| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962 |
- #include "ggml-vulkan.h"
- #include <vulkan/vulkan_core.h>
- #if defined(GGML_VULKAN_RUN_TESTS) || defined(GGML_VULKAN_CHECK_RESULTS)
- #include <chrono>
- #include "ggml-cpu.h"
- #endif
- // See https://github.com/KhronosGroup/Vulkan-Hpp?tab=readme-ov-file#extensions--per-device-function-pointers-
- #define VULKAN_HPP_DISPATCH_LOADER_DYNAMIC 1
- // We use VULKAN_HPP_DEFAULT_DISPATCHER, but not VULKAN_HPP_DEFAULT_DISPATCH_LOADER_DYNAMIC_STORAGE
- // to avoid conflicts with applications or other libraries who might use it.
- #if VK_HEADER_VERSION >= 301
- namespace vk::detail { class DispatchLoaderDynamic; }
- using vk::detail::DispatchLoaderDynamic;
- #else
- namespace vk { class DispatchLoaderDynamic; }
- using vk::DispatchLoaderDynamic;
- #endif
- DispatchLoaderDynamic & ggml_vk_default_dispatcher();
- #define VULKAN_HPP_DEFAULT_DISPATCHER ggml_vk_default_dispatcher()
- #include <vulkan/vulkan.hpp>
- #include <algorithm>
- #include <cmath>
- #include <iomanip>
- #include <iostream>
- #include <tuple>
- #include <vector>
- #include <sstream>
- #include <utility>
- #include <memory>
- #include <limits>
- #include <map>
- #include <set>
- #include <unordered_map>
- #include <memory>
- #include <mutex>
- #include <future>
- #include <thread>
- #if defined(_MSC_VER)
- # define NOMINMAX 1
- # include <windows.h>
- # define YIELD() YieldProcessor()
- #elif defined(__clang__) || defined(__GNUC__)
- # if defined(__x86_64__) ||defined(__i386__)
- # include <immintrin.h>
- # define YIELD() _mm_pause()
- # elif defined(__arm__) || defined(__aarch64__)
- # if defined(__clang__)
- # include <arm_acle.h>
- # define YIELD() __yield()
- # else
- # define YIELD() asm volatile("yield")
- # endif
- # endif
- #endif
- #if !defined(YIELD)
- #define YIELD()
- #endif
- #include "ggml-impl.h"
- #include "ggml-backend-impl.h"
- #include "ggml-vulkan-shaders.hpp"
- // remove this once it's more widely available in the SDK
- #if !defined(VK_KHR_shader_bfloat16)
- #define VK_KHR_shader_bfloat16 1
- #define VK_KHR_SHADER_BFLOAT16_SPEC_VERSION 1
- #define VK_KHR_SHADER_BFLOAT16_EXTENSION_NAME "VK_KHR_shader_bfloat16"
- #define VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_BFLOAT16_FEATURES_KHR ((VkStructureType)1000141000)
- #define VK_COMPONENT_TYPE_BFLOAT16_KHR ((VkComponentTypeKHR)1000141000)
- typedef struct VkPhysicalDeviceShaderBfloat16FeaturesKHR {
- VkStructureType sType;
- void* pNext;
- VkBool32 shaderBFloat16Type;
- VkBool32 shaderBFloat16DotProduct;
- VkBool32 shaderBFloat16CooperativeMatrix;
- } VkPhysicalDeviceShaderBfloat16FeaturesKHR;
- #endif
- #define ROUNDUP_POW2(M, N) (((M) + (N) - 1) & ~((N) - 1))
- #define CEIL_DIV(M, N) (((M) + (N)-1) / (N))
- static bool is_pow2(uint32_t x) { return x > 1 && (x & (x-1)) == 0; }
- #define VK_VENDOR_ID_AMD 0x1002
- #define VK_VENDOR_ID_APPLE 0x106b
- #define VK_VENDOR_ID_INTEL 0x8086
- #define VK_VENDOR_ID_NVIDIA 0x10de
- #define VK_DEVICE_DESCRIPTOR_POOL_SIZE 256
- #define GGML_VK_MAX_NODES 8192
- #define VK_CHECK(err, msg) \
- do { \
- vk::Result err_ = (err); \
- if (err_ != vk::Result::eSuccess) { \
- fprintf(stderr, "ggml_vulkan: %s error %s at %s:%d\n", \
- #err, to_string(err_).c_str(), __FILE__, __LINE__); \
- exit(1); \
- } \
- } while (0)
- #ifdef GGML_VULKAN_DEBUG
- #define VK_LOG_DEBUG(msg) std::cerr << msg << std::endl
- #else
- #define VK_LOG_DEBUG(msg) ((void) 0)
- #endif // GGML_VULKAN_DEBUG
- struct ggml_backend_vk_context;
- #define MAX_PARAMETER_COUNT 12
- // Max number of adds that can be fused without exceeding MAX_PARAMETER_COUNT.
- #define MAX_FUSED_ADDS (MAX_PARAMETER_COUNT - 3)
- struct vk_pipeline_struct {
- std::string name;
- vk::ShaderModule shader_module;
- vk::PipelineLayout layout;
- vk::Pipeline pipeline;
- uint32_t push_constant_size;
- uint32_t parameter_count;
- std::array<uint32_t, 3> wg_denoms;
- uint32_t align;
- // true if fields have been set by ggml_vk_create_pipeline
- bool initialized {};
- // set to true to request the pipeline is compiled
- std::atomic<bool> needed {};
- // set to true when the shader has been compiled
- std::atomic<bool> compiled {};
- // number of registers used, extracted from pipeline executable properties
- uint32_t register_count {};
- };
- typedef std::shared_ptr<vk_pipeline_struct> vk_pipeline;
- typedef std::weak_ptr<vk_pipeline_struct> vk_pipeline_ref;
- static void ggml_vk_destroy_pipeline(vk::Device& device, vk_pipeline& pipeline);
- struct vk_matmul_pipeline_struct {
- vk_pipeline l, m, s;
- vk_pipeline a_l, a_m, a_s;
- // Returns true when all unaligned pipelines are null.
- // We only check for unaligned variants since one of the unaligned pipelines must exist
- // while aligned pipelines are optional
- bool is_empty() const {
- return l == nullptr && m == nullptr && s == nullptr;
- }
- };
- typedef std::shared_ptr<vk_matmul_pipeline_struct> vk_matmul_pipeline;
- struct vk_matmul_pipeline2 {
- vk_matmul_pipeline2() {
- f16acc = std::make_shared<vk_matmul_pipeline_struct>();
- f32acc = std::make_shared<vk_matmul_pipeline_struct>();
- }
- vk_matmul_pipeline f32acc;
- vk_matmul_pipeline f16acc;
- };
- struct vk_device_struct;
- typedef std::shared_ptr<vk_device_struct> vk_device;
- typedef std::weak_ptr<vk_device_struct> vk_device_ref;
- struct vk_buffer_struct;
- typedef std::shared_ptr<vk_buffer_struct> vk_buffer;
- typedef std::weak_ptr<vk_buffer_struct> vk_buffer_ref;
- struct ggml_backend_vk_buffer_type_context {
- std::string name;
- vk_device device;
- };
- struct vk_queue;
- // Stores command pool/buffers. There's an instance of this
- // for each (context,queue) pair and for each (device,queue) pair.
- struct vk_command_pool {
- void init(vk_device& device, vk_queue *q_);
- void destroy(vk::Device& device);
- vk::CommandPool pool;
- uint32_t cmd_buffer_idx;
- std::vector<vk::CommandBuffer> cmd_buffers;
- vk_queue *q;
- };
- // Prevent simultaneous submissions to the same queue.
- // This could be per vk_queue if we stopped having two vk_queue structures
- // sharing the same vk::Queue.
- static std::mutex queue_mutex;
- struct vk_queue {
- uint32_t queue_family_index;
- vk::Queue queue;
- vk_command_pool cmd_pool;
- vk::PipelineStageFlags stage_flags;
- bool transfer_only;
- // copy everything except the cmd_pool
- void copyFrom(vk_queue &other) {
- queue_family_index = other.queue_family_index;
- queue = other.queue;
- stage_flags = other.stage_flags;
- transfer_only = other.transfer_only;
- }
- };
- static const char * ggml_backend_vk_buffer_type_name(ggml_backend_buffer_type_t buft);
- static ggml_backend_buffer_t ggml_backend_vk_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size);
- static size_t ggml_backend_vk_buffer_type_get_alignment(ggml_backend_buffer_type_t buft);
- static size_t ggml_backend_vk_buffer_type_get_max_size(ggml_backend_buffer_type_t buft);
- static size_t ggml_backend_vk_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor);
- static ggml_backend_buffer_type_i ggml_backend_vk_buffer_type_interface = {
- /* .get_name = */ ggml_backend_vk_buffer_type_name,
- /* .alloc_buffer = */ ggml_backend_vk_buffer_type_alloc_buffer,
- /* .get_alignment = */ ggml_backend_vk_buffer_type_get_alignment,
- /* .get_max_size = */ ggml_backend_vk_buffer_type_get_max_size,
- /* .get_alloc_size = */ ggml_backend_vk_buffer_type_get_alloc_size,
- /* .is_host = */ NULL,
- };
- #ifdef GGML_VULKAN_MEMORY_DEBUG
- class vk_memory_logger;
- #endif
- class vk_perf_logger;
- static void ggml_vk_destroy_buffer(vk_buffer& buf);
- static void ggml_vk_synchronize(ggml_backend_vk_context * ctx);
- static constexpr uint32_t mul_mat_vec_max_cols = 8;
- static constexpr uint32_t p021_max_gqa_ratio = 8;
- enum vk_device_architecture {
- OTHER,
- AMD_GCN,
- AMD_RDNA1,
- AMD_RDNA2,
- AMD_RDNA3,
- INTEL_XE2,
- NVIDIA_PRE_TURING,
- };
- static vk_device_architecture get_device_architecture(const vk::PhysicalDevice& device) {
- vk::PhysicalDeviceProperties props = device.getProperties();
- if (props.vendorID == VK_VENDOR_ID_AMD) {
- const std::vector<vk::ExtensionProperties> ext_props = device.enumerateDeviceExtensionProperties();
- bool amd_shader_core_properties = false;
- bool integer_dot_product = false;
- bool subgroup_size_control = false;
- for (const auto& properties : ext_props) {
- if (strcmp("VK_AMD_shader_core_properties", properties.extensionName) == 0) {
- amd_shader_core_properties = true;
- } else if (strcmp("VK_KHR_shader_integer_dot_product", properties.extensionName) == 0) {
- integer_dot_product = true;
- } else if (strcmp("VK_EXT_subgroup_size_control", properties.extensionName) == 0) {
- subgroup_size_control = true;
- }
- }
- if (!amd_shader_core_properties || !integer_dot_product || !subgroup_size_control) {
- return vk_device_architecture::OTHER;
- }
- vk::PhysicalDeviceProperties2 props2;
- vk::PhysicalDeviceShaderCorePropertiesAMD shader_core_props_amd;
- vk::PhysicalDeviceShaderIntegerDotProductPropertiesKHR integer_dot_props;
- vk::PhysicalDeviceSubgroupSizeControlPropertiesEXT subgroup_size_control_props;
- props2.pNext = &shader_core_props_amd;
- shader_core_props_amd.pNext = &integer_dot_props;
- integer_dot_props.pNext = &subgroup_size_control_props;
- device.getProperties2(&props2);
- if (subgroup_size_control_props.maxSubgroupSize == 64 && subgroup_size_control_props.minSubgroupSize == 64) {
- return vk_device_architecture::AMD_GCN;
- }
- if (subgroup_size_control_props.maxSubgroupSize == 64 && subgroup_size_control_props.minSubgroupSize == 32) {
- // RDNA
- if (shader_core_props_amd.wavefrontsPerSimd == 20) {
- return vk_device_architecture::AMD_RDNA1;
- }
- if (integer_dot_props.integerDotProduct4x8BitPackedMixedSignednessAccelerated) {
- return vk_device_architecture::AMD_RDNA3;
- }
- return vk_device_architecture::AMD_RDNA2;
- }
- } else if (props.vendorID == VK_VENDOR_ID_INTEL) {
- const std::vector<vk::ExtensionProperties> ext_props = device.enumerateDeviceExtensionProperties();
- bool subgroup_size_control = false;
- for (const auto& properties : ext_props) {
- if (strcmp("VK_EXT_subgroup_size_control", properties.extensionName) == 0) {
- subgroup_size_control = true;
- }
- }
- if (!subgroup_size_control) {
- return vk_device_architecture::OTHER;
- }
- vk::PhysicalDeviceProperties2 props2;
- vk::PhysicalDeviceSubgroupSizeControlPropertiesEXT subgroup_size_control_props;
- props2.pNext = &subgroup_size_control_props;
- device.getProperties2(&props2);
- if (subgroup_size_control_props.minSubgroupSize == 16) {
- // Xe2 architecture uses SIMD16 while previous Xe and Gen architecture uses SIMD8.
- // Minimum subgroup size matches the SIMD width so we distinguish architecture by checking this value.
- // https://www.intel.com/content/www/us/en/content-details/824434/2024-intel-tech-tour-xe2-and-lunar-lake-s-gpu.html
- // https://www.intel.com/content/www/us/en/docs/oneapi/optimization-guide-gpu/2025-0/intel-xe-gpu-architecture.html
- return vk_device_architecture::INTEL_XE2;
- }
- } else if (props.vendorID == VK_VENDOR_ID_NVIDIA) {
- const std::vector<vk::ExtensionProperties> ext_props = device.enumerateDeviceExtensionProperties();
- bool cooperative_matrix = false;
- // Detect "pre-turing" based on lack of coopmat support.
- for (const auto& properties : ext_props) {
- if (strcmp("VK_KHR_cooperative_matrix", properties.extensionName) == 0) {
- cooperative_matrix = true;
- break;
- }
- }
- if (!cooperative_matrix) {
- return vk_device_architecture::NVIDIA_PRE_TURING;
- }
- }
- return vk_device_architecture::OTHER;
- }
- enum vk_conv_shapes {
- CONV_SHAPE_128x128,
- CONV_SHAPE_64x32,
- CONV_SHAPE_32x256,
- CONV_SHAPE_COUNT,
- };
- uint32_t conv_shapes_wg_denoms[][3] = {
- { 128, 128, 1 },
- { 64, 32, 1 },
- { 32, 256, 1 },
- };
- enum dmmv_wg_sizes {
- DMMV_WG_SIZE_SUBGROUP,
- DMMV_WG_SIZE_LARGE,
- DMMV_WG_SIZE_COUNT,
- };
- enum FaCodePath {
- FA_SCALAR,
- FA_COOPMAT1,
- FA_COOPMAT2,
- };
- struct vk_fa_pipeline_state {
- vk_fa_pipeline_state(uint32_t HSK, uint32_t HSV, bool small_rows, FaCodePath path, bool aligned, bool f32acc)
- : HSK(HSK), HSV(HSV), small_rows(small_rows), path(path), aligned(aligned), f32acc(f32acc) {}
- uint32_t HSK, HSV;
- bool small_rows;
- FaCodePath path;
- bool aligned;
- bool f32acc;
- bool operator<(const vk_fa_pipeline_state &b) const {
- return std::tie(HSK, HSV, small_rows, path, aligned, f32acc) <
- std::tie(b.HSK, b.HSV, b.small_rows, b.path, b.aligned, b.f32acc);
- }
- };
- struct vk_conv2d_pipeline_state {
- vk_conv2d_pipeline_state(uint32_t s0, uint32_t s1, uint32_t p0, uint32_t p1, uint32_t d0, uint32_t d1, uint32_t KW, uint32_t KH)
- : s0(s0), s1(s1), p0(p0), p1(p1), d0(d0), d1(d1), KW(KW), KH(KH) {}
- uint32_t s0, s1, p0, p1, d0, d1, KW, KH;
- bool operator<(const vk_conv2d_pipeline_state &b) const {
- return std::tie(s0, s1, p0, p1, d0, d1, KW, KH) <
- std::tie(b.s0, b.s1, b.p0, b.p1, b.d0, b.d1, b.KW, b.KH);
- }
- };
- enum shader_reduction_mode {
- SHADER_REDUCTION_MODE_SHMEM,
- SHADER_REDUCTION_MODE_HYBRID,
- SHADER_REDUCTION_MODE_SUBGROUP,
- SHADER_REDUCTION_MODE_COUNT,
- };
- // argsort pipelines for up to 1<<10 invocations per workgroup
- static constexpr uint32_t num_argsort_pipelines = 11;
- static constexpr uint32_t num_topk_moe_pipelines = 10;
- static constexpr std::initializer_list<ggml_op> topk_moe_early_softmax_norm{ GGML_OP_SOFT_MAX, GGML_OP_RESHAPE, GGML_OP_ARGSORT,
- GGML_OP_VIEW, GGML_OP_GET_ROWS, GGML_OP_RESHAPE,
- GGML_OP_SUM_ROWS, GGML_OP_CLAMP, GGML_OP_DIV,
- GGML_OP_RESHAPE };
- static constexpr std::initializer_list<ggml_op> topk_moe_early_softmax { GGML_OP_SOFT_MAX, GGML_OP_RESHAPE, GGML_OP_ARGSORT,
- GGML_OP_VIEW, GGML_OP_GET_ROWS };
- static constexpr std::initializer_list<ggml_op> topk_moe_late_softmax { GGML_OP_ARGSORT, GGML_OP_VIEW,
- GGML_OP_GET_ROWS, GGML_OP_RESHAPE,
- GGML_OP_SOFT_MAX, GGML_OP_RESHAPE };
- //node #978 ( SOFT_MAX): ffn_moe_probs-15 ( 0K) [Vulka ] use=2: ffn_moe_logits-15 ( 0K) [Vulka ]
- //node #979 ( RESHAPE): ffn_moe_probs-15 (re ( 0K) [Vulka ] use=1: ffn_moe_probs-15 ( 0K) [Vulka ]
- //node #980 ( ARGSORT): ffn_moe_argsort-15 ( 0K) [Vulka ] use=1: ffn_moe_probs-15 ( 0K) [Vulka ]
- //node #981 ( VIEW): ffn_moe_topk-15 ( 0K) [Vulka ] use=4: ffn_moe_argsort-15 ( 0K) [Vulka ]
- //node #982 ( GET_ROWS): ffn_moe_weights-15 ( 0K) [Vulka ] use=1: ffn_moe_probs-15 (re ( 0K) [Vulka ] ffn_moe_topk-15 ( 0K) [Vulka ]
- //node #983 ( RESHAPE): ffn_moe_weights-15 ( ( 0K) [Vulka ] use=2: ffn_moe_weights-15 ( 0K) [Vulka ]
- //node #984 ( SUM_ROWS): ffn_moe_weights_sum- ( 0K) [Vulka ] use=1: ffn_moe_weights-15 ( ( 0K) [Vulka ]
- //node #985 ( CLAMP): ffn_moe_weights_sum_ ( 0K) [Vulka ] use=1: ffn_moe_weights_sum- ( 0K) [Vulka ]
- //node #986 ( DIV): ffn_moe_weights_norm ( 0K) [Vulka ] use=1: ffn_moe_weights-15 ( ( 0K) [Vulka ] ffn_moe_weights_sum_ ( 0K) [Vulka ]
- //node #987 ( RESHAPE): ffn_moe_weights_norm ( 0K) [Vulka ] use=1: ffn_moe_weights_norm ( 0K) [Vulka ]
- static constexpr std::initializer_list<std::array<int, 3>> topk_moe_early_softmax_norm_edges {
- { 1, 0, 0 }, // reshape->src[0] == softmax
- { 2, 0, 0 }, // argsort->src[0] == softmax
- { 3, 0, 2 }, // view->src[0] == argsort
- { 4, 0, 1 }, // get_rows->src[0] == reshape
- { 4, 1, 3 }, // get_rows->src[1] == view
- { 5, 0, 4 }, // reshape->src[0] == get_rows
- { 6, 0, 5 }, // sum_rows->src[0] == reshape
- { 7, 0, 6 }, // clamp->src[0] == sum_rows
- { 8, 0, 5 }, // div->src[0] == reshape
- { 8, 1, 7 }, // div->src[1] == clamp
- { 9, 0, 8 }, // reshape->src[0] == div
- };
- // same as early_softmax_norm but ending after the get_rows
- static constexpr std::initializer_list<std::array<int, 3>> topk_moe_early_softmax_edges {
- { 1, 0, 0 }, // reshape->src[0] == softmax
- { 2, 0, 0 }, // argsort->src[0] == softmax
- { 3, 0, 2 }, // view->src[0] == argsort
- { 4, 0, 1 }, // get_rows->src[0] == reshape
- { 4, 1, 3 }, // get_rows->src[1] == view
- };
- //node #652 ( ARGSORT): ffn_moe_argsort-11 ( 0K) [Vulka ] use=1: ffn_moe_probs-11 ( 0K) [Vulka ]
- //node #653 ( VIEW): ffn_moe_topk-11 ( 0K) [Vulka ] use=7: ffn_moe_argsort-11 ( 0K) [Vulka ]
- //node #654 ( GET_ROWS): ffn_moe_weights-11 ( 0K) [Vulka ] use=1: ffn_moe_probs-11 (re ( 0K) [Vulka ] ffn_moe_topk-11 ( 0K) [Vulka ]
- //node #655 ( RESHAPE): ffn_moe_weights-11 ( ( 0K) [Vulka ] use=1: ffn_moe_weights-11 ( 0K) [Vulka ]
- //node #656 ( SOFT_MAX): node_656 ( 0K) [Vulka ] use=1: ffn_moe_weights-11 ( ( 0K) [Vulka ]
- //node #657 ( RESHAPE): ffn_moe_weights_soft ( 0K) [Vulka ] use=1: node_656 ( 0K) [Vulka ]
- static constexpr std::initializer_list<std::array<int, 3>> topk_moe_late_softmax_edges {
- { 1, 0, 0 }, // view->src[0] == argsort
- { 2, 1, 1 }, // get_rows->src[1] == view
- { 3, 0, 2 }, // reshape->src[0] == get_rows
- { 4, 0, 3 }, // soft_max->src[0] == reshape
- { 5, 0, 4 }, // reshape->src[0] == soft_max
- };
- enum topk_moe_mode {
- TOPK_MOE_EARLY_SOFTMAX,
- TOPK_MOE_EARLY_SOFTMAX_NORM,
- TOPK_MOE_LATE_SOFTMAX,
- TOPK_MOE_COUNT,
- };
- static topk_moe_mode ggml_vk_num_additional_ops_to_topk_moe_mode(uint32_t num) {
- topk_moe_mode mode = num == topk_moe_early_softmax_norm.size() - 1 ? TOPK_MOE_EARLY_SOFTMAX_NORM :
- num == topk_moe_early_softmax.size() - 1 ? TOPK_MOE_EARLY_SOFTMAX :
- TOPK_MOE_LATE_SOFTMAX;
- return mode;
- }
- static constexpr std::initializer_list<std::array<int, 3>> rope_view_set_rows_edges {
- { 1, 0, 0 }, // view->src[0] == rope
- { 2, 0, 1 }, // set_rows->src[0] == view
- };
- static constexpr std::initializer_list<std::array<int, 3>> rms_norm_mul_rope_view_set_rows_edges {
- { 1, 0, 0 }, // mul->src[0] == rms
- { 2, 0, 1 }, // rope->src[0] == mul
- { 3, 0, 2 }, // view->src[0] == rope
- { 4, 0, 3 }, // set_rows->src[0] == view
- };
- struct vk_device_struct {
- std::recursive_mutex mutex;
- vk::PhysicalDevice physical_device;
- vk::PhysicalDeviceProperties properties;
- std::string name;
- uint64_t max_memory_allocation_size;
- uint64_t max_buffer_size;
- uint64_t suballocation_block_size;
- bool fp16;
- bool bf16;
- bool pipeline_robustness;
- vk::Device device;
- uint32_t vendor_id;
- vk::DriverId driver_id;
- vk_device_architecture architecture;
- vk_queue compute_queue;
- vk_queue transfer_queue;
- bool single_queue;
- uint32_t subgroup_size;
- uint32_t shader_core_count;
- bool uma;
- bool prefer_host_memory;
- bool float_controls_rte_fp16;
- bool subgroup_arithmetic;
- bool subgroup_shuffle;
- bool subgroup_ballot;
- bool subgroup_clustered;
- bool subgroup_vote;
- bool multi_add;
- bool shader_int64;
- bool buffer_device_address;
- bool vulkan_memory_model;
- bool add_rms_fusion;
- uint32_t partials_binding_alignment;
- bool integer_dot_product;
- // 0: default, 1: force mmvq, -1: disable mmvq
- int32_t mmvq_mode;
- bool subgroup_size_control;
- uint32_t subgroup_min_size;
- uint32_t subgroup_max_size;
- bool subgroup_require_full_support;
- // floor(log2(maxComputeWorkGroupInvocations))
- uint32_t max_workgroup_size_log2 {};
- bool coopmat_support;
- bool coopmat_acc_f32_support {};
- bool coopmat_acc_f16_support {};
- bool coopmat_bf16_support {};
- bool coopmat_support_16x16x16_f16acc {};
- bool coopmat_support_16x16x16_f32acc {};
- bool coopmat1_fa_support {};
- uint32_t coopmat_m;
- uint32_t coopmat_n;
- uint32_t coopmat_k;
- bool coopmat_int_support;
- uint32_t coopmat_int_m;
- uint32_t coopmat_int_n;
- uint32_t coopmat_int_k;
- bool coopmat2;
- bool pipeline_executable_properties_support {};
- size_t idx;
- bool mul_mat_l[GGML_TYPE_COUNT];
- bool mul_mat_m[GGML_TYPE_COUNT];
- bool mul_mat_s[GGML_TYPE_COUNT];
- bool mul_mat_id_l[GGML_TYPE_COUNT];
- bool mul_mat_id_m[GGML_TYPE_COUNT];
- bool mul_mat_id_s[GGML_TYPE_COUNT];
- vk::DescriptorSetLayout dsl;
- vk_matmul_pipeline pipeline_matmul_f32 {};
- vk_matmul_pipeline pipeline_matmul_f32_f16 {};
- vk_matmul_pipeline pipeline_matmul_bf16 {};
- vk_matmul_pipeline2 pipeline_matmul_f16;
- vk_matmul_pipeline2 pipeline_matmul_f16_f32;
- vk_matmul_pipeline2 pipeline_dequant_mul_mat_mat[GGML_TYPE_COUNT];
- vk_matmul_pipeline2 pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_COUNT];
- vk_matmul_pipeline2 pipeline_dequant_mul_mat_mat_q8_1[GGML_TYPE_COUNT];
- vk_matmul_pipeline pipeline_matmul_id_f32 {};
- vk_matmul_pipeline pipeline_matmul_id_bf16 {};
- vk_matmul_pipeline2 pipeline_matmul_id_f16;
- vk_matmul_pipeline2 pipeline_matmul_id_f16_f32;
- vk_matmul_pipeline2 pipeline_dequant_mul_mat_mat_id[GGML_TYPE_COUNT];
- vk_matmul_pipeline2 pipeline_dequant_mul_mat_mat_id_q8_1[GGML_TYPE_COUNT];
- vk_pipeline pipeline_matmul_split_k_reduce;
- vk_pipeline pipeline_quantize_q8_1_x4;
- vk_pipeline pipeline_dequant[GGML_TYPE_COUNT];
- vk_pipeline pipeline_dequant_mul_mat_vec_f32_f32[DMMV_WG_SIZE_COUNT][GGML_TYPE_COUNT][mul_mat_vec_max_cols];
- vk_pipeline pipeline_dequant_mul_mat_vec_f16_f32[DMMV_WG_SIZE_COUNT][GGML_TYPE_COUNT][mul_mat_vec_max_cols];
- vk_pipeline pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_COUNT];
- vk_pipeline pipeline_dequant_mul_mat_vec_q8_1_f32[DMMV_WG_SIZE_COUNT][GGML_TYPE_COUNT][mul_mat_vec_max_cols];
- vk_pipeline pipeline_mul_mat_vec_p021_f16_f32[p021_max_gqa_ratio];
- vk_pipeline pipeline_mul_mat_vec_nc_f16_f32;
- vk_pipeline pipeline_get_rows[GGML_TYPE_COUNT];
- vk_pipeline pipeline_get_rows_f32[GGML_TYPE_COUNT];
- vk_pipeline pipeline_acc_f32;
- // [src0 0=fp32,1=fp16][src1 0=fp32,1=fp16][dst 0=fp32,1=fp16]
- vk_pipeline pipeline_add[2][2][2];
- vk_pipeline pipeline_add_norepeat[2][2][2];
- vk_pipeline pipeline_sub[2][2][2];
- vk_pipeline pipeline_sub_norepeat[2][2][2];
- vk_pipeline pipeline_mul[2][2][2];
- vk_pipeline pipeline_mul_norepeat[2][2][2];
- vk_pipeline pipeline_div[2][2][2];
- vk_pipeline pipeline_div_norepeat[2][2][2];
- vk_pipeline pipeline_add_rms[2][2][2];
- vk_pipeline pipeline_add_rms_norepeat[2][2][2];
- // indexed by num_additional_fused_ops == num_adds - 1
- vk_pipeline pipeline_multi_add[MAX_FUSED_ADDS];
- vk_pipeline pipeline_multi_add_rms[MAX_FUSED_ADDS];
- vk_pipeline pipeline_add_id_f32;
- vk_pipeline pipeline_concat_f32, pipeline_concat_f16, pipeline_concat_i32;
- vk_pipeline pipeline_upscale_nearest_f32, pipeline_upscale_bilinear_f32, pipeline_upscale_bicubic_f32;
- vk_pipeline pipeline_scale_f32;
- vk_pipeline pipeline_sqr_f32;
- vk_pipeline pipeline_sqrt_f32;
- vk_pipeline pipeline_sin_f32;
- vk_pipeline pipeline_cos_f32;
- vk_pipeline pipeline_log[2];
- vk_pipeline pipeline_clamp_f32;
- vk_pipeline pipeline_pad_f32;
- vk_pipeline pipeline_roll_f32;
- vk_pipeline pipeline_repeat_f32, pipeline_repeat_back_f32;
- vk_pipeline pipeline_cpy_f32_f32, pipeline_cpy_f32_f16, pipeline_cpy_f16_f16, pipeline_cpy_f16_f32, pipeline_cpy_f32_bf16, pipeline_cpy_f32_i32, pipeline_cpy_i32_f32;
- vk_pipeline pipeline_contig_cpy_f32_f32, pipeline_contig_cpy_f32_f16, pipeline_contig_cpy_f16_f16, pipeline_contig_cpy_f16_f32, pipeline_contig_cpy_f32_bf16, pipeline_contig_cpy_f32_i32, pipeline_contig_cpy_i32_f32;
- vk_pipeline pipeline_cpy_f32_quant[GGML_TYPE_COUNT];
- vk_pipeline pipeline_cpy_quant_f32[GGML_TYPE_COUNT];
- vk_pipeline pipeline_cpy_transpose_16, pipeline_cpy_transpose_32;
- vk_pipeline pipeline_set_rows_i32[GGML_TYPE_COUNT];
- vk_pipeline pipeline_set_rows_i64[GGML_TYPE_COUNT];
- vk_pipeline pipeline_norm_f32;
- vk_pipeline pipeline_group_norm_f32;
- vk_pipeline pipeline_rms_norm_f32;
- vk_pipeline pipeline_rms_norm_mul_f32;
- vk_pipeline pipeline_rms_norm_partials_f32;
- vk_pipeline pipeline_rms_norm_mul_partials_f32;
- vk_pipeline pipeline_rms_norm_mul_rope_f32_f32;
- vk_pipeline pipeline_rms_norm_mul_rope_f32_f16;
- vk_pipeline pipeline_rms_norm_back_f32;
- vk_pipeline pipeline_l2_norm_f32;
- // [src/dst 0=fp32,1=fp16]
- vk_pipeline pipeline_exp[2];
- vk_pipeline pipeline_gelu[2];
- vk_pipeline pipeline_gelu_erf[2];
- vk_pipeline pipeline_gelu_quick[2];
- vk_pipeline pipeline_silu[2];
- vk_pipeline pipeline_relu[2];
- vk_pipeline pipeline_neg[2];
- vk_pipeline pipeline_tanh[2];
- vk_pipeline pipeline_sigmoid[2];
- vk_pipeline pipeline_hardsigmoid[2];
- vk_pipeline pipeline_hardswish[2];
- vk_pipeline pipeline_abs[2];
- vk_pipeline pipeline_softplus[2];
- vk_pipeline pipeline_step[2];
- vk_pipeline pipeline_round[2];
- vk_pipeline pipeline_ceil[2];
- vk_pipeline pipeline_floor[2];
- vk_pipeline pipeline_trunc[2];
- vk_pipeline pipeline_add1_f16_f16;
- vk_pipeline pipeline_add1_f16_f32;
- vk_pipeline pipeline_add1_f32_f32;
- vk_pipeline pipeline_arange_f32;
- vk_pipeline pipeline_fill_f32;
- vk_pipeline pipeline_geglu[2];
- vk_pipeline pipeline_reglu[2];
- vk_pipeline pipeline_swiglu[2];
- vk_pipeline pipeline_swiglu_oai[2];
- vk_pipeline pipeline_geglu_erf[2];
- vk_pipeline pipeline_geglu_quick[2];
- vk_pipeline pipeline_leaky_relu_f32;
- vk_pipeline pipeline_silu_back_f32;
- vk_pipeline pipeline_diag_mask_inf_f32;
- vk_pipeline pipeline_soft_max_f32, pipeline_soft_max_f32_f16;
- vk_pipeline pipeline_soft_max_f32_wg512, pipeline_soft_max_f32_f16_wg512;
- vk_pipeline pipeline_soft_max_back_f32;
- vk_pipeline pipeline_rope_norm_f32, pipeline_rope_norm_f16, pipeline_rope_norm_f32_f16;
- vk_pipeline pipeline_rope_neox_f32, pipeline_rope_neox_f16, pipeline_rope_neox_f32_f16;
- vk_pipeline pipeline_rope_multi_f32, pipeline_rope_multi_f16;
- vk_pipeline pipeline_rope_vision_f32, pipeline_rope_vision_f16;
- vk_pipeline pipeline_argsort_f32[num_argsort_pipelines];
- vk_pipeline pipeline_argsort_large_f32[num_argsort_pipelines];
- vk_pipeline pipeline_sum_rows_f32;
- vk_pipeline pipeline_argmax_f32;
- vk_pipeline pipeline_count_equal_i32;
- vk_pipeline pipeline_im2col_f32, pipeline_im2col_f32_f16;
- vk_pipeline pipeline_im2col_3d_f32, pipeline_im2col_3d_f32_f16;
- vk_pipeline pipeline_timestep_embedding_f32;
- vk_pipeline pipeline_conv_transpose_1d_f32;
- vk_pipeline pipeline_pool2d_f32;
- vk_pipeline pipeline_rwkv_wkv6_f32;
- vk_pipeline pipeline_rwkv_wkv7_f32;
- vk_pipeline pipeline_ssm_scan_f32_d128;
- vk_pipeline pipeline_ssm_scan_f32_d256;
- vk_pipeline pipeline_ssm_conv_f32;
- vk_pipeline pipeline_opt_step_adamw_f32;
- vk_pipeline pipeline_opt_step_sgd_f32;
- std::map<vk_conv2d_pipeline_state, vk_pipeline> pipeline_conv2d_f32[CONV_SHAPE_COUNT];
- std::map<vk_conv2d_pipeline_state, vk_pipeline> pipeline_conv2d_f16_f32[CONV_SHAPE_COUNT];
- std::map<vk_conv2d_pipeline_state, vk_pipeline> pipeline_conv_transpose_2d_f32[CONV_SHAPE_COUNT];
- std::map<vk_conv2d_pipeline_state, vk_pipeline> pipeline_conv_transpose_2d_f16_f32[CONV_SHAPE_COUNT];
- vk_pipeline pipeline_conv2d_dw_whcn_f32, pipeline_conv2d_dw_whcn_f16_f32;
- vk_pipeline pipeline_conv2d_dw_cwhn_f32, pipeline_conv2d_dw_cwhn_f16_f32;
- std::map<vk_fa_pipeline_state, vk_pipeline> pipeline_flash_attn_f32_f16[GGML_TYPE_COUNT];
- vk_pipeline pipeline_flash_attn_split_k_reduce;
- vk_pipeline pipeline_topk_moe[num_topk_moe_pipelines][TOPK_MOE_COUNT];
- std::vector<vk_pipeline_ref> all_pipelines;
- std::vector<std::tuple<void*, size_t, vk_buffer>> pinned_memory;
- vk::Fence fence;
- vk_buffer sync_staging;
- ggml_backend_buffer_type buffer_type;
- bool disable_fusion;
- bool disable_host_visible_vidmem;
- bool allow_sysmem_fallback;
- bool disable_graph_optimize;
- #ifdef GGML_VULKAN_MEMORY_DEBUG
- std::unique_ptr<vk_memory_logger> memory_logger;
- #endif
- // for GGML_VK_PERF_LOGGER
- std::unique_ptr<vk_perf_logger> perf_logger;
- vk::QueryPool query_pool;
- int32_t num_queries;
- ~vk_device_struct() {
- VK_LOG_DEBUG("destroy device " << name);
- device.destroyFence(fence);
- ggml_vk_destroy_buffer(sync_staging);
- compute_queue.cmd_pool.destroy(device);
- transfer_queue.cmd_pool.destroy(device);
- for (auto& pipeline : all_pipelines) {
- if (pipeline.expired()) {
- continue;
- }
- vk_pipeline pl = pipeline.lock();
- ggml_vk_destroy_pipeline(device, pl);
- }
- all_pipelines.clear();
- device.destroyDescriptorSetLayout(dsl);
- device.destroy();
- }
- };
- void vk_command_pool::init(vk_device& device, vk_queue *q_) {
- cmd_buffer_idx = 0;
- q = q_;
- vk::CommandPoolCreateInfo command_pool_create_info(vk::CommandPoolCreateFlags(VK_COMMAND_POOL_CREATE_TRANSIENT_BIT), q->queue_family_index);
- pool = device->device.createCommandPool(command_pool_create_info);
- }
- void vk_command_pool::destroy(vk::Device& device) {
- device.destroyCommandPool(pool);
- pool = nullptr;
- cmd_buffers.clear();
- }
- struct vk_buffer_struct {
- vk::Buffer buffer = VK_NULL_HANDLE;
- vk::DeviceMemory device_memory = VK_NULL_HANDLE;
- vk::MemoryPropertyFlags memory_property_flags;
- void * ptr;
- size_t size = 0;
- vk::DeviceAddress bda_addr {};
- vk_device device;
- ~vk_buffer_struct() {
- if (size == 0) {
- return;
- }
- VK_LOG_DEBUG("~vk_buffer_struct(" << buffer << ", " << size << ")");
- device->device.freeMemory(device_memory);
- device->device.destroyBuffer(buffer);
- }
- };
- struct vk_subbuffer {
- vk_buffer buffer;
- uint64_t offset;
- uint64_t size;
- operator vk::DescriptorBufferInfo() const {
- return { buffer->buffer, offset, size };
- }
- };
- struct vk_semaphore {
- vk::Semaphore s;
- uint64_t value;
- };
- struct vk_submission {
- vk::CommandBuffer buffer;
- std::vector<vk_semaphore> wait_semaphores;
- std::vector<vk_semaphore> signal_semaphores;
- };
- typedef std::vector<vk_submission> vk_sequence;
- struct vk_mat_mat_push_constants {
- uint32_t M; uint32_t N; uint32_t K;
- uint32_t stride_a; uint32_t stride_b; uint32_t stride_d;
- uint32_t batch_stride_a; uint32_t batch_stride_b; uint32_t batch_stride_d;
- uint32_t k_split;
- uint32_t ne02; uint32_t ne12; uint32_t broadcast2; uint32_t broadcast3;
- uint32_t padded_N;
- };
- #define MAT_VEC_FUSION_FLAGS_BIAS0 0x1
- #define MAT_VEC_FUSION_FLAGS_BIAS1 0x2
- #define MAT_VEC_FUSION_FLAGS_SCALE0 0x4
- #define MAT_VEC_FUSION_FLAGS_SCALE1 0x8
- struct vk_mat_vec_push_constants {
- uint32_t ncols;
- uint32_t stride_a;
- uint32_t stride_b;
- uint32_t stride_d;
- uint32_t batch_stride_a;
- uint32_t batch_stride_b;
- uint32_t batch_stride_d;
- uint32_t fusion_flags;
- uint32_t ne02;
- uint32_t ne12;
- uint32_t broadcast2;
- uint32_t broadcast3;
- };
- struct vk_mat_vec_p021_push_constants {
- uint32_t ncols_x;
- uint32_t nrows_x;
- uint32_t nchannels_x;
- uint32_t nchannels_y;
- uint32_t b_offset;
- uint32_t d_offset;
- uint32_t fusion_flags;
- };
- struct vk_mat_vec_nc_push_constants {
- uint32_t ncols_x;
- uint32_t nrows_x;
- uint32_t row_stride_x;
- uint32_t channel_stride_x;
- uint32_t channel_stride_y;
- uint32_t channel_x_divisor;
- uint32_t ne12;
- uint32_t b_offset;
- uint32_t d_offset;
- uint32_t nb03;
- uint32_t nb13;
- uint32_t nb23;
- uint32_t fusion_flags;
- };
- struct vk_mat_mat_id_push_constants {
- uint32_t M; uint32_t N; uint32_t K;
- uint32_t stride_a; uint32_t stride_b; uint32_t stride_d;
- uint32_t batch_stride_a; uint32_t batch_stride_b; uint32_t batch_stride_d;
- uint32_t nei0; uint32_t nei1; uint32_t nbi1; uint32_t ne11;
- uint32_t padded_N;
- };
- struct vk_mat_vec_id_push_constants {
- uint32_t ncols;
- uint32_t stride_a;
- uint32_t stride_b;
- uint32_t stride_d;
- uint32_t batch_stride_a;
- uint32_t batch_stride_b;
- uint32_t batch_stride_d;
- uint32_t fusion_flags;
- uint32_t nei0;
- uint32_t ne11;
- };
- struct vk_flash_attn_push_constants {
- uint32_t N;
- uint32_t KV;
- uint32_t ne1;
- uint32_t ne2;
- uint32_t ne3;
- uint32_t neq2;
- uint32_t neq3;
- uint32_t nek2;
- uint32_t nek3;
- uint32_t nev2;
- uint32_t nev3;
- uint32_t nem1;
- uint32_t nem2;
- uint32_t nem3;
- uint32_t nb01;
- uint32_t nb02;
- uint32_t nb03;
- uint32_t nb11;
- uint32_t nb12;
- uint32_t nb13;
- uint32_t nb21;
- uint32_t nb22;
- uint32_t nb23;
- float scale;
- float max_bias;
- float logit_softcap;
- uint32_t mask_n_head_log2;
- float m0;
- float m1;
- uint32_t gqa_ratio;
- uint32_t split_kv;
- uint32_t k_num;
- };
- static_assert(sizeof(vk_flash_attn_push_constants) <= 128, "sizeof(vk_flash_attn_push_constants) must be <= 128");
- struct vk_op_push_constants {
- uint32_t KX;
- uint32_t KY;
- float param1;
- float param2;
- };
- struct vk_op_glu_push_constants {
- uint32_t N;
- uint32_t ne00;
- uint32_t ne20;
- uint32_t mode; // 0: default, 1: swapped, 2: split
- float alpha; // for swiglu_oai
- float limit;
- };
- struct vk_op_unary_push_constants {
- uint32_t ne;
- uint32_t ne00; uint32_t ne01; uint32_t ne02; uint32_t ne03; uint32_t nb00; uint32_t nb01; uint32_t nb02; uint32_t nb03;
- uint32_t ne10; uint32_t ne11; uint32_t ne12; uint32_t ne13; uint32_t nb10; uint32_t nb11; uint32_t nb12; uint32_t nb13;
- uint32_t misalign_offsets;
- float param1; float param2;
- uint32_t ne0_012mp; uint32_t ne0_012L;
- uint32_t ne0_01mp; uint32_t ne0_01L;
- uint32_t ne0_0mp; uint32_t ne0_0L;
- uint32_t ne1_012mp; uint32_t ne1_012L;
- uint32_t ne1_01mp; uint32_t ne1_01L;
- uint32_t ne1_0mp; uint32_t ne1_0L;
- };
- static_assert(sizeof(vk_op_unary_push_constants) <= 128, "sizeof(vk_op_unary_push_constants) must be <= 128");
- static vk_op_unary_push_constants vk_op_unary_push_constants_init(const ggml_tensor * src0, const ggml_tensor * dst, int64_t ne = 0) {
- GGML_ASSERT(ne != 0 || (ggml_nelements(src0) == ggml_nelements(dst)));
- ne = ne != 0 ? ne : ggml_nelements(dst);
- GGML_ASSERT(ne <= (int64_t)std::numeric_limits<uint32_t>::max());
- vk_op_unary_push_constants p{};
- p.ne = (uint32_t)ne;
- size_t src0_tsize = ggml_type_size(src0->type);
- p.ne00 = (uint32_t)src0->ne[0];
- p.ne01 = (uint32_t)src0->ne[1];
- p.ne02 = (uint32_t)src0->ne[2];
- p.ne03 = (uint32_t)src0->ne[3];
- p.nb00 = (uint32_t)(src0->nb[0] / src0_tsize);
- p.nb01 = (uint32_t)(src0->nb[1] / src0_tsize);
- p.nb02 = (uint32_t)(src0->nb[2] / src0_tsize);
- p.nb03 = (uint32_t)(src0->nb[3] / src0_tsize);
- size_t dst_tsize = ggml_type_size(dst->type);
- p.ne10 = (uint32_t)dst->ne[0];
- p.ne11 = (uint32_t)dst->ne[1];
- p.ne12 = (uint32_t)dst->ne[2];
- p.ne13 = (uint32_t)dst->ne[3];
- p.nb10 = (uint32_t)(dst->nb[0] / dst_tsize);
- p.nb11 = (uint32_t)(dst->nb[1] / dst_tsize);
- p.nb12 = (uint32_t)(dst->nb[2] / dst_tsize);
- p.nb13 = (uint32_t)(dst->nb[3] / dst_tsize);
- return p; // offsets are initialized later in ggml_vk_op
- }
- struct vk_op_pad_push_constants {
- uint32_t ne;
- uint32_t ne00; uint32_t ne01; uint32_t ne02; uint32_t ne03; uint32_t nb00; uint32_t nb01; uint32_t nb02; uint32_t nb03;
- uint32_t ne10; uint32_t ne11; uint32_t ne12; uint32_t ne13; uint32_t nb10; uint32_t nb11; uint32_t nb12; uint32_t nb13;
- uint32_t misalign_offsets;
- uint32_t lp0; uint32_t rp0;
- uint32_t lp1; uint32_t rp1;
- uint32_t lp2; uint32_t rp2;
- uint32_t lp3; uint32_t rp3;
- };
- static vk_op_pad_push_constants vk_op_pad_push_constants_init(const ggml_tensor * src0, const ggml_tensor * dst) {
- int64_t ne = ggml_nelements(dst);
- GGML_ASSERT(ne <= (int64_t)std::numeric_limits<uint32_t>::max());
- vk_op_pad_push_constants p{};
- p.ne = (uint32_t)ne;
- size_t src0_tsize = ggml_type_size(src0->type);
- p.ne00 = (uint32_t)src0->ne[0];
- p.ne01 = (uint32_t)src0->ne[1];
- p.ne02 = (uint32_t)src0->ne[2];
- p.ne03 = (uint32_t)src0->ne[3];
- p.nb00 = (uint32_t)(src0->nb[0] / src0_tsize);
- p.nb01 = (uint32_t)(src0->nb[1] / src0_tsize);
- p.nb02 = (uint32_t)(src0->nb[2] / src0_tsize);
- p.nb03 = (uint32_t)(src0->nb[3] / src0_tsize);
- size_t dst_tsize = ggml_type_size(dst->type);
- p.ne10 = (uint32_t)dst->ne[0];
- p.ne11 = (uint32_t)dst->ne[1];
- p.ne12 = (uint32_t)dst->ne[2];
- p.ne13 = (uint32_t)dst->ne[3];
- p.nb10 = (uint32_t)(dst->nb[0] / dst_tsize);
- p.nb11 = (uint32_t)(dst->nb[1] / dst_tsize);
- p.nb12 = (uint32_t)(dst->nb[2] / dst_tsize);
- p.nb13 = (uint32_t)(dst->nb[3] / dst_tsize);
- p.lp0 = dst->op_params[0];
- p.rp0 = dst->op_params[1];
- p.lp1 = dst->op_params[2];
- p.rp1 = dst->op_params[3];
- p.lp2 = dst->op_params[4];
- p.rp2 = dst->op_params[5];
- p.lp3 = dst->op_params[6];
- p.rp3 = dst->op_params[7];
- return p; // fastdiv values and offsets are initialized later in ggml_vk_op
- }
- // See https://gmplib.org/~tege/divcnst-pldi94.pdf figure 4.1.
- // Precompute mp (m' in the paper) and L such that division
- // can be computed using a multiply (high 32b of 64b result)
- // and a shift:
- //
- // n/d = (mulhi(n, mp) + n) >> L;
- static void init_fastdiv_values(uint32_t d, uint32_t &mp, uint32_t &L)
- {
- // compute L = ceil(log2(d));
- L = 0;
- while (L < 32 && (uint32_t{1} << L) < d) {
- L++;
- }
- mp = (uint32_t)((uint64_t{1} << 32) * ((uint64_t{1} << L) - d) / d + 1);
- }
- template <typename T> void init_pushconst_fastdiv(T &p) {
- GGML_UNUSED(p);
- static_assert(!std::is_const<T>::value, "unexpected type");
- }
- template <> void init_pushconst_fastdiv(vk_op_unary_push_constants &p) {
- // Compute magic values to divide by these six numbers.
- init_fastdiv_values(p.ne02*p.ne01*p.ne00, p.ne0_012mp, p.ne0_012L);
- init_fastdiv_values(p.ne01*p.ne00, p.ne0_01mp, p.ne0_01L);
- init_fastdiv_values(p.ne00, p.ne0_0mp, p.ne0_0L);
- init_fastdiv_values(p.ne12*p.ne11*p.ne10, p.ne1_012mp, p.ne1_012L);
- init_fastdiv_values(p.ne11*p.ne10, p.ne1_01mp, p.ne1_01L);
- init_fastdiv_values(p.ne10, p.ne1_0mp, p.ne1_0L);
- }
- struct vk_op_binary_push_constants {
- uint32_t ne;
- uint32_t ne00; uint32_t ne01; uint32_t ne02; uint32_t ne03; uint32_t nb00; uint32_t nb01; uint32_t nb02; uint32_t nb03;
- uint32_t ne10; uint32_t ne11; uint32_t ne12; uint32_t ne13; uint32_t nb10; uint32_t nb11; uint32_t nb12; uint32_t nb13;
- uint32_t ne20; uint32_t ne21; uint32_t ne22; uint32_t ne23; uint32_t nb20; uint32_t nb21; uint32_t nb22; uint32_t nb23;
- uint32_t misalign_offsets;
- float param1; float param2; int32_t param3;
- };
- struct vk_op_multi_add_push_constants {
- // shape for dst
- uint32_t ne20; uint32_t ne21; uint32_t ne22; uint32_t ne23;
- // strides for srcs+dst
- uint32_t nb[MAX_PARAMETER_COUNT][4];
- uint32_t rms_partials;
- };
- // update multi_add.comp if this changes
- static_assert(MAX_PARAMETER_COUNT == 12);
- static_assert(sizeof(vk_op_multi_add_push_constants) <= 256);
- struct vk_op_topk_moe_push_constants {
- uint32_t n_rows;
- uint32_t n_expert_used;
- float clamp_min;
- float clamp_max;
- };
- struct vk_op_add_id_push_constants {
- uint32_t ne0;
- uint32_t ne1;
- uint32_t s01;
- uint32_t s02;
- uint32_t s11;
- uint32_t s21;
- };
- struct vk_op_diag_mask_push_constants {
- uint32_t ncols;
- uint32_t rows_per_channel;
- int32_t n_past;
- };
- struct vk_op_rope_push_constants {
- uint32_t rope_mode;
- uint32_t ncols;
- uint32_t n_dims;
- float freq_scale;
- uint32_t p_delta_rows;
- float freq_base;
- float ext_factor;
- float attn_factor;
- float corr_dims[2];
- float theta_scale;
- uint32_t has_ff;
- uint32_t ne02;
- uint32_t s1;
- uint32_t s2;
- int32_t sections[4];
- uint32_t is_imrope;
- uint32_t is_back;
- uint32_t set_rows_stride;
- };
- // For fused rms_norm+mul+rope(+view+set_rows)
- struct vk_op_rms_norm_mul_rope_push_constants {
- vk_op_binary_push_constants bin;
- vk_op_rope_push_constants rope;
- };
- struct vk_op_soft_max_push_constants {
- uint32_t KX;
- uint32_t KY;
- uint32_t ne00;
- uint32_t ne01;
- uint32_t ne02;
- uint32_t ne12;
- uint32_t ne13;
- uint32_t nb11;
- uint32_t nb12;
- uint32_t nb13;
- float scale;
- float max_bias;
- float m0;
- float m1;
- uint32_t n_head_log2;
- uint32_t nrows_x;
- uint32_t has_sinks;
- };
- struct vk_op_argsort_push_constants {
- uint32_t ncols;
- uint32_t ncols_padded;
- uint32_t ncols_padded_log2;
- uint32_t nrows;
- uint32_t order;
- uint32_t outer_start;
- uint32_t outer_end;
- uint32_t inner_start;
- uint32_t inner_end;
- };
- struct vk_op_im2col_push_constants {
- uint64_t dst_addr;
- uint32_t batch_offset; uint32_t offset_delta;
- uint32_t IC;
- uint32_t IW; uint32_t IH;
- uint32_t OW; uint32_t OH;
- uint32_t KW; uint32_t KH;
- uint32_t pelements;
- uint32_t CHW;
- int32_t s0; int32_t s1;
- int32_t p0; int32_t p1;
- int32_t d0; int32_t d1;
- };
- struct vk_op_im2col_3d_push_constants {
- uint64_t dst_addr;
- uint32_t nb10;
- uint32_t nb11;
- uint32_t nb12;
- uint32_t nb13;
- uint32_t s0;
- uint32_t s1;
- uint32_t s2;
- uint32_t p0;
- uint32_t p1;
- uint32_t p2;
- uint32_t d0;
- uint32_t d1;
- uint32_t d2;
- uint32_t IW;
- uint32_t IH;
- uint32_t ID;
- uint32_t IC;
- uint32_t KW;
- uint32_t OH;
- uint32_t KD_KH_KW;
- uint32_t KH_KW;
- uint32_t IC_KD_KH_KW;
- uint32_t N_OD_OH;
- uint32_t OD_OH;
- uint32_t OD_OH_OW_IC_KD_KH_KW;
- uint32_t OH_OW_IC_KD_KH_KW;
- uint32_t OW_IC_KD_KH_KW;
- uint32_t misalign_offsets;
- };
- struct vk_op_timestep_embedding_push_constants {
- uint32_t nb1;
- uint32_t dim;
- uint32_t max_period;
- };
- struct vk_op_conv_transpose_1d_push_constants {
- uint32_t Cout;
- uint32_t Cin;
- uint32_t K;
- uint32_t L;
- uint32_t KL;
- uint32_t nb01;
- uint32_t nb02;
- uint32_t nb11;
- uint32_t nb1;
- int32_t s0;
- };
- struct vk_op_pool2d_push_constants {
- uint32_t IW; uint32_t IH;
- uint32_t OW; uint32_t OH;
- uint32_t OC;
- uint32_t pelements;
- uint32_t op;
- int32_t k0; int32_t k1;
- int32_t s0; int32_t s1;
- int32_t p0; int32_t p1;
- };
- struct vk_op_rwkv_wkv6_push_constants {
- uint32_t B;
- uint32_t T;
- uint32_t C;
- uint32_t H;
- };
- struct vk_op_rwkv_wkv7_push_constants {
- uint32_t B;
- uint32_t T;
- uint32_t C;
- uint32_t H;
- };
- struct vk_op_ssm_scan_push_constants {
- uint32_t nb02, nb03, nb12, nb13;
- uint32_t nb21, nb22, nb31;
- uint32_t nb42, nb43, nb52, nb53;
- uint32_t s_off;
- uint32_t n_head, d_head, n_group, n_tok;
- };
- struct vk_op_ssm_conv_push_constants {
- uint32_t nb01, nb02;
- uint32_t nb11;
- uint32_t dst_nb0, dst_nb1, dst_nb2;
- uint32_t nc, ncs, nr, n_t, n_s;
- };
- struct vk_op_conv2d_push_constants {
- uint32_t Cout;
- uint32_t Cin;
- uint32_t N;
- uint32_t KW;
- uint32_t KH;
- uint32_t W;
- uint32_t H;
- uint32_t OW;
- uint32_t OH;
- uint32_t s0;
- uint32_t s1;
- uint32_t p0;
- uint32_t p1;
- uint32_t d0;
- uint32_t d1;
- uint32_t nb01;
- uint32_t nb02;
- uint32_t nb03;
- uint32_t nb11;
- uint32_t nb12;
- uint32_t nb13;
- uint32_t nb1;
- uint32_t nb2;
- uint32_t nb3;
- // init_fastdiv_values constants for dividing by OW, OW*OH
- uint32_t OWmp; uint32_t OWL;
- uint32_t OWOHmp; uint32_t OWOHL;
- };
- template <> void init_pushconst_fastdiv(vk_op_conv2d_push_constants &p) {
- // Compute magic values to divide by OW, OW*OH
- init_fastdiv_values(p.OW, p.OWmp, p.OWL);
- init_fastdiv_values(p.OW*p.OH, p.OWOHmp, p.OWOHL);
- }
- struct vk_op_conv_transpose_2d_push_constants {
- uint32_t Cout;
- uint32_t Cin;
- uint32_t N;
- uint32_t KW;
- uint32_t KH;
- uint32_t W;
- uint32_t H;
- uint32_t OW;
- uint32_t OH;
- uint32_t s0;
- uint32_t s1;
- uint32_t p0;
- uint32_t p1;
- uint32_t d0;
- uint32_t d1;
- uint32_t nb01;
- uint32_t nb02;
- uint32_t nb03;
- uint32_t nb11;
- uint32_t nb12;
- uint32_t nb13;
- uint32_t nb1;
- uint32_t nb2;
- uint32_t nb3;
- // init_fastdiv_values constants for dividing by OW, OW*OH
- uint32_t OWmp; uint32_t OWL;
- uint32_t OWOHmp; uint32_t OWOHL;
- };
- template <> void init_pushconst_fastdiv(vk_op_conv_transpose_2d_push_constants &p) {
- // Compute magic values to divide by OW, OW*OH
- init_fastdiv_values(p.OW, p.OWmp, p.OWL);
- init_fastdiv_values(p.OW*p.OH, p.OWOHmp, p.OWOHL);
- }
- struct vk_op_conv2d_dw_push_constants {
- uint32_t ne;
- uint32_t batches;
- uint32_t channels;
- uint32_t dst_w;
- uint32_t dst_h;
- uint32_t src_w;
- uint32_t src_h;
- uint32_t knl_w;
- uint32_t knl_h;
- int32_t stride_x;
- int32_t stride_y;
- int32_t pad_x;
- int32_t pad_y;
- int32_t dilation_x;
- int32_t dilation_y;
- };
- struct vk_op_upscale_push_constants {
- uint32_t ne; uint32_t a_offset; uint32_t d_offset;
- uint32_t ne00; uint32_t ne01;
- uint32_t nb00; uint32_t nb01; uint32_t nb02; uint32_t nb03;
- uint32_t ne10; uint32_t ne11; uint32_t ne12; uint32_t ne13;
- float sf0; float sf1; float sf2; float sf3;
- float pixel_offset;
- };
- struct vk_op_sum_rows_push_constants
- {
- uint32_t n_cols;
- uint32_t ne01, ne02;
- uint32_t nb01, nb02, nb03;
- uint32_t nb11, nb12, nb13;
- float weight;
- uint32_t misalign_offsets;
- uint32_t ne0_12mp, ne0_12L;
- uint32_t ne0_1mp, ne0_1L;
- };
- static vk_op_sum_rows_push_constants vk_op_sum_rows_push_constants_init(const ggml_tensor * src, const ggml_tensor * dst, int64_t n_cols) {
- uint32_t type_size = (uint32_t)ggml_type_size(src->type);
- vk_op_sum_rows_push_constants p = {};
- p.n_cols = (uint32_t)n_cols;
- p.ne01 = (uint32_t)src->ne[1];
- p.ne02 = (uint32_t)src->ne[2];
- p.nb01 = (uint32_t)src->nb[1] / type_size;
- p.nb02 = (uint32_t)src->nb[2] / type_size;
- p.nb03 = (uint32_t)src->nb[3] / type_size;
- p.nb11 = (uint32_t)dst->nb[1] / type_size;
- p.nb12 = (uint32_t)dst->nb[2] / type_size;
- p.nb13 = (uint32_t)dst->nb[3] / type_size;
- p.weight = 1.0f;
- return p;
- }
- template <> void init_pushconst_fastdiv(vk_op_sum_rows_push_constants &p) {
- init_fastdiv_values(p.ne01*p.ne02, p.ne0_12mp, p.ne0_12L);
- init_fastdiv_values(p.ne01, p.ne0_1mp, p.ne0_1L);
- }
- // Allow pre-recording command buffers
- struct vk_staging_memcpy {
- vk_staging_memcpy(void * _dst, const void * _src, size_t _n) : dst(_dst), src(_src), n(_n) {}
- void * dst;
- const void * src;
- size_t n;
- };
- struct vk_staging_memset {
- vk_staging_memset(void * _dst, uint32_t _val, size_t _n) : dst(_dst), val(_val), n(_n) {}
- void * dst;
- uint32_t val;
- size_t n;
- };
- struct vk_context_struct {
- vk_submission * s;
- std::vector<vk_sequence> seqs;
- int exit_tensor_idx;
- std::vector<vk_staging_memcpy> in_memcpys;
- std::vector<vk_staging_memcpy> out_memcpys;
- std::vector<vk_staging_memset> memsets;
- vk_command_pool * p {};
- };
- typedef std::shared_ptr<vk_context_struct> vk_context;
- typedef std::weak_ptr<vk_context_struct> vk_context_ref;
- struct ggml_vk_garbage_collector {
- std::vector<vk_semaphore> tl_semaphores;
- std::vector<vk_semaphore> semaphores;
- std::vector<vk::Event> events;
- std::vector<vk_context> contexts;
- };
- static void ggml_vk_preallocate_buffers(ggml_backend_vk_context * ctx, vk_context subctx);
- static void ggml_vk_load_shaders(vk_device& device);
- static void ggml_pipeline_allocate_descriptor_sets(ggml_backend_vk_context * ctx);
- #if defined(GGML_VULKAN_MEMORY_DEBUG) || defined(GGML_VULKAN_DEBUG)
- #define VK_LOG_MEMORY(msg) std::cerr << "ggml_vulkan memory: " << msg << std::endl
- static std::string format_size(size_t size) {
- const size_t kib = 1024;
- const size_t mib = kib * 1024;
- const size_t gib = mib * 1024;
- std::ostringstream oss;
- oss << std::fixed << std::setprecision(2);
- if (size >= gib) {
- oss << static_cast<double>(size) / gib << " GiB";
- } else if (size >= mib) {
- oss << static_cast<double>(size) / mib << " MiB";
- } else if (size >= kib) {
- oss << static_cast<double>(size) / kib << " KiB";
- } else {
- oss << size << " B";
- }
- return oss.str();
- }
- class vk_memory_logger {
- public:
- vk_memory_logger(): total_device(0), total_host(0) {}
- void log_allocation(vk_buffer_ref buf_ref, size_t size);
- void log_deallocation(vk_buffer_ref buf_ref);
- private:
- std::map<vk::Buffer, size_t> allocations; // Track allocations
- size_t total_device;
- size_t total_host;
- };
- #else
- #define VK_LOG_MEMORY(msg) ((void) 0)
- #endif // GGML_VULKAN_MEMORY_DEBUG
- class vk_perf_logger {
- public:
- void print_timings() {
- if (timings.empty()) {
- return;
- }
- uint64_t total_all_op_times = 0;
- std::cerr << "----------------\nVulkan Timings:" << std::endl;
- for (const auto & t : timings) {
- uint64_t total_op_times = 0;
- for (const auto & time : t.second) {
- total_op_times += time;
- }
- std::cerr << t.first << ": " << t.second.size() << " x " << (total_op_times / t.second.size() / 1000.0)
- << " us";
- // If we have as many flops entries as timing entries for the op, then compute and log the flops/S.
- auto it = flops.find(t.first);
- if (it != flops.end() && (it->second).size() == t.second.size()) {
- uint64_t total_op_flops = 0;
- for (const auto & elem : it->second) {
- total_op_flops += elem;
- }
- std::cerr << " ("
- << (double(total_op_flops) / (1000.0 * 1000.0 * 1000.0)) /
- (double(total_op_times) / (1000.0 * 1000.0 * 1000.0))
- << " GFLOPS/s)";
- }
- total_all_op_times += total_op_times;
- std::cerr << std::endl;
- }
- if (timings.size() > 0) {
- std::cerr << "Total time: " << total_all_op_times / 1000.0 << " us." << std::endl;
- }
- timings.clear();
- flops.clear();
- }
- void log_timing(const ggml_tensor * node, uint64_t time) {
- if (node->op == GGML_OP_UNARY) {
- timings[ggml_unary_op_name(ggml_get_unary_op(node))].push_back(time);
- return;
- }
- if (node->op == GGML_OP_MUL_MAT || node->op == GGML_OP_MUL_MAT_ID) {
- const uint64_t m = node->src[0]->ne[1];
- const uint64_t n = node->ne[1];
- const uint64_t k = node->src[1]->ne[0];
- const uint64_t batch = node->src[1]->ne[2] * node->src[1]->ne[3];
- std::string name = ggml_op_name(node->op);
- if ((node->op == GGML_OP_MUL_MAT && n <= mul_mat_vec_max_cols) ||
- (node->op == GGML_OP_MUL_MAT_ID && node->src[2]->ne[1] == 1)) {
- name += "_VEC";
- }
- name += " ";
- name += ggml_type_name(node->src[0]->type);
- name += " m=" + std::to_string(m) + " n=" + std::to_string(n) + " k=" + std::to_string(k);
- if (batch > 1) {
- name += " batch=" + std::to_string(batch);
- }
- timings[name].push_back(time);
- flops[name].push_back(m * n * (k + (k - 1)) * batch);
- return;
- }
- if (node->op == GGML_OP_CONV_2D || node->op == GGML_OP_CONV_TRANSPOSE_2D) {
- std::string name = ggml_op_name(node->op);
- ggml_tensor * knl = node->src[0];
- uint64_t OW = node->ne[0];
- uint64_t OH = node->ne[1];
- uint64_t N = node->ne[3];
- uint64_t Cout = node->ne[2];
- uint64_t KW = knl->ne[0];
- uint64_t KH = knl->ne[1];
- uint64_t Cin = node->src[1]->ne[2];
- // KxCRS @ CRSxNPQ = KxNPQ -> M=K, K=CRS, N=NPQ
- uint64_t size_M = Cout;
- uint64_t size_K = Cin * KW * KH;
- uint64_t size_N = N * OW * OH;
- uint64_t n_flops = size_M * size_N * (size_K + (size_K - 1));
- name += " M=Cout=" + std::to_string(size_M) + ", K=Cin*KW*KH=" + std::to_string(size_K) +
- ", N=N*OW*OH=" + std::to_string(size_N);
- flops[name].push_back(n_flops);
- timings[name].push_back(time);
- return;
- }
- if (node->op == GGML_OP_RMS_NORM) {
- std::string name = ggml_op_name(node->op);
- name += "(" + std::to_string(node->ne[0]) + "," + std::to_string(node->ne[1]) + "," + std::to_string(node->ne[2]) + "," + std::to_string(node->ne[3]) + ")";
- timings[name].push_back(time);
- return;
- }
- timings[ggml_op_name(node->op)].push_back(time);
- }
- private:
- std::map<std::string, std::vector<uint64_t>> timings;
- std::map<std::string, std::vector<uint64_t>> flops;
- };
- struct ggml_backend_vk_context {
- std::string name;
- vk_device device;
- size_t semaphore_idx, event_idx;
- ggml_vk_garbage_collector gc;
- size_t prealloc_size_x, prealloc_size_y, prealloc_size_split_k, prealloc_size_add_rms_partials, prealloc_size_add_rms_partials_offset;
- vk_buffer prealloc_x, prealloc_y, prealloc_split_k, prealloc_add_rms_partials, sync_staging;
- vk::Fence fence, almost_ready_fence;
- bool submit_pending {};
- bool almost_ready_fence_pending {};
- // Set before op_add and unset after op_rms_norm to indicate that the add should
- // write partial sums to accumulate the square of the vector components
- bool do_add_rms_partials_offset_calculation;
- bool do_add_rms_partials;
- uint64_t last_total_mul_mat_bytes {};
- // Cache most recent tensor that was converted into prealloc_y, and what pipeline it used to convert.
- vk_pipeline_struct * prealloc_y_last_pipeline_used {};
- const ggml_tensor * prealloc_y_last_tensor_used {};
- // Track which nodes have been used since the last sync, and whether they were written to
- std::vector<const ggml_tensor *> unsynced_nodes_written;
- std::vector<const ggml_tensor *> unsynced_nodes_read;
- // Track which prealloc buffers have pending reads that need to be synchronized.
- // These are checked before writing to the buffer (and call ggml_vk_sync_buffers if set),
- // and set to true after the buffer contents are consumed.
- bool prealloc_x_need_sync, prealloc_y_need_sync, prealloc_split_k_need_sync;
- vk_context_ref compute_ctx;
- vk_context_ref transfer_ctx;
- std::vector<vk_context_ref> tensor_ctxs;
- std::vector<vk::DescriptorPool> descriptor_pools;
- std::vector<vk::DescriptorSet> descriptor_sets;
- uint32_t descriptor_set_idx {};
- uint32_t pipeline_descriptor_set_requirements {};
- vk_command_pool compute_cmd_pool;
- vk_command_pool transfer_cmd_pool;
- // number of additional consecutive nodes that are being fused with the
- // node currently being processed
- int num_additional_fused_ops {};
- // Bitmask of which fused ops need to write an intermediate value to memory.
- // Bit 'i' means nodes[start_of_fusion + i] writes to memory.
- // If there's no fusion, bit 0 is still set.
- int fused_ops_write_mask {};
- };
- static void * const vk_ptr_base = (void *)(uintptr_t) 0x1000; // NOLINT
- static uint64_t vk_tensor_offset(const ggml_tensor * tensor) {
- if (tensor->view_src) {
- return (uint8_t *) tensor->view_src->data - (uint8_t *) vk_ptr_base;
- }
- return (uint8_t *) tensor->data - (uint8_t *) vk_ptr_base;
- }
- static uint32_t get_misalign_bytes(const ggml_backend_vk_context * ctx, const ggml_tensor * t)
- {
- return ((vk_tensor_offset(t) + t->view_offs) & (ctx->device->properties.limits.minStorageBufferOffsetAlignment - 1));;
- }
- template <typename T> void init_pushconst_tensor_offsets(ggml_backend_vk_context * ctx, T &p, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, const ggml_tensor * src3, ggml_tensor * dst) {
- GGML_UNUSED(p);
- GGML_UNUSED(src0);
- GGML_UNUSED(src1);
- GGML_UNUSED(src2);
- GGML_UNUSED(src3);
- GGML_UNUSED(dst);
- static_assert(!std::is_const<T>::value, "unexpected type");
- GGML_ASSERT(!src0 || get_misalign_bytes(ctx, src0) == 0);
- GGML_ASSERT(!src1 || get_misalign_bytes(ctx, src1) == 0);
- GGML_ASSERT(!src2 || get_misalign_bytes(ctx, src2) == 0);
- GGML_ASSERT(!src3 || get_misalign_bytes(ctx, src3) == 0);
- GGML_ASSERT(!dst || get_misalign_bytes(ctx, dst) == 0);
- }
- template <> void init_pushconst_tensor_offsets(ggml_backend_vk_context * ctx, vk_mat_vec_p021_push_constants &p, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, const ggml_tensor * src3, ggml_tensor * dst) {
- const uint32_t b_offset = get_misalign_bytes(ctx, src1) / ggml_type_size(src1->type);
- const uint32_t d_offset = get_misalign_bytes(ctx, dst) / ggml_type_size(dst->type);
- p.b_offset = b_offset;
- p.d_offset = d_offset;
- GGML_UNUSED(src0);
- GGML_UNUSED(src2);
- GGML_UNUSED(src3);
- }
- template <> void init_pushconst_tensor_offsets(ggml_backend_vk_context * ctx, vk_mat_vec_nc_push_constants &p, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, const ggml_tensor * src3, ggml_tensor * dst) {
- const uint32_t b_offset = get_misalign_bytes(ctx, src1) / ggml_type_size(src1->type);
- const uint32_t d_offset = get_misalign_bytes(ctx, dst) / ggml_type_size(dst->type);
- p.b_offset = b_offset;
- p.d_offset = d_offset;
- GGML_UNUSED(src0);
- GGML_UNUSED(src2);
- GGML_UNUSED(src3);
- }
- struct ggml_backend_vk_buffer_context {
- vk_device_ref device;
- vk_buffer dev_buffer;
- std::string name;
- ggml_backend_vk_buffer_context(vk_device_ref device, vk_buffer&& dev_buffer, std::string& name) :
- device(device),
- dev_buffer(dev_buffer),
- name(name) {
- }
- ~ggml_backend_vk_buffer_context() {
- ggml_vk_destroy_buffer(dev_buffer);
- }
- };
- #ifdef GGML_VULKAN_MEMORY_DEBUG
- static std::mutex log_mutex;
- void vk_memory_logger::log_allocation(vk_buffer_ref buf_ref, size_t size) {
- std::lock_guard<std::mutex> guard(log_mutex);
- vk_buffer buf = buf_ref.lock();
- const bool device = bool(buf->memory_property_flags & vk::MemoryPropertyFlagBits::eDeviceLocal);
- const std::string type = device ? "device" : "host";
- allocations[buf->buffer] = size;
- total_device += device ? size : 0;
- total_host += device ? 0 : size;
- VK_LOG_MEMORY(buf->device->name << ": +" << format_size(size) << " " << type << " at " << buf->buffer << ". Total device: " << format_size(total_device) << ", total host: " << format_size(total_host));
- }
- void vk_memory_logger::log_deallocation(vk_buffer_ref buf_ref) {
- if (buf_ref.expired() || buf_ref.lock()->size == 0) {
- return;
- }
- std::lock_guard<std::mutex> guard(log_mutex);
- vk_buffer buf = buf_ref.lock();
- const bool device = bool(buf->memory_property_flags & vk::MemoryPropertyFlagBits::eDeviceLocal);
- std::string type = device ? "device" : "host";
- auto it = allocations.find(buf->buffer);
- total_device -= device ? it->second : 0;
- total_host -= device ? 0 : it->second;
- if (it != allocations.end()) {
- VK_LOG_MEMORY(buf->device->name << ": -" << format_size(it->second) << " " << type << " at " << buf->buffer << ". Total device: " << format_size(total_device) << ", total host: " << format_size(total_host));
- allocations.erase(it);
- } else {
- VK_LOG_MEMORY("ERROR " << buf->device->name << ": Attempted to deallocate unknown " << type << " memory at " << buf->buffer);
- }
- }
- #endif // GGML_VULKAN_MEMORY_DEBUG
- struct vk_instance_t {
- vk::Instance instance;
- bool debug_utils_support = false; // VK_EXT_debug_utils enabled
- PFN_vkSetDebugUtilsObjectNameEXT pfn_vkSetDebugUtilsObjectNameEXT = {};
- PFN_vkQueueBeginDebugUtilsLabelEXT pfn_vkQueueBeginDebugUtilsLabelEXT = {};
- PFN_vkQueueEndDebugUtilsLabelEXT pfn_vkQueueEndDebugUtilsLabelEXT = {};
- PFN_vkCmdBeginDebugUtilsLabelEXT pfn_vkCmdBeginDebugUtilsLabelEXT = {};
- PFN_vkCmdEndDebugUtilsLabelEXT pfn_vkCmdEndDebugUtilsLabelEXT = {};
- PFN_vkCmdInsertDebugUtilsLabelEXT pfn_vkCmdInsertDebugUtilsLabelEXT = {};
- std::vector<size_t> device_indices;
- std::vector<bool> device_supports_membudget;
- vk_device devices[GGML_VK_MAX_DEVICES];
- };
- static bool vk_instance_initialized = false;
- static vk_instance_t vk_instance;
- static bool vk_perf_logger_enabled = false;
- #ifdef GGML_VULKAN_CHECK_RESULTS
- static size_t vk_skip_checks;
- static size_t vk_output_tensor;
- static void ggml_vk_print_tensor(const ggml_tensor * tensor, const char * name);
- static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_cgraph * cgraph, int tensor_idx);
- static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_cgraph * cgraph, int tensor_idx);
- #endif
- typedef void (*ggml_vk_func_t)(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
- static void ggml_backend_vk_free(ggml_backend_t backend);
- static VkDeviceSize ggml_vk_get_max_buffer_range(const ggml_backend_vk_context * ctx, const vk_buffer &buf, const VkDeviceSize offset) {
- const VkDeviceSize range = std::min(VkDeviceSize{buf->size - offset},
- VkDeviceSize{ctx->device->properties.limits.maxStorageBufferRange});
- return range;
- }
- // Wait for ctx->fence to be signaled.
- static void ggml_vk_wait_for_fence(ggml_backend_vk_context * ctx) {
- // Use waitForFences while most of the graph executes. Hopefully the CPU can sleep
- // during this wait.
- if (ctx->almost_ready_fence_pending) {
- VK_CHECK(ctx->device->device.waitForFences({ ctx->almost_ready_fence }, true, UINT64_MAX), "almost_ready_fence");
- ctx->device->device.resetFences({ ctx->almost_ready_fence });
- ctx->almost_ready_fence_pending = false;
- }
- // Spin (w/pause) waiting for the graph to finish executing.
- vk::Result result;
- while ((result = ctx->device->device.getFenceStatus(ctx->fence)) != vk::Result::eSuccess) {
- if (result != vk::Result::eNotReady) {
- fprintf(stderr, "ggml_vulkan: error %s at %s:%d\n", to_string(result).c_str(), __FILE__, __LINE__);
- exit(1);
- }
- for (uint32_t i = 0; i < 100; ++i) {
- YIELD();
- YIELD();
- YIELD();
- YIELD();
- YIELD();
- YIELD();
- YIELD();
- YIELD();
- YIELD();
- YIELD();
- }
- }
- ctx->device->device.resetFences({ ctx->fence });
- }
- // variables to track number of compiles in progress
- static uint32_t compile_count = 0;
- static std::mutex compile_count_mutex;
- static std::condition_variable compile_count_cond;
- static void ggml_vk_create_pipeline_func(vk_device& device, vk_pipeline& pipeline, size_t spv_size, const void* spv_data, const std::string entrypoint,
- uint32_t parameter_count, std::array<uint32_t, 3> wg_denoms, std::vector<uint32_t> specialization_constants,
- bool disable_robustness, bool require_full_subgroups, uint32_t required_subgroup_size) {
- VK_LOG_DEBUG("ggml_vk_create_pipeline(" << device->name << ", " << pipeline->name << ", " << entrypoint << ", " << parameter_count <<
- ", (" << wg_denoms[0] << "," << wg_denoms[1] << "," << wg_denoms[2] << "), specialization_constants, " <<
- disable_robustness << ", " << require_full_subgroups << ", " << required_subgroup_size << ")");
- GGML_ASSERT(parameter_count > 0);
- GGML_ASSERT(parameter_count <= MAX_PARAMETER_COUNT);
- GGML_ASSERT(wg_denoms[0] > 0 && wg_denoms[1] > 0 && wg_denoms[2] > 0); // NOLINT
- vk::ShaderModuleCreateInfo shader_module_create_info({}, spv_size, reinterpret_cast<const uint32_t *>(spv_data));
- pipeline->shader_module = device->device.createShaderModule(shader_module_create_info);
- vk::PushConstantRange pcr(
- vk::ShaderStageFlagBits::eCompute,
- 0,
- pipeline->push_constant_size
- );
- vk::PipelineLayoutCreateInfo pipeline_layout_create_info(vk::PipelineLayoutCreateFlags(), device->dsl, pcr);
- pipeline->layout = device->device.createPipelineLayout(pipeline_layout_create_info);
- std::vector<vk::SpecializationMapEntry> specialization_entries(specialization_constants.size());
- for (size_t i = 0; i < specialization_constants.size(); i++) {
- specialization_entries[i].constantID = i;
- specialization_entries[i].offset = i * sizeof(uint32_t);
- specialization_entries[i].size = sizeof(uint32_t);
- }
- vk::SpecializationInfo specialization_info(
- specialization_entries.size(),
- specialization_entries.data(),
- specialization_constants.size() * sizeof(uint32_t),
- specialization_constants.data()
- );
- vk::PipelineShaderStageCreateFlags pipeline_shader_stage_create_flags{};
- if (device->subgroup_require_full_support && require_full_subgroups) {
- pipeline_shader_stage_create_flags |= vk::PipelineShaderStageCreateFlagBits::eRequireFullSubgroupsEXT;
- }
- vk::PipelineShaderStageCreateInfo pipeline_shader_create_info(
- pipeline_shader_stage_create_flags,
- vk::ShaderStageFlagBits::eCompute,
- pipeline->shader_module,
- entrypoint.c_str(),
- &specialization_info);
- vk::PipelineShaderStageRequiredSubgroupSizeCreateInfoEXT pipeline_shader_stage_required_subgroup_size_create_info;
- pipeline_shader_stage_required_subgroup_size_create_info.requiredSubgroupSize = required_subgroup_size;
- if (device->subgroup_size_control && required_subgroup_size > 0) {
- GGML_ASSERT(device->subgroup_min_size <= required_subgroup_size && required_subgroup_size <= device->subgroup_max_size);
- pipeline_shader_create_info.setPNext(&pipeline_shader_stage_required_subgroup_size_create_info);
- }
- vk::ComputePipelineCreateInfo compute_pipeline_create_info(
- device->pipeline_executable_properties_support ?
- vk::PipelineCreateFlagBits::eCaptureStatisticsKHR :
- vk::PipelineCreateFlags{},
- pipeline_shader_create_info,
- pipeline->layout);
- vk::PipelineRobustnessCreateInfoEXT rci;
- if (device->pipeline_robustness && disable_robustness) {
- rci.storageBuffers = vk::PipelineRobustnessBufferBehaviorEXT::eDisabled;
- rci.uniformBuffers = vk::PipelineRobustnessBufferBehaviorEXT::eDisabled;
- compute_pipeline_create_info.setPNext(&rci);
- }
- try {
- pipeline->pipeline = device->device.createComputePipeline(VK_NULL_HANDLE, compute_pipeline_create_info).value;
- } catch (const vk::SystemError& e) {
- std::cerr << "ggml_vulkan: Compute pipeline creation failed for " << pipeline->name << std::endl;
- std::cerr << "ggml_vulkan: " << e.what() << std::endl;
- throw e;
- }
- pipeline->compiled = true;
- if (vk_instance.debug_utils_support) {
- vk::DebugUtilsObjectNameInfoEXT duoni;
- duoni.objectType = vk::ObjectType::ePipeline;
- duoni.pObjectName = pipeline->name.c_str();
- duoni.objectHandle = /*reinterpret_cast*/(uint64_t)(static_cast<VkPipeline>(pipeline->pipeline));
- vk_instance.pfn_vkSetDebugUtilsObjectNameEXT(device->device, &static_cast<VkDebugUtilsObjectNameInfoEXT &>(duoni));
- }
- if (device->pipeline_executable_properties_support) {
- vk::PipelineExecutableInfoKHR executableInfo;
- executableInfo.pipeline = pipeline->pipeline;
- auto statistics = device->device.getPipelineExecutableStatisticsKHR(executableInfo);
- for (auto & s : statistics) {
- // "Register Count" is reported by NVIDIA drivers.
- if (strcmp(s.name, "Register Count") == 0) {
- VK_LOG_DEBUG(pipeline->name << " " << s.name << ": " << s.value.u64 << " registers");
- pipeline->register_count = (uint32_t)s.value.u64;
- }
- }
- }
- device->all_pipelines.push_back(pipeline);
- {
- std::lock_guard<std::mutex> guard(compile_count_mutex);
- assert(compile_count > 0);
- compile_count--;
- }
- compile_count_cond.notify_all();
- }
- static void ggml_vk_destroy_pipeline(vk::Device& device, vk_pipeline& pipeline) {
- VK_LOG_DEBUG("ggml_pipeline_destroy_pipeline(" << pipeline->name << ")");
- device.destroyPipelineLayout(pipeline->layout);
- device.destroyShaderModule(pipeline->shader_module);
- device.destroyPipeline(pipeline->pipeline);
- }
- static void ggml_pipeline_request_descriptor_sets(ggml_backend_vk_context *ctx, vk_pipeline& pipeline, uint32_t n) {
- VK_LOG_DEBUG("ggml_pipeline_request_descriptor_sets(" << pipeline->name << ", " << n << ")");
- ctx->pipeline_descriptor_set_requirements += n;
- if (!pipeline->compiled) {
- pipeline->needed = true;
- ggml_vk_load_shaders(ctx->device);
- }
- ggml_pipeline_allocate_descriptor_sets(ctx);
- }
- static void ggml_pipeline_allocate_descriptor_sets(ggml_backend_vk_context * ctx) {
- if (ctx->descriptor_sets.size() >= ctx->pipeline_descriptor_set_requirements) {
- // Enough descriptors are available
- return;
- }
- vk_device& device = ctx->device;
- // Grow by 50% to avoid frequent allocations
- uint32_t needed = std::max(3 * ctx->descriptor_sets.size() / 2, size_t{ctx->pipeline_descriptor_set_requirements});
- uint32_t to_alloc = needed - ctx->descriptor_sets.size();
- uint32_t pool_remaining = VK_DEVICE_DESCRIPTOR_POOL_SIZE - ctx->descriptor_sets.size() % VK_DEVICE_DESCRIPTOR_POOL_SIZE;
- uint32_t pool_idx = ctx->descriptor_sets.size() / VK_DEVICE_DESCRIPTOR_POOL_SIZE;
- while (to_alloc > 0) {
- const uint32_t alloc_count = std::min(pool_remaining, to_alloc);
- to_alloc -= alloc_count;
- pool_remaining = VK_DEVICE_DESCRIPTOR_POOL_SIZE;
- if (pool_idx >= ctx->descriptor_pools.size()) {
- vk::DescriptorPoolSize descriptor_pool_size(vk::DescriptorType::eStorageBuffer, MAX_PARAMETER_COUNT * VK_DEVICE_DESCRIPTOR_POOL_SIZE);
- vk::DescriptorPoolCreateInfo descriptor_pool_create_info({}, VK_DEVICE_DESCRIPTOR_POOL_SIZE, descriptor_pool_size);
- ctx->descriptor_pools.push_back(device->device.createDescriptorPool(descriptor_pool_create_info));
- }
- std::vector<vk::DescriptorSetLayout> layouts(alloc_count);
- for (uint32_t i = 0; i < alloc_count; i++) {
- layouts[i] = device->dsl;
- }
- vk::DescriptorSetAllocateInfo descriptor_set_alloc_info(ctx->descriptor_pools[pool_idx], alloc_count, layouts.data());
- std::vector<vk::DescriptorSet> sets = device->device.allocateDescriptorSets(descriptor_set_alloc_info);
- ctx->descriptor_sets.insert(ctx->descriptor_sets.end(), sets.begin(), sets.end());
- pool_idx++;
- }
- }
- static vk::CommandBuffer ggml_vk_create_cmd_buffer(vk_device& device, vk_command_pool& p) {
- VK_LOG_DEBUG("ggml_vk_create_cmd_buffer()");
- if (p.cmd_buffers.size() > p.cmd_buffer_idx) {
- // Reuse command buffer
- return p.cmd_buffers[p.cmd_buffer_idx++];
- }
- vk::CommandBufferAllocateInfo command_buffer_alloc_info(
- p.pool,
- vk::CommandBufferLevel::ePrimary,
- 1);
- const std::vector<vk::CommandBuffer> cmd_buffers = device->device.allocateCommandBuffers(command_buffer_alloc_info);
- auto buf = cmd_buffers.front();
- p.cmd_buffers.push_back(buf);
- p.cmd_buffer_idx++;
- return buf;
- }
- static void ggml_vk_submit(vk_context& ctx, vk::Fence fence) {
- if (ctx->seqs.empty()) {
- if (fence) {
- std::lock_guard<std::mutex> guard(queue_mutex);
- ctx->p->q->queue.submit({}, fence);
- }
- return;
- }
- VK_LOG_DEBUG("ggml_vk_submit(" << ctx << ", " << fence << ")");
- std::vector<std::vector<uint64_t>> tl_wait_vals;
- std::vector<std::vector<uint64_t>> tl_signal_vals;
- std::vector<std::vector<vk::Semaphore>> tl_wait_semaphores;
- std::vector<std::vector<vk::Semaphore>> tl_signal_semaphores;
- std::vector<vk::TimelineSemaphoreSubmitInfo> tl_submit_infos;
- std::vector<vk::SubmitInfo> submit_infos;
- int idx = -1;
- std::vector<std::vector<vk::PipelineStageFlags>> stage_flags;
- size_t reserve = 0;
- for (const auto& sequence : ctx->seqs) {
- reserve += sequence.size();
- }
- // Pre-reserve vectors to prevent reallocation, which invalidates pointers
- tl_wait_semaphores.reserve(reserve);
- tl_wait_vals.reserve(reserve);
- tl_signal_semaphores.reserve(reserve);
- tl_signal_vals.reserve(reserve);
- tl_submit_infos.reserve(reserve);
- submit_infos.reserve(reserve);
- stage_flags.reserve(reserve);
- for (const auto& sequence : ctx->seqs) {
- for (const auto& submission : sequence) {
- stage_flags.push_back({});
- idx++;
- tl_wait_vals.push_back({});
- tl_wait_semaphores.push_back({});
- tl_signal_vals.push_back({});
- tl_signal_semaphores.push_back({});
- for (size_t i = 0; i < submission.wait_semaphores.size(); i++) {
- stage_flags[idx].push_back(ctx->p->q->stage_flags);
- tl_wait_vals[idx].push_back(submission.wait_semaphores[i].value);
- tl_wait_semaphores[idx].push_back(submission.wait_semaphores[i].s);
- }
- for (size_t i = 0; i < submission.signal_semaphores.size(); i++) {
- tl_signal_vals[idx].push_back(submission.signal_semaphores[i].value);
- tl_signal_semaphores[idx].push_back(submission.signal_semaphores[i].s);
- }
- tl_submit_infos.push_back({
- (uint32_t) submission.wait_semaphores.size(),
- tl_wait_vals[idx].data(),
- (uint32_t) submission.signal_semaphores.size(),
- tl_signal_vals[idx].data(),
- });
- tl_submit_infos[idx].sType = vk::StructureType::eTimelineSemaphoreSubmitInfo;
- tl_submit_infos[idx].pNext = nullptr;
- vk::SubmitInfo si{
- (uint32_t) submission.wait_semaphores.size(),
- tl_wait_semaphores[idx].data(),
- stage_flags[idx].data(),
- 1,
- &submission.buffer,
- (uint32_t) submission.signal_semaphores.size(),
- tl_signal_semaphores[idx].data(),
- };
- si.setPNext(&tl_submit_infos[idx]);
- submit_infos.push_back(si);
- }
- }
- std::lock_guard<std::mutex> guard(queue_mutex);
- ctx->p->q->queue.submit(submit_infos, fence);
- ctx->seqs.clear();
- }
- static uint32_t ggml_vk_find_queue_family_index(std::vector<vk::QueueFamilyProperties>& queue_family_props, const vk::QueueFlags& required, const vk::QueueFlags& avoid, int32_t compute_index, uint32_t min_num_queues) {
- VK_LOG_DEBUG("ggml_vk_find_queue_family_index()");
- const uint32_t qfsize = queue_family_props.size();
- // Try with avoid preferences first
- for (uint32_t i = 0; i < qfsize; i++) {
- if (queue_family_props[i].queueCount >= min_num_queues && (compute_index < 0 || i != (uint32_t) compute_index) && queue_family_props[i].queueFlags & required && !(queue_family_props[i].queueFlags & avoid)) {
- return i;
- }
- }
- // Fall back to only required
- for (size_t i = 0; i < qfsize; i++) {
- if (queue_family_props[i].queueCount >= min_num_queues && (compute_index < 0 || i != (uint32_t) compute_index) && queue_family_props[i].queueFlags & required) {
- return i;
- }
- }
- // Fall back to reusing compute queue
- for (size_t i = 0; i < qfsize; i++) {
- if (queue_family_props[i].queueCount >= min_num_queues && queue_family_props[i].queueFlags & required) {
- return i;
- }
- }
- // Fall back to ignoring min_num_queries
- for (size_t i = 0; i < qfsize; i++) {
- if (queue_family_props[i].queueFlags & required) {
- return i;
- }
- }
- // All commands that are allowed on a queue that supports transfer operations are also allowed on a queue that supports either graphics or compute operations.
- // Thus, if the capabilities of a queue family include VK_QUEUE_GRAPHICS_BIT or VK_QUEUE_COMPUTE_BIT, then reporting the VK_QUEUE_TRANSFER_BIT capability separately for that queue family is optional.
