. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  513. res = "jina-v2-de"
  514. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  515. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  516. res = "smaug-bpe"
  517. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  518. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  519. res = "poro-chat"
  520. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  521. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  522. res = "jina-v2-code"
  523. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  524. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  525. res = "chatglm-bpe"
  526. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  527. # ref: https://huggingface.co/LumiOpen/Viking-7B
  528. res = "viking"
  529. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  530. # ref: https://huggingface.co/core42/jais-13b
  531. res = "jais"
  532. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  533. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  534. res = "codeshell"
  535. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  536. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  537. res = "tekken"
  538. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  539. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  540. res = "smollm"
  541. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  542. # ref: https://huggingface.co/bigscience/bloom
  543. res = "bloom"
  544. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  545. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  546. res = "gpt3-finnish"
  547. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  548. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  549. res = "exaone"
  550. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  551. # ref: https://huggingface.co/microsoft/phi-2
  552. res = "phi-2"
  553. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  554. # ref: https://huggingface.co/facebook/chameleon-7b
  555. res = "chameleon"
  556. if res is None:
  557. logger.warning("\n")
  558. logger.warning("**************************************************************************************")
  559. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  560. logger.warning("** There are 2 possible reasons for this:")
  561. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  562. logger.warning("** - the pre-tokenization config has changed upstream")
  563. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  564. logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
  565. logger.warning("**")
  566. logger.warning(f"** chkhsh: {chkhsh}")
  567. logger.warning("**************************************************************************************")
  568. logger.warning("\n")
  569. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  570. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  571. logger.debug(f"chkhsh: {chkhsh}")
  572. return res
  573. # Marker: End get_vocab_base_pre
  574. def _set_vocab_gpt2(self) -> None:
  575. tokens, toktypes, tokpre = self.get_vocab_base()
  576. self.gguf_writer.add_tokenizer_model("gpt2")
  577. self.gguf_writer.add_tokenizer_pre(tokpre)
  578. self.gguf_writer.add_token_list(tokens)
  579. self.gguf_writer.add_token_types(toktypes)
  580. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  581. special_vocab.add_to_gguf(self.gguf_writer)
  582. def _set_vocab_qwen(self):
  583. dir_model = self.dir_model
  584. hparams = self.hparams
  585. tokens: list[str] = []
  586. toktypes: list[int] = []
  587. from transformers import AutoTokenizer
  588. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  589. vocab_size = hparams["vocab_size"]
  590. assert max(tokenizer.get_vocab().values()) < vocab_size
  591. tokpre = self.get_vocab_base_pre(tokenizer)
  592. merges = []
  593. vocab = {}
  594. mergeable_ranks = tokenizer.mergeable_ranks
  595. for token, rank in mergeable_ranks.items():
  596. vocab[QwenModel.token_bytes_to_string(token)] = rank
  597. if len(token) == 1:
  598. continue
  599. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  600. assert len(merged) == 2
  601. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  602. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  603. added_vocab = tokenizer.special_tokens
  604. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  605. for i in range(vocab_size):
  606. if i not in reverse_vocab:
  607. tokens.append(f"[PAD{i}]")
  608. toktypes.append(gguf.TokenType.UNUSED)
  609. elif reverse_vocab[i] in added_vocab:
  610. tokens.append(reverse_vocab[i])
  611. toktypes.append(gguf.TokenType.CONTROL)
  612. else:
  613. tokens.append(reverse_vocab[i])
  614. toktypes.append(gguf.TokenType.NORMAL)
  615. self.gguf_writer.add_tokenizer_model("gpt2")
  616. self.gguf_writer.add_tokenizer_pre(tokpre)
  617. self.gguf_writer.add_token_list(tokens)
  618. self.gguf_writer.add_token_types(toktypes)
  619. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  620. special_vocab.merges = merges
  621. # only add special tokens when they were not already loaded from config.json
  622. if len(special_vocab.special_token_ids) == 0:
  623. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  624. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  625. # this one is usually not in config.json anyway
  626. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  627. special_vocab.add_to_gguf(self.gguf_writer)
  628. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  629. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  630. self.gguf_writer.add_tokenizer_model("llama")
  631. self.gguf_writer.add_tokenizer_pre("default")
  632. self.gguf_writer.add_token_list(tokens)
  633. self.gguf_writer.add_token_scores(scores)
  634. self.gguf_writer.add_token_types(toktypes)
  635. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  636. special_vocab.add_to_gguf(self.gguf_writer)
  637. def _create_vocab_sentencepiece(self):
  638. from sentencepiece import SentencePieceProcessor
  639. tokenizer_path = self.dir_model / 'tokenizer.model'
  640. if not tokenizer_path.is_file():
  641. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  642. tokenizer = SentencePieceProcessor()
  643. tokenizer.LoadFromFile(str(tokenizer_path))
  644. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  645. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  646. scores: list[float] = [-10000.0] * vocab_size
  647. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  648. for token_id in range(tokenizer.vocab_size()):
  649. piece = tokenizer.IdToPiece(token_id)
  650. text = piece.encode("utf-8")
  651. score = tokenizer.GetScore(token_id)
  652. toktype = SentencePieceTokenTypes.NORMAL
  653. if tokenizer.IsUnknown(token_id):
  654. toktype = SentencePieceTokenTypes.UNKNOWN
  655. elif tokenizer.IsControl(token_id):
  656. toktype = SentencePieceTokenTypes.CONTROL
  657. elif tokenizer.IsUnused(token_id):
  658. toktype = SentencePieceTokenTypes.UNUSED
  659. elif tokenizer.IsByte(token_id):
  660. toktype = SentencePieceTokenTypes.BYTE
  661. tokens[token_id] = text
  662. scores[token_id] = score
  663. toktypes[token_id] = toktype
  664. added_tokens_file = self.dir_model / 'added_tokens.json'
  665. if added_tokens_file.is_file():
  666. with open(added_tokens_file, "r", encoding="utf-8") as f:
  667. added_tokens_json = json.load(f)
  668. for key in added_tokens_json:
  669. token_id = added_tokens_json[key]
  670. if token_id >= vocab_size:
  671. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  672. continue
  673. tokens[token_id] = key.encode("utf-8")
  674. scores[token_id] = -1000.0
  675. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  676. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  677. if tokenizer_config_file.is_file():
  678. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  679. tokenizer_config_json = json.load(f)
  680. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  681. for token_id, token_data in added_tokens_decoder.items():
  682. token_id = int(token_id)
  683. token: str = token_data["content"]
  684. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  685. if tokens[token_id] != token.encode("utf-8"):
  686. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  687. if token_data.get("special") or self.does_token_look_special(token):
  688. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  689. else:
  690. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  691. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  692. scores[token_id] = -1000.0
  693. tokens[token_id] = token.encode("utf-8")
  694. if vocab_size > len(tokens):
  695. pad_count = vocab_size - len(tokens)
  696. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  697. for i in range(1, pad_count + 1):
  698. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  699. scores.append(-1000.0)
  700. toktypes.append(SentencePieceTokenTypes.UNUSED)
  701. return tokens, scores, toktypes
  702. def _set_vocab_llama_hf(self):
  703. vocab = gguf.LlamaHfVocab(self.dir_model)
  704. tokens = []
  705. scores = []
  706. toktypes = []
  707. for text, score, toktype in vocab.all_tokens():
  708. tokens.append(text)
  709. scores.append(score)
  710. toktypes.append(toktype)
  711. assert len(tokens) == vocab.vocab_size
  712. self.gguf_writer.add_tokenizer_model("llama")
  713. self.gguf_writer.add_tokenizer_pre("default")
  714. self.gguf_writer.add_token_list(tokens)
  715. self.gguf_writer.add_token_scores(scores)
  716. self.gguf_writer.add_token_types(toktypes)
  717. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  718. special_vocab.add_to_gguf(self.gguf_writer)
  719. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  720. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  721. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  722. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  723. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  724. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  725. assert field # tokenizer model
  726. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  727. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  728. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  729. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  730. assert field # token list
  731. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  732. if model_name == "llama-spm":
  733. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  734. assert field # token scores
  735. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  736. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  737. assert field # token types
  738. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  739. if model_name != "llama-spm":
  740. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  741. assert field # token merges
  742. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  743. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  744. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  745. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  746. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  747. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  748. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  749. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  750. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  751. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  752. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  753. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  754. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  755. @Model.register("GPTNeoXForCausalLM")
  756. class GPTNeoXModel(Model):
  757. model_arch = gguf.MODEL_ARCH.GPTNEOX
  758. def set_gguf_parameters(self):
  759. block_count = self.hparams["num_hidden_layers"]
  760. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  761. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  762. self.gguf_writer.add_block_count(block_count)
  763. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  764. self.gguf_writer.add_rope_dimension_count(
  765. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  766. )
  767. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  768. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  769. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  770. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  771. del bid # unused
  772. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  773. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  774. tensors: list[tuple[str, Tensor]] = []
  775. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  776. # Map bloom-style qkv_linear to gpt-style qkv_linear
  777. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  778. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  779. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  780. data_torch = torch.cat(
  781. (
  782. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  783. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  784. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  785. ),
  786. dim=0,
  787. )
  788. logger.info("re-format attention.linear_qkv.weight")
  789. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  790. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  791. data_torch = torch.cat(
  792. (
  793. qkv_bias[:, 0, :].reshape((n_embed,)),
  794. qkv_bias[:, 1, :].reshape((n_embed,)),
  795. qkv_bias[:, 2, :].reshape((n_embed,)),
  796. ),
  797. dim=0,
  798. )
  799. logger.info("re-format attention.linear_qkv.bias")
  800. tensors.append((self.map_tensor_name(name), data_torch))
  801. return tensors
  802. @Model.register("BloomForCausalLM", "BloomModel")
  803. class BloomModel(Model):
  804. model_arch = gguf.MODEL_ARCH.BLOOM
  805. def set_gguf_parameters(self):
  806. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  807. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  808. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  809. self.gguf_writer.add_embedding_length(n_embed)
  810. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  811. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  812. self.gguf_writer.add_head_count(n_head)
  813. self.gguf_writer.add_head_count_kv(n_head)
  814. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  815. self.gguf_writer.add_file_type(self.ftype)
  816. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  817. del bid # unused
  818. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  819. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  820. name = re.sub(r'transformer\.', '', name)
  821. tensors: list[tuple[str, Tensor]] = []
  822. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  823. # Map bloom-style qkv_linear to gpt-style qkv_linear
  824. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  825. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  826. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  827. data_torch = torch.cat(
  828. (
  829. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  830. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  831. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  832. ),
  833. dim=0,
  834. )
  835. logger.info("re-format attention.linear_qkv.weight")
  836. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  837. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  838. data_torch = torch.cat(
  839. (
  840. qkv_bias[:, 0, :].reshape((n_embed,)),
  841. qkv_bias[:, 1, :].reshape((n_embed,)),
  842. qkv_bias[:, 2, :].reshape((n_embed,)),
  843. ),
  844. dim=0,
  845. )
  846. logger.info("re-format attention.linear_qkv.bias")
  847. tensors.append((self.map_tensor_name(name), data_torch))
  848. if name == "word_embeddings.weight":
  849. assert self.tensor_names is not None
  850. # TODO: tie them at runtime, don't duplicate in the model file
  851. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  852. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  853. return tensors
  854. @Model.register("MPTForCausalLM")
  855. class MPTModel(Model):
  856. model_arch = gguf.MODEL_ARCH.MPT
  857. def set_vocab(self):
  858. try:
  859. self._set_vocab_gpt2()
  860. except Exception:
  861. # Fallback for SEA-LION model
  862. self._set_vocab_sentencepiece()
  863. self.gguf_writer.add_add_bos_token(False)
  864. self.gguf_writer.add_pad_token_id(3)
  865. self.gguf_writer.add_eos_token_id(1)
  866. self.gguf_writer.add_unk_token_id(0)
  867. def set_gguf_parameters(self):
  868. block_count = self.hparams["n_layers"]
  869. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  870. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  871. self.gguf_writer.add_block_count(block_count)
  872. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  873. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  874. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  875. self.gguf_writer.add_head_count_kv(kv_n_heads)
  876. self.gguf_writer.add_layer_norm_eps(1e-5)
  877. if self.hparams["attn_config"]["clip_qkv"] is not None:
  878. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  879. if self.hparams["attn_config"]["alibi"]:
  880. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  881. else:
  882. self.gguf_writer.add_max_alibi_bias(0.0)
  883. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  884. del bid # unused
  885. if "scales" in name:
  886. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  887. new_name = new_name.replace("scales", "act.scales")
  888. else:
  889. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  890. return [(new_name, data_torch)]
  891. @Model.register("OrionForCausalLM")
  892. class OrionModel(Model):
  893. model_arch = gguf.MODEL_ARCH.ORION
  894. def set_vocab(self):
  895. self._set_vocab_sentencepiece()
  896. def set_gguf_parameters(self):
  897. block_count = self.hparams["num_hidden_layers"]
  898. head_count = self.hparams["num_attention_heads"]
  899. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  900. ctx_length = 0
  901. if "max_sequence_length" in self.hparams:
  902. ctx_length = self.hparams["max_sequence_length"]
  903. elif "max_position_embeddings" in self.hparams:
  904. ctx_length = self.hparams["max_position_embeddings"]
  905. elif "model_max_length" in self.hparams:
  906. ctx_length = self.hparams["model_max_length"]
  907. else:
  908. raise ValueError("gguf: can not find ctx length parameter.")
  909. self.gguf_writer.add_file_type(self.ftype)
  910. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  911. self.gguf_writer.add_context_length(ctx_length)
  912. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  913. self.gguf_writer.add_block_count(block_count)
  914. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  915. self.gguf_writer.add_head_count(head_count)
  916. self.gguf_writer.add_head_count_kv(head_count_kv)
  917. # note: config provides rms norm but it is actually layer norm
  918. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  919. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  920. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  921. class BaichuanModel(Model):
  922. model_arch = gguf.MODEL_ARCH.BAICHUAN
  923. def set_vocab(self):
  924. self._set_vocab_sentencepiece()
  925. def set_gguf_parameters(self):
  926. block_count = self.hparams["num_hidden_layers"]
  927. head_count = self.hparams["num_attention_heads"]
  928. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  929. ctx_length = 0
  930. if "max_sequence_length" in self.hparams:
  931. ctx_length = self.hparams["max_sequence_length"]
  932. elif "max_position_embeddings" in self.hparams:
  933. ctx_length = self.hparams["max_position_embeddings"]
  934. elif "model_max_length" in self.hparams:
  935. ctx_length = self.hparams["model_max_length"]
  936. else:
  937. raise ValueError("gguf: can not find ctx length parameter.")
