convert_hf_to_gguf.py 525 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. from gguf.vocab import MistralTokenizerType, MistralVocab
  27. try:
  28. from mistral_common.tokens.tokenizers.base import TokenizerVersion # pyright: ignore[reportMissingImports]
  29. from mistral_common.tokens.tokenizers.multimodal import DATASET_MEAN as _MISTRAL_COMMON_DATASET_MEAN, DATASET_STD as _MISTRAL_COMMON_DATASET_STD # pyright: ignore[reportMissingImports]
  30. from mistral_common.tokens.tokenizers.tekken import Tekkenizer # pyright: ignore[reportMissingImports]
  31. from mistral_common.tokens.tokenizers.sentencepiece import ( # pyright: ignore[reportMissingImports]
  32. SentencePieceTokenizer,
  33. )
  34. _mistral_common_installed = True
  35. _mistral_import_error_msg = ""
  36. except ImportError:
  37. _MISTRAL_COMMON_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073)
  38. _MISTRAL_COMMON_DATASET_STD = (0.26862954, 0.26130258, 0.27577711)
  39. _mistral_common_installed = False
  40. TokenizerVersion = None
  41. Tekkenizer = None
  42. SentencePieceTokenizer = None
  43. _mistral_import_error_msg = (
  44. "Mistral format requires `mistral-common` to be installed. Please run "
  45. "`pip install mistral-common[image,audio]` to install it."
  46. )
  47. logger = logging.getLogger("hf-to-gguf")
  48. ###### MODEL DEFINITIONS ######
  49. class SentencePieceTokenTypes(IntEnum):
  50. NORMAL = 1
  51. UNKNOWN = 2
  52. CONTROL = 3
  53. USER_DEFINED = 4
  54. UNUSED = 5
  55. BYTE = 6
  56. class ModelType(IntEnum):
  57. TEXT = 1
  58. MMPROJ = 2
  59. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  60. class ModelBase:
  61. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  62. ModelType.TEXT: {},
  63. ModelType.MMPROJ: {},
  64. }
  65. dir_model: Path
  66. ftype: gguf.LlamaFileType
  67. fname_out: Path
  68. is_big_endian: bool
  69. endianess: gguf.GGUFEndian
  70. use_temp_file: bool
  71. lazy: bool
  72. dry_run: bool
  73. hparams: dict[str, Any]
  74. model_tensors: dict[str, Callable[[], Tensor]]
  75. gguf_writer: gguf.GGUFWriter
  76. model_name: str | None
  77. metadata_override: Path | None
  78. dir_model_card: Path
  79. remote_hf_model_id: str | None
  80. # subclasses should define this!
  81. model_arch: gguf.MODEL_ARCH
  82. # subclasses should initialize this!
  83. block_count: int
  84. tensor_map: gguf.TensorNameMap
  85. # Mistral format specifics
  86. is_mistral_format: bool = False
  87. disable_mistral_community_chat_template: bool = False
  88. sentence_transformers_dense_modules: bool = False
  89. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  90. use_temp_file: bool = False, eager: bool = False,
  91. metadata_override: Path | None = None, model_name: str | None = None,
  92. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  93. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None,
  94. disable_mistral_community_chat_template: bool = False,
  95. sentence_transformers_dense_modules: bool = False):
  96. if type(self) is ModelBase or \
  97. type(self) is TextModel or \
  98. type(self) is MmprojModel:
  99. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  100. if self.is_mistral_format and not _mistral_common_installed:
  101. raise ImportError(_mistral_import_error_msg)
  102. self.dir_model = dir_model
  103. self.ftype = ftype
  104. self.fname_out = fname_out
  105. self.is_big_endian = is_big_endian
  106. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  107. self.use_temp_file = use_temp_file
  108. self.lazy = not eager or (remote_hf_model_id is not None)
  109. self.dry_run = dry_run
  110. self.remote_hf_model_id = remote_hf_model_id
  111. self.sentence_transformers_dense_modules = sentence_transformers_dense_modules
  112. self.hparams = ModelBase.load_hparams(self.dir_model, self.is_mistral_format) if hparams is None else hparams
  113. self.model_tensors = self.index_tensors(remote_hf_model_id=remote_hf_model_id)
  114. self.metadata_override = metadata_override
  115. self.model_name = model_name
  116. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  117. # Apply heuristics to figure out typical tensor encoding based on first tensor's dtype
  118. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  119. if self.ftype == gguf.LlamaFileType.GUESSED:
  120. for _, tensor in self.get_tensors():
  121. if tensor.dim() < 2:
  122. continue
  123. if tensor.dtype == torch.bfloat16:
  124. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  125. logger.info("heuristics detected bfloat16 tensor dtype, setting --outtype bf16")
  126. break
  127. elif tensor.dtype == torch.float16:
  128. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  129. logger.info("heuristics detected float16 tensor dtype, setting --outtype f16")
  130. break
  131. else:
  132. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  133. logger.info("heuristics unable to detect tensor dtype, defaulting to --outtype f16")
  134. self.dequant_model()
  135. # Configure GGUF Writer
  136. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  137. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  138. # Mistral specific
  139. self.disable_mistral_community_chat_template = disable_mistral_community_chat_template
  140. @classmethod
  141. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  142. stem, suffix = path.stem, path.suffix
  143. new_name = f"{prefix}{stem}{suffix}"
  144. return path.with_name(new_name)
  145. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  146. key = next((k for k in keys if k in self.hparams), None)
  147. if key is not None:
  148. return self.hparams[key]
  149. if optional:
  150. return None
  151. raise KeyError(f"could not find any of: {keys}")
  152. def index_tensors(self, remote_hf_model_id: str | None = None) -> dict[str, Callable[[], Tensor]]:
  153. tensors: dict[str, Callable[[], Tensor]] = {}
  154. if remote_hf_model_id is not None:
  155. is_safetensors = True
  156. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  157. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  158. for name, remote_tensor in remote_tensors.items():
  159. tensors[name] = lambda r=remote_tensor: LazyTorchTensor.from_remote_tensor(r)
  160. return tensors
  161. prefix = "model" if not self.is_mistral_format else "consolidated"
  162. part_names: list[str] = ModelBase.get_model_part_names(self.dir_model, prefix, ".safetensors")
  163. is_safetensors: bool = len(part_names) > 0
  164. if not is_safetensors:
  165. part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  166. tensor_names_from_index: set[str] = set()
  167. if not self.is_mistral_format:
  168. index_name = "model.safetensors" if is_safetensors else "pytorch_model.bin"
  169. index_name += ".index.json"
  170. index_file = self.dir_model / index_name
  171. if index_file.is_file():
  172. logger.info(f"gguf: loading model weight map from '{index_name}'")
  173. with open(index_file, "r", encoding="utf-8") as f:
  174. index: dict[str, Any] = json.load(f)
  175. weight_map = index.get("weight_map")
  176. if weight_map is None or not isinstance(weight_map, dict):
  177. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  178. tensor_names_from_index.update(weight_map.keys())
  179. part_dict: dict[str, None] = dict.fromkeys(weight_map.values(), None)
  180. part_names = sorted(part_dict.keys())
  181. else:
  182. weight_map = {}
  183. else:
  184. weight_map = {}
  185. for part_name in part_names:
  186. logger.info(f"gguf: indexing model part '{part_name}'")
  187. ctx: ContextManager[Any]
  188. if is_safetensors:
  189. ctx = cast(ContextManager[Any], gguf.utility.SafetensorsLocal(self.dir_model / part_name))
  190. else:
  191. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  192. with ctx as model_part:
  193. assert model_part is not None
  194. for name in model_part.keys():
  195. if is_safetensors:
  196. data: gguf.utility.LocalTensor = model_part[name]
  197. if self.lazy:
  198. data_gen = lambda data=data: LazyTorchTensor.from_local_tensor(data) # noqa: E731
  199. else:
  200. dtype = LazyTorchTensor._dtype_str_map[data.dtype]
  201. data_gen = lambda data=data, dtype=dtype: torch.from_numpy(data.mmap_bytes()).view(dtype).reshape(data.shape) # noqa: E731
  202. else:
  203. data_torch: Tensor = model_part[name]
  204. if self.lazy:
  205. data_gen = lambda data=data_torch: LazyTorchTensor.from_eager(data) # noqa: E731
  206. else:
  207. data_gen = lambda data=data_torch: data # noqa: E731
  208. tensors[name] = data_gen
  209. # verify tensor name presence and identify potentially missing files
  210. if len(tensor_names_from_index) > 0:
  211. tensor_names_from_parts = set(tensors.keys())
  212. if len(tensor_names_from_parts.symmetric_difference(tensor_names_from_index)) > 0:
  213. missing = sorted(tensor_names_from_index.difference(tensor_names_from_parts))
  214. extra = sorted(tensor_names_from_parts.difference(tensor_names_from_index))
  215. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  216. if len(extra) == 0 and len(missing_files) > 0:
  217. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  218. f"Missing tensors: {missing}")
  219. else:
  220. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  221. f"Missing tensors: {missing}\n"
  222. f"Extra tensors: {extra}")
  223. return tensors
  224. def dequant_model(self):
  225. tensors_to_remove: list[str] = []
  226. new_tensors: dict[str, Callable[[], Tensor]] = {}
  227. if (quant_config := self.hparams.get("quantization_config")) and isinstance(quant_config, dict):
  228. quant_method = quant_config.get("quant_method")
  229. def dequant_bitnet(weight: Tensor, scale: Tensor) -> Tensor:
  230. weight = weight.view(torch.uint8)
  231. orig_shape = weight.shape
  232. shift = torch.tensor([0, 2, 4, 6], dtype=torch.uint8).reshape((4, *(1 for _ in range(len(orig_shape)))))
  233. data = weight.unsqueeze(0).expand((4, *orig_shape)) >> shift
  234. data = data & 3
  235. data = (data.float() - 1).reshape((orig_shape[0] * 4, *orig_shape[1:]))
  236. # The scale is inverted
  237. return data / scale.float()
  238. def dequant_simple(weight: Tensor, scale: Tensor, block_size: Sequence[int] | None = None) -> Tensor:
  239. scale = scale.float()
  240. if block_size is not None:
  241. for i, size in enumerate(block_size):
  242. scale = scale.repeat_interleave(size, i)
  243. # unpad the scale (e.g. when the tensor size isn't a multiple of the block size)
  244. scale = scale[tuple(slice(0, size) for size in weight.shape)]
  245. return weight.float() * scale
  246. # ref: https://github.com/ModelCloud/GPTQModel/blob/037c5c0f6c9e33c500d975b038d02e7ca437546d/gptqmodel/nn_modules/qlinear/__init__.py#L437-L476
  247. def dequant_gptq(g_idx: Tensor, qweight: Tensor, qzeros: Tensor, scales: Tensor) -> Tensor:
  248. bits = quant_config["bits"]
  249. assert bits in (2, 3, 4, 8)
  250. assert qweight.dtype == qzeros.dtype
  251. maxq = (2 ** bits) - 1
  252. weight = None
  253. zeros = None
  254. pack_dtype_bits = qweight.dtype.itemsize * 8
  255. if bits in [2, 4, 8]:
  256. pack_factor = pack_dtype_bits // bits
  257. wf = torch.tensor(list(range(0, pack_dtype_bits, bits)), dtype=torch.int32).unsqueeze(0)
  258. if self.lazy:
  259. wf = LazyTorchTensor.from_eager(wf)
  260. zeros = torch.bitwise_right_shift(
  261. qzeros.unsqueeze(2).expand(-1, -1, pack_factor),
  262. wf.unsqueeze(0)
  263. ).to(torch.int16 if bits == 8 else torch.int8)
  264. zeros = torch.bitwise_and(zeros, maxq).reshape(scales.shape)
  265. weight = torch.bitwise_and(
  266. torch.bitwise_right_shift(
  267. qweight.unsqueeze(1).expand(-1, pack_factor, -1),
  268. wf.unsqueeze(-1)
  269. ).to(torch.int16 if bits == 8 else torch.int8),
  270. maxq
  271. )
  272. elif bits == 3:
  273. raise NotImplementedError("3-bit gptq dequantization is not yet implemented")
  274. assert weight is not None
  275. assert zeros is not None
  276. weight = weight.reshape(weight.shape[0] * weight.shape[1], weight.shape[2])
  277. # gptq_v2 doesn't need to offset zeros
  278. if quant_config.get("checkpoint_format", "gptq") == "gptq":
  279. zeros += 1
  280. return (scales[g_idx].float() * (weight - zeros[g_idx]).float()).T
  281. def dequant_packed(w: Tensor, scale: Tensor, shape_tensor: Tensor, zero_point: Tensor | None, num_bits: int, group_size: int):
  282. assert w.dtype == torch.int32
  283. shape = tuple(shape_tensor.tolist())
  284. assert len(shape) == 2
  285. mask = (1 << num_bits) - 1
  286. shifts = torch.arange(0, 32 - (num_bits - 1), num_bits, dtype=torch.int32)
  287. if self.lazy:
  288. shifts = LazyTorchTensor.from_eager(shifts)
  289. if zero_point is None:
  290. offset = 1 << (num_bits - 1)
  291. else:
  292. assert len(zero_point.shape) == 2
  293. offset = (zero_point.unsqueeze(1) >> shifts.reshape(1, -1, 1)) & mask
  294. offset = offset.reshape(-1, zero_point.shape[1])
  295. # trim padding, and prepare for broadcast
  296. # NOTE: the zero-point is packed along dim 0
  297. offset = offset[:shape[0], :].unsqueeze(-1)
  298. # extract values
  299. # NOTE: the weights are packed along dim 1
  300. unpacked = (w.unsqueeze(-1) >> shifts.reshape(1, 1, -1)) & mask
  301. unpacked = unpacked.reshape(shape[0], -1)
  302. # trim padding
  303. unpacked = unpacked[:, :shape[1]]
  304. # prepare for broadcast of the scale
  305. unpacked = unpacked.reshape(shape[0], (unpacked.shape[-1] + group_size - 1) // group_size, group_size)
  306. unpacked = unpacked - offset
  307. return (unpacked * scale.unsqueeze(-1).float()).reshape(shape)
  308. if quant_method == "bitnet":
  309. for name in self.model_tensors.keys():
  310. if name.endswith(".weight_scale"):
  311. weight_name = name.removesuffix("_scale")
  312. w = self.model_tensors[weight_name]
  313. s = self.model_tensors[name]
  314. self.model_tensors[weight_name] = lambda w=w, s=s: dequant_bitnet(w(), s())
  315. tensors_to_remove.append(name)
  316. elif quant_method == "fp8":
  317. block_size = quant_config.get("weight_block_size")
  318. for name in self.model_tensors.keys():
  319. if name.endswith(".weight_scale_inv"):
  320. weight_name = name.removesuffix("_scale_inv")
  321. w = self.model_tensors[weight_name]
  322. s = self.model_tensors[name]
  323. self.model_tensors[weight_name] = lambda w=w, s=s, bs=block_size: dequant_simple(w(), s(), bs)
  324. tensors_to_remove.append(name)
  325. if name.endswith(".activation_scale"): # unused
  326. tensors_to_remove.append(name)
  327. # mistral format
  328. if name.endswith(".qscale_weight"):
  329. weight_name = name.removesuffix("qscale_weight") + "weight"
  330. w = self.model_tensors[weight_name]
  331. s = self.model_tensors[name]
  332. self.model_tensors[weight_name] = lambda w=w, s=s, bs=block_size: dequant_simple(w(), s(), bs)
  333. tensors_to_remove.append(name)
  334. if name.endswith(".qscale_act"):
  335. tensors_to_remove.append(name)
  336. elif quant_method == "gptq":
  337. for name in self.model_tensors.keys():
  338. if name.endswith(".qweight"):
  339. base_name = name.removesuffix(".qweight")
  340. g_idx = self.model_tensors[base_name + ".g_idx"]
  341. qweight = self.model_tensors[base_name + ".qweight"]
  342. qzeros = self.model_tensors[base_name + ".qzeros"]
  343. scales = self.model_tensors[base_name + ".scales"]
  344. new_tensors[base_name + ".weight"] = (
  345. lambda g=g_idx, z=qzeros, w=qweight, s=scales: dequant_gptq(
  346. g(), w(), z(), s()
  347. )
  348. )
  349. tensors_to_remove += [
  350. base_name + n
  351. for n in (
  352. ".g_idx",
  353. ".qzeros",
  354. ".qweight",
  355. ".scales",
  356. )
  357. ]
  358. elif quant_method == "compressed-tensors":
  359. quant_format = quant_config["format"]
  360. groups = quant_config["config_groups"]
  361. if len(groups) > 1:
  362. raise NotImplementedError("Can't handle multiple config groups for compressed-tensors yet")
  363. weight_config = tuple(groups.values())[0]["weights"]
  364. if quant_format == "float-quantized" or quant_format == "int-quantized" or quant_format == "naive-quantized":
  365. block_size = weight_config.get("block_structure", None)
  366. strategy = weight_config.get("strategy")
  367. assert strategy == "channel" or strategy == "block"
  368. assert weight_config.get("group_size") is None # didn't find a model using this yet
  369. for name in self.model_tensors.keys():
  370. if name.endswith(".weight_scale"):
  371. weight_name = name.removesuffix("_scale")
  372. w = self.model_tensors[weight_name]
  373. s = self.model_tensors[name]
  374. self.model_tensors[weight_name] = lambda w=w, s=s: dequant_simple(w(), s(), block_size)
  375. tensors_to_remove.append(name)
  376. elif quant_format == "pack-quantized":
  377. assert weight_config.get("strategy") == "group"
  378. assert weight_config.get("type", "int") == "int"
  379. num_bits = weight_config.get("num_bits")
  380. group_size = weight_config.get("group_size")
  381. assert isinstance(num_bits, int)
  382. assert isinstance(group_size, int)
  383. for name in self.model_tensors.keys():
  384. if name.endswith(".weight_packed"):
  385. base_name = name.removesuffix("_packed")
  386. w = self.model_tensors[name]
  387. scale = self.model_tensors[base_name + "_scale"]
  388. shape = self.model_tensors[base_name + "_shape"]
  389. zero_point = self.model_tensors.get(base_name + "_zero_point", lambda: None)
  390. new_tensors[base_name] = (
  391. lambda w=w, scale=scale, shape=shape, zero_point=zero_point: dequant_packed(
  392. w(), scale(), shape(), zero_point(), num_bits, group_size,
  393. )
  394. )
  395. tensors_to_remove += [base_name + n for n in ("_packed", "_shape", "_scale")]
  396. if (base_name + "_zero_point") in self.model_tensors:
  397. tensors_to_remove.append(base_name + "_zero_point")
  398. else:
  399. raise NotImplementedError(f"Quant format {quant_format!r} for method {quant_method!r} is not yet supported")
  400. else:
  401. raise NotImplementedError(f"Quant method is not yet supported: {quant_method!r}")
  402. for name in tensors_to_remove:
  403. if name in self.model_tensors:
  404. del self.model_tensors[name]
  405. for name, value in new_tensors.items():
  406. self.model_tensors[name] = value
  407. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  408. for name, gen in self.model_tensors.items():
  409. yield name, gen()
  410. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  411. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  412. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  413. name: str = gguf.TENSOR_NAMES[key]
  414. if "{bid}" in name:
  415. assert bid is not None
  416. name = name.format(bid=bid)
  417. return name + suffix
  418. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  419. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  420. return False
  421. key_name: str = gguf.TENSOR_NAMES[key]
  422. if "{bid}" in key_name:
  423. if bid is None:
  424. return False
  425. key_name = key_name.format(bid=bid)
  426. else:
  427. if bid is not None:
  428. return False
  429. return name == (key_name + suffix)
  430. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  431. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  432. if new_name is None:
  433. raise ValueError(f"Can not map tensor {name!r}")
  434. return new_name
  435. def set_gguf_parameters(self):
  436. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  437. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  438. del bid # unused
  439. return [(self.map_tensor_name(name), data_torch)]
  440. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  441. del name, new_name, bid, n_dims # unused
  442. return False
  443. # some models need extra generated tensors (like rope_freqs)
  444. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  445. return ()
  446. def prepare_tensors(self):
  447. # Handle empty tensor_map for models with block_count=0 (like MobileNetV5)
  448. if self.tensor_map.mapping:
  449. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  450. else:
  451. max_name_len = len("vision_encoder.weight,") # Default reasonable length
  452. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  453. # we don't need these
  454. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  455. continue
  456. old_dtype = data_torch.dtype
  457. # convert any unsupported data types to float32
  458. if data_torch.dtype not in (torch.float16, torch.float32):
  459. data_torch = data_torch.to(torch.float32)
  460. # use the first number-like part of the tensor name as the block id
  461. bid = None
  462. for part in name.split("."):
  463. if part.isdecimal():
  464. bid = int(part)
  465. break
  466. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  467. # TODO: why do we squeeze here?
