convert_hf_to_gguf.py 275 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. logger = logging.getLogger("hf-to-gguf")
  27. ###### MODEL DEFINITIONS ######
  28. class SentencePieceTokenTypes(IntEnum):
  29. NORMAL = 1
  30. UNKNOWN = 2
  31. CONTROL = 3
  32. USER_DEFINED = 4
  33. UNUSED = 5
  34. BYTE = 6
  35. class ModelType(IntEnum):
  36. TEXT = 1
  37. VISION = 2
  38. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  39. class ModelBase:
  40. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  41. ModelType.TEXT: {},
  42. ModelType.VISION: {},
  43. }
  44. dir_model: Path
  45. ftype: gguf.LlamaFileType
  46. fname_out: Path
  47. is_big_endian: bool
  48. endianess: gguf.GGUFEndian
  49. use_temp_file: bool
  50. lazy: bool
  51. part_names: list[str]
  52. is_safetensors: bool
  53. hparams: dict[str, Any]
  54. tensor_names: set[str] | None
  55. gguf_writer: gguf.GGUFWriter
  56. model_name: str | None
  57. metadata_override: Path | None
  58. dir_model_card: Path
  59. remote_hf_model_id: str | None
  60. # subclasses should define this!
  61. model_arch: gguf.MODEL_ARCH
  62. # subclasses should initialize this!
  63. block_count: int
  64. tensor_map: gguf.TensorNameMap
  65. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  66. use_temp_file: bool = False, eager: bool = False,
  67. metadata_override: Path | None = None, model_name: str | None = None,
  68. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  69. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None):
  70. if type(self) is ModelBase or \
  71. type(self) is TextModel or \
  72. type(self) is VisionModel:
  73. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  74. self.dir_model = dir_model
  75. self.ftype = ftype
  76. self.fname_out = fname_out
  77. self.is_big_endian = is_big_endian
  78. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  79. self.use_temp_file = use_temp_file
  80. self.lazy = not eager or (remote_hf_model_id is not None)
  81. self.remote_hf_model_id = remote_hf_model_id
  82. if remote_hf_model_id is not None:
  83. self.is_safetensors = True
  84. def get_remote_tensors() -> Iterator[tuple[str, Tensor]]:
  85. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  86. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  87. self.tensor_names = set(name for name in remote_tensors.keys())
  88. for name, remote_tensor in gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id).items():
  89. yield (name, LazyTorchTensor.from_remote_tensor(remote_tensor))
  90. self.get_tensors = get_remote_tensors
  91. else:
  92. self.part_names = ModelBase.get_model_part_names(self.dir_model, "model", ".safetensors")
  93. self.is_safetensors = len(self.part_names) > 0
  94. if not self.is_safetensors:
  95. self.part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  96. self.hparams = ModelBase.load_hparams(self.dir_model) if hparams is None else hparams
  97. self.tensor_names = None
  98. self.metadata_override = metadata_override
  99. self.model_name = model_name
  100. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  101. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  102. if self.ftype == gguf.LlamaFileType.GUESSED:
  103. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  104. _, first_tensor = next(self.get_tensors())
  105. if first_tensor.dtype == torch.float16:
  106. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  107. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  108. else:
  109. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  110. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  111. # Configure GGUF Writer
  112. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  113. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  114. @classmethod
  115. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  116. stem, suffix = path.stem, path.suffix
  117. new_name = f"{prefix}{stem}{suffix}"
  118. return path.with_name(new_name)
  119. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  120. key = next((k for k in keys if k in self.hparams), None)
  121. if key is not None:
  122. return self.hparams[key]
  123. if optional:
  124. return None
  125. raise KeyError(f"could not find any of: {keys}")
  126. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  127. tensor_names_from_parts: set[str] = set()
  128. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  129. index_name += ".index.json"
  130. index_file = self.dir_model / index_name
  131. if index_file.is_file():
  132. self.tensor_names = set()
  133. logger.info(f"gguf: loading model weight map from '{index_name}'")
  134. with open(index_file, "r", encoding="utf-8") as f:
  135. index: dict[str, Any] = json.load(f)
  136. weight_map = index.get("weight_map")
  137. if weight_map is None or not isinstance(weight_map, dict):
  138. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  139. self.tensor_names.update(weight_map.keys())
  140. else:
  141. self.tensor_names = tensor_names_from_parts
  142. weight_map = {}
  143. for part_name in self.part_names:
  144. logger.info(f"gguf: loading model part '{part_name}'")
  145. ctx: ContextManager[Any]
  146. if self.is_safetensors:
  147. from safetensors import safe_open
  148. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  149. else:
  150. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  151. with ctx as model_part:
  152. tensor_names_from_parts.update(model_part.keys())
  153. for name in model_part.keys():
  154. if self.is_safetensors:
  155. if self.lazy:
  156. data = model_part.get_slice(name)
  157. data = LazyTorchTensor.from_safetensors_slice(data)
  158. else:
  159. data = model_part.get_tensor(name)
  160. else:
  161. data = model_part[name]
  162. if self.lazy:
  163. data = LazyTorchTensor.from_eager(data)
  164. yield name, data
  165. # verify tensor name presence and identify potentially missing files
  166. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  167. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  168. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  169. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  170. if len(extra) == 0 and len(missing_files) > 0:
  171. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  172. f"Missing tensors: {missing}")
  173. else:
  174. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  175. f"Missing tensors: {missing}\n"
  176. f"Extra tensors: {extra}")
  177. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  178. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  179. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  180. name: str = gguf.TENSOR_NAMES[key]
  181. if "{bid}" in name:
  182. assert bid is not None
  183. name = name.format(bid=bid)
  184. return name + suffix
  185. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  186. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  187. return False
  188. key_name: str = gguf.TENSOR_NAMES[key]
  189. if "{bid}" in key_name:
  190. if bid is None:
  191. return False
  192. key_name = key_name.format(bid=bid)
  193. else:
  194. if bid is not None:
  195. return False
  196. return name == (key_name + suffix)
  197. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  198. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  199. if new_name is None:
  200. raise ValueError(f"Can not map tensor {name!r}")
  201. return new_name
  202. def set_gguf_parameters(self):
  203. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  204. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  205. del bid # unused
  206. return [(self.map_tensor_name(name), data_torch)]
  207. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  208. del name, new_name, bid, n_dims # unused
  209. return False
  210. # some models need extra generated tensors (like rope_freqs)
  211. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  212. return ()
  213. def prepare_tensors(self):
  214. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  215. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  216. # we don't need these
  217. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  218. continue
  219. old_dtype = data_torch.dtype
  220. # convert any unsupported data types to float32
  221. if data_torch.dtype not in (torch.float16, torch.float32):
  222. data_torch = data_torch.to(torch.float32)
  223. # use the first number-like part of the tensor name as the block id
  224. bid = None
  225. for part in name.split("."):
  226. if part.isdecimal():
  227. bid = int(part)
  228. break
  229. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  230. # TODO: why do we squeeze here?
  231. # data = data_torch.squeeze().numpy()
  232. data = data_torch.numpy()
  233. # if data ends up empty, it means data_torch was a scalar tensor -> restore
  234. if len(data.shape) == 0:
  235. data = data_torch.numpy()
  236. n_dims = len(data.shape)
  237. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  238. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  239. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  240. data_qtype = gguf.GGMLQuantizationType.F32
  241. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  242. # Some tensor types are always in float32
  243. if data_qtype is False and (
  244. any(
  245. self.match_model_tensor_name(new_name, key, bid)
  246. for key in (
  247. gguf.MODEL_TENSOR.FFN_GATE_INP,
  248. gguf.MODEL_TENSOR.POS_EMBD,
  249. gguf.MODEL_TENSOR.TOKEN_TYPES,
  250. gguf.MODEL_TENSOR.SSM_CONV1D,
  251. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  252. gguf.MODEL_TENSOR.TIME_MIX_W1,
  253. gguf.MODEL_TENSOR.TIME_MIX_W2,
  254. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  255. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  256. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  257. gguf.MODEL_TENSOR.POSNET_NORM1,
  258. gguf.MODEL_TENSOR.POSNET_NORM2,
  259. )
  260. )
  261. or not new_name.endswith(".weight")
  262. ):
  263. data_qtype = gguf.GGMLQuantizationType.F32
  264. if data_qtype is False and any(
  265. self.match_model_tensor_name(new_name, key, bid)
  266. for key in (
  267. gguf.MODEL_TENSOR.TOKEN_EMBD,
  268. gguf.MODEL_TENSOR.OUTPUT,
  269. )
  270. ):
  271. if self.ftype in (
  272. gguf.LlamaFileType.MOSTLY_TQ1_0,
  273. gguf.LlamaFileType.MOSTLY_TQ2_0,
  274. ):
  275. # TODO: use Q4_K and Q6_K
  276. data_qtype = gguf.GGMLQuantizationType.F16
  277. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  278. if isinstance(data_qtype, bool):
  279. if self.ftype == gguf.LlamaFileType.ALL_F32:
  280. data_qtype = gguf.GGMLQuantizationType.F32
  281. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  282. data_qtype = gguf.GGMLQuantizationType.F16
  283. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  284. data_qtype = gguf.GGMLQuantizationType.BF16
  285. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  286. data_qtype = gguf.GGMLQuantizationType.Q8_0
  287. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  288. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  289. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  290. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  291. else:
  292. raise ValueError(f"Unknown file type: {self.ftype.name}")
  293. try:
  294. data = gguf.quants.quantize(data, data_qtype)
  295. except gguf.QuantError as e:
  296. logger.warning("%s, %s", e, "falling back to F16")
  297. data_qtype = gguf.GGMLQuantizationType.F16
  298. data = gguf.quants.quantize(data, data_qtype)
  299. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  300. # reverse shape to make it similar to the internal ggml dimension order
  301. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  302. # n_dims is implicit in the shape
  303. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  304. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  305. def set_type(self):
  306. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  307. def prepare_metadata(self, vocab_only: bool):
  308. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  309. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  310. # If we are using HF model id, set the metadata name to the model id
  311. if self.remote_hf_model_id:
  312. self.metadata.name = self.remote_hf_model_id
  313. # Fallback to model directory name if metadata name is still missing
  314. if self.metadata.name is None:
  315. self.metadata.name = self.dir_model.name
  316. # Generate parameter weight class (useful for leader boards) if not yet determined
  317. if self.metadata.size_label is None and total_params > 0:
  318. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  319. self.set_type()
  320. logger.info("Set meta model")
  321. self.metadata.set_gguf_meta_model(self.gguf_writer)
  322. logger.info("Set model parameters")
  323. self.set_gguf_parameters()
  324. logger.info("Set model quantization version")
  325. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  326. def write_vocab(self):
  327. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  328. def write(self):
  329. self.prepare_tensors()
  330. self.prepare_metadata(vocab_only=False)
  331. self.gguf_writer.write_header_to_file(path=self.fname_out)
  332. self.gguf_writer.write_kv_data_to_file()
  333. self.gguf_writer.write_tensors_to_file(progress=True)
  334. self.gguf_writer.close()
  335. @staticmethod
  336. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  337. part_names: list[str] = []
  338. for filename in os.listdir(dir_model):
  339. if filename.startswith(prefix) and filename.endswith(suffix):
  340. part_names.append(filename)
  341. part_names.sort()
  342. return part_names
  343. @staticmethod
  344. def load_hparams(dir_model: Path):
  345. try:
  346. # for security reason, we don't allow loading remote code by default
  347. # if a model need remote code, we will fallback to config.json
  348. return AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
  349. except Exception as e:
  350. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  351. logger.warning("Trying to load config.json instead")
  352. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  353. return json.load(f)
  354. @classmethod
  355. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  356. assert names
  357. def func(modelcls: AnyModel) -> AnyModel:
  358. model_type = ModelType.VISION if modelcls.model_arch == gguf.MODEL_ARCH.CLIP_VISION else ModelType.TEXT
  359. for name in names:
  360. cls._model_classes[model_type][name] = modelcls
  361. return modelcls
  362. return func
  363. @classmethod
  364. def print_registered_models(cls):
  365. for model_type, model_classes in cls._model_classes.items():
  366. logger.error(f"{model_type.name} models:")
  367. for name in sorted(model_classes.keys()):
  368. logger.error(f" - {name}")
  369. @classmethod
  370. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  371. try:
  372. return cls._model_classes[model_type][arch]
  373. except KeyError:
  374. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  375. class TextModel(ModelBase):
  376. def __init__(self, *args, **kwargs):
  377. super().__init__(*args, **kwargs)
  378. if "text_config" in self.hparams:
  379. # move the text_config to the root level
  380. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  381. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  382. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  383. @classmethod
  384. def __init_subclass__(cls):
  385. # can't use an abstract property, because overriding it without type errors
  386. # would require using decorated functions instead of simply defining the property
  387. if "model_arch" not in cls.__dict__:
  388. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  389. def set_vocab(self):
  390. self._set_vocab_gpt2()
  391. def prepare_metadata(self, vocab_only: bool):
  392. super().prepare_metadata(vocab_only=vocab_only)
  393. total_params = self.gguf_writer.get_total_parameter_count()[0]
  394. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  395. output_type: str = self.ftype.name.partition("_")[2]
  396. # Filename Output
  397. if self.fname_out.is_dir():
  398. # Generate default filename based on model specification and available metadata
  399. if not vocab_only:
  400. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  401. else:
  402. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  403. # Use the default filename
  404. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  405. else:
  406. # Output path is a custom defined templated filename
  407. # Note: `not is_dir()` is used because `.is_file()` will not detect
  408. # file template strings as it doesn't actually exist as a file
  409. # Process templated file name with the output ftype, useful with the "auto" ftype
  410. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  411. logger.info("Set model tokenizer")
  412. self.set_vocab()
  413. def set_gguf_parameters(self):
  414. self.gguf_writer.add_block_count(self.block_count)
  415. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions"], optional=True)) is not None:
  416. self.gguf_writer.add_context_length(n_ctx)
  417. logger.info(f"gguf: context length = {n_ctx}")
  418. if (n_embd := self.find_hparam(["hidden_size", "n_embd"], optional=True)) is not None:
  419. self.gguf_writer.add_embedding_length(n_embd)
  420. logger.info(f"gguf: embedding length = {n_embd}")
  421. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  422. self.gguf_writer.add_feed_forward_length(n_ff)
  423. logger.info(f"gguf: feed forward length = {n_ff}")
  424. if (n_head := self.find_hparam(["num_attention_heads", "n_head"], optional=True)) is not None:
  425. self.gguf_writer.add_head_count(n_head)
  426. logger.info(f"gguf: head count = {n_head}")
  427. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  428. self.gguf_writer.add_head_count_kv(n_head_kv)
  429. logger.info(f"gguf: key-value head count = {n_head_kv}")
  430. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  431. self.gguf_writer.add_rope_freq_base(rope_theta)
  432. logger.info(f"gguf: rope theta = {rope_theta}")
  433. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  434. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  435. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  436. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  437. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  438. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  439. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  440. self.gguf_writer.add_expert_count(n_experts)
  441. logger.info(f"gguf: expert count = {n_experts}")
  442. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  443. self.gguf_writer.add_expert_used_count(n_experts_used)
  444. logger.info(f"gguf: experts used count = {n_experts_used}")
  445. if (head_dim := self.hparams.get("head_dim")) is not None:
  446. self.gguf_writer.add_key_length(head_dim)
  447. self.gguf_writer.add_value_length(head_dim)
  448. self.gguf_writer.add_file_type(self.ftype)
  449. logger.info(f"gguf: file type = {self.ftype}")
  450. def write_vocab(self):
  451. if len(self.gguf_writer.tensors) != 1:
  452. raise ValueError('Splitting the vocabulary is not supported')
  453. self.prepare_metadata(vocab_only=True)
  454. self.gguf_writer.write_header_to_file(path=self.fname_out)
  455. self.gguf_writer.write_kv_data_to_file()
  456. self.gguf_writer.close()
  457. def does_token_look_special(self, token: str | bytes) -> bool:
  458. if isinstance(token, (bytes, bytearray)):
  459. token_text = token.decode(encoding="utf-8")
  460. elif isinstance(token, memoryview):
  461. token_text = token.tobytes().decode(encoding="utf-8")
  462. else:
  463. token_text = token
  464. # Some models mark some added tokens which ought to be control tokens as not special.
  465. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  466. seems_special = token_text in (
  467. "<pad>", # deepseek-coder
  468. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  469. )
  470. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  471. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  472. # TODO: should these be marked as UNUSED instead? (maybe not)
  473. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  474. return seems_special
  475. # used for GPT-2 BPE and WordPiece vocabs
  476. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  477. tokens: list[str] = []
  478. toktypes: list[int] = []
  479. from transformers import AutoTokenizer
  480. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  481. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  482. assert max(tokenizer.vocab.values()) < vocab_size
  483. tokpre = self.get_vocab_base_pre(tokenizer)
  484. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  485. added_vocab = tokenizer.get_added_vocab()
  486. added_tokens_decoder = tokenizer.added_tokens_decoder
  487. for i in range(vocab_size):
  488. if i not in reverse_vocab:
  489. tokens.append(f"[PAD{i}]")
  490. toktypes.append(gguf.TokenType.UNUSED)
  491. else:
  492. token: str = reverse_vocab[i]
  493. if token in added_vocab:
  494. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  495. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  496. if not added_tokens_decoder[i].normalized:
  497. previous_token = token
  498. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  499. if previous_token != token:
  500. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  501. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  502. toktypes.append(gguf.TokenType.CONTROL)
  503. else:
  504. # NOTE: this was added for Gemma.
  505. # Encoding and decoding the tokens above isn't sufficient for this case.
  506. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  507. toktypes.append(gguf.TokenType.USER_DEFINED)
  508. else:
  509. toktypes.append(gguf.TokenType.NORMAL)
  510. tokens.append(token)
  511. return tokens, toktypes, tokpre
  512. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  513. # do not modify it manually!
  514. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  515. # Marker: Start get_vocab_base_pre
  516. def get_vocab_base_pre(self, tokenizer) -> str:
  517. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  518. # is specific for the BPE pre-tokenizer used by the model
  519. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  520. # use in llama.cpp to implement the same pre-tokenizer
  521. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  522. chktok = tokenizer.encode(chktxt)
  523. chkhsh = sha256(str(chktok).encode()).hexdigest()
  524. logger.debug(f"chktok: {chktok}")
  525. logger.debug(f"chkhsh: {chkhsh}")
  526. res = None
  527. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  528. # or pull the latest version of the model from Huggingface
  529. # don't edit the hashes manually!