  938. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  939. self.gguf_writer.add_context_length(ctx_length)
  940. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  941. self.gguf_writer.add_block_count(block_count)
  942. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  943. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  944. self.gguf_writer.add_head_count(head_count)
  945. self.gguf_writer.add_head_count_kv(head_count_kv)
  946. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  947. self.gguf_writer.add_file_type(self.ftype)
  948. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  949. if self.hparams["rope_scaling"].get("type") == "linear":
  950. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  951. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  952. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  953. head_count = self.hparams["num_attention_heads"]
  954. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  955. tensors: list[tuple[str, Tensor]] = []
  956. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  957. logger.info(f"Unpacking and permuting layer {bid}")
  958. tensors = [
  959. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  960. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  961. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  962. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  963. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  964. self._reverse_hf_part(data_torch, 2)),
  965. ]
  966. else:
  967. tensors = [(self.map_tensor_name(name), data_torch)]
  968. return tensors
  969. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  970. if n_kv_head is not None and n_head != n_kv_head:
  971. n_head //= n_kv_head
  972. return (
  973. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  974. .swapaxes(1, 2)
  975. .reshape(weights.shape)
  976. )
  977. def _reverse_hf_permute_part(
  978. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  979. ) -> Tensor:
  980. r = weights.shape[0] // 3
  981. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  982. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  983. r = weights.shape[0] // 3
  984. return weights[r * n_part:r * n_part + r, ...]
  985. @Model.register("XverseForCausalLM")
  986. class XverseModel(Model):
  987. model_arch = gguf.MODEL_ARCH.XVERSE
  988. def set_vocab(self):
  989. assert (self.dir_model / "tokenizer.json").is_file()
  990. dir_model = self.dir_model
  991. hparams = self.hparams
  992. tokens: list[bytes] = []
  993. toktypes: list[int] = []
  994. from transformers import AutoTokenizer
  995. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  996. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  997. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  998. # because vocab_size is the count of items, and indexes start at 0.
  999. max_vocab_index = max(tokenizer.get_vocab().values())
  1000. if max_vocab_index >= vocab_size:
  1001. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1002. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1003. added_vocab = tokenizer.get_added_vocab()
  1004. for token_id in range(vocab_size):
  1005. token_text = reverse_vocab[token_id].encode('utf-8')
  1006. # replace "\x00" to string with length > 0
  1007. if token_text == b"\x00":
  1008. toktype = gguf.TokenType.BYTE # special
  1009. token_text = f"<{token_text}>".encode('utf-8')
  1010. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1011. toktype = gguf.TokenType.BYTE # special
  1012. elif reverse_vocab[token_id] in added_vocab:
  1013. if tokenizer.added_tokens_decoder[token_id].special:
  1014. toktype = gguf.TokenType.CONTROL
  1015. else:
  1016. toktype = gguf.TokenType.USER_DEFINED
  1017. else:
  1018. toktype = gguf.TokenType.NORMAL
  1019. tokens.append(token_text)
  1020. toktypes.append(toktype)
  1021. self.gguf_writer.add_tokenizer_model("llama")
  1022. self.gguf_writer.add_tokenizer_pre("default")
  1023. self.gguf_writer.add_token_list(tokens)
  1024. self.gguf_writer.add_token_types(toktypes)
  1025. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1026. special_vocab.add_to_gguf(self.gguf_writer)
  1027. def set_gguf_parameters(self):
  1028. block_count = self.hparams["num_hidden_layers"]
  1029. head_count = self.hparams["num_attention_heads"]
  1030. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1031. ctx_length = 0
  1032. if "max_sequence_length" in self.hparams:
  1033. ctx_length = self.hparams["max_sequence_length"]
  1034. elif "max_position_embeddings" in self.hparams:
  1035. ctx_length = self.hparams["max_position_embeddings"]
  1036. elif "model_max_length" in self.hparams:
  1037. ctx_length = self.hparams["model_max_length"]
  1038. else:
  1039. raise ValueError("gguf: can not find ctx length parameter.")
  1040. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1041. self.gguf_writer.add_context_length(ctx_length)
  1042. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1043. self.gguf_writer.add_block_count(block_count)
  1044. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1045. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1046. self.gguf_writer.add_head_count(head_count)
  1047. self.gguf_writer.add_head_count_kv(head_count_kv)
  1048. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1049. self.gguf_writer.add_file_type(self.ftype)
  1050. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1051. if self.hparams["rope_scaling"].get("type") == "linear":
  1052. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1053. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1054. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1055. del bid # unused
  1056. head_count = self.hparams["num_attention_heads"]
  1057. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1058. # HF models permute some of the tensors, so we need to undo that
  1059. if name.endswith("q_proj.weight"):
  1060. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1061. if name.endswith("k_proj.weight"):
  1062. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1063. return [(self.map_tensor_name(name), data_torch)]
  1064. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1065. if n_kv_head is not None and n_head != n_kv_head:
  1066. n_head //= n_kv_head
  1067. return (
  1068. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1069. .swapaxes(1, 2)
  1070. .reshape(weights.shape)
  1071. )
  1072. @Model.register("FalconForCausalLM", "RWForCausalLM")
  1073. class FalconModel(Model):
  1074. model_arch = gguf.MODEL_ARCH.FALCON
  1075. def set_gguf_parameters(self):
  1076. block_count = self.hparams.get("num_hidden_layers")
  1077. if block_count is None:
  1078. block_count = self.hparams["n_layer"] # old name
  1079. n_head = self.hparams.get("num_attention_heads")
  1080. if n_head is None:
  1081. n_head = self.hparams["n_head"] # old name
  1082. n_head_kv = self.hparams.get("num_kv_heads")
  1083. if n_head_kv is None:
  1084. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1085. self.gguf_writer.add_context_length(2048) # not in config.json
  1086. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1087. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1088. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1089. self.gguf_writer.add_block_count(block_count)
  1090. self.gguf_writer.add_head_count(n_head)
  1091. self.gguf_writer.add_head_count_kv(n_head_kv)
  1092. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1093. self.gguf_writer.add_file_type(self.ftype)
  1094. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1095. del bid # unused
  1096. # QKV tensor transform
  1097. # The original query_key_value tensor contains n_head_kv "kv groups",
  1098. # each consisting of n_head/n_head_kv query weights followed by one key
  1099. # and one value weight (shared by all query heads in the kv group).
  1100. # This layout makes it a big pain to work with in GGML.
  1101. # So we rearrange them here,, so that we have n_head query weights
  1102. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1103. # in contiguous fashion.
  1104. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1105. if "query_key_value" in name:
  1106. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1107. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1108. head_dim = self.hparams["hidden_size"] // n_head
  1109. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1110. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1111. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1112. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1113. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1114. return [(self.map_tensor_name(name), data_torch)]
  1115. @Model.register("GPTBigCodeForCausalLM")
  1116. class StarCoderModel(Model):
  1117. model_arch = gguf.MODEL_ARCH.STARCODER
  1118. def set_gguf_parameters(self):
  1119. block_count = self.hparams["n_layer"]
  1120. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1121. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1122. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1123. self.gguf_writer.add_block_count(block_count)
  1124. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1125. self.gguf_writer.add_head_count_kv(1)
  1126. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1127. self.gguf_writer.add_file_type(self.ftype)
  1128. @Model.register("GPTRefactForCausalLM")
  1129. class RefactModel(Model):
  1130. model_arch = gguf.MODEL_ARCH.REFACT
  1131. def set_vocab(self):
  1132. super().set_vocab()
  1133. # TODO: how to determine special FIM tokens automatically?
  1134. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1135. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1136. special_vocab._set_special_token("prefix", 1)
  1137. special_vocab._set_special_token("suffix", 3)
  1138. special_vocab._set_special_token("middle", 2)
  1139. special_vocab.chat_template = None # do not add it twice
  1140. special_vocab.add_to_gguf(self.gguf_writer)
  1141. def set_gguf_parameters(self):
  1142. hidden_dim = self.hparams["n_embd"]
  1143. inner_dim = 4 * hidden_dim
  1144. hidden_dim = int(2 * inner_dim / 3)
  1145. multiple_of = 256
  1146. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1147. block_count = self.hparams["n_layer"]
  1148. # refact uses Alibi. So this is from config.json which might be used by training.
  1149. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1150. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1151. self.gguf_writer.add_feed_forward_length(ff_dim)
  1152. self.gguf_writer.add_block_count(block_count)
  1153. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1154. self.gguf_writer.add_head_count_kv(1)
  1155. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1156. self.gguf_writer.add_file_type(self.ftype)
  1157. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1158. hidden_dim = self.hparams["n_embd"]
  1159. inner_dim = 4 * hidden_dim
  1160. hidden_dim = int(2 * inner_dim / 3)
  1161. multiple_of = 256
  1162. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1163. n_head = self.hparams["n_head"]
  1164. n_head_kv = 1
  1165. head_dim = self.hparams["n_embd"] // n_head
  1166. tensors: list[tuple[str, Tensor]] = []
  1167. if bid is not None:
  1168. if name == f"transformer.h.{bid}.attn.kv.weight":
  1169. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1170. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1171. elif name == f"transformer.h.{bid}.attn.q.weight":
  1172. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1173. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1174. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1175. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1176. if len(tensors) == 0:
  1177. tensors.append((self.map_tensor_name(name), data_torch))
  1178. return tensors
  1179. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1180. class StableLMModel(Model):
  1181. model_arch = gguf.MODEL_ARCH.STABLELM
  1182. def set_vocab(self):
  1183. if (self.dir_model / "tokenizer.json").is_file():
  1184. self._set_vocab_gpt2()
  1185. else:
  1186. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1187. self._set_vocab_qwen()
  1188. def set_gguf_parameters(self):
  1189. hparams = self.hparams
  1190. block_count = hparams["num_hidden_layers"]
  1191. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1192. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1193. self.gguf_writer.add_block_count(block_count)
  1194. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1195. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1196. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1197. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1198. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1199. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1200. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1201. self.gguf_writer.add_file_type(self.ftype)
  1202. _q_norms: list[dict[str, Tensor]] | None = None
  1203. _k_norms: list[dict[str, Tensor]] | None = None
  1204. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1205. n_head = self.hparams["num_attention_heads"]
  1206. n_kv_head = self.hparams["num_key_value_heads"]
  1207. if name.find("q_layernorm.norms") != -1:
  1208. assert bid is not None
  1209. if self._q_norms is None:
  1210. self._q_norms = [{} for _ in range(self.block_count)]
  1211. self._q_norms[bid][name] = data_torch
  1212. if len(self._q_norms[bid]) >= n_head:
  1213. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1214. else:
  1215. return []
  1216. if name.find("k_layernorm.norms") != -1:
  1217. assert bid is not None
  1218. if self._k_norms is None:
  1219. self._k_norms = [{} for _ in range(self.block_count)]
  1220. self._k_norms[bid][name] = data_torch
  1221. if len(self._k_norms[bid]) >= n_kv_head:
  1222. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1223. else:
  1224. return []
  1225. return [(self.map_tensor_name(name), data_torch)]
  1226. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1227. datas: list[Tensor] = []
  1228. # extract the norms in order
  1229. for xid in range(n_head):
  1230. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1231. datas.append(norms[ename])
  1232. del norms[ename]
  1233. data_torch = torch.stack(datas, dim=0)
  1234. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1235. new_name = self.map_tensor_name(merged_name)
  1236. return [(new_name, data_torch)]
  1237. def prepare_tensors(self):
  1238. super().prepare_tensors()
  1239. if self._q_norms is not None or self._k_norms is not None:
  1240. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1241. norms = (
  1242. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1243. ) + (
  1244. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1245. )
  1246. if len(norms) > 0:
  1247. raise ValueError(f"Unprocessed norms: {norms}")
  1248. @Model.register("LLaMAForCausalLM", "LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  1249. class LlamaModel(Model):
  1250. model_arch = gguf.MODEL_ARCH.LLAMA
  1251. def set_vocab(self):
  1252. try:
  1253. self._set_vocab_sentencepiece()
  1254. except FileNotFoundError:
  1255. try:
  1256. self._set_vocab_llama_hf()
  1257. except (FileNotFoundError, TypeError):
  1258. # Llama 3
  1259. self._set_vocab_gpt2()
  1260. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1261. if self.hparams.get("vocab_size", 32000) == 32016:
  1262. special_vocab = gguf.SpecialVocab(
  1263. self.dir_model, load_merges=False,
  1264. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1265. )
  1266. special_vocab._set_special_token("prefix", 32007)
  1267. special_vocab._set_special_token("suffix", 32008)
  1268. special_vocab._set_special_token("middle", 32009)
  1269. special_vocab._set_special_token("eot", 32010)
  1270. special_vocab.add_to_gguf(self.gguf_writer)
  1271. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1272. if tokenizer_config_file.is_file():
  1273. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1274. tokenizer_config_json = json.load(f)
  1275. if "add_prefix_space" in tokenizer_config_json:
  1276. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1277. # Apply to granite small models only
  1278. if self.hparams.get("vocab_size", 32000) == 49152:
  1279. self.gguf_writer.add_add_bos_token(False)
  1280. def set_gguf_parameters(self):
  1281. super().set_gguf_parameters()
  1282. hparams = self.hparams
  1283. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1284. if "head_dim" in hparams:
  1285. rope_dim = hparams["head_dim"]
  1286. else:
  1287. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1288. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1289. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1290. if self.hparams["rope_scaling"].get("type") == "linear":
  1291. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1292. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1293. @staticmethod
  1294. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1295. if n_head_kv is not None and n_head != n_head_kv:
  1296. n_head = n_head_kv
  1297. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1298. .swapaxes(1, 2)
  1299. .reshape(weights.shape))