  468. # data = data_torch.squeeze().numpy()
  469. data = data_torch.numpy()
  470. n_dims = len(data.shape)
  471. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  472. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  473. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  474. data_qtype = gguf.GGMLQuantizationType.F32
  475. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  476. # Some tensor types are always in float32
  477. if data_qtype is False and (
  478. any(
  479. self.match_model_tensor_name(new_name, key, bid)
  480. for key in (
  481. gguf.MODEL_TENSOR.FFN_GATE_INP,
  482. gguf.MODEL_TENSOR.POS_EMBD,
  483. gguf.MODEL_TENSOR.TOKEN_TYPES,
  484. gguf.MODEL_TENSOR.SSM_CONV1D,
  485. gguf.MODEL_TENSOR.SHORTCONV_CONV,
  486. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  487. gguf.MODEL_TENSOR.TIME_MIX_W1,
  488. gguf.MODEL_TENSOR.TIME_MIX_W2,
  489. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  490. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  491. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  492. gguf.MODEL_TENSOR.POSNET_NORM1,
  493. gguf.MODEL_TENSOR.POSNET_NORM2,
  494. gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
  495. gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
  496. gguf.MODEL_TENSOR.ALTUP_CORRECT_COEF,
  497. gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
  498. )
  499. )
  500. or new_name[-7:] not in (".weight", ".lora_a", ".lora_b")
  501. ):
  502. data_qtype = gguf.GGMLQuantizationType.F32
  503. if data_qtype is False and any(
  504. self.match_model_tensor_name(new_name, key, bid)
  505. for key in (
  506. gguf.MODEL_TENSOR.TOKEN_EMBD,
  507. gguf.MODEL_TENSOR.PER_LAYER_TOKEN_EMBD,
  508. gguf.MODEL_TENSOR.OUTPUT,
  509. gguf.MODEL_TENSOR.ALTUP_ROUTER,
  510. gguf.MODEL_TENSOR.LAUREL_L,
  511. gguf.MODEL_TENSOR.LAUREL_R,
  512. )
  513. ):
  514. if self.ftype in (
  515. gguf.LlamaFileType.MOSTLY_TQ1_0,
  516. gguf.LlamaFileType.MOSTLY_TQ2_0,
  517. ):
  518. # TODO: use Q4_K and Q6_K
  519. data_qtype = gguf.GGMLQuantizationType.F16
  520. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  521. if isinstance(data_qtype, bool):
  522. if self.ftype == gguf.LlamaFileType.ALL_F32:
  523. data_qtype = gguf.GGMLQuantizationType.F32
  524. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  525. data_qtype = gguf.GGMLQuantizationType.F16
  526. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  527. data_qtype = gguf.GGMLQuantizationType.BF16
  528. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  529. data_qtype = gguf.GGMLQuantizationType.Q8_0
  530. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  531. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  532. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  533. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  534. else:
  535. raise ValueError(f"Unknown file type: {self.ftype.name}")
  536. try:
  537. data = gguf.quants.quantize(data, data_qtype)
  538. except gguf.QuantError as e:
  539. logger.warning("%s, %s", e, "falling back to F16")
  540. data_qtype = gguf.GGMLQuantizationType.F16
  541. data = gguf.quants.quantize(data, data_qtype)
  542. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  543. # reverse shape to make it similar to the internal ggml dimension order
  544. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  545. # n_dims is implicit in the shape
  546. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  547. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  548. def set_type(self):
  549. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  550. def prepare_metadata(self, vocab_only: bool):
  551. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  552. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  553. # If we are using HF model id, set the metadata name to the model id
  554. if self.remote_hf_model_id:
  555. self.metadata.name = self.remote_hf_model_id
  556. # Fallback to model directory name if metadata name is still missing
  557. if self.metadata.name is None:
  558. self.metadata.name = self.dir_model.name
  559. # Generate parameter weight class (useful for leader boards) if not yet determined
  560. if self.metadata.size_label is None and total_params > 0:
  561. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  562. self.set_type()
  563. logger.info("Set meta model")
  564. self.metadata.set_gguf_meta_model(self.gguf_writer)
  565. logger.info("Set model parameters")
  566. self.set_gguf_parameters()
  567. logger.info("Set model quantization version")
  568. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  569. def write_vocab(self):
  570. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  571. def write(self):
  572. self.prepare_tensors()
  573. self.prepare_metadata(vocab_only=False)
  574. self.gguf_writer.write_header_to_file(path=self.fname_out)
  575. self.gguf_writer.write_kv_data_to_file()
  576. self.gguf_writer.write_tensors_to_file(progress=True)
  577. self.gguf_writer.close()
  578. @staticmethod
  579. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  580. part_names: list[str] = []
  581. for filename in os.listdir(dir_model):
  582. if filename.startswith(prefix) and filename.endswith(suffix):
  583. part_names.append(filename)
  584. part_names.sort()
  585. return part_names
  586. @staticmethod
  587. def load_hparams(dir_model: Path, is_mistral_format: bool):
  588. if is_mistral_format:
  589. with open(dir_model / "params.json", "r", encoding="utf-8") as f:
  590. config = json.load(f)
  591. return config
  592. try:
  593. # for security reason, we don't allow loading remote code by default
  594. # if a model need remote code, we will fallback to config.json
  595. config = AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
  596. except Exception as e:
  597. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  598. logger.warning("Trying to load config.json instead")
  599. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  600. config = json.load(f)
  601. if "llm_config" in config:
  602. # rename for InternVL
  603. config["text_config"] = config["llm_config"]
  604. if "lm_config" in config:
  605. # rename for GlmASR
  606. config["text_config"] = config["lm_config"]
  607. if "thinker_config" in config:
  608. # rename for Qwen2.5-Omni
  609. config["text_config"] = config["thinker_config"]["text_config"]
  610. if "lfm" in config:
  611. # rename for LFM2-Audio
  612. config["text_config"] = config["lfm"]
  613. return config
  614. @classmethod
  615. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  616. assert names
  617. def func(modelcls: AnyModel) -> AnyModel:
  618. model_type = ModelType.MMPROJ if modelcls.model_arch == gguf.MODEL_ARCH.MMPROJ else ModelType.TEXT
  619. for name in names:
  620. cls._model_classes[model_type][name] = modelcls
  621. return modelcls
  622. return func
  623. @classmethod
  624. def print_registered_models(cls):
  625. for model_type, model_classes in cls._model_classes.items():
  626. logger.error(f"{model_type.name} models:")
  627. for name in sorted(model_classes.keys()):
  628. logger.error(f" - {name}")
  629. @classmethod
  630. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  631. try:
  632. return cls._model_classes[model_type][arch]
  633. except KeyError:
  634. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  635. class TextModel(ModelBase):
  636. model_type = ModelType.TEXT
  637. hf_arch: str
  638. def __init__(self, *args, **kwargs):
  639. super().__init__(*args, **kwargs)
  640. if not self.is_mistral_format:
  641. self.hf_arch = get_model_architecture(self.hparams, self.model_type)
  642. else:
  643. self.hf_arch = ""
  644. if "text_config" in self.hparams:
  645. # move the text_config to the root level
  646. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  647. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  648. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  649. self.rope_parameters = self.hparams.get("rope_parameters", self.hparams.get("rope_scaling")) or {}
  650. rope_theta = self.find_hparam(["global_rope_theta", "rope_global_theta", "rope_theta_global", "rope_theta", "rotary_emb_base"], optional=True)
  651. local_rope_theta = self.find_hparam(["local_rope_theta", "rope_local_theta", "rope_theta_local", "swa_rope_theta", "rope_local_base_freq"], optional=True)
  652. # Ensure "rope_theta" and "rope_type" is mirrored in rope_parameters
  653. if "full_attention" not in self.rope_parameters and "sliding_attention" not in self.rope_parameters:
  654. if local_rope_theta is not None:
  655. self.rope_parameters["sliding_attention"] = {"rope_theta": local_rope_theta}
  656. if "rope_theta" not in self.rope_parameters and rope_theta is not None:
  657. self.rope_parameters["rope_theta"] = rope_theta
  658. if "rope_type" not in self.rope_parameters and (rope_type := self.rope_parameters.get("type")) is not None:
  659. self.rope_parameters["rope_type"] = rope_type
  660. @classmethod
  661. def __init_subclass__(cls):
  662. # can't use an abstract property, because overriding it without type errors
  663. # would require using decorated functions instead of simply defining the property
  664. if "model_arch" not in cls.__dict__:
  665. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  666. def set_vocab(self):
  667. self._set_vocab_gpt2()
  668. def prepare_metadata(self, vocab_only: bool):
  669. super().prepare_metadata(vocab_only=vocab_only)
  670. total_params = self.gguf_writer.get_total_parameter_count()[0]
  671. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  672. output_type: str = self.ftype.name.partition("_")[2]
  673. # Filename Output
  674. if self.fname_out.is_dir():
  675. # Generate default filename based on model specification and available metadata
  676. if not vocab_only:
  677. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  678. else:
  679. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  680. # Use the default filename
  681. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  682. else:
  683. # Output path is a custom defined templated filename
  684. # Note: `not is_dir()` is used because `.is_file()` will not detect
  685. # file template strings as it doesn't actually exist as a file
  686. # Process templated file name with the output ftype, useful with the "auto" ftype
  687. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  688. logger.info("Set model tokenizer")
  689. self.set_vocab()
  690. def set_gguf_parameters(self):
  691. self.gguf_writer.add_block_count(self.block_count)
  692. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions", "max_length", "max_sequence_length", "model_max_length"], optional=True)) is not None:
  693. self.gguf_writer.add_context_length(n_ctx)
  694. logger.info(f"gguf: context length = {n_ctx}")
  695. if (n_embd := self.find_hparam(["hidden_size", "n_embd", "dim"], optional=True)) is not None:
  696. self.gguf_writer.add_embedding_length(n_embd)
  697. logger.info(f"gguf: embedding length = {n_embd}")
  698. if (n_ff := self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"], optional=True)) is not None:
  699. self.gguf_writer.add_feed_forward_length(n_ff)
  700. logger.info(f"gguf: feed forward length = {n_ff}")
  701. if (n_head := self.find_hparam(["num_attention_heads", "n_head", "n_heads"], optional=True)) is not None:
  702. self.gguf_writer.add_head_count(n_head)
  703. logger.info(f"gguf: head count = {n_head}")
  704. if (n_head_kv := self.find_hparam(["num_key_value_heads", "n_kv_heads"], optional=True)) is not None:
  705. self.gguf_writer.add_head_count_kv(n_head_kv)
  706. logger.info(f"gguf: key-value head count = {n_head_kv}")
  707. # TODO: Handle "sliding_attention" similarly when models start implementing it
  708. rope_params = self.rope_parameters.get("full_attention", self.rope_parameters)
  709. if (rope_type := rope_params.get("rope_type")) is not None:
  710. rope_factor = rope_params.get("factor")
  711. rope_gguf_type = gguf.RopeScalingType.NONE
  712. if rope_type == "linear" and rope_factor is not None:
  713. rope_gguf_type = gguf.RopeScalingType.LINEAR
  714. self.gguf_writer.add_rope_scaling_type(rope_gguf_type)
  715. self.gguf_writer.add_rope_scaling_factor(rope_factor)
  716. elif rope_type == "yarn" and rope_factor is not None:
  717. rope_gguf_type = gguf.RopeScalingType.YARN
  718. self.gguf_writer.add_rope_scaling_type(rope_gguf_type)
  719. self.gguf_writer.add_rope_scaling_factor(rope_factor)
  720. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_params["original_max_position_embeddings"])
  721. if (yarn_ext_factor := rope_params.get("extrapolation_factor")) is not None:
  722. self.gguf_writer.add_rope_scaling_yarn_ext_factor(yarn_ext_factor)
  723. if (yarn_attn_factor := rope_params.get("attention_factor", rope_params.get("attn_factor"))) is not None:
  724. self.gguf_writer.add_rope_scaling_yarn_attn_factor(yarn_attn_factor)
  725. if (yarn_beta_fast := rope_params.get("beta_fast")) is not None:
  726. self.gguf_writer.add_rope_scaling_yarn_beta_fast(yarn_beta_fast)
  727. if (yarn_beta_slow := rope_params.get("beta_slow")) is not None:
  728. self.gguf_writer.add_rope_scaling_yarn_beta_slow(yarn_beta_slow)
  729. # self.gguf_writer.add_rope_scaling_yarn_log_mul(rope_params["mscale_all_dim"])
  730. elif rope_type == "su" or rope_type == "longrope":
  731. rope_gguf_type = gguf.RopeScalingType.LONGROPE
  732. self.gguf_writer.add_rope_scaling_type(rope_gguf_type)
  733. elif rope_type == "dynamic":
  734. # HunYuan, handled in model class
  735. pass
  736. elif rope_type.lower() == "llama3":
  737. # Handled in generate_extra_tensors
  738. pass
  739. else:
  740. logger.warning(f"Unknown RoPE type: {rope_type}")
  741. logger.info(f"gguf: rope scaling type = {rope_gguf_type.name}")
  742. if "mrope_section" in self.rope_parameters:
  743. mrope_section = self.rope_parameters["mrope_section"]
  744. # Pad to 4 dimensions [time, height, width, extra]
  745. while len(mrope_section) < 4:
  746. mrope_section.append(0)
  747. self.gguf_writer.add_rope_dimension_sections(mrope_section[:4])
  748. logger.info(f"gguf: mrope sections: {mrope_section[:4]}")
  749. if (rope_theta := rope_params.get("rope_theta")) is not None:
  750. self.gguf_writer.add_rope_freq_base(rope_theta)
  751. logger.info(f"gguf: rope theta = {rope_theta}")
  752. if (local_rope_theta := self.rope_parameters.get("sliding_attention", {}).get("rope_theta")) is not None:
  753. self.gguf_writer.add_rope_freq_base_swa(local_rope_theta)
  754. logger.info(f"gguf: rope theta swa = {local_rope_theta}")
  755. if (f_rms_eps := self.find_hparam(["rms_norm_eps", "norm_eps"], optional=True)) is not None:
  756. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  757. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  758. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  759. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  760. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  761. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  762. self.gguf_writer.add_expert_count(n_experts)
  763. logger.info(f"gguf: expert count = {n_experts}")
  764. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  765. self.gguf_writer.add_expert_used_count(n_experts_used)
  766. logger.info(f"gguf: experts used count = {n_experts_used}")
  767. if (n_expert_groups := self.hparams.get("n_group")) is not None:
  768. self.gguf_writer.add_expert_group_count(n_expert_groups)
  769. logger.info(f"gguf: expert groups count = {n_expert_groups}")
  770. if (n_group_used := self.hparams.get("topk_group")) is not None:
  771. self.gguf_writer.add_expert_group_used_count(n_group_used)
  772. logger.info(f"gguf: expert groups used count = {n_group_used}")
  773. if (score_func := self.find_hparam(["score_function", "scoring_func", "score_func"], optional=True)) is not None:
  774. if score_func == "sigmoid":
  775. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  776. elif score_func == "softmax":
  777. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  778. else:
  779. raise ValueError(f"Unsupported expert score gating function value: {score_func}")
  780. logger.info(f"gguf: expert score gating function = {score_func}")
  781. if (head_dim := self.hparams.get("head_dim")) is not None:
  782. self.gguf_writer.add_key_length(head_dim)
  783. self.gguf_writer.add_value_length(head_dim)
  784. self.gguf_writer.add_file_type(self.ftype)
  785. logger.info(f"gguf: file type = {self.ftype}")
  786. def write_vocab(self):
  787. if len(self.gguf_writer.tensors) != 1:
  788. raise ValueError('Splitting the vocabulary is not supported')
  789. self.prepare_metadata(vocab_only=True)
  790. self.gguf_writer.write_header_to_file(path=self.fname_out)
  791. self.gguf_writer.write_kv_data_to_file()
  792. self.gguf_writer.close()
  793. def does_token_look_special(self, token: str | bytes) -> bool:
  794. if isinstance(token, (bytes, bytearray)):
  795. token_text = token.decode(encoding="utf-8")
  796. elif isinstance(token, memoryview):
  797. token_text = token.tobytes().decode(encoding="utf-8")
  798. else:
  799. token_text = token
  800. # Some models mark some added tokens which ought to be control tokens as not special.
  801. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  802. seems_special = token_text in (
  803. "<pad>", # deepseek-coder
  804. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  805. )
  806. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  807. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  808. # TODO: should these be marked as UNUSED instead? (maybe not)
  809. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  810. return seems_special
  811. # used for GPT-2 BPE and WordPiece vocabs
  812. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  813. tokens: list[str] = []
  814. toktypes: list[int] = []
  815. from transformers import AutoTokenizer
  816. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  817. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  818. assert max(tokenizer.vocab.values()) < vocab_size
  819. tokpre = self.get_vocab_base_pre(tokenizer)
  820. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  821. added_vocab = tokenizer.get_added_vocab()
  822. added_tokens_decoder = tokenizer.added_tokens_decoder
  823. for i in range(vocab_size):
  824. if i not in reverse_vocab:
  825. tokens.append(f"[PAD{i}]")
  826. toktypes.append(gguf.TokenType.UNUSED)
  827. else:
  828. token: str = reverse_vocab[i]
  829. if token in added_vocab:
  830. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  831. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  832. if not added_tokens_decoder[i].normalized:
  833. previous_token = token
  834. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  835. if previous_token != token:
  836. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  837. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  838. toktypes.append(gguf.TokenType.CONTROL)
  839. else:
  840. # NOTE: this was added for Gemma.
  841. # Encoding and decoding the tokens above isn't sufficient for this case.
  842. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  843. toktypes.append(gguf.TokenType.USER_DEFINED)
  844. else:
  845. toktypes.append(gguf.TokenType.NORMAL)
  846. tokens.append(token)
  847. return tokens, toktypes, tokpre
  848. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  849. # do not modify it manually!
  850. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  851. # Marker: Start get_vocab_base_pre
  852. def get_vocab_base_pre(self, tokenizer) -> str:
  853. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  854. # is specific for the BPE pre-tokenizer used by the model
  855. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  856. # use in llama.cpp to implement the same pre-tokenizer
  857. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  858. chktok = tokenizer.encode(chktxt)
  859. chkhsh = sha256(str(chktok).encode()).hexdigest()
  860. logger.debug(f"chktok: {chktok}")
  861. logger.debug(f"chkhsh: {chkhsh}")
  862. res = None
  863. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  864. # or pull the latest version of the model from Huggingface
  865. # don't edit the hashes manually!
  866. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  867. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  868. res = "chatglm-bpe"
  869. if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  870. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  871. res = "chatglm-bpe"
  872. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  873. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  874. res = "glm4"
  875. if chkhsh == "9ca2dd618e8afaf09731a7cf6e2105b373ba6a1821559f258b272fe83e6eb902":
  876. # ref: https://huggingface.co/zai-org/GLM-4.5-Air
  877. res = "glm4"
  878. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  879. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  880. res = "minerva-7b"
  881. if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664":
  882. # ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
  883. res = "hunyuan"
  884. if chkhsh == "bba3b3366b646dbdded5dbc42d59598b849371afc42f7beafa914afaa5b70aa6":
  885. # ref: https://huggingface.co/tencent/Hunyuan-4B-Instruct
  886. res = "hunyuan-dense"
  887. if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6":
  888. # ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base
  889. res = "falcon-h1"
  890. if chkhsh == "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86":
  891. # ref: https://huggingface.co/tiiuae/Falcon-H1-1B-Base
  892. res = "falcon-h1"
  893. if chkhsh == "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896":
  894. # ref: https://huggingface.co/tiiuae/Falcon-H1-7B-Base
  895. res = "falcon-h1"
  896. if chkhsh == "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b":
  897. # ref: https://huggingface.co/tiiuae/Falcon-H1-34B-Base
  898. res = "falcon-h1"
  899. if chkhsh == "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890":
  900. # ref: https://huggingface.co/moonshotai/Kimi-K2-Base
  901. res = "kimi-k2"
  902. if chkhsh == "d4540891389ea895b53b399da6ac824becc30f2fba0e9ddbb98f92e55ca0e97c":
  903. # ref: https://huggingface.co/Qwen/Qwen3-Embedding-0.6B
  904. res = "qwen2"
  905. if chkhsh == "66b8d4e19ab16c3bfd89bce5d785fb7e0155e8648708a1f42077cb9fe002c273":
  906. # ref: https://huggingface.co/alvarobartt/grok-2-tokenizer
  907. res = "grok-2"
  908. if chkhsh == "b3d1dd861f1d4c5c0d2569ce36baf3f90fe8a102db3de50dd71ff860d91be3df":
  909. # ref: https://huggingface.co/aari1995/German_Semantic_V3
  910. res = "jina-v2-de"
  911. if chkhsh == "cdf5f35325780597efd76153d4d1c16778f766173908894c04afc20108536267":
  912. # ref: https://huggingface.co/zai-org/GLM-4.7-Flash
  913. res = "glm4"
  914. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  915. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  916. res = "llama-bpe"
  917. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  918. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  919. res = "deepseek-llm"
  920. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  921. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  922. res = "deepseek-coder"
  923. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  924. # ref: https://huggingface.co/tiiuae/falcon-7b
  925. res = "falcon"
  926. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  927. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  928. res = "bert-bge"
  929. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  930. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  931. res = "falcon3"
  932. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  933. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  934. res = "bert-bge-large"
  935. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  936. # ref: https://huggingface.co/mosaicml/mpt-7b
  937. res = "mpt"
  938. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  939. # ref: https://huggingface.co/bigcode/starcoder2-3b
  940. res = "starcoder"
  941. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  942. # ref: https://huggingface.co/openai-community/gpt2
  943. res = "gpt-2"
  944. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  945. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  946. res = "stablelm2"
  947. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  948. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  949. res = "refact"
  950. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  951. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  952. res = "command-r"
  953. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  954. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  955. res = "qwen2"
  956. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  957. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  958. res = "olmo"
  959. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  960. # ref: https://huggingface.co/databricks/dbrx-base
  961. res = "dbrx"
  962. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  963. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  964. res = "jina-v1-en"
  965. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  966. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  967. res = "jina-v2-en"
  968. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  969. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  970. res = "jina-v2-es"
  971. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  972. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  973. res = "jina-v2-de"
  974. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  975. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  976. res = "smaug-bpe"
  977. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  978. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  979. res = "poro-chat"
  980. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  981. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  982. res = "jina-v2-code"
  983. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  984. # ref: https://huggingface.co/LumiOpen/Viking-7B
  985. res = "viking"
  986. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  987. # ref: https://huggingface.co/core42/jais-13b
  988. res = "jais"
  989. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  990. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  991. res = "codeshell"
  992. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  993. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  994. res = "tekken"
  995. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  996. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  997. res = "smollm"
  998. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  999. # ref: https://huggingface.co/bigscience/bloom
  1000. res = "bloom"
  1001. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  1002. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  1003. res = "gpt3-finnish"
  1004. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  1005. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  1006. res = "exaone"
  1007. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  1008. # ref: https://huggingface.co/microsoft/phi-2
  1009. res = "phi-2"
  1010. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  1011. # ref: https://huggingface.co/facebook/chameleon-7b
  1012. res = "chameleon"
  1013. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  1014. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  1015. res = "roberta-bpe"
  1016. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  1017. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  1018. res = "gigachat"
  1019. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  1020. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  1021. res = "megrez"
  1022. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  1023. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  1024. res = "deepseek-v3"
  1025. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  1026. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  1027. res = "deepseek-r1-qwen"
  1028. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  1029. # ref: https://huggingface.co/Xenova/gpt-4o
  1030. res = "gpt-4o"
  1031. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  1032. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  1033. res = "superbpe"
  1034. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  1035. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  1036. res = "trillion"
  1037. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  1038. # ref: https://huggingface.co/inclusionAI/Ling-lite
  1039. res = "bailingmoe"
  1040. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  1041. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  1042. res = "llama4"
  1043. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  1044. # ref: https://huggingface.co/mistral-community/pixtral-12b
  1045. res = "pixtral"
  1046. if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
  1047. # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
  1048. res = "seed-coder"
  1049. if chkhsh == "b0a6b1c0bd5998ebd9df08611efde34a4ff03faed45ae09c43e6b31ebd4b94cf":
  1050. # ref: https://huggingface.co/skt/A.X-4.0
  1051. res = "a.x-4.0"
  1052. if chkhsh == "f6791d196f87ce6b56a7d234be618e0d58f8cda3549416635b2bebcd22cd95c4":
  1053. # ref: https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct
  1054. res = "midm-2.0"
  1055. if chkhsh == "169bf0296a13c4d9b7672313f749eb36501d931022de052aad6e36f2bf34dd51":
  1056. # ref: https://huggingface.co/LiquidAI/LFM2-Tokenizer
  1057. res = "lfm2"
  1058. if chkhsh == "2085e1638f6c377a0aa4ead21b27bb4cb941bf800df86ed391011769c1758dfb":
  1059. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B
  1060. res = "exaone4"
  1061. if chkhsh == "a1e163ecab2e718a4c829d1148b6e86824ec36163bb71941c3dca9cd5ac25756":
  1062. # ref: https://huggingface.co/JetBrains/Mellum-4b-base
  1063. res = "mellum"
  1064. if chkhsh == "a0b64b4385f123663873756336c085744376d015ff328bb1d901598f63c44152":
  1065. # ref: https://huggingface.co/answerdotai/ModernBERT-base
  1066. res = "modern-bert"
  1067. if chkhsh == "49fc0303c9e0d2c2c565c510f64b2d9b271276acdcdadff733249eda9f7d59df":
  1068. # ref: https://huggingface.co/arcee-ai/Trinity-Tokenizer
  1069. res = "afmoe"
  1070. if chkhsh == "9b1be57e70d20d9501b2b3186e792d81181ae36ada3903c26f9fea418cf87206":
  1071. # ref: https://huggingface.co/inclusionAI/Ling-mini-base-2.0
  1072. res = "bailingmoe2"
  1073. if chkhsh == "53e325976a6e142379c19b09afcae354f2f496f147afa8f9e189a33fe4e3024e":
  1074. # ref: https://huggingface.co/ibm-granite/granite-docling-258M
  1075. res = "granite-docling"
  1076. if chkhsh == "f4f37b6c8eb9ea29b3eac6bb8c8487c5ab7885f8d8022e67edc1c68ce8403e95":
  1077. # ref: https://huggingface.co/MiniMaxAI/MiniMax-M2
  1078. res = "minimax-m2"
  1079. if chkhsh == "4a2e2abae11ca2b86d570fc5b44be4d5eb5e72cc8f22dd136a94b37da83ab665":
  1080. # ref: https://huggingface.co/KORMo-Team/KORMo-tokenizer
  1081. res = "kormo"
  1082. if chkhsh == "9d70134b369a70e5735009b6de918f7581b5211f7c074d1f89f753aea8248af1":
  1083. # ref: https://huggingface.co/tencent/Youtu-LLM-2B
  1084. res = "youtu"
  1085. if chkhsh == "16389f0a1f51ee53e562ffd51c371dc508639ab0e4261502071836e50e223e91":
  1086. # ref: https://huggingface.co/upstage/Solar-Open-100B
  1087. res = "solar-open"
  1088. if chkhsh == "6c81ce329e0802883b22eabab0d3fa48357337ef1ecb45443828bf1f6254833f":
  1089. # ref: https://huggingface.co/LGAI-EXAONE/K-EXAONE-236B-A23B
  1090. res = "exaone-moe"
  1091. if res is None:
  1092. logger.warning("\n")
  1093. logger.warning("**************************************************************************************")
  1094. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  1095. logger.warning("** There are 2 possible reasons for this:")
  1096. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  1097. logger.warning("** - the pre-tokenization config has changed upstream")
  1098. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  1099. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  1100. logger.warning("**")
  1101. logger.warning(f"** chkhsh: {chkhsh}")
  1102. logger.warning("**************************************************************************************")
  1103. logger.warning("\n")
  1104. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  1105. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  1106. logger.debug(f"chkhsh: {chkhsh}")
  1107. return res
  1108. # Marker: End get_vocab_base_pre
  1109. def _set_vocab_none(self) -> None:
  1110. self.gguf_writer.add_tokenizer_model("none")
  1111. def _set_vocab_gpt2(self) -> None:
  1112. tokens, toktypes, tokpre = self.get_vocab_base()
  1113. self.gguf_writer.add_tokenizer_model("gpt2")
  1114. self.gguf_writer.add_tokenizer_pre(tokpre)
  1115. self.gguf_writer.add_token_list(tokens)
  1116. self.gguf_writer.add_token_types(toktypes)
  1117. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1118. special_vocab.add_to_gguf(self.gguf_writer)
  1119. def _set_vocab_qwen(self):
  1120. dir_model = self.dir_model
  1121. hparams = self.hparams
  1122. tokens: list[str] = []
  1123. toktypes: list[int] = []
  1124. from transformers import AutoTokenizer
  1125. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  1126. vocab_size = hparams["vocab_size"]
  1127. assert max(tokenizer.get_vocab().values()) < vocab_size
  1128. tokpre = self.get_vocab_base_pre(tokenizer)
  1129. merges = []
  1130. vocab = {}