- if (compute_index >= 0) {
- return compute_index;
- }
- std::cerr << "ggml_vulkan: No suitable queue family index found." << std::endl;
- for(auto &q_family : queue_family_props) {
- std::cerr << "Queue number: " + std::to_string(q_family.queueCount) << " flags: " + to_string(q_family.queueFlags) << std::endl;
- }
- abort();
- }
- static void ggml_vk_create_queue(vk_device& device, vk_queue& q, uint32_t queue_family_index, uint32_t queue_index, vk::PipelineStageFlags&& stage_flags, bool transfer_only) {
- VK_LOG_DEBUG("ggml_vk_create_queue()");
- std::lock_guard<std::recursive_mutex> guard(device->mutex);
- q.queue_family_index = queue_family_index;
- q.transfer_only = transfer_only;
- q.cmd_pool.init(device, &q);
- q.queue = device->device.getQueue(queue_family_index, queue_index);
- q.stage_flags = stage_flags;
- }
- static vk_context ggml_vk_create_context(ggml_backend_vk_context * ctx, vk_command_pool& p) {
- vk_context result = std::make_shared<vk_context_struct>();
- VK_LOG_DEBUG("ggml_vk_create_context(" << result << ")");
- ctx->gc.contexts.emplace_back(result);
- result->p = &p;
- return result;
- }
- static vk_context ggml_vk_create_temporary_context(vk_command_pool& p) {
- vk_context result = std::make_shared<vk_context_struct>();
- VK_LOG_DEBUG("ggml_vk_create_temporary_context(" << result << ")");
- result->p = &p;
- return result;
- }
- static vk_semaphore * ggml_vk_create_binary_semaphore(ggml_backend_vk_context * ctx) {
- VK_LOG_DEBUG("ggml_vk_create_timeline_semaphore()");
- vk::SemaphoreTypeCreateInfo tci{ vk::SemaphoreType::eBinary, 0 };
- vk::SemaphoreCreateInfo ci{};
- ci.setPNext(&tci);
- vk::Semaphore semaphore = ctx->device->device.createSemaphore(ci);
- ctx->gc.semaphores.push_back({ semaphore, 0 });
- return &ctx->gc.semaphores[ctx->gc.semaphores.size() - 1];
- }
- static vk_semaphore * ggml_vk_create_timeline_semaphore(ggml_backend_vk_context * ctx) {
- VK_LOG_DEBUG("ggml_vk_create_timeline_semaphore()");
- if (ctx->semaphore_idx >= ctx->gc.tl_semaphores.size()) {
- vk::SemaphoreTypeCreateInfo tci{ vk::SemaphoreType::eTimeline, 0 };
- vk::SemaphoreCreateInfo ci{};
- ci.setPNext(&tci);
- vk::Semaphore semaphore = ctx->device->device.createSemaphore(ci);
- ctx->gc.tl_semaphores.push_back({ semaphore, 0 });
- }
- return &ctx->gc.tl_semaphores[ctx->semaphore_idx++];
- }
- static vk::Event ggml_vk_create_event(ggml_backend_vk_context * ctx) {
- if (ctx->event_idx >= ctx->gc.events.size()) {
- ctx->gc.events.push_back(ctx->device->device.createEvent({}));
- }
- return ctx->gc.events[ctx->event_idx++];
- }
- static void ggml_vk_command_pool_cleanup(vk_device& device, vk_command_pool& p) {
- VK_LOG_DEBUG("ggml_vk_command_pool_cleanup()");
- // Requires command buffers to be done
- device->device.resetCommandPool(p.pool);
- p.cmd_buffer_idx = 0;
- }
- static void ggml_vk_queue_command_pools_cleanup(vk_device& device) {
- VK_LOG_DEBUG("ggml_vk_queue_command_pools_cleanup()");
- // Arbitrary frequency to cleanup/reuse command buffers
- static constexpr uint32_t cleanup_frequency = 10;
- if (device->compute_queue.cmd_pool.cmd_buffer_idx >= cleanup_frequency) {
- ggml_vk_command_pool_cleanup(device, device->compute_queue.cmd_pool);
- }
- if (device->transfer_queue.cmd_pool.cmd_buffer_idx >= cleanup_frequency) {
- ggml_vk_command_pool_cleanup(device, device->transfer_queue.cmd_pool);
- }
- }
- static std::vector<uint32_t> ggml_vk_find_memory_properties(const vk::PhysicalDeviceMemoryProperties* mem_props, vk::MemoryRequirements* mem_req, vk::MemoryPropertyFlags flags) {
- std::vector<uint32_t> indices;
- for (uint32_t i = 0; i < mem_props->memoryTypeCount; ++i) {
- vk::MemoryType memory_type = mem_props->memoryTypes[i];
- if ((mem_req->memoryTypeBits & ((uint64_t)1 << i)) &&
- (flags & memory_type.propertyFlags) == flags &&
- mem_props->memoryHeaps[memory_type.heapIndex].size >= mem_req->size) {
- indices.push_back(i);
- }
- }
- return indices;
- }
- static vk_buffer ggml_vk_create_buffer(vk_device& device, size_t size, const std::initializer_list<vk::MemoryPropertyFlags> & req_flags_list) {
- VK_LOG_DEBUG("ggml_vk_create_buffer(" << device->name << ", " << size << ", " << to_string(req_flags_list.begin()[0]) << ", " << to_string(req_flags_list.begin()[req_flags_list.size()-1]) << ")");
- if (size > device->max_buffer_size) {
- throw vk::OutOfDeviceMemoryError("Requested buffer size exceeds device buffer size limit");
- }
- vk_buffer buf = std::make_shared<vk_buffer_struct>();
- if (size == 0) {
- buf->size = 0;
- return buf;
- }
- vk::BufferUsageFlags usage_flags = vk::BufferUsageFlagBits::eStorageBuffer | vk::BufferUsageFlagBits::eTransferSrc | vk::BufferUsageFlagBits::eTransferDst;
- vk::MemoryAllocateFlags mem_flags {};
- if (device->buffer_device_address) {
- usage_flags |= vk::BufferUsageFlagBits::eShaderDeviceAddress;
- mem_flags |= vk::MemoryAllocateFlagBits::eDeviceAddress;
- }
- vk::BufferCreateInfo buffer_create_info{
- vk::BufferCreateFlags(),
- size,
- usage_flags,
- vk::SharingMode::eExclusive,
- 0,
- nullptr,
- };
- buf->buffer = device->device.createBuffer(buffer_create_info);
- vk::MemoryRequirements mem_req = device->device.getBufferMemoryRequirements(buf->buffer);
- vk::PhysicalDeviceMemoryProperties mem_props = device->physical_device.getMemoryProperties();
- const vk::MemoryAllocateFlagsInfo mem_flags_info { mem_flags };
- for (auto it = req_flags_list.begin(); it != req_flags_list.end(); it++) {
- const auto & req_flags = *it;
- const std::vector<uint32_t> memory_type_indices = ggml_vk_find_memory_properties(&mem_props, &mem_req, req_flags);
- if (memory_type_indices.empty()) {
- continue;
- }
- buf->memory_property_flags = req_flags;
- bool done = false;
- for (auto mtype_it = memory_type_indices.begin(); mtype_it != memory_type_indices.end(); mtype_it++) {
- try {
- buf->device_memory = device->device.allocateMemory({ mem_req.size, *mtype_it, &mem_flags_info });
- done = true;
- break;
- } catch (const vk::SystemError& e) {
- // loop and retry
- // during last attempt throw the exception
- if (it + 1 == req_flags_list.end() && mtype_it + 1 == memory_type_indices.end()) {
- device->device.destroyBuffer(buf->buffer);
- throw e;
- }
- }
- }
- if (done) {
- break;
- }
- }
- if (!buf->device_memory) {
- device->device.destroyBuffer(buf->buffer);
- throw vk::OutOfDeviceMemoryError("No suitable memory type found");
- }
- buf->ptr = nullptr;
- if (buf->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible) {
- buf->ptr = device->device.mapMemory(buf->device_memory, 0, VK_WHOLE_SIZE);
- }
- device->device.bindBufferMemory(buf->buffer, buf->device_memory, 0);
- buf->device = device;
- buf->size = size;
- if (device->buffer_device_address) {
- const vk::BufferDeviceAddressInfo addressInfo(buf->buffer);
- buf->bda_addr = device->device.getBufferAddress(addressInfo);
- }
- #ifdef GGML_VULKAN_MEMORY_DEBUG
- device->memory_logger->log_allocation(buf, size);
- #endif
- return buf;
- }
- static vk_buffer ggml_vk_create_buffer_check(vk_device& device, size_t size, vk::MemoryPropertyFlags req_flags, vk::MemoryPropertyFlags fallback_flags = vk::MemoryPropertyFlags(0)) {
- try {
- return ggml_vk_create_buffer(device, size, {req_flags, fallback_flags});
- } catch (const vk::SystemError& e) {
- std::cerr << "ggml_vulkan: Memory allocation of size " << size << " failed." << std::endl;
- std::cerr << "ggml_vulkan: " << e.what() << std::endl;
- throw e;
- }
- }
- static vk_buffer ggml_vk_create_buffer_device(vk_device& device, size_t size) {
- vk_buffer buf;
- try {
- if (device->prefer_host_memory) {
- buf = ggml_vk_create_buffer(device, size, {vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent,
- vk::MemoryPropertyFlagBits::eDeviceLocal});
- } else if (device->uma) {
- // Fall back to host memory type
- buf = ggml_vk_create_buffer(device, size, {vk::MemoryPropertyFlagBits::eDeviceLocal,
- vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent});
- } else if (device->disable_host_visible_vidmem) {
- if (device->allow_sysmem_fallback) {
- buf = ggml_vk_create_buffer(device, size, {vk::MemoryPropertyFlagBits::eDeviceLocal,
- vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent});
- } else {
- buf = ggml_vk_create_buffer(device, size, {vk::MemoryPropertyFlagBits::eDeviceLocal});
- }
- } else {
- // use rebar if available, otherwise fallback to device only visible memory
- if (device->allow_sysmem_fallback) {
- buf = ggml_vk_create_buffer(device, size, {vk::MemoryPropertyFlagBits::eDeviceLocal | vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent,
- vk::MemoryPropertyFlagBits::eDeviceLocal,
- vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent});
- } else {
- buf = ggml_vk_create_buffer(device, size, {vk::MemoryPropertyFlagBits::eDeviceLocal | vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent,
- vk::MemoryPropertyFlagBits::eDeviceLocal});
- }
- }
- } catch (const vk::SystemError& e) {
- std::cerr << "ggml_vulkan: Device memory allocation of size " << size << " failed." << std::endl;
- std::cerr << "ggml_vulkan: " << e.what() << std::endl;
- throw e;
- }
- return buf;
- }
- static void ggml_vk_destroy_buffer(vk_buffer& buf) {
- if (buf == nullptr) {
- return;
- }
- #ifdef GGML_VULKAN_MEMORY_DEBUG
- if (buf->device != nullptr) {
- buf->device->memory_logger->log_deallocation(buf);
- }
- #endif
- buf.reset();
- }
- static vk_subbuffer ggml_vk_subbuffer(const ggml_backend_vk_context* ctx, const vk_buffer& buf, size_t offset = 0) {
- return { buf, offset, ggml_vk_get_max_buffer_range(ctx, buf, offset) };
- }
- static void ggml_vk_sync_buffers(ggml_backend_vk_context* ctx, vk_context& subctx) {
- VK_LOG_DEBUG("ggml_vk_sync_buffers()");
- const bool transfer_queue = subctx->p->q->transfer_only;
- if (ctx) {
- ctx->prealloc_x_need_sync = ctx->prealloc_y_need_sync = ctx->prealloc_split_k_need_sync = false;
- }
- subctx->s->buffer.pipelineBarrier(
- subctx->p->q->stage_flags,
- subctx->p->q->stage_flags,
- {},
- { {
- { !transfer_queue ? (vk::AccessFlagBits::eShaderRead | vk::AccessFlagBits::eShaderWrite | vk::AccessFlagBits::eTransferRead | vk::AccessFlagBits::eTransferWrite) : (vk::AccessFlagBits::eTransferRead | vk::AccessFlagBits::eTransferWrite) },
- { !transfer_queue ? (vk::AccessFlagBits::eShaderRead | vk::AccessFlagBits::eShaderWrite | vk::AccessFlagBits::eTransferRead | vk::AccessFlagBits::eTransferWrite) : (vk::AccessFlagBits::eTransferRead | vk::AccessFlagBits::eTransferWrite) }
- } },
- {},
- {}
- );
- }
- static void ggml_vk_wait_events(vk_context& ctx, std::vector<vk::Event>&& events) {
- VK_LOG_DEBUG("ggml_vk_wait_events()");
- if (events.empty()) {
- return;
- }
- ctx->s->buffer.waitEvents(
- events,
- ctx->p->q->stage_flags,
- ctx->p->q->stage_flags,
- {},
- {},
- {}
- );
- }
- // number of rows/cols for flash attention shader
- static constexpr uint32_t flash_attention_num_small_rows = 32;
- static constexpr uint32_t scalar_flash_attention_num_small_rows = 1;
- static uint32_t get_fa_scalar_num_large_rows(uint32_t hsv) {
- if (hsv >= 192) {
- return 2;
- } else {
- return 8;
- }
- }
- // The FA coopmat1 shader assumes 16x16x16 matrix multiply support.
- // 128 threads split into four subgroups, each subgroup does 1/4
- // of the Bc dimension.
- static constexpr uint32_t coopmat1_flash_attention_num_large_rows = 16;
- static constexpr uint32_t scalar_flash_attention_Bc = 64;
- static constexpr uint32_t scalar_flash_attention_workgroup_size = 128;
- static uint32_t get_fa_num_small_rows(FaCodePath path) {
- if (path == FA_COOPMAT2) {
- return flash_attention_num_small_rows;
- } else {
- return scalar_flash_attention_num_small_rows;
- }
- }
- static std::array<uint32_t, 2> fa_rows_cols(FaCodePath path, uint32_t hsk, uint32_t hsv, uint32_t clamp, ggml_type type, bool small_rows) {
- GGML_UNUSED(clamp);
- GGML_UNUSED(hsv);
- if (path == FA_SCALAR) {
- if (small_rows) {
- return {scalar_flash_attention_num_small_rows, 64};
- } else {
- if ((hsv | hsk) & 8) {
- // HSV/HSK not being a multiple of 16 makes D_split smaller, which makes cols_per_iter
- // larger, and Bc needs to be >= cols_per_thread. 64 is large enough, 32 is not.
- return {get_fa_scalar_num_large_rows(hsv), 64};
- } else {
- return {get_fa_scalar_num_large_rows(hsv), 32};
- }
- }
- }
- if (path == FA_COOPMAT1) {
- if (small_rows) {
- return {scalar_flash_attention_num_small_rows, scalar_flash_attention_Bc};
- } else {
- return {coopmat1_flash_attention_num_large_rows, scalar_flash_attention_Bc};
- }
- }
- // small rows, large cols
- if (small_rows) {
- return {get_fa_num_small_rows(FA_COOPMAT2), 32};
- }
- // small cols to reduce register count
- if (ggml_is_quantized(type) || hsk >= 256 || hsv >= 256) {
- if (hsk >= 512 || hsv >= 512) {
- return {32, 32};
- } else {
- return {64, 32};
- }
- }
- return {64, 64};
- }
- static uint32_t fa_align(FaCodePath path, uint32_t hsk, uint32_t hsv, ggml_type type, bool small_rows) {
- return fa_rows_cols(path, hsk, hsv, 0, type, small_rows)[1];
- }
- static bool ggml_vk_matmul_shmem_support(const vk_device& device, const std::vector<uint32_t>& warptile, bool mul_mat_id, ggml_type src0_type) {
- uint32_t lut_size = 0;
- switch (src0_type) {
- case GGML_TYPE_IQ1_S:
- case GGML_TYPE_IQ1_M:
- lut_size = 2*2048;
- break;
- case GGML_TYPE_IQ2_XXS:
- lut_size = 8*256;
- break;
- case GGML_TYPE_IQ2_XS:
- lut_size = 8*512;
- break;
- case GGML_TYPE_IQ2_S:
- lut_size = 8*1024;
- break;
- case GGML_TYPE_IQ3_XXS:
- lut_size = 4*256;
- break;
- case GGML_TYPE_IQ3_S:
- lut_size = 4*512;
- break;
- case GGML_TYPE_IQ4_NL:
- case GGML_TYPE_IQ4_XS:
- case GGML_TYPE_MXFP4:
- lut_size = 4*16;
- break;
- default:
- break;
- }
- // Needs to be kept up to date on shader changes
- const uint32_t bank_conflict_offset = device->coopmat_support ? 8 : 1;
- const uint32_t type_size = device->fp16 ? sizeof(ggml_fp16_t) : sizeof(float);
- const uint32_t warps = warptile[0] / warptile[10];
- const uint32_t load_bufs = (warptile[1] + warptile[2]) * (warptile[3] + bank_conflict_offset) * type_size;
- const uint32_t mmid_row_ids = mul_mat_id ? (warptile[2] * 2 * sizeof(uint16_t)) : 0;
- const uint32_t coopmat_stage = device->coopmat_support ? warptile[7] * warptile[8] / warps * sizeof(float) : 0;
- const uint32_t ballots_sh = mul_mat_id ? (warps * 4 * sizeof(uint32_t)) : 0;
- const uint32_t total_size = load_bufs + mmid_row_ids + coopmat_stage + lut_size + ballots_sh;
- const bool supported = total_size <= device->properties.limits.maxComputeSharedMemorySize;
- VK_LOG_DEBUG("ggml_vk_matmul_shmem_support(warptile=(" << warptile[0] << "," << warptile[1] << "," << warptile[2] << "), "
- "mul_mat_id=" << mul_mat_id << ", src0_type=" << ggml_type_name(src0_type) << ", supported=" << supported);
- return supported;
- }
- struct GpuPipelineConfig {
- // GPU architecture identifier.
- // Example: vk_device_architecture::AMD_GCN
- vk_device_architecture arch;
- // Mapping of pipeline names to their specific subgroup sizes.
- // Example: {"soft_max_f32", 64}
- std::unordered_map<std::string, uint32_t> pipelines;
- // Default subgroup size for this GPU.
- // Defaults to 0 if not explicitly provided.
- uint32_t default_subgroup_size = 0;
- };
- // Pipeline configuration for RDNA1 GPUs.
- static const std::unordered_map<std::string, uint32_t> rdna1_pipelines = {
- {"soft_max", 64}, {"im2col", 64},
- {"argmax", 64}, {"mul_mat_vec", 64},
- {"mul_mat_vec_f16", 32}, {"mul_mat_vec_f32_f16", 32}
- };
- // Pipeline configuration for RDNA2 GPUs.
- static const std::unordered_map<std::string, uint32_t> rdna2_pipelines = {
- {"soft_max", 64}, {"im2col", 64},
- };
- static constexpr uint32_t RDNA_DEFAULT_SUBGROUP_SIZE = 32;
- // Define configurations for different GPUs.
- static std::vector<GpuPipelineConfig> gpu_pipeline_configs = {
- {
- vk_device_architecture::AMD_RDNA1,
- {
- rdna1_pipelines,
- },
- RDNA_DEFAULT_SUBGROUP_SIZE
- },
- {
- vk_device_architecture::AMD_RDNA2,
- {
- rdna2_pipelines,
- },
- RDNA_DEFAULT_SUBGROUP_SIZE
- },
- };
- static uint32_t get_subgroup_size(const std::string &pipeline_name, const vk_device_architecture &arch) {
- for (const auto &config : gpu_pipeline_configs) {
- if (config.arch == arch) {
- auto pipIt = config.pipelines.find(pipeline_name);
- if (pipIt != config.pipelines.end()) {
- return pipIt->second;
- }
- std::vector<std::pair<std::string, uint32_t>> sorted_pipelines(config.pipelines.begin(), config.pipelines.end());
- std::sort(sorted_pipelines.begin(), sorted_pipelines.end(),
- [](const auto &a, const auto &b) { return a.first.size() > b.first.size(); });
- for (const auto &entry : sorted_pipelines) {
- if (pipeline_name.find(entry.first) != std::string::npos) {
- return entry.second;
- }
- }
- return config.default_subgroup_size;
- }
- }
- return 0; // If no matching configuration is found
- }
- static void ggml_vk_load_shaders(vk_device& device) {
- VK_LOG_DEBUG("ggml_vk_load_shaders(" << device->name << ")");
- std::lock_guard<std::recursive_mutex> guard(device->mutex);
- // some shaders have a minimum subgroup size
- const uint32_t subgroup_size_8 = std::max(device->subgroup_size, 8u);
- const uint32_t subgroup_size_16 = std::max(device->subgroup_size, 16u);
- const uint32_t subgroup_size_32 = std::max(device->subgroup_size, 32u);
- const uint32_t mul_mat_subgroup_size = (device->vendor_id == VK_VENDOR_ID_INTEL && device->subgroup_size_control) ? device->subgroup_min_size : device->subgroup_size;
- const uint32_t mul_mat_subgroup_size_8 = std::max(mul_mat_subgroup_size, 8u);
- const uint32_t mul_mat_subgroup_size_16 = std::max(mul_mat_subgroup_size, 16u);
- const uint32_t mul_mat_subgroup_size_32 = std::max(mul_mat_subgroup_size, 32u);
- const bool subgroup_min_size_16 = (!device->subgroup_size_control && device->subgroup_size >= 16) ||
- (device->subgroup_size_control && device->subgroup_max_size >= 16);
- // mulmat
- std::vector<uint32_t> l_warptile, m_warptile, s_warptile,
- l_warptile_id, m_warptile_id, s_warptile_id,
- l_warptile_mmq, m_warptile_mmq, s_warptile_mmq,
- l_warptile_mmq_int, m_warptile_mmq_int, s_warptile_mmq_int,
- l_warptile_mmq_int_k, m_warptile_mmq_int_k, s_warptile_mmq_int_k,
- l_warptile_mmq_k, m_warptile_mmq_k, s_warptile_mmq_k,
- l_warptile_mmqid, m_warptile_mmqid, s_warptile_mmqid,
- l_warptile_mmqid_int, m_warptile_mmqid_int, s_warptile_mmqid_int,
- l_warptile_mmqid_int_k, m_warptile_mmqid_int_k, s_warptile_mmqid_int_k;
- std::array<uint32_t, 3> l_wg_denoms, m_wg_denoms, s_wg_denoms,
- l_mmq_wg_denoms, m_mmq_wg_denoms, s_mmq_wg_denoms,
- l_mmq_wg_denoms_k, m_mmq_wg_denoms_k, s_mmq_wg_denoms_k,
- l_mmqid_wg_denoms, m_mmqid_wg_denoms, s_mmqid_wg_denoms;
- uint32_t l_align, m_align, s_align;
- if (device->coopmat2) {
- // spec constants and tile sizes for non-quant matmul/matmul_id
- l_warptile = { 256, 128, 256, 64, 1 };
- m_warptile = { 256, 128, 128, 64, 0 };
- s_warptile = { 128, 64, 64, 64, 0 };
- l_wg_denoms = {128, 256, 1 };
- m_wg_denoms = {128, 128, 1 };
- s_wg_denoms = { 64, 64, 1 };
- // spec constants and tile sizes for quant matmul (non-Qi_K)
- l_warptile_mmq = { 256, 128, 256, 64, 1 };
- m_warptile_mmq = { 256, 128, 128, 64, 1 };
- s_warptile_mmq = { 256, 32, 64, 128, 0 };
- l_mmq_wg_denoms = { 128, 256, 1 };
- m_mmq_wg_denoms = { 128, 128, 1 };
- s_mmq_wg_denoms = { 32, 64, 1 };
- // spec constants and tile sizes for quant matmul (Qi_K)
- l_warptile_mmq_k = { 256, 128, 256, 64, 1 };
- m_warptile_mmq_k = { 256, 128, 128, 64, 1 };
- s_warptile_mmq_k = { 256, 32, 64, 128, 0 };
- l_mmq_wg_denoms_k = { 128, 256, 1 };
- m_mmq_wg_denoms_k = { 128, 128, 1 };
- s_mmq_wg_denoms_k = { 32, 64, 1 };
- // spec constants and tile sizes for quant matmul_id
- l_warptile_mmqid = { 256, 128, 128, 16, 1, device->subgroup_size };
- m_warptile_mmqid = { 256, 128, 64, 16, 0, device->subgroup_size };
- s_warptile_mmqid = { 256, 128, 64, 16, 0, device->subgroup_size };
- l_mmqid_wg_denoms = { 128, 128, 1 };
- m_mmqid_wg_denoms = { 128, 64, 1 };
- s_mmqid_wg_denoms = { 128, 64, 1 };
- l_align = 128;
- m_align = 64;
- s_align = 32;
- } else {
- // Matrix cores require different warp group sizes
- const uint32_t tm_l = device->coopmat_support ? device->coopmat_m : 4;
- const uint32_t tm_m = device->coopmat_support ? device->coopmat_m : 4;
- const uint32_t tm_s = device->coopmat_support ? device->coopmat_m : 2;
- const uint32_t tn_l = device->coopmat_support ? device->coopmat_n : 4;
- const uint32_t tn_m = device->coopmat_support ? device->coopmat_n : 2;
- const uint32_t tn_s = device->coopmat_support ? device->coopmat_n : 2;
- const uint32_t tk_l = device->coopmat_support ? device->coopmat_k : 1;
- const uint32_t tk_m = device->coopmat_support ? device->coopmat_k : 1;
- const uint32_t tk_s = device->coopmat_support ? device->coopmat_k : 1;
- l_warptile = { 128, 128, 128, 16, subgroup_size_8 * 2, 64, 2, tm_l, tn_l, tk_l, subgroup_size_8 };
- m_warptile = { 128, 64, 64, 16, subgroup_size_8, 32, 2, tm_m, tn_m, tk_m, subgroup_size_8 };
- s_warptile = { subgroup_size_16, 32, 32, 16, 32, 32, 2, tm_s, tn_s, tk_s, subgroup_size_8 };
- l_warptile_mmq = { 128, 128, 128, 32, subgroup_size_8 * 2, 64, 2, tm_l, tn_l, tk_l, subgroup_size_8 };
- m_warptile_mmq = { 128, 64, 64, 32, subgroup_size_8, 32, 2, tm_m, tn_m, tk_m, subgroup_size_8 };
- s_warptile_mmq = { subgroup_size_32, 32, 32, 32, 32, 32, 2, tm_s, tn_s, tk_s, subgroup_size_8 };
- // Integer MMQ has a smaller shared memory profile, but heavier register use
- l_warptile_mmq_int = { 128, 128, 128, 32, subgroup_size_8 * 2, 64, 2, 4, 4, 1, subgroup_size_8 };
- m_warptile_mmq_int = { 128, 64, 64, 32, subgroup_size_8, 32, 2, 2, 2, 1, subgroup_size_8 };
- s_warptile_mmq_int = { subgroup_size_32, 32, 32, 32, 32, 32, 2, 2, 1, 1, subgroup_size_8 };
- // K-quants use even more registers, mitigate by setting WMITER to 1
- l_warptile_mmq_int_k = { 128, 128, 128, 32, subgroup_size_8 * 2, 64, 1, 4, 4, 1, subgroup_size_8 };
- m_warptile_mmq_int_k = { 128, 64, 64, 32, subgroup_size_8, 32, 1, 2, 2, 1, subgroup_size_8 };
- s_warptile_mmq_int_k = { subgroup_size_32, 32, 32, 32, 32, 32, 1, 2, 1, 1, subgroup_size_8 };
- l_warptile_id = { 128, 128, 128, 16, mul_mat_subgroup_size_16 * 2, 64, 2, tm_l, tn_l, tk_l, mul_mat_subgroup_size_16 };
- m_warptile_id = { 128, 64, 64, 16, mul_mat_subgroup_size_16, 32, 2, tm_m, tn_m, tk_m, mul_mat_subgroup_size_16 };
- s_warptile_id = { mul_mat_subgroup_size_16, 32, 32, 16, 32, 32, 2, tm_s, tn_s, tk_s, mul_mat_subgroup_size_16 };
- l_warptile_mmqid = { 128, 128, 128, 32, mul_mat_subgroup_size_8 * 2, 64, 2, tm_l, tn_l, tk_l, mul_mat_subgroup_size_8 };
- m_warptile_mmqid = { 128, 64, 64, 32, mul_mat_subgroup_size_8, 32, 2, tm_m, tn_m, tk_m, mul_mat_subgroup_size_8 };
- s_warptile_mmqid = { mul_mat_subgroup_size_32, 32, 32, 32, 32, 32, 2, tm_s, tn_s, tk_s, mul_mat_subgroup_size_8 };
- l_warptile_mmqid_int = { 128, 128, 128, 32, mul_mat_subgroup_size_8 * 2, 64, 2, 4, 4, 1, mul_mat_subgroup_size_8 };
- m_warptile_mmqid_int = { 128, 64, 64, 32, mul_mat_subgroup_size_8, 32, 2, 2, 2, 1, mul_mat_subgroup_size_8 };
- s_warptile_mmqid_int = { mul_mat_subgroup_size_32, 32, 32, 32, 32, 32, 2, 2, 1, 1, mul_mat_subgroup_size_8 };
- l_warptile_mmqid_int_k = { 128, 128, 128, 32, mul_mat_subgroup_size_16 * 2, 64, 1, 4, 4, 1, mul_mat_subgroup_size_16 };
- m_warptile_mmqid_int_k = { 128, 64, 64, 32, mul_mat_subgroup_size_16, 32, 1, 2, 2, 1, mul_mat_subgroup_size_16 };
- s_warptile_mmqid_int_k = { mul_mat_subgroup_size_32, 32, 32, 32, 32, 32, 1, 2, 1, 1, mul_mat_subgroup_size_16 };
- // chip specific tuning
- if ((device->architecture == AMD_GCN) && (device->driver_id != vk::DriverId::eAmdProprietary)) {
- m_warptile_mmq = m_warptile_mmq_int = { 256, 64, 64, 32, 16, 16, 2, 2, 2, 1, 16 };
- m_warptile_mmqid = m_warptile_mmqid_int = { 256, 64, 64, 32, 16, 16, 2, 2, 2, 1, 16 };
- }
- l_mmq_wg_denoms = l_wg_denoms = {128, 128, 1 };
- m_mmq_wg_denoms = m_wg_denoms = { 64, 64, 1 };
- s_mmq_wg_denoms = s_wg_denoms = { 32, 32, 1 };
- l_align = 128;
- m_align = 64;
- s_align = 32;
- for (uint32_t i = 0; i < GGML_TYPE_COUNT; ++i) {
- ggml_type t = (ggml_type)i;
- // Disable medium and large matrix multiplication if not enough shared memory is available
- // Check mmq warptiles as the largest configuration
- // Throw an error if not enough for any matrix multiplication is available
- if (!ggml_vk_matmul_shmem_support(device, s_warptile_mmq, false, t)) {
- std::cerr << "ggml_vulkan: Error: Shared memory size too small for matrix multiplication." << std::endl;
- throw std::runtime_error("Shared memory size too small for matrix multiplication.");
- } else if (!ggml_vk_matmul_shmem_support(device, m_warptile_mmq, false, t)) {
- device->mul_mat_m[i] = false;
- device->mul_mat_l[i] = false;
- } else if (!ggml_vk_matmul_shmem_support(device, l_warptile_mmq, false, t)) {
- device->mul_mat_l[i] = false;
- }
- // Disable mul_mat_id if not enough shared memory is available
- if (!ggml_vk_matmul_shmem_support(device, s_warptile_mmqid, true, t)) {
- device->mul_mat_id_s[i] = false;
- device->mul_mat_id_m[i] = false;
- device->mul_mat_id_l[i] = false;
- } else if (!ggml_vk_matmul_shmem_support(device, m_warptile_mmqid, true, t)) {
- device->mul_mat_id_m[i] = false;
- device->mul_mat_id_l[i] = false;
- } else if (!ggml_vk_matmul_shmem_support(device, l_warptile_mmqid, true, t)) {
- device->mul_mat_id_l[i] = false;
- }
- }
- }
- if (!device->pipeline_matmul_f32) {
- device->pipeline_matmul_f32 = std::make_shared<vk_matmul_pipeline_struct>();
- }
- if (!device->pipeline_matmul_f32_f16) {
- device->pipeline_matmul_f32_f16 = std::make_shared<vk_matmul_pipeline_struct>();
- }
- if (!device->pipeline_matmul_id_f32) {
- device->pipeline_matmul_id_f32 = std::make_shared<vk_matmul_pipeline_struct>();
- }
- if (!device->pipeline_matmul_bf16) {
- device->pipeline_matmul_bf16 = std::make_shared<vk_matmul_pipeline_struct>();
- }
- if (!device->pipeline_matmul_id_bf16) {
- device->pipeline_matmul_id_bf16 = std::make_shared<vk_matmul_pipeline_struct>();
- }
- std::vector<std::future<void>> compiles;
- auto const &ggml_vk_create_pipeline = [&](vk_device& device, vk_pipeline& pipeline, const char *name, size_t spv_size, const void* spv_data, const char *entrypoint,
- uint32_t parameter_count, uint32_t push_constant_size, std::array<uint32_t, 3> wg_denoms, const std::vector<uint32_t>& specialization_constants,
- uint32_t align, bool disable_robustness = false, bool require_full_subgroups = false, uint32_t required_subgroup_size = 0) {
- if (!require_full_subgroups && required_subgroup_size == 0) {
- required_subgroup_size = get_subgroup_size(name, device->architecture);
- }
- if (!pipeline) {
- pipeline = std::make_shared<vk_pipeline_struct>();
- }
- if (!pipeline->initialized) {
- pipeline->name = name;
- pipeline->parameter_count = parameter_count;
- pipeline->push_constant_size = push_constant_size;
- pipeline->wg_denoms = wg_denoms;
- pipeline->align = align;
- pipeline->initialized = true;
- }
- if (!pipeline->needed || pipeline->compiled) {
- return;
- }
- // TODO: We're no longer benefitting from the async compiles (shaders are
- // compiled individually, as needed) and this complexity can be removed.
- {
- // wait until fewer than N compiles are in progress
- uint32_t N = std::max(1u, std::thread::hardware_concurrency());
- std::unique_lock<std::mutex> guard(compile_count_mutex);
- while (compile_count >= N) {
- compile_count_cond.wait(guard);
- }
- compile_count++;
- }
- compiles.push_back(std::async(ggml_vk_create_pipeline_func, std::ref(device), std::ref(pipeline), spv_size, spv_data, entrypoint,
- parameter_count, wg_denoms, specialization_constants, disable_robustness, require_full_subgroups, required_subgroup_size));
- };
- auto const &ggml_vk_create_pipeline2 = [&](vk_device& device, vk_pipeline& pipeline, const std::string &name, size_t spv_size, const void* spv_data, const char *entrypoint,
- uint32_t parameter_count, uint32_t push_constant_size, std::array<uint32_t, 3> wg_denoms, const std::vector<uint32_t>& specialization_constants,
- uint32_t align, bool disable_robustness = false, bool require_full_subgroups = false, uint32_t required_subgroup_size = 0) {
- return ggml_vk_create_pipeline(device, pipeline, name.c_str(), spv_size, spv_data, entrypoint,
- parameter_count, push_constant_size, wg_denoms, specialization_constants,
- align, disable_robustness, require_full_subgroups, required_subgroup_size);
- };
- auto const &fa_wg_denoms = [&](FaCodePath path, uint32_t hsk, uint32_t hsv, uint32_t clamp, ggml_type type, bool small_rows) -> std::array<uint32_t, 3> {
- return {fa_rows_cols(path, hsk, hsv, clamp, type, small_rows)[0], 1, 1};
- };
- auto const &fa_spec_constants = [&](FaCodePath path, uint32_t hsk, uint32_t hsv, uint32_t clamp, ggml_type type, bool small_rows) -> std::vector<uint32_t> {
- // For large number of rows, 128 invocations seems to work best.
- // For small number of rows (e.g. N==1), 256 works better. But matrix granularity for 256 is 32, so we
- // can't use 256 for D==80.
- // For scalar, use 128 (arbitrary)
- // The same D_split value is used for both HSK and HSV, so just base it on the union of the LSBs.
- const uint32_t D = (hsk|hsv);
- uint32_t wg_size = (path == FA_SCALAR || path == FA_COOPMAT1)
- ? scalar_flash_attention_workgroup_size
- : ((small_rows && (D % 32) == 0) ? 256 : 128);
- auto rows_cols = fa_rows_cols(path, hsk, hsv, clamp, type, small_rows);
- // D_split can't be larger than a subgroup because we use subgroupShuffle to reduce it.
- // D_split can't be larger than the LSB of D divided by 4 due to vectorization in the shader.
- const uint32_t D_lsb = D ^ (D & (D-1));
- uint32_t D_split = std::min(std::min(device->subgroup_size, 8u), D_lsb / 4);
- return {wg_size, rows_cols[0], rows_cols[1], hsk, hsv, clamp, D_split};
- };
- #define CREATE_FA(TYPE, NAMELC, FAPATH, SUFFIX) \
- for (auto &fa : device->pipeline_flash_attn_f32_f16[TYPE]) { \
- uint32_t HSK = fa.first.HSK; \
- uint32_t HSV = fa.first.HSV; \
- bool small_rows = fa.first.small_rows; \
- FaCodePath path = fa.first.path; \
- bool aligned = fa.first.aligned; \
- bool f32acc = fa.first.f32acc; \
- if (path == FAPATH) { \
- if (aligned) { \
- if (f32acc) { \
- ggml_vk_create_pipeline(device, fa.second, "flash_attn_f32_f16_aligned_f32acc" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _data, "main", 6, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,0,TYPE,small_rows), fa_spec_constants(FAPATH, HSK,HSV,0,TYPE,small_rows), fa_align(FAPATH,HSK,HSV,TYPE,small_rows), true, true, (FAPATH==FA_COOPMAT1 ? 32 : 0)); \
- } else { \
- ggml_vk_create_pipeline(device, fa.second, "flash_attn_f32_f16_aligned_f16acc" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _data, "main", 6, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,0,TYPE,small_rows), fa_spec_constants(FAPATH, HSK,HSV,0,TYPE,small_rows), fa_align(FAPATH,HSK,HSV,TYPE,small_rows), true, true, (FAPATH==FA_COOPMAT1 ? 32 : 0)); \
- } \
- } else { \
- if (f32acc) { \
- ggml_vk_create_pipeline(device, fa.second, "flash_attn_f32_f16_f32acc" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _data, "main", 6, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,1,TYPE,small_rows), fa_spec_constants(FAPATH, HSK,HSV,1,TYPE,small_rows), 1, true, true, (FAPATH==FA_COOPMAT1 ? 32 : 0)); \
- } else { \
- ggml_vk_create_pipeline(device, fa.second, "flash_attn_f32_f16_f16acc" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _data, "main", 6, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,1,TYPE,small_rows), fa_spec_constants(FAPATH, HSK,HSV,1,TYPE,small_rows), 1, true, true, (FAPATH==FA_COOPMAT1 ? 32 : 0)); \
- } \
- } \
- } \
- }
- CREATE_FA(GGML_TYPE_F32, f32, FA_SCALAR, )
- CREATE_FA(GGML_TYPE_F16, f16, FA_SCALAR, )
- CREATE_FA(GGML_TYPE_Q4_0, q4_0, FA_SCALAR, )
- CREATE_FA(GGML_TYPE_Q8_0, q8_0, FA_SCALAR, )
- #if defined(VK_KHR_cooperative_matrix) && defined(GGML_VULKAN_COOPMAT_GLSLC_SUPPORT)
- if (device->coopmat1_fa_support) {
- CREATE_FA(GGML_TYPE_F32, f32, FA_COOPMAT1, _cm1)
- CREATE_FA(GGML_TYPE_F16, f16, FA_COOPMAT1, _cm1)
- CREATE_FA(GGML_TYPE_Q4_0, q4_0, FA_COOPMAT1, _cm1)
- CREATE_FA(GGML_TYPE_Q8_0, q8_0, FA_COOPMAT1, _cm1)
- }
- #endif
- #if defined(VK_NV_cooperative_matrix2) && defined(GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT)
- if (device->coopmat2) {
- CREATE_FA(GGML_TYPE_F32, f32, FA_COOPMAT2, _cm2)
- CREATE_FA(GGML_TYPE_F16, f16, FA_COOPMAT2, _cm2)
- CREATE_FA(GGML_TYPE_Q4_0, q4_0, FA_COOPMAT2, _cm2)
- CREATE_FA(GGML_TYPE_Q4_1, q4_1, FA_COOPMAT2, _cm2)
- CREATE_FA(GGML_TYPE_Q5_0, q5_0, FA_COOPMAT2, _cm2)
- CREATE_FA(GGML_TYPE_Q5_1, q5_1, FA_COOPMAT2, _cm2)
- CREATE_FA(GGML_TYPE_Q8_0, q8_0, FA_COOPMAT2, _cm2)
- CREATE_FA(GGML_TYPE_IQ4_NL, iq4_nl, FA_COOPMAT2, _cm2)
- }
- #endif
- #undef CREATE_FA
- #if defined(VK_NV_cooperative_matrix2) && defined(GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT)
- if (device->coopmat2) {
- // Create 6 variants, {s,m,l}x{unaligned,aligned}
- #define CREATE_MM(PIPELINE_NAME, NAMELC, F16ACC, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT) \
- ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->l, #NAMELC #F16ACC "_l", NAMELC ## F16ACC ## _cm2_len, NAMELC ## F16ACC ## _cm2_data, "main", PARAMCOUNT, sizeof(PUSHCONST), l_ ## WG_DENOMS, l_ ## WARPTILE, 1); \
- ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->m, #NAMELC #F16ACC "_m", NAMELC ## F16ACC ## _cm2_len, NAMELC ## F16ACC ## _cm2_data, "main", PARAMCOUNT, sizeof(PUSHCONST), m_ ## WG_DENOMS, m_ ## WARPTILE, 1); \
- ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->s, #NAMELC #F16ACC "_s", NAMELC ## F16ACC ## _cm2_len, NAMELC ## F16ACC ## _cm2_data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, 1); \
- ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_l, #NAMELC #F16ACC "_aligned_l", NAMELC ## _aligned ## F16ACC ## _cm2_len, NAMELC ## _aligned ## F16ACC ## _cm2_data, "main", PARAMCOUNT, sizeof(PUSHCONST), l_ ## WG_DENOMS, l_ ## WARPTILE, l_align); \
- ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_m, #NAMELC #F16ACC "_aligned_m", NAMELC ## _aligned ## F16ACC ## _cm2_len, NAMELC ## _aligned ## F16ACC ## _cm2_data, "main", PARAMCOUNT, sizeof(PUSHCONST), m_ ## WG_DENOMS, m_ ## WARPTILE, m_align); \
- ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_s, #NAMELC #F16ACC "_aligned_s", NAMELC ## _aligned ## F16ACC ## _cm2_len, NAMELC ## _aligned ## F16ACC ## _cm2_data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, s_align); \
- // Create 2 variants, {f16,f32} accumulator
- #define CREATE_MM2(PIPELINE_NAME, NAMELC, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT) \
- CREATE_MM(PIPELINE_NAME . f16acc, NAMELC, _f16acc, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT) \
- CREATE_MM(PIPELINE_NAME . f32acc, NAMELC, , WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT) \
- CREATE_MM2(pipeline_matmul_f16, matmul_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 3)
- #if defined(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT)
- if (device->coopmat_bf16_support) {
- CREATE_MM(pipeline_matmul_bf16, matmul_bf16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3)
- }
- #endif
- CREATE_MM2(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q4_0], matmul_q4_0_f16, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
- CREATE_MM2(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q4_1], matmul_q4_1_f16, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
- CREATE_MM2(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q5_0], matmul_q5_0_f16, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
- CREATE_MM2(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q5_1], matmul_q5_1_f16, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
- CREATE_MM2(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q8_0], matmul_q8_0_f16, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
- CREATE_MM2(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q2_K], matmul_q2_k_f16, mmq_wg_denoms_k, warptile_mmq_k, vk_mat_mat_push_constants, 3)
- CREATE_MM2(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q3_K], matmul_q3_k_f16, mmq_wg_denoms_k, warptile_mmq_k, vk_mat_mat_push_constants, 3)
- CREATE_MM2(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q4_K], matmul_q4_k_f16, mmq_wg_denoms_k, warptile_mmq_k, vk_mat_mat_push_constants, 3)
- CREATE_MM2(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q5_K], matmul_q5_k_f16, mmq_wg_denoms_k, warptile_mmq_k, vk_mat_mat_push_constants, 3)
- CREATE_MM2(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q6_K], matmul_q6_k_f16, mmq_wg_denoms_k, warptile_mmq_k, vk_mat_mat_push_constants, 3)
- CREATE_MM2(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_IQ1_S], matmul_iq1_s_f16, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
- CREATE_MM2(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_IQ1_M], matmul_iq1_m_f16, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
- CREATE_MM2(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_IQ2_XXS], matmul_iq2_xxs_f16, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
- CREATE_MM2(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_IQ2_XS], matmul_iq2_xs_f16, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
- CREATE_MM2(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_IQ2_S], matmul_iq2_s_f16, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
- CREATE_MM2(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_IQ3_XXS], matmul_iq3_xxs_f16, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
- CREATE_MM2(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_IQ3_S], matmul_iq3_s_f16, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
- CREATE_MM2(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_IQ4_XS], matmul_iq4_xs_f16, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
- CREATE_MM2(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_IQ4_NL], matmul_iq4_nl_f16, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
- CREATE_MM2(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_MXFP4], matmul_mxfp4_f16, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
- GGML_ASSERT(device->subgroup_ballot);
- CREATE_MM2(pipeline_matmul_id_f16, matmul_id_subgroup_f16, wg_denoms, warptile, vk_mat_mat_id_push_constants, 4)
- #if defined(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT)
- if (device->coopmat_bf16_support) {
- CREATE_MM(pipeline_matmul_id_bf16, matmul_id_subgroup_bf16, , wg_denoms, warptile, vk_mat_mat_id_push_constants, 4)
- }
- #endif
- CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0], matmul_id_subgroup_q4_0_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
- CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1], matmul_id_subgroup_q4_1_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
- CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0], matmul_id_subgroup_q5_0_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
- CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_1], matmul_id_subgroup_q5_1_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
- CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q8_0], matmul_id_subgroup_q8_0_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
- CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q2_K], matmul_id_subgroup_q2_k_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
- CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q3_K], matmul_id_subgroup_q3_k_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
- CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_K], matmul_id_subgroup_q4_k_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
- CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_K], matmul_id_subgroup_q5_k_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
- CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q6_K], matmul_id_subgroup_q6_k_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
- CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ1_S], matmul_id_subgroup_iq1_s_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
- CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ1_M], matmul_id_subgroup_iq1_m_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
- CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_XXS], matmul_id_subgroup_iq2_xxs_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
- CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_XS], matmul_id_subgroup_iq2_xs_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
- CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_S], matmul_id_subgroup_iq2_s_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
- CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ3_XXS], matmul_id_subgroup_iq3_xxs_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
- CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ3_S], matmul_id_subgroup_iq3_s_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
- CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_XS], matmul_id_subgroup_iq4_xs_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
- CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL], matmul_id_subgroup_iq4_nl_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
- CREATE_MM2(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_MXFP4], matmul_id_subgroup_mxfp4_f16, mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
- #undef CREATE_MM
- #undef CREATE_MM2
- } else
- #endif // defined(VK_NV_cooperative_matrix2) && defined(GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT)
- #if defined(VK_KHR_cooperative_matrix) && defined(GGML_VULKAN_COOPMAT_GLSLC_SUPPORT)
- if (device->coopmat_support) {
- // Create 6 variants, {s,m,l}x{unaligned,aligned}
- #define CREATE_MM(TYPE, PIPELINE_NAME, NAMELC, F16ACC, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID) \
- if (device->mul_mat ## ID ## _l[TYPE]) \
- ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->l, #NAMELC #F16ACC "_l", NAMELC ## F16ACC ## _cm1_len, NAMELC ## F16ACC ## _cm1_data, "main", PARAMCOUNT, sizeof(PUSHCONST), l_ ## WG_DENOMS, l_ ## WARPTILE, 1, false, true); \
- if (device->mul_mat ## ID ## _m[TYPE]) \
- ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->m, #NAMELC #F16ACC "_m", NAMELC ## F16ACC ## _cm1_len, NAMELC ## F16ACC ## _cm1_data, "main", PARAMCOUNT, sizeof(PUSHCONST), m_ ## WG_DENOMS, m_ ## WARPTILE, 1, false, true); \
- if (device->mul_mat ## ID ## _s[TYPE]) \
- ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->s, #NAMELC #F16ACC "_s", NAMELC ## F16ACC ## _cm1_len, NAMELC ## F16ACC ## _cm1_data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, 1, false, true); \
- if (device->mul_mat ## ID ## _l[TYPE]) \
- ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_l, #NAMELC #F16ACC "_aligned_l", NAMELC ## _aligned ## F16ACC ## _cm1_len, NAMELC ## _aligned ## F16ACC ## _cm1_data, "main", PARAMCOUNT, sizeof(PUSHCONST), l_ ## WG_DENOMS, l_ ## WARPTILE, l_align, false, true); \
- if (device->mul_mat ## ID ## _m[TYPE]) \
- ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_m, #NAMELC #F16ACC "_aligned_m", NAMELC ## _aligned ## F16ACC ## _cm1_len, NAMELC ## _aligned ## F16ACC ## _cm1_data, "main", PARAMCOUNT, sizeof(PUSHCONST), m_ ## WG_DENOMS, m_ ## WARPTILE, m_align, false, true); \
- if (device->mul_mat ## ID ## _s[TYPE]) \
- ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_s, #NAMELC #F16ACC "_aligned_s", NAMELC ## _aligned ## F16ACC ## _cm1_len, NAMELC ## _aligned ## F16ACC ## _cm1_data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, s_align, false, true); \
- // Create 2 variants, {f16,f32} accumulator
- #define CREATE_MM2(TYPE, PIPELINE_NAME, NAMELC, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID) \
- if (device->coopmat_acc_f16_support) { \
- CREATE_MM(TYPE, PIPELINE_NAME . f16acc, NAMELC, _f16acc, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID) \
- } \
- if (device->coopmat_acc_f32_support) { \
- CREATE_MM(TYPE, PIPELINE_NAME . f32acc, NAMELC, , WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID) \
- } \
- CREATE_MM(GGML_TYPE_F32, pipeline_matmul_f32, matmul_f32_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
- CREATE_MM(GGML_TYPE_F32, pipeline_matmul_f32_f16, matmul_f32_f16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
- CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_f16, matmul_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
- CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_f16_f32, matmul_f16_f32, wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
- #if defined(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT)
- if (device->coopmat_bf16_support) {
- CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_bf16, matmul_bf16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, )
- }
- #endif
- if (device->coopmat_acc_f16_support) {
- CREATE_MM2(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_0], matmul_q4_0_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
- CREATE_MM2(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_1], matmul_q4_1_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
- CREATE_MM2(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_0], matmul_q5_0_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
- CREATE_MM2(GGML_TYPE_Q5_1, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_1], matmul_q5_1_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
- CREATE_MM2(GGML_TYPE_Q8_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q8_0], matmul_q8_0_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
- CREATE_MM2(GGML_TYPE_Q2_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q2_K], matmul_q2_k_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
- CREATE_MM2(GGML_TYPE_Q3_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q3_K], matmul_q3_k_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
- CREATE_MM2(GGML_TYPE_Q4_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_K], matmul_q4_k_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
- CREATE_MM2(GGML_TYPE_Q5_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_K], matmul_q5_k_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
- CREATE_MM2(GGML_TYPE_Q6_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q6_K], matmul_q6_k_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
- CREATE_MM2(GGML_TYPE_IQ1_S, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ1_S], matmul_iq1_s_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
- CREATE_MM2(GGML_TYPE_IQ1_M, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ1_M], matmul_iq1_m_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
- CREATE_MM2(GGML_TYPE_IQ2_XXS, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ2_XXS], matmul_iq2_xxs_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
- CREATE_MM2(GGML_TYPE_IQ2_XS, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ2_XS], matmul_iq2_xs_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
- CREATE_MM2(GGML_TYPE_IQ2_S, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ2_S], matmul_iq2_s_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
- CREATE_MM2(GGML_TYPE_IQ3_XXS, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ3_XXS], matmul_iq3_xxs_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
- CREATE_MM2(GGML_TYPE_IQ3_S, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ3_S], matmul_iq3_s_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
- CREATE_MM2(GGML_TYPE_IQ4_XS, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ4_XS], matmul_iq4_xs_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
- CREATE_MM2(GGML_TYPE_IQ4_NL, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ4_NL], matmul_iq4_nl_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
- CREATE_MM2(GGML_TYPE_MXFP4, pipeline_dequant_mul_mat_mat[GGML_TYPE_MXFP4], matmul_mxfp4_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
- } else {
- CREATE_MM(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_0].f32acc, matmul_q4_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
- CREATE_MM(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_1].f32acc, matmul_q4_1_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
- CREATE_MM(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_0].f32acc, matmul_q5_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
- CREATE_MM(GGML_TYPE_Q5_1, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_1].f32acc, matmul_q5_1_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
- CREATE_MM(GGML_TYPE_Q8_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q8_0].f32acc, matmul_q8_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
- CREATE_MM(GGML_TYPE_Q2_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q2_K].f32acc, matmul_q2_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
- CREATE_MM(GGML_TYPE_Q3_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q3_K].f32acc, matmul_q3_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
- CREATE_MM(GGML_TYPE_Q4_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_K].f32acc, matmul_q4_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
- CREATE_MM(GGML_TYPE_Q5_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_K].f32acc, matmul_q5_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
- CREATE_MM(GGML_TYPE_Q6_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q6_K].f32acc, matmul_q6_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
- CREATE_MM(GGML_TYPE_IQ1_S, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ1_S].f32acc, matmul_iq1_s_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
- CREATE_MM(GGML_TYPE_IQ1_M, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ1_M].f32acc, matmul_iq1_m_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
- CREATE_MM(GGML_TYPE_IQ2_XXS, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ2_XXS].f32acc, matmul_iq2_xxs_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
- CREATE_MM(GGML_TYPE_IQ2_XS, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ2_XS].f32acc, matmul_iq2_xs_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
- CREATE_MM(GGML_TYPE_IQ2_S, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ2_S].f32acc, matmul_iq2_s_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
- CREATE_MM(GGML_TYPE_IQ3_XXS, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ3_XXS].f32acc, matmul_iq3_xxs_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
- CREATE_MM(GGML_TYPE_IQ3_S, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ3_S].f32acc, matmul_iq3_s_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
- CREATE_MM(GGML_TYPE_IQ4_XS, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ4_XS].f32acc, matmul_iq4_xs_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
- CREATE_MM(GGML_TYPE_IQ4_NL, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ4_NL].f32acc, matmul_iq4_nl_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
- CREATE_MM(GGML_TYPE_MXFP4, pipeline_dequant_mul_mat_mat[GGML_TYPE_MXFP4].f32acc, matmul_mxfp4_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
- }
- GGML_ASSERT(device->subgroup_ballot);
- CREATE_MM(GGML_TYPE_F32, pipeline_matmul_id_f32, matmul_id_subgroup_f32_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
- CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_id_f16, matmul_id_subgroup_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
- CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_id_f16_f32, matmul_id_subgroup_f16_f32, wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
- #if defined(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT)
- if (device->coopmat_bf16_support) {
- CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_id_bf16, matmul_id_subgroup_bf16, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
- }
- #endif
- CREATE_MM2(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0], matmul_id_subgroup_q4_0_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
- CREATE_MM2(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1], matmul_id_subgroup_q4_1_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
- CREATE_MM2(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0], matmul_id_subgroup_q5_0_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
- CREATE_MM2(GGML_TYPE_Q5_1, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_1], matmul_id_subgroup_q5_1_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
- CREATE_MM2(GGML_TYPE_Q8_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q8_0], matmul_id_subgroup_q8_0_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
- CREATE_MM2(GGML_TYPE_Q2_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q2_K], matmul_id_subgroup_q2_k_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
- CREATE_MM2(GGML_TYPE_Q3_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q3_K], matmul_id_subgroup_q3_k_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
- CREATE_MM2(GGML_TYPE_Q4_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_K], matmul_id_subgroup_q4_k_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
- CREATE_MM2(GGML_TYPE_Q5_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_K], matmul_id_subgroup_q5_k_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
- CREATE_MM2(GGML_TYPE_Q6_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q6_K], matmul_id_subgroup_q6_k_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
- CREATE_MM2(GGML_TYPE_IQ1_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ1_S], matmul_id_subgroup_iq1_s_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
- CREATE_MM2(GGML_TYPE_IQ1_M, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ1_M], matmul_id_subgroup_iq1_m_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
- CREATE_MM2(GGML_TYPE_IQ2_XXS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_XXS], matmul_id_subgroup_iq2_xxs_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
- CREATE_MM2(GGML_TYPE_IQ2_XS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_XS], matmul_id_subgroup_iq2_xs_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
- CREATE_MM2(GGML_TYPE_IQ2_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_S], matmul_id_subgroup_iq2_s_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
- CREATE_MM2(GGML_TYPE_IQ3_XXS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ3_XXS], matmul_id_subgroup_iq3_xxs_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
- CREATE_MM2(GGML_TYPE_IQ3_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ3_S], matmul_id_subgroup_iq3_s_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
- CREATE_MM2(GGML_TYPE_IQ4_XS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_XS], matmul_id_subgroup_iq4_xs_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
- CREATE_MM2(GGML_TYPE_IQ4_NL, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL], matmul_id_subgroup_iq4_nl_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
- CREATE_MM2(GGML_TYPE_MXFP4, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_MXFP4], matmul_id_subgroup_mxfp4_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
- #undef CREATE_MM2
- #undef CREATE_MM
- } else
- #endif // defined(VK_KHR_cooperative_matrix) && defined(GGML_VULKAN_COOPMAT_GLSLC_SUPPORT)
- if (device->fp16) {
- // Create 6 variants, {s,m,l}x{unaligned,aligned}
- #define CREATE_MM(TYPE, PIPELINE_NAME, NAMELC, F16ACC, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID, REQSUBGROUPSIZE) \
- if (device->mul_mat ## ID ## _l[TYPE]) \
- ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->l, #NAMELC #F16ACC "_l", NAMELC ## F16ACC ## _len, NAMELC ## F16ACC ## _data, "main", PARAMCOUNT, sizeof(PUSHCONST), l_ ## WG_DENOMS, l_ ## WARPTILE, 1, false, REQSUBGROUPSIZE > 0, REQSUBGROUPSIZE); \
- if (device->mul_mat ## ID ## _m[TYPE]) \
- ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->m, #NAMELC #F16ACC "_m", NAMELC ## F16ACC ## _len, NAMELC ## F16ACC ## _data, "main", PARAMCOUNT, sizeof(PUSHCONST), m_ ## WG_DENOMS, m_ ## WARPTILE, 1, false, REQSUBGROUPSIZE > 0, REQSUBGROUPSIZE); \
- if (device->mul_mat ## ID ## _s[TYPE]) \
- ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->s, #NAMELC #F16ACC "_s", NAMELC ## F16ACC ## _len, NAMELC ## F16ACC ## _data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, 1, false, REQSUBGROUPSIZE > 0, REQSUBGROUPSIZE); \
- if (device->mul_mat ## ID ## _l[TYPE]) \
- ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_l, #NAMELC #F16ACC "_aligned_l", NAMELC ## _aligned ## F16ACC ## _len, NAMELC ## _aligned ## F16ACC ## _data, "main", PARAMCOUNT, sizeof(PUSHCONST), l_ ## WG_DENOMS, l_ ## WARPTILE, l_align, false, REQSUBGROUPSIZE > 0, REQSUBGROUPSIZE); \
- if (device->mul_mat ## ID ## _m[TYPE]) \
- ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_m, #NAMELC #F16ACC "_aligned_m", NAMELC ## _aligned ## F16ACC ## _len, NAMELC ## _aligned ## F16ACC ## _data, "main", PARAMCOUNT, sizeof(PUSHCONST), m_ ## WG_DENOMS, m_ ## WARPTILE, m_align, false, REQSUBGROUPSIZE > 0, REQSUBGROUPSIZE); \
- if (device->mul_mat ## ID ## _s[TYPE]) \
- ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_s, #NAMELC #F16ACC "_aligned_s", NAMELC ## _aligned ## F16ACC ## _len, NAMELC ## _aligned ## F16ACC ## _data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, s_align, false, REQSUBGROUPSIZE > 0, REQSUBGROUPSIZE); \
- #define CREATE_MMQ(TYPE, PIPELINE_NAME, NAMELC, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID, REQSUBGROUPSIZE) \
- if (device->mul_mat ## ID ## _l[TYPE]) { \
- ggml_vk_create_pipeline(device, device-> PIPELINE_NAME .f32acc->l, #NAMELC "_l", NAMELC ## _len, NAMELC ## _data, "main", PARAMCOUNT, sizeof(PUSHCONST), l_ ## WG_DENOMS, l_ ## WARPTILE, 1, false, REQSUBGROUPSIZE > 0, REQSUBGROUPSIZE); \
- } \
- if (device->mul_mat ## ID ## _m[TYPE]) { \
- ggml_vk_create_pipeline(device, device-> PIPELINE_NAME .f32acc->m, #NAMELC "_m", NAMELC ## _len, NAMELC ## _data, "main", PARAMCOUNT, sizeof(PUSHCONST), m_ ## WG_DENOMS, m_ ## WARPTILE, 1, false, REQSUBGROUPSIZE > 0, REQSUBGROUPSIZE); \
- } \
- if (device->mul_mat ## ID ## _s[TYPE]) { \
- ggml_vk_create_pipeline(device, device-> PIPELINE_NAME .f32acc->s, #NAMELC "_s", NAMELC ## _len, NAMELC ## _data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, 1, false, REQSUBGROUPSIZE > 0, REQSUBGROUPSIZE); \
- } \
- // Create 2 variants, {f16,f32} accumulator
- #define CREATE_MM2(TYPE, PIPELINE_NAME, NAMELC, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID, REQSUBGROUPSIZE) \
- CREATE_MM(TYPE, PIPELINE_NAME . f16acc, NAMELC, _f16acc, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID, REQSUBGROUPSIZE) \
- CREATE_MM(TYPE, PIPELINE_NAME . f32acc, NAMELC, , WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID, REQSUBGROUPSIZE) \
- CREATE_MM(GGML_TYPE_F32, pipeline_matmul_f32, matmul_f32_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MM(GGML_TYPE_F32, pipeline_matmul_f32_f16, matmul_f32_f16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_f16, matmul_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_f16_f32, matmul_f16_f32, wg_denoms, warptile, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_bf16, matmul_bf16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MM2(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_0], matmul_q4_0_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MM2(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_1], matmul_q4_1_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MM2(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_0], matmul_q5_0_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MM2(GGML_TYPE_Q5_1, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_1], matmul_q5_1_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MM2(GGML_TYPE_Q8_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q8_0], matmul_q8_0_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MM2(GGML_TYPE_Q2_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q2_K], matmul_q2_k_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MM2(GGML_TYPE_Q3_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q3_K], matmul_q3_k_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MM2(GGML_TYPE_Q4_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_K], matmul_q4_k_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MM2(GGML_TYPE_Q5_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_K], matmul_q5_k_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MM2(GGML_TYPE_Q6_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q6_K], matmul_q6_k_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MM2(GGML_TYPE_IQ1_S, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ1_S], matmul_iq1_s_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MM2(GGML_TYPE_IQ1_M, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ1_M], matmul_iq1_m_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MM2(GGML_TYPE_IQ2_XXS, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ2_XXS], matmul_iq2_xxs_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MM2(GGML_TYPE_IQ2_XS, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ2_XS], matmul_iq2_xs_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MM2(GGML_TYPE_IQ2_S, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ2_S], matmul_iq2_s_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MM2(GGML_TYPE_IQ3_XXS, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ3_XXS], matmul_iq3_xxs_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MM2(GGML_TYPE_IQ3_S, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ3_S], matmul_iq3_s_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MM2(GGML_TYPE_IQ4_XS, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ4_XS], matmul_iq4_xs_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MM2(GGML_TYPE_IQ4_NL, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ4_NL], matmul_iq4_nl_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MM2(GGML_TYPE_MXFP4, pipeline_dequant_mul_mat_mat[GGML_TYPE_MXFP4], matmul_mxfp4_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0);
- #if defined(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT)
- if (device->integer_dot_product) {
- CREATE_MMQ(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat_q8_1[GGML_TYPE_Q4_0], matmul_q4_0_q8_1, mmq_wg_denoms, warptile_mmq_int, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MMQ(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat_q8_1[GGML_TYPE_Q4_1], matmul_q4_1_q8_1, mmq_wg_denoms, warptile_mmq_int, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MMQ(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat_q8_1[GGML_TYPE_Q5_0], matmul_q5_0_q8_1, mmq_wg_denoms, warptile_mmq_int, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MMQ(GGML_TYPE_Q5_1, pipeline_dequant_mul_mat_mat_q8_1[GGML_TYPE_Q5_1], matmul_q5_1_q8_1, mmq_wg_denoms, warptile_mmq_int, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MMQ(GGML_TYPE_Q8_0, pipeline_dequant_mul_mat_mat_q8_1[GGML_TYPE_Q8_0], matmul_q8_0_q8_1, mmq_wg_denoms, warptile_mmq_int, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MMQ(GGML_TYPE_MXFP4, pipeline_dequant_mul_mat_mat_q8_1[GGML_TYPE_MXFP4], matmul_mxfp4_q8_1, mmq_wg_denoms, warptile_mmq_int, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MMQ(GGML_TYPE_Q2_K, pipeline_dequant_mul_mat_mat_q8_1[GGML_TYPE_Q2_K], matmul_q2_k_q8_1, mmq_wg_denoms, warptile_mmq_int_k, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MMQ(GGML_TYPE_Q3_K, pipeline_dequant_mul_mat_mat_q8_1[GGML_TYPE_Q3_K], matmul_q3_k_q8_1, mmq_wg_denoms, warptile_mmq_int_k, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MMQ(GGML_TYPE_Q4_K, pipeline_dequant_mul_mat_mat_q8_1[GGML_TYPE_Q4_K], matmul_q4_k_q8_1, mmq_wg_denoms, warptile_mmq_int_k, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MMQ(GGML_TYPE_Q5_K, pipeline_dequant_mul_mat_mat_q8_1[GGML_TYPE_Q5_K], matmul_q5_k_q8_1, mmq_wg_denoms, warptile_mmq_int_k, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MMQ(GGML_TYPE_Q6_K, pipeline_dequant_mul_mat_mat_q8_1[GGML_TYPE_Q6_K], matmul_q6_k_q8_1, mmq_wg_denoms, warptile_mmq_int_k, vk_mat_mat_push_constants, 3, , 0);
- }
- #endif
- if (device->subgroup_ballot && device->subgroup_require_full_support && subgroup_min_size_16) {
- CREATE_MM(GGML_TYPE_F32, pipeline_matmul_id_f32, matmul_id_subgroup_f32_f32, , wg_denoms, warptile_id, vk_mat_mat_push_constants, 4, _id, mul_mat_subgroup_size_16);
- CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_id_f16, matmul_id_subgroup_f16, wg_denoms, warptile_id, vk_mat_mat_push_constants, 4, _id, mul_mat_subgroup_size_16);
- CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_id_f16_f32, matmul_id_subgroup_f16_f32, wg_denoms, warptile_id, vk_mat_mat_push_constants, 4, _id, mul_mat_subgroup_size_16);
- CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_id_bf16, matmul_id_subgroup_bf16, , wg_denoms, warptile_id, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size_16);
- CREATE_MM2(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0], matmul_id_subgroup_q4_0_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size);
- CREATE_MM2(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1], matmul_id_subgroup_q4_1_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size);
- CREATE_MM2(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0], matmul_id_subgroup_q5_0_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size);
- CREATE_MM2(GGML_TYPE_Q5_1, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_1], matmul_id_subgroup_q5_1_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size);
- CREATE_MM2(GGML_TYPE_Q8_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q8_0], matmul_id_subgroup_q8_0_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size);
- CREATE_MM2(GGML_TYPE_Q2_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q2_K], matmul_id_subgroup_q2_k_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size);
- CREATE_MM2(GGML_TYPE_Q3_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q3_K], matmul_id_subgroup_q3_k_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size);
- CREATE_MM2(GGML_TYPE_Q4_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_K], matmul_id_subgroup_q4_k_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size);
- CREATE_MM2(GGML_TYPE_Q5_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_K], matmul_id_subgroup_q5_k_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size);
- CREATE_MM2(GGML_TYPE_Q6_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q6_K], matmul_id_subgroup_q6_k_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size);
- CREATE_MM2(GGML_TYPE_IQ1_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ1_S], matmul_id_subgroup_iq1_s_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size);
- CREATE_MM2(GGML_TYPE_IQ1_M, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ1_M], matmul_id_subgroup_iq1_m_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size);
- CREATE_MM2(GGML_TYPE_IQ2_XXS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_XXS], matmul_id_subgroup_iq2_xxs_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size);
- CREATE_MM2(GGML_TYPE_IQ2_XS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_XS], matmul_id_subgroup_iq2_xs_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size);
- CREATE_MM2(GGML_TYPE_IQ2_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_S], matmul_id_subgroup_iq2_s_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size);
- CREATE_MM2(GGML_TYPE_IQ3_XXS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ3_XXS], matmul_id_subgroup_iq3_xxs_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size);
- CREATE_MM2(GGML_TYPE_IQ3_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ3_S], matmul_id_subgroup_iq3_s_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size);
- CREATE_MM2(GGML_TYPE_IQ4_XS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_XS], matmul_id_subgroup_iq4_xs_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size);
- CREATE_MM2(GGML_TYPE_IQ4_NL, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL], matmul_id_subgroup_iq4_nl_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size);
- CREATE_MM2(GGML_TYPE_MXFP4, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_MXFP4], matmul_id_subgroup_mxfp4_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size);
- #if defined(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT)
- if (device->integer_dot_product) {
- CREATE_MMQ(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat_id_q8_1[GGML_TYPE_Q4_0], matmul_id_subgroup_q4_0_q8_1, mmq_wg_denoms, warptile_mmqid_int, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size);
- CREATE_MMQ(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat_id_q8_1[GGML_TYPE_Q4_1], matmul_id_subgroup_q4_1_q8_1, mmq_wg_denoms, warptile_mmqid_int, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size);
- CREATE_MMQ(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat_id_q8_1[GGML_TYPE_Q5_0], matmul_id_subgroup_q5_0_q8_1, mmq_wg_denoms, warptile_mmqid_int, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size);
- CREATE_MMQ(GGML_TYPE_Q5_1, pipeline_dequant_mul_mat_mat_id_q8_1[GGML_TYPE_Q5_1], matmul_id_subgroup_q5_1_q8_1, mmq_wg_denoms, warptile_mmqid_int, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size);
- CREATE_MMQ(GGML_TYPE_Q8_0, pipeline_dequant_mul_mat_mat_id_q8_1[GGML_TYPE_Q8_0], matmul_id_subgroup_q8_0_q8_1, mmq_wg_denoms, warptile_mmqid_int, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size);
- CREATE_MMQ(GGML_TYPE_MXFP4, pipeline_dequant_mul_mat_mat_id_q8_1[GGML_TYPE_MXFP4], matmul_id_subgroup_mxfp4_q8_1, mmq_wg_denoms, warptile_mmqid_int, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size);
- CREATE_MMQ(GGML_TYPE_Q2_K, pipeline_dequant_mul_mat_mat_id_q8_1[GGML_TYPE_Q2_K], matmul_id_subgroup_q2_k_q8_1, mmq_wg_denoms, warptile_mmqid_int_k, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size_16);
- CREATE_MMQ(GGML_TYPE_Q3_K, pipeline_dequant_mul_mat_mat_id_q8_1[GGML_TYPE_Q3_K], matmul_id_subgroup_q3_k_q8_1, mmq_wg_denoms, warptile_mmqid_int_k, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size_16);
- CREATE_MMQ(GGML_TYPE_Q4_K, pipeline_dequant_mul_mat_mat_id_q8_1[GGML_TYPE_Q4_K], matmul_id_subgroup_q4_k_q8_1, mmq_wg_denoms, warptile_mmqid_int_k, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size_16);
- CREATE_MMQ(GGML_TYPE_Q5_K, pipeline_dequant_mul_mat_mat_id_q8_1[GGML_TYPE_Q5_K], matmul_id_subgroup_q5_k_q8_1, mmq_wg_denoms, warptile_mmqid_int_k, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size_16);
- CREATE_MMQ(GGML_TYPE_Q6_K, pipeline_dequant_mul_mat_mat_id_q8_1[GGML_TYPE_Q6_K], matmul_id_subgroup_q6_k_q8_1, mmq_wg_denoms, warptile_mmqid_int_k, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size_16);
- }
- #endif
- } else {
- CREATE_MM(GGML_TYPE_F32, pipeline_matmul_id_f32, matmul_id_f32_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id, 0);
- CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_id_f16, matmul_id_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id, 0);
- CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_id_f16_f32, matmul_id_f16_f32, wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id, 0);
- CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_id_bf16, matmul_id_bf16, , wg_denoms, warptile, vk_mat_mat_id_push_constants, 4, _id, 0);
- CREATE_MM2(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0], matmul_id_q4_0_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0);
- CREATE_MM2(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1], matmul_id_q4_1_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0);
- CREATE_MM2(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0], matmul_id_q5_0_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0);
- CREATE_MM2(GGML_TYPE_Q5_1, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_1], matmul_id_q5_1_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0);
- CREATE_MM2(GGML_TYPE_Q8_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q8_0], matmul_id_q8_0_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0);
- CREATE_MM2(GGML_TYPE_Q2_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q2_K], matmul_id_q2_k_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0);
- CREATE_MM2(GGML_TYPE_Q3_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q3_K], matmul_id_q3_k_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0);
- CREATE_MM2(GGML_TYPE_Q4_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_K], matmul_id_q4_k_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0);
- CREATE_MM2(GGML_TYPE_Q5_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_K], matmul_id_q5_k_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0);
- CREATE_MM2(GGML_TYPE_Q6_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q6_K], matmul_id_q6_k_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0);
- CREATE_MM2(GGML_TYPE_IQ1_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ1_S], matmul_id_iq1_s_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0);
- CREATE_MM2(GGML_TYPE_IQ1_M, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ1_M], matmul_id_iq1_m_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0);
- CREATE_MM2(GGML_TYPE_IQ2_XXS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_XXS], matmul_id_iq2_xxs_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0);
- CREATE_MM2(GGML_TYPE_IQ2_XS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_XS], matmul_id_iq2_xs_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0);
- CREATE_MM2(GGML_TYPE_IQ2_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_S], matmul_id_iq2_s_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0);
- CREATE_MM2(GGML_TYPE_IQ3_XXS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ3_XXS], matmul_id_iq3_xxs_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0);
- CREATE_MM2(GGML_TYPE_IQ3_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ3_S], matmul_id_iq3_s_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0);
- CREATE_MM2(GGML_TYPE_IQ4_XS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_XS], matmul_id_iq4_xs_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0);
- CREATE_MM2(GGML_TYPE_IQ4_NL, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL], matmul_id_iq4_nl_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0);
- CREATE_MM2(GGML_TYPE_MXFP4, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_MXFP4], matmul_id_mxfp4_f32, mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0);
- #if defined(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT)
- if (device->integer_dot_product) {
- CREATE_MMQ(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat_id_q8_1[GGML_TYPE_Q4_0], matmul_id_q4_0_q8_1, mmq_wg_denoms, warptile_mmqid_int, vk_mat_mat_id_push_constants, 4, _id, 0);
- CREATE_MMQ(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat_id_q8_1[GGML_TYPE_Q4_1], matmul_id_q4_1_q8_1, mmq_wg_denoms, warptile_mmqid_int, vk_mat_mat_id_push_constants, 4, _id, 0);
- CREATE_MMQ(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat_id_q8_1[GGML_TYPE_Q5_0], matmul_id_q5_0_q8_1, mmq_wg_denoms, warptile_mmqid_int, vk_mat_mat_id_push_constants, 4, _id, 0);
- CREATE_MMQ(GGML_TYPE_Q5_1, pipeline_dequant_mul_mat_mat_id_q8_1[GGML_TYPE_Q5_1], matmul_id_q5_1_q8_1, mmq_wg_denoms, warptile_mmqid_int, vk_mat_mat_id_push_constants, 4, _id, 0);
- CREATE_MMQ(GGML_TYPE_Q8_0, pipeline_dequant_mul_mat_mat_id_q8_1[GGML_TYPE_Q8_0], matmul_id_q8_0_q8_1, mmq_wg_denoms, warptile_mmqid_int, vk_mat_mat_id_push_constants, 4, _id, 0);
- CREATE_MMQ(GGML_TYPE_MXFP4, pipeline_dequant_mul_mat_mat_id_q8_1[GGML_TYPE_MXFP4], matmul_id_mxfp4_q8_1, mmq_wg_denoms, warptile_mmqid_int, vk_mat_mat_id_push_constants, 4, _id, 0);
- CREATE_MMQ(GGML_TYPE_Q2_K, pipeline_dequant_mul_mat_mat_id_q8_1[GGML_TYPE_Q2_K], matmul_id_q2_k_q8_1, mmq_wg_denoms, warptile_mmqid_int_k, vk_mat_mat_id_push_constants, 4, _id, 0);
- CREATE_MMQ(GGML_TYPE_Q3_K, pipeline_dequant_mul_mat_mat_id_q8_1[GGML_TYPE_Q3_K], matmul_id_q3_k_q8_1, mmq_wg_denoms, warptile_mmqid_int_k, vk_mat_mat_id_push_constants, 4, _id, 0);
- CREATE_MMQ(GGML_TYPE_Q4_K, pipeline_dequant_mul_mat_mat_id_q8_1[GGML_TYPE_Q4_K], matmul_id_q4_k_q8_1, mmq_wg_denoms, warptile_mmqid_int_k, vk_mat_mat_id_push_constants, 4, _id, 0);
- CREATE_MMQ(GGML_TYPE_Q5_K, pipeline_dequant_mul_mat_mat_id_q8_1[GGML_TYPE_Q5_K], matmul_id_q5_k_q8_1, mmq_wg_denoms, warptile_mmqid_int_k, vk_mat_mat_id_push_constants, 4, _id, 0);
- CREATE_MMQ(GGML_TYPE_Q6_K, pipeline_dequant_mul_mat_mat_id_q8_1[GGML_TYPE_Q6_K], matmul_id_q6_k_q8_1, mmq_wg_denoms, warptile_mmqid_int_k, vk_mat_mat_id_push_constants, 4, _id, 0);
- }
- #endif
- }
- #undef CREATE_MM2
- #undef CREATE_MMQ
- #undef CREATE_MM
- } else {
- // Create 6 variants, {s,m,l}x{unaligned,aligned}
- #define CREATE_MM(TYPE, PIPELINE_NAME, NAMELC, F16ACC, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID, REQSUBGROUPSIZE) \
- if (device->mul_mat ## ID ## _l[TYPE]) \
- ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->l, #NAMELC #F16ACC "_l", NAMELC ## F16ACC ## _fp32_len, NAMELC ## F16ACC ## _fp32_data, "main", PARAMCOUNT, sizeof(PUSHCONST), l_ ## WG_DENOMS, l_ ## WARPTILE, 1, false, REQSUBGROUPSIZE > 0, REQSUBGROUPSIZE); \
- if (device->mul_mat ## ID ## _m[TYPE]) \
- ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->m, #NAMELC #F16ACC "_m", NAMELC ## F16ACC ## _fp32_len, NAMELC ## F16ACC ## _fp32_data, "main", PARAMCOUNT, sizeof(PUSHCONST), m_ ## WG_DENOMS, m_ ## WARPTILE, 1, false, REQSUBGROUPSIZE > 0, REQSUBGROUPSIZE); \
- if (device->mul_mat ## ID ## _s[TYPE]) \
- ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->s, #NAMELC #F16ACC "_s", NAMELC ## F16ACC ## _fp32_len, NAMELC ## F16ACC ## _fp32_data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, 1, false, REQSUBGROUPSIZE > 0, REQSUBGROUPSIZE); \
- if (device->mul_mat ## ID ## _l[TYPE]) \
- ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_l, #NAMELC #F16ACC "_aligned_l", NAMELC ## _aligned ## F16ACC ## _fp32_len, NAMELC ## _aligned ## F16ACC ## _fp32_data, "main", PARAMCOUNT, sizeof(PUSHCONST), l_ ## WG_DENOMS, l_ ## WARPTILE, l_align, false, REQSUBGROUPSIZE > 0, REQSUBGROUPSIZE); \
- if (device->mul_mat ## ID ## _m[TYPE]) \
- ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_m, #NAMELC #F16ACC "_aligned_m", NAMELC ## _aligned ## F16ACC ## _fp32_len, NAMELC ## _aligned ## F16ACC ## _fp32_data, "main", PARAMCOUNT, sizeof(PUSHCONST), m_ ## WG_DENOMS, m_ ## WARPTILE, m_align, false, REQSUBGROUPSIZE > 0, REQSUBGROUPSIZE); \
- if (device->mul_mat ## ID ## _s[TYPE]) \
- ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_s, #NAMELC #F16ACC "_aligned_s", NAMELC ## _aligned ## F16ACC ## _fp32_len, NAMELC ## _aligned ## F16ACC ## _fp32_data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, s_align, false, REQSUBGROUPSIZE > 0, REQSUBGROUPSIZE); \
- #define CREATE_MMQ(TYPE, PIPELINE_NAME, NAMELC, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID) \
- if (device->mul_mat ## ID ## _l[TYPE]) \
- ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->l, #NAMELC "_l", NAMELC ## _fp32_len, NAMELC ## _fp32_data, "main", PARAMCOUNT, sizeof(PUSHCONST), l_ ## WG_DENOMS, l_ ## WARPTILE, 1); \
- if (device->mul_mat ## ID ## _m[TYPE]) \
- ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->m, #NAMELC "_m", NAMELC ## _fp32_len, NAMELC ## _fp32_data, "main", PARAMCOUNT, sizeof(PUSHCONST), m_ ## WG_DENOMS, m_ ## WARPTILE, 1); \
- if (device->mul_mat ## ID ## _s[TYPE]) \
- ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->s, #NAMELC "_s", NAMELC ## _fp32_len, NAMELC ## _fp32_data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, 1); \
- CREATE_MM(GGML_TYPE_F32, pipeline_matmul_f32, matmul_f32_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MM(GGML_TYPE_F32, pipeline_matmul_f32_f16, matmul_f32_f16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MM(GGML_TYPE_F16, pipeline_matmul_f16.f32acc, matmul_f16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MM(GGML_TYPE_F16, pipeline_matmul_f16_f32.f32acc, matmul_f16_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_bf16, matmul_bf16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MM(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_0].f32acc, matmul_q4_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MM(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_1].f32acc, matmul_q4_1_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MM(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_0].f32acc, matmul_q5_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MM(GGML_TYPE_Q5_1, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_1].f32acc, matmul_q5_1_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MM(GGML_TYPE_Q8_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q8_0].f32acc, matmul_q8_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MM(GGML_TYPE_Q2_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q2_K].f32acc, matmul_q2_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MM(GGML_TYPE_Q3_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q3_K].f32acc, matmul_q3_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MM(GGML_TYPE_Q4_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_K].f32acc, matmul_q4_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MM(GGML_TYPE_Q5_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_K].f32acc, matmul_q5_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MM(GGML_TYPE_Q6_K, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q6_K].f32acc, matmul_q6_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MM(GGML_TYPE_IQ1_S, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ1_S].f32acc, matmul_iq1_s_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MM(GGML_TYPE_IQ1_M, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ1_M].f32acc, matmul_iq1_m_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MM(GGML_TYPE_IQ2_XXS, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ2_XXS].f32acc, matmul_iq2_xxs_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MM(GGML_TYPE_IQ2_XS, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ2_XS].f32acc, matmul_iq2_xs_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MM(GGML_TYPE_IQ2_S, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ2_S].f32acc, matmul_iq2_s_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MM(GGML_TYPE_IQ3_XXS, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ3_XXS].f32acc, matmul_iq3_xxs_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MM(GGML_TYPE_IQ3_S, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ3_S].f32acc, matmul_iq3_s_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MM(GGML_TYPE_IQ4_XS, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ4_XS].f32acc, matmul_iq4_xs_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MM(GGML_TYPE_IQ4_NL, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ4_NL].f32acc, matmul_iq4_nl_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MM(GGML_TYPE_MXFP4, pipeline_dequant_mul_mat_mat[GGML_TYPE_MXFP4].f32acc, matmul_mxfp4_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, , 0);
- #if defined(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT)
- if (device->integer_dot_product) {
- CREATE_MMQ(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat_q8_1[GGML_TYPE_Q4_0].f32acc, matmul_q4_0_q8_1, mmq_wg_denoms, warptile_mmq_int, vk_mat_mat_push_constants, 3, );
- CREATE_MMQ(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat_q8_1[GGML_TYPE_Q4_1].f32acc, matmul_q4_1_q8_1, mmq_wg_denoms, warptile_mmq_int, vk_mat_mat_push_constants, 3, );
- CREATE_MMQ(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat_q8_1[GGML_TYPE_Q5_0].f32acc, matmul_q5_0_q8_1, mmq_wg_denoms, warptile_mmq_int, vk_mat_mat_push_constants, 3, );
- CREATE_MMQ(GGML_TYPE_Q5_1, pipeline_dequant_mul_mat_mat_q8_1[GGML_TYPE_Q5_1].f32acc, matmul_q5_1_q8_1, mmq_wg_denoms, warptile_mmq_int, vk_mat_mat_push_constants, 3, );
- CREATE_MMQ(GGML_TYPE_Q8_0, pipeline_dequant_mul_mat_mat_q8_1[GGML_TYPE_Q8_0].f32acc, matmul_q8_0_q8_1, mmq_wg_denoms, warptile_mmq_int, vk_mat_mat_push_constants, 3, );
- CREATE_MMQ(GGML_TYPE_Q2_K, pipeline_dequant_mul_mat_mat_q8_1[GGML_TYPE_Q2_K].f32acc, matmul_q2_k_q8_1, mmq_wg_denoms, warptile_mmq_int_k, vk_mat_mat_push_constants, 3, );
- CREATE_MMQ(GGML_TYPE_Q3_K, pipeline_dequant_mul_mat_mat_q8_1[GGML_TYPE_Q3_K].f32acc, matmul_q3_k_q8_1, mmq_wg_denoms, warptile_mmq_int_k, vk_mat_mat_push_constants, 3, );
- CREATE_MMQ(GGML_TYPE_Q4_K, pipeline_dequant_mul_mat_mat_q8_1[GGML_TYPE_Q4_K].f32acc, matmul_q4_k_q8_1, mmq_wg_denoms, warptile_mmq_int_k, vk_mat_mat_push_constants, 3, );
- CREATE_MMQ(GGML_TYPE_Q5_K, pipeline_dequant_mul_mat_mat_q8_1[GGML_TYPE_Q5_K].f32acc, matmul_q5_k_q8_1, mmq_wg_denoms, warptile_mmq_int_k, vk_mat_mat_push_constants, 3, );
- CREATE_MMQ(GGML_TYPE_Q6_K, pipeline_dequant_mul_mat_mat_q8_1[GGML_TYPE_Q6_K].f32acc, matmul_q6_k_q8_1, mmq_wg_denoms, warptile_mmq_int_k, vk_mat_mat_push_constants, 3, );
- }
- #endif
- if (device->subgroup_ballot && device->subgroup_require_full_support && subgroup_min_size_16) {
- CREATE_MM(GGML_TYPE_F32, pipeline_matmul_id_f32, matmul_id_subgroup_f32_f32, , wg_denoms, warptile_id, vk_mat_mat_push_constants, 4, _id, mul_mat_subgroup_size_16);
- CREATE_MM(GGML_TYPE_F16, pipeline_matmul_id_f16.f32acc, matmul_id_subgroup_f16, , wg_denoms, warptile_id, vk_mat_mat_push_constants, 4, _id, mul_mat_subgroup_size_16);
- CREATE_MM(GGML_TYPE_F16, pipeline_matmul_id_f16_f32.f32acc, matmul_id_subgroup_f16_f32, , wg_denoms, warptile_id, vk_mat_mat_push_constants, 4, _id, mul_mat_subgroup_size_16);
- CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_id_bf16, matmul_id_subgroup_bf16, , wg_denoms, warptile_id, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size_16);
- CREATE_MM(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f32acc, matmul_id_subgroup_q4_0_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size);
- CREATE_MM(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1].f32acc, matmul_id_subgroup_q4_1_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size);
- CREATE_MM(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0].f32acc, matmul_id_subgroup_q5_0_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size);
- CREATE_MM(GGML_TYPE_Q5_1, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_1].f32acc, matmul_id_subgroup_q5_1_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size);
- CREATE_MM(GGML_TYPE_Q8_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q8_0].f32acc, matmul_id_subgroup_q8_0_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size);
- CREATE_MM(GGML_TYPE_Q2_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q2_K].f32acc, matmul_id_subgroup_q2_k_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size);
- CREATE_MM(GGML_TYPE_Q3_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q3_K].f32acc, matmul_id_subgroup_q3_k_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size);
- CREATE_MM(GGML_TYPE_Q4_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_K].f32acc, matmul_id_subgroup_q4_k_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size);
- CREATE_MM(GGML_TYPE_Q5_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_K].f32acc, matmul_id_subgroup_q5_k_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size);
- CREATE_MM(GGML_TYPE_Q6_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q6_K].f32acc, matmul_id_subgroup_q6_k_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size);
- CREATE_MM(GGML_TYPE_IQ1_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ1_S].f32acc, matmul_id_subgroup_iq1_s_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size);
- CREATE_MM(GGML_TYPE_IQ1_M, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ1_M].f32acc, matmul_id_subgroup_iq1_m_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size);
- CREATE_MM(GGML_TYPE_IQ2_XXS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_XXS].f32acc, matmul_id_subgroup_iq2_xxs_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size);
- CREATE_MM(GGML_TYPE_IQ2_XS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_XS].f32acc, matmul_id_subgroup_iq2_xs_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size);
- CREATE_MM(GGML_TYPE_IQ2_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_S].f32acc, matmul_id_subgroup_iq2_s_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size);
- CREATE_MM(GGML_TYPE_IQ3_XXS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ3_XXS].f32acc, matmul_id_subgroup_iq3_xxs_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size);
- CREATE_MM(GGML_TYPE_IQ3_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ3_S].f32acc, matmul_id_subgroup_iq3_s_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size);
- CREATE_MM(GGML_TYPE_IQ4_XS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_XS].f32acc, matmul_id_subgroup_iq4_xs_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size);
- CREATE_MM(GGML_TYPE_IQ4_NL, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL].f32acc, matmul_id_subgroup_iq4_nl_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size);