  1300. _experts: list[dict[str, Tensor]] | None = None
  1301. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1302. n_head = self.hparams["num_attention_heads"]
  1303. n_kv_head = self.hparams.get("num_key_value_heads")
  1304. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1305. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1306. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1307. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1308. # process the experts separately
  1309. if name.find("block_sparse_moe.experts") != -1:
  1310. n_experts = self.hparams["num_local_experts"]
  1311. assert bid is not None
  1312. if self._experts is None:
  1313. self._experts = [{} for _ in range(self.block_count)]
  1314. self._experts[bid][name] = data_torch
  1315. if len(self._experts[bid]) >= n_experts * 3:
  1316. tensors: list[tuple[str, Tensor]] = []
  1317. # merge the experts into a single 3d tensor
  1318. for wid in ["w1", "w2", "w3"]:
  1319. datas: list[Tensor] = []
  1320. for xid in range(n_experts):
  1321. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1322. datas.append(self._experts[bid][ename])
  1323. del self._experts[bid][ename]
  1324. data_torch = torch.stack(datas, dim=0)
  1325. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1326. new_name = self.map_tensor_name(merged_name)
  1327. tensors.append((new_name, data_torch))
  1328. return tensors
  1329. else:
  1330. return []
  1331. return [(self.map_tensor_name(name), data_torch)]
  1332. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1333. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1334. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1335. base = self.hparams.get("rope_theta", 10000.0)
  1336. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1337. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1338. factor = rope_scaling.get("factor", 8.0)
  1339. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1340. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1341. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1342. low_freq_wavelen = old_context_len / low_freq_factor
  1343. high_freq_wavelen = old_context_len / high_freq_factor
  1344. assert low_freq_wavelen != high_freq_wavelen
  1345. rope_factors = []
  1346. for freq in freqs:
  1347. wavelen = 2 * math.pi / freq
  1348. if wavelen < high_freq_wavelen:
  1349. rope_factors.append(1)
  1350. elif wavelen > low_freq_wavelen:
  1351. rope_factors.append(factor)
  1352. else:
  1353. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1354. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1355. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1356. def prepare_tensors(self):
  1357. super().prepare_tensors()
  1358. if self._experts is not None:
  1359. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1360. experts = [k for d in self._experts for k in d.keys()]
  1361. if len(experts) > 0:
  1362. raise ValueError(f"Unprocessed experts: {experts}")
  1363. @Model.register("BitnetForCausalLM")
  1364. class BitnetModel(Model):
  1365. model_arch = gguf.MODEL_ARCH.BITNET
  1366. def set_vocab(self):
  1367. self._set_vocab_sentencepiece()
  1368. def set_gguf_parameters(self):
  1369. super().set_gguf_parameters()
  1370. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1371. self.gguf_writer.add_rope_scaling_factor(1.0)
  1372. def weight_quant(self, weight: Tensor) -> Tensor:
  1373. dtype = weight.dtype
  1374. weight = weight.float()
  1375. scale = weight.abs().mean().clamp(min=1e-5)
  1376. iscale = 1 / scale
  1377. # TODO: multiply by the scale directly instead of inverting it twice
  1378. # (this is also unnecessarily doubly inverted upstream)
  1379. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  1380. result = (weight * iscale).round().clamp(-1, 1) / iscale
  1381. return result.type(dtype)
  1382. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1383. new_name = self.map_tensor_name(name)
  1384. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  1385. gguf.MODEL_TENSOR.ATTN_Q,
  1386. gguf.MODEL_TENSOR.ATTN_K,
  1387. gguf.MODEL_TENSOR.ATTN_V,
  1388. gguf.MODEL_TENSOR.ATTN_OUT,
  1389. gguf.MODEL_TENSOR.FFN_UP,
  1390. gguf.MODEL_TENSOR.FFN_DOWN,
  1391. gguf.MODEL_TENSOR.FFN_GATE,
  1392. ]):
  1393. # transform weight into 1/0/-1 (in fp32)
  1394. data_torch = self.weight_quant(data_torch)
  1395. yield (new_name, data_torch)
  1396. @Model.register("GrokForCausalLM")
  1397. class GrokModel(Model):
  1398. model_arch = gguf.MODEL_ARCH.GROK
  1399. def set_vocab(self):
  1400. self._set_vocab_sentencepiece()
  1401. def __init__(self, *args, **kwargs):
  1402. super().__init__(*args, **kwargs)
  1403. def set_gguf_parameters(self):
  1404. super().set_gguf_parameters()
  1405. _experts: list[dict[str, Tensor]] | None = None
  1406. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1407. # process the experts separately
  1408. if name.find(".moe.") != -1:
  1409. n_experts = self.hparams["num_local_experts"]
  1410. assert bid is not None
  1411. if self._experts is None:
  1412. self._experts = [{} for _ in range(self.block_count)]
  1413. self._experts[bid][name] = data_torch
  1414. if len(self._experts[bid]) >= n_experts * 3:
  1415. tensors: list[tuple[str, Tensor]] = []
  1416. # merge the experts into a single 3d tensor
  1417. for wid in ["linear", "linear_1", "linear_v"]:
  1418. datas: list[Tensor] = []
  1419. for xid in range(n_experts):
  1420. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1421. datas.append(self._experts[bid][ename])
  1422. del self._experts[bid][ename]
  1423. data_torch = torch.stack(datas, dim=0)
  1424. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1425. new_name = self.map_tensor_name(merged_name)
  1426. tensors.append((new_name, data_torch))
  1427. return tensors
  1428. else:
  1429. return []
  1430. return [(self.map_tensor_name(name), data_torch)]
  1431. @Model.register("DbrxForCausalLM")
  1432. class DbrxModel(Model):
  1433. model_arch = gguf.MODEL_ARCH.DBRX
  1434. def set_gguf_parameters(self):
  1435. ffn_config = self.hparams["ffn_config"]
  1436. attn_config = self.hparams["attn_config"]
  1437. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1438. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1439. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1440. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1441. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1442. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1443. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1444. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1445. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1446. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1447. self.gguf_writer.add_layer_norm_eps(1e-5)
  1448. self.gguf_writer.add_file_type(self.ftype)
  1449. logger.info(f"gguf: file type = {self.ftype}")
  1450. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1451. del bid # unused
  1452. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1453. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1454. n_embd = self.hparams["d_model"]
  1455. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1456. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1457. # But llama.cpp moe graph works differently
  1458. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1459. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1460. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1461. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1462. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1463. experts = False
  1464. for exp_tensor_name in exp_tensor_names.keys():
  1465. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1466. experts = True
  1467. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1468. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1469. data_torch = data_torch.permute(*permute_tensor)
  1470. break
  1471. # map tensor names
  1472. # In MoE models the ffn tensors are typically most of the model weights,
  1473. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1474. # Every other model has the weight names ending in .weight,
  1475. # let's assume that is the convention which is not the case for dbrx:
  1476. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1477. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1478. return [(new_name, data_torch)]
  1479. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  1480. del name, new_name, bid # unused
  1481. return n_dims > 1
  1482. @Model.register("MiniCPMForCausalLM")
  1483. class MiniCPMModel(Model):
  1484. model_arch = gguf.MODEL_ARCH.MINICPM
  1485. def set_gguf_parameters(self):
  1486. block_count = self.hparams["num_hidden_layers"]
  1487. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1488. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1489. self.gguf_writer.add_block_count(block_count)
  1490. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1491. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1492. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1493. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1494. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1495. self.gguf_writer.add_file_type(self.ftype)
  1496. def set_vocab(self):
  1497. self._set_vocab_llama_hf()
  1498. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1499. if n_kv_head is not None and n_head != n_kv_head:
  1500. n_head //= n_kv_head
  1501. return (
  1502. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1503. .swapaxes(1, 2)
  1504. .reshape(weights.shape)
  1505. )
  1506. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1507. del bid # unused
  1508. n_head = self.hparams["num_attention_heads"]
  1509. n_kv_head = self.hparams.get("num_key_value_heads")
  1510. # HF models permute some of the tensors, so we need to undo that
  1511. if name.endswith(("q_proj.weight")):
  1512. data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
  1513. if name.endswith(("k_proj.weight")):
  1514. data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
  1515. return [(self.map_tensor_name(name), data_torch)]
  1516. @Model.register("MiniCPM3ForCausalLM")
  1517. class MiniCPM3Model(Model):
  1518. model_arch = gguf.MODEL_ARCH.MINICPM3
  1519. def set_gguf_parameters(self):
  1520. hparams = self.hparams
  1521. self.gguf_writer.add_file_type(self.ftype)
  1522. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1523. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1524. self.gguf_writer.add_block_count(self.block_count)
  1525. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1526. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1527. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1528. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1529. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1530. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  1531. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  1532. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  1533. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  1534. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  1535. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1536. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1537. if rope_scaling is not None:
  1538. rope_dims = self.hparams["qk_rope_head_dim"]
  1539. long_factors = rope_scaling.get('long_factor', None)
  1540. short_factors = rope_scaling.get('short_factor', None)
  1541. if long_factors is None or short_factors is None:
  1542. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1543. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1544. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1545. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  1546. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  1547. def set_vocab(self):
  1548. self._set_vocab_sentencepiece()
  1549. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1550. if n_kv_head is not None and n_head != n_kv_head:
  1551. n_head //= n_kv_head
  1552. return (
  1553. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1554. .swapaxes(1, 2)
  1555. .reshape(weights.shape)
  1556. )
  1557. @Model.register("QWenLMHeadModel")
  1558. class QwenModel(Model):
  1559. model_arch = gguf.MODEL_ARCH.QWEN
  1560. @staticmethod
  1561. def token_bytes_to_string(b):
  1562. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1563. byte_encoder = bytes_to_unicode()
  1564. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1565. @staticmethod
  1566. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1567. parts = [bytes([b]) for b in token]
  1568. while True:
  1569. min_idx = None
  1570. min_rank = None
  1571. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1572. rank = mergeable_ranks.get(pair[0] + pair[1])
  1573. if rank is not None and (min_rank is None or rank < min_rank):
  1574. min_idx = i
  1575. min_rank = rank
  1576. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1577. break
  1578. assert min_idx is not None
  1579. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1580. return parts
  1581. def set_vocab(self):
  1582. self._set_vocab_qwen()
  1583. def set_gguf_parameters(self):
  1584. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1585. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1586. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1587. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1588. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1589. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1590. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1591. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1592. self.gguf_writer.add_file_type(self.ftype)
  1593. @Model.register("Qwen2ForCausalLM")
  1594. class Qwen2Model(Model):
  1595. model_arch = gguf.MODEL_ARCH.QWEN2
  1596. def set_vocab(self):
  1597. try:
  1598. self._set_vocab_sentencepiece()
  1599. except FileNotFoundError:
  1600. self._set_vocab_gpt2()
  1601. @Model.register("Qwen2MoeForCausalLM")
  1602. class Qwen2MoeModel(Model):
  1603. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1604. def set_gguf_parameters(self):
  1605. super().set_gguf_parameters()
  1606. if (n_experts := self.hparams.get("num_experts")) is not None:
  1607. self.gguf_writer.add_expert_count(n_experts)
  1608. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  1609. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  1610. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  1611. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  1612. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  1613. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  1614. _experts: list[dict[str, Tensor]] | None = None
  1615. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1616. # process the experts separately
  1617. if name.find("experts") != -1:
  1618. n_experts = self.hparams["num_experts"]
  1619. assert bid is not None
  1620. if self._experts is None:
  1621. self._experts = [{} for _ in range(self.block_count)]
  1622. self._experts[bid][name] = data_torch
  1623. if len(self._experts[bid]) >= n_experts * 3:
  1624. tensors: list[tuple[str, Tensor]] = []
  1625. # merge the experts into a single 3d tensor
  1626. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  1627. datas: list[Tensor] = []
  1628. for xid in range(n_experts):
  1629. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1630. datas.append(self._experts[bid][ename])
  1631. del self._experts[bid][ename]
  1632. data_torch = torch.stack(datas, dim=0)
  1633. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  1634. new_name = self.map_tensor_name(merged_name)
  1635. tensors.append((new_name, data_torch))
  1636. return tensors
  1637. else:
  1638. return []
  1639. return [(self.map_tensor_name(name), data_torch)]
  1640. def prepare_tensors(self):
  1641. super().prepare_tensors()
  1642. if self._experts is not None:
  1643. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1644. experts = [k for d in self._experts for k in d.keys()]
  1645. if len(experts) > 0:
  1646. raise ValueError(f"Unprocessed experts: {experts}")
  1647. @Model.register("GPT2LMHeadModel")
  1648. class GPT2Model(Model):
  1649. model_arch = gguf.MODEL_ARCH.GPT2
  1650. def set_gguf_parameters(self):
  1651. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1652. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1653. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1654. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1655. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1656. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1657. self.gguf_writer.add_file_type(self.ftype)
  1658. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1659. del bid # unused
  1660. tensors: list[tuple[str, Tensor]] = []
  1661. # we don't need these
  1662. if name.endswith((".attn.bias", ".attn.masked_bias")):
  1663. return tensors
  1664. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1665. data_torch = data_torch.transpose(1, 0)
  1666. new_name = self.map_tensor_name(name)
  1667. tensors.append((new_name, data_torch))
  1668. # note: GPT2 output is tied to (same as) wte in original model
  1669. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1670. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1671. return tensors