  1131. mergeable_ranks = tokenizer.mergeable_ranks
  1132. for token, rank in mergeable_ranks.items():
  1133. vocab[QwenModel.token_bytes_to_string(token)] = rank
  1134. if len(token) == 1:
  1135. continue
  1136. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  1137. assert len(merged) == 2
  1138. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  1139. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  1140. added_vocab = tokenizer.special_tokens
  1141. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  1142. for i in range(vocab_size):
  1143. if i not in reverse_vocab:
  1144. tokens.append(f"[PAD{i}]")
  1145. toktypes.append(gguf.TokenType.UNUSED)
  1146. elif reverse_vocab[i] in added_vocab:
  1147. tokens.append(reverse_vocab[i])
  1148. toktypes.append(gguf.TokenType.CONTROL)
  1149. else:
  1150. tokens.append(reverse_vocab[i])
  1151. toktypes.append(gguf.TokenType.NORMAL)
  1152. self.gguf_writer.add_tokenizer_model("gpt2")
  1153. self.gguf_writer.add_tokenizer_pre(tokpre)
  1154. self.gguf_writer.add_token_list(tokens)
  1155. self.gguf_writer.add_token_types(toktypes)
  1156. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  1157. special_vocab.merges = merges
  1158. # only add special tokens when they were not already loaded from config.json
  1159. if len(special_vocab.special_token_ids) == 0:
  1160. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  1161. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  1162. # this one is usually not in config.json anyway
  1163. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  1164. special_vocab.add_to_gguf(self.gguf_writer)
  1165. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  1166. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  1167. self.gguf_writer.add_tokenizer_model("llama")
  1168. self.gguf_writer.add_tokenizer_pre("default")
  1169. self.gguf_writer.add_token_list(tokens)
  1170. self.gguf_writer.add_token_scores(scores)
  1171. self.gguf_writer.add_token_types(toktypes)
  1172. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1173. special_vocab.add_to_gguf(self.gguf_writer)
  1174. def _create_vocab_sentencepiece(self):
  1175. from sentencepiece import SentencePieceProcessor
  1176. tokenizer_path = self.dir_model / 'tokenizer.model'
  1177. if not tokenizer_path.is_file():
  1178. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  1179. tokenizer = SentencePieceProcessor()
  1180. tokenizer.LoadFromFile(str(tokenizer_path))
  1181. vocab_size = self.find_hparam([
  1182. "vocab_size_per_layer_input", # gemma3n
  1183. "vocab_size",
  1184. ], optional=True) or tokenizer.vocab_size()
  1185. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1186. scores: list[float] = [-10000.0] * vocab_size
  1187. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  1188. for token_id in range(tokenizer.vocab_size()):
  1189. if token_id >= vocab_size:
  1190. logger.warning(f'ignore tokens from {token_id}: id is out of range, max={vocab_size - 1}')
  1191. break
  1192. piece = tokenizer.IdToPiece(token_id)
  1193. text = piece.encode("utf-8")
  1194. score = tokenizer.GetScore(token_id)
  1195. toktype = SentencePieceTokenTypes.NORMAL
  1196. if tokenizer.IsUnknown(token_id):
  1197. toktype = SentencePieceTokenTypes.UNKNOWN
  1198. elif tokenizer.IsControl(token_id):
  1199. toktype = SentencePieceTokenTypes.CONTROL
  1200. elif tokenizer.IsUnused(token_id):
  1201. toktype = SentencePieceTokenTypes.UNUSED
  1202. elif tokenizer.IsByte(token_id):
  1203. toktype = SentencePieceTokenTypes.BYTE
  1204. tokens[token_id] = text
  1205. scores[token_id] = score
  1206. toktypes[token_id] = toktype
  1207. added_tokens_file = self.dir_model / 'added_tokens.json'
  1208. if added_tokens_file.is_file():
  1209. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1210. added_tokens_json = json.load(f)
  1211. for key in added_tokens_json:
  1212. token_id = added_tokens_json[key]
  1213. if token_id >= vocab_size:
  1214. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1215. continue
  1216. tokens[token_id] = key.encode("utf-8")
  1217. scores[token_id] = -1000.0
  1218. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1219. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1220. if tokenizer_config_file.is_file():
  1221. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1222. tokenizer_config_json = json.load(f)
  1223. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1224. for token_id, token_data in added_tokens_decoder.items():
  1225. token_id = int(token_id)
  1226. token: str = token_data["content"]
  1227. if token_id >= vocab_size:
  1228. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1229. continue
  1230. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1231. if tokens[token_id] != token.encode("utf-8"):
  1232. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  1233. if token_data.get("special") or self.does_token_look_special(token):
  1234. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1235. else:
  1236. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  1237. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1238. scores[token_id] = -1000.0
  1239. tokens[token_id] = token.encode("utf-8")
  1240. if vocab_size > len(tokens):
  1241. pad_count = vocab_size - len(tokens)
  1242. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  1243. for i in range(1, pad_count + 1):
  1244. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  1245. scores.append(-1000.0)
  1246. toktypes.append(SentencePieceTokenTypes.UNUSED)
  1247. return tokens, scores, toktypes
  1248. def _set_vocab_llama_hf(self):
  1249. vocab = gguf.LlamaHfVocab(self.dir_model)
  1250. tokens = []
  1251. scores = []
  1252. toktypes = []
  1253. for text, score, toktype in vocab.all_tokens():
  1254. tokens.append(text)
  1255. scores.append(score)
  1256. toktypes.append(toktype)
  1257. assert len(tokens) == vocab.vocab_size
  1258. self.gguf_writer.add_tokenizer_model("llama")
  1259. self.gguf_writer.add_tokenizer_pre("default")
  1260. self.gguf_writer.add_token_list(tokens)
  1261. self.gguf_writer.add_token_scores(scores)
  1262. self.gguf_writer.add_token_types(toktypes)
  1263. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1264. special_vocab.add_to_gguf(self.gguf_writer)
  1265. def _set_vocab_rwkv_world(self):
  1266. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  1267. vocab_size = self.hparams.get("vocab_size", 65536)
  1268. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  1269. toktypes: list[int] = [gguf.TokenType.CONTROL]
  1270. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  1271. lines = f.readlines()
  1272. for line in lines:
  1273. parts = line.split(' ')
  1274. assert len(parts) >= 3
  1275. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  1276. token = token.encode("utf-8") if isinstance(token, str) else token
  1277. assert isinstance(token, bytes)
  1278. assert len(token) == token_len
  1279. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  1280. tokens.append(token_text.encode("utf-8"))
  1281. toktypes.append(gguf.TokenType.NORMAL)
  1282. remainder = vocab_size - len(tokens)
  1283. assert remainder >= 0
  1284. for i in range(len(tokens), vocab_size):
  1285. tokens.append(f"[PAD{i}]".encode("utf-8"))
  1286. toktypes.append(gguf.TokenType.UNUSED)
  1287. self.gguf_writer.add_tokenizer_model("rwkv")
  1288. self.gguf_writer.add_token_list(tokens)
  1289. self.gguf_writer.add_token_types(toktypes)
  1290. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  1291. if special_vocab.chat_template is None:
  1292. template_path = Path(__file__).parent / "models" / "templates" / "llama-cpp-rwkv-world.jinja"
  1293. if template_path.is_file():
  1294. with open(template_path, "r", encoding="utf-8") as f:
  1295. template = f.read()
  1296. else:
  1297. template = "rwkv-world"
  1298. special_vocab.chat_template = template
  1299. # hack: Add '\n\n' as the EOT token to make it chat normally
  1300. special_vocab._set_special_token("eot", 261)
  1301. # hack: Override these as they have already been set (incorrectly)
  1302. special_vocab.special_token_ids["bos"] = 0
  1303. special_vocab.special_token_ids["eos"] = 0
  1304. special_vocab.add_to_gguf(self.gguf_writer)
  1305. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  1306. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  1307. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  1308. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  1309. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  1310. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  1311. assert field # tokenizer model
  1312. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  1313. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  1314. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  1315. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  1316. assert field # token list
  1317. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  1318. if model_name == "llama-spm":
  1319. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  1320. assert field # token scores
  1321. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1322. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  1323. assert field # token types
  1324. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1325. if model_name != "llama-spm":
  1326. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  1327. assert field # token merges
  1328. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  1329. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  1330. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  1331. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  1332. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  1333. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  1334. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  1335. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  1336. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  1337. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  1338. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  1339. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  1340. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  1341. def _try_set_pooling_type(self) -> None:
  1342. # get pooling path
  1343. pooling_path = None
  1344. module_path = self.dir_model / "modules.json"
  1345. if module_path.is_file():
  1346. with open(module_path, encoding="utf-8") as f:
  1347. modules = json.load(f)
  1348. for mod in modules:
  1349. if mod["type"] == "sentence_transformers.models.Pooling":
  1350. pooling_path = mod["path"]
  1351. break
  1352. # get pooling type
  1353. if pooling_path is not None:
  1354. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1355. pooling = json.load(f)
  1356. if pooling["pooling_mode_mean_tokens"]:
  1357. pooling_type = gguf.PoolingType.MEAN
  1358. elif pooling["pooling_mode_cls_token"]:
  1359. pooling_type = gguf.PoolingType.CLS
  1360. elif pooling["pooling_mode_lasttoken"]:
  1361. pooling_type = gguf.PoolingType.LAST
  1362. else:
  1363. raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
  1364. self.gguf_writer.add_pooling_type(pooling_type)
  1365. def _set_vocab_glmedge(self):
  1366. from transformers import AutoTokenizer
  1367. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  1368. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1369. tokens, toktypes, tokpre = self.get_vocab_base()
  1370. self.gguf_writer.add_tokenizer_model("gpt2")
  1371. self.gguf_writer.add_tokenizer_pre(tokpre)
  1372. self.gguf_writer.add_token_list(tokens)
  1373. self.gguf_writer.add_token_types(toktypes)
  1374. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  1375. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  1376. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  1377. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  1378. special_vocab.add_to_gguf(self.gguf_writer)
  1379. def _set_vocab_interns1(self):
  1380. tokens: list[str] = []
  1381. toktypes: list[int] = []
  1382. from transformers import AutoTokenizer
  1383. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  1384. vocab = getattr(tokenizer, 'vocab', tokenizer.get_vocab())
  1385. vocab_size = self.hparams.get("vocab_size", len(vocab))
  1386. assert max(vocab.values()) < vocab_size
  1387. tokpre = self.get_vocab_base_pre(tokenizer)
  1388. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab.items()}
  1389. added_vocab = tokenizer.get_added_vocab()
  1390. added_tokens_decoder = tokenizer.added_tokens_decoder
  1391. for i in range(vocab_size):
  1392. if i not in reverse_vocab:
  1393. tokens.append(f"[PAD{i}]")
  1394. toktypes.append(gguf.TokenType.UNUSED)
  1395. else:
  1396. token: str = reverse_vocab[i]
  1397. if token in added_vocab:
  1398. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  1399. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  1400. if not added_tokens_decoder[i].normalized:
  1401. previous_token = token
  1402. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  1403. if previous_token != token:
  1404. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  1405. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  1406. toktypes.append(gguf.TokenType.CONTROL)
  1407. else:
  1408. toktypes.append(gguf.TokenType.USER_DEFINED)
  1409. else:
  1410. toktypes.append(gguf.TokenType.NORMAL)
  1411. tokens.append(token)
  1412. self.gguf_writer.add_tokenizer_model("gpt2")
  1413. self.gguf_writer.add_tokenizer_pre(tokpre)
  1414. self.gguf_writer.add_token_list(tokens)
  1415. self.gguf_writer.add_token_types(toktypes)
  1416. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1417. special_vocab._set_special_token("bos", 151643)
  1418. special_vocab.add_to_gguf(self.gguf_writer)
  1419. def _set_vocab_mistral(self):
  1420. if not _mistral_common_installed:
  1421. raise ImportError(_mistral_import_error_msg)
  1422. vocab = MistralVocab(self.dir_model)
  1423. logger.info(
  1424. f"Converting tokenizer {vocab.tokenizer_type} of size {vocab.vocab_size}."
  1425. )
  1426. self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)
  1427. tokens = []
  1428. scores = []
  1429. toktypes = []
  1430. for text, score, toktype in vocab.all_tokens():
  1431. tokens.append(text)
  1432. scores.append(score)
  1433. toktypes.append(toktype)
  1434. assert len(tokens) == vocab.vocab_size, (
  1435. f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
  1436. )
  1437. if vocab.tokenizer_type == MistralTokenizerType.tekken:
  1438. self.gguf_writer.add_tokenizer_pre("tekken")
  1439. self.gguf_writer.add_token_merges(
  1440. vocab.extract_vocab_merges_from_model()
  1441. )
  1442. logger.info(
  1443. f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
  1444. )
  1445. self.gguf_writer.add_bos_token_id(vocab.bos_id)
  1446. self.gguf_writer.add_eos_token_id(vocab.eos_id)
  1447. self.gguf_writer.add_unk_token_id(vocab.unk_id)
  1448. self.gguf_writer.add_pad_token_id(vocab.pad_id)
  1449. self.gguf_writer.add_token_list(tokens)
  1450. self.gguf_writer.add_token_scores(scores)
  1451. self.gguf_writer.add_token_types(toktypes)
  1452. self.gguf_writer.add_vocab_size(vocab.vocab_size)
  1453. self.gguf_writer.add_add_bos_token(True)
  1454. self.gguf_writer.add_add_eos_token(False)
  1455. local_template_file_path = self.dir_model / "chat_template.jinja"
  1456. if self.is_mistral_format and local_template_file_path.is_file():
  1457. # Ministral-3 and other new Mistral models come with chat templates.
  1458. # ref: https://huggingface.co/mistralai/Ministral-3-14B-Instruct-2512/tree/main
  1459. logger.info("Using an existing Mistral local chat template.")
  1460. with open(local_template_file_path, "r", encoding="utf-8") as f:
  1461. template = f.read()
  1462. elif not self.is_mistral_format or not self.disable_mistral_community_chat_template:
  1463. template_dir = Path(__file__).parent / "models/templates/"
  1464. # Log only for Mistral format that the official tokenization and detokenization is via `mistral-common`.
  1465. if self.is_mistral_format:
  1466. logger.info(
  1467. "Using a Mistral community chat template. These templates can be subject to errors in early days or weeks after a release. "
  1468. "Mistral recommends to use `mistral-common` to perform tokenization and detokenization."
  1469. )
  1470. template = MistralModel.get_community_chat_template(vocab, template_dir, self.is_mistral_format)
  1471. else:
  1472. logger.info("Not using a Mistral local or community chat template. Ensure to perform the tokenization and detokenization via `mistral-common`.")
  1473. template = None
  1474. if template is not None:
  1475. self.gguf_writer.add_chat_template(template)
  1476. def _set_vocab_plamo(self):
  1477. # PLaMo models use a custom tokenizer with a .jsonl file
  1478. tokenizer_jsonl_path = self.dir_model / "tokenizer.jsonl"
  1479. tokenizer_config_path = self.dir_model / "tokenizer_config.json"
  1480. if not tokenizer_jsonl_path.is_file():
  1481. raise FileNotFoundError(f"PLaMo tokenizer file not found: {tokenizer_jsonl_path}")
  1482. # Load tokenizer config
  1483. with open(tokenizer_config_path, "r", encoding="utf-8") as f:
  1484. tokenizer_config = json.load(f)
  1485. # Load tokens from JSONL file (actually a list format)
  1486. tokens = []
  1487. scores = []
  1488. toktypes = []
  1489. with open(tokenizer_jsonl_path, "r", encoding="utf-8") as f:
  1490. for line_num, line in enumerate(f):
  1491. if line.strip():
  1492. token_data = json.loads(line)
  1493. # Format: [token, score, type, ?, ?, ?, ?]
  1494. token = token_data[0].encode("utf-8")
  1495. score = float(token_data[1])
  1496. token_type_str = token_data[2] if len(token_data) > 2 else "NORMAL"
  1497. tokens.append(token)
  1498. scores.append(score)
  1499. if token_type_str == "UNKNOWN":
  1500. toktypes.append(gguf.TokenType.UNKNOWN)
  1501. elif token_type_str == "CONTROL":
  1502. toktypes.append(gguf.TokenType.CONTROL)
  1503. elif token_type_str == "BYTE":
  1504. toktypes.append(gguf.TokenType.BYTE)
  1505. else:
  1506. token_str = token_data[0]
  1507. if token_str.startswith("<|plamo:") and token_str.endswith("|>"):
  1508. toktypes.append(gguf.TokenType.CONTROL)
  1509. else:
  1510. toktypes.append(gguf.TokenType.NORMAL)
  1511. vocab_size = self.hparams["vocab_size"]
  1512. if vocab_size > len(tokens):
  1513. pad_count = vocab_size - len(tokens)
  1514. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  1515. for i in range(1, pad_count + 1):
  1516. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  1517. scores.append(-1000.0)
  1518. toktypes.append(gguf.TokenType.UNUSED)
  1519. self.gguf_writer.add_tokenizer_model("plamo2")
  1520. self.gguf_writer.add_tokenizer_pre("default")
  1521. self.gguf_writer.add_token_list(tokens)
  1522. self.gguf_writer.add_token_scores(scores)
  1523. self.gguf_writer.add_token_types(toktypes)
  1524. if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] is not None:
  1525. token_id = tokens.index(tokenizer_config["bos_token"].encode("utf-8"))
  1526. self.gguf_writer.add_bos_token_id(token_id)
  1527. if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] is not None:
  1528. token_id = tokens.index(tokenizer_config["eos_token"].encode("utf-8"))
  1529. self.gguf_writer.add_eos_token_id(token_id)
  1530. if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] is not None:
  1531. token_id = tokens.index(tokenizer_config["pad_token"].encode("utf-8"))
  1532. self.gguf_writer.add_pad_token_id(token_id)
  1533. if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] is not None:
  1534. token_id = tokens.index(tokenizer_config["sep_token"].encode("utf-8"))
  1535. self.gguf_writer.add_sep_token_id(token_id)
  1536. if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] is not None:
  1537. token_id = tokens.index(tokenizer_config["unk_token"].encode("utf-8"))
  1538. self.gguf_writer.add_unk_token_id(token_id)
  1539. # Add <|plamo:op|> as EOT to ensure appropriate end of generation
  1540. self.gguf_writer.add_eot_token_id(4)
  1541. self.gguf_writer.add_add_space_prefix(False)
  1542. class MmprojModel(ModelBase):
  1543. model_type = ModelType.MMPROJ
  1544. model_arch = gguf.MODEL_ARCH.MMPROJ
  1545. preprocessor_config: dict[str, Any]
  1546. global_config: dict[str, Any]
  1547. n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth", "encoder_layers"]
  1548. has_vision_encoder: bool = True # by default
  1549. has_audio_encoder: bool = False
  1550. # for models having multiple encoders, we need to separate their hparams
  1551. hparams_vision: dict[str, Any] | None = None
  1552. hparams_audio: dict[str, Any] | None = None
  1553. def __init__(self, *args, **kwargs):
  1554. super().__init__(*args, **kwargs)
  1555. if self.model_arch != gguf.MODEL_ARCH.MMPROJ:
  1556. raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
  1557. # get n_embd of the text model
  1558. if not self.is_mistral_format:
  1559. if "text_config" not in self.hparams:
  1560. self.hparams["text_config"] = {}
  1561. if "audio_config" not in self.hparams:
  1562. self.hparams["audio_config"] = {}
  1563. text_config = {**self.hparams, **self.hparams["text_config"]}
  1564. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  1565. else:
  1566. text_config = {
  1567. k: v for k, v in self.hparams.items() if k not in ["vision_encoder", "audio_encoder"]
  1568. }
  1569. self.n_embd_text = text_config.get("hidden_dim", 0)
  1570. assert self.n_embd_text > 0, "n_embd not found in hparams"
  1571. # move vision config to the top level, while preserving the original hparams in global_config
  1572. import copy
  1573. self.global_config = copy.deepcopy(self.hparams)
  1574. self.hparams_vision = self.get_vision_config()
  1575. self.hparams_audio = self.get_audio_config()
  1576. if self.hparams_vision is None and self.hparams_audio is None:
  1577. raise ValueError("vision_config / audio_config not found in hparams")
  1578. # for compat with vision-only models
  1579. self.hparams = self.hparams_vision or self.hparams_audio or self.hparams
  1580. # TODO @ngxson : this is a hack to support both vision and audio encoders
  1581. have_multiple_encoders = self.has_audio_encoder and self.has_vision_encoder
  1582. self.block_count = 128 if have_multiple_encoders else self.find_hparam(self.n_block_keys, True)
  1583. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
  1584. # load preprocessor config
  1585. self.preprocessor_config = {}
  1586. # prefer preprocessor_config.json if possible
  1587. preprocessor_config_path = self.dir_model / "preprocessor_config.json"
  1588. if preprocessor_config_path.is_file():
  1589. with open(preprocessor_config_path, "r", encoding="utf-8") as f:
  1590. self.preprocessor_config = json.load(f)
  1591. # prefer processor_config.json if possible
  1592. processor_config_path = self.dir_model / "processor_config.json"
  1593. if processor_config_path.is_file():
  1594. with open(processor_config_path, "r", encoding="utf-8") as f:
  1595. cfg = json.load(f)
  1596. # move image_processor to root level for compat
  1597. if "image_processor" in cfg:
  1598. cfg = {
  1599. **cfg,
  1600. **cfg["image_processor"],
  1601. }
  1602. # merge configs
  1603. self.preprocessor_config = {**self.preprocessor_config, **cfg}
  1604. def get_vision_config(self) -> dict[str, Any] | None:
  1605. config_name = "vision_config" if not self.is_mistral_format else "vision_encoder"
  1606. return self.global_config.get(config_name)
  1607. def get_audio_config(self) -> dict[str, Any] | None:
  1608. mm_config_key = "whisper_config" if "whisper_config" in self.hparams else "audio_config"
  1609. return self.global_config.get(mm_config_key)
  1610. def set_type(self):
  1611. self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
  1612. def prepare_metadata(self, vocab_only: bool):
  1613. super().prepare_metadata(vocab_only=vocab_only)
  1614. output_type: str = self.ftype.name.partition("_")[2]
  1615. if self.fname_out.is_dir():
  1616. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=output_type, model_type=None)
  1617. self.fname_out = self.fname_out / f"mmproj-{fname_default}.gguf"
  1618. else:
  1619. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  1620. def set_gguf_parameters(self):
  1621. self.gguf_writer.add_file_type(self.ftype)
  1622. if self.has_vision_encoder:
  1623. self.gguf_writer.add_clip_has_vision_encoder(True)
  1624. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  1625. # vision config
  1626. self.image_size = self.find_vparam(["image_size"])
  1627. self.gguf_writer.add_vision_image_size(self.image_size)
  1628. self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
  1629. self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
  1630. self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
  1631. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
  1632. self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads", "num_heads"]))
  1633. # preprocessor config
  1634. image_mean = _MISTRAL_COMMON_DATASET_MEAN if self.is_mistral_format else self.preprocessor_config["image_mean"]
  1635. image_std = _MISTRAL_COMMON_DATASET_STD if self.is_mistral_format else self.preprocessor_config["image_std"]
  1636. self.gguf_writer.add_vision_image_mean(image_mean)
  1637. self.gguf_writer.add_vision_image_std(image_std)
  1638. if self.has_audio_encoder:
  1639. self.gguf_writer.add_clip_has_audio_encoder(True)
  1640. self.gguf_writer.add_audio_projection_dim(self.n_embd_text)
  1641. # audio config
  1642. self.gguf_writer.add_audio_embedding_length(self.find_aparam(["hidden_size"]))
  1643. self.gguf_writer.add_audio_feed_forward_length(self.find_aparam(["intermediate_size"]))
  1644. self.gguf_writer.add_audio_block_count(self.find_aparam(self.n_block_keys))
  1645. self.gguf_writer.add_audio_head_count(self.find_aparam(["num_attention_heads"]))
  1646. if not self.has_vision_encoder and not self.has_audio_encoder:
  1647. raise ValueError("MmprojModel must have either vision or audio encoder")
  1648. def write_vocab(self):
  1649. raise ValueError("MmprojModel does not support vocab writing")
  1650. def find_vparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1651. assert self.hparams_vision is not None
  1652. return self._find_param(self.hparams_vision, keys, optional)
  1653. def find_aparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1654. assert self.hparams_audio is not None
  1655. return self._find_param(self.hparams_audio, keys, optional)
  1656. def _find_param(self, obj: dict[str, Any], keys: Iterable[str], optional: bool = False) -> Any:
  1657. key = next((k for k in keys if k in obj), None)
  1658. if key is not None:
  1659. return obj[key]
  1660. if optional:
  1661. return None
  1662. raise KeyError(f"could not find any of: {keys}")
  1663. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1664. del bid, name, n_dims # unused
  1665. if ".patch_embd.weight" in new_name or ".patch_merger.weight" in new_name:
  1666. return gguf.GGMLQuantizationType.F16 if self.ftype == gguf.LlamaFileType.MOSTLY_F16 else gguf.GGMLQuantizationType.F32
  1667. return False
  1668. @ModelBase.register("GPTNeoXForCausalLM")
  1669. class GPTNeoXModel(TextModel):
  1670. model_arch = gguf.MODEL_ARCH.GPTNEOX
  1671. def set_gguf_parameters(self):
  1672. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1673. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1674. self.gguf_writer.add_block_count(self.block_count)
  1675. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1676. self.gguf_writer.add_rope_dimension_count(
  1677. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  1678. )
  1679. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1680. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  1681. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  1682. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1683. del bid # unused
  1684. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1685. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1686. tensors: list[tuple[str, Tensor]] = []
  1687. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  1688. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1689. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1690. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1691. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1692. data_torch = torch.cat(
  1693. (
  1694. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1695. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1696. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1697. ),
  1698. dim=0,
  1699. )
  1700. logger.info("re-format attention.linear_qkv.weight")
  1701. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  1702. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1703. data_torch = torch.cat(
  1704. (
  1705. qkv_bias[:, 0, :].reshape((n_embed,)),
  1706. qkv_bias[:, 1, :].reshape((n_embed,)),
  1707. qkv_bias[:, 2, :].reshape((n_embed,)),
  1708. ),
  1709. dim=0,
  1710. )
  1711. logger.info("re-format attention.linear_qkv.bias")
  1712. tensors.append((self.map_tensor_name(name), data_torch))
  1713. return tensors
  1714. @ModelBase.register("BloomForCausalLM", "BloomModel")
  1715. class BloomModel(TextModel):
  1716. model_arch = gguf.MODEL_ARCH.BLOOM
  1717. def set_gguf_parameters(self):
  1718. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1719. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1720. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  1721. self.gguf_writer.add_embedding_length(n_embed)
  1722. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1723. self.gguf_writer.add_block_count(self.block_count)
  1724. self.gguf_writer.add_head_count(n_head)
  1725. self.gguf_writer.add_head_count_kv(n_head)
  1726. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1727. self.gguf_writer.add_file_type(self.ftype)
  1728. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1729. del bid # unused
  1730. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1731. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1732. name = re.sub(r'transformer\.', '', name)
  1733. tensors: list[tuple[str, Tensor]] = []
  1734. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1735. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1736. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1737. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1738. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1739. data_torch = torch.cat(
  1740. (
  1741. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1742. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1743. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1744. ),
  1745. dim=0,
  1746. )
  1747. logger.info("re-format attention.linear_qkv.weight")
  1748. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1749. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1750. data_torch = torch.cat(
  1751. (
  1752. qkv_bias[:, 0, :].reshape((n_embed,)),
  1753. qkv_bias[:, 1, :].reshape((n_embed,)),
  1754. qkv_bias[:, 2, :].reshape((n_embed,)),
  1755. ),
  1756. dim=0,
  1757. )
  1758. logger.info("re-format attention.linear_qkv.bias")
  1759. tensors.append((self.map_tensor_name(name), data_torch))
  1760. return tensors
  1761. @ModelBase.register("MPTForCausalLM")
  1762. class MPTModel(TextModel):
  1763. model_arch = gguf.MODEL_ARCH.MPT
  1764. def set_vocab(self):
  1765. try:
  1766. self._set_vocab_gpt2()
  1767. except Exception:
  1768. # Fallback for SEA-LION model
  1769. self._set_vocab_sentencepiece()
  1770. self.gguf_writer.add_add_bos_token(False)
  1771. self.gguf_writer.add_pad_token_id(3)
  1772. self.gguf_writer.add_eos_token_id(1)
  1773. self.gguf_writer.add_unk_token_id(0)
  1774. def set_gguf_parameters(self):
  1775. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1776. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1777. self.gguf_writer.add_block_count(self.block_count)
  1778. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1779. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1780. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1781. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1782. self.gguf_writer.add_layer_norm_eps(1e-5)
  1783. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1784. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1785. if self.hparams["attn_config"]["alibi"]:
  1786. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1787. else:
  1788. self.gguf_writer.add_max_alibi_bias(0.0)
  1789. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1790. del bid # unused
  1791. if "scales" in name:
  1792. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1793. new_name = new_name.replace("scales", "act.scales")
  1794. else:
  1795. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1796. return [(new_name, data_torch)]
  1797. @ModelBase.register("OrionForCausalLM")
  1798. class OrionModel(TextModel):
  1799. model_arch = gguf.MODEL_ARCH.ORION
  1800. def set_vocab(self):
  1801. self._set_vocab_sentencepiece()
  1802. def set_gguf_parameters(self):
  1803. head_count = self.hparams["num_attention_heads"]
  1804. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1805. ctx_length = 0
  1806. if "max_sequence_length" in self.hparams:
  1807. ctx_length = self.hparams["max_sequence_length"]
  1808. elif "max_position_embeddings" in self.hparams:
  1809. ctx_length = self.hparams["max_position_embeddings"]
  1810. elif "model_max_length" in self.hparams:
  1811. ctx_length = self.hparams["model_max_length"]
  1812. else:
  1813. raise ValueError("gguf: can not find ctx length parameter.")