  530. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  531. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  532. res = "llama-bpe"
  533. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  534. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  535. res = "deepseek-llm"
  536. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  537. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  538. res = "deepseek-coder"
  539. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  540. # ref: https://huggingface.co/tiiuae/falcon-7b
  541. res = "falcon"
  542. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  543. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  544. res = "falcon3"
  545. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  546. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  547. res = "bert-bge"
  548. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  549. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  550. res = "bert-bge-large"
  551. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  552. # ref: https://huggingface.co/mosaicml/mpt-7b
  553. res = "mpt"
  554. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  555. # ref: https://huggingface.co/bigcode/starcoder2-3b
  556. res = "starcoder"
  557. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  558. # ref: https://huggingface.co/openai-community/gpt2
  559. res = "gpt-2"
  560. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  561. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  562. res = "stablelm2"
  563. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  564. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  565. res = "refact"
  566. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  567. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  568. res = "command-r"
  569. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  570. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  571. res = "qwen2"
  572. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  573. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  574. res = "olmo"
  575. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  576. # ref: https://huggingface.co/databricks/dbrx-base
  577. res = "dbrx"
  578. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  579. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  580. res = "jina-v1-en"
  581. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  582. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  583. res = "jina-v2-en"
  584. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  585. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  586. res = "jina-v2-es"
  587. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  588. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  589. res = "jina-v2-de"
  590. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  591. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  592. res = "smaug-bpe"
  593. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  594. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  595. res = "poro-chat"
  596. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  597. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  598. res = "jina-v2-code"
  599. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b" or chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  600. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  601. res = "chatglm-bpe"
  602. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  603. # ref: https://huggingface.co/LumiOpen/Viking-7B
  604. res = "viking"
  605. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  606. # ref: https://huggingface.co/core42/jais-13b
  607. res = "jais"
  608. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  609. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  610. res = "codeshell"
  611. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  612. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  613. res = "tekken"
  614. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  615. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  616. res = "smollm"
  617. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  618. # ref: https://huggingface.co/bigscience/bloom
  619. res = "bloom"
  620. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  621. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  622. res = "gpt3-finnish"
  623. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  624. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  625. res = "exaone"
  626. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  627. # ref: https://huggingface.co/microsoft/phi-2
  628. res = "phi-2"
  629. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  630. # ref: https://huggingface.co/facebook/chameleon-7b
  631. res = "chameleon"
  632. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  633. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  634. res = "minerva-7b"
  635. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  636. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  637. res = "roberta-bpe"
  638. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  639. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  640. res = "gigachat"
  641. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  642. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  643. res = "megrez"
  644. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  645. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  646. res = "deepseek-v3"
  647. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  648. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  649. res = "deepseek-r1-qwen"
  650. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  651. # ref: https://huggingface.co/Xenova/gpt-4o
  652. res = "gpt-4o"
  653. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  654. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  655. res = "superbpe"
  656. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  657. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  658. res = "trillion"
  659. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  660. # ref: https://huggingface.co/inclusionAI/Ling-lite
  661. res = "bailingmoe"
  662. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  663. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  664. res = "llama4"
  665. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  666. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  667. res = "glm4"
  668. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  669. # ref: https://huggingface.co/mistral-community/pixtral-12b
  670. res = "pixtral"
  671. if res is None:
  672. logger.warning("\n")
  673. logger.warning("**************************************************************************************")
  674. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  675. logger.warning("** There are 2 possible reasons for this:")
  676. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  677. logger.warning("** - the pre-tokenization config has changed upstream")
  678. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  679. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  680. logger.warning("**")
  681. logger.warning(f"** chkhsh: {chkhsh}")
  682. logger.warning("**************************************************************************************")
  683. logger.warning("\n")
  684. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  685. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  686. logger.debug(f"chkhsh: {chkhsh}")
  687. return res
  688. # Marker: End get_vocab_base_pre
  689. def _set_vocab_none(self) -> None:
  690. self.gguf_writer.add_tokenizer_model("none")
  691. def _set_vocab_gpt2(self) -> None:
  692. tokens, toktypes, tokpre = self.get_vocab_base()
  693. self.gguf_writer.add_tokenizer_model("gpt2")
  694. self.gguf_writer.add_tokenizer_pre(tokpre)
  695. self.gguf_writer.add_token_list(tokens)
  696. self.gguf_writer.add_token_types(toktypes)
  697. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  698. special_vocab.add_to_gguf(self.gguf_writer)
  699. def _set_vocab_qwen(self):
  700. dir_model = self.dir_model
  701. hparams = self.hparams
  702. tokens: list[str] = []
  703. toktypes: list[int] = []
  704. from transformers import AutoTokenizer
  705. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  706. vocab_size = hparams["vocab_size"]
  707. assert max(tokenizer.get_vocab().values()) < vocab_size
  708. tokpre = self.get_vocab_base_pre(tokenizer)
  709. merges = []
  710. vocab = {}
  711. mergeable_ranks = tokenizer.mergeable_ranks
  712. for token, rank in mergeable_ranks.items():
  713. vocab[QwenModel.token_bytes_to_string(token)] = rank
  714. if len(token) == 1:
  715. continue
  716. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  717. assert len(merged) == 2
  718. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  719. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  720. added_vocab = tokenizer.special_tokens
  721. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  722. for i in range(vocab_size):
  723. if i not in reverse_vocab:
  724. tokens.append(f"[PAD{i}]")
  725. toktypes.append(gguf.TokenType.UNUSED)
  726. elif reverse_vocab[i] in added_vocab:
  727. tokens.append(reverse_vocab[i])
  728. toktypes.append(gguf.TokenType.CONTROL)
  729. else:
  730. tokens.append(reverse_vocab[i])
  731. toktypes.append(gguf.TokenType.NORMAL)
  732. self.gguf_writer.add_tokenizer_model("gpt2")
  733. self.gguf_writer.add_tokenizer_pre(tokpre)
  734. self.gguf_writer.add_token_list(tokens)
  735. self.gguf_writer.add_token_types(toktypes)
  736. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  737. special_vocab.merges = merges
  738. # only add special tokens when they were not already loaded from config.json
  739. if len(special_vocab.special_token_ids) == 0:
  740. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  741. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  742. # this one is usually not in config.json anyway
  743. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  744. special_vocab.add_to_gguf(self.gguf_writer)
  745. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  746. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  747. self.gguf_writer.add_tokenizer_model("llama")
  748. self.gguf_writer.add_tokenizer_pre("default")
  749. self.gguf_writer.add_token_list(tokens)
  750. self.gguf_writer.add_token_scores(scores)
  751. self.gguf_writer.add_token_types(toktypes)
  752. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  753. special_vocab.add_to_gguf(self.gguf_writer)
  754. def _create_vocab_sentencepiece(self):
  755. from sentencepiece import SentencePieceProcessor
  756. tokenizer_path = self.dir_model / 'tokenizer.model'
  757. if not tokenizer_path.is_file():
  758. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  759. tokenizer = SentencePieceProcessor()
  760. tokenizer.LoadFromFile(str(tokenizer_path))
  761. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  762. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  763. scores: list[float] = [-10000.0] * vocab_size
  764. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  765. for token_id in range(tokenizer.vocab_size()):
  766. piece = tokenizer.IdToPiece(token_id)
  767. text = piece.encode("utf-8")
  768. score = tokenizer.GetScore(token_id)
  769. toktype = SentencePieceTokenTypes.NORMAL
  770. if tokenizer.IsUnknown(token_id):
  771. toktype = SentencePieceTokenTypes.UNKNOWN
  772. elif tokenizer.IsControl(token_id):
  773. toktype = SentencePieceTokenTypes.CONTROL
  774. elif tokenizer.IsUnused(token_id):
  775. toktype = SentencePieceTokenTypes.UNUSED
  776. elif tokenizer.IsByte(token_id):
  777. toktype = SentencePieceTokenTypes.BYTE
  778. tokens[token_id] = text
  779. scores[token_id] = score
  780. toktypes[token_id] = toktype
  781. added_tokens_file = self.dir_model / 'added_tokens.json'
  782. if added_tokens_file.is_file():
  783. with open(added_tokens_file, "r", encoding="utf-8") as f:
  784. added_tokens_json = json.load(f)
  785. for key in added_tokens_json:
  786. token_id = added_tokens_json[key]
  787. if token_id >= vocab_size:
  788. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  789. continue
  790. tokens[token_id] = key.encode("utf-8")
  791. scores[token_id] = -1000.0
  792. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  793. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  794. if tokenizer_config_file.is_file():
  795. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  796. tokenizer_config_json = json.load(f)
  797. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  798. for token_id, token_data in added_tokens_decoder.items():
  799. token_id = int(token_id)
  800. token: str = token_data["content"]
  801. if token_id >= vocab_size:
  802. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  803. continue
  804. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  805. if tokens[token_id] != token.encode("utf-8"):
  806. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  807. if token_data.get("special") or self.does_token_look_special(token):
  808. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  809. else:
  810. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  811. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  812. scores[token_id] = -1000.0
  813. tokens[token_id] = token.encode("utf-8")
  814. if vocab_size > len(tokens):
  815. pad_count = vocab_size - len(tokens)
  816. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  817. for i in range(1, pad_count + 1):
  818. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  819. scores.append(-1000.0)
  820. toktypes.append(SentencePieceTokenTypes.UNUSED)
  821. return tokens, scores, toktypes
  822. def _set_vocab_llama_hf(self):
  823. vocab = gguf.LlamaHfVocab(self.dir_model)
  824. tokens = []
  825. scores = []
  826. toktypes = []
  827. for text, score, toktype in vocab.all_tokens():
  828. tokens.append(text)
  829. scores.append(score)
  830. toktypes.append(toktype)
  831. assert len(tokens) == vocab.vocab_size
  832. self.gguf_writer.add_tokenizer_model("llama")
  833. self.gguf_writer.add_tokenizer_pre("default")
  834. self.gguf_writer.add_token_list(tokens)
  835. self.gguf_writer.add_token_scores(scores)
  836. self.gguf_writer.add_token_types(toktypes)
  837. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  838. special_vocab.add_to_gguf(self.gguf_writer)
  839. def _set_vocab_rwkv_world(self):
  840. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  841. vocab_size = self.hparams.get("vocab_size", 65536)
  842. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  843. toktypes: list[int] = [gguf.TokenType.CONTROL]
  844. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  845. lines = f.readlines()
  846. for line in lines:
  847. parts = line.split(' ')
  848. assert len(parts) >= 3
  849. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  850. token = token.encode("utf-8") if isinstance(token, str) else token
  851. assert isinstance(token, bytes)
  852. assert len(token) == token_len
  853. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  854. tokens.append(token_text.encode("utf-8"))
  855. toktypes.append(gguf.TokenType.NORMAL)
  856. remainder = vocab_size - len(tokens)
  857. assert remainder >= 0
  858. for i in range(len(tokens), vocab_size):
  859. tokens.append(f"[PAD{i}]".encode("utf-8"))
  860. toktypes.append(gguf.TokenType.UNUSED)
  861. self.gguf_writer.add_tokenizer_model("rwkv")
  862. self.gguf_writer.add_token_list(tokens)
  863. self.gguf_writer.add_token_types(toktypes)
  864. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  865. special_vocab.chat_template = "rwkv-world"
  866. # hack: Add '\n\n' as the EOT token to make it chat normally
  867. special_vocab._set_special_token("eot", 261)
  868. special_vocab.add_to_gguf(self.gguf_writer)
  869. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  870. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  871. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  872. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  873. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  874. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  875. assert field # tokenizer model
  876. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  877. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  878. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  879. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  880. assert field # token list
  881. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  882. if model_name == "llama-spm":
  883. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  884. assert field # token scores
  885. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  886. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  887. assert field # token types
  888. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  889. if model_name != "llama-spm":
  890. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  891. assert field # token merges
  892. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  893. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  894. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  895. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  896. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  897. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  898. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  899. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  900. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  901. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  902. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  903. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  904. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  905. class VisionModel(ModelBase):
  906. model_arch = gguf.MODEL_ARCH.CLIP_VISION
  907. n_text_embd = 0
  908. preprocessor_config: dict[str, Any]
  909. global_config: dict[str, Any]
  910. def __init__(self, *args, **kwargs):
  911. super().__init__(*args, **kwargs)
  912. if self.model_arch != gguf.MODEL_ARCH.CLIP_VISION:
  913. raise TypeError("VisionModel must be subclassed with model_arch = gguf.MODEL_ARCH.CLIP_VISION")
  914. # get n_embd of the text model
  915. if "text_config" not in self.hparams:
  916. self.hparams["text_config"] = {}
  917. text_config = {**self.hparams, **self.hparams["text_config"]}
  918. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  919. assert self.n_embd_text > 0, "n_embd not found in hparams"
  920. if "vision_config" not in self.hparams:
  921. raise ValueError("vision_config not found in hparams")
  922. # move vision config to the top level, while preserving the original hparams in global_config
  923. self.global_config = self.hparams
  924. self.hparams = self.hparams["vision_config"]
  925. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth"])
  926. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.CLIP_VISION, self.block_count)
  927. # load preprocessor config
  928. with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
  929. self.preprocessor_config = json.load(f)
  930. def set_type(self):
  931. self.gguf_writer.add_type(gguf.GGUFType.CLIP_VISION)
  932. def set_gguf_parameters(self):
  933. self.gguf_writer.add_file_type(self.ftype)
  934. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  935. self.gguf_writer.add_vision_has_vision_encoder(True)
  936. # vision config
  937. self.gguf_writer.add_vision_image_size(self.find_hparam(["image_size"]))
  938. self.gguf_writer.add_vision_patch_size(self.find_hparam(["patch_size"]))
  939. self.gguf_writer.add_vision_embedding_length(self.find_hparam(["hidden_size"]))
  940. self.gguf_writer.add_vision_feed_forward_length(self.find_hparam(["intermediate_size"]))
  941. self.gguf_writer.add_vision_block_count(self.block_count)
  942. self.gguf_writer.add_vision_head_count(self.find_hparam(["num_attention_heads"]))
  943. # preprocessor config
  944. self.gguf_writer.add_vision_image_mean(self.preprocessor_config["image_mean"])
  945. self.gguf_writer.add_vision_image_std(self.preprocessor_config["image_std"])
  946. def write_vocab(self):
  947. raise ValueError("VisionModel does not support vocab writing")
  948. @ModelBase.register("GPTNeoXForCausalLM")
  949. class GPTNeoXModel(TextModel):
  950. model_arch = gguf.MODEL_ARCH.GPTNEOX
  951. def set_gguf_parameters(self):
  952. block_count = self.hparams["num_hidden_layers"]
  953. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  954. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  955. self.gguf_writer.add_block_count(block_count)
  956. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  957. self.gguf_writer.add_rope_dimension_count(
  958. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  959. )
  960. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  961. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  962. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  963. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  964. del bid # unused
  965. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  966. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  967. tensors: list[tuple[str, Tensor]] = []
  968. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  969. # Map bloom-style qkv_linear to gpt-style qkv_linear
  970. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  971. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  972. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  973. data_torch = torch.cat(
  974. (
  975. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  976. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  977. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  978. ),
  979. dim=0,
  980. )
  981. logger.info("re-format attention.linear_qkv.weight")
  982. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  983. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  984. data_torch = torch.cat(
  985. (
  986. qkv_bias[:, 0, :].reshape((n_embed,)),
  987. qkv_bias[:, 1, :].reshape((n_embed,)),
  988. qkv_bias[:, 2, :].reshape((n_embed,)),
  989. ),
  990. dim=0,
  991. )
  992. logger.info("re-format attention.linear_qkv.bias")
  993. tensors.append((self.map_tensor_name(name), data_torch))
  994. return tensors
  995. @ModelBase.register("BloomForCausalLM", "BloomModel")
  996. class BloomModel(TextModel):
  997. model_arch = gguf.MODEL_ARCH.BLOOM
  998. def set_gguf_parameters(self):
  999. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1000. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1001. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  1002. self.gguf_writer.add_embedding_length(n_embed)
  1003. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1004. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1005. self.gguf_writer.add_head_count(n_head)
  1006. self.gguf_writer.add_head_count_kv(n_head)
  1007. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1008. self.gguf_writer.add_file_type(self.ftype)
  1009. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1010. del bid # unused
  1011. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1012. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1013. name = re.sub(r'transformer\.', '', name)
  1014. tensors: list[tuple[str, Tensor]] = []
  1015. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1016. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1017. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1018. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1019. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1020. data_torch = torch.cat(
  1021. (
  1022. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1023. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1024. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1025. ),
  1026. dim=0,
  1027. )
  1028. logger.info("re-format attention.linear_qkv.weight")
  1029. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1030. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1031. data_torch = torch.cat(
  1032. (
  1033. qkv_bias[:, 0, :].reshape((n_embed,)),
  1034. qkv_bias[:, 1, :].reshape((n_embed,)),
  1035. qkv_bias[:, 2, :].reshape((n_embed,)),
  1036. ),
  1037. dim=0,
  1038. )
  1039. logger.info("re-format attention.linear_qkv.bias")
  1040. tensors.append((self.map_tensor_name(name), data_torch))
  1041. return tensors
  1042. @ModelBase.register("MPTForCausalLM")
  1043. class MPTModel(TextModel):
  1044. model_arch = gguf.MODEL_ARCH.MPT
  1045. def set_vocab(self):
  1046. try:
  1047. self._set_vocab_gpt2()
  1048. except Exception:
  1049. # Fallback for SEA-LION model
  1050. self._set_vocab_sentencepiece()
  1051. self.gguf_writer.add_add_bos_token(False)
  1052. self.gguf_writer.add_pad_token_id(3)
  1053. self.gguf_writer.add_eos_token_id(1)
  1054. self.gguf_writer.add_unk_token_id(0)
  1055. def set_gguf_parameters(self):
  1056. block_count = self.hparams["n_layers"]
  1057. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1058. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1059. self.gguf_writer.add_block_count(block_count)
  1060. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1061. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1062. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1063. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1064. self.gguf_writer.add_layer_norm_eps(1e-5)
  1065. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1066. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1067. if self.hparams["attn_config"]["alibi"]:
  1068. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1069. else:
  1070. self.gguf_writer.add_max_alibi_bias(0.0)
  1071. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1072. del bid # unused
  1073. if "scales" in name:
  1074. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1075. new_name = new_name.replace("scales", "act.scales")
  1076. else:
  1077. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1078. return [(new_name, data_torch)]
  1079. @ModelBase.register("OrionForCausalLM")
  1080. class OrionModel(TextModel):
  1081. model_arch = gguf.MODEL_ARCH.ORION
  1082. def set_vocab(self):
  1083. self._set_vocab_sentencepiece()
  1084. def set_gguf_parameters(self):
  1085. block_count = self.hparams["num_hidden_layers"]
  1086. head_count = self.hparams["num_attention_heads"]
  1087. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1088. ctx_length = 0
  1089. if "max_sequence_length" in self.hparams:
  1090. ctx_length = self.hparams["max_sequence_length"]
  1091. elif "max_position_embeddings" in self.hparams:
  1092. ctx_length = self.hparams["max_position_embeddings"]
  1093. elif "model_max_length" in self.hparams:
  1094. ctx_length = self.hparams["model_max_length"]
  1095. else:
  1096. raise ValueError("gguf: can not find ctx length parameter.")
  1097. self.gguf_writer.add_file_type(self.ftype)
  1098. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1099. self.gguf_writer.add_context_length(ctx_length)
  1100. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1101. self.gguf_writer.add_block_count(block_count)
  1102. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1103. self.gguf_writer.add_head_count(head_count)
  1104. self.gguf_writer.add_head_count_kv(head_count_kv)
  1105. # note: config provides rms norm but it is actually layer norm
  1106. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1107. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1108. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1109. class BaichuanModel(TextModel):
  1110. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1111. def set_vocab(self):
  1112. self._set_vocab_sentencepiece()
  1113. def set_gguf_parameters(self):
  1114. block_count = self.hparams["num_hidden_layers"]
  1115. head_count = self.hparams["num_attention_heads"]
  1116. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1117. ctx_length = 0
  1118. if "max_sequence_length" in self.hparams:
  1119. ctx_length = self.hparams["max_sequence_length"]
  1120. elif "max_position_embeddings" in self.hparams:
  1121. ctx_length = self.hparams["max_position_embeddings"]
  1122. elif "model_max_length" in self.hparams:
  1123. ctx_length = self.hparams["model_max_length"]
  1124. else:
  1125. raise ValueError("gguf: can not find ctx length parameter.")
  1126. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1127. self.gguf_writer.add_context_length(ctx_length)
  1128. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1129. self.gguf_writer.add_block_count(block_count)
  1130. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1131. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1132. self.gguf_writer.add_head_count(head_count)
  1133. self.gguf_writer.add_head_count_kv(head_count_kv)
  1134. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1135. self.gguf_writer.add_file_type(self.ftype)
  1136. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1137. if self.hparams["rope_scaling"].get("type") == "linear":
  1138. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1139. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1140. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1141. head_count = self.hparams["num_attention_heads"]
  1142. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1143. tensors: list[tuple[str, Tensor]] = []
  1144. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1145. logger.info(f"Unpacking and permuting layer {bid}")
  1146. tensors = [
  1147. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1148. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1149. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1150. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1151. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1152. self._reverse_hf_part(data_torch, 2)),
  1153. ]
  1154. else:
  1155. tensors = [(self.map_tensor_name(name), data_torch)]
  1156. return tensors
  1157. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1158. if n_kv_head is not None and n_head != n_kv_head:
  1159. n_head //= n_kv_head
  1160. return (
  1161. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1162. .swapaxes(1, 2)
  1163. .reshape(weights.shape)
  1164. )
  1165. def _reverse_hf_permute_part(
  1166. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1167. ) -> Tensor:
  1168. r = weights.shape[0] // 3
  1169. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1170. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1171. r = weights.shape[0] // 3
  1172. return weights[r * n_part:r * n_part + r, ...]
  1173. @ModelBase.register("XverseForCausalLM")
  1174. class XverseModel(TextModel):
  1175. model_arch = gguf.MODEL_ARCH.XVERSE
  1176. def set_vocab(self):
  1177. assert (self.dir_model / "tokenizer.json").is_file()
  1178. dir_model = self.dir_model
  1179. hparams = self.hparams
  1180. tokens: list[bytes] = []
  1181. toktypes: list[int] = []
  1182. from transformers import AutoTokenizer
  1183. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1184. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1185. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1186. # because vocab_size is the count of items, and indexes start at 0.
  1187. max_vocab_index = max(tokenizer.get_vocab().values())
  1188. if max_vocab_index >= vocab_size:
  1189. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1190. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1191. added_vocab = tokenizer.get_added_vocab()
  1192. for token_id in range(vocab_size):
  1193. token_text = reverse_vocab[token_id].encode('utf-8')
  1194. # replace "\x00" to string with length > 0
  1195. if token_text == b"\x00":
  1196. toktype = gguf.TokenType.BYTE # special
  1197. token_text = f"<{token_text}>".encode('utf-8')
  1198. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1199. toktype = gguf.TokenType.BYTE # special
  1200. elif reverse_vocab[token_id] in added_vocab:
  1201. if tokenizer.added_tokens_decoder[token_id].special:
  1202. toktype = gguf.TokenType.CONTROL
  1203. else:
  1204. toktype = gguf.TokenType.USER_DEFINED
  1205. else:
  1206. toktype = gguf.TokenType.NORMAL
  1207. tokens.append(token_text)
  1208. toktypes.append(toktype)
  1209. self.gguf_writer.add_tokenizer_model("llama")
  1210. self.gguf_writer.add_tokenizer_pre("default")
  1211. self.gguf_writer.add_token_list(tokens)
  1212. self.gguf_writer.add_token_types(toktypes)
  1213. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1214. special_vocab.add_to_gguf(self.gguf_writer)
  1215. def set_gguf_parameters(self):
  1216. block_count = self.hparams["num_hidden_layers"]
  1217. head_count = self.hparams["num_attention_heads"]
  1218. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1219. ctx_length = 0
  1220. if "max_sequence_length" in self.hparams:
  1221. ctx_length = self.hparams["max_sequence_length"]
  1222. elif "max_position_embeddings" in self.hparams:
  1223. ctx_length = self.hparams["max_position_embeddings"]
  1224. elif "model_max_length" in self.hparams:
  1225. ctx_length = self.hparams["model_max_length"]
  1226. else:
  1227. raise ValueError("gguf: can not find ctx length parameter.")
  1228. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1229. self.gguf_writer.add_context_length(ctx_length)
  1230. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1231. self.gguf_writer.add_block_count(block_count)
  1232. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1233. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1234. self.gguf_writer.add_head_count(head_count)
  1235. self.gguf_writer.add_head_count_kv(head_count_kv)
  1236. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1237. self.gguf_writer.add_file_type(self.ftype)
  1238. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1239. if self.hparams["rope_scaling"].get("type") == "linear":
  1240. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1241. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1242. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1243. del bid # unused
  1244. head_count = self.hparams["num_attention_heads"]
  1245. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1246. # HF models permute some of the tensors, so we need to undo that
  1247. if name.endswith("q_proj.weight"):
  1248. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1249. if name.endswith("k_proj.weight"):
  1250. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1251. return [(self.map_tensor_name(name), data_torch)]
  1252. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1253. if n_kv_head is not None and n_head != n_kv_head:
  1254. n_head //= n_kv_head
  1255. return (
  1256. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1257. .swapaxes(1, 2)
  1258. .reshape(weights.shape)
  1259. )
  1260. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1261. class FalconModel(TextModel):
  1262. model_arch = gguf.MODEL_ARCH.FALCON
  1263. def set_gguf_parameters(self):
  1264. block_count = self.hparams.get("num_hidden_layers")
  1265. if block_count is None:
  1266. block_count = self.hparams["n_layer"] # old name
  1267. n_head = self.hparams.get("num_attention_heads")
  1268. if n_head is None:
  1269. n_head = self.hparams["n_head"] # old name
  1270. n_head_kv = self.hparams.get("num_kv_heads")
  1271. if n_head_kv is None:
  1272. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1273. self.gguf_writer.add_context_length(2048) # not in config.json
  1274. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1275. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1276. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1277. self.gguf_writer.add_block_count(block_count)
  1278. self.gguf_writer.add_head_count(n_head)
  1279. self.gguf_writer.add_head_count_kv(n_head_kv)
  1280. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1281. self.gguf_writer.add_file_type(self.ftype)
  1282. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1283. del bid # unused
  1284. # QKV tensor transform
  1285. # The original query_key_value tensor contains n_head_kv "kv groups",
  1286. # each consisting of n_head/n_head_kv query weights followed by one key
  1287. # and one value weight (shared by all query heads in the kv group).
  1288. # This layout makes it a big pain to work with in GGML.
  1289. # So we rearrange them here,, so that we have n_head query weights
  1290. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1291. # in contiguous fashion.
  1292. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1293. if "query_key_value" in name:
  1294. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1295. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1296. head_dim = self.hparams["hidden_size"] // n_head
  1297. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1298. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1299. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1300. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1301. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1302. return [(self.map_tensor_name(name), data_torch)]
  1303. @ModelBase.register("GPTBigCodeForCausalLM")
  1304. class StarCoderModel(TextModel):
  1305. model_arch = gguf.MODEL_ARCH.STARCODER
  1306. def set_gguf_parameters(self):
  1307. block_count = self.hparams["n_layer"]
  1308. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1309. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1310. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1311. self.gguf_writer.add_block_count(block_count)
  1312. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1313. self.gguf_writer.add_head_count_kv(1)
  1314. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1315. self.gguf_writer.add_file_type(self.ftype)
  1316. @ModelBase.register("GPTRefactForCausalLM")
  1317. class RefactModel(TextModel):
  1318. model_arch = gguf.MODEL_ARCH.REFACT
  1319. def set_vocab(self):
  1320. super().set_vocab()
  1321. # TODO: how to determine special FIM tokens automatically?