  1672. @Model.register("PhiForCausalLM")
  1673. class Phi2Model(Model):
  1674. model_arch = gguf.MODEL_ARCH.PHI2
  1675. def set_gguf_parameters(self):
  1676. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1677. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1678. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1679. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1680. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1681. self.gguf_writer.add_embedding_length(n_embd)
  1682. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1683. self.gguf_writer.add_block_count(block_count)
  1684. self.gguf_writer.add_head_count(n_head)
  1685. self.gguf_writer.add_head_count_kv(n_head)
  1686. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1687. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1688. self.gguf_writer.add_file_type(self.ftype)
  1689. self.gguf_writer.add_add_bos_token(False)
  1690. @Model.register("Phi3ForCausalLM")
  1691. class Phi3MiniModel(Model):
  1692. model_arch = gguf.MODEL_ARCH.PHI3
  1693. def set_vocab(self):
  1694. from sentencepiece import SentencePieceProcessor
  1695. tokenizer_path = self.dir_model / 'tokenizer.model'
  1696. if not tokenizer_path.is_file():
  1697. raise ValueError(f'Error: Missing {tokenizer_path}')
  1698. tokenizer = SentencePieceProcessor()
  1699. tokenizer.LoadFromFile(str(tokenizer_path))
  1700. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1701. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1702. scores: list[float] = [-10000.0] * vocab_size
  1703. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  1704. for token_id in range(tokenizer.vocab_size()):
  1705. piece = tokenizer.IdToPiece(token_id)
  1706. text = piece.encode("utf-8")
  1707. score = tokenizer.GetScore(token_id)
  1708. toktype = SentencePieceTokenTypes.NORMAL
  1709. if tokenizer.IsUnknown(token_id):
  1710. toktype = SentencePieceTokenTypes.UNKNOWN
  1711. elif tokenizer.IsControl(token_id):
  1712. toktype = SentencePieceTokenTypes.CONTROL
  1713. elif tokenizer.IsUnused(token_id):
  1714. toktype = SentencePieceTokenTypes.UNUSED
  1715. elif tokenizer.IsByte(token_id):
  1716. toktype = SentencePieceTokenTypes.BYTE
  1717. tokens[token_id] = text
  1718. scores[token_id] = score
  1719. toktypes[token_id] = toktype
  1720. added_tokens_file = self.dir_model / 'added_tokens.json'
  1721. if added_tokens_file.is_file():
  1722. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1723. added_tokens_json = json.load(f)
  1724. for key in added_tokens_json:
  1725. token_id = added_tokens_json[key]
  1726. if token_id >= vocab_size:
  1727. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1728. continue
  1729. tokens[token_id] = key.encode("utf-8")
  1730. scores[token_id] = -1000.0
  1731. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1732. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1733. if tokenizer_config_file.is_file():
  1734. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1735. tokenizer_config_json = json.load(f)
  1736. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1737. for token_id, foken_data in added_tokens_decoder.items():
  1738. token_id = int(token_id)
  1739. token = foken_data["content"].encode("utf-8")
  1740. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1741. if tokens[token_id] != token:
  1742. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1743. tokens[token_id] = token
  1744. scores[token_id] = -1000.0
  1745. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1746. if foken_data.get("special"):
  1747. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1748. tokenizer_file = self.dir_model / 'tokenizer.json'
  1749. if tokenizer_file.is_file():
  1750. with open(tokenizer_file, "r", encoding="utf-8") as f:
  1751. tokenizer_json = json.load(f)
  1752. added_tokens = tokenizer_json.get("added_tokens", [])
  1753. for foken_data in added_tokens:
  1754. token_id = int(foken_data["id"])
  1755. token = foken_data["content"].encode("utf-8")
  1756. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1757. if tokens[token_id] != token:
  1758. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1759. tokens[token_id] = token
  1760. scores[token_id] = -1000.0
  1761. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1762. if foken_data.get("special"):
  1763. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1764. self.gguf_writer.add_tokenizer_model("llama")
  1765. self.gguf_writer.add_tokenizer_pre("default")
  1766. self.gguf_writer.add_token_list(tokens)
  1767. self.gguf_writer.add_token_scores(scores)
  1768. self.gguf_writer.add_token_types(toktypes)
  1769. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1770. special_vocab.add_to_gguf(self.gguf_writer)
  1771. def set_gguf_parameters(self):
  1772. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1773. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1774. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1775. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  1776. rms_eps = self.find_hparam(["rms_norm_eps"])
  1777. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  1778. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  1779. rope_dims = n_embd // n_head
  1780. self.gguf_writer.add_context_length(max_pos_embds)
  1781. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  1782. self.gguf_writer.add_embedding_length(n_embd)
  1783. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  1784. self.gguf_writer.add_block_count(block_count)
  1785. self.gguf_writer.add_head_count(n_head)
  1786. self.gguf_writer.add_head_count_kv(n_head_kv)
  1787. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  1788. self.gguf_writer.add_rope_dimension_count(rope_dims)
  1789. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  1790. self.gguf_writer.add_file_type(self.ftype)
  1791. self.gguf_writer.add_sliding_window(self.find_hparam(["sliding_window"]))
  1792. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1793. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1794. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1795. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  1796. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  1797. rope_dims = n_embd // n_head
  1798. # write rope scaling for long context (128k) model
  1799. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1800. if rope_scaling is None:
  1801. return
  1802. scale = max_pos_embds / orig_max_pos_embds
  1803. rope_scaling_type = rope_scaling.get('type', '').lower()
  1804. if len(rope_scaling_type) == 0:
  1805. raise KeyError('Missing the required key rope_scaling.type')
  1806. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  1807. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  1808. elif rope_scaling_type == 'yarn':
  1809. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  1810. else:
  1811. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  1812. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  1813. long_factors = rope_scaling.get('long_factor', None)
  1814. short_factors = rope_scaling.get('short_factor', None)
  1815. if long_factors is None or short_factors is None:
  1816. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1817. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1818. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1819. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  1820. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  1821. @Model.register("PlamoForCausalLM")
  1822. class PlamoModel(Model):
  1823. model_arch = gguf.MODEL_ARCH.PLAMO
  1824. def set_vocab(self):
  1825. self._set_vocab_sentencepiece()
  1826. def set_gguf_parameters(self):
  1827. hparams = self.hparams
  1828. block_count = hparams["num_hidden_layers"]
  1829. self.gguf_writer.add_context_length(4096) # not in config.json
  1830. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1831. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1832. self.gguf_writer.add_block_count(block_count)
  1833. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1834. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  1835. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1836. self.gguf_writer.add_file_type(self.ftype)
  1837. def shuffle_attn_q_weight(self, data_torch):
  1838. assert data_torch.size() == (5120, 5120)
  1839. data_torch = data_torch.reshape(8, 5, 128, 5120)
  1840. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  1841. data_torch = torch.reshape(data_torch, (5120, 5120))
  1842. return data_torch
  1843. def shuffle_attn_output_weight(self, data_torch):
  1844. assert data_torch.size() == (5120, 5120)
  1845. data_torch = data_torch.reshape(5120, 8, 5, 128)
  1846. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  1847. data_torch = torch.reshape(data_torch, (5120, 5120))
  1848. return data_torch
  1849. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1850. del bid # unused
  1851. new_name = self.map_tensor_name(name)
  1852. # shuffle for broadcasting of gqa in ggml_mul_mat
  1853. if new_name.endswith("attn_q.weight"):
  1854. data_torch = self.shuffle_attn_q_weight(data_torch)
  1855. elif new_name.endswith("attn_output.weight"):
  1856. data_torch = self.shuffle_attn_output_weight(data_torch)
  1857. return [(new_name, data_torch)]
  1858. @Model.register("CodeShellForCausalLM")
  1859. class CodeShellModel(Model):
  1860. model_arch = gguf.MODEL_ARCH.CODESHELL
  1861. def set_gguf_parameters(self):
  1862. block_count = self.hparams["n_layer"]
  1863. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1864. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1865. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1866. self.gguf_writer.add_block_count(block_count)
  1867. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1868. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  1869. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1870. self.gguf_writer.add_file_type(self.ftype)
  1871. self.gguf_writer.add_rope_freq_base(10000.0)
  1872. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1873. self.gguf_writer.add_rope_scaling_factor(1.0)
  1874. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1875. del bid # unused
  1876. new_name = self.map_tensor_name(name)
  1877. tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)]
  1878. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1879. assert self.tensor_names is not None
  1880. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  1881. # copy tok_embd.weight to output.weight
  1882. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1883. return tensors
  1884. @Model.register("InternLM2ForCausalLM")
  1885. class InternLM2Model(Model):
  1886. model_arch = gguf.MODEL_ARCH.INTERNLM2
  1887. def set_vocab(self):
  1888. # (TODO): Is there a better way?
  1889. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  1890. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  1891. # recognized as an empty string in C++.
  1892. from sentencepiece import SentencePieceProcessor
  1893. from sentencepiece import sentencepiece_model_pb2 as model
  1894. tokenizer_path = self.dir_model / 'tokenizer.model'
  1895. tokens: list[bytes] = []
  1896. scores: list[float] = []
  1897. toktypes: list[int] = []
  1898. if not tokenizer_path.is_file():
  1899. logger.error(f'Error: Missing {tokenizer_path}')
  1900. sys.exit(1)
  1901. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  1902. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  1903. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  1904. tokenizer = SentencePieceProcessor()
  1905. tokenizer.LoadFromFile(str(tokenizer_path))
  1906. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1907. for token_id in range(vocab_size):
  1908. piece = tokenizer.IdToPiece(token_id)
  1909. text = piece.encode("utf-8")
  1910. score = tokenizer.GetScore(token_id)
  1911. if text == b"\x00":
  1912. # (TODO): fixme
  1913. # Hack here and replace the \x00 characters.
  1914. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  1915. text = "🐉".encode("utf-8")
  1916. toktype = SentencePieceTokenTypes.NORMAL
  1917. if tokenizer.IsUnknown(token_id):
  1918. toktype = SentencePieceTokenTypes.UNKNOWN
  1919. elif tokenizer.IsControl(token_id):
  1920. toktype = SentencePieceTokenTypes.CONTROL
  1921. elif tokenizer.IsUnused(token_id):
  1922. toktype = SentencePieceTokenTypes.UNUSED
  1923. elif tokenizer.IsByte(token_id):
  1924. toktype = SentencePieceTokenTypes.BYTE
  1925. # take care of ununsed raw token
  1926. if piece.startswith('[UNUSED'):
  1927. toktype = SentencePieceTokenTypes.UNUSED
  1928. tokens.append(text)
  1929. scores.append(score)
  1930. toktypes.append(toktype)
  1931. added_tokens_file = self.dir_model / 'added_tokens.json'
  1932. if added_tokens_file.is_file():
  1933. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1934. added_tokens_json = json.load(f)
  1935. for key in added_tokens_json:
  1936. tokens.append(key.encode("utf-8"))
  1937. scores.append(-1000.0)
  1938. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  1939. chat_eos_token = '<|im_end|>'
  1940. chat_eos_token_id = None
  1941. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1942. if tokenizer_config_file.is_file():
  1943. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1944. tokenizer_config_json = json.load(f)
  1945. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1946. for token_id, foken_data in added_tokens_decoder.items():
  1947. token_id = int(token_id)
  1948. token = foken_data["content"]
  1949. if token == chat_eos_token:
  1950. chat_eos_token_id = token_id
  1951. token = token.encode("utf-8")
  1952. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1953. if tokens[token_id] != token:
  1954. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1955. tokens[token_id] = token
  1956. scores[token_id] = -1000.0
  1957. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1958. if foken_data.get("special"):
  1959. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1960. tokenizer_file = self.dir_model / 'tokenizer.json'
  1961. if tokenizer_file.is_file():
  1962. with open(tokenizer_file, "r", encoding="utf-8") as f:
  1963. tokenizer_json = json.load(f)
  1964. added_tokens = tokenizer_json.get("added_tokens", [])
  1965. for foken_data in added_tokens:
  1966. token_id = int(foken_data["id"])
  1967. token = foken_data["content"]
  1968. if token == chat_eos_token:
  1969. chat_eos_token_id = token_id
  1970. token = token.encode("utf-8")
  1971. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1972. if tokens[token_id] != token:
  1973. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1974. tokens[token_id] = token
  1975. scores[token_id] = -1000.0
  1976. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1977. if foken_data.get("special"):
  1978. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1979. self.gguf_writer.add_tokenizer_model("llama")
  1980. self.gguf_writer.add_tokenizer_pre("default")
  1981. self.gguf_writer.add_token_list(tokens)
  1982. self.gguf_writer.add_token_scores(scores)
  1983. self.gguf_writer.add_token_types(toktypes)
  1984. self.gguf_writer.add_add_space_prefix(add_prefix)
  1985. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1986. old_eos = special_vocab.special_token_ids["eos"]
  1987. if chat_eos_token_id is not None:
  1988. # For the chat model, we replace the eos with '<|im_end|>'.
  1989. # TODO: this is a hack, should be fixed
  1990. # https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
  1991. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  1992. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  1993. " in chat mode so that the conversation can end normally.")
  1994. special_vocab.add_to_gguf(self.gguf_writer)
  1995. def set_gguf_parameters(self):
  1996. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1997. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1998. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1999. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2000. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  2001. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2002. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2003. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  2004. self.gguf_writer.add_file_type(self.ftype)
  2005. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2006. if self.hparams["rope_scaling"].get("type") == "linear":
  2007. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2008. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2009. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2010. num_heads = self.hparams["num_attention_heads"]
  2011. num_kv_heads = self.hparams["num_key_value_heads"]
  2012. n_embd = self.hparams["hidden_size"]
  2013. q_per_kv = num_heads // num_kv_heads
  2014. head_dim = n_embd // num_heads
  2015. num_groups = num_heads // q_per_kv
  2016. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  2017. qkv = data_torch
  2018. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  2019. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  2020. # The model weights of q and k equire additional reshape.