  1814. self.gguf_writer.add_file_type(self.ftype)
  1815. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1816. self.gguf_writer.add_context_length(ctx_length)
  1817. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1818. self.gguf_writer.add_block_count(self.block_count)
  1819. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1820. self.gguf_writer.add_head_count(head_count)
  1821. self.gguf_writer.add_head_count_kv(head_count_kv)
  1822. # note: config provides rms norm but it is actually layer norm
  1823. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1824. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1825. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1826. class BaichuanModel(TextModel):
  1827. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1828. def set_vocab(self):
  1829. self._set_vocab_sentencepiece()
  1830. def set_gguf_parameters(self):
  1831. super().set_gguf_parameters()
  1832. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1833. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1834. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1835. head_count = self.hparams["num_attention_heads"]
  1836. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1837. tensors: list[tuple[str, Tensor]] = []
  1838. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1839. logger.info(f"Unpacking and permuting layer {bid}")
  1840. tensors = [
  1841. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1842. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1843. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1844. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1845. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1846. self._reverse_hf_part(data_torch, 2)),
  1847. ]
  1848. else:
  1849. tensors = [(self.map_tensor_name(name), data_torch)]
  1850. return tensors
  1851. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1852. if n_kv_head is not None and n_head != n_kv_head:
  1853. n_head //= n_kv_head
  1854. return (
  1855. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1856. .swapaxes(1, 2)
  1857. .reshape(weights.shape)
  1858. )
  1859. def _reverse_hf_permute_part(
  1860. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1861. ) -> Tensor:
  1862. r = weights.shape[0] // 3
  1863. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1864. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1865. r = weights.shape[0] // 3
  1866. return weights[r * n_part:r * n_part + r, ...]
  1867. @ModelBase.register("XverseForCausalLM")
  1868. class XverseModel(TextModel):
  1869. model_arch = gguf.MODEL_ARCH.XVERSE
  1870. def set_vocab(self):
  1871. assert (self.dir_model / "tokenizer.json").is_file()
  1872. dir_model = self.dir_model
  1873. hparams = self.hparams
  1874. tokens: list[bytes] = []
  1875. toktypes: list[int] = []
  1876. from transformers import AutoTokenizer
  1877. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1878. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1879. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1880. # because vocab_size is the count of items, and indexes start at 0.
  1881. max_vocab_index = max(tokenizer.get_vocab().values())
  1882. if max_vocab_index >= vocab_size:
  1883. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1884. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1885. added_vocab = tokenizer.get_added_vocab()
  1886. for token_id in range(vocab_size):
  1887. token_text = reverse_vocab[token_id].encode('utf-8')
  1888. # replace "\x00" to string with length > 0
  1889. if token_text == b"\x00":
  1890. toktype = gguf.TokenType.BYTE # special
  1891. token_text = f"<{token_text}>".encode('utf-8')
  1892. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1893. toktype = gguf.TokenType.BYTE # special
  1894. elif reverse_vocab[token_id] in added_vocab:
  1895. if tokenizer.added_tokens_decoder[token_id].special:
  1896. toktype = gguf.TokenType.CONTROL
  1897. else:
  1898. toktype = gguf.TokenType.USER_DEFINED
  1899. else:
  1900. toktype = gguf.TokenType.NORMAL
  1901. tokens.append(token_text)
  1902. toktypes.append(toktype)
  1903. self.gguf_writer.add_tokenizer_model("llama")
  1904. self.gguf_writer.add_tokenizer_pre("default")
  1905. self.gguf_writer.add_token_list(tokens)
  1906. self.gguf_writer.add_token_types(toktypes)
  1907. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1908. special_vocab.add_to_gguf(self.gguf_writer)
  1909. def set_gguf_parameters(self):
  1910. super().set_gguf_parameters()
  1911. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1912. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1913. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1914. del bid # unused
  1915. head_count = self.hparams["num_attention_heads"]
  1916. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1917. # HF models permute some of the tensors, so we need to undo that
  1918. if name.endswith("q_proj.weight"):
  1919. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1920. if name.endswith("k_proj.weight"):
  1921. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1922. return [(self.map_tensor_name(name), data_torch)]
  1923. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1924. if n_kv_head is not None and n_head != n_kv_head:
  1925. n_head //= n_kv_head
  1926. return (
  1927. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1928. .swapaxes(1, 2)
  1929. .reshape(weights.shape)
  1930. )
  1931. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1932. class FalconModel(TextModel):
  1933. model_arch = gguf.MODEL_ARCH.FALCON
  1934. def set_gguf_parameters(self):
  1935. n_head = self.hparams.get("num_attention_heads")
  1936. if n_head is None:
  1937. n_head = self.hparams["n_head"] # old name
  1938. n_head_kv = self.hparams.get("num_kv_heads")
  1939. if n_head_kv is None:
  1940. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1941. self.gguf_writer.add_context_length(2048) # not in config.json
  1942. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1943. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1944. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1945. self.gguf_writer.add_block_count(self.block_count)
  1946. self.gguf_writer.add_head_count(n_head)
  1947. self.gguf_writer.add_head_count_kv(n_head_kv)
  1948. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1949. self.gguf_writer.add_file_type(self.ftype)
  1950. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1951. del bid # unused
  1952. # QKV tensor transform
  1953. # The original query_key_value tensor contains n_head_kv "kv groups",
  1954. # each consisting of n_head/n_head_kv query weights followed by one key
  1955. # and one value weight (shared by all query heads in the kv group).
  1956. # This layout makes it a big pain to work with in GGML.
  1957. # So we rearrange them here,, so that we have n_head query weights
  1958. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1959. # in contiguous fashion.
  1960. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1961. if "query_key_value" in name:
  1962. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1963. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1964. head_dim = self.hparams["hidden_size"] // n_head
  1965. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1966. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1967. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1968. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1969. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1970. return [(self.map_tensor_name(name), data_torch)]
  1971. @ModelBase.register("GPTBigCodeForCausalLM")
  1972. class StarCoderModel(TextModel):
  1973. model_arch = gguf.MODEL_ARCH.STARCODER
  1974. def set_gguf_parameters(self):
  1975. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1976. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1977. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1978. self.gguf_writer.add_block_count(self.block_count)
  1979. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1980. self.gguf_writer.add_head_count_kv(1)
  1981. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1982. self.gguf_writer.add_file_type(self.ftype)
  1983. @ModelBase.register("GPTRefactForCausalLM")
  1984. class RefactModel(TextModel):
  1985. model_arch = gguf.MODEL_ARCH.REFACT
  1986. def set_vocab(self):
  1987. super().set_vocab()
  1988. # TODO: how to determine special FIM tokens automatically?
  1989. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1990. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1991. special_vocab._set_special_token("prefix", 1)
  1992. special_vocab._set_special_token("suffix", 3)
  1993. special_vocab._set_special_token("middle", 2)
  1994. special_vocab.chat_template = None # do not add it twice
  1995. special_vocab.add_to_gguf(self.gguf_writer)
  1996. def set_gguf_parameters(self):
  1997. hidden_dim = self.hparams["n_embd"]
  1998. inner_dim = 4 * hidden_dim
  1999. hidden_dim = int(2 * inner_dim / 3)
  2000. multiple_of = 256
  2001. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  2002. # refact uses Alibi. So this is from config.json which might be used by training.
  2003. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  2004. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2005. self.gguf_writer.add_feed_forward_length(ff_dim)
  2006. self.gguf_writer.add_block_count(self.block_count)
  2007. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2008. self.gguf_writer.add_head_count_kv(1)
  2009. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2010. self.gguf_writer.add_file_type(self.ftype)
  2011. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2012. hidden_dim = self.hparams["n_embd"]
  2013. inner_dim = 4 * hidden_dim
  2014. hidden_dim = int(2 * inner_dim / 3)
  2015. multiple_of = 256
  2016. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  2017. n_head = self.hparams["n_head"]
  2018. n_head_kv = 1
  2019. head_dim = self.hparams["n_embd"] // n_head
  2020. tensors: list[tuple[str, Tensor]] = []
  2021. if bid is not None:
  2022. if name == f"transformer.h.{bid}.attn.kv.weight":
  2023. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  2024. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  2025. elif name == f"transformer.h.{bid}.attn.q.weight":
  2026. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  2027. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  2028. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  2029. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  2030. if len(tensors) == 0:
  2031. tensors.append((self.map_tensor_name(name), data_torch))
  2032. return tensors
  2033. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  2034. class StableLMModel(TextModel):
  2035. model_arch = gguf.MODEL_ARCH.STABLELM
  2036. def set_vocab(self):
  2037. if (self.dir_model / "tokenizer.json").is_file():
  2038. self._set_vocab_gpt2()
  2039. else:
  2040. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  2041. self._set_vocab_qwen()
  2042. def set_gguf_parameters(self):
  2043. hparams = self.hparams
  2044. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2045. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2046. self.gguf_writer.add_block_count(self.block_count)
  2047. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2048. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  2049. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  2050. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2051. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2052. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  2053. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  2054. self.gguf_writer.add_file_type(self.ftype)
  2055. _q_norms: list[dict[str, Tensor]] | None = None
  2056. _k_norms: list[dict[str, Tensor]] | None = None
  2057. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2058. n_head = self.hparams["num_attention_heads"]
  2059. n_kv_head = self.hparams["num_key_value_heads"]
  2060. if name.find("q_layernorm.norms") != -1:
  2061. assert bid is not None
  2062. if self._q_norms is None:
  2063. self._q_norms = [{} for _ in range(self.block_count)]
  2064. self._q_norms[bid][name] = data_torch
  2065. if len(self._q_norms[bid]) >= n_head:
  2066. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  2067. else:
  2068. return []
  2069. if name.find("k_layernorm.norms") != -1:
  2070. assert bid is not None
  2071. if self._k_norms is None:
  2072. self._k_norms = [{} for _ in range(self.block_count)]
  2073. self._k_norms[bid][name] = data_torch
  2074. if len(self._k_norms[bid]) >= n_kv_head:
  2075. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  2076. else:
  2077. return []
  2078. return [(self.map_tensor_name(name), data_torch)]
  2079. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  2080. datas: list[Tensor] = []
  2081. # extract the norms in order
  2082. for xid in range(n_head):
  2083. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  2084. datas.append(norms[ename])
  2085. del norms[ename]
  2086. data_torch = torch.stack(datas, dim=0)
  2087. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  2088. new_name = self.map_tensor_name(merged_name)
  2089. return [(new_name, data_torch)]
  2090. def prepare_tensors(self):
  2091. super().prepare_tensors()
  2092. if self._q_norms is not None or self._k_norms is not None:
  2093. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  2094. norms = (
  2095. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  2096. ) + (
  2097. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  2098. )
  2099. if len(norms) > 0:
  2100. raise ValueError(f"Unprocessed norms: {norms}")
  2101. @ModelBase.register(
  2102. "LLaMAForCausalLM",
  2103. "LlamaForCausalLM",
  2104. "MistralForCausalLM",
  2105. "MixtralForCausalLM",
  2106. "VLlama3ForCausalLM",
  2107. "LlavaForConditionalGeneration",
  2108. "VoxtralForConditionalGeneration",
  2109. "IQuestCoderForCausalLM",
  2110. "LlamaModel")
  2111. class LlamaModel(TextModel):
  2112. model_arch = gguf.MODEL_ARCH.LLAMA
  2113. undo_permute = True
  2114. def __init__(self, *args, **kwargs):
  2115. super().__init__(*args, **kwargs)
  2116. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  2117. if self.hf_arch == "VLlama3ForCausalLM":
  2118. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  2119. hparams = ModelBase.load_hparams(self.dir_model, is_mistral_format=False)
  2120. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  2121. def set_vocab(self):
  2122. if self.origin_hf_arch == "GlmasrModel":
  2123. return self._set_vocab_glmedge()
  2124. if self.is_mistral_format:
  2125. return self._set_vocab_mistral()
  2126. path_tekken_json = self.dir_model / "tekken.json"
  2127. path_tokenizer_json = self.dir_model / "tokenizer.json"
  2128. if path_tekken_json.is_file() and not path_tokenizer_json.is_file():
  2129. self._set_vocab_mistral()
  2130. try:
  2131. self._set_vocab_sentencepiece()
  2132. except FileNotFoundError:
  2133. try:
  2134. self._set_vocab_llama_hf()
  2135. except (FileNotFoundError, TypeError):
  2136. # Llama 3
  2137. self._set_vocab_gpt2()
  2138. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  2139. if self.hparams.get("vocab_size", 32000) == 32016:
  2140. special_vocab = gguf.SpecialVocab(
  2141. self.dir_model, load_merges=False,
  2142. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  2143. )
  2144. special_vocab._set_special_token("prefix", 32007)
  2145. special_vocab._set_special_token("suffix", 32008)
  2146. special_vocab._set_special_token("middle", 32009)
  2147. special_vocab._set_special_token("eot", 32010)
  2148. special_vocab.add_to_gguf(self.gguf_writer)
  2149. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2150. if tokenizer_config_file.is_file():
  2151. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2152. tokenizer_config_json = json.load(f)
  2153. if "add_prefix_space" in tokenizer_config_json:
  2154. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  2155. # Apply to granite small models only
  2156. if self.hparams.get("vocab_size", 32000) == 49152:
  2157. self.gguf_writer.add_add_bos_token(False)
  2158. def set_gguf_parameters(self):
  2159. super().set_gguf_parameters()
  2160. hparams = self.hparams
  2161. if not self.is_mistral_format:
  2162. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2163. if (rope_dim := hparams.get("head_dim")) is None:
  2164. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2165. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2166. @staticmethod
  2167. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2168. if n_head_kv is not None and n_head != n_head_kv:
  2169. n_head = n_head_kv
  2170. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2171. .swapaxes(1, 2)
  2172. .reshape(weights.shape))
  2173. _experts: list[dict[str, Tensor]] | None = None
  2174. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2175. n_head = self.find_hparam(["n_heads", "num_attention_heads"])
  2176. n_kv_head = self.find_hparam(["n_kv_heads", "num_key_value_heads"])
  2177. vision_prefixes = [
  2178. "vision_encoder.",
  2179. "vision_language_adapter.",
  2180. "patch_merger.",
  2181. "pre_mm_projector_norm",
  2182. "audio_encoder.",
  2183. ]
  2184. is_multimodal_tensor = "vision_tower" in name \
  2185. or "vision_model" in name \
  2186. or "audio_tower" in name \
  2187. or "model.connector" in name \
  2188. or "multi_modal_projector" in name \
  2189. or any(
  2190. name.startswith(prefix)
  2191. for prefix in vision_prefixes
  2192. )
  2193. if is_multimodal_tensor:
  2194. return [] # skip vision tensors
  2195. elif self.hf_arch == "LlamaModel":
  2196. name = "model." + name
  2197. elif name.startswith("model.text_model"):
  2198. name = name.replace("text_model.", "") # for SmolVLM
  2199. elif name.startswith("language_model."):
  2200. name = name.replace("language_model.", "") # for the rest
  2201. if self.undo_permute:
  2202. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2203. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2204. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2205. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2206. # process the experts separately
  2207. if name.find("block_sparse_moe.experts") != -1:
  2208. n_experts = self.hparams["num_local_experts"]
  2209. assert bid is not None
  2210. if self._experts is None:
  2211. self._experts = [{} for _ in range(self.block_count)]
  2212. self._experts[bid][name] = data_torch
  2213. if len(self._experts[bid]) >= n_experts * 3:
  2214. tensors: list[tuple[str, Tensor]] = []
  2215. # merge the experts into a single 3d tensor
  2216. for wid in ["w1", "w2", "w3"]:
  2217. datas: list[Tensor] = []
  2218. for xid in range(n_experts):
  2219. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  2220. datas.append(self._experts[bid][ename])
  2221. del self._experts[bid][ename]
  2222. data_torch = torch.stack(datas, dim=0)
  2223. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  2224. new_name = self.map_tensor_name(merged_name)
  2225. tensors.append((new_name, data_torch))
  2226. return tensors
  2227. else:
  2228. return []
  2229. return [(self.map_tensor_name(name), data_torch)]
  2230. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2231. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  2232. if rope_params.get("rope_type", '').lower() == "llama3":
  2233. base = rope_params.get("rope_theta", 10000.0)
  2234. if (dim := self.hparams.get("head_dim")) is None:
  2235. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2236. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2237. factor = rope_params.get("factor", 8.0)
  2238. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  2239. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  2240. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2241. low_freq_wavelen = old_context_len / low_freq_factor
  2242. high_freq_wavelen = old_context_len / high_freq_factor
  2243. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  2244. rope_factors = []
  2245. for freq in freqs:
  2246. wavelen = 2 * math.pi / freq
  2247. if wavelen < high_freq_wavelen:
  2248. rope_factors.append(1)
  2249. elif wavelen > low_freq_wavelen:
  2250. rope_factors.append(factor)
  2251. else:
  2252. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2253. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2254. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2255. def prepare_tensors(self):
  2256. super().prepare_tensors()
  2257. if self._experts is not None:
  2258. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2259. experts = [k for d in self._experts for k in d.keys()]
  2260. if len(experts) > 0:
  2261. raise ValueError(f"Unprocessed experts: {experts}")
  2262. @ModelBase.register("ArceeForCausalLM")
  2263. class ArceeModel(LlamaModel):
  2264. model_arch = gguf.MODEL_ARCH.ARCEE
  2265. def set_gguf_parameters(self):
  2266. super().set_gguf_parameters()
  2267. self._try_set_pooling_type()
  2268. @ModelBase.register("AfmoeForCausalLM")
  2269. class AfmoeModel(LlamaModel):
  2270. model_arch = gguf.MODEL_ARCH.AFMOE
  2271. def set_gguf_parameters(self):
  2272. super().set_gguf_parameters()
  2273. # MoE parameters
  2274. if (n_experts := self.hparams.get("num_experts")) is not None:
  2275. self.gguf_writer.add_expert_count(n_experts)
  2276. if (n_shared_experts := self.hparams.get("num_shared_experts")) is not None:
  2277. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  2278. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2279. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2280. if (n_dense_layers := self.hparams.get("num_dense_layers")) is not None:
  2281. self.gguf_writer.add_leading_dense_block_count(n_dense_layers)
  2282. # Route normalization and scaling
  2283. if (route_norm := self.hparams.get("route_norm")) is not None:
  2284. self.gguf_writer.add_expert_weights_norm(route_norm)
  2285. if (route_scale := self.hparams.get("route_scale")) is not None:
  2286. self.gguf_writer.add_expert_weights_scale(route_scale)
  2287. # Sliding window attention
  2288. if (sliding_window := self.hparams.get("sliding_window")) is not None:
  2289. self.gguf_writer.add_sliding_window(sliding_window)
  2290. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2291. # Handle expert weights - they're already merged in the HF format
  2292. # process the experts separately
  2293. if name.find("mlp.experts") != -1:
  2294. n_experts = self.hparams["num_experts"]
  2295. assert bid is not None
  2296. if self._experts is None:
  2297. self._experts = [{} for _ in range(self.block_count)]
  2298. self._experts[bid][name] = data_torch
  2299. if len(self._experts[bid]) >= n_experts * 3:
  2300. tensors: list[tuple[str, Tensor]] = []
  2301. # merge the experts into a single 3d tensor
  2302. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  2303. datas: list[Tensor] = []
  2304. for xid in range(n_experts):
  2305. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2306. datas.append(self._experts[bid][ename_to_retrieve])
  2307. del self._experts[bid][ename_to_retrieve]
  2308. data_torch = torch.stack(datas, dim=0)
  2309. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2310. new_name = self.map_tensor_name(merged_name)
  2311. tensors.append((new_name, data_torch))
  2312. return tensors
  2313. else:
  2314. return []
  2315. if name.endswith(".expert_bias"):
  2316. name = name.replace(".expert_bias", ".expert_bias.bias")
  2317. return [(self.map_tensor_name(name), data_torch)]
  2318. @ModelBase.register(
  2319. "LlavaForConditionalGeneration", # pixtral
  2320. "Mistral3ForConditionalGeneration", # mistral small 3.1
  2321. )
  2322. class LlavaVisionModel(MmprojModel):
  2323. img_break_tok_id = -1
  2324. use_break_tok = True
  2325. def __init__(self, *args, **kwargs):
  2326. super().__init__(*args, **kwargs)
  2327. if self.hparams.get("model_type") == "pixtral":
  2328. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  2329. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  2330. if self.use_break_tok:
  2331. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  2332. elif self.is_mistral_format:
  2333. # hparams is already vision config here so norm_eps is only defined in global_config.