  1322. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1323. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1324. special_vocab._set_special_token("prefix", 1)
  1325. special_vocab._set_special_token("suffix", 3)
  1326. special_vocab._set_special_token("middle", 2)
  1327. special_vocab.chat_template = None # do not add it twice
  1328. special_vocab.add_to_gguf(self.gguf_writer)
  1329. def set_gguf_parameters(self):
  1330. hidden_dim = self.hparams["n_embd"]
  1331. inner_dim = 4 * hidden_dim
  1332. hidden_dim = int(2 * inner_dim / 3)
  1333. multiple_of = 256
  1334. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1335. block_count = self.hparams["n_layer"]
  1336. # refact uses Alibi. So this is from config.json which might be used by training.
  1337. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1338. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1339. self.gguf_writer.add_feed_forward_length(ff_dim)
  1340. self.gguf_writer.add_block_count(block_count)
  1341. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1342. self.gguf_writer.add_head_count_kv(1)
  1343. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1344. self.gguf_writer.add_file_type(self.ftype)
  1345. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1346. hidden_dim = self.hparams["n_embd"]
  1347. inner_dim = 4 * hidden_dim
  1348. hidden_dim = int(2 * inner_dim / 3)
  1349. multiple_of = 256
  1350. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1351. n_head = self.hparams["n_head"]
  1352. n_head_kv = 1
  1353. head_dim = self.hparams["n_embd"] // n_head
  1354. tensors: list[tuple[str, Tensor]] = []
  1355. if bid is not None:
  1356. if name == f"transformer.h.{bid}.attn.kv.weight":
  1357. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1358. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1359. elif name == f"transformer.h.{bid}.attn.q.weight":
  1360. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1361. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1362. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1363. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1364. if len(tensors) == 0:
  1365. tensors.append((self.map_tensor_name(name), data_torch))
  1366. return tensors
  1367. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1368. class StableLMModel(TextModel):
  1369. model_arch = gguf.MODEL_ARCH.STABLELM
  1370. def set_vocab(self):
  1371. if (self.dir_model / "tokenizer.json").is_file():
  1372. self._set_vocab_gpt2()
  1373. else:
  1374. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1375. self._set_vocab_qwen()
  1376. def set_gguf_parameters(self):
  1377. hparams = self.hparams
  1378. block_count = hparams["num_hidden_layers"]
  1379. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1380. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1381. self.gguf_writer.add_block_count(block_count)
  1382. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1383. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1384. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1385. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1386. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1387. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1388. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1389. self.gguf_writer.add_file_type(self.ftype)
  1390. _q_norms: list[dict[str, Tensor]] | None = None
  1391. _k_norms: list[dict[str, Tensor]] | None = None
  1392. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1393. n_head = self.hparams["num_attention_heads"]
  1394. n_kv_head = self.hparams["num_key_value_heads"]
  1395. if name.find("q_layernorm.norms") != -1:
  1396. assert bid is not None
  1397. if self._q_norms is None:
  1398. self._q_norms = [{} for _ in range(self.block_count)]
  1399. self._q_norms[bid][name] = data_torch
  1400. if len(self._q_norms[bid]) >= n_head:
  1401. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1402. else:
  1403. return []
  1404. if name.find("k_layernorm.norms") != -1:
  1405. assert bid is not None
  1406. if self._k_norms is None:
  1407. self._k_norms = [{} for _ in range(self.block_count)]
  1408. self._k_norms[bid][name] = data_torch
  1409. if len(self._k_norms[bid]) >= n_kv_head:
  1410. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1411. else:
  1412. return []
  1413. return [(self.map_tensor_name(name), data_torch)]
  1414. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1415. datas: list[Tensor] = []
  1416. # extract the norms in order
  1417. for xid in range(n_head):
  1418. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1419. datas.append(norms[ename])
  1420. del norms[ename]
  1421. data_torch = torch.stack(datas, dim=0)
  1422. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1423. new_name = self.map_tensor_name(merged_name)
  1424. return [(new_name, data_torch)]
  1425. def prepare_tensors(self):
  1426. super().prepare_tensors()
  1427. if self._q_norms is not None or self._k_norms is not None:
  1428. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1429. norms = (
  1430. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1431. ) + (
  1432. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1433. )
  1434. if len(norms) > 0:
  1435. raise ValueError(f"Unprocessed norms: {norms}")
  1436. @ModelBase.register(
  1437. "LLaMAForCausalLM",
  1438. "LlamaForCausalLM",
  1439. "MistralForCausalLM",
  1440. "MixtralForCausalLM",
  1441. "VLlama3ForCausalLM",
  1442. "LlavaForConditionalGeneration")
  1443. class LlamaModel(TextModel):
  1444. model_arch = gguf.MODEL_ARCH.LLAMA
  1445. undo_permute = True
  1446. def set_vocab(self):
  1447. try:
  1448. self._set_vocab_sentencepiece()
  1449. except FileNotFoundError:
  1450. try:
  1451. self._set_vocab_llama_hf()
  1452. except (FileNotFoundError, TypeError):
  1453. # Llama 3
  1454. self._set_vocab_gpt2()
  1455. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1456. if self.hparams.get("vocab_size", 32000) == 32016:
  1457. special_vocab = gguf.SpecialVocab(
  1458. self.dir_model, load_merges=False,
  1459. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1460. )
  1461. special_vocab._set_special_token("prefix", 32007)
  1462. special_vocab._set_special_token("suffix", 32008)
  1463. special_vocab._set_special_token("middle", 32009)
  1464. special_vocab._set_special_token("eot", 32010)
  1465. special_vocab.add_to_gguf(self.gguf_writer)
  1466. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1467. if tokenizer_config_file.is_file():
  1468. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1469. tokenizer_config_json = json.load(f)
  1470. if "add_prefix_space" in tokenizer_config_json:
  1471. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1472. # Apply to granite small models only
  1473. if self.hparams.get("vocab_size", 32000) == 49152:
  1474. self.gguf_writer.add_add_bos_token(False)
  1475. def set_gguf_parameters(self):
  1476. super().set_gguf_parameters()
  1477. hparams = self.hparams
  1478. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1479. if "head_dim" in hparams:
  1480. rope_dim = hparams["head_dim"]
  1481. else:
  1482. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1483. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1484. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1485. if self.hparams["rope_scaling"].get("type") == "linear":
  1486. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1487. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1488. @staticmethod
  1489. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1490. if n_head_kv is not None and n_head != n_head_kv:
  1491. n_head = n_head_kv
  1492. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1493. .swapaxes(1, 2)
  1494. .reshape(weights.shape))
  1495. _experts: list[dict[str, Tensor]] | None = None
  1496. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1497. n_head = self.hparams["num_attention_heads"]
  1498. n_kv_head = self.hparams.get("num_key_value_heads")
  1499. is_vision_tensor = "vision_tower" in name \
  1500. or "vision_model" in name \
  1501. or "model.connector" in name \
  1502. or "multi_modal_projector" in name
  1503. if is_vision_tensor:
  1504. return [] # skip vision tensors
  1505. elif name.startswith("model.text_model"):
  1506. name = name.replace("text_model.", "") # for SmolVLM
  1507. elif name.startswith("language_model."):
  1508. name = name.replace("language_model.", "") # for the rest
  1509. if self.undo_permute:
  1510. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1511. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1512. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1513. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1514. # process the experts separately
  1515. if name.find("block_sparse_moe.experts") != -1:
  1516. n_experts = self.hparams["num_local_experts"]
  1517. assert bid is not None
  1518. if self._experts is None:
  1519. self._experts = [{} for _ in range(self.block_count)]
  1520. self._experts[bid][name] = data_torch
  1521. if len(self._experts[bid]) >= n_experts * 3:
  1522. tensors: list[tuple[str, Tensor]] = []
  1523. # merge the experts into a single 3d tensor
  1524. for wid in ["w1", "w2", "w3"]:
  1525. datas: list[Tensor] = []
  1526. for xid in range(n_experts):
  1527. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1528. datas.append(self._experts[bid][ename])
  1529. del self._experts[bid][ename]
  1530. data_torch = torch.stack(datas, dim=0)
  1531. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1532. new_name = self.map_tensor_name(merged_name)
  1533. tensors.append((new_name, data_torch))
  1534. return tensors
  1535. else:
  1536. return []
  1537. return [(self.map_tensor_name(name), data_torch)]
  1538. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1539. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1540. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1541. base = self.hparams.get("rope_theta", 10000.0)
  1542. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1543. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1544. factor = rope_scaling.get("factor", 8.0)
  1545. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1546. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1547. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1548. low_freq_wavelen = old_context_len / low_freq_factor
  1549. high_freq_wavelen = old_context_len / high_freq_factor
  1550. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  1551. rope_factors = []
  1552. for freq in freqs:
  1553. wavelen = 2 * math.pi / freq
  1554. if wavelen < high_freq_wavelen:
  1555. rope_factors.append(1)
  1556. elif wavelen > low_freq_wavelen:
  1557. rope_factors.append(factor)
  1558. else:
  1559. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1560. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1561. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1562. def prepare_tensors(self):
  1563. super().prepare_tensors()
  1564. if self._experts is not None:
  1565. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1566. experts = [k for d in self._experts for k in d.keys()]
  1567. if len(experts) > 0:
  1568. raise ValueError(f"Unprocessed experts: {experts}")
  1569. @ModelBase.register(
  1570. "LlavaForConditionalGeneration", # pixtral
  1571. "Mistral3ForConditionalGeneration", # mistral small 3.1
  1572. )
  1573. class LlavaVisionModel(VisionModel):
  1574. img_break_tok_id = -1
  1575. def __init__(self, *args, **kwargs):
  1576. super().__init__(*args, **kwargs)
  1577. if self.hparams["model_type"] == "pixtral":
  1578. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  1579. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  1580. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  1581. logger.info(f"Image break token id: {self.img_break_tok_id}")
  1582. else:
  1583. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  1584. def get_token_id(self, token: str) -> int:
  1585. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1586. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1587. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  1588. for id_, token_data in added_tokens_decoder.items():
  1589. if token_data["content"] == token:
  1590. return int(id_)
  1591. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  1592. def set_gguf_parameters(self):
  1593. super().set_gguf_parameters()
  1594. hparams = self.hparams
  1595. if hparams["model_type"] == "pixtral":
  1596. self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.PIXTRAL)
  1597. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  1598. # hidden_act
  1599. if hparams["hidden_act"] == "silu":
  1600. self.gguf_writer.add_vision_use_silu(True)
  1601. elif hparams["hidden_act"] == "gelu":
  1602. self.gguf_writer.add_vision_use_gelu(True)
  1603. else:
  1604. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  1605. # spatial_merge_size
  1606. if "spatial_merge_size" in self.global_config:
  1607. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  1608. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1609. del bid # unused
  1610. n_head = self.hparams["num_attention_heads"]
  1611. n_kv_head = n_head
  1612. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower."):
  1613. # process vision tensors
  1614. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1615. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1616. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1617. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1618. return [(self.map_tensor_name(name), data_torch)]
  1619. if self.img_break_tok_id > 0 and "embed_tokens.weight" in name:
  1620. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  1621. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  1622. img_break_embd = data_torch[self.img_break_tok_id]
  1623. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  1624. return [(self.map_tensor_name(name), img_break_embd)]
  1625. return [] # skip other tensors
  1626. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  1627. class SmolVLMModel(VisionModel):
  1628. def __init__(self, *args, **kwargs):
  1629. super().__init__(*args, **kwargs)
  1630. if self.hparams["model_type"] == "smolvlm_vision":
  1631. # fix for SmolVLM2, missing some keys in config.json
  1632. # default values are taken from transformers code
  1633. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  1634. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  1635. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  1636. def set_gguf_parameters(self):
  1637. super().set_gguf_parameters()
  1638. self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.IDEFICS3)
  1639. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  1640. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  1641. self.gguf_writer.add_vision_use_gelu(True)
  1642. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1643. del bid, new_name, n_dims # unused
  1644. if ".embeddings." in name:
  1645. return gguf.GGMLQuantizationType.F32
  1646. return False
  1647. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1648. del bid # unused
  1649. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  1650. if is_vision_tensor:
  1651. return [(self.map_tensor_name(name), data_torch)]
  1652. return [] # skip other tensors
  1653. @ModelBase.register("Llama4ForConditionalGeneration")
  1654. class Llama4Model(LlamaModel):
  1655. model_arch = gguf.MODEL_ARCH.LLAMA4
  1656. undo_permute = False
  1657. def __init__(self, *args, **kwargs):
  1658. super().__init__(*args, **kwargs)
  1659. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  1660. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  1661. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  1662. def set_vocab(self):
  1663. self._set_vocab_gpt2()
  1664. self.gguf_writer.add_add_bos_token(True)
  1665. def set_gguf_parameters(self):
  1666. super().set_gguf_parameters()
  1667. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  1668. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  1669. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1670. # split the gate_up into gate and up
  1671. if "gate_up_proj" in name:
  1672. name_up = name.replace("gate_up_proj", "up_proj.weight")
  1673. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  1674. dim_half = data_torch.shape[-1] // 2
  1675. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  1676. return [
  1677. (self.map_tensor_name(name_gate), gate_proj_weight),
  1678. (self.map_tensor_name(name_up), up_proj_weight)
  1679. ]
  1680. if name.endswith("down_proj"):
  1681. name += ".weight"
  1682. data_torch = data_torch.transpose(-1, -2)
  1683. if "multi_modal_projector" in name or "vision_model" in name:
  1684. return []
  1685. return super().modify_tensors(data_torch, name, bid)
  1686. @ModelBase.register("Mistral3ForConditionalGeneration")
  1687. class Mistral3Model(LlamaModel):
  1688. model_arch = gguf.MODEL_ARCH.LLAMA
  1689. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1690. name = name.replace("language_model.", "")
  1691. if "multi_modal_projector" in name or "vision_tower" in name:
  1692. return []
  1693. return super().modify_tensors(data_torch, name, bid)
  1694. @ModelBase.register("DeciLMForCausalLM")
  1695. class DeciModel(TextModel):
  1696. model_arch = gguf.MODEL_ARCH.DECI
  1697. @staticmethod
  1698. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  1699. # DeciLM-specific code
  1700. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  1701. return DeciModel._find_multiple(intermediate_size, 256)
  1702. @staticmethod
  1703. def _find_multiple(n: int, k: int) -> int:
  1704. # DeciLM-specific code
  1705. if n % k == 0:
  1706. return n
  1707. return n + k - (n % k)
  1708. def __init__(self, *args, **kwargs):
  1709. super().__init__(*args, **kwargs)
  1710. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1711. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  1712. assert self.block_count == len(_block_configs)
  1713. self._num_kv_heads = list()
  1714. self._num_heads = list()
  1715. _ffn_multipliers = list()
  1716. # ***linear attention layer***
  1717. # if n_heads_in_group is None and replace_with_linear is True
  1718. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  1719. # ***attention-free layer***
  1720. # if n_heads_in_group is None and replace_with_linear is False
  1721. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  1722. # ***normal attention-layer***
  1723. # if n_heads_in_group is not None, then
  1724. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  1725. # _num_heads[il] is num_attention_head
  1726. for il in range(len(_block_configs)):
  1727. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  1728. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  1729. self._num_kv_heads.append(0)
  1730. self._num_heads.append(self.hparams["num_attention_heads"])
  1731. else:
  1732. self._num_kv_heads.append(0)
  1733. self._num_heads.append(0)
  1734. else:
  1735. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  1736. self._num_heads.append(self.hparams["num_attention_heads"])
  1737. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  1738. assert self.block_count == len(self._num_kv_heads)
  1739. assert self.block_count == len(self._num_heads)
  1740. assert self.block_count == len(_ffn_multipliers)
  1741. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  1742. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  1743. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  1744. self._ffn_dims: list[int] = [
  1745. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  1746. for multiplier in _ffn_multipliers
  1747. ]
  1748. def set_vocab(self):
  1749. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  1750. # eos_token from '|eot_id|' to '|end_of_text|'
  1751. if self.hparams.get("vocab_size", 128256) == 128256:
  1752. tokens, toktypes, tokpre = self.get_vocab_base()
  1753. self.gguf_writer.add_tokenizer_model("gpt2")
  1754. self.gguf_writer.add_tokenizer_pre(tokpre)
  1755. self.gguf_writer.add_token_list(tokens)
  1756. self.gguf_writer.add_token_types(toktypes)
  1757. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1758. special_vocab.add_to_gguf(self.gguf_writer)
  1759. else:
  1760. # DeciLM-7B
  1761. self._set_vocab_llama_hf()
  1762. def set_gguf_parameters(self):
  1763. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1764. assert self.block_count == len(self._num_kv_heads)
  1765. assert self.block_count == len(self._num_heads)
  1766. assert self.block_count == len(self._ffn_dims)
  1767. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  1768. self.gguf_writer.add_rope_freq_base(rope_theta)
  1769. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1770. self.gguf_writer.add_head_count(self._num_heads)
  1771. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  1772. self.gguf_writer.add_block_count(self.block_count)
  1773. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1774. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1775. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1776. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1777. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1778. self.gguf_writer.add_file_type(self.ftype)
  1779. else: # DeciLM-7B
  1780. super().set_gguf_parameters()
  1781. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  1782. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  1783. assert self.block_count == len(self._num_kv_heads)
  1784. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1785. hparams = self.hparams
  1786. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1787. if "head_dim" in hparams:
  1788. rope_dim = hparams["head_dim"]
  1789. else:
  1790. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1791. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1792. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1793. if self.hparams["rope_scaling"].get("type") == "linear":
  1794. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1795. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1796. @staticmethod
  1797. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1798. if n_head_kv is not None and n_head != n_head_kv:
  1799. n_head = n_head_kv
  1800. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1801. .swapaxes(1, 2)
  1802. .reshape(weights.shape))
  1803. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1804. n_head = self.hparams["num_attention_heads"]
  1805. if bid is not None:
  1806. if "num_key_value_heads_per_layer" in self.hparams:
  1807. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  1808. elif "block_configs" in self.hparams:
  1809. n_kv_head = self._num_kv_heads[bid]
  1810. n_head = self._num_heads[bid]
  1811. else:
  1812. n_kv_head = self.hparams.get("num_key_value_heads")
  1813. else:
  1814. n_kv_head = self.hparams.get("num_key_value_heads")
  1815. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1816. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  1817. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1818. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  1819. return [(self.map_tensor_name(name), data_torch)]
  1820. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1821. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1822. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1823. base = self.hparams.get("rope_theta", 10000.0)
  1824. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1825. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1826. factor = rope_scaling.get("factor", 8.0)
  1827. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1828. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1829. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1830. low_freq_wavelen = old_context_len / low_freq_factor
  1831. high_freq_wavelen = old_context_len / high_freq_factor
  1832. assert low_freq_wavelen != high_freq_wavelen
  1833. rope_factors = []
  1834. for freq in freqs:
  1835. wavelen = 2 * math.pi / freq
  1836. if wavelen < high_freq_wavelen:
  1837. rope_factors.append(1)
  1838. elif wavelen > low_freq_wavelen:
  1839. rope_factors.append(factor)
  1840. else:
  1841. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1842. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1843. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1844. def prepare_tensors(self):
  1845. super().prepare_tensors()
  1846. @ModelBase.register("BitnetForCausalLM")
  1847. class BitnetModel(TextModel):
  1848. model_arch = gguf.MODEL_ARCH.BITNET
  1849. def set_vocab(self):
  1850. self._set_vocab_sentencepiece()
  1851. def set_gguf_parameters(self):
  1852. super().set_gguf_parameters()
  1853. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1854. self.gguf_writer.add_rope_scaling_factor(1.0)
  1855. def weight_quant(self, weight: Tensor) -> Tensor:
  1856. dtype = weight.dtype
  1857. weight = weight.float()
  1858. scale = weight.abs().mean().clamp(min=1e-5)
  1859. iscale = 1 / scale
  1860. # TODO: multiply by the scale directly instead of inverting it twice
  1861. # (this is also unnecessarily doubly inverted upstream)
  1862. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  1863. result = (weight * iscale).round().clamp(-1, 1) / iscale
  1864. return result.type(dtype)
  1865. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1866. new_name = self.map_tensor_name(name)
  1867. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  1868. gguf.MODEL_TENSOR.ATTN_Q,
  1869. gguf.MODEL_TENSOR.ATTN_K,
  1870. gguf.MODEL_TENSOR.ATTN_V,
  1871. gguf.MODEL_TENSOR.ATTN_OUT,
  1872. gguf.MODEL_TENSOR.FFN_UP,
  1873. gguf.MODEL_TENSOR.FFN_DOWN,
  1874. gguf.MODEL_TENSOR.FFN_GATE,
  1875. ]):
  1876. # transform weight into 1/0/-1 (in fp32)
  1877. data_torch = self.weight_quant(data_torch)
  1878. yield (new_name, data_torch)
  1879. @ModelBase.register("GrokForCausalLM")
  1880. class GrokModel(TextModel):
  1881. model_arch = gguf.MODEL_ARCH.GROK
  1882. def set_vocab(self):
  1883. self._set_vocab_sentencepiece()
  1884. def __init__(self, *args, **kwargs):
  1885. super().__init__(*args, **kwargs)
  1886. def set_gguf_parameters(self):
  1887. super().set_gguf_parameters()
  1888. _experts: list[dict[str, Tensor]] | None = None
  1889. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1890. # process the experts separately
  1891. if name.find(".moe.") != -1:
  1892. n_experts = self.hparams["num_local_experts"]
  1893. assert bid is not None
  1894. if self._experts is None:
  1895. self._experts = [{} for _ in range(self.block_count)]
  1896. self._experts[bid][name] = data_torch
  1897. if len(self._experts[bid]) >= n_experts * 3:
  1898. tensors: list[tuple[str, Tensor]] = []
  1899. # merge the experts into a single 3d tensor
  1900. for wid in ["linear", "linear_1", "linear_v"]:
  1901. datas: list[Tensor] = []
  1902. for xid in range(n_experts):
  1903. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1904. datas.append(self._experts[bid][ename])
  1905. del self._experts[bid][ename]
  1906. data_torch = torch.stack(datas, dim=0)
  1907. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1908. new_name = self.map_tensor_name(merged_name)
  1909. tensors.append((new_name, data_torch))
  1910. return tensors
  1911. else:
  1912. return []
  1913. return [(self.map_tensor_name(name), data_torch)]
  1914. @ModelBase.register("DbrxForCausalLM")
  1915. class DbrxModel(TextModel):
  1916. model_arch = gguf.MODEL_ARCH.DBRX
  1917. def set_gguf_parameters(self):
  1918. ffn_config = self.hparams["ffn_config"]
  1919. attn_config = self.hparams["attn_config"]
  1920. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1921. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1922. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1923. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1924. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1925. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1926. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1927. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1928. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1929. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1930. self.gguf_writer.add_layer_norm_eps(1e-5)
  1931. self.gguf_writer.add_file_type(self.ftype)
  1932. logger.info(f"gguf: file type = {self.ftype}")
  1933. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1934. del bid # unused
  1935. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1936. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1937. n_embd = self.hparams["d_model"]
  1938. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1939. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1940. # But llama.cpp moe graph works differently
  1941. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1942. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1943. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1944. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1945. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1946. experts = False
  1947. for exp_tensor_name in exp_tensor_names.keys():
  1948. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1949. experts = True
  1950. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1951. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1952. data_torch = data_torch.permute(*permute_tensor)
  1953. break
  1954. # map tensor names
  1955. # In MoE models the ffn tensors are typically most of the model weights,