  2021. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  2022. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  2023. v = v.reshape((-1, v.shape[-1]))
  2024. return [
  2025. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  2026. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  2027. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  2028. ]
  2029. else:
  2030. return [(self.map_tensor_name(name), data_torch)]
  2031. @Model.register("BertModel", "CamembertModel")
  2032. class BertModel(Model):
  2033. model_arch = gguf.MODEL_ARCH.BERT
  2034. def __init__(self, *args, **kwargs):
  2035. super().__init__(*args, **kwargs)
  2036. self.vocab_size = None
  2037. def set_gguf_parameters(self):
  2038. super().set_gguf_parameters()
  2039. self.gguf_writer.add_causal_attention(False)
  2040. # get pooling path
  2041. pooling_path = None
  2042. module_path = self.dir_model / "modules.json"
  2043. if module_path.is_file():
  2044. with open(module_path, encoding="utf-8") as f:
  2045. modules = json.load(f)
  2046. for mod in modules:
  2047. if mod["type"] == "sentence_transformers.models.Pooling":
  2048. pooling_path = mod["path"]
  2049. break
  2050. # get pooling type
  2051. if pooling_path is not None:
  2052. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  2053. pooling = json.load(f)
  2054. if pooling["pooling_mode_mean_tokens"]:
  2055. pooling_type = gguf.PoolingType.MEAN
  2056. elif pooling["pooling_mode_cls_token"]:
  2057. pooling_type = gguf.PoolingType.CLS
  2058. else:
  2059. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  2060. self.gguf_writer.add_pooling_type(pooling_type)
  2061. def set_vocab(self):
  2062. tokens, toktypes, tokpre = self.get_vocab_base()
  2063. self.vocab_size = len(tokens)
  2064. # we need this to validate the size of the token_type embeddings
  2065. # though currently we are passing all zeros to the token_type embeddings
  2066. self.gguf_writer.add_token_type_count(2) # "Sequence A" or "Sequence B"
  2067. # convert to phantom space vocab
  2068. def phantom(tok):
  2069. if tok.startswith("[") and tok.endswith("]"):
  2070. return tok
  2071. if tok.startswith("##"):
  2072. return tok[2:]
  2073. return "\u2581" + tok
  2074. tokens = list(map(phantom, tokens))
  2075. # add vocab to gguf
  2076. self.gguf_writer.add_tokenizer_model("bert")
  2077. self.gguf_writer.add_tokenizer_pre(tokpre)
  2078. self.gguf_writer.add_token_list(tokens)
  2079. self.gguf_writer.add_token_types(toktypes)
  2080. # handle special tokens
  2081. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2082. special_vocab.add_to_gguf(self.gguf_writer)
  2083. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2084. del bid # unused
  2085. # we are only using BERT for embeddings so we don't need the pooling layer
  2086. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  2087. return [] # we don't need these
  2088. return [(self.map_tensor_name(name), data_torch)]
  2089. @Model.register("NomicBertModel")
  2090. class NomicBertModel(BertModel):
  2091. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  2092. def __init__(self, *args, **kwargs):
  2093. super().__init__(*args, **kwargs)
  2094. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  2095. self.hparams["n_ctx"] = 2048
  2096. # SwigLU activation
  2097. assert self.hparams["activation_function"] == "swiglu"
  2098. # this doesn't do anything in the HF version
  2099. assert self.hparams["causal"] is False
  2100. # no bias tensors
  2101. assert self.hparams["qkv_proj_bias"] is False
  2102. assert self.hparams["mlp_fc1_bias"] is False
  2103. assert self.hparams["mlp_fc2_bias"] is False
  2104. # norm at end of layer
  2105. assert self.hparams["prenorm"] is False
  2106. # standard RoPE
  2107. assert self.hparams["rotary_emb_fraction"] == 1.0
  2108. assert self.hparams["rotary_emb_interleaved"] is False
  2109. assert self.hparams["rotary_emb_scale_base"] is None
  2110. def set_gguf_parameters(self):
  2111. super().set_gguf_parameters()
  2112. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2113. @Model.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  2114. class XLMRobertaModel(BertModel):
  2115. model_arch = gguf.MODEL_ARCH.BERT
  2116. def __init__(self, *args, **kwargs):
  2117. super().__init__(*args, **kwargs)
  2118. # we need the pad_token_id to know how to chop down position_embd matrix
  2119. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2120. self._position_offset = 1 + pad_token_id
  2121. if "max_position_embeddings" in self.hparams:
  2122. self.hparams["max_position_embeddings"] -= self._position_offset
  2123. else:
  2124. self._position_offset = None
  2125. def set_vocab(self):
  2126. # to avoid TypeError: Descriptors cannot be created directly
  2127. # exception when importing sentencepiece_model_pb2
  2128. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2129. from sentencepiece import SentencePieceProcessor
  2130. from sentencepiece import sentencepiece_model_pb2 as model
  2131. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  2132. if not tokenizer_path.is_file():
  2133. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2134. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2135. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2136. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2137. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2138. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2139. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2140. tokenizer = SentencePieceProcessor()
  2141. tokenizer.LoadFromFile(str(tokenizer_path))
  2142. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2143. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2144. scores: list[float] = [-10000.0] * vocab_size
  2145. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2146. for token_id in range(tokenizer.vocab_size()):
  2147. piece = tokenizer.IdToPiece(token_id)
  2148. text = piece.encode("utf-8")
  2149. score = tokenizer.GetScore(token_id)
  2150. toktype = SentencePieceTokenTypes.NORMAL
  2151. if tokenizer.IsUnknown(token_id):
  2152. toktype = SentencePieceTokenTypes.UNKNOWN
  2153. elif tokenizer.IsControl(token_id):
  2154. toktype = SentencePieceTokenTypes.CONTROL
  2155. elif tokenizer.IsUnused(token_id):
  2156. toktype = SentencePieceTokenTypes.UNUSED
  2157. elif tokenizer.IsByte(token_id):
  2158. toktype = SentencePieceTokenTypes.BYTE
  2159. tokens[token_id] = text
  2160. scores[token_id] = score
  2161. toktypes[token_id] = toktype
  2162. if vocab_size > len(tokens):
  2163. pad_count = vocab_size - len(tokens)
  2164. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2165. for i in range(1, pad_count + 1):
  2166. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2167. scores.append(-1000.0)
  2168. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2169. # realign tokens (see HF tokenizer code)
  2170. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  2171. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  2172. toktypes = [
  2173. SentencePieceTokenTypes.CONTROL,
  2174. SentencePieceTokenTypes.CONTROL,
  2175. SentencePieceTokenTypes.CONTROL,
  2176. SentencePieceTokenTypes.UNKNOWN,
  2177. ] + toktypes[3:-1]
  2178. self.gguf_writer.add_tokenizer_model("t5")
  2179. self.gguf_writer.add_tokenizer_pre("default")
  2180. self.gguf_writer.add_token_list(tokens)
  2181. self.gguf_writer.add_token_scores(scores)
  2182. self.gguf_writer.add_token_types(toktypes)
  2183. self.gguf_writer.add_add_space_prefix(add_prefix)
  2184. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2185. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2186. if precompiled_charsmap:
  2187. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2188. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2189. special_vocab.add_to_gguf(self.gguf_writer)
  2190. self.gguf_writer.add_add_bos_token(True)
  2191. self.gguf_writer.add_add_eos_token(True)
  2192. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2193. # if name starts with "roberta.", remove the prefix
  2194. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  2195. if name.startswith("roberta."):
  2196. name = name[8:]
  2197. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2198. if name == "embeddings.position_embeddings.weight":
  2199. if self._position_offset is not None:
  2200. data_torch = data_torch[self._position_offset:,:]
  2201. return super().modify_tensors(data_torch, name, bid)
  2202. @Model.register("GemmaForCausalLM")
  2203. class GemmaModel(Model):
  2204. model_arch = gguf.MODEL_ARCH.GEMMA
  2205. def set_vocab(self):
  2206. self._set_vocab_sentencepiece()
  2207. # TODO: these special tokens should be exported only for the CodeGemma family
  2208. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  2209. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  2210. special_vocab._set_special_token("prefix", 67)
  2211. special_vocab._set_special_token("suffix", 69)
  2212. special_vocab._set_special_token("middle", 68)
  2213. special_vocab._set_special_token("fsep", 70)
  2214. special_vocab._set_special_token("eot", 107)
  2215. special_vocab.chat_template = None # do not add it twice
  2216. special_vocab.add_to_gguf(self.gguf_writer)
  2217. self.gguf_writer.add_add_space_prefix(False)
  2218. def set_gguf_parameters(self):
  2219. hparams = self.hparams
  2220. block_count = hparams["num_hidden_layers"]
  2221. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2222. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2223. self.gguf_writer.add_block_count(block_count)
  2224. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2225. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2226. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2227. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2228. self.gguf_writer.add_key_length(hparams["head_dim"])
  2229. self.gguf_writer.add_value_length(hparams["head_dim"])
  2230. self.gguf_writer.add_file_type(self.ftype)
  2231. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2232. del bid # unused
  2233. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2234. # To prevent errors, skip loading lm_head.weight.
  2235. if name == "lm_head.weight":
  2236. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2237. return []
  2238. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2239. if name.endswith("norm.weight"):
  2240. data_torch = data_torch + 1
  2241. return [(self.map_tensor_name(name), data_torch)]
  2242. @Model.register("Gemma2ForCausalLM")
  2243. class Gemma2Model(Model):
  2244. model_arch = gguf.MODEL_ARCH.GEMMA2
  2245. def set_vocab(self):
  2246. self._set_vocab_sentencepiece()
  2247. self.gguf_writer.add_add_space_prefix(False)
  2248. def set_gguf_parameters(self):
  2249. hparams = self.hparams
  2250. block_count = hparams["num_hidden_layers"]
  2251. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2252. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2253. self.gguf_writer.add_block_count(block_count)
  2254. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2255. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2256. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2257. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2258. self.gguf_writer.add_key_length(hparams["head_dim"])
  2259. self.gguf_writer.add_value_length(hparams["head_dim"])
  2260. self.gguf_writer.add_file_type(self.ftype)
  2261. self.gguf_writer.add_attn_logit_softcapping(
  2262. self.hparams["attn_logit_softcapping"]
  2263. )
  2264. self.gguf_writer.add_final_logit_softcapping(
  2265. self.hparams["final_logit_softcapping"]
  2266. )
  2267. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  2268. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2269. del bid # unused
  2270. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2271. # To prevent errors, skip loading lm_head.weight.
  2272. if name == "lm_head.weight":
  2273. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2274. return []
  2275. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2276. if name.endswith("norm.weight"):
  2277. data_torch = data_torch + 1
  2278. return [(self.map_tensor_name(name), data_torch)]
  2279. @Model.register("Starcoder2ForCausalLM")
  2280. class StarCoder2Model(Model):
  2281. model_arch = gguf.MODEL_ARCH.STARCODER2
  2282. @Model.register("Rwkv6ForCausalLM")
  2283. class Rwkv6Model(Model):
  2284. model_arch = gguf.MODEL_ARCH.RWKV6
  2285. def set_vocab(self):
  2286. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  2287. vocab_size = self.hparams.get("vocab_size", 65536)
  2288. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  2289. toktypes: list[int] = [gguf.TokenType.CONTROL]
  2290. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  2291. lines = f.readlines()
  2292. for line in lines:
  2293. parts = line.split(' ')
  2294. assert len(parts) >= 3
  2295. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  2296. token = token.encode("utf-8") if isinstance(token, str) else token
  2297. assert isinstance(token, bytes)
  2298. assert len(token) == token_len
  2299. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  2300. tokens.append(token_text.encode("utf-8"))
  2301. toktypes.append(gguf.TokenType.NORMAL)
  2302. remainder = vocab_size - len(tokens)
  2303. assert remainder >= 0
  2304. for i in range(len(tokens), vocab_size):
  2305. tokens.append(f"[PAD{i}]".encode("utf-8"))
  2306. toktypes.append(gguf.TokenType.UNUSED)
  2307. self.gguf_writer.add_tokenizer_model("rwkv")
  2308. self.gguf_writer.add_token_list(tokens)
  2309. self.gguf_writer.add_token_types(toktypes)
  2310. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  2311. special_vocab.chat_template = "rwkv-world"
  2312. # hack: Add '\n\n' as the EOT token to make it chat normally
  2313. special_vocab._set_special_token("eot", 261)
  2314. special_vocab.add_to_gguf(self.gguf_writer)
  2315. def set_gguf_parameters(self):
  2316. block_count = self.hparams["num_hidden_layers"]
  2317. head_size = self.hparams["head_size"]
  2318. hidden_size = self.hparams["hidden_size"]
  2319. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  2320. rescale_every_n_layers = self.hparams["rescale_every"]
  2321. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  2322. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  2323. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  2324. # RWKV isn't context limited
  2325. self.gguf_writer.add_context_length(1048576)
  2326. self.gguf_writer.add_embedding_length(hidden_size)
  2327. self.gguf_writer.add_block_count(block_count)
  2328. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  2329. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  2330. self.gguf_writer.add_wkv_head_size(head_size)
  2331. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  2332. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  2333. self.gguf_writer.add_feed_forward_length(intermediate_size)
  2334. self.gguf_writer.add_file_type(self.ftype)
  2335. # required by llama.cpp, unused
  2336. self.gguf_writer.add_head_count(0)
  2337. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2338. new_name = self.map_tensor_name(name)
  2339. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  2340. new_name += ".weight"
  2341. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  2342. data_torch = data_torch.transpose(0, 1)
  2343. if new_name.endswith("time_mix_w2.weight"):
  2344. data_torch = data_torch.permute(0, 2, 1)
  2345. rescale_every_n_layers = self.hparams["rescale_every"]
  2346. if rescale_every_n_layers > 0:
  2347. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  2348. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  2349. yield (new_name, data_torch)
  2350. @Model.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  2351. class MambaModel(Model):
  2352. model_arch = gguf.MODEL_ARCH.MAMBA
  2353. def set_vocab(self):
  2354. vocab_size = self.hparams["vocab_size"]
  2355. # Round vocab size to next multiple of 8
  2356. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  2357. # pad using ceiling division
  2358. # ref: https://stackoverflow.com/a/17511341/22827863
  2359. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  2360. self.hparams["vocab_size"] = vocab_size
  2361. if (self.dir_model / "tokenizer.json").is_file():
  2362. self._set_vocab_gpt2()
  2363. elif (self.dir_model / "tokenizer.model").is_file():
  2364. self._set_vocab_sentencepiece()
  2365. else:
  2366. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  2367. self._set_vocab_builtin("gpt-neox", vocab_size)
  2368. def set_gguf_parameters(self):
  2369. d_model = self.find_hparam(["hidden_size", "d_model"])
  2370. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  2371. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  2372. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  2373. # ceiling division
  2374. # ref: https://stackoverflow.com/a/17511341/22827863
  2375. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  2376. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  2377. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  2378. use_dt_b_c_norm = False
  2379. # For falconmamba we do apply RMS norm on B / DT and C layers
  2380. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  2381. use_dt_b_c_norm = True
  2382. # Fail early for models which don't have a block expansion factor of 2
  2383. assert d_inner == 2 * d_model
  2384. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  2385. self.gguf_writer.add_embedding_length(d_model)
  2386. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  2387. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  2388. self.gguf_writer.add_block_count(self.block_count)
  2389. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  2390. self.gguf_writer.add_ssm_inner_size(d_inner)
  2391. self.gguf_writer.add_ssm_state_size(d_state)
  2392. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  2393. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  2394. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  2395. self.gguf_writer.add_file_type(self.ftype)
  2396. _tok_embd = None
  2397. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2398. del bid # unused
  2399. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2400. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2401. new_name = self.map_tensor_name(name)
  2402. if name.endswith(".A_log"):
  2403. logger.debug("A_log --> A ==> " + new_name)
  2404. data_torch = -torch.exp(data_torch)
  2405. # assuming token_embd.weight is seen before output.weight
  2406. if self._tok_embd is not None and new_name == output_name:
  2407. if torch.equal(self._tok_embd, data_torch):
  2408. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  2409. return []
  2410. elif new_name == tok_embd_name:
  2411. self._tok_embd = data_torch
  2412. return [(new_name, data_torch)]
  2413. @Model.register("CohereForCausalLM")
  2414. class CommandR2Model(Model):
  2415. model_arch = gguf.MODEL_ARCH.COMMAND_R
  2416. def __init__(self, *args, **kwargs):
  2417. super().__init__(*args, **kwargs)
  2418. # max_position_embeddings = 8192 in config.json but model was actually
  2419. # trained on 128k context length
  2420. # aya-23 models don't have model_max_length specified
  2421. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  2422. def set_gguf_parameters(self):
  2423. super().set_gguf_parameters()
  2424. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  2425. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  2426. @Model.register("OlmoForCausalLM")
  2427. @Model.register("OLMoForCausalLM")
  2428. class OlmoModel(Model):
  2429. model_arch = gguf.MODEL_ARCH.OLMO
  2430. def set_gguf_parameters(self):
  2431. super().set_gguf_parameters()
  2432. self.gguf_writer.add_layer_norm_eps(1e-5)
  2433. clip_qkv = self.hparams.get("clip_qkv")
  2434. if clip_qkv is not None:
  2435. self.gguf_writer.add_clamp_kqv(clip_qkv)
  2436. # Same as super class, but permuting q_proj, k_proj
  2437. # Copied from: LlamaModel
  2438. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2439. del bid # unused
  2440. n_head = self.hparams["num_attention_heads"]
  2441. n_kv_head = self.hparams.get("num_key_value_heads")
  2442. if name.endswith("q_proj.weight"):
  2443. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2444. if name.endswith("k_proj.weight"):
  2445. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2446. return [(self.map_tensor_name(name), data_torch)]
  2447. @Model.register("Olmo2ForCausalLM")
  2448. class Olmo2Model(Model):
  2449. model_arch = gguf.MODEL_ARCH.OLMO2
  2450. @Model.register("OlmoeForCausalLM")
  2451. class OlmoeModel(Model):
  2452. model_arch = gguf.MODEL_ARCH.OLMOE
  2453. def set_gguf_parameters(self):
  2454. super().set_gguf_parameters()
  2455. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  2456. if (n_experts := self.hparams.get("num_experts")) is not None:
  2457. self.gguf_writer.add_expert_count(n_experts)
  2458. _experts: list[dict[str, Tensor]] | None = None
  2459. # Copied from: Qwen2MoeModel
  2460. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2461. # process the experts separately
  2462. if name.find("experts") != -1:
  2463. n_experts = self.hparams["num_experts"]
  2464. assert bid is not None
  2465. if self._experts is None:
  2466. self._experts = [{} for _ in range(self.block_count)]
  2467. self._experts[bid][name] = data_torch
  2468. if len(self._experts[bid]) >= n_experts * 3:
  2469. tensors: list[tuple[str, Tensor]] = []
  2470. # merge the experts into a single 3d tensor
  2471. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2472. datas: list[Tensor] = []
  2473. for xid in range(n_experts):
  2474. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2475. datas.append(self._experts[bid][ename])
  2476. del self._experts[bid][ename]
  2477. data_torch = torch.stack(datas, dim=0)
  2478. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2479. new_name = self.map_tensor_name(merged_name)
  2480. tensors.append((new_name, data_torch))
  2481. return tensors
  2482. else:
  2483. return []
  2484. return [(self.map_tensor_name(name), data_torch)]
  2485. # Copied from: Qwen2MoeModel
  2486. def prepare_tensors(self):
  2487. super().prepare_tensors()
  2488. if self._experts is not None:
  2489. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2490. experts = [k for d in self._experts for k in d.keys()]
  2491. if len(experts) > 0:
  2492. raise ValueError(f"Unprocessed experts: {experts}")
  2493. @Model.register("JinaBertModel", "JinaBertForMaskedLM")
  2494. class JinaBertV2Model(BertModel):
  2495. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  2496. def __init__(self, *args, **kwargs):
  2497. super().__init__(*args, **kwargs)
  2498. self.intermediate_size = self.hparams["intermediate_size"]
  2499. def get_tensors(self):
  2500. for name, data in super().get_tensors():
  2501. if 'gated_layer' in name:
  2502. d1 = data[:self.intermediate_size, :]
  2503. name1 = name.replace('gated_layers', 'gated_layers_w')
  2504. name1 = name1.replace('up_gated_layer', 'gated_layers_v')
  2505. d2 = data[self.intermediate_size:, :]
  2506. name2 = name.replace('gated_layers', 'gated_layers_v')
  2507. name2 = name2.replace('up_gated_layer', 'gated_layers_w')
  2508. yield name1, d1
  2509. yield name2, d2
  2510. continue
  2511. yield name, data
  2512. def set_vocab(self):
  2513. tokenizer_class = 'BertTokenizer'
  2514. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  2515. tokenizer_class = json.load(f)['tokenizer_class']
  2516. if tokenizer_class == 'BertTokenizer':
  2517. super().set_vocab()
  2518. elif tokenizer_class == 'RobertaTokenizer':
  2519. self._set_vocab_gpt2()
  2520. self.gguf_writer.add_token_type_count(2)
  2521. else:
  2522. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  2523. self.gguf_writer.add_add_bos_token(True)
  2524. self.gguf_writer.add_add_eos_token(True)
  2525. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2526. # if name starts with "bert.", remove the prefix
  2527. # e.g. https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  2528. if name.startswith("bert."):
  2529. name = name[5:]
  2530. return super().modify_tensors(data_torch, name, bid)
  2531. @Model.register("OpenELMForCausalLM")
  2532. class OpenELMModel(Model):
  2533. model_arch = gguf.MODEL_ARCH.OPENELM
  2534. @staticmethod
  2535. def _make_divisible(v: float | int, divisor: int) -> int:
  2536. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  2537. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  2538. # Make sure that round down does not go down by more than 10%.