- CREATE_MM(GGML_TYPE_MXFP4, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_MXFP4].f32acc, matmul_id_subgroup_mxfp4_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, mul_mat_subgroup_size);
- } else {
- CREATE_MM(GGML_TYPE_F32, pipeline_matmul_id_f32, matmul_id_f32_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id, 0);
- CREATE_MM(GGML_TYPE_F16, pipeline_matmul_id_f16.f32acc, matmul_id_f16, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id, 0);
- CREATE_MM(GGML_TYPE_F16, pipeline_matmul_id_f16_f32.f32acc, matmul_id_f16_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id, 0);
- CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_id_bf16, matmul_id_bf16, , wg_denoms, warptile, vk_mat_mat_id_push_constants, 4, _id, 0);
- CREATE_MM(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f32acc, matmul_id_q4_0_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0);
- CREATE_MM(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1].f32acc, matmul_id_q4_1_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0);
- CREATE_MM(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0].f32acc, matmul_id_q5_0_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0);
- CREATE_MM(GGML_TYPE_Q5_1, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_1].f32acc, matmul_id_q5_1_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0);
- CREATE_MM(GGML_TYPE_Q8_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q8_0].f32acc, matmul_id_q8_0_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0);
- CREATE_MM(GGML_TYPE_Q2_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q2_K].f32acc, matmul_id_q2_k_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0);
- CREATE_MM(GGML_TYPE_Q3_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q3_K].f32acc, matmul_id_q3_k_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0);
- CREATE_MM(GGML_TYPE_Q4_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_K].f32acc, matmul_id_q4_k_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0);
- CREATE_MM(GGML_TYPE_Q5_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_K].f32acc, matmul_id_q5_k_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0);
- CREATE_MM(GGML_TYPE_Q6_K, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q6_K].f32acc, matmul_id_q6_k_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0);
- CREATE_MM(GGML_TYPE_IQ1_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ1_S].f32acc, matmul_id_iq1_s_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0);
- CREATE_MM(GGML_TYPE_IQ1_M, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ1_M].f32acc, matmul_id_iq1_m_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0);
- CREATE_MM(GGML_TYPE_IQ2_XXS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_XXS].f32acc, matmul_id_iq2_xxs_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0);
- CREATE_MM(GGML_TYPE_IQ2_XS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_XS].f32acc, matmul_id_iq2_xs_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0);
- CREATE_MM(GGML_TYPE_IQ2_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ2_S].f32acc, matmul_id_iq2_s_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0);
- CREATE_MM(GGML_TYPE_IQ3_XXS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ3_XXS].f32acc, matmul_id_iq3_xxs_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0);
- CREATE_MM(GGML_TYPE_IQ3_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ3_S].f32acc, matmul_id_iq3_s_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0);
- CREATE_MM(GGML_TYPE_IQ4_XS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_XS].f32acc, matmul_id_iq4_xs_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0);
- CREATE_MM(GGML_TYPE_IQ4_NL, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL].f32acc, matmul_id_iq4_nl_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0);
- CREATE_MM(GGML_TYPE_MXFP4, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_MXFP4].f32acc, matmul_id_mxfp4_f32, , mmq_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4, _id, 0);
- }
- }
- // reusing CREATE_MM from the fp32 path
- if ((device->coopmat2 || device->coopmat_support)
- #if defined(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT)
- && !device->coopmat_bf16_support
- #endif
- ) {
- // use scalar tile sizes
- l_warptile = { 128, 128, 128, 16, subgroup_size_8 * 2, 64, 2, 4, 4, 1, subgroup_size_8 };
- m_warptile = { 128, 64, 64, 16, subgroup_size_8, 32, 2, 4, 2, 1, subgroup_size_8 };
- s_warptile = { subgroup_size_16, 32, 32, 16, 32, 32, 2, 2, 2, 1, subgroup_size_8 };
- l_wg_denoms = {128, 128, 1 };
- m_wg_denoms = { 64, 64, 1 };
- s_wg_denoms = { 32, 32, 1 };
- CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_bf16, matmul_bf16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, , 0);
- CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_id_bf16, matmul_id_bf16, , wg_denoms, warptile, vk_mat_mat_id_push_constants, 4, _id, 0);
- }
- #undef CREATE_MM
- // mul mat vec
- // the number of rows computed per shader depends on GPU model and quant
- uint32_t rm_stdq = 1;
- uint32_t rm_kq = 2;
- if (device->vendor_id == VK_VENDOR_ID_AMD) {
- if (device->architecture == AMD_GCN) {
- rm_stdq = 2;
- rm_kq = 4;
- }
- } else if (device->vendor_id == VK_VENDOR_ID_INTEL)
- rm_stdq = 2;
- uint32_t rm_iq = 2 * rm_kq;
- const bool use_subgroups = device->subgroup_arithmetic && device->architecture != vk_device_architecture::AMD_GCN;
- // Ensure a subgroup size >= 16 is available
- const bool use_subgroups16 = use_subgroups && subgroup_min_size_16;
- const uint32_t subgroup_size = (device->vendor_id == VK_VENDOR_ID_INTEL && device->subgroup_size_control && device->subgroup_min_size <= 16 && device->subgroup_max_size >= 16) ? 16 : device->subgroup_size;
- const uint32_t subgroup_size16 = std::max(subgroup_size, 16u);
- const uint32_t force_subgroup_size = use_subgroups ? subgroup_size : 0;
- const uint32_t force_subgroup_size16 = use_subgroups16 ? subgroup_size16 : 0;
- static constexpr uint32_t mul_mat_vec_num_bindings = 5;
- static constexpr uint32_t mul_mat_vec_id_num_bindings = 6;
- for (uint32_t w = 0; w < DMMV_WG_SIZE_COUNT; ++w) {
- const uint32_t wg_size_subgroup = (w == DMMV_WG_SIZE_SUBGROUP) ? subgroup_size : (subgroup_size * 4);
- const uint32_t wg_size_subgroup16 = (w == DMMV_WG_SIZE_SUBGROUP) ? subgroup_size16 : (subgroup_size16 * 4);
- const shader_reduction_mode reduc = (use_subgroups && w == DMMV_WG_SIZE_SUBGROUP) ? SHADER_REDUCTION_MODE_SUBGROUP :
- (use_subgroups && w == DMMV_WG_SIZE_LARGE) ? SHADER_REDUCTION_MODE_HYBRID :
- SHADER_REDUCTION_MODE_SHMEM;
- const shader_reduction_mode reduc16 = (use_subgroups16 && w == DMMV_WG_SIZE_SUBGROUP) ? SHADER_REDUCTION_MODE_SUBGROUP :
- (use_subgroups16 && w == DMMV_WG_SIZE_LARGE) ? SHADER_REDUCTION_MODE_HYBRID :
- SHADER_REDUCTION_MODE_SHMEM;
- for (uint32_t i = 0; i < mul_mat_vec_max_cols; ++i) {
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_F32 ][i], "mul_mat_vec_f32_f32_f32", arr_dmmv_f32_f32_f32_len[reduc], arr_dmmv_f32_f32_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {wg_size_subgroup, 2, i+1}, 1, false, use_subgroups, force_subgroup_size);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_F16 ][i], "mul_mat_vec_f16_f32_f32", arr_dmmv_f16_f32_f32_len[reduc], arr_dmmv_f16_f32_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {wg_size_subgroup, 2, i+1}, 1, false, use_subgroups, force_subgroup_size);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_BF16][i], "mul_mat_vec_bf16_f32_f32", arr_dmmv_bf16_f32_f32_len[reduc], arr_dmmv_bf16_f32_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {wg_size_subgroup, 2, i+1}, 1, false, use_subgroups, force_subgroup_size);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_Q4_0][i], "mul_mat_vec_q4_0_f32_f32", arr_dmmv_q4_0_f32_f32_len[reduc], arr_dmmv_q4_0_f32_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup, 2*rm_stdq, i+1}, 1, true, use_subgroups, force_subgroup_size);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_Q4_1][i], "mul_mat_vec_q4_1_f32_f32", arr_dmmv_q4_1_f32_f32_len[reduc], arr_dmmv_q4_1_f32_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup, 2*rm_stdq, i+1}, 1, true, use_subgroups, force_subgroup_size);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_Q5_0][i], "mul_mat_vec_q5_0_f32_f32", arr_dmmv_q5_0_f32_f32_len[reduc], arr_dmmv_q5_0_f32_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup, 2*rm_stdq, i+1}, 1, true, use_subgroups, force_subgroup_size);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_Q5_1][i], "mul_mat_vec_q5_1_f32_f32", arr_dmmv_q5_1_f32_f32_len[reduc], arr_dmmv_q5_1_f32_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup, 2*rm_stdq, i+1}, 1, true, use_subgroups, force_subgroup_size);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_Q8_0][i], "mul_mat_vec_q8_0_f32_f32", arr_dmmv_q8_0_f32_f32_len[reduc], arr_dmmv_q8_0_f32_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {1*rm_stdq, 1, 1}, {wg_size_subgroup, 1*rm_stdq, i+1}, 1, true, use_subgroups, force_subgroup_size);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_Q2_K][i], "mul_mat_vec_q2_k_f32_f32", arr_dmmv_q2_k_f32_f32_len[reduc16], arr_dmmv_q2_k_f32_f32_data[reduc16], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {wg_size_subgroup16, rm_kq, i+1}, 1, true, use_subgroups16, force_subgroup_size16);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_Q3_K][i], "mul_mat_vec_q3_k_f32_f32", arr_dmmv_q3_k_f32_f32_len[reduc16], arr_dmmv_q3_k_f32_f32_data[reduc16], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {wg_size_subgroup16, rm_kq, i+1}, 1, true, use_subgroups16, force_subgroup_size16);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_Q4_K][i], "mul_mat_vec_q4_k_f32_f32", arr_dmmv_q4_k_f32_f32_len[reduc16], arr_dmmv_q4_k_f32_f32_data[reduc16], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {wg_size_subgroup16, rm_kq, i+1}, 1, true, use_subgroups16, force_subgroup_size16);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_Q5_K][i], "mul_mat_vec_q5_k_f32_f32", arr_dmmv_q5_k_f32_f32_len[reduc16], arr_dmmv_q5_k_f32_f32_data[reduc16], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {wg_size_subgroup16, rm_kq, i+1}, 1, true, use_subgroups16, force_subgroup_size16);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_Q6_K][i], "mul_mat_vec_q6_k_f32_f32", arr_dmmv_q6_k_f32_f32_len[reduc16], arr_dmmv_q6_k_f32_f32_data[reduc16], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {wg_size_subgroup16, rm_kq, i+1}, 1, true, use_subgroups16, force_subgroup_size16);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_IQ1_S][i], "mul_mat_vec_iq1_s_f32_f32", arr_dmmv_iq1_s_f32_f32_len[reduc16], arr_dmmv_iq1_s_f32_f32_data[reduc16], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_IQ1_M][i], "mul_mat_vec_iq1_m_f32_f32", arr_dmmv_iq1_m_f32_f32_len[reduc16], arr_dmmv_iq1_m_f32_f32_data[reduc16], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_IQ2_XXS][i], "mul_mat_vec_iq2_xxs_f32_f32", arr_dmmv_iq2_xxs_f32_f32_len[reduc16], arr_dmmv_iq2_xxs_f32_f32_data[reduc16], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_IQ2_XS][i], "mul_mat_vec_iq2_xs_f32_f32", arr_dmmv_iq2_xs_f32_f32_len[reduc16], arr_dmmv_iq2_xs_f32_f32_data[reduc16], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_IQ2_S][i], "mul_mat_vec_iq2_s_f32_f32", arr_dmmv_iq2_s_f32_f32_len[reduc16], arr_dmmv_iq2_s_f32_f32_data[reduc16], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_IQ3_XXS][i], "mul_mat_vec_iq3_xxs_f32_f32", arr_dmmv_iq3_xxs_f32_f32_len[reduc16], arr_dmmv_iq3_xxs_f32_f32_data[reduc16], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_IQ3_S][i], "mul_mat_vec_iq3_s_f32_f32", arr_dmmv_iq3_s_f32_f32_len[reduc16], arr_dmmv_iq3_s_f32_f32_data[reduc16], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_IQ4_XS][i], "mul_mat_vec_iq4_xs_f32_f32", arr_dmmv_iq4_xs_f32_f32_len[reduc16], arr_dmmv_iq4_xs_f32_f32_data[reduc16], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_IQ4_NL][i], "mul_mat_vec_iq4_nl_f32_f32", arr_dmmv_iq4_nl_f32_f32_len[reduc16], arr_dmmv_iq4_nl_f32_f32_data[reduc16], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[w][GGML_TYPE_MXFP4][i], "mul_mat_vec_mxfp4_f32_f32", arr_dmmv_mxfp4_f32_f32_len[reduc16], arr_dmmv_mxfp4_f32_f32_data[reduc16], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_F32 ][i], "mul_mat_vec_f32_f16_f32", arr_dmmv_f32_f16_f32_len[reduc], arr_dmmv_f32_f16_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {wg_size_subgroup, 2, i+1}, 1, false, use_subgroups, force_subgroup_size);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_F16 ][i], "mul_mat_vec_f16_f16_f32", arr_dmmv_f16_f16_f32_len[reduc], arr_dmmv_f16_f16_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {wg_size_subgroup, 2, i+1}, 1, false, use_subgroups, force_subgroup_size);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_BF16][i], "mul_mat_vec_bf16_f16_f32", arr_dmmv_bf16_f16_f32_len[reduc], arr_dmmv_bf16_f16_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {wg_size_subgroup, 2, i+1}, 1, false, use_subgroups, force_subgroup_size);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_Q4_0][i], "mul_mat_vec_q4_0_f16_f32", arr_dmmv_q4_0_f16_f32_len[reduc], arr_dmmv_q4_0_f16_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup, 2*rm_stdq, i+1}, 1, true, use_subgroups, force_subgroup_size);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_Q4_1][i], "mul_mat_vec_q4_1_f16_f32", arr_dmmv_q4_1_f16_f32_len[reduc], arr_dmmv_q4_1_f16_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup, 2*rm_stdq, i+1}, 1, true, use_subgroups, force_subgroup_size);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_Q5_0][i], "mul_mat_vec_q5_0_f16_f32", arr_dmmv_q5_0_f16_f32_len[reduc], arr_dmmv_q5_0_f16_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup, 2*rm_stdq, i+1}, 1, true, use_subgroups, force_subgroup_size);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_Q5_1][i], "mul_mat_vec_q5_1_f16_f32", arr_dmmv_q5_1_f16_f32_len[reduc], arr_dmmv_q5_1_f16_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup, 2*rm_stdq, i+1}, 1, true, use_subgroups, force_subgroup_size);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_Q8_0][i], "mul_mat_vec_q8_0_f16_f32", arr_dmmv_q8_0_f16_f32_len[reduc], arr_dmmv_q8_0_f16_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {1*rm_stdq, 1, 1}, {wg_size_subgroup, 1*rm_stdq, i+1}, 1, true, use_subgroups, force_subgroup_size);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_Q2_K][i], "mul_mat_vec_q2_k_f16_f32", arr_dmmv_q2_k_f16_f32_len[reduc16], arr_dmmv_q2_k_f16_f32_data[reduc16], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {wg_size_subgroup16, rm_kq, i+1}, 1, true, use_subgroups16, force_subgroup_size16);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_Q3_K][i], "mul_mat_vec_q3_k_f16_f32", arr_dmmv_q3_k_f16_f32_len[reduc16], arr_dmmv_q3_k_f16_f32_data[reduc16], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {wg_size_subgroup16, rm_kq, i+1}, 1, true, use_subgroups16, force_subgroup_size16);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_Q4_K][i], "mul_mat_vec_q4_k_f16_f32", arr_dmmv_q4_k_f16_f32_len[reduc16], arr_dmmv_q4_k_f16_f32_data[reduc16], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {wg_size_subgroup16, rm_kq, i+1}, 1, true, use_subgroups16, force_subgroup_size16);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_Q5_K][i], "mul_mat_vec_q5_k_f16_f32", arr_dmmv_q5_k_f16_f32_len[reduc16], arr_dmmv_q5_k_f16_f32_data[reduc16], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {wg_size_subgroup16, rm_kq, i+1}, 1, true, use_subgroups16, force_subgroup_size16);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_Q6_K][i], "mul_mat_vec_q6_k_f16_f32", arr_dmmv_q6_k_f16_f32_len[reduc16], arr_dmmv_q6_k_f16_f32_data[reduc16], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {wg_size_subgroup16, rm_kq, i+1}, 1, true, use_subgroups16, force_subgroup_size16);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_IQ1_S][i], "mul_mat_vec_iq1_s_f16_f32", arr_dmmv_iq1_s_f16_f32_len[reduc16], arr_dmmv_iq1_s_f16_f32_data[reduc16], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_IQ1_M][i], "mul_mat_vec_iq1_m_f16_f32", arr_dmmv_iq1_m_f16_f32_len[reduc16], arr_dmmv_iq1_m_f16_f32_data[reduc16], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_IQ2_XXS][i], "mul_mat_vec_iq2_xxs_f16_f32", arr_dmmv_iq2_xxs_f16_f32_len[reduc16], arr_dmmv_iq2_xxs_f16_f32_data[reduc16], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_IQ2_XS][i], "mul_mat_vec_iq2_xs_f16_f32", arr_dmmv_iq2_xs_f16_f32_len[reduc16], arr_dmmv_iq2_xs_f16_f32_data[reduc16], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_IQ2_S][i], "mul_mat_vec_iq2_s_f16_f32", arr_dmmv_iq2_s_f16_f32_len[reduc16], arr_dmmv_iq2_s_f16_f32_data[reduc16], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_IQ3_XXS][i], "mul_mat_vec_iq3_xxs_f16_f32", arr_dmmv_iq3_xxs_f16_f32_len[reduc16], arr_dmmv_iq3_xxs_f16_f32_data[reduc16], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_IQ3_S][i], "mul_mat_vec_iq3_s_f16_f32", arr_dmmv_iq3_s_f16_f32_len[reduc16], arr_dmmv_iq3_s_f16_f32_data[reduc16], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_IQ4_XS][i], "mul_mat_vec_iq4_xs_f16_f32", arr_dmmv_iq4_xs_f16_f32_len[reduc16], arr_dmmv_iq4_xs_f16_f32_data[reduc16], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_IQ4_NL][i], "mul_mat_vec_iq4_nl_f16_f32", arr_dmmv_iq4_nl_f16_f32_len[reduc16], arr_dmmv_iq4_nl_f16_f32_data[reduc16], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[w][GGML_TYPE_MXFP4][i], "mul_mat_vec_mxfp4_f16_f32", arr_dmmv_mxfp4_f16_f32_len[reduc16], arr_dmmv_mxfp4_f16_f32_data[reduc16], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {wg_size_subgroup16, rm_iq, i+1}, 1, true, use_subgroups16, force_subgroup_size16);
- #if defined(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT)
- if (device->integer_dot_product) {
- const uint32_t subgroup_size_int = (device->vendor_id == VK_VENDOR_ID_INTEL && device->subgroup_size_control) ? device->subgroup_min_size : device->subgroup_size;
- const uint32_t wg_size_subgroup_int = (w == DMMV_WG_SIZE_SUBGROUP) ? subgroup_size_int : (subgroup_size_int * 4);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_q8_1_f32[w][GGML_TYPE_Q4_0][i], "mul_mat_vec_q4_0_q8_1_f32", arr_dmmv_q4_0_q8_1_f32_len[reduc], arr_dmmv_q4_0_q8_1_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup_int, 2*rm_stdq, i+1}, 1, true, use_subgroups, subgroup_size_int);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_q8_1_f32[w][GGML_TYPE_Q4_1][i], "mul_mat_vec_q4_1_q8_1_f32", arr_dmmv_q4_1_q8_1_f32_len[reduc], arr_dmmv_q4_1_q8_1_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup_int, 2*rm_stdq, i+1}, 1, true, use_subgroups, subgroup_size_int);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_q8_1_f32[w][GGML_TYPE_Q5_0][i], "mul_mat_vec_q5_0_q8_1_f32", arr_dmmv_q5_0_q8_1_f32_len[reduc], arr_dmmv_q5_0_q8_1_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup_int, 2*rm_stdq, i+1}, 1, true, use_subgroups, subgroup_size_int);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_q8_1_f32[w][GGML_TYPE_Q5_1][i], "mul_mat_vec_q5_1_q8_1_f32", arr_dmmv_q5_1_q8_1_f32_len[reduc], arr_dmmv_q5_1_q8_1_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {wg_size_subgroup_int, 2*rm_stdq, i+1}, 1, true, use_subgroups, subgroup_size_int);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_q8_1_f32[w][GGML_TYPE_Q8_0][i], "mul_mat_vec_q8_0_q8_1_f32", arr_dmmv_q8_0_q8_1_f32_len[reduc], arr_dmmv_q8_0_q8_1_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {1*rm_stdq, 1, 1}, {wg_size_subgroup_int, 1*rm_stdq, i+1}, 1, true, use_subgroups, subgroup_size_int);
- }
- #endif // GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT
- }
- }
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_F32 ], "mul_mat_vec_id_f32_f32", mul_mat_vec_id_f32_f32_len, mul_mat_vec_id_f32_f32_data, "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_F16 ], "mul_mat_vec_id_f16_f32", mul_mat_vec_id_f16_f32_len, mul_mat_vec_id_f16_f32_data, "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_BF16], "mul_mat_vec_id_bf16_f32", mul_mat_vec_id_bf16_f32_len, mul_mat_vec_id_bf16_f32_data, "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_0], "mul_mat_vec_id_q4_0_f32", mul_mat_vec_id_q4_0_f32_len, mul_mat_vec_id_q4_0_f32_data, "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_1], "mul_mat_vec_id_q4_1_f32", mul_mat_vec_id_q4_1_f32_len, mul_mat_vec_id_q4_1_f32_data, "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_0], "mul_mat_vec_id_q5_0_f32", mul_mat_vec_id_q5_0_f32_len, mul_mat_vec_id_q5_0_f32_data, "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_1], "mul_mat_vec_id_q5_1_f32", mul_mat_vec_id_q5_1_f32_len, mul_mat_vec_id_q5_1_f32_data, "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q8_0], "mul_mat_vec_id_q8_0_f32", mul_mat_vec_id_q8_0_f32_len, mul_mat_vec_id_q8_0_f32_data, "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {1*rm_stdq, 1, 1}, {device->subgroup_size, 1*rm_stdq}, 1, true);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q2_K], "mul_mat_vec_id_q2_k_f32", mul_mat_vec_id_q2_k_f32_len, mul_mat_vec_id_q2_k_f32_data, "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q3_K], "mul_mat_vec_id_q3_k_f32", mul_mat_vec_id_q3_k_f32_len, mul_mat_vec_id_q3_k_f32_data, "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_K], "mul_mat_vec_id_q4_k_f32", mul_mat_vec_id_q4_k_f32_len, mul_mat_vec_id_q4_k_f32_data, "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_K], "mul_mat_vec_id_q5_k_f32", mul_mat_vec_id_q5_k_f32_len, mul_mat_vec_id_q5_k_f32_data, "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q6_K], "mul_mat_vec_id_q6_k_f32", mul_mat_vec_id_q6_k_f32_len, mul_mat_vec_id_q6_k_f32_data, "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_IQ1_S], "mul_mat_vec_id_iq1_s_f32", mul_mat_vec_id_iq1_s_f32_len, mul_mat_vec_id_iq1_s_f32_data, "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq}, 1, true);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_IQ1_M], "mul_mat_vec_id_iq1_m_f32", mul_mat_vec_id_iq1_m_f32_len, mul_mat_vec_id_iq1_m_f32_data, "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq}, 1, true);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_IQ2_XXS], "mul_mat_vec_id_iq2_xxs_f32", mul_mat_vec_id_iq2_xxs_f32_len, mul_mat_vec_id_iq2_xxs_f32_data, "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq}, 1, true);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_IQ2_XS], "mul_mat_vec_id_iq2_xs_f32", mul_mat_vec_id_iq2_xs_f32_len, mul_mat_vec_id_iq2_xs_f32_data, "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq}, 1, true);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_IQ2_S], "mul_mat_vec_id_iq2_s_f32", mul_mat_vec_id_iq2_s_f32_len, mul_mat_vec_id_iq2_s_f32_data, "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq}, 1, true);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_IQ3_XXS], "mul_mat_vec_id_iq3_xxs_f32", mul_mat_vec_id_iq3_xxs_f32_len, mul_mat_vec_id_iq3_xxs_f32_data, "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq}, 1, true);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_IQ3_S], "mul_mat_vec_id_iq3_s_f32", mul_mat_vec_id_iq3_s_f32_len, mul_mat_vec_id_iq3_s_f32_data, "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq}, 1, true);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_IQ4_XS], "mul_mat_vec_id_iq4_xs_f32", mul_mat_vec_id_iq4_xs_f32_len, mul_mat_vec_id_iq4_xs_f32_data, "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq}, 1, true);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_id_iq4_nl_f32", mul_mat_vec_id_iq4_nl_f32_len, mul_mat_vec_id_iq4_nl_f32_data, "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq}, 1, true);
- ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_MXFP4], "mul_mat_vec_id_mxfp4_f32", mul_mat_vec_id_mxfp4_f32_len, mul_mat_vec_id_mxfp4_f32_data, "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_id_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq}, 1, true);
- // dequant shaders
- ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_F32 ], "f32_to_f16", dequant_f32_len, dequant_f32_data, "main", 2, 5 * sizeof(uint32_t), {256 * 16, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_Q4_0], "dequant_q4_0", dequant_q4_0_len, dequant_q4_0_data, "main", 2, 5 * sizeof(uint32_t), {256 * 16, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_Q4_1], "dequant_q4_1", dequant_q4_1_len, dequant_q4_1_data, "main", 2, 5 * sizeof(uint32_t), {256 * 16, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_Q5_0], "dequant_q5_0", dequant_q5_0_len, dequant_q5_0_data, "main", 2, 5 * sizeof(uint32_t), {256 * 16, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_Q5_1], "dequant_q5_1", dequant_q5_1_len, dequant_q5_1_data, "main", 2, 5 * sizeof(uint32_t), {256 * 16, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_Q8_0], "dequant_q8_0", dequant_q8_0_len, dequant_q8_0_data, "main", 2, 5 * sizeof(uint32_t), {256 * 16, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_Q2_K], "dequant_q2_k", dequant_q2_k_len, dequant_q2_k_data, "main", 2, 5 * sizeof(uint32_t), {256 * 64, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_Q3_K], "dequant_q3_k", dequant_q3_k_len, dequant_q3_k_data, "main", 2, 5 * sizeof(uint32_t), {256 * 64, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_Q4_K], "dequant_q4_k", dequant_q4_k_len, dequant_q4_k_data, "main", 2, 5 * sizeof(uint32_t), {256 * 32, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_Q5_K], "dequant_q5_k", dequant_q5_k_len, dequant_q5_k_data, "main", 2, 5 * sizeof(uint32_t), {256 * 64, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_Q6_K], "dequant_q6_k", dequant_q6_k_len, dequant_q6_k_data, "main", 2, 5 * sizeof(uint32_t), {256 * 64, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_IQ1_S], "dequant_iq1_s", dequant_iq1_s_len, dequant_iq1_s_data, "main", 2, 5 * sizeof(uint32_t), {256 * 32, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_IQ1_M], "dequant_iq1_m", dequant_iq1_m_len, dequant_iq1_m_data, "main", 2, 5 * sizeof(uint32_t), {256 * 32, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_IQ2_XXS], "dequant_iq2_xxs", dequant_iq2_xxs_len, dequant_iq2_xxs_data, "main", 2, 5 * sizeof(uint32_t), {256 * 32, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_IQ2_XS], "dequant_iq2_xs", dequant_iq2_xs_len, dequant_iq2_xs_data, "main", 2, 5 * sizeof(uint32_t), {256 * 32, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_IQ2_S], "dequant_iq2_s", dequant_iq2_s_len, dequant_iq2_s_data, "main", 2, 5 * sizeof(uint32_t), {256 * 32, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_IQ3_XXS], "dequant_iq3_xxs", dequant_iq3_xxs_len, dequant_iq3_xxs_data, "main", 2, 5 * sizeof(uint32_t), {256 * 32, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_IQ3_S], "dequant_iq3_s", dequant_iq3_s_len, dequant_iq3_s_data, "main", 2, 5 * sizeof(uint32_t), {256 * 32, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_IQ4_XS], "dequant_iq4_xs", dequant_iq4_xs_len, dequant_iq4_xs_data, "main", 2, 5 * sizeof(uint32_t), {256 * 32, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_IQ4_NL], "dequant_iq4_nl", dequant_iq4_nl_len, dequant_iq4_nl_data, "main", 2, 5 * sizeof(uint32_t), {256 * 16, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_MXFP4], "dequant_mxfp4", dequant_mxfp4_len, dequant_mxfp4_data, "main", 2, 5 * sizeof(uint32_t), {256 * 16, 1, 1}, {}, 1);
- // get_rows
- ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_F32 ], "get_rows_f32", get_rows_f32_len, get_rows_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), { 512, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_F16 ], "get_rows_f16", get_rows_f16_len, get_rows_f16_data, "main", 3, sizeof(vk_op_binary_push_constants), { 512, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_BF16], "get_rows_bf16", get_rows_bf16_len, get_rows_bf16_data, "main", 3, sizeof(vk_op_binary_push_constants), { 512, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_Q4_0], "get_rows_q4_0", get_rows_q4_0_len, get_rows_q4_0_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_Q4_1], "get_rows_q4_1", get_rows_q4_1_len, get_rows_q4_1_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_Q5_0], "get_rows_q5_0", get_rows_q5_0_len, get_rows_q5_0_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_Q5_1], "get_rows_q5_1", get_rows_q5_1_len, get_rows_q5_1_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_Q8_0], "get_rows_q8_0", get_rows_q8_0_len, get_rows_q8_0_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_Q2_K], "get_rows_q2_k", get_rows_q2_k_len, get_rows_q2_k_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_Q3_K], "get_rows_q3_k", get_rows_q3_k_len, get_rows_q3_k_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_Q4_K], "get_rows_q4_k", get_rows_q4_k_len, get_rows_q4_k_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_Q5_K], "get_rows_q5_k", get_rows_q5_k_len, get_rows_q5_k_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_Q6_K], "get_rows_q6_k", get_rows_q6_k_len, get_rows_q6_k_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_IQ1_S], "get_rows_iq1_s", get_rows_iq1_s_len, get_rows_iq1_s_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_IQ1_M], "get_rows_iq1_m", get_rows_iq1_m_len, get_rows_iq1_m_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_IQ2_XXS], "get_rows_iq2_xxs", get_rows_iq2_xxs_len, get_rows_iq2_xxs_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_IQ2_XS], "get_rows_iq2_xs", get_rows_iq2_xs_len, get_rows_iq2_xs_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_IQ2_S], "get_rows_iq2_s", get_rows_iq2_s_len, get_rows_iq2_s_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_IQ3_XXS], "get_rows_iq3_xxs", get_rows_iq3_xxs_len, get_rows_iq3_xxs_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_IQ3_S], "get_rows_iq3_s", get_rows_iq3_s_len, get_rows_iq3_s_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_IQ4_XS], "get_rows_iq4_xs", get_rows_iq4_xs_len, get_rows_iq4_xs_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_IQ4_NL], "get_rows_iq4_nl", get_rows_iq4_nl_len, get_rows_iq4_nl_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_MXFP4], "get_rows_mxfp4", get_rows_mxfp4_len, get_rows_mxfp4_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_F32 ], "get_rows_f32_f32", get_rows_f32_f32_len, get_rows_f32_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), { 512, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_F16 ], "get_rows_f16_f32", get_rows_f16_f32_len, get_rows_f16_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), { 512, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_BF16], "get_rows_bf16_f32", get_rows_bf16_f32_len, get_rows_bf16_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), { 512, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_Q4_0], "get_rows_q4_0_f32", get_rows_q4_0_f32_len, get_rows_q4_0_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_Q4_1], "get_rows_q4_1_f32", get_rows_q4_1_f32_len, get_rows_q4_1_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_Q5_0], "get_rows_q5_0_f32", get_rows_q5_0_f32_len, get_rows_q5_0_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_Q5_1], "get_rows_q5_1_f32", get_rows_q5_1_f32_len, get_rows_q5_1_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_Q8_0], "get_rows_q8_0_f32", get_rows_q8_0_f32_len, get_rows_q8_0_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_Q2_K], "get_rows_q2_k_f32", get_rows_q2_k_f32_len, get_rows_q2_k_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_Q3_K], "get_rows_q3_k_f32", get_rows_q3_k_f32_len, get_rows_q3_k_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_Q4_K], "get_rows_q4_k_f32", get_rows_q4_k_f32_len, get_rows_q4_k_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_Q5_K], "get_rows_q5_k_f32", get_rows_q5_k_f32_len, get_rows_q5_k_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_Q6_K], "get_rows_q6_k_f32", get_rows_q6_k_f32_len, get_rows_q6_k_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_IQ1_S], "get_rows_iq1_s_f32", get_rows_iq1_s_f32_len, get_rows_iq1_s_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_IQ1_M], "get_rows_iq1_m_f32", get_rows_iq1_m_f32_len, get_rows_iq1_m_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_IQ2_XXS], "get_rows_iq2_xxs_f32", get_rows_iq2_xxs_f32_len, get_rows_iq2_xxs_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_IQ2_XS], "get_rows_iq2_xs_f32", get_rows_iq2_xs_f32_len, get_rows_iq2_xs_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_IQ2_S], "get_rows_iq2_s_f32", get_rows_iq2_s_f32_len, get_rows_iq2_s_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_IQ3_XXS], "get_rows_iq3_xxs_f32", get_rows_iq3_xxs_f32_len, get_rows_iq3_xxs_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_IQ3_S], "get_rows_iq3_s_f32", get_rows_iq3_s_f32_len, get_rows_iq3_s_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_IQ4_XS], "get_rows_iq4_xs_f32", get_rows_iq4_xs_f32_len, get_rows_iq4_xs_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_IQ4_NL], "get_rows_iq4_nl_f32", get_rows_iq4_nl_f32_len, get_rows_iq4_nl_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_MXFP4], "get_rows_mxfp4_f32", get_rows_mxfp4_f32_len, get_rows_mxfp4_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_matmul_split_k_reduce, "split_k_reduce", split_k_reduce_len, split_k_reduce_data, "main", 2, 2 * sizeof(uint32_t), {256 * 4, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_flash_attn_split_k_reduce, "fa_split_k_reduce", fa_split_k_reduce_len, fa_split_k_reduce_data, "main", 3, 5 * sizeof(uint32_t), {1, device->subgroup_size, 1}, {device->subgroup_size}, 1, true);
- if (device->subgroup_clustered && device->subgroup_require_full_support) {
- ggml_vk_create_pipeline(device, device->pipeline_quantize_q8_1_x4, "quantize_q8_1_x4", quantize_q8_1_x4_subgroup_len, quantize_q8_1_x4_subgroup_data, "main", 2, 1 * sizeof(uint32_t), {32 * device->subgroup_size / 8, 1, 1}, { device->subgroup_size }, 1, true, true);
- } else {
- ggml_vk_create_pipeline(device, device->pipeline_quantize_q8_1_x4, "quantize_q8_1_x4", quantize_q8_1_x4_len, quantize_q8_1_x4_data, "main", 2, 1 * sizeof(uint32_t), {32 * device->subgroup_size / 8, 1, 1}, { device->subgroup_size }, 1);
- }
- for (uint32_t i = 0; i < p021_max_gqa_ratio; ++i) {
- if (device->subgroup_arithmetic && device->subgroup_require_full_support) {
- ggml_vk_create_pipeline2(device, device->pipeline_mul_mat_vec_p021_f16_f32[i], "mul_mat_vec_p021_f16_f32"+std::to_string(i+1), mul_mat_vec_p021_f16_f32_subgroup_add_len, mul_mat_vec_p021_f16_f32_subgroup_add_data, "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_p021_push_constants), {1, 1, 1}, {device->subgroup_size, i + 1}, 1, true, true);
- } else {
- ggml_vk_create_pipeline2(device, device->pipeline_mul_mat_vec_p021_f16_f32[i], "mul_mat_vec_p021_f16_f32"+std::to_string(i+1), mul_mat_vec_p021_f16_f32_len, mul_mat_vec_p021_f16_f32_data, "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_p021_push_constants), {1, 1, 1}, {device->subgroup_size, i + 1}, 1, true);
- }
- }
- ggml_vk_create_pipeline(device, device->pipeline_mul_mat_vec_nc_f16_f32, "mul_mat_vec_nc_f16_f32", mul_mat_vec_nc_f16_f32_len, mul_mat_vec_nc_f16_f32_data, "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_nc_push_constants), {1, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_norm_f32, "norm_f32", norm_f32_len, norm_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_group_norm_f32, "group_norm_f32", group_norm_f32_len, group_norm_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_rms_norm_f32, "rms_norm_f32", rms_norm_f32_len, rms_norm_f32_data, "main", 4, sizeof(vk_op_binary_push_constants), {1, 1, 1}, {0, 0}, 1, true);
- ggml_vk_create_pipeline(device, device->pipeline_rms_norm_mul_f32, "rms_norm_mul_f32", rms_norm_f32_len, rms_norm_f32_data, "main", 4, sizeof(vk_op_binary_push_constants), {1, 1, 1}, {0, 1}, 1, true);
- ggml_vk_create_pipeline(device, device->pipeline_rms_norm_partials_f32, "rms_norm_partials_f32", rms_norm_partials_f32_len, rms_norm_partials_f32_data, "main", 4, sizeof(vk_op_binary_push_constants), {1, 1, 1}, {0, 0}, 1, true);
- ggml_vk_create_pipeline(device, device->pipeline_rms_norm_mul_partials_f32, "rms_norm_mul_partials_f32", rms_norm_partials_f32_len, rms_norm_partials_f32_data, "main", 4, sizeof(vk_op_binary_push_constants), {1, 1, 1}, {0, 1}, 1, true);
- if (device->float_controls_rte_fp16 &&
- sizeof(vk_op_rms_norm_mul_rope_push_constants) <= device->properties.limits.maxPushConstantsSize) {
- ggml_vk_create_pipeline(device, device->pipeline_rms_norm_mul_rope_f32_f32, "rms_norm_mul_rope_f32_f32", rms_norm_mul_rope_f32_f32_len, rms_norm_mul_rope_f32_f32_data, "main", 7, sizeof(vk_op_rms_norm_mul_rope_push_constants), {1, 1, 1}, {0, 1}, 1, true);
- ggml_vk_create_pipeline(device, device->pipeline_rms_norm_mul_rope_f32_f16, "rms_norm_mul_rope_f32_f16", rms_norm_mul_rope_f32_f16_rte_len, rms_norm_mul_rope_f32_f16_rte_data, "main", 7, sizeof(vk_op_rms_norm_mul_rope_push_constants), {1, 1, 1}, {0, 1}, 1, true);
- }
- ggml_vk_create_pipeline(device, device->pipeline_rms_norm_back_f32, "rms_norm_back_f32", rms_norm_back_f32_len, rms_norm_back_f32_data, "main", 3, sizeof(vk_op_push_constants), {1, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_l2_norm_f32, "l2_norm_f32", l2_norm_f32_len, l2_norm_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_f32, "cpy_f32_f32", cpy_f32_f32_len, cpy_f32_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_f16, "cpy_f32_f16", cpy_f32_f16_len, cpy_f32_f16_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_cpy_f16_f16, "cpy_f16_f16", cpy_f16_f16_len, cpy_f16_f16_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_cpy_f16_f32, "cpy_f16_f32", cpy_f16_f32_len, cpy_f16_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_bf16,"cpy_f32_bf16",cpy_f32_bf16_len,cpy_f32_bf16_data,"main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_cpy_i32_f32, "cpy_i32_f32", cpy_i32_f32_len, cpy_i32_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_i32, "cpy_f32_i32", cpy_f32_i32_len, cpy_f32_i32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_contig_cpy_f32_f32, "contig_cpy_f32_f32", contig_cpy_f32_f32_len, contig_cpy_f32_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_contig_cpy_f32_f16, "contig_cpy_f32_f16", contig_cpy_f32_f16_len, contig_cpy_f32_f16_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_contig_cpy_f16_f16, "contig_cpy_f16_f16", contig_cpy_f16_f16_len, contig_cpy_f16_f16_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_contig_cpy_f16_f32, "contig_cpy_f16_f32", contig_cpy_f16_f32_len, contig_cpy_f16_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_contig_cpy_f32_bf16,"contig_cpy_f32_bf16",contig_cpy_f32_bf16_len,contig_cpy_f32_bf16_data,"main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_contig_cpy_i32_f32, "contig_cpy_i32_f32", contig_cpy_i32_f32_len, contig_cpy_i32_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_contig_cpy_f32_i32, "contig_cpy_f32_i32", contig_cpy_f32_i32_len, contig_cpy_f32_i32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_cpy_transpose_32, "cpy_transpose_32", cpy_transpose_32_len, cpy_transpose_32_data, "main", 2, sizeof(vk_op_unary_push_constants), {1, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_cpy_transpose_16, "cpy_transpose_16", cpy_transpose_16_len, cpy_transpose_16_data, "main", 2, sizeof(vk_op_unary_push_constants), {1, 1, 1}, {}, 1);
- if (device->float_controls_rte_fp16) {
- ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q4_0], "cpy_f32_q4_0", cpy_f32_q4_0_rte_len, cpy_f32_q4_0_rte_data, "main", 2, sizeof(vk_op_unary_push_constants), {32, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q4_1], "cpy_f32_q4_1", cpy_f32_q4_1_rte_len, cpy_f32_q4_1_rte_data, "main", 2, sizeof(vk_op_unary_push_constants), {32, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q5_0], "cpy_f32_q5_0", cpy_f32_q5_0_rte_len, cpy_f32_q5_0_rte_data, "main", 2, sizeof(vk_op_unary_push_constants), {32, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q5_1], "cpy_f32_q5_1", cpy_f32_q5_1_rte_len, cpy_f32_q5_1_rte_data, "main", 2, sizeof(vk_op_unary_push_constants), {32, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q8_0], "cpy_f32_q8_0", cpy_f32_q8_0_rte_len, cpy_f32_q8_0_rte_data, "main", 2, sizeof(vk_op_unary_push_constants), {32, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_IQ4_NL], "cpy_f32_iq4_nl", cpy_f32_iq4_nl_rte_len, cpy_f32_iq4_nl_rte_data, "main", 2, sizeof(vk_op_unary_push_constants), {32, 1, 1}, {}, 1);
- } else {
- ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q4_0], "cpy_f32_q4_0", cpy_f32_q4_0_len, cpy_f32_q4_0_data, "main", 2, sizeof(vk_op_unary_push_constants), {32, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q4_1], "cpy_f32_q4_1", cpy_f32_q4_1_len, cpy_f32_q4_1_data, "main", 2, sizeof(vk_op_unary_push_constants), {32, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q5_0], "cpy_f32_q5_0", cpy_f32_q5_0_len, cpy_f32_q5_0_data, "main", 2, sizeof(vk_op_unary_push_constants), {32, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q5_1], "cpy_f32_q5_1", cpy_f32_q5_1_len, cpy_f32_q5_1_data, "main", 2, sizeof(vk_op_unary_push_constants), {32, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q8_0], "cpy_f32_q8_0", cpy_f32_q8_0_len, cpy_f32_q8_0_data, "main", 2, sizeof(vk_op_unary_push_constants), {32, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_IQ4_NL], "cpy_f32_iq4_nl", cpy_f32_iq4_nl_len, cpy_f32_iq4_nl_data, "main", 2, sizeof(vk_op_unary_push_constants), {32, 1, 1}, {}, 1);
- }
- #define SET_ROWS(itype, rte) \
- ggml_vk_create_pipeline(device, device->pipeline_set_rows ## itype [GGML_TYPE_F32], "set_rows_f32" #itype, set_rows_f32 ## itype ## rte ## _len, set_rows_f32 ## itype ## rte ## _data, "main", 3, sizeof(vk_op_binary_push_constants), {1, 1, 1}, {1}, 1, true); \
- ggml_vk_create_pipeline(device, device->pipeline_set_rows ## itype [GGML_TYPE_F16], "set_rows_f16" #itype, set_rows_f16 ## itype ## rte ## _len, set_rows_f16 ## itype ## rte ## _data, "main", 3, sizeof(vk_op_binary_push_constants), {1, 1, 1}, {1}, 1, true); \
- ggml_vk_create_pipeline(device, device->pipeline_set_rows ## itype [GGML_TYPE_BF16], "set_rows_bf16" #itype, set_rows_bf16 ## itype ## rte ## _len, set_rows_bf16 ## itype ## rte ## _data, "main", 3, sizeof(vk_op_binary_push_constants), {1, 1, 1}, {1}, 1, true); \
- ggml_vk_create_pipeline(device, device->pipeline_set_rows ## itype [GGML_TYPE_Q4_0], "set_rows_q4_0" #itype, set_rows_q4_0 ## itype ## rte ## _len, set_rows_q4_0 ## itype ## rte ## _data, "main", 3, sizeof(vk_op_binary_push_constants), {1, 1, 1}, {1}, 1, true); \
- ggml_vk_create_pipeline(device, device->pipeline_set_rows ## itype [GGML_TYPE_Q4_1], "set_rows_q4_1" #itype, set_rows_q4_1 ## itype ## rte ## _len, set_rows_q4_1 ## itype ## rte ## _data, "main", 3, sizeof(vk_op_binary_push_constants), {1, 1, 1}, {1}, 1, true); \
- ggml_vk_create_pipeline(device, device->pipeline_set_rows ## itype [GGML_TYPE_Q5_0], "set_rows_q5_0" #itype, set_rows_q5_0 ## itype ## rte ## _len, set_rows_q5_0 ## itype ## rte ## _data, "main", 3, sizeof(vk_op_binary_push_constants), {1, 1, 1}, {1}, 1, true); \
- ggml_vk_create_pipeline(device, device->pipeline_set_rows ## itype [GGML_TYPE_Q5_1], "set_rows_q5_1" #itype, set_rows_q5_1 ## itype ## rte ## _len, set_rows_q5_1 ## itype ## rte ## _data, "main", 3, sizeof(vk_op_binary_push_constants), {1, 1, 1}, {1}, 1, true); \
- ggml_vk_create_pipeline(device, device->pipeline_set_rows ## itype [GGML_TYPE_Q8_0], "set_rows_q8_0" #itype, set_rows_q8_0 ## itype ## rte ## _len, set_rows_q8_0 ## itype ## rte ## _data, "main", 3, sizeof(vk_op_binary_push_constants), {1, 1, 1}, {1}, 1, true); \
- ggml_vk_create_pipeline(device, device->pipeline_set_rows ## itype [GGML_TYPE_IQ4_NL], "set_rows_iq4_nl" #itype, set_rows_iq4_nl ## itype ## rte ## _len, set_rows_iq4_nl ## itype ## rte ## _data, "main", 3, sizeof(vk_op_binary_push_constants), {1, 1, 1}, {1}, 1, true);
- if (device->float_controls_rte_fp16) {
- SET_ROWS(_i32, _rte)
- SET_ROWS(_i64, _rte)
- } else {
- SET_ROWS(_i32, )
- SET_ROWS(_i64, )
- }
- #undef SET_ROWS
- ggml_vk_create_pipeline(device, device->pipeline_cpy_quant_f32[GGML_TYPE_Q4_0], "cpy_q4_0_f32", cpy_q4_0_f32_len, cpy_q4_0_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q4_0), 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_cpy_quant_f32[GGML_TYPE_Q4_1], "cpy_q4_1_f32", cpy_q4_1_f32_len, cpy_q4_1_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q4_1), 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_cpy_quant_f32[GGML_TYPE_Q5_0], "cpy_q5_0_f32", cpy_q5_0_f32_len, cpy_q5_0_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q5_0), 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_cpy_quant_f32[GGML_TYPE_Q5_1], "cpy_q5_1_f32", cpy_q5_1_f32_len, cpy_q5_1_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q5_1), 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_cpy_quant_f32[GGML_TYPE_Q8_0], "cpy_q8_0_f32", cpy_q8_0_f32_len, cpy_q8_0_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q8_0), 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_cpy_quant_f32[GGML_TYPE_IQ4_NL], "cpy_iq4_nl_f32", cpy_iq4_nl_f32_len, cpy_iq4_nl_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_IQ4_NL), 1, 1}, {}, 1);
- auto get_suffix = [](bool src0_f16, bool src1_f16, bool dst_f16) {
- std::string s;
- s += std::string(src0_f16 ? "_f16" : "_f32");
- s += std::string(src1_f16 ? "_f16" : "_f32");
- s += std::string(dst_f16 ? "_f16" : "_f32");
- return s;
- };
- bool rte = device->float_controls_rte_fp16;
- #define CREATE_BINARY(name, namemod, spec, bindings) \
- for (int s0 : {0,1}) for (int s1 : {0,1}) for (int d : {0,1}) \
- ggml_vk_create_pipeline2(device, device->pipeline_ ## name ## namemod[s0][s1][d], \
- #name + get_suffix(s0, s1, d) + #namemod, name ## _len[s0][s1][d][rte], name ## _data[s0][s1][d][rte], \
- "main", (bindings), sizeof(vk_op_binary_push_constants), {512, 1, 1}, spec, 1);
- CREATE_BINARY(add, , {0}, 4)
- CREATE_BINARY(add, _norepeat, {1}, 4)
- CREATE_BINARY(sub, , {0}, 3)
- CREATE_BINARY(sub, _norepeat, {1}, 3)
- CREATE_BINARY(mul, , {0}, 3)
- CREATE_BINARY(mul, _norepeat, {1}, 3)
- CREATE_BINARY(div, , {0}, 3)
- CREATE_BINARY(div, _norepeat, {1}, 3)
- CREATE_BINARY(add_rms, , {0}, 4)
- CREATE_BINARY(add_rms, _norepeat, {1}, 4)
- #undef CREATE_BINARY
- if (device->multi_add) {
- for (uint32_t i = 0; i < MAX_FUSED_ADDS; ++i) {
- ggml_vk_create_pipeline2(device, device->pipeline_multi_add[i], "multi_add_f32_" + std::to_string(i+1), multi_add_f32_len, multi_add_f32_data, "main", MAX_PARAMETER_COUNT, sizeof(vk_op_multi_add_push_constants), {512, 1, 1}, {i+2}, 1);
- ggml_vk_create_pipeline2(device, device->pipeline_multi_add_rms[i], "multi_add_rms_f32_" + std::to_string(i+1), multi_add_rms_f32_len, multi_add_rms_f32_data, "main", MAX_PARAMETER_COUNT, sizeof(vk_op_multi_add_push_constants), {512, 1, 1}, {i+2}, 1);
- }
- }
- ggml_vk_create_pipeline(device, device->pipeline_add_id_f32, "add_id_f32", add_id_f32_len, add_id_f32_data, "main", 4, sizeof(vk_op_add_id_push_constants), {1, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_acc_f32, "acc_f32", acc_f32_len, acc_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_concat_f32, "concat_f32", concat_f32_len, concat_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_concat_f16, "concat_f16", concat_f16_len, concat_f16_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_concat_i32, "concat_i32", concat_i32_len, concat_i32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_upscale_nearest_f32, "upscale_f32", upscale_f32_len, upscale_f32_data, "main", 2, sizeof(vk_op_upscale_push_constants), {512, 1, 1}, {GGML_SCALE_MODE_NEAREST}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_upscale_bilinear_f32, "upscale_f32", upscale_f32_len, upscale_f32_data, "main", 2, sizeof(vk_op_upscale_push_constants), {512, 1, 1}, {GGML_SCALE_MODE_BILINEAR}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_upscale_bicubic_f32, "upscale_f32", upscale_f32_len, upscale_f32_data, "main", 2, sizeof(vk_op_upscale_push_constants), {512, 1, 1}, {GGML_SCALE_MODE_BICUBIC}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_scale_f32, "scale_f32", scale_f32_len, scale_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_sqr_f32, "sqr_f32", sqr_f32_len, sqr_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_sqrt_f32, "sqrt_f32", sqrt_f32_len, sqrt_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_sin_f32, "sin_f32", sin_f32_len, sin_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_cos_f32, "cos_f32", cos_f32_len, cos_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
- if (device->float_controls_rte_fp16) {
- ggml_vk_create_pipeline(device, device->pipeline_log[0], "log_f32_rte", log_f32_rte_len, log_f32_rte_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_log[1], "log_f16_rte", log_f16_rte_len, log_f16_rte_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
- } else {
- ggml_vk_create_pipeline(device, device->pipeline_log[0], "log_f32", log_f32_len, log_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_log[1], "log_f16", log_f16_len, log_f16_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
- }
- ggml_vk_create_pipeline(device, device->pipeline_clamp_f32, "clamp_f32", clamp_f32_len, clamp_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_pad_f32, "pad_f32", pad_f32_len, pad_f32_data, "main", 2, sizeof(vk_op_pad_push_constants), {512, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_roll_f32, "roll_f32", roll_f32_len, roll_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_repeat_f32, "repeat_f32", repeat_f32_len, repeat_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_repeat_back_f32, "repeat_back_f32", repeat_back_f32_len, repeat_back_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
- #define CREATE_UNARY(name) \
- ggml_vk_create_pipeline(device, device->pipeline_ ## name [0], #name "_f32", name ## _f32_len, name ## _f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1); \
- ggml_vk_create_pipeline(device, device->pipeline_ ## name [1], #name "_f16", name ## _f16_len, name ## _f16_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
- CREATE_UNARY(gelu)
- CREATE_UNARY(gelu_erf)
- CREATE_UNARY(gelu_quick)
- CREATE_UNARY(silu)
- CREATE_UNARY(relu)
- CREATE_UNARY(neg)
- CREATE_UNARY(tanh)
- CREATE_UNARY(sigmoid)
- CREATE_UNARY(hardsigmoid)
- CREATE_UNARY(hardswish)
- CREATE_UNARY(abs)
- CREATE_UNARY(softplus)
- CREATE_UNARY(step)
- CREATE_UNARY(round)
- CREATE_UNARY(ceil)
- CREATE_UNARY(floor)
- CREATE_UNARY(trunc)
- #undef CREATE_UNARY
- #define CREATE_UNARY_RTE(name) \
- if (device->float_controls_rte_fp16) { \
- ggml_vk_create_pipeline(device, device->pipeline_ ## name [0], #name "_f32_rte", name ## _f32_rte_len, name ## _f32_rte_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1); \
- ggml_vk_create_pipeline(device, device->pipeline_ ## name [1], #name "_f16_rte", name ## _f16_rte_len, name ## _f16_rte_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1); \
- } else { \
- ggml_vk_create_pipeline(device, device->pipeline_ ## name [0], #name "_f32", name ## _f32_len, name ## _f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1); \
- ggml_vk_create_pipeline(device, device->pipeline_ ## name [1], #name "_f16", name ## _f16_len, name ## _f16_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1); \
- }
- CREATE_UNARY_RTE(exp)
- #undef CREATE_UNARY_RTE
- ggml_vk_create_pipeline(device, device->pipeline_add1_f16_f16, "add1_f16_f16", add1_f16_f16_len, add1_f16_f16_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_add1_f16_f32, "add1_f16_f32", add1_f16_f32_len, add1_f16_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_add1_f32_f32, "add1_f32_f32", add1_f32_f32_len, add1_f32_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_arange_f32, "arange_f32", arange_f32_len, arange_f32_data, "main", 1, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_fill_f32, "fill_f32", fill_f32_len, fill_f32_data, "main", 1, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
- #define CREATE_GLU(name) \
- if (device->float_controls_rte_fp16) { \
- ggml_vk_create_pipeline(device, device->pipeline_ ## name [0], #name "_f32_rte", name ## _f32_rte_len, name ## _f32_rte_data, "main", 3, sizeof(vk_op_glu_push_constants), {512, 1, 1}, {}, 1, true); \
- ggml_vk_create_pipeline(device, device->pipeline_ ## name [1], #name "_f16_rte", name ## _f16_rte_len, name ## _f16_rte_data, "main", 3, sizeof(vk_op_glu_push_constants), {512, 1, 1}, {}, 1, true); \
- } else { \
- ggml_vk_create_pipeline(device, device->pipeline_ ## name [0], #name "_f32", name ## _f32_len, name ## _f32_data, "main", 3, sizeof(vk_op_glu_push_constants), {512, 1, 1}, {}, 1, true); \
- ggml_vk_create_pipeline(device, device->pipeline_ ## name [1], #name "_f16", name ## _f16_len, name ## _f16_data, "main", 3, sizeof(vk_op_glu_push_constants), {512, 1, 1}, {}, 1, true); \
- }
- CREATE_GLU(geglu)
- CREATE_GLU(reglu)
- CREATE_GLU(swiglu)
- CREATE_GLU(swiglu_oai)
- CREATE_GLU(geglu_erf)
- CREATE_GLU(geglu_quick)
- #undef CREATE_GLU
- ggml_vk_create_pipeline(device, device->pipeline_leaky_relu_f32, "leaky_relu_f32", leaky_relu_f32_len, leaky_relu_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_silu_back_f32, "silu_back_f32", silu_back_f32_len, silu_back_f32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_diag_mask_inf_f32, "diag_mask_inf_f32", diag_mask_inf_f32_len, diag_mask_inf_f32_data, "main", 2, sizeof(vk_op_diag_mask_push_constants), {1, 512, 1}, {}, 1, true);
- ggml_vk_create_pipeline(device, device->pipeline_soft_max_f32, "soft_max_f32", soft_max_f32_len, soft_max_f32_data, "main", 4, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, { device->subgroup_size }, 1);
- ggml_vk_create_pipeline(device, device->pipeline_soft_max_f32_wg512, "soft_max_f32_wg512", soft_max_f32_len, soft_max_f32_data, "main", 4, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, { 512 }, 1);
- ggml_vk_create_pipeline(device, device->pipeline_soft_max_f32_f16, "soft_max_f32_f16", soft_max_f32_f16_len, soft_max_f32_f16_data, "main", 4, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, { device->subgroup_size }, 1);
- ggml_vk_create_pipeline(device, device->pipeline_soft_max_f32_f16_wg512, "soft_max_f32_f16_wg512", soft_max_f32_f16_len, soft_max_f32_f16_data, "main", 4, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, { 512 }, 1);
- ggml_vk_create_pipeline(device, device->pipeline_soft_max_back_f32, "soft_max_back_f32", soft_max_back_f32_len, soft_max_back_f32_data, "main", 3, sizeof(vk_op_push_constants), {1, 1, 1}, { device->subgroup_size }, 1, true);
- ggml_vk_create_pipeline(device, device->pipeline_rope_norm_f32, "rope_norm_f32", rope_norm_f32_len, rope_norm_f32_data, "main", 5, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_rope_neox_f32, "rope_neox_f32", rope_neox_f32_len, rope_neox_f32_data, "main", 5, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_rope_multi_f32, "rope_multi_f32", rope_multi_f32_len, rope_multi_f32_data, "main", 5, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_rope_vision_f32, "rope_vision_f32", rope_vision_f32_len, rope_vision_f32_data, "main", 5, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
- if (device->float_controls_rte_fp16) {
- ggml_vk_create_pipeline(device, device->pipeline_rope_norm_f16, "rope_norm_f16", rope_norm_f16_rte_len, rope_norm_f16_rte_data, "main", 5, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_rope_neox_f16, "rope_neox_f16", rope_neox_f16_rte_len, rope_neox_f16_rte_data, "main", 5, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_rope_multi_f16, "rope_multi_f16", rope_multi_f16_rte_len, rope_multi_f16_rte_data, "main", 5, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_rope_vision_f16, "rope_vision_f16", rope_vision_f16_rte_len, rope_vision_f16_rte_data, "main", 5, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_rope_norm_f32_f16, "rope_norm_f32_f16", rope_norm_f32_f16_rte_len, rope_norm_f32_f16_rte_data, "main", 5, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_rope_neox_f32_f16, "rope_neox_f32_f16", rope_neox_f32_f16_rte_len, rope_neox_f32_f16_rte_data, "main", 5, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
- } else {
- ggml_vk_create_pipeline(device, device->pipeline_rope_norm_f16, "rope_norm_f16", rope_norm_f16_len, rope_norm_f16_data, "main", 5, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_rope_neox_f16, "rope_neox_f16", rope_neox_f16_len, rope_neox_f16_data, "main", 5, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_rope_multi_f16, "rope_multi_f16", rope_multi_f16_len, rope_multi_f16_data, "main", 5, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_rope_vision_f16, "rope_vision_f16", rope_vision_f16_len, rope_vision_f16_data, "main", 5, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_rope_norm_f32_f16, "rope_norm_f32_f16", rope_norm_f32_f16_len, rope_norm_f32_f16_data, "main", 5, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_rope_neox_f32_f16, "rope_neox_f32_f16", rope_neox_f32_f16_len, rope_neox_f32_f16_data, "main", 5, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
- }
- for (uint32_t i = 0; i < num_argsort_pipelines; ++i) {
- uint32_t BLOCK_SIZE = 1u << std::min(i, device->max_workgroup_size_log2);
- if (i <= device->max_workgroup_size_log2 &&
- 2 * sizeof(int) * BLOCK_SIZE <= device->properties.limits.maxComputeSharedMemorySize) {
- const uint32_t NCOLS_PADDED_LOG2 = i;
- ggml_vk_create_pipeline2(device, device->pipeline_argsort_f32[i], "argsort_f32_"+std::to_string(i), argsort_f32_len, argsort_f32_data, "main", 3, sizeof(vk_op_argsort_push_constants), {BLOCK_SIZE, 1, 1}, {BLOCK_SIZE, NCOLS_PADDED_LOG2}, 1, true);
- }
- const uint32_t WG_UNROLL_FACTOR = BLOCK_SIZE > 1 ? 2 : 1;
- BLOCK_SIZE /= WG_UNROLL_FACTOR;
- ggml_vk_create_pipeline2(device, device->pipeline_argsort_large_f32[i], "argsort_large_f32_"+std::to_string(i), argsort_large_f32_len, argsort_large_f32_data, "main", 3, sizeof(vk_op_argsort_push_constants), {BLOCK_SIZE * WG_UNROLL_FACTOR, 1, 1}, {BLOCK_SIZE, WG_UNROLL_FACTOR}, 1, true);
- }
- ggml_vk_create_pipeline(device, device->pipeline_argmax_f32, "argmax_f32", argmax_f32_len, argmax_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, { device->subgroup_size }, 1);
- ggml_vk_create_pipeline(device, device->pipeline_sum_rows_f32, "sum_rows_f32", sum_rows_f32_len, sum_rows_f32_data, "main", 2, sizeof(vk_op_sum_rows_push_constants), {1, 1, 1}, { device->subgroup_size }, 1);
- ggml_vk_create_pipeline(device, device->pipeline_count_equal_i32, "count_equal_i32", count_equal_i32_len, count_equal_i32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, { device->subgroup_size }, 1);
- #define IM2COL(bda) \
- ggml_vk_create_pipeline(device, device->pipeline_im2col_f32, "im2col_f32", im2col_f32 ## bda ## _len, im2col_f32 ## bda ## _data, "main", 2, sizeof(vk_op_im2col_push_constants), {512, 1, 1}, { device->subgroup_size }, 1, true); \
- ggml_vk_create_pipeline(device, device->pipeline_im2col_3d_f32, "im2col_3d_f32", im2col_3d_f32 ## bda ## _len, im2col_3d_f32 ## bda ## _data, "main", 2, sizeof(vk_op_im2col_3d_push_constants), {512, 1, 1}, { 512 }, 1, true); \
- if (device->float_controls_rte_fp16) { \
- ggml_vk_create_pipeline(device, device->pipeline_im2col_f32_f16, "im2col_f32_f16", im2col_f32_f16_rte ## bda ## _len, im2col_f32_f16_rte ## bda ## _data, "main", 2, sizeof(vk_op_im2col_push_constants), {512, 1, 1}, { device->subgroup_size }, 1, true); \
- ggml_vk_create_pipeline(device, device->pipeline_im2col_3d_f32_f16, "im2col_3d_f32_f16", im2col_3d_f32_f16_rte ## bda ## _len, im2col_3d_f32_f16_rte ## bda ## _data, "main", 2, sizeof(vk_op_im2col_3d_push_constants), {512, 1, 1}, { 512 }, 1, true); \
- } else { \
- ggml_vk_create_pipeline(device, device->pipeline_im2col_f32_f16, "im2col_f32_f16", im2col_f32_f16 ## bda ## _len, im2col_f32_f16 ## bda ## _data, "main", 2, sizeof(vk_op_im2col_push_constants), {512, 1, 1}, { device->subgroup_size }, 1, true); \
- ggml_vk_create_pipeline(device, device->pipeline_im2col_3d_f32_f16, "im2col_3d_f32_f16", im2col_3d_f32_f16 ## bda ## _len, im2col_3d_f32_f16 ## bda ## _data, "main", 2, sizeof(vk_op_im2col_3d_push_constants), {512, 1, 1}, { 512 }, 1, true); \
- }
- if (device->shader_int64 && device->buffer_device_address) {
- IM2COL(_bda)
- } else {
- IM2COL()
- }
- ggml_vk_create_pipeline(device, device->pipeline_timestep_embedding_f32, "timestep_embedding_f32", timestep_embedding_f32_len, timestep_embedding_f32_data, "main", 2, sizeof(vk_op_timestep_embedding_push_constants), {256, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_conv_transpose_1d_f32, "conv_transpose_1d_f32", conv_transpose_1d_f32_len, conv_transpose_1d_f32_data, "main", 3, sizeof(vk_op_conv_transpose_1d_push_constants), {1, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_pool2d_f32, "pool2d_f32", pool2d_f32_len, pool2d_f32_data, "main", 2, sizeof(vk_op_pool2d_push_constants), {512, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_rwkv_wkv6_f32, "rwkv_wkv6_f32", rwkv_wkv6_f32_len, rwkv_wkv6_f32_data, "main", 7, sizeof(vk_op_rwkv_wkv6_push_constants), {1, 1, 1}, {device->subgroup_size}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_rwkv_wkv7_f32, "rwkv_wkv7_f32", rwkv_wkv7_f32_len, rwkv_wkv7_f32_data, "main", 8, sizeof(vk_op_rwkv_wkv7_push_constants), {1, 1, 1}, {device->subgroup_size}, 1);
- if (device->subgroup_arithmetic && device->subgroup_require_full_support) {
- ggml_vk_create_pipeline(device, device->pipeline_ssm_scan_f32_d128, "ssm_scan_128_f32", ssm_scan_subgroup_f32_len, ssm_scan_subgroup_f32_data, "main", 8, sizeof(vk_op_ssm_scan_push_constants), {1, 1, 1}, {128, device->subgroup_size, 16}, 1, true, true);
- ggml_vk_create_pipeline(device, device->pipeline_ssm_scan_f32_d256, "ssm_scan_256_f32", ssm_scan_subgroup_f32_len, ssm_scan_subgroup_f32_data, "main", 8, sizeof(vk_op_ssm_scan_push_constants), {1, 1, 1}, {256, device->subgroup_size, 16}, 1, true, true);
- } else {
- ggml_vk_create_pipeline(device, device->pipeline_ssm_scan_f32_d128, "ssm_scan_128_f32", ssm_scan_f32_len, ssm_scan_f32_data, "main", 8, sizeof(vk_op_ssm_scan_push_constants), {1, 1, 1}, {128, device->subgroup_size, 16}, 1, true, true);
- ggml_vk_create_pipeline(device, device->pipeline_ssm_scan_f32_d256, "ssm_scan_256_f32", ssm_scan_f32_len, ssm_scan_f32_data, "main", 8, sizeof(vk_op_ssm_scan_push_constants), {1, 1, 1}, {256, device->subgroup_size, 16}, 1, true, true);
- }
- ggml_vk_create_pipeline(device, device->pipeline_ssm_conv_f32, "ssm_conv_f32", ssm_conv_f32_len, ssm_conv_f32_data, "main", 3, sizeof(vk_op_ssm_conv_push_constants), {32, 1, 1}, {32}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_opt_step_adamw_f32, "opt_step_adamw_f32", opt_step_adamw_f32_len, opt_step_adamw_f32_data, "main", 5, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_opt_step_sgd_f32, "opt_step_sgd_f32", opt_step_sgd_f32_len, opt_step_sgd_f32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
- // conv2d, conv_transpose_2d
- for (uint32_t s = 0; s < CONV_SHAPE_COUNT; ++s) {
- uint32_t conv2d_WG_SIZE = 256;
- uint32_t conv2d_BS_K = 128;
- uint32_t conv2d_BS_CRS = 16;
- uint32_t use_collectives = 0; // Enables subgroup ops for preventing the re-calculation of indices.
- uint32_t conv2d_BS_NPQ = 128;
- uint32_t conv2d_TS_K = 8;
- uint32_t conv2d_SHMEM_PAD = 4;
- bool conv2d_UNROLL = true;
- #if defined(GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT)
- if (device->coopmat2) {
- conv2d_SHMEM_PAD = 8; // 8 float16_t
- }
- #endif
- if (device->vendor_id == VK_VENDOR_ID_INTEL) {
- conv2d_SHMEM_PAD = 0;
- conv2d_UNROLL = false;
- } else if (device->vendor_id == VK_VENDOR_ID_AMD) {
- conv2d_SHMEM_PAD = device->architecture == vk_device_architecture::AMD_GCN ? 1 : 4;
- }
- switch (s) {
- default:
- case CONV_SHAPE_128x128:
- conv2d_BS_K = conv_shapes_wg_denoms[CONV_SHAPE_128x128][0];
- conv2d_BS_NPQ = conv_shapes_wg_denoms[CONV_SHAPE_128x128][1];
- conv2d_BS_CRS = 16;
- if (device->vendor_id == VK_VENDOR_ID_AMD && device->architecture != vk_device_architecture::AMD_GCN) {
- conv2d_UNROLL = false;
- }
- break;
- case CONV_SHAPE_64x32:
- conv2d_BS_K = conv_shapes_wg_denoms[CONV_SHAPE_64x32][0];
- conv2d_BS_NPQ = conv_shapes_wg_denoms[CONV_SHAPE_64x32][1];
- conv2d_BS_CRS = 32;
- conv2d_TS_K = 4;
- break;
- case CONV_SHAPE_32x256:
- conv2d_BS_K = conv_shapes_wg_denoms[CONV_SHAPE_32x256][0];
- conv2d_BS_NPQ = conv_shapes_wg_denoms[CONV_SHAPE_32x256][1];
- conv2d_BS_CRS = 16;
- break;
- }
- // Use collectives on pre-Turing NVIDIA GPUs and GCN AMD cards, which had slower integer math.
- bool allow_collectives_nv = device->vendor_id != VK_VENDOR_ID_NVIDIA ||
- device->architecture == vk_device_architecture::NVIDIA_PRE_TURING;
- bool allow_collectives_amd = device->vendor_id != VK_VENDOR_ID_AMD ||
- device->architecture == vk_device_architecture::AMD_GCN;
- if (device->subgroup_shuffle &&
- device->vendor_id != VK_VENDOR_ID_INTEL && // Do not enable collectives on Intel, see PR 14316.
- allow_collectives_nv &&
- allow_collectives_amd) {
- use_collectives = 1;
- conv2d_BS_CRS = std::min(
- device->subgroup_size,
- conv2d_BS_CRS); // CRS block size should be capped at subgroup size for correctness when shuffle is used.
- }
- uint32_t conv2d_shmem_req =
- (conv2d_BS_K * (conv2d_BS_CRS + conv2d_SHMEM_PAD) + conv2d_BS_CRS * (conv2d_BS_NPQ + conv2d_SHMEM_PAD)) * sizeof(float);
- if (device->properties.limits.maxComputeSharedMemorySize < conv2d_shmem_req) {
- conv2d_BS_CRS = 8;
- if (use_collectives) {
- conv2d_BS_CRS = std::min(device->subgroup_size, conv2d_BS_CRS);
- }
- }
- std::array<uint32_t, 3> wg_denoms = { conv2d_BS_K, conv2d_BS_NPQ, 1 };
- std::vector<uint32_t> spec_constants = { conv2d_WG_SIZE, conv2d_BS_K, conv2d_BS_CRS, conv2d_BS_NPQ, conv2d_TS_K, use_collectives, conv2d_SHMEM_PAD };
- #define CREATE_CONV(name, type_suffix, spv_suffix) \
- for (auto &c : device->pipeline_##name##type_suffix[s]) { \
- const vk_conv2d_pipeline_state &state = c.first; \
- std::vector<uint32_t> spec_constants_cpy = spec_constants; \
- spec_constants_cpy.push_back(state.s0); \
- spec_constants_cpy.push_back(state.s1); \
- spec_constants_cpy.push_back(state.p0); \
- spec_constants_cpy.push_back(state.p1); \
- spec_constants_cpy.push_back(state.d0); \
- spec_constants_cpy.push_back(state.d1); \
- spec_constants_cpy.push_back(state.KW); \
- spec_constants_cpy.push_back(state.KH); \
- ggml_vk_create_pipeline( \
- device, c.second, #name #type_suffix, \
- name##type_suffix##spv_suffix##_len, name##type_suffix##spv_suffix##_data, "main", 3, \
- sizeof(vk_op_##name##_push_constants), wg_denoms, spec_constants_cpy, 1, true, use_collectives); \
- }
- #define CREATE_CONVS(spv_suffix) \
- CREATE_CONV(conv2d, _f32, spv_suffix) \
- CREATE_CONV(conv2d, _f16_f32, spv_suffix) \
- if (device->properties.limits.maxPushConstantsSize >= sizeof(vk_op_conv_transpose_2d_push_constants)) { \
- CREATE_CONV(conv_transpose_2d, _f32, spv_suffix) \
- CREATE_CONV(conv_transpose_2d, _f16_f32, spv_suffix) \
- }
- #if defined(GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT)
- if (device->coopmat2) {
- CREATE_CONVS(_cm2)
- } else
- #endif
- if (conv2d_UNROLL) {
- CREATE_CONVS(_unroll)
- } else {
- CREATE_CONVS( )
- }
- #undef CREATE_CONV
- #undef CREATE_CONVS
- }
- ggml_vk_create_pipeline(device, device->pipeline_conv2d_dw_whcn_f32, "conv2d_dw_whcn_f32", conv2d_dw_whcn_f32_len, conv2d_dw_whcn_f32_data, "main", 3, sizeof(vk_op_conv2d_dw_push_constants), {512, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_conv2d_dw_cwhn_f32, "conv2d_dw_cwhn_f32", conv2d_dw_cwhn_f32_len, conv2d_dw_cwhn_f32_data, "main", 3, sizeof(vk_op_conv2d_dw_push_constants), {512, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_conv2d_dw_whcn_f16_f32, "conv2d_dw_whcn_f16_f32", conv2d_dw_whcn_f16_f32_len, conv2d_dw_whcn_f16_f32_data, "main", 3, sizeof(vk_op_conv2d_dw_push_constants), {512, 1, 1}, {}, 1);
- ggml_vk_create_pipeline(device, device->pipeline_conv2d_dw_cwhn_f16_f32, "conv2d_dw_cwhn_f16_f32", conv2d_dw_cwhn_f16_f32_len, conv2d_dw_cwhn_f16_f32_data, "main", 3, sizeof(vk_op_conv2d_dw_push_constants), {512, 1, 1}, {}, 1);
- for (uint32_t i = 0; i < num_topk_moe_pipelines; ++i) {
- ggml_vk_create_pipeline2(device, device->pipeline_topk_moe[i][TOPK_MOE_EARLY_SOFTMAX], "topk_moe_f32_early_softmax_"+std::to_string(i), topk_moe_f32_len, topk_moe_f32_data, "main", 3, sizeof(vk_op_topk_moe_push_constants), {1, 1, 1}, {device->subgroup_size, 1u<<i, 0, 0}, 1, true, true);
- ggml_vk_create_pipeline2(device, device->pipeline_topk_moe[i][TOPK_MOE_EARLY_SOFTMAX_NORM], "topk_moe_f32_early_softmax_norm"+std::to_string(i), topk_moe_f32_len, topk_moe_f32_data, "main", 3, sizeof(vk_op_topk_moe_push_constants), {1, 1, 1}, {device->subgroup_size, 1u<<i, 1, 0}, 1, true, true);
- ggml_vk_create_pipeline2(device, device->pipeline_topk_moe[i][TOPK_MOE_LATE_SOFTMAX], "topk_moe_f32_late_softmax"+std::to_string(i), topk_moe_f32_len, topk_moe_f32_data, "main", 3, sizeof(vk_op_topk_moe_push_constants), {1, 1, 1}, {device->subgroup_size, 1u<<i, 0, 1}, 1, true, true);
- }
- for (auto &c : compiles) {
- c.wait();
- }
- }
- static bool ggml_vk_khr_cooperative_matrix_support(const vk::PhysicalDeviceProperties& props, const vk::PhysicalDeviceDriverProperties& driver_props, vk_device_architecture arch);
- static vk_device ggml_vk_get_device(size_t idx) {
- VK_LOG_DEBUG("ggml_vk_get_device(" << idx << ")");
- if (vk_instance.devices[idx] == nullptr) {
- VK_LOG_DEBUG("Initializing new vk_device");
- vk_device device = std::make_shared<vk_device_struct>();
- vk_instance.devices[idx] = device;
- #ifdef GGML_VULKAN_MEMORY_DEBUG
- device->memory_logger = std::unique_ptr<vk_memory_logger>(new vk_memory_logger());
- #endif
- if (vk_perf_logger_enabled) {
- device->perf_logger = std::unique_ptr<vk_perf_logger>(new vk_perf_logger());
- }
- size_t dev_num = vk_instance.device_indices[idx];
- std::vector<vk::PhysicalDevice> physical_devices = vk_instance.instance.enumeratePhysicalDevices();
- if (dev_num >= physical_devices.size()) {
- std::cerr << "ggml_vulkan: Device with index " << dev_num << " does not exist." << std::endl;
- throw std::runtime_error("Device not found");
- }
- device->physical_device = physical_devices[dev_num];
- const std::vector<vk::ExtensionProperties> ext_props = device->physical_device.enumerateDeviceExtensionProperties();
- device->architecture = get_device_architecture(device->physical_device);
- const char* GGML_VK_PREFER_HOST_MEMORY = getenv("GGML_VK_PREFER_HOST_MEMORY");
- device->prefer_host_memory = GGML_VK_PREFER_HOST_MEMORY != nullptr;
- const char* GGML_VK_DISABLE_HOST_VISIBLE_VIDMEM = getenv("GGML_VK_DISABLE_HOST_VISIBLE_VIDMEM");
- device->disable_host_visible_vidmem = GGML_VK_DISABLE_HOST_VISIBLE_VIDMEM != nullptr;
- const char* GGML_VK_ALLOW_SYSMEM_FALLBACK = getenv("GGML_VK_ALLOW_SYSMEM_FALLBACK");
- device->allow_sysmem_fallback = GGML_VK_ALLOW_SYSMEM_FALLBACK != nullptr;
- const char* GGML_VK_DISABLE_GRAPH_OPTIMIZE = getenv("GGML_VK_DISABLE_GRAPH_OPTIMIZE");
- device->disable_graph_optimize = GGML_VK_DISABLE_GRAPH_OPTIMIZE != nullptr;
- bool fp16_storage = false;
- bool fp16_compute = false;
- bool maintenance4_support = false;
- bool sm_builtins = false;
- bool amd_shader_core_properties2 = false;
- bool pipeline_robustness = false;
- bool coopmat2_support = false;
- bool pipeline_executable_properties_support = false;
- device->coopmat_support = false;
- device->integer_dot_product = false;
- bool bfloat16_support = false;
- for (const auto& properties : ext_props) {
- if (strcmp("VK_KHR_maintenance4", properties.extensionName) == 0) {
- maintenance4_support = true;
- } else if (strcmp("VK_KHR_16bit_storage", properties.extensionName) == 0) {
- fp16_storage = true;
- } else if (strcmp("VK_KHR_shader_float16_int8", properties.extensionName) == 0) {
- fp16_compute = true;
- } else if (strcmp("VK_NV_shader_sm_builtins", properties.extensionName) == 0) {
- sm_builtins = true;
- } else if (strcmp("VK_AMD_shader_core_properties2", properties.extensionName) == 0) {
- amd_shader_core_properties2 = true;
- } else if (strcmp("VK_EXT_pipeline_robustness", properties.extensionName) == 0) {
- pipeline_robustness = true;
- } else if (strcmp("VK_EXT_subgroup_size_control", properties.extensionName) == 0) {
- device->subgroup_size_control = true;
- #if defined(GGML_VULKAN_COOPMAT_GLSLC_SUPPORT)
- } else if (strcmp("VK_KHR_cooperative_matrix", properties.extensionName) == 0 &&
- !getenv("GGML_VK_DISABLE_COOPMAT")) {
- device->coopmat_support = true;
- device->coopmat_m = 0;
- device->coopmat_n = 0;
- device->coopmat_k = 0;
- #endif
- #if defined(GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT)
- } else if (strcmp("VK_NV_cooperative_matrix2", properties.extensionName) == 0 &&
- !getenv("GGML_VK_DISABLE_COOPMAT2")) {
- coopmat2_support = true;
- #endif
- #if defined(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT)
- } else if (strcmp("VK_KHR_shader_integer_dot_product", properties.extensionName) == 0 &&
- !getenv("GGML_VK_DISABLE_INTEGER_DOT_PRODUCT")) {
- device->integer_dot_product = true;
- #endif
- #if defined(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT)
- } else if (strcmp("VK_KHR_shader_bfloat16", properties.extensionName) == 0 &&
- !getenv("GGML_VK_DISABLE_BFLOAT16")) {
- bfloat16_support = true;
- #endif
- } else if (strcmp("VK_KHR_pipeline_executable_properties", properties.extensionName) == 0) {
- pipeline_executable_properties_support = true;
- }
- }
- vk::PhysicalDeviceProperties2 props2;
- vk::PhysicalDeviceMaintenance3Properties props3;
- vk::PhysicalDeviceMaintenance4Properties props4;
- vk::PhysicalDeviceSubgroupProperties subgroup_props;
- vk::PhysicalDeviceDriverProperties driver_props;
- vk::PhysicalDeviceShaderSMBuiltinsPropertiesNV sm_props;
- vk::PhysicalDeviceShaderCoreProperties2AMD amd_shader_core_properties2_props;
- vk::PhysicalDeviceVulkan11Properties vk11_props;
- vk::PhysicalDeviceVulkan12Properties vk12_props;
- vk::PhysicalDeviceSubgroupSizeControlPropertiesEXT subgroup_size_control_props;
- vk::PhysicalDeviceShaderIntegerDotProductPropertiesKHR shader_integer_dot_product_props;
- props2.pNext = &props3;
- props3.pNext = &subgroup_props;
- subgroup_props.pNext = &driver_props;
- driver_props.pNext = &vk11_props;
- vk11_props.pNext = &vk12_props;
- VkBaseOutStructure * last_struct = (VkBaseOutStructure *)&vk12_props;
- if (maintenance4_support) {
- last_struct->pNext = (VkBaseOutStructure *)&props4;
- last_struct = (VkBaseOutStructure *)&props4;
- }
- if (sm_builtins) {
- last_struct->pNext = (VkBaseOutStructure *)&sm_props;
- last_struct = (VkBaseOutStructure *)&sm_props;
- }
- if (amd_shader_core_properties2) {
- last_struct->pNext = (VkBaseOutStructure *)&amd_shader_core_properties2_props;
- last_struct = (VkBaseOutStructure *)&amd_shader_core_properties2_props;
- }
- if (device->subgroup_size_control) {
- last_struct->pNext = (VkBaseOutStructure *)&subgroup_size_control_props;
- last_struct = (VkBaseOutStructure *)&subgroup_size_control_props;
- }
- #if defined(VK_NV_cooperative_matrix2)
- vk::PhysicalDeviceCooperativeMatrix2PropertiesNV coopmat2_props;
- if (coopmat2_support) {
- last_struct->pNext = (VkBaseOutStructure *)&coopmat2_props;
- last_struct = (VkBaseOutStructure *)&coopmat2_props;
- }
- #endif
- if (device->integer_dot_product) {
- last_struct->pNext = (VkBaseOutStructure *)&shader_integer_dot_product_props;
- last_struct = (VkBaseOutStructure *)&shader_integer_dot_product_props;
- }
- device->physical_device.getProperties2(&props2);
- device->properties = props2.properties;
- device->vendor_id = device->properties.vendorID;
- device->driver_id = driver_props.driverID;
- const char* GGML_VK_FORCE_MAX_ALLOCATION_SIZE = getenv("GGML_VK_FORCE_MAX_ALLOCATION_SIZE");
- if (GGML_VK_FORCE_MAX_ALLOCATION_SIZE != nullptr) {
- device->max_memory_allocation_size = std::stoull(GGML_VK_FORCE_MAX_ALLOCATION_SIZE);
- } else if (maintenance4_support) {
- device->max_memory_allocation_size = std::min(props3.maxMemoryAllocationSize, props4.maxBufferSize);
- } else {
- device->max_memory_allocation_size = props3.maxMemoryAllocationSize;
- }
- const char* GGML_VK_FORCE_MAX_BUFFER_SIZE = getenv("GGML_VK_FORCE_MAX_BUFFER_SIZE");
- if (GGML_VK_FORCE_MAX_BUFFER_SIZE != nullptr) {
- device->max_buffer_size = std::stoull(GGML_VK_FORCE_MAX_BUFFER_SIZE);
- } else if (maintenance4_support) {
- device->max_buffer_size = props4.maxBufferSize;
- } else {
- device->max_buffer_size = device->max_memory_allocation_size;
- }
- const char* GGML_VK_SUBALLOCATION_BLOCK_SIZE = getenv("GGML_VK_SUBALLOCATION_BLOCK_SIZE");
- if (GGML_VK_SUBALLOCATION_BLOCK_SIZE != nullptr) {
- device->suballocation_block_size = std::stoull(GGML_VK_SUBALLOCATION_BLOCK_SIZE);
- } else {
- // Limit batching of allocations to 1GB by default to avoid fragmentation issues
- device->suballocation_block_size = 1024*1024*1024;
- }
- device->suballocation_block_size = std::min(device->suballocation_block_size, device->max_memory_allocation_size);
- device->subgroup_size = subgroup_props.subgroupSize;
- device->uma = device->properties.deviceType == vk::PhysicalDeviceType::eIntegratedGpu;
- if (sm_builtins) {
- device->shader_core_count = sm_props.shaderSMCount;
- } else if (amd_shader_core_properties2) {
- device->shader_core_count = amd_shader_core_properties2_props.activeComputeUnitCount;
- } else {
- device->shader_core_count = 0;
- }
- device->float_controls_rte_fp16 = vk12_props.shaderRoundingModeRTEFloat16;
- device->subgroup_arithmetic = (vk11_props.subgroupSupportedStages & vk::ShaderStageFlagBits::eCompute) &&
- (vk11_props.subgroupSupportedOperations & vk::SubgroupFeatureFlagBits::eArithmetic);
- #ifdef __APPLE__
- // Workaround for subgroup arithmetic failing on MoltenVK with AMD GPUs (issue 15846)
- if (device->vendor_id == VK_VENDOR_ID_AMD) {
- device->subgroup_arithmetic = false;
- }
- #endif
- device->subgroup_shuffle = (vk11_props.subgroupSupportedStages & vk::ShaderStageFlagBits::eCompute) &&
- (vk11_props.subgroupSupportedOperations & vk::SubgroupFeatureFlagBits::eShuffle);
- device->subgroup_clustered = (vk11_props.subgroupSupportedStages & vk::ShaderStageFlagBits::eCompute) &&
- (vk11_props.subgroupSupportedOperations & vk::SubgroupFeatureFlagBits::eClustered);
- device->subgroup_ballot = (vk11_props.subgroupSupportedStages & vk::ShaderStageFlagBits::eCompute) &&
- (vk11_props.subgroupSupportedOperations & vk::SubgroupFeatureFlagBits::eBallot);
- device->subgroup_vote = (vk11_props.subgroupSupportedStages & vk::ShaderStageFlagBits::eCompute) &&
- (vk11_props.subgroupSupportedOperations & vk::SubgroupFeatureFlagBits::eVote);
- const bool force_disable_f16 = getenv("GGML_VK_DISABLE_F16") != nullptr;
- device->fp16 = !force_disable_f16 && fp16_storage && fp16_compute;
- if (!ggml_vk_khr_cooperative_matrix_support(device->properties, driver_props, device->architecture)) {
- device->coopmat_support = false;
- }
- device->integer_dot_product = device->integer_dot_product && shader_integer_dot_product_props.integerDotProduct4x8BitPackedSignedAccelerated;
- device->max_workgroup_size_log2 = uint32_t(log2f(float(device->properties.limits.maxComputeWorkGroupInvocations)));
- std::vector<vk::QueueFamilyProperties> queue_family_props = device->physical_device.getQueueFamilyProperties();
- // Try to find a non-graphics compute queue and transfer-focused queues
- const uint32_t compute_queue_family_index = ggml_vk_find_queue_family_index(queue_family_props, vk::QueueFlagBits::eCompute, vk::QueueFlagBits::eGraphics, -1, 1);
- const uint32_t transfer_queue_family_index = ggml_vk_find_queue_family_index(queue_family_props, vk::QueueFlagBits::eTransfer, vk::QueueFlagBits::eCompute | vk::QueueFlagBits::eGraphics, compute_queue_family_index, 1);
- const float priorities[] = { 1.0f, 1.0f };
- device->single_queue = compute_queue_family_index == transfer_queue_family_index && queue_family_props[compute_queue_family_index].queueCount == 1;
- std::vector<vk::DeviceQueueCreateInfo> device_queue_create_infos;
- if (compute_queue_family_index != transfer_queue_family_index) {
- device_queue_create_infos.push_back({vk::DeviceQueueCreateFlags(), compute_queue_family_index, 1, priorities});
- device_queue_create_infos.push_back({vk::DeviceQueueCreateFlags(), transfer_queue_family_index, 1, priorities + 1});
- } else if(!device->single_queue) {
- device_queue_create_infos.push_back({vk::DeviceQueueCreateFlags(), compute_queue_family_index, 2, priorities});
- } else {
- device_queue_create_infos.push_back({vk::DeviceQueueCreateFlags(), compute_queue_family_index, 1, priorities});
- }
- vk::DeviceCreateInfo device_create_info;
- std::vector<const char *> device_extensions;
- vk::PhysicalDeviceFeatures device_features = device->physical_device.getFeatures();
- VkPhysicalDeviceFeatures2 device_features2;
- device_features2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2;
- device_features2.pNext = nullptr;
- device_features2.features = (VkPhysicalDeviceFeatures)device_features;
- VkPhysicalDeviceVulkan11Features vk11_features;
- vk11_features.pNext = nullptr;
- vk11_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES;
- device_features2.pNext = &vk11_features;
- VkPhysicalDeviceVulkan12Features vk12_features;
- vk12_features.pNext = nullptr;
- vk12_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES;
- vk11_features.pNext = &vk12_features;
- last_struct = (VkBaseOutStructure *)&vk12_features;
- VkPhysicalDevicePipelineRobustnessFeaturesEXT pl_robustness_features;
- pl_robustness_features.pNext = nullptr;
- pl_robustness_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_ROBUSTNESS_FEATURES_EXT;
- pl_robustness_features.pipelineRobustness = VK_FALSE;
- if (pipeline_robustness) {
- last_struct->pNext = (VkBaseOutStructure *)&pl_robustness_features;
- last_struct = (VkBaseOutStructure *)&pl_robustness_features;
- device_extensions.push_back("VK_EXT_pipeline_robustness");
- }
- VkPhysicalDeviceSubgroupSizeControlFeaturesEXT subgroup_size_control_features;
- subgroup_size_control_features.pNext = nullptr;
- subgroup_size_control_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_FEATURES_EXT;
- subgroup_size_control_features.computeFullSubgroups = false;
- subgroup_size_control_features.subgroupSizeControl = false;
- if (device->subgroup_size_control) {
- last_struct->pNext = (VkBaseOutStructure *)&subgroup_size_control_features;
- last_struct = (VkBaseOutStructure *)&subgroup_size_control_features;
- }
- #if defined(VK_KHR_cooperative_matrix)
- VkPhysicalDeviceCooperativeMatrixFeaturesKHR coopmat_features;
- coopmat_features.pNext = nullptr;
- coopmat_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COOPERATIVE_MATRIX_FEATURES_KHR;
- coopmat_features.cooperativeMatrix = VK_FALSE;
- if (device->coopmat_support) {
- last_struct->pNext = (VkBaseOutStructure *)&coopmat_features;
- last_struct = (VkBaseOutStructure *)&coopmat_features;
- }
- #endif
- #if defined(VK_NV_cooperative_matrix2)
- VkPhysicalDeviceCooperativeMatrix2FeaturesNV coopmat2_features {};
- coopmat2_features.pNext = nullptr;
- coopmat2_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COOPERATIVE_MATRIX_2_FEATURES_NV;
- if (coopmat2_support) {
- last_struct->pNext = (VkBaseOutStructure *)&coopmat2_features;
- last_struct = (VkBaseOutStructure *)&coopmat2_features;
- device_extensions.push_back("VK_NV_cooperative_matrix2");
- }
- #endif
- #if defined(VK_KHR_shader_bfloat16)
- VkPhysicalDeviceShaderBfloat16FeaturesKHR bfloat16_features {};
- bfloat16_features.pNext = nullptr;
- bfloat16_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_BFLOAT16_FEATURES_KHR;
- if (bfloat16_support) {
- last_struct->pNext = (VkBaseOutStructure *)&bfloat16_features;
- last_struct = (VkBaseOutStructure *)&bfloat16_features;
- device_extensions.push_back("VK_KHR_shader_bfloat16");
- }
- #endif
- VkPhysicalDeviceMaintenance4Features maint4_features {};
- maint4_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_4_FEATURES;
- if (maintenance4_support) {
- last_struct->pNext = (VkBaseOutStructure *)&maint4_features;
- last_struct = (VkBaseOutStructure *)&maint4_features;
- device_extensions.push_back("VK_KHR_maintenance4");
- }
- VkPhysicalDeviceShaderIntegerDotProductFeaturesKHR shader_integer_dot_product_features {};
- shader_integer_dot_product_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_INTEGER_DOT_PRODUCT_FEATURES_KHR;
- if (device->integer_dot_product) {
- last_struct->pNext = (VkBaseOutStructure *)&shader_integer_dot_product_features;
- last_struct = (VkBaseOutStructure *)&shader_integer_dot_product_features;
- device_extensions.push_back("VK_KHR_shader_integer_dot_product");
- }
- VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR pep_features {};
- pep_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_EXECUTABLE_PROPERTIES_FEATURES_KHR;
- if (pipeline_executable_properties_support) {
- last_struct->pNext = (VkBaseOutStructure *)&pep_features;
- last_struct = (VkBaseOutStructure *)&pep_features;
- device_extensions.push_back("VK_KHR_pipeline_executable_properties");
- }
- vkGetPhysicalDeviceFeatures2(device->physical_device, &device_features2);
- device->pipeline_executable_properties_support = pipeline_executable_properties_support;
- device->fp16 = device->fp16 && vk12_features.shaderFloat16;
- #if defined(VK_KHR_shader_bfloat16)
- device->bf16 = bfloat16_support && bfloat16_features.shaderBFloat16Type;
- #else
- device->bf16 = false;
- #endif
- device->pipeline_robustness = pl_robustness_features.pipelineRobustness;
- device->multi_add = vk12_props.shaderRoundingModeRTEFloat16 &&
- device->properties.limits.maxPushConstantsSize >= sizeof(vk_op_multi_add_push_constants) &&
- getenv("GGML_VK_DISABLE_MULTI_ADD") == nullptr;
- device->shader_int64 = device_features2.features.shaderInt64;
- device->buffer_device_address = vk12_features.bufferDeviceAddress;
- device->vulkan_memory_model = vk12_features.vulkanMemoryModel;
- if (device->subgroup_size_control) {
- device->subgroup_min_size = subgroup_size_control_props.minSubgroupSize;
- device->subgroup_max_size = subgroup_size_control_props.maxSubgroupSize;
- device_extensions.push_back("VK_EXT_subgroup_size_control");
- }
- device->subgroup_size_control = device->subgroup_size_control &&
- (subgroup_size_control_props.requiredSubgroupSizeStages & vk::ShaderStageFlagBits::eCompute) &&
- subgroup_size_control_features.subgroupSizeControl;
- device->subgroup_require_full_support = subgroup_size_control_features.computeFullSubgroups;
- #if defined(VK_KHR_cooperative_matrix)
- device->coopmat_support = device->coopmat_support && coopmat_features.cooperativeMatrix;
- // coopmat1 fa shader currently assumes 32 invocations per subgroup
- device->coopmat1_fa_support = device->coopmat_support && device->subgroup_require_full_support &&
- device->subgroup_size_control && device->subgroup_min_size <= 32 &&
- device->subgroup_max_size >= 32;
- #endif
- if (coopmat2_support) {
- #if defined(VK_NV_cooperative_matrix2) && defined(GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT)
- if (coopmat2_features.cooperativeMatrixWorkgroupScope &&
- coopmat2_features.cooperativeMatrixFlexibleDimensions &&
- coopmat2_features.cooperativeMatrixReductions &&
- coopmat2_features.cooperativeMatrixConversions &&
- coopmat2_features.cooperativeMatrixPerElementOperations &&
- coopmat2_features.cooperativeMatrixTensorAddressing &&
- coopmat2_features.cooperativeMatrixBlockLoads &&
- vk12_features.bufferDeviceAddress) {
- std::vector<VkCooperativeMatrixFlexibleDimensionsPropertiesNV> flexible_dimensions;
- uint32_t count = 0;
- PFN_vkGetPhysicalDeviceCooperativeMatrixFlexibleDimensionsPropertiesNV
- _vkGetPhysicalDeviceCooperativeMatrixFlexibleDimensionsPropertiesNV =
- (PFN_vkGetPhysicalDeviceCooperativeMatrixFlexibleDimensionsPropertiesNV)
- vk_instance.instance.getProcAddr("vkGetPhysicalDeviceCooperativeMatrixFlexibleDimensionsPropertiesNV");
- _vkGetPhysicalDeviceCooperativeMatrixFlexibleDimensionsPropertiesNV(device->physical_device, &count, nullptr);
- VkCooperativeMatrixFlexibleDimensionsPropertiesNV empty_prop {};
- empty_prop.sType = VK_STRUCTURE_TYPE_COOPERATIVE_MATRIX_FLEXIBLE_DIMENSIONS_PROPERTIES_NV;
- flexible_dimensions.resize(count, empty_prop);
- _vkGetPhysicalDeviceCooperativeMatrixFlexibleDimensionsPropertiesNV(device->physical_device, &count, flexible_dimensions.data());
- bool found_fp16_128 = false,
- found_fp16_256 = false,
- found_fp32_128 = false,
- found_fp32_256 = false;
- // need to support fp16*fp16 with fp16/fp32 accumulator, for workgroupsize 128
- // with 32x16x16 and 256 with 32x32x16.