  1956. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1957. # Every other model has the weight names ending in .weight,
  1958. # let's assume that is the convention which is not the case for dbrx:
  1959. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1960. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1961. return [(new_name, data_torch)]
  1962. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  1963. del name, new_name, bid # unused
  1964. return n_dims > 1
  1965. @ModelBase.register("MiniCPMForCausalLM")
  1966. class MiniCPMModel(TextModel):
  1967. model_arch = gguf.MODEL_ARCH.MINICPM
  1968. def set_gguf_parameters(self):
  1969. super().set_gguf_parameters()
  1970. embedding_scale = float(self.hparams["scale_emb"])
  1971. self.gguf_writer.add_embedding_scale(embedding_scale)
  1972. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  1973. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  1974. self.gguf_writer.add_residual_scale(residual_scale)
  1975. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  1976. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  1977. self.gguf_writer.add_logit_scale(logit_scale)
  1978. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  1979. if self.hparams.get("rope_scaling") is not None:
  1980. if self.hparams["rope_scaling"].get("type") == "longrope":
  1981. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  1982. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  1983. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1984. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1985. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1986. if rope_scaling is not None:
  1987. long_factors = rope_scaling.get('long_factor', None)
  1988. short_factors = rope_scaling.get('short_factor', None)
  1989. if long_factors is None or short_factors is None:
  1990. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1991. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1992. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1993. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  1994. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  1995. def set_vocab(self):
  1996. self._set_vocab_sentencepiece()
  1997. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1998. del bid # unused
  1999. n_head = self.hparams["num_attention_heads"]
  2000. n_kv_head = self.hparams.get("num_key_value_heads")
  2001. # HF models permute some of the tensors, so we need to undo that
  2002. if name.endswith(("q_proj.weight")):
  2003. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2004. if name.endswith(("k_proj.weight")):
  2005. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2006. return [(self.map_tensor_name(name), data_torch)]
  2007. @ModelBase.register("MiniCPM3ForCausalLM")
  2008. class MiniCPM3Model(TextModel):
  2009. model_arch = gguf.MODEL_ARCH.MINICPM3
  2010. def set_gguf_parameters(self):
  2011. hparams = self.hparams
  2012. self.gguf_writer.add_file_type(self.ftype)
  2013. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2014. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2015. self.gguf_writer.add_block_count(self.block_count)
  2016. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2017. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2018. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2019. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2020. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2021. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2022. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2023. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2024. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2025. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2026. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2027. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2028. if rope_scaling is not None:
  2029. rope_dims = self.hparams["qk_rope_head_dim"]
  2030. long_factors = rope_scaling.get('long_factor', None)
  2031. short_factors = rope_scaling.get('short_factor', None)
  2032. if long_factors is None or short_factors is None:
  2033. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2034. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2035. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2036. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2037. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2038. def set_vocab(self):
  2039. self._set_vocab_sentencepiece()
  2040. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2041. if n_kv_head is not None and n_head != n_kv_head:
  2042. n_head //= n_kv_head
  2043. return (
  2044. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2045. .swapaxes(1, 2)
  2046. .reshape(weights.shape)
  2047. )
  2048. @ModelBase.register("QWenLMHeadModel")
  2049. class QwenModel(TextModel):
  2050. model_arch = gguf.MODEL_ARCH.QWEN
  2051. @staticmethod
  2052. def token_bytes_to_string(b):
  2053. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2054. byte_encoder = bytes_to_unicode()
  2055. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2056. @staticmethod
  2057. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2058. parts = [bytes([b]) for b in token]
  2059. while True:
  2060. min_idx = None
  2061. min_rank = None
  2062. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2063. rank = mergeable_ranks.get(pair[0] + pair[1])
  2064. if rank is not None and (min_rank is None or rank < min_rank):
  2065. min_idx = i
  2066. min_rank = rank
  2067. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2068. break
  2069. assert min_idx is not None
  2070. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2071. return parts
  2072. def set_vocab(self):
  2073. self._set_vocab_qwen()
  2074. def set_gguf_parameters(self):
  2075. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2076. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2077. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2078. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2079. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2080. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2081. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2082. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2083. self.gguf_writer.add_file_type(self.ftype)
  2084. @ModelBase.register("Qwen2ForCausalLM")
  2085. class Qwen2Model(TextModel):
  2086. model_arch = gguf.MODEL_ARCH.QWEN2
  2087. def set_vocab(self):
  2088. try:
  2089. self._set_vocab_sentencepiece()
  2090. except FileNotFoundError:
  2091. self._set_vocab_gpt2()
  2092. def set_gguf_parameters(self):
  2093. super().set_gguf_parameters()
  2094. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2095. if self.hparams["rope_scaling"].get("type") == "yarn":
  2096. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2097. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2098. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  2099. @ModelBase.register("Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  2100. class Qwen2VLModel(TextModel):
  2101. model_arch = gguf.MODEL_ARCH.QWEN2VL
  2102. def set_gguf_parameters(self):
  2103. super().set_gguf_parameters()
  2104. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  2105. mrope_section += [0] * max(0, 4 - len(mrope_section))
  2106. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  2107. def set_vocab(self):
  2108. try:
  2109. self._set_vocab_sentencepiece()
  2110. except FileNotFoundError:
  2111. self._set_vocab_gpt2()
  2112. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2113. del bid # unused
  2114. if name.startswith("visual."):
  2115. # skip visual tensors
  2116. return []
  2117. return [(self.map_tensor_name(name), data_torch)]
  2118. @ModelBase.register("Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  2119. class Qwen2VLVisionModel(VisionModel):
  2120. def __init__(self, *args, **kwargs):
  2121. super().__init__(*args, **kwargs)
  2122. self.hparams["image_size"] = self.hparams.get("image_size", 560)
  2123. # rename config.json values
  2124. self.hparams["num_attention_heads"] = self.hparams.get("num_heads")
  2125. self.hparams["num_hidden_layers"] = self.hparams.get("depth")
  2126. if "embed_dim" in self.hparams: # qwen2vl
  2127. self.hparams["intermediate_size"] = self.hparams.get("hidden_size")
  2128. self.hparams["hidden_size"] = self.hparams.get("embed_dim")
  2129. def set_gguf_parameters(self):
  2130. super().set_gguf_parameters()
  2131. hparams = self.hparams
  2132. if self.global_config['model_type'] == 'qwen2_vl':
  2133. self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.QWEN2VL)
  2134. elif self.global_config['model_type'] == 'qwen2_5_vl':
  2135. self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.QWEN25VL)
  2136. self.gguf_writer.add_vision_use_silu(True)
  2137. # find n_wa_pattern (window attention pattern)
  2138. fullatt_block_indexes = hparams.get("fullatt_block_indexes")
  2139. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
  2140. n_wa_pattern = fullatt_block_indexes[0] + 1
  2141. # validate n_wa_pattern
  2142. for i in range(1, len(fullatt_block_indexes)):
  2143. if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
  2144. raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
  2145. self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
  2146. else:
  2147. raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
  2148. # default values below are taken from HF tranformers code
  2149. self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
  2150. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2151. del bid, name, n_dims # unused
  2152. if ".patch_embd." in new_name:
  2153. return gguf.GGMLQuantizationType.F16
  2154. if ".position_embd." in new_name:
  2155. return gguf.GGMLQuantizationType.F32
  2156. return False
  2157. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2158. del bid # unused
  2159. if name.startswith("visual."):
  2160. # process visual tensors
  2161. # split QKV tensors if needed
  2162. if ".qkv." in name:
  2163. if data_torch.ndim == 2: # weight
  2164. c3, _ = data_torch.shape
  2165. else: # bias
  2166. c3 = data_torch.shape[0]
  2167. assert c3 % 3 == 0
  2168. c = c3 // 3
  2169. wq = data_torch[:c]
  2170. wk = data_torch[c: c * 2]
  2171. wv = data_torch[c * 2:]
  2172. return [
  2173. (self.map_tensor_name(name.replace("qkv", "q")), wq),
  2174. (self.map_tensor_name(name.replace("qkv", "k")), wk),
  2175. (self.map_tensor_name(name.replace("qkv", "v")), wv),
  2176. ]
  2177. elif 'patch_embed.proj.weight' in name:
  2178. # split Conv3D into Conv2Ds
  2179. c1, c2, kt, kh, kw = data_torch.shape
  2180. del c1, c2, kh, kw # unused
  2181. assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
  2182. return [
  2183. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
  2184. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  2185. ]
  2186. else:
  2187. return [(self.map_tensor_name(name), data_torch)]
  2188. return [] # skip other tensors
  2189. @ModelBase.register("WavTokenizerDec")
  2190. class WavTokenizerDecModel(TextModel):
  2191. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  2192. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2193. del bid # unused
  2194. if \
  2195. name.endswith("codebook.cluster_size") or \
  2196. name.endswith("codebook.embed_avg") or \
  2197. name.endswith("codebook.inited"):
  2198. logger.debug(f"Skipping {name!r}")
  2199. return []
  2200. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  2201. return [(self.map_tensor_name(name), data_torch)]
  2202. def set_vocab(self):
  2203. self._set_vocab_none()
  2204. def set_gguf_parameters(self):
  2205. super().set_gguf_parameters()
  2206. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  2207. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  2208. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  2209. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  2210. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  2211. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  2212. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  2213. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  2214. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  2215. self.gguf_writer.add_causal_attention(False)
  2216. @ModelBase.register("Qwen2MoeForCausalLM")
  2217. class Qwen2MoeModel(TextModel):
  2218. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  2219. def set_gguf_parameters(self):
  2220. super().set_gguf_parameters()
  2221. if (n_experts := self.hparams.get("num_experts")) is not None:
  2222. self.gguf_writer.add_expert_count(n_experts)
  2223. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2224. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2225. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  2226. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  2227. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  2228. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  2229. _experts: list[dict[str, Tensor]] | None = None
  2230. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2231. # process the experts separately
  2232. if name.find("experts") != -1:
  2233. n_experts = self.hparams["num_experts"]
  2234. assert bid is not None
  2235. if self._experts is None:
  2236. self._experts = [{} for _ in range(self.block_count)]
  2237. self._experts[bid][name] = data_torch
  2238. if len(self._experts[bid]) >= n_experts * 3:
  2239. tensors: list[tuple[str, Tensor]] = []
  2240. # merge the experts into a single 3d tensor
  2241. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2242. datas: list[Tensor] = []
  2243. for xid in range(n_experts):
  2244. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2245. datas.append(self._experts[bid][ename])
  2246. del self._experts[bid][ename]
  2247. data_torch = torch.stack(datas, dim=0)
  2248. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2249. new_name = self.map_tensor_name(merged_name)
  2250. tensors.append((new_name, data_torch))
  2251. return tensors
  2252. else:
  2253. return []
  2254. return [(self.map_tensor_name(name), data_torch)]
  2255. def prepare_tensors(self):
  2256. super().prepare_tensors()
  2257. if self._experts is not None:
  2258. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2259. experts = [k for d in self._experts for k in d.keys()]
  2260. if len(experts) > 0:
  2261. raise ValueError(f"Unprocessed experts: {experts}")
  2262. @ModelBase.register("Qwen3ForCausalLM")
  2263. class Qwen3Model(Qwen2Model):
  2264. model_arch = gguf.MODEL_ARCH.QWEN3
  2265. @ModelBase.register("Qwen3MoeForCausalLM")
  2266. class Qwen3MoeModel(Qwen2MoeModel):
  2267. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  2268. @ModelBase.register("GPT2LMHeadModel")
  2269. class GPT2Model(TextModel):
  2270. model_arch = gguf.MODEL_ARCH.GPT2
  2271. def set_gguf_parameters(self):
  2272. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2273. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  2274. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2275. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2276. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2277. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2278. self.gguf_writer.add_file_type(self.ftype)
  2279. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2280. del bid # unused
  2281. tensors: list[tuple[str, Tensor]] = []
  2282. # we don't need these
  2283. if name.endswith((".attn.bias", ".attn.masked_bias")):
  2284. return tensors
  2285. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  2286. data_torch = data_torch.transpose(1, 0)
  2287. new_name = self.map_tensor_name(name)
  2288. tensors.append((new_name, data_torch))
  2289. return tensors
  2290. @ModelBase.register("PhiForCausalLM")
  2291. class Phi2Model(TextModel):
  2292. model_arch = gguf.MODEL_ARCH.PHI2
  2293. def set_gguf_parameters(self):
  2294. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2295. rot_pct = self.find_hparam(["partial_rotary_factor"])
  2296. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2297. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2298. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  2299. self.gguf_writer.add_embedding_length(n_embd)
  2300. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  2301. self.gguf_writer.add_block_count(block_count)
  2302. self.gguf_writer.add_head_count(n_head)
  2303. self.gguf_writer.add_head_count_kv(n_head)
  2304. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  2305. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  2306. self.gguf_writer.add_file_type(self.ftype)
  2307. self.gguf_writer.add_add_bos_token(False)
  2308. @ModelBase.register("Phi3ForCausalLM")
  2309. class Phi3MiniModel(TextModel):
  2310. model_arch = gguf.MODEL_ARCH.PHI3
  2311. def set_vocab(self):
  2312. # Phi-4 model uses GPT2Tokenizer
  2313. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2314. if tokenizer_config_file.is_file():
  2315. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2316. tokenizer_config_json = json.load(f)
  2317. tokenizer_class = tokenizer_config_json['tokenizer_class']
  2318. if tokenizer_class == 'GPT2Tokenizer':
  2319. return self._set_vocab_gpt2()
  2320. from sentencepiece import SentencePieceProcessor
  2321. tokenizer_path = self.dir_model / 'tokenizer.model'
  2322. if not tokenizer_path.is_file():
  2323. raise ValueError(f'Error: Missing {tokenizer_path}')
  2324. tokenizer = SentencePieceProcessor()
  2325. tokenizer.LoadFromFile(str(tokenizer_path))
  2326. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2327. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2328. scores: list[float] = [-10000.0] * vocab_size
  2329. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2330. for token_id in range(tokenizer.vocab_size()):
  2331. piece = tokenizer.IdToPiece(token_id)
  2332. text = piece.encode("utf-8")
  2333. score = tokenizer.GetScore(token_id)
  2334. toktype = SentencePieceTokenTypes.NORMAL
  2335. if tokenizer.IsUnknown(token_id):
  2336. toktype = SentencePieceTokenTypes.UNKNOWN
  2337. elif tokenizer.IsControl(token_id):
  2338. toktype = SentencePieceTokenTypes.CONTROL
  2339. elif tokenizer.IsUnused(token_id):
  2340. toktype = SentencePieceTokenTypes.UNUSED
  2341. elif tokenizer.IsByte(token_id):
  2342. toktype = SentencePieceTokenTypes.BYTE
  2343. tokens[token_id] = text
  2344. scores[token_id] = score
  2345. toktypes[token_id] = toktype
  2346. added_tokens_file = self.dir_model / 'added_tokens.json'
  2347. if added_tokens_file.is_file():
  2348. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2349. added_tokens_json = json.load(f)
  2350. for key in added_tokens_json:
  2351. token_id = added_tokens_json[key]
  2352. if token_id >= vocab_size:
  2353. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2354. continue
  2355. tokens[token_id] = key.encode("utf-8")
  2356. scores[token_id] = -1000.0
  2357. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2358. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2359. if tokenizer_config_file.is_file():
  2360. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2361. tokenizer_config_json = json.load(f)
  2362. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2363. for token_id, foken_data in added_tokens_decoder.items():
  2364. token_id = int(token_id)
  2365. token = foken_data["content"].encode("utf-8")
  2366. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2367. if tokens[token_id] != token:
  2368. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2369. tokens[token_id] = token
  2370. scores[token_id] = -1000.0
  2371. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2372. if foken_data.get("special"):
  2373. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2374. tokenizer_file = self.dir_model / 'tokenizer.json'
  2375. if tokenizer_file.is_file():
  2376. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2377. tokenizer_json = json.load(f)
  2378. added_tokens = tokenizer_json.get("added_tokens", [])
  2379. for foken_data in added_tokens:
  2380. token_id = int(foken_data["id"])
  2381. token = foken_data["content"].encode("utf-8")
  2382. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2383. if tokens[token_id] != token:
  2384. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2385. tokens[token_id] = token
  2386. scores[token_id] = -1000.0
  2387. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2388. if foken_data.get("special"):
  2389. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2390. self.gguf_writer.add_tokenizer_model("llama")
  2391. self.gguf_writer.add_tokenizer_pre("default")
  2392. self.gguf_writer.add_token_list(tokens)
  2393. self.gguf_writer.add_token_scores(scores)
  2394. self.gguf_writer.add_token_types(toktypes)
  2395. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2396. special_vocab.add_to_gguf(self.gguf_writer)
  2397. def set_gguf_parameters(self):
  2398. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2399. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2400. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2401. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  2402. rms_eps = self.find_hparam(["rms_norm_eps"])
  2403. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2404. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2405. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2406. rope_dims = int(rot_pct * n_embd) // n_head
  2407. self.gguf_writer.add_context_length(max_pos_embds)
  2408. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  2409. self.gguf_writer.add_embedding_length(n_embd)
  2410. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  2411. self.gguf_writer.add_block_count(block_count)
  2412. self.gguf_writer.add_head_count(n_head)
  2413. self.gguf_writer.add_head_count_kv(n_head_kv)
  2414. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  2415. self.gguf_writer.add_rope_dimension_count(rope_dims)
  2416. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  2417. self.gguf_writer.add_file_type(self.ftype)
  2418. sliding_window = self.hparams.get("sliding_window")
  2419. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  2420. if sliding_window is None:
  2421. sliding_window = 0
  2422. self.gguf_writer.add_sliding_window(sliding_window)
  2423. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2424. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2425. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2426. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2427. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2428. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2429. rope_dims = int(rot_pct * n_embd) // n_head
  2430. # write rope scaling for long context (128k) model
  2431. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2432. if rope_scaling is None:
  2433. return
  2434. scale = max_pos_embds / orig_max_pos_embds
  2435. rope_scaling_type = rope_scaling.get('type', '').lower()
  2436. if len(rope_scaling_type) == 0:
  2437. raise KeyError('Missing the required key rope_scaling.type')
  2438. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  2439. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  2440. elif rope_scaling_type == 'yarn':
  2441. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  2442. else:
  2443. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  2444. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  2445. long_factors = rope_scaling.get('long_factor', None)
  2446. short_factors = rope_scaling.get('short_factor', None)
  2447. if long_factors is None or short_factors is None:
  2448. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2449. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2450. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  2451. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2452. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2453. @ModelBase.register("PhiMoEForCausalLM")
  2454. class PhiMoeModel(Phi3MiniModel):
  2455. model_arch = gguf.MODEL_ARCH.PHIMOE
  2456. _experts: list[dict[str, Tensor]] | None = None
  2457. def set_gguf_parameters(self):
  2458. super().set_gguf_parameters()
  2459. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  2460. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  2461. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2462. # process the experts separately
  2463. if name.find("block_sparse_moe.experts") != -1:
  2464. n_experts = self.hparams["num_local_experts"]
  2465. assert bid is not None
  2466. if self._experts is None:
  2467. self._experts = [{} for _ in range(self.block_count)]
  2468. self._experts[bid][name] = data_torch
  2469. if len(self._experts[bid]) >= n_experts * 3:
  2470. tensors: list[tuple[str, Tensor]] = []
  2471. # merge the experts into a single 3d tensor
  2472. for w_name in ["w1", "w2", "w3"]:
  2473. datas: list[Tensor] = []
  2474. for xid in range(n_experts):
  2475. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  2476. datas.append(self._experts[bid][ename])
  2477. del self._experts[bid][ename]
  2478. data_torch = torch.stack(datas, dim=0)
  2479. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  2480. new_name = self.map_tensor_name(merged_name)
  2481. tensors.append((new_name, data_torch))
  2482. return tensors
  2483. else:
  2484. return []
  2485. return [(self.map_tensor_name(name), data_torch)]
  2486. def prepare_tensors(self):
  2487. super().prepare_tensors()
  2488. if self._experts is not None:
  2489. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2490. experts = [k for d in self._experts for k in d.keys()]
  2491. if len(experts) > 0:
  2492. raise ValueError(f"Unprocessed experts: {experts}")
  2493. @ModelBase.register("PlamoForCausalLM")
  2494. class PlamoModel(TextModel):
  2495. model_arch = gguf.MODEL_ARCH.PLAMO
  2496. def set_vocab(self):
  2497. self._set_vocab_sentencepiece()
  2498. def set_gguf_parameters(self):
  2499. hparams = self.hparams
  2500. block_count = hparams["num_hidden_layers"]
  2501. self.gguf_writer.add_context_length(4096) # not in config.json
  2502. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2503. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2504. self.gguf_writer.add_block_count(block_count)
  2505. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2506. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  2507. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2508. self.gguf_writer.add_file_type(self.ftype)
  2509. def shuffle_attn_q_weight(self, data_torch):
  2510. assert data_torch.size() == (5120, 5120)
  2511. data_torch = data_torch.reshape(8, 5, 128, 5120)
  2512. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  2513. data_torch = torch.reshape(data_torch, (5120, 5120))
  2514. return data_torch
  2515. def shuffle_attn_output_weight(self, data_torch):
  2516. assert data_torch.size() == (5120, 5120)
  2517. data_torch = data_torch.reshape(5120, 8, 5, 128)
  2518. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  2519. data_torch = torch.reshape(data_torch, (5120, 5120))
  2520. return data_torch
  2521. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2522. del bid # unused
  2523. new_name = self.map_tensor_name(name)
  2524. # shuffle for broadcasting of gqa in ggml_mul_mat
  2525. if new_name.endswith("attn_q.weight"):
  2526. data_torch = self.shuffle_attn_q_weight(data_torch)
  2527. elif new_name.endswith("attn_output.weight"):
  2528. data_torch = self.shuffle_attn_output_weight(data_torch)
  2529. return [(new_name, data_torch)]
  2530. @ModelBase.register("CodeShellForCausalLM")
  2531. class CodeShellModel(TextModel):
  2532. model_arch = gguf.MODEL_ARCH.CODESHELL
  2533. def set_gguf_parameters(self):
  2534. block_count = self.hparams["n_layer"]
  2535. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  2536. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2537. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2538. self.gguf_writer.add_block_count(block_count)
  2539. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2540. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  2541. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2542. self.gguf_writer.add_file_type(self.ftype)
  2543. self.gguf_writer.add_rope_freq_base(10000.0)
  2544. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2545. self.gguf_writer.add_rope_scaling_factor(1.0)
  2546. _has_tok_embd = False
  2547. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2548. del bid # unused
  2549. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2550. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2551. new_name = self.map_tensor_name(name)
  2552. # assuming token_embd.weight is seen before output.weight
  2553. if not self._has_tok_embd and new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  2554. # even though the tensor file(s) does not contain the word embeddings they are still in the weight map
  2555. if self.tensor_names and "transformer.wte.weight" in self.tensor_names:
  2556. logger.debug(f"{tok_embd_name} not found before {output_name}, assuming they are tied")
  2557. self.tensor_names.remove("transformer.wte.weight")
  2558. elif new_name == tok_embd_name:
  2559. self._has_tok_embd = True
  2560. return [(new_name, data_torch)]
  2561. @ModelBase.register("InternLM2ForCausalLM")
  2562. class InternLM2Model(TextModel):
  2563. model_arch = gguf.MODEL_ARCH.INTERNLM2
  2564. def set_vocab(self):
  2565. # (TODO): Is there a better way?