  2539. if new_v < 0.9 * v:
  2540. new_v += divisor
  2541. return new_v
  2542. def __init__(self, *args, **kwargs):
  2543. super().__init__(*args, **kwargs)
  2544. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  2545. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  2546. self._n_embd: int = self.hparams["model_dim"]
  2547. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  2548. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  2549. self._ffn_dims: list[int] = [
  2550. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  2551. for multiplier in ffn_multipliers
  2552. ]
  2553. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2554. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  2555. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  2556. def set_vocab(self):
  2557. try:
  2558. self._set_vocab_sentencepiece()
  2559. except FileNotFoundError:
  2560. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  2561. def set_gguf_parameters(self):
  2562. n_embd = self._n_embd
  2563. head_dim = self.hparams["head_dim"]
  2564. rot_pct = 1.0
  2565. assert self.block_count == len(self._num_kv_heads)
  2566. assert self.block_count == len(self._num_query_heads)
  2567. assert self.block_count == len(self._ffn_dims)
  2568. self.gguf_writer.add_block_count(self.block_count)
  2569. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  2570. self.gguf_writer.add_embedding_length(n_embd)
  2571. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2572. self.gguf_writer.add_head_count(self._num_query_heads)
  2573. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2574. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  2575. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  2576. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  2577. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  2578. self.gguf_writer.add_key_length(head_dim)
  2579. self.gguf_writer.add_value_length(head_dim)
  2580. self.gguf_writer.add_file_type(self.ftype)
  2581. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  2582. if "n_layers" in keys:
  2583. return self.hparams["num_transformer_layers"]
  2584. return super().find_hparam(keys, optional)
  2585. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2586. # split ff
  2587. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  2588. ff_dim = self._ffn_dims[bid]
  2589. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  2590. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  2591. return
  2592. yield (self.map_tensor_name(name), data_torch)
  2593. @Model.register("ArcticForCausalLM")
  2594. class ArcticModel(Model):
  2595. model_arch = gguf.MODEL_ARCH.ARCTIC
  2596. def set_vocab(self):
  2597. # The reason for using a custom implementation here is that the
  2598. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  2599. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  2600. from sentencepiece import SentencePieceProcessor
  2601. tokenizer_path = self.dir_model / 'tokenizer.model'
  2602. if not tokenizer_path.is_file():
  2603. logger.error(f'Error: Missing {tokenizer_path}')
  2604. sys.exit(1)
  2605. # Read the whole vocabulary from the tokenizer.model file
  2606. tokenizer = SentencePieceProcessor()
  2607. tokenizer.LoadFromFile(str(tokenizer_path))
  2608. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2609. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2610. scores: list[float] = [-10000.0] * vocab_size
  2611. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2612. for token_id in range(tokenizer.vocab_size()):
  2613. piece = tokenizer.IdToPiece(token_id)
  2614. text = piece.encode("utf-8")
  2615. score = tokenizer.GetScore(token_id)
  2616. toktype = SentencePieceTokenTypes.NORMAL
  2617. if tokenizer.IsUnknown(token_id):
  2618. toktype = SentencePieceTokenTypes.UNKNOWN
  2619. elif tokenizer.IsControl(token_id):
  2620. toktype = SentencePieceTokenTypes.CONTROL
  2621. elif tokenizer.IsUnused(token_id):
  2622. toktype = SentencePieceTokenTypes.UNUSED
  2623. elif tokenizer.IsByte(token_id):
  2624. toktype = SentencePieceTokenTypes.BYTE
  2625. tokens[token_id] = text
  2626. scores[token_id] = score
  2627. toktypes[token_id] = toktype
  2628. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  2629. # of information about added/redefined tokens and modify them accordingly.
  2630. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2631. if tokenizer_config_file.is_file():
  2632. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2633. tokenizer_config_json = json.load(f)
  2634. if "added_tokens_decoder" in tokenizer_config_json:
  2635. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  2636. for token_id, token_json in added_tokens_decoder.items():
  2637. token_id = int(token_id)
  2638. if token_id >= vocab_size:
  2639. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2640. continue
  2641. token_content = token_json["content"]
  2642. token_type = SentencePieceTokenTypes.USER_DEFINED
  2643. token_score = -10000.0
  2644. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  2645. # Set the score to 0.0 as in the original tokenizer.model
  2646. if ("special" in token_json) and token_json["special"]:
  2647. if token_content == tokenizer_config_json["unk_token"]:
  2648. token_type = SentencePieceTokenTypes.UNKNOWN
  2649. else:
  2650. token_type = SentencePieceTokenTypes.CONTROL
  2651. token_score = 0.0
  2652. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  2653. tokens[token_id] = token_content.encode("utf-8")
  2654. toktypes[token_id] = token_type
  2655. scores[token_id] = token_score
  2656. self.gguf_writer.add_tokenizer_model("llama")
  2657. self.gguf_writer.add_tokenizer_pre("default")
  2658. self.gguf_writer.add_token_list(tokens)
  2659. self.gguf_writer.add_token_scores(scores)
  2660. self.gguf_writer.add_token_types(toktypes)
  2661. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2662. special_vocab.add_to_gguf(self.gguf_writer)
  2663. def set_gguf_parameters(self):
  2664. super().set_gguf_parameters()
  2665. hparams = self.hparams
  2666. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2667. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  2668. _experts: list[dict[str, Tensor]] | None = None
  2669. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2670. n_head = self.hparams["num_attention_heads"]
  2671. n_kv_head = self.hparams.get("num_key_value_heads")
  2672. if name.endswith("q_proj.weight"):
  2673. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2674. if name.endswith("k_proj.weight"):
  2675. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2676. # process the experts separately
  2677. if name.find("block_sparse_moe.experts") != -1:
  2678. n_experts = self.hparams["num_local_experts"]
  2679. assert bid is not None
  2680. if self._experts is None:
  2681. self._experts = [{} for _ in range(self.block_count)]
  2682. self._experts[bid][name] = data_torch
  2683. if len(self._experts[bid]) >= n_experts * 3:
  2684. tensors: list[tuple[str, Tensor]] = []
  2685. # merge the experts into a single 3d tensor
  2686. for wid in ["w1", "w2", "w3"]:
  2687. datas: list[Tensor] = []
  2688. for xid in range(n_experts):
  2689. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  2690. datas.append(self._experts[bid][ename])
  2691. del self._experts[bid][ename]
  2692. data_torch = torch.stack(datas, dim=0)
  2693. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  2694. new_name = self.map_tensor_name(merged_name)
  2695. tensors.append((new_name, data_torch))
  2696. return tensors
  2697. else:
  2698. return []
  2699. return [(self.map_tensor_name(name), data_torch)]
  2700. def prepare_tensors(self):
  2701. super().prepare_tensors()
  2702. if self._experts is not None:
  2703. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2704. experts = [k for d in self._experts for k in d.keys()]
  2705. if len(experts) > 0:
  2706. raise ValueError(f"Unprocessed experts: {experts}")
  2707. @Model.register("DeepseekV2ForCausalLM")
  2708. class DeepseekV2Model(Model):
  2709. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  2710. def set_vocab(self):
  2711. self._set_vocab_gpt2()
  2712. def set_gguf_parameters(self):
  2713. super().set_gguf_parameters()
  2714. hparams = self.hparams
  2715. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  2716. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2717. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2718. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2719. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2720. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2721. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  2722. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  2723. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  2724. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  2725. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  2726. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2727. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2728. if self.hparams["rope_scaling"].get("type") == "yarn":
  2729. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2730. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2731. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  2732. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
  2733. _experts: list[dict[str, Tensor]] | None = None
  2734. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2735. # process the experts separately
  2736. if name.find("mlp.experts") != -1:
  2737. n_experts = self.hparams["n_routed_experts"]
  2738. assert bid is not None
  2739. if self._experts is None:
  2740. self._experts = [{} for _ in range(self.block_count)]
  2741. self._experts[bid][name] = data_torch
  2742. if len(self._experts[bid]) >= n_experts * 3:
  2743. tensors: list[tuple[str, Tensor]] = []
  2744. # merge the experts into a single 3d tensor
  2745. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2746. datas: list[Tensor] = []
  2747. for xid in range(n_experts):
  2748. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2749. datas.append(self._experts[bid][ename])
  2750. del self._experts[bid][ename]
  2751. data_torch = torch.stack(datas, dim=0)
  2752. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2753. new_name = self.map_tensor_name(merged_name)
  2754. tensors.append((new_name, data_torch))
  2755. return tensors
  2756. else:
  2757. return []
  2758. return [(self.map_tensor_name(name), data_torch)]
  2759. def prepare_tensors(self):
  2760. super().prepare_tensors()
  2761. if self._experts is not None:
  2762. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2763. experts = [k for d in self._experts for k in d.keys()]
  2764. if len(experts) > 0:
  2765. raise ValueError(f"Unprocessed experts: {experts}")
  2766. @Model.register("T5WithLMHeadModel")
  2767. @Model.register("T5ForConditionalGeneration")
  2768. @Model.register("MT5ForConditionalGeneration")
  2769. @Model.register("UMT5ForConditionalGeneration")
  2770. class T5Model(Model):
  2771. model_arch = gguf.MODEL_ARCH.T5
  2772. def __init__(self, *args, **kwargs):
  2773. super().__init__(*args, **kwargs)
  2774. self.shared_token_embeddings_found = False
  2775. def set_vocab(self):
  2776. # to avoid TypeError: Descriptors cannot be created directly
  2777. # exception when importing sentencepiece_model_pb2
  2778. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2779. from sentencepiece import SentencePieceProcessor
  2780. from sentencepiece import sentencepiece_model_pb2 as model
  2781. tokenizer_path = self.dir_model / 'tokenizer.model'
  2782. # many older models use spiece.model tokenizer model filename
  2783. if not tokenizer_path.is_file():
  2784. tokenizer_path = self.dir_model / 'spiece.model'
  2785. if not tokenizer_path.is_file():
  2786. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2787. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2788. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2789. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  2790. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  2791. # assure the tokenizer model file name is correct
  2792. assert tokenizer_path.name == 'tokenizer.model'
  2793. return self._set_vocab_sentencepiece()
  2794. else:
  2795. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2796. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2797. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2798. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2799. tokenizer = SentencePieceProcessor()
  2800. tokenizer.LoadFromFile(str(tokenizer_path))
  2801. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2802. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2803. scores: list[float] = [-10000.0] * vocab_size
  2804. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2805. for token_id in range(tokenizer.vocab_size()):
  2806. piece = tokenizer.IdToPiece(token_id)
  2807. text = piece.encode("utf-8")
  2808. score = tokenizer.GetScore(token_id)
  2809. toktype = SentencePieceTokenTypes.NORMAL
  2810. if tokenizer.IsUnknown(token_id):
  2811. toktype = SentencePieceTokenTypes.UNKNOWN
  2812. elif tokenizer.IsControl(token_id):
  2813. toktype = SentencePieceTokenTypes.CONTROL
  2814. elif tokenizer.IsUnused(token_id):
  2815. toktype = SentencePieceTokenTypes.UNUSED
  2816. elif tokenizer.IsByte(token_id):
  2817. toktype = SentencePieceTokenTypes.BYTE
  2818. tokens[token_id] = text
  2819. scores[token_id] = score
  2820. toktypes[token_id] = toktype
  2821. added_tokens_file = self.dir_model / 'added_tokens.json'
  2822. if added_tokens_file.is_file():
  2823. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2824. added_tokens_json = json.load(f)
  2825. for key in added_tokens_json:
  2826. token_id = added_tokens_json[key]
  2827. if token_id >= vocab_size:
  2828. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2829. continue
  2830. tokens[token_id] = key.encode("utf-8")
  2831. scores[token_id] = -1000.0
  2832. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2833. if vocab_size > len(tokens):
  2834. pad_count = vocab_size - len(tokens)
  2835. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2836. for i in range(1, pad_count + 1):
  2837. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2838. scores.append(-1000.0)
  2839. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2840. self.gguf_writer.add_tokenizer_model("t5")
  2841. self.gguf_writer.add_tokenizer_pre("default")
  2842. self.gguf_writer.add_token_list(tokens)
  2843. self.gguf_writer.add_token_scores(scores)
  2844. self.gguf_writer.add_token_types(toktypes)
  2845. self.gguf_writer.add_add_space_prefix(add_prefix)
  2846. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2847. if precompiled_charsmap:
  2848. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2849. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2850. special_vocab.add_to_gguf(self.gguf_writer)
  2851. self.gguf_writer.add_add_bos_token(False)
  2852. self.gguf_writer.add_add_eos_token(True)
  2853. def set_gguf_parameters(self):
  2854. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  2855. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  2856. n_ctx = 512
  2857. self.gguf_writer.add_context_length(n_ctx)
  2858. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2859. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  2860. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  2861. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  2862. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  2863. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  2864. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2865. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  2866. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2867. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  2868. self.gguf_writer.add_file_type(self.ftype)
  2869. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2870. del bid # unused
  2871. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  2872. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  2873. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  2874. # and decoder and ignore the remaining ones.