- for (auto &prop : flexible_dimensions) {
- if (prop.saturatingAccumulation == VK_FALSE &&
- prop.scope == VK_SCOPE_WORKGROUP_KHR &&
- prop.AType == VK_COMPONENT_TYPE_FLOAT16_KHR &&
- prop.BType == VK_COMPONENT_TYPE_FLOAT16_KHR) {
- if (prop.workgroupInvocations == 128 &&
- prop.MGranularity <= 32 &&
- prop.NGranularity <= 16 &&
- prop.KGranularity <= 16) {
- if (prop.CType == VK_COMPONENT_TYPE_FLOAT16_KHR &&
- prop.ResultType == VK_COMPONENT_TYPE_FLOAT16_KHR) {
- found_fp16_128 = true;
- }
- if (prop.CType == VK_COMPONENT_TYPE_FLOAT32_KHR &&
- prop.ResultType == VK_COMPONENT_TYPE_FLOAT32_KHR) {
- found_fp32_128 = true;
- }
- }
- if (prop.workgroupInvocations == 256 &&
- prop.MGranularity <= 32 &&
- prop.NGranularity <= 32 &&
- prop.KGranularity <= 16) {
- if (prop.CType == VK_COMPONENT_TYPE_FLOAT16_KHR &&
- prop.ResultType == VK_COMPONENT_TYPE_FLOAT16_KHR) {
- found_fp16_256 = true;
- }
- if (prop.CType == VK_COMPONENT_TYPE_FLOAT32_KHR &&
- prop.ResultType == VK_COMPONENT_TYPE_FLOAT32_KHR) {
- found_fp32_256 = true;
- }
- }
- }
- }
- if (found_fp16_128 && found_fp16_256 &&
- found_fp32_128 && found_fp32_256 &&
- coopmat2_props.cooperativeMatrixFlexibleDimensionsMaxDimension >= 512) {
- device->coopmat2 = true;
- }
- }
- #endif
- }
- if (!vk11_features.storageBuffer16BitAccess) {
- std::cerr << "ggml_vulkan: device " << GGML_VK_NAME << idx << " does not support 16-bit storage." << std::endl;
- throw std::runtime_error("Unsupported device");
- }
- device_extensions.push_back("VK_KHR_16bit_storage");
- #ifdef GGML_VULKAN_VALIDATE
- device_extensions.push_back("VK_KHR_shader_non_semantic_info");
- #endif
- if (device->fp16) {
- device_extensions.push_back("VK_KHR_shader_float16_int8");
- }
- #if defined(VK_KHR_cooperative_matrix)
- if (device->coopmat_support) {
- // Query supported shapes
- std::vector<VkCooperativeMatrixPropertiesKHR> cm_props;
- PFN_vkGetPhysicalDeviceCooperativeMatrixPropertiesKHR pfn_vkGetPhysicalDeviceCooperativeMatrixPropertiesKHR =
- (PFN_vkGetPhysicalDeviceCooperativeMatrixPropertiesKHR)vkGetInstanceProcAddr(vk_instance.instance, "vkGetPhysicalDeviceCooperativeMatrixPropertiesKHR");
- uint32_t cm_props_num;
- pfn_vkGetPhysicalDeviceCooperativeMatrixPropertiesKHR(device->physical_device, &cm_props_num, nullptr);
- cm_props.resize(cm_props_num);
- for (auto& prop : cm_props) {
- prop.sType = VK_STRUCTURE_TYPE_COOPERATIVE_MATRIX_PROPERTIES_KHR;
- }
- pfn_vkGetPhysicalDeviceCooperativeMatrixPropertiesKHR(device->physical_device, &cm_props_num, cm_props.data());
- VK_LOG_DEBUG("ggml_vulkan: Cooperative Matrix Shapes: " << cm_props.size());
- for (auto& prop : cm_props) {
- VK_LOG_DEBUG("ggml_vulkan: M: " << prop.MSize << " N: " << prop.NSize << " K: " << prop.KSize << " A: " << vk::to_string((vk::ComponentTypeKHR)prop.AType) << " B: " << vk::to_string((vk::ComponentTypeKHR)prop.BType) << " C: " << vk::to_string((vk::ComponentTypeKHR)prop.CType) << " Result: " << vk::to_string((vk::ComponentTypeKHR)prop.ResultType) << " saturatingAccumulation: " << prop.saturatingAccumulation << " scope: " << vk::to_string((vk::ScopeKHR)prop.scope));
- if ((vk::ComponentTypeKHR)prop.AType == vk::ComponentTypeKHR::eFloat16 &&
- (vk::ComponentTypeKHR)prop.BType == vk::ComponentTypeKHR::eFloat16 &&
- (vk::ScopeKHR)prop.scope == vk::ScopeKHR::eSubgroup
- ) {
- if ((vk::ComponentTypeKHR)prop.CType == vk::ComponentTypeKHR::eFloat32 &&
- (vk::ComponentTypeKHR)prop.ResultType == vk::ComponentTypeKHR::eFloat32) {
- // coopmat sizes not set yet
- if (device->coopmat_m == 0) {
- device->coopmat_acc_f32_support = true;
- device->coopmat_m = prop.MSize;
- device->coopmat_n = prop.NSize;
- device->coopmat_k = prop.KSize;
- } else if (device->coopmat_m == prop.MSize && device->coopmat_n == prop.NSize && device->coopmat_k == prop.KSize) {
- // Only enable if shape is identical
- device->coopmat_acc_f32_support = true;
- }
- if (prop.MSize == 16 && prop.NSize == 16 && prop.KSize == 16) {
- device->coopmat_support_16x16x16_f32acc = true;
- }
- } else if ((vk::ComponentTypeKHR)prop.CType == vk::ComponentTypeKHR::eFloat16 &&
- (vk::ComponentTypeKHR)prop.ResultType == vk::ComponentTypeKHR::eFloat16) {
- // coopmat sizes not set yet
- if (device->coopmat_m == 0) {
- device->coopmat_acc_f16_support = true;
- device->coopmat_m = prop.MSize;
- device->coopmat_n = prop.NSize;
- device->coopmat_k = prop.KSize;
- } else if (device->coopmat_m == prop.MSize && device->coopmat_n == prop.NSize && device->coopmat_k == prop.KSize) {
- // Only enable if shape is identical
- device->coopmat_acc_f16_support = true;
- }
- if (prop.MSize == 16 && prop.NSize == 16 && prop.KSize == 16) {
- device->coopmat_support_16x16x16_f16acc = true;
- }
- }
- } else if ((vk::ComponentTypeKHR)prop.AType == vk::ComponentTypeKHR::eSint8 &&
- (vk::ComponentTypeKHR)prop.BType == vk::ComponentTypeKHR::eSint8 &&
- (vk::ComponentTypeKHR)prop.CType == vk::ComponentTypeKHR::eSint32 &&
- (vk::ComponentTypeKHR)prop.ResultType == vk::ComponentTypeKHR::eSint32 &&
- (vk::ScopeKHR)prop.scope == vk::ScopeKHR::eSubgroup &&
- device->coopmat_int_m == 0
- ) {
- device->coopmat_int_support = true;
- device->coopmat_int_m = prop.MSize;
- device->coopmat_int_n = prop.NSize;
- device->coopmat_int_k = prop.KSize;
- }
- #if defined(VK_KHR_shader_bfloat16) && defined(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT)
- if (prop.AType == VK_COMPONENT_TYPE_BFLOAT16_KHR &&
- prop.BType == VK_COMPONENT_TYPE_BFLOAT16_KHR &&
- prop.CType == VK_COMPONENT_TYPE_FLOAT32_KHR &&
- prop.ResultType == VK_COMPONENT_TYPE_FLOAT32_KHR &&
- (vk::ScopeKHR)prop.scope == vk::ScopeKHR::eSubgroup
- ) {
- // coopmat sizes not set yet
- if (device->coopmat_m == 0) {
- device->coopmat_bf16_support = true;
- device->coopmat_m = prop.MSize;
- device->coopmat_n = prop.NSize;
- device->coopmat_k = prop.KSize;
- } else if (device->coopmat_m == prop.MSize && device->coopmat_n == prop.NSize && device->coopmat_k == prop.KSize) {
- // Only enable if shape is identical
- device->coopmat_bf16_support = true;
- }
- }
- #endif
- }
- if (device->coopmat_m == 0 || !device->coopmat_acc_f32_support) {
- // No suitable matmul mode found
- GGML_LOG_DEBUG("ggml_vulkan: WARNING: No suitable matrix core mode found. Disabling matrix cores.\n");
- device->coopmat_support = false;
- }
- if (getenv("GGML_VK_DISABLE_BFLOAT16")) {
- device->coopmat_bf16_support = false;
- }
- }
- if (device->coopmat_support) {
- device_extensions.push_back("VK_KHR_cooperative_matrix");
- }
- #if defined(VK_KHR_shader_bfloat16)
- if (device->coopmat_bf16_support) {
- device_extensions.push_back("VK_KHR_shader_bfloat16");
- }
- #endif
- #endif
- device->name = GGML_VK_NAME + std::to_string(idx);
- device_create_info = {
- vk::DeviceCreateFlags(),
- device_queue_create_infos,
- {},
- device_extensions
- };
- device_create_info.setPNext(&device_features2);
- device->device = device->physical_device.createDevice(device_create_info);
- // Queues
- ggml_vk_create_queue(device, device->compute_queue, compute_queue_family_index, 0, { vk::PipelineStageFlagBits::eComputeShader | vk::PipelineStageFlagBits::eTransfer }, false);
- // Shaders
- // Disable matmul tile sizes early if performance low or not supported
- for (uint32_t i = 0; i < GGML_TYPE_COUNT; ++i) {
- switch (device->vendor_id) {
- #ifndef GGML_VULKAN_RUN_TESTS
- case VK_VENDOR_ID_AMD:
- case VK_VENDOR_ID_INTEL:
- device->mul_mat_l[i] = false;
- device->mul_mat_m[i] = true;
- device->mul_mat_s[i] = true;
- device->mul_mat_id_l[i] = false;
- device->mul_mat_id_m[i] = true;
- device->mul_mat_id_s[i] = true;
- break;
- case VK_VENDOR_ID_APPLE:
- device->mul_mat_l[i] = false;
- device->mul_mat_m[i] = true;
- device->mul_mat_s[i] = false;
- device->mul_mat_id_l[i] = false;
- device->mul_mat_id_m[i] = true;
- device->mul_mat_id_s[i] = false;
- break;
- #endif
- default:
- device->mul_mat_l[i] = true;
- device->mul_mat_m[i] = true;
- device->mul_mat_s[i] = true;
- device->mul_mat_id_l[i] = true;
- device->mul_mat_id_m[i] = true;
- device->mul_mat_id_s[i] = true;
- break;
- }
- }
- std::vector<vk::DescriptorSetLayoutBinding> dsl_binding;
- std::vector<vk::DescriptorBindingFlags> dsl_binding_flags;
- for (uint32_t i = 0; i < MAX_PARAMETER_COUNT; i++) {
- dsl_binding.push_back({i, vk::DescriptorType::eStorageBuffer, 1, vk::ShaderStageFlagBits::eCompute});
- dsl_binding_flags.push_back({});
- }
- vk::DescriptorSetLayoutBindingFlagsCreateInfo dslbfci = { dsl_binding_flags };
- vk::DescriptorSetLayoutCreateInfo descriptor_set_layout_create_info(
- {},
- dsl_binding);
- descriptor_set_layout_create_info.setPNext(&dslbfci);
- device->dsl = device->device.createDescriptorSetLayout(descriptor_set_layout_create_info);
- ggml_vk_load_shaders(device);
- if (!device->single_queue) {
- const uint32_t transfer_queue_index = compute_queue_family_index == transfer_queue_family_index ? 1 : 0;
- ggml_vk_create_queue(device, device->transfer_queue, transfer_queue_family_index, transfer_queue_index, { vk::PipelineStageFlagBits::eTransfer }, true);
- } else {
- // TODO: Use pointer or reference to avoid copy
- device->transfer_queue.copyFrom(device->compute_queue);
- device->transfer_queue.cmd_pool.init(device, &device->transfer_queue);
- }
- device->buffer_type = {
- /* .iface = */ ggml_backend_vk_buffer_type_interface,
- /* .device = */ ggml_backend_reg_dev_get(ggml_backend_vk_reg(), idx),
- /* .context = */ new ggml_backend_vk_buffer_type_context{ device->name, device },
- };
- device->fence = device->device.createFence({});
- device->idx = idx;
- device->disable_fusion = getenv("GGML_VK_DISABLE_FUSION") != nullptr;
- device->add_rms_fusion = !device->disable_fusion &&
- device->subgroup_arithmetic &&
- device->vendor_id != VK_VENDOR_ID_INTEL;
- device->partials_binding_alignment =
- std::max(4u, (uint32_t)device->properties.limits.minStorageBufferOffsetAlignment);
- device->mmvq_mode = 0;
- if (getenv("GGML_VK_DISABLE_MMVQ")) {
- device->mmvq_mode = -1;
- } else if (getenv("GGML_VK_FORCE_MMVQ")) {
- device->mmvq_mode = 1;
- }
- return device;
- }
- return vk_instance.devices[idx];
- }
- static void ggml_vk_print_gpu_info(size_t idx) {
- GGML_ASSERT(idx < vk_instance.device_indices.size());
- size_t dev_num = vk_instance.device_indices[idx];
- VK_LOG_DEBUG("ggml_vk_print_gpu_info(" << dev_num << ")");
- GGML_ASSERT(vk_instance_initialized);
- std::vector<vk::PhysicalDevice> devices = vk_instance.instance.enumeratePhysicalDevices();
- if (dev_num >= devices.size()) {
- std::cerr << "ggml_vulkan: Device with index " << dev_num << " does not exist." << std::endl;
- throw std::runtime_error("Device not found");
- }
- vk::PhysicalDevice physical_device = devices[dev_num];
- std::vector<vk::ExtensionProperties> ext_props = physical_device.enumerateDeviceExtensionProperties();
- bool fp16_storage = false;
- bool fp16_compute = false;
- bool coopmat_support = false;
- bool coopmat2_support = false;
- bool integer_dot_product = false;
- bool bfloat16_support = false;
- for (auto properties : ext_props) {
- if (strcmp("VK_KHR_16bit_storage", properties.extensionName) == 0) {
- fp16_storage = true;
- } else if (strcmp("VK_KHR_shader_float16_int8", properties.extensionName) == 0) {
- fp16_compute = true;
- #if defined(GGML_VULKAN_COOPMAT_GLSLC_SUPPORT)
- } else if (strcmp("VK_KHR_cooperative_matrix", properties.extensionName) == 0 &&
- !getenv("GGML_VK_DISABLE_COOPMAT")) {
- coopmat_support = true;
- #endif
- #if defined(GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT)
- } else if (strcmp("VK_NV_cooperative_matrix2", properties.extensionName) == 0 &&
- !getenv("GGML_VK_DISABLE_COOPMAT2")) {
- coopmat2_support = true;
- #endif
- #if defined(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT)
- } else if (strcmp("VK_KHR_shader_integer_dot_product", properties.extensionName) == 0 &&
- !getenv("GGML_VK_DISABLE_INTEGER_DOT_PRODUCT")) {
- integer_dot_product = true;
- #endif
- #if defined(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT)
- } else if (strcmp("VK_KHR_shader_bfloat16", properties.extensionName) == 0 &&
- !getenv("GGML_VK_DISABLE_BFLOAT16")) {
- bfloat16_support = true;
- #endif
- }
- }
- const vk_device_architecture device_architecture = get_device_architecture(physical_device);
- const char* GGML_VK_DISABLE_F16 = getenv("GGML_VK_DISABLE_F16");
- bool force_disable_f16 = GGML_VK_DISABLE_F16 != nullptr;
- bool fp16 = !force_disable_f16 && fp16_storage && fp16_compute;
- vk::PhysicalDeviceProperties2 props2;
- vk::PhysicalDeviceMaintenance3Properties props3;
- vk::PhysicalDeviceSubgroupProperties subgroup_props;
- vk::PhysicalDeviceDriverProperties driver_props;
- vk::PhysicalDeviceShaderIntegerDotProductPropertiesKHR shader_integer_dot_product_props;
- props2.pNext = &props3;
- props3.pNext = &subgroup_props;
- subgroup_props.pNext = &driver_props;
- // Pointer to the last chain element
- VkBaseOutStructure * last_struct = (VkBaseOutStructure *)&driver_props;
- if (integer_dot_product) {
- last_struct->pNext = (VkBaseOutStructure *)&shader_integer_dot_product_props;
- last_struct = (VkBaseOutStructure *)&shader_integer_dot_product_props;
- }
- physical_device.getProperties2(&props2);
- VkPhysicalDeviceFeatures2 device_features2;
- device_features2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2;
- device_features2.pNext = nullptr;
- VkPhysicalDeviceVulkan11Features vk11_features;
- vk11_features.pNext = nullptr;
- vk11_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES;
- device_features2.pNext = &vk11_features;
- VkPhysicalDeviceVulkan12Features vk12_features;
- vk12_features.pNext = nullptr;
- vk12_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES;
- vk11_features.pNext = &vk12_features;
- // Pointer to the last chain element
- last_struct = (VkBaseOutStructure *)&vk12_features;
- #if defined(GGML_VULKAN_COOPMAT_GLSLC_SUPPORT)
- VkPhysicalDeviceCooperativeMatrixFeaturesKHR coopmat_features;
- coopmat_features.pNext = nullptr;
- coopmat_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COOPERATIVE_MATRIX_FEATURES_KHR;
- coopmat_features.cooperativeMatrix = VK_FALSE;
- if (coopmat_support) {
- last_struct->pNext = (VkBaseOutStructure *)&coopmat_features;
- last_struct = (VkBaseOutStructure *)&coopmat_features;
- }
- #endif
- VkPhysicalDeviceShaderIntegerDotProductFeaturesKHR shader_integer_dot_product_features {};
- shader_integer_dot_product_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_INTEGER_DOT_PRODUCT_FEATURES_KHR;
- if (integer_dot_product) {
- last_struct->pNext = (VkBaseOutStructure *)&shader_integer_dot_product_features;
- last_struct = (VkBaseOutStructure *)&shader_integer_dot_product_features;
- }
- #if defined(VK_KHR_shader_bfloat16)
- VkPhysicalDeviceShaderBfloat16FeaturesKHR bfloat16_features {};
- bfloat16_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_BFLOAT16_FEATURES_KHR;
- if (bfloat16_support) {
- last_struct->pNext = (VkBaseOutStructure *)&bfloat16_features;
- last_struct = (VkBaseOutStructure *)&bfloat16_features;
- }
- #endif
- vkGetPhysicalDeviceFeatures2(physical_device, &device_features2);
- fp16 = fp16 && vk12_features.shaderFloat16;
- #if defined(VK_KHR_shader_bfloat16)
- bool bf16 = bfloat16_support && bfloat16_features.shaderBFloat16Type;
- #else
- bool bf16 = false;
- #endif
- uint32_t default_subgroup_size = get_subgroup_size("", device_architecture);
- const size_t subgroup_size = (default_subgroup_size != 0) ? default_subgroup_size : subgroup_props.subgroupSize;
- const bool uma = props2.properties.deviceType == vk::PhysicalDeviceType::eIntegratedGpu;
- integer_dot_product = integer_dot_product
- && shader_integer_dot_product_props.integerDotProduct4x8BitPackedSignedAccelerated
- && shader_integer_dot_product_features.shaderIntegerDotProduct;
- coopmat_support = coopmat_support
- #if defined(GGML_VULKAN_COOPMAT_GLSLC_SUPPORT)
- && coopmat_features.cooperativeMatrix
- #endif
- && ggml_vk_khr_cooperative_matrix_support(props2.properties, driver_props, device_architecture);
- std::string matrix_cores = coopmat2_support ? "NV_coopmat2" : coopmat_support ? "KHR_coopmat" : "none";
- std::string device_name = props2.properties.deviceName.data();
- GGML_LOG_DEBUG("ggml_vulkan: %zu = %s (%s) | uma: %d | fp16: %d | bf16: %d | warp size: %zu | shared memory: %d | int dot: %d | matrix cores: %s\n",
- idx, device_name.c_str(), driver_props.driverName.data(), uma, fp16, bf16, subgroup_size,
- props2.properties.limits.maxComputeSharedMemorySize, integer_dot_product, matrix_cores.c_str());
- if (props2.properties.deviceType == vk::PhysicalDeviceType::eCpu) {
- GGML_LOG_DEBUG("ggml_vulkan: Warning: Device type is CPU. This is probably not the device you want.\n");
- }
- }
- static bool ggml_vk_instance_validation_ext_available();
- static bool ggml_vk_instance_portability_enumeration_ext_available(const std::vector<vk::ExtensionProperties>& instance_extensions);
- static bool ggml_vk_instance_debug_utils_ext_available(const std::vector<vk::ExtensionProperties> & instance_extensions);
- static bool ggml_vk_device_is_supported(const vk::PhysicalDevice & vkdev);
- static DispatchLoaderDynamic ggml_vk_default_dispatcher_instance;
- DispatchLoaderDynamic & ggml_vk_default_dispatcher() {
- return ggml_vk_default_dispatcher_instance;
- }
- static void ggml_vk_instance_init() {
- if (vk_instance_initialized) {
- return;
- }
- VK_LOG_DEBUG("ggml_vk_instance_init()");
- // See https://github.com/KhronosGroup/Vulkan-Hpp?tab=readme-ov-file#extensions--per-device-function-pointers-
- ggml_vk_default_dispatcher_instance.init(vkGetInstanceProcAddr);
- uint32_t api_version = vk::enumerateInstanceVersion();
- if (api_version < VK_API_VERSION_1_2) {
- std::cerr << "ggml_vulkan: Error: Vulkan 1.2 required." << std::endl;
- throw vk::SystemError(vk::Result::eErrorFeatureNotPresent, "Vulkan 1.2 required");
- }
- vk::ApplicationInfo app_info{ "ggml-vulkan", 1, nullptr, 0, api_version };
- const std::vector<vk::ExtensionProperties> instance_extensions = vk::enumerateInstanceExtensionProperties();
- const bool validation_ext = ggml_vk_instance_validation_ext_available();
- #ifdef __APPLE__
- const bool portability_enumeration_ext = ggml_vk_instance_portability_enumeration_ext_available(instance_extensions);
- #endif
- const bool debug_utils_ext = ggml_vk_instance_debug_utils_ext_available(instance_extensions) && getenv("GGML_VK_DEBUG_MARKERS") != nullptr;
- std::vector<const char*> layers;
- if (validation_ext) {
- layers.push_back("VK_LAYER_KHRONOS_validation");
- }
- std::vector<const char*> extensions;
- if (validation_ext) {
- extensions.push_back("VK_EXT_validation_features");
- }
- #ifdef __APPLE__
- if (portability_enumeration_ext) {
- extensions.push_back("VK_KHR_portability_enumeration");
- }
- #endif
- if (debug_utils_ext) {
- extensions.push_back("VK_EXT_debug_utils");
- }
- vk::InstanceCreateInfo instance_create_info(vk::InstanceCreateFlags{}, &app_info, layers, extensions);
- #ifdef __APPLE__
- if (portability_enumeration_ext) {
- instance_create_info.flags |= vk::InstanceCreateFlagBits::eEnumeratePortabilityKHR;
- }
- #endif
- std::vector<vk::ValidationFeatureEnableEXT> features_enable;
- vk::ValidationFeaturesEXT validation_features;
- if (validation_ext) {
- features_enable = { vk::ValidationFeatureEnableEXT::eBestPractices };
- validation_features = {
- features_enable,
- {},
- };
- validation_features.setPNext(nullptr);
- instance_create_info.setPNext(&validation_features);
- GGML_LOG_DEBUG("ggml_vulkan: Validation layers enabled\n");
- }
- vk_instance.instance = vk::createInstance(instance_create_info);
- vk_instance_initialized = true;
- if (debug_utils_ext) {
- vk_instance.debug_utils_support = true;
- vk_instance.pfn_vkSetDebugUtilsObjectNameEXT = (PFN_vkSetDebugUtilsObjectNameEXT) vkGetInstanceProcAddr(vk_instance.instance, "vkSetDebugUtilsObjectNameEXT");
- vk_instance.pfn_vkQueueBeginDebugUtilsLabelEXT = (PFN_vkQueueBeginDebugUtilsLabelEXT) vkGetInstanceProcAddr(vk_instance.instance, "vkQueueBeginDebugUtilsLabelEXT");
- vk_instance.pfn_vkQueueEndDebugUtilsLabelEXT = (PFN_vkQueueEndDebugUtilsLabelEXT) vkGetInstanceProcAddr(vk_instance.instance, "vkQueueEndDebugUtilsLabelEXT");
- vk_instance.pfn_vkCmdBeginDebugUtilsLabelEXT = (PFN_vkCmdBeginDebugUtilsLabelEXT) vkGetInstanceProcAddr(vk_instance.instance, "vkCmdBeginDebugUtilsLabelEXT");
- vk_instance.pfn_vkCmdEndDebugUtilsLabelEXT = (PFN_vkCmdEndDebugUtilsLabelEXT) vkGetInstanceProcAddr(vk_instance.instance, "vkCmdEndDebugUtilsLabelEXT");
- vk_instance.pfn_vkCmdInsertDebugUtilsLabelEXT = (PFN_vkCmdInsertDebugUtilsLabelEXT) vkGetInstanceProcAddr(vk_instance.instance, "vkCmdInsertDebugUtilsLabelEXT");
- }
- vk_perf_logger_enabled = getenv("GGML_VK_PERF_LOGGER") != nullptr;
- // See https://github.com/KhronosGroup/Vulkan-Hpp?tab=readme-ov-file#extensions--per-device-function-pointers-
- VULKAN_HPP_DEFAULT_DISPATCHER.init(vk_instance.instance);
- std::vector<vk::PhysicalDevice> devices = vk_instance.instance.enumeratePhysicalDevices();
- // Emulate behavior of CUDA_VISIBLE_DEVICES for Vulkan
- char * devices_env = getenv("GGML_VK_VISIBLE_DEVICES");
- if (devices_env != nullptr) {
- size_t num_available_devices = devices.size();
- std::string devices(devices_env);
- std::replace(devices.begin(), devices.end(), ',', ' ');
- std::stringstream ss(devices);
- size_t tmp;
- while (ss >> tmp) {
- if(tmp >= num_available_devices) {
- std::cerr << "ggml_vulkan: Invalid device index " << tmp << " in GGML_VK_VISIBLE_DEVICES." << std::endl;
- throw std::runtime_error("Invalid Vulkan device index");
- }
- vk_instance.device_indices.push_back(tmp);
- }
- } else {
- // If no vulkan devices are found, return early
- if (devices.empty()) {
- GGML_LOG_INFO("ggml_vulkan: No devices found.\n");
- return;
- }
- // Default to using all dedicated GPUs
- for (size_t i = 0; i < devices.size(); i++) {
- vk::PhysicalDeviceProperties2 new_props;
- vk::PhysicalDeviceDriverProperties new_driver;
- vk::PhysicalDeviceIDProperties new_id;
- new_props.pNext = &new_driver;
- new_driver.pNext = &new_id;
- devices[i].getProperties2(&new_props);
- if ((new_props.properties.deviceType == vk::PhysicalDeviceType::eDiscreteGpu || new_props.properties.deviceType == vk::PhysicalDeviceType::eIntegratedGpu) && ggml_vk_device_is_supported(devices[i])) {
- // Check if there are two physical devices corresponding to the same GPU
- auto old_device = std::find_if(
- vk_instance.device_indices.begin(),
- vk_instance.device_indices.end(),
- [&devices, &new_id](const size_t k){
- vk::PhysicalDeviceProperties2 old_props;
- vk::PhysicalDeviceIDProperties old_id;
- old_props.pNext = &old_id;
- devices[k].getProperties2(&old_props);
- bool equals = std::equal(std::begin(old_id.deviceUUID), std::end(old_id.deviceUUID), std::begin(new_id.deviceUUID));
- equals = equals || (
- old_id.deviceLUIDValid && new_id.deviceLUIDValid &&
- std::equal(std::begin(old_id.deviceLUID), std::end(old_id.deviceLUID), std::begin(new_id.deviceLUID))
- );
- return equals;
- }
- );
- if (old_device == vk_instance.device_indices.end()) {
- vk_instance.device_indices.push_back(i);
- } else {
- // There can be two physical devices corresponding to the same GPU if there are 2 different drivers
- // This can cause error when splitting layers aross the devices, need to keep only 1
- VK_LOG_DEBUG("Device " << i << " and device " << *old_device << " have the same deviceUUID");
- vk::PhysicalDeviceProperties2 old_props;
- vk::PhysicalDeviceDriverProperties old_driver;
- old_props.pNext = &old_driver;
- devices[*old_device].getProperties2(&old_props);
- std::map<vk::DriverId, int> driver_priorities {};
- int old_priority = std::numeric_limits<int>::max();
- int new_priority = std::numeric_limits<int>::max();
- // Check https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/VkDriverId.html for the list of driver id
- // Smaller number -> higher priority
- switch (old_props.properties.vendorID) {
- case VK_VENDOR_ID_AMD:
- driver_priorities[vk::DriverId::eMesaRadv] = 1;
- driver_priorities[vk::DriverId::eAmdOpenSource] = 2;
- driver_priorities[vk::DriverId::eAmdProprietary] = 3;
- break;
- case VK_VENDOR_ID_INTEL:
- driver_priorities[vk::DriverId::eIntelOpenSourceMESA] = 1;
- driver_priorities[vk::DriverId::eIntelProprietaryWindows] = 2;
- break;
- case VK_VENDOR_ID_NVIDIA:
- driver_priorities[vk::DriverId::eNvidiaProprietary] = 1;
- #if defined(VK_API_VERSION_1_3) && VK_HEADER_VERSION >= 235
- driver_priorities[vk::DriverId::eMesaNvk] = 2;
- #endif
- break;
- }
- driver_priorities[vk::DriverId::eMesaDozen] = 100;
- if (driver_priorities.count(old_driver.driverID)) {
- old_priority = driver_priorities[old_driver.driverID];
- }
- if (driver_priorities.count(new_driver.driverID)) {
- new_priority = driver_priorities[new_driver.driverID];
- }
- if (new_priority < old_priority) {
- auto r = std::remove(vk_instance.device_indices.begin(), vk_instance.device_indices.end(), *old_device);
- vk_instance.device_indices.erase(r, vk_instance.device_indices.end());
- vk_instance.device_indices.push_back(i);
- VK_LOG_DEBUG("Prioritize device " << i << " driver " << new_driver.driverName << " over device " << *old_device << " driver " << old_driver.driverName);
- }
- else {
- VK_LOG_DEBUG("Prioritize device " << *old_device << " driver " << old_driver.driverName << " over device " << i << " driver " << new_driver.driverName << std::endl);
- }
- }
- }
- }
- // If no GPUs found, fall back to the first non-CPU device.
- // If only CPU devices are available, return without devices.
- if (vk_instance.device_indices.empty()) {
- for (size_t i = 0; i < devices.size(); i++) {
- if (devices[i].getProperties().deviceType != vk::PhysicalDeviceType::eCpu) {
- vk_instance.device_indices.push_back(i);
- break;
- }
- }
- }
- if (vk_instance.device_indices.empty()) {
- GGML_LOG_INFO("ggml_vulkan: No devices found.\n");
- return;
- }
- }
- GGML_LOG_DEBUG("ggml_vulkan: Found %zu Vulkan devices:\n", vk_instance.device_indices.size());
- for (size_t i = 0; i < vk_instance.device_indices.size(); i++) {
- vk::PhysicalDevice vkdev = devices[vk_instance.device_indices[i]];
- std::vector<vk::ExtensionProperties> extensionprops = vkdev.enumerateDeviceExtensionProperties();
- bool membudget_supported = false;
- for (const auto & ext : extensionprops) {
- if (strcmp(VK_EXT_MEMORY_BUDGET_EXTENSION_NAME, ext.extensionName) == 0) {
- membudget_supported = true;
- break;
- }
- }
- vk_instance.device_supports_membudget.push_back(membudget_supported);
- ggml_vk_print_gpu_info(i);
- }
- }
- static void ggml_vk_init(ggml_backend_vk_context * ctx, size_t idx) {
- VK_LOG_DEBUG("ggml_vk_init(" << ctx->name << ", " << idx << ")");
- ggml_vk_instance_init();
- GGML_ASSERT(idx < vk_instance.device_indices.size());
- ctx->name = GGML_VK_NAME + std::to_string(idx);
- ctx->device = ggml_vk_get_device(idx);
- ctx->semaphore_idx = 0;
- ctx->event_idx = 0;
- ctx->prealloc_size_x = 0;
- ctx->prealloc_size_y = 0;
- ctx->prealloc_size_split_k = 0;
- ctx->prealloc_size_add_rms_partials = 0;
- ctx->fence = ctx->device->device.createFence({});
- ctx->almost_ready_fence = ctx->device->device.createFence({});
- ctx->compute_cmd_pool.init(ctx->device, &ctx->device->compute_queue);
- ctx->transfer_cmd_pool.init(ctx->device, &ctx->device->transfer_queue);
- #ifdef GGML_VULKAN_CHECK_RESULTS
- const char* skip_checks = getenv("GGML_VULKAN_SKIP_CHECKS");
- vk_skip_checks = (skip_checks == NULL ? 0 : atoi(skip_checks));
- const char* output_tensor = getenv("GGML_VULKAN_OUTPUT_TENSOR");
- vk_output_tensor = (output_tensor == NULL ? 0 : atoi(output_tensor));
- #endif
- }
- static vk_pipeline ggml_vk_get_to_fp16(ggml_backend_vk_context * ctx, ggml_type type) {
- VK_LOG_DEBUG("ggml_vk_get_to_fp16()");
- switch (type) {
- case GGML_TYPE_F32:
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- case GGML_TYPE_IQ1_S:
- case GGML_TYPE_IQ1_M:
- case GGML_TYPE_IQ2_XXS:
- case GGML_TYPE_IQ2_XS:
- case GGML_TYPE_IQ2_S:
- case GGML_TYPE_IQ3_XXS:
- case GGML_TYPE_IQ3_S:
- case GGML_TYPE_IQ4_XS:
- case GGML_TYPE_IQ4_NL:
- case GGML_TYPE_MXFP4:
- break;
- default:
- return nullptr;
- }
- return ctx->device->pipeline_dequant[type];
- }
- static vk_matmul_pipeline ggml_vk_get_mul_mat_mat_pipeline(ggml_backend_vk_context * ctx, ggml_type src0_type, ggml_type src1_type, ggml_prec prec) {
- VK_LOG_DEBUG("ggml_vk_get_mul_mat_mat_pipeline(" << ggml_type_name(src0_type) << ", " << ggml_type_name(src1_type) << ", " << prec << ")");
- if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) {
- return ctx->device->pipeline_matmul_f32;
- }
- if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F16) {
- return ctx->device->pipeline_matmul_f32_f16;
- }
- if (src0_type == GGML_TYPE_BF16 && src1_type == GGML_TYPE_BF16) {
- return ctx->device->pipeline_matmul_bf16;
- }
- if (prec == GGML_PREC_DEFAULT && ctx->device->fp16 && !(ctx->device->coopmat_support && !ctx->device->coopmat_acc_f16_support)) {
- if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) {
- return ctx->device->pipeline_matmul_f16_f32.f16acc;
- }
- if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) {
- return ctx->device->pipeline_matmul_f16.f16acc;
- }
- } else {
- if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) {
- return ctx->device->pipeline_matmul_f16_f32.f32acc;
- }
- if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) {
- return ctx->device->pipeline_matmul_f16.f32acc;
- }
- }
- // MMQ
- if (src1_type == GGML_TYPE_Q8_1) {
- vk_matmul_pipeline pipelines = ctx->device->pipeline_dequant_mul_mat_mat_q8_1[src0_type].f32acc;
- if (pipelines->is_empty()) {
- return nullptr;
- }
- return pipelines;
- }
- if (src1_type != GGML_TYPE_F32 && !ctx->device->coopmat2) {
- return nullptr;
- }
- switch (src0_type) {
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- case GGML_TYPE_IQ1_S:
- case GGML_TYPE_IQ1_M:
- case GGML_TYPE_IQ2_XXS:
- case GGML_TYPE_IQ2_XS:
- case GGML_TYPE_IQ2_S:
- case GGML_TYPE_IQ3_XXS:
- case GGML_TYPE_IQ3_S:
- case GGML_TYPE_IQ4_XS:
- case GGML_TYPE_IQ4_NL:
- case GGML_TYPE_MXFP4:
- break;
- default:
- return nullptr;
- }
- if (ctx->device->coopmat2) {
- assert(src1_type == GGML_TYPE_F16);
- return prec == GGML_PREC_DEFAULT ? ctx->device->pipeline_dequant_mul_mat_mat_f16[src0_type].f16acc : ctx->device->pipeline_dequant_mul_mat_mat_f16[src0_type].f32acc;
- }
- if (ctx->device->coopmat_support) {
- return (ctx->device->fp16 && ctx->device->coopmat_acc_f16_support && prec == GGML_PREC_DEFAULT) ? ctx->device->pipeline_dequant_mul_mat_mat[src0_type].f16acc : ctx->device->pipeline_dequant_mul_mat_mat[src0_type].f32acc;
- }
- return (ctx->device->fp16 && prec == GGML_PREC_DEFAULT) ? ctx->device->pipeline_dequant_mul_mat_mat[src0_type].f16acc : ctx->device->pipeline_dequant_mul_mat_mat[src0_type].f32acc;
- }
- static vk_pipeline ggml_vk_get_dequantize_mul_mat_vec(ggml_backend_vk_context * ctx, ggml_type a_type, ggml_type b_type, uint32_t num_cols, uint32_t m, uint32_t k) {
- VK_LOG_DEBUG("ggml_vk_get_dequantize_mul_mat_vec()");
- GGML_ASSERT(b_type == GGML_TYPE_F32 || b_type == GGML_TYPE_F16 || b_type == GGML_TYPE_Q8_1);
- GGML_ASSERT(num_cols >= 1 && num_cols <= mul_mat_vec_max_cols);
- if (b_type == GGML_TYPE_Q8_1) {
- switch (a_type) {
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- break;
- default:
- return nullptr;
- }
- }
- switch (a_type) {
- case GGML_TYPE_F32:
- case GGML_TYPE_F16:
- case GGML_TYPE_BF16:
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- case GGML_TYPE_IQ1_S:
- case GGML_TYPE_IQ1_M:
- case GGML_TYPE_IQ2_XXS:
- case GGML_TYPE_IQ2_XS:
- case GGML_TYPE_IQ2_S:
- case GGML_TYPE_IQ3_XXS:
- case GGML_TYPE_IQ3_S:
- case GGML_TYPE_IQ4_XS:
- case GGML_TYPE_IQ4_NL:
- case GGML_TYPE_MXFP4:
- break;
- default:
- return nullptr;
- }
- // heuristic to choose workgroup size
- uint32_t dmmv_wg = DMMV_WG_SIZE_SUBGROUP;
- if ((ctx->device->vendor_id == VK_VENDOR_ID_NVIDIA && ctx->device->architecture != vk_device_architecture::NVIDIA_PRE_TURING) || ctx->device->vendor_id == VK_VENDOR_ID_INTEL) {
- // Prefer larger workgroups when M is small, to spread the work out more
- // and keep more SMs busy.
- // q6_k seems to prefer small workgroup size even for "medium" values of M.
- if (a_type == GGML_TYPE_Q6_K) {
- if (m < 4096 && k >= 1024) {
- dmmv_wg = DMMV_WG_SIZE_LARGE;
- }
- } else {
- if (m <= 8192 && k >= 1024) {
- dmmv_wg = DMMV_WG_SIZE_LARGE;
- }
- }
- }
- if (b_type == GGML_TYPE_Q8_1) {
- if (ctx->device->vendor_id == VK_VENDOR_ID_INTEL) {
- dmmv_wg = DMMV_WG_SIZE_SUBGROUP;
- }
- return ctx->device->pipeline_dequant_mul_mat_vec_q8_1_f32[dmmv_wg][a_type][num_cols-1];
- }
- return b_type == GGML_TYPE_F32 ? ctx->device->pipeline_dequant_mul_mat_vec_f32_f32[dmmv_wg][a_type][num_cols-1] : ctx->device->pipeline_dequant_mul_mat_vec_f16_f32[dmmv_wg][a_type][num_cols-1];
- }
- static vk_matmul_pipeline ggml_vk_get_mul_mat_mat_id_pipeline(ggml_backend_vk_context * ctx, ggml_type src0_type, ggml_type src1_type, ggml_prec prec) {
- VK_LOG_DEBUG("ggml_vk_get_mul_mat_mat_id_pipeline()");
- if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) {
- return ctx->device->pipeline_matmul_id_f32;
- }
- if (src0_type == GGML_TYPE_BF16 && src1_type == GGML_TYPE_BF16) {
- return ctx->device->pipeline_matmul_id_bf16;
- }
- if (prec == GGML_PREC_DEFAULT && ctx->device->fp16 && !(ctx->device->coopmat_support && !ctx->device->coopmat_acc_f16_support)) {
- if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) {
- return ctx->device->pipeline_matmul_id_f16_f32.f16acc;
- }
- if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) {
- return ctx->device->pipeline_matmul_id_f16.f16acc;
- }
- } else {
- if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) {
- return ctx->device->pipeline_matmul_id_f16_f32.f32acc;
- }
- if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) {
- return ctx->device->pipeline_matmul_id_f16.f32acc;
- }
- }
- // MMQ
- if (src1_type == GGML_TYPE_Q8_1) {
- vk_matmul_pipeline pipelines = ctx->device->pipeline_dequant_mul_mat_mat_id_q8_1[src0_type].f32acc;
- if (pipelines->is_empty()) {
- return nullptr;
- }
- return pipelines;
- }
- GGML_ASSERT(src1_type == GGML_TYPE_F32 || (ctx->device->coopmat2 && src1_type == GGML_TYPE_F16));
- switch (src0_type) {
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- case GGML_TYPE_IQ1_S:
- case GGML_TYPE_IQ1_M:
- case GGML_TYPE_IQ2_XXS:
- case GGML_TYPE_IQ2_XS:
- case GGML_TYPE_IQ2_S:
- case GGML_TYPE_IQ3_XXS:
- case GGML_TYPE_IQ3_S:
- case GGML_TYPE_IQ4_XS:
- case GGML_TYPE_IQ4_NL:
- case GGML_TYPE_MXFP4:
- break;
- default:
- return nullptr;
- }
- vk_matmul_pipeline2& mmp = ctx->device->pipeline_dequant_mul_mat_mat_id[src0_type];
- // XXX TODO 'prec' is not actually allowed in mul_mat_id.
- bool prefer_fp16acc = ctx->device->fp16 /*&& prec == GGML_PREC_DEFAULT*/;
- bool support_fp16acc = !mmp.f16acc->is_empty();
- bool support_fp32acc = !mmp.f32acc->is_empty();
- if (support_fp16acc && (prefer_fp16acc || !support_fp32acc)) {
- return mmp.f16acc;
- } else {
- GGML_ASSERT(support_fp32acc);
- return mmp.f32acc;
- }
- }
- static vk_pipeline ggml_vk_get_dequantize_mul_mat_vec_id(ggml_backend_vk_context * ctx, ggml_type a_type, ggml_type b_type) {
- VK_LOG_DEBUG("ggml_vk_get_dequantize_mul_mat_vec_id()");
- GGML_ASSERT(b_type == GGML_TYPE_F32);
- switch (a_type) {
- case GGML_TYPE_F32:
- case GGML_TYPE_F16:
- case GGML_TYPE_BF16:
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- case GGML_TYPE_IQ1_S:
- case GGML_TYPE_IQ1_M:
- case GGML_TYPE_IQ2_XXS:
- case GGML_TYPE_IQ2_XS:
- case GGML_TYPE_IQ2_S:
- case GGML_TYPE_IQ3_XXS:
- case GGML_TYPE_IQ3_S:
- case GGML_TYPE_IQ4_XS:
- case GGML_TYPE_IQ4_NL:
- case GGML_TYPE_MXFP4:
- break;
- default:
- return nullptr;
- }
- return ctx->device->pipeline_dequant_mul_mat_vec_id_f32[a_type];
- }
- static void * ggml_vk_host_malloc(vk_device& device, size_t size) {
- VK_LOG_MEMORY("ggml_vk_host_malloc(" << size << ")");
- vk_buffer buf = ggml_vk_create_buffer(device, size,
- {vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached,
- vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent});
- if(!(buf->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible)) {
- fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory\n",
- size/1024.0/1024.0);
- device->device.freeMemory(buf->device_memory);
- device->device.destroyBuffer(buf->buffer);
- return nullptr;
- }
- std::lock_guard<std::recursive_mutex> guard(device->mutex);
- device->pinned_memory.push_back(std::make_tuple(buf->ptr, size, buf));
- return buf->ptr;
- }
- static void ggml_vk_host_free(vk_device& device, void* ptr) {
- if (ptr == nullptr) {
- return;
- }
- VK_LOG_MEMORY("ggml_vk_host_free(" << ptr << ")");
- std::lock_guard<std::recursive_mutex> guard(device->mutex);
- vk_buffer buf;
- size_t index;
- for (size_t i = 0; i < device->pinned_memory.size(); i++) {
- const uint8_t* addr = (const uint8_t*) std::get<0>(device->pinned_memory[i]);
- const uint8_t* endr = addr + std::get<1>(device->pinned_memory[i]);
- if (ptr >= addr && ptr < endr) {
- buf = std::get<2>(device->pinned_memory[i]);
- index = i;
- break;
- }
- }
- if (buf == nullptr) {
- fprintf(stderr, "WARNING: failed to free pinned memory: memory not in map\n");
- return;
- }
- ggml_vk_destroy_buffer(buf);
- device->pinned_memory.erase(device->pinned_memory.begin() + index);
- }
- static void ggml_vk_host_get(const vk_device& device, const void * ptr, vk_buffer& buf, size_t& buf_offset) {
- std::lock_guard<std::recursive_mutex> guard(device->mutex);
- buf = nullptr;
- buf_offset = 0;
- for (size_t i = 0; i < device->pinned_memory.size(); i++) {
- const uint8_t* addr = (const uint8_t*) std::get<0>(device->pinned_memory[i]);
- const uint8_t* endr = addr + std::get<1>(device->pinned_memory[i]);
- if (ptr >= addr && ptr < endr) {
- buf = std::get<2>(device->pinned_memory[i]);
- buf_offset = ((const uint8_t *)ptr) - addr;
- break;
- }
- }
- }
- static vk_subbuffer ggml_vk_tensor_subbuffer(
- const ggml_backend_vk_context * ctx, const ggml_tensor * tensor, bool allow_misalign = false) {
- vk_buffer buffer = nullptr;
- size_t offset = 0;
- if (ctx->device->uma) {
- ggml_vk_host_get(ctx->device, tensor->data, buffer, offset);
- }
- if (!buffer) {
- auto buf_ctx = (ggml_backend_vk_buffer_context *)tensor->buffer->context;
- buffer = buf_ctx->dev_buffer;
- offset = vk_tensor_offset(tensor) + tensor->view_offs;
- }
- GGML_ASSERT(buffer != nullptr);
- size_t size = ggml_nbytes(tensor);
- size_t misalign_bytes = offset & (ctx->device->properties.limits.minStorageBufferOffsetAlignment - 1);
- // The shader must support misaligned offsets when indexing into the buffer
- GGML_ASSERT(allow_misalign || misalign_bytes == 0);
- offset &= ~misalign_bytes;
- size += misalign_bytes;
- return vk_subbuffer{buffer, offset, size};
- }
- static vk_submission ggml_vk_begin_submission(vk_device& device, vk_command_pool& p, bool one_time = true) {
- vk_submission s;
- s.buffer = ggml_vk_create_cmd_buffer(device, p);
- if (one_time) {
- s.buffer.begin({ vk::CommandBufferUsageFlagBits::eOneTimeSubmit });
- } else {
- s.buffer.begin({ vk::CommandBufferUsageFlags{} });
- }
- return s;
- }
- template <typename T> size_t push_constant_size(const T &t) {
- static_assert(std::is_class<T>::value, "T must be a struct/class");
- GGML_UNUSED(t);
- return sizeof(T);
- }
- template <typename T> size_t push_constant_size(const std::vector<T> &t) {
- GGML_UNUSED(t);
- return sizeof(T) * t.size();
- }
- template <typename T, uint32_t N> size_t push_constant_size(const std::array<T, N> &t) {
- GGML_UNUSED(t);
- return sizeof(T) * N;
- }
- template <typename T> const T *push_constant_data(const T &t) {
- static_assert(std::is_class<T>::value, "T must be a struct/class");
- return &t;
- }
- template <typename T> const T *push_constant_data(const std::vector<T> &t) {
- return t.data();
- }
- template <typename T, uint32_t N> const T *push_constant_data(const std::array<T, N> &t) {
- return t.data();
- }
- template <typename T>
- static void ggml_vk_dispatch_pipeline(ggml_backend_vk_context* ctx, vk_context& subctx, vk_pipeline& pipeline, std::initializer_list<vk::DescriptorBufferInfo> const& descriptor_buffer_infos, const T &push_constants, std::array<uint32_t, 3> elements) {
- const uint32_t wg0 = CEIL_DIV(elements[0], pipeline->wg_denoms[0]);
- const uint32_t wg1 = CEIL_DIV(elements[1], pipeline->wg_denoms[1]);
- const uint32_t wg2 = CEIL_DIV(elements[2], pipeline->wg_denoms[2]);
- VK_LOG_DEBUG("ggml_vk_dispatch_pipeline(" << pipeline->name << ", {";
- for (auto& buffer : descriptor_buffer_infos) {
- std::cerr << "(" << buffer.buffer << ", " << buffer.offset << ", " << buffer.range << "), ";
- }
- std::cerr << "}, (" << wg0 << "," << wg1 << "," << wg2 << "))");
- GGML_ASSERT(ctx->descriptor_set_idx < ctx->descriptor_sets.size());
- GGML_ASSERT(descriptor_buffer_infos.size() <= MAX_PARAMETER_COUNT);
- GGML_ASSERT(pipeline->parameter_count == descriptor_buffer_infos.size());
- vk::DescriptorSet& descriptor_set = ctx->descriptor_sets[ctx->descriptor_set_idx++];
- vk::WriteDescriptorSet write_descriptor_set{ descriptor_set, 0, 0, pipeline->parameter_count, vk::DescriptorType::eStorageBuffer, nullptr, descriptor_buffer_infos.begin() };
- ctx->device->device.updateDescriptorSets({ write_descriptor_set }, {});
- subctx->s->buffer.pushConstants(pipeline->layout, vk::ShaderStageFlagBits::eCompute, 0, push_constant_size(push_constants), push_constant_data(push_constants));
- subctx->s->buffer.bindPipeline(vk::PipelineBindPoint::eCompute, pipeline->pipeline);
- subctx->s->buffer.bindDescriptorSets(vk::PipelineBindPoint::eCompute,
- pipeline->layout,
- 0,
- { descriptor_set },
- {});
- subctx->s->buffer.dispatch(wg0, wg1, wg2);
- }
- static void ggml_vk_end_submission(vk_submission& s, std::vector<vk_semaphore> wait_semaphores, std::vector<vk_semaphore> signal_semaphores) {
- s.buffer.end();
- s.wait_semaphores = std::move(wait_semaphores);
- s.signal_semaphores = std::move(signal_semaphores);
- }
- static void ggml_vk_ctx_end(vk_context& ctx) {
- VK_LOG_DEBUG("ggml_vk_ctx_end(" << ctx << ", " << ctx->seqs.size() << ")");
- if (ctx->s == nullptr) {
- return;
- }
- ctx->s->buffer.end();
- ctx->s = nullptr;
- }
- static void ggml_vk_ctx_begin(vk_device& device, vk_context& subctx) {
- VK_LOG_DEBUG("ggml_vk_ctx_begin(" << device->name << ")");
- if (subctx->s != nullptr) {
- ggml_vk_ctx_end(subctx);
- }
- subctx->seqs.push_back({ ggml_vk_begin_submission(device, *subctx->p) });
- subctx->s = subctx->seqs[subctx->seqs.size() - 1].data();
- }
- static size_t ggml_vk_align_size(size_t width, size_t align) {
- VK_LOG_DEBUG("ggml_vk_align_size(" << width << ", " << align << ")");
- return CEIL_DIV(width, align) * align;
- }
- static void deferred_memcpy(void * dst, const void * src, size_t size, std::vector<vk_staging_memcpy>* memcpys = nullptr) {
- if (memcpys == nullptr) {
- memcpy(dst, src, size);
- } else {
- memcpys->emplace_back(dst, src, size);
- }
- }
- static void deferred_memset(void * dst, uint32_t val, size_t size, std::vector<vk_staging_memset>* memsets = nullptr) {
- if (memsets == nullptr) {
- memset(dst, val, size);
- } else {
- memsets->emplace_back(dst, val, size);
- }
- }
- static void ggml_vk_ensure_sync_staging_buffer(vk_device& device, size_t size) {
- if (device->sync_staging == nullptr || device->sync_staging->size < size) {
- VK_LOG_MEMORY("ggml_vk_ensure_sync_staging_buffer(" << size << ")");
- ggml_vk_destroy_buffer(device->sync_staging);
- device->sync_staging = ggml_vk_create_buffer_check(device, size,
- vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached,
- vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent);
- }
- }
- static void ggml_vk_ensure_sync_staging_buffer(ggml_backend_vk_context * ctx, size_t size) {
- if (ctx->sync_staging == nullptr || ctx->sync_staging->size < size) {
- VK_LOG_MEMORY("ggml_vk_ensure_sync_staging_buffer(" << size << ")");
- ggml_vk_destroy_buffer(ctx->sync_staging);
- ctx->sync_staging = ggml_vk_create_buffer_check(ctx->device, size,
- vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached,
- vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent);
- }
- }
- static void ggml_vk_buffer_write_nc_async(ggml_backend_vk_context * ctx, vk_context& subctx, vk_buffer& dst, size_t offset, const ggml_tensor * tensor, bool sync_staging = false) {
- VK_LOG_DEBUG("ggml_vk_buffer_write_nc_async(" << tensor << ")");
- GGML_ASSERT(!ggml_is_contiguous(tensor));
- // Buffer is already mapped
- if(dst->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible) {
- std::cerr << "ggml_vulkan: buffer_write_nc_async dst buffer is host_visible. Use synchronous write." << std::endl;
- GGML_ABORT("fatal error");
- }
- // Check if src is pinned memory
- vk_buffer buf = nullptr;
- size_t buf_offset = 0;
- ggml_vk_host_get(ctx->device, tensor->data, buf, buf_offset);
- const uint64_t ne0 = tensor->ne[0];
- const uint64_t ne1 = tensor->ne[1];
- const uint64_t ne2 = tensor->ne[2];
- const uint64_t ne3 = tensor->ne[3];
- const uint64_t nb0 = tensor->nb[0];
- const uint64_t nb1 = tensor->nb[1];
- const uint64_t nb2 = tensor->nb[2];
- const uint64_t nb3 = tensor->nb[3];
- const ggml_type type = tensor->type;
- const uint64_t ts = ggml_type_size(type);
- const uint64_t bs = ggml_blck_size(type);
- const uint64_t dstnb0 = ts;
- const uint64_t dstnb1 = dstnb0*(ne0/bs);
- const uint64_t dstnb2 = dstnb1*ne1;
- const uint64_t dstnb3 = dstnb2*ne2;
- const uint64_t ne = ggml_nelements(tensor);
- if (buf != nullptr) {
- // Memory is pinned, use as staging buffer
- std::vector<vk::BufferCopy> slices;
- for (uint64_t i3 = 0; i3 < ne3; i3++) {
- for (uint64_t i2 = 0; i2 < ne2; i2++) {
- // Find longest contiguous slice
- if (ne1*nb1 == dstnb2) {
- slices.push_back({ buf_offset + i3*nb3 + i2*nb2, offset + i3*dstnb3 + i2*dstnb2, dstnb2 });
- } else {
- for (uint64_t i1 = 0; i1 < ne1; i1++) {
- if (ne0*nb0/bs == dstnb1) {
- slices.push_back({ buf_offset + i3*nb3 + i2*nb2 + i1*nb1, offset + i3*dstnb3 + i2*dstnb2 + i1*dstnb1, dstnb1 });
- } else {
- const uint64_t s_off = buf_offset + i3*nb3 + i2*nb2 + i1*nb1;
- const uint64_t d_off = offset + i3*dstnb3 + i2*dstnb2 + i1*dstnb1;
- for (uint64_t i0 = 0; i0 < ne0; i0++) {
- slices.push_back({ s_off + i1*nb0, d_off + i0*dstnb0, dstnb0 });
- }
- }
- }
- }
- }
- }
- ggml_vk_sync_buffers(ctx, subctx);
- subctx->s->buffer.copyBuffer(buf->buffer, dst->buffer, slices);
- return;
- }
- if (!sync_staging) {
- GGML_ABORT("Asynchronous write to non-pinned memory not supported");
- }
- // Staging buffer required
- vk_buffer& staging = ctx->device->sync_staging;
- const uint64_t copy_size = ts*ne/bs;
- ggml_vk_ensure_sync_staging_buffer(ctx->device, copy_size);
- VkBufferCopy buf_copy{ 0, offset, copy_size };
- ggml_vk_sync_buffers(ctx, subctx);
- vkCmdCopyBuffer(subctx->s->buffer, (VkBuffer)staging->buffer, (VkBuffer)dst->buffer, 1, &buf_copy);
- for (uint64_t i3 = 0; i3 < ne3; i3++) {
- for (uint64_t i2 = 0; i2 < ne2; i2++) {
- // Find longest contiguous slice
- if (ne1*nb1 == dstnb2) {
- deferred_memcpy((uint8_t *)staging->ptr + i3*dstnb3 + i2*dstnb2, (const uint8_t *) tensor->data + buf_offset + i3*nb3 + i2*nb2, dstnb2, &subctx->in_memcpys);
- } else {
- for (uint64_t i1 = 0; i1 < ne1; i1++) {
- if (ne0*nb0/bs == dstnb1) {
- deferred_memcpy((uint8_t *)staging->ptr + i3*dstnb3 + i2*dstnb2 + i1*dstnb1, (const uint8_t *) tensor->data + buf_offset + i3*nb3 + i2*nb2 + i1*nb1, dstnb1, &subctx->in_memcpys);
- } else {
- const uint64_t s_off = buf_offset + i3*nb3 + i2*nb2 + i1*nb1;
- const uint64_t d_off = i3*dstnb3 + i2*dstnb2 + i1*dstnb1;
- for (uint64_t i0 = 0; i0 < ne0; i0++) {
- deferred_memcpy((uint8_t *)staging->ptr + d_off + i0*dstnb0, (const uint8_t *) tensor->data + s_off + i0*nb0, dstnb0, &subctx->in_memcpys);
- }
- }
- }
- }
- }
- }
- }
- static void ggml_vk_buffer_write_2d_async(vk_context subctx, vk_buffer& dst, size_t offset, const void * src, size_t spitch, size_t width, size_t height, bool sync_staging = false) {
- VK_LOG_DEBUG("ggml_vk_buffer_write_2d_async(" << width << ", " << height << ")");
- // Buffer is already mapped
- if(dst->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible) {
- std::cerr << "ggml_vulkan: buffer_write_async dst buffer is host_visible. Use synchronous write." << std::endl;
- GGML_ABORT("fatal error");
- }
- // Check if src is pinned memory
- vk_buffer buf = nullptr;
- size_t buf_offset = 0;
- ggml_vk_host_get(dst->device, src, buf, buf_offset);
- if (buf != nullptr) {
- // Memory is pinned, use as staging buffer
- std::vector<vk::BufferCopy> slices(1);
- if (width == spitch) {
- // Only do single write if stride is equal
- slices[0].srcOffset = buf_offset;
- slices[0].dstOffset = offset;
- slices[0].size = width * height;
- } else {
- slices.resize(height);
- for (size_t i = 0; i < height; i++) {
- slices[i].srcOffset = buf_offset + i * spitch;
- slices[i].dstOffset = offset + i * width;
- slices[i].size = width;
- }
- }
- ggml_vk_sync_buffers(nullptr, subctx);
- subctx->s->buffer.copyBuffer(buf->buffer, dst->buffer, slices);
- return;
- }
- VK_LOG_DEBUG("STAGING");
- if (!sync_staging) {
- GGML_ABORT("Asynchronous write to non-pinned memory not supported");
- }
- // Staging buffer required
- const size_t copy_size = width*height;
- ggml_vk_ensure_sync_staging_buffer(dst->device, copy_size);
- vk_buffer& staging_buffer = dst->device->sync_staging;
- VkBufferCopy buf_copy = {
- 0,
- offset,
- copy_size};
- ggml_vk_sync_buffers(nullptr, subctx);
- vkCmdCopyBuffer(subctx->s->buffer, (VkBuffer)staging_buffer->buffer, (VkBuffer)dst->buffer, 1, &buf_copy);
- if (width == spitch) {
- deferred_memcpy((uint8_t *)staging_buffer->ptr, src, width * height, &subctx->in_memcpys);
- } else {
- for (size_t i = 0; i < height; i++) {
- deferred_memcpy((uint8_t *)staging_buffer->ptr + i * width, (const uint8_t *) src + i * spitch, width, &subctx->in_memcpys);
- }
- }
- }
- static void ggml_vk_buffer_write_async(vk_context subctx, vk_buffer& dst, size_t offset, const void * src, size_t size, bool sync_staging = false) {
- VK_LOG_DEBUG("ggml_vk_buffer_write_async(" << size << ")");
- return ggml_vk_buffer_write_2d_async(subctx, dst, offset, src, size, size, 1, sync_staging);
- }
- static void ggml_vk_buffer_write_2d(vk_buffer& dst, size_t offset, const void * src, size_t spitch, size_t width, size_t height) {
- VK_LOG_DEBUG("ggml_vk_buffer_write_2d(" << width << ", " << height << ")");
- // Buffer is already mapped
- if(dst->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible) {
- GGML_ASSERT(dst->memory_property_flags & vk::MemoryPropertyFlagBits::eHostCoherent);
- for (size_t i = 0; i < height; i++) {
- memcpy((uint8_t *)dst->ptr + offset + i * width, (const uint8_t *) src + i * spitch, width);
- }
- } else {
- std::lock_guard<std::recursive_mutex> guard(dst->device->mutex);
- vk_context subctx = ggml_vk_create_temporary_context(dst->device->transfer_queue.cmd_pool);
- ggml_vk_ctx_begin(dst->device, subctx);
- ggml_vk_buffer_write_2d_async(subctx, dst, offset, src, spitch, width, height, true);
- ggml_vk_ctx_end(subctx);
- for (auto& cpy : subctx->in_memcpys) {
- memcpy(cpy.dst, cpy.src, cpy.n);
- }
- for (auto& mset : subctx->memsets) {
- memset(mset.dst, mset.val, mset.n);
- }
- ggml_vk_submit(subctx, dst->device->fence);
- VK_CHECK(dst->device->device.waitForFences({ dst->device->fence }, true, UINT64_MAX), "vk_buffer_write_2d waitForFences");
- dst->device->device.resetFences({ dst->device->fence });
- ggml_vk_queue_command_pools_cleanup(dst->device);
- }
- }
- static void ggml_vk_buffer_write(vk_buffer& dst, size_t offset, const void * src, size_t size) {
- VK_LOG_DEBUG("ggml_vk_buffer_write(" << size << ")");
- ggml_vk_buffer_write_2d(dst, offset, src, 0, size, 1);
- }
- static bool ggml_vk_buffer_read_2d_async(vk_context subctx, vk_buffer& src, size_t offset, void * dst, size_t spitch, size_t dpitch, size_t width, size_t height, bool sync_staging = false) {
- VK_LOG_DEBUG("ggml_vk_buffer_read_2d_async(offset=" << offset << ", width=" << width << ", height=" << height << ")");
- GGML_ASSERT(width > 0);
- GGML_ASSERT(height > 0);
- GGML_ASSERT(src != nullptr);
- // TODO: staging_offset is not used
- // Check if dst is pinned memory
- vk_buffer buf = nullptr;
- size_t buf_offset = 0;
- ggml_vk_host_get(src->device, dst, buf, buf_offset);
- std::vector<vk::BufferCopy> slices(1);
- if (width == spitch && width == dpitch) {
- // Only do single write if stride is equal
- slices[0].srcOffset = offset;
- slices[0].dstOffset = buf_offset;
- slices[0].size = width * height;
- } else {
- slices.resize(height);
- for (size_t i = 0; i < height; i++) {
- slices[i].srcOffset = offset + i * spitch;
- slices[i].dstOffset = buf_offset + i * dpitch;
- slices[i].size = width;
- }
- }
- if (buf != nullptr) {
- // Memory is pinned, use as staging buffer
- ggml_vk_sync_buffers(nullptr, subctx);
- subctx->s->buffer.copyBuffer(src->buffer, buf->buffer, slices);
- return true;
- }
- VK_LOG_DEBUG("STAGING");
- if (!sync_staging) {
- // copy was not handled caller needs to fall back
- return false;
- }
- // Fall back to staging buffer
- const size_t copy_size = dpitch * height;
- ggml_vk_ensure_sync_staging_buffer(src->device, copy_size);
- vk_buffer& staging_buffer = src->device->sync_staging;
- ggml_vk_sync_buffers(nullptr, subctx);
- subctx->s->buffer.copyBuffer(src->buffer, staging_buffer->buffer, slices);
- deferred_memcpy(dst, staging_buffer->ptr, copy_size, &subctx->out_memcpys);
- return true;
- }
- static bool ggml_vk_buffer_read_async(vk_context subctx, vk_buffer& src, size_t offset, void * dst, size_t size, bool sync_staging = false) {
- return ggml_vk_buffer_read_2d_async(subctx, src, offset, dst, size, size, size, 1, sync_staging);
- }
- static void ggml_vk_buffer_read(vk_buffer& src, size_t offset, void * dst, size_t size) {
- VK_LOG_DEBUG("ggml_vk_buffer_read(" << src->buffer << ", " << offset << ", " << size << ")");
- // If the device is not an UMA device the memory is host-accessible through rebar. While writing
- // through PCIe is sufficient fast reading back data from PCIe is slower than going through
- // the HW device to host copy path.
- if(src->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible && src->device->uma) {
- GGML_ASSERT(src->memory_property_flags & vk::MemoryPropertyFlagBits::eHostCoherent);
- memcpy(dst, (uint8_t *) src->ptr + offset, size);
- } else {
- std::lock_guard<std::recursive_mutex> guard(src->device->mutex);
- vk_context subctx = ggml_vk_create_temporary_context(src->device->transfer_queue.cmd_pool);
- ggml_vk_ctx_begin(src->device, subctx);
- bool ret = ggml_vk_buffer_read_async(subctx, src, offset, dst, size, true);
- GGML_ASSERT(ret);
- ggml_vk_ctx_end(subctx);
- ggml_vk_submit(subctx, src->device->fence);
- VK_CHECK(src->device->device.waitForFences({ src->device->fence }, true, UINT64_MAX), "vk_buffer_read waitForFences");
- src->device->device.resetFences({ src->device->fence });
- ggml_vk_queue_command_pools_cleanup(src->device);
- for (auto& cpy : subctx->out_memcpys) {
- memcpy(cpy.dst, cpy.src, cpy.n);
- }
- }
- }
- static void ggml_vk_buffer_copy_async(vk_context& ctx, vk_buffer& dst, size_t dst_offset, vk_buffer& src, size_t src_offset, size_t size) {
- VK_LOG_DEBUG("ggml_vk_buffer_copy_async(" << size << ")");
- // Make sure both buffers are on same device
- GGML_ASSERT(src->device == dst->device);
- VkBufferCopy bc{ src_offset, dst_offset, size };
- vkCmdCopyBuffer(ctx->s->buffer, (VkBuffer)src->buffer, (VkBuffer)dst->buffer, 1, &bc);
- }
- static void ggml_vk_buffer_copy(vk_buffer& dst, size_t dst_offset, vk_buffer& src, size_t src_offset, size_t size) {
- if (src->device == dst->device) {
- std::lock_guard<std::recursive_mutex> guard(src->device->mutex);
- VK_LOG_DEBUG("ggml_vk_buffer_copy(SINGLE_DEVICE, " << size << ")");
- // Copy within the device
- vk_context subctx = ggml_vk_create_temporary_context(src->device->transfer_queue.cmd_pool);
- ggml_vk_ctx_begin(src->device, subctx);
- ggml_vk_buffer_copy_async(subctx, dst, dst_offset, src, src_offset, size);
- ggml_vk_ctx_end(subctx);
- ggml_vk_submit(subctx, src->device->fence);
- VK_CHECK(src->device->device.waitForFences({ src->device->fence }, true, UINT64_MAX), "vk_buffer_copy waitForFences");
- src->device->device.resetFences({ src->device->fence });
- ggml_vk_queue_command_pools_cleanup(src->device);
- } else {
- VK_LOG_DEBUG("ggml_vk_buffer_copy(MULTI_DEVICE, " << size << ")");
- // Copy device to device
- ggml_vk_ensure_sync_staging_buffer(src->device, size);
- // Copy to src staging buffer
- ggml_vk_buffer_copy(src->device->sync_staging, 0, src, src_offset, size);
- // Copy to dst buffer
- ggml_vk_buffer_write_2d(dst, dst_offset, src->device->sync_staging->ptr, 0, size, 1);
- }
- }
- static void ggml_vk_buffer_memset_async(vk_context& ctx, vk_buffer& dst, size_t offset, uint32_t c, size_t size) {
- VK_LOG_DEBUG("ggml_vk_buffer_memset_async(" << offset << ", " << c << ", " << size << ")");
- if (dst->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible &&
- dst->device->uma) {
- deferred_memset((uint8_t*)dst->ptr + offset, c, size, &ctx->memsets);
- return;
- }
- // Fall back to GPU fillBuffer for non-UMA or non-host-visible buffers
- ctx->s->buffer.fillBuffer(dst->buffer, offset, size, c);
- }
- static void ggml_vk_buffer_memset(vk_buffer& dst, size_t offset, uint32_t c, size_t size) {
- VK_LOG_DEBUG("ggml_vk_buffer_memset(" << offset << ", " << c << ", " << size << ")");
- if (dst->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible &&
- dst->device->uma) {
- memset((uint8_t*)dst->ptr + offset, c, size);
- return;
- }
- std::lock_guard<std::recursive_mutex> guard(dst->device->mutex);
- vk_context subctx = ggml_vk_create_temporary_context(dst->device->transfer_queue.cmd_pool);
- ggml_vk_ctx_begin(dst->device, subctx);
- subctx->s->buffer.fillBuffer(dst->buffer, offset, size, c);
- ggml_vk_ctx_end(subctx);
- ggml_vk_submit(subctx, dst->device->fence);
- VK_CHECK(dst->device->device.waitForFences({ dst->device->fence }, true, UINT64_MAX), "vk_memset waitForFences");
- dst->device->device.resetFences({ dst->device->fence });
- ggml_vk_queue_command_pools_cleanup(dst->device);
- }
- static uint32_t ggml_vk_guess_split_k(ggml_backend_vk_context * ctx, uint32_t m, uint32_t n, uint32_t k, bool disable_split_k, const vk_pipeline& pipeline) {
- VK_LOG_DEBUG("ggml_vk_guess_split_k(" << m << ", " << n << ", " << k << ", " << disable_split_k << ")");
- if (disable_split_k) {
- return 1;
- }
- uint32_t split_k = 1;
- if (ctx->device->shader_core_count != 0 && m >= pipeline->wg_denoms[0] && n >= pipeline->wg_denoms[1]) {
- // If k is 'large' and the SMs will fill less than halfway, use split_k.
- uint32_t m_tiles = CEIL_DIV(m, pipeline->wg_denoms[0]);
- uint32_t n_tiles = CEIL_DIV(n, pipeline->wg_denoms[1]);
- if (k >= 2048) {
- if (m_tiles * n_tiles <= ctx->device->shader_core_count / 2) {
- split_k = ctx->device->shader_core_count / (m_tiles * n_tiles);
- } else if (m_tiles * n_tiles <= ctx->device->shader_core_count * 2 / 3) {
- split_k = 3;
- }
- // Cap the split at 8x. Unless k is huge this is a lot of overhead.
- split_k = std::min(split_k, 8u);
- // ggml_vk_matmul will align the splits to be a multiple of 256.
- // If this rounded up size would cause the last split to be empty,
- // then reduce the split count.
- while (true) {
- if (split_k == 1) {
- break;
- }
- uint32_t k_split = CEIL_DIV(k, split_k);
- k_split = ROUNDUP_POW2(k_split, 256);
- if (k_split * (split_k - 1) < k) {
- break;
- }
- split_k--;
- }
- }
- }
- return split_k;
- }
- static vk_pipeline ggml_vk_guess_matmul_pipeline(ggml_backend_vk_context * ctx, vk_matmul_pipeline& mmp, uint32_t m, uint32_t n, bool aligned, ggml_type src0_type, ggml_type src1_type) {
- VK_LOG_DEBUG("ggml_vk_guess_matmul_pipeline(" << m << ", " << n << ", " << aligned << ", " << ggml_type_name(src0_type) << ", " << ggml_type_name(src1_type) << ")");
- if (ctx->device->coopmat2) {
- const uint32_t shader_core_count = ctx->device->shader_core_count;
- const uint32_t tiles_l = CEIL_DIV(m, mmp->a_l->wg_denoms[0]) * CEIL_DIV(n, mmp->a_l->wg_denoms[1]);
- const uint32_t tiles_m = CEIL_DIV(m, mmp->a_m->wg_denoms[0]) * CEIL_DIV(n, mmp->a_m->wg_denoms[1]);
- // Use large shader when the N dimension is greater than the medium shader's tile size
- uint32_t crossover_large = mmp->m->wg_denoms[1];
- // Prefer large over medium if either:
- // - medium or large tiles would overfill the GPU
- // - large tiles with a split_k==3 fits in the GPU and medium tiles with split_k==2 does not
- // (medium with split_k==2 is probably better if it fits - more workgroups running and less split_k overhead)
- bool prefer_large = tiles_m > shader_core_count || tiles_l > shader_core_count ||
- // split_k==3 with large tiles likely better than medium tiles with no split_k.
- (tiles_l <= shader_core_count / 3 && tiles_m > shader_core_count / 2);
- if ((ctx->device->mul_mat_l[src0_type] && (n > crossover_large && prefer_large)) || (!ctx->device->mul_mat_m[src0_type] && !ctx->device->mul_mat_s[src0_type])) {
- return aligned ? mmp->a_l : mmp->l;
- }
- // Use medium shader when the N dimension is greater than the small shader's tile size
- uint32_t crossover_medium = mmp->s->wg_denoms[1];
- if ((ctx->device->mul_mat_m[src0_type] && (n > crossover_medium)) || !ctx->device->mul_mat_s[src0_type]) {
- return aligned ? mmp->a_m : mmp->m;
- }
- return aligned ? mmp->a_s : mmp->s;
- }
- if ((ctx->device->mul_mat_s[src0_type] && (m <= 32 || n <= 32)) || (!ctx->device->mul_mat_m[src0_type] && !ctx->device->mul_mat_l[src0_type])) {
- return aligned ? mmp->a_s : mmp->s;
- }
- if ((ctx->device->mul_mat_m[src0_type] && (m <= 64 || n <= 64)) || !ctx->device->mul_mat_l[src0_type]) {
- return aligned ? mmp->a_m : mmp->m;
- }
- return aligned ? mmp->a_l : mmp->l;
- GGML_UNUSED(src1_type);
- }
- static uint32_t ggml_vk_guess_matmul_pipeline_align(ggml_backend_vk_context * ctx, vk_matmul_pipeline& mmp, int m, int n, ggml_type src0_type, ggml_type src1_type) {
- VK_LOG_DEBUG("ggml_vk_guess_matmul_pipeline_align(" << m << ", " << n << ", " << ggml_type_name(src0_type) << ", " << ggml_type_name(src1_type) << ")");
- return ggml_vk_guess_matmul_pipeline(ctx, mmp, m, n, true, src0_type, src1_type)->align;
- }
- static void ggml_vk_matmul(
- ggml_backend_vk_context * ctx, vk_context& subctx, vk_pipeline& pipeline,
- vk_subbuffer&& a, vk_subbuffer&& b, vk_subbuffer&& d, vk_subbuffer&& split_k_buffer,
- uint32_t m, uint32_t n, uint32_t k, uint32_t stride_a, uint32_t stride_b, uint32_t stride_d,
- uint32_t batch_stride_a, uint32_t batch_stride_b, uint32_t batch_stride_d,
- uint32_t split_k, uint32_t batch, uint32_t ne02, uint32_t ne12, uint32_t broadcast2, uint32_t broadcast3,
- uint32_t padded_n) {
- VK_LOG_DEBUG("ggml_vk_matmul(a: (" << a.buffer->buffer << ", " << a.offset << ", " << a.size << "), b: (" << b.buffer->buffer << ", " << b.offset << ", " << b.size << "), d: (" << d.buffer->buffer << ", " << d.offset << ", " << d.size << "), split_k: (" << (split_k_buffer.buffer != nullptr ? split_k_buffer.buffer->buffer : VK_NULL_HANDLE) << ", " << split_k_buffer.offset << ", " << split_k_buffer.size << "), m: " << m << ", n: " << n << ", k: " << k << ", stride_a: " << stride_a << ", stride_b: " << stride_b << ", stride_d: " << stride_d << ", batch_stride_a: " << batch_stride_a << ", batch_stride_b: " << batch_stride_b << ", batch_stride_d: " << batch_stride_d << ", split_k: " << split_k << ", batch: " << batch << ", ne02: " << ne02 << ", ne12: " << ne12 << ", broadcast2: " << broadcast2 << ", broadcast3: " << broadcast3 << ", padded_n: " << padded_n << ")");
- if (split_k == 1) {
- const vk_mat_mat_push_constants pc = { m, n, k, stride_a, stride_b, stride_d, batch_stride_a, batch_stride_b, batch_stride_d, k, ne02, ne12, broadcast2, broadcast3, padded_n };
- ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { a, b, d }, pc, { m, n, batch });
- return;
- }
- if (ctx->prealloc_split_k_need_sync) {
- ggml_vk_sync_buffers(ctx, subctx);
- }
- GGML_ASSERT(batch_stride_d == m * n);
- // Round the split size up to a multiple of 256 (k-quant alignment)
- uint32_t k_split = CEIL_DIV(k, split_k);
- k_split = ROUNDUP_POW2(k_split, 256);
- const vk_mat_mat_push_constants pc1 = { m, n, k, stride_a, stride_b, stride_d, batch_stride_a, batch_stride_b, batch_stride_d, k_split, ne02, ne12, broadcast2, broadcast3, padded_n };
- // Make sure enough workgroups get assigned for split k to work
- ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { a, b, split_k_buffer }, pc1, { (CEIL_DIV(m, pipeline->wg_denoms[0]) * pipeline->wg_denoms[0]) * split_k, n, batch });
- ggml_vk_sync_buffers(ctx, subctx);
- const std::array<uint32_t, 2> pc2 = { (uint32_t)(m * n * batch), split_k };
- ggml_vk_dispatch_pipeline(ctx, subctx, ctx->device->pipeline_matmul_split_k_reduce, { split_k_buffer, d }, pc2, { m * n * batch, 1, 1 });
- ctx->prealloc_split_k_need_sync = true;
- }
- static vk_pipeline ggml_vk_guess_matmul_id_pipeline(ggml_backend_vk_context * ctx, vk_matmul_pipeline& mmp, uint32_t m, uint32_t n, bool aligned, ggml_type src0_type) {
- VK_LOG_DEBUG("ggml_vk_guess_matmul_id_pipeline(" << m << ", " << n << ", " << aligned << ", " << ggml_type_name(src0_type) << ")");
- if (ctx->device->coopmat2) {
- // Use large shader when the N dimension is greater than the medium shader's tile size
- uint32_t crossover_large = mmp->m->wg_denoms[1];
- if ((ctx->device->mul_mat_id_l[src0_type] && (n > crossover_large)) || (!ctx->device->mul_mat_id_m[src0_type] && !ctx->device->mul_mat_id_s[src0_type])) {
- return aligned ? mmp->a_l : mmp->l;
- }
- // Use medium shader when the N dimension is greater than the small shader's tile size
- uint32_t crossover_medium = mmp->s->wg_denoms[1];
- if ((ctx->device->mul_mat_id_m[src0_type] && (n > crossover_medium)) || !ctx->device->mul_mat_id_s[src0_type]) {
- return aligned ? mmp->a_m : mmp->m;
- }
- return aligned ? mmp->a_s : mmp->s;
- }
- if ((ctx->device->mul_mat_id_s[src0_type] && (m <= 32 || n <= 32)) || (!ctx->device->mul_mat_id_m[src0_type] && !ctx->device->mul_mat_id_l[src0_type])) {
- return aligned ? mmp->a_s : mmp->s;
- }
- if ((ctx->device->mul_mat_id_m[src0_type] && (m <= 64 || n <= 64)) || !ctx->device->mul_mat_id_l[src0_type]) {
- return aligned ? mmp->a_m : mmp->m;
- }
- return aligned ? mmp->a_l : mmp->l;
- }
- static uint32_t ggml_vk_guess_matmul_id_pipeline_align(ggml_backend_vk_context * ctx, vk_matmul_pipeline& mmp, int m, int n, ggml_type src0_type) {
- VK_LOG_DEBUG("ggml_vk_guess_matmul_pipeline_align(" << m << ", " << n << ", " << ggml_type_name(src0_type) << ")");
- return ggml_vk_guess_matmul_id_pipeline(ctx, mmp, m, n, true, src0_type)->align;
- }
- static void ggml_vk_matmul_id(
- ggml_backend_vk_context * ctx, vk_context& subctx, vk_pipeline& pipeline,
- vk_subbuffer&& a, vk_subbuffer&& b, vk_subbuffer&& d, vk_subbuffer&& ids,
- uint32_t m, uint32_t n, uint32_t k, uint32_t stride_a, uint32_t stride_b, uint32_t stride_d,
- uint32_t batch_stride_a, uint32_t batch_stride_b, uint32_t batch_stride_d,
- uint32_t n_as, uint32_t nei0, uint32_t nei1, uint32_t nbi1, uint32_t ne11,
- uint32_t padded_n) {
- VK_LOG_DEBUG("ggml_vk_matmul_id(a: (" << a.buffer->buffer << ", " << a.offset << ", " << a.size << "), b: (" << b.buffer->buffer << ", " << b.offset << ", " << b.size << "), d: (" << d.buffer->buffer << ", " << d.offset << ", " << d.size << "), ids: (" << ids.buffer->buffer << ", " << ids.offset << ", " << ids.size << "), " <<
- "m: " << m << ", n: " << n << ", k: " << k << ", stride_a: " << stride_a << ", stride_b: " << stride_b << ", stride_d: " << stride_d << ", " <<
- "batch_stride_a: " << batch_stride_a << ", batch_stride_b: " << batch_stride_b << ", batch_stride_d: " << batch_stride_d << ", " <<
- "n_as: " << n_as << ", nei0: " << nei0 << ", nei1: " << nei1 << ", nbi1: " << nbi1 << ", ne11: " << ne11 << ")");
- const vk_mat_mat_id_push_constants pc = { m, n, k, stride_a, stride_b, stride_d, batch_stride_a, batch_stride_b, batch_stride_d,
- nei0, nei1, nbi1, ne11, padded_n };
- ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { a, b, d, ids }, pc, { m, nei1, n_as });
- }
- static bool ggml_vk_dim01_contiguous(const ggml_tensor * tensor) {
- return
- tensor->nb[0] == ggml_type_size(tensor->type) &&
- tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
- (tensor->ne[3] == 1 || tensor->nb[3] == tensor->nb[2]*tensor->ne[2]);
- }
- static vk_pipeline ggml_vk_get_cpy_pipeline(ggml_backend_vk_context * ctx, const ggml_tensor * src, const ggml_tensor * dst, ggml_type to) {
- // Choose "contiguous copy" shader if src/dst are contiguous
- bool contig = ggml_is_contiguous(src) && (!dst || ggml_is_contiguous(dst));
- // Use optimized "transpose" shader if src dim1 is the innermost dimension.
- bool transpose = dst && src->nb[1] == ggml_type_size(to) && ggml_are_same_shape(dst, src);
- if (transpose && src->type == to) {
- if (ggml_type_size(to) == 4) {
- return ctx->device->pipeline_cpy_transpose_32;
- } else if (ggml_type_size(to) == 2) {
- return ctx->device->pipeline_cpy_transpose_16;
- }
- }
- if (src->type == GGML_TYPE_F32 && to == GGML_TYPE_F32) {
- if (contig) {
- return ctx->device->pipeline_contig_cpy_f32_f32;
- } else {
- return ctx->device->pipeline_cpy_f32_f32;
- }
- }
- if (src->type == GGML_TYPE_F32 && to == GGML_TYPE_F16) {
- if (contig) {
- return ctx->device->pipeline_contig_cpy_f32_f16;
- } else {
- return ctx->device->pipeline_cpy_f32_f16;
- }
- }
- if (src->type == GGML_TYPE_F16 && to == GGML_TYPE_F16) {
- if (contig) {
- return ctx->device->pipeline_contig_cpy_f16_f16;
- } else {
- return ctx->device->pipeline_cpy_f16_f16;
- }
- }
- if (src->type == GGML_TYPE_F16 && to == GGML_TYPE_F32) {
- if (contig) {
- return ctx->device->pipeline_contig_cpy_f16_f32;
- } else {
- return ctx->device->pipeline_cpy_f16_f32;
- }
- }
- if (src->type == GGML_TYPE_F32 && to == GGML_TYPE_BF16) {
- if (contig) {
- return ctx->device->pipeline_contig_cpy_f32_bf16;
- } else {
- return ctx->device->pipeline_cpy_f32_bf16;
- }
- }
- if (src->type == GGML_TYPE_F32 && to == GGML_TYPE_I32) {
- if (contig) {
- return ctx->device->pipeline_contig_cpy_f32_i32;
- } else {
- return ctx->device->pipeline_cpy_f32_i32;
- }
- }
- if (src->type == GGML_TYPE_I32 && to == GGML_TYPE_F32) {
- if (contig) {
- return ctx->device->pipeline_contig_cpy_i32_f32;
- } else {
- return ctx->device->pipeline_cpy_i32_f32;
- }
- }
- if (src->type == GGML_TYPE_F32) {
- switch (to) {
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_IQ4_NL:
- return ctx->device->pipeline_cpy_f32_quant[to];
- default:
- break;
- }
- }
- if (to == GGML_TYPE_F32) {
- switch (src->type) {
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_IQ4_NL:
- return ctx->device->pipeline_cpy_quant_f32[src->type];
- default:
- break;
- }
- }
- if (src->type == to) {
- // Copy two or four bytes at a time, depending on block size.
- // For quantized types, we scale by block size/type size. But
- // this path is also used for bf16->bf16 for example, where the
- // type size must be exactly 2 or 4.