  2334. self.hparams["norm_eps"] = self.global_config.get("norm_eps", None)
  2335. assert self.hparams["norm_eps"] is not None, "norm_eps not found in params.json"
  2336. if self.use_break_tok:
  2337. self.img_break_tok_id = self.find_vparam(["image_break_token_id"])
  2338. else:
  2339. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  2340. logger.info(f"Image break token id: {self.img_break_tok_id}")
  2341. def get_token_id(self, token: str) -> int:
  2342. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2343. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2344. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  2345. for id_, token_data in added_tokens_decoder.items():
  2346. if token_data["content"] == token:
  2347. return int(id_)
  2348. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  2349. def set_gguf_parameters(self):
  2350. super().set_gguf_parameters()
  2351. hparams = self.hparams
  2352. if hparams.get("model_type") == "pixtral":
  2353. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  2354. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  2355. # hidden_act
  2356. if hparams["hidden_act"] == "silu":
  2357. self.gguf_writer.add_vision_use_silu(True)
  2358. elif hparams["hidden_act"] == "gelu":
  2359. self.gguf_writer.add_vision_use_gelu(True)
  2360. else:
  2361. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  2362. # spatial_merge_size
  2363. if "spatial_merge_size" in self.global_config:
  2364. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  2365. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2366. del bid # unused
  2367. n_head = (
  2368. self.hparams["num_attention_heads"] if not self.is_mistral_format else self.find_vparam(["num_attention_heads"])
  2369. )
  2370. n_kv_head = n_head
  2371. valid_prefixes = (
  2372. "multi_modal_projector.",
  2373. "vision_tower.",
  2374. "vision_encoder.",
  2375. "vision_language_adapter.",
  2376. "patch_merger.",
  2377. "pre_mm_projector_norm",
  2378. )
  2379. if any(name.startswith(prefix) for prefix in valid_prefixes):
  2380. # process vision tensors
  2381. if name.endswith(("q_proj.weight", "q_proj.bias")) and not self.is_mistral_format:
  2382. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2383. if name.endswith(("k_proj.weight", "k_proj.bias")) and not self.is_mistral_format:
  2384. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2385. return [(self.map_tensor_name(name), data_torch)]
  2386. embed_key = "embed_tokens.weight" if not self.is_mistral_format else "tok_embeddings.weight"
  2387. if self.img_break_tok_id > 0 and embed_key in name:
  2388. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  2389. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  2390. img_break_embd = data_torch[self.img_break_tok_id]
  2391. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  2392. return [(self.map_tensor_name(name), img_break_embd)]
  2393. return [] # skip other tensors
  2394. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  2395. class SmolVLMModel(MmprojModel):
  2396. def __init__(self, *args, **kwargs):
  2397. super().__init__(*args, **kwargs)
  2398. if self.hparams["model_type"] == "smolvlm_vision":
  2399. # fix for SmolVLM2, missing some keys in config.json
  2400. # default values are taken from transformers code
  2401. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  2402. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  2403. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  2404. def set_gguf_parameters(self):
  2405. super().set_gguf_parameters()
  2406. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.IDEFICS3)
  2407. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  2408. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  2409. self.gguf_writer.add_vision_use_gelu(True)
  2410. # Add the preprocessor longest edge size
  2411. preproc_image_size = self.preprocessor_config.get("size", {}).get("longest_edge", self.image_size)
  2412. self.gguf_writer.add_vision_preproc_image_size(preproc_image_size)
  2413. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2414. if ".embeddings." in name:
  2415. return gguf.GGMLQuantizationType.F32
  2416. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2417. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2418. del bid # unused
  2419. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  2420. if is_vision_tensor:
  2421. return [(self.map_tensor_name(name), data_torch)]
  2422. return [] # skip other tensors
  2423. @ModelBase.register(
  2424. "Llama4ForConditionalGeneration",
  2425. "Llama4ForCausalLM",
  2426. )
  2427. class Llama4Model(LlamaModel):
  2428. model_arch = gguf.MODEL_ARCH.LLAMA4
  2429. undo_permute = False
  2430. def __init__(self, *args, **kwargs):
  2431. super().__init__(*args, **kwargs)
  2432. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  2433. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  2434. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  2435. def set_vocab(self):
  2436. self._set_vocab_gpt2()
  2437. def set_gguf_parameters(self):
  2438. super().set_gguf_parameters()
  2439. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  2440. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  2441. if "layer_types" in self.hparams:
  2442. if all(lt == "full_attention" for lt in self.hparams["layer_types"]):
  2443. # all layers are full attention (for MobileLLM), disable swa
  2444. self.gguf_writer.add_sliding_window(0)
  2445. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2446. if name.startswith("language_model."):
  2447. name = name.replace("language_model.", "")
  2448. # split the gate_up into gate and up
  2449. if "gate_up_proj" in name:
  2450. name_up = name.replace("gate_up_proj", "up_proj.weight")
  2451. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  2452. dim_half = data_torch.shape[-1] // 2
  2453. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  2454. return [
  2455. (self.map_tensor_name(name_gate), gate_proj_weight),
  2456. (self.map_tensor_name(name_up), up_proj_weight)
  2457. ]
  2458. if name.endswith("down_proj"):
  2459. name += ".weight"
  2460. data_torch = data_torch.transpose(-1, -2)
  2461. if "multi_modal_projector" in name or "vision_model" in name:
  2462. return []
  2463. return super().modify_tensors(data_torch, name, bid)
  2464. @ModelBase.register("Llama4ForConditionalGeneration")
  2465. class Llama4VisionModel(MmprojModel):
  2466. def set_gguf_parameters(self):
  2467. super().set_gguf_parameters()
  2468. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LLAMA4)
  2469. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams["norm_eps"])
  2470. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / self.hparams["pixel_shuffle_ratio"]))
  2471. assert self.hparams["hidden_act"] == "gelu"
  2472. self.gguf_writer.add_vision_use_gelu(True)
  2473. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2474. del bid # unused
  2475. if "multi_modal_projector" in name or "vision_model" in name:
  2476. # process vision tensors
  2477. if "positional_embedding_vlm" in name and ".weight" not in name:
  2478. name += ".weight"
  2479. if "multi_modal_projector.linear_1" in name:
  2480. # despite the name with number postfix, this is a single fully connected layer
  2481. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC] + '.weight', data_torch)]
  2482. return [(self.map_tensor_name(name), data_torch)]
  2483. return []
  2484. @ModelBase.register("Mistral3ForConditionalGeneration")
  2485. class Mistral3Model(LlamaModel):
  2486. model_arch = gguf.MODEL_ARCH.MISTRAL3
  2487. def __init__(self, *args, **kwargs):
  2488. super().__init__(*args, **kwargs)
  2489. # for compatibility, we use LLAMA arch for older models
  2490. # TODO: remove this once everyone has migrated to newer version of llama.cpp
  2491. if self.hparams.get("model_type") != "ministral3":
  2492. self.model_arch = gguf.MODEL_ARCH.LLAMA
  2493. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[self.model_arch]
  2494. self.gguf_writer.add_architecture()
  2495. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  2496. def set_gguf_parameters(self):
  2497. super().set_gguf_parameters()
  2498. rope_params = self.rope_parameters
  2499. if self.hparams.get("model_type") == "ministral3":
  2500. assert rope_params, "ministral3 must have 'rope_parameters' config"
  2501. assert rope_params["rope_type"] == "yarn", "ministral3 rope_type must be 'yarn'"
  2502. self.gguf_writer.add_rope_scaling_yarn_log_mul(rope_params["mscale_all_dim"])
  2503. self.gguf_writer.add_attn_temperature_scale(rope_params["llama_4_scaling_beta"])
  2504. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2505. name = name.replace("language_model.", "")
  2506. if "multi_modal_projector" in name or "vision_tower" in name:
  2507. return []
  2508. return super().modify_tensors(data_torch, name, bid)
  2509. @ModelBase.register("DeciLMForCausalLM")
  2510. class DeciModel(TextModel):
  2511. model_arch = gguf.MODEL_ARCH.DECI
  2512. @staticmethod
  2513. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  2514. # DeciLM-specific code
  2515. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  2516. return DeciModel._find_multiple(intermediate_size, 256)
  2517. @staticmethod
  2518. def _find_multiple(n: int, k: int) -> int:
  2519. # DeciLM-specific code
  2520. if n % k == 0:
  2521. return n
  2522. return n + k - (n % k)
  2523. def __init__(self, *args, **kwargs):
  2524. super().__init__(*args, **kwargs)
  2525. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2526. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  2527. assert self.block_count == len(_block_configs)
  2528. self._num_kv_heads = list()
  2529. self._num_heads = list()
  2530. _ffn_multipliers = list()
  2531. # ***linear attention layer***
  2532. # if n_heads_in_group is None and replace_with_linear is True
  2533. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  2534. # ***attention-free layer***
  2535. # if n_heads_in_group is None and replace_with_linear is False
  2536. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  2537. # ***normal attention-layer***
  2538. # if n_heads_in_group is not None, then
  2539. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  2540. # _num_heads[il] is num_attention_head
  2541. # ***dummy layer*** for nemotron 253B
  2542. # if n_heads_in_group is None and ffn_mult is None
  2543. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
  2544. for il in range(len(_block_configs)):
  2545. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  2546. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  2547. self._num_kv_heads.append(0)
  2548. self._num_heads.append(self.hparams["num_attention_heads"])
  2549. else:
  2550. self._num_kv_heads.append(0)
  2551. self._num_heads.append(0)
  2552. else:
  2553. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  2554. self._num_heads.append(self.hparams["num_attention_heads"])
  2555. if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
  2556. _ffn_multipliers.append(0.0)
  2557. else:
  2558. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  2559. assert self.block_count == len(self._num_kv_heads)
  2560. assert self.block_count == len(self._num_heads)
  2561. assert self.block_count == len(_ffn_multipliers)
  2562. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2563. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  2564. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  2565. self._ffn_dims: list[int] = [
  2566. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  2567. for multiplier in _ffn_multipliers
  2568. ]
  2569. def set_vocab(self):
  2570. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  2571. # eos_token from '|eot_id|' to '|end_of_text|'
  2572. if self.hparams.get("vocab_size", 128256) == 128256:
  2573. tokens, toktypes, tokpre = self.get_vocab_base()
  2574. self.gguf_writer.add_tokenizer_model("gpt2")
  2575. self.gguf_writer.add_tokenizer_pre(tokpre)
  2576. self.gguf_writer.add_token_list(tokens)
  2577. self.gguf_writer.add_token_types(toktypes)
  2578. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  2579. special_vocab.add_to_gguf(self.gguf_writer)
  2580. else:
  2581. # DeciLM-7B
  2582. self._set_vocab_llama_hf()
  2583. def set_gguf_parameters(self):
  2584. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2585. assert self.block_count == len(self._num_kv_heads)
  2586. assert self.block_count == len(self._num_heads)
  2587. assert self.block_count == len(self._ffn_dims)
  2588. if (rope_theta := self.rope_parameters.get("rope_theta")) is not None:
  2589. self.gguf_writer.add_rope_freq_base(rope_theta)
  2590. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2591. self.gguf_writer.add_head_count(self._num_heads)
  2592. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2593. self.gguf_writer.add_block_count(self.block_count)
  2594. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2595. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2596. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2597. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2598. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2599. self.gguf_writer.add_file_type(self.ftype)
  2600. else: # DeciLM-7B
  2601. super().set_gguf_parameters()
  2602. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  2603. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  2604. assert self.block_count == len(self._num_kv_heads)
  2605. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2606. hparams = self.hparams
  2607. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2608. if (rope_dim := hparams.get("head_dim")) is None:
  2609. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2610. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2611. @staticmethod
  2612. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2613. if n_head_kv is not None and n_head != n_head_kv:
  2614. n_head = n_head_kv
  2615. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2616. .swapaxes(1, 2)
  2617. .reshape(weights.shape))
  2618. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2619. n_head = self.hparams["num_attention_heads"]
  2620. if bid is not None:
  2621. if "num_key_value_heads_per_layer" in self.hparams:
  2622. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  2623. elif "block_configs" in self.hparams:
  2624. n_kv_head = self._num_kv_heads[bid]
  2625. n_head = self._num_heads[bid]
  2626. else:
  2627. n_kv_head = self.hparams.get("num_key_value_heads")
  2628. else:
  2629. n_kv_head = self.hparams.get("num_key_value_heads")
  2630. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2631. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  2632. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2633. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  2634. return [(self.map_tensor_name(name), data_torch)]
  2635. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2636. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  2637. if rope_params.get("rope_type", '').lower() == "llama3":
  2638. base = rope_params.get("rope_theta", 10000.0)
  2639. if (dim := self.hparams.get("head_dim")) is None:
  2640. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2641. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2642. factor = rope_params.get("factor", 8.0)
  2643. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  2644. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  2645. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2646. low_freq_wavelen = old_context_len / low_freq_factor
  2647. high_freq_wavelen = old_context_len / high_freq_factor
  2648. assert low_freq_wavelen != high_freq_wavelen
  2649. rope_factors = []
  2650. for freq in freqs:
  2651. wavelen = 2 * math.pi / freq
  2652. if wavelen < high_freq_wavelen:
  2653. rope_factors.append(1)
  2654. elif wavelen > low_freq_wavelen:
  2655. rope_factors.append(factor)
  2656. else:
  2657. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2658. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2659. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2660. def prepare_tensors(self):
  2661. super().prepare_tensors()
  2662. @ModelBase.register("BitnetForCausalLM")
  2663. class BitnetModel(TextModel):
  2664. model_arch = gguf.MODEL_ARCH.BITNET
  2665. def set_vocab(self):
  2666. self._set_vocab_sentencepiece()
  2667. def set_gguf_parameters(self):
  2668. super().set_gguf_parameters()
  2669. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2670. self.gguf_writer.add_rope_scaling_factor(1.0)
  2671. def weight_quant(self, weight: Tensor) -> Tensor:
  2672. dtype = weight.dtype
  2673. weight = weight.float()
  2674. scale = weight.abs().mean().clamp(min=1e-5)
  2675. iscale = 1 / scale
  2676. # TODO: multiply by the scale directly instead of inverting it twice
  2677. # (this is also unnecessarily doubly inverted upstream)
  2678. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  2679. result = (weight * iscale).round().clamp(-1, 1) / iscale
  2680. return result.type(dtype)
  2681. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2682. new_name = self.map_tensor_name(name)
  2683. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  2684. gguf.MODEL_TENSOR.ATTN_Q,
  2685. gguf.MODEL_TENSOR.ATTN_K,
  2686. gguf.MODEL_TENSOR.ATTN_V,
  2687. gguf.MODEL_TENSOR.ATTN_OUT,
  2688. gguf.MODEL_TENSOR.FFN_UP,
  2689. gguf.MODEL_TENSOR.FFN_DOWN,
  2690. gguf.MODEL_TENSOR.FFN_GATE,
  2691. ]):
  2692. # transform weight into 1/0/-1 (in fp32)
  2693. data_torch = self.weight_quant(data_torch)
  2694. yield (new_name, data_torch)
  2695. @ModelBase.register("GrokForCausalLM", "Grok1ForCausalLM")
  2696. class GrokModel(TextModel):
  2697. model_arch = gguf.MODEL_ARCH.GROK
  2698. def set_vocab(self):
  2699. if (self.dir_model / 'tokenizer.model').is_file():
  2700. self._set_vocab_sentencepiece()
  2701. return
  2702. if not (self.dir_model / 'tokenizer.json').is_file() or not (self.dir_model / 'chat_template.jinja').is_file():
  2703. logger.error('Error: Missing vocab and chat template, download files from https://huggingface.co/alvarobartt/grok-2-tokenizer')
  2704. sys.exit(1)
  2705. self._set_vocab_gpt2()
  2706. def __init__(self, *args, **kwargs):
  2707. super().__init__(*args, **kwargs)
  2708. def set_gguf_parameters(self):
  2709. super().set_gguf_parameters()
  2710. self.gguf_writer.add_attn_logit_softcapping(self.hparams.get("attn_logit_softcapping", 30.0))
  2711. self.gguf_writer.add_router_logit_softcapping(self.hparams.get("router_logit_softcapping", 30.0))
  2712. if (final_logit_softcap := self.hparams.get("final_logit_softcapping")):
  2713. self.gguf_writer.add_final_logit_softcapping(final_logit_softcap)
  2714. if (rope_dim := self.hparams.get("head_dim")) is None:
  2715. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2716. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2717. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2718. # Treat "original" as "yarn", seems to have been a mistake
  2719. if self.hparams.get("rope_type") in ("yarn", "original"):
  2720. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2721. self.gguf_writer.add_rope_scaling_factor(self.hparams["scaling_factor"])
  2722. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["original_max_position_embeddings"])
  2723. self.gguf_writer.add_rope_scaling_yarn_ext_factor(self.hparams["extrapolation_factor"])
  2724. self.gguf_writer.add_rope_scaling_yarn_attn_factor(self.hparams["attn_factor"])
  2725. self.gguf_writer.add_rope_scaling_yarn_beta_fast(self.hparams["beta_fast"])
  2726. self.gguf_writer.add_rope_scaling_yarn_beta_slow(self.hparams["beta_slow"])
  2727. if temp_len := self.hparams.get("attn_temperature_len"):
  2728. self.gguf_writer.add_attn_temperature_length(temp_len)
  2729. self.gguf_writer.add_attn_output_scale(self.hparams.get("attn_output_multiplier", rope_dim**-0.5))
  2730. self.gguf_writer.add_embedding_scale(self.hparams["embedding_multiplier_scale"])
  2731. self.gguf_writer.add_logit_scale(self.hparams["output_multiplier_scale"])
  2732. _experts: list[dict[str, list[Tensor]]] | None = None
  2733. _cur_expert = ""
  2734. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2735. tensors: list[tuple[str, Tensor]] = []
  2736. is_expert = ".moe." in name or ".block_sparse_moe.experts." in name
  2737. if not is_expert:
  2738. tensors.append((self.map_tensor_name(name), data_torch))
  2739. # process the experts separately
  2740. if is_expert or self._cur_expert:
  2741. n_experts = self.hparams["num_local_experts"]
  2742. assert bid is not None
  2743. if self._experts is None:
  2744. self._experts = [{} for _ in range(self.block_count)]
  2745. # concatenate split tensors
  2746. if name in self._experts[bid]:
  2747. self._cur_expert = name
  2748. self._experts[bid][name].append(data_torch)
  2749. return []
  2750. elif is_expert:
  2751. self._cur_expert = name
  2752. self._experts[bid][name] = [data_torch]
  2753. return []
  2754. else:
  2755. self._cur_expert = ""
  2756. for bid in range(self.block_count):
  2757. if len(self._experts[bid]) >= n_experts * 3:
  2758. # merge the experts into a single 3d tensor
  2759. for wid in [("linear", "w1", 0), ("linear_1", "w2", 1), ("linear_v", "w3", 0)]:
  2760. datas: list[Tensor] = []
  2761. for xid in range(n_experts):
  2762. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid[0]}.weight"
  2763. if ename not in self._experts[bid]:
  2764. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid[1]}.weight"
  2765. tensor_list = self._experts[bid][ename]
  2766. datas.append(torch.cat(tensor_list, dim=wid[2]) if len(tensor_list) > 1 else tensor_list[0])
  2767. del self._experts[bid][ename]
  2768. data_torch = torch.stack(datas, dim=0)
  2769. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid[0]}.weight"
  2770. new_name = self.map_tensor_name(merged_name)
  2771. yield (new_name, data_torch)
  2772. yield from tensors
  2773. @ModelBase.register("DbrxForCausalLM")
  2774. class DbrxModel(TextModel):
  2775. model_arch = gguf.MODEL_ARCH.DBRX
  2776. def set_gguf_parameters(self):
  2777. ffn_config = self.hparams["ffn_config"]
  2778. attn_config = self.hparams["attn_config"]
  2779. self.gguf_writer.add_block_count(self.block_count)
  2780. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  2781. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2782. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  2783. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  2784. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  2785. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  2786. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  2787. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  2788. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  2789. self.gguf_writer.add_layer_norm_eps(1e-5)
  2790. self.gguf_writer.add_file_type(self.ftype)
  2791. logger.info(f"gguf: file type = {self.ftype}")
  2792. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2793. del bid # unused
  2794. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  2795. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  2796. n_embd = self.hparams["d_model"]
  2797. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  2798. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  2799. # But llama.cpp moe graph works differently
  2800. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  2801. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  2802. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2803. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  2804. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2805. experts = False
  2806. for exp_tensor_name in exp_tensor_names.keys():
  2807. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  2808. experts = True
  2809. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  2810. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  2811. data_torch = data_torch.permute(*permute_tensor)
  2812. break
  2813. # map tensor names
  2814. # In MoE models the ffn tensors are typically most of the model weights,
  2815. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  2816. # Every other model has the weight names ending in .weight,
  2817. # let's assume that is the convention which is not the case for dbrx:
  2818. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  2819. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  2820. return [(new_name, data_torch)]
  2821. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2822. del name, new_name, bid # unused
  2823. return n_dims > 1
  2824. @ModelBase.register("MiniCPMForCausalLM")
  2825. class MiniCPMModel(TextModel):
  2826. model_arch = gguf.MODEL_ARCH.MINICPM
  2827. def set_gguf_parameters(self):
  2828. super().set_gguf_parameters()
  2829. embedding_scale = float(self.hparams["scale_emb"])
  2830. self.gguf_writer.add_embedding_scale(embedding_scale)
  2831. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  2832. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  2833. self.gguf_writer.add_residual_scale(residual_scale)
  2834. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  2835. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  2836. self.gguf_writer.add_logit_scale(logit_scale)
  2837. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  2838. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2839. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2840. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2841. if rope_scaling is not None:
  2842. long_factors = rope_scaling.get('long_factor', None)
  2843. short_factors = rope_scaling.get('short_factor', None)
  2844. if long_factors is None or short_factors is None:
  2845. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2846. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2847. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2848. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2849. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2850. def set_vocab(self):
  2851. self._set_vocab_sentencepiece()
  2852. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2853. del bid # unused
  2854. n_head = self.hparams["num_attention_heads"]
  2855. n_kv_head = self.hparams.get("num_key_value_heads")
  2856. # HF models permute some of the tensors, so we need to undo that
  2857. if name.endswith(("q_proj.weight")):
  2858. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2859. if name.endswith(("k_proj.weight")):
  2860. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2861. return [(self.map_tensor_name(name), data_torch)]
  2862. @ModelBase.register("MiniCPM3ForCausalLM")
  2863. class MiniCPM3Model(TextModel):
  2864. model_arch = gguf.MODEL_ARCH.MINICPM3
  2865. def set_gguf_parameters(self):
  2866. hparams = self.hparams
  2867. self.gguf_writer.add_file_type(self.ftype)
  2868. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2869. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2870. self.gguf_writer.add_block_count(self.block_count)
  2871. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2872. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2873. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2874. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2875. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2876. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2877. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2878. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2879. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2880. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2881. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2882. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2883. if rope_scaling is not None:
  2884. rope_dims = self.hparams["qk_rope_head_dim"]
  2885. long_factors = rope_scaling.get('long_factor', None)
  2886. short_factors = rope_scaling.get('short_factor', None)
  2887. if long_factors is None or short_factors is None:
  2888. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2889. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2890. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2891. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2892. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2893. def set_vocab(self):
  2894. self._set_vocab_sentencepiece()
  2895. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2896. if n_kv_head is not None and n_head != n_kv_head:
  2897. n_head //= n_kv_head
  2898. return (
  2899. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2900. .swapaxes(1, 2)
  2901. .reshape(weights.shape)
  2902. )
  2903. @ModelBase.register("QWenLMHeadModel")
  2904. class QwenModel(TextModel):
  2905. model_arch = gguf.MODEL_ARCH.QWEN
  2906. @staticmethod
  2907. def token_bytes_to_string(b):
  2908. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2909. byte_encoder = bytes_to_unicode()
  2910. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2911. @staticmethod
  2912. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2913. parts = [bytes([b]) for b in token]
  2914. while True:
  2915. min_idx = None
  2916. min_rank = None
  2917. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2918. rank = mergeable_ranks.get(pair[0] + pair[1])
  2919. if rank is not None and (min_rank is None or rank < min_rank):
  2920. min_idx = i
  2921. min_rank = rank
  2922. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2923. break
  2924. assert min_idx is not None
  2925. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2926. return parts
  2927. def set_vocab(self):
  2928. self._set_vocab_qwen()
  2929. @ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration", "KORMoForCausalLM", "AudioFlamingo3ForConditionalGeneration")
  2930. class Qwen2Model(TextModel):
  2931. model_arch = gguf.MODEL_ARCH.QWEN2
  2932. def set_vocab(self):
  2933. try:
  2934. self._set_vocab_sentencepiece()
  2935. except FileNotFoundError:
  2936. self._set_vocab_gpt2()
  2937. def set_gguf_parameters(self):
  2938. super().set_gguf_parameters()
  2939. self._try_set_pooling_type()
  2940. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2941. if self.hf_arch == "Qwen2Model":
  2942. name = f"model.{name}" # map to Qwen2ForCausalLM tensors
  2943. if "language_model." in name:
  2944. name = name.replace("language_model.", "") # for InternVL
  2945. if name.startswith("mlp") or name.startswith("multi_modal_projector") \
  2946. or name.startswith("vision_model") or name.startswith("audio_tower") \
  2947. or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector"):
  2948. # skip vision and audio tensors
  2949. return []
  2950. yield from super().modify_tensors(data_torch, name, bid)
  2951. @ModelBase.register("DreamModel")
  2952. class DreamModel(TextModel):
  2953. model_arch = gguf.MODEL_ARCH.DREAM
  2954. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2955. tokens: list[str] = []
  2956. toktypes: list[int] = []
  2957. from transformers import AutoTokenizer
  2958. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2959. vocab_dict = tokenizer.get_vocab()
  2960. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2961. assert max(vocab_dict.values()) < vocab_size
  2962. tokpre = self.get_vocab_base_pre(tokenizer)
  2963. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2964. added_vocab = tokenizer.get_added_vocab()
  2965. for i in range(vocab_size):
  2966. if i not in reverse_vocab:
  2967. tokens.append(f"[PAD{i}]")
  2968. toktypes.append(gguf.TokenType.UNUSED)
  2969. elif reverse_vocab[i] in added_vocab:
  2970. tokens.append(reverse_vocab[i])
  2971. # Check if it's a special token - treat special tokens as CONTROL tokens
  2972. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2973. if tokenizer.added_tokens_decoder[i].special:
  2974. toktypes.append(gguf.TokenType.CONTROL)
  2975. else:
  2976. toktypes.append(gguf.TokenType.USER_DEFINED)
  2977. else:
  2978. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2979. toktypes.append(gguf.TokenType.CONTROL)
  2980. else:
  2981. tokens.append(reverse_vocab[i])
  2982. toktypes.append(gguf.TokenType.NORMAL)
  2983. return tokens, toktypes, tokpre
  2984. def set_vocab(self):
  2985. try:
  2986. self._set_vocab_sentencepiece()
  2987. except FileNotFoundError:
  2988. self._set_vocab_gpt2()
  2989. def set_gguf_parameters(self):
  2990. super().set_gguf_parameters()
  2991. self._try_set_pooling_type()
  2992. # Dream models use non-causal attention for diffusion
  2993. self.gguf_writer.add_causal_attention(False)
  2994. # Add Dream-specific parameters
  2995. mask_token_id = self.hparams.get("mask_token_id")
  2996. if mask_token_id is not None:
  2997. self.gguf_writer.add_mask_token_id(mask_token_id)
  2998. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2999. # Dream model tensors should be mapped directly since it's the base model
  3000. yield from super().modify_tensors(data_torch, name, bid)
  3001. @ModelBase.register("LLaDAModelLM")
  3002. class LLaDAModel(TextModel):
  3003. model_arch = gguf.MODEL_ARCH.LLADA
  3004. undo_permute = True
  3005. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  3006. tokens: list[str] = []
  3007. toktypes: list[int] = []
  3008. from transformers import AutoTokenizer
  3009. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  3010. vocab_dict = tokenizer.get_vocab()
  3011. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  3012. assert max(vocab_dict.values()) < vocab_size
  3013. tokpre = self.get_vocab_base_pre(tokenizer)
  3014. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  3015. added_vocab = tokenizer.get_added_vocab()
  3016. for i in range(vocab_size):
  3017. if i not in reverse_vocab:
  3018. tokens.append(f"[PAD{i}]")
  3019. toktypes.append(gguf.TokenType.UNUSED)
  3020. elif reverse_vocab[i] in added_vocab:
  3021. tokens.append(reverse_vocab[i])
  3022. # Check if it's a special token - treat special tokens as CONTROL tokens
  3023. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  3024. if tokenizer.added_tokens_decoder[i].special:
  3025. toktypes.append(gguf.TokenType.CONTROL)
  3026. else:
  3027. toktypes.append(gguf.TokenType.USER_DEFINED)
  3028. else:
  3029. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  3030. toktypes.append(gguf.TokenType.CONTROL)
  3031. else:
  3032. tokens.append(reverse_vocab[i])
  3033. toktypes.append(gguf.TokenType.NORMAL)
  3034. return tokens, toktypes, tokpre
  3035. def set_vocab(self):
  3036. self._set_vocab_gpt2()
  3037. # LLaDA specific parameters
  3038. self.gguf_writer.add_add_bos_token(True)
  3039. def set_gguf_parameters(self):
  3040. super().set_gguf_parameters()
  3041. self._try_set_pooling_type()
  3042. # Add parameters similar to LlamaModel
  3043. hparams = self.hparams
  3044. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3045. if (rope_dim := hparams.get("head_dim")) is None:
  3046. n_heads = hparams.get("num_attention_heads", hparams.get("n_heads"))
  3047. rope_dim = hparams.get("hidden_size", hparams.get("d_model")) // n_heads
  3048. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3049. # Set context length for LLaDA
  3050. context_length = self.hparams.get("max_sequence_length", 4096)
  3051. self.gguf_writer.add_context_length(context_length)
  3052. # Set embedding length (dimension size)
  3053. embedding_length = self.hparams.get("d_model", 4096)
  3054. self.gguf_writer.add_embedding_length(embedding_length)
  3055. # Set feed forward length (MLP hidden size)
  3056. feed_forward_length = self.hparams.get("mlp_hidden_size", 12288)
  3057. self.gguf_writer.add_feed_forward_length(feed_forward_length)
  3058. # LLaDA models use non-causal attention for diffusion, similar to Dream
  3059. self.gguf_writer.add_causal_attention(False)
  3060. # LLaDA models don't shift their logits
  3061. self.gguf_writer.add_diffusion_shift_logits(False)
  3062. @staticmethod
  3063. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  3064. if n_head_kv is not None and n_head != n_head_kv:
  3065. n_head = n_head_kv
  3066. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  3067. .swapaxes(1, 2)
  3068. .reshape(weights.shape))
  3069. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3070. n_head = self.hparams.get("num_attention_heads", self.hparams.get("n_heads"))
  3071. n_kv_head = self.hparams.get("num_key_value_heads", self.hparams.get("n_kv_heads"))
  3072. if self.undo_permute:
  3073. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3074. data_torch = LLaDAModel.permute(data_torch, n_head, n_head)
  3075. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3076. data_torch = LLaDAModel.permute(data_torch, n_head, n_kv_head)
  3077. # LLaDA model tensors should be mapped directly since it's the base model
  3078. yield from super().modify_tensors(data_torch, name, bid)
  3079. @ModelBase.register("Ernie4_5_ForCausalLM", "Ernie4_5ForCausalLM")
  3080. class Ernie4_5Model(TextModel):
  3081. model_arch = gguf.MODEL_ARCH.ERNIE4_5
  3082. def set_vocab(self):
  3083. self._set_vocab_sentencepiece()
  3084. def set_gguf_parameters(self):
  3085. super().set_gguf_parameters()
  3086. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3087. num_heads = self.hparams["num_attention_heads"]
  3088. num_kv_heads = self.hparams["num_key_value_heads"]
  3089. if (head_dim := self.hparams.get("head_dim")) is None:
  3090. head_dim = self.hparams["hidden_size"] // num_heads
  3091. if "ernie." in name:
  3092. name = name.replace("ernie.", "model.")