  2566. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  2567. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  2568. # recognized as an empty string in C++.
  2569. from sentencepiece import SentencePieceProcessor
  2570. from sentencepiece import sentencepiece_model_pb2 as model
  2571. tokenizer_path = self.dir_model / 'tokenizer.model'
  2572. tokens: list[bytes] = []
  2573. scores: list[float] = []
  2574. toktypes: list[int] = []
  2575. if not tokenizer_path.is_file():
  2576. logger.error(f'Error: Missing {tokenizer_path}')
  2577. sys.exit(1)
  2578. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2579. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2580. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2581. tokenizer = SentencePieceProcessor()
  2582. tokenizer.LoadFromFile(str(tokenizer_path))
  2583. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2584. for token_id in range(vocab_size):
  2585. piece = tokenizer.IdToPiece(token_id)
  2586. text = piece.encode("utf-8")
  2587. score = tokenizer.GetScore(token_id)
  2588. if text == b"\x00":
  2589. # (TODO): fixme
  2590. # Hack here and replace the \x00 characters.
  2591. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  2592. text = "🐉".encode("utf-8")
  2593. toktype = SentencePieceTokenTypes.NORMAL
  2594. if tokenizer.IsUnknown(token_id):
  2595. toktype = SentencePieceTokenTypes.UNKNOWN
  2596. elif tokenizer.IsControl(token_id):
  2597. toktype = SentencePieceTokenTypes.CONTROL
  2598. elif tokenizer.IsUnused(token_id):
  2599. toktype = SentencePieceTokenTypes.UNUSED
  2600. elif tokenizer.IsByte(token_id):
  2601. toktype = SentencePieceTokenTypes.BYTE
  2602. # take care of ununsed raw token
  2603. if piece.startswith('[UNUSED'):
  2604. toktype = SentencePieceTokenTypes.UNUSED
  2605. tokens.append(text)
  2606. scores.append(score)
  2607. toktypes.append(toktype)
  2608. added_tokens_file = self.dir_model / 'added_tokens.json'
  2609. if added_tokens_file.is_file():
  2610. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2611. added_tokens_json = json.load(f)
  2612. for key in added_tokens_json:
  2613. tokens.append(key.encode("utf-8"))
  2614. scores.append(-1000.0)
  2615. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  2616. chat_eos_token = '<|im_end|>'
  2617. chat_eos_token_id = None
  2618. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2619. if tokenizer_config_file.is_file():
  2620. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2621. tokenizer_config_json = json.load(f)
  2622. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2623. for token_id, foken_data in added_tokens_decoder.items():
  2624. token_id = int(token_id)
  2625. token = foken_data["content"]
  2626. if token == chat_eos_token:
  2627. chat_eos_token_id = token_id
  2628. token = token.encode("utf-8")
  2629. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2630. if tokens[token_id] != token:
  2631. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2632. tokens[token_id] = token
  2633. scores[token_id] = -1000.0
  2634. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2635. if foken_data.get("special"):
  2636. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2637. tokenizer_file = self.dir_model / 'tokenizer.json'
  2638. if tokenizer_file.is_file():
  2639. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2640. tokenizer_json = json.load(f)
  2641. added_tokens = tokenizer_json.get("added_tokens", [])
  2642. for foken_data in added_tokens:
  2643. token_id = int(foken_data["id"])
  2644. token = foken_data["content"]
  2645. if token == chat_eos_token:
  2646. chat_eos_token_id = token_id
  2647. token = token.encode("utf-8")
  2648. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2649. if tokens[token_id] != token:
  2650. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2651. tokens[token_id] = token
  2652. scores[token_id] = -1000.0
  2653. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2654. if foken_data.get("special"):
  2655. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2656. self.gguf_writer.add_tokenizer_model("llama")
  2657. self.gguf_writer.add_tokenizer_pre("default")
  2658. self.gguf_writer.add_token_list(tokens)
  2659. self.gguf_writer.add_token_scores(scores)
  2660. self.gguf_writer.add_token_types(toktypes)
  2661. self.gguf_writer.add_add_space_prefix(add_prefix)
  2662. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2663. old_eos = special_vocab.special_token_ids["eos"]
  2664. if chat_eos_token_id is not None:
  2665. # For the chat model, we replace the eos with '<|im_end|>'.
  2666. # TODO: this is a hack, should be fixed
  2667. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  2668. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  2669. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  2670. " in chat mode so that the conversation can end normally.")
  2671. special_vocab.add_to_gguf(self.gguf_writer)
  2672. def set_gguf_parameters(self):
  2673. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2674. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2675. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2676. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2677. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  2678. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2679. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2680. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  2681. self.gguf_writer.add_file_type(self.ftype)
  2682. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2683. if self.hparams["rope_scaling"].get("type") == "linear":
  2684. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2685. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2686. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2687. num_heads = self.hparams["num_attention_heads"]
  2688. num_kv_heads = self.hparams["num_key_value_heads"]
  2689. n_embd = self.hparams["hidden_size"]
  2690. q_per_kv = num_heads // num_kv_heads
  2691. head_dim = n_embd // num_heads
  2692. num_groups = num_heads // q_per_kv
  2693. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  2694. qkv = data_torch
  2695. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  2696. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  2697. # The model weights of q and k equire additional reshape.
  2698. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  2699. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  2700. v = v.reshape((-1, v.shape[-1]))
  2701. return [
  2702. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  2703. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  2704. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  2705. ]
  2706. else:
  2707. return [(self.map_tensor_name(name), data_torch)]
  2708. @ModelBase.register("InternLM3ForCausalLM")
  2709. class InternLM3Model(TextModel):
  2710. model_arch = gguf.MODEL_ARCH.LLAMA
  2711. def set_vocab(self):
  2712. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  2713. self.gguf_writer.add_tokenizer_model("llama")
  2714. self.gguf_writer.add_tokenizer_pre("default")
  2715. self.gguf_writer.add_token_list(tokens)
  2716. self.gguf_writer.add_token_scores(scores)
  2717. self.gguf_writer.add_token_types(toktypes)
  2718. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2719. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2720. if tokenizer_config_file.is_file():
  2721. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2722. tokenizer_config_json = json.load(f)
  2723. if "add_prefix_space" in tokenizer_config_json:
  2724. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  2725. if "added_tokens_decoder" in tokenizer_config_json:
  2726. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  2727. if token_data.get("special"):
  2728. token_id = int(token_id)
  2729. token = token_data["content"]
  2730. special_vocab._set_special_token(token, token_id)
  2731. # update eos token
  2732. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  2733. special_vocab.special_token_ids["eos"] = token_id
  2734. special_vocab.add_to_gguf(self.gguf_writer)
  2735. def set_gguf_parameters(self):
  2736. super().set_gguf_parameters()
  2737. hparams = self.hparams
  2738. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2739. if "head_dim" in hparams:
  2740. rope_dim = hparams["head_dim"]
  2741. else:
  2742. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2743. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2744. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2745. if self.hparams["rope_scaling"].get("type") == "linear" or self.hparams["rope_scaling"].get("rope_type") == "linear":
  2746. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2747. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2748. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2749. n_head = self.hparams["num_attention_heads"]
  2750. n_kv_head = self.hparams.get("num_key_value_heads")
  2751. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2752. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2753. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2754. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2755. return [(self.map_tensor_name(name), data_torch)]
  2756. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel")
  2757. class BertModel(TextModel):
  2758. model_arch = gguf.MODEL_ARCH.BERT
  2759. def __init__(self, *args, **kwargs):
  2760. super().__init__(*args, **kwargs)
  2761. self.vocab_size = None
  2762. def set_gguf_parameters(self):
  2763. super().set_gguf_parameters()
  2764. self.gguf_writer.add_causal_attention(False)
  2765. # get pooling path
  2766. pooling_path = None
  2767. module_path = self.dir_model / "modules.json"
  2768. if module_path.is_file():
  2769. with open(module_path, encoding="utf-8") as f:
  2770. modules = json.load(f)
  2771. for mod in modules:
  2772. if mod["type"] == "sentence_transformers.models.Pooling":
  2773. pooling_path = mod["path"]
  2774. break
  2775. # get pooling type
  2776. if pooling_path is not None:
  2777. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  2778. pooling = json.load(f)
  2779. if pooling["pooling_mode_mean_tokens"]:
  2780. pooling_type = gguf.PoolingType.MEAN
  2781. elif pooling["pooling_mode_cls_token"]:
  2782. pooling_type = gguf.PoolingType.CLS
  2783. else:
  2784. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  2785. self.gguf_writer.add_pooling_type(pooling_type)
  2786. def set_vocab(self):
  2787. tokens, toktypes, tokpre = self.get_vocab_base()
  2788. self.vocab_size = len(tokens)
  2789. # we need this to validate the size of the token_type embeddings
  2790. # though currently we are passing all zeros to the token_type embeddings
  2791. # "Sequence A" or "Sequence B"
  2792. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2793. # convert to phantom space vocab
  2794. def phantom(tok):
  2795. if tok.startswith("[") and tok.endswith("]"):
  2796. return tok
  2797. if tok.startswith("##"):
  2798. return tok[2:]
  2799. return "\u2581" + tok
  2800. tokens = list(map(phantom, tokens))
  2801. # add vocab to gguf
  2802. self.gguf_writer.add_tokenizer_model("bert")
  2803. self.gguf_writer.add_tokenizer_pre(tokpre)
  2804. self.gguf_writer.add_token_list(tokens)
  2805. self.gguf_writer.add_token_types(toktypes)
  2806. # handle special tokens
  2807. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2808. special_vocab.add_to_gguf(self.gguf_writer)
  2809. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2810. del bid # unused
  2811. if name.startswith("bert."):
  2812. name = name[5:]
  2813. if name.endswith(".gamma"):
  2814. name = name[:-6] + ".weight"
  2815. if name.endswith(".beta"):
  2816. name = name[:-5] + ".bias"
  2817. # we are only using BERT for embeddings so we don't need the pooling layer
  2818. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  2819. return [] # we don't need these
  2820. if name.startswith("cls.predictions"):
  2821. return []
  2822. if name.startswith("cls.seq_relationship"):
  2823. return []
  2824. return [(self.map_tensor_name(name), data_torch)]
  2825. def _xlmroberta_tokenizer_init(self) -> None:
  2826. # we need the pad_token_id to know how to chop down position_embd matrix
  2827. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2828. self._position_offset = 1 + pad_token_id
  2829. if "max_position_embeddings" in self.hparams:
  2830. self.hparams["max_position_embeddings"] -= self._position_offset
  2831. else:
  2832. self._position_offset = None
  2833. def _xlmroberta_set_vocab(self) -> None:
  2834. # to avoid TypeError: Descriptors cannot be created directly
  2835. # exception when importing sentencepiece_model_pb2
  2836. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2837. from sentencepiece import SentencePieceProcessor
  2838. from sentencepiece import sentencepiece_model_pb2 as model
  2839. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  2840. if not tokenizer_path.is_file():
  2841. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2842. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2843. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2844. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2845. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2846. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2847. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2848. tokenizer = SentencePieceProcessor()
  2849. tokenizer.LoadFromFile(str(tokenizer_path))
  2850. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2851. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2852. scores: list[float] = [-10000.0] * vocab_size
  2853. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2854. for token_id in range(tokenizer.vocab_size()):
  2855. piece = tokenizer.IdToPiece(token_id)
  2856. text = piece.encode("utf-8")
  2857. score = tokenizer.GetScore(token_id)
  2858. toktype = SentencePieceTokenTypes.NORMAL
  2859. if tokenizer.IsUnknown(token_id):
  2860. toktype = SentencePieceTokenTypes.UNKNOWN
  2861. elif tokenizer.IsControl(token_id):
  2862. toktype = SentencePieceTokenTypes.CONTROL
  2863. elif tokenizer.IsUnused(token_id):
  2864. toktype = SentencePieceTokenTypes.UNUSED
  2865. elif tokenizer.IsByte(token_id):
  2866. toktype = SentencePieceTokenTypes.BYTE
  2867. tokens[token_id] = text
  2868. scores[token_id] = score
  2869. toktypes[token_id] = toktype
  2870. if vocab_size > len(tokens):
  2871. pad_count = vocab_size - len(tokens)
  2872. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2873. for i in range(1, pad_count + 1):
  2874. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2875. scores.append(-1000.0)
  2876. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2877. # realign tokens (see HF tokenizer code)
  2878. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  2879. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  2880. toktypes = [
  2881. SentencePieceTokenTypes.CONTROL,
  2882. SentencePieceTokenTypes.CONTROL,
  2883. SentencePieceTokenTypes.CONTROL,
  2884. SentencePieceTokenTypes.UNKNOWN,
  2885. ] + toktypes[3:-1]
  2886. self.gguf_writer.add_tokenizer_model("t5")
  2887. self.gguf_writer.add_tokenizer_pre("default")
  2888. self.gguf_writer.add_token_list(tokens)
  2889. self.gguf_writer.add_token_scores(scores)
  2890. self.gguf_writer.add_token_types(toktypes)
  2891. self.gguf_writer.add_add_space_prefix(add_prefix)
  2892. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2893. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2894. if precompiled_charsmap:
  2895. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2896. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2897. special_vocab.add_to_gguf(self.gguf_writer)
  2898. self.gguf_writer.add_add_bos_token(True)
  2899. self.gguf_writer.add_add_eos_token(True)
  2900. @ModelBase.register("RobertaModel")
  2901. class RobertaModel(BertModel):
  2902. model_arch = gguf.MODEL_ARCH.BERT
  2903. def __init__(self, *args, **kwargs):
  2904. super().__init__(*args, **kwargs)
  2905. # we need the pad_token_id to know how to chop down position_embd matrix
  2906. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2907. self._position_offset = 1 + pad_token_id
  2908. if "max_position_embeddings" in self.hparams:
  2909. self.hparams["max_position_embeddings"] -= self._position_offset
  2910. else:
  2911. self._position_offset = None
  2912. def set_vocab(self):
  2913. """Support BPE tokenizers for roberta models"""
  2914. bpe_tok_path = self.dir_model / "tokenizer.json"
  2915. if bpe_tok_path.exists():
  2916. self._set_vocab_gpt2()
  2917. self.gguf_writer.add_add_bos_token(True)
  2918. self.gguf_writer.add_add_eos_token(True)
  2919. # we need this to validate the size of the token_type embeddings
  2920. # though currently we are passing all zeros to the token_type embeddings
  2921. # "Sequence A" or "Sequence B"
  2922. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2923. else:
  2924. return super().set_vocab()
  2925. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2926. # if name starts with "roberta.", remove the prefix
  2927. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  2928. if name.startswith("roberta."):
  2929. name = name[8:]
  2930. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2931. if name == "embeddings.position_embeddings.weight":
  2932. if self._position_offset is not None:
  2933. data_torch = data_torch[self._position_offset:,:]
  2934. return super().modify_tensors(data_torch, name, bid)
  2935. @ModelBase.register("NomicBertModel")
  2936. class NomicBertModel(BertModel):
  2937. model_arch = gguf.MODEL_ARCH.BERT
  2938. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  2939. hparams = kwargs.pop("hparams", None)
  2940. if hparams is None:
  2941. hparams = ModelBase.load_hparams(dir_model)
  2942. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  2943. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  2944. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  2945. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  2946. if self._tokenizer_is_xlmroberta:
  2947. self._xlmroberta_tokenizer_init()
  2948. npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
  2949. if npos == 8192 and mtp == 2048:
  2950. self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
  2951. elif npos == 2048 and mtp == 2048:
  2952. self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
  2953. else:
  2954. raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
  2955. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  2956. # this doesn't do anything in the HF version
  2957. assert self.hparams["causal"] is False
  2958. # no bias tensors unless MoE
  2959. assert self.hparams["qkv_proj_bias"] == self.is_moe
  2960. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  2961. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  2962. # norm at end of layer
  2963. assert self.hparams["prenorm"] is False
  2964. # standard RoPE
  2965. assert self.hparams["rotary_emb_fraction"] == 1.0
  2966. assert self.hparams["rotary_emb_interleaved"] is False
  2967. assert self.hparams["rotary_emb_scale_base"] is None
  2968. def set_vocab(self) -> None:
  2969. if self._tokenizer_is_xlmroberta:
  2970. return self._xlmroberta_set_vocab()
  2971. return super().set_vocab()
  2972. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  2973. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  2974. if "mlp.experts.bias" in name:
  2975. return [] # Explicitly return an empty list.
  2976. if "mlp.experts.mlp.w1" in name:
  2977. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  2978. name += ".weight"
  2979. if "mlp.experts.mlp.w2" in name:
  2980. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  2981. data_torch = data_torch.transpose(1, 2)
  2982. name += ".weight"
  2983. return [(self.map_tensor_name(name), data_torch)]
  2984. def set_gguf_parameters(self):
  2985. super().set_gguf_parameters()
  2986. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2987. if self.is_moe:
  2988. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  2989. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  2990. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  2991. def _is_tokenizer_xlmroberta(self) -> bool:
  2992. with open(self.dir_model / "tokenizer.json") as f:
  2993. tokenizer_json = json.load(f)
  2994. toktyp = tokenizer_json["model"]["type"]
  2995. if toktyp == "Unigram":
  2996. return True
  2997. if toktyp == "WordPiece":
  2998. return False
  2999. raise ValueError(f"unknown tokenizer: {toktyp}")
  3000. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  3001. class XLMRobertaModel(BertModel):
  3002. model_arch = gguf.MODEL_ARCH.BERT
  3003. def __init__(self, *args, **kwargs):
  3004. super().__init__(*args, **kwargs)
  3005. self._xlmroberta_tokenizer_init()
  3006. def set_vocab(self):
  3007. self._xlmroberta_set_vocab()
  3008. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3009. # if name starts with "roberta.", remove the prefix
  3010. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  3011. if name.startswith("roberta."):
  3012. name = name[8:]
  3013. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  3014. if name == "embeddings.position_embeddings.weight":
  3015. if self._position_offset is not None:
  3016. data_torch = data_torch[self._position_offset:,:]
  3017. return super().modify_tensors(data_torch, name, bid)
  3018. @ModelBase.register("GemmaForCausalLM")
  3019. class GemmaModel(TextModel):
  3020. model_arch = gguf.MODEL_ARCH.GEMMA
  3021. def set_vocab(self):
  3022. self._set_vocab_sentencepiece()
  3023. # TODO: these special tokens should be exported only for the CodeGemma family
  3024. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  3025. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  3026. special_vocab._set_special_token("prefix", 67)
  3027. special_vocab._set_special_token("suffix", 69)
  3028. special_vocab._set_special_token("middle", 68)
  3029. special_vocab._set_special_token("fsep", 70)
  3030. special_vocab._set_special_token("eot", 107)
  3031. special_vocab.chat_template = None # do not add it twice
  3032. special_vocab.add_to_gguf(self.gguf_writer)
  3033. self.gguf_writer.add_add_space_prefix(False)
  3034. def set_gguf_parameters(self):
  3035. hparams = self.hparams
  3036. block_count = hparams["num_hidden_layers"]
  3037. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  3038. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3039. self.gguf_writer.add_block_count(block_count)
  3040. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3041. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3042. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  3043. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3044. self.gguf_writer.add_key_length(hparams["head_dim"])
  3045. self.gguf_writer.add_value_length(hparams["head_dim"])
  3046. self.gguf_writer.add_file_type(self.ftype)
  3047. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3048. del bid # unused
  3049. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  3050. # To prevent errors, skip loading lm_head.weight.
  3051. if name == "lm_head.weight":
  3052. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  3053. return []
  3054. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  3055. if name.endswith("norm.weight"):
  3056. data_torch = data_torch + 1
  3057. return [(self.map_tensor_name(name), data_torch)]
  3058. @ModelBase.register("Gemma2ForCausalLM")
  3059. class Gemma2Model(TextModel):
  3060. model_arch = gguf.MODEL_ARCH.GEMMA2
  3061. def set_vocab(self):
  3062. self._set_vocab_sentencepiece()
  3063. self.gguf_writer.add_add_space_prefix(False)
  3064. def set_gguf_parameters(self):
  3065. hparams = self.hparams
  3066. block_count = hparams["num_hidden_layers"]
  3067. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  3068. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3069. self.gguf_writer.add_block_count(block_count)
  3070. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3071. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3072. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  3073. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3074. self.gguf_writer.add_key_length(hparams["head_dim"])
  3075. self.gguf_writer.add_value_length(hparams["head_dim"])
  3076. self.gguf_writer.add_file_type(self.ftype)
  3077. self.gguf_writer.add_attn_logit_softcapping(
  3078. self.hparams["attn_logit_softcapping"]
  3079. )
  3080. self.gguf_writer.add_final_logit_softcapping(
  3081. self.hparams["final_logit_softcapping"]
  3082. )
  3083. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  3084. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3085. del bid # unused
  3086. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  3087. # To prevent errors, skip loading lm_head.weight.