- GGML_ASSERT(ggml_is_quantized(to) || ggml_type_size(src->type) == 2 || ggml_type_size(src->type) == 4);
- if ((ggml_type_size(src->type) % 4) == 0) {
- if (contig) {
- return ctx->device->pipeline_contig_cpy_f32_f32;
- } else {
- return ctx->device->pipeline_cpy_f32_f32;
- }
- } else {
- if (contig) {
- return ctx->device->pipeline_contig_cpy_f16_f16;
- } else {
- return ctx->device->pipeline_cpy_f16_f16;
- }
- }
- }
- std::cerr << "Missing CPY op for types: " << ggml_type_name(src->type) << " " << ggml_type_name(to) << std::endl;
- GGML_ABORT("fatal error");
- }
- static void ggml_vk_cpy_to_contiguous(ggml_backend_vk_context * ctx, vk_context& subctx, vk_pipeline pipeline, const ggml_tensor * tensor, const vk_subbuffer & in, const vk_subbuffer & out) {
- VK_LOG_DEBUG("ggml_vk_cpy_to_contiguous((" << tensor << ", type=" << tensor->type << ", ne0=" << tensor->ne[0] << ", ne1=" << tensor->ne[1] << ", ne2=" << tensor->ne[2] << ", ne3=" << tensor->ne[3] << ", nb0=" << tensor->nb[0] << ", nb1=" << tensor->nb[1] << ", nb2=" << tensor->nb[2] << ", nb3=" << tensor->nb[3] << "), ";
- std::cerr << "buffer in size=" << in.buffer->size << ", buffer out size=" << out.buffer->size << ")");
- const int tensor_type_size = ggml_type_size(tensor->type);
- const uint32_t ne = ggml_nelements(tensor);
- std::array<uint32_t, 3> elements;
- if (ne > 262144) {
- elements = { 512, 512, CEIL_DIV(ne, 262144) };
- } else if (ne > 512) {
- elements = { 512, CEIL_DIV(ne, 512), 1 };
- } else {
- elements = { ne, 1, 1 };
- }
- vk_op_unary_push_constants pc = {
- (uint32_t)ne,
- (uint32_t)tensor->ne[0], (uint32_t)tensor->ne[1], (uint32_t)tensor->ne[2], (uint32_t)tensor->ne[3], (uint32_t)tensor->nb[0] / tensor_type_size, (uint32_t)tensor->nb[1] / tensor_type_size, (uint32_t)tensor->nb[2] / tensor_type_size, (uint32_t)tensor->nb[3] / tensor_type_size,
- (uint32_t)tensor->ne[0], (uint32_t)tensor->ne[1], (uint32_t)tensor->ne[2], (uint32_t)tensor->ne[3], 1 , (uint32_t)tensor->ne[0] , (uint32_t)(tensor->ne[0] * tensor->ne[1]) , (uint32_t)(tensor->ne[0] * tensor->ne[1] * tensor->ne[2]),
- 0,
- 0.0f, 0.0f,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- };
- init_pushconst_fastdiv(pc);
- ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { in, out }, pc, elements);
- ggml_vk_sync_buffers(ctx, subctx);
- }
- static vk_pipeline ggml_vk_get_quantize_pipeline(ggml_backend_vk_context * ctx, ggml_type type) {
- switch(type) {
- case GGML_TYPE_Q8_1:
- return ctx->device->pipeline_quantize_q8_1_x4;
- default:
- std::cerr << "Missing quantize pipeline for type: " << ggml_type_name(type) << std::endl;
- GGML_ABORT("fatal error");
- }
- }
- static void ggml_vk_quantize_q8_1(ggml_backend_vk_context * ctx, vk_context& subctx, const vk_subbuffer & in, const vk_subbuffer & out, uint32_t ne) {
- VK_LOG_DEBUG("ggml_vk_quantize_q8_1(" << "buffer in size=" << in.buffer->size << ", buffer out size=" << out.buffer->size << ", " << ne << ")");
- vk_pipeline pipeline = ggml_vk_get_quantize_pipeline(ctx, GGML_TYPE_Q8_1);
- ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { in, out }, std::array<uint32_t, 1>{ne}, { ne, 1, 1 });
- ggml_vk_sync_buffers(ctx, subctx);
- }
- static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool disable_split_k) {
- VK_LOG_DEBUG("ggml_vk_mul_mat_q_f16((" << src0 << ", name=" << src0->name << ", type=" << ggml_type_name(src0->type) << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
- std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << ggml_type_name(src1->type) << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
- std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << ggml_type_name(dst->type) << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3];
- std::cerr << "))");
- GGML_ASSERT(ggml_vk_dim01_contiguous(src0) || src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_BF16); // NOLINT
- GGML_ASSERT(ggml_vk_dim01_contiguous(src1) || src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16); // NOLINT
- const uint64_t ne00 = src0->ne[0];
- const uint64_t ne01 = src0->ne[1];
- const uint64_t ne02 = src0->ne[2];
- const uint64_t ne03 = src0->ne[3];
- const uint64_t ne10 = src1->ne[0];
- const uint64_t ne11 = src1->ne[1];
- const uint64_t ne12 = src1->ne[2];
- const uint64_t ne13 = src1->ne[3];
- const uint64_t ne21 = dst->ne[1];
- const uint32_t stride_d = dst->nb[1] / ggml_type_size(dst->type);
- const uint32_t stride_batch_d = stride_d*ne21;
- const uint64_t r2 = ne12 / ne02;
- const uint64_t r3 = ne13 / ne03;
- ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context;
- ggml_backend_vk_buffer_context * src0_buf_ctx = (ggml_backend_vk_buffer_context *)src0->buffer->context;
- ggml_backend_vk_buffer_context * src1_buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context;
- vk_buffer d_Qx = nullptr;
- size_t qx_buf_offset = 0;
- vk_buffer d_Qy = nullptr;
- size_t qy_buf_offset = 0;
- bool src0_uma = false;
- bool src1_uma = false;
- if (ctx->device->uma) {
- ggml_vk_host_get(ctx->device, src0->data, d_Qx, qx_buf_offset);
- ggml_vk_host_get(ctx->device, src1->data, d_Qy, qy_buf_offset);
- src0_uma = d_Qx != nullptr;
- src1_uma = d_Qy != nullptr;
- }
- // Reformat and convert to fp16 if non-contiguous, or for coopmat2 for better perf
- const bool x_non_contig = (ctx->device->coopmat2 && src0->type == GGML_TYPE_F32) ||
- !ggml_vk_dim01_contiguous(src0);
- const bool y_non_contig = (ctx->device->coopmat2 && src1->type == GGML_TYPE_F32) ||
- (src0->type == GGML_TYPE_BF16 && src1->type != GGML_TYPE_BF16) ||
- !ggml_vk_dim01_contiguous(src1);
- // If src0 is BF16, try to use a BF16 x BF16 multiply
- ggml_type f16_type = src0->type == GGML_TYPE_BF16 ? GGML_TYPE_BF16 : GGML_TYPE_F16;
- const bool y_f32_kernel = src1->type == GGML_TYPE_F32 && !y_non_contig;
- bool quantize_y = ctx->device->integer_dot_product && src1->type == GGML_TYPE_F32 && ggml_is_contiguous(src1) && !y_non_contig && (ne11 * ne10) % 4 == 0;
- // Check for mmq first
- vk_matmul_pipeline mmp = quantize_y ? ggml_vk_get_mul_mat_mat_pipeline(ctx, src0->type, GGML_TYPE_Q8_1, (ggml_prec)dst->op_params[0]) : nullptr;
- if (mmp == nullptr) {
- // Fall back to f16 dequant mul mat
- mmp = ggml_vk_get_mul_mat_mat_pipeline(ctx, src0->type, y_non_contig ? f16_type : src1->type, (ggml_prec)dst->op_params[0]);
- quantize_y = false;
- }
- const bool qx_needs_dequant = mmp == nullptr || x_non_contig;
- const bool qy_needs_dequant = !quantize_y && ((src1->type != f16_type && !y_f32_kernel) || y_non_contig);
- if (qx_needs_dequant) {
- // Fall back to dequant + f16 mulmat
- mmp = ggml_vk_get_mul_mat_mat_pipeline(ctx, f16_type, y_f32_kernel ? GGML_TYPE_F32 : f16_type, (ggml_prec)dst->op_params[0]);
- }
- // Not implemented
- GGML_ASSERT(y_non_contig || !qy_needs_dequant); // NOLINT
- const uint32_t kpad = quantize_y ? 0 : ggml_vk_align_size(ne10, ggml_vk_guess_matmul_pipeline_align(ctx, mmp, ne01, ne11, qx_needs_dequant ? f16_type : src0->type, quantize_y ? GGML_TYPE_Q8_1 : (y_f32_kernel ? GGML_TYPE_F32 : src1->type)));
- const bool aligned = !quantize_y && ne10 == kpad && ne01 > 8 && ne11 > 8;
- vk_pipeline pipeline = ggml_vk_guess_matmul_pipeline(ctx, mmp, ne01, ne11, aligned, qx_needs_dequant ? f16_type : src0->type, quantize_y ? GGML_TYPE_Q8_1 : (y_f32_kernel ? GGML_TYPE_F32 : src1->type));
- // Reserve extra storage in the N dimension for the Y matrix, so we can avoid bounds-checking
- uint32_t padded_n = qy_needs_dequant ? ROUNDUP_POW2(ne11, pipeline->wg_denoms[1]) : ne11;
- const uint64_t x_ne = ggml_nelements(src0);
- // 128 elements per Q8_1 x4 block
- const uint64_t y_ne = padded_n * ne10 * ne12 * ne13;
- const uint64_t d_ne = ggml_nelements(dst);
- const uint32_t split_k = ggml_vk_guess_split_k(ctx, ne01, ne11, ne10, disable_split_k, pipeline);
- const uint64_t qx_sz = ggml_type_size(src0->type) * x_ne / ggml_blck_size(src0->type);
- const uint64_t qy_sz = ggml_type_size(src1->type) * y_ne / ggml_blck_size(src1->type);
- const uint64_t x_sz = !qx_needs_dequant ? qx_sz : sizeof(ggml_fp16_t) * x_ne;
- const uint64_t y_sz = quantize_y ? (ggml_vk_align_size(y_ne, 128) * ggml_type_size(GGML_TYPE_Q8_1) / ggml_blck_size(GGML_TYPE_Q8_1)) : (y_f32_kernel ? sizeof(float) * y_ne : sizeof(ggml_fp16_t) * y_ne);
- const uint64_t d_sz = sizeof(float) * d_ne;
- vk_pipeline to_fp16_vk_0 = nullptr;
- vk_pipeline to_fp16_vk_1 = nullptr;
- vk_pipeline to_q8_1 = nullptr;
- if (x_non_contig) {
- to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0, nullptr, f16_type);
- } else {
- to_fp16_vk_0 = ggml_vk_get_to_fp16(ctx, src0->type);
- }
- if (y_non_contig) {
- to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1, nullptr, f16_type);
- } else {
- to_fp16_vk_1 = ggml_vk_get_to_fp16(ctx, src1->type);
- }
- GGML_ASSERT(!qx_needs_dequant || to_fp16_vk_0 != nullptr); // NOLINT
- GGML_ASSERT(!qy_needs_dequant || to_fp16_vk_1 != nullptr); // NOLINT
- if (quantize_y) {
- to_q8_1 = ggml_vk_get_quantize_pipeline(ctx, GGML_TYPE_Q8_1);
- }
- {
- const uint64_t split_k_size = split_k > 1 ? d_sz * split_k : 0;
- if (
- (qx_needs_dequant && x_sz > ctx->device->properties.limits.maxStorageBufferRange) ||
- (qy_needs_dequant && y_sz > ctx->device->properties.limits.maxStorageBufferRange) ||
- (split_k > 1 && split_k_size > ctx->device->properties.limits.maxStorageBufferRange)) {
- GGML_ABORT("Requested preallocation size is too large");
- }
- if (qx_needs_dequant && ctx->prealloc_size_x < x_sz) {
- ctx->prealloc_size_x = x_sz;
- ggml_vk_preallocate_buffers(ctx, subctx);
- }
- if ((qy_needs_dequant || quantize_y) && ctx->prealloc_size_y < y_sz) {
- ctx->prealloc_size_y = y_sz;
- ggml_vk_preallocate_buffers(ctx, subctx);
- }
- if (split_k > 1 && ctx->prealloc_size_split_k < split_k_size) {
- ctx->prealloc_size_split_k = split_k_size;
- ggml_vk_preallocate_buffers(ctx, subctx);
- }
- // Request descriptor sets
- ggml_pipeline_request_descriptor_sets(ctx, pipeline, 1);
- if (qx_needs_dequant) {
- ggml_pipeline_request_descriptor_sets(ctx, to_fp16_vk_0, 1);
- }
- if (qy_needs_dequant) {
- ggml_pipeline_request_descriptor_sets(ctx, to_fp16_vk_1, 1);
- }
- if (quantize_y) {
- ggml_pipeline_request_descriptor_sets(ctx, to_q8_1, 1);
- }
- if (split_k > 1) {
- ggml_pipeline_request_descriptor_sets(ctx, ctx->device->pipeline_matmul_split_k_reduce, 1);
- }
- }
- vk_buffer d_D = dst_buf_ctx->dev_buffer;
- const uint64_t d_buf_offset = vk_tensor_offset(dst) + dst->view_offs;
- GGML_ASSERT(d_D != nullptr);
- GGML_ASSERT(d_D->size >= d_buf_offset + d_sz);
- vk_buffer d_X;
- uint64_t x_buf_offset = 0;
- vk_buffer d_Y;
- uint64_t y_buf_offset = 0;
- if (!src0_uma) {
- d_Qx = src0_buf_ctx->dev_buffer;
- qx_buf_offset = vk_tensor_offset(src0) + src0->view_offs;
- GGML_ASSERT(d_Qx != nullptr);
- }
- if (!src1_uma) {
- d_Qy = src1_buf_ctx->dev_buffer;
- qy_buf_offset = vk_tensor_offset(src1) + src1->view_offs;
- GGML_ASSERT(d_Qy != nullptr);
- }
- if (qx_needs_dequant) {
- d_X = ctx->prealloc_x;
- GGML_ASSERT(d_X->size >= x_sz);
- } else {
- d_X = d_Qx;
- x_buf_offset = qx_buf_offset;
- GGML_ASSERT(qx_sz == x_sz);
- }
- if (qy_needs_dequant) {
- d_Y = ctx->prealloc_y;
- GGML_ASSERT(d_Y->size >= y_sz);
- } else if (quantize_y) {
- d_Y = ctx->prealloc_y;
- GGML_ASSERT(d_Y->size >= CEIL_DIV(y_sz, 144) * 144);
- } else {
- d_Y = d_Qy;
- y_buf_offset = qy_buf_offset;
- GGML_ASSERT(qy_sz == y_sz);
- }
- if (x_non_contig || qx_needs_dequant) {
- if (ctx->prealloc_x_need_sync) {
- ggml_vk_sync_buffers(ctx, subctx);
- }
- }
- if (x_non_contig) {
- ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_0, src0, ggml_vk_subbuffer(ctx, d_Qx, qx_buf_offset), ggml_vk_subbuffer(ctx, d_X, 0));
- } else if (qx_needs_dequant) {
- const std::vector<uint32_t> pc = { (uint32_t)ne01, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)(ggml_nelements(src0)) };
- ggml_vk_dispatch_pipeline(ctx, subctx, to_fp16_vk_0, { vk_subbuffer{ d_Qx, qx_buf_offset, qx_sz }, vk_subbuffer{ d_X, 0, x_sz } }, pc, { (uint32_t)(x_ne), 1, 1});
- ggml_vk_sync_buffers(ctx, subctx);
- }
- if (y_non_contig) {
- if (ctx->prealloc_y_last_pipeline_used != to_fp16_vk_1.get() ||
- ctx->prealloc_y_last_tensor_used != src1) {
- if (ctx->prealloc_y_need_sync) {
- ggml_vk_sync_buffers(ctx, subctx);
- }
- ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, ggml_vk_subbuffer(ctx, d_Qy, qy_buf_offset), ggml_vk_subbuffer(ctx, d_Y, 0));
- ctx->prealloc_y_last_pipeline_used = to_fp16_vk_1.get();
- ctx->prealloc_y_last_tensor_used = src1;
- }
- }
- if (quantize_y) {
- if (ctx->prealloc_y_last_pipeline_used != to_q8_1.get() ||
- ctx->prealloc_y_last_tensor_used != src1) {
- if (ctx->prealloc_y_need_sync) {
- ggml_vk_sync_buffers(ctx, subctx);
- }
- ggml_vk_quantize_q8_1(ctx, subctx, ggml_vk_subbuffer(ctx, d_Qy, qy_buf_offset), ggml_vk_subbuffer(ctx, d_Y, 0), y_ne);
- ctx->prealloc_y_last_pipeline_used = to_q8_1.get();
- ctx->prealloc_y_last_tensor_used = src1;
- }
- }
- uint32_t stride_batch_x = ne00*ne01;
- uint32_t stride_batch_y = ne10*ne11;
- if (!ggml_vk_dim01_contiguous(src0) && !qx_needs_dequant) {
- stride_batch_x = src0->nb[0] / ggml_type_size(src0->type);
- }
- if (!ggml_vk_dim01_contiguous(src1) && !qy_needs_dequant && !quantize_y) {
- stride_batch_y = src1->nb[0] / ggml_type_size(src1->type);
- }
- // compute
- ggml_vk_matmul(
- ctx, subctx, pipeline,
- { d_X, x_buf_offset, x_sz }, { d_Y, y_buf_offset, y_sz },
- ggml_vk_subbuffer(ctx, d_D, d_buf_offset), { ctx->prealloc_split_k, 0, d_sz * split_k },
- ne01, ne11, ne10,
- ne10, ne10, stride_d, stride_batch_x, stride_batch_y, stride_batch_d,
- split_k, ne12*ne13, ne02, ne12, r2, r3, padded_n
- ); // NOLINT
- if (x_non_contig || qx_needs_dequant) {
- ctx->prealloc_x_need_sync = true;
- }
- if (y_non_contig || quantize_y) {
- ctx->prealloc_y_need_sync = true;
- }
- }
- // Device tuning
- static bool ggml_vk_should_use_mmvq(const vk_device& device, uint32_t m, uint32_t n, uint32_t k, ggml_type src0_type) {
- if (device->mmvq_mode == 1) {
- return true;
- } else if (device->mmvq_mode == -1) {
- return false;
- }
- // MMVQ is generally good for batches
- if (n > 1) {
- return true;
- }
- switch (device->vendor_id) {
- case VK_VENDOR_ID_NVIDIA:
- switch (src0_type) {
- case GGML_TYPE_Q8_0:
- return device->architecture == vk_device_architecture::NVIDIA_PRE_TURING;
- default:
- return true;
- }
- case VK_VENDOR_ID_AMD:
- switch (src0_type) {
- case GGML_TYPE_Q8_0:
- return device->architecture == vk_device_architecture::AMD_GCN;
- default:
- return true;
- }
- case VK_VENDOR_ID_INTEL:
- switch (src0_type) {
- // From tests on A770 Linux, may need more tuning
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q5_1:
- return false;
- default:
- return true;
- }
- default:
- return true;
- }
- GGML_UNUSED(m);
- GGML_UNUSED(k);
- }
- static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context& subctx, const struct ggml_cgraph * cgraph, int node_idx) {
- ggml_tensor * dst = cgraph->nodes[node_idx];
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- VK_LOG_DEBUG("ggml_vk_mul_mat_vec_q_f16((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
- std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
- std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3];
- std::cerr << ")),)");
- GGML_ASSERT(ggml_vk_dim01_contiguous(src0) || src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_BF16); // NOLINT
- GGML_ASSERT(ggml_vk_dim01_contiguous(src1) || src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16); // NOLINT
- const uint64_t ne00 = src0->ne[0];
- const uint64_t ne01 = src0->ne[1];
- const uint64_t ne02 = src0->ne[2];
- const uint64_t ne03 = src0->ne[3];
- const uint64_t ne10 = src1->ne[0];
- const uint64_t ne11 = src1->ne[1];
- const uint64_t ne12 = src1->ne[2];
- const uint64_t ne13 = src1->ne[3];
- const uint64_t ne20 = dst->ne[0];
- const uint64_t ne21 = dst->ne[1];
- // const uint64_t ne22 = dst->ne[2];
- // const uint64_t ne23 = dst->ne[3];
- const uint64_t r2 = ne12 / ne02;
- const uint64_t r3 = ne13 / ne03;
- // batch_n indicates that we need to compute a few vector results, and this assumes
- // ne12 and ne13 are 1. It overloads the batch_strides to hold the row strides.
- GGML_ASSERT(ne11 == 1 || ne12 * ne13 == 1);
- bool batch_n = ne11 > 1;
- const bool x_non_contig = !ggml_vk_dim01_contiguous(src0);
- const bool y_non_contig = !ggml_vk_dim01_contiguous(src1);
- const bool f16_f32_kernel = src1->type == GGML_TYPE_F32;
- bool quantize_y = ctx->device->integer_dot_product && src1->type == GGML_TYPE_F32 && ggml_is_contiguous(src1) && !y_non_contig && (ne11 * ne10) % 4 == 0 && ggml_vk_should_use_mmvq(ctx->device, ne01, ne11, ne10, src0->type);
- vk_pipeline to_fp16_vk_0 = nullptr;
- vk_pipeline to_fp16_vk_1 = nullptr;
- if (x_non_contig) {
- to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0, nullptr, src0->type);
- }
- if (y_non_contig) {
- to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1, nullptr, src1->type);
- } else {
- to_fp16_vk_1 = ggml_vk_get_to_fp16(ctx, src1->type);
- }
- // Check for mmq first
- vk_pipeline dmmv = quantize_y ? ggml_vk_get_dequantize_mul_mat_vec(ctx, src0->type, GGML_TYPE_Q8_1, ne11, ne20, ne00) : nullptr;
- vk_pipeline to_q8_1 = nullptr;
- if (dmmv == nullptr) {
- // Fall back to f16 dequant mul mat
- dmmv = ggml_vk_get_dequantize_mul_mat_vec(ctx, src0->type, src1->type, ne11, ne20, ne00);
- quantize_y = false;
- }
- if (quantize_y) {
- to_q8_1 = ggml_vk_get_quantize_pipeline(ctx, GGML_TYPE_Q8_1);
- }
- const bool qx_needs_dequant = x_non_contig;
- const bool qy_needs_dequant = !quantize_y && ((src1->type != GGML_TYPE_F16 && !f16_f32_kernel) || y_non_contig);
- // Not implemented
- GGML_ASSERT(y_non_contig || !qy_needs_dequant); // NOLINT
- GGML_ASSERT(!qx_needs_dequant || to_fp16_vk_0 != nullptr); // NOLINT
- GGML_ASSERT(!qy_needs_dequant || to_fp16_vk_1 != nullptr); // NOLINT
- GGML_ASSERT(dmmv != nullptr);
- const uint64_t x_ne = ggml_nelements(src0);
- const uint64_t y_ne = ggml_nelements(src1);
- const uint64_t qx_sz = ggml_vk_align_size(ggml_type_size(src0->type) * x_ne / ggml_blck_size(src0->type), ctx->device->properties.limits.minStorageBufferOffsetAlignment);
- const uint64_t x_sz = x_non_contig ? ggml_vk_align_size(ggml_type_size(src0->type) * x_ne, ctx->device->properties.limits.minStorageBufferOffsetAlignment) : qx_sz;
- const uint64_t y_sz = quantize_y ? (ggml_vk_align_size(y_ne, 128) * ggml_type_size(GGML_TYPE_Q8_1) / ggml_blck_size(GGML_TYPE_Q8_1)) :
- (f16_f32_kernel ? sizeof(float) * y_ne : sizeof(ggml_fp16_t) * y_ne);
- {
- if (
- (qx_needs_dequant && x_sz > ctx->device->properties.limits.maxStorageBufferRange) ||
- (qy_needs_dequant && y_sz > ctx->device->properties.limits.maxStorageBufferRange)) {
- GGML_ABORT("Requested preallocation size is too large");
- }
- if (qx_needs_dequant && ctx->prealloc_size_x < x_sz) {
- ctx->prealloc_size_x = x_sz;
- ggml_vk_preallocate_buffers(ctx, subctx);
- }
- if ((qy_needs_dequant || quantize_y) && ctx->prealloc_size_y < y_sz) {
- ctx->prealloc_size_y = y_sz;
- ggml_vk_preallocate_buffers(ctx, subctx);
- }
- // Request descriptor sets
- if (qx_needs_dequant) {
- ggml_pipeline_request_descriptor_sets(ctx, to_fp16_vk_0, 1);
- }
- if (qy_needs_dequant) {
- ggml_pipeline_request_descriptor_sets(ctx, to_fp16_vk_1, 1);
- }
- if (quantize_y) {
- ggml_pipeline_request_descriptor_sets(ctx, to_q8_1, 1);
- }
- ggml_pipeline_request_descriptor_sets(ctx, dmmv, 1);
- }
- vk_subbuffer d_D = ggml_vk_tensor_subbuffer(ctx, cgraph->nodes[node_idx + ctx->num_additional_fused_ops]);
- vk_subbuffer d_Qx = ggml_vk_tensor_subbuffer(ctx, src0);
- vk_subbuffer d_Qy = ggml_vk_tensor_subbuffer(ctx, src1);
- vk_subbuffer d_X, d_Y;
- if (qx_needs_dequant) {
- d_X = { ctx->prealloc_x, 0, ctx->prealloc_x->size };
- } else {
- d_X = d_Qx;
- GGML_ASSERT(qx_sz == x_sz);
- }
- if (qy_needs_dequant || quantize_y) {
- d_Y = { ctx->prealloc_y, 0, ctx->prealloc_y->size };
- } else {
- d_Y = d_Qy;
- }
- if (x_non_contig) {
- if (ctx->prealloc_x_need_sync) {
- ggml_vk_sync_buffers(ctx, subctx);
- }
- GGML_ASSERT(x_sz == ggml_vk_align_size(ggml_type_size(src0->type) * x_ne, ctx->device->properties.limits.minStorageBufferOffsetAlignment));
- ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_0, src0, d_Qx, d_X);
- }
- if (y_non_contig) {
- GGML_ASSERT(y_sz == ggml_type_size(src1->type) * y_ne);
- if (ctx->prealloc_y_last_pipeline_used != to_fp16_vk_1.get() ||
- ctx->prealloc_y_last_tensor_used != src1) {
- if (ctx->prealloc_y_need_sync) {
- ggml_vk_sync_buffers(ctx, subctx);
- }
- ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, d_Qy, d_Y);
- ctx->prealloc_y_last_pipeline_used = to_fp16_vk_1.get();
- ctx->prealloc_y_last_tensor_used = src1;
- }
- }
- if (quantize_y) {
- if (ctx->prealloc_y_last_pipeline_used != to_q8_1.get() ||
- ctx->prealloc_y_last_tensor_used != src1) {
- if (ctx->prealloc_y_need_sync) {
- ggml_vk_sync_buffers(ctx, subctx);
- }
- ggml_vk_quantize_q8_1(ctx, subctx, d_Qy, d_Y, y_ne);
- ctx->prealloc_y_last_pipeline_used = to_q8_1.get();
- ctx->prealloc_y_last_tensor_used = src1;
- }
- }
- // For batch_n, the A matrix is the same for each batch, and B/D use the row stride as the batch stride
- uint32_t stride_batch_x = batch_n ? 0 : ne00*ne01;
- uint32_t stride_batch_y = batch_n ? ne10 : (ne10*ne11);
- uint32_t stride_batch_d = batch_n ? ne20 : (ne20*ne21);
- if (!ggml_vk_dim01_contiguous(src0) && !qx_needs_dequant) {
- stride_batch_x = src0->nb[0] / ggml_type_size(src0->type);
- }
- if (!ggml_vk_dim01_contiguous(src1) && !qy_needs_dequant) {
- stride_batch_y = src1->nb[0] / ggml_type_size(src1->type);
- }
- const uint32_t max_groups_x = ctx->device->properties.limits.maxComputeWorkGroupCount[0];
- uint32_t groups_x = ne01;
- uint32_t groups_z = 1;
- if (ne01 > max_groups_x) {
- groups_z = 64;
- groups_x = CEIL_DIV(groups_x, groups_z);
- }
- uint32_t fusion_flags = 0;
- vk_subbuffer d_F0 = d_D;
- if (ctx->num_additional_fused_ops > 0) {
- const ggml_tensor * add = cgraph->nodes[node_idx + 1];
- const ggml_tensor * bias = add->src[0] == dst ? add->src[1] : add->src[0];
- d_F0 = ggml_vk_tensor_subbuffer(ctx, bias);
- fusion_flags |= MAT_VEC_FUSION_FLAGS_BIAS0;
- }
- vk_subbuffer d_F1 = d_D;
- if (ctx->num_additional_fused_ops == 2) {
- const ggml_tensor * add = cgraph->nodes[node_idx + 2];
- const ggml_tensor * bias = add->src[0] == cgraph->nodes[node_idx + 1] ? add->src[1] : add->src[0];
- d_F1 = ggml_vk_tensor_subbuffer(ctx, bias);
- fusion_flags |= MAT_VEC_FUSION_FLAGS_BIAS1;
- }
- // compute
- const vk_mat_vec_push_constants pc = {
- (uint32_t)ne00, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)ne01,
- stride_batch_x, stride_batch_y, stride_batch_d,
- fusion_flags,
- (uint32_t)ne02, (uint32_t)ne12, (uint32_t)r2, (uint32_t)r3,
- };
- ggml_vk_dispatch_pipeline(ctx, subctx, dmmv,
- {
- d_X,
- d_Y,
- d_D,
- d_F0,
- d_F1,
- },
- pc, { groups_x, (uint32_t)(ne12 * ne13), groups_z });
- if (x_non_contig) {
- ctx->prealloc_x_need_sync = true;
- }
- if (y_non_contig || quantize_y) {
- ctx->prealloc_y_need_sync = true;
- }
- }
- static void ggml_vk_mul_mat_vec_p021_f16_f32(ggml_backend_vk_context * ctx, vk_context& subctx, const struct ggml_cgraph * cgraph, int node_idx) {
- ggml_tensor * dst = cgraph->nodes[node_idx];
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- VK_LOG_DEBUG("ggml_vk_mul_mat_p021_f16_f32(" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
- std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
- std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3];
- std::cerr << "))");
- GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
- GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // NOLINT
- GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // NOLINT
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- const uint64_t ne00 = src0->ne[0];
- const uint64_t ne01 = src0->ne[1];
- const uint64_t ne02 = src0->ne[2];
- // const uint64_t ne03 = src0->ne[3];
- //const uint64_t ne10 = src1->ne[0];
- const uint64_t ne11 = src1->ne[1];
- const uint64_t ne12 = src1->ne[2];
- // const uint64_t ne13 = src1->ne[3];
- GGML_ASSERT(ne11 == 1);
- // With grouped query attention there are > 1 Q matrices per K, V matrix.
- uint32_t gqa_ratio = (uint32_t)ne12 / (uint32_t)ne02;
- if (gqa_ratio > 8 || gqa_ratio == 0 || ne12 != ne02 * gqa_ratio) {
- gqa_ratio = 1;
- }
- {
- // Request descriptor sets
- ggml_pipeline_request_descriptor_sets(ctx, ctx->device->pipeline_mul_mat_vec_p021_f16_f32[gqa_ratio - 1], 1);
- }
- vk_subbuffer d_D = ggml_vk_tensor_subbuffer(ctx, cgraph->nodes[node_idx + ctx->num_additional_fused_ops], true);
- vk_subbuffer d_Qx = ggml_vk_tensor_subbuffer(ctx, src0);
- vk_subbuffer d_Qy = ggml_vk_tensor_subbuffer(ctx, src1, true);
- vk_subbuffer d_F0 = d_D;
- uint32_t fusion_flags = 0;
- if (ctx->num_additional_fused_ops > 0) {
- const ggml_tensor * add = cgraph->nodes[node_idx + 1];
- const ggml_tensor * bias = add->src[0] == dst ? add->src[1] : add->src[0];
- d_F0 = ggml_vk_tensor_subbuffer(ctx, bias);
- fusion_flags |= MAT_VEC_FUSION_FLAGS_BIAS0;
- }
- vk_subbuffer d_F1 = d_D;
- if (ctx->num_additional_fused_ops > 1) {
- const ggml_tensor * bias = cgraph->nodes[node_idx + 2]->src[1];
- d_F1 = ggml_vk_tensor_subbuffer(ctx, bias);
- fusion_flags |= MAT_VEC_FUSION_FLAGS_BIAS1;
- }
- // compute
- vk_mat_vec_p021_push_constants pc = {
- (uint32_t)ne00, (uint32_t)ne01, (uint32_t)ne02, (uint32_t)ne12,
- 0, 0, fusion_flags
- };
- init_pushconst_tensor_offsets(ctx, pc, src0, src1, nullptr, nullptr, cgraph->nodes[node_idx + ctx->num_additional_fused_ops]);
- uint32_t workgroups_z = (uint32_t)ne12;
- // When gqa_ratio > 1, each invocation does multiple rows and we can launch fewer workgroups
- if (gqa_ratio > 1) {
- workgroups_z /= gqa_ratio;
- }
- ggml_vk_dispatch_pipeline(ctx, subctx, ctx->device->pipeline_mul_mat_vec_p021_f16_f32[gqa_ratio - 1],
- {
- d_Qx,
- d_Qy,
- d_D,
- d_F0,
- d_F1,
- }, pc, { 1, (uint32_t)ne01, workgroups_z });
- }
- static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_context& subctx, const struct ggml_cgraph * cgraph, int node_idx) {
- ggml_tensor * dst = cgraph->nodes[node_idx];
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- VK_LOG_DEBUG("ggml_vk_mul_mat_nc_f16_f32((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
- std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
- std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3];
- std::cerr << "))");
- GGML_ASSERT(!ggml_is_transposed(src0));
- GGML_ASSERT(!ggml_is_transposed(src1));
- GGML_ASSERT(!ggml_is_permuted(src0));
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- const uint64_t ne00 = src0->ne[0];
- const uint64_t ne01 = src0->ne[1];
- const uint64_t ne02 = src0->ne[2];
- const uint64_t ne03 = src0->ne[3];
- const uint64_t nb01 = src0->nb[1];
- const uint64_t nb02 = src0->nb[2];
- const uint64_t nb12 = src1->nb[2];
- // const uint64_t ne10 = src1->ne[0];
- const uint64_t ne11 = src1->ne[1];
- const uint64_t ne12 = src1->ne[2];
- // const uint64_t ne13 = src1->ne[3];
- const uint32_t nb03 = (uint32_t)(src0->nb[3] / sizeof(ggml_fp16_t));
- const uint32_t nb13 = (uint32_t)(src1->nb[3] / sizeof(float));
- const uint32_t nb23 = (uint32_t)(dst->nb[3] / sizeof(float));
- GGML_ASSERT(ne11 == 1);
- GGML_ASSERT(src0->ne[3] == src1->ne[3]); // checked in supports_op
- const uint32_t row_stride_x = nb01 / sizeof(ggml_fp16_t);
- const uint32_t channel_stride_x = nb02 / sizeof(ggml_fp16_t);
- const uint32_t channel_stride_y = nb12 / sizeof(float);
- {
- // Request descriptor sets
- ggml_pipeline_request_descriptor_sets(ctx, ctx->device->pipeline_mul_mat_vec_nc_f16_f32, 1);
- }
- vk_subbuffer d_D = ggml_vk_tensor_subbuffer(ctx, cgraph->nodes[node_idx + ctx->num_additional_fused_ops], true);
- vk_subbuffer d_Qx = ggml_vk_tensor_subbuffer(ctx, src0);
- vk_subbuffer d_Qy = ggml_vk_tensor_subbuffer(ctx, src1, true);
- vk_subbuffer d_F0 = d_D;
- uint32_t fusion_flags = 0;
- if (ctx->num_additional_fused_ops > 0) {
- const ggml_tensor * add = cgraph->nodes[node_idx + 1];
- const ggml_tensor * bias = add->src[0] == dst ? add->src[1] : add->src[0];
- d_F0 = ggml_vk_tensor_subbuffer(ctx, bias);
- fusion_flags |= MAT_VEC_FUSION_FLAGS_BIAS0;
- }
- vk_subbuffer d_F1 = d_D;
- if (ctx->num_additional_fused_ops > 1) {
- const ggml_tensor * bias = cgraph->nodes[node_idx + 2]->src[1];
- d_F1 = ggml_vk_tensor_subbuffer(ctx, bias);
- fusion_flags |= MAT_VEC_FUSION_FLAGS_BIAS1;
- }
- // compute
- vk_mat_vec_nc_push_constants pc = {
- (uint32_t)ne00, (uint32_t)ne01,
- row_stride_x, channel_stride_x, channel_stride_y,
- (uint32_t)(ne12 / ne02), (uint32_t)ne12,
- 0, 0,
- nb03, nb13, nb23, fusion_flags
- };
- init_pushconst_tensor_offsets(ctx, pc, src0, src1, nullptr, nullptr, cgraph->nodes[node_idx + ctx->num_additional_fused_ops]);
- ggml_vk_dispatch_pipeline(ctx, subctx, ctx->device->pipeline_mul_mat_vec_nc_f16_f32,
- {
- d_Qx,
- d_Qy,
- d_D,
- d_F0,
- d_F1,
- }, pc, { (uint32_t)ne03, (uint32_t)ne01, (uint32_t)ne12 });
- }
- static void ggml_vk_mul_mat(ggml_backend_vk_context * ctx, vk_context& subctx, const struct ggml_cgraph * cgraph, int node_idx) {
- ggml_tensor * dst = cgraph->nodes[node_idx];
- ggml_tensor * src0 = dst->src[0];
- ggml_tensor * src1 = dst->src[1];
- VK_LOG_DEBUG("ggml_vk_mul_mat(" << src0 << ", " << src1 << ", " << dst << ")");
- // Handle huge A matrix by splitting the M dimensions. This works well for convolution use cases
- // where the M dimension is very large.
- // Split_k doesn't work with M splitting.
- const size_t nbytes = ggml_nbytes(src0);
- const bool needs_split = nbytes > ctx->device->properties.limits.maxStorageBufferRange;
- if (needs_split) {
- // Choose the number of rows that can fit (and divide by two, to allow for any additional offsets)
- const uint32_t M_split = ctx->device->properties.limits.maxStorageBufferRange / (2 * src0->nb[1]);
- uint32_t m_offset = 0;
- while (m_offset < dst->ne[0]) {
- const uint32_t cur_M_size = std::min(M_split, (uint32_t)(dst->ne[0] - m_offset));
- ggml_tensor dst2 = *dst;
- ggml_tensor src02 = *src0;
- dst2.view_src = dst->view_src ? dst->view_src : dst;
- src02.view_src = src0->view_src ? src0->view_src : src0;
- dst2.view_offs += m_offset * dst->nb[0];
- src02.view_offs += m_offset * src0->nb[1];
- dst2.ne[0] = cur_M_size;
- src02.ne[1] = cur_M_size;
- ggml_vk_mul_mat_q_f16(ctx, subctx, &src02, src1, &dst2, true);
- m_offset += cur_M_size;
- }
- } else if (src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && dst->ne[1] == 1 &&
- // detect 0213 permutation, and batch size of 1
- src0->nb[0] <= src0->nb[2] &&
- src0->nb[2] <= src0->nb[1] &&
- src0->nb[1] <= src0->nb[3] &&
- src1->nb[0] <= src1->nb[2] &&
- src1->nb[2] <= src1->nb[1] &&
- src1->nb[1] <= src1->nb[3] &&
- src0->ne[3] == 1 &&
- src1->ne[3] == 1) {
- ggml_vk_mul_mat_vec_p021_f16_f32(ctx, subctx, cgraph, node_idx);
- } else if (src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && dst->ne[1] == 1 &&
- !ggml_is_permuted(src0) && !ggml_is_permuted(src1)) {
- ggml_vk_mul_mat_vec_nc_f16_f32(ctx, subctx, cgraph, node_idx);
- // mul_mat_vec supports batching ne12*ne13 when ne11==1, or treating ne11 as the batch size (up to four)
- // when ne12 and ne13 are one.
- } else if ((dst->ne[1] == 1 || (dst->ne[1] <= mul_mat_vec_max_cols && src1->ne[2] * src1->ne[3] == 1)) &&
- (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_BF16 || ggml_is_quantized(src0->type))) {
- ggml_vk_mul_mat_vec_q_f16(ctx, subctx, cgraph, node_idx);
- } else {
- ggml_vk_mul_mat_q_f16(ctx, subctx, src0, src1, dst, false);
- }
- }
- static void ggml_vk_mul_mat_id_q_f16(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst) {
- VK_LOG_DEBUG("ggml_vk_mul_mat_id_q_f16((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
- std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
- std::cerr << "), (" << ids << ", name=" << ids->name << ", type=" << ids->type << ", ne0=" << ids->ne[0] << ", ne1=" << ids->ne[1] << ", ne2=" << ids->ne[2] << ", ne3=" << ids->ne[3] << ", nb0=" << ids->nb[0] << ", nb1=" << ids->nb[1] << ", nb2=" << ids->nb[2] << ", nb3=" << ids->nb[3];
- std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "),)");
- GGML_ASSERT(ggml_vk_dim01_contiguous(src1) || src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16); // NOLINT
- GGML_ASSERT(ids->type == GGML_TYPE_I32);
- const uint64_t ne00 = src0->ne[0];
- const uint64_t ne01 = src0->ne[1];
- const uint64_t ne02 = src0->ne[2];
- // const uint64_t ne03 = src0->ne[3];
- const uint64_t ne10 = src1->ne[0];
- const uint64_t ne11 = src1->ne[1];
- const uint64_t ne12 = src1->ne[2];
- const uint64_t ne13 = src1->ne[3];
- const uint64_t nei0 = ids->ne[0];
- const uint64_t nei1 = ids->ne[1];
- const uint32_t nbi1 = ids->nb[1];
- const uint32_t nbi2 = ids->nb[2];
- const uint64_t ne20 = dst->ne[0];
- const uint64_t ne21 = dst->ne[1];
- // const uint64_t ne22 = dst->ne[2];
- // const uint64_t ne23 = dst->ne[3];
- const uint64_t n_as = ne02;
- ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context;
- ggml_backend_vk_buffer_context * src0_buf_ctx = (ggml_backend_vk_buffer_context *)src0->buffer->context;
- ggml_backend_vk_buffer_context * src1_buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context;
- ggml_backend_vk_buffer_context * ids_buf_ctx = (ggml_backend_vk_buffer_context *)ids->buffer->context;
- vk_buffer d_Qx = nullptr;
- size_t qx_buf_offset = 0;
- vk_buffer d_Qy = nullptr;
- size_t qy_buf_offset = 0;
- vk_buffer d_ids = nullptr;
- size_t ids_buf_offset = 0;
- bool src0_uma = false;
- bool src1_uma = false;
- bool ids_uma = false;
- if (ctx->device->uma) {
- ggml_vk_host_get(ctx->device, src0->data, d_Qx, qx_buf_offset);
- ggml_vk_host_get(ctx->device, src1->data, d_Qy, qy_buf_offset);
- ggml_vk_host_get(ctx->device, ids->data, d_ids, ids_buf_offset);
- src0_uma = d_Qx != nullptr;
- src1_uma = d_Qy != nullptr;
- ids_uma = d_ids != nullptr;
- }
- // Reformat and convert to fp16 if non-contiguous, or for coopmat2 for better perf
- const bool x_non_contig = (ctx->device->coopmat2 && src0->type == GGML_TYPE_F32) ||
- !ggml_vk_dim01_contiguous(src0);
- const bool y_non_contig = (ctx->device->coopmat2 && src1->type == GGML_TYPE_F32) ||
- (src0->type == GGML_TYPE_BF16 && src1->type != GGML_TYPE_BF16) ||
- !ggml_vk_dim01_contiguous(src1);
- // If src0 is BF16, try to use a BF16 x BF16 multiply
- ggml_type f16_type = src0->type == GGML_TYPE_BF16 ? GGML_TYPE_BF16 : GGML_TYPE_F16;
- const bool y_f32_kernel = src1->type == GGML_TYPE_F32 && !y_non_contig;
- bool quantize_y = ctx->device->integer_dot_product && src1->type == GGML_TYPE_F32 && ggml_is_contiguous(src1) && !y_non_contig && (ne11 * ne10) % 4 == 0;
- // Check for mmq first
- vk_matmul_pipeline mmp = quantize_y ? ggml_vk_get_mul_mat_mat_id_pipeline(ctx, src0->type, GGML_TYPE_Q8_1, (ggml_prec)dst->op_params[0]) : nullptr;
- if (mmp == nullptr) {
- // Fall back to f16 dequant mul mat
- mmp = ggml_vk_get_mul_mat_mat_id_pipeline(ctx, src0->type, y_non_contig ? f16_type : src1->type, (ggml_prec)dst->op_params[0]);
- quantize_y = false;
- }
- const bool qx_needs_dequant = mmp == nullptr || x_non_contig;
- const bool qy_needs_dequant = !quantize_y && ((src1->type != f16_type && !y_f32_kernel) || y_non_contig);
- if (qx_needs_dequant) {
- // Fall back to dequant + f16 mulmat
- mmp = ggml_vk_get_mul_mat_mat_id_pipeline(ctx, f16_type, y_f32_kernel ? GGML_TYPE_F32 : f16_type, (ggml_prec)dst->op_params[0]);
- }
- // Not implemented
- GGML_ASSERT(y_non_contig || !qy_needs_dequant); // NOLINT
- const uint32_t kpad = quantize_y ? 0 : ggml_vk_align_size(ne10, ggml_vk_guess_matmul_id_pipeline_align(ctx, mmp, ne01, nei1, qx_needs_dequant ? f16_type : src0->type));
- const bool aligned = !quantize_y && ne10 == kpad && ne01 > 8 && nei1 > 8;
- vk_pipeline pipeline = ggml_vk_guess_matmul_id_pipeline(ctx, mmp, ne01, nei1, aligned, qx_needs_dequant ? f16_type : src0->type);
- // Reserve extra storage in the N dimension for the Y matrix, so we can avoid bounds-checking
- uint32_t padded_n = qy_needs_dequant ? ROUNDUP_POW2(ne11, pipeline->wg_denoms[1]) :ne11;
- const uint64_t x_ne = ggml_nelements(src0);
- const uint64_t y_ne = padded_n * ne10 * ne12 * ne13;
- const uint64_t d_ne = ggml_nelements(dst);
- const uint64_t qx_sz = ggml_type_size(src0->type) * x_ne / ggml_blck_size(src0->type);
- const uint64_t qy_sz = ggml_type_size(src1->type) * y_ne / ggml_blck_size(src1->type);
- const uint64_t x_sz = !qx_needs_dequant ? qx_sz : sizeof(ggml_fp16_t) * x_ne;
- const uint64_t y_sz = quantize_y ? (ggml_vk_align_size(y_ne, 128) * ggml_type_size(GGML_TYPE_Q8_1) / ggml_blck_size(GGML_TYPE_Q8_1)) : (y_f32_kernel ? sizeof(float) * y_ne : sizeof(ggml_fp16_t) * y_ne);
- const uint64_t ids_sz = nbi2;
- const uint64_t d_sz = sizeof(float) * d_ne;
- vk_pipeline to_fp16_vk_0 = nullptr;
- vk_pipeline to_fp16_vk_1 = nullptr;
- vk_pipeline to_q8_1 = nullptr;
- if (x_non_contig) {
- to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0, nullptr, f16_type);
- } else {
- to_fp16_vk_0 = ggml_vk_get_to_fp16(ctx, src0->type);
- }
- if (y_non_contig) {
- to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1, nullptr, f16_type);
- } else {
- to_fp16_vk_1 = ggml_vk_get_to_fp16(ctx, src1->type);
- }
- GGML_ASSERT(!qx_needs_dequant || to_fp16_vk_0 != nullptr); // NOLINT
- GGML_ASSERT(!qy_needs_dequant || to_fp16_vk_1 != nullptr); // NOLINT
- if (quantize_y) {
- to_q8_1 = ggml_vk_get_quantize_pipeline(ctx, GGML_TYPE_Q8_1);
- }
- {
- if (
- (qx_needs_dequant && x_sz > ctx->device->properties.limits.maxStorageBufferRange) ||
- (qy_needs_dequant && y_sz > ctx->device->properties.limits.maxStorageBufferRange)) {
- GGML_ABORT("Requested preallocation size is too large");
- }
- if (qx_needs_dequant && ctx->prealloc_size_x < x_sz) {
- ctx->prealloc_size_x = x_sz;
- ggml_vk_preallocate_buffers(ctx, subctx);
- }
- if ((qy_needs_dequant || quantize_y) && ctx->prealloc_size_y < y_sz) {
- ctx->prealloc_size_y = y_sz;
- ggml_vk_preallocate_buffers(ctx, subctx);
- }
- // Request descriptor sets
- ggml_pipeline_request_descriptor_sets(ctx, pipeline, 1);
- if (qx_needs_dequant) {
- ggml_pipeline_request_descriptor_sets(ctx, to_fp16_vk_0, 1);
- }
- if (qy_needs_dequant) {
- ggml_pipeline_request_descriptor_sets(ctx, to_fp16_vk_1, 1);
- }
- if (quantize_y) {
- ggml_pipeline_request_descriptor_sets(ctx, to_q8_1, 1);
- }
- }
- vk_buffer d_D = dst_buf_ctx->dev_buffer;
- const uint64_t d_buf_offset = vk_tensor_offset(dst) + dst->view_offs;
- GGML_ASSERT(d_D != nullptr);
- vk_buffer d_X;
- uint64_t x_buf_offset = 0;
- vk_buffer d_Y;
- uint64_t y_buf_offset = 0;
- if (!src0_uma) {
- d_Qx = src0_buf_ctx->dev_buffer;
- qx_buf_offset = vk_tensor_offset(src0) + src0->view_offs;
- GGML_ASSERT(d_Qx != nullptr);
- }
- if (!src1_uma) {
- d_Qy = src1_buf_ctx->dev_buffer;
- qy_buf_offset = vk_tensor_offset(src1) + src1->view_offs;
- GGML_ASSERT(d_Qy != nullptr);
- }
- if (!ids_uma) {
- d_ids = ids_buf_ctx->dev_buffer;
- ids_buf_offset = vk_tensor_offset(ids) + ids->view_offs;
- GGML_ASSERT(d_ids != nullptr);
- }
- if (qx_needs_dequant) {
- d_X = ctx->prealloc_x;
- GGML_ASSERT(d_X->size >= x_sz);
- } else {
- d_X = d_Qx;
- x_buf_offset = qx_buf_offset;
- GGML_ASSERT(qx_sz == x_sz);
- }
- if (qy_needs_dequant) {
- d_Y = ctx->prealloc_y;
- GGML_ASSERT(d_Y->size >= y_sz);
- } else if (quantize_y) {
- d_Y = ctx->prealloc_y;
- GGML_ASSERT(d_Y->size >= CEIL_DIV(y_sz, 144) * 144);
- } else {
- d_Y = d_Qy;
- y_buf_offset = qy_buf_offset;
- GGML_ASSERT(qy_sz == y_sz);
- }
- if (x_non_contig || qx_needs_dequant) {
- if (ctx->prealloc_x_need_sync) {
- ggml_vk_sync_buffers(ctx, subctx);
- }
- }
- if (x_non_contig) {
- ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_0, src0, ggml_vk_subbuffer(ctx, d_Qx, qx_buf_offset), ggml_vk_subbuffer(ctx, d_X, 0));
- } else if (qx_needs_dequant) {
- const std::vector<uint32_t> pc = { (uint32_t)ne01, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)(ggml_nelements(src0)) };
- ggml_vk_dispatch_pipeline(ctx, subctx, to_fp16_vk_0,
- { vk_subbuffer{ d_Qx, qx_buf_offset, qx_sz }, vk_subbuffer{ d_X, 0, x_sz } }, pc, { (uint32_t)x_ne, 1, 1});
- ggml_vk_sync_buffers(ctx, subctx);
- }
- if (y_non_contig) {
- if (ctx->prealloc_y_last_pipeline_used != to_fp16_vk_1.get() ||
- ctx->prealloc_y_last_tensor_used != src1) {
- if (ctx->prealloc_y_need_sync) {
- ggml_vk_sync_buffers(ctx, subctx);
- }
- ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, ggml_vk_subbuffer(ctx, d_Qy, qy_buf_offset), ggml_vk_subbuffer(ctx, d_Y, 0));
- ctx->prealloc_y_last_pipeline_used = to_fp16_vk_1.get();
- ctx->prealloc_y_last_tensor_used = src1;
- }
- }
- if (quantize_y) {
- if (ctx->prealloc_y_last_pipeline_used != to_q8_1.get() ||
- ctx->prealloc_y_last_tensor_used != src1) {
- if (ctx->prealloc_y_need_sync) {
- ggml_vk_sync_buffers(ctx, subctx);
- }
- ggml_vk_quantize_q8_1(ctx, subctx, ggml_vk_subbuffer(ctx, d_Qy, qy_buf_offset), ggml_vk_subbuffer(ctx, d_Y, 0), y_ne);
- ctx->prealloc_y_last_pipeline_used = to_q8_1.get();
- ctx->prealloc_y_last_tensor_used = src1;
- }
- }
- uint32_t stride_batch_x = ne00*ne01;
- uint32_t stride_batch_y = ne10*ne11;
- if (!ggml_vk_dim01_contiguous(src0) && !qx_needs_dequant) {
- stride_batch_x = src0->nb[0] / ggml_type_size(src0->type);
- }
- if (!ggml_vk_dim01_contiguous(src1) && !qy_needs_dequant && !quantize_y) {
- stride_batch_y = src1->nb[0] / ggml_type_size(src1->type);
- }
- // compute
- ggml_vk_matmul_id(
- ctx, subctx, pipeline,
- { d_X, x_buf_offset, x_sz }, { d_Y, y_buf_offset, y_sz },
- { d_D, d_buf_offset, d_sz }, { d_ids, ids_buf_offset, ids_sz },
- ne01, ne21, ne10, ne10, ne10, ne01,
- stride_batch_x, stride_batch_y, ne20*ne21,
- n_as, nei0, nei1, nbi1 / ggml_type_size(ids->type), ne11, padded_n
- ); // NOLINT
- if (x_non_contig || qx_needs_dequant) {
- ctx->prealloc_x_need_sync = true;
- }
- if (y_non_contig) {
- ctx->prealloc_y_need_sync = true;
- }
- }
- static void ggml_vk_mul_mat_vec_id_q_f16(ggml_backend_vk_context * ctx, vk_context& subctx, const struct ggml_cgraph * cgraph, int node_idx) {
- ggml_tensor * dst = cgraph->nodes[node_idx];
- ggml_tensor * src0 = dst->src[0];
- ggml_tensor * src1 = dst->src[1];
- ggml_tensor * ids = dst->src[2];
- VK_LOG_DEBUG("ggml_vk_mul_mat_vec_id_q_f16((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
- std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
- std::cerr << "), (" << ids << ", name=" << ids->name << ", type=" << ids->type << ", ne0=" << ids->ne[0] << ", ne1=" << ids->ne[1] << ", ne2=" << ids->ne[2] << ", ne3=" << ids->ne[3] << ", nb0=" << ids->nb[0] << ", nb1=" << ids->nb[1] << ", nb2=" << ids->nb[2] << ", nb3=" << ids->nb[3];
- std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3];
- std::cerr << "))");
- GGML_ASSERT(ggml_vk_dim01_contiguous(src0) || src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_BF16); // NOLINT
- GGML_ASSERT(ggml_vk_dim01_contiguous(src1) || src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16); // NOLINT
- GGML_ASSERT(ids->type == GGML_TYPE_I32);
- const uint64_t ne00 = src0->ne[0];
- const uint64_t ne01 = src0->ne[1];
- // const uint64_t ne02 = src0->ne[2];
- // const uint64_t ne03 = src0->ne[3];
- const uint64_t ne10 = src1->ne[0];
- const uint64_t ne11 = src1->ne[1];
- // const uint64_t ne12 = src1->ne[2];
- // const uint64_t ne13 = src1->ne[3];
- const uint64_t nei0 = ids->ne[0];
- const uint64_t nei1 = ids->ne[1];
- GGML_ASSERT(nei1 == 1);
- const uint64_t ne20 = dst->ne[0];
- const uint64_t ne21 = dst->ne[1];
- // const uint64_t ne22 = dst->ne[2];
- // const uint64_t ne23 = dst->ne[3];
- const bool x_non_contig = !ggml_vk_dim01_contiguous(src0);
- const bool y_non_contig = !ggml_vk_dim01_contiguous(src1);
- const bool f16_f32_kernel = src1->type == GGML_TYPE_F32;
- const bool qx_needs_dequant = x_non_contig;
- const bool qy_needs_dequant = (src1->type != GGML_TYPE_F16 && !f16_f32_kernel) || y_non_contig;
- // Not implemented
- GGML_ASSERT(y_non_contig || !qy_needs_dequant); // NOLINT
- const uint64_t x_ne = ggml_nelements(src0);
- const uint64_t y_ne = ggml_nelements(src1);
- const uint64_t qx_sz = ggml_vk_align_size(ggml_type_size(src0->type) * x_ne / ggml_blck_size(src0->type), ctx->device->properties.limits.minStorageBufferOffsetAlignment);
- const uint64_t x_sz = x_non_contig ? ggml_vk_align_size(ggml_type_size(src0->type) * x_ne, ctx->device->properties.limits.minStorageBufferOffsetAlignment) : qx_sz;
- const uint64_t y_sz = f16_f32_kernel ? sizeof(float) * y_ne : sizeof(ggml_fp16_t) * y_ne;
- vk_pipeline to_fp16_vk_0 = nullptr;
- vk_pipeline to_fp16_vk_1 = nullptr;
- if (x_non_contig) {
- to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0, nullptr, src0->type);
- }
- if (y_non_contig) {
- to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1, nullptr, src1->type);
- } else {
- to_fp16_vk_1 = ggml_vk_get_to_fp16(ctx, src1->type);
- }
- vk_pipeline dmmv = ggml_vk_get_dequantize_mul_mat_vec_id(ctx, src0->type, src1->type);
- GGML_ASSERT(!qx_needs_dequant || to_fp16_vk_0 != nullptr); // NOLINT
- GGML_ASSERT(!qy_needs_dequant || to_fp16_vk_1 != nullptr); // NOLINT
- GGML_ASSERT(dmmv != nullptr);
- {
- if (
- (qx_needs_dequant && x_sz > ctx->device->properties.limits.maxStorageBufferRange) ||
- (qy_needs_dequant && y_sz > ctx->device->properties.limits.maxStorageBufferRange)) {
- GGML_ABORT("Requested preallocation size is too large");
- }
- if (qx_needs_dequant && ctx->prealloc_size_x < x_sz) {
- ctx->prealloc_size_x = x_sz;
- ggml_vk_preallocate_buffers(ctx, subctx);
- }
- if (qy_needs_dequant && ctx->prealloc_size_y < y_sz) {
- ctx->prealloc_size_y = y_sz;
- ggml_vk_preallocate_buffers(ctx, subctx);
- }
- // Request descriptor sets
- if (qx_needs_dequant) {
- ggml_pipeline_request_descriptor_sets(ctx, to_fp16_vk_0, 1);
- }
- if (qy_needs_dequant) {
- ggml_pipeline_request_descriptor_sets(ctx, to_fp16_vk_1, 1);
- }
- ggml_pipeline_request_descriptor_sets(ctx, dmmv, 1);
- }
- vk_subbuffer d_D = ggml_vk_tensor_subbuffer(ctx, cgraph->nodes[node_idx + ctx->num_additional_fused_ops]);
- vk_subbuffer d_Qx = ggml_vk_tensor_subbuffer(ctx, src0);
- vk_subbuffer d_Qy = ggml_vk_tensor_subbuffer(ctx, src1);
- vk_subbuffer d_ids = ggml_vk_tensor_subbuffer(ctx, ids);
- vk_subbuffer d_F0 = d_D;
- vk_subbuffer d_X, d_Y;
- if (qx_needs_dequant) {
- d_X = { ctx->prealloc_x, 0, ctx->prealloc_x->size };
- } else {
- d_X = d_Qx;
- }
- if (qy_needs_dequant) {
- d_Y = { ctx->prealloc_y, 0, ctx->prealloc_y->size };
- } else {
- d_Y = d_Qy;
- }
- if (x_non_contig) {
- if (ctx->prealloc_x_need_sync) {
- ggml_vk_sync_buffers(ctx, subctx);
- }
- }
- if (x_non_contig) {
- GGML_ASSERT(x_sz == ggml_vk_align_size(ggml_type_size(src0->type) * x_ne, ctx->device->properties.limits.minStorageBufferOffsetAlignment));
- ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_0, src0, d_Qx, d_X);
- }
- if (y_non_contig) {
- GGML_ASSERT(y_sz == ggml_type_size(src1->type) * y_ne);
- if (ctx->prealloc_y_last_pipeline_used != to_fp16_vk_1.get() ||
- ctx->prealloc_y_last_tensor_used != src1) {
- if (ctx->prealloc_y_need_sync) {
- ggml_vk_sync_buffers(ctx, subctx);
- }
- ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, d_Qy, d_Y);
- ctx->prealloc_y_last_pipeline_used = to_fp16_vk_1.get();
- ctx->prealloc_y_last_tensor_used = src1;
- }
- }
- uint32_t stride_batch_y = ne10*ne11;
- if (!ggml_vk_dim01_contiguous(src1) && !qy_needs_dequant) {
- stride_batch_y = src1->nb[0] / ggml_type_size(src1->type);
- }
- const uint32_t max_groups_x = ctx->device->properties.limits.maxComputeWorkGroupCount[0];
- uint32_t groups_x = ne01;
- uint32_t groups_z = 1;
- if (ne01 > max_groups_x) {
- groups_z = 64;
- groups_x = CEIL_DIV(groups_x, groups_z);
- }
- uint32_t fusion_flags = 0;
- if (ctx->num_additional_fused_ops > 0) {
- const ggml_tensor * bias = cgraph->nodes[node_idx + 1]->src[1];
- d_F0 = ggml_vk_tensor_subbuffer(ctx, bias);
- if (cgraph->nodes[node_idx + 1]->op == GGML_OP_MUL) {
- fusion_flags |= MAT_VEC_FUSION_FLAGS_SCALE0;
- } else {
- GGML_ASSERT(cgraph->nodes[node_idx + 1]->op == GGML_OP_ADD_ID);
- fusion_flags |= MAT_VEC_FUSION_FLAGS_BIAS0;
- }
- }
- vk_subbuffer d_F1 = d_D;
- if (ctx->num_additional_fused_ops > 1) {
- const ggml_tensor * scale = cgraph->nodes[node_idx + 2]->src[1];
- d_F1 = ggml_vk_tensor_subbuffer(ctx, scale);
- fusion_flags |= MAT_VEC_FUSION_FLAGS_SCALE1;
- }
- // compute
- const vk_mat_vec_id_push_constants pc = {
- (uint32_t)ne00, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)ne01,
- (uint32_t)(ne00 * ne01), stride_batch_y, (uint32_t)(ne20 * ne21),
- fusion_flags,
- (uint32_t)nei0, (uint32_t)ne11,
- };
- ggml_vk_dispatch_pipeline(ctx, subctx, dmmv,
- {
- d_X,
- d_Y,
- d_D,
- d_F0,
- d_F1,
- d_ids,
- },
- pc, { groups_x, (uint32_t)nei0, groups_z });
- if (x_non_contig) {
- ctx->prealloc_x_need_sync = true;
- }
- if (y_non_contig) {
- ctx->prealloc_y_need_sync = true;
- }
- }
- static bool ggml_vk_use_mul_mat_vec_id(const struct ggml_cgraph * cgraph, int node_idx) {
- ggml_tensor * dst = cgraph->nodes[node_idx];
- ggml_tensor * src0 = dst->src[0];
- ggml_tensor * src2 = dst->src[2];
- return src2->ne[1] == 1 && (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type));
- }
- static void ggml_vk_mul_mat_id(ggml_backend_vk_context * ctx, vk_context& subctx, const struct ggml_cgraph * cgraph, int node_idx) {
- ggml_tensor * dst = cgraph->nodes[node_idx];
- ggml_tensor * src0 = dst->src[0];
- ggml_tensor * src1 = dst->src[1];
- ggml_tensor * src2 = dst->src[2];
- VK_LOG_DEBUG("ggml_vk_mul_mat_id(" << src0 << ", " << src1 << ", " << src2 << ", " << dst << ")");
- if (ggml_vk_use_mul_mat_vec_id(cgraph, node_idx)) {
- ggml_vk_mul_mat_vec_id_q_f16(ctx, subctx, cgraph, node_idx);
- } else {
- ggml_vk_mul_mat_id_q_f16(ctx, subctx, src0, src1, src2, dst);
- }
- }
- static bool ggml_vk_flash_attn_scalar_shmem_support(const vk_device& device, const uint32_t hsk, uint32_t hsv) {
- // Needs to be kept up to date on shader changes
- GGML_UNUSED(hsv);
- const uint32_t wg_size = scalar_flash_attention_workgroup_size;
- const uint32_t Br = get_fa_scalar_num_large_rows(hsv);
- const uint32_t Bc = scalar_flash_attention_Bc;
- const uint32_t tmpsh = wg_size * sizeof(float);
- const uint32_t tmpshv4 = wg_size * 4 * sizeof(float);
- const uint32_t masksh = Bc * Br * sizeof(float);
- const uint32_t Qf = Br * (hsk / 4 + 2) * 4 * sizeof(float);
- const uint32_t total_size = tmpsh + tmpshv4 + masksh + Qf;
- const bool supported = total_size <= device->properties.limits.maxComputeSharedMemorySize;
- VK_LOG_DEBUG("ggml_vk_flash_attn_coopmat_shmem_support(HSK=" << hsk << ", HSV=" << hsv << ", total_size=" << total_size << ", supported=" << supported);
- return supported;
- }
- static bool ggml_vk_flash_attn_coopmat_shmem_support(const vk_device& device, const uint32_t hsk, uint32_t hsv, bool f32acc) {
- // Needs to be kept up to date on shader changes
- GGML_UNUSED(hsv);
- const uint32_t wg_size = scalar_flash_attention_workgroup_size;
- const uint32_t Br = coopmat1_flash_attention_num_large_rows;
- const uint32_t Bc = scalar_flash_attention_Bc;
- const uint32_t hsk_pad = ROUNDUP_POW2(hsk, 16);
- const uint32_t acctype = f32acc ? 4 : 2;
- const uint32_t f16vec4 = 8;
- const uint32_t tmpsh = wg_size * sizeof(float);
- const uint32_t tmpshv4 = wg_size * 4 * acctype;
- const uint32_t qstride = hsk_pad / 4 + 2;
- const uint32_t Qf = Br * qstride * f16vec4;
- const uint32_t sfshstride = (hsk <= 128) ? (Br + 8) : Br;
- const uint32_t sfsh = Bc * sfshstride * acctype;
- const uint32_t kshstride = hsk_pad / 4 + 2;
- const uint32_t ksh = Bc * kshstride * f16vec4;
- const uint32_t slope = Br * sizeof(float);
- const uint32_t total_size = tmpsh + tmpshv4 + Qf + sfsh + ksh + slope;
- const bool supported = total_size <= device->properties.limits.maxComputeSharedMemorySize;
- VK_LOG_DEBUG("ggml_vk_flash_attn_coopmat_shmem_support(HSK=" << hsk << ", HSV=" << hsv << ", f32acc=" << f32acc << ", total_size=" << total_size << ", supported=" << supported);
- return supported;
- }
- static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * q, const ggml_tensor * k, const ggml_tensor * v, const ggml_tensor * mask, const ggml_tensor * sinks, ggml_tensor * dst) {
- VK_LOG_DEBUG("ggml_vk_flash_attn((" << q << ", name=" << q->name << ", type=" << q->type << ", ne0=" << q->ne[0] << ", ne1=" << q->ne[1] << ", ne2=" << q->ne[2] << ", ne3=" << q->ne[3] << ", nb0=" << q->nb[0] << ", nb1=" << q->nb[1] << ", nb2=" << q->nb[2] << ", nb3=" << q->nb[3];
- std::cerr << "), (" << k << ", name=" << k->name << ", type=" << k->type << ", ne0=" << k->ne[0] << ", ne1=" << k->ne[1] << ", ne2=" << k->ne[2] << ", ne3=" << k->ne[3] << ", nb0=" << k->nb[0] << ", nb1=" << k->nb[1] << ", nb2=" << k->nb[2] << ", nb3=" << k->nb[3];
- std::cerr << "), (" << v << ", name=" << v->name << ", type=" << v->type << ", ne0=" << v->ne[0] << ", ne1=" << v->ne[1] << ", ne2=" << v->ne[2] << ", ne3=" << v->ne[3] << ", nb0=" << v->nb[0] << ", nb1=" << v->nb[1] << ", nb2=" << v->nb[2] << ", nb3=" << v->nb[3];
- std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3];
- if (sinks) {
- std::cerr << "), (" << sinks << ", name=" << sinks->name << ", type=" << sinks->type << ", ne0=" << sinks->ne[0] << ", ne1=" << sinks->ne[1] << ", ne2=" << sinks->ne[2] << ", ne3=" << sinks->ne[3] << ", nb0=" << sinks->nb[0] << ", nb1=" << sinks->nb[1] << ", nb2=" << sinks->nb[2] << ", nb3=" << sinks->nb[3];
- }
- std::cerr << "))");
- GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
- GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
- GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
- GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
- GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
- GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
- GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
- GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
- const uint32_t nem1 = mask ? mask->ne[1] : 0;
- const uint32_t nem2 = mask ? mask->ne[2] : 0;
- const uint32_t nem3 = mask ? mask->ne[3] : 0;
- const uint32_t HSK = nek0;
- const uint32_t HSV = nev0;
- uint32_t N = neq1;
- const uint32_t KV = nek1;
- GGML_ASSERT(ne0 == HSV);
- GGML_ASSERT(ne2 == N);
- // input tensor rows must be contiguous
- GGML_ASSERT(nbq0 == ggml_type_size(q->type));
- GGML_ASSERT(nbk0 == ggml_type_size(k->type));
- GGML_ASSERT(nbv0 == ggml_type_size(v->type));
- GGML_ASSERT(neq0 == HSK);
- GGML_ASSERT(neq1 == N);
- GGML_ASSERT(nev1 == nek1);
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 == sizeof(float));
- GGML_ASSERT(nb0 <= nb1);
- GGML_ASSERT(nb1 <= nb2);
- GGML_ASSERT(nb2 <= nb3);
- assert(dst->type == GGML_TYPE_F32);
- assert(q->type == GGML_TYPE_F32);
- assert(k->type == v->type);
- FaCodePath path = ctx->device->coopmat2 ? FA_COOPMAT2 :
- ctx->device->coopmat1_fa_support ? FA_COOPMAT1 : FA_SCALAR;
- if (path == FA_COOPMAT1) {
- const bool coopmat_shape_supported = (dst->op_params[3] == GGML_PREC_F32 && ctx->device->coopmat_support_16x16x16_f32acc) ||
- (dst->op_params[3] != GGML_PREC_F32 && ctx->device->coopmat_support_16x16x16_f16acc);
- const bool coopmat_shmem_supported = ggml_vk_flash_attn_coopmat_shmem_support(ctx->device, HSK, HSV, dst->op_params[3] == GGML_PREC_F32);
- if (!coopmat_shape_supported || !coopmat_shmem_supported) {
- path = FA_SCALAR;
- }
- }
- uint32_t gqa_ratio = 1;
- uint32_t qk_ratio = neq2 / nek2;
- uint32_t workgroups_x = (uint32_t)neq1;
- uint32_t workgroups_y = (uint32_t)neq2;
- uint32_t workgroups_z = (uint32_t)neq3;
- // For scalar/coopmat1 FA, we can use the "large" size to accommodate qga.
- // For coopmat2 FA, we always use the small size (which is still pretty large for gqa).
- uint32_t max_gqa;
- switch (path) {
- case FA_SCALAR:
- case FA_COOPMAT1:
- // We may switch from coopmat1 to scalar, so use the scalar limit for both
- max_gqa = get_fa_scalar_num_large_rows(HSV);
- break;
- case FA_COOPMAT2:
- max_gqa = get_fa_num_small_rows(FA_COOPMAT2);
- break;
- default:
- GGML_ASSERT(0);
- }
- if (N == 1 && qk_ratio > 1 && qk_ratio <= max_gqa &&
- qk_ratio * nek2 == neq2 && nek2 == nev2 && nem2 <= 1) {
- // grouped query attention - make the N dimension equal to gqa_ratio, reduce
- // workgroups proportionally in y dimension. The shader will detect gqa_ratio > 1
- // and change addressing calculations to index Q's dimension 2.
- gqa_ratio = qk_ratio;
- N = gqa_ratio;
- workgroups_y /= N;
- }
- bool small_rows = N <= get_fa_num_small_rows(path);
- // coopmat1 does not actually support "small rows" (it needs 16 rows).
- // So use scalar instead.
- if (small_rows && path == FA_COOPMAT1) {
- path = FA_SCALAR;
- }
- // scalar is faster than coopmat2 when N==1
- if (N == 1 && path == FA_COOPMAT2) {
- path = FA_SCALAR;
- }
- // with large hsk/hsv, scalar path may need to use small_rows to fit in shared memory
- if (path == FA_SCALAR &&
- !ggml_vk_flash_attn_scalar_shmem_support(ctx->device, HSK, HSV)) {
- small_rows = true;
- }
- const uint32_t q_stride = (uint32_t)(nbq1 / ggml_type_size(q->type));
- uint32_t k_stride = (uint32_t)(nbk1 / ggml_type_size(k->type));
- uint32_t v_stride = (uint32_t)(nbv1 / ggml_type_size(v->type));
- // For F32, the shader treats it as a block of size 4 (for vec4 loads)
- if (k->type == GGML_TYPE_F32) {
- k_stride /= 4;
- }
- if (v->type == GGML_TYPE_F32) {
- v_stride /= 4;
- }
- uint32_t alignment = fa_align(path, HSK, HSV, k->type, small_rows);
- bool aligned = (KV % alignment) == 0 &&
- // the "aligned" shader variant will forcibly align strides, for performance
- (q_stride & 7) == 0 && (k_stride & 7) == 0 && (v_stride & 7) == 0;
- // Need to use the coopmat2 variant that clamps loads when HSK/HSV aren't sufficiently aligned.
- if (((HSK | HSV) % 16) != 0 && path == FA_COOPMAT2) {
- aligned = false;
- }
- bool f32acc = path == FA_SCALAR || dst->op_params[3] == GGML_PREC_F32;
- vk_fa_pipeline_state fa_pipeline_state(HSK, HSV, small_rows, path, aligned, f32acc);
- vk_pipeline pipeline = nullptr;
- {
- std::lock_guard<std::recursive_mutex> guard(ctx->device->mutex);
- auto &pipelines = ctx->device->pipeline_flash_attn_f32_f16[k->type];
- auto it = pipelines.find(fa_pipeline_state);
- if (it != pipelines.end()) {
- pipeline = it->second;
- } else {
- pipelines[fa_pipeline_state] = pipeline = std::make_shared<vk_pipeline_struct>();
- }
- }
- assert(pipeline);
- uint32_t split_kv = KV;
- uint32_t split_k = 1;
- // Use a placeholder core count if one isn't available. split_k is a big help for perf.
- const uint32_t shader_core_count = ctx->device->shader_core_count ? ctx->device->shader_core_count : 16;
- // Try to use split_k when KV is large enough to be worth the overhead
- if (workgroups_x == 1 && shader_core_count > 0) {
- // Try to run two workgroups per SM.
- split_k = shader_core_count * 2 / (workgroups_y * workgroups_z);
- if (split_k > 1) {
- // Try to evenly split KV into split_k chunks, but it needs to be a multiple
- // of "align", so recompute split_k based on that.
- split_kv = ROUNDUP_POW2(std::max(1u, KV / split_k), alignment);
- split_k = CEIL_DIV(KV, split_kv);
- workgroups_x = split_k;
- }
- }
- // Reserve space for split_k temporaries. For each split x batch, we need to store the O matrix (D x ne1)
- // and the per-row m and L values (ne1 rows). We store all the matrices first, followed by the rows.
- const uint64_t split_k_size = split_k > 1 ? (HSV * ne1 * sizeof(float) + ne1 * sizeof(float) * 2) * split_k * ne3 : 0;
- if (split_k_size > ctx->device->properties.limits.maxStorageBufferRange) {
- GGML_ABORT("Requested preallocation size is too large");
- }
- if (ctx->prealloc_size_split_k < split_k_size) {
- ctx->prealloc_size_split_k = split_k_size;
- ggml_vk_preallocate_buffers(ctx, subctx);
- }
- {
- // Request descriptor sets
- ggml_pipeline_request_descriptor_sets(ctx, pipeline, 1);
- if (split_k > 1) {
- ggml_pipeline_request_descriptor_sets(ctx, ctx->device->pipeline_flash_attn_split_k_reduce, 1);
- }
- }
- float scale = 1.0f;
- float max_bias = 0.0f;
- float logit_softcap = 0.0f;
- memcpy(&scale, (const float *) dst->op_params + 0, sizeof(float));
- memcpy(&max_bias, (const float *) dst->op_params + 1, sizeof(float));
- memcpy(&logit_softcap, (const float *) dst->op_params + 2, sizeof(float));
- if (logit_softcap != 0) {
- scale /= logit_softcap;
- }
- const uint32_t n_head_kv = neq2;
- const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv));
- const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
- const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
- vk_subbuffer q_buf = ggml_vk_tensor_subbuffer(ctx, q);
- vk_subbuffer k_buf = ggml_vk_tensor_subbuffer(ctx, k);
- vk_subbuffer v_buf = ggml_vk_tensor_subbuffer(ctx, v);
- vk_subbuffer dst_buf = ggml_vk_tensor_subbuffer(ctx, dst);
- vk_subbuffer mask_buf = mask ? ggml_vk_tensor_subbuffer(ctx, mask) : q_buf;
- vk_subbuffer sinks_buf = sinks ? ggml_vk_tensor_subbuffer(ctx, sinks) : q_buf;
- uint32_t mask_n_head_log2 = ((sinks != nullptr) << 24) | ((mask != nullptr) << 16) | n_head_log2;
- const vk_flash_attn_push_constants pc = { N, KV,
- (uint32_t)ne1, (uint32_t)ne2, (uint32_t)ne3,
- (uint32_t)neq2, (uint32_t)neq3,
- (uint32_t)nek2, (uint32_t)nek3,
- (uint32_t)nev2, (uint32_t)nev3,
- nem1, nem2, nem3,
- q_stride, (uint32_t)nbq2, (uint32_t)nbq3,
- k_stride, (uint32_t)nbk2, (uint32_t)nbk3,
- v_stride, (uint32_t)nbv2, (uint32_t)nbv3,
- scale, max_bias, logit_softcap,
- mask_n_head_log2, m0, m1,
- gqa_ratio, split_kv, split_k };
- if (split_k > 1) {
- if (ctx->prealloc_split_k_need_sync) {
- ggml_vk_sync_buffers(ctx, subctx);
- }
- vk_subbuffer split_k_buf = ggml_vk_subbuffer(ctx, ctx->prealloc_split_k, 0);
- ggml_vk_dispatch_pipeline(ctx, subctx, pipeline,
- {q_buf, k_buf, v_buf, mask_buf, sinks_buf, split_k_buf},
- // We only use split_k when group query attention is enabled, which means
- // there's no more than one tile of rows (i.e. workgroups_x would have been
- // one). We reuse workgroups_x to mean the number of splits, so we need to
- // cancel out the divide by wg_denoms[0].
- pc, { workgroups_x * pipeline->wg_denoms[0], workgroups_y, workgroups_z });
- ggml_vk_sync_buffers(ctx, subctx);
- const std::array<uint32_t, 5> pc2 = { HSV, (uint32_t)ne1, (uint32_t)ne3, split_k, (sinks != nullptr) };
- ggml_vk_dispatch_pipeline(ctx, subctx, ctx->device->pipeline_flash_attn_split_k_reduce,
- {split_k_buf, sinks_buf, dst_buf},
- pc2, { (uint32_t)ne1, HSV, (uint32_t)ne3 });
- ctx->prealloc_split_k_need_sync = true;
- } else {
- ggml_vk_dispatch_pipeline(ctx, subctx, pipeline,
- {q_buf, k_buf, v_buf, mask_buf, sinks_buf, dst_buf},
- pc, { workgroups_x, workgroups_y, workgroups_z });
- }
- }
- static std::array<uint32_t, 3> ggml_vk_get_conv_elements(const ggml_tensor *dst) {
- const ggml_tensor *src0 = dst->src[0];
- const ggml_tensor *src1 = dst->src[1];
- // src0 - kernel: [KW, KH, Cin, Cout]
- // src1 - input: [W, H, Cin, N]
- // dst - result: [OW, OH, Cout, N]
- // Copied from ggml.c: int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d)
- auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
- return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
- };
- // parallelize in {OW/BS_K, OH/BS_NPQ, 1}
- int64_t W = src1->ne[0];
- int64_t H = src1->ne[1];
- int64_t KW = src0->ne[0];
- int64_t KH = src0->ne[1];
- int64_t Cout = src0->ne[3];
- int64_t N = src1->ne[3];
- int64_t OH = calc_conv_output_size(H, KH, dst->op_params[1], dst->op_params[3], dst->op_params[5]);
- int64_t OW = calc_conv_output_size(W, KW, dst->op_params[0], dst->op_params[2], dst->op_params[4]);
- int64_t NPQ = N * OW * OH;
- // Tile output matrix to (K/NB_K, NPQ/NB_NPQ, 1) workgroups
- std::array<uint32_t, 3> elements = { static_cast<uint32_t>(Cout), static_cast<uint32_t>(NPQ), 1 };
- return elements;
- }
- static std::array<uint32_t, 3> ggml_vk_get_conv_transpose_2d_elements(const ggml_tensor *dst) {
- const ggml_tensor *src0 = dst->src[0];
- const ggml_tensor *src1 = dst->src[1];
- // src0 - kernel: [KW, KH, Cout, Cin]
- // src1 - input: [W, H, Cin, N]
- // dst - result: [OW, OH, Cout, N]
- auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
- return (ins - 1) * s - 2 * p + (ks - 1) * d + 1;
- };
- // parallelize in {OW/BS_K, OH/BS_NPQ, 1}
- int64_t W = src1->ne[0];
- int64_t H = src1->ne[1];
- int64_t KW = src0->ne[0];
- int64_t KH = src0->ne[1];
- int64_t Cout = src0->ne[2];
- int64_t N = src1->ne[3];
- int64_t OH = calc_conv_output_size(H, KH, dst->op_params[0], 0, 1);
- int64_t OW = calc_conv_output_size(W, KW, dst->op_params[0], 0, 1);
- int64_t NPQ = N * OW * OH;
- // Tile output matrix to (K/NB_K, NPQ/NB_NPQ, 1) workgroups
- std::array<uint32_t, 3> elements = { static_cast<uint32_t>(Cout), static_cast<uint32_t>(NPQ), 1 };
- return elements;
- }
- static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, const ggml_tensor * dst, ggml_op op) {
- switch (op) {
- case GGML_OP_GET_ROWS:
- GGML_ASSERT(src1->type == GGML_TYPE_I32);
- if (dst->type == GGML_TYPE_F16) {
- return ctx->device->pipeline_get_rows[src0->type];
- }
- if (dst->type == GGML_TYPE_F32) {
- return ctx->device->pipeline_get_rows_f32[src0->type];
- }
- return nullptr;
- case GGML_OP_ACC:
- if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
- return ctx->device->pipeline_acc_f32;
- }
- return nullptr;
- case GGML_OP_ADD:
- case GGML_OP_SUB:
- case GGML_OP_MUL:
- case GGML_OP_DIV:
- if ((src0->type != GGML_TYPE_F32 && src0->type != GGML_TYPE_F16) ||
- (src1->type != GGML_TYPE_F32 && src1->type != GGML_TYPE_F16) ||
- (dst->type != GGML_TYPE_F32 && dst->type != GGML_TYPE_F16)) {
- return nullptr;
- }
- switch (op) {
- case GGML_OP_ADD:
- {
- if (ctx->num_additional_fused_ops > 0) {
- if (ctx->do_add_rms_partials) {
- return ctx->device->pipeline_multi_add_rms[ctx->num_additional_fused_ops];
- } else {
- return ctx->device->pipeline_multi_add[ctx->num_additional_fused_ops];
- }
- }
- if (ctx->do_add_rms_partials) {
- auto pipelines = ggml_are_same_shape(src0, src1) ? ctx->device->pipeline_add_rms_norepeat : ctx->device->pipeline_add_rms;
- return pipelines[src0->type == GGML_TYPE_F16][src1->type == GGML_TYPE_F16][dst->type == GGML_TYPE_F16];
- } else {
- auto pipelines = ggml_are_same_shape(src0, src1) ? ctx->device->pipeline_add_norepeat : ctx->device->pipeline_add;
- return pipelines[src0->type == GGML_TYPE_F16][src1->type == GGML_TYPE_F16][dst->type == GGML_TYPE_F16];
- }
- }
- case GGML_OP_SUB:
- {
- auto pipelines = ggml_are_same_shape(src0, src1) ? ctx->device->pipeline_sub_norepeat : ctx->device->pipeline_sub;
- return pipelines[src0->type == GGML_TYPE_F16][src1->type == GGML_TYPE_F16][dst->type == GGML_TYPE_F16];
- }
- case GGML_OP_MUL:
- {
- auto pipelines = ggml_are_same_shape(src0, src1) ? ctx->device->pipeline_mul_norepeat : ctx->device->pipeline_mul;
- return pipelines[src0->type == GGML_TYPE_F16][src1->type == GGML_TYPE_F16][dst->type == GGML_TYPE_F16];
- }
- case GGML_OP_DIV:
- {
- auto pipelines = ggml_are_same_shape(src0, src1) ? ctx->device->pipeline_div_norepeat : ctx->device->pipeline_div;
- return pipelines[src0->type == GGML_TYPE_F16][src1->type == GGML_TYPE_F16][dst->type == GGML_TYPE_F16];
- }
- default:
- break;
- }
- return nullptr;
- case GGML_OP_ADD_ID:
- if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && src2->type == GGML_TYPE_I32 && dst->type == GGML_TYPE_F32) {
- return ctx->device->pipeline_add_id_f32;
- }
- return nullptr;
- case GGML_OP_CONCAT:
- if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
- return ctx->device->pipeline_concat_f32;
- }
- if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
- return ctx->device->pipeline_concat_f16;
- }
- if (src0->type == GGML_TYPE_I32 && src1->type == GGML_TYPE_I32 && dst->type == GGML_TYPE_I32) {
- return ctx->device->pipeline_concat_i32;
- }
- return nullptr;
- case GGML_OP_UPSCALE:
- if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
- ggml_scale_mode mode = (ggml_scale_mode)(ggml_get_op_params_i32(dst, 0) & 0xFF);
- switch (mode) {
- case GGML_SCALE_MODE_NEAREST:
- return ctx->device->pipeline_upscale_nearest_f32;
- case GGML_SCALE_MODE_BILINEAR:
- return ctx->device->pipeline_upscale_bilinear_f32;
- case GGML_SCALE_MODE_BICUBIC:
- return ctx->device->pipeline_upscale_bicubic_f32;
- default:
- return nullptr;
- }
- }
- return nullptr;
- case GGML_OP_SCALE:
- if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
- return ctx->device->pipeline_scale_f32;
- }
- return nullptr;
- case GGML_OP_SQR:
- if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
- return ctx->device->pipeline_sqr_f32;
- }
- return nullptr;
- case GGML_OP_SQRT:
- if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
- return ctx->device->pipeline_sqrt_f32;
- }
- return nullptr;
- case GGML_OP_SIN:
- if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
- return ctx->device->pipeline_sin_f32;
- }
- return nullptr;
- case GGML_OP_COS:
- if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
- return ctx->device->pipeline_cos_f32;
- }
- return nullptr;
- case GGML_OP_LOG:
- if (src0->type == dst->type &&
- (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16)) {
- return ctx->device->pipeline_log[dst->type == GGML_TYPE_F16];
- }
- return nullptr;
- case GGML_OP_CLAMP:
- if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
- return ctx->device->pipeline_clamp_f32;
- }
- return nullptr;
- case GGML_OP_PAD:
- if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
- return ctx->device->pipeline_pad_f32;
- }
- return nullptr;
- case GGML_OP_ROLL:
- if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
- return ctx->device->pipeline_roll_f32;
- }
- return nullptr;
- case GGML_OP_REPEAT:
- if (ggml_type_size(src0->type) == sizeof(float) && ggml_type_size(dst->type) == sizeof(float)) {
- return ctx->device->pipeline_repeat_f32;
- }
- return nullptr;
- case GGML_OP_REPEAT_BACK:
- if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
- return ctx->device->pipeline_repeat_back_f32;
- }
- return nullptr;
- case GGML_OP_CPY:
- case GGML_OP_CONT:
- case GGML_OP_DUP:
- return ggml_vk_get_cpy_pipeline(ctx, src0, dst, dst->type);
- case GGML_OP_SET_ROWS:
- if (src1->type == GGML_TYPE_I64) {
- return ctx->device->pipeline_set_rows_i64[dst->type];
- } else {
- return ctx->device->pipeline_set_rows_i32[dst->type];
- }
- case GGML_OP_SILU_BACK:
- if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
- return ctx->device->pipeline_silu_back_f32;
- }
- return nullptr;
- case GGML_OP_NORM:
- if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
- return ctx->device->pipeline_norm_f32;
- }
- return nullptr;
- case GGML_OP_GROUP_NORM:
- if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
- return ctx->device->pipeline_group_norm_f32;
- }
- return nullptr;
- case GGML_OP_RMS_NORM:
- if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
- if (ctx->do_add_rms_partials) {
- return ctx->num_additional_fused_ops > 0 ? ctx->device->pipeline_rms_norm_mul_partials_f32 : ctx->device->pipeline_rms_norm_partials_f32;
- } else {
- return ctx->num_additional_fused_ops > 0 ? ctx->device->pipeline_rms_norm_mul_f32 : ctx->device->pipeline_rms_norm_f32;
- }
- }
- return nullptr;
- case GGML_OP_RMS_NORM_BACK:
- if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
- return ctx->device->pipeline_rms_norm_back_f32;
- }
- return nullptr;
- case GGML_OP_L2_NORM:
- if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
- return ctx->device->pipeline_l2_norm_f32;
- }
- return nullptr;
- case GGML_OP_UNARY:
- if ((src0->type != GGML_TYPE_F32 && src0->type != GGML_TYPE_F16) ||
- (dst->type != GGML_TYPE_F32 && dst->type != GGML_TYPE_F16) ||
- (src0->type != dst->type)) {
- return nullptr;
- }
- switch (ggml_get_unary_op(dst)) {
- case GGML_UNARY_OP_EXP:
- return ctx->device->pipeline_exp[dst->type == GGML_TYPE_F16];
- case GGML_UNARY_OP_SILU:
- return ctx->device->pipeline_silu[dst->type == GGML_TYPE_F16];
- case GGML_UNARY_OP_GELU:
- return ctx->device->pipeline_gelu[dst->type == GGML_TYPE_F16];
- case GGML_UNARY_OP_GELU_ERF:
- return ctx->device->pipeline_gelu_erf[dst->type == GGML_TYPE_F16];
- case GGML_UNARY_OP_GELU_QUICK:
- return ctx->device->pipeline_gelu_quick[dst->type == GGML_TYPE_F16];
- case GGML_UNARY_OP_RELU:
- return ctx->device->pipeline_relu[dst->type == GGML_TYPE_F16];
- case GGML_UNARY_OP_NEG:
- return ctx->device->pipeline_neg[dst->type == GGML_TYPE_F16];
- case GGML_UNARY_OP_TANH:
- return ctx->device->pipeline_tanh[dst->type == GGML_TYPE_F16];
- case GGML_UNARY_OP_SIGMOID:
- return ctx->device->pipeline_sigmoid[dst->type == GGML_TYPE_F16];
- case GGML_UNARY_OP_HARDSIGMOID:
- return ctx->device->pipeline_hardsigmoid[dst->type == GGML_TYPE_F16];
- case GGML_UNARY_OP_HARDSWISH:
- return ctx->device->pipeline_hardswish[dst->type == GGML_TYPE_F16];
- case GGML_UNARY_OP_ABS:
- return ctx->device->pipeline_abs[dst->type == GGML_TYPE_F16];
- case GGML_UNARY_OP_SOFTPLUS:
- return ctx->device->pipeline_softplus[dst->type == GGML_TYPE_F16];
- case GGML_UNARY_OP_STEP:
- return ctx->device->pipeline_step[dst->type == GGML_TYPE_F16];
- case GGML_UNARY_OP_ROUND:
- return ctx->device->pipeline_round[dst->type == GGML_TYPE_F16];
- case GGML_UNARY_OP_CEIL:
- return ctx->device->pipeline_ceil[dst->type == GGML_TYPE_F16];
- case GGML_UNARY_OP_FLOOR:
- return ctx->device->pipeline_floor[dst->type == GGML_TYPE_F16];
- case GGML_UNARY_OP_TRUNC:
- return ctx->device->pipeline_trunc[dst->type == GGML_TYPE_F16];
- default:
- break;
- }
- return nullptr;
- case GGML_OP_GLU:
- if ((src0->type != GGML_TYPE_F32 && src0->type != GGML_TYPE_F16) ||
- (dst->type != GGML_TYPE_F32 && dst->type != GGML_TYPE_F16) ||
- (src0->type != dst->type)) {
- return nullptr;
- }
- switch (ggml_get_glu_op(dst)) {
- case GGML_GLU_OP_GEGLU:
- return ctx->device->pipeline_geglu[dst->type == GGML_TYPE_F16];
- case GGML_GLU_OP_REGLU:
- return ctx->device->pipeline_reglu[dst->type == GGML_TYPE_F16];
- case GGML_GLU_OP_SWIGLU:
- return ctx->device->pipeline_swiglu[dst->type == GGML_TYPE_F16];
- case GGML_GLU_OP_SWIGLU_OAI:
- return ctx->device->pipeline_swiglu_oai[dst->type == GGML_TYPE_F16];
- case GGML_GLU_OP_GEGLU_ERF:
- return ctx->device->pipeline_geglu_erf[dst->type == GGML_TYPE_F16];
- case GGML_GLU_OP_GEGLU_QUICK:
- return ctx->device->pipeline_geglu_quick[dst->type == GGML_TYPE_F16];
- default:
- break;
- }
- return nullptr;
- case GGML_OP_DIAG_MASK_INF:
- if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
- return ctx->device->pipeline_diag_mask_inf_f32;
- }
- return nullptr;
- case GGML_OP_SOFT_MAX:
- GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16);
- GGML_ASSERT(!src2 || src2->type == GGML_TYPE_F32);
- if (ctx->num_additional_fused_ops) {
- uint32_t idx = (uint32_t)ceilf(log2f(float(dst->ne[0])));
- GGML_ASSERT(idx < num_topk_moe_pipelines);
- topk_moe_mode mode = ggml_vk_num_additional_ops_to_topk_moe_mode(ctx->num_additional_fused_ops);
- return ctx->device->pipeline_topk_moe[idx][mode];
- }
- if (src0->type == GGML_TYPE_F32 && (src1 == nullptr || src1->type == GGML_TYPE_F32) && dst->type == GGML_TYPE_F32) {
- return src0->ne[0] > 1024 ? ctx->device->pipeline_soft_max_f32_wg512 : ctx->device->pipeline_soft_max_f32;
- }
- if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
- return src0->ne[0] > 1024 ? ctx->device->pipeline_soft_max_f32_f16_wg512 : ctx->device->pipeline_soft_max_f32_f16;
- }
- return nullptr;
- case GGML_OP_SOFT_MAX_BACK:
- if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
- return ctx->device->pipeline_soft_max_back_f32;
- }
- return nullptr;
- case GGML_OP_ROPE:
- case GGML_OP_ROPE_BACK:
- {
- const ggml_tensor *rope = ctx->num_additional_fused_ops == 2 ? dst->src[0]->src[0] : dst;
- const int mode = ((const int32_t *) rope->op_params)[2];
- const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
- const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
- const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
- if (is_neox) {
- if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
- return ctx->device->pipeline_rope_neox_f32;
- }
- if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F16) {
- return ctx->device->pipeline_rope_neox_f32_f16;
- }
- if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
- return ctx->device->pipeline_rope_neox_f16;
- }
- } else if (is_mrope && !is_vision) {
- if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
- return ctx->device->pipeline_rope_multi_f32;
- }
- if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
- return ctx->device->pipeline_rope_multi_f16;
- }
- } else if (is_vision) {
- if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
- return ctx->device->pipeline_rope_vision_f32;
- }
- if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
- return ctx->device->pipeline_rope_vision_f16;
- }
- } else {
- if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
- return ctx->device->pipeline_rope_norm_f32;
- }
- if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F16) {
- return ctx->device->pipeline_rope_norm_f32_f16;
- }
- if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
- return ctx->device->pipeline_rope_norm_f16;
- }
- }
- return nullptr;
- }
- case GGML_OP_SUM:
- case GGML_OP_SUM_ROWS:
- case GGML_OP_MEAN:
- if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
- return ctx->device->pipeline_sum_rows_f32;
- }
- return nullptr;
- case GGML_OP_ARGMAX:
- if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_I32) {
- return ctx->device->pipeline_argmax_f32;
- }
- return nullptr;
- case GGML_OP_COUNT_EQUAL:
- if (src0->type == GGML_TYPE_I32 && src1->type == GGML_TYPE_I32 && dst->type == GGML_TYPE_I64) {
- return ctx->device->pipeline_count_equal_i32;
- }
- return nullptr;
- case GGML_OP_IM2COL:
- if (src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
- return ctx->device->pipeline_im2col_f32;
- }
- if (src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F16) {
- return ctx->device->pipeline_im2col_f32_f16;
- }
- return nullptr;
- case GGML_OP_IM2COL_3D:
- if (src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
- return ctx->device->pipeline_im2col_3d_f32;
- }
- if (src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F16) {
- return ctx->device->pipeline_im2col_3d_f32_f16;
- }
- return nullptr;
- case GGML_OP_TIMESTEP_EMBEDDING:
- if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
- return ctx->device->pipeline_timestep_embedding_f32;
- }
- return nullptr;
- case GGML_OP_CONV_TRANSPOSE_1D:
- if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
- return ctx->device->pipeline_conv_transpose_1d_f32;
- }
- return nullptr;
- case GGML_OP_POOL_2D:
- if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
- return ctx->device->pipeline_pool2d_f32;
- }
- return nullptr;
- case GGML_OP_RWKV_WKV6:
- if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
- return ctx->device->pipeline_rwkv_wkv6_f32;
- }
- return nullptr;
- case GGML_OP_RWKV_WKV7:
- if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
- return ctx->device->pipeline_rwkv_wkv7_f32;
- }
- return nullptr;
- case GGML_OP_SSM_SCAN:
- if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
- const uint32_t d_state = src0->ne[0];
- if (d_state == 128) {
- return ctx->device->pipeline_ssm_scan_f32_d128;
- } else if (d_state == 256) {
- return ctx->device->pipeline_ssm_scan_f32_d256;
- }
- }
- return nullptr;
- case GGML_OP_SSM_CONV:
- if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
- return ctx->device->pipeline_ssm_conv_f32;
- }
- return nullptr;
- case GGML_OP_OPT_STEP_ADAMW:
- if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
- return ctx->device->pipeline_opt_step_adamw_f32;
- }
- return nullptr;
- case GGML_OP_OPT_STEP_SGD:
- if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
- return ctx->device->pipeline_opt_step_sgd_f32;
- }
- return nullptr;
- case GGML_OP_LEAKY_RELU:
- if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
- return ctx->device->pipeline_leaky_relu_f32;
- }
- return nullptr;
- case GGML_OP_CONV_2D:
- case GGML_OP_CONV_TRANSPOSE_2D:
- if (src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32 &&
- ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && ggml_is_contiguous(dst)) {
- std::array<uint32_t, 3> elements{};
- if (op == GGML_OP_CONV_2D) elements = ggml_vk_get_conv_elements(dst);
- else if (op == GGML_OP_CONV_TRANSPOSE_2D) elements = ggml_vk_get_conv_transpose_2d_elements(dst);
- vk_conv_shapes shape;
- uint32_t tiles[CONV_SHAPE_COUNT];
- for (uint32_t i = 0; i < CONV_SHAPE_COUNT; ++i) {
- tiles[i] = CEIL_DIV(elements[0], conv_shapes_wg_denoms[i][0]) * CEIL_DIV(elements[1], conv_shapes_wg_denoms[i][1]);
- }
- // We can't query number of shader cores on Intel, use 32 as a placeholder
- // so small convolutions will still choose a smaller tile.