  3093. # split the qkv weights
  3094. # qkv_proj shape: [(num_heads + 2 * num_kv_heads) * head_dim, hidden_size]
  3095. if "qkv_proj" in name:
  3096. name_q = name.replace("qkv_proj.weight", "q_proj.weight")
  3097. name_k = name.replace("qkv_proj.weight", "k_proj.weight")
  3098. name_v = name.replace("qkv_proj.weight", "v_proj.weight")
  3099. total_q_dim = num_heads * head_dim
  3100. total_k_dim = num_kv_heads * head_dim
  3101. total_v_dim = num_kv_heads * head_dim
  3102. q_proj_weight, k_proj_weight, v_proj_weight = data_torch.split([total_q_dim, total_k_dim, total_v_dim], dim=0)
  3103. return [
  3104. (self.map_tensor_name(name_q), q_proj_weight),
  3105. (self.map_tensor_name(name_k), k_proj_weight),
  3106. (self.map_tensor_name(name_v), v_proj_weight)
  3107. ]
  3108. # split the up_gate_proj into gate and up
  3109. # up_gate_proj shape: [2 * intermediate_size, hidden_size]
  3110. if "up_gate_proj" in name:
  3111. name_up = name.replace("up_gate_proj.weight", "up_proj.weight")
  3112. name_gate = name.replace("up_gate_proj.weight", "gate_proj.weight")
  3113. dim_half = data_torch.shape[0] // 2
  3114. gate_proj_weight, up_proj_weight = data_torch.split(dim_half, dim=0)
  3115. return [
  3116. (self.map_tensor_name(name_gate), gate_proj_weight),
  3117. (self.map_tensor_name(name_up), up_proj_weight)
  3118. ]
  3119. return [(self.map_tensor_name(name), data_torch)]
  3120. @ModelBase.register("Ernie4_5_MoeForCausalLM")
  3121. class Ernie4_5MoeModel(Ernie4_5Model):
  3122. model_arch = gguf.MODEL_ARCH.ERNIE4_5_MOE
  3123. _experts: list[dict[str, Tensor]] | None = None
  3124. def __init__(self, *args, **kwargs):
  3125. super().__init__(*args, **kwargs)
  3126. self._experts = [{} for _ in range(self.block_count)]
  3127. def set_gguf_parameters(self):
  3128. super().set_gguf_parameters()
  3129. self.gguf_writer.add_expert_count(self.hparams["moe_num_experts"])
  3130. self.gguf_writer.add_expert_used_count(self.hparams["moe_k"])
  3131. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["moe_layer_interval"])
  3132. self.gguf_writer.add_leading_dense_block_count(self.hparams["moe_layer_start_index"])
  3133. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  3134. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  3135. if (shared_expert_count := self.hparams.get('moe_num_shared_experts')) is not None:
  3136. self.gguf_writer.add_expert_shared_count(shared_expert_count)
  3137. if shared_expert_count > 0 and (shared_expert_intermediate_size := self.hparams.get('intermediate_size')) is not None and (num_key_value_heads := self.hparams.get('num_key_value_heads')) is not None:
  3138. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size // num_key_value_heads)
  3139. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3140. # Modify correction bias name as in DeepseekV2
  3141. if name.endswith("e_score_correction_bias"):
  3142. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  3143. # skip Multi-Token Prediction (MTP) layers (again, same as DeepseekV2)
  3144. match = re.match(r"model.mtp_block.(\d+)", name)
  3145. if match:
  3146. return []
  3147. # skip all other MTP tensors for now
  3148. match = re.match(r"model.mtp_emb_norm.(\d+)", name)
  3149. if match:
  3150. return []
  3151. match = re.match(r"model.mtp_hidden_norm.(\d+)", name)
  3152. if match:
  3153. return []
  3154. match = re.match(r"model.mtp_linear_proj.(\d+)", name)
  3155. if match:
  3156. return []
  3157. # process the experts separately
  3158. if name.find("mlp.experts") != -1:
  3159. n_experts = self.hparams["moe_num_experts"]
  3160. assert bid is not None
  3161. if self._experts is None:
  3162. self._experts = [{} for _ in range(self.block_count)]
  3163. self._experts[bid][name] = data_torch
  3164. if len(self._experts[bid]) >= n_experts * 3:
  3165. tensors: list[tuple[str, Tensor]] = []
  3166. # merge the experts into a single 3d tensor
  3167. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  3168. datas: list[Tensor] = []
  3169. for xid in range(n_experts):
  3170. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3171. datas.append(self._experts[bid][ename_to_retrieve])
  3172. del self._experts[bid][ename_to_retrieve]
  3173. data_torch = torch.stack(datas, dim=0)
  3174. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3175. new_name = self.map_tensor_name(merged_name)
  3176. tensors.append((new_name, data_torch))
  3177. return tensors
  3178. else:
  3179. return []
  3180. return [(self.map_tensor_name(name), data_torch)]
  3181. def prepare_tensors(self):
  3182. super().prepare_tensors()
  3183. if self._experts is not None:
  3184. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3185. experts = [k for d in self._experts for k in d.keys()]
  3186. if len(experts) > 0:
  3187. raise ValueError(f"Unprocessed experts: {experts}")
  3188. @ModelBase.register(
  3189. "Qwen2VLModel",
  3190. "Qwen2VLForConditionalGeneration",
  3191. "Qwen2_5_VLForConditionalGeneration",
  3192. "Qwen2_5OmniModel",
  3193. )
  3194. class Qwen2VLModel(TextModel):
  3195. model_arch = gguf.MODEL_ARCH.QWEN2VL
  3196. def set_gguf_parameters(self):
  3197. super().set_gguf_parameters()
  3198. def set_vocab(self):
  3199. try:
  3200. self._set_vocab_sentencepiece()
  3201. except FileNotFoundError:
  3202. self._set_vocab_gpt2()
  3203. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3204. del bid # unused
  3205. if name.startswith("thinker."):
  3206. name = name.replace("thinker.", "")
  3207. if name.startswith("visual") or name.startswith("audio") or \
  3208. name.startswith("talker") or name.startswith("token2wav"):
  3209. # skip multimodal tensors
  3210. return []
  3211. return [(self.map_tensor_name(name), data_torch)]
  3212. @ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  3213. class Qwen2VLVisionModel(MmprojModel):
  3214. def __init__(self, *args, **kwargs):
  3215. super().__init__(*args, **kwargs)
  3216. assert self.hparams_vision is not None
  3217. self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
  3218. # rename config.json values
  3219. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  3220. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  3221. if "embed_dim" in self.hparams_vision: # qwen2vl
  3222. self.hparams_vision["intermediate_size"] = self.hparams_vision.get("hidden_size")
  3223. self.hparams_vision["hidden_size"] = self.hparams_vision.get("embed_dim")
  3224. def set_gguf_parameters(self):
  3225. super().set_gguf_parameters()
  3226. assert self.hparams_vision is not None
  3227. hparams = self.hparams_vision
  3228. model_type = self.global_config['model_type']
  3229. if model_type == 'qwen2_vl':
  3230. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL)
  3231. elif model_type == 'qwen2_5_vl' or model_type == 'qwen2_5_omni':
  3232. if model_type == 'qwen2_5_omni':
  3233. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25O)
  3234. else:
  3235. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
  3236. self.gguf_writer.add_vision_use_silu(True)
  3237. # find n_wa_pattern (window attention pattern)
  3238. fullatt_block_indexes = hparams.get("fullatt_block_indexes")
  3239. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
  3240. n_wa_pattern = fullatt_block_indexes[0] + 1
  3241. # validate n_wa_pattern
  3242. for i in range(1, len(fullatt_block_indexes)):
  3243. if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
  3244. raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
  3245. self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
  3246. else:
  3247. raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
  3248. # default values below are taken from HF tranformers code
  3249. self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
  3250. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3251. if ".position_embd." in new_name:
  3252. return gguf.GGMLQuantizationType.F32
  3253. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3254. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3255. del bid # unused
  3256. if name.startswith("visual."):
  3257. # process visual tensors
  3258. # split QKV tensors if needed
  3259. if ".qkv." in name:
  3260. if data_torch.ndim == 2: # weight
  3261. c3, _ = data_torch.shape
  3262. else: # bias
  3263. c3 = data_torch.shape[0]
  3264. assert c3 % 3 == 0
  3265. c = c3 // 3
  3266. wq = data_torch[:c]
  3267. wk = data_torch[c: c * 2]
  3268. wv = data_torch[c * 2:]
  3269. return [
  3270. (self.map_tensor_name(name.replace("qkv", "q")), wq),
  3271. (self.map_tensor_name(name.replace("qkv", "k")), wk),
  3272. (self.map_tensor_name(name.replace("qkv", "v")), wv),
  3273. ]
  3274. elif 'patch_embed.proj.weight' in name:
  3275. # split Conv3D into Conv2Ds
  3276. c1, c2, kt, kh, kw = data_torch.shape
  3277. del c1, c2, kh, kw # unused
  3278. assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
  3279. return [
  3280. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
  3281. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  3282. ]
  3283. else:
  3284. return [(self.map_tensor_name(name), data_torch)]
  3285. return [] # skip other tensors
  3286. @ModelBase.register("Qwen2_5OmniModel")
  3287. class Qwen25OmniModel(Qwen2VLVisionModel):
  3288. has_vision_encoder = True
  3289. has_audio_encoder = True
  3290. def __init__(self, *args, **kwargs):
  3291. super().__init__(*args, **kwargs)
  3292. assert self.hparams_audio is not None
  3293. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  3294. self.hparams_audio["intermediate_size"] = self.hparams_audio["encoder_ffn_dim"]
  3295. self.hparams_audio["num_attention_heads"] = self.hparams_audio["encoder_attention_heads"]
  3296. def set_gguf_parameters(self):
  3297. super().set_gguf_parameters()
  3298. assert self.hparams_audio is not None
  3299. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["num_mel_bins"])
  3300. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams_audio.get("layer_norm_eps", 1e-5))
  3301. def get_vision_config(self) -> dict[str, Any] | None:
  3302. return self.global_config["thinker_config"].get("vision_config")
  3303. def get_audio_config(self) -> dict[str, Any] | None:
  3304. return self.global_config["thinker_config"].get("audio_config")
  3305. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3306. # SinusoidsPositionEmbedding
  3307. assert self.hparams_audio is not None
  3308. max_timescale = 10000
  3309. length = 1500
  3310. channels = self.hparams_audio["hidden_size"]
  3311. log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
  3312. inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2).float())
  3313. scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
  3314. pos_embd = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1).to(dtype=torch.float32)
  3315. yield ("audio_tower.embed_positions.weight", pos_embd)
  3316. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3317. if ".conv" in name and ".weight" in name:
  3318. return gguf.GGMLQuantizationType.F16
  3319. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3320. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3321. if name.startswith("thinker."):
  3322. name = name.replace("thinker.", "")
  3323. if name.startswith("audio_tower"):
  3324. # process audio tensors
  3325. if "conv1.bias" in name or "conv2.bias" in name:
  3326. # transpose conv1 and conv2 bias
  3327. data_torch = data_torch.unsqueeze(-1)
  3328. if "audio_bos_eos_token" in name:
  3329. # this tensor is left unused in transformers code
  3330. # https://github.com/huggingface/transformers/blob/6e3063422c4b1c014aa60c32b9254fd2902f0f28/src/transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py#L1809
  3331. return []
  3332. return [(self.map_tensor_name(name), data_torch)]
  3333. return super().modify_tensors(data_torch, name, bid)
  3334. @ModelBase.register("InternVisionModel")
  3335. class InternVisionModel(MmprojModel):
  3336. def set_gguf_parameters(self):
  3337. assert self.hparams_vision is not None
  3338. if isinstance(self.hparams_vision['image_size'], list):
  3339. self.hparams_vision['image_size'] = self.hparams_vision['image_size'][0]
  3340. if isinstance(self.hparams_vision['patch_size'], list):
  3341. self.hparams_vision['patch_size'] = self.hparams_vision['patch_size'][0]
  3342. super().set_gguf_parameters()
  3343. hparams = self.hparams
  3344. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
  3345. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  3346. # hidden_act
  3347. if hparams["hidden_act"] == "silu":
  3348. self.gguf_writer.add_vision_use_silu(True)
  3349. elif hparams["hidden_act"] == "gelu":
  3350. self.gguf_writer.add_vision_use_gelu(True)
  3351. else:
  3352. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  3353. # downsample_ratio
  3354. downsample_ratio = self.global_config.get("downsample_ratio")
  3355. assert downsample_ratio is not None
  3356. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
  3357. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3358. if ".position_embd." in new_name:
  3359. return gguf.GGMLQuantizationType.F32
  3360. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3361. def _mapping_interns1_name(self, name):
  3362. names_map = {
  3363. "model.multi_modal_projector.layer_norm.bias": "mlp1.0.bias",
  3364. "model.multi_modal_projector.layer_norm.weight": "mlp1.0.weight",
  3365. "model.multi_modal_projector.linear_1.bias": "mlp1.1.bias",
  3366. "model.multi_modal_projector.linear_1.weight": "mlp1.1.weight",
  3367. "model.multi_modal_projector.linear_2.bias": "mlp1.3.bias",
  3368. "model.multi_modal_projector.linear_2.weight": "mlp1.3.weight",
  3369. }
  3370. if name in names_map:
  3371. name = names_map[name]
  3372. return name
  3373. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3374. del bid # unused
  3375. vision_prefix = ['vision_model', 'mlp', 'model.vision_tower', 'model.multi_modal_projector']
  3376. # deal with intern-s1 special case
  3377. name = self._mapping_interns1_name(name)
  3378. if any([name.startswith(prefix) for prefix in vision_prefix]):
  3379. # process visual tensors
  3380. # correct name
  3381. if name.startswith("vision_model"):
  3382. name = "vision_tower." + name
  3383. if (".ls" in name or ".lambda_" in name or "position_embedding" in name) and not name.endswith(".weight"):
  3384. name += ".weight"
  3385. # split QKV tensors if needed
  3386. if ".qkv." in name:
  3387. if data_torch.ndim == 2: # weight
  3388. c3, _ = data_torch.shape
  3389. else: # bias
  3390. c3 = data_torch.shape[0]
  3391. assert c3 % 3 == 0
  3392. c = c3 // 3
  3393. wq = data_torch[:c]
  3394. wk = data_torch[c: c * 2]
  3395. wv = data_torch[c * 2:]
  3396. return [
  3397. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
  3398. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
  3399. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
  3400. ]
  3401. return [(self.map_tensor_name(name), data_torch)]
  3402. return [] # skip other tensors
  3403. @ModelBase.register("WavTokenizerDec")
  3404. class WavTokenizerDecModel(TextModel):
  3405. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  3406. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3407. del bid # unused
  3408. if \
  3409. name.endswith("codebook.cluster_size") or \
  3410. name.endswith("codebook.embed_avg") or \
  3411. name.endswith("codebook.inited"):
  3412. logger.debug(f"Skipping {name!r}")
  3413. return []
  3414. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  3415. return [(self.map_tensor_name(name), data_torch)]
  3416. def set_vocab(self):
  3417. self._set_vocab_none()
  3418. def set_gguf_parameters(self):
  3419. super().set_gguf_parameters()
  3420. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  3421. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  3422. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  3423. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  3424. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  3425. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  3426. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  3427. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  3428. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  3429. self.gguf_writer.add_causal_attention(False)
  3430. @ModelBase.register("Qwen2MoeForCausalLM")
  3431. class Qwen2MoeModel(TextModel):
  3432. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  3433. def set_gguf_parameters(self):
  3434. super().set_gguf_parameters()
  3435. if (n_experts := self.hparams.get("num_experts")) is not None:
  3436. self.gguf_writer.add_expert_count(n_experts)
  3437. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  3438. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  3439. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  3440. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  3441. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  3442. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  3443. _experts: list[dict[str, Tensor]] | None = None
  3444. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3445. # process the experts separately
  3446. name = name.replace("language_model.", "") # InternVL
  3447. # handle aggregated expert tensors
  3448. # GGUF stores dimensions reversed from PyTorch, so:
  3449. # PyTorch (A,B,C) -> GGUF writes [C,B,A] -> GGML reads ne={C,B,A}
  3450. # Input shapes from HF: (n_expert, n_ff_exp, n_embd) or (n_expert, n_embd, n_ff_exp)
  3451. # Expected GGML ne: {n_embd, n_ff_exp, n_expert} for gate/up, {n_ff_exp, n_embd, n_expert} for down
  3452. if name.endswith("mlp.experts.down_proj") or name.endswith("mlp.experts.down_proj.weight"):
  3453. mapped = f"{name}.weight" if not name.endswith(".weight") else name
  3454. # Input: (n_expert=128, n_ff_exp=768, n_embd=2048)
  3455. # Want GGML ne: {n_ff_exp, n_embd, n_expert} = {768, 2048, 128}
  3456. # Need PyTorch: (128, 2048, 768) [reversed of GGML]
  3457. # So: permute(0, 2, 1): (128, 768, 2048) -> (128, 2048, 768)
  3458. permuted = data_torch.permute(0, 2, 1).contiguous()
  3459. return [(self.map_tensor_name(mapped), permuted)]
  3460. if name.endswith("mlp.experts.gate_up_proj") or name.endswith("mlp.experts.gate_up_proj.weight"):
  3461. if data_torch.ndim < 3 or data_torch.shape[-1] % 2 != 0:
  3462. raise ValueError(f"Unexpected gate_up_proj shape for {name}: {tuple(data_torch.shape)}")
  3463. split_dim = data_torch.shape[-1] // 2
  3464. gate = data_torch[..., :split_dim].contiguous()
  3465. up = data_torch[..., split_dim:].contiguous()
  3466. # Input gate/up: (n_expert=128, n_embd=2048, n_ff_exp=768)
  3467. # Want GGML ne: {n_embd, n_ff_exp, n_expert} = {2048, 768, 128}
  3468. # Need PyTorch: (128, 768, 2048) [reversed of GGML]
  3469. # So: permute(0, 2, 1): (128, 2048, 768) -> (128, 768, 2048)
  3470. base_name = name.removesuffix(".weight")
  3471. base = base_name.rsplit('.', 1)[0]
  3472. mapped_gate = f"{base}.gate_proj.weight"
  3473. mapped_up = f"{base}.up_proj.weight"
  3474. perm_gate = gate.permute(0, 2, 1).contiguous()
  3475. perm_up = up.permute(0, 2, 1).contiguous()
  3476. return [
  3477. (self.map_tensor_name(mapped_gate), perm_gate),
  3478. (self.map_tensor_name(mapped_up), perm_up),
  3479. ]
  3480. if name.startswith("mlp") or name.startswith("vision_model") or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector") or name.startswith("model.visual"):
  3481. # skip visual tensors
  3482. return []
  3483. if name.find("experts") != -1:
  3484. n_experts = self.hparams["num_experts"]
  3485. assert bid is not None
  3486. if self._experts is None:
  3487. self._experts = [{} for _ in range(self.block_count)]
  3488. self._experts[bid][name] = data_torch
  3489. if len(self._experts[bid]) >= n_experts * 3:
  3490. tensors: list[tuple[str, Tensor]] = []
  3491. # merge the experts into a single 3d tensor
  3492. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3493. datas: list[Tensor] = []
  3494. for xid in range(n_experts):
  3495. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3496. datas.append(self._experts[bid][ename])
  3497. del self._experts[bid][ename]
  3498. data_torch = torch.stack(datas, dim=0)
  3499. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3500. new_name = self.map_tensor_name(merged_name)
  3501. tensors.append((new_name, data_torch))
  3502. return tensors
  3503. else:
  3504. return []
  3505. return [(self.map_tensor_name(name), data_torch)]
  3506. def prepare_tensors(self):
  3507. super().prepare_tensors()
  3508. if self._experts is not None:
  3509. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3510. experts = [k for d in self._experts for k in d.keys()]
  3511. if len(experts) > 0:
  3512. raise ValueError(f"Unprocessed experts: {experts}")
  3513. @ModelBase.register("Qwen3ForCausalLM")
  3514. class Qwen3Model(Qwen2Model):
  3515. model_arch = gguf.MODEL_ARCH.QWEN3
  3516. # extra logic for rerank models
  3517. is_rerank: bool = False
  3518. is_tied_embeddings: bool = False
  3519. token_false_id: int | None = None
  3520. token_true_id: int | None = None
  3521. def __init__(self, *args, **kwargs):
  3522. super().__init__(*args, **kwargs)
  3523. # track for intern-s1-mini
  3524. hparams = ModelBase.load_hparams(self.dir_model, is_mistral_format=False)
  3525. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3526. # a bit hacky, but currently the only way to detect if this is a rerank model
  3527. # ref: https://huggingface.co/Qwen/Qwen3-Reranker-0.6B
  3528. readme_path = self.dir_model / "README.md"
  3529. readme_text = ""
  3530. if readme_path.exists():
  3531. with readme_path.open("r", encoding="utf-8") as f:
  3532. readme_text = f.read()
  3533. if "# Qwen3-Reranker" in readme_text:
  3534. self._find_rerank_config()
  3535. def set_vocab(self):
  3536. # deal with intern-s1-mini
  3537. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3538. self._set_vocab_interns1()
  3539. return
  3540. super().set_vocab()
  3541. def _find_rerank_config(self):
  3542. from transformers import AutoTokenizer
  3543. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  3544. self.is_rerank = True
  3545. self.is_tied_embeddings = self.hparams.get("tie_word_embeddings", False)
  3546. self.token_false_id = tokenizer.convert_tokens_to_ids("no")
  3547. self.token_true_id = tokenizer.convert_tokens_to_ids("yes")
  3548. self.sep_token_id = tokenizer.convert_tokens_to_ids("|")
  3549. assert self.token_false_id is not None and self.token_true_id is not None
  3550. def set_gguf_parameters(self):
  3551. super().set_gguf_parameters()
  3552. if self.is_rerank:
  3553. self.gguf_writer.add_pooling_type(gguf.PoolingType.RANK)
  3554. self.gguf_writer.add_classifier_output_labels(["yes", "no"])
  3555. self.gguf_writer.add_chat_template([{
  3556. "name": "rerank",
  3557. "template": "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n"
  3558. "<|im_start|>user\n<Instruct>: Given a web search query, retrieve relevant passages that answer the query\n<Query>: {query}\n<Document>: {document}<|im_end|>\n"
  3559. "<|im_start|>assistant\n<think>\n\n</think>\n\n"
  3560. }])
  3561. def _get_cls_out_tensor(self, data_torch: Tensor) -> Tensor:
  3562. # extract "yes" and "no" tokens from the output lm_head tensor
  3563. false_row = data_torch[self.token_false_id]
  3564. true_row = data_torch[self.token_true_id]
  3565. return torch.stack([true_row, false_row], dim=0)
  3566. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3567. if "model.vision_" in name:
  3568. # skip multimodal tensors
  3569. return []
  3570. if self.is_rerank:
  3571. is_tied_head = self.is_tied_embeddings and "embed_tokens" in name
  3572. is_real_head = not self.is_tied_embeddings and "lm_head" in name
  3573. if is_tied_head or is_real_head:
  3574. cls_out_head = (
  3575. gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.CLS_OUT] + ".weight",
  3576. self._get_cls_out_tensor(data_torch),
  3577. )
  3578. if is_tied_head:
  3579. embed = (self.map_tensor_name(name), data_torch)
  3580. return [cls_out_head, embed]
  3581. if is_real_head:
  3582. return [cls_out_head]
  3583. return super().modify_tensors(data_torch, name, bid)
  3584. @ModelBase.register("Qwen3MoeForCausalLM")
  3585. class Qwen3MoeModel(Qwen2MoeModel):
  3586. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  3587. def __init__(self, *args, **kwargs):
  3588. super().__init__(*args, **kwargs)
  3589. hparams = ModelBase.load_hparams(self.dir_model, False)
  3590. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3591. def set_vocab(self):
  3592. # deal with intern-s1
  3593. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3594. self._set_vocab_interns1()
  3595. return
  3596. super().set_vocab()
  3597. @ModelBase.register("Qwen3NextForCausalLM")
  3598. class Qwen3NextModel(Qwen2MoeModel):
  3599. model_arch = gguf.MODEL_ARCH.QWEN3NEXT
  3600. def set_gguf_parameters(self):
  3601. super().set_gguf_parameters()
  3602. self.gguf_writer.add_ssm_conv_kernel(self.hparams["linear_conv_kernel_dim"])
  3603. self.gguf_writer.add_ssm_state_size(self.hparams["linear_key_head_dim"])
  3604. self.gguf_writer.add_ssm_group_count(self.hparams["linear_num_key_heads"])
  3605. self.gguf_writer.add_ssm_time_step_rank(self.hparams["linear_num_value_heads"])
  3606. self.gguf_writer.add_ssm_inner_size(self.hparams["linear_value_head_dim"] * self.hparams["linear_num_value_heads"])
  3607. if (rope_dim := self.hparams.get("head_dim")) is None:
  3608. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  3609. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.25)))
  3610. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3611. if name.startswith("mtp"):
  3612. return [] # ignore MTP layers for now
  3613. if name.endswith(".A_log"):
  3614. data_torch = -torch.exp(data_torch)
  3615. elif name.endswith(".dt_bias"):
  3616. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  3617. elif "conv1d" in name:
  3618. data_torch = data_torch.squeeze()
  3619. elif name.endswith("norm.weight") and not name.endswith("linear_attn.norm.weight"):
  3620. data_torch = data_torch + 1
  3621. if "in_proj_qkvz.weight" in name:
  3622. # original order: [q, k, v, z] * head_count
  3623. # corrected order: [q * head_count, k * head_count, v * head_count, z * head_count]
  3624. head_k_dim = self.hparams["linear_key_head_dim"]
  3625. head_v_dim = self.hparams["linear_value_head_dim"]
  3626. num_v_heads = self.hparams["linear_num_value_heads"]
  3627. num_k_heads = self.hparams["linear_num_key_heads"]
  3628. hidden_size = self.hparams["hidden_size"]
  3629. split_arg_list_qkvz = [
  3630. head_k_dim, # q partition
  3631. head_k_dim, # k partition
  3632. (num_v_heads // num_k_heads * head_v_dim), # v partition
  3633. (num_v_heads // num_k_heads * head_v_dim), # z partition
  3634. ]
  3635. # view as (n_embd, head_count, [q+k+v+z])
  3636. data_torch = data_torch.permute(1, 0).contiguous()
  3637. data_torch = data_torch.view(-1, num_k_heads, sum(split_arg_list_qkvz))
  3638. # split into q, k, v, z
  3639. q, k, v, z = torch.split(data_torch, split_arg_list_qkvz, dim=-1)
  3640. # flatten dim + head_count
  3641. q = q.contiguous().view(hidden_size, -1)
  3642. k = k.contiguous().view(hidden_size, -1)
  3643. v = v.contiguous().view(hidden_size, -1)
  3644. z = z.contiguous().view(hidden_size, -1)
  3645. # stack back
  3646. qkv = torch.cat([q, k, v], dim=-1).permute(1, 0).contiguous()
  3647. z = z.permute(1, 0).contiguous()
  3648. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_QKV, bid, ".weight"), qkv)
  3649. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_GATE, bid, ".weight"), z)
  3650. else:
  3651. yield from super().modify_tensors(data_torch, name, bid)
  3652. @ModelBase.register("RND1")
  3653. class RND1Model(Qwen2MoeModel):
  3654. model_arch = gguf.MODEL_ARCH.RND1
  3655. def set_gguf_parameters(self):
  3656. super().set_gguf_parameters()
  3657. # RND1 specific parameters
  3658. # RND1 uses bidirectional attention
  3659. self.gguf_writer.add_causal_attention(False)
  3660. if (mask_token_id := self.hparams.get("mask_token_id")) is not None:
  3661. self.gguf_writer.add_mask_token_id(mask_token_id)
  3662. @ModelBase.register("Qwen3VLForConditionalGeneration", "Qwen3VLMoeForConditionalGeneration")
  3663. class Qwen3VLVisionModel(MmprojModel):
  3664. def __init__(self, *args, **kwargs):
  3665. super().__init__(*args, **kwargs)
  3666. assert self.hparams_vision is not None
  3667. # Compute image_size if not present
  3668. if "image_size" not in self.hparams_vision:
  3669. # For Qwen3VL/Qwen3VLMoe, compute from num_position_embeddings
  3670. num_pos = self.hparams_vision.get("num_position_embeddings", 2304)
  3671. patch_size = self.hparams_vision.get("patch_size", 16)
  3672. # num_position_embeddings = (image_size / patch_size) ** 2
  3673. # So image_size = sqrt(num_position_embeddings) * patch_size
  3674. image_size = int(num_pos**0.5 * patch_size)
  3675. self.hparams_vision["image_size"] = image_size
  3676. # Rename config values for compatibility
  3677. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  3678. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  3679. self.is_deepstack_layers = [False] * int(self.hparams_vision["num_hidden_layers"] or 0)
  3680. for idx in self.hparams_vision.get("deepstack_visual_indexes", []):
  3681. self.is_deepstack_layers[idx] = True
  3682. def set_gguf_parameters(self):
  3683. super().set_gguf_parameters()
  3684. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN3VL)
  3685. self.gguf_writer.add_vision_use_gelu(True)
  3686. if self.hparams_vision is not None:
  3687. merge_size = self.hparams_vision.get("spatial_merge_size")
  3688. if merge_size is not None:
  3689. self.gguf_writer.add_vision_spatial_merge_size(int(merge_size))
  3690. # Use text config's rms_norm_eps for vision attention layernorm eps
  3691. rms_norm_eps = self.global_config.get("text_config", {}).get("rms_norm_eps", 1e-6)
  3692. self.gguf_writer.add_vision_attention_layernorm_eps(rms_norm_eps)
  3693. if self.is_deepstack_layers:
  3694. self.gguf_writer.add_vision_is_deepstack_layers(self.is_deepstack_layers)
  3695. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3696. assert self.hparams_vision is not None
  3697. # Skip text model tensors - they go in the text model file
  3698. if name.startswith("model.language_model.") or name.startswith("lm_head."):
  3699. return []
  3700. if name.startswith("model.visual."):
  3701. name = name.replace("model.visual.", "visual.", 1)
  3702. if name.startswith("visual.deepstack_merger_list."):
  3703. prefix, rest = name.split(".", maxsplit=3)[2:]
  3704. # prefix is the layer index, convert to absolute clip layer index!