  3088. if name == "lm_head.weight":
  3089. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  3090. return []
  3091. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  3092. if name.endswith("norm.weight"):
  3093. data_torch = data_torch + 1
  3094. return [(self.map_tensor_name(name), data_torch)]
  3095. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  3096. class Gemma3Model(TextModel):
  3097. model_arch = gguf.MODEL_ARCH.GEMMA3
  3098. def set_vocab(self):
  3099. self._set_vocab_sentencepiece()
  3100. self.gguf_writer.add_add_space_prefix(False)
  3101. def set_gguf_parameters(self):
  3102. hparams = self.hparams
  3103. block_count = hparams["num_hidden_layers"]
  3104. # some default values are not specified in the hparams
  3105. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  3106. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3107. self.gguf_writer.add_block_count(block_count)
  3108. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3109. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  3110. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  3111. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  3112. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  3113. self.gguf_writer.add_file_type(self.ftype)
  3114. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
  3115. # both attn_logit_softcapping and final_logit_softcapping are removed in Gemma3
  3116. assert hparams.get("attn_logit_softcapping") is None
  3117. assert hparams.get("final_logit_softcapping") is None
  3118. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  3119. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  3120. if hparams.get("rope_scaling") is not None:
  3121. assert hparams["rope_scaling"]["rope_type"] == "linear"
  3122. # important: this rope_scaling is only applied for global layers, and not used by 1B model
  3123. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3124. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  3125. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3126. del bid # unused
  3127. if name.startswith("language_model."):
  3128. name = name.replace("language_model.", "")
  3129. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  3130. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  3131. return [] # skip vision tensors
  3132. # remove OOV (out-of-vocabulary) rows in token_embd
  3133. if "embed_tokens.weight" in name:
  3134. vocab = self._create_vocab_sentencepiece()
  3135. tokens = vocab[0]
  3136. data_torch = data_torch[:len(tokens)]
  3137. # ref code in Gemma3RMSNorm
  3138. # output = output * (1.0 + self.weight.float())
  3139. if name.endswith("norm.weight"):
  3140. data_torch = data_torch + 1
  3141. return [(self.map_tensor_name(name), data_torch)]
  3142. @ModelBase.register("Gemma3ForConditionalGeneration")
  3143. class Gemma3VisionModel(VisionModel):
  3144. def set_gguf_parameters(self):
  3145. super().set_gguf_parameters()
  3146. hparams = self.hparams
  3147. self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.GEMMA3)
  3148. # default values below are taken from HF tranformers code
  3149. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  3150. self.gguf_writer.add_vision_use_gelu(True)
  3151. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3152. del bid, new_name, n_dims # unused
  3153. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  3154. if "input_projection" in name:
  3155. return gguf.GGMLQuantizationType.F16
  3156. if ".embeddings." in name:
  3157. return gguf.GGMLQuantizationType.F32
  3158. return False
  3159. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3160. del bid # unused
  3161. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  3162. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  3163. # process vision tensors
  3164. name = name.replace("_weight", ".weight")
  3165. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  3166. # the other norm values are part of SigLIP model, and they are already correct
  3167. # ref code: Gemma3RMSNorm
  3168. if "soft_emb_norm.weight" in name:
  3169. logger.info(f"Correcting norm value for '{name}'")
  3170. data_torch = data_torch + 1
  3171. return [(self.map_tensor_name(name), data_torch)]
  3172. return [] # skip other tensors
  3173. @ModelBase.register("Starcoder2ForCausalLM")
  3174. class StarCoder2Model(TextModel):
  3175. model_arch = gguf.MODEL_ARCH.STARCODER2
  3176. @ModelBase.register("Rwkv6ForCausalLM")
  3177. class Rwkv6Model(TextModel):
  3178. model_arch = gguf.MODEL_ARCH.RWKV6
  3179. def set_vocab(self):
  3180. self._set_vocab_rwkv_world()
  3181. def set_gguf_parameters(self):
  3182. block_count = self.hparams["num_hidden_layers"]
  3183. head_size = self.hparams["head_size"]
  3184. hidden_size = self.hparams["hidden_size"]
  3185. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  3186. rescale_every_n_layers = self.hparams["rescale_every"]
  3187. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  3188. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  3189. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  3190. # RWKV isn't context limited
  3191. self.gguf_writer.add_context_length(1048576)
  3192. self.gguf_writer.add_embedding_length(hidden_size)
  3193. self.gguf_writer.add_block_count(block_count)
  3194. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  3195. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  3196. self.gguf_writer.add_wkv_head_size(head_size)
  3197. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  3198. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  3199. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3200. self.gguf_writer.add_file_type(self.ftype)
  3201. # required by llama.cpp, unused
  3202. self.gguf_writer.add_head_count(0)
  3203. lerp_weights: dict[int, dict[str, Tensor]] = {}
  3204. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3205. new_name = self.map_tensor_name(name)
  3206. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  3207. new_name += ".weight"
  3208. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  3209. data_torch = data_torch.transpose(0, 1)
  3210. if new_name.endswith("time_mix_w2.weight"):
  3211. data_torch = data_torch.permute(0, 2, 1)
  3212. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  3213. data_torch = data_torch.squeeze()
  3214. try:
  3215. rescale_every_n_layers = self.hparams["rescale_every"]
  3216. if rescale_every_n_layers > 0:
  3217. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  3218. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  3219. except KeyError:
  3220. pass
  3221. # concat time_mix_lerp weights to reduce some cpu overhead
  3222. # also reduces the number of tensors in the model
  3223. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  3224. try:
  3225. self.lerp_weights[bid][new_name] = data_torch
  3226. except KeyError:
  3227. self.lerp_weights[bid] = {new_name: data_torch}
  3228. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  3229. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3230. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  3231. yield (new_name, data)
  3232. return
  3233. yield (new_name, data_torch)
  3234. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  3235. class RWKV6Qwen2Model(Rwkv6Model):
  3236. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  3237. def set_vocab(self):
  3238. try:
  3239. self._set_vocab_sentencepiece()
  3240. except FileNotFoundError:
  3241. self._set_vocab_gpt2()
  3242. def set_gguf_parameters(self):
  3243. block_count = self.hparams["num_hidden_layers"]
  3244. num_attention_heads = self.hparams["num_attention_heads"]
  3245. num_key_value_heads = self.hparams["num_key_value_heads"]
  3246. hidden_size = self.hparams["hidden_size"]
  3247. head_size = hidden_size // num_attention_heads
  3248. rms_norm_eps = self.hparams["rms_norm_eps"]
  3249. intermediate_size = self.hparams["intermediate_size"]
  3250. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  3251. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  3252. # RWKV isn't context limited
  3253. self.gguf_writer.add_context_length(1048576)
  3254. self.gguf_writer.add_embedding_length(hidden_size)
  3255. self.gguf_writer.add_block_count(block_count)
  3256. self.gguf_writer.add_wkv_head_size(head_size)
  3257. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  3258. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  3259. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3260. self.gguf_writer.add_file_type(self.ftype)
  3261. # special parameters for time_mixing in RWKV6QWEN2
  3262. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3263. self.gguf_writer.add_token_shift_count(1)
  3264. # RWKV6QWEN2 use grouped key/value like GQA
  3265. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  3266. # required by llama.cpp, unused
  3267. self.gguf_writer.add_head_count(0)
  3268. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3269. for new_name, data in super().modify_tensors(data_torch, name, bid):
  3270. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  3271. data = data.view(5, -1, data.shape[-1])
  3272. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  3273. # permute them here to avoid code changes
  3274. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  3275. if "w2" in new_name:
  3276. data = data.view(5, -1, data.shape[-1])
  3277. yield (new_name, data)
  3278. continue
  3279. yield (new_name, data)
  3280. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  3281. class Rwkv7Model(TextModel):
  3282. model_arch = gguf.MODEL_ARCH.RWKV7
  3283. def set_vocab(self):
  3284. self._set_vocab_rwkv_world()
  3285. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  3286. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  3287. def set_gguf_parameters(self):
  3288. block_count = self.hparams["num_hidden_layers"]
  3289. try:
  3290. head_size = self.hparams["head_size"]
  3291. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  3292. except KeyError:
  3293. head_size = self.hparams["head_dim"]
  3294. layer_norm_eps = self.hparams["norm_eps"]
  3295. hidden_size = self.hparams["hidden_size"]
  3296. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  3297. # ICLR: In-Context-Learning-Rate
  3298. try:
  3299. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3300. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3301. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  3302. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  3303. except KeyError:
  3304. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3305. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3306. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  3307. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  3308. # RWKV isn't context limited
  3309. self.gguf_writer.add_context_length(1048576)
  3310. self.gguf_writer.add_embedding_length(hidden_size)
  3311. self.gguf_writer.add_block_count(block_count)
  3312. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  3313. self.gguf_writer.add_wkv_head_size(head_size)
  3314. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  3315. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  3316. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  3317. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  3318. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3319. self.gguf_writer.add_file_type(self.ftype)
  3320. # required by llama.cpp, unused
  3321. self.gguf_writer.add_head_count(0)
  3322. lerp_weights: dict[int, dict[str, Tensor]] = {}
  3323. lora_needs_transpose: bool = True
  3324. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3325. # unify tensor names here to make life easier
  3326. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  3327. name = name.replace("self_attn", "attention").replace("attn", "attention")
  3328. name = name.replace("time_mixer.", "")
  3329. # lora layer names in fla-hub's impl
  3330. if "_lora.lora" in name:
  3331. self.lora_needs_transpose = False
  3332. name = name.replace("_lora.lora.0.weight", "1.weight")
  3333. name = name.replace("_lora.lora.2.weight", "2.weight")
  3334. name = name.replace("_lora.lora.2.bias", "0.weight")
  3335. name = name.replace("feed_forward_norm", "ln2")
  3336. name = name.replace("g_norm", "ln_x")
  3337. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  3338. # some models have dummy v0/v1/v2 on first layer while others don't
  3339. # ignore them all since they are not used
  3340. return
  3341. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  3342. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  3343. if bid is not None and "attention.x_" in name:
  3344. if "attention.x_x" in name:
  3345. # already concatenated
  3346. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3347. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  3348. yield (new_name, data)
  3349. else:
  3350. try:
  3351. self.lerp_weights[bid][name] = data_torch
  3352. except KeyError:
  3353. self.lerp_weights[bid] = {name: data_torch}
  3354. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  3355. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3356. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  3357. yield (new_name, data)
  3358. return
  3359. else:
  3360. data_torch = data_torch.squeeze()
  3361. new_name = self.map_tensor_name(name)
  3362. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  3363. new_name += ".weight"
  3364. if self.lora_needs_transpose and any(
  3365. new_name.endswith(t) for t in [
  3366. "time_mix_w1.weight", "time_mix_w2.weight",
  3367. "time_mix_a1.weight", "time_mix_a2.weight",
  3368. "time_mix_v1.weight", "time_mix_v2.weight",
  3369. "time_mix_g1.weight", "time_mix_g2.weight",
  3370. ]
  3371. ):
  3372. data_torch = data_torch.transpose(0, 1)
  3373. if 'r_k' in new_name:
  3374. data_torch = data_torch.flatten()
  3375. if bid == 0 and "time_mix_a" in new_name:
  3376. # dummy v0/v1/v2 on first layer
  3377. # easist way to make llama happy
  3378. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  3379. yield (new_name, data_torch)
  3380. @ModelBase.register("RwkvHybridForCausalLM")
  3381. class ARwkv7Model(Rwkv7Model):
  3382. model_arch = gguf.MODEL_ARCH.ARWKV7
  3383. def set_vocab(self):
  3384. try:
  3385. self._set_vocab_sentencepiece()
  3386. except FileNotFoundError:
  3387. self._set_vocab_gpt2()
  3388. def set_gguf_parameters(self):
  3389. block_count = self.hparams["num_hidden_layers"]
  3390. hidden_size = self.hparams["hidden_size"]
  3391. head_size = self.hparams["head_size"]
  3392. rms_norm_eps = self.hparams["rms_norm_eps"]
  3393. intermediate_size = self.hparams["intermediate_size"]
  3394. wkv_has_gate = self.hparams["wkv_has_gate"]
  3395. assert self.hparams["wkv_version"] == 7
  3396. # ICLR: In-Context-Learning-Rate
  3397. lora_rank_decay = 64
  3398. lora_rank_iclr = 64
  3399. lora_rank_value_residual_mix = 32
  3400. lora_rank_gate = 128 if wkv_has_gate else 0
  3401. # RWKV isn't context limited
  3402. self.gguf_writer.add_context_length(1048576)
  3403. self.gguf_writer.add_embedding_length(hidden_size)
  3404. self.gguf_writer.add_block_count(block_count)
  3405. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3406. self.gguf_writer.add_wkv_head_size(head_size)
  3407. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  3408. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  3409. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  3410. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  3411. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3412. self.gguf_writer.add_file_type(self.ftype)
  3413. self.gguf_writer.add_token_shift_count(1)
  3414. # required by llama.cpp, unused
  3415. self.gguf_writer.add_head_count(0)
  3416. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  3417. class MambaModel(TextModel):
  3418. model_arch = gguf.MODEL_ARCH.MAMBA
  3419. def set_vocab(self):
  3420. vocab_size = self.hparams["vocab_size"]
  3421. # Round vocab size to next multiple of 8
  3422. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  3423. # pad using ceiling division
  3424. # ref: https://stackoverflow.com/a/17511341/22827863
  3425. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  3426. self.hparams["vocab_size"] = vocab_size
  3427. if (self.dir_model / "tokenizer.json").is_file():
  3428. self._set_vocab_gpt2()
  3429. elif (self.dir_model / "tokenizer.model").is_file():
  3430. self._set_vocab_sentencepiece()
  3431. else:
  3432. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  3433. self._set_vocab_builtin("gpt-neox", vocab_size)
  3434. def set_gguf_parameters(self):
  3435. d_model = self.find_hparam(["hidden_size", "d_model"])
  3436. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  3437. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  3438. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  3439. # ceiling division
  3440. # ref: https://stackoverflow.com/a/17511341/22827863
  3441. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  3442. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  3443. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  3444. use_dt_b_c_norm = False
  3445. # For falconmamba we do apply RMS norm on B / DT and C layers
  3446. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  3447. use_dt_b_c_norm = True
  3448. # Fail early for models which don't have a block expansion factor of 2
  3449. assert d_inner == 2 * d_model
  3450. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  3451. self.gguf_writer.add_embedding_length(d_model)
  3452. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  3453. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  3454. self.gguf_writer.add_block_count(self.block_count)
  3455. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  3456. self.gguf_writer.add_ssm_inner_size(d_inner)
  3457. self.gguf_writer.add_ssm_state_size(d_state)
  3458. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  3459. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3460. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  3461. self.gguf_writer.add_file_type(self.ftype)
  3462. _tok_embd = None
  3463. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3464. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  3465. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  3466. new_name = self.map_tensor_name(name)
  3467. if name.endswith(".A_log"):
  3468. logger.debug("A_log --> A ==> " + new_name)
  3469. data_torch = -torch.exp(data_torch)
  3470. # [4 1 8192 1] -> [4 8192 1 1]
  3471. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  3472. data_torch = data_torch.squeeze()
  3473. # assuming token_embd.weight is seen before output.weight
  3474. if self._tok_embd is not None and new_name == output_name:
  3475. if torch.equal(self._tok_embd, data_torch):
  3476. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  3477. return []
  3478. elif new_name == tok_embd_name:
  3479. self._tok_embd = data_torch
  3480. return [(new_name, data_torch)]
  3481. @ModelBase.register("CohereForCausalLM")
  3482. class CommandR2Model(TextModel):
  3483. model_arch = gguf.MODEL_ARCH.COMMAND_R
  3484. def __init__(self, *args, **kwargs):
  3485. super().__init__(*args, **kwargs)
  3486. # max_position_embeddings = 8192 in config.json but model was actually
  3487. # trained on 128k context length
  3488. # aya-23 models don't have model_max_length specified
  3489. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  3490. def set_gguf_parameters(self):
  3491. super().set_gguf_parameters()
  3492. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  3493. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3494. @ModelBase.register("Cohere2ForCausalLM")
  3495. class Cohere2Model(TextModel):
  3496. model_arch = gguf.MODEL_ARCH.COHERE2
  3497. def set_gguf_parameters(self):
  3498. super().set_gguf_parameters()
  3499. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  3500. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  3501. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  3502. rotary_pct = self.hparams["rotary_pct"]
  3503. hidden_size = self.hparams["hidden_size"]
  3504. num_attention_heads = self.hparams["num_attention_heads"]
  3505. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  3506. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3507. @ModelBase.register("OlmoForCausalLM")
  3508. @ModelBase.register("OLMoForCausalLM")
  3509. class OlmoModel(TextModel):
  3510. model_arch = gguf.MODEL_ARCH.OLMO
  3511. def set_gguf_parameters(self):
  3512. super().set_gguf_parameters()
  3513. self.gguf_writer.add_layer_norm_eps(1e-5)
  3514. clip_qkv = self.hparams.get("clip_qkv")
  3515. if clip_qkv is not None:
  3516. self.gguf_writer.add_clamp_kqv(clip_qkv)
  3517. # Same as super class, but permuting q_proj, k_proj
  3518. # Copied from: LlamaModel
  3519. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3520. del bid # unused
  3521. n_head = self.hparams["num_attention_heads"]
  3522. n_kv_head = self.hparams.get("num_key_value_heads")
  3523. if name.endswith("q_proj.weight"):
  3524. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3525. if name.endswith("k_proj.weight"):
  3526. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3527. return [(self.map_tensor_name(name), data_torch)]
  3528. @ModelBase.register("Olmo2ForCausalLM")
  3529. class Olmo2Model(TextModel):
  3530. model_arch = gguf.MODEL_ARCH.OLMO2
  3531. @ModelBase.register("OlmoeForCausalLM")
  3532. class OlmoeModel(TextModel):
  3533. model_arch = gguf.MODEL_ARCH.OLMOE
  3534. def set_gguf_parameters(self):
  3535. super().set_gguf_parameters()
  3536. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  3537. if (n_experts := self.hparams.get("num_experts")) is not None:
  3538. self.gguf_writer.add_expert_count(n_experts)
  3539. _experts: list[dict[str, Tensor]] | None = None
  3540. # Copied from: Qwen2MoeModel
  3541. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3542. # process the experts separately
  3543. if name.find("experts") != -1:
  3544. n_experts = self.hparams["num_experts"]
  3545. assert bid is not None
  3546. if self._experts is None:
  3547. self._experts = [{} for _ in range(self.block_count)]
  3548. self._experts[bid][name] = data_torch
  3549. if len(self._experts[bid]) >= n_experts * 3:
  3550. tensors: list[tuple[str, Tensor]] = []
  3551. # merge the experts into a single 3d tensor
  3552. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3553. datas: list[Tensor] = []
  3554. for xid in range(n_experts):
  3555. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3556. datas.append(self._experts[bid][ename])
  3557. del self._experts[bid][ename]
  3558. data_torch = torch.stack(datas, dim=0)
  3559. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3560. new_name = self.map_tensor_name(merged_name)
  3561. tensors.append((new_name, data_torch))
  3562. return tensors
  3563. else:
  3564. return []
  3565. return [(self.map_tensor_name(name), data_torch)]
  3566. # Copied from: Qwen2MoeModel
  3567. def prepare_tensors(self):
  3568. super().prepare_tensors()
  3569. if self._experts is not None:
  3570. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3571. experts = [k for d in self._experts for k in d.keys()]
  3572. if len(experts) > 0:
  3573. raise ValueError(f"Unprocessed experts: {experts}")
  3574. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  3575. class JinaBertV2Model(BertModel):
  3576. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  3577. def __init__(self, *args, **kwargs):
  3578. super().__init__(*args, **kwargs)
  3579. self.intermediate_size = self.hparams["intermediate_size"]
  3580. def get_tensors(self):
  3581. for name, data in super().get_tensors():
  3582. if 'gated_layer' in name:
  3583. d1 = data[:self.intermediate_size, :]
  3584. name1 = name.replace('gated_layers', 'gated_layers_w')
  3585. name1 = name1.replace('up_gated_layer', 'gated_layers_v')
  3586. d2 = data[self.intermediate_size:, :]
  3587. name2 = name.replace('gated_layers', 'gated_layers_v')
  3588. name2 = name2.replace('up_gated_layer', 'gated_layers_w')
  3589. yield name1, d1
  3590. yield name2, d2
  3591. continue
  3592. yield name, data
  3593. def set_vocab(self):
  3594. tokenizer_class = 'BertTokenizer'
  3595. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  3596. tokenizer_class = json.load(f)['tokenizer_class']
  3597. if tokenizer_class == 'BertTokenizer':
  3598. super().set_vocab()
  3599. elif tokenizer_class == 'RobertaTokenizer':
  3600. self._set_vocab_gpt2()
  3601. self.gguf_writer.add_token_type_count(2)
  3602. else:
  3603. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  3604. self.gguf_writer.add_add_bos_token(True)
  3605. self.gguf_writer.add_add_eos_token(True)
  3606. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3607. # if name starts with "bert.", remove the prefix
  3608. # e.g. https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  3609. if name.startswith("bert."):
  3610. name = name[5:]
  3611. return super().modify_tensors(data_torch, name, bid)
  3612. @ModelBase.register("OpenELMForCausalLM")
  3613. class OpenELMModel(TextModel):
  3614. model_arch = gguf.MODEL_ARCH.OPENELM
  3615. @staticmethod
  3616. def _make_divisible(v: float | int, divisor: int) -> int:
  3617. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  3618. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  3619. # Make sure that round down does not go down by more than 10%.
  3620. if new_v < 0.9 * v:
  3621. new_v += divisor
  3622. return new_v
  3623. def __init__(self, *args, **kwargs):
  3624. super().__init__(*args, **kwargs)
  3625. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  3626. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  3627. self._n_embd: int = self.hparams["model_dim"]
  3628. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  3629. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  3630. self._ffn_dims: list[int] = [
  3631. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  3632. for multiplier in ffn_multipliers
  3633. ]
  3634. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  3635. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  3636. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  3637. def set_vocab(self):
  3638. try:
  3639. self._set_vocab_sentencepiece()
  3640. except FileNotFoundError:
  3641. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  3642. def set_gguf_parameters(self):
  3643. n_embd = self._n_embd
  3644. head_dim = self.hparams["head_dim"]
  3645. rot_pct = 1.0
  3646. assert self.block_count == len(self._num_kv_heads)
  3647. assert self.block_count == len(self._num_query_heads)
  3648. assert self.block_count == len(self._ffn_dims)
  3649. self.gguf_writer.add_block_count(self.block_count)
  3650. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  3651. self.gguf_writer.add_embedding_length(n_embd)
  3652. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  3653. self.gguf_writer.add_head_count(self._num_query_heads)
  3654. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  3655. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  3656. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  3657. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  3658. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  3659. self.gguf_writer.add_key_length(head_dim)
  3660. self.gguf_writer.add_value_length(head_dim)
  3661. self.gguf_writer.add_file_type(self.ftype)
  3662. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  3663. if "n_layers" in keys:
  3664. return self.hparams["num_transformer_layers"]
  3665. return super().find_hparam(keys, optional)
  3666. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3667. # split ff
  3668. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  3669. ff_dim = self._ffn_dims[bid]
  3670. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  3671. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  3672. return
  3673. yield (self.map_tensor_name(name), data_torch)
  3674. @ModelBase.register("ArcticForCausalLM")
  3675. class ArcticModel(TextModel):
  3676. model_arch = gguf.MODEL_ARCH.ARCTIC
  3677. def set_vocab(self):
  3678. # The reason for using a custom implementation here is that the
  3679. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  3680. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  3681. from sentencepiece import SentencePieceProcessor
  3682. tokenizer_path = self.dir_model / 'tokenizer.model'
  3683. if not tokenizer_path.is_file():
  3684. logger.error(f'Error: Missing {tokenizer_path}')
  3685. sys.exit(1)
  3686. # Read the whole vocabulary from the tokenizer.model file
  3687. tokenizer = SentencePieceProcessor()
  3688. tokenizer.LoadFromFile(str(tokenizer_path))
  3689. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3690. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3691. scores: list[float] = [-10000.0] * vocab_size
  3692. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3693. for token_id in range(tokenizer.vocab_size()):
  3694. piece = tokenizer.IdToPiece(token_id)
  3695. text = piece.encode("utf-8")
  3696. score = tokenizer.GetScore(token_id)
  3697. toktype = SentencePieceTokenTypes.NORMAL
  3698. if tokenizer.IsUnknown(token_id):
  3699. toktype = SentencePieceTokenTypes.UNKNOWN
  3700. elif tokenizer.IsControl(token_id):
  3701. toktype = SentencePieceTokenTypes.CONTROL
  3702. elif tokenizer.IsUnused(token_id):
  3703. toktype = SentencePieceTokenTypes.UNUSED
  3704. elif tokenizer.IsByte(token_id):
  3705. toktype = SentencePieceTokenTypes.BYTE
  3706. tokens[token_id] = text
  3707. scores[token_id] = score
  3708. toktypes[token_id] = toktype
  3709. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  3710. # of information about added/redefined tokens and modify them accordingly.