- const uint32_t shader_core_count = ctx->device->shader_core_count > 0 ? ctx->device->shader_core_count : 32;
- if (elements[0] > 64 && tiles[CONV_SHAPE_128x128] >= shader_core_count * 2) {
- shape = CONV_SHAPE_128x128;
- } else if (elements[0] <= 32 && tiles[CONV_SHAPE_32x256] >= shader_core_count * 2) {
- shape = CONV_SHAPE_32x256;
- } else {
- shape = CONV_SHAPE_64x32;
- }
- uint32_t KW = static_cast<uint32_t>(src0->ne[0]);
- uint32_t KH = static_cast<uint32_t>(src0->ne[1]);
- uint32_t s0 = static_cast<uint32_t>(dst->op_params[0]);
- uint32_t s1 = op == GGML_OP_CONV_2D ? static_cast<uint32_t>(dst->op_params[1]) : static_cast<uint32_t>(dst->op_params[0]);
- uint32_t p0 = op == GGML_OP_CONV_2D ? static_cast<uint32_t>(dst->op_params[2]) : 0;
- uint32_t p1 = op == GGML_OP_CONV_2D ? static_cast<uint32_t>(dst->op_params[3]) : 0;
- uint32_t d0 = op == GGML_OP_CONV_2D ? static_cast<uint32_t>(dst->op_params[4]) : 1;
- uint32_t d1 = op == GGML_OP_CONV_2D ? static_cast<uint32_t>(dst->op_params[5]) : 1;
- vk_conv2d_pipeline_state conv2d_pipeline_state(s0, s1, p0, p1, d0, d1, KW, KH);
- std::map<vk_conv2d_pipeline_state, vk_pipeline> *pipelines = nullptr;
- if (op == GGML_OP_CONV_2D) {
- if (src0->type == GGML_TYPE_F32) {
- pipelines = &ctx->device->pipeline_conv2d_f32[shape];
- } else if (src0->type == GGML_TYPE_F16) {
- pipelines = &ctx->device->pipeline_conv2d_f16_f32[shape];
- }
- } else if (op == GGML_OP_CONV_TRANSPOSE_2D) {
- if (src0->type == GGML_TYPE_F32) {
- pipelines = &ctx->device->pipeline_conv_transpose_2d_f32[shape];
- } else if (src0->type == GGML_TYPE_F16) {
- pipelines = &ctx->device->pipeline_conv_transpose_2d_f16_f32[shape];
- }
- }
- vk_pipeline pipeline = nullptr;
- {
- std::lock_guard<std::recursive_mutex> guard(ctx->device->mutex);
- auto it = pipelines->find(conv2d_pipeline_state);
- if (it != pipelines->end()) {
- pipeline = it->second;
- } else {
- (*pipelines)[conv2d_pipeline_state] = pipeline = std::make_shared<vk_pipeline_struct>();
- }
- }
- return pipeline;
- }
- return nullptr;
- case GGML_OP_CONV_2D_DW:
- if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
- if (ggml_is_contiguous(src1)) {
- return ctx->device->pipeline_conv2d_dw_whcn_f32;
- } else if (ggml_is_contiguous_channels(src1)) {
- return ctx->device->pipeline_conv2d_dw_cwhn_f32;
- }
- } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
- if (ggml_is_contiguous(src1)) {
- return ctx->device->pipeline_conv2d_dw_whcn_f16_f32;
- } else if (ggml_is_contiguous_channels(src1)) {
- return ctx->device->pipeline_conv2d_dw_cwhn_f16_f32;
- }
- }
- return nullptr;
- case GGML_OP_ADD1:
- if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
- return ctx->device->pipeline_add1_f16_f16;
- }
- if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F16) {
- return ctx->device->pipeline_add1_f16_f32;
- }
- if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
- return ctx->device->pipeline_add1_f32_f32;
- }
- return nullptr;
- case GGML_OP_ARANGE:
- if (dst->type == GGML_TYPE_F32) {
- return ctx->device->pipeline_arange_f32;
- }
- return nullptr;
- case GGML_OP_FILL:
- if (dst->type == GGML_TYPE_F32) {
- return ctx->device->pipeline_fill_f32;
- }
- return nullptr;
- default:
- return nullptr;
- }
- GGML_UNUSED(src2);
- }
- static bool ggml_vk_op_supports_incontiguous(ggml_op op) {
- switch (op) {
- case GGML_OP_CPY:
- case GGML_OP_GET_ROWS:
- case GGML_OP_ADD:
- case GGML_OP_SUB:
- case GGML_OP_MUL:
- case GGML_OP_DIV:
- case GGML_OP_ADD_ID:
- case GGML_OP_CONCAT:
- case GGML_OP_UPSCALE:
- case GGML_OP_SQR:
- case GGML_OP_SQRT:
- case GGML_OP_SIN:
- case GGML_OP_COS:
- case GGML_OP_LOG:
- case GGML_OP_CLAMP:
- case GGML_OP_PAD:
- case GGML_OP_REPEAT:
- case GGML_OP_REPEAT_BACK:
- case GGML_OP_ROPE:
- case GGML_OP_RMS_NORM:
- case GGML_OP_CONV_2D_DW:
- case GGML_OP_IM2COL:
- case GGML_OP_IM2COL_3D:
- case GGML_OP_SET_ROWS:
- case GGML_OP_SUM:
- case GGML_OP_SUM_ROWS:
- case GGML_OP_MEAN:
- return true;
- default:
- return false;
- }
- }
- template <> void init_pushconst_tensor_offsets(ggml_backend_vk_context * ctx, vk_op_unary_push_constants &p, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, const ggml_tensor * src3, ggml_tensor * dst) {
- const uint32_t a_offset = get_misalign_bytes(ctx, src0) / ggml_type_size(src0->type);
- const uint32_t d_offset = get_misalign_bytes(ctx, dst) / ggml_type_size(dst->type);
- p.misalign_offsets = (a_offset << 16) | d_offset;
- GGML_UNUSED(src1);
- GGML_UNUSED(src2);
- GGML_UNUSED(src3);
- }
- template <> void init_pushconst_tensor_offsets(ggml_backend_vk_context * ctx, vk_op_sum_rows_push_constants &p, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, const ggml_tensor * src3, ggml_tensor * dst) {
- const uint32_t a_offset = get_misalign_bytes(ctx, src0) / ggml_type_size(src0->type);
- const uint32_t d_offset = get_misalign_bytes(ctx, dst) / ggml_type_size(dst->type);
- p.misalign_offsets = (a_offset << 16) | d_offset;
- GGML_UNUSED(src1);
- GGML_UNUSED(src2);
- GGML_UNUSED(src3);
- }
- template <> void init_pushconst_tensor_offsets(ggml_backend_vk_context * ctx, vk_op_pad_push_constants &p, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, const ggml_tensor * src3, ggml_tensor * dst) {
- const uint32_t a_offset = get_misalign_bytes(ctx, src0) / ggml_type_size(src0->type);
- const uint32_t d_offset = get_misalign_bytes(ctx, dst) / ggml_type_size(dst->type);
- p.misalign_offsets = (a_offset << 16) | d_offset;
- GGML_UNUSED(src1);
- GGML_UNUSED(src2);
- GGML_UNUSED(src3);
- }
- template <> void init_pushconst_tensor_offsets(ggml_backend_vk_context * ctx, vk_op_im2col_3d_push_constants &p, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, const ggml_tensor * src3, ggml_tensor * dst) {
- const uint32_t a_offset = get_misalign_bytes(ctx, src1) / ggml_type_size(src1->type);
- const uint32_t d_offset = get_misalign_bytes(ctx, dst) / ggml_type_size(dst->type);
- p.misalign_offsets = (a_offset << 16) | d_offset;
- GGML_UNUSED(src0);
- GGML_UNUSED(src2);
- GGML_UNUSED(src3);
- }
- template <> void init_pushconst_tensor_offsets(ggml_backend_vk_context * ctx, vk_op_binary_push_constants &p, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, const ggml_tensor * src3, ggml_tensor * dst) {
- const uint32_t a_offset = get_misalign_bytes(ctx, src0) / ggml_type_size(src0->type);
- const uint32_t b_offset = get_misalign_bytes(ctx, src1) / ggml_type_size(src1->type);
- const uint32_t d_offset = get_misalign_bytes(ctx, dst) / ggml_type_size(dst->type);
- GGML_ASSERT(dst->op != GGML_OP_GET_ROWS || (a_offset == 0 && b_offset == 0 && d_offset == 0));
- p.misalign_offsets = (a_offset << 16) | (b_offset << 8) | d_offset;
- GGML_UNUSED(src2);
- GGML_UNUSED(src3);
- }
- template <> void init_pushconst_tensor_offsets(ggml_backend_vk_context * ctx, vk_op_upscale_push_constants &p, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, const ggml_tensor * src3, ggml_tensor * dst) {
- const uint32_t a_offset = get_misalign_bytes(ctx, src0) / ggml_type_size(src0->type);
- const uint32_t d_offset = get_misalign_bytes(ctx, dst) / ggml_type_size(dst->type);
- p.a_offset = a_offset;
- p.d_offset = d_offset;
- GGML_UNUSED(src1);
- GGML_UNUSED(src2);
- GGML_UNUSED(src3);
- }
- template<typename PC>
- static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, const ggml_tensor * src3, ggml_tensor * dst, ggml_op op, PC&& pc) {
- VK_LOG_DEBUG("ggml_vk_op_f32((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
- if (src1 != nullptr) {
- std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
- }
- if (src2 != nullptr) {
- std::cerr << "), (" << src2 << ", name=" << src2->name << ", type=" << src2->type << ", ne0=" << src2->ne[0] << ", ne1=" << src2->ne[1] << ", ne2=" << src2->ne[2] << ", ne3=" << src2->ne[3] << ", nb0=" << src2->nb[0] << ", nb1=" << src2->nb[1] << ", nb2=" << src2->nb[2] << ", nb3=" << src2->nb[3];
- }
- if (src3 != nullptr) {
- std::cerr << "), (" << src3 << ", name=" << src3->name << ", type=" << src3->type << ", ne0=" << src3->ne[0] << ", ne1=" << src3->ne[1] << ", ne2=" << src3->ne[2] << ", ne3=" << src3->ne[3] << ", nb0=" << src3->nb[0] << ", nb1=" << src3->nb[1] << ", nb2=" << src3->nb[2] << ", nb3=" << src3->nb[3];
- }
- std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3];
- std::cerr << "), " << ggml_op_name(op) << ")");
- GGML_ASSERT(op == GGML_OP_GET_ROWS || op == GGML_OP_CPY || (!ggml_is_quantized(src0->type) && (src1 == nullptr || !ggml_is_quantized(src1->type)))); // NOLINT
- GGML_ASSERT(ggml_vk_op_supports_incontiguous(op) || ggml_vk_dim01_contiguous(src0)); // NOLINT
- GGML_ASSERT(dst->buffer != nullptr);
- const uint64_t ne00 = src0->ne[0];
- const uint64_t ne01 = src0->ne[1];
- const uint64_t ne02 = src0->ne[2];
- const uint64_t ne03 = src0->ne[3];
- const bool use_src1 = src1 != nullptr;
- const uint64_t ne10 = use_src1 ? src1->ne[0] : 0;
- const uint64_t ne11 = use_src1 ? src1->ne[1] : 0;
- const uint64_t ne12 = use_src1 ? src1->ne[2] : 0;
- const uint64_t ne13 = use_src1 ? src1->ne[3] : 0;
- const bool use_src2 = src2 != nullptr;
- const bool use_src3 = src3 != nullptr;
- init_pushconst_fastdiv(pc);
- vk_pipeline pipeline = ggml_vk_op_get_pipeline(ctx, src0, src1, src2, dst, op);
- if (pipeline == nullptr) {
- std::cerr << "ggml_vulkan: Error: Missing op: " << ggml_op_name(op) << " for " << ggml_type_name(src0->type);
- if (src1 != nullptr) {
- std::cerr << " and " << ggml_type_name(src1->type);
- }
- std::cerr << " to " << ggml_type_name(dst->type) << std::endl;
- GGML_ABORT("fatal error");
- }
- ggml_pipeline_request_descriptor_sets(ctx, pipeline, 1);
- const bool op_supports_incontiguous = ggml_vk_op_supports_incontiguous(op);
- vk_subbuffer src0_buf = ggml_vk_tensor_subbuffer(ctx, src0, op_supports_incontiguous);
- vk_subbuffer src1_buf = use_src1 ? ggml_vk_tensor_subbuffer(ctx, src1, op_supports_incontiguous) : vk_subbuffer{};
- vk_subbuffer src2_buf = use_src2 ? ggml_vk_tensor_subbuffer(ctx, src2, op_supports_incontiguous) : vk_subbuffer{};
- vk_subbuffer src3_buf = use_src3 ? ggml_vk_tensor_subbuffer(ctx, src3, op_supports_incontiguous) : vk_subbuffer{};
- vk_subbuffer dst_buf = ggml_vk_tensor_subbuffer(ctx, dst, op_supports_incontiguous);
- // Compute misalignment offset for descriptors and store it in in push constants.
- init_pushconst_tensor_offsets(ctx, pc, src0, src1, src2, src3, dst);
- std::array<uint32_t, 3> elements;
- // Single call if dimension 2 is contiguous
- GGML_ASSERT(op_supports_incontiguous || (ggml_is_contiguous(src0) && (src1 == nullptr || ggml_is_contiguous(src1))));
- switch (op) {
- case GGML_OP_NORM:
- case GGML_OP_RMS_NORM_BACK:
- case GGML_OP_L2_NORM:
- case GGML_OP_SOFT_MAX:
- case GGML_OP_SOFT_MAX_BACK:
- case GGML_OP_SUM_ROWS:
- case GGML_OP_MEAN:
- case GGML_OP_ARGMAX:
- {
- const uint32_t nr = ggml_nrows(src0);
- if (nr > 262144) {
- elements = { 512, 512, CEIL_DIV(nr, 262144) };
- } else if (nr > 512) {
- elements = { 512, CEIL_DIV(nr, 512), 1 };
- } else {
- elements = { nr, 1, 1 };
- }
- } break;
- case GGML_OP_RMS_NORM:
- if (ctx->do_add_rms_partials) {
- // Run one element per thread, 128 threads per workgroup
- elements = { (uint32_t)CEIL_DIV(ne00, 128), 1, 1 };
- } else {
- elements = { (uint32_t)ne01, (uint32_t)ne02, (uint32_t)ne03 };
- }
- break;
- case GGML_OP_SUM:
- // We use GGML_OP_SUM_ROWS with 1 row.
- elements = { 1, 1, 1 };
- break;
- case GGML_OP_GROUP_NORM:
- {
- const uint32_t num_groups = dst->op_params[0];
- elements = { num_groups * (uint32_t)src0->ne[3], 1, 1 };
- } break;
- case GGML_OP_DIAG_MASK_INF:
- case GGML_OP_ROPE:
- case GGML_OP_ROPE_BACK:
- elements = { (uint32_t)ggml_nrows(src0), (uint32_t)ne00, 1 };
- break;
- case GGML_OP_GET_ROWS:
- elements = { (uint32_t)ne00, (uint32_t)ne10, (uint32_t)(ne11 * ne12) };
- elements[1] = std::min(elements[1], ctx->device->properties.limits.maxComputeWorkGroupCount[1]);
- elements[2] = std::min(elements[2], ctx->device->properties.limits.maxComputeWorkGroupCount[2]);
- break;
- case GGML_OP_ARGSORT:
- GGML_ASSERT(0);
- break;
- case GGML_OP_IM2COL:
- {
- const bool is_2D = dst->op_params[6] == 1;
- const uint32_t IC = src1->ne[is_2D ? 2 : 1];
- const uint32_t KH = is_2D ? src0->ne[1] : 1;
- const uint32_t KW = src0->ne[0];
- const uint32_t OH = is_2D ? dst->ne[2] : 1;
- const uint32_t OW = dst->ne[1];
- const uint32_t batch = src1->ne[is_2D ? 3 : 2];
- elements = { OW * KW * KH, OH, batch * IC };
- } break;
- case GGML_OP_IM2COL_3D:
- {
- const uint32_t IC = ((const uint32_t *)(dst->op_params))[9];
- const uint32_t N = ne13 / IC;
- const uint32_t KD = ne02;
- const uint32_t KH = ne01;
- const uint32_t KW = ne00;
- const uint32_t OD = dst->ne[3] / N;
- const uint32_t OH = dst->ne[2];
- const uint32_t OW = dst->ne[1];
- const uint32_t IC_KD_KH_KW = IC*KD*KH*KW;
- const uint32_t N_OD_OH = N*OD*OH;
- elements = { IC_KD_KH_KW, OW, N_OD_OH };
- elements[2] = std::min(elements[2], ctx->device->properties.limits.maxComputeWorkGroupCount[2]);
- } break;
- case GGML_OP_TIMESTEP_EMBEDDING:
- {
- const uint32_t dim = dst->op_params[0];
- uint32_t half_ceil = (dim + 1) / 2;
- elements = { half_ceil, (uint32_t)src0->ne[0], 1 };
- } break;
- case GGML_OP_CONV_TRANSPOSE_1D:
- {
- elements = {uint32_t(src0->ne[1]), 1, 1}; // parallelize in {Cout, 1, 1}
- } break;
- case GGML_OP_POOL_2D:
- {
- const uint32_t N = dst->ne[3];
- const uint32_t OC = dst->ne[2];
- const uint32_t OH = dst->ne[1];
- const uint32_t OW = dst->ne[0];
- elements = { N * OC * OH * OW, 1, 1};
- } break;
- case GGML_OP_CONV_2D:
- {
- elements = ggml_vk_get_conv_elements(dst);
- } break;
- case GGML_OP_CONV_TRANSPOSE_2D:
- {
- elements = ggml_vk_get_conv_transpose_2d_elements(dst);
- } break;
- case GGML_OP_ADD:
- case GGML_OP_SUB:
- case GGML_OP_DIV:
- case GGML_OP_MUL:
- case GGML_OP_ADD1:
- case GGML_OP_ARANGE:
- case GGML_OP_FILL:
- case GGML_OP_SCALE:
- case GGML_OP_SQR:
- case GGML_OP_SQRT:
- case GGML_OP_SIN:
- case GGML_OP_COS:
- case GGML_OP_LOG:
- case GGML_OP_CLAMP:
- case GGML_OP_PAD:
- case GGML_OP_ROLL:
- case GGML_OP_REPEAT:
- case GGML_OP_REPEAT_BACK:
- case GGML_OP_CPY:
- case GGML_OP_CONCAT:
- case GGML_OP_UPSCALE:
- case GGML_OP_UNARY:
- case GGML_OP_GLU:
- case GGML_OP_CONV_2D_DW:
- {
- uint32_t ne = ggml_nelements(dst);
- if (op == GGML_OP_CPY && ggml_is_quantized(src0->type) && ggml_is_quantized(dst->type)) {
- // Convert from number of logical elements to 2- or 4-byte units.
- ne /= ggml_blck_size(src0->type);
- if ((ggml_type_size(src0->type) % 4) == 0) {
- ne *= ggml_type_size(src0->type) / 4;
- } else {
- ne *= ggml_type_size(src0->type) / 2;
- }
- }
- // copy_to_quant has block size of 32, and each thread does QUANT_K elements.
- // Splitting into 512x512xZ wouldn't work well since each workgroup does 1024 elements.
- // So divide by block size here before splitting into 512x512 groups.
- if (op == GGML_OP_CPY && !ggml_is_quantized(src0->type) && ggml_is_quantized(dst->type)) {
- ne = CEIL_DIV(ne, ggml_blck_size(dst->type));
- }
- if (ne > 262144) {
- elements = { 512, 512, CEIL_DIV(ne, 262144) };
- } else if (ne > 512) {
- elements = { 512, CEIL_DIV(ne, 512), 1 };
- } else {
- elements = { ne, 1, 1 };
- }
- if (pipeline == ctx->device->pipeline_cpy_transpose_32 ||
- pipeline == ctx->device->pipeline_cpy_transpose_16) {
- // 32x32 tiles
- elements[0] = (uint32_t)CEIL_DIV(dst->ne[0], 32);
- elements[1] = (uint32_t)CEIL_DIV(dst->ne[1], 32);
- elements[2] = (uint32_t)(dst->ne[2]*dst->ne[3]);
- elements[0] = std::min(elements[0], ctx->device->properties.limits.maxComputeWorkGroupCount[0]);
- elements[1] = std::min(elements[1], ctx->device->properties.limits.maxComputeWorkGroupCount[1]);
- elements[2] = std::min(elements[2], ctx->device->properties.limits.maxComputeWorkGroupCount[2]);
- }
- } break;
- case GGML_OP_ADD_ID:
- {
- elements = { (uint32_t)ne01, (uint32_t)ne02, 1 };
- } break;
- case GGML_OP_SET_ROWS:
- {
- uint32_t ne = ggml_nelements(src0);
- if (ggml_is_quantized(dst->type)) {
- // quants run 32 threads each doing QUANT_K elements
- ne = CEIL_DIV(ne, 32 * ggml_blck_size(dst->type));
- } else {
- // scalar types do one element per thread, running 512 threads
- ne = CEIL_DIV(ne, 512);
- }
- if (ne > 262144) {
- elements = { 512, 512, CEIL_DIV(ne, 262144) };
- } else if (ne > 512) {
- elements = { 512, CEIL_DIV(ne, 512), 1 };
- } else {
- elements = { ne, 1, 1 };
- }
- }
- break;
- case GGML_OP_SSM_CONV:
- {
- const uint32_t nr = src0->ne[1];
- const uint32_t n_t = dst->ne[1];
- const uint32_t n_s = dst->ne[2];
- elements = { nr, n_t, n_s };
- }
- break;
- default:
- elements = { (uint32_t)ggml_nelements(src0), 1, 1 };
- break;
- }
- if (op == GGML_OP_ADD || op == GGML_OP_RMS_NORM) {
- vk_subbuffer a_buf = src0_buf;
- if (ctx->do_add_rms_partials) {
- a_buf = ggml_vk_subbuffer(ctx, ctx->prealloc_add_rms_partials, ctx->prealloc_size_add_rms_partials_offset);
- }
- ggml_vk_dispatch_pipeline(ctx, subctx, pipeline,
- { src0_buf, src1_buf, dst_buf, a_buf }, pc, elements);
- } else if (op == GGML_OP_GLU) {
- // Empty src1 is possible in glu, but the shader needs a buffer
- vk_subbuffer subbuf1 = use_src1 ? src1_buf : src0_buf;
- ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { src0_buf, subbuf1, dst_buf }, pc, elements);
- } else if (op == GGML_OP_SOFT_MAX) {
- // Empty src1 and src2 is possible in soft_max, but the shader needs a buffer
- vk_subbuffer subbuf1 = use_src1 ? src1_buf : src0_buf;
- vk_subbuffer subbuf2 = use_src2 ? src2_buf : src0_buf;
- ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { src0_buf, subbuf1, subbuf2, dst_buf }, pc, elements);
- } else if (op == GGML_OP_ROPE || op == GGML_OP_ROPE_BACK) {
- // Empty src2 and src3 is possible in rope, but the shader needs a buffer
- vk_subbuffer subbuf2 = use_src2 ? src2_buf : src0_buf;
- vk_subbuffer subbuf3 = use_src3 ? src3_buf : src0_buf;
- ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { src0_buf, src1_buf, subbuf2, dst_buf, subbuf3 }, pc, elements);
- } else if (op == GGML_OP_IM2COL || op == GGML_OP_IM2COL_3D) {
- if (ctx->device->shader_int64 && ctx->device->buffer_device_address) {
- // buffer device address path doesn't use dst buffer
- dst_buf.size = 1;
- }
- // im2col uses only src1 and dst buffers
- ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { src1_buf, dst_buf }, pc, elements);
- } else if (op == GGML_OP_COUNT_EQUAL) {
- // count_equal assumes that destination buffer is initialized with zeroes
- ggml_vk_buffer_memset_async(subctx, dst_buf.buffer, dst_buf.offset, 0, dst_buf.size);
- ggml_vk_sync_buffers(ctx, subctx);
- ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { src0_buf, src1_buf, dst_buf }, pc, elements);
- } else if (op == GGML_OP_OPT_STEP_SGD) {
- // OPT_STEP_SGD works on src0, it does not need dst
- ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { src0_buf, src1_buf, src2_buf }, pc, elements);
- } else if (use_src3) {
- ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { src0_buf, src1_buf, src2_buf, src3_buf, dst_buf }, pc, elements);
- } else if (use_src2) {
- ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { src0_buf, src1_buf, src2_buf, dst_buf }, pc, elements);
- } else if (use_src1) {
- ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { src0_buf, src1_buf, dst_buf }, pc, elements);
- } else {
- ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { src0_buf, dst_buf }, pc, elements);
- }
- }
- static void ggml_vk_get_rows(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- const uint32_t src0_type_size = ggml_type_size(src0->type);
- const uint32_t src1_type_size = ggml_type_size(src1->type);
- const uint32_t dst_type_size = ggml_type_size(dst->type);
- ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_GET_ROWS, {
- (uint32_t)ggml_nelements(src0),
- (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
- (uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
- (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
- 0,
- 0.0f, 0.0f, 0,
- });
- }
- static void ggml_vk_acc(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- const uint32_t src0_type_size = ggml_type_size(src0->type);
- const uint32_t src1_type_size = ggml_type_size(src1->type);
- const uint32_t dst_type_size = ggml_type_size(dst->type);
- int nb1 = dst->op_params[0] / 4; // 4 bytes of float32
- int nb2 = dst->op_params[1] / 4; // 4 bytes of float32
- // int nb3 = dst->op_params[2] / 4; // 4 bytes of float32 - unused
- int offset = dst->op_params[3] / 4; // offset in bytes
- ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_ACC, {
- (uint32_t)ggml_nelements(src0),
- (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)nb1, (uint32_t)nb2, (uint32_t)src0->nb[3] / src0_type_size,
- (uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
- (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t)nb1, (uint32_t)nb2, (uint32_t) dst->nb[3] / dst_type_size,
- 0,
- 0.0f, 0.0f, offset,
- });
- }
- static void ggml_vk_multi_add(ggml_backend_vk_context * ctx, vk_context& subctx, ggml_cgraph * cgraph, int node_idx) {
- const ggml_tensor *first_node = cgraph->nodes[node_idx];
- const ggml_tensor *dst = cgraph->nodes[node_idx + ctx->num_additional_fused_ops];
- // Make a list of all the tensors used by the op.
- // Last element of the list is the dest tensor.
- const ggml_tensor *tensors[MAX_PARAMETER_COUNT];
- uint32_t num_srcs = ctx->num_additional_fused_ops + 2;
- uint32_t num_tensors = num_srcs + 1;
- GGML_ASSERT(num_tensors + ctx->do_add_rms_partials <= MAX_PARAMETER_COUNT);
- tensors[0] = first_node->src[0];
- tensors[1] = first_node->src[1];
- for (int32_t i = 0; i < ctx->num_additional_fused_ops; ++i) {
- // check whether the previous result is src[0] or src[1]
- if (cgraph->nodes[node_idx + i] == cgraph->nodes[node_idx + i + 1]->src[0]) {
- tensors[i+2] = cgraph->nodes[node_idx + i + 1]->src[1];
- } else {
- tensors[i+2] = cgraph->nodes[node_idx + i + 1]->src[0];
- }
- }
- tensors[num_srcs] = dst;
- vk_op_multi_add_push_constants pc;
- pc.ne20 = (uint32_t)dst->ne[0];
- pc.ne21 = (uint32_t)dst->ne[1];
- pc.ne22 = (uint32_t)dst->ne[2];
- pc.ne23 = (uint32_t)dst->ne[3];
- for (uint32_t i = 0; i < num_tensors; ++i) {
- const ggml_tensor *t = tensors[i];
- pc.nb[i][0] = (uint32_t)t->nb[0] / sizeof(float);
- pc.nb[i][1] = (uint32_t)t->nb[1] / sizeof(float);
- pc.nb[i][2] = (uint32_t)t->nb[2] / sizeof(float);
- pc.nb[i][3] = (uint32_t)t->nb[3] / sizeof(float);
- }
- pc.rms_partials = ctx->do_add_rms_partials;
- vk_pipeline pipeline = ggml_vk_op_get_pipeline(ctx, tensors[0], tensors[1], nullptr, dst, dst->op);
- if (pipeline == nullptr) {
- std::cerr << "ggml_vulkan: Error: Missing multi_add";
- GGML_ABORT("fatal error");
- }
- ggml_pipeline_request_descriptor_sets(ctx, pipeline, 1);
- ggml_backend_vk_buffer_context * buf_ctx[MAX_PARAMETER_COUNT];
- vk_buffer buf[MAX_PARAMETER_COUNT];
- size_t offset[MAX_PARAMETER_COUNT];
- bool uma[MAX_PARAMETER_COUNT];
- for (uint32_t i = 0; i < num_tensors; ++i) {
- buf_ctx[i] = (ggml_backend_vk_buffer_context *)tensors[i]->buffer->context;
- buf[i] = nullptr;
- offset[i] = 0;
- uma[i] = false;
- if (ctx->device->uma) {
- ggml_vk_host_get(ctx->device, tensors[i]->data, buf[i], offset[i]);
- uma[i] = buf[i] != nullptr;
- }
- if (!uma[i]) {
- buf[i] = buf_ctx[i]->dev_buffer;
- offset[i] = vk_tensor_offset(tensors[i]) + tensors[i]->view_offs;
- }
- GGML_ASSERT(buf[i] != nullptr);
- }
- // If any remaining descriptors are unused, just point them at src[0]
- for (uint32_t i = num_tensors; i < MAX_PARAMETER_COUNT; ++i) {
- buf[i] = buf[0];
- offset[i] = 0;
- }
- if (ctx->do_add_rms_partials) {
- buf[num_tensors] = ctx->prealloc_add_rms_partials;
- offset[num_tensors] = ctx->prealloc_size_add_rms_partials_offset;
- }
- std::array<uint32_t, 3> elements;
- uint32_t ne = ggml_nelements(dst);
- if (ne > 262144) {
- elements = { 512, 512, CEIL_DIV(ne, 262144) };
- } else if (ne > 512) {
- elements = { 512, CEIL_DIV(ne, 512), 1 };
- } else {
- elements = { ne, 1, 1 };
- }
- static_assert(MAX_PARAMETER_COUNT == 12);
- ggml_vk_dispatch_pipeline(ctx, subctx, pipeline,
- {
- ggml_vk_subbuffer(ctx, buf[0], offset[0]),
- ggml_vk_subbuffer(ctx, buf[1], offset[1]),
- ggml_vk_subbuffer(ctx, buf[2], offset[2]),
- ggml_vk_subbuffer(ctx, buf[3], offset[3]),
- ggml_vk_subbuffer(ctx, buf[4], offset[4]),
- ggml_vk_subbuffer(ctx, buf[5], offset[5]),
- ggml_vk_subbuffer(ctx, buf[6], offset[6]),
- ggml_vk_subbuffer(ctx, buf[7], offset[7]),
- ggml_vk_subbuffer(ctx, buf[8], offset[8]),
- ggml_vk_subbuffer(ctx, buf[9], offset[9]),
- ggml_vk_subbuffer(ctx, buf[10], offset[10]),
- ggml_vk_subbuffer(ctx, buf[11], offset[11]),
- }, pc, elements);
- }
- static void ggml_vk_add(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- const uint32_t src0_type_size = ggml_type_size(src0->type);
- const uint32_t src1_type_size = ggml_type_size(src1->type);
- const uint32_t dst_type_size = ggml_type_size(dst->type);
- ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_ADD, {
- (uint32_t)ggml_nelements(src0),
- (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
- (uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
- (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
- 0,
- 0.0f, 0.0f, ctx->do_add_rms_partials,
- });
- }
- static void ggml_vk_sub(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- const uint32_t src0_type_size = ggml_type_size(src0->type);
- const uint32_t src1_type_size = ggml_type_size(src1->type);
- const uint32_t dst_type_size = ggml_type_size(dst->type);
- ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_SUB, {
- (uint32_t)ggml_nelements(src0),
- (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
- (uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
- (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
- 0,
- 0.0f, 0.0f, 0,
- });
- }
- static void ggml_vk_mul(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- const uint32_t src0_type_size = ggml_type_size(src0->type);
- const uint32_t src1_type_size = ggml_type_size(src1->type);
- const uint32_t dst_type_size = ggml_type_size(dst->type);
- ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_MUL, {
- (uint32_t)ggml_nelements(src0),
- (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
- (uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
- (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
- 0,
- 0.0f, 0.0f, 0,
- });
- }
- static void ggml_vk_div(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- const uint32_t src0_type_size = ggml_type_size(src0->type);
- const uint32_t src1_type_size = ggml_type_size(src1->type);
- const uint32_t dst_type_size = ggml_type_size(dst->type);
- ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_DIV, {
- (uint32_t)ggml_nelements(src0),
- (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
- (uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
- (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
- 0,
- 0.0f, 0.0f, 0,
- });
- }
- static void ggml_vk_add_id(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst) {
- const uint32_t src0_type_size = ggml_type_size(src0->type);
- const uint32_t src1_type_size = ggml_type_size(src1->type);
- const uint32_t src2_type_size = ggml_type_size(src2->type);
- ggml_vk_op_f32<vk_op_add_id_push_constants>(ctx, subctx, src0, src1, src2, nullptr, dst, GGML_OP_ADD_ID, {
- (uint32_t)dst->ne[0],
- (uint32_t)dst->ne[1],
- (uint32_t)src0->nb[1] / src0_type_size,
- (uint32_t)src0->nb[2] / src0_type_size,
- (uint32_t)src1->nb[1] / src1_type_size,
- (uint32_t)src2->nb[1] / src2_type_size,
- });
- }
- static void ggml_vk_op_f32_wkv(ggml_backend_vk_context * ctx, vk_context& subctx, ggml_tensor * dst, const vk_op_rwkv_wkv6_push_constants&& pc, int version) {
- GGML_ASSERT(version == 6 || version == 7);
- int num_srcs = version == 6 ? 6 : 7;
- for (int i = 0; i < num_srcs; i++) {
- GGML_ASSERT(!ggml_is_quantized(dst->src[i]->type));
- }
- GGML_ASSERT(dst->buffer != nullptr);
- vk_pipeline pipeline = ggml_vk_op_get_pipeline(ctx, dst->src[0], dst->src[1], dst->src[2], dst, dst->op);
- GGML_ASSERT(pipeline != nullptr);
- ggml_pipeline_request_descriptor_sets(ctx, pipeline, 1);
- vk_subbuffer dst_buf = ggml_vk_tensor_subbuffer(ctx, dst);
- vk_subbuffer src_buf[7] = {};
- for (int i = 0; i < num_srcs; i++) {
- src_buf[i] = ggml_vk_tensor_subbuffer(ctx, dst->src[i]);
- }
- std::array<uint32_t, 3> elements = {
- (uint32_t)(pc.B * pc.H),
- 1,
- 1
- };
- if (version == 6) {
- ggml_vk_dispatch_pipeline(ctx, subctx, pipeline,
- {src_buf[0], src_buf[1], src_buf[2], src_buf[3], src_buf[4], src_buf[5], dst_buf},
- pc, elements);
- } else if (version == 7) {
- ggml_vk_dispatch_pipeline(ctx, subctx, pipeline,
- {src_buf[0], src_buf[1], src_buf[2], src_buf[3], src_buf[4], src_buf[5], src_buf[6], dst_buf},
- pc, elements);
- } else {
- // shouldn't happen
- GGML_ASSERT(false);
- }
- }
- static void ggml_vk_rwkv_wkv6(ggml_backend_vk_context * ctx, vk_context& subctx, ggml_tensor * dst) {
- const size_t seq_length = dst->src[0]->ne[2];
- const size_t n_embed = dst->ne[0];
- const size_t n_heads = dst->src[0]->ne[1];
- const size_t n_seqs = dst->src[5]->ne[1];
- ggml_vk_op_f32_wkv(
- ctx, subctx, dst,
- {
- (uint32_t)n_seqs,
- (uint32_t)seq_length,
- (uint32_t)n_embed,
- (uint32_t)n_heads,
- },
- 6
- );
- }
- static void ggml_vk_rwkv_wkv7(ggml_backend_vk_context * ctx, vk_context& subctx, ggml_tensor * dst) {
- const size_t seq_length = dst->src[0]->ne[2];
- const size_t n_embed = dst->ne[0];
- const size_t n_heads = dst->src[0]->ne[1];
- const size_t n_seqs = dst->src[6]->ne[1];
- ggml_vk_op_f32_wkv(
- ctx, subctx, dst,
- {
- (uint32_t)n_seqs,
- (uint32_t)seq_length,
- (uint32_t)n_embed,
- (uint32_t)n_heads,
- },
- 7
- );
- }
- static void ggml_vk_ssm_scan(ggml_backend_vk_context * ctx, vk_context& subctx, ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- const ggml_tensor * src2 = dst->src[2];
- const ggml_tensor * src3 = dst->src[3];
- const ggml_tensor * src4 = dst->src[4];
- const ggml_tensor * src5 = dst->src[5];
- GGML_ASSERT(dst->buffer != nullptr);
- const uint32_t head_dim = src0->ne[1];
- const uint32_t n_head = src1->ne[1];
- const uint32_t n_group = src4->ne[1];
- const uint32_t n_tok = src1->ne[2];
- const uint32_t n_seq = src1->ne[3];
- bool is_mamba2 = (src3->nb[1] == sizeof(float));
- GGML_ASSERT(is_mamba2);
- vk_pipeline pipeline = ggml_vk_op_get_pipeline(ctx, src0, src1, src2, dst, dst->op);
- GGML_ASSERT(pipeline != nullptr);
- ggml_pipeline_request_descriptor_sets(ctx, pipeline, 1);
- const int64_t s_off = ggml_nelements(src1) * sizeof(float);
- const vk_op_ssm_scan_push_constants pc = {
- (uint32_t)src0->nb[2], (uint32_t)src0->nb[3],
- (uint32_t)src1->nb[2], (uint32_t)src1->nb[3],
- (uint32_t)src2->nb[1], (uint32_t)src2->nb[2],
- (uint32_t)src3->nb[1],
- (uint32_t)src4->nb[2], (uint32_t)src4->nb[3],
- (uint32_t)src5->nb[2], (uint32_t)src5->nb[3],
- (uint32_t)s_off,
- n_head, head_dim, n_group, n_tok
- };
- vk_subbuffer dst_buf = ggml_vk_tensor_subbuffer(ctx, dst);
- vk_subbuffer src_buf[7] = {};
- for (int i = 0; i < 7 && dst->src[i] != nullptr; i++) {
- src_buf[i] = ggml_vk_tensor_subbuffer(ctx, dst->src[i]);
- }
- std::array<uint32_t, 3> elements;
- const int splitH = 16;
- const uint32_t num_workgroups_x = CEIL_DIV(n_head * head_dim, splitH);
- const uint32_t num_workgroups_y = n_seq;
- elements = { num_workgroups_x, num_workgroups_y, 1 };
- ggml_vk_dispatch_pipeline(ctx, subctx, pipeline,
- {src_buf[0], src_buf[1], src_buf[2], src_buf[3], src_buf[4], src_buf[5], src_buf[6], dst_buf},
- pc, elements);
- }
- static void ggml_vk_ssm_conv(ggml_backend_vk_context * ctx, vk_context& subctx, ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- ggml_vk_op_f32<vk_op_ssm_conv_push_constants>(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_SSM_CONV, {
- (uint32_t)src0->nb[1], (uint32_t)src0->nb[2],
- (uint32_t)src1->nb[1],
- (uint32_t)dst->nb[0], (uint32_t)dst->nb[1], (uint32_t)dst->nb[2],
- (uint32_t)src1->ne[0],
- (uint32_t)src0->ne[0],
- (uint32_t)src0->ne[1],
- (uint32_t)dst->ne[1],
- (uint32_t)dst->ne[2],
- });
- }
- static void ggml_vk_op_f32_opt_step_adamw(ggml_backend_vk_context * ctx, vk_context& subctx, ggml_tensor * dst, const vk_op_push_constants&& pc) {
- const ggml_tensor * x = dst->src[0];
- const ggml_tensor * g = dst->src[1];
- const ggml_tensor * gm = dst->src[2];
- const ggml_tensor * gv = dst->src[3];
- const ggml_tensor * p = dst->src[4];
- GGML_ASSERT(x->type == GGML_TYPE_F32);
- GGML_ASSERT(g->type == GGML_TYPE_F32);
- GGML_ASSERT(gm->type == GGML_TYPE_F32);
- GGML_ASSERT(gv->type == GGML_TYPE_F32);
- GGML_ASSERT(p->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->buffer != nullptr);
- GGML_ASSERT(ggml_is_contiguous(x));
- GGML_ASSERT(ggml_is_contiguous(g));
- GGML_ASSERT(ggml_is_contiguous(gm));
- GGML_ASSERT(ggml_is_contiguous(gv));
- GGML_ASSERT(ggml_is_contiguous(p));
- GGML_ASSERT(ggml_are_same_shape(x, g));
- GGML_ASSERT(ggml_are_same_shape(x, gm));
- GGML_ASSERT(ggml_are_same_shape(x, gv));
- GGML_ASSERT(ggml_nelements(p) == 7);
- vk_pipeline pipeline = ggml_vk_op_get_pipeline(ctx, g, gm, gv, dst, GGML_OP_OPT_STEP_ADAMW);
- GGML_ASSERT(pipeline != nullptr);
- ggml_pipeline_request_descriptor_sets(ctx, pipeline, 1);
- vk_subbuffer x_buf = ggml_vk_tensor_subbuffer(ctx, x);
- vk_subbuffer g_buf = ggml_vk_tensor_subbuffer(ctx, g);
- vk_subbuffer gm_buf = ggml_vk_tensor_subbuffer(ctx, gm);
- vk_subbuffer gv_buf = ggml_vk_tensor_subbuffer(ctx, gv);
- vk_subbuffer p_buf = ggml_vk_tensor_subbuffer(ctx, p);
- std::array<uint32_t, 3> elements = { (uint32_t)ggml_nelements(x), 1, 1 };
- ggml_vk_dispatch_pipeline(ctx, subctx, pipeline,
- {x_buf, g_buf, gm_buf, gv_buf, p_buf},
- pc, elements);
- }
- static void ggml_vk_opt_step_adamw(ggml_backend_vk_context * ctx, vk_context& subctx, ggml_tensor * dst) {
- const size_t n = ggml_nelements(dst->src[0]);
- ggml_vk_op_f32_opt_step_adamw(
- ctx, subctx, dst,
- { (uint32_t)n, 0, 0.0f, 0.0f }
- );
- }
- static void ggml_vk_opt_step_sgd(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst) {
- const size_t n = ggml_nelements(dst->src[0]);
- ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, src2, nullptr, dst, GGML_OP_OPT_STEP_SGD, { (uint32_t)n, 0, 0.0f, 0.0f });
- }
- static void ggml_vk_concat(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- int * op_params = (int *)dst->op_params;
- const uint32_t src0_type_size = ggml_type_size(src0->type);
- const uint32_t src1_type_size = ggml_type_size(src1->type);
- const uint32_t dst_type_size = ggml_type_size(dst->type);
- ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_CONCAT, {
- (uint32_t)ggml_nelements(dst),
- (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
- (uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
- (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
- 0,
- 0.0f, 0.0f, op_params[0],
- });
- }
- static void ggml_vk_upscale(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) {
- const uint32_t src0_type_size = ggml_type_size(src0->type);
- const uint32_t mode = (uint32_t)ggml_get_op_params_i32(dst, 0);
- GGML_TENSOR_UNARY_OP_LOCALS
- float sf0 = (float)ne0 / ne00;
- float sf1 = (float)ne1 / ne01;
- float sf2 = (float)ne2 / ne02;
- float sf3 = (float)ne3 / ne03;
- float pixel_offset = 0.5f;
- if (mode & GGML_SCALE_FLAG_ALIGN_CORNERS) {
- sf0 = ne0 > 1 && ne00 > 1 ? (float)(ne0 - 1) / (ne00 - 1) : sf0;
- sf1 = ne1 > 1 && ne01 > 1 ? (float)(ne1 - 1) / (ne01 - 1) : sf1;
- pixel_offset = 0.0f;
- }
- ggml_vk_op_f32<vk_op_upscale_push_constants>(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_UPSCALE, {
- (uint32_t)ggml_nelements(dst), 0, 0,
- (uint32_t)ne00, (uint32_t)ne01,
- (uint32_t)nb00 / src0_type_size, (uint32_t)nb01 / src0_type_size, (uint32_t)nb02 / src0_type_size, (uint32_t)nb03 / src0_type_size,
- (uint32_t)ne0, (uint32_t)ne1, (uint32_t)ne2, (uint32_t)ne3,
- sf0, sf1, sf2, sf3, pixel_offset
- });
- }
- static void ggml_vk_scale(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) {
- vk_op_unary_push_constants p = vk_op_unary_push_constants_init(src0, dst);
- p.param1 = ggml_get_op_params_f32(dst, 0);
- p.param2 = ggml_get_op_params_f32(dst, 1);
- ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_SCALE, std::move(p));
- }
- static void ggml_vk_sqr(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) {
- ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_SQR, vk_op_unary_push_constants_init(src0, dst));
- }
- static void ggml_vk_sqrt(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) {
- ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_SQRT, vk_op_unary_push_constants_init(src0, dst));
- }
- static void ggml_vk_add1(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- const uint32_t src0_type_size = ggml_type_size(src0->type);
- const uint32_t src1_type_size = ggml_type_size(src1->type);
- const uint32_t dst_type_size = ggml_type_size(dst->type);
- ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_ADD1, {
- (uint32_t)ggml_nelements(src0),
- (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
- (uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
- (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
- 0,
- 0.0f, 0.0f, 0,
- });
- }
- static void ggml_vk_arange(ggml_backend_vk_context * ctx, vk_context& subctx, ggml_tensor * dst) {
- VK_LOG_DEBUG("ggml_vk_arange(dst=" << dst << ", ne=" << ggml_nelements(dst) << ")");
- vk_op_push_constants pc = {
- (uint32_t)ggml_nelements(dst),
- 1,
- ggml_get_op_params_f32(dst, 0),
- ggml_get_op_params_f32(dst, 2),
- };
- vk_pipeline pipeline = ggml_vk_op_get_pipeline(ctx, nullptr, nullptr, nullptr, dst, GGML_OP_ARANGE);
- GGML_ASSERT(pipeline != nullptr);
- ggml_pipeline_request_descriptor_sets(ctx, pipeline, 1);
- vk_subbuffer dst_buf = ggml_vk_tensor_subbuffer(ctx, dst, false);
- std::array<uint32_t, 3> elements = { (uint32_t)ggml_nelements(dst), 1, 1 };
- ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { dst_buf }, pc, elements);
- }
- static void ggml_vk_fill(ggml_backend_vk_context * ctx, vk_context& subctx, ggml_tensor * dst) {
- VK_LOG_DEBUG("ggml_vk_fill(dst=" << dst << ", ne=" << ggml_nelements(dst) << ")");
- vk_op_push_constants pc = {
- (uint32_t)ggml_nelements(dst),
- 1,
- ggml_get_op_params_f32(dst, 0),
- 0.0f,
- };
- vk_pipeline pipeline = ggml_vk_op_get_pipeline(ctx, nullptr, nullptr, nullptr, dst, GGML_OP_FILL);
- GGML_ASSERT(pipeline != nullptr);
- ggml_pipeline_request_descriptor_sets(ctx, pipeline, 1);
- vk_subbuffer dst_buf = ggml_vk_tensor_subbuffer(ctx, dst, false);
- std::array<uint32_t, 3> elements = { (uint32_t)ggml_nelements(dst), 1, 1 };
- ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { dst_buf }, pc, elements);
- }
- static void ggml_vk_sin(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) {
- ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_SIN, vk_op_unary_push_constants_init(src0, dst));
- }
- static void ggml_vk_cos(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) {
- ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_COS, vk_op_unary_push_constants_init(src0, dst));
- }
- static void ggml_vk_log(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) {
- ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_LOG, vk_op_unary_push_constants_init(src0, dst));
- }
- static void ggml_vk_clamp(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) {
- vk_op_unary_push_constants p = vk_op_unary_push_constants_init(src0, dst);
- p.param1 = ggml_get_op_params_f32(dst, 0);
- p.param2 = ggml_get_op_params_f32(dst, 1);
- ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_CLAMP, std::move(p));
- }
- static void ggml_vk_pad(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) {
- vk_op_pad_push_constants p = vk_op_pad_push_constants_init(src0, dst);
- ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_PAD, std::move(p));
- }
- static void ggml_vk_roll(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) {
- const int32_t s0 = ggml_get_op_params_i32(dst, 0);
- const int32_t s1 = ggml_get_op_params_i32(dst, 1);
- const int32_t s2 = ggml_get_op_params_i32(dst, 2);
- const int32_t s3 = ggml_get_op_params_i32(dst, 3);
- const uint32_t s01_packed = ((s0 + 0x8000) << 16) | (s1 + 0x8000);
- const uint32_t s23_packed = ((s2 + 0x8000) << 16) | (s3 + 0x8000);
- vk_op_unary_push_constants p = vk_op_unary_push_constants_init(src0, dst);
- memcpy(&p.param1, &s01_packed, sizeof(float));
- memcpy(&p.param2, &s23_packed, sizeof(float));
- ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_ROLL, std::move(p));
- }
- static void ggml_vk_repeat(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) {
- vk_op_unary_push_constants p = vk_op_unary_push_constants_init(src0, dst, ggml_nelements(dst));
- ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_REPEAT, std::move(p));
- }
- static void ggml_vk_repeat_back(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) {
- vk_op_unary_push_constants p = vk_op_unary_push_constants_init(src0, dst, ggml_nelements(dst));
- ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_REPEAT_BACK, std::move(p));
- }
- static void ggml_vk_cpy(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) {
- uint32_t ne = (uint32_t)ggml_nelements(src0);
- if (ggml_is_quantized(src0->type) && ggml_is_quantized(dst->type)) {
- // Convert from number of logical elements to 2- or 4-byte units.
- ne /= ggml_blck_size(src0->type);
- if ((ggml_type_size(src0->type) % 4) == 0) {
- ne *= ggml_type_size(src0->type) / 4;
- } else {
- ne *= ggml_type_size(src0->type) / 2;
- }
- }
- vk_op_unary_push_constants p = vk_op_unary_push_constants_init(src0, dst, ne);
- ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_CPY, std::move(p));
- }
- static void ggml_vk_set_rows(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- const uint32_t src0_type_size = ggml_type_size(src0->type);
- const uint32_t src1_type_size = ggml_type_size(src1->type);
- const uint32_t dst_type_size = ggml_type_size(dst->type);
- // Skip empty skip_rows operations. For most ops the empty check at the start
- // of ggml_vk_build_graph is sufficient, but set_rows can have a nonempty dst
- // with empty srcs.
- if (ggml_is_empty(src0) || ggml_is_empty(src1)) {
- return;
- }
- ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_SET_ROWS, {
- (uint32_t)ggml_nelements(src0),
- (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
- (uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
- (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
- 0,
- 0.0f, 0.0f, 0,
- });
- }
- static void ggml_vk_silu_back(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_SILU_BACK, { (uint32_t)ggml_nelements(src0), 0, 0.0f, 0.0f });
- }
- static void ggml_vk_norm(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) {
- float * op_params = (float *)dst->op_params;
- ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f });
- }
- static void ggml_vk_group_norm(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) {
- const int * int_op_params = (const int *)dst->op_params;
- const float * float_op_params = (const float *)dst->op_params;
- const uint32_t num_groups = int_op_params[0];
- const float eps = float_op_params[1];
- const uint32_t group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups);
- ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_GROUP_NORM, { group_size, 0, eps, 0.0f });
- }
- static uint32_t ggml_vk_rms_num_partials(ggml_backend_vk_context * ctx, const ggml_tensor *node) {
- const uint32_t ne = (uint32_t)node->ne[0];
- const uint32_t denom = ctx->device->pipeline_add_rms[0][0][0]->wg_denoms[0];
- const uint32_t num_partials = CEIL_DIV(ne, denom);
- return num_partials;
- }
- static uint32_t ggml_vk_rms_partials_size(ggml_backend_vk_context * ctx, const ggml_tensor *node) {
- const uint32_t num_partials = ggml_vk_rms_num_partials(ctx, node);
- const uint32_t num_bytes = ROUNDUP_POW2(num_partials * sizeof(uint32_t), ctx->device->partials_binding_alignment);
- return num_bytes;
- }
- static vk_op_rope_push_constants ggml_vk_make_rope_constants(const ggml_tensor *dst, const ggml_tensor *src0, const bool has_ff, bool backprop, const uint32_t set_rows_stride) {
- const int n_dims = ((const int32_t *) dst->op_params)[1];
- const int mode = ((const int32_t *) dst->op_params)[2];
- // const int n_ctx = ((const int32_t *) dst->op_params)[3];
- const int n_ctx_orig = ((const int32_t *) dst->op_params)[4];
- const float freq_base = ((const float *) dst->op_params)[5];
- const float freq_scale = ((const float *) dst->op_params)[6];
- const float ext_factor = ((const float *) dst->op_params)[7];
- const float attn_factor = ((const float *) dst->op_params)[8];
- const float beta_fast = ((const float *) dst->op_params)[9];
- const float beta_slow = ((const float *) dst->op_params)[10];
- int sections[4] {};
- if (mode & GGML_ROPE_TYPE_MROPE) {
- memcpy(sections, (const int32_t *) dst->op_params + 11, sizeof(int)*4);
- }
- const bool is_imrope = mode == GGML_ROPE_TYPE_IMROPE;
- float corr_dims[2];
- ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
- const float theta_scale = powf(freq_base, -2.0f/n_dims);
- uint32_t nb01 = src0->nb[1] / ggml_type_size(src0->type);
- uint32_t nb02 = src0->nb[2] / ggml_type_size(src0->type);
- vk_op_rope_push_constants rope {
- (uint32_t)mode, (uint32_t)src0->ne[0], (uint32_t)n_dims, freq_scale, (uint32_t)src0->ne[1],
- freq_base, ext_factor, attn_factor, {corr_dims[0], corr_dims[1]}, theta_scale,
- has_ff, (uint32_t)src0->ne[2], nb01, nb02,
- { sections[0], sections[1], sections[2], sections[3] }, is_imrope, backprop, set_rows_stride,
- };
- return rope;
- }
- static void ggml_vk_rms_norm(ggml_backend_vk_context * ctx, vk_context& subctx, const struct ggml_cgraph * cgraph, int node_idx, float * op_params) {
- ggml_tensor * dst;
- const ggml_tensor * src0;
- const ggml_tensor * src1;
- if (ctx->num_additional_fused_ops > 0) {
- // fused rms_norm + mul
- ggml_tensor *mul = cgraph->nodes[node_idx + 1];
- ggml_tensor *other_src = mul->src[0] == cgraph->nodes[node_idx + 0] ? mul->src[1] : mul->src[0];
- dst = mul;
- src0 = cgraph->nodes[node_idx]->src[0];
- src1 = other_src;
- } else {
- dst = cgraph->nodes[node_idx];
- src0 = src1 = dst->src[0];
- }
- const uint32_t src0_type_size = ggml_type_size(src0->type);
- const uint32_t src1_type_size = ggml_type_size(src1->type);
- const uint32_t dst_type_size = ggml_type_size(dst->type);
- uint32_t param3 = ctx->do_add_rms_partials ? ggml_vk_rms_num_partials(ctx, dst) : 0;
- vk_op_binary_push_constants bin {
- (uint32_t)ggml_nelements(src0),
- (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
- (uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
- (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
- 0,
- op_params[0], 0.0f, (int32_t)param3,
- };
- // more than one fused op means rms_norm+mul+rope
- if (ctx->num_additional_fused_ops > 1) {
- static constexpr uint32_t max_tensors = 7;
- const ggml_tensor *tensors[max_tensors] {};
- ggml_tensor *rms = cgraph->nodes[node_idx + 0];
- ggml_tensor *mul = cgraph->nodes[node_idx + 1];
- ggml_tensor *rope = cgraph->nodes[node_idx + 2];
- ggml_tensor *other_src = mul->src[0] == rms ? mul->src[1] : mul->src[0];
- bool do_set_rows = ctx->num_additional_fused_ops == 4;
- tensors[0] = rms->src[0];
- tensors[1] = other_src;
- tensors[2] = mul;
- tensors[3] = rope->src[1]; // pos
- tensors[4] = rope->src[2]; // ff
- tensors[5] = cgraph->nodes[node_idx + ctx->num_additional_fused_ops]; // dst
- tensors[6] = do_set_rows ? tensors[5]->src[1] : nullptr;
- const uint32_t set_rows_stride = do_set_rows ? tensors[5]->nb[1] / ggml_type_size(tensors[5]->type) : 0;
- vk_op_rms_norm_mul_rope_push_constants pc;
- pc.bin = bin;
- pc.rope = ggml_vk_make_rope_constants(rope, rope->src[0], tensors[4] != nullptr, false, set_rows_stride);
- vk_pipeline pipeline = tensors[5]->type == GGML_TYPE_F16 ? ctx->device->pipeline_rms_norm_mul_rope_f32_f16 : ctx->device->pipeline_rms_norm_mul_rope_f32_f32;
- ggml_pipeline_request_descriptor_sets(ctx, pipeline, 1);
- ggml_backend_vk_buffer_context * buf_ctx[max_tensors];
- vk_buffer buf[max_tensors];
- size_t offset[max_tensors];
- bool uma[max_tensors];
- for (uint32_t i = 0; i < max_tensors; ++i) {
- if (!tensors[i]) {
- // If any remaining descriptors are unused, just point them at src[0]
- buf[i] = buf[0];
- offset[i] = 0;
- continue;
- }
- buf_ctx[i] = (ggml_backend_vk_buffer_context *)tensors[i]->buffer->context;
- buf[i] = nullptr;
- offset[i] = 0;
- uma[i] = false;
- if (ctx->device->uma) {
- ggml_vk_host_get(ctx->device, tensors[i]->data, buf[i], offset[i]);
- uma[i] = buf[i] != nullptr;
- }
- if (!uma[i]) {
- buf[i] = buf_ctx[i]->dev_buffer;
- offset[i] = vk_tensor_offset(tensors[i]) + tensors[i]->view_offs;
- }
- GGML_ASSERT(buf[i] != nullptr);
- }
- std::array<uint32_t, 3> elements;
- elements = { (uint32_t)rms->src[0]->ne[1], (uint32_t)rms->src[0]->ne[2], (uint32_t)rms->src[0]->ne[3] };
- static_assert(max_tensors == 7);
- ggml_vk_dispatch_pipeline(ctx, subctx, pipeline,
- {
- ggml_vk_subbuffer(ctx, buf[0], offset[0]),
- ggml_vk_subbuffer(ctx, buf[1], offset[1]),
- ggml_vk_subbuffer(ctx, buf[2], offset[2]),
- ggml_vk_subbuffer(ctx, buf[3], offset[3]),
- ggml_vk_subbuffer(ctx, buf[4], offset[4]),
- ggml_vk_subbuffer(ctx, buf[5], offset[5]),
- ggml_vk_subbuffer(ctx, buf[6], offset[6]),
- }, pc, elements);
- } else {
- ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_RMS_NORM, std::move(bin));
- }
- if (ctx->do_add_rms_partials_offset_calculation) {
- ctx->prealloc_size_add_rms_partials_offset += ggml_vk_rms_partials_size(ctx, src0);
- ctx->do_add_rms_partials = false;
- ctx->do_add_rms_partials_offset_calculation = false;
- }
- }
- static void ggml_vk_rms_norm_back(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- float * op_params = (float *)dst->op_params;
- ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_RMS_NORM_BACK, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f });
- }
- static void ggml_vk_l2_norm(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) {
- float * op_params = (float *)dst->op_params;
- ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_L2_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f });
- }
- static void ggml_vk_unary(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) {
- ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_UNARY, { (uint32_t)ggml_nelements(src0), 0, 0.0f, 0.0f });
- }
- static void ggml_vk_glu(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- const float * op_params_f = (const float *)dst->op_params;
- const bool swapped = (bool)dst->op_params[1];
- const bool split = src1 != nullptr;
- const float alpha = op_params_f[2];
- const float limit = op_params_f[3];
- GGML_ASSERT(ggml_is_contiguous(src0));
- if (!split) {
- GGML_ASSERT(src0->ne[0] / 2 == dst->ne[0]);
- } else {
- GGML_ASSERT(src0->ne[0] == src1->ne[0]);
- GGML_ASSERT(src0->ne[0] == dst->ne[0]);
- GGML_ASSERT(src0->type == src1->type);
- }
- const uint32_t mode = split ? 2 : (swapped ? 1 : 0);
- ggml_vk_op_f32<vk_op_glu_push_constants>(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_GLU,
- {
- (uint32_t)ggml_nelements(dst),
- (uint32_t)src0->ne[0],
- (uint32_t)dst->ne[0],
- mode,
- alpha,
- limit
- });
- }
- static void ggml_vk_diag_mask_inf(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) {
- int32_t * op_params = (int32_t *)dst->op_params;
- ggml_vk_op_f32<vk_op_diag_mask_push_constants>(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_DIAG_MASK_INF, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0] });
- }
- static void ggml_vk_soft_max(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst) {
- float * op_params = (float *)dst->op_params;
- float scale = op_params[0];
- float max_bias = op_params[1];
- const uint32_t ncols = (uint32_t)src0->ne[0];
- const uint32_t nrows_x = (uint32_t)ggml_nrows(src0);
- const uint32_t nrows_y = (uint32_t)src0->ne[1];
- const uint32_t ne12 = src1 ? (uint32_t)(src1->ne[2]) : 0u;
- const uint32_t ne13 = src1 ? (uint32_t)(src1->ne[3]) : 0u;
- const uint32_t nb11 = src1 ? (uint32_t)(src1->nb[1] / src1->nb[0]) : 0u;
- const uint32_t nb12 = src1 ? (uint32_t)(src1->nb[2] / src1->nb[0]) : 0u;
- const uint32_t nb13 = src1 ? (uint32_t)(src1->nb[3] / src1->nb[0]) : 0u;
- const uint32_t n_head_kv = src0->ne[2];
- const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv));
- const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
- const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
- ggml_vk_op_f32<vk_op_soft_max_push_constants>(ctx, subctx, src0, src1, src2, nullptr, dst, GGML_OP_SOFT_MAX, {
- ncols,
- src1 != nullptr ? nrows_y : (uint32_t)0,
- (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],
- ne12, ne13,
- nb11, nb12, nb13,
- scale, max_bias,
- m0, m1,
- n_head_log2,
- nrows_x,
- src2 != nullptr
- });
- }
- static void ggml_vk_soft_max_back(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- float * op_params = (float *)dst->op_params;
- ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_SOFT_MAX_BACK, { (uint32_t)src0->ne[0], (uint32_t)ggml_nrows(src0), op_params[0], op_params[1] });
- }
- static void ggml_vk_topk_moe(ggml_backend_vk_context * ctx, vk_context& subctx, ggml_cgraph * cgraph, int node_idx) {
- topk_moe_mode mode = ggml_vk_num_additional_ops_to_topk_moe_mode(ctx->num_additional_fused_ops);
- ggml_tensor * logits = cgraph->nodes[node_idx + 0]->src[0];
- ggml_tensor * weights = (mode == TOPK_MOE_EARLY_SOFTMAX_NORM) ? cgraph->nodes[node_idx + 9] :
- (mode == TOPK_MOE_EARLY_SOFTMAX) ? cgraph->nodes[node_idx + 4] :
- cgraph->nodes[node_idx + 5];
- ggml_tensor * ids = (mode == TOPK_MOE_LATE_SOFTMAX) ? cgraph->nodes[node_idx + 1] : cgraph->nodes[node_idx + 3];
- GGML_ASSERT(logits->type == GGML_TYPE_F32);
- GGML_ASSERT(weights->type == GGML_TYPE_F32);
- GGML_ASSERT(ids->type == GGML_TYPE_I32);
- const int n_experts = logits->ne[0];
- const int n_rows = logits->ne[1];
- const int n_expert_used = weights->ne[1];
- GGML_ASSERT(ids->nb[1] / ggml_type_size(ids->type) == (size_t) n_experts);
- vk_pipeline pipeline = ggml_vk_op_get_pipeline(ctx, nullptr, nullptr, nullptr, cgraph->nodes[node_idx], GGML_OP_SOFT_MAX);
- ggml_pipeline_request_descriptor_sets(ctx, pipeline, 1);
- vk_subbuffer logits_buf = ggml_vk_tensor_subbuffer(ctx, logits);
- vk_subbuffer weights_buf = ggml_vk_tensor_subbuffer(ctx, weights);
- vk_subbuffer ids_buf = ggml_vk_tensor_subbuffer(ctx, ids);
- vk_op_topk_moe_push_constants pc {};
- pc.n_rows = n_rows;
- pc.n_expert_used = n_expert_used;
- if (mode == TOPK_MOE_EARLY_SOFTMAX_NORM) {
- ggml_tensor * clamp = cgraph->nodes[node_idx + 7];
- pc.clamp_min = ggml_get_op_params_f32(clamp, 0);
- pc.clamp_max = ggml_get_op_params_f32(clamp, 1);
- }
- GGML_ASSERT(n_expert_used <= n_experts);
- const uint32_t rows_per_block = 4;
- std::array<uint32_t, 3> elements = { CEIL_DIV(n_rows, rows_per_block), 1, 1 };
- ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, {logits_buf, weights_buf, ids_buf}, pc, elements);
- }
- static void ggml_vk_rope(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_cgraph * cgraph, int node_idx, bool backprop) {
- ggml_tensor * dst = cgraph->nodes[node_idx];
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- const ggml_tensor * src2 = dst->src[2];
- const ggml_tensor * src3 = nullptr;
- const int n_dims = ((int32_t *) dst->op_params)[1];
- const int mode = ((int32_t *) dst->op_params)[2];
- // const int n_ctx = ((int32_t *) dst->op_params)[3];
- const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
- const float freq_base = ((float *) dst->op_params)[5];
- const float beta_fast = ((float *) dst->op_params)[9];
- const float beta_slow = ((float *) dst->op_params)[10];
- int sections[4] {};
- if (mode & GGML_ROPE_TYPE_MROPE) {
- memcpy(sections, (int32_t *) dst->op_params + 11, sizeof(int)*4);
- }
- float corr_dims[2];
- ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
- uint32_t set_rows_stride = 0;
- // Fused rope + view + set_rows passes the set_rows destination stride in set_rows_stride
- // and overrides the dst and sets src3=row_indices
- if (ctx->num_additional_fused_ops > 0) {
- set_rows_stride = cgraph->nodes[node_idx + 2]->nb[1] / ggml_type_size(cgraph->nodes[node_idx + 2]->type);
- src3 = cgraph->nodes[node_idx + 2]->src[1];
- dst = cgraph->nodes[node_idx + 2];
- }
- ggml_vk_op_f32<vk_op_rope_push_constants>(ctx, subctx, src0, src1, src2, src3, dst, GGML_OP_ROPE,
- ggml_vk_make_rope_constants(cgraph->nodes[node_idx], src0, src2 != nullptr, backprop, set_rows_stride));
- }
- static void ggml_vk_argsort(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) {
- const uint32_t * op_params = (const uint32_t *)dst->op_params;
- uint32_t ncols = src0->ne[0];
- uint32_t nrows = ggml_nrows(src0);
- uint32_t ncols_pad_log2 = (uint32_t)ceilf(log2f(float(ncols)));
- uint32_t ncolsp2 = 1 << ncols_pad_log2;
- vk_op_argsort_push_constants pc { ncols, ncolsp2, ncols_pad_log2, nrows, op_params[0], 0, 0, 0, 0, };
- // Pick the largest workgroup size <= ncolsp2
- uint32_t pipeline_idx = std::min(ncols_pad_log2, num_argsort_pipelines - 1);
- // Use the "small" argsort shader if the whole sort can be done by a single workgroup.
- bool use_small = ncols_pad_log2 <= ctx->device->max_workgroup_size_log2 &&
- ctx->device->pipeline_argsort_f32[pipeline_idx] != nullptr;
- vk_pipeline pipeline = use_small ? ctx->device->pipeline_argsort_f32[pipeline_idx]
- : ctx->device->pipeline_argsort_large_f32[pipeline_idx];
- vk_subbuffer src0_buf = ggml_vk_tensor_subbuffer(ctx, src0);
- vk_subbuffer dst_buf = ggml_vk_tensor_subbuffer(ctx, dst);
- vk_subbuffer subbuf1 = dst_buf;
- // Reserve space for ivec2 per element, with rows padded to a power of two
- if (!use_small) {
- const size_t x_sz = size_t{ncolsp2} * nrows * 2 * sizeof(int);
- if (ctx->prealloc_size_x < x_sz) {
- ctx->prealloc_size_x = x_sz;
- ggml_vk_preallocate_buffers(ctx, subctx);
- }
- if (ctx->prealloc_x_need_sync) {
- ggml_vk_sync_buffers(ctx, subctx);
- }
- subbuf1 = { ctx->prealloc_x, 0, ctx->prealloc_x->size };
- }
- std::array<uint32_t, 3> elements;
- elements[0] = ncolsp2;
- elements[1] = std::min((uint32_t)ggml_nrows(src0), ctx->device->properties.limits.maxComputeWorkGroupCount[1]);
- elements[2] = 1;
- // First dispatch initializes tmp_idx and does the first N passes where
- // there is only communication between threads in the same workgroup.
- {
- vk_op_argsort_push_constants pc2 = pc;
- pc2.outer_start = 0;
- pc2.outer_end = std::min(ncols_pad_log2, ctx->device->max_workgroup_size_log2);
- pc2.inner_start = 0;
- pc2.inner_end = 100;
- ggml_pipeline_request_descriptor_sets(ctx, pipeline, 1);
- ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { src0_buf, subbuf1, dst_buf }, pc2, elements);
- }
- if (!use_small) {
- ggml_vk_sync_buffers(ctx, subctx);
- // Loop over outer/inner passes, synchronizing between each pass.
- for (uint32_t outer = ctx->device->max_workgroup_size_log2; outer < ncols_pad_log2; ++outer) {
- for (uint32_t inner = 0; inner < outer + 1; ++inner) {
- vk_op_argsort_push_constants pc2 = pc;
- pc2.outer_start = outer;
- pc2.outer_end = outer + 1;
- pc2.inner_start = inner;
- pc2.inner_end = inner + 1;
- // When the inner idx is large enough, there's only communication
- // within a workgroup. So the remaining inner iterations can all
- // run in the same dispatch.