  3705. idx = self.hparams_vision.get("deepstack_visual_indexes", [])[int(prefix)]
  3706. target = rest
  3707. tensor_type: gguf.MODEL_TENSOR
  3708. if target.startswith("norm."):
  3709. tensor_type = gguf.MODEL_TENSOR.V_DS_NORM
  3710. suffix = target.split(".", 1)[1]
  3711. elif target.startswith("linear_fc1."):
  3712. tensor_type = gguf.MODEL_TENSOR.V_DS_FC1
  3713. suffix = target.split(".", 1)[1]
  3714. elif target.startswith("linear_fc2."):
  3715. tensor_type = gguf.MODEL_TENSOR.V_DS_FC2
  3716. suffix = target.split(".", 1)[1]
  3717. else:
  3718. raise ValueError(f"Unexpected deepstack tensor: {name}")
  3719. new_name = self.format_tensor_name(tensor_type, idx, suffix=f".{suffix}")
  3720. return [(new_name, data_torch)]
  3721. if name.startswith("visual.merger."):
  3722. suffix = name.split(".", 2)[2]
  3723. if suffix.startswith("linear_fc"):
  3724. fc_idx_str, tail = suffix.split(".", 1)
  3725. fc_num = int(fc_idx_str.replace("linear_fc", ""))
  3726. # Qwen3VL has linear_fc1 and linear_fc2
  3727. # Map to indices 0 and 2 (matching Qwen2VL which uses indices 0 and 2)
  3728. if fc_num == 1:
  3729. fc_idx = 0
  3730. elif fc_num == 2:
  3731. fc_idx = 2
  3732. else:
  3733. raise ValueError(f"unexpected fc index {fc_num} in {name}")
  3734. new_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_MMPROJ, fc_idx, suffix=f".{tail}")
  3735. elif suffix.startswith("norm."):
  3736. new_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_POST_NORM, suffix=f".{suffix.split('.', 1)[1]}")
  3737. else:
  3738. raise ValueError(f"Unexpected merger tensor: {name}")
  3739. return [(new_name, data_torch)]
  3740. if name == "visual.patch_embed.proj.weight":
  3741. # split Conv3D into Conv2Ds along temporal dimension
  3742. c1, c2, kt, _, _ = data_torch.shape
  3743. del c1, c2
  3744. if kt != 2:
  3745. raise ValueError("Current implementation only supports temporal_patch_size of 2")
  3746. return [
  3747. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight", data_torch[:, :, 0, ...]),
  3748. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  3749. ]
  3750. if name == "visual.patch_embed.proj.bias":
  3751. # Include the bias - it's used by the C++ code
  3752. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".bias", data_torch)]
  3753. if name.startswith("visual."):
  3754. return [(self.map_tensor_name(name), data_torch)]
  3755. # Fall back to parent class for other tensors
  3756. return super().modify_tensors(data_torch, name, bid)
  3757. @ModelBase.register("Glm4vForConditionalGeneration", "Glm4vMoeForConditionalGeneration")
  3758. class Glm4VVisionModel(Qwen3VLVisionModel):
  3759. def set_gguf_parameters(self):
  3760. MmprojModel.set_gguf_parameters(self) # skip Qwen3VLVisionModel parameters
  3761. assert self.hparams_vision is not None
  3762. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GLM4V)
  3763. hidden_act = str(self.hparams_vision.get("hidden_act", "")).lower()
  3764. if hidden_act == "gelu":
  3765. self.gguf_writer.add_vision_use_gelu(True)
  3766. elif hidden_act == "silu":
  3767. self.gguf_writer.add_vision_use_silu(True)
  3768. rms_norm_eps = self.hparams_vision.get("rms_norm_eps", 1e-5)
  3769. self.gguf_writer.add_vision_attention_layernorm_eps(rms_norm_eps)
  3770. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3771. if name.startswith("model.visual."):
  3772. name = name.replace("model.visual.", "visual.")
  3773. if name.startswith("visual.merger."):
  3774. return [(self.map_tensor_name(name), data_torch)]
  3775. return super().modify_tensors(data_torch, name, bid)
  3776. @ModelBase.register("Qwen3VLForConditionalGeneration")
  3777. class Qwen3VLTextModel(Qwen3Model):
  3778. model_arch = gguf.MODEL_ARCH.QWEN3VL
  3779. def set_gguf_parameters(self):
  3780. super().set_gguf_parameters()
  3781. # Handle MRoPE (Multi-axis Rotary Position Embedding) for Qwen3-VL
  3782. vision_config = self.hparams.get("vision_config", {})
  3783. deepstack_layer_num = len(vision_config.get("deepstack_visual_indexes", []))
  3784. self.gguf_writer.add_num_deepstack_layers(deepstack_layer_num)
  3785. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3786. # Skip vision tensors - they go in the mmproj file
  3787. if name.startswith("model.visual."):
  3788. return []
  3789. return super().modify_tensors(data_torch, name, bid)
  3790. @ModelBase.register("Qwen3VLMoeForConditionalGeneration")
  3791. class Qwen3VLMoeTextModel(Qwen3MoeModel):
  3792. model_arch = gguf.MODEL_ARCH.QWEN3VLMOE
  3793. def set_gguf_parameters(self):
  3794. super().set_gguf_parameters()
  3795. vision_config = self.hparams.get("vision_config", {})
  3796. deepstack_layer_num = len(vision_config.get("deepstack_visual_indexes", []))
  3797. self.gguf_writer.add_num_deepstack_layers(deepstack_layer_num)
  3798. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3799. # Skip vision tensors - they go in the mmproj file
  3800. if name.startswith("model.visual."):
  3801. return []
  3802. return super().modify_tensors(data_torch, name, bid)
  3803. @ModelBase.register("GPT2LMHeadModel")
  3804. class GPT2Model(TextModel):
  3805. model_arch = gguf.MODEL_ARCH.GPT2
  3806. def set_gguf_parameters(self):
  3807. self.gguf_writer.add_block_count(self.block_count)
  3808. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  3809. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3810. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  3811. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3812. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3813. self.gguf_writer.add_file_type(self.ftype)
  3814. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3815. del bid # unused
  3816. tensors: list[tuple[str, Tensor]] = []
  3817. # we don't need these
  3818. if name.endswith((".attn.bias", ".attn.masked_bias")):
  3819. return tensors
  3820. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  3821. data_torch = data_torch.transpose(1, 0)
  3822. new_name = self.map_tensor_name(name)
  3823. tensors.append((new_name, data_torch))
  3824. return tensors
  3825. @ModelBase.register("PhiForCausalLM")
  3826. class Phi2Model(TextModel):
  3827. model_arch = gguf.MODEL_ARCH.PHI2
  3828. def set_gguf_parameters(self):
  3829. rot_pct = self.find_hparam(["partial_rotary_factor"])
  3830. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3831. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3832. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  3833. self.gguf_writer.add_embedding_length(n_embd)
  3834. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  3835. self.gguf_writer.add_block_count(self.block_count)
  3836. self.gguf_writer.add_head_count(n_head)
  3837. self.gguf_writer.add_head_count_kv(n_head)
  3838. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  3839. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3840. self.gguf_writer.add_file_type(self.ftype)
  3841. self.gguf_writer.add_add_bos_token(False)
  3842. @ModelBase.register("Phi3ForCausalLM")
  3843. class Phi3MiniModel(TextModel):
  3844. model_arch = gguf.MODEL_ARCH.PHI3
  3845. def set_vocab(self):
  3846. # Phi-4 model uses GPT2Tokenizer
  3847. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3848. if tokenizer_config_file.is_file():
  3849. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3850. tokenizer_config_json = json.load(f)
  3851. tokenizer_class = tokenizer_config_json['tokenizer_class']
  3852. if tokenizer_class == 'GPT2Tokenizer':
  3853. return self._set_vocab_gpt2()
  3854. from sentencepiece import SentencePieceProcessor
  3855. tokenizer_path = self.dir_model / 'tokenizer.model'
  3856. if not tokenizer_path.is_file():
  3857. raise ValueError(f'Error: Missing {tokenizer_path}')
  3858. tokenizer = SentencePieceProcessor()
  3859. tokenizer.LoadFromFile(str(tokenizer_path))
  3860. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3861. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3862. scores: list[float] = [-10000.0] * vocab_size
  3863. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3864. for token_id in range(tokenizer.vocab_size()):
  3865. piece = tokenizer.IdToPiece(token_id)
  3866. text = piece.encode("utf-8")
  3867. score = tokenizer.GetScore(token_id)
  3868. toktype = SentencePieceTokenTypes.NORMAL
  3869. if tokenizer.IsUnknown(token_id):
  3870. toktype = SentencePieceTokenTypes.UNKNOWN
  3871. elif tokenizer.IsControl(token_id):
  3872. toktype = SentencePieceTokenTypes.CONTROL
  3873. elif tokenizer.IsUnused(token_id):
  3874. toktype = SentencePieceTokenTypes.UNUSED
  3875. elif tokenizer.IsByte(token_id):
  3876. toktype = SentencePieceTokenTypes.BYTE
  3877. tokens[token_id] = text
  3878. scores[token_id] = score
  3879. toktypes[token_id] = toktype
  3880. added_tokens_file = self.dir_model / 'added_tokens.json'
  3881. if added_tokens_file.is_file():
  3882. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3883. added_tokens_json = json.load(f)
  3884. for key in added_tokens_json:
  3885. token_id = added_tokens_json[key]
  3886. if token_id >= vocab_size:
  3887. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3888. continue
  3889. tokens[token_id] = key.encode("utf-8")
  3890. scores[token_id] = -1000.0
  3891. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3892. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3893. if tokenizer_config_file.is_file():
  3894. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3895. tokenizer_config_json = json.load(f)
  3896. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  3897. for token_id, foken_data in added_tokens_decoder.items():
  3898. token_id = int(token_id)
  3899. token = foken_data["content"].encode("utf-8")
  3900. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3901. if tokens[token_id] != token:
  3902. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3903. tokens[token_id] = token
  3904. scores[token_id] = -1000.0
  3905. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3906. if foken_data.get("special"):
  3907. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3908. tokenizer_file = self.dir_model / 'tokenizer.json'
  3909. if tokenizer_file.is_file():
  3910. with open(tokenizer_file, "r", encoding="utf-8") as f:
  3911. tokenizer_json = json.load(f)
  3912. added_tokens = tokenizer_json.get("added_tokens", [])
  3913. for foken_data in added_tokens:
  3914. token_id = int(foken_data["id"])
  3915. token = foken_data["content"].encode("utf-8")
  3916. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3917. if tokens[token_id] != token:
  3918. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3919. tokens[token_id] = token
  3920. scores[token_id] = -1000.0
  3921. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3922. if foken_data.get("special"):
  3923. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3924. self.gguf_writer.add_tokenizer_model("llama")
  3925. self.gguf_writer.add_tokenizer_pre("default")
  3926. self.gguf_writer.add_token_list(tokens)
  3927. self.gguf_writer.add_token_scores(scores)
  3928. self.gguf_writer.add_token_types(toktypes)
  3929. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3930. special_vocab.add_to_gguf(self.gguf_writer)
  3931. def set_gguf_parameters(self):
  3932. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3933. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3934. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  3935. rms_eps = self.find_hparam(["rms_norm_eps"])
  3936. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3937. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3938. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3939. rope_dims = int(rot_pct * n_embd) // n_head
  3940. self.gguf_writer.add_context_length(max_pos_embds)
  3941. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  3942. self.gguf_writer.add_embedding_length(n_embd)
  3943. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  3944. self.gguf_writer.add_block_count(self.block_count)
  3945. self.gguf_writer.add_head_count(n_head)
  3946. self.gguf_writer.add_head_count_kv(n_head_kv)
  3947. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  3948. self.gguf_writer.add_rope_dimension_count(rope_dims)
  3949. self.gguf_writer.add_rope_freq_base(self.rope_parameters.get("full_attention", self.rope_parameters)["rope_theta"])
  3950. self.gguf_writer.add_file_type(self.ftype)
  3951. sliding_window = self.hparams.get("sliding_window")
  3952. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  3953. if sliding_window is None:
  3954. sliding_window = 0
  3955. self.gguf_writer.add_sliding_window(sliding_window)
  3956. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3957. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3958. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3959. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3960. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3961. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3962. rope_dims = int(rot_pct * n_embd) // n_head
  3963. # write rope scaling for long context (128k) model
  3964. rope_scaling = self.find_hparam(['rope_scaling'], True)
  3965. if rope_scaling is None:
  3966. return
  3967. scale = max_pos_embds / orig_max_pos_embds
  3968. rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
  3969. if len(rope_scaling_type) == 0:
  3970. raise KeyError('Missing the required key rope_scaling.type')
  3971. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  3972. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  3973. elif rope_scaling_type == 'yarn':
  3974. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  3975. else:
  3976. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  3977. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  3978. long_factors = rope_scaling.get('long_factor', None)
  3979. short_factors = rope_scaling.get('short_factor', None)
  3980. if long_factors is None or short_factors is None:
  3981. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  3982. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  3983. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  3984. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  3985. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  3986. @ModelBase.register("PhiMoEForCausalLM")
  3987. class PhiMoeModel(Phi3MiniModel):
  3988. model_arch = gguf.MODEL_ARCH.PHIMOE
  3989. _experts: list[dict[str, Tensor]] | None = None
  3990. def set_gguf_parameters(self):
  3991. super().set_gguf_parameters()
  3992. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  3993. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  3994. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3995. # process the experts separately
  3996. if name.find("block_sparse_moe.experts") != -1:
  3997. n_experts = self.hparams["num_local_experts"]
  3998. assert bid is not None
  3999. if self._experts is None:
  4000. self._experts = [{} for _ in range(self.block_count)]
  4001. self._experts[bid][name] = data_torch
  4002. if len(self._experts[bid]) >= n_experts * 3:
  4003. tensors: list[tuple[str, Tensor]] = []
  4004. # merge the experts into a single 3d tensor
  4005. for w_name in ["w1", "w2", "w3"]:
  4006. datas: list[Tensor] = []
  4007. for xid in range(n_experts):
  4008. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  4009. datas.append(self._experts[bid][ename])
  4010. del self._experts[bid][ename]
  4011. data_torch = torch.stack(datas, dim=0)
  4012. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  4013. new_name = self.map_tensor_name(merged_name)
  4014. tensors.append((new_name, data_torch))
  4015. return tensors
  4016. else:
  4017. return []
  4018. return [(self.map_tensor_name(name), data_torch)]
  4019. def prepare_tensors(self):
  4020. super().prepare_tensors()
  4021. if self._experts is not None:
  4022. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4023. experts = [k for d in self._experts for k in d.keys()]
  4024. if len(experts) > 0:
  4025. raise ValueError(f"Unprocessed experts: {experts}")
  4026. @ModelBase.register("PlamoForCausalLM")
  4027. class PlamoModel(TextModel):
  4028. model_arch = gguf.MODEL_ARCH.PLAMO
  4029. def set_vocab(self):
  4030. self._set_vocab_sentencepiece()
  4031. def set_gguf_parameters(self):
  4032. hparams = self.hparams
  4033. self.gguf_writer.add_context_length(4096) # not in config.json
  4034. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4035. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4036. self.gguf_writer.add_block_count(self.block_count)
  4037. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4038. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  4039. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  4040. self.gguf_writer.add_file_type(self.ftype)
  4041. def shuffle_attn_q_weight(self, data_torch):
  4042. assert data_torch.size() == (5120, 5120)
  4043. data_torch = data_torch.reshape(8, 5, 128, 5120)
  4044. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  4045. data_torch = torch.reshape(data_torch, (5120, 5120))
  4046. return data_torch
  4047. def shuffle_attn_output_weight(self, data_torch):
  4048. assert data_torch.size() == (5120, 5120)
  4049. data_torch = data_torch.reshape(5120, 8, 5, 128)
  4050. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  4051. data_torch = torch.reshape(data_torch, (5120, 5120))
  4052. return data_torch
  4053. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4054. del bid # unused
  4055. new_name = self.map_tensor_name(name)
  4056. # shuffle for broadcasting of gqa in ggml_mul_mat
  4057. if new_name.endswith("attn_q.weight"):
  4058. data_torch = self.shuffle_attn_q_weight(data_torch)
  4059. elif new_name.endswith("attn_output.weight"):
  4060. data_torch = self.shuffle_attn_output_weight(data_torch)
  4061. return [(new_name, data_torch)]
  4062. @ModelBase.register("Plamo2ForCausalLM", "PLaMo2ForCausalLM")
  4063. class Plamo2Model(TextModel):
  4064. model_arch = gguf.MODEL_ARCH.PLAMO2
  4065. def set_vocab(self):
  4066. self._set_vocab_plamo()
  4067. def set_gguf_parameters(self):
  4068. hparams = self.hparams
  4069. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  4070. # Which layers are Mamba layers
  4071. # PLaMo 2 uses mamba_step to indicate the pattern (e.g., 2 means every other layer)
  4072. # This logic matches modeling_plamo.py's is_mamba function
  4073. mamba_step = hparams.get("mamba_step", 2)
  4074. mamba_enabled = hparams.get("mamba_enabled", True)
  4075. num_key_value_heads = []
  4076. num_attention_heads = []
  4077. if mamba_enabled:
  4078. for i in range(self.block_count):
  4079. if self.block_count <= (mamba_step // 2):
  4080. # use attention in last layer
  4081. is_mamba = (i != self.block_count - 1)
  4082. else:
  4083. is_mamba = (i % mamba_step) != (mamba_step // 2)
  4084. if is_mamba:
  4085. num_key_value_heads.append(0)
  4086. num_attention_heads.append(0)
  4087. else:
  4088. num_key_value_heads.append(hparams.get("num_key_value_heads", 4))
  4089. num_attention_heads.append(hparams.get("num_attention_heads", 32))
  4090. if num_key_value_heads and num_attention_heads:
  4091. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  4092. self.gguf_writer.add_head_count(num_attention_heads)
  4093. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 2048))
  4094. self.gguf_writer.add_embedding_length(hparams.get("hidden_size", 4096))
  4095. self.gguf_writer.add_key_length(hparams.get("hidden_size_per_head", 128))
  4096. self.gguf_writer.add_value_length(hparams.get("hidden_size_per_head", 128))
  4097. self.gguf_writer.add_block_count(self.block_count)
  4098. self.gguf_writer.add_layer_norm_rms_eps(hparams.get("rms_norm_eps", 1e-06))
  4099. self.gguf_writer.add_rope_freq_base(self.rope_parameters.get("rope_theta", 10000))
  4100. # Mamba parameters
  4101. self.gguf_writer.add_ssm_state_size(hparams.get("mamba_d_state", 64))
  4102. self.gguf_writer.add_ssm_conv_kernel(hparams.get("mamba_d_conv", 4))
  4103. self.gguf_writer.add_ssm_time_step_rank(hparams.get("mamba_num_heads", 64))
  4104. intermediate_size = hparams.get("mamba_num_heads", 64) * hparams.get("hidden_size_per_head", 128)
  4105. self.gguf_writer.add_ssm_inner_size(intermediate_size)
  4106. self.gguf_writer.add_ssm_group_count(0)
  4107. # MLP feed forward parameters (for attention layers)
  4108. self.gguf_writer.add_feed_forward_length(hparams.get("intermediate_size", 13312))
  4109. self.gguf_writer.add_file_type(self.ftype)
  4110. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4111. del bid # unused
  4112. if name.endswith(".A_log"):
  4113. data_torch = -torch.exp(data_torch)
  4114. elif name.endswith(".dt_bias"):
  4115. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  4116. elif name.endswith(".dt_norm_weight"):
  4117. name = name.rpartition(".dt_norm_weight")[0] + ".dt_norm.weight"
  4118. elif name.endswith(".B_norm_weight"):
  4119. name = name.rpartition(".B_norm_weight")[0] + ".B_norm.weight"
  4120. elif name.endswith(".C_norm_weight"):
  4121. name = name.rpartition(".C_norm_weight")[0] + ".C_norm.weight"
  4122. elif name.endswith(".k_weight"):
  4123. name = name.rpartition(".k_weight")[0] + ".k.weight"
  4124. elif name.endswith(".q_weight"):
  4125. name = name.rpartition(".q_weight")[0] + ".q.weight"
  4126. elif name.endswith(".conv1d.weight"):
  4127. data_torch = torch.squeeze(data_torch) # remove (, 1, )
  4128. assert data_torch.ndim == 2
  4129. elif name.endswith(".pre_mixer_norm.weight"):
  4130. data_torch += 1.0
  4131. elif name.endswith(".post_mixer_norm.weight"):
  4132. data_torch += 1.0 / 5
  4133. elif name.endswith(".pre_mlp_norm.weight"):
  4134. data_torch += 1.0
  4135. elif name.endswith(".post_mlp_norm.weight"):
  4136. data_torch += 1.0 / (5**1.5)
  4137. elif name.endswith(".norm.weight"):
  4138. data_torch += 1.0
  4139. new_name = self.map_tensor_name(name)
  4140. return [(new_name, data_torch)]
  4141. @ModelBase.register("Plamo3ForCausalLM", "PLaMo3ForCausalLM")
  4142. class Plamo3Model(TextModel):
  4143. model_arch = gguf.MODEL_ARCH.PLAMO3
  4144. def set_vocab(self):
  4145. self._set_vocab_plamo()
  4146. tokenizer_config_path = self.dir_model / "tokenizer_config.json"
  4147. tokenizer_config = {}
  4148. if tokenizer_config_path.is_file():
  4149. with open(tokenizer_config_path, encoding="utf-8") as f:
  4150. tokenizer_config = json.load(f)
  4151. chat_template = tokenizer_config.get("chat_template")
  4152. chat_template_jinja = self.dir_model / "chat_template.jinja"
  4153. if chat_template_jinja.is_file():
  4154. with open(chat_template_jinja, encoding="utf-8") as f:
  4155. chat_template = f.read()
  4156. if chat_template:
  4157. self.gguf_writer.add_chat_template(chat_template)
  4158. def set_gguf_parameters(self):
  4159. super().set_gguf_parameters()
  4160. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  4161. if (sliding_window := self.find_hparam(["window_size", "sliding_window"], optional=True)) is not None:
  4162. self.gguf_writer.add_sliding_window(sliding_window)
  4163. self.gguf_writer.add_sliding_window_pattern(self.hparams["sliding_window_pattern"])
  4164. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4165. if name.endswith(".pre_mixer_norm.weight"):
  4166. data_torch = data_torch + 1.0
  4167. elif name.endswith(".post_mixer_norm.weight"):
  4168. data_torch = data_torch + 1.0 / 5
  4169. elif name.endswith(".pre_mlp_norm.weight"):
  4170. data_torch = data_torch + 1.0
  4171. elif name.endswith(".post_mlp_norm.weight"):
  4172. data_torch = data_torch + 1.0 / (5**1.5)
  4173. elif name.endswith((".mixer.q_norm.weight", ".mixer.k_norm.weight")):
  4174. data_torch = data_torch + 1.0
  4175. elif name.endswith(".norm.weight"):
  4176. data_torch = data_torch + 1.0
  4177. return [(self.map_tensor_name(name), data_torch)]
  4178. @ModelBase.register("CodeShellForCausalLM")
  4179. class CodeShellModel(TextModel):
  4180. model_arch = gguf.MODEL_ARCH.CODESHELL
  4181. def set_gguf_parameters(self):
  4182. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  4183. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  4184. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  4185. self.gguf_writer.add_block_count(self.block_count)
  4186. self.gguf_writer.add_head_count(self.hparams["n_head"])
  4187. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  4188. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4189. self.gguf_writer.add_file_type(self.ftype)
  4190. self.gguf_writer.add_rope_freq_base(10000.0)
  4191. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4192. self.gguf_writer.add_rope_scaling_factor(1.0)
  4193. @ModelBase.register("InternLM2ForCausalLM")
  4194. class InternLM2Model(TextModel):
  4195. model_arch = gguf.MODEL_ARCH.INTERNLM2
  4196. def set_vocab(self):
  4197. # (TODO): Is there a better way?