  3711. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3712. if tokenizer_config_file.is_file():
  3713. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3714. tokenizer_config_json = json.load(f)
  3715. if "added_tokens_decoder" in tokenizer_config_json:
  3716. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  3717. for token_id, token_json in added_tokens_decoder.items():
  3718. token_id = int(token_id)
  3719. if token_id >= vocab_size:
  3720. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3721. continue
  3722. token_content = token_json["content"]
  3723. token_type = SentencePieceTokenTypes.USER_DEFINED
  3724. token_score = -10000.0
  3725. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  3726. # Set the score to 0.0 as in the original tokenizer.model
  3727. if ("special" in token_json) and token_json["special"]:
  3728. if token_content == tokenizer_config_json["unk_token"]:
  3729. token_type = SentencePieceTokenTypes.UNKNOWN
  3730. else:
  3731. token_type = SentencePieceTokenTypes.CONTROL
  3732. token_score = 0.0
  3733. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  3734. tokens[token_id] = token_content.encode("utf-8")
  3735. toktypes[token_id] = token_type
  3736. scores[token_id] = token_score
  3737. self.gguf_writer.add_tokenizer_model("llama")
  3738. self.gguf_writer.add_tokenizer_pre("default")
  3739. self.gguf_writer.add_token_list(tokens)
  3740. self.gguf_writer.add_token_scores(scores)
  3741. self.gguf_writer.add_token_types(toktypes)
  3742. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3743. special_vocab.add_to_gguf(self.gguf_writer)
  3744. def set_gguf_parameters(self):
  3745. super().set_gguf_parameters()
  3746. hparams = self.hparams
  3747. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3748. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  3749. _experts: list[dict[str, Tensor]] | None = None
  3750. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3751. n_head = self.hparams["num_attention_heads"]
  3752. n_kv_head = self.hparams.get("num_key_value_heads")
  3753. if name.endswith("q_proj.weight"):
  3754. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3755. if name.endswith("k_proj.weight"):
  3756. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3757. # process the experts separately
  3758. if name.find("block_sparse_moe.experts") != -1:
  3759. n_experts = self.hparams["num_local_experts"]
  3760. assert bid is not None
  3761. if self._experts is None:
  3762. self._experts = [{} for _ in range(self.block_count)]
  3763. self._experts[bid][name] = data_torch
  3764. if len(self._experts[bid]) >= n_experts * 3:
  3765. tensors: list[tuple[str, Tensor]] = []
  3766. # merge the experts into a single 3d tensor
  3767. for wid in ["w1", "w2", "w3"]:
  3768. datas: list[Tensor] = []
  3769. for xid in range(n_experts):
  3770. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  3771. datas.append(self._experts[bid][ename])
  3772. del self._experts[bid][ename]
  3773. data_torch = torch.stack(datas, dim=0)
  3774. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  3775. new_name = self.map_tensor_name(merged_name)
  3776. tensors.append((new_name, data_torch))
  3777. return tensors
  3778. else:
  3779. return []
  3780. return [(self.map_tensor_name(name), data_torch)]
  3781. def prepare_tensors(self):
  3782. super().prepare_tensors()
  3783. if self._experts is not None:
  3784. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3785. experts = [k for d in self._experts for k in d.keys()]
  3786. if len(experts) > 0:
  3787. raise ValueError(f"Unprocessed experts: {experts}")
  3788. @ModelBase.register("DeepseekForCausalLM")
  3789. class DeepseekModel(TextModel):
  3790. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  3791. def set_vocab(self):
  3792. try:
  3793. self._set_vocab_sentencepiece()
  3794. except FileNotFoundError:
  3795. self._set_vocab_gpt2()
  3796. def set_gguf_parameters(self):
  3797. super().set_gguf_parameters()
  3798. hparams = self.hparams
  3799. if "head_dim" in hparams:
  3800. rope_dim = hparams["head_dim"]
  3801. else:
  3802. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  3803. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3804. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3805. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  3806. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3807. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  3808. self.gguf_writer.add_expert_weights_scale(1.0)
  3809. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  3810. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  3811. _experts: list[dict[str, Tensor]] | None = None
  3812. @staticmethod
  3813. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  3814. if n_head_kv is not None and n_head != n_head_kv:
  3815. n_head = n_head_kv
  3816. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  3817. .swapaxes(1, 2)
  3818. .reshape(weights.shape))
  3819. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3820. n_head = self.hparams["num_attention_heads"]
  3821. n_kv_head = self.hparams.get("num_key_value_heads")
  3822. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3823. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  3824. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3825. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  3826. # process the experts separately
  3827. if name.find("mlp.experts") != -1:
  3828. n_experts = self.hparams["n_routed_experts"]
  3829. assert bid is not None
  3830. if self._experts is None:
  3831. self._experts = [{} for _ in range(self.block_count)]
  3832. self._experts[bid][name] = data_torch
  3833. if len(self._experts[bid]) >= n_experts * 3:
  3834. tensors: list[tuple[str, Tensor]] = []
  3835. # merge the experts into a single 3d tensor
  3836. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3837. datas: list[Tensor] = []
  3838. for xid in range(n_experts):
  3839. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3840. datas.append(self._experts[bid][ename])
  3841. del self._experts[bid][ename]
  3842. data_torch = torch.stack(datas, dim=0)
  3843. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3844. new_name = self.map_tensor_name(merged_name)
  3845. tensors.append((new_name, data_torch))
  3846. return tensors
  3847. else:
  3848. return []
  3849. return [(self.map_tensor_name(name), data_torch)]
  3850. def prepare_tensors(self):
  3851. super().prepare_tensors()
  3852. if self._experts is not None:
  3853. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3854. experts = [k for d in self._experts for k in d.keys()]
  3855. if len(experts) > 0:
  3856. raise ValueError(f"Unprocessed experts: {experts}")
  3857. @ModelBase.register("DeepseekV2ForCausalLM")
  3858. @ModelBase.register("DeepseekV3ForCausalLM")
  3859. class DeepseekV2Model(TextModel):
  3860. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  3861. def set_vocab(self):
  3862. self._set_vocab_gpt2()
  3863. def set_gguf_parameters(self):
  3864. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  3865. self.hparams["num_key_value_heads"] = 1
  3866. super().set_gguf_parameters()
  3867. hparams = self.hparams
  3868. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  3869. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3870. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  3871. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  3872. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  3873. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  3874. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  3875. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  3876. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  3877. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  3878. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  3879. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  3880. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  3881. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  3882. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  3883. if hparams["scoring_func"] == "sigmoid":
  3884. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  3885. elif hparams["scoring_func"] == "softmax":
  3886. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  3887. else:
  3888. raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
  3889. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  3890. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  3891. if self.hparams["rope_scaling"].get("type") == "yarn":
  3892. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  3893. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  3894. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  3895. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
  3896. _experts: list[dict[str, Tensor]] | None = None
  3897. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3898. # rename e_score_correction_bias tensors
  3899. if name.endswith("e_score_correction_bias"):
  3900. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  3901. # skip Multi-Token Prediction (MTP) layers
  3902. block_count = self.hparams["num_hidden_layers"]
  3903. match = re.match(r"model.layers.(\d+)", name)
  3904. if match and int(match.group(1)) >= block_count:
  3905. return []
  3906. # process the experts separately
  3907. if name.find("mlp.experts") != -1:
  3908. n_experts = self.hparams["n_routed_experts"]
  3909. assert bid is not None
  3910. if self._experts is None:
  3911. self._experts = [{} for _ in range(self.block_count)]
  3912. self._experts[bid][name] = data_torch
  3913. if len(self._experts[bid]) >= n_experts * 3:
  3914. tensors: list[tuple[str, Tensor]] = []
  3915. # merge the experts into a single 3d tensor
  3916. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3917. datas: list[Tensor] = []
  3918. for xid in range(n_experts):
  3919. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3920. datas.append(self._experts[bid][ename])
  3921. del self._experts[bid][ename]
  3922. data_torch = torch.stack(datas, dim=0)
  3923. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3924. new_name = self.map_tensor_name(merged_name)
  3925. tensors.append((new_name, data_torch))
  3926. return tensors
  3927. else:
  3928. return []
  3929. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  3930. if name.endswith("kv_b_proj.weight"):
  3931. name_kb = name.replace("kv_b_proj", "k_b_proj")
  3932. name_vb = name.replace("kv_b_proj", "v_b_proj")
  3933. n_head_kv = self.hparams["num_key_value_heads"]
  3934. v_head_dim = self.hparams["v_head_dim"]
  3935. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  3936. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  3937. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  3938. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  3939. k_b = k_b.transpose(1, 2)
  3940. return [
  3941. (self.map_tensor_name(name_kb), k_b),
  3942. (self.map_tensor_name(name_vb), v_b)
  3943. ]
  3944. return [(self.map_tensor_name(name), data_torch)]
  3945. def prepare_tensors(self):
  3946. super().prepare_tensors()
  3947. if self._experts is not None:
  3948. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3949. experts = [k for d in self._experts for k in d.keys()]
  3950. if len(experts) > 0:
  3951. raise ValueError(f"Unprocessed experts: {experts}")
  3952. @ModelBase.register("PLMForCausalLM")
  3953. class PLMModel(TextModel):
  3954. model_arch = gguf.MODEL_ARCH.PLM
  3955. def set_vocab(self):
  3956. self._set_vocab_gpt2()
  3957. def set_gguf_parameters(self):
  3958. super().set_gguf_parameters()
  3959. hparams = self.hparams
  3960. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3961. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  3962. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  3963. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  3964. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  3965. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3966. return [(self.map_tensor_name(name), data_torch)]
  3967. def prepare_tensors(self):
  3968. super().prepare_tensors()
  3969. @ModelBase.register("T5WithLMHeadModel")
  3970. @ModelBase.register("T5ForConditionalGeneration")
  3971. @ModelBase.register("MT5ForConditionalGeneration")
  3972. @ModelBase.register("UMT5ForConditionalGeneration")
  3973. class T5Model(TextModel):
  3974. model_arch = gguf.MODEL_ARCH.T5
  3975. def __init__(self, *args, **kwargs):
  3976. super().__init__(*args, **kwargs)
  3977. self.shared_token_embeddings_found = False
  3978. def set_vocab(self):
  3979. # to avoid TypeError: Descriptors cannot be created directly
  3980. # exception when importing sentencepiece_model_pb2
  3981. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3982. from sentencepiece import SentencePieceProcessor
  3983. from sentencepiece import sentencepiece_model_pb2 as model
  3984. tokenizer_path = self.dir_model / 'tokenizer.model'
  3985. # many older models use spiece.model tokenizer model filename
  3986. if not tokenizer_path.is_file():
  3987. tokenizer_path = self.dir_model / 'spiece.model'
  3988. if not tokenizer_path.is_file():
  3989. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3990. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3991. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3992. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  3993. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  3994. # assure the tokenizer model file name is correct
  3995. assert tokenizer_path.name == 'tokenizer.model'
  3996. return self._set_vocab_sentencepiece()
  3997. else:
  3998. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3999. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4000. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4001. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  4002. tokenizer = SentencePieceProcessor()
  4003. tokenizer.LoadFromFile(str(tokenizer_path))
  4004. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4005. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4006. scores: list[float] = [-10000.0] * vocab_size
  4007. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4008. for token_id in range(tokenizer.vocab_size()):
  4009. piece = tokenizer.IdToPiece(token_id)
  4010. text = piece.encode("utf-8")
  4011. score = tokenizer.GetScore(token_id)
  4012. toktype = SentencePieceTokenTypes.NORMAL
  4013. if tokenizer.IsUnknown(token_id):
  4014. toktype = SentencePieceTokenTypes.UNKNOWN
  4015. elif tokenizer.IsControl(token_id):
  4016. toktype = SentencePieceTokenTypes.CONTROL
  4017. elif tokenizer.IsUnused(token_id):
  4018. toktype = SentencePieceTokenTypes.UNUSED
  4019. elif tokenizer.IsByte(token_id):
  4020. toktype = SentencePieceTokenTypes.BYTE
  4021. tokens[token_id] = text
  4022. scores[token_id] = score
  4023. toktypes[token_id] = toktype
  4024. added_tokens_file = self.dir_model / 'added_tokens.json'
  4025. if added_tokens_file.is_file():
  4026. with open(added_tokens_file, "r", encoding="utf-8") as f:
  4027. added_tokens_json = json.load(f)
  4028. for key in added_tokens_json:
  4029. token_id = added_tokens_json[key]
  4030. if token_id >= vocab_size:
  4031. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  4032. continue
  4033. tokens[token_id] = key.encode("utf-8")
  4034. scores[token_id] = -1000.0
  4035. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4036. if vocab_size > len(tokens):
  4037. pad_count = vocab_size - len(tokens)
  4038. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  4039. for i in range(1, pad_count + 1):
  4040. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  4041. scores.append(-1000.0)
  4042. toktypes.append(SentencePieceTokenTypes.UNUSED)
  4043. self.gguf_writer.add_tokenizer_model("t5")
  4044. self.gguf_writer.add_tokenizer_pre("default")
  4045. self.gguf_writer.add_token_list(tokens)
  4046. self.gguf_writer.add_token_scores(scores)
  4047. self.gguf_writer.add_token_types(toktypes)
  4048. self.gguf_writer.add_add_space_prefix(add_prefix)
  4049. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  4050. if precompiled_charsmap:
  4051. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  4052. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4053. special_vocab.add_to_gguf(self.gguf_writer)
  4054. self.gguf_writer.add_add_bos_token(False)
  4055. self.gguf_writer.add_add_eos_token(True)
  4056. def set_gguf_parameters(self):
  4057. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  4058. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  4059. n_ctx = 512
  4060. self.gguf_writer.add_context_length(n_ctx)
  4061. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  4062. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  4063. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  4064. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  4065. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  4066. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  4067. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4068. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  4069. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  4070. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  4071. self.gguf_writer.add_file_type(self.ftype)
  4072. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4073. del bid # unused
  4074. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  4075. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  4076. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  4077. # and decoder and ignore the remaining ones.
  4078. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  4079. if not self.shared_token_embeddings_found:
  4080. name = "shared.weight"
  4081. self.shared_token_embeddings_found = True
  4082. else:
  4083. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  4084. return []
  4085. return [(self.map_tensor_name(name), data_torch)]
  4086. @ModelBase.register("T5EncoderModel")
  4087. class T5EncoderModel(TextModel):
  4088. model_arch = gguf.MODEL_ARCH.T5ENCODER
  4089. def __init__(self, *args, **kwargs):
  4090. super().__init__(*args, **kwargs)
  4091. self.shared_token_embeddings_found = False
  4092. def set_vocab(self):
  4093. # to avoid TypeError: Descriptors cannot be created directly
  4094. # exception when importing sentencepiece_model_pb2
  4095. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  4096. from sentencepiece import SentencePieceProcessor
  4097. from sentencepiece import sentencepiece_model_pb2 as model
  4098. tokenizer_path = self.dir_model / 'tokenizer.model'
  4099. # many older models use spiece.model tokenizer model filename
  4100. if not tokenizer_path.is_file():
  4101. tokenizer_path = self.dir_model / 'spiece.model'
  4102. if not tokenizer_path.is_file():
  4103. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  4104. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4105. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4106. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  4107. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  4108. # assure the tokenizer model file name is correct
  4109. assert tokenizer_path.name == 'tokenizer.model'
  4110. return self._set_vocab_sentencepiece()
  4111. else:
  4112. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  4113. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4114. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4115. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  4116. tokenizer = SentencePieceProcessor()
  4117. tokenizer.LoadFromFile(str(tokenizer_path))
  4118. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4119. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4120. scores: list[float] = [-10000.0] * vocab_size
  4121. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4122. for token_id in range(tokenizer.vocab_size()):
  4123. piece = tokenizer.IdToPiece(token_id)
  4124. text = piece.encode("utf-8")
  4125. score = tokenizer.GetScore(token_id)
  4126. toktype = SentencePieceTokenTypes.NORMAL
  4127. if tokenizer.IsUnknown(token_id):
  4128. toktype = SentencePieceTokenTypes.UNKNOWN
  4129. elif tokenizer.IsControl(token_id):
  4130. toktype = SentencePieceTokenTypes.CONTROL
  4131. elif tokenizer.IsUnused(token_id):
  4132. toktype = SentencePieceTokenTypes.UNUSED
  4133. elif tokenizer.IsByte(token_id):
  4134. toktype = SentencePieceTokenTypes.BYTE
  4135. tokens[token_id] = text
  4136. scores[token_id] = score
  4137. toktypes[token_id] = toktype
  4138. added_tokens_file = self.dir_model / 'added_tokens.json'
  4139. if added_tokens_file.is_file():
  4140. with open(added_tokens_file, "r", encoding="utf-8") as f:
  4141. added_tokens_json = json.load(f)
  4142. for key in added_tokens_json:
  4143. token_id = added_tokens_json[key]
  4144. if token_id >= vocab_size:
  4145. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  4146. continue
  4147. tokens[token_id] = key.encode("utf-8")
  4148. scores[token_id] = -1000.0
  4149. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4150. if vocab_size > len(tokens):
  4151. pad_count = vocab_size - len(tokens)
  4152. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  4153. for i in range(1, pad_count + 1):
  4154. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  4155. scores.append(-1000.0)
  4156. toktypes.append(SentencePieceTokenTypes.UNUSED)
  4157. self.gguf_writer.add_tokenizer_model("t5")
  4158. self.gguf_writer.add_tokenizer_pre("default")
  4159. self.gguf_writer.add_token_list(tokens)
  4160. self.gguf_writer.add_token_scores(scores)
  4161. self.gguf_writer.add_token_types(toktypes)
  4162. self.gguf_writer.add_add_space_prefix(add_prefix)
  4163. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  4164. if precompiled_charsmap:
  4165. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  4166. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4167. special_vocab.add_to_gguf(self.gguf_writer)
  4168. self.gguf_writer.add_add_bos_token(False)
  4169. self.gguf_writer.add_add_eos_token(True)
  4170. def set_gguf_parameters(self):
  4171. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  4172. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  4173. n_ctx = 512
  4174. self.gguf_writer.add_context_length(n_ctx)
  4175. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  4176. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  4177. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  4178. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  4179. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  4180. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  4181. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4182. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  4183. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  4184. self.gguf_writer.add_file_type(self.ftype)
  4185. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4186. del bid # unused
  4187. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  4188. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  4189. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  4190. # and decoder and ignore the remaining ones.