- if (outer - inner < pipeline_idx) {
- pc2.inner_end = 100;
- inner = outer;
- pipeline = ctx->device->pipeline_argsort_large_f32[pipeline_idx];
- } else {
- // Smaller workgroup empirically seems to perform better
- pipeline = ctx->device->pipeline_argsort_large_f32[pipeline_idx - 2];
- }
- ggml_pipeline_request_descriptor_sets(ctx, pipeline, 1);
- ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { src0_buf, subbuf1, dst_buf }, pc2, elements);
- ggml_vk_sync_buffers(ctx, subctx);
- }
- }
- ctx->prealloc_x_need_sync = true;
- }
- }
- static void ggml_vk_sum(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) {
- vk_op_sum_rows_push_constants p = vk_op_sum_rows_push_constants_init(src0, dst, ggml_nelements(src0));
- ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_SUM, p);
- }
- static void ggml_vk_sum_rows(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) {
- vk_op_sum_rows_push_constants p = vk_op_sum_rows_push_constants_init(src0, dst, src0->ne[0]);
- ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_SUM_ROWS, p);
- }
- static void ggml_vk_mean(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) {
- vk_op_sum_rows_push_constants p = vk_op_sum_rows_push_constants_init(src0, dst, src0->ne[0]);
- p.weight = 1.0f / (float)src0->ne[0];
- ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_MEAN, p);
- }
- static void ggml_vk_argmax(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) {
- ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_ARGMAX, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], 0.0f, 0.0f });
- }
- static void ggml_vk_count_equal(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_COUNT_EQUAL, { (uint32_t)ggml_nelements(src0), 0, 0.0f, 0.0f });
- }
- static void ggml_vk_im2col(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- const int32_t s0 = dst->op_params[0];
- const int32_t s1 = dst->op_params[1];
- const int32_t p0 = dst->op_params[2];
- const int32_t p1 = dst->op_params[3];
- const int32_t d0 = dst->op_params[4];
- const int32_t d1 = dst->op_params[5];
- const bool is_2D = dst->op_params[6] == 1;
- const uint32_t IC = src1->ne[is_2D ? 2 : 1];
- const uint32_t IH = is_2D ? src1->ne[1] : 1;
- const uint32_t IW = src1->ne[0];
- const uint32_t KH = is_2D ? src0->ne[1] : 1;
- const uint32_t KW = src0->ne[0];
- const uint32_t OH = is_2D ? dst->ne[2] : 1;
- const uint32_t OW = dst->ne[1];
- const uint32_t offset_delta = src1->nb[is_2D ? 2 : 1] / 4; // nb is byte offset, src is type float32
- const uint32_t batch_offset = src1->nb[is_2D ? 3 : 2] / 4; // nb is byte offset, src is type float32
- const uint32_t pelements = OW * KW * KH;
- const ggml_backend_vk_buffer_context * d_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context;
- const vk_buffer d_buf = d_buf_ctx->dev_buffer;
- const vk::DeviceAddress dst_addr = d_buf->bda_addr + vk_tensor_offset(dst) + dst->view_offs;
- ggml_vk_op_f32<vk_op_im2col_push_constants>(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_IM2COL, {
- dst_addr,
- batch_offset, offset_delta,
- IC, IW, IH, OW, OH, KW, KH,
- pelements,
- IC * KH * KW,
- s0, s1, p0, p1, d0, d1,
- });
- }
- static void ggml_vk_im2col_3d(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_TENSOR_BINARY_OP_LOCALS
- const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
- const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
- const int32_t s2 = ((const int32_t *)(dst->op_params))[2];
- const int32_t p0 = ((const int32_t *)(dst->op_params))[3];
- const int32_t p1 = ((const int32_t *)(dst->op_params))[4];
- const int32_t p2 = ((const int32_t *)(dst->op_params))[5];
- const int32_t d0 = ((const int32_t *)(dst->op_params))[6];
- const int32_t d1 = ((const int32_t *)(dst->op_params))[7];
- const int32_t d2 = ((const int32_t *)(dst->op_params))[8];
- const int32_t IC = ((const int32_t *)(dst->op_params))[9];
- const int64_t N = ne13 / IC;
- const int64_t ID = ne12;
- const int64_t IH = ne11;
- const int64_t IW = ne10;
- const int64_t KD = ne02;
- const int64_t KH = ne01;
- const int64_t KW = ne00;
- const int64_t OD = ne3 / N;
- const int64_t OH = ne2;
- const int64_t OW = ne1;
- const ggml_backend_vk_buffer_context * d_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context;
- const vk_buffer d_buf = d_buf_ctx->dev_buffer;
- const vk::DeviceAddress dst_addr = d_buf->bda_addr + vk_tensor_offset(dst) + dst->view_offs;
- vk_op_im2col_3d_push_constants pc {};
- pc.dst_addr = dst_addr;
- pc.nb10 = nb10 / ggml_type_size(src1->type);
- pc.nb11 = nb11 / ggml_type_size(src1->type);
- pc.nb12 = nb12 / ggml_type_size(src1->type);
- pc.nb13 = nb13 / ggml_type_size(src1->type);
- pc.s0 = s0;
- pc.s1 = s1;
- pc.s2 = s2;
- pc.p0 = p0;
- pc.p1 = p1;
- pc.p2 = p2;
- pc.d0 = d0;
- pc.d1 = d1;
- pc.d2 = d2;
- pc.IW = IW;
- pc.IH = IH;
- pc.ID = ID;
- pc.IC = IC;
- pc.KW = KW;
- pc.OH = OH;
- pc.KD_KH_KW = KD*KH*KW;
- pc.KH_KW = KH*KW;
- pc.IC_KD_KH_KW = IC*KD*KH*KW;
- pc.N_OD_OH = N*OD*OH;
- pc.OD_OH = OD*OH;
- pc.OD_OH_OW_IC_KD_KH_KW = OD*OH*OW*IC*KD*KH*KW;
- pc.OH_OW_IC_KD_KH_KW = OH*OW*IC*KD*KH*KW;
- pc.OW_IC_KD_KH_KW = OW*IC*KD*KH*KW;
- ggml_vk_op_f32<vk_op_im2col_3d_push_constants>(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_IM2COL_3D, std::move(pc));
- }
- static void ggml_vk_timestep_embedding(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) {
- const uint32_t dim = dst->op_params[0];
- const uint32_t max_period = dst->op_params[1];
- const uint32_t nb1 = dst->nb[1] / ggml_type_size(dst->type);
- ggml_vk_op_f32<vk_op_timestep_embedding_push_constants>(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_TIMESTEP_EMBEDDING, {
- nb1, dim, max_period,
- });
- }
- static void ggml_vk_conv_transpose_1d(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- // src0: (K, Cout, Cin, 1) -- kernel
- // src1: (L, Cin, 1, 1) -- input
- // dst: (*, Cout, 1, 1)
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- GGML_TENSOR_BINARY_OP_LOCALS
- GGML_ASSERT(nb00 == sizeof(float));
- GGML_ASSERT(nb10 == sizeof(float));
- const int32_t s0 = dst->op_params[0];
- vk_op_conv_transpose_1d_push_constants p{};
- p.Cout = static_cast<uint32_t>(ne01);
- p.Cin = static_cast<uint32_t>(ne02);
- p.K = static_cast<uint32_t>(ne00);
- p.L = static_cast<uint32_t>(ne10);
- p.KL = static_cast<uint32_t>(ne0);
- p.nb01 = static_cast<uint32_t>(nb01 / nb00);
- p.nb02 = static_cast<uint32_t>(nb02 / nb00);
- p.nb11 = static_cast<uint32_t>(nb11 / nb10);
- p.nb1 = static_cast<uint32_t>(nb1 / nb0);
- p.s0 = static_cast<uint32_t>(s0);
- ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_CONV_TRANSPOSE_1D, std::move(p));
- }
- static void ggml_vk_pool_2d(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) {
- uint32_t op = static_cast<uint32_t>(dst->op_params[0]);
- const int32_t k1 = dst->op_params[1];
- const int32_t k0 = dst->op_params[2];
- const int32_t s1 = dst->op_params[3];
- const int32_t s0 = dst->op_params[4];
- const int32_t p1 = dst->op_params[5];
- const int32_t p0 = dst->op_params[6];
- const uint32_t IH = src0->ne[1];
- const uint32_t IW = src0->ne[0];
- const uint32_t N = dst->ne[3];
- const uint32_t OC = dst->ne[2];
- const uint32_t OH = dst->ne[1];
- const uint32_t OW = dst->ne[0];
- const uint32_t parallel_elements = N * OC * OH * OW;
- ggml_vk_op_f32<vk_op_pool2d_push_constants>(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_POOL_2D, {
- IW, IH, OW, OH, OC,
- parallel_elements,
- op,
- k0, k1, s0, s1, p0, p1,
- });
- }
- static void ggml_vk_conv_2d(ggml_backend_vk_context * ctx, vk_context & subctx, const ggml_tensor * src0,
- const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
- GGML_TENSOR_BINARY_OP_LOCALS
- GGML_ASSERT(nb00 == sizeof(float) || nb00 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb10 == sizeof(float));
- GGML_ASSERT(nb0 == sizeof(float));
- vk_op_conv2d_push_constants p{};
- p.Cout = static_cast<uint32_t>(ne03);
- p.Cin = static_cast<uint32_t>(ne02);
- p.N = static_cast<uint32_t>(ne13);
- p.KW = static_cast<uint32_t>(ne00);
- p.KH = static_cast<uint32_t>(ne01);
- p.W = static_cast<uint32_t>(ne10);
- p.H = static_cast<uint32_t>(ne11);
- p.OW = static_cast<uint32_t>(ne0);
- p.OH = static_cast<uint32_t>(ne1);
- p.s0 = static_cast<uint32_t>(dst->op_params[0]);
- p.s1 = static_cast<uint32_t>(dst->op_params[1]);
- p.p0 = static_cast<uint32_t>(dst->op_params[2]);
- p.p1 = static_cast<uint32_t>(dst->op_params[3]);
- p.d0 = static_cast<uint32_t>(dst->op_params[4]);
- p.d1 = static_cast<uint32_t>(dst->op_params[5]);
- p.nb01 = static_cast<uint32_t>(nb01 / nb00);
- p.nb02 = static_cast<uint32_t>(nb02 / nb00);
- p.nb03 = static_cast<uint32_t>(nb03 / nb00);
- p.nb11 = static_cast<uint32_t>(nb11 / nb10);
- p.nb12 = static_cast<uint32_t>(nb12 / nb10);
- p.nb13 = static_cast<uint32_t>(nb13 / nb10);
- p.nb1 = static_cast<uint32_t>(nb1 / nb0);
- p.nb2 = static_cast<uint32_t>(nb2 / nb0);
- p.nb3 = static_cast<uint32_t>(nb3 / nb0);
- GGML_ASSERT(ne03 == ne2);
- GGML_ASSERT(ne02 == ne12);
- ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_CONV_2D, std::move(p));
- }
- static void ggml_vk_conv_transpose_2d(ggml_backend_vk_context * ctx, vk_context & subctx, const ggml_tensor * src0,
- const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
- GGML_TENSOR_BINARY_OP_LOCALS
- GGML_ASSERT(nb00 == sizeof(float) || nb00 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb10 == sizeof(float));
- GGML_ASSERT(nb0 == sizeof(float));
- vk_op_conv_transpose_2d_push_constants p{};
- p.Cout = static_cast<uint32_t>(ne02);
- p.Cin = static_cast<uint32_t>(ne03);
- p.N = static_cast<uint32_t>(ne13);
- p.KW = static_cast<uint32_t>(ne00);
- p.KH = static_cast<uint32_t>(ne01);
- p.W = static_cast<uint32_t>(ne10);
- p.H = static_cast<uint32_t>(ne11);
- p.OW = static_cast<uint32_t>(ne0);
- p.OH = static_cast<uint32_t>(ne1);
- p.s0 = static_cast<uint32_t>(dst->op_params[0]);
- p.s1 = static_cast<uint32_t>(dst->op_params[0]);
- p.p0 = 0;
- p.p1 = 0;
- p.d0 = 1;
- p.d1 = 1;
- p.nb01 = static_cast<uint32_t>(nb01 / nb00);
- p.nb02 = static_cast<uint32_t>(nb02 / nb00);
- p.nb03 = static_cast<uint32_t>(nb03 / nb00);
- p.nb11 = static_cast<uint32_t>(nb11 / nb10);
- p.nb12 = static_cast<uint32_t>(nb12 / nb10);
- p.nb13 = static_cast<uint32_t>(nb13 / nb10);
- p.nb1 = static_cast<uint32_t>(nb1 / nb0);
- p.nb2 = static_cast<uint32_t>(nb2 / nb0);
- p.nb3 = static_cast<uint32_t>(nb3 / nb0);
- GGML_ASSERT(ne02 == ne2);
- GGML_ASSERT(ne03 == ne12);
- ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_CONV_TRANSPOSE_2D, std::move(p));
- }
- static void ggml_vk_conv_2d_dw(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- vk_op_conv2d_dw_push_constants p{};
- p.ne = ggml_nelements(dst);
- p.channels = dst->ne[2];
- p.batches = dst->ne[3];
- p.dst_w = dst->ne[0];
- p.dst_h = dst->ne[1];
- p.src_w = src1->ne[0];
- p.src_h = src1->ne[1];
- p.knl_w = src0->ne[0];
- p.knl_h = src0->ne[1];
- p.stride_x = dst->op_params[0];
- p.stride_y = dst->op_params[1];
- p.pad_x = dst->op_params[2];
- p.pad_y = dst->op_params[3];
- p.dilation_x = dst->op_params[4];
- p.dilation_y = dst->op_params[5];
- GGML_ASSERT(src0->ne[3] == p.channels);
- GGML_ASSERT(src1->ne[3] == p.batches);
- ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_CONV_2D_DW, std::move(p));
- }
- static void ggml_vk_leaky_relu(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) {
- const float * op_params = (const float *)dst->op_params;
- ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_LEAKY_RELU, { (uint32_t)ggml_nelements(src0), 0, op_params[0], 0.0f });
- }
- #ifdef GGML_VULKAN_RUN_TESTS
- static void ggml_vk_print_matrix_area(const void * data, ggml_type type, int ne0, int ne1, int i0, int i1, int i2) {
- if (type != GGML_TYPE_F32 && type != GGML_TYPE_F16) {
- return;
- }
- i0 = std::max(i0, 5);
- i1 = std::max(i1, 5);
- i2 = std::max(i2, 0);
- fprintf(stderr, " ");
- for (int idx1 = i1 - 5; idx1 < i1 + 5; idx1++) {
- fprintf(stderr, "%7d ", idx1);
- }
- fprintf(stderr, "\n");
- for (int idx0 = i0 - 5; idx0 < i0 + 5; idx0++) {
- fprintf(stderr, "%7d: ", idx0);
- for (int idx1 = i1 - 5; idx1 < i1 + 5; idx1++) {
- if (idx0 >= 0 && idx0 < ne0 && idx1 >= 0 && idx1 < ne1) {
- float val;
- if (type == GGML_TYPE_F32) {
- val = *((const float *) data + i2*ne1*ne0 + idx1*ne0 + idx0);
- } else if (type == GGML_TYPE_F16) {
- val = ggml_fp16_to_fp32(*((const ggml_fp16_t *) data + i2*ne1*ne0 + idx1*ne0 + idx0));
- } else {
- GGML_ABORT("fatal error");
- }
- fprintf(stderr, "% 7.2f ", val);
- } else {
- fprintf(stderr, " ");
- }
- }
- fprintf(stderr, "\n");
- }
- }
- template <typename X_TYPE, typename Y_TYPE>
- static void ggml_vk_test_matmul(ggml_backend_vk_context * ctx, size_t m, size_t n, size_t k, size_t batch, size_t num_it, int split_k, int shader_size) {
- VK_LOG_DEBUG("ggml_vk_test_matmul(" << m << ", " << n << ", " << k << ", " << batch << ", " << num_it << ", " << split_k << ", " << shader_size << ")");
- const size_t x_ne = m * k * batch;
- const size_t y_ne = k * n * batch;
- const size_t d_ne = m * n * batch;
- vk_pipeline p;
- std::string shname;
- if (shader_size == 0) {
- if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
- p = ctx->device->pipeline_matmul_f32->a_s;
- shname = "F32_ALIGNED_S";
- } else if (std::is_same<float, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
- p = ctx->device->pipeline_matmul_f32_f16->a_s;
- shname = "F32_F16_ALIGNED_S";
- } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
- p = ctx->device->pipeline_matmul_f16_f32.f32acc->a_s;
- shname = "F16_F32_ALIGNED_S";
- } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
- p = ctx->device->pipeline_matmul_f16.f32acc->a_s;
- shname = "F16_ALIGNED_S";
- } else {
- GGML_ABORT("fatal error");
- }
- } else if (shader_size == 1) {
- if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
- p = ctx->device->pipeline_matmul_f32->a_m;
- shname = "F32_ALIGNED_M";
- } else if (std::is_same<float, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
- p = ctx->device->pipeline_matmul_f32_f16->a_m;
- shname = "F32_F16_ALIGNED_M";
- } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
- p = ctx->device->pipeline_matmul_f16_f32.f32acc->a_m;
- shname = "F16_F32_ALIGNED_M";
- } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
- p = ctx->device->pipeline_matmul_f16.f32acc->a_m;
- shname = "F16_ALIGNED_M";
- } else {
- GGML_ABORT("fatal error");
- }
- } else if (shader_size == 2) {
- if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
- p = ctx->device->pipeline_matmul_f32->a_l;
- shname = "F32_ALIGNED_L";
- } else if (std::is_same<float, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
- p = ctx->device->pipeline_matmul_f32_f16->a_l;
- shname = "F32_F16_ALIGNED_L";
- } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
- p = ctx->device->pipeline_matmul_f16_f32.f32acc->a_l;
- shname = "F16_F32_ALIGNED_L";
- } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
- p = ctx->device->pipeline_matmul_f16.f32acc->a_l;
- shname = "F16_ALIGNED_L";
- } else {
- GGML_ABORT("fatal error");
- }
- } else {
- GGML_ASSERT(0);
- }
- const size_t kpad = ggml_vk_align_size(k, p->align);
- if (k != kpad) {
- if (shader_size == 0) {
- if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
- p = ctx->device->pipeline_matmul_f32->s;
- shname = "F32_S";
- } else if (std::is_same<float, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
- p = ctx->device->pipeline_matmul_f32_f16->s;
- shname = "F32_F16_S";
- } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
- p = ctx->device->pipeline_matmul_f16_f32.f32acc->s;
- shname = "F16_F32_S";
- } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
- p = ctx->device->pipeline_matmul_f16.f32acc->s;
- shname = "F16_S";
- }
- } else if (shader_size == 1) {
- if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
- p = ctx->device->pipeline_matmul_f32->m;
- shname = "F32_M";
- } else if (std::is_same<float, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
- p = ctx->device->pipeline_matmul_f32_f16->m;
- shname = "F32_F16_M";
- } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
- p = ctx->device->pipeline_matmul_f16_f32.f32acc->m;
- shname = "F16_F32_M";
- } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
- p = ctx->device->pipeline_matmul_f16.f32acc->m;
- shname = "F16_M";
- }
- } else if (shader_size == 2) {
- if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
- p = ctx->device->pipeline_matmul_f32->l;
- shname = "F32_L";
- } else if (std::is_same<float, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
- p = ctx->device->pipeline_matmul_f32_f16->l;
- shname = "F32_F16_L";
- } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
- p = ctx->device->pipeline_matmul_f16_f32.f32acc->l;
- shname = "F16_F32_L";
- } else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
- p = ctx->device->pipeline_matmul_f16.f32acc->l;
- shname = "F16_L";
- }
- }
- }
- ggml_pipeline_request_descriptor_sets(ctx, p, num_it);
- if (split_k > 1) {
- ggml_pipeline_request_descriptor_sets(ctx, ctx->device->pipeline_matmul_split_k_reduce, num_it);
- if (ctx->prealloc_split_k == nullptr || ctx->prealloc_split_k->size < sizeof(float) * d_ne * split_k) {
- // Resize buffer
- if (ctx->prealloc_split_k != nullptr) {
- ggml_vk_destroy_buffer(ctx->prealloc_split_k);
- }
- ctx->prealloc_split_k = ggml_vk_create_buffer_check(ctx->device, sizeof(float) * d_ne * split_k, {vk::MemoryPropertyFlagBits::eDeviceLocal});
- }
- }
- ggml_pipeline_allocate_descriptor_sets(ctx);
- vk_buffer d_X = ggml_vk_create_buffer_check(ctx->device, sizeof(X_TYPE) * x_ne, {vk::MemoryPropertyFlagBits::eDeviceLocal});
- vk_buffer d_Y = ggml_vk_create_buffer_check(ctx->device, sizeof(Y_TYPE) * y_ne, {vk::MemoryPropertyFlagBits::eDeviceLocal});
- vk_buffer d_D = ggml_vk_create_buffer_check(ctx->device, sizeof(float) * d_ne, {vk::MemoryPropertyFlagBits::eDeviceLocal});
- X_TYPE* x = (X_TYPE *) malloc(sizeof(X_TYPE) * x_ne);
- Y_TYPE* y = (Y_TYPE *) malloc(sizeof(Y_TYPE) * y_ne);
- float* d = (float *) malloc(sizeof(float) * d_ne);
- for (size_t i = 0; i < x_ne; i++) {
- if (std::is_same<float, X_TYPE>()) {
- x[i] = (rand() / (float)RAND_MAX) * 2.0f - 1.0f;
- // x[i] = 1.0f;
- // x[i] = i + 1;
- // x[i] = (i % k == i / k) ? 1.0f : 0.0f;
- } else if (std::is_same<ggml_fp16_t, X_TYPE>()) {
- x[i] = ggml_fp32_to_fp16((rand() / (float)RAND_MAX) * 2.0f - 1.0f);
- // x[i] = ggml_fp32_to_fp16(1.0f);
- // x[i] = ggml_fp32_to_fp16(i + 1);
- // x[i] = ggml_fp32_to_fp16((i % k == i / k) ? 1.0f : 0.0f);
- } else {
- GGML_ABORT("fatal error");
- }
- }
- for (size_t i = 0; i < y_ne; i++) {
- if (std::is_same<float, Y_TYPE>()) {
- y[i] = (rand() / (float)RAND_MAX) * 2.0f - 1.0f;
- // y[i] = (i % k == i / k) ? 1.0f : 0.0f;
- // y[i] = i + 1;
- } else if (std::is_same<ggml_fp16_t, Y_TYPE>()) {
- y[i] = ggml_fp32_to_fp16((rand() / (float)RAND_MAX) * 2.0f - 1.0f);
- // y[i] = ggml_fp32_to_fp16((i % k == i / k) ? 1.0f : 0.0f);
- // y[i] = ggml_fp32_to_fp16(i + 1);
- } else {
- GGML_ABORT("fatal error");
- }
- }
- ggml_vk_buffer_write(d_X, 0, x, sizeof(X_TYPE) * k * m * batch);
- ggml_vk_buffer_write(d_Y, 0, y, sizeof(Y_TYPE) * k * n * batch);
- vk_context subctx = ggml_vk_create_context(ctx, ctx->compute_cmd_pool);
- ggml_vk_ctx_begin(ctx->device, subctx);
- for (size_t i = 0; i < num_it; i++) {
- ggml_vk_matmul(
- ctx, subctx, p, ggml_vk_subbuffer(ctx, d_X), ggml_vk_subbuffer(ctx, d_Y), ggml_vk_subbuffer(ctx, d_D), ggml_vk_subbuffer(ctx, ctx->prealloc_split_k),
- m, n, k,
- k, k, m, k*m, k*n, m*n,
- split_k, batch, batch, batch, 1, 1, n
- );
- }
- ggml_vk_ctx_end(subctx);
- auto begin = std::chrono::high_resolution_clock::now();
- ggml_vk_submit(subctx, ctx->fence);
- VK_CHECK(ctx->device->device.waitForFences({ ctx->fence }, true, UINT64_MAX), "ggml_vk_test_matmul waitForFences");
- ctx->device->device.resetFences({ ctx->fence });
- ggml_vk_queue_command_pools_cleanup(ctx->device);
- auto end = std::chrono::high_resolution_clock::now();
- double time = std::chrono::duration_cast<std::chrono::microseconds>(end-begin).count() / 1000.0;
- // copy dst to host
- ggml_vk_buffer_read(d_D, 0, d, sizeof(float) * d_ne);
- float * d_chk = (float *) malloc(sizeof(float) * d_ne);
- ggml_init_params iparams = {
- /*.mem_size =*/ 1024*1024*1024,
- /*.mem_buffer =*/ NULL,
- /*.no_alloc =*/ true,
- };
- ggml_context * ggml_ctx = ggml_init(iparams);
- ggml_type src0_type;
- ggml_type src1_type;
- if (std::is_same<float, X_TYPE>()) {
- src0_type = GGML_TYPE_F32;
- } else if (std::is_same<ggml_fp16_t, X_TYPE>()) {
- src0_type = GGML_TYPE_F16;
- } else {
- GGML_ABORT("fatal error");
- }
- if (std::is_same<float, Y_TYPE>()) {
- src1_type = GGML_TYPE_F32;
- } else if (std::is_same<ggml_fp16_t, Y_TYPE>()) {
- src1_type = GGML_TYPE_F16;
- } else {
- GGML_ABORT("fatal error");
- }
- ggml_tensor * src0_ggml = ggml_new_tensor_3d(ggml_ctx, src0_type, k, m, batch);
- ggml_tensor * src1_ggml = ggml_new_tensor_3d(ggml_ctx, src1_type, k, n, batch);
- ggml_tensor * tensor_ggml = ggml_mul_mat(ggml_ctx, src0_ggml, src1_ggml);
- src0_ggml->data = x;
- src1_ggml->data = y;
- tensor_ggml->data = d_chk;
- ggml_cgraph * cgraph = ggml_new_graph(ggml_ctx);
- ggml_build_forward_expand(cgraph, tensor_ggml);
- ggml_graph_compute_with_ctx(ggml_ctx, cgraph, 1);
- ggml_free(ggml_ctx);
- double avg_err = 0.0;
- int first_err_n = -1;
- int first_err_m = -1;
- int first_err_b = -1;
- for (size_t i = 0; i < m*n*batch; i++) {
- double err = std::fabs(d[i] - d_chk[i]);
- avg_err += err;
- if ((err > 0.05f || std::isnan(err)) && first_err_n == -1) {
- first_err_b = i / (m * n);
- first_err_n = (i % (m * n)) / m;
- first_err_m = (i % (m * n)) % m;
- }
- }
- avg_err /= m * n;
- double tflops = 2.0*m*n*k*batch*num_it / (time / 1000.0) / (1000.0*1000.0*1000.0*1000.0);
- std::cerr << "TEST " << shname << " m=" << m << " n=" << n << " k=" << k << " batch=" << batch << " split_k=" << split_k << " matmul " << time / num_it << "ms " << tflops << " TFLOPS avg_err=" << avg_err << std::endl;
- if (avg_err > 0.1 || std::isnan(avg_err)) {
- std::cerr << "m = " << first_err_m << " n = " << first_err_n << " b = " << first_err_b << std::endl;
- std::cerr << "Actual result: " << std::endl << std::endl;
- ggml_vk_print_matrix_area(d, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b);
- std::cerr << "Expected result: " << std::endl << std::endl;
- ggml_vk_print_matrix_area(d_chk, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b);
- if (split_k > 1) {
- float * split_k_buf = (float *) malloc(sizeof(float) * d_ne * split_k);
- ggml_vk_buffer_read(ctx->prealloc_split_k, 0, split_k_buf, sizeof(float) * d_ne * split_k);
- std::cerr << "d_buf0: " << std::endl << std::endl;
- ggml_vk_print_matrix_area(split_k_buf, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b);
- std::cerr << "d_buf1: " << std::endl << std::endl;
- ggml_vk_print_matrix_area(split_k_buf + d_ne, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b);
- std::cerr << "d_buf2: " << std::endl << std::endl;
- ggml_vk_print_matrix_area(split_k_buf + 2 * d_ne, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b);
- std::cerr << "d_buf3: " << std::endl << std::endl;
- ggml_vk_print_matrix_area(split_k_buf + 3 * d_ne, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b);
- free(split_k_buf);
- }
- }
- free(d_chk);
- ggml_vk_command_pool_cleanup(ctx->device, ctx->compute_cmd_pool);
- ggml_vk_command_pool_cleanup(ctx->device, ctx->transfer_cmd_pool);
- ggml_vk_destroy_buffer(d_X);
- ggml_vk_destroy_buffer(d_Y);
- ggml_vk_destroy_buffer(d_D);
- free(x);
- free(y);
- free(d);
- }
- static void ggml_vk_print_tensor_area(const ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
- if (tensor->type != GGML_TYPE_F32 && tensor->type != GGML_TYPE_F16) {
- return;
- }
- i0 = std::max(i0, 5);
- i1 = std::max(i1, 5);
- i2 = std::max(i2, 0);
- i3 = std::max(i3, 0);
- fprintf(stderr, " ");
- for (int idx1 = i1 - 5; idx1 < i1 + 5; idx1++) {
- fprintf(stderr, "%7d ", idx1);
- }
- fprintf(stderr, "\n");
- for (int idx0 = i0 - 5; idx0 < i0 + 5; idx0++) {
- fprintf(stderr, "%7d: ", idx0);
- for (int idx1 = i1 - 5; idx1 < i1 + 5; idx1++) {
- if (idx0 >= 0 && idx0 < tensor->ne[0] && idx1 >= 0 && idx1 < tensor->ne[1] && i2 >= 0 && i2 < tensor->ne[2] && i3 >= 0 && i3 < tensor->ne[3]) {
- float val;
- if (tensor->type == GGML_TYPE_F32) {
- val = *(float *) ((char *) tensor->data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0]);
- } else if (tensor->type == GGML_TYPE_F16) {
- val = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) tensor->data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0]));
- } else {
- GGML_ABORT("fatal error");
- }
- fprintf(stderr, "% 7.2f ", val);
- } else {
- fprintf(stderr, " ");
- }
- }
- fprintf(stderr, "\n");
- }
- }
- static void ggml_vk_quantize_data(const float * from, void * to, size_t ne, ggml_type quant) {
- ggml_quantize_chunk(quant, from, to, 0, 1, ne, nullptr);
- }
- static void ggml_vk_dequantize_data(const void * from, float * to, size_t ne, ggml_type quant) {
- if (quant == GGML_TYPE_F32) {
- memcpy(to, from, sizeof(float) * ne);
- return;
- }
- const auto * tt = ggml_get_type_traits(quant);
- ggml_to_float_t dequant_fn = tt->to_float;
- dequant_fn(from, to, ne);
- }
- static void ggml_vk_test_dequant(ggml_backend_vk_context * ctx, size_t ne, ggml_type quant) {
- VK_LOG_DEBUG("ggml_vk_test_dequant(" << ne << ")");
- const size_t x_sz = sizeof(float) * ne;
- const size_t x_sz_f16 = sizeof(ggml_fp16_t) * ne;
- const size_t qx_sz = ne * ggml_type_size(quant)/ggml_blck_size(quant);
- float * x = (float *) malloc(x_sz);
- void * qx = malloc(qx_sz);
- vk_buffer qx_buf = ggml_vk_create_buffer_check(ctx->device, qx_sz, {vk::MemoryPropertyFlagBits::eDeviceLocal});
- vk_buffer x_buf = ggml_vk_create_buffer_check(ctx->device, x_sz_f16, {vk::MemoryPropertyFlagBits::eDeviceLocal});
- float * x_ref = (float *) malloc(x_sz);
- ggml_fp16_t * x_chk = (ggml_fp16_t *) malloc(x_sz_f16);
- for (size_t i = 0; i < ne; i++) {
- x[i] = rand() / (float)RAND_MAX;
- }
- vk_pipeline p = ggml_vk_get_to_fp16(ctx, quant);
- ggml_vk_quantize_data(x, qx, ne, quant);
- ggml_vk_dequantize_data(qx, x_ref, ne, quant);
- ggml_pipeline_request_descriptor_sets(ctx, p, 1);
- ggml_pipeline_allocate_descriptor_sets(ctx);
- ggml_vk_buffer_write(qx_buf, 0, qx, qx_sz);
- vk_context subctx = ggml_vk_create_context(ctx, ctx->compute_cmd_pool);
- ggml_vk_ctx_begin(ctx->device, subctx);
- const std::vector<uint32_t> pc = { 1, (uint32_t)ne, (uint32_t)ne, (uint32_t)ne, (uint32_t)ne };
- ggml_vk_dispatch_pipeline(ctx, subctx, p, { vk_subbuffer{ qx_buf, 0, qx_sz }, vk_subbuffer{ x_buf, 0, x_sz_f16 } }, pc, { (uint32_t)ne, 1, 1});
- ggml_vk_ctx_end(subctx);
- auto begin = std::chrono::high_resolution_clock::now();
- ggml_vk_submit(subctx, ctx->fence);
- VK_CHECK(ctx->device->device.waitForFences({ ctx->fence }, true, UINT64_MAX), "ggml_vk_test_dequant waitForFences");
- ctx->device->device.resetFences({ ctx->fence });
- ggml_vk_queue_command_pools_cleanup(ctx->device);
- auto end = std::chrono::high_resolution_clock::now();
- double ms_dequant = std::chrono::duration_cast<std::chrono::microseconds>(end-begin).count() / 1000.0;
- ggml_vk_buffer_read(x_buf, 0, x_chk, x_sz_f16);
- int first_err = -1;
- double avg_err = 0.0;
- for (size_t i = 0; i < ne; i++) {
- double error = std::fabs(x_ref[i] - ggml_fp16_to_fp32(x_chk[i]));
- avg_err += error;
- if (first_err < 0 && error > 0.05) {
- first_err = i;
- }
- }
- avg_err /= ne;
- std::cerr << "TEST DEQUANT " << ggml_type_name(quant) << " time=" << ms_dequant << "ms avg_err=" << avg_err << std::endl;
- if (avg_err > 0.1) {
- std::cerr << "first_error = " << first_err << std::endl;
- std::cerr << "Actual result: " << std::endl << std::endl;
- for (int i = std::max(0, first_err - 5); i < std::min((int)ne, first_err + 5); i++) {
- std::cerr << ggml_fp16_to_fp32(x_chk[i]) << ", ";
- }
- std::cerr << std::endl << "Expected result: " << std::endl << std::endl;
- for (int i = std::max(0, first_err - 5); i < std::min((int)ne, first_err + 5); i++) {
- std::cerr << x_ref[i] << ", ";
- }
- std::cerr << std::endl;
- }
- ggml_vk_destroy_buffer(x_buf);
- ggml_vk_destroy_buffer(qx_buf);
- free(x);
- free(qx);
- free(x_ref);
- free(x_chk);
- }
- // This does not work without ggml q8_1 quantization support
- //
- // typedef uint16_t ggml_half;
- // typedef uint32_t ggml_half2;
- //
- // #define QK8_1 32
- // typedef struct {
- // union {
- // struct {
- // ggml_half d; // delta
- // ggml_half s; // d * sum(qs[i])
- // } GGML_COMMON_AGGR_S;
- // ggml_half2 ds;
- // } GGML_COMMON_AGGR_U;
- // int8_t qs[QK8_1]; // quants
- // } block_q8_1;
- //
- // static void ggml_vk_test_quantize(ggml_backend_vk_context * ctx, size_t ne, ggml_type quant) {
- // VK_LOG_DEBUG("ggml_vk_test_quantize(" << ne << ")");
- // GGML_ASSERT(quant == GGML_TYPE_Q8_1);
- //
- // const size_t x_sz = sizeof(float) * ne;
- // const size_t qx_sz = ne * ggml_type_size(quant)/ggml_blck_size(quant);
- // float * x = (float *) malloc(x_sz);
- // block_q8_1 * qx = (block_q8_1 *)malloc(qx_sz);
- // block_q8_1 * qx_res = (block_q8_1 *)malloc(qx_sz);
- // vk_buffer x_buf = ggml_vk_create_buffer_check(ctx->device, x_sz, {vk::MemoryPropertyFlagBits::eDeviceLocal});
- // vk_buffer qx_buf = ggml_vk_create_buffer_check(ctx->device, qx_sz, {vk::MemoryPropertyFlagBits::eDeviceLocal});
- //
- // for (size_t i = 0; i < ne; i++) {
- // x[i] = rand() / (float)RAND_MAX;
- // }
- //
- // vk_pipeline p = ggml_vk_get_quantize_pipeline(ctx, quant);
- //
- // ggml_pipeline_request_descriptor_sets(ctx, p, 1);
- //
- // ggml_pipeline_allocate_descriptor_sets(ctx);
- //
- // ggml_vk_buffer_write(x_buf, 0, x, x_sz);
- //
- // vk_context subctx = ggml_vk_create_context(ctx, ctx->compute_cmd_pool);
- // ggml_vk_ctx_begin(ctx->device, subctx);
- // ggml_vk_quantize_q8_1(ctx, subctx, ggml_vk_subbuffer(ctx, x_buf), ggml_vk_subbuffer(ctx, qx_buf), ne);
- // ggml_vk_ctx_end(subctx);
- //
- // auto begin = std::chrono::high_resolution_clock::now();
- //
- // ggml_vk_submit(subctx, ctx->fence);
- // VK_CHECK(ctx->device->device.waitForFences({ ctx->fence }, true, UINT64_MAX), "ggml_vk_test_quantize waitForFences");
- // ctx->device->device.resetFences({ ctx->fence });
- // ggml_vk_queue_command_pools_cleanup(ctx->device);
- //
- // auto end = std::chrono::high_resolution_clock::now();
- //
- // double ms_quant = std::chrono::duration_cast<std::chrono::microseconds>(end-begin).count() / 1000.0;
- // ggml_vk_buffer_read(qx_buf, 0, qx, qx_sz);
- //
- // ggml_vk_quantize_data(x, qx_res, ne, quant);
- //
- // int first_err = -1;
- //
- // for (size_t i = 0; i < ne / 32; i++) {
- // double error = std::fabs(ggml_fp16_to_fp32(qx_res[i].GGML_COMMON_AGGR_U.GGML_COMMON_AGGR_S.d) - ggml_fp16_to_fp32(qx[i].GGML_COMMON_AGGR_U.GGML_COMMON_AGGR_S.d));
- //
- // if (first_err < 0 && error > 0.1) {
- // first_err = i;
- // }
- //
- // error = std::fabs(ggml_fp16_to_fp32(qx_res[i].GGML_COMMON_AGGR_U.GGML_COMMON_AGGR_S.s) - ggml_fp16_to_fp32(qx[i].GGML_COMMON_AGGR_U.GGML_COMMON_AGGR_S.s));
- //
- // if (first_err < 0 && error > 0.1) {
- // first_err = i;
- // }
- //
- // for (size_t j = 0; j < 32; j++) {
- // uint64_t error = std::abs(qx_res[i].qs[j] - qx[i].qs[j]);
- //
- // if (first_err < 0 && error > 1) {
- // first_err = i;
- // }
- // }
- // }
- //
- // std::cerr << "TEST QUANTIZE " << ggml_type_name(quant) << " time=" << ms_quant << "ms " << (first_err == -1 ? "CORRECT" : "INCORRECT") << std::endl;
- //
- // if (first_err != -1) {
- // std::cerr << "first_error = " << first_err << std::endl;
- // std::cerr << "Actual result: " << std::endl << std::endl;
- // std::cout << "d=" << ggml_fp16_to_fp32(qx[first_err].GGML_COMMON_AGGR_U.GGML_COMMON_AGGR_S.d) << " s=" << ggml_fp16_to_fp32(qx[first_err].GGML_COMMON_AGGR_U.GGML_COMMON_AGGR_S.s) << " ";
- // for (size_t j = 0; j < 32; j++) {
- // std::cout << " qs" << j << "=" << (uint32_t)qx[first_err].qs[j] << " ";
- // }
- // std::cerr << std::endl << std::endl << "Expected result: " << std::endl << std::endl;
- // std::cout << "d=" << ggml_fp16_to_fp32(qx_res[first_err].GGML_COMMON_AGGR_U.GGML_COMMON_AGGR_S.d) << " s=" << ggml_fp16_to_fp32(qx_res[first_err].GGML_COMMON_AGGR_U.GGML_COMMON_AGGR_S.s) << " ";
- // for (size_t j = 0; j < 32; j++) {
- // std::cout << " qs" << j << "=" << (uint32_t)qx_res[first_err].qs[j] << " ";
- // }
- // std::cerr << std::endl;
- // }
- //
- // ggml_vk_destroy_buffer(x_buf);
- // ggml_vk_destroy_buffer(qx_buf);
- //
- // free(x);
- // free(qx);
- // free(qx_res);
- // }
- static void ggml_vk_test_dequant_matmul(ggml_backend_vk_context * ctx, size_t m, size_t n, size_t k, size_t batch, size_t num_it, size_t split_k, size_t shader_size, ggml_type quant, bool mmq = false) {
- VK_LOG_DEBUG("ggml_vk_test_dequant_matmul(" << m << ", " << n << ", " << k << ", " << batch << ", " << num_it << ", " << split_k << ", " << ggml_type_name(quant) << ")");
- const size_t x_ne = m * k * batch;
- const size_t y_ne = k * n * batch;
- const size_t d_ne = m * n * batch;
- vk_matmul_pipeline2 * pipelines;
- if (mmq) {
- pipelines = ctx->device->pipeline_dequant_mul_mat_mat_q8_1;
- } else {
- pipelines = ctx->device->pipeline_dequant_mul_mat_mat;
- }
- const bool fp16acc = ctx->device->fp16;
- vk_pipeline p;
- std::string shname;
- if (shader_size == 0) {
- p = fp16acc ? pipelines[quant].f16acc->a_s : pipelines[quant].f32acc->a_s;
- shname = std::string(ggml_type_name(quant)) + "_ALIGNED_S";
- } else if (shader_size == 1) {
- p = fp16acc ? pipelines[quant].f16acc->a_m : pipelines[quant].f32acc->a_m;
- shname = std::string(ggml_type_name(quant)) + "_ALIGNED_M";
- } else if (shader_size == 2) {
- p = fp16acc ? pipelines[quant].f16acc->a_l : pipelines[quant].f32acc->a_l;
- shname = std::string(ggml_type_name(quant)) + "_ALIGNED_L";
- } else {
- GGML_ASSERT(0);
- }
- const size_t kpad = mmq ? 0 : ggml_vk_align_size(k, p->align);
- if (mmq || k != kpad) {
- if (shader_size == 0) {
- p = fp16acc ? pipelines[quant].f16acc->s : pipelines[quant].f32acc->s;
- shname = std::string(ggml_type_name(quant)) + "_S";
- } else if (shader_size == 1) {
- p = fp16acc ? pipelines[quant].f16acc->m : pipelines[quant].f32acc->m;
- shname = std::string(ggml_type_name(quant)) + "_M";
- } else if (shader_size == 2) {
- p = fp16acc ? pipelines[quant].f16acc->l : pipelines[quant].f32acc->l;
- shname = std::string(ggml_type_name(quant)) + "_L";
- } else {
- GGML_ASSERT(0);
- }
- }
- if (p == nullptr) {
- std::cerr << "error: no pipeline for ggml_vk_test_dequant_matmul " << ggml_type_name(quant) << std::endl;
- return;
- }
- const size_t x_sz = sizeof(float) * x_ne;
- const size_t y_sz = sizeof(float) * y_ne;
- const size_t qx_sz = x_ne * ggml_type_size(quant)/ggml_blck_size(quant);
- const size_t qy_sz = mmq ? y_ne * ggml_type_size(GGML_TYPE_Q8_1)/ggml_blck_size(GGML_TYPE_Q8_1) : y_sz;
- const size_t d_sz = sizeof(float) * d_ne;
- float * x = (float *) malloc(x_sz);
- float * y = (float *) malloc(y_sz);
- void * qx = malloc(qx_sz);
- vk_buffer qx_buf = ggml_vk_create_buffer_check(ctx->device, qx_sz, {vk::MemoryPropertyFlagBits::eDeviceLocal});
- vk_buffer y_buf = ggml_vk_create_buffer_check(ctx->device, y_sz, {vk::MemoryPropertyFlagBits::eDeviceLocal});
- vk_buffer qy_buf = ggml_vk_create_buffer_check(ctx->device, qy_sz, {vk::MemoryPropertyFlagBits::eDeviceLocal});
- vk_buffer d_buf = ggml_vk_create_buffer_check(ctx->device, d_sz, {vk::MemoryPropertyFlagBits::eDeviceLocal});
- float * d = (float *) malloc(d_sz);
- float * d_chk = (float *) malloc(d_sz);
- for (size_t i = 0; i < x_ne; i++) {
- x[i] = (rand() / (float)RAND_MAX) * 2.0f - 1.0f;
- // x[i] = (i % k == i / k) ? 1.0f : 0.0f;
- // x[i] = i % k;
- }
- ggml_vk_quantize_data(x, qx, x_ne, quant);
- for (size_t i = 0; i < y_ne; i++) {
- y[i] = (rand() / (float)RAND_MAX) * 2.0f - 1.0f;
- // y[i] = (i % k == i / k) ? 1.0f : 0.0f;
- // y[i] = i % k;
- }
- ggml_pipeline_request_descriptor_sets(ctx, p, num_it);
- if (split_k > 1) {
- ggml_pipeline_request_descriptor_sets(ctx, ctx->device->pipeline_matmul_split_k_reduce, num_it);
- if (ctx->prealloc_split_k == nullptr || ctx->prealloc_split_k->size < sizeof(float) * d_ne * split_k) {
- // Resize buffer
- if (ctx->prealloc_split_k != nullptr) {
- ggml_vk_destroy_buffer(ctx->prealloc_split_k);
- }
- ctx->prealloc_split_k = ggml_vk_create_buffer_check(ctx->device, sizeof(float) * d_ne * split_k, {vk::MemoryPropertyFlagBits::eDeviceLocal});
- }
- }
- if (mmq) {
- ggml_pipeline_request_descriptor_sets(ctx, ctx->device->pipeline_quantize_q8_1, num_it);
- }
- ggml_pipeline_allocate_descriptor_sets(ctx);
- ggml_vk_buffer_write(qx_buf, 0, qx, qx_sz);
- ggml_vk_buffer_write(y_buf, 0, y, y_sz);
- vk_context subctx = ggml_vk_create_context(ctx, ctx->compute_cmd_pool);
- ggml_vk_ctx_begin(ctx->device, subctx);
- if (mmq) {
- for (size_t i = 0; i < num_it; i++) {
- ggml_vk_quantize_q8_1(ctx, subctx, { y_buf, 0, y_sz }, { qy_buf, 0, qy_sz }, y_ne);
- ggml_vk_matmul(
- ctx, subctx, p, { qx_buf, 0, qx_sz }, { qy_buf, 0, qy_sz }, { d_buf, 0, d_sz }, { ctx->prealloc_split_k, 0, ctx->prealloc_size_split_k },
- m, n, k,
- k, k, m, k*m, k*n, m*n,
- split_k, batch, batch, batch, 1, 1, n
- );
- }
- } else {
- for (size_t i = 0; i < num_it; i++) {
- ggml_vk_matmul(
- ctx, subctx, p, { qx_buf, 0, qx_sz }, { y_buf, 0, y_sz }, { d_buf, 0, d_sz }, { ctx->prealloc_split_k, 0, ctx->prealloc_size_split_k },
- m, n, k,
- k, k, m, k*m, k*n, m*n,
- split_k, batch, batch, batch, 1, 1, n
- );
- }
- }
- ggml_vk_ctx_end(subctx);
- auto begin = std::chrono::high_resolution_clock::now();
- ggml_vk_submit(subctx, ctx->fence);
- VK_CHECK(ctx->device->device.waitForFences({ ctx->fence }, true, UINT64_MAX), "ggml_vk_test_dequant waitForFences");
- ctx->device->device.resetFences({ ctx->fence });
- ggml_vk_queue_command_pools_cleanup(ctx->device);
- auto end = std::chrono::high_resolution_clock::now();
- double time_ms = std::chrono::duration_cast<std::chrono::microseconds>(end-begin).count() / 1000.0;
- ggml_vk_buffer_read(d_buf, 0, d, d_sz);
- ggml_init_params iparams = {
- /*.mem_size =*/ 1024*1024*1024,
- /*.mem_buffer =*/ NULL,
- /*.no_alloc =*/ true,
- };
- ggml_context * ggml_ctx = ggml_init(iparams);
- ggml_tensor * src0_ggml = ggml_new_tensor_3d(ggml_ctx, quant, k, m, batch);
- ggml_tensor * src1_ggml = ggml_new_tensor_3d(ggml_ctx, GGML_TYPE_F32, k, n, batch);
- ggml_tensor * tensor_ggml = ggml_mul_mat(ggml_ctx, src0_ggml, src1_ggml);
- src0_ggml->data = qx;
- src1_ggml->data = y;
- tensor_ggml->data = d_chk;
- ggml_cgraph * cgraph = ggml_new_graph(ggml_ctx);
- ggml_build_forward_expand(cgraph, tensor_ggml);
- ggml_graph_compute_with_ctx(ggml_ctx, cgraph, 1);
- ggml_free(ggml_ctx);
- double avg_err = 0.0;
- int first_err_n = -1;
- int first_err_m = -1;
- int first_err_b = -1;
- for (size_t i = 0; i < m*n*batch; i++) {
- double err = std::fabs(d[i] - d_chk[i]);
- avg_err += err;
- if ((err > 0.05f || std::isnan(err)) && first_err_n == -1) {
- first_err_b = i / (m * n);
- first_err_n = (i % (m * n)) / m;
- first_err_m = (i % (m * n)) % m;
- }
- }
- avg_err /= m * n;
- double tflops = 2.0*m*n*k*batch*num_it / (time_ms / 1000.0) / (1000.0*1000.0*1000.0*1000.0);
- std::cerr << "TEST dequant matmul " << shname;
- if (mmq) {
- std::cerr << " mmq";
- }
- std::cerr << " m=" << m << " n=" << n << " k=" << k << " batch=" << batch << " split_k=" << split_k << " matmul " << time_ms / num_it << "ms " << tflops << " TFLOPS avg_err=" << avg_err << std::endl;
- if (avg_err > 0.01 || std::isnan(avg_err)) {
- std::cerr << "m = " << first_err_m << " n = " << first_err_n << " b = " << first_err_b << std::endl;
- std::cerr << "Actual result: " << std::endl << std::endl;
- ggml_vk_print_matrix_area(d, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b);
- std::cerr << std::endl;
- std::cerr << "Expected result: " << std::endl << std::endl;
- ggml_vk_print_matrix_area(d_chk, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b);
- std::cerr << "src0: " << std::endl << std::endl;
- ggml_vk_print_matrix_area(x, GGML_TYPE_F32, k, m, first_err_m, first_err_n, first_err_b);
- std::cerr << std::endl;
- std::cerr << "src1: " << std::endl << std::endl;
- ggml_vk_print_matrix_area(y, GGML_TYPE_F32, k, n, first_err_m, first_err_n, first_err_b);
- if (split_k > 1) {
- float * split_k_buf = (float *) malloc(sizeof(float) * d_ne * split_k);
- ggml_vk_buffer_read(ctx->prealloc_split_k, 0, split_k_buf, sizeof(float) * d_ne * split_k);
- std::cerr << "d_buf0: " << std::endl << std::endl;
- ggml_vk_print_matrix_area(split_k_buf, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b);
- std::cerr << "d_buf1: " << std::endl << std::endl;
- ggml_vk_print_matrix_area(split_k_buf + d_ne, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b);
- std::cerr << "d_buf2: " << std::endl << std::endl;
- ggml_vk_print_matrix_area(split_k_buf + 2 * d_ne, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b);
- std::cerr << "d_buf3: " << std::endl << std::endl;
- ggml_vk_print_matrix_area(split_k_buf + 3 * d_ne, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b);
- free(split_k_buf);
- }
- }
- ggml_vk_destroy_buffer(qx_buf);
- ggml_vk_destroy_buffer(y_buf);
- ggml_vk_destroy_buffer(qy_buf);
- ggml_vk_destroy_buffer(d_buf);
- free(x);
- free(qx);
- free(y);
- free(d);
- free(d_chk);
- }
- #endif
- static void ggml_vk_preallocate_buffers(ggml_backend_vk_context * ctx, vk_context subctx) {
- #if defined(GGML_VULKAN_RUN_TESTS)
- const std::vector<size_t> vals {
- 512, 512, 128,
- 128, 512, 512,
- 4096, 512, 4096,
- 11008, 512, 4096,
- 4096, 512, 11008,
- 32000, 512, 4096,
- 8, 8, 8,
- 100, 46, 576,
- 623, 111, 128,
- 100, 46, 558,
- 512, 1, 256,
- 128, 110, 622,
- 511, 511, 127,
- 511, 511, 7,
- 511, 511, 17,
- 49, 49, 128,
- 128, 49, 49,
- 4096, 49, 4096,
- };
- const size_t num_it = 100;
- ggml_vk_test_dequant_matmul(ctx, 4096, 512, 4096, 2, num_it, 1, 0, GGML_TYPE_Q4_0);
- ggml_vk_test_dequant_matmul(ctx, 4096, 512, 4096, 2, num_it, 1, 1, GGML_TYPE_Q4_0);
- ggml_vk_test_dequant_matmul(ctx, 4096, 512, 4096, 2, num_it, 1, 2, GGML_TYPE_Q4_0);
- ggml_vk_test_dequant_matmul(ctx, 4096, 512, 4096, 2, num_it, 1, 0, GGML_TYPE_Q4_0, true);
- ggml_vk_test_dequant_matmul(ctx, 4096, 512, 4096, 2, num_it, 1, 1, GGML_TYPE_Q4_0, true);
- ggml_vk_test_dequant_matmul(ctx, 4096, 512, 4096, 2, num_it, 1, 2, GGML_TYPE_Q4_0, true);
- ggml_vk_test_dequant_matmul(ctx, 4096, 512, 4096, 2, num_it, 1, 0, GGML_TYPE_Q8_0);
- ggml_vk_test_dequant_matmul(ctx, 4096, 512, 4096, 2, num_it, 1, 1, GGML_TYPE_Q8_0);
- ggml_vk_test_dequant_matmul(ctx, 4096, 512, 4096, 2, num_it, 1, 2, GGML_TYPE_Q8_0);
- ggml_vk_test_dequant_matmul(ctx, 4096, 512, 4096, 2, num_it, 1, 0, GGML_TYPE_Q8_0, true);
- ggml_vk_test_dequant_matmul(ctx, 4096, 512, 4096, 2, num_it, 1, 1, GGML_TYPE_Q8_0, true);
- ggml_vk_test_dequant_matmul(ctx, 4096, 512, 4096, 2, num_it, 1, 2, GGML_TYPE_Q8_0, true);
- abort();
- for (size_t i = 0; i < vals.size(); i += 3) {
- ggml_vk_test_matmul<ggml_fp16_t, float>(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 1, 0);
- ggml_vk_test_matmul<ggml_fp16_t, float>(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 1, 1);
- ggml_vk_test_matmul<ggml_fp16_t, float>(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 1, 2);
- std::cerr << '\n';
- ggml_vk_test_matmul<ggml_fp16_t, float>(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 2, 0);
- ggml_vk_test_matmul<ggml_fp16_t, float>(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 2, 1);
- ggml_vk_test_matmul<ggml_fp16_t, float>(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 2, 2);
- std::cerr << '\n';
- ggml_vk_test_matmul<ggml_fp16_t, float>(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 4, 0);
- ggml_vk_test_matmul<ggml_fp16_t, float>(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 4, 1);
- ggml_vk_test_matmul<ggml_fp16_t, float>(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 4, 2);
- std::cerr << '\n' << std::endl;
- if (vals[i + 2] % 32 == 0) {
- ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 1, 0, GGML_TYPE_Q4_0);
- ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 1, 1, GGML_TYPE_Q4_0);
- ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 1, 2, GGML_TYPE_Q4_0);
- std::cerr << '\n';
- ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 2, 0, GGML_TYPE_Q4_0);
- ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 2, 1, GGML_TYPE_Q4_0);
- ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 2, 2, GGML_TYPE_Q4_0);
- std::cerr << '\n';
- ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 4, 0, GGML_TYPE_Q4_0);
- ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 4, 1, GGML_TYPE_Q4_0);
- ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 4, 2, GGML_TYPE_Q4_0);
- std::cerr << '\n' << std::endl;
- }
- if (vals[i + 2] % 256 == 0) {
- ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 1, 0, GGML_TYPE_Q4_K);
- ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 1, 1, GGML_TYPE_Q4_K);
- ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 1, 2, GGML_TYPE_Q4_K);
- std::cerr << '\n';
- ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 2, 0, GGML_TYPE_Q4_K);
- ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 2, 1, GGML_TYPE_Q4_K);
- ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 2, 2, GGML_TYPE_Q4_K);
- std::cerr << '\n';
- ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 4, 0, GGML_TYPE_Q4_K);
- ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 4, 1, GGML_TYPE_Q4_K);
- ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 4, 2, GGML_TYPE_Q4_K);
- std::cerr << '\n' << std::endl;
- }
- }
- GGML_ABORT("fatal error");
- #endif
- if (subctx) {
- // Submit and wait for any pending work before reallocating the buffers
- ggml_vk_ctx_end(subctx);
- ggml_vk_submit(subctx, {});
- ctx->submit_pending = true;
- ggml_vk_synchronize(ctx);
- ggml_vk_ctx_begin(ctx->device, subctx);
- }
- if (ctx->prealloc_x == nullptr || (ctx->prealloc_size_x > 0 && ctx->prealloc_x->size < ctx->prealloc_size_x)) {
- VK_LOG_MEMORY("ggml_vk_preallocate_buffers(x_size: " << ctx->prealloc_size_x << ")");
- // Resize buffer
- if (ctx->prealloc_x != nullptr) {
- ggml_vk_destroy_buffer(ctx->prealloc_x);
- }
- ctx->prealloc_x = ggml_vk_create_buffer_device(ctx->device, ctx->prealloc_size_x);
- }
- if (ctx->prealloc_y == nullptr || (ctx->prealloc_size_y > 0 && ctx->prealloc_y->size < ctx->prealloc_size_y)) {
- VK_LOG_MEMORY("ggml_vk_preallocate_buffers(y_size: " << ctx->prealloc_size_y << ")");
- // Resize buffer
- if (ctx->prealloc_y != nullptr) {
- ggml_vk_destroy_buffer(ctx->prealloc_y);
- }
- ctx->prealloc_y = ggml_vk_create_buffer_device(ctx->device, ctx->prealloc_size_y);
- }
- if (ctx->prealloc_split_k == nullptr || (ctx->prealloc_size_split_k > 0 && ctx->prealloc_split_k->size < ctx->prealloc_size_split_k)) {
- VK_LOG_MEMORY("ggml_vk_preallocate_buffers(split_k_size: " << ctx->prealloc_size_split_k << ")");
- // Resize buffer
- if (ctx->prealloc_split_k != nullptr) {
- ggml_vk_destroy_buffer(ctx->prealloc_split_k);
- }
- ctx->prealloc_split_k = ggml_vk_create_buffer_device(ctx->device, ctx->prealloc_size_split_k);
- }
- if (ctx->prealloc_add_rms_partials == nullptr || (ctx->prealloc_size_add_rms_partials > 0 && ctx->prealloc_add_rms_partials->size < ctx->prealloc_size_add_rms_partials)) {
- VK_LOG_MEMORY("ggml_vk_preallocate_buffers(add_partials_size: " << ctx->prealloc_add_rms_partials << ")");
- // Resize buffer
- if (ctx->prealloc_add_rms_partials != nullptr) {
- ggml_vk_destroy_buffer(ctx->prealloc_add_rms_partials);
- }
- ctx->prealloc_add_rms_partials = ggml_vk_create_buffer_device(ctx->device, ctx->prealloc_size_add_rms_partials);
- }
- }
- static bool ggml_vk_compute_forward(ggml_backend_vk_context* ctx, ggml_cgraph * cgraph, ggml_tensor* tensor, int tensor_idx, bool almost_ready);
- // Returns true if node has enqueued work into the queue, false otherwise
- // If submit is true the current all operations queued so far are being submitted to Vulkan to overlap cmdlist creation and GPU execution.
- static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgraph, int node_idx, ggml_tensor *node_begin, int node_idx_begin, bool last_node, bool almost_ready, bool submit){
- ggml_tensor * node = cgraph->nodes[node_idx];
- if (ggml_is_empty(node) || !node->buffer) {
- return false;
- }
- VK_LOG_DEBUG("ggml_vk_build_graph(" << node << ", " << ggml_op_name(node->op) << ")");
- ctx->semaphore_idx = 0;
- ggml_tensor * src0 = node->src[0];
- ggml_tensor * src1 = node->src[1];
- ggml_tensor * src2 = node->src[2];
- ggml_tensor * src3 = node->src[3];
- switch (node->op) {
- // Return on empty ops to avoid generating a compute_ctx and setting exit_tensor
- case GGML_OP_RESHAPE:
- case GGML_OP_VIEW:
- case GGML_OP_PERMUTE:
- case GGML_OP_TRANSPOSE:
- case GGML_OP_NONE:
- return false;
- case GGML_OP_UNARY:
- switch (ggml_get_unary_op(node)) {
- case GGML_UNARY_OP_EXP:
- case GGML_UNARY_OP_SILU:
- case GGML_UNARY_OP_GELU:
- case GGML_UNARY_OP_GELU_ERF:
- case GGML_UNARY_OP_GELU_QUICK:
- case GGML_UNARY_OP_RELU:
- case GGML_UNARY_OP_NEG:
- case GGML_UNARY_OP_TANH:
- case GGML_UNARY_OP_SIGMOID:
- case GGML_UNARY_OP_HARDSIGMOID:
- case GGML_UNARY_OP_HARDSWISH:
- case GGML_UNARY_OP_ABS:
- case GGML_UNARY_OP_SOFTPLUS:
- case GGML_UNARY_OP_STEP:
- case GGML_UNARY_OP_ROUND:
- case GGML_UNARY_OP_CEIL:
- case GGML_UNARY_OP_FLOOR:
- case GGML_UNARY_OP_TRUNC:
- break;
- default:
- return false;
- }
- break;
- case GGML_OP_GLU:
- switch (ggml_get_glu_op(node)) {
- case GGML_GLU_OP_GEGLU:
- case GGML_GLU_OP_REGLU:
- case GGML_GLU_OP_SWIGLU:
- case GGML_GLU_OP_SWIGLU_OAI:
- case GGML_GLU_OP_GEGLU_ERF:
- case GGML_GLU_OP_GEGLU_QUICK:
- break;
- default:
- return false;
- }
- break;
- case GGML_OP_ADD:
- {
- int next_node_idx = node_idx + 1 + ctx->num_additional_fused_ops;
- if (next_node_idx < cgraph->n_nodes &&
- cgraph->nodes[next_node_idx]->op == GGML_OP_RMS_NORM &&
- cgraph->nodes[next_node_idx]->src[0] == cgraph->nodes[next_node_idx - 1] &&
- ggml_nrows(cgraph->nodes[next_node_idx]) == 1 &&
- ctx->device->add_rms_fusion) {
- uint32_t size = ggml_vk_rms_partials_size(ctx, cgraph->nodes[node_idx]);
- ctx->do_add_rms_partials_offset_calculation = true;
- if (ctx->prealloc_size_add_rms_partials_offset + size <= ctx->prealloc_size_add_rms_partials) {
- ctx->do_add_rms_partials = true;
- }
- }
- } break;
- case GGML_OP_REPEAT:
- case GGML_OP_REPEAT_BACK:
- case GGML_OP_GET_ROWS:
- case GGML_OP_ADD_ID:
- case GGML_OP_ACC:
- case GGML_OP_SUB:
- case GGML_OP_MUL:
- case GGML_OP_DIV:
- case GGML_OP_ADD1:
- case GGML_OP_ARANGE:
- case GGML_OP_FILL:
- case GGML_OP_CONCAT:
- case GGML_OP_UPSCALE:
- case GGML_OP_SCALE:
- case GGML_OP_SQR:
- case GGML_OP_SQRT:
- case GGML_OP_SIN:
- case GGML_OP_COS:
- case GGML_OP_LOG:
- case GGML_OP_CLAMP:
- case GGML_OP_PAD:
- case GGML_OP_ROLL:
- case GGML_OP_CPY:
- case GGML_OP_SET_ROWS:
- case GGML_OP_CONT:
- case GGML_OP_DUP:
- case GGML_OP_SILU_BACK:
- case GGML_OP_NORM:
- case GGML_OP_GROUP_NORM:
- case GGML_OP_RMS_NORM:
- case GGML_OP_RMS_NORM_BACK:
- case GGML_OP_L2_NORM:
- case GGML_OP_DIAG_MASK_INF:
- case GGML_OP_SOFT_MAX:
- case GGML_OP_SOFT_MAX_BACK:
- case GGML_OP_ROPE:
- case GGML_OP_ROPE_BACK:
- case GGML_OP_MUL_MAT:
- case GGML_OP_MUL_MAT_ID:
- case GGML_OP_ARGSORT:
- case GGML_OP_SUM:
- case GGML_OP_SUM_ROWS:
- case GGML_OP_MEAN:
- case GGML_OP_ARGMAX:
- case GGML_OP_COUNT_EQUAL:
- case GGML_OP_IM2COL:
- case GGML_OP_IM2COL_3D:
- case GGML_OP_TIMESTEP_EMBEDDING:
- case GGML_OP_CONV_TRANSPOSE_1D:
- case GGML_OP_POOL_2D:
- case GGML_OP_CONV_2D:
- case GGML_OP_CONV_TRANSPOSE_2D:
- case GGML_OP_CONV_2D_DW:
- case GGML_OP_RWKV_WKV6:
- case GGML_OP_RWKV_WKV7:
- case GGML_OP_SSM_SCAN:
- case GGML_OP_SSM_CONV:
- case GGML_OP_LEAKY_RELU:
- case GGML_OP_FLASH_ATTN_EXT:
- case GGML_OP_OPT_STEP_ADAMW:
- case GGML_OP_OPT_STEP_SGD:
- break;
- default:
- std::cerr << "ggml_vulkan: Error: Missing op: " << ggml_op_name(node->op) << std::endl;
- GGML_ABORT("fatal error");
- }
- vk_context compute_ctx;
- if (ctx->compute_ctx.expired()) {
- compute_ctx = ggml_vk_create_context(ctx, ctx->compute_cmd_pool);
- ctx->compute_ctx = compute_ctx;
- ggml_vk_ctx_begin(ctx->device, compute_ctx);
- } else {
- compute_ctx = ctx->compute_ctx.lock();
- }
- {
- // This logic detects dependencies between modes in the graph and calls ggml_vk_sync_buffers
- // to synchronize them. This handles most "normal" synchronization when computing the graph, and when
- // there is no auxiliary memory use, it shouldn't be necessary to call ggml_vk_sync_buffers
- // outside of this logic. When a node uses one of the prealloc buffers for something like
- // dequantization or split_k, additional synchronization is needed between those passes.
- bool need_sync = false;
- // Check whether "node" requires synchronization. The node requires synchronization if it
- // overlaps in memory with another unsynchronized node and at least one of them is a write.
- // Destination nodes are checked against both the written/read lists. Source nodes are only
- // checked against the written list. Two nodes overlap in memory if they come from the same
- // buffer and the tensor or view ranges overlap.
- auto const &overlaps_unsynced = [&](const ggml_tensor *node, const std::vector<const ggml_tensor *> &unsynced_nodes) -> bool {
- if (unsynced_nodes.size() == 0) {
- return false;
- }
- auto n_base = vk_tensor_offset(node) + node->view_offs;
- auto n_size = ggml_nbytes(node);
- ggml_backend_vk_buffer_context * a_buf_ctx = (ggml_backend_vk_buffer_context *)node->buffer->context;
- vk_buffer a_buf = a_buf_ctx->dev_buffer;
- for (auto &other : unsynced_nodes) {
- ggml_backend_vk_buffer_context * o_buf_ctx = (ggml_backend_vk_buffer_context *)other->buffer->context;
- vk_buffer o_buf = o_buf_ctx->dev_buffer;
- if (a_buf == o_buf) {
- auto o_base = vk_tensor_offset(other) + other->view_offs;
- auto o_size = ggml_nbytes(other);
- if ((o_base <= n_base && n_base < o_base + o_size) ||
- (n_base <= o_base && o_base < n_base + n_size)) {
- return true;
- }
- }
- }
- return false;
- };
- // For all fused ops, check if the destination node or any of the source
- // nodes require synchronization.
- for (int32_t i = 0; i < ctx->num_additional_fused_ops + 1 && !need_sync; ++i) {
- const ggml_tensor *cur_node = cgraph->nodes[node_idx + i];
- // If the node actually writes to memory, then check if it needs to sync
- if (ctx->fused_ops_write_mask & (1 << i)) {
- if (overlaps_unsynced(cur_node, ctx->unsynced_nodes_read) || overlaps_unsynced(cur_node, ctx->unsynced_nodes_written)) {
- need_sync = true;
- break;
- }
- }
- for (uint32_t j = 0; j < GGML_MAX_SRC; ++j) {
- if (!cur_node->src[j]) {
- continue;
- }
- if (overlaps_unsynced(cur_node->src[j], ctx->unsynced_nodes_written)) {
- need_sync = true;
- break;
- }
- }
- }
- #define ENABLE_SYNC_LOGGING 0
- if (need_sync) {
- #if ENABLE_SYNC_LOGGING
- std::cerr << "sync" << std::endl;
- #endif
- ctx->unsynced_nodes_written.clear();
- ctx->unsynced_nodes_read.clear();
- ggml_vk_sync_buffers(ctx, compute_ctx);
- }
- // Add all fused nodes to the unsynchronized lists.
- for (int32_t i = 0; i < ctx->num_additional_fused_ops + 1; ++i) {
- const ggml_tensor *cur_node = cgraph->nodes[node_idx + i];
- // Multiple outputs could be written, e.g. in topk_moe. Add them all to the list.
- if (ctx->fused_ops_write_mask & (1 << i)) {
- ctx->unsynced_nodes_written.push_back(cur_node);
- }
- for (uint32_t j = 0; j < GGML_MAX_SRC; ++j) {
- if (!cur_node->src[j]) {
- continue;
- }
- ctx->unsynced_nodes_read.push_back(cur_node->src[j]);
- }
- }
- }
- #if ENABLE_SYNC_LOGGING
- for (int i = 0; i < ctx->num_additional_fused_ops + 1; ++i) {
- auto *n = cgraph->nodes[node_idx + i];
- std::cerr << node_idx + i << " " << ggml_op_name(n->op) << " " << n->name;
- if (n->op == GGML_OP_GLU) {
- std::cerr << " " << ggml_glu_op_name(ggml_get_glu_op(n)) << " " << (n->src[1] ? "split" : "single") << " ";
- }
- if (n->op == GGML_OP_ROPE) {
- const int mode = ((const int32_t *) n->op_params)[2];
- std::cerr << " rope mode: " << mode;
- }
- std::cerr << std::endl;
- }
- #endif
- switch (node->op) {
- case GGML_OP_REPEAT:
- ggml_vk_repeat(ctx, compute_ctx, src0, node);
- break;
- case GGML_OP_REPEAT_BACK:
- ggml_vk_repeat_back(ctx, compute_ctx, src0, node);
- break;
- case GGML_OP_ACC:
- ggml_vk_acc(ctx, compute_ctx, src0, src1, node);
- break;
- case GGML_OP_GET_ROWS:
- ggml_vk_get_rows(ctx, compute_ctx, src0, src1, node);
- break;
- case GGML_OP_ADD:
- if (ctx->num_additional_fused_ops) {
- ggml_vk_multi_add(ctx, compute_ctx, cgraph, node_idx);
- } else {
- ggml_vk_add(ctx, compute_ctx, src0, src1, node);
- }
- break;
- case GGML_OP_SUB:
- ggml_vk_sub(ctx, compute_ctx, src0, src1, node);
- break;
- case GGML_OP_MUL:
- ggml_vk_mul(ctx, compute_ctx, src0, src1, node);
- break;
- case GGML_OP_DIV:
- ggml_vk_div(ctx, compute_ctx, src0, src1, node);
- break;
- case GGML_OP_ADD_ID:
- ggml_vk_add_id(ctx, compute_ctx, src0, src1, src2, node);
- break;
- case GGML_OP_CONCAT:
- ggml_vk_concat(ctx, compute_ctx, src0, src1, node);
- break;
- case GGML_OP_UPSCALE:
- ggml_vk_upscale(ctx, compute_ctx, src0, node);
- break;
- case GGML_OP_ADD1:
- ggml_vk_add1(ctx, compute_ctx, src0, src1, node);
- break;
- case GGML_OP_ARANGE:
- ggml_vk_arange(ctx, compute_ctx, node);
- break;
- case GGML_OP_FILL:
- ggml_vk_fill(ctx, compute_ctx, node);
- break;
- case GGML_OP_SCALE:
- ggml_vk_scale(ctx, compute_ctx, src0, node);
- break;
- case GGML_OP_SQR:
- ggml_vk_sqr(ctx, compute_ctx, src0, node);
- break;
- case GGML_OP_SQRT:
- ggml_vk_sqrt(ctx, compute_ctx, src0, node);
- break;
- case GGML_OP_SIN:
- ggml_vk_sin(ctx, compute_ctx, src0, node);
- break;
- case GGML_OP_COS:
- ggml_vk_cos(ctx, compute_ctx, src0, node);
- break;
- case GGML_OP_LOG:
- ggml_vk_log(ctx, compute_ctx, src0, node);
- break;
- case GGML_OP_CLAMP:
- ggml_vk_clamp(ctx, compute_ctx, src0, node);
- break;
- case GGML_OP_PAD:
- ggml_vk_pad(ctx, compute_ctx, src0, node);
- break;
- case GGML_OP_ROLL:
- ggml_vk_roll(ctx, compute_ctx, src0, node);
- break;
- case GGML_OP_CPY:
- case GGML_OP_CONT:
- case GGML_OP_DUP:
- ggml_vk_cpy(ctx, compute_ctx, src0, node);
- break;
- case GGML_OP_SET_ROWS:
- ggml_vk_set_rows(ctx, compute_ctx, src0, src1, node);
- break;
- case GGML_OP_SILU_BACK:
- ggml_vk_silu_back(ctx, compute_ctx, src0, src1, node);
- break;
- case GGML_OP_NORM:
- ggml_vk_norm(ctx, compute_ctx, src0, node);
- break;
- case GGML_OP_GROUP_NORM:
- ggml_vk_group_norm(ctx, compute_ctx, src0, node);
- break;
- case GGML_OP_RMS_NORM:
- ggml_vk_rms_norm(ctx, compute_ctx, cgraph, node_idx, (float *)node->op_params);
- break;
- case GGML_OP_RMS_NORM_BACK:
- ggml_vk_rms_norm_back(ctx, compute_ctx, src0, src1, node);
- break;
- case GGML_OP_L2_NORM:
- ggml_vk_l2_norm(ctx, compute_ctx, src0, node);
- break;
- case GGML_OP_UNARY:
- switch (ggml_get_unary_op(node)) {
- case GGML_UNARY_OP_EXP:
- case GGML_UNARY_OP_SILU:
- case GGML_UNARY_OP_GELU:
- case GGML_UNARY_OP_GELU_ERF:
- case GGML_UNARY_OP_GELU_QUICK:
- case GGML_UNARY_OP_RELU:
- case GGML_UNARY_OP_NEG:
- case GGML_UNARY_OP_TANH:
- case GGML_UNARY_OP_SIGMOID:
- case GGML_UNARY_OP_HARDSIGMOID:
- case GGML_UNARY_OP_HARDSWISH:
- case GGML_UNARY_OP_ABS:
- case GGML_UNARY_OP_SOFTPLUS:
- case GGML_UNARY_OP_STEP:
- case GGML_UNARY_OP_ROUND:
- case GGML_UNARY_OP_CEIL:
- case GGML_UNARY_OP_FLOOR:
- case GGML_UNARY_OP_TRUNC:
- ggml_vk_unary(ctx, compute_ctx, src0, node);
- break;
- default:
- return false;
- }
- break;
- case GGML_OP_GLU:
- switch (ggml_get_glu_op(node)) {
- case GGML_GLU_OP_GEGLU:
- case GGML_GLU_OP_REGLU:
- case GGML_GLU_OP_SWIGLU:
- case GGML_GLU_OP_SWIGLU_OAI:
- case GGML_GLU_OP_GEGLU_ERF:
- case GGML_GLU_OP_GEGLU_QUICK:
- ggml_vk_glu(ctx, compute_ctx, src0, src1, node);
- break;
- default:
- return false;
- }
- break;
- case GGML_OP_DIAG_MASK_INF:
- ggml_vk_diag_mask_inf(ctx, compute_ctx, src0, node);
- break;
- case GGML_OP_SOFT_MAX:
- if (ctx->num_additional_fused_ops) {
- ggml_vk_topk_moe(ctx, compute_ctx, cgraph, node_idx);
- } else {
- ggml_vk_soft_max(ctx, compute_ctx, src0, src1, src2, node);
- }
- break;
- case GGML_OP_SOFT_MAX_BACK:
- ggml_vk_soft_max_back(ctx, compute_ctx, src0, src1, node);
- break;
- case GGML_OP_ROPE:
- ggml_vk_rope(ctx, compute_ctx, cgraph, node_idx, false);
- break;
- case GGML_OP_ROPE_BACK:
- ggml_vk_rope(ctx, compute_ctx, cgraph, node_idx, true);
- break;
- case GGML_OP_ARGSORT:
- if (ctx->num_additional_fused_ops) {
- ggml_vk_topk_moe(ctx, compute_ctx, cgraph, node_idx);
- } else {
- ggml_vk_argsort(ctx, compute_ctx, src0, node);
- }
- break;
- case GGML_OP_SUM:
- ggml_vk_sum(ctx, compute_ctx, src0, node);
- break;
- case GGML_OP_SUM_ROWS:
- ggml_vk_sum_rows(ctx, compute_ctx, src0, node);
- break;
- case GGML_OP_MEAN:
- ggml_vk_mean(ctx, compute_ctx, src0, node);
- break;
- case GGML_OP_ARGMAX:
- ggml_vk_argmax(ctx, compute_ctx, src0, node);
- break;
- case GGML_OP_COUNT_EQUAL:
- ggml_vk_count_equal(ctx, compute_ctx, src0, src1, node);
- break;
- case GGML_OP_IM2COL:
- ggml_vk_im2col(ctx, compute_ctx, src0, src1, node);
- break;
- case GGML_OP_IM2COL_3D:
- ggml_vk_im2col_3d(ctx, compute_ctx, src0, src1, node);
- break;
- case GGML_OP_TIMESTEP_EMBEDDING:
- ggml_vk_timestep_embedding(ctx, compute_ctx, src0, node);
- break;
- case GGML_OP_CONV_TRANSPOSE_1D:
- ggml_vk_conv_transpose_1d(ctx, compute_ctx, src0, src1, node);
- break;
- case GGML_OP_POOL_2D:
- ggml_vk_pool_2d(ctx, compute_ctx, src0, node);
- break;
- case GGML_OP_CONV_2D:
- ggml_vk_conv_2d(ctx, compute_ctx, src0, src1, node);
- break;
- case GGML_OP_CONV_TRANSPOSE_2D:
- ggml_vk_conv_transpose_2d(ctx, compute_ctx, src0, src1, node);
- break;
- case GGML_OP_CONV_2D_DW:
- ggml_vk_conv_2d_dw(ctx, compute_ctx, src0, src1, node);
- break;
- case GGML_OP_LEAKY_RELU:
- ggml_vk_leaky_relu(ctx, compute_ctx, src0, node);
- break;
- case GGML_OP_MUL_MAT:
- ggml_vk_mul_mat(ctx, compute_ctx, cgraph, node_idx);
- break;
- case GGML_OP_MUL_MAT_ID:
- ggml_vk_mul_mat_id(ctx, compute_ctx, cgraph, node_idx);
- break;
- case GGML_OP_FLASH_ATTN_EXT:
- ggml_vk_flash_attn(ctx, compute_ctx, src0, src1, src2, src3, node->src[4], node);
- break;
- case GGML_OP_RWKV_WKV6:
- ggml_vk_rwkv_wkv6(ctx, compute_ctx, node);
- break;
- case GGML_OP_RWKV_WKV7:
- ggml_vk_rwkv_wkv7(ctx, compute_ctx, node);
- break;
- case GGML_OP_SSM_SCAN:
- ggml_vk_ssm_scan(ctx, compute_ctx, node);
- break;
- case GGML_OP_SSM_CONV:
- ggml_vk_ssm_conv(ctx, compute_ctx, node);
- break;
- case GGML_OP_OPT_STEP_ADAMW:
- ggml_vk_opt_step_adamw(ctx, compute_ctx, node);
- break;
- case GGML_OP_OPT_STEP_SGD:
- ggml_vk_opt_step_sgd(ctx, compute_ctx, src0, src1, src2, node);
- break;
- default:
- return false;
- }
- ctx->tensor_ctxs[node_idx] = compute_ctx;
- #if defined(GGML_VULKAN_CHECK_RESULTS)
- // Force context reset on each node so that each tensor ends up in its own context
- // and can be run and compared to its CPU equivalent separately
- last_node = true;
- #endif
- if (submit || last_node) {
- ggml_vk_ctx_end(compute_ctx);
- // TODO probably it'd be better to pass a exit_node flag to ggml_vk_compute_forward
- if (last_node) {
- compute_ctx->exit_tensor_idx = node_idx_begin;
- }
- else {
- compute_ctx->exit_tensor_idx = -1;
- }
- ctx->compute_ctx.reset();
- bool ok = ggml_vk_compute_forward(ctx, cgraph, node_begin, node_idx_begin, almost_ready);
- if (!ok) {
- if (node->op == GGML_OP_UNARY) {
- std::cerr << __func__ << ": error: op not supported UNARY " << node->name << " (" << ggml_unary_op_name(static_cast<ggml_unary_op>(node->op_params[0])) << ")" << std::endl;
- } else if (node->op == GGML_OP_GLU) {
- std::cerr << __func__ << ": error: op not supported GLU " << node->name << " (" << ggml_glu_op_name(static_cast<ggml_glu_op>(node->op_params[0])) << ")" << std::endl;
- } else {
- std::cerr << __func__ << ": error: op not supported " << node->name << " (" << ggml_op_name(node->op) << ")" << std::endl;
- }
- }
- }
- return true;
- }
- static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_cgraph * cgraph, ggml_tensor * tensor, int tensor_idx, bool almost_ready = false) {
- GGML_UNUSED(cgraph);
- ggml_backend_buffer * buf = nullptr;
- switch (tensor->op) {
- case GGML_OP_ADD:
- case GGML_OP_ACC:
- case GGML_OP_GET_ROWS:
- case GGML_OP_SUB:
- case GGML_OP_MUL:
- case GGML_OP_DIV:
- case GGML_OP_ADD1:
- case GGML_OP_ARANGE:
- case GGML_OP_FILL:
- case GGML_OP_ADD_ID:
- case GGML_OP_CONCAT:
- case GGML_OP_UPSCALE:
- case GGML_OP_SCALE:
- case GGML_OP_SQR:
- case GGML_OP_SQRT:
- case GGML_OP_SIN:
- case GGML_OP_COS:
- case GGML_OP_LOG:
- case GGML_OP_CLAMP:
- case GGML_OP_PAD:
- case GGML_OP_ROLL:
- case GGML_OP_CPY:
- case GGML_OP_SET_ROWS:
- case GGML_OP_CONT:
- case GGML_OP_DUP:
- case GGML_OP_SILU_BACK:
- case GGML_OP_NORM:
- case GGML_OP_GROUP_NORM:
- case GGML_OP_RMS_NORM:
- case GGML_OP_RMS_NORM_BACK:
- case GGML_OP_L2_NORM:
- case GGML_OP_DIAG_MASK_INF:
- case GGML_OP_SOFT_MAX:
- case GGML_OP_SOFT_MAX_BACK:
- case GGML_OP_ROPE:
- case GGML_OP_ROPE_BACK:
- case GGML_OP_RESHAPE:
- case GGML_OP_VIEW:
- case GGML_OP_PERMUTE:
- case GGML_OP_TRANSPOSE:
- case GGML_OP_NONE:
- case GGML_OP_ARGSORT:
- case GGML_OP_SUM:
- case GGML_OP_SUM_ROWS:
- case GGML_OP_MEAN:
- case GGML_OP_ARGMAX:
- case GGML_OP_COUNT_EQUAL:
- case GGML_OP_IM2COL:
- case GGML_OP_IM2COL_3D:
- case GGML_OP_TIMESTEP_EMBEDDING:
- case GGML_OP_CONV_TRANSPOSE_1D:
- case GGML_OP_POOL_2D:
- case GGML_OP_CONV_2D:
- case GGML_OP_CONV_TRANSPOSE_2D:
- case GGML_OP_CONV_2D_DW:
- case GGML_OP_RWKV_WKV6:
- case GGML_OP_RWKV_WKV7:
- case GGML_OP_SSM_SCAN:
- case GGML_OP_SSM_CONV:
- case GGML_OP_LEAKY_RELU:
- case GGML_OP_REPEAT:
- case GGML_OP_REPEAT_BACK:
- case GGML_OP_OPT_STEP_ADAMW:
- case GGML_OP_OPT_STEP_SGD:
- buf = tensor->buffer;
- break;
- case GGML_OP_UNARY:
- switch (ggml_get_unary_op(tensor)) {
- case GGML_UNARY_OP_EXP:
- case GGML_UNARY_OP_SILU:
- case GGML_UNARY_OP_GELU:
- case GGML_UNARY_OP_GELU_ERF:
- case GGML_UNARY_OP_GELU_QUICK:
- case GGML_UNARY_OP_RELU:
- case GGML_UNARY_OP_NEG:
- case GGML_UNARY_OP_TANH:
- case GGML_UNARY_OP_SIGMOID:
- case GGML_UNARY_OP_HARDSIGMOID:
- case GGML_UNARY_OP_HARDSWISH:
- case GGML_UNARY_OP_ABS:
- case GGML_UNARY_OP_SOFTPLUS:
- case GGML_UNARY_OP_STEP:
- case GGML_UNARY_OP_ROUND:
- case GGML_UNARY_OP_CEIL:
- case GGML_UNARY_OP_FLOOR:
- case GGML_UNARY_OP_TRUNC:
- buf = tensor->buffer;
- break;
- default:
- return false;
- }
- break;
- case GGML_OP_GLU:
- switch (ggml_get_glu_op(tensor)) {
- case GGML_GLU_OP_GEGLU:
- case GGML_GLU_OP_REGLU:
- case GGML_GLU_OP_SWIGLU:
- case GGML_GLU_OP_SWIGLU_OAI:
- case GGML_GLU_OP_GEGLU_ERF:
- case GGML_GLU_OP_GEGLU_QUICK:
- buf = tensor->buffer;
- break;
- default:
- return false;
- }
- break;
- case GGML_OP_MUL_MAT:
- case GGML_OP_MUL_MAT_ID:
- case GGML_OP_FLASH_ATTN_EXT:
- buf = tensor->buffer;
- break;
- default:
- return false;
- }
- if (buf == nullptr) {
- return false;
- }
- VK_LOG_DEBUG("ggml_vk_compute_forward(" << tensor << ", name=" << tensor->name << ", op=" << ggml_op_name(tensor->op) << ", type=" << tensor->type << ", ne0=" << tensor->ne[0] << ", ne1=" << tensor->ne[1] << ", ne2=" << tensor->ne[2] << ", ne3=" << tensor->ne[3] << ", nb0=" << tensor->nb[0] << ", nb1=" << tensor->nb[1] << ", nb2=" << tensor->nb[2] << ", nb3=" << tensor->nb[3] << ", view_src=" << tensor->view_src << ", view_offs=" << tensor->view_offs << ")");
- vk_context subctx = ctx->tensor_ctxs[tensor_idx].lock();
- // Only run if ctx hasn't been submitted yet
- if (!subctx->seqs.empty()) {
- #ifdef GGML_VULKAN_CHECK_RESULTS
- ggml_vk_check_results_0(ctx, cgraph, tensor_idx);
- #endif
- // Do staging buffer copies
- for (auto& cpy : subctx->in_memcpys) {
- memcpy(cpy.dst, cpy.src, cpy.n);
- }
- for (auto& mset : subctx->memsets) {
- memset(mset.dst, mset.val, mset.n);
- }
- if (almost_ready && !ctx->almost_ready_fence_pending) {
- ggml_vk_submit(subctx, ctx->almost_ready_fence);
- ctx->almost_ready_fence_pending = true;
- } else {
- ggml_vk_submit(subctx, {});
- }
- ctx->submit_pending = true;
- #ifdef GGML_VULKAN_CHECK_RESULTS
- ggml_vk_synchronize(ctx);
- ggml_vk_check_results_1(ctx, cgraph, tensor_idx);
- #endif
- }
- if (tensor_idx == subctx->exit_tensor_idx) {
- // Do staging buffer copies
- for (auto& cpy : subctx->out_memcpys) {
- memcpy(cpy.dst, cpy.src, cpy.n);
- }
- subctx->in_memcpys.clear();
- subctx->out_memcpys.clear();
- subctx->memsets.clear();
- }
- return true;
- }
- // Clean up after graph processing is done
- static void ggml_vk_graph_cleanup(ggml_backend_vk_context * ctx) {
- VK_LOG_DEBUG("ggml_vk_graph_cleanup()");
- ctx->prealloc_y_last_pipeline_used = {};
- ctx->unsynced_nodes_written.clear();
- ctx->unsynced_nodes_read.clear();
- ctx->prealloc_x_need_sync = ctx->prealloc_y_need_sync = ctx->prealloc_split_k_need_sync = false;
- ggml_vk_command_pool_cleanup(ctx->device, ctx->compute_cmd_pool);
- ggml_vk_command_pool_cleanup(ctx->device, ctx->transfer_cmd_pool);
- for (size_t i = 0; i < ctx->gc.semaphores.size(); i++) {
- ctx->device->device.destroySemaphore({ ctx->gc.semaphores[i].s });
- }
- ctx->gc.semaphores.clear();
- for (size_t i = 0; i < ctx->gc.tl_semaphores.size(); i++) {
- ctx->device->device.destroySemaphore({ ctx->gc.tl_semaphores[i].s });
- }
- ctx->gc.tl_semaphores.clear();
- ctx->semaphore_idx = 0;
- ctx->event_idx = 0;
- for (auto& event : ctx->gc.events) {
- ctx->device->device.resetEvent(event);
- }
- ctx->tensor_ctxs.clear();
- ctx->gc.contexts.clear();
- ctx->pipeline_descriptor_set_requirements = 0;
- ctx->descriptor_set_idx = 0;
- }
- // Clean up on backend free
- static void ggml_vk_cleanup(ggml_backend_vk_context * ctx) {
- VK_LOG_DEBUG("ggml_vk_cleanup(" << ctx->name << ")");
- // discard any unsubmitted command buffers
- ctx->transfer_ctx.reset();
- // wait for any pending command buffers to finish
- ggml_vk_synchronize(ctx);
- ggml_vk_graph_cleanup(ctx);
- ggml_vk_destroy_buffer(ctx->prealloc_x);
- ggml_vk_destroy_buffer(ctx->prealloc_y);
- ggml_vk_destroy_buffer(ctx->prealloc_split_k);
- ggml_vk_destroy_buffer(ctx->prealloc_add_rms_partials);
- ggml_vk_destroy_buffer(ctx->sync_staging);
- ctx->prealloc_y_last_pipeline_used = nullptr;
- ctx->prealloc_size_x = 0;
- ctx->prealloc_size_y = 0;
- ctx->prealloc_size_split_k = 0;
- for (auto& event : ctx->gc.events) {
- ctx->device->device.destroyEvent(event);
- }
- ctx->gc.events.clear();
- ctx->device->device.destroyFence(ctx->fence);
- ctx->device->device.destroyFence(ctx->almost_ready_fence);
- for (auto& pool : ctx->descriptor_pools) {
- ctx->device->device.destroyDescriptorPool(pool);
- }
- ctx->descriptor_pools.clear();
- ctx->descriptor_sets.clear();
- ctx->compute_cmd_pool.destroy(ctx->device->device);
- ctx->transfer_cmd_pool.destroy(ctx->device->device);
- }
- static int ggml_vk_get_device_count() {
- ggml_vk_instance_init();
- return vk_instance.device_indices.size();
- }
- static void ggml_vk_get_device_description(int device, char * description, size_t description_size) {
- ggml_vk_instance_init();
- std::vector<vk::PhysicalDevice> devices = vk_instance.instance.enumeratePhysicalDevices();
- vk::PhysicalDeviceProperties props;
- devices[device].getProperties(&props);
- snprintf(description, description_size, "%s", props.deviceName.data());
- }
- // backend interface
- #define UNUSED GGML_UNUSED
- // device backend
- static bool ggml_backend_buffer_is_vk(ggml_backend_buffer_t buffer) {
- return buffer->buft->iface.get_name == ggml_backend_vk_buffer_type_name;
- }
- static void ggml_backend_vk_buffer_free_buffer(ggml_backend_buffer_t buffer) {
- VK_LOG_MEMORY("ggml_backend_vk_buffer_free_buffer()");
- ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
- ggml_vk_destroy_buffer(ctx->dev_buffer);
- delete ctx;
- }
- static void * ggml_backend_vk_buffer_get_base(ggml_backend_buffer_t buffer) {
- return vk_ptr_base;
- UNUSED(buffer);
- }
- static enum ggml_status ggml_backend_vk_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
- VK_LOG_DEBUG("ggml_backend_vk_buffer_init_tensor(" << buffer << " (" << buffer->context << "), " << tensor << ")");
- if (tensor->view_src != nullptr) {
- GGML_ASSERT(tensor->view_src->buffer->buft == buffer->buft);
- }
- return GGML_STATUS_SUCCESS;
- }
- static void ggml_backend_vk_buffer_memset_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
- VK_LOG_DEBUG("ggml_backend_vk_buffer_memset_tensor(" << buffer << ", " << tensor << ", " << value << ", " << offset << ", " << size << ")");
- ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)buffer->context;
- vk_buffer buf = buf_ctx->dev_buffer;
- uint32_t val32 = (uint32_t)value * 0x01010101;
- ggml_vk_buffer_memset(buf, vk_tensor_offset(tensor) + tensor->view_offs + offset, val32, size);
- }
- static void ggml_backend_vk_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
- VK_LOG_DEBUG("ggml_backend_vk_buffer_set_tensor(" << buffer << ", " << tensor << ", " << data << ", " << offset << ", " << size << ")");
- ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)buffer->context;
- vk_buffer buf = buf_ctx->dev_buffer;
- ggml_vk_buffer_write(buf, vk_tensor_offset(tensor) + tensor->view_offs + offset, data, size);
- }
- static void ggml_backend_vk_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
- VK_LOG_DEBUG("ggml_backend_vk_buffer_get_tensor(" << buffer << ", " << tensor << ", " << data << ", " << offset << ", " << size << ")");
- ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)buffer->context;
- vk_buffer buf = buf_ctx->dev_buffer;
- ggml_vk_buffer_read(buf, vk_tensor_offset(tensor) + tensor->view_offs + offset, data, size);
- }
- static bool ggml_backend_vk_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
- if (ggml_backend_buffer_is_vk(src->buffer)) {
- ggml_backend_vk_buffer_context * src_buf_ctx = (ggml_backend_vk_buffer_context *)src->buffer->context;
- ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context;
- vk_buffer src_buf = src_buf_ctx->dev_buffer;
- vk_buffer dst_buf = dst_buf_ctx->dev_buffer;
- ggml_vk_buffer_copy(dst_buf, vk_tensor_offset(dst) + dst->view_offs, src_buf, vk_tensor_offset(src) + src->view_offs, ggml_nbytes(src));
- return true;
- }
- return false;
- UNUSED(buffer);
- }
- static void ggml_backend_vk_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
- ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
- ggml_vk_buffer_memset(ctx->dev_buffer, 0, value, buffer->size);
- }
- static ggml_backend_buffer_i ggml_backend_vk_buffer_interface = {
- /* .free_buffer = */ ggml_backend_vk_buffer_free_buffer,
- /* .get_base = */ ggml_backend_vk_buffer_get_base,
- /* .init_tensor = */ ggml_backend_vk_buffer_init_tensor,
- /* .memset_tensor = */ ggml_backend_vk_buffer_memset_tensor,
- /* .set_tensor = */ ggml_backend_vk_buffer_set_tensor,
- /* .get_tensor = */ ggml_backend_vk_buffer_get_tensor,
- /* .cpy_tensor = */ ggml_backend_vk_buffer_cpy_tensor,
- /* .clear = */ ggml_backend_vk_buffer_clear,
- /* .reset = */ NULL,
- };
- // vk buffer type
- static const char * ggml_backend_vk_buffer_type_name(ggml_backend_buffer_type_t buft) {
- ggml_backend_vk_buffer_type_context * ctx = (ggml_backend_vk_buffer_type_context *)buft->context;
- return ctx->name.c_str();
- }
- static ggml_backend_buffer_t ggml_backend_vk_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
- VK_LOG_MEMORY("ggml_backend_vk_buffer_type_alloc_buffer(" << size << ")");
- ggml_backend_vk_buffer_type_context * ctx = (ggml_backend_vk_buffer_type_context *) buft->context;
- vk_buffer dev_buffer = nullptr;
- try {
- dev_buffer = ggml_vk_create_buffer_device(ctx->device, size);
- } catch (const vk::SystemError& e) {
- return nullptr;
- }
- ggml_backend_vk_buffer_context * bufctx = new ggml_backend_vk_buffer_context(ctx->device, std::move(dev_buffer), ctx->name);
- return ggml_backend_buffer_init(buft, ggml_backend_vk_buffer_interface, bufctx, size);
- }
- static size_t ggml_backend_vk_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
- ggml_backend_vk_buffer_type_context * ctx = (ggml_backend_vk_buffer_type_context *) buft->context;
- return ctx->device->properties.limits.minStorageBufferOffsetAlignment;
- }
- static size_t ggml_backend_vk_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
- ggml_backend_vk_buffer_type_context * ctx = (ggml_backend_vk_buffer_type_context *) buft->context;
- return ctx->device->suballocation_block_size;
- }
- static size_t ggml_backend_vk_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
- return ggml_nbytes(tensor);
- UNUSED(buft);
- }
- ggml_backend_buffer_type_t ggml_backend_vk_buffer_type(size_t dev_num) {
- ggml_vk_instance_init();
- VK_LOG_DEBUG("ggml_backend_vk_buffer_type(" << dev_num << ")");
- vk_device dev = ggml_vk_get_device(dev_num);
- return &dev->buffer_type;
- }
- // host buffer type
- static const char * ggml_backend_vk_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
- return GGML_VK_NAME "_Host";
- UNUSED(buft);
- }
- static const char * ggml_backend_vk_host_buffer_name(ggml_backend_buffer_t buffer) {
- return GGML_VK_NAME "_Host";
- UNUSED(buffer);
- }
- static void ggml_backend_vk_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
- VK_LOG_MEMORY("ggml_backend_vk_host_buffer_free_buffer()");
- ggml_vk_host_free(vk_instance.devices[0], buffer->context);
- }
- static ggml_backend_buffer_t ggml_backend_vk_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
- VK_LOG_MEMORY("ggml_backend_vk_host_buffer_type_alloc_buffer(" << size << ")");
- size += 32; // Behave like the CPU buffer type
- void * ptr = nullptr;
- try {
- ptr = ggml_vk_host_malloc(vk_instance.devices[0], size);
- } catch (vk::SystemError& e) {
- GGML_LOG_WARN("ggml_vulkan: Failed to allocate pinned memory (%s)\n", e.what());
- // fallback to cpu buffer
- return ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size);
- }
- ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
- buffer->buft = buft;
- buffer->iface.free_buffer = ggml_backend_vk_host_buffer_free_buffer;
- return buffer;
- UNUSED(buft);
- }
- static size_t ggml_backend_vk_host_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
- return vk_instance.devices[0]->properties.limits.minMemoryMapAlignment;
- UNUSED(buft);
- }
- static size_t ggml_backend_vk_host_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
- return vk_instance.devices[0]->suballocation_block_size;
- UNUSED(buft);
- }
- // Should be changed to return device-specific host buffer type
- // but that probably requires changes in llama.cpp
- ggml_backend_buffer_type_t ggml_backend_vk_host_buffer_type() {
- static struct ggml_backend_buffer_type ggml_backend_vk_buffer_type_host = {
- /* .iface = */ {
- /* .get_name = */ ggml_backend_vk_host_buffer_type_name,
- /* .alloc_buffer = */ ggml_backend_vk_host_buffer_type_alloc_buffer,
- /* .get_alignment = */ ggml_backend_vk_host_buffer_type_get_alignment,
- /* .get_max_size = */ ggml_backend_vk_host_buffer_type_get_max_size,
- /* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
- /* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host,
- },
- /* .device = */ ggml_backend_reg_dev_get(ggml_backend_vk_reg(), 0),
- /* .context = */ nullptr,
- };
- // Make sure device 0 is initialized
- ggml_vk_instance_init();
- ggml_vk_get_device(0);
- return &ggml_backend_vk_buffer_type_host;
- }
- // backend
- static const char * ggml_backend_vk_name(ggml_backend_t backend) {
- ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
- return ctx->name.c_str();
- }
- static void ggml_backend_vk_free(ggml_backend_t backend) {
- ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
- VK_LOG_DEBUG("ggml_backend_vk_free(" << ctx->name << ")");
- ggml_vk_cleanup(ctx);
- delete ctx;
- delete backend;
- }
- static ggml_backend_buffer_type_t ggml_backend_vk_get_default_buffer_type(ggml_backend_t backend) {
- ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
- return &ctx->device->buffer_type;
- }
- static void ggml_backend_vk_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
- VK_LOG_DEBUG("ggml_backend_vk_set_tensor_async(" << size << ")");
- ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
- GGML_ASSERT((tensor->buffer->buft == ggml_backend_vk_get_default_buffer_type(backend) || tensor->buffer->buft == ggml_backend_vk_host_buffer_type()) && "unsupported buffer type");
- ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)tensor->buffer->context;
- vk_context transfer_ctx;
- if (ctx->transfer_ctx.expired()) {
- // Initialize new transfer context
- transfer_ctx = ggml_vk_create_context(ctx, ctx->compute_cmd_pool);
- ctx->transfer_ctx = transfer_ctx;
- ggml_vk_ctx_begin(ctx->device, transfer_ctx);
- } else {
- transfer_ctx = ctx->transfer_ctx.lock();
- }
- vk_buffer buf = buf_ctx->dev_buffer;
- ggml_vk_buffer_write_async(transfer_ctx, buf, vk_tensor_offset(tensor) + tensor->view_offs + offset, data, size);
- }
- static void ggml_backend_vk_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
- VK_LOG_DEBUG("ggml_backend_vk_get_tensor_async(" << size << ")");
- ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
- GGML_ASSERT((tensor->buffer->buft == ggml_backend_vk_get_default_buffer_type(backend) || tensor->buffer->buft == ggml_backend_vk_host_buffer_type()) && "unsupported buffer type");
- ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)tensor->buffer->context;
- vk_context transfer_ctx;
- if (ctx->transfer_ctx.expired()) {
- // Initialize new transfer context
- transfer_ctx = ggml_vk_create_context(ctx, ctx->compute_cmd_pool);
- ctx->transfer_ctx = transfer_ctx;
- ggml_vk_ctx_begin(ctx->device, transfer_ctx);
- } else {
- transfer_ctx = ctx->transfer_ctx.lock();
- }
- vk_buffer buf = buf_ctx->dev_buffer;
- auto src_offset = vk_tensor_offset(tensor) + tensor->view_offs + offset;
- bool ret = ggml_vk_buffer_read_async(transfer_ctx, buf, src_offset, data, size);
- // If that failed, copy synchronously through a staging buffer
- if (!ret) {
- ggml_vk_ensure_sync_staging_buffer(ctx, size);
- ggml_vk_sync_buffers(nullptr, transfer_ctx);
- vk::BufferCopy buffer_cpy;
- buffer_cpy.srcOffset = src_offset;
- buffer_cpy.dstOffset = 0;
- buffer_cpy.size = size;
- transfer_ctx->s->buffer.copyBuffer(buf->buffer, ctx->sync_staging->buffer, { buffer_cpy });
- deferred_memcpy(data, ctx->sync_staging->ptr, size, &transfer_ctx->out_memcpys);
- ggml_vk_synchronize(ctx);
- }
- }
- static bool ggml_backend_vk_cpy_tensor_async(ggml_backend_t backend, const ggml_tensor * src, ggml_tensor * dst) {
- VK_LOG_DEBUG("ggml_backend_vk_cpy_tensor_async()");
- ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
- if ((dst->buffer->buft == ggml_backend_vk_get_default_buffer_type(backend) || dst->buffer->buft == ggml_backend_vk_host_buffer_type()) && ggml_backend_buffer_is_vk(src->buffer)) {
- ggml_backend_vk_buffer_context * src_buf_ctx = (ggml_backend_vk_buffer_context *)src->buffer->context;
- ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context;
- vk_context transfer_ctx;
- if (ctx->transfer_ctx.expired()) {
- // Initialize new transfer context
- transfer_ctx = ggml_vk_create_context(ctx, ctx->compute_cmd_pool);
- ctx->transfer_ctx = transfer_ctx;
- ggml_vk_ctx_begin(ctx->device, transfer_ctx);
- } else {
- transfer_ctx = ctx->transfer_ctx.lock();
- }
- vk_buffer src_buf = src_buf_ctx->dev_buffer;
- vk_buffer dst_buf = dst_buf_ctx->dev_buffer;
- ggml_vk_buffer_copy_async(transfer_ctx, dst_buf, vk_tensor_offset(dst) + dst->view_offs, src_buf, vk_tensor_offset(src) + src->view_offs, ggml_nbytes(src));
- return true;
- }
- return false;
- }
- static void ggml_vk_synchronize(ggml_backend_vk_context * ctx) {
- VK_LOG_DEBUG("ggml_vk_synchronize()");
- bool do_transfer = !ctx->transfer_ctx.expired();
- vk_context transfer_ctx;
- if (do_transfer) {
- transfer_ctx = ctx->transfer_ctx.lock();
- ggml_vk_ctx_end(transfer_ctx);
- for (auto& cpy : transfer_ctx->in_memcpys) {
- memcpy(cpy.dst, cpy.src, cpy.n);
- }
- ggml_vk_submit(transfer_ctx, {});
- ctx->submit_pending = true;
- }
- if (ctx->submit_pending) {
- {
- std::lock_guard<std::mutex> guard(queue_mutex);
- ctx->device->compute_queue.queue.submit({}, ctx->fence);
- }
- ggml_vk_wait_for_fence(ctx);
- ctx->submit_pending = false;
- }
- if (do_transfer) {
- for (auto& cpy : transfer_ctx->out_memcpys) {
- memcpy(cpy.dst, cpy.src, cpy.n);
- }
- ctx->transfer_ctx.reset();
- }
- }
- static void ggml_backend_vk_synchronize(ggml_backend_t backend) {
- VK_LOG_DEBUG("ggml_backend_vk_synchronize()");
- ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
- ggml_vk_synchronize(ctx);
- ggml_vk_graph_cleanup(ctx);
- }
- static bool ggml_vk_is_empty(ggml_tensor * node) {
- return ggml_is_empty(node) || node->op == GGML_OP_NONE || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE;
- }
- static bool ggml_vk_can_fuse(const ggml_backend_vk_context * ctx, const struct ggml_cgraph * cgraph, int node_idx, std::initializer_list<enum ggml_op> ops) {
- if (!ggml_can_fuse(cgraph, node_idx, ops)) {
- return false;
- }
- if (ops.size() == 2 && ops.begin()[0] == GGML_OP_RMS_NORM && ops.begin()[1] == GGML_OP_MUL) {
- // additional constraints specific to this fusion
- const ggml_tensor *rms_norm = cgraph->nodes[node_idx];
- const ggml_tensor *mul = cgraph->nodes[node_idx + 1];
- GGML_ASSERT(rms_norm->src[0]->type == GGML_TYPE_F32);
- GGML_ASSERT(rms_norm->type == GGML_TYPE_F32);
- // rms_norm only supports f32
- if (mul->src[0]->type != GGML_TYPE_F32 ||
- mul->src[1]->type != GGML_TYPE_F32 ||
- mul->type != GGML_TYPE_F32) {
- return false;
- }
- // if rms_norm is the B operand, then we don't handle broadcast
- if (rms_norm == mul->src[1] &&
- !ggml_are_same_shape(mul->src[0], rms_norm)) {
- return false;
- }
- // rms_norm shader assumes contiguous rows
- if (!ggml_is_contiguous_rows(mul->src[0]) || !ggml_is_contiguous_rows(mul->src[1])) {
- return false;
- }
- }
- auto const &mm_add_ok = [&](const ggml_tensor *mul, const ggml_tensor *add) {
- const ggml_tensor *bias = add->src[0] == mul ? add->src[1] : add->src[0];
- // mat-vec only
- if (ggml_nrows(mul) != 1) {
- return false;
- }
- // shaders assume the types match
- if (mul->type != bias->type) {
- return false;
- }
- // shaders reuse the D shape for bias
- if (!ggml_are_same_shape(mul, bias) ||
- !ggml_are_same_stride(mul, bias)) {
- return false;
- }
- // unaligned bias isn't handled
- if (get_misalign_bytes(ctx, bias) != 0) {
- return false;
- }
- return true;
- };
- if ((ops.size() == 2 || ops.size() == 3) && ops.begin()[0] == GGML_OP_MUL_MAT && ops.begin()[1] == GGML_OP_ADD) {
- // additional constraints specific to this fusion
- const ggml_tensor *mul = cgraph->nodes[node_idx];
- const ggml_tensor *add = cgraph->nodes[node_idx + 1];
- if (!mm_add_ok(mul, add)) {
- return false;
- }
- if (ops.size() == 3) {
- if (ops.begin()[2] != GGML_OP_ADD) {
- return false;
- }
- if (!mm_add_ok(add, cgraph->nodes[node_idx + 2])) {
- return false;
- }
- }
- }
- auto const &mmid_mul_ok = [&](const ggml_tensor *mmid, const ggml_tensor *mul) {
- const ggml_tensor *scale = mul->src[1];
- if (mmid != mul->src[0]) {
- return false;
- }
- // mat-vec only
- if (!ggml_vk_use_mul_mat_vec_id(cgraph, node_idx)) {
- return false;
- }
- // shaders assume the types match
- if (mmid->type != scale->type) {
- return false;
- }
- // shaders assume the bias is contiguous
- if (!ggml_is_contiguous(scale)) {
- return false;
- }
- // unaligned bias isn't handled
- if (get_misalign_bytes(ctx, scale) != 0) {
- return false;
- }
- // shader only indexes by expert index
- if (scale->ne[0] != 1 ||
- scale->ne[1] != mul->ne[1] ||
- scale->ne[2] != 1 ||
- scale->ne[3] != 1) {
- return false;
- }
- return true;
- };
- if ((ops.size() == 2 || ops.size() == 3) && ops.begin()[0] == GGML_OP_MUL_MAT_ID && ops.begin()[1] == GGML_OP_ADD_ID) {
- // additional constraints specific to this fusion
- const ggml_tensor *mul = cgraph->nodes[node_idx];
- const ggml_tensor *add = cgraph->nodes[node_idx + 1];
- const ggml_tensor *bias = add->src[1];
- if (mul != add->src[0]) {
- return false;
- }
- // mat-vec only
- if (!ggml_vk_use_mul_mat_vec_id(cgraph, node_idx)) {
- return false;
- }
- // shaders assume the types match
- if (mul->type != bias->type) {
- return false;
- }
- // shaders assume the bias is contiguous
- if (!ggml_is_contiguous(bias)) {
- return false;
- }
- // the ID tensor must be the same for mul_mat_id and add_id
- if (mul->src[2] != add->src[2]) {
- return false;
- }
- // unaligned bias isn't handled
- if (get_misalign_bytes(ctx, bias) != 0) {
- return false;
- }
- if (ops.size() == 3) {
- if (ops.begin()[2] != GGML_OP_MUL) {
- return false;
- }
- const ggml_tensor *mul = cgraph->nodes[node_idx + 2];
- return mmid_mul_ok(add, mul);
- }
- }
- if (ops.size() == 2 && ops.begin()[0] == GGML_OP_MUL_MAT_ID && ops.begin()[1] == GGML_OP_MUL) {
- // additional constraints specific to this fusion
- const ggml_tensor *mmid = cgraph->nodes[node_idx];
- const ggml_tensor *mul = cgraph->nodes[node_idx + 1];
- if (!mmid_mul_ok(mmid, mul)) {
- return false;
- }
- }
- return true;
- }
- static bool ggml_vk_can_fuse_topk_moe(ggml_backend_vk_context * ctx, const struct ggml_cgraph * cgraph,
- int node_idx, topk_moe_mode mode) {
- const ggml_tensor * softmax;
- const ggml_tensor * weights;
- switch (mode) {
- case TOPK_MOE_EARLY_SOFTMAX_NORM:
- softmax = cgraph->nodes[node_idx + 0];
- weights = cgraph->nodes[node_idx + 9];
- break;
- case TOPK_MOE_EARLY_SOFTMAX:
- softmax = cgraph->nodes[node_idx + 0];
- weights = cgraph->nodes[node_idx + 4];
- break;
- case TOPK_MOE_LATE_SOFTMAX:
- softmax = cgraph->nodes[node_idx + 4];
- weights = cgraph->nodes[node_idx + 5];
- break;
- default:
- return false;
- }
- const float * op_params = (const float *)softmax->op_params;
- float scale = op_params[0];
- float max_bias = op_params[1];
- if (!ggml_is_contiguous(softmax->src[0]) || !ggml_is_contiguous(weights)) {
- return false;
- }
- if (scale != 1.0f || max_bias != 0.0f) {
- return false;
- }
- // don't fuse when masks or sinks are present
- if (softmax->src[1] || softmax->src[2]) {
- return false;
- }
- const int n_expert = softmax->ne[0];
- // n_expert must be a power of 2
- if (!is_pow2(n_expert) || n_expert > (1 << (num_topk_moe_pipelines-1))) {
- return false;
- }
- if (!ctx->device->subgroup_arithmetic ||
- !ctx->device->subgroup_shuffle ||
- !ctx->device->subgroup_require_full_support ||
- ctx->device->disable_fusion) {
- return false;
- }
- return true;
- }
- static bool ggml_vk_can_fuse_rope_set_rows(ggml_backend_vk_context * ctx, const struct ggml_cgraph * cgraph,
- int node_idx) {
- GGML_UNUSED(ctx);
- const ggml_tensor *rope = cgraph->nodes[node_idx + 0];
- const ggml_tensor *view = cgraph->nodes[node_idx + 1];
- const ggml_tensor *set_rows = cgraph->nodes[node_idx + 2];
- // ne3 not tested
- if (rope->src[0]->ne[3] != 1) {
- return false;
- }
- if (set_rows->type != GGML_TYPE_F32 && set_rows->type != GGML_TYPE_F16) {
- return false;
- }
- if (set_rows->src[1]->type != GGML_TYPE_I64) {
- return false;
- }
- // The view should flatten two dims of rope into one dim
- if (!ggml_is_contiguous(view) ||
- view->ne[0] != rope->ne[0] * rope->ne[1]) {
- return false;
- }
- // Only norm/neox shaders have the fusion code
- const int mode = ((const int32_t *) rope->op_params)[2];
- if (mode != GGML_ROPE_TYPE_NORMAL && mode != GGML_ROPE_TYPE_NEOX) {
- return false;
- }
- return true;
- }
- // Check whether the tensors overlap in memory but are not equal.
- // Fusions can potenitally overwrite src tensors in ways that are not prevented
- // by ggml-alloc. If the fusion is entirely elementwise, then it's OK for them
- // to overlap if they are exactly equal.
- // XXX TODO this check is probably missing from several fusion optimizations.
- static bool ggml_vk_tensors_overlap_but_not_equal(const ggml_tensor * a, const ggml_tensor * b) {
- ggml_backend_vk_buffer_context * a_buf_ctx = (ggml_backend_vk_buffer_context *)a->buffer->context;
- vk_buffer a_buf = a_buf_ctx->dev_buffer;
- ggml_backend_vk_buffer_context * b_buf_ctx = (ggml_backend_vk_buffer_context *)b->buffer->context;
- vk_buffer b_buf = b_buf_ctx->dev_buffer;
- if (a_buf == b_buf) {
- auto a_base = vk_tensor_offset(a) + a->view_offs;
- auto a_size = ggml_nbytes(a);
- auto b_base = vk_tensor_offset(b) + b->view_offs;
- auto b_size = ggml_nbytes(b);
- if (a_base == b_base && a_size == b_size) {
- return false;
- }
- if ((b_base <= a_base && a_base < b_base + b_size) ||
- (a_base <= b_base && b_base < a_base + a_size)) {
- return true;
- }
- }
- return false;
- }
- static bool ggml_vk_can_fuse_rms_norm_mul_rope(ggml_backend_vk_context * ctx, const struct ggml_cgraph * cgraph,
- int node_idx) {
- GGML_UNUSED(ctx);
- const ggml_tensor *rms = cgraph->nodes[node_idx + 0];
- const ggml_tensor *mul = cgraph->nodes[node_idx + 1];
- const ggml_tensor *rope = cgraph->nodes[node_idx + 2];
- const int mode = ((const int32_t *) rope->op_params)[2];
- // noncontig tensors aren't tested, and don't seem common in practice
- if (!ggml_is_contiguous(rms) ||
- !ggml_is_contiguous(mul) ||
- !ggml_is_contiguous(rope)) {
- return false;
- }
- // only norm/neox are handled in the shader
- if (mode != GGML_ROPE_TYPE_NEOX && mode != GGML_ROPE_TYPE_NORMAL) {
- return false;
- }
- // shared memory size for passing data from mul->rope
- if (mul->ne[0] > 1024) {
- return false;
- }
- // must not overwrite srcs in a way that's not elementwise
- ggml_tensor *other_src = mul->src[0] == rms ? mul->src[1] : mul->src[0];
- if (ggml_vk_tensors_overlap_but_not_equal(rms->src[0], rope) ||
- ggml_vk_tensors_overlap_but_not_equal(other_src, rope)) {
- return false;
- }
- // conditions for pipeline creation
- if (!(ctx->device->float_controls_rte_fp16 &&
- sizeof(vk_op_rms_norm_mul_rope_push_constants) <= ctx->device->properties.limits.maxPushConstantsSize)) {
- return false;
- }
- return true;
- }
- static uint32_t ggml_vk_fuse_multi_add(ggml_backend_vk_context * ctx, const struct ggml_cgraph * cgraph, int node_idx) {
- const ggml_tensor *first_node = cgraph->nodes[node_idx];
- if (first_node->op != GGML_OP_ADD) {
- return 0;
- }
- if (!ctx->device->multi_add) {
- return 0;
- }
- int32_t num_adds = 1;
- while (node_idx + num_adds < cgraph->n_nodes &&
- cgraph->nodes[node_idx + num_adds]->op == GGML_OP_ADD &&
- num_adds < MAX_FUSED_ADDS) {
- num_adds++;
- }
- // The shader currently requires same shapes (but different strides are allowed),
- // everything f32, and no misalignment
- for (int32_t i = 0; i < num_adds; ++i) {
- const ggml_tensor *next_node = cgraph->nodes[node_idx + i];
- if (!ggml_are_same_shape(first_node, next_node->src[0]) ||
- !ggml_are_same_shape(first_node, next_node->src[1]) ||
- next_node->type != GGML_TYPE_F32 ||
- next_node->src[0]->type != GGML_TYPE_F32 ||
- next_node->src[1]->type != GGML_TYPE_F32 ||
- get_misalign_bytes(ctx, next_node) ||
- get_misalign_bytes(ctx, next_node->src[0]) ||
- get_misalign_bytes(ctx, next_node->src[1])) {
- num_adds = i;
- }
- }
- // Verify we can fuse these
- ggml_op adds[MAX_FUSED_ADDS];
- for (int32_t i = 0; i < num_adds; ++i) {
- adds[i] = GGML_OP_ADD;
- }
- // decrease num_adds if they can't all be fused
- while (num_adds > 1 && !ggml_can_fuse(cgraph, node_idx, adds, num_adds)) {
- num_adds--;
- }
- // a single add is not "fused", so just return zero
- if (num_adds == 1) {
- return 0;
- }
- return num_adds;
- }
- static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
- VK_LOG_DEBUG("ggml_backend_vk_graph_compute(" << cgraph->n_nodes << " nodes)");
- ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
- if (vk_instance.debug_utils_support) {
- vk::DebugUtilsLabelEXT dul = {};
- dul.pLabelName = "ggml_backend_vk_graph_compute";
- dul.color = std::array<float,4>{1.0f, 1.0f, 1.0f, 1.0f};
- vk_instance.pfn_vkQueueBeginDebugUtilsLabelEXT(ctx->device->compute_queue.queue, reinterpret_cast<VkDebugUtilsLabelEXT*>(&dul));
- }
- ctx->prealloc_size_add_rms_partials_offset = 0;
- ctx->do_add_rms_partials = false;
- ctx->do_add_rms_partials_offset_calculation = false;
- int last_node = cgraph->n_nodes - 1;
- // If the last op in the cgraph isn't backend GPU, the command buffer doesn't get closed properly
- while (last_node > 0 && ggml_vk_is_empty(cgraph->nodes[last_node])) {
- last_node -= 1;
- }
- // Reserve tensor context space for all nodes
- ctx->tensor_ctxs.resize(cgraph->n_nodes);
- bool first_node_in_batch = true; // true if next node will be first node in a batch
- int submit_node_idx = 0; // index to first node in a batch
- vk_context compute_ctx;
- if (vk_perf_logger_enabled) {
- // allocate/resize the query pool
- if (ctx->device->num_queries < cgraph->n_nodes + 1) {
- if (ctx->device->query_pool) {
- ctx->device->device.destroyQueryPool(ctx->device->query_pool);
- }
- vk::QueryPoolCreateInfo query_create_info;
- query_create_info.queryType = vk::QueryType::eTimestamp;
- query_create_info.queryCount = cgraph->n_nodes + 100;
- ctx->device->query_pool = ctx->device->device.createQueryPool(query_create_info);
- ctx->device->num_queries = query_create_info.queryCount;
- }
- ctx->device->device.resetQueryPool(ctx->device->query_pool, 0, cgraph->n_nodes+1);
- GGML_ASSERT(ctx->compute_ctx.expired());
- compute_ctx = ggml_vk_create_context(ctx, ctx->compute_cmd_pool);
- ctx->compute_ctx = compute_ctx;
- ggml_vk_ctx_begin(ctx->device, compute_ctx);
- compute_ctx->s->buffer.writeTimestamp(vk::PipelineStageFlagBits::eAllCommands, ctx->device->query_pool, 0);
- }
- ctx->prealloc_y_last_pipeline_used = nullptr;
- ctx->prealloc_y_last_tensor_used = nullptr;
- if (ctx->prealloc_size_add_rms_partials) {
- ggml_vk_preallocate_buffers(ctx, nullptr);
- if (ctx->compute_ctx.expired()) {
- compute_ctx = ggml_vk_create_context(ctx, ctx->compute_cmd_pool);
- ctx->compute_ctx = compute_ctx;
- ggml_vk_ctx_begin(ctx->device, compute_ctx);
- } else {
- compute_ctx = ctx->compute_ctx.lock();
- }
- // initialize partial sums to zero.