  2875. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  2876. if not self.shared_token_embeddings_found:
  2877. name = "shared.weight"
  2878. self.shared_token_embeddings_found = True
  2879. else:
  2880. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  2881. return []
  2882. return [(self.map_tensor_name(name), data_torch)]
  2883. @Model.register("T5EncoderModel")
  2884. class T5EncoderModel(Model):
  2885. model_arch = gguf.MODEL_ARCH.T5ENCODER
  2886. def __init__(self, *args, **kwargs):
  2887. super().__init__(*args, **kwargs)
  2888. self.shared_token_embeddings_found = False
  2889. def set_vocab(self):
  2890. # to avoid TypeError: Descriptors cannot be created directly
  2891. # exception when importing sentencepiece_model_pb2
  2892. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2893. from sentencepiece import SentencePieceProcessor
  2894. from sentencepiece import sentencepiece_model_pb2 as model
  2895. tokenizer_path = self.dir_model / 'tokenizer.model'
  2896. # many older models use spiece.model tokenizer model filename
  2897. if not tokenizer_path.is_file():
  2898. tokenizer_path = self.dir_model / 'spiece.model'
  2899. if not tokenizer_path.is_file():
  2900. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2901. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2902. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2903. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  2904. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  2905. # assure the tokenizer model file name is correct
  2906. assert tokenizer_path.name == 'tokenizer.model'
  2907. return self._set_vocab_sentencepiece()
  2908. else:
  2909. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2910. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2911. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2912. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2913. tokenizer = SentencePieceProcessor()
  2914. tokenizer.LoadFromFile(str(tokenizer_path))
  2915. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2916. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2917. scores: list[float] = [-10000.0] * vocab_size
  2918. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2919. for token_id in range(tokenizer.vocab_size()):
  2920. piece = tokenizer.IdToPiece(token_id)
  2921. text = piece.encode("utf-8")
  2922. score = tokenizer.GetScore(token_id)
  2923. toktype = SentencePieceTokenTypes.NORMAL
  2924. if tokenizer.IsUnknown(token_id):
  2925. toktype = SentencePieceTokenTypes.UNKNOWN
  2926. elif tokenizer.IsControl(token_id):
  2927. toktype = SentencePieceTokenTypes.CONTROL
  2928. elif tokenizer.IsUnused(token_id):
  2929. toktype = SentencePieceTokenTypes.UNUSED
  2930. elif tokenizer.IsByte(token_id):
  2931. toktype = SentencePieceTokenTypes.BYTE
  2932. tokens[token_id] = text
  2933. scores[token_id] = score
  2934. toktypes[token_id] = toktype
  2935. added_tokens_file = self.dir_model / 'added_tokens.json'
  2936. if added_tokens_file.is_file():
  2937. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2938. added_tokens_json = json.load(f)
  2939. for key in added_tokens_json:
  2940. token_id = added_tokens_json[key]
  2941. if token_id >= vocab_size:
  2942. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2943. continue
  2944. tokens[token_id] = key.encode("utf-8")
  2945. scores[token_id] = -1000.0
  2946. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2947. if vocab_size > len(tokens):
  2948. pad_count = vocab_size - len(tokens)
  2949. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2950. for i in range(1, pad_count + 1):
  2951. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2952. scores.append(-1000.0)
  2953. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2954. self.gguf_writer.add_tokenizer_model("t5")
  2955. self.gguf_writer.add_tokenizer_pre("default")
  2956. self.gguf_writer.add_token_list(tokens)
  2957. self.gguf_writer.add_token_scores(scores)
  2958. self.gguf_writer.add_token_types(toktypes)
  2959. self.gguf_writer.add_add_space_prefix(add_prefix)
  2960. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2961. if precompiled_charsmap:
  2962. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2963. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2964. special_vocab.add_to_gguf(self.gguf_writer)
  2965. self.gguf_writer.add_add_bos_token(False)
  2966. self.gguf_writer.add_add_eos_token(True)
  2967. def set_gguf_parameters(self):
  2968. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  2969. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  2970. n_ctx = 512
  2971. self.gguf_writer.add_context_length(n_ctx)
  2972. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2973. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  2974. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  2975. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  2976. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  2977. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  2978. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2979. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  2980. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2981. self.gguf_writer.add_file_type(self.ftype)
  2982. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2983. del bid # unused
  2984. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  2985. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  2986. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  2987. # and decoder and ignore the remaining ones.
  2988. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  2989. if not self.shared_token_embeddings_found:
  2990. name = "shared.weight"
  2991. self.shared_token_embeddings_found = True
  2992. else:
  2993. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  2994. return []
  2995. return [(self.map_tensor_name(name), data_torch)]
  2996. @Model.register("JAISLMHeadModel")
  2997. class JaisModel(Model):
  2998. model_arch = gguf.MODEL_ARCH.JAIS
  2999. def __init__(self, *args, **kwargs):
  3000. super().__init__(*args, **kwargs)
  3001. # SwigLU activation
  3002. assert self.hparams["activation_function"] == "swiglu"
  3003. # ALiBi position embedding
  3004. assert self.hparams["position_embedding_type"] == "alibi"
  3005. # Embeddings scale
  3006. self.embeddings_scale = 1.0
  3007. if 'mup_embeddings_scale' in self.hparams:
  3008. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  3009. elif 'embeddings_scale' in self.hparams:
  3010. self.embeddings_scale = self.hparams['embeddings_scale']
  3011. else:
  3012. assert False
  3013. self.width_scale = 1.0
  3014. if 'mup_output_alpha' in self.hparams:
  3015. assert 'mup_width_scale' in self.hparams
  3016. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  3017. elif 'width_scale' in self.hparams:
  3018. self.width_scale = self.hparams['width_scale']
  3019. else:
  3020. assert False
  3021. self.max_alibi_bias = 8.0
  3022. def set_vocab(self):
  3023. self._set_vocab_gpt2()
  3024. def set_gguf_parameters(self):
  3025. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  3026. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  3027. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3028. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  3029. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3030. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3031. self.gguf_writer.add_file_type(self.ftype)
  3032. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3033. del bid # unused
  3034. tensors: list[tuple[str, Tensor]] = []
  3035. # we don't need these
  3036. if name.endswith((".attn.bias")):
  3037. return tensors
  3038. if name.endswith(("relative_pe.slopes")):
  3039. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  3040. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  3041. # but Jais's PyTorch model simply precalculates the slope values and places them
  3042. # in relative_pes.slopes
  3043. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  3044. first_val = float(data_torch[0].item())
  3045. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  3046. return tensors
  3047. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  3048. data_torch = data_torch.transpose(1, 0)
  3049. new_name = self.map_tensor_name(name)
  3050. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  3051. tensors.append((new_name, data_torch * self.embeddings_scale))
  3052. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  3053. tensors.append((new_name, data_torch * self.width_scale))
  3054. else:
  3055. tensors.append((new_name, data_torch))
  3056. return tensors
  3057. def prepare_tensors(self):
  3058. super().prepare_tensors()
  3059. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  3060. @Model.register("ChatGLMModel", "ChatGLMForConditionalGeneration")
  3061. class ChatGLMModel(Model):
  3062. model_arch = gguf.MODEL_ARCH.CHATGLM
  3063. def set_vocab_chatglm3(self):
  3064. dir_model = self.dir_model
  3065. hparams = self.hparams
  3066. tokens: list[bytes] = []
  3067. toktypes: list[int] = []
  3068. scores: list[float] = []
  3069. from transformers import AutoTokenizer
  3070. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  3071. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  3072. assert max(tokenizer.get_vocab().values()) < vocab_size
  3073. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  3074. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  3075. for token_id in range(vocab_size):
  3076. piece = tokenizer._convert_id_to_token(token_id)
  3077. if token_id == 0:
  3078. piece = "<unk>"
  3079. elif token_id == 1:
  3080. piece = "<bos>"
  3081. elif token_id == 2:
  3082. piece = "<eos>"
  3083. text = piece.encode("utf-8")
  3084. score = 0.0
  3085. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  3086. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  3087. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  3088. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  3089. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  3090. if piece in special_tokens:
  3091. toktype = SentencePieceTokenTypes.CONTROL
  3092. elif len(piece) == 0:
  3093. text = f"[PAD{token_id}]".encode("utf-8")
  3094. toktype = SentencePieceTokenTypes.UNUSED
  3095. else:
  3096. toktype = SentencePieceTokenTypes.USER_DEFINED
  3097. tokens.append(text)
  3098. scores.append(score)
  3099. toktypes.append(toktype)
  3100. continue
  3101. toktype = SentencePieceTokenTypes.NORMAL
  3102. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  3103. toktype = SentencePieceTokenTypes.UNKNOWN
  3104. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  3105. toktype = SentencePieceTokenTypes.CONTROL
  3106. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  3107. toktype = SentencePieceTokenTypes.UNUSED
  3108. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  3109. toktype = SentencePieceTokenTypes.BYTE
  3110. tokens.append(text)
  3111. scores.append(score)
  3112. toktypes.append(toktype)
  3113. self.gguf_writer.add_tokenizer_model("llama")
  3114. # glm3 needs prefix and suffix formatted as:
  3115. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  3116. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  3117. self.gguf_writer.add_token_list(tokens)
  3118. self.gguf_writer.add_token_scores(scores)
  3119. self.gguf_writer.add_token_types(toktypes)
  3120. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3121. special_vocab.add_to_gguf(self.gguf_writer)
  3122. @staticmethod
  3123. def token_bytes_to_string(b):
  3124. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  3125. byte_encoder = bytes_to_unicode()
  3126. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  3127. @staticmethod
  3128. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  3129. parts = [bytes([b]) for b in token]
  3130. while True:
  3131. min_idx = None
  3132. min_rank = None
  3133. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  3134. rank = mergeable_ranks.get(pair[0] + pair[1])
  3135. if rank is not None and (min_rank is None or rank < min_rank):
  3136. min_idx = i
  3137. min_rank = rank
  3138. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  3139. break
  3140. assert min_idx is not None
  3141. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  3142. return parts
  3143. def set_vocab(self):
  3144. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  3145. self.set_vocab_chatglm3()
  3146. return
  3147. dir_model = self.dir_model
  3148. hparams = self.hparams
  3149. tokens: list[str] = []
  3150. toktypes: list[int] = []
  3151. from transformers import AutoTokenizer
  3152. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  3153. vocab_size = hparams["padded_vocab_size"]
  3154. assert max(tokenizer.get_vocab().values()) < vocab_size
  3155. tokpre = self.get_vocab_base_pre(tokenizer)
  3156. merges = []
  3157. vocab = {}
  3158. mergeable_ranks = tokenizer.mergeable_ranks
  3159. for token, rank in mergeable_ranks.items():
  3160. vocab[ChatGLMModel.token_bytes_to_string(token)] = rank
  3161. if len(token) == 1:
  3162. continue
  3163. merged = ChatGLMModel.bpe(mergeable_ranks, token, max_rank=rank)
  3164. assert len(merged) >= 2 and len(merged) <= 7
  3165. merges.append(' '.join(map(ChatGLMModel.token_bytes_to_string, merged)))
  3166. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  3167. added_vocab = tokenizer.get_added_vocab()
  3168. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  3169. for i in range(vocab_size):
  3170. if i not in reverse_vocab:
  3171. tokens.append(f"[PAD{i}]")
  3172. toktypes.append(gguf.TokenType.UNUSED)
  3173. elif reverse_vocab[i] in added_vocab:
  3174. tokens.append(reverse_vocab[i])
  3175. if tokenizer.added_tokens_decoder[i].special:
  3176. toktypes.append(gguf.TokenType.CONTROL)
  3177. else:
  3178. toktypes.append(gguf.TokenType.USER_DEFINED)
  3179. else:
  3180. tokens.append(reverse_vocab[i])
  3181. toktypes.append(gguf.TokenType.NORMAL)
  3182. self.gguf_writer.add_tokenizer_model("gpt2")
  3183. self.gguf_writer.add_tokenizer_pre(tokpre)
  3184. self.gguf_writer.add_token_list(tokens)
  3185. self.gguf_writer.add_token_types(toktypes)
  3186. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  3187. special_vocab.merges = merges
  3188. # only add special tokens when they were not already loaded from config.json
  3189. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  3190. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  3191. # this one is usually not in config.json anyway
  3192. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  3193. special_vocab.add_to_gguf(self.gguf_writer)
  3194. def set_gguf_parameters(self):
  3195. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  3196. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  3197. n_head_kv = self.hparams.get("multi_query_group_num", n_head)
  3198. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  3199. self.gguf_writer.add_embedding_length(n_embed)
  3200. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", 4 * n_embed))
  3201. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3202. self.gguf_writer.add_head_count(n_head)
  3203. self.gguf_writer.add_head_count_kv(n_head_kv)
  3204. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layernorm_epsilon"])
  3205. self.gguf_writer.add_file_type(self.ftype)
  3206. self.gguf_writer.add_rope_dimension_count(64)
  3207. self.gguf_writer.add_add_bos_token(False)
  3208. rope_freq = 10000
  3209. if "rope_ratio" in self.hparams:
  3210. rope_freq = rope_freq * self.hparams["rope_ratio"]
  3211. self.gguf_writer.add_rope_freq_base(rope_freq)
  3212. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3213. del bid # unused
  3214. if name.endswith(".rotary_pos_emb.inv_freq"):
  3215. return []
  3216. name = name.removeprefix("transformer.")