  4191. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  4192. if not self.shared_token_embeddings_found:
  4193. name = "shared.weight"
  4194. self.shared_token_embeddings_found = True
  4195. else:
  4196. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  4197. return []
  4198. return [(self.map_tensor_name(name), data_torch)]
  4199. @ModelBase.register("JAISLMHeadModel")
  4200. class JaisModel(TextModel):
  4201. model_arch = gguf.MODEL_ARCH.JAIS
  4202. def __init__(self, *args, **kwargs):
  4203. super().__init__(*args, **kwargs)
  4204. # SwigLU activation
  4205. assert self.hparams["activation_function"] == "swiglu"
  4206. # ALiBi position embedding
  4207. assert self.hparams["position_embedding_type"] == "alibi"
  4208. # Embeddings scale
  4209. self.embeddings_scale = 1.0
  4210. if 'mup_embeddings_scale' in self.hparams:
  4211. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  4212. elif 'embeddings_scale' in self.hparams:
  4213. self.embeddings_scale = self.hparams['embeddings_scale']
  4214. else:
  4215. assert False
  4216. self.width_scale = 1.0
  4217. if 'mup_output_alpha' in self.hparams:
  4218. assert 'mup_width_scale' in self.hparams
  4219. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  4220. elif 'width_scale' in self.hparams:
  4221. self.width_scale = self.hparams['width_scale']
  4222. else:
  4223. assert False
  4224. self.max_alibi_bias = 8.0
  4225. def set_vocab(self):
  4226. self._set_vocab_gpt2()
  4227. def set_gguf_parameters(self):
  4228. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  4229. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  4230. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  4231. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  4232. self.gguf_writer.add_head_count(self.hparams["n_head"])
  4233. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4234. self.gguf_writer.add_file_type(self.ftype)
  4235. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4236. del bid # unused
  4237. tensors: list[tuple[str, Tensor]] = []
  4238. # we don't need these
  4239. if name.endswith((".attn.bias")):
  4240. return tensors
  4241. if name.endswith(("relative_pe.slopes")):
  4242. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  4243. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  4244. # but Jais's PyTorch model simply precalculates the slope values and places them
  4245. # in relative_pes.slopes
  4246. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  4247. first_val = float(data_torch[0].item())
  4248. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  4249. return tensors
  4250. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  4251. data_torch = data_torch.transpose(1, 0)
  4252. new_name = self.map_tensor_name(name)
  4253. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  4254. tensors.append((new_name, data_torch * self.embeddings_scale))
  4255. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  4256. tensors.append((new_name, data_torch * self.width_scale))
  4257. else:
  4258. tensors.append((new_name, data_torch))
  4259. return tensors
  4260. def prepare_tensors(self):
  4261. super().prepare_tensors()
  4262. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  4263. @ModelBase.register("Glm4ForCausalLM")
  4264. class Glm4Model(TextModel):
  4265. model_arch = gguf.MODEL_ARCH.GLM4
  4266. def set_vocab(self):
  4267. from transformers import AutoTokenizer
  4268. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  4269. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  4270. tokens, toktypes, tokpre = self.get_vocab_base()
  4271. self.gguf_writer.add_tokenizer_model("gpt2")
  4272. self.gguf_writer.add_tokenizer_pre(tokpre)
  4273. self.gguf_writer.add_token_list(tokens)
  4274. self.gguf_writer.add_token_types(toktypes)
  4275. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  4276. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  4277. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  4278. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  4279. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  4280. special_vocab.add_to_gguf(self.gguf_writer)
  4281. def set_gguf_parameters(self):
  4282. super().set_gguf_parameters()
  4283. rope_dim = self.hparams["head_dim"]
  4284. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  4285. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  4286. if self.hparams["rope_scaling"].get("type") == "yarn":
  4287. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  4288. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  4289. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  4290. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  4291. class ChatGLMModel(TextModel):
  4292. model_arch = gguf.MODEL_ARCH.CHATGLM
  4293. def set_vocab_chatglm3(self):
  4294. dir_model = self.dir_model
  4295. hparams = self.hparams
  4296. tokens: list[bytes] = []
  4297. toktypes: list[int] = []
  4298. scores: list[float] = []
  4299. from transformers import AutoTokenizer
  4300. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  4301. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  4302. assert max(tokenizer.get_vocab().values()) < vocab_size
  4303. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  4304. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  4305. for token_id in range(vocab_size):
  4306. piece = tokenizer._convert_id_to_token(token_id)
  4307. if token_id == 0:
  4308. piece = "<unk>"
  4309. elif token_id == 1:
  4310. piece = "<bos>"
  4311. elif token_id == 2:
  4312. piece = "<eos>"
  4313. text = piece.encode("utf-8")
  4314. score = 0.0
  4315. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  4316. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  4317. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  4318. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  4319. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  4320. if piece in special_tokens:
  4321. toktype = SentencePieceTokenTypes.CONTROL
  4322. elif len(piece) == 0:
  4323. text = f"[PAD{token_id}]".encode("utf-8")
  4324. toktype = SentencePieceTokenTypes.UNUSED
  4325. else:
  4326. toktype = SentencePieceTokenTypes.USER_DEFINED
  4327. tokens.append(text)
  4328. scores.append(score)
  4329. toktypes.append(toktype)
  4330. continue
  4331. toktype = SentencePieceTokenTypes.NORMAL
  4332. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  4333. toktype = SentencePieceTokenTypes.UNKNOWN
  4334. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  4335. toktype = SentencePieceTokenTypes.CONTROL
  4336. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  4337. toktype = SentencePieceTokenTypes.UNUSED
  4338. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  4339. toktype = SentencePieceTokenTypes.BYTE
  4340. tokens.append(text)
  4341. scores.append(score)
  4342. toktypes.append(toktype)
  4343. self.gguf_writer.add_tokenizer_model("llama")
  4344. # glm3 needs prefix and suffix formatted as:
  4345. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  4346. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  4347. self.gguf_writer.add_token_list(tokens)
  4348. self.gguf_writer.add_token_scores(scores)
  4349. self.gguf_writer.add_token_types(toktypes)
  4350. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4351. special_vocab.add_to_gguf(self.gguf_writer)
  4352. @staticmethod
  4353. def token_bytes_to_string(b):
  4354. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  4355. byte_encoder = bytes_to_unicode()
  4356. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  4357. @staticmethod
  4358. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  4359. parts = [bytes([b]) for b in token]
  4360. while True:
  4361. min_idx = None
  4362. min_rank = None
  4363. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  4364. rank = mergeable_ranks.get(pair[0] + pair[1])
  4365. if rank is not None and (min_rank is None or rank < min_rank):
  4366. min_idx = i
  4367. min_rank = rank
  4368. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  4369. break
  4370. assert min_idx is not None
  4371. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  4372. return parts
  4373. def set_vocab(self):
  4374. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  4375. self.set_vocab_chatglm3()
  4376. return
  4377. dir_model = self.dir_model
  4378. hparams = self.hparams
  4379. tokens: list[str] = []
  4380. toktypes: list[int] = []
  4381. from transformers import AutoTokenizer
  4382. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  4383. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  4384. assert max(tokenizer.get_vocab().values()) < vocab_size
  4385. tokens, toktypes, tokpre = self.get_vocab_base()
  4386. self.gguf_writer.add_tokenizer_model("gpt2")
  4387. self.gguf_writer.add_tokenizer_pre(tokpre)
  4388. self.gguf_writer.add_token_list(tokens)
  4389. self.gguf_writer.add_token_types(toktypes)
  4390. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  4391. # only add special tokens when they were not already loaded from config.json
  4392. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  4393. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  4394. # this one is usually not in config.json anyway
  4395. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  4396. special_vocab.add_to_gguf(self.gguf_writer)
  4397. def set_gguf_parameters(self):
  4398. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  4399. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  4400. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  4401. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  4402. self.gguf_writer.add_embedding_length(n_embed)
  4403. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  4404. self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
  4405. self.gguf_writer.add_head_count(n_head)
  4406. self.gguf_writer.add_head_count_kv(n_head_kv)
  4407. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  4408. self.gguf_writer.add_file_type(self.ftype)
  4409. if "attention_dim" in self.hparams:
  4410. rope_dim = self.hparams["attention_dim"]
  4411. else:
  4412. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  4413. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  4414. self.gguf_writer.add_add_bos_token(False)
  4415. rope_freq = 10000
  4416. if "rope_ratio" in self.hparams:
  4417. rope_freq = rope_freq * self.hparams["rope_ratio"]
  4418. self.gguf_writer.add_rope_freq_base(rope_freq)
  4419. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4420. del bid # unused
  4421. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  4422. return []
  4423. name = name.removeprefix("transformer.")
  4424. return [(self.map_tensor_name(name), data_torch)]
  4425. @ModelBase.register("NemotronForCausalLM")
  4426. class NemotronModel(TextModel):
  4427. model_arch = gguf.MODEL_ARCH.NEMOTRON
  4428. def set_vocab(self):
  4429. self._set_vocab_sentencepiece()
  4430. self.gguf_writer.add_pad_token_id(0)
  4431. self.gguf_writer.add_unk_token_id(1)
  4432. def set_gguf_parameters(self):
  4433. super().set_gguf_parameters()
  4434. hparams = self.hparams
  4435. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4436. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  4437. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  4438. # * Partial RoPE
  4439. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  4440. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  4441. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  4442. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  4443. # * RopeScaling for Nemotron
  4444. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  4445. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4446. else:
  4447. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4448. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  4449. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4450. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  4451. # model.layers.{l}.input_layernorm.weight
  4452. # model.layers.{l}.post_attention_layernorm.weight
  4453. # model.norm.weight
  4454. if name.endswith("norm.weight"):
  4455. data_torch = data_torch + 1
  4456. return [(self.map_tensor_name(name), data_torch)]
  4457. @ModelBase.register("ExaoneForCausalLM")
  4458. class ExaoneModel(TextModel):
  4459. model_arch = gguf.MODEL_ARCH.EXAONE
  4460. def set_gguf_parameters(self):
  4461. hparams = self.hparams
  4462. assert (hparams["activation_function"] == "silu")
  4463. max_position_embeddings = hparams["max_position_embeddings"]
  4464. embed_dim = hparams["hidden_size"]
  4465. num_heads = hparams["num_attention_heads"]
  4466. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  4467. layer_norm_eps = hparams["layer_norm_epsilon"]
  4468. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  4469. num_layers = hparams["num_layers"]
  4470. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  4471. # attention_dropout_rate = hparams["attention_dropout"]
  4472. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  4473. # embed_dropout_rate = hparams["embed_dropout"]
  4474. self.gguf_writer.add_embedding_length(embed_dim)
  4475. self.gguf_writer.add_head_count(num_heads)
  4476. self.gguf_writer.add_head_count_kv(num_kv_heads)
  4477. self.gguf_writer.add_context_length(max_position_embeddings)
  4478. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  4479. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4480. self.gguf_writer.add_block_count(num_layers)
  4481. self.gguf_writer.add_file_type(self.ftype)
  4482. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  4483. self.gguf_writer.add_rope_freq_base(rope_theta)
  4484. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  4485. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  4486. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  4487. if hparams.get("rope_scaling") is not None and "factor" in hparams["rope_scaling"]:
  4488. if hparams["rope_scaling"].get("type") == "linear":
  4489. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4490. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  4491. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4492. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  4493. if rope_scaling.get("rope_type", '').lower() == "llama3":
  4494. base = self.hparams.get("rope_theta", 10000.0)
  4495. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  4496. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  4497. factor = rope_scaling.get("factor", 8.0)
  4498. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  4499. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  4500. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  4501. low_freq_wavelen = old_context_len / low_freq_factor
  4502. high_freq_wavelen = old_context_len / high_freq_factor
  4503. assert low_freq_wavelen != high_freq_wavelen
  4504. rope_factors = []
  4505. for freq in freqs:
  4506. wavelen = 2 * math.pi / freq
  4507. if wavelen < high_freq_wavelen:
  4508. rope_factors.append(1)
  4509. elif wavelen > low_freq_wavelen:
  4510. rope_factors.append(factor)
  4511. else:
  4512. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  4513. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  4514. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  4515. @ModelBase.register("GraniteForCausalLM")
  4516. class GraniteModel(LlamaModel):
  4517. """Conversion for IBM's GraniteForCausalLM"""
  4518. model_arch = gguf.MODEL_ARCH.GRANITE
  4519. def set_gguf_parameters(self):
  4520. """Granite uses standard llama parameters with the following differences:
  4521. - No head_dim support
  4522. - New multiplier params:
  4523. - attention_scale
  4524. - embedding_scale
  4525. - residual_scale
  4526. - logits_scaling
  4527. """
  4528. if head_dim := self.hparams.pop("head_dim", None):
  4529. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  4530. super().set_gguf_parameters()
  4531. # NOTE: Convert _multiplier params to _scale params for naming
  4532. # consistency
  4533. if attention_scale := self.hparams.get("attention_multiplier"):
  4534. self.gguf_writer.add_attention_scale(attention_scale)
  4535. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  4536. if embedding_scale := self.hparams.get("embedding_multiplier"):
  4537. self.gguf_writer.add_embedding_scale(embedding_scale)
  4538. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  4539. if residual_scale := self.hparams.get("residual_multiplier"):
  4540. self.gguf_writer.add_residual_scale(residual_scale)
  4541. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  4542. if logits_scale := self.hparams.get("logits_scaling"):
  4543. self.gguf_writer.add_logit_scale(logits_scale)
  4544. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  4545. @ModelBase.register("GraniteMoeForCausalLM")
  4546. class GraniteMoeModel(GraniteModel):
  4547. """Conversion for IBM's GraniteMoeForCausalLM"""
  4548. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  4549. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4550. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  4551. is used. This essentially merges w1 and w3 into a single tensor with 2x
  4552. the hidden size that is then split during forward. To keep compatibility
  4553. with existing mixtral support, we pull them apart here.
  4554. """
  4555. if name.endswith("block_sparse_moe.input_linear.weight"):
  4556. ffn_dim = self.hparams["intermediate_size"]
  4557. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  4558. gate, up = data_torch[..., :ffn_dim, :], data_torch[..., ffn_dim:, :]
  4559. return [
  4560. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  4561. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  4562. ]
  4563. return super().modify_tensors(data_torch, name, bid)
  4564. @ModelBase.register("BailingMoeForCausalLM")
  4565. class BailingMoeModel(TextModel):
  4566. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  4567. def set_vocab(self):
  4568. self._set_vocab_gpt2()
  4569. def set_gguf_parameters(self):
  4570. super().set_gguf_parameters()
  4571. hparams = self.hparams
  4572. rope_dim = hparams.get("head_dim") or hparams["hidden_size"] // hparams["num_attention_heads"]
  4573. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4574. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4575. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  4576. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4577. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  4578. self.gguf_writer.add_expert_weights_scale(1.0)
  4579. self.gguf_writer.add_expert_count(hparams["num_experts"])
  4580. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  4581. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  4582. _experts: list[dict[str, Tensor]] | None = None
  4583. @staticmethod
  4584. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  4585. if n_head_kv is not None and n_head != n_head_kv:
  4586. n_head = n_head_kv
  4587. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  4588. .swapaxes(1, 2)
  4589. .reshape(weights.shape))
  4590. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4591. n_head = self.hparams["num_attention_heads"]
  4592. n_kv_head = self.hparams.get("num_key_value_heads")
  4593. n_embd = self.hparams["hidden_size"]
  4594. head_dim = self.hparams.get("head_dim") or n_embd // n_head
  4595. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  4596. if name.endswith("attention.dense.weight"):
  4597. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  4598. elif name.endswith("query_key_value.weight"):
  4599. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  4600. return [
  4601. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  4602. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  4603. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  4604. ]
  4605. elif name.find("mlp.experts") != -1:
  4606. n_experts = self.hparams["num_experts"]
  4607. assert bid is not None
  4608. tensors: list[tuple[str, Tensor]] = []
  4609. if self._experts is None:
  4610. self._experts = [{} for _ in range(self.block_count)]
  4611. self._experts[bid][name] = data_torch
  4612. if len(self._experts[bid]) >= n_experts * 3:
  4613. # merge the experts into a single 3d tensor
  4614. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4615. datas: list[Tensor] = []
  4616. for xid in range(n_experts):
  4617. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4618. datas.append(self._experts[bid][ename])
  4619. del self._experts[bid][ename]
  4620. data_torch = torch.stack(datas, dim=0)
  4621. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4622. new_name = self.map_tensor_name(merged_name)
  4623. tensors.append((new_name, data_torch))
  4624. return tensors
  4625. new_name = self.map_tensor_name(name)
  4626. if new_name == output_name and self.hparams.get("norm_head"):
  4627. data_torch = data_torch.float()
  4628. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  4629. return [(new_name, data_torch)]
  4630. def prepare_tensors(self):
  4631. super().prepare_tensors()
  4632. if self._experts is not None:
  4633. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4634. experts = [k for d in self._experts for k in d.keys()]
  4635. if len(experts) > 0:
  4636. raise ValueError(f"Unprocessed experts: {experts}")
  4637. @ModelBase.register("ChameleonForConditionalGeneration")
  4638. @ModelBase.register("ChameleonForCausalLM") # obsolete
  4639. class ChameleonModel(TextModel):
  4640. model_arch = gguf.MODEL_ARCH.CHAMELEON
  4641. def set_gguf_parameters(self):
  4642. super().set_gguf_parameters()
  4643. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  4644. def set_vocab(self):
  4645. self._set_vocab_gpt2()
  4646. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4647. # ignore image tokenizer for now
  4648. # TODO: remove this once image support is implemented for Chameleon
  4649. if name.startswith("model.vqmodel"):
  4650. return []
  4651. n_head = self.hparams["num_attention_heads"]
  4652. n_kv_head = self.hparams.get("num_key_value_heads")
  4653. hidden_dim = self.hparams.get("hidden_size")
  4654. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4655. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4656. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4657. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4658. if name.endswith(("q_norm.weight", "q_norm.bias")):
  4659. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  4660. if name.endswith(("k_norm.weight", "k_norm.bias")):
  4661. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  4662. return [(self.map_tensor_name(name), data_torch)]
  4663. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  4664. @staticmethod
  4665. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  4666. head_dim = hidden_dim // n_heads
  4667. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  4668. data_torch = data_torch.repeat_interleave(n_heads, 0)
  4669. return data_torch
  4670. ###### CONVERSION LOGIC ######
  4671. # tree of lazy tensors
  4672. class LazyTorchTensor(gguf.LazyBase):
  4673. _tensor_type = torch.Tensor
  4674. # to keep the type-checker happy
  4675. dtype: torch.dtype
  4676. shape: torch.Size
  4677. # only used when converting a torch.Tensor to a np.ndarray
  4678. _dtype_map: dict[torch.dtype, type] = {
  4679. torch.float16: np.float16,
  4680. torch.float32: np.float32,
  4681. }
  4682. # used for safetensors slices
  4683. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  4684. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  4685. _dtype_str_map: dict[str, torch.dtype] = {
  4686. "F64": torch.float64,
  4687. "F32": torch.float32,
  4688. "BF16": torch.bfloat16,
  4689. "F16": torch.float16,
  4690. # "U64": torch.uint64,
  4691. "I64": torch.int64,
  4692. # "U32": torch.uint32,
  4693. "I32": torch.int32,
  4694. # "U16": torch.uint16,
  4695. "I16": torch.int16,
  4696. "U8": torch.uint8,
  4697. "I8": torch.int8,
  4698. "BOOL": torch.bool,
  4699. "F8_E4M3": torch.float8_e4m3fn,
  4700. "F8_E5M2": torch.float8_e5m2,
  4701. }
  4702. def numpy(self) -> gguf.LazyNumpyTensor:
  4703. dtype = self._dtype_map[self.dtype]
  4704. return gguf.LazyNumpyTensor(
  4705. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  4706. args=(self,),
  4707. func=(lambda s: s.numpy())
  4708. )
  4709. @classmethod
  4710. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  4711. return torch.empty(size=shape, dtype=dtype, device="meta")
  4712. @classmethod
  4713. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  4714. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  4715. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  4716. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  4717. return cast(torch.Tensor, lazy)
  4718. @classmethod
  4719. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  4720. dtype = cls._dtype_str_map[remote_tensor.dtype]
  4721. shape = remote_tensor.shape
  4722. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  4723. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.frombuffer(r.data(), dtype=dtype).reshape(shape))
  4724. return cast(torch.Tensor, lazy)
  4725. @classmethod
  4726. def __torch_function__(cls, func, types, args=(), kwargs=None):
  4727. del types # unused
  4728. if kwargs is None:
  4729. kwargs = {}
  4730. if func is torch.Tensor.numpy:
  4731. return args[0].numpy()
  4732. return cls._wrap_fn(func)(*args, **kwargs)
  4733. def parse_args() -> argparse.Namespace:
  4734. parser = argparse.ArgumentParser(
  4735. description="Convert a huggingface model to a GGML compatible file")
  4736. parser.add_argument(
  4737. "--vocab-only", action="store_true",
  4738. help="extract only the vocab",
  4739. )
  4740. parser.add_argument(
  4741. "--outfile", type=Path,
  4742. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  4743. )
  4744. parser.add_argument(
  4745. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  4746. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  4747. )
  4748. parser.add_argument(
  4749. "--bigendian", action="store_true",
  4750. help="model is executed on big endian machine",
  4751. )
  4752. parser.add_argument(
  4753. "model", type=Path,
  4754. help="directory containing model file",
  4755. nargs="?",
  4756. )
  4757. parser.add_argument(
  4758. "--use-temp-file", action="store_true",
  4759. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  4760. )
  4761. parser.add_argument(
  4762. "--no-lazy", action="store_true",
  4763. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  4764. )
  4765. parser.add_argument(
  4766. "--model-name", type=str, default=None,
  4767. help="name of the model",
  4768. )
  4769. parser.add_argument(
  4770. "--verbose", action="store_true",
  4771. help="increase output verbosity",
  4772. )
  4773. parser.add_argument(
  4774. "--split-max-tensors", type=int, default=0,
  4775. help="max tensors in each split",
  4776. )
  4777. parser.add_argument(
  4778. "--split-max-size", type=str, default="0",
  4779. help="max size per split N(M|G)",
  4780. )
  4781. parser.add_argument(
  4782. "--dry-run", action="store_true",
  4783. help="only print out a split plan and exit, without writing any new files",
  4784. )
  4785. parser.add_argument(
  4786. "--no-tensor-first-split", action="store_true",
  4787. help="do not add tensors to the first split (disabled by default)"
  4788. )
  4789. parser.add_argument(
  4790. "--metadata", type=Path,
  4791. help="Specify the path for an authorship metadata override file"
  4792. )
  4793. parser.add_argument(
  4794. "--print-supported-models", action="store_true",
  4795. help="Print the supported models"
  4796. )
  4797. parser.add_argument(
  4798. "--remote", action="store_true",
  4799. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  4800. )
  4801. parser.add_argument(
  4802. "--mmproj", action="store_true",
  4803. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  4804. )
  4805. args = parser.parse_args()
  4806. if not args.print_supported_models and args.model is None:
  4807. parser.error("the following arguments are required: model")
  4808. return args
  4809. def split_str_to_n_bytes(split_str: str) -> int:
  4810. if split_str.endswith("K"):
  4811. n = int(split_str[:-1]) * 1000
  4812. elif split_str.endswith("M"):
  4813. n = int(split_str[:-1]) * 1000 * 1000
  4814. elif split_str.endswith("G"):
  4815. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  4816. elif split_str.isnumeric():
  4817. n = int(split_str)
  4818. else:
  4819. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  4820. if n < 0:
  4821. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  4822. return n
  4823. def get_model_architecture(dir_model: Path, model_type: ModelType, hparams: Any = None) -> str:
  4824. hparams = ModelBase.load_hparams(dir_model) if hparams is None else hparams
  4825. text_config = hparams.get("text_config", {})
  4826. vision_config = hparams.get("vision_config", {})
  4827. arch = hparams["architectures"][0]
  4828. # if "architectures" is found in the sub-config, use that instead
  4829. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  4830. arch = text_config["architectures"][0]
  4831. elif model_type == ModelType.VISION and vision_config.get("architectures") is not None:
  4832. arch = vision_config["architectures"][0]
  4833. return arch
  4834. def main() -> None:
  4835. args = parse_args()
  4836. if args.print_supported_models:
  4837. logger.error("Supported models:")
  4838. ModelBase.print_registered_models()
  4839. sys.exit(0)
  4840. if args.verbose:
  4841. logging.basicConfig(level=logging.DEBUG)
  4842. else:
  4843. logging.basicConfig(level=logging.INFO)
  4844. dir_model = args.model
  4845. if args.remote:
  4846. from huggingface_hub import snapshot_download
  4847. local_dir = snapshot_download(
  4848. repo_id=str(dir_model),
  4849. allow_patterns=["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"])
  4850. dir_model = Path(local_dir)
  4851. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  4852. if not dir_model.is_dir():
  4853. logger.error(f'Error: {args.model} is not a directory')
  4854. sys.exit(1)
  4855. ftype_map: dict[str, gguf.LlamaFileType] = {
  4856. "f32": gguf.LlamaFileType.ALL_F32,
  4857. "f16": gguf.LlamaFileType.MOSTLY_F16,
  4858. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  4859. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  4860. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  4861. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  4862. "auto": gguf.LlamaFileType.GUESSED,
  4863. }
  4864. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  4865. if args.use_temp_file and is_split:
  4866. logger.error("Error: Cannot use temp file when splitting")
  4867. sys.exit(1)
  4868. if args.outfile is not None:
  4869. fname_out = args.outfile
  4870. elif args.remote:
  4871. # if remote, use the model ID as the output file name
  4872. fname_out = Path("./" + str(args.model).replace("/", "-") + "-{ftype}.gguf")
  4873. else:
  4874. fname_out = dir_model
  4875. logger.info(f"Loading model: {dir_model.name}")
  4876. if args.mmproj:
  4877. if "mmproj" not in fname_out.name:
  4878. fname_out = ModelBase.add_prefix_to_filename(fname_out, "mmproj-")
  4879. with torch.inference_mode():
  4880. output_type = ftype_map[args.outtype]
  4881. model_type = ModelType.VISION if args.mmproj else ModelType.TEXT
  4882. model_architecture = get_model_architecture(dir_model, model_type)
  4883. logger.info(f"Model architecture: {model_architecture}")
  4884. try:
  4885. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  4886. except NotImplementedError:
  4887. logger.error(f"Model {model_architecture} is not supported")
  4888. sys.exit(1)
  4889. model_instance = model_class(dir_model, output_type, fname_out,
  4890. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  4891. eager=args.no_lazy,
  4892. metadata_override=args.metadata, model_name=args.model_name,
  4893. split_max_tensors=args.split_max_tensors,
  4894. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  4895. small_first_shard=args.no_tensor_first_split,
  4896. remote_hf_model_id=str(args.model) if args.remote else None)
  4897. if args.vocab_only:
  4898. logger.info("Exporting model vocab...")
  4899. model_instance.write_vocab()
  4900. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  4901. else:
  4902. logger.info("Exporting model...")
  4903. model_instance.write()
  4904. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  4905. logger.info(f"Model successfully exported to {out_path}")
  4906. if __name__ == '__main__':
  4907. main()