- ggml_vk_buffer_memset_async(compute_ctx, ctx->prealloc_add_rms_partials, 0, 0, ctx->prealloc_size_add_rms_partials);
- ggml_vk_sync_buffers(ctx, compute_ctx);
- }
- // Submit after enough work has accumulated, to overlap CPU cmdbuffer generation with GPU execution.
- // Estimate the amount of matmul work by looking at the weight matrix size, and submit every 100MB
- // (and scaled down based on model size, so smaller models submit earlier).
- // Also submit at least every 100 nodes, in case there are workloads without as much matmul.
- int nodes_per_submit = 100;
- int submitted_nodes = 0;
- int submit_count = 0;
- uint64_t mul_mat_bytes = 0;
- uint64_t total_mul_mat_bytes = 0;
- uint64_t mul_mat_bytes_per_submit = std::min(uint64_t(100*1000*1000), ctx->last_total_mul_mat_bytes / 40u);
- for (int i = 0; i < cgraph->n_nodes; i++) {
- if (first_node_in_batch) {
- submit_node_idx = i;
- }
- if (cgraph->nodes[i]->op == GGML_OP_MUL_MAT || cgraph->nodes[i]->op == GGML_OP_MUL_MAT_ID) {
- auto bytes = ggml_nbytes(cgraph->nodes[i]->src[0]);
- mul_mat_bytes += bytes;
- total_mul_mat_bytes += bytes;
- }
- if (!ctx->device->disable_fusion) {
- uint32_t num_adds = ggml_vk_fuse_multi_add(ctx, cgraph, i);
- if (num_adds) {
- ctx->num_additional_fused_ops = num_adds - 1;
- } else if (ggml_vk_can_fuse(ctx, cgraph, i, { GGML_OP_MUL_MAT, GGML_OP_ADD, GGML_OP_ADD })) {
- ctx->num_additional_fused_ops = 2;
- } else if (ggml_vk_can_fuse(ctx, cgraph, i, { GGML_OP_MUL_MAT, GGML_OP_ADD })) {
- ctx->num_additional_fused_ops = 1;
- } else if (ggml_vk_can_fuse(ctx, cgraph, i, { GGML_OP_MUL_MAT_ID, GGML_OP_ADD_ID, GGML_OP_MUL })) {
- ctx->num_additional_fused_ops = 2;
- } else if (ggml_vk_can_fuse(ctx, cgraph, i, { GGML_OP_MUL_MAT_ID, GGML_OP_ADD_ID })) {
- ctx->num_additional_fused_ops = 1;
- } else if (ggml_vk_can_fuse(ctx, cgraph, i, { GGML_OP_MUL_MAT_ID, GGML_OP_MUL })) {
- ctx->num_additional_fused_ops = 1;
- } else if (ggml_can_fuse_subgraph(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL, GGML_OP_ROPE, GGML_OP_VIEW, GGML_OP_SET_ROWS }, { i + 4 }) &&
- ggml_check_edges(cgraph, i, rms_norm_mul_rope_view_set_rows_edges) &&
- ggml_vk_can_fuse_rms_norm_mul_rope(ctx, cgraph, i) &&
- ggml_vk_can_fuse_rope_set_rows(ctx, cgraph, i + 2)) {
- ctx->num_additional_fused_ops = 4;
- } else if (ggml_vk_can_fuse(ctx, cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL, GGML_OP_ROPE })&&
- ggml_vk_can_fuse_rms_norm_mul_rope(ctx, cgraph, i)) {
- ctx->num_additional_fused_ops = 2;
- } else if (ggml_vk_can_fuse(ctx, cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL })) {
- ctx->num_additional_fused_ops = 1;
- } else if (ggml_can_fuse_subgraph(cgraph, i, { GGML_OP_ROPE, GGML_OP_VIEW, GGML_OP_SET_ROWS }, { i + 2 }) &&
- ggml_check_edges(cgraph, i, rope_view_set_rows_edges) &&
- ggml_vk_can_fuse_rope_set_rows(ctx, cgraph, i)) {
- ctx->num_additional_fused_ops = 2;
- } else if (ggml_can_fuse_subgraph(cgraph, i, topk_moe_early_softmax_norm, { i + 3, i + 9 }) &&
- ggml_check_edges(cgraph, i, topk_moe_early_softmax_norm_edges) &&
- ggml_vk_can_fuse_topk_moe(ctx, cgraph, i, TOPK_MOE_EARLY_SOFTMAX_NORM)) {
- ctx->num_additional_fused_ops = topk_moe_early_softmax_norm.size() - 1;
- // view of argsort writes to memory
- ctx->fused_ops_write_mask |= 1 << 3;
- } else if (ggml_can_fuse_subgraph(cgraph, i, topk_moe_early_softmax, { i + 3, i + 4 }) &&
- ggml_check_edges(cgraph, i, topk_moe_early_softmax_edges) &&
- ggml_vk_can_fuse_topk_moe(ctx, cgraph, i, TOPK_MOE_EARLY_SOFTMAX)) {
- ctx->num_additional_fused_ops = topk_moe_early_softmax.size() - 1;
- // view of argsort writes to memory
- ctx->fused_ops_write_mask |= 1 << 3;
- } else if (ggml_can_fuse_subgraph(cgraph, i, topk_moe_late_softmax, { i + 1, i + 5 }) &&
- ggml_check_edges(cgraph, i, topk_moe_late_softmax_edges) &&
- ggml_vk_can_fuse_topk_moe(ctx, cgraph, i, TOPK_MOE_LATE_SOFTMAX)) {
- ctx->num_additional_fused_ops = topk_moe_late_softmax.size() - 1;
- // view of argsort writes to memory
- ctx->fused_ops_write_mask |= 1 << 1;
- }
- }
- ctx->fused_ops_write_mask |= 1 << ctx->num_additional_fused_ops;
- // Signal the almost_ready fence when the graph is mostly complete (< 20% remaining)
- bool almost_ready = (cgraph->n_nodes - i) < cgraph->n_nodes / 5;
- bool submit = (submitted_nodes >= nodes_per_submit) ||
- (mul_mat_bytes_per_submit != 0 && mul_mat_bytes >= mul_mat_bytes_per_submit) ||
- (i + ctx->num_additional_fused_ops >= last_node) ||
- (almost_ready && !ctx->almost_ready_fence_pending);
- bool enqueued = ggml_vk_build_graph(ctx, cgraph, i, cgraph->nodes[submit_node_idx], submit_node_idx, i + ctx->num_additional_fused_ops >= last_node, almost_ready, submit);
- if (vk_perf_logger_enabled) {
- if (ctx->compute_ctx.expired()) {
- compute_ctx = ggml_vk_create_context(ctx, ctx->compute_cmd_pool);
- ctx->compute_ctx = compute_ctx;
- ggml_vk_ctx_begin(ctx->device, compute_ctx);
- } else {
- compute_ctx = ctx->compute_ctx.lock();
- }
- // If there are fused ops, just write out timestamps for all nodes to keep the accounting simple
- for (int j = 0; j < ctx->num_additional_fused_ops + 1; ++j) {
- compute_ctx->s->buffer.writeTimestamp(vk::PipelineStageFlagBits::eAllCommands, ctx->device->query_pool, i+j+1);
- }
- }
- if (enqueued) {
- ++submitted_nodes;
- #ifndef GGML_VULKAN_CHECK_RESULTS
- if (first_node_in_batch) {
- first_node_in_batch = false;
- }
- #endif
- }
- if (submit && enqueued) {
- first_node_in_batch = true;
- submitted_nodes = 0;
- mul_mat_bytes = 0;
- if (submit_count < 3) {
- mul_mat_bytes_per_submit *= 2;
- }
- submit_count++;
- }
- i += ctx->num_additional_fused_ops;
- ctx->num_additional_fused_ops = 0;
- ctx->fused_ops_write_mask = 0;
- }
- ctx->prealloc_size_add_rms_partials = std::max(ctx->prealloc_size_add_rms_partials, ctx->prealloc_size_add_rms_partials_offset);
- ctx->last_total_mul_mat_bytes = total_mul_mat_bytes;
- if (vk_perf_logger_enabled) {
- // End the command buffer and submit/wait
- GGML_ASSERT(!ctx->compute_ctx.expired());
- compute_ctx = ctx->compute_ctx.lock();
- ggml_vk_ctx_end(compute_ctx);
- ggml_vk_submit(compute_ctx, ctx->device->fence);
- VK_CHECK(ctx->device->device.waitForFences({ ctx->device->fence }, true, UINT64_MAX), "GGML_VULKAN_PERF waitForFences");
- ctx->device->device.resetFences({ ctx->device->fence });
- // Get the results and pass them to the logger
- std::vector<uint64_t> timestamps(cgraph->n_nodes + 1);
- VK_CHECK(ctx->device->device.getQueryPoolResults(ctx->device->query_pool, 0, cgraph->n_nodes + 1, (cgraph->n_nodes + 1)*sizeof(uint64_t), timestamps.data(), sizeof(uint64_t), vk::QueryResultFlagBits::e64 | vk::QueryResultFlagBits::eWait), "get timestamp results");
- for (int i = 0; i < cgraph->n_nodes; i++) {
- if (!ggml_vk_is_empty(cgraph->nodes[i])) {
- ctx->device->perf_logger->log_timing(cgraph->nodes[i], uint64_t((timestamps[i+1] - timestamps[i]) * ctx->device->properties.limits.timestampPeriod));
- }
- }
- ctx->device->perf_logger->print_timings();
- }
- return GGML_STATUS_SUCCESS;
- UNUSED(backend);
- }
- // Sort the graph for improved parallelism.
- static void ggml_vk_graph_optimize(ggml_backend_t backend, struct ggml_cgraph * graph)
- {
- VK_LOG_DEBUG("ggml_vk_graph_optimize(" << graph->n_nodes << " nodes)");
- ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
- if (ctx->device->disable_graph_optimize) {
- return;
- }
- auto const &is_empty = [](ggml_tensor * node) -> bool {
- return node->op == GGML_OP_NONE || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE;
- };
- auto const &is_src_of = [](const ggml_tensor *dst, const ggml_tensor *src) -> bool {
- for (uint32_t s = 0; s < GGML_MAX_SRC; ++s) {
- if (dst->src[s] == src) {
- return true;
- }
- }
- // implicit dependency if they view the same tensor
- const ggml_tensor *dst2 = dst->view_src ? dst->view_src : dst;
- const ggml_tensor *src2 = src->view_src ? src->view_src : src;
- if (dst2 == src2) {
- return true;
- }
- return false;
- };
- // This function tries to reorder the graph to allow nodes to run in parallel.
- // This helps with small batches, but for large batches its a slowdown, probably
- // due to cache contention. So only reorder if the majority of nodes have few rows.
- int num_small_nodes = 0;
- int num_counted_nodes = 0;
- for (int i = 0; i < graph->n_nodes; ++i) {
- if (!is_empty(graph->nodes[i]) &&
- graph->nodes[i]->op != GGML_OP_SET_ROWS) {
- if (ggml_nrows(graph->nodes[i]) <= 8) {
- num_small_nodes++;
- }
- num_counted_nodes++;
- }
- }
- if (num_small_nodes < num_counted_nodes / 2) {
- return;
- }
- std::vector<ggml_tensor *> new_order;
- std::vector<bool> used(graph->n_nodes, false);
- std::set<ggml_tensor *> used_node_set;
- int first_unused = 0;
- while (first_unused < graph->n_nodes) {
- std::vector<int> current_set;
- // Check for fusion patterns and avoid reordering them
- auto const &match_pattern = [&](const std::initializer_list<ggml_op> &pattern, int start) -> bool {
- if (start + (int)pattern.size() <= graph->n_nodes) {
- bool is_pattern = true;
- for (size_t j = 0; j < pattern.size(); ++j) {
- if (graph->nodes[start + j]->op != pattern.begin()[j] || used[start + j]) {
- is_pattern = false;
- }
- }
- return is_pattern;
- }
- return false;
- };
- auto const &keep_pattern = [&](const std::initializer_list<ggml_op> &pattern) -> bool {
- if (match_pattern(pattern, first_unused)) {
- for (size_t j = 0; j < pattern.size(); ++j) {
- new_order.push_back(graph->nodes[first_unused + j]);
- used_node_set.insert(graph->nodes[first_unused + j]);
- used[first_unused + j] = true;
- }
- while (first_unused < graph->n_nodes && used[first_unused]) {
- first_unused++;
- }
- return true;
- }
- return false;
- };
- if (keep_pattern(topk_moe_early_softmax_norm)) {
- continue;
- }
- if (keep_pattern(topk_moe_early_softmax)) {
- continue;
- }
- if (keep_pattern(topk_moe_late_softmax)) {
- continue;
- }
- // First, grab the next unused node.
- current_set.push_back(first_unused);
- // Loop through the next N nodes. Grab any that don't depend on other nodes that
- // haven't already been run. Nodes that have already been run have used[i] set
- // to true. Allow nodes that depend on the previous node if it's a fusion pattern
- // that we support (e.g. RMS_NORM + MUL).
- // This first pass only grabs "real" (non-view nodes). Second pass grabs view nodes.
- // The goal is to not interleave real and view nodes in a way that breaks fusion.
- const int NUM_TO_CHECK = 20;
- for (int j = first_unused+1; j < std::min(first_unused + NUM_TO_CHECK, graph->n_nodes); ++j) {
- if (used[j]) {
- continue;
- }
- if (is_empty(graph->nodes[j])) {
- continue;
- }
- // Don't pull forward nodes from fusion patterns
- if (match_pattern(topk_moe_early_softmax_norm, j) ||
- match_pattern(topk_moe_early_softmax, j) ||
- match_pattern(topk_moe_late_softmax, j)) {
- continue;
- }
- bool ok = true;
- for (int c = first_unused; c < j; ++c) {
- if (!used[c] &&
- is_src_of(graph->nodes[j], graph->nodes[c]) &&
- !(j == c+1 && c == current_set.back() && graph->nodes[c]->op == GGML_OP_RMS_NORM && graph->nodes[j]->op == GGML_OP_MUL) &&
- !(j == c+1 && c == current_set.back() && graph->nodes[c]->op == GGML_OP_MUL_MAT && graph->nodes[j]->op == GGML_OP_ADD) &&
- !(j == c+1 && c == current_set.back() && graph->nodes[c]->op == GGML_OP_MUL_MAT_ID && graph->nodes[j]->op == GGML_OP_ADD_ID) &&
- !(j == c+1 && c == current_set.back() && graph->nodes[c]->op == GGML_OP_MUL_MAT_ID && graph->nodes[j]->op == GGML_OP_MUL)) {
- ok = false;
- break;
- }
- }
- if (ok) {
- current_set.push_back(j);
- int rope_idx = j;
- // When we've found RMS_NORM + MUL, try to find a ROPE that uses it
- if (j > 0 &&
- graph->nodes[j]->op == GGML_OP_MUL &&
- graph->nodes[j-1]->op == GGML_OP_RMS_NORM) {
- for (int k = j + 1; k < std::min(j + 15, graph->n_nodes); ++k) {
- if (graph->nodes[k]->op == GGML_OP_ROPE &&
- graph->nodes[k]->src[0] == graph->nodes[j] &&
- // Check that other srcs are already valid
- graph->nodes[k]->src[1]->op == GGML_OP_NONE &&
- (graph->nodes[k]->src[2] == nullptr || graph->nodes[k]->src[2]->op == GGML_OP_NONE)) {
- rope_idx = k;
- current_set.push_back(rope_idx);
- used[rope_idx] = true;
- break;
- }
- }
- }
- // Look for ROPE + VIEW + SET_ROWS and make them consecutive
- if (graph->nodes[rope_idx]->op == GGML_OP_ROPE) {
- int view_idx = -1;
- int set_rows_idx = -1;
- for (int k = rope_idx+1; k < std::min(rope_idx + 10, graph->n_nodes); ++k) {
- if (view_idx == -1 &&
- graph->nodes[k]->op == GGML_OP_VIEW &&
- graph->nodes[k]->src[0] == graph->nodes[rope_idx]) {
- view_idx = k;
- continue;
- }
- if (view_idx != -1 &&
- set_rows_idx == -1 &&
- graph->nodes[k]->op == GGML_OP_SET_ROWS &&
- graph->nodes[k]->src[0] == graph->nodes[view_idx]) {
- set_rows_idx = k;
- break;
- }
- }
- if (set_rows_idx != -1) {
- current_set.push_back(view_idx);
- current_set.push_back(set_rows_idx);
- used[view_idx] = true;
- used[set_rows_idx] = true;
- }
- }
- // Look for MUL_MAT_ID + ADD_ID + MUL
- if (j > 0 &&
- graph->nodes[j]->op == GGML_OP_ADD_ID &&
- graph->nodes[j-1]->op == GGML_OP_MUL_MAT_ID) {
- for (int k = j + 1; k < std::min(j + 15, graph->n_nodes); ++k) {
- if (graph->nodes[k]->op == GGML_OP_MUL &&
- graph->nodes[k]->src[0] == graph->nodes[j] &&
- // src1 must either be weights or already processed
- (graph->nodes[k]->src[1]->op == GGML_OP_NONE || used_node_set.find(graph->nodes[k]->src[1]) != used_node_set.end())) {
- current_set.push_back(k);
- used[k] = true;
- break;
- }
- }
- }
- // Look for MUL_MAT + ADD + ADD
- if (j > 0 &&
- graph->nodes[j]->op == GGML_OP_ADD &&
- graph->nodes[j-1]->op == GGML_OP_MUL_MAT) {
- for (int k = j + 1; k < std::min(j + 15, graph->n_nodes); ++k) {
- if (graph->nodes[k]->op == GGML_OP_ADD &&
- graph->nodes[k]->src[0] == graph->nodes[j] &&
- // src1 must either be weights or already processed
- (graph->nodes[k]->src[1]->op == GGML_OP_NONE || used_node_set.find(graph->nodes[k]->src[1]) != used_node_set.end())) {
- current_set.push_back(k);
- used[k] = true;
- break;
- }
- }
- }
- }
- }
- // Second pass grabs view nodes.
- // Skip this if it would break a fusion optimization (don't split up add->rms_norm or add->add).
- if (graph->nodes[current_set.back()]->op != GGML_OP_ADD) {
- for (int j = first_unused+1; j < std::min(first_unused + NUM_TO_CHECK, graph->n_nodes); ++j) {
- if (used[j]) {
- continue;
- }
- if (!is_empty(graph->nodes[j])) {
- continue;
- }
- bool ok = true;
- for (int c = first_unused; c < j; ++c) {
- bool c_in_current_set = std::find(current_set.begin(), current_set.end(), c) != current_set.end();
- // skip views whose srcs haven't been processed.
- if (!used[c] &&
- is_src_of(graph->nodes[j], graph->nodes[c]) &&
- !c_in_current_set) {
- ok = false;
- break;
- }
- }
- if (ok) {
- current_set.push_back(j);
- }
- }
- }
- // Push the current set into new_order
- for (auto c : current_set) {
- new_order.push_back(graph->nodes[c]);
- used_node_set.insert(graph->nodes[c]);
- used[c] = true;
- }
- while (first_unused < graph->n_nodes && used[first_unused]) {
- first_unused++;
- }
- }
- // Replace the graph with the new order.
- for (int i = 0; i < graph->n_nodes; ++i) {
- graph->nodes[i] = new_order[i];
- }
- }
- // TODO: enable async and synchronize
- static ggml_backend_i ggml_backend_vk_interface = {
- /* .get_name = */ ggml_backend_vk_name,
- /* .free = */ ggml_backend_vk_free,
- /* .set_tensor_async = */ NULL, // ggml_backend_vk_set_tensor_async,
- /* .get_tensor_async = */ ggml_backend_vk_get_tensor_async,
- /* .cpy_tensor_async = */ NULL, // ggml_backend_vk_cpy_tensor_async,
- /* .synchronize = */ ggml_backend_vk_synchronize,
- /* .graph_plan_create = */ NULL,
- /* .graph_plan_free = */ NULL,
- /* .graph_plan_update = */ NULL,
- /* .graph_plan_compute = */ NULL,
- /* .graph_compute = */ ggml_backend_vk_graph_compute,
- /* .event_record = */ NULL,
- /* .event_wait = */ NULL,
- /* .graph_optimize = */ ggml_vk_graph_optimize,
- };
- static ggml_guid_t ggml_backend_vk_guid() {
- static ggml_guid guid = { 0xb8, 0xf7, 0x4f, 0x86, 0x40, 0x3c, 0xe1, 0x02, 0x91, 0xc8, 0xdd, 0xe9, 0x02, 0x3f, 0xc0, 0x2b };
- return &guid;
- }
- ggml_backend_t ggml_backend_vk_init(size_t dev_num) {
- VK_LOG_DEBUG("ggml_backend_vk_init(" << dev_num << ")");
- ggml_backend_vk_context * ctx = new ggml_backend_vk_context;
- ggml_vk_init(ctx, dev_num);
- ggml_backend_t vk_backend = new ggml_backend {
- /* .guid = */ ggml_backend_vk_guid(),
- /* .iface = */ ggml_backend_vk_interface,
- /* .device = */ ggml_backend_reg_dev_get(ggml_backend_vk_reg(), dev_num),
- /* .context = */ ctx,
- };
- return vk_backend;
- }
- bool ggml_backend_is_vk(ggml_backend_t backend) {
- return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_vk_guid());
- }
- int ggml_backend_vk_get_device_count() {
- return ggml_vk_get_device_count();
- }
- void ggml_backend_vk_get_device_description(int device, char * description, size_t description_size) {
- GGML_ASSERT(device < (int) vk_instance.device_indices.size());
- int dev_idx = vk_instance.device_indices[device];
- ggml_vk_get_device_description(dev_idx, description, description_size);
- }
- void ggml_backend_vk_get_device_memory(int device, size_t * free, size_t * total) {
- GGML_ASSERT(device < (int) vk_instance.device_indices.size());
- GGML_ASSERT(device < (int) vk_instance.device_supports_membudget.size());
- vk::PhysicalDevice vkdev = vk_instance.instance.enumeratePhysicalDevices()[vk_instance.device_indices[device]];
- vk::PhysicalDeviceMemoryBudgetPropertiesEXT budgetprops;
- vk::PhysicalDeviceMemoryProperties2 memprops = {};
- const bool membudget_supported = vk_instance.device_supports_membudget[device];
- const bool is_integrated_gpu = vkdev.getProperties().deviceType == vk::PhysicalDeviceType::eIntegratedGpu;
- if (membudget_supported) {
- memprops.pNext = &budgetprops;
- }
- vkdev.getMemoryProperties2(&memprops);
- *total = 0;
- *free = 0;
- for (uint32_t i = 0; i < memprops.memoryProperties.memoryHeapCount; ++i) {
- const vk::MemoryHeap & heap = memprops.memoryProperties.memoryHeaps[i];
- if (is_integrated_gpu || (heap.flags & vk::MemoryHeapFlagBits::eDeviceLocal)) {
- *total += heap.size;
- if (membudget_supported && i < budgetprops.heapUsage.size()) {
- *free += budgetprops.heapBudget[i] - budgetprops.heapUsage[i];
- } else {
- *free += heap.size;
- }
- }
- }
- }
- static vk::PhysicalDeviceType ggml_backend_vk_get_device_type(int device_idx) {
- GGML_ASSERT(device_idx >= 0 && device_idx < (int) vk_instance.device_indices.size());
- vk::PhysicalDevice device = vk_instance.instance.enumeratePhysicalDevices()[vk_instance.device_indices[device_idx]];
- vk::PhysicalDeviceProperties2 props = {};
- device.getProperties2(&props);
- return props.properties.deviceType;
- }
- static std::string ggml_backend_vk_get_device_pci_id(int device_idx) {
- GGML_ASSERT(device_idx >= 0 && device_idx < (int) vk_instance.device_indices.size());
- vk::PhysicalDevice device = vk_instance.instance.enumeratePhysicalDevices()[vk_instance.device_indices[device_idx]];
- const std::vector<vk::ExtensionProperties> ext_props = device.enumerateDeviceExtensionProperties();
- bool ext_support = false;
- for (const auto& properties : ext_props) {
- if (strcmp("VK_EXT_pci_bus_info", properties.extensionName) == 0) {
- ext_support = true;
- break;
- }
- }
- if (!ext_support) {
- return "";
- }
- vk::PhysicalDeviceProperties2 props = {};
- vk::PhysicalDevicePCIBusInfoPropertiesEXT pci_bus_info = {};
- props.pNext = &pci_bus_info;
- device.getProperties2(&props);
- const uint32_t pci_domain = pci_bus_info.pciDomain;
- const uint32_t pci_bus = pci_bus_info.pciBus;
- const uint32_t pci_device = pci_bus_info.pciDevice;
- const uint8_t pci_function = (uint8_t) pci_bus_info.pciFunction; // pci function is between 0 and 7, prevent printf overflow warning
- char pci_bus_id[16] = {};
- snprintf(pci_bus_id, sizeof(pci_bus_id), "%04x:%02x:%02x.%x", pci_domain, pci_bus, pci_device, pci_function);
- return std::string(pci_bus_id);
- }
- //////////////////////////
- struct ggml_backend_vk_device_context {
- size_t device;
- std::string name;
- std::string description;
- bool is_integrated_gpu;
- std::string pci_bus_id;
- };
- static const char * ggml_backend_vk_device_get_name(ggml_backend_dev_t dev) {
- ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context;
- return ctx->name.c_str();
- }
- static const char * ggml_backend_vk_device_get_description(ggml_backend_dev_t dev) {
- ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context;
- return ctx->description.c_str();
- }
- static void ggml_backend_vk_device_get_memory(ggml_backend_dev_t device, size_t * free, size_t * total) {
- ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)device->context;
- ggml_backend_vk_get_device_memory(ctx->device, free, total);
- }
- static ggml_backend_buffer_type_t ggml_backend_vk_device_get_buffer_type(ggml_backend_dev_t dev) {
- ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context;
- return ggml_backend_vk_buffer_type(ctx->device);
- }
- static ggml_backend_buffer_type_t ggml_backend_vk_device_get_host_buffer_type(ggml_backend_dev_t dev) {
- UNUSED(dev);
- return ggml_backend_vk_host_buffer_type();
- }
- static enum ggml_backend_dev_type ggml_backend_vk_device_get_type(ggml_backend_dev_t dev) {
- ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context;
- return ctx->is_integrated_gpu ? GGML_BACKEND_DEVICE_TYPE_IGPU : GGML_BACKEND_DEVICE_TYPE_GPU;
- }
- static void ggml_backend_vk_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
- ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context;
- props->name = ggml_backend_vk_device_get_name(dev);
- props->description = ggml_backend_vk_device_get_description(dev);
- props->type = ggml_backend_vk_device_get_type(dev);
- props->device_id = ctx->pci_bus_id.empty() ? nullptr : ctx->pci_bus_id.c_str();
- ggml_backend_vk_device_get_memory(dev, &props->memory_free, &props->memory_total);
- props->caps = {
- /* .async = */ false,
- /* .host_buffer = */ true,
- /* .buffer_from_host_ptr = */ false,
- /* .events = */ false,
- };
- }
- static ggml_backend_t ggml_backend_vk_device_init(ggml_backend_dev_t dev, const char * params) {
- UNUSED(params);
- ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context;
- return ggml_backend_vk_init(ctx->device);
- }
- static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
- switch (op->op) {
- case GGML_OP_UNARY:
- switch (ggml_get_unary_op(op)) {
- case GGML_UNARY_OP_EXP:
- case GGML_UNARY_OP_GELU:
- case GGML_UNARY_OP_GELU_ERF:
- case GGML_UNARY_OP_GELU_QUICK:
- case GGML_UNARY_OP_SILU:
- case GGML_UNARY_OP_RELU:
- case GGML_UNARY_OP_NEG:
- case GGML_UNARY_OP_TANH:
- case GGML_UNARY_OP_SIGMOID:
- case GGML_UNARY_OP_HARDSIGMOID:
- case GGML_UNARY_OP_HARDSWISH:
- case GGML_UNARY_OP_ABS:
- case GGML_UNARY_OP_SOFTPLUS:
- case GGML_UNARY_OP_STEP:
- case GGML_UNARY_OP_ROUND:
- case GGML_UNARY_OP_CEIL:
- case GGML_UNARY_OP_FLOOR:
- case GGML_UNARY_OP_TRUNC:
- return ggml_is_contiguous(op->src[0]) &&
- (op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16) &&
- (op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16) &&
- (op->src[0]->type == op->type);
- default:
- return false;
- }
- case GGML_OP_GLU:
- switch (ggml_get_glu_op(op)) {
- case GGML_GLU_OP_GEGLU:
- case GGML_GLU_OP_REGLU:
- case GGML_GLU_OP_SWIGLU:
- case GGML_GLU_OP_SWIGLU_OAI:
- case GGML_GLU_OP_GEGLU_ERF:
- case GGML_GLU_OP_GEGLU_QUICK:
- return ggml_is_contiguous(op->src[0]) &&
- (op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16) &&
- (op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16) &&
- (op->src[0]->type == op->type);
- default:
- return false;
- }
- case GGML_OP_MUL_MAT:
- case GGML_OP_MUL_MAT_ID:
- {
- ggml_type src0_type = op->src[0]->type;
- ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context;
- const vk_device& device = ggml_vk_get_device(ctx->device);
- if (op->op == GGML_OP_MUL_MAT_ID) {
- if (!device->mul_mat_id_s[src0_type] && !device->mul_mat_id_m[src0_type] && !device->mul_mat_id_l[src0_type]) {
- // If there's not enough shared memory for row_ids and the result tile, fallback to CPU
- return false;
- }
- }
- switch (src0_type) {
- case GGML_TYPE_F32:
- case GGML_TYPE_F16:
- case GGML_TYPE_BF16:
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- case GGML_TYPE_IQ1_S:
- case GGML_TYPE_IQ1_M:
- case GGML_TYPE_IQ2_XXS:
- case GGML_TYPE_IQ2_XS:
- case GGML_TYPE_IQ2_S:
- case GGML_TYPE_IQ3_XXS:
- case GGML_TYPE_IQ3_S:
- case GGML_TYPE_IQ4_XS:
- case GGML_TYPE_IQ4_NL:
- case GGML_TYPE_MXFP4:
- break;
- default:
- return false;
- }
- struct ggml_tensor * a;
- struct ggml_tensor * b;
- if (op->op == GGML_OP_MUL_MAT) {
- a = op->src[0];
- b = op->src[1];
- } else {
- a = op->src[2];
- b = op->src[1];
- }
- if (a->ne[3] != b->ne[3]) {
- return false;
- }
- if (!(ggml_vk_dim01_contiguous(op->src[0]) || op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16 || op->src[0]->type == GGML_TYPE_BF16) ||
- !(ggml_vk_dim01_contiguous(op->src[1]) || op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == GGML_TYPE_F16)) {
- return false;
- }
- if (op->src[0]->type == GGML_TYPE_BF16 && op->src[1]->type == GGML_TYPE_F16) {
- // We currently don't have a bf16 x f16 shader, or an fp16->bf16 copy shader.
- // So don't support this combination for now.
- return false;
- }
- return true;
- }
- case GGML_OP_FLASH_ATTN_EXT:
- {
- ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context;
- auto device = ggml_vk_get_device(ctx->device);
- bool coopmat2 = device->coopmat2;
- uint32_t HSK = op->src[1]->ne[0];
- uint32_t HSV = op->src[2]->ne[0];
- if ((HSK % 8) != 0 || (HSV % 8) != 0) {
- return false;
- }
- if (op->src[4] && op->src[4]->type != GGML_TYPE_F32) {
- return false;
- }
- if (op->src[0]->type != GGML_TYPE_F32) {
- return false;
- }
- if (op->type != GGML_TYPE_F32) {
- return false;
- }
- if (op->src[3] && op->src[3]->type != GGML_TYPE_F16) {
- return false;
- }
- // It's straightforward to support different K/V dequant, but would
- // significantly increase the number of pipelines
- if (op->src[1]->type != op->src[2]->type) {
- return false;
- }
- switch (op->src[1]->type) {
- case GGML_TYPE_F16:
- case GGML_TYPE_F32:
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q8_0:
- // supported in scalar and coopmat2 paths
- break;
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- // K dequants currently disabled because D dimension is rounded up to 256 and runs inefficiently
- //case GGML_TYPE_Q2_K:
- //case GGML_TYPE_Q3_K:
- //case GGML_TYPE_Q4_K:
- //case GGML_TYPE_Q5_K:
- //case GGML_TYPE_Q6_K:
- //case GGML_TYPE_IQ1_S:
- //case GGML_TYPE_IQ1_M:
- //case GGML_TYPE_IQ2_XXS:
- //case GGML_TYPE_IQ2_XS:
- //case GGML_TYPE_IQ2_S:
- //case GGML_TYPE_IQ3_XXS:
- //case GGML_TYPE_IQ3_S:
- //case GGML_TYPE_IQ4_XS:
- case GGML_TYPE_IQ4_NL:
- // currently supported only in coopmat2 path
- if (!coopmat2) {
- return false;
- }
- break;
- default:
- return false;
- }
- if (!coopmat2 && !(device->subgroup_shuffle && device->subgroup_vote)) {
- // scalar/coopmat1 FA uses subgroupShuffle/subgroupAll
- return false;
- }
- return true;
- }
- case GGML_OP_GET_ROWS:
- {
- switch (op->src[0]->type) {
- case GGML_TYPE_F32:
- case GGML_TYPE_F16:
- case GGML_TYPE_BF16:
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- case GGML_TYPE_IQ1_S:
- case GGML_TYPE_IQ1_M:
- case GGML_TYPE_IQ2_XXS:
- case GGML_TYPE_IQ2_XS:
- case GGML_TYPE_IQ2_S:
- case GGML_TYPE_IQ3_XXS:
- case GGML_TYPE_IQ3_S:
- case GGML_TYPE_IQ4_XS:
- case GGML_TYPE_IQ4_NL:
- case GGML_TYPE_MXFP4:
- return true;
- default:
- return false;
- }
- }
- case GGML_OP_SET_ROWS:
- {
- switch (op->type) {
- case GGML_TYPE_F32:
- case GGML_TYPE_F16:
- case GGML_TYPE_BF16:
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_IQ4_NL:
- return true;
- default:
- return false;
- }
- }
- case GGML_OP_CONT:
- case GGML_OP_CPY:
- case GGML_OP_DUP:
- {
- ggml_type src0_type = op->src[0]->type;
- ggml_type src1_type = op->src[1] != nullptr ? op->src[1]->type : src0_type;
- if (src0_type == GGML_TYPE_F32) {
- switch (src1_type) {
- case GGML_TYPE_F32:
- case GGML_TYPE_F16:
- case GGML_TYPE_BF16:
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_IQ4_NL:
- return true;
- default:
- break;
- }
- }
- if (src1_type == GGML_TYPE_F32) {
- switch (src0_type) {
- case GGML_TYPE_F16:
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_IQ4_NL:
- return true;
- default:
- break;
- }
- }
- if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) {
- return true;
- }
- if (
- (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_I32) ||
- (src0_type == GGML_TYPE_I32 && src1_type == GGML_TYPE_F32)
- ) {
- return true;
- }
- // We can handle copying from a type to the same type if it's
- // either not quantized or is quantized and contiguous.
- // We use f16 or f32 shaders to do the copy,
- // so the type/block size must be a multiple of 4.
- if (src0_type == src1_type &&
- (!ggml_is_quantized(src0_type) || (ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op))) &&
- (ggml_type_size(src0_type) % 2) == 0) {
- return true;
- }
- return false;
- }
- case GGML_OP_REPEAT:
- return ggml_type_size(op->type) == sizeof(float) && ggml_type_size(op->src[0]->type) == sizeof(float);
- case GGML_OP_REPEAT_BACK:
- return op->type == GGML_TYPE_F32 && op->src[0]->type == GGML_TYPE_F32;
- case GGML_OP_ROPE:
- case GGML_OP_ROPE_BACK:
- case GGML_OP_NONE:
- case GGML_OP_RESHAPE:
- case GGML_OP_VIEW:
- case GGML_OP_PERMUTE:
- case GGML_OP_TRANSPOSE:
- case GGML_OP_RMS_NORM:
- return true;
- case GGML_OP_NORM:
- case GGML_OP_GROUP_NORM:
- case GGML_OP_L2_NORM:
- return ggml_is_contiguous(op->src[0]);
- case GGML_OP_ADD:
- case GGML_OP_SUB:
- case GGML_OP_MUL:
- case GGML_OP_DIV:
- return (op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16) &&
- (op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == GGML_TYPE_F16) &&
- (op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16);
- case GGML_OP_ADD_ID:
- return op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32 && op->src[2]->type == GGML_TYPE_I32 &&
- op->type == GGML_TYPE_F32;
- case GGML_OP_SILU_BACK:
- case GGML_OP_RMS_NORM_BACK:
- case GGML_OP_SQR:
- case GGML_OP_SQRT:
- case GGML_OP_SIN:
- case GGML_OP_COS:
- case GGML_OP_CLAMP:
- case GGML_OP_LEAKY_RELU:
- case GGML_OP_OPT_STEP_ADAMW:
- case GGML_OP_OPT_STEP_SGD:
- return op->src[0]->type == GGML_TYPE_F32;
- case GGML_OP_LOG:
- return op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16;
- case GGML_OP_ARGSORT:
- {
- if (!ggml_is_contiguous(op) || !ggml_is_contiguous(op->src[0])) {
- return false;
- }
- ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context;
- auto device = ggml_vk_get_device(ctx->device);
- // pipeline_argsort_large_f32 requires vulkan memory model.
- if (device->vulkan_memory_model) {
- return true;
- } else {
- return op->ne[0] <= (1 << device->max_workgroup_size_log2);
- }
- }
- case GGML_OP_UPSCALE:
- case GGML_OP_ACC:
- case GGML_OP_CONCAT:
- case GGML_OP_ADD1:
- case GGML_OP_ARANGE:
- case GGML_OP_FILL:
- case GGML_OP_SCALE:
- case GGML_OP_PAD:
- case GGML_OP_ROLL:
- case GGML_OP_DIAG_MASK_INF:
- case GGML_OP_SOFT_MAX:
- case GGML_OP_SOFT_MAX_BACK:
- return true;
- case GGML_OP_SUM:
- case GGML_OP_SUM_ROWS:
- case GGML_OP_MEAN:
- return op->src[0]->type == GGML_TYPE_F32 && ggml_is_contiguous_rows(op->src[0]);
- case GGML_OP_ARGMAX:
- case GGML_OP_COUNT_EQUAL:
- case GGML_OP_IM2COL:
- case GGML_OP_IM2COL_3D:
- case GGML_OP_TIMESTEP_EMBEDDING:
- case GGML_OP_CONV_2D_DW:
- case GGML_OP_POOL_2D:
- case GGML_OP_RWKV_WKV6:
- case GGML_OP_RWKV_WKV7:
- return true;
- case GGML_OP_SSM_SCAN:
- {
- for (int i = 0; i < 6; i++) {
- if (op->src[i] && ggml_is_quantized(op->src[i]->type)) {
- return false;
- }
- }
- if (op->src[6] && op->src[6]->type != GGML_TYPE_I32) {
- return false;
- }
- if (op->src[0]->type != GGML_TYPE_F32 || op->type != GGML_TYPE_F32) {
- return false;
- }
- const uint32_t d_state = op->src[0]->ne[0];
- const uint32_t head_dim = op->src[0]->ne[1];
- bool is_mamba2 = (op->src[3] && op->src[3]->nb[1] == sizeof(float));
- if (!is_mamba2) {
- return false;
- }
- if ((d_state != 128 && d_state != 256) || head_dim % 16 != 0) {
- return false;
- }
- ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context;
- const vk_device& device = ggml_vk_get_device(ctx->device);
- const uint32_t SPLIT_H = 16;
- size_t stateC_size = SPLIT_H * d_state * sizeof(float);
- if (stateC_size > device->properties.limits.maxComputeSharedMemorySize) {
- return false;
- }
- return true;
- }
- case GGML_OP_SSM_CONV:
- return true;
- case GGML_OP_CONV_TRANSPOSE_1D:
- return op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32;
- case GGML_OP_CONV_2D:
- case GGML_OP_CONV_TRANSPOSE_2D:
- {
- // Op is disabled for Apple because it segfaults at pipeline create time on MoltenVK
- ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context;
- const vk_device& device = ggml_vk_get_device(ctx->device);
- if (op->op == GGML_OP_CONV_TRANSPOSE_2D &&
- device->properties.limits.maxPushConstantsSize < sizeof(vk_op_conv_transpose_2d_push_constants)) {
- return false;
- }
- // Channel-contiguous format is not supported yet.
- return ((op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16) &&
- op->src[1]->type == GGML_TYPE_F32 &&
- op->type == GGML_TYPE_F32 &&
- ggml_is_contiguous(op->src[0]) &&
- ggml_is_contiguous(op->src[1]) &&
- ggml_is_contiguous(op));
- }
- default:
- return false;
- }
- UNUSED(dev);
- }
- static bool ggml_backend_vk_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
- if (buft->iface.get_name != ggml_backend_vk_buffer_type_name) {
- return false;
- }
- ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context;
- ggml_backend_vk_buffer_type_context * buft_ctx = (ggml_backend_vk_buffer_type_context *)buft->context;
- return buft_ctx->device->idx == ctx->device;
- }
- static bool ggml_backend_vk_device_offload_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
- const int min_batch_size = 32;
- return (op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS) ||
- (op->ne[2] >= min_batch_size && op->op == GGML_OP_MUL_MAT_ID);
- UNUSED(dev);
- }
- static const struct ggml_backend_device_i ggml_backend_vk_device_i = {
- /* .get_name = */ ggml_backend_vk_device_get_name,
- /* .get_description = */ ggml_backend_vk_device_get_description,
- /* .get_memory = */ ggml_backend_vk_device_get_memory,
- /* .get_type = */ ggml_backend_vk_device_get_type,
- /* .get_props = */ ggml_backend_vk_device_get_props,
- /* .init_backend = */ ggml_backend_vk_device_init,
- /* .get_buffer_type = */ ggml_backend_vk_device_get_buffer_type,
- /* .get_host_buffer_type = */ ggml_backend_vk_device_get_host_buffer_type,
- /* .buffer_from_host_ptr = */ NULL,
- /* .supports_op = */ ggml_backend_vk_device_supports_op,
- /* .supports_buft = */ ggml_backend_vk_device_supports_buft,
- /* .offload_op = */ ggml_backend_vk_device_offload_op,
- /* .event_new = */ NULL,
- /* .event_free = */ NULL,
- /* .event_synchronize = */ NULL,
- };
- static const char * ggml_backend_vk_reg_get_name(ggml_backend_reg_t reg) {
- UNUSED(reg);
- return GGML_VK_NAME;
- }
- static size_t ggml_backend_vk_reg_get_device_count(ggml_backend_reg_t reg) {
- UNUSED(reg);
- return ggml_backend_vk_get_device_count();
- }
- static ggml_backend_dev_t ggml_backend_vk_reg_get_device(ggml_backend_reg_t reg, size_t device) {
- static std::vector<ggml_backend_dev_t> devices;
- static bool initialized = false;
- {
- static std::mutex mutex;
- std::lock_guard<std::mutex> lock(mutex);
- if (!initialized) {
- for (int i = 0; i < ggml_backend_vk_get_device_count(); i++) {
- ggml_backend_vk_device_context * ctx = new ggml_backend_vk_device_context;
- char desc[256];
- ggml_backend_vk_get_device_description(i, desc, sizeof(desc));
- ctx->device = i;
- ctx->name = GGML_VK_NAME + std::to_string(i);
- ctx->description = desc;
- ctx->is_integrated_gpu = ggml_backend_vk_get_device_type(i) == vk::PhysicalDeviceType::eIntegratedGpu;
- ctx->pci_bus_id = ggml_backend_vk_get_device_pci_id(i);
- devices.push_back(new ggml_backend_device {
- /* .iface = */ ggml_backend_vk_device_i,
- /* .reg = */ reg,
- /* .context = */ ctx,
- });
- }
- initialized = true;
- }
- }
- GGML_ASSERT(device < devices.size());
- return devices[device];
- }
- static const struct ggml_backend_reg_i ggml_backend_vk_reg_i = {
- /* .get_name = */ ggml_backend_vk_reg_get_name,
- /* .get_device_count = */ ggml_backend_vk_reg_get_device_count,
- /* .get_device = */ ggml_backend_vk_reg_get_device,
- /* .get_proc_address = */ NULL,
- };
- ggml_backend_reg_t ggml_backend_vk_reg() {
- static ggml_backend_reg reg = {
- /* .api_version = */ GGML_BACKEND_API_VERSION,
- /* .iface = */ ggml_backend_vk_reg_i,
- /* .context = */ nullptr,
- };
- try {
- ggml_vk_instance_init();
- return ®
- } catch (const vk::SystemError& e) {
- VK_LOG_DEBUG("ggml_backend_vk_reg() -> Error: System error: " << e.what());
- return nullptr;
- } catch (const std::exception &e) {
- VK_LOG_DEBUG("ggml_backend_vk_reg() -> Error: " << e.what());
- return nullptr;
- } catch (...) {
- VK_LOG_DEBUG("ggml_backend_vk_reg() -> Error: unknown exception during Vulkan init");
- return nullptr;
- }
- }
- // Extension availability
- static bool ggml_vk_instance_validation_ext_available() {
- #ifdef GGML_VULKAN_VALIDATE
- // Check if validation layer provides the extension
- const std::string layer_name = "VK_LAYER_KHRONOS_validation";
- for (const auto& layer : vk::enumerateInstanceLayerProperties()) {
- if (layer_name == layer.layerName.data()) {
- for (const auto& ext : vk::enumerateInstanceExtensionProperties(layer_name)) {
- if (strcmp("VK_EXT_validation_features", ext.extensionName.data()) == 0) {
- return true;
- }
- }
- }
- }
- std::cerr << "ggml_vulkan: WARNING: Validation layer or layer extension VK_EXT_validation_features not found." << std::endl;
- #endif
- return false;
- }
- static bool ggml_vk_instance_portability_enumeration_ext_available(const std::vector<vk::ExtensionProperties>& instance_extensions) {
- #ifdef __APPLE__
- // Check for portability enumeration extension for MoltenVK support
- for (const auto& properties : instance_extensions) {
- if (strcmp("VK_KHR_portability_enumeration", properties.extensionName) == 0) {
- return true;
- }
- }
- std::cerr << "ggml_vulkan: WARNING: Instance extension VK_KHR_portability_enumeration not found." << std::endl;
- #endif
- return false;
- UNUSED(instance_extensions);
- }
- // Extension availability
- static bool ggml_vk_instance_debug_utils_ext_available(
- const std::vector<vk::ExtensionProperties> & instance_extensions) {
- // Check for portability enumeration extension for MoltenVK support
- for (const auto & properties : instance_extensions) {
- if (strcmp("VK_EXT_debug_utils", properties.extensionName) == 0) {
- return true;
- }
- }
- std::cerr << "ggml_vulkan: WARNING: Instance extension VK_EXT_debug_utils not found." << std::endl;
- return false;
- UNUSED(instance_extensions);
- }
- static bool ggml_vk_device_is_supported(const vk::PhysicalDevice & vkdev) {
- VkPhysicalDeviceFeatures2 device_features2;
- device_features2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2;
- VkPhysicalDeviceVulkan11Features vk11_features;
- vk11_features.pNext = nullptr;
- vk11_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES;
- device_features2.pNext = &vk11_features;
- vkGetPhysicalDeviceFeatures2(vkdev, &device_features2);
- return vk11_features.storageBuffer16BitAccess;
- }
- static bool ggml_vk_khr_cooperative_matrix_support(const vk::PhysicalDeviceProperties& props, const vk::PhysicalDeviceDriverProperties& driver_props, vk_device_architecture arch) {
- switch (props.vendorID) {
- case VK_VENDOR_ID_INTEL:
- // Only allowing Xe2 GPU at the moment since Xe2 GPU can gain significant performance boost,
- // while some older hardware (ex. Arc A770) has performance regressions
- return arch == vk_device_architecture::INTEL_XE2;
- case VK_VENDOR_ID_AMD:
- if (driver_props.driverID == vk::DriverId::eAmdProprietary || driver_props.driverID == vk::DriverId::eAmdOpenSource) {
- // Workaround for AMD proprietary driver reporting support on all GPUs
- return arch == vk_device_architecture::AMD_RDNA3;
- }
- return true;
- default:
- return true;
- }
- }
- // checks
- #ifdef GGML_VULKAN_CHECK_RESULTS
- static void ggml_vk_print_graph_origin(const ggml_tensor * tensor, std::vector<const ggml_tensor *>& done, int level = 0) {
- if (std::find(done.begin(), done.end(), tensor) != done.end() || level > 10) {
- return;
- }
- for (int j = 0; j < level; j++) {
- std::cerr << " ";
- }
- std::cerr << ggml_op_name(tensor->op) << " gpu=" << (tensor->extra != nullptr) << std::endl;
- done.push_back(tensor);
- for (int i = 0; i < GGML_MAX_SRC; i++) {
- if (tensor->src[i] != nullptr) {
- ggml_vk_print_graph_origin(tensor->src[i], done, level + 1);
- }
- }
- }
- static void ggml_vk_print_tensor_area(const ggml_tensor * tensor, const void * data, int i0, int i1, int i2, int i3) {
- if (tensor->type != GGML_TYPE_F32 && tensor->type != GGML_TYPE_F16 && tensor->type != GGML_TYPE_I32) {
- return;
- }
- i0 = std::max(i0, 5);
- i1 = std::max(i1, 5);
- i2 = std::max(i2, 0);
- i3 = std::max(i3, 0);
- fprintf(stderr, " ");
- for (int idx1 = i1 - 5; idx1 < i1 + 5; idx1++) {
- fprintf(stderr, "%7d ", idx1);
- }
- fprintf(stderr, "\n");
- for (int idx0 = i0 - 5; idx0 < i0 + 5; idx0++) {
- fprintf(stderr, "%7d: ", idx0);
- for (int idx1 = i1 - 5; idx1 < i1 + 5; idx1++) {
- if (idx0 >= 0 && idx0 < tensor->ne[0] && idx1 >= 0 && idx1 < tensor->ne[1] && i2 >= 0 && i2 < tensor->ne[2] && i3 >= 0 && i3 < tensor->ne[3]) {
- float val;
- if (tensor->type == GGML_TYPE_F32) {
- val = *(const float *) ((const char *) data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0]);
- } else if (tensor->type == GGML_TYPE_F16) {
- val = ggml_fp16_to_fp32(*(const ggml_fp16_t *) ((const char *) data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0]));
- } else if (tensor->type == GGML_TYPE_I32) {
- val = *(const int32_t *) ((const char *) data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0]);
- } else {
- GGML_ABORT("fatal error");
- }
- fprintf(stderr, "% 7.2f ", val);
- } else {
- fprintf(stderr, " ");
- }
- }
- fprintf(stderr, "\n");
- }
- }
- static void ggml_vk_print_tensor(const ggml_tensor * tensor, const char * name) {
- void * tensor_data = tensor->data;
- const bool is_gpu = tensor->buffer != nullptr && ggml_backend_buffer_is_vk(tensor->buffer);
- if (is_gpu) {
- const size_t tensor_size = ggml_nbytes(tensor);
- tensor_data = malloc(tensor_size);
- ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)tensor->buffer->context;
- vk_buffer buffer_gpu = buf_ctx->dev_buffer;
- ggml_vk_buffer_read(buffer_gpu, vk_tensor_offset(tensor) + tensor->view_offs, tensor_data, tensor_size);
- }
- std::cerr << "TENSOR CHECK " << name << " (" << tensor->name << "): " << ggml_op_name(tensor->op) << std::endl;
- std::cerr << "tensor=" << tensor << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << std::endl;
- if (tensor->src[0] != nullptr) {
- std::cerr << "tensor->src[0]=" << tensor->src[0] << " name=" << tensor->src[0]->name << " op=" << ggml_op_name(tensor->src[0]->op) << " type=" << ggml_type_name(tensor->src[0]->type) << " ne0=" << tensor->src[0]->ne[0] << " nb0=" << tensor->src[0]->nb[0] << " ne1=" << tensor->src[0]->ne[1] << " nb1=" << tensor->src[0]->nb[1] << " ne2=" << tensor->src[0]->ne[2] << " nb2=" << tensor->src[0]->nb[2] << " ne3=" << tensor->src[0]->ne[3] << " nb3=" << tensor->src[0]->nb[3] << std::endl;
- }
- if (tensor->src[1] != nullptr) {
- std::cerr << "tensor->src[1]=" << tensor->src[1] << " name=" << tensor->src[1]->name << " op=" << ggml_op_name(tensor->src[1]->op) << " type=" << ggml_type_name(tensor->src[1]->type) << " ne0=" << tensor->src[1]->ne[0] << " nb0=" << tensor->src[1]->nb[0] << " ne1=" << tensor->src[1]->ne[1] << " nb1=" << tensor->src[1]->nb[1] << " ne2=" << tensor->src[1]->ne[2] << " nb2=" << tensor->src[1]->nb[2] << " ne3=" << tensor->src[1]->ne[3] << " nb3=" << tensor->src[1]->nb[3] << std::endl;
- }
- std::cerr << std::endl << "Result:" << std::endl;
- ggml_vk_print_tensor_area(tensor, tensor_data, 5, 5, 0, 0);
- std::cerr << std::endl;
- std::vector<const ggml_tensor *> done;
- ggml_vk_print_graph_origin(tensor, done);
- if (is_gpu) {
- free(tensor_data);
- }
- }
- void * comp_result;
- size_t comp_size;
- size_t comp_nb[GGML_MAX_DIMS];
- size_t check_counter = 0;
- static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_cgraph * cgraph, int tensor_idx) {
- ggml_tensor * tensor = cgraph->nodes[tensor_idx + ctx->num_additional_fused_ops];
- if (tensor->op == GGML_OP_TRANSPOSE || tensor->op == GGML_OP_SET_ROWS) {
- return;
- }
- check_counter++;
- if (!(vk_output_tensor > 0 && vk_output_tensor == check_counter) && check_counter <= vk_skip_checks) {
- return;
- }
- VK_LOG_DEBUG("ggml_vk_check_results_0(" << tensor->name << ")");
- struct ggml_init_params iparams = {
- /*.mem_size =*/ 2ul*1024ul*1024ul*1024ul,
- /*.mem_buffer =*/ NULL,
- /*.no_alloc =*/ false,
- };
- struct ggml_context * ggml_ctx = ggml_init(iparams);
- std::array<struct ggml_tensor *, GGML_MAX_SRC> src_clone = {nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr};
- const char * srci_name[GGML_MAX_SRC] = {"src0", "src1", "src2", "src3", "src4", "src5", "src6", "src7", "src8", "src9"};
- std::map<ggml_tensor *, ggml_tensor *> cloned_tensors;
- std::vector<void *> cloned_mallocs;
- struct ggml_tensor * tensor_clone = nullptr;
- for (int f = 0; f < ctx->num_additional_fused_ops + 1; ++f) {
- tensor = cgraph->nodes[tensor_idx + f];
- for (int i = 0; i < GGML_MAX_SRC; i++) {
- ggml_tensor * srci = tensor->src[i];
- if (srci == nullptr) {
- continue;
- }
- // If a src tensor has been cloned, use that one
- auto it = cloned_tensors.find(srci);
- if (it != cloned_tensors.end()) {
- src_clone[i] = it->second;
- continue;
- }
- ggml_tensor * srci_clone = ggml_dup_tensor(ggml_ctx, srci);
- size_t srci_size = ggml_nbytes(srci);
- src_clone[i] = srci_clone;
- void *src_buffer = malloc(srci_size);
- cloned_mallocs.push_back(src_buffer);
- srci_clone->data = src_buffer;
- if (ggml_backend_buffer_is_host(srci->buffer)) {
- memcpy(srci_clone->data, srci->data, srci_size);
- memcpy(srci_clone->nb, srci->nb, sizeof(size_t) * GGML_MAX_DIMS);
- } else if (ggml_backend_buffer_is_vk(srci->buffer)) {
- ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)srci->buffer->context;
- vk_buffer& buffer_gpu = buf_ctx->dev_buffer;
- uint64_t offset = vk_tensor_offset(srci) + srci->view_offs;
- if (!ggml_is_contiguous(srci) && ggml_vk_dim01_contiguous(srci)) {
- for (int i3 = 0; i3 < srci->ne[3]; i3++) {
- for (int i2 = 0; i2 < srci->ne[2]; i2++) {
- const int idx = i3*srci->ne[2] + i2;
- ggml_vk_buffer_read(buffer_gpu, offset + idx * srci->nb[2], ((char *)srci_clone->data + idx * srci_clone->nb[2]), srci->ne[1] * srci->nb[1]);
- }
- }
- srci_clone->nb[0] = srci->nb[0];
- srci_clone->nb[1] = srci->nb[1];
- for (int i = 2; i < GGML_MAX_DIMS; i++) {
- srci_clone->nb[i] = srci_clone->nb[i - 1]*srci_clone->ne[i - 1];
- }
- } else {
- if (offset + srci_size >= buffer_gpu->size) {
- srci_size = buffer_gpu->size - offset;
- }
- ggml_vk_buffer_read(buffer_gpu, offset, srci_clone->data, srci_size);
- memcpy(srci_clone->nb, srci->nb, sizeof(size_t) * GGML_MAX_DIMS);
- }
- } else {
- GGML_ABORT("fatal error");
- }
- if (vk_output_tensor > 0 && vk_output_tensor == check_counter) {
- ggml_vk_print_tensor(srci, srci_name[i]);
- }
- }
- if (tensor->op == GGML_OP_FLASH_ATTN_EXT) {
- const float * params = (const float *)tensor->op_params;
- tensor_clone = ggml_flash_attn_ext(ggml_ctx, src_clone[0], src_clone[1], src_clone[2], src_clone[3], params[0], params[1], params[2]);
- if (src_clone[4]) {
- ggml_flash_attn_ext_add_sinks(tensor_clone, src_clone[4]);
- }
- } else if (tensor->op == GGML_OP_MUL_MAT) {
- tensor_clone = ggml_mul_mat(ggml_ctx, src_clone[0], src_clone[1]);
- } else if (tensor->op == GGML_OP_MUL_MAT_ID) {
- tensor_clone = ggml_mul_mat_id(ggml_ctx, src_clone[0], src_clone[1], src_clone[2]);
- } else if (tensor->op == GGML_OP_SUB) {
- tensor_clone = ggml_sub(ggml_ctx, src_clone[0], src_clone[1]);
- } else if (tensor->op == GGML_OP_MUL) {
- tensor_clone = ggml_mul(ggml_ctx, src_clone[0], src_clone[1]);
- } else if (tensor->op == GGML_OP_DIV) {
- tensor_clone = ggml_div(ggml_ctx, src_clone[0], src_clone[1]);
- } else if (tensor->op == GGML_OP_CONCAT) {
- tensor_clone = ggml_concat(ggml_ctx, src_clone[0], src_clone[1], *(int *)tensor->op_params);
- } else if (tensor->op == GGML_OP_UPSCALE) {
- tensor_clone = ggml_interpolate(ggml_ctx, src_clone[0], tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3], (ggml_scale_mode) tensor->op_params[0]);
- } else if (tensor->op == GGML_OP_SCALE) {
- const float * params = (const float *)tensor->op_params;
- tensor_clone = ggml_scale_bias(ggml_ctx, src_clone[0], params[0], params[1]);
- } else if (tensor->op == GGML_OP_ADD1) {
- tensor_clone = ggml_add1(ggml_ctx, src_clone[0], src_clone[1]);
- } else if (tensor->op == GGML_OP_ARANGE) {
- const float start = ggml_get_op_params_f32(tensor, 0);
- const float stop = ggml_get_op_params_f32(tensor, 1);
- const float step = ggml_get_op_params_f32(tensor, 2);
- tensor_clone = ggml_arange(ggml_ctx, start, stop, step);
- } else if (tensor->op == GGML_OP_FILL) {
- const float value = ggml_get_op_params_f32(tensor, 0);
- tensor_clone = ggml_fill(ggml_ctx, tensor_clone, value);
- } else if (tensor->op == GGML_OP_SQR) {
- tensor_clone = ggml_sqr(ggml_ctx, src_clone[0]);
- } else if (tensor->op == GGML_OP_SQRT) {
- tensor_clone = ggml_sqrt(ggml_ctx, src_clone[0]);
- } else if (tensor->op == GGML_OP_SIN) {
- tensor_clone = ggml_sin(ggml_ctx, src_clone[0]);
- } else if (tensor->op == GGML_OP_COS) {
- tensor_clone = ggml_cos(ggml_ctx, src_clone[0]);
- } else if (tensor->op == GGML_OP_LOG) {
- tensor_clone = ggml_log(ggml_ctx, src_clone[0]);
- } else if (tensor->op == GGML_OP_CLAMP) {
- const float * params = (const float *)tensor->op_params;
- tensor_clone = ggml_clamp(ggml_ctx, src_clone[0], params[0], params[1]);
- } else if (tensor->op == GGML_OP_PAD) {
- tensor_clone = ggml_pad_ext(ggml_ctx, src_clone[0], tensor->op_params[0], tensor->op_params[1], tensor->op_params[2], tensor->op_params[3],
- tensor->op_params[4], tensor->op_params[5], tensor->op_params[6], tensor->op_params[7]);
- } else if (tensor->op == GGML_OP_REPEAT) {
- tensor_clone = ggml_repeat(ggml_ctx, src_clone[0], tensor);
- } else if (tensor->op == GGML_OP_REPEAT_BACK) {
- tensor_clone = ggml_repeat_back(ggml_ctx, src_clone[0], tensor);
- } else if (tensor->op == GGML_OP_ADD) {
- tensor_clone = ggml_add(ggml_ctx, src_clone[0], src_clone[1]);
- } else if (tensor->op == GGML_OP_ACC) {
- tensor_clone = ggml_acc(ggml_ctx, src_clone[0], src_clone[1], tensor->op_params[0], tensor->op_params[1], tensor->op_params[2], tensor->op_params[3]);
- } else if (tensor->op == GGML_OP_NORM) {
- tensor_clone = ggml_norm(ggml_ctx, src_clone[0], *(float *)tensor->op_params);
- } else if (tensor->op == GGML_OP_GROUP_NORM) {
- const float * float_params = (const float *)tensor->op_params;
- tensor_clone = ggml_group_norm(ggml_ctx, src_clone[0], tensor->op_params[0], float_params[1]);
- } else if (tensor->op == GGML_OP_RMS_NORM) {
- tensor_clone = ggml_rms_norm(ggml_ctx, src_clone[0], *(float *)tensor->op_params);
- } else if (tensor->op == GGML_OP_RMS_NORM_BACK) {
- const float eps = ((float *) tensor->op_params)[0];
- tensor_clone = ggml_rms_norm_back(ggml_ctx, src_clone[0], src_clone[1], eps);
- } else if (tensor->op == GGML_OP_SILU_BACK) {
- tensor_clone = ggml_silu_back(ggml_ctx, src_clone[0], src_clone[1]);
- } else if (tensor->op == GGML_OP_L2_NORM) {
- const float eps = ((float *) tensor->op_params)[0];
- tensor_clone = ggml_l2_norm(ggml_ctx, src_clone[0], eps);
- } else if (tensor->op == GGML_OP_SOFT_MAX) {
- if (tensor->src[1] != nullptr) {
- const float * params = (const float *)tensor->op_params;
- tensor_clone = ggml_soft_max_ext(ggml_ctx, src_clone[0], src_clone[1], params[0], params[1]);
- } else {
- tensor_clone = ggml_soft_max(ggml_ctx, src_clone[0]);
- }
- } else if (tensor->op == GGML_OP_SOFT_MAX_BACK) {
- tensor_clone = ggml_soft_max_ext_back(ggml_ctx, src_clone[0], src_clone[1], ((float *)tensor->op_params)[0], ((float *)tensor->op_params)[1]);
- } else if (tensor->op == GGML_OP_DIAG_MASK_INF) {
- tensor_clone = ggml_diag_mask_inf(ggml_ctx, src_clone[0], tensor->op_params[0]);
- } else if (tensor->op == GGML_OP_ROPE || tensor->op == GGML_OP_ROPE_BACK) {
- const int n_dims = ((int32_t *) tensor->op_params)[1];
- const int mode = ((int32_t *) tensor->op_params)[2];
- //const int n_ctx_ggml = ((int32_t *) tensor->op_params)[3];
- const int n_ctx_orig_ggml = ((int32_t *) tensor->op_params)[4];
- const float freq_base = ((float *) tensor->op_params)[5];
- const float freq_scale = ((float *) tensor->op_params)[6];
- const float ext_factor = ((float *) tensor->op_params)[7];
- const float attn_factor = ((float *) tensor->op_params)[8];
- const float beta_fast = ((float *) tensor->op_params)[9];
- const float beta_slow = ((float *) tensor->op_params)[10];
- if (mode & GGML_ROPE_TYPE_MROPE) {
- int32_t *sections = ((int32_t *) tensor->op_params) + 11;
- if (tensor->op == GGML_OP_ROPE) {
- tensor_clone = ggml_rope_multi(ggml_ctx, src_clone[0], src_clone[1], src_clone[2], n_dims, sections, mode, n_ctx_orig_ggml, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow);
- } else {
- tensor_clone = ggml_rope_multi_back(ggml_ctx, src_clone[0], src_clone[1], src_clone[2], n_dims, sections, mode, n_ctx_orig_ggml, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow);
- }
- } else {
- if (tensor->op == GGML_OP_ROPE) {
- tensor_clone = ggml_rope_ext(ggml_ctx, src_clone[0], src_clone[1], src_clone[2], n_dims, mode, n_ctx_orig_ggml, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow);
- } else {
- tensor_clone = ggml_rope_ext_back(ggml_ctx, src_clone[0], src_clone[1], src_clone[2], n_dims, mode, n_ctx_orig_ggml, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow);
- }
- }
- } else if (tensor->op == GGML_OP_UNARY) {
- switch (ggml_get_unary_op(tensor)) {
- case GGML_UNARY_OP_EXP:
- tensor_clone = ggml_exp(ggml_ctx, src_clone[0]);
- break;
- case GGML_UNARY_OP_SILU:
- tensor_clone = ggml_silu(ggml_ctx, src_clone[0]);
- break;
- case GGML_UNARY_OP_GELU:
- tensor_clone = ggml_gelu(ggml_ctx, src_clone[0]);
- break;
- case GGML_UNARY_OP_GELU_ERF:
- tensor_clone = ggml_gelu_erf(ggml_ctx, src_clone[0]);
- break;
- case GGML_UNARY_OP_GELU_QUICK:
- tensor_clone = ggml_gelu_quick(ggml_ctx, src_clone[0]);
- break;
- case GGML_UNARY_OP_RELU:
- tensor_clone = ggml_relu(ggml_ctx, src_clone[0]);
- break;
- case GGML_UNARY_OP_NEG:
- tensor_clone = ggml_neg(ggml_ctx, src_clone[0]);
- break;
- case GGML_UNARY_OP_TANH:
- tensor_clone = ggml_tanh(ggml_ctx, src_clone[0]);
- break;
- case GGML_UNARY_OP_SIGMOID:
- tensor_clone = ggml_sigmoid(ggml_ctx, src_clone[0]);
- break;
- case GGML_UNARY_OP_HARDSIGMOID:
- tensor_clone = ggml_hardsigmoid(ggml_ctx, src_clone[0]);
- break;
- case GGML_UNARY_OP_HARDSWISH:
- tensor_clone = ggml_hardswish(ggml_ctx, src_clone[0]);
- break;
- case GGML_UNARY_OP_ABS:
- tensor_clone = ggml_abs(ggml_ctx, src_clone[0]);
- break;
- case GGML_UNARY_OP_SOFTPLUS:
- tensor_clone = ggml_softplus(ggml_ctx, src_clone[0]);
- break;
- case GGML_UNARY_OP_STEP:
- tensor_clone = ggml_step(ggml_ctx, src_clone[0]);
- break;
- case GGML_UNARY_OP_ROUND:
- tensor_clone = ggml_round(ggml_ctx, src_clone[0]);
- break;
- case GGML_UNARY_OP_CEIL:
- tensor_clone = ggml_ceil(ggml_ctx, src_clone[0]);
- break;
- case GGML_UNARY_OP_FLOOR:
- tensor_clone = ggml_floor(ggml_ctx, src_clone[0]);
- break;
- case GGML_UNARY_OP_TRUNC:
- tensor_clone = ggml_trunc(ggml_ctx, src_clone[0]);
- break;
- default:
- std::cerr << "Missing vk_check_results OP: " << ggml_op_name(tensor->op) << std::endl;
- GGML_ABORT("fatal error");
- }
- } else if (tensor->op == GGML_OP_GLU) {
- if (src_clone[1] == nullptr) {
- tensor_clone = ggml_glu(ggml_ctx, src_clone[0], (ggml_glu_op) tensor->op_params[0], tensor->op_params[1]);
- } else {
- tensor_clone = ggml_glu_split(ggml_ctx, src_clone[0], src_clone[1], (ggml_glu_op) tensor->op_params[0]);
- }
- ggml_set_op_params_i32(tensor_clone, 2, ggml_get_op_params_i32(tensor, 2));
- ggml_set_op_params_i32(tensor_clone, 3, ggml_get_op_params_i32(tensor, 3));
- } else if (tensor->op == GGML_OP_CPY || tensor->op == GGML_OP_DUP) {
- if (tensor->src[1] == nullptr) {
- tensor_clone = ggml_dup(ggml_ctx, src_clone[0]);
- tensor_clone->type = tensor->type;
- } else {
- tensor_clone = ggml_cpy(ggml_ctx, src_clone[0], src_clone[1]);
- }
- } else if (tensor->op == GGML_OP_CONT) {
- tensor_clone = ggml_cont_4d(ggml_ctx, src_clone[0], tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]);
- } else if (tensor->op == GGML_OP_RESHAPE) {
- tensor_clone = ggml_reshape_4d(ggml_ctx, src_clone[0], tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]);
- } else if (tensor->op == GGML_OP_VIEW) {
- tensor_clone = ggml_view_4d(ggml_ctx, src_clone[0], tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3], tensor->nb[1], tensor->nb[2], tensor->nb[3], ((int32_t *) tensor->op_params)[0]);
- } else if (tensor->op == GGML_OP_PERMUTE) {
- int32_t * params = (int32_t *)tensor->op_params;
- tensor_clone = ggml_permute(ggml_ctx, src_clone[0], params[0], params[1], params[2], params[3]);
- } else if (tensor->op == GGML_OP_TRANSPOSE) {
- tensor_clone = ggml_transpose(ggml_ctx, src_clone[0]);
- } else if (tensor->op == GGML_OP_GET_ROWS) {
- tensor_clone = ggml_get_rows(ggml_ctx, src_clone[0], src_clone[1]);
- } else if (tensor->op == GGML_OP_ARGSORT) {
- tensor_clone = ggml_argsort(ggml_ctx, src_clone[0], (ggml_sort_order) *(int *)tensor->op_params);
- } else if (tensor->op == GGML_OP_SUM) {
- tensor_clone = ggml_sum(ggml_ctx, src_clone[0]);
- } else if (tensor->op == GGML_OP_SUM_ROWS) {
- tensor_clone = ggml_sum_rows(ggml_ctx, src_clone[0]);
- } else if (tensor->op == GGML_OP_MEAN) {
- tensor_clone = ggml_mean(ggml_ctx, src_clone[0]);
- } else if (tensor->op == GGML_OP_ARGMAX) {
- tensor_clone = ggml_argmax(ggml_ctx, src_clone[0]);
- } else if (tensor->op == GGML_OP_COUNT_EQUAL) {
- tensor_clone = ggml_count_equal(ggml_ctx, src_clone[0], src_clone[1]);
- } else if (tensor->op == GGML_OP_IM2COL) {
- const int32_t s0 = tensor->op_params[0];
- const int32_t s1 = tensor->op_params[1];
- const int32_t p0 = tensor->op_params[2];
- const int32_t p1 = tensor->op_params[3];
- const int32_t d0 = tensor->op_params[4];
- const int32_t d1 = tensor->op_params[5];
- const bool is_2D = tensor->op_params[6] == 1;
- tensor_clone = ggml_im2col(ggml_ctx, src_clone[0], src_clone[1], s0, s1, p0, p1, d0, d1, is_2D, tensor->type);
- } else if (tensor->op == GGML_OP_IM2COL_3D) {
- const int32_t s0 = tensor->op_params[0];
- const int32_t s1 = tensor->op_params[1];
- const int32_t s2 = tensor->op_params[2];
- const int32_t p0 = tensor->op_params[3];
- const int32_t p1 = tensor->op_params[4];
- const int32_t p2 = tensor->op_params[5];
- const int32_t d0 = tensor->op_params[6];
- const int32_t d1 = tensor->op_params[7];
- const int32_t d2 = tensor->op_params[8];
- const int32_t IC = tensor->op_params[9];
- tensor_clone = ggml_im2col_3d(ggml_ctx, src_clone[0], src_clone[1], IC, s0, s1, s2, p0, p1, p2, d0, d1, d2, tensor->type);
- } else if (tensor->op == GGML_OP_TIMESTEP_EMBEDDING) {
- const int32_t dim = tensor->op_params[0];
- const int32_t max_period = tensor->op_params[1];
- tensor_clone = ggml_timestep_embedding(ggml_ctx, src_clone[0], dim, max_period);
- } else if (tensor->op == GGML_OP_CONV_TRANSPOSE_1D){
- const int32_t s0 = tensor->op_params[0];
- const int32_t p0 = tensor->op_params[1];
- const int32_t d0 = tensor->op_params[2];
- tensor_clone = ggml_conv_transpose_1d(ggml_ctx, src_clone[0], src_clone[1], s0, p0, d0);
- } else if (tensor->op == GGML_OP_POOL_2D) {
- enum ggml_op_pool op = static_cast<ggml_op_pool>(tensor->op_params[0]);
- const int32_t k0 = tensor->op_params[1];
- const int32_t k1 = tensor->op_params[2];
- const int32_t s0 = tensor->op_params[3];
- const int32_t s1 = tensor->op_params[4];
- const int32_t p0 = tensor->op_params[5];
- const int32_t p1 = tensor->op_params[6];
- tensor_clone = ggml_pool_2d(ggml_ctx, src_clone[0], op, k0, k1, s0, s1, p0, p1);
- } else if (tensor->op == GGML_OP_CONV_2D) {
- const int32_t s0 = tensor->op_params[0];
- const int32_t s1 = tensor->op_params[1];
- const int32_t p0 = tensor->op_params[2];
- const int32_t p1 = tensor->op_params[3];
- const int32_t d0 = tensor->op_params[4];
- const int32_t d1 = tensor->op_params[5];
- tensor_clone = ggml_conv_2d(ggml_ctx, src_clone[0], src_clone[1], s0, s1, p0, p1, d0, d1);
- } else if (tensor->op == GGML_OP_CONV_2D_DW) {
- const int32_t s0 = tensor->op_params[0];
- const int32_t s1 = tensor->op_params[1];
- const int32_t p0 = tensor->op_params[2];
- const int32_t p1 = tensor->op_params[3];
- const int32_t d0 = tensor->op_params[4];
- const int32_t d1 = tensor->op_params[5];
- tensor_clone = ggml_conv_2d_dw_direct(ggml_ctx, src_clone[0], src_clone[1], s0, s1, p0, p1, d0, d1);
- } else if (tensor->op == GGML_OP_CONV_TRANSPOSE_2D) {
- const int32_t s = tensor->op_params[0];
- tensor_clone = ggml_conv_transpose_2d_p0(ggml_ctx, src_clone[0], src_clone[1], s);
- } else if (tensor->op == GGML_OP_LEAKY_RELU) {
- const float * op_params = (const float *)tensor->op_params;
- tensor_clone = ggml_leaky_relu(ggml_ctx, src_clone[0], op_params[0], false);
- } else if (tensor->op == GGML_OP_RWKV_WKV6) {
- tensor_clone = ggml_rwkv_wkv6(ggml_ctx, src_clone[0], src_clone[1],
- src_clone[2], src_clone[3], src_clone[4], src_clone[5]);
- } else if (tensor->op == GGML_OP_RWKV_WKV7) {
- tensor_clone = ggml_rwkv_wkv7(ggml_ctx, src_clone[0], src_clone[1], src_clone[2], src_clone[3],
- src_clone[4], src_clone[5], src_clone[6]);
- } else if (tensor->op == GGML_OP_OPT_STEP_ADAMW) {
- src_clone[0]->flags = tensor->src[0]->flags;
- tensor_clone = ggml_opt_step_adamw(ggml_ctx, src_clone[0], src_clone[1],
- src_clone[2], src_clone[3], src_clone[4]);
- } else if (tensor->op == GGML_OP_OPT_STEP_SGD) {
- src_clone[0]->flags = tensor->src[0]->flags;
- tensor_clone = ggml_opt_step_sgd(ggml_ctx, src_clone[0], src_clone[1],
- src_clone[2]);
- } else if (tensor->op == GGML_OP_ADD_ID) {
- tensor_clone = ggml_add_id(ggml_ctx, src_clone[0], src_clone[1], src_clone[2]);
- } else if (tensor->op == GGML_OP_SSM_SCAN) {
- tensor_clone = ggml_ssm_scan(ggml_ctx, src_clone[0], src_clone[1], src_clone[2],
- src_clone[3], src_clone[4], src_clone[5], src_clone[6]);
- } else if (tensor->op == GGML_OP_SSM_CONV) {
- tensor_clone = ggml_ssm_conv(ggml_ctx, src_clone[0], src_clone[1]);
- } else if (tensor->op == GGML_OP_ROLL) {
- const int32_t s0 = tensor->op_params[0];
- const int32_t s1 = tensor->op_params[1];
- const int32_t s2 = tensor->op_params[2];
- const int32_t s3 = tensor->op_params[3];
- tensor_clone = ggml_roll(ggml_ctx, src_clone[0], s0, s1, s2, s3);
- }
- else {
- std::cerr << "Missing vk_check_results OP: " << ggml_op_name(tensor->op) << std::endl;
- GGML_ABORT("fatal error");
- }
- cloned_tensors[tensor] = tensor_clone;
- }
- ggml_cgraph * cgraph_cpu = ggml_new_graph(ggml_ctx);
- ggml_build_forward_expand(cgraph_cpu, tensor_clone);
- ggml_graph_compute_with_ctx(ggml_ctx, cgraph_cpu, 8);
- if (vk_output_tensor > 0 && vk_output_tensor == check_counter) {
- ggml_vk_print_tensor(tensor_clone, "tensor_clone");
- }
- comp_size = ggml_nbytes(tensor_clone);
- comp_result = malloc(comp_size);
- memcpy(comp_result, tensor_clone->data, comp_size);
- memcpy(comp_nb, tensor_clone->nb, sizeof(size_t) * GGML_MAX_DIMS);
- for (auto m : cloned_mallocs) {
- free(m);
- }
- ggml_free(ggml_ctx);
- VK_LOG_DEBUG("END ggml_vk_check_results_0(" << tensor->name << ")");
- }
- static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_cgraph * cgraph, int tensor_idx) {
- ggml_tensor * tensor = cgraph->nodes[tensor_idx + ctx->num_additional_fused_ops];
- if (tensor->op == GGML_OP_TRANSPOSE || tensor->op == GGML_OP_SET_ROWS) {
- return;
- }
- if (!(vk_output_tensor > 0 && vk_output_tensor == check_counter) && check_counter <= vk_skip_checks) {
- return;
- }
- VK_LOG_DEBUG("ggml_vk_check_results_1(" << tensor->name << ")");
- ggml_tensor * src0 = tensor->src[0];
- ggml_tensor * src1 = tensor->src[1];
- ggml_tensor * src2 = tensor->src[2];
- ggml_tensor * src3 = tensor->src[3];
- void * tensor_data = tensor->data;
- if (ggml_backend_buffer_is_vk(tensor->buffer)) {
- size_t tensor_size = ggml_nbytes(tensor);
- tensor_data = malloc(tensor_size);
- ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)tensor->buffer->context;
- vk_buffer& buffer_gpu = buf_ctx->dev_buffer;
- uint64_t offset = vk_tensor_offset(tensor) + tensor->view_offs;
- if (offset + tensor_size >= buffer_gpu->size) {
- tensor_size = buffer_gpu->size - offset;
- }
- ggml_vk_buffer_read(buffer_gpu, offset, tensor_data, tensor_size);
- }
- float first_error_result = -1.0f;
- float first_error_correct = -1.0f;
- std::array<int, 4> first_error = { -1, -1, -1, -1 };
- double avg_err = 0.0;
- size_t counter = 0;
- for (int i3 = 0; i3 < tensor->ne[3]; i3++) {
- for (int i2 = 0; i2 < tensor->ne[2]; i2++) {
- for (int i1 = 0; i1 < tensor->ne[1]; i1++) {
- for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
- const bool buffer_size_fit = i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0] < comp_size;
- float correct = 0.0f;
- float result = 0.0f;
- if (buffer_size_fit) {
- if (tensor->type == GGML_TYPE_F32) {
- correct = *(float *) ((char *) comp_result + i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0]);
- result = *(float *) ((char *) tensor_data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]);
- } else if (tensor->type == GGML_TYPE_F16) {
- correct = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) comp_result + i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0]));
- result = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) tensor_data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]));
- } else if (tensor->type == GGML_TYPE_BF16) {
- correct = ggml_bf16_to_fp32(*(ggml_bf16_t *) ((char *) comp_result + i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0]));
- result = ggml_bf16_to_fp32(*(ggml_bf16_t *) ((char *) tensor_data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]));
- } else if (tensor->type == GGML_TYPE_I32) {
- correct = *(int32_t *) ((char *) comp_result + i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0]);
- result = *(int32_t *) ((char *) tensor_data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]);
- } else if (tensor->type == GGML_TYPE_I64) {
- correct = *(int64_t *) ((char *) comp_result + i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0]);
- result = *(int64_t *) ((char *) tensor_data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]);
- } else {
- std::cerr << "Results check not implemented for type " << ggml_type_name(tensor->type) << std::endl;
- }
- } else {
- std::cerr << "Missing debug code for type " << ggml_type_name(tensor->type) << std::endl;
- GGML_ABORT("fatal error");
- }
- if ((std::isnan(correct) != std::isnan(result)) || (std::isinf(correct) != std::isinf(result)) || !buffer_size_fit) {
- std::cerr << "ERROR: Invalid value in " << ggml_op_name(tensor->op) << " i3=" << i3 << " i2=" << i2 << " i1=" << i1 << " i0=" << i0 << " result=" << result << " correct=" << correct << " avg_err=" << (avg_err / counter) << std::endl;
- std::cerr << "tensor=" << tensor << " tensor->name=" << tensor->name << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << " offset=" << tensor->view_offs << std::endl;
- if (src0 != nullptr) {
- std::cerr << "src0=" << src0 << " src0->name=" << src0->name << " op=" << ggml_op_name(src0->op) << " type=" << ggml_type_name(src0->type) << " ne0=" << src0->ne[0] << " nb0=" << src0->nb[0] << " ne1=" << src0->ne[1] << " nb1=" << src0->nb[1] << " ne2=" << src0->ne[2] << " nb2=" << src0->nb[2] << " ne3=" << src0->ne[3] << " nb3=" << src0->nb[3] << " offset=" << src0->view_offs << std::endl;
- }
- if (src1 != nullptr) {
- std::cerr << "src1=" << src1 << " src1->name=" << src1->name << " op=" << ggml_op_name(src1->op) << " type=" << ggml_type_name(src1->type) << " ne0=" << src1->ne[0] << " nb0=" << src1->nb[0] << " ne1=" << src1->ne[1] << " nb1=" << src1->nb[1] << " ne2=" << src1->ne[2] << " nb2=" << src1->nb[2] << " ne3=" << src1->ne[3] << " nb3=" << src1->nb[3] << " offset=" << src1->view_offs << std::endl;
- }
- if (src2 != nullptr) {
- std::cerr << "src2=" << src2 << " src2->name=" << src2->name << " op=" << ggml_op_name(src2->op) << " type=" << ggml_type_name(src2->type) << " ne0=" << src2->ne[0] << " nb0=" << src2->nb[0] << " ne1=" << src2->ne[1] << " nb1=" << src2->nb[1] << " ne2=" << src2->ne[2] << " nb2=" << src2->nb[2] << " ne3=" << src2->ne[3] << " nb3=" << src2->nb[3] << " offset=" << src2->view_offs << std::endl;
- }
- if (src3 != nullptr) {
- std::cerr << "src3=" << src3 << " src3->name=" << src3->name << " op=" << ggml_op_name(src3->op) << " type=" << ggml_type_name(src3->type) << " ne0=" << src3->ne[0] << " nb0=" << src3->nb[0] << " ne1=" << src3->ne[1] << " nb1=" << src3->nb[1] << " ne2=" << src3->ne[2] << " nb2=" << src3->nb[2] << " ne3=" << src3->ne[3] << " nb3=" << src3->nb[3] << " offset=" << src3->view_offs << std::endl;
- }
- std::cerr << "First error: result=" << first_error_result << " correct=" << first_error_correct << " i3=" << first_error[3] << " i2=" << first_error[2] << " i1=" << first_error[1] << " i0=" << first_error[0] << std::endl;
- std::cerr << std::endl << "Result:" << std::endl;
- ggml_vk_print_tensor_area(tensor, tensor_data, i0, i1, i2, i3);
- std::cerr << std::endl << "Correct:" << std::endl;
- ggml_vk_print_tensor_area(tensor, comp_result, i0, i1, i2, i3);
- std::cerr << std::endl;
- std::vector<const ggml_tensor *> done;
- ggml_vk_print_graph_origin(tensor, done);
- GGML_ABORT("fatal error");
- }
- const double denom = std::fabs(correct) > 1.0f ? (std::fabs(correct) > 1e-8 ? std::fabs(correct) : 1e-8) : 1.0f;
- if (first_error[0] == -1 && std::fabs(correct - result) / denom > 0.5) {
- first_error[0] = i0;
- first_error[1] = i1;
- first_error[2] = i2;
- first_error[3] = i3;
- first_error_result = result;
- first_error_correct = correct;
- }
- // Special case, value is infinite, avoid NaN result in avg_err
- // NaN also appears in results, if both are nan error is 0
- if (!std::isinf(correct) && !std::isinf(result) && !std::isnan(correct) && !std::isnan(result)) {
- avg_err += std::fabs(correct - result) / denom;
- }
- counter++;
- }
- }
- }
- }
- avg_err /= counter;
- if (vk_output_tensor > 0 && vk_output_tensor == check_counter) {
- std::cerr << "TENSOR CHECK: avg_err=" << avg_err << " in " << ggml_op_name(tensor->op) << " (check " << check_counter << ")" << std::endl;
- std::cerr << "tensor=" << tensor << " tensor->name=" << tensor->name << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << " offset=" << tensor->view_offs << std::endl;
- if (src0 != nullptr) {
- std::cerr << "src0=" << src0 << " op=" << ggml_op_name(src0->op) << " type=" << ggml_type_name(src0->type) << " ne0=" << src0->ne[0] << " nb0=" << src0->nb[0] << " ne1=" << src0->ne[1] << " nb1=" << src0->nb[1] << " ne2=" << src0->ne[2] << " nb2=" << src0->nb[2] << " ne3=" << src0->ne[3] << " nb3=" << src0->nb[3] << " offset=" << src0->view_offs << std::endl;
- }
- if (src1 != nullptr) {
- std::cerr << "src1=" << src1 << " op=" << ggml_op_name(src1->op) << " type=" << ggml_type_name(src1->type) << " ne0=" << src1->ne[0] << " nb0=" << src1->nb[0] << " ne1=" << src1->ne[1] << " nb1=" << src1->nb[1] << " ne2=" << src1->ne[2] << " nb2=" << src1->nb[2] << " ne3=" << src1->ne[3] << " nb3=" << src1->nb[3] << " offset=" << src1->view_offs << std::endl;
- }
- if (src2 != nullptr) {
- std::cerr << "src2=" << src2 << " op=" << ggml_op_name(src2->op) << " type=" << ggml_type_name(src2->type) << " ne0=" << src2->ne[0] << " nb0=" << src2->nb[0] << " ne1=" << src2->ne[1] << " nb1=" << src2->nb[1] << " ne2=" << src2->ne[2] << " nb2=" << src2->nb[2] << " ne3=" << src2->ne[3] << " nb3=" << src2->nb[3] << " offset=" << src2->view_offs << std::endl;
- }
- if (src3 != nullptr) {
- std::cerr << "src3=" << src3 << " op=" << ggml_op_name(src3->op) << " type=" << ggml_type_name(src3->type) << " ne0=" << src3->ne[0] << " nb0=" << src3->nb[0] << " ne1=" << src3->ne[1] << " nb1=" << src3->nb[1] << " ne2=" << src3->ne[2] << " nb2=" << src3->nb[2] << " ne3=" << src3->ne[3] << " nb3=" << src3->nb[3] << " offset=" << src3->view_offs << std::endl;
- }
- std::cerr << "First error: result=" << first_error_result << " correct=" << first_error_correct << " i3=" << first_error[3] << " i2=" << first_error[2] << " i1=" << first_error[1] << " i0=" << first_error[0] << std::endl;
- std::cerr << std::endl << "Result:" << std::endl;
- ggml_vk_print_tensor_area(tensor, tensor_data, 5, 5, 0, 0);
- std::cerr << std::endl << "Correct:" << std::endl;
- ggml_vk_print_tensor_area(tensor, comp_result, 5, 5, 0, 0);
- std::cerr << std::endl;
- std::vector<const ggml_tensor *> done;
- ggml_vk_print_graph_origin(tensor, done);
- }
- if (avg_err > 0.5 || std::isnan(avg_err)) {
- std::cerr << "ERROR: avg_err=" << avg_err << " in " << ggml_op_name(tensor->op) << " (check " << check_counter << ")" << std::endl;
- std::cerr << "tensor=" << tensor << " tensor->name=" << tensor->name << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << " offset=" << tensor->view_offs << std::endl;
- if (src0 != nullptr) {
- std::cerr << "src0=" << src0 << " op=" << ggml_op_name(src0->op) << " type=" << ggml_type_name(src0->type) << " ne0=" << src0->ne[0] << " nb0=" << src0->nb[0] << " ne1=" << src0->ne[1] << " nb1=" << src0->nb[1] << " ne2=" << src0->ne[2] << " nb2=" << src0->nb[2] << " ne3=" << src0->ne[3] << " nb3=" << src0->nb[3] << " offset=" << src0->view_offs << std::endl;
- }
- if (src1 != nullptr) {
- std::cerr << "src1=" << src1 << " op=" << ggml_op_name(src1->op) << " type=" << ggml_type_name(src1->type) << " ne0=" << src1->ne[0] << " nb0=" << src1->nb[0] << " ne1=" << src1->ne[1] << " nb1=" << src1->nb[1] << " ne2=" << src1->ne[2] << " nb2=" << src1->nb[2] << " ne3=" << src1->ne[3] << " nb3=" << src1->nb[3] << " offset=" << src1->view_offs << std::endl;
- }
- if (src2 != nullptr) {
- std::cerr << "src2=" << src2 << " op=" << ggml_op_name(src2->op) << " type=" << ggml_type_name(src2->type) << " ne0=" << src2->ne[0] << " nb0=" << src2->nb[0] << " ne1=" << src2->ne[1] << " nb1=" << src2->nb[1] << " ne2=" << src2->ne[2] << " nb2=" << src2->nb[2] << " ne3=" << src2->ne[3] << " nb3=" << src2->nb[3] << " offset=" << src2->view_offs << std::endl;
- }
- if (src3 != nullptr) {
- std::cerr << "src3=" << src3 << " op=" << ggml_op_name(src3->op) << " type=" << ggml_type_name(src3->type) << " ne0=" << src3->ne[0] << " nb0=" << src3->nb[0] << " ne1=" << src3->ne[1] << " nb1=" << src3->nb[1] << " ne2=" << src3->ne[2] << " nb2=" << src3->nb[2] << " ne3=" << src3->ne[3] << " nb3=" << src3->nb[3] << " offset=" << src3->view_offs << std::endl;
- }
- std::cerr << "First error: result=" << first_error_result << " correct=" << first_error_correct << " i3=" << first_error[3] << " i2=" << first_error[2] << " i1=" << first_error[1] << " i0=" << first_error[0] << std::endl;
- std::cerr << std::endl << "Result:" << std::endl;
- ggml_vk_print_tensor_area(tensor, tensor_data, first_error[0], first_error[1], first_error[2], first_error[3]);
- std::cerr << std::endl << "Correct:" << std::endl;
- ggml_vk_print_tensor_area(tensor, comp_result, first_error[0], first_error[1], first_error[2], first_error[3]);
- std::cerr << std::endl;
- std::vector<const ggml_tensor *> done;
- ggml_vk_print_graph_origin(tensor, done);
- GGML_ABORT("fatal error");
- } else {
- std::cerr << check_counter << " " << tensor->name << " op=" << ggml_op_name(tensor->op) << " avg_err=" << avg_err << std::endl;
- }
- free(comp_result);
- comp_result = nullptr;
- comp_size = 0;
- if (ggml_backend_buffer_is_vk(tensor->buffer)) {
- free(tensor_data);
- }
- VK_LOG_DEBUG("END ggml_vk_check_results_1(" << tensor->name << ")");
- }
- #endif
- GGML_BACKEND_DL_IMPL(ggml_backend_vk_reg)
|