  3217. return [(self.map_tensor_name(name), data_torch)]
  3218. @Model.register("NemotronForCausalLM")
  3219. class NemotronModel(Model):
  3220. model_arch = gguf.MODEL_ARCH.NEMOTRON
  3221. def set_vocab(self):
  3222. self._set_vocab_sentencepiece()
  3223. self.gguf_writer.add_pad_token_id(0)
  3224. self.gguf_writer.add_unk_token_id(1)
  3225. def set_gguf_parameters(self):
  3226. super().set_gguf_parameters()
  3227. hparams = self.hparams
  3228. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3229. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  3230. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  3231. # * Partial RoPE
  3232. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  3233. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3234. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3235. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3236. # * RopeScaling for Nemotron
  3237. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  3238. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3239. else:
  3240. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3241. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  3242. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3243. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  3244. # model.layers.{l}.input_layernorm.weight
  3245. # model.layers.{l}.post_attention_layernorm.weight
  3246. # model.norm.weight
  3247. if name.endswith("norm.weight"):
  3248. data_torch = data_torch + 1
  3249. return [(self.map_tensor_name(name), data_torch)]
  3250. @Model.register("ExaoneForCausalLM")
  3251. class ExaoneModel(Model):
  3252. model_arch = gguf.MODEL_ARCH.EXAONE
  3253. def set_gguf_parameters(self):
  3254. hparams = self.hparams
  3255. assert (hparams["activation_function"] == "silu")
  3256. max_position_embeddings = hparams["max_position_embeddings"]
  3257. embed_dim = hparams["hidden_size"]
  3258. num_heads = hparams["num_attention_heads"]
  3259. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  3260. layer_norm_eps = hparams["layer_norm_epsilon"]
  3261. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  3262. num_layers = hparams["num_layers"]
  3263. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  3264. # attention_dropout_rate = hparams["attention_dropout"]
  3265. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  3266. # embed_dropout_rate = hparams["embed_dropout"]
  3267. self.gguf_writer.add_embedding_length(embed_dim)
  3268. self.gguf_writer.add_head_count(num_heads)
  3269. self.gguf_writer.add_head_count_kv(num_kv_heads)
  3270. self.gguf_writer.add_context_length(max_position_embeddings)
  3271. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  3272. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3273. self.gguf_writer.add_block_count(num_layers)
  3274. self.gguf_writer.add_file_type(self.ftype)
  3275. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  3276. self.gguf_writer.add_rope_freq_base(rope_theta)
  3277. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  3278. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  3279. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  3280. if hparams.get("rope_scaling") is not None and "factor" in hparams["rope_scaling"]:
  3281. if hparams["rope_scaling"].get("type") == "linear":
  3282. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3283. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  3284. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3285. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  3286. if rope_scaling.get("rope_type", '').lower() == "llama3":
  3287. base = self.hparams.get("rope_theta", 10000.0)
  3288. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  3289. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  3290. factor = rope_scaling.get("factor", 8.0)
  3291. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  3292. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  3293. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  3294. low_freq_wavelen = old_context_len / low_freq_factor
  3295. high_freq_wavelen = old_context_len / high_freq_factor
  3296. assert low_freq_wavelen != high_freq_wavelen
  3297. rope_factors = []
  3298. for freq in freqs:
  3299. wavelen = 2 * math.pi / freq
  3300. if wavelen < high_freq_wavelen:
  3301. rope_factors.append(1)
  3302. elif wavelen > low_freq_wavelen:
  3303. rope_factors.append(factor)
  3304. else:
  3305. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  3306. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  3307. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  3308. @Model.register("GraniteForCausalLM")
  3309. class GraniteModel(LlamaModel):
  3310. """Conversion for IBM's GraniteForCausalLM"""
  3311. model_arch = gguf.MODEL_ARCH.GRANITE
  3312. def set_gguf_parameters(self):
  3313. """Granite uses standard llama parameters with the following differences:
  3314. - No head_dim support
  3315. - New multiplier params:
  3316. - attention_scale
  3317. - embedding_scale
  3318. - residual_scale
  3319. - logits_scaling
  3320. """
  3321. if head_dim := self.hparams.pop("head_dim", None):
  3322. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  3323. super().set_gguf_parameters()
  3324. # NOTE: Convert _multiplier params to _scale params for naming
  3325. # consistency
  3326. if attention_scale := self.hparams.get("attention_multiplier"):
  3327. self.gguf_writer.add_attention_scale(attention_scale)
  3328. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  3329. if embedding_scale := self.hparams.get("embedding_multiplier"):
  3330. self.gguf_writer.add_embedding_scale(embedding_scale)
  3331. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  3332. if residual_scale := self.hparams.get("residual_multiplier"):
  3333. self.gguf_writer.add_residual_scale(residual_scale)
  3334. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  3335. if logits_scale := self.hparams.get("logits_scaling"):
  3336. self.gguf_writer.add_logit_scale(logits_scale)
  3337. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  3338. @Model.register("GraniteMoeForCausalLM")
  3339. class GraniteMoeModel(GraniteModel):
  3340. """Conversion for IBM's GraniteMoeForCausalLM"""
  3341. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  3342. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3343. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  3344. is used. This essentially merges w1 and w3 into a single tensor with 2x
  3345. the hidden size that is then split during forward. To keep compatibility
  3346. with existing mixtral support, we pull them apart here.
  3347. """
  3348. if name.endswith("block_sparse_moe.input_linear.weight"):
  3349. ffn_dim = self.hparams["intermediate_size"]
  3350. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  3351. gate, up = data_torch[..., :ffn_dim, :], data_torch[..., ffn_dim:, :]
  3352. return [
  3353. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  3354. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  3355. ]
  3356. return super().modify_tensors(data_torch, name, bid)
  3357. @Model.register("ChameleonForConditionalGeneration")
  3358. @Model.register("ChameleonForCausalLM") # obsolete
  3359. class ChameleonModel(Model):
  3360. model_arch = gguf.MODEL_ARCH.CHAMELEON
  3361. def set_gguf_parameters(self):
  3362. super().set_gguf_parameters()
  3363. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  3364. def set_vocab(self):
  3365. self._set_vocab_gpt2()
  3366. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3367. # ignore image tokenizer for now
  3368. # TODO: remove this once image support is implemented for Chameleon
  3369. if name.startswith("model.vqmodel"):
  3370. return []
  3371. n_head = self.hparams["num_attention_heads"]
  3372. n_kv_head = self.hparams.get("num_key_value_heads")
  3373. hidden_dim = self.hparams.get("hidden_size")
  3374. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3375. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3376. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3377. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3378. if name.endswith(("q_norm.weight", "q_norm.bias")):
  3379. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  3380. if name.endswith(("k_norm.weight", "k_norm.bias")):
  3381. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  3382. return [(self.map_tensor_name(name), data_torch)]
  3383. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  3384. @staticmethod
  3385. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  3386. head_dim = hidden_dim // n_heads
  3387. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  3388. data_torch = data_torch.repeat_interleave(n_heads, 0)
  3389. return data_torch
  3390. ###### CONVERSION LOGIC ######
  3391. # tree of lazy tensors
  3392. class LazyTorchTensor(gguf.LazyBase):
  3393. _tensor_type = torch.Tensor
  3394. # to keep the type-checker happy
  3395. dtype: torch.dtype
  3396. shape: torch.Size
  3397. # only used when converting a torch.Tensor to a np.ndarray
  3398. _dtype_map: dict[torch.dtype, type] = {
  3399. torch.float16: np.float16,
  3400. torch.float32: np.float32,
  3401. }
  3402. # used for safetensors slices
  3403. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  3404. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  3405. _dtype_str_map: dict[str, torch.dtype] = {
  3406. "F64": torch.float64,
  3407. "F32": torch.float32,
  3408. "BF16": torch.bfloat16,
  3409. "F16": torch.float16,
  3410. # "U64": torch.uint64,
  3411. "I64": torch.int64,
  3412. # "U32": torch.uint32,
  3413. "I32": torch.int32,
  3414. # "U16": torch.uint16,
  3415. "I16": torch.int16,
  3416. "U8": torch.uint8,
  3417. "I8": torch.int8,
  3418. "BOOL": torch.bool,
  3419. "F8_E4M3": torch.float8_e4m3fn,
  3420. "F8_E5M2": torch.float8_e5m2,
  3421. }
  3422. def numpy(self) -> gguf.LazyNumpyTensor:
  3423. dtype = self._dtype_map[self.dtype]
  3424. return gguf.LazyNumpyTensor(
  3425. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  3426. args=(self,),
  3427. func=(lambda s: s.numpy())
  3428. )
  3429. @classmethod
  3430. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  3431. return torch.empty(size=shape, dtype=dtype, device="meta")
  3432. @classmethod
  3433. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  3434. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  3435. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  3436. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  3437. return cast(torch.Tensor, lazy)
  3438. @classmethod
  3439. def __torch_function__(cls, func, types, args=(), kwargs=None):
  3440. del types # unused
  3441. if kwargs is None:
  3442. kwargs = {}
  3443. if func is torch.Tensor.numpy:
  3444. return args[0].numpy()
  3445. return cls._wrap_fn(func)(*args, **kwargs)
  3446. def parse_args() -> argparse.Namespace:
  3447. parser = argparse.ArgumentParser(
  3448. description="Convert a huggingface model to a GGML compatible file")
  3449. parser.add_argument(
  3450. "--vocab-only", action="store_true",
  3451. help="extract only the vocab",
  3452. )
  3453. parser.add_argument(
  3454. "--outfile", type=Path,
  3455. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  3456. )
  3457. parser.add_argument(
  3458. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  3459. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  3460. )
  3461. parser.add_argument(
  3462. "--bigendian", action="store_true",
  3463. help="model is executed on big endian machine",
  3464. )
  3465. parser.add_argument(
  3466. "model", type=Path,
  3467. help="directory containing model file",
  3468. )
  3469. parser.add_argument(
  3470. "--use-temp-file", action="store_true",
  3471. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  3472. )
  3473. parser.add_argument(
  3474. "--no-lazy", action="store_true",
  3475. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  3476. )
  3477. parser.add_argument(
  3478. "--model-name", type=str, default=None,
  3479. help="name of the model",
  3480. )
  3481. parser.add_argument(
  3482. "--verbose", action="store_true",
  3483. help="increase output verbosity",
  3484. )
  3485. parser.add_argument(
  3486. "--split-max-tensors", type=int, default=0,
  3487. help="max tensors in each split",
  3488. )
  3489. parser.add_argument(
  3490. "--split-max-size", type=str, default="0",
  3491. help="max size per split N(M|G)",
  3492. )
  3493. parser.add_argument(
  3494. "--dry-run", action="store_true",
  3495. help="only print out a split plan and exit, without writing any new files",
  3496. )
  3497. parser.add_argument(
  3498. "--no-tensor-first-split", action="store_true",
  3499. help="do not add tensors to the first split (disabled by default)"
  3500. )
  3501. parser.add_argument(
  3502. "--metadata", type=Path,
  3503. help="Specify the path for an authorship metadata override file"
  3504. )
  3505. return parser.parse_args()
  3506. def split_str_to_n_bytes(split_str: str) -> int:
  3507. if split_str.endswith("K"):
  3508. n = int(split_str[:-1]) * 1000
  3509. elif split_str.endswith("M"):
  3510. n = int(split_str[:-1]) * 1000 * 1000
  3511. elif split_str.endswith("G"):
  3512. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  3513. elif split_str.isnumeric():
  3514. n = int(split_str)
  3515. else:
  3516. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  3517. if n < 0:
  3518. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  3519. return n
  3520. def main() -> None:
  3521. args = parse_args()
  3522. if args.verbose:
  3523. logging.basicConfig(level=logging.DEBUG)
  3524. else:
  3525. logging.basicConfig(level=logging.INFO)
  3526. dir_model = args.model
  3527. if not dir_model.is_dir():
  3528. logger.error(f'Error: {args.model} is not a directory')
  3529. sys.exit(1)
  3530. ftype_map: dict[str, gguf.LlamaFileType] = {
  3531. "f32": gguf.LlamaFileType.ALL_F32,
  3532. "f16": gguf.LlamaFileType.MOSTLY_F16,
  3533. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  3534. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  3535. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  3536. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  3537. "auto": gguf.LlamaFileType.GUESSED,
  3538. }
  3539. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  3540. if args.use_temp_file and is_split:
  3541. logger.error("Error: Cannot use temp file when splitting")
  3542. sys.exit(1)
  3543. if args.outfile is not None:
  3544. fname_out = args.outfile
  3545. else:
  3546. fname_out = dir_model
  3547. logger.info(f"Loading model: {dir_model.name}")
  3548. hparams = Model.load_hparams(dir_model)
  3549. with torch.inference_mode():
  3550. output_type = ftype_map[args.outtype]
  3551. model_architecture = hparams["architectures"][0]
  3552. try:
  3553. model_class = Model.from_model_architecture(model_architecture)
  3554. except NotImplementedError:
  3555. logger.error(f"Model {model_architecture} is not supported")
  3556. sys.exit(1)
  3557. model_instance = model_class(dir_model=dir_model, ftype=output_type, fname_out=fname_out,
  3558. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  3559. eager=args.no_lazy,
  3560. metadata_override=args.metadata, model_name=args.model_name,
  3561. split_max_tensors=args.split_max_tensors,
  3562. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  3563. small_first_shard=args.no_tensor_first_split)
  3564. if args.vocab_only:
  3565. logger.info("Exporting model vocab...")
  3566. model_instance.write_vocab()
  3567. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  3568. else:
  3569. logger.info("Exporting model...")
  3570. model_instance.write()
  3571. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  3572. logger.info(f"Model successfully exported to {out_path}")
  3573. if __name__ == '__main__':
  3574. main()