  4198. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  4199. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  4200. # recognized as an empty string in C++.
  4201. from sentencepiece import SentencePieceProcessor
  4202. from sentencepiece import sentencepiece_model_pb2 as model
  4203. tokenizer_path = self.dir_model / 'tokenizer.model'
  4204. tokens: list[bytes] = []
  4205. scores: list[float] = []
  4206. toktypes: list[int] = []
  4207. if not tokenizer_path.is_file():
  4208. logger.error(f'Error: Missing {tokenizer_path}')
  4209. sys.exit(1)
  4210. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4211. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4212. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4213. tokenizer = SentencePieceProcessor()
  4214. tokenizer.LoadFromFile(str(tokenizer_path))
  4215. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4216. for token_id in range(vocab_size):
  4217. piece = tokenizer.IdToPiece(token_id)
  4218. text = piece.encode("utf-8")
  4219. score = tokenizer.GetScore(token_id)
  4220. if text == b"\x00":
  4221. # (TODO): fixme
  4222. # Hack here and replace the \x00 characters.
  4223. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  4224. text = "🐉".encode("utf-8")
  4225. toktype = SentencePieceTokenTypes.NORMAL
  4226. if tokenizer.IsUnknown(token_id):
  4227. toktype = SentencePieceTokenTypes.UNKNOWN
  4228. elif tokenizer.IsControl(token_id):
  4229. toktype = SentencePieceTokenTypes.CONTROL
  4230. elif tokenizer.IsUnused(token_id):
  4231. toktype = SentencePieceTokenTypes.UNUSED
  4232. elif tokenizer.IsByte(token_id):
  4233. toktype = SentencePieceTokenTypes.BYTE
  4234. # take care of ununsed raw token
  4235. if piece.startswith('[UNUSED'):
  4236. toktype = SentencePieceTokenTypes.UNUSED
  4237. tokens.append(text)
  4238. scores.append(score)
  4239. toktypes.append(toktype)
  4240. added_tokens_file = self.dir_model / 'added_tokens.json'
  4241. if added_tokens_file.is_file():
  4242. with open(added_tokens_file, "r", encoding="utf-8") as f:
  4243. added_tokens_json = json.load(f)
  4244. for key in added_tokens_json:
  4245. tokens.append(key.encode("utf-8"))
  4246. scores.append(-1000.0)
  4247. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  4248. chat_eos_token = '<|im_end|>'
  4249. chat_eos_token_id = None
  4250. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4251. if tokenizer_config_file.is_file():
  4252. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4253. tokenizer_config_json = json.load(f)
  4254. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  4255. for token_id, foken_data in added_tokens_decoder.items():
  4256. token_id = int(token_id)
  4257. token = foken_data["content"]
  4258. if token == chat_eos_token:
  4259. chat_eos_token_id = token_id
  4260. token = token.encode("utf-8")
  4261. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  4262. if tokens[token_id] != token:
  4263. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  4264. tokens[token_id] = token
  4265. scores[token_id] = -1000.0
  4266. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4267. if foken_data.get("special"):
  4268. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  4269. tokenizer_file = self.dir_model / 'tokenizer.json'
  4270. if tokenizer_file.is_file():
  4271. with open(tokenizer_file, "r", encoding="utf-8") as f:
  4272. tokenizer_json = json.load(f)
  4273. added_tokens = tokenizer_json.get("added_tokens", [])
  4274. for foken_data in added_tokens:
  4275. token_id = int(foken_data["id"])
  4276. token = foken_data["content"]
  4277. if token == chat_eos_token:
  4278. chat_eos_token_id = token_id
  4279. token = token.encode("utf-8")
  4280. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  4281. if tokens[token_id] != token:
  4282. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  4283. tokens[token_id] = token
  4284. scores[token_id] = -1000.0
  4285. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4286. if foken_data.get("special"):
  4287. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  4288. self.gguf_writer.add_tokenizer_model("llama")
  4289. self.gguf_writer.add_tokenizer_pre("default")
  4290. self.gguf_writer.add_token_list(tokens)
  4291. self.gguf_writer.add_token_scores(scores)
  4292. self.gguf_writer.add_token_types(toktypes)
  4293. self.gguf_writer.add_add_space_prefix(add_prefix)
  4294. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4295. old_eos = special_vocab.special_token_ids["eos"]
  4296. if chat_eos_token_id is not None:
  4297. # For the chat model, we replace the eos with '<|im_end|>'.
  4298. # TODO: this is a hack, should be fixed
  4299. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  4300. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  4301. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  4302. " in chat mode so that the conversation can end normally.")
  4303. special_vocab.add_to_gguf(self.gguf_writer)
  4304. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4305. num_heads = self.hparams["num_attention_heads"]
  4306. num_kv_heads = self.hparams["num_key_value_heads"]
  4307. n_embd = self.hparams["hidden_size"]
  4308. q_per_kv = num_heads // num_kv_heads
  4309. head_dim = n_embd // num_heads
  4310. num_groups = num_heads // q_per_kv
  4311. name = name.replace("language_model.", "") # InternVL
  4312. if name.startswith("mlp") or name.startswith("vision_model"):
  4313. # skip visual tensors
  4314. return []
  4315. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  4316. qkv = data_torch
  4317. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  4318. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  4319. # The model weights of q and k equire additional reshape.
  4320. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  4321. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  4322. v = v.reshape((-1, v.shape[-1]))
  4323. return [
  4324. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  4325. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  4326. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  4327. ]
  4328. else:
  4329. return [(self.map_tensor_name(name), data_torch)]
  4330. @ModelBase.register("InternLM3ForCausalLM")
  4331. class InternLM3Model(TextModel):
  4332. model_arch = gguf.MODEL_ARCH.LLAMA
  4333. def set_vocab(self):
  4334. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  4335. self.gguf_writer.add_tokenizer_model("llama")
  4336. self.gguf_writer.add_tokenizer_pre("default")
  4337. self.gguf_writer.add_token_list(tokens)
  4338. self.gguf_writer.add_token_scores(scores)
  4339. self.gguf_writer.add_token_types(toktypes)
  4340. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4341. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4342. if tokenizer_config_file.is_file():
  4343. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4344. tokenizer_config_json = json.load(f)
  4345. if "add_prefix_space" in tokenizer_config_json:
  4346. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  4347. if "added_tokens_decoder" in tokenizer_config_json:
  4348. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  4349. if token_data.get("special"):
  4350. token_id = int(token_id)
  4351. token = token_data["content"]
  4352. special_vocab._set_special_token(token, token_id)
  4353. # update eos token
  4354. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  4355. special_vocab.special_token_ids["eos"] = token_id
  4356. special_vocab.add_to_gguf(self.gguf_writer)
  4357. def set_gguf_parameters(self):
  4358. super().set_gguf_parameters()
  4359. hparams = self.hparams
  4360. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4361. if (rope_dim := hparams.get("head_dim")) is None:
  4362. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  4363. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4364. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4365. n_head = self.hparams["num_attention_heads"]
  4366. n_kv_head = self.hparams.get("num_key_value_heads")
  4367. name = name.replace("language_model.", "") # InternVL
  4368. if name.startswith("mlp") or name.startswith("vision_model"):
  4369. # skip visual tensors
  4370. return []
  4371. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4372. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4373. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4374. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4375. return [(self.map_tensor_name(name), data_torch)]
  4376. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel", "BertForSequenceClassification")
  4377. class BertModel(TextModel):
  4378. model_arch = gguf.MODEL_ARCH.BERT
  4379. def __init__(self, *args, **kwargs):
  4380. super().__init__(*args, **kwargs)
  4381. self.vocab_size = None
  4382. if cls_out_labels := self.hparams.get("id2label"):
  4383. if len(cls_out_labels) == 2 and cls_out_labels[0] == "LABEL_0":
  4384. # Remove dummy labels added by AutoConfig
  4385. cls_out_labels = None
  4386. self.cls_out_labels = cls_out_labels
  4387. def set_gguf_parameters(self):
  4388. super().set_gguf_parameters()
  4389. self.gguf_writer.add_causal_attention(False)
  4390. self._try_set_pooling_type()
  4391. if self.cls_out_labels:
  4392. self.gguf_writer.add_classifier_output_labels([v for k, v in sorted(self.cls_out_labels.items())])
  4393. def set_vocab(self):
  4394. tokens, toktypes, tokpre = self.get_vocab_base()
  4395. self.vocab_size = len(tokens)
  4396. # we need this to validate the size of the token_type embeddings
  4397. # though currently we are passing all zeros to the token_type embeddings
  4398. # "Sequence A" or "Sequence B"
  4399. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4400. # convert to phantom space vocab
  4401. def phantom(tok, toktype):
  4402. if toktype == gguf.TokenType.CONTROL:
  4403. return tok
  4404. if tok.startswith("##"):
  4405. return tok[2:]
  4406. return "\u2581" + tok
  4407. assert len(tokens) == len(toktypes)
  4408. tokens = list(map(phantom, tokens, toktypes))
  4409. # add vocab to gguf
  4410. self.gguf_writer.add_tokenizer_model("bert")
  4411. self.gguf_writer.add_tokenizer_pre(tokpre)
  4412. self.gguf_writer.add_token_list(tokens)
  4413. self.gguf_writer.add_token_types(toktypes)
  4414. # handle special tokens
  4415. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4416. special_vocab.add_to_gguf(self.gguf_writer)
  4417. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4418. del bid # unused
  4419. if name.startswith("bert."):
  4420. name = name[5:]
  4421. if name.endswith(".gamma"):
  4422. name = name[:-6] + ".weight"
  4423. if name.endswith(".beta"):
  4424. name = name[:-5] + ".bias"
  4425. # we are only using BERT for embeddings so we don't need the pooling layer
  4426. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  4427. return [] # we don't need these
  4428. if name.startswith("cls.predictions"):
  4429. return []
  4430. if name.startswith("cls.seq_relationship"):
  4431. return []
  4432. if self.cls_out_labels:
  4433. # For BertForSequenceClassification (direct projection layer)
  4434. if name == "classifier.weight":
  4435. name = "classifier.out_proj.weight"
  4436. if name == "classifier.bias":
  4437. name = "classifier.out_proj.bias"
  4438. return [(self.map_tensor_name(name), data_torch)]
  4439. def _xlmroberta_tokenizer_init(self) -> None:
  4440. # we need the pad_token_id to know how to chop down position_embd matrix
  4441. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  4442. self._position_offset = 1 + pad_token_id
  4443. if "max_position_embeddings" in self.hparams:
  4444. self.hparams["max_position_embeddings"] -= self._position_offset
  4445. else:
  4446. self._position_offset = None
  4447. def _xlmroberta_set_vocab(self) -> None:
  4448. # to avoid TypeError: Descriptors cannot be created directly
  4449. # exception when importing sentencepiece_model_pb2
  4450. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  4451. from sentencepiece import SentencePieceProcessor
  4452. from sentencepiece import sentencepiece_model_pb2 as model
  4453. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  4454. tokenizer_json = {}
  4455. tokenizer_config_json = {}
  4456. if not tokenizer_path.is_file():
  4457. tokenizer_path = self.dir_model / 'tokenizer.json'
  4458. tokenizer_config_path = self.dir_model / 'tokenizer_config.json'
  4459. if not tokenizer_path.is_file():
  4460. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  4461. from base64 import b64decode
  4462. from transformers import AutoTokenizer
  4463. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  4464. with open(tokenizer_path, "r", encoding="utf-8") as fp:
  4465. tokenizer_json = json.load(fp)
  4466. if tokenizer_config_path.is_file():
  4467. with open(tokenizer_config_path, "r", encoding="utf-8") as fp:
  4468. tokenizer_config_json = json.load(fp)
  4469. add_prefix = tokenizer.add_prefix_space
  4470. remove_whitespaces = tokenizer.clean_up_tokenization_spaces
  4471. precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])
  4472. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size)
  4473. else:
  4474. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4475. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4476. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  4477. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4478. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4479. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  4480. tokenizer = SentencePieceProcessor()
  4481. tokenizer.LoadFromFile(str(tokenizer_path))
  4482. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size())
  4483. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4484. scores: list[float] = [-10000.0] * vocab_size
  4485. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4486. if isinstance(tokenizer, SentencePieceProcessor):
  4487. for token_id in range(tokenizer.vocab_size()):
  4488. piece = tokenizer.IdToPiece(token_id)
  4489. text = piece.encode("utf-8")
  4490. score = tokenizer.GetScore(token_id)
  4491. toktype = SentencePieceTokenTypes.NORMAL
  4492. if tokenizer.IsUnknown(token_id):
  4493. toktype = SentencePieceTokenTypes.UNKNOWN
  4494. elif tokenizer.IsControl(token_id):
  4495. toktype = SentencePieceTokenTypes.CONTROL
  4496. elif tokenizer.IsUnused(token_id):
  4497. toktype = SentencePieceTokenTypes.UNUSED
  4498. elif tokenizer.IsByte(token_id):
  4499. toktype = SentencePieceTokenTypes.BYTE
  4500. tokens[token_id] = text
  4501. scores[token_id] = score
  4502. toktypes[token_id] = toktype
  4503. else:
  4504. added_vocab = tokenizer.get_added_vocab()
  4505. unk_token = tokenizer_config_json.get("unk_token")
  4506. unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))
  4507. for token_id in range(tokenizer.vocab_size):
  4508. piece = tokenizer._convert_id_to_token(token_id)
  4509. if (piece := tokenizer._convert_id_to_token(token_id)) is not None:
  4510. text = piece.encode("utf-8")
  4511. score = tokenizer_json["model"]["vocab"][token_id][1]
  4512. toktype = SentencePieceTokenTypes.NORMAL
  4513. if token_id == unk_token_id:
  4514. toktype = SentencePieceTokenTypes.UNKNOWN
  4515. elif token_id in tokenizer.all_special_ids:
  4516. toktype = SentencePieceTokenTypes.CONTROL
  4517. elif token_id in added_vocab.values():
  4518. toktype = SentencePieceTokenTypes.USER_DEFINED
  4519. # No reliable way to detect this, but jina doesn't have any
  4520. # elif tokenizer.IsByte(token_id):
  4521. # toktype = SentencePieceTokenTypes.BYTE
  4522. tokens[token_id] = text
  4523. scores[token_id] = score
  4524. toktypes[token_id] = toktype
  4525. if isinstance(tokenizer, SentencePieceProcessor):
  4526. # realign tokens (see HF tokenizer code)
  4527. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  4528. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  4529. toktypes = [
  4530. SentencePieceTokenTypes.CONTROL,
  4531. SentencePieceTokenTypes.CONTROL,
  4532. SentencePieceTokenTypes.CONTROL,
  4533. SentencePieceTokenTypes.UNKNOWN,
  4534. ] + toktypes[3:-1]
  4535. if self.model_arch == gguf.MODEL_ARCH.NOMIC_BERT_MOE:
  4536. # Add mask token missing from sentencepiece.bpe.model
  4537. tokens[250001] = b'<mask>'
  4538. scores[250001] = 0.0
  4539. toktypes[250001] = SentencePieceTokenTypes.CONTROL
  4540. self.gguf_writer.add_tokenizer_model("t5")
  4541. self.gguf_writer.add_tokenizer_pre("default")
  4542. self.gguf_writer.add_token_list(tokens)
  4543. self.gguf_writer.add_token_scores(scores)
  4544. self.gguf_writer.add_token_types(toktypes)
  4545. self.gguf_writer.add_add_space_prefix(add_prefix)
  4546. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4547. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  4548. if precompiled_charsmap:
  4549. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  4550. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4551. special_vocab.add_to_gguf(self.gguf_writer)
  4552. @ModelBase.register("DistilBertModel", "DistilBertForMaskedLM", "DistilBertForSequenceClassification")
  4553. class DistilBertModel(BertModel):
  4554. model_arch = gguf.MODEL_ARCH.BERT
  4555. def set_gguf_parameters(self):
  4556. self.gguf_writer.add_layer_norm_eps(1e-12)
  4557. logger.info("gguf: layer norm epsilon = 1e-12")
  4558. super().set_gguf_parameters()
  4559. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4560. if name.startswith("distilbert."):
  4561. name = name[11:]
  4562. # These layers act as MLM head, so we don't need them
  4563. if name.startswith("vocab_"):
  4564. return []
  4565. return super().modify_tensors(data_torch, name, bid)
  4566. @ModelBase.register("RobertaModel", "RobertaForSequenceClassification")
  4567. class RobertaModel(BertModel):
  4568. model_arch = gguf.MODEL_ARCH.BERT
  4569. def __init__(self, *args, **kwargs):
  4570. super().__init__(*args, **kwargs)
  4571. # we need the pad_token_id to know how to chop down position_embd matrix
  4572. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  4573. self._position_offset = 1 + pad_token_id
  4574. if "max_position_embeddings" in self.hparams:
  4575. self.hparams["max_position_embeddings"] -= self._position_offset
  4576. else:
  4577. self._position_offset = None
  4578. def set_vocab(self):
  4579. """Support BPE tokenizers for roberta models"""
  4580. bpe_tok_path = self.dir_model / "tokenizer.json"
  4581. if bpe_tok_path.exists():
  4582. self._set_vocab_gpt2()
  4583. # we need this to validate the size of the token_type embeddings
  4584. # though currently we are passing all zeros to the token_type embeddings
  4585. # "Sequence A" or "Sequence B"
  4586. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4587. else:
  4588. return super().set_vocab()
  4589. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4590. # if name starts with "roberta.", remove the prefix
  4591. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4592. if name.startswith("roberta."):
  4593. name = name[8:]
  4594. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4595. if name == "embeddings.position_embeddings.weight":
  4596. if self._position_offset is not None:
  4597. data_torch = data_torch[self._position_offset:,:]
  4598. return super().modify_tensors(data_torch, name, bid)
  4599. @ModelBase.register("NomicBertModel")
  4600. class NomicBertModel(BertModel):
  4601. model_arch = gguf.MODEL_ARCH.BERT
  4602. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4603. hparams = kwargs.pop("hparams", None)
  4604. if hparams is None:
  4605. hparams = ModelBase.load_hparams(dir_model, False)
  4606. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  4607. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  4608. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4609. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  4610. if self._tokenizer_is_xlmroberta:
  4611. self._xlmroberta_tokenizer_init()
  4612. npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
  4613. if npos == 8192 and mtp == 2048:
  4614. self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
  4615. elif npos == 2048 and mtp == 2048:
  4616. self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
  4617. else:
  4618. raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
  4619. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  4620. # this doesn't do anything in the HF version
  4621. assert self.hparams["causal"] is False
  4622. # no bias tensors unless MoE
  4623. assert self.hparams["qkv_proj_bias"] == self.is_moe
  4624. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  4625. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  4626. # norm at end of layer
  4627. assert self.hparams["prenorm"] is False
  4628. # standard RoPE
  4629. assert self.hparams["rotary_emb_fraction"] == 1.0
  4630. assert self.hparams["rotary_emb_interleaved"] is False
  4631. assert self.hparams["rotary_emb_scale_base"] is None
  4632. def set_vocab(self) -> None:
  4633. if self._tokenizer_is_xlmroberta:
  4634. return self._xlmroberta_set_vocab()
  4635. return super().set_vocab()
  4636. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  4637. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  4638. if "mlp.experts.bias" in name:
  4639. return [] # Explicitly return an empty list.
  4640. if "mlp.experts.mlp.w1" in name:
  4641. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4642. name += ".weight"
  4643. if "mlp.experts.mlp.w2" in name:
  4644. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4645. data_torch = data_torch.transpose(1, 2)
  4646. name += ".weight"
  4647. return [(self.map_tensor_name(name), data_torch)]
  4648. def set_gguf_parameters(self):
  4649. super().set_gguf_parameters()
  4650. if self.is_moe:
  4651. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  4652. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  4653. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  4654. def _is_tokenizer_xlmroberta(self) -> bool:
  4655. with open(self.dir_model / "tokenizer.json") as f:
  4656. tokenizer_json = json.load(f)
  4657. toktyp = tokenizer_json["model"]["type"]
  4658. if toktyp == "Unigram":
  4659. return True
  4660. if toktyp == "WordPiece":
  4661. return False
  4662. raise ValueError(f"unknown tokenizer: {toktyp}")
  4663. @ModelBase.register("NeoBERT", "NeoBERTLMHead", "NeoBERTForSequenceClassification")
  4664. class NeoBert(BertModel):
  4665. model_arch = gguf.MODEL_ARCH.NEO_BERT
  4666. def set_gguf_parameters(self):
  4667. super().set_gguf_parameters()
  4668. # NeoBERT uses 2/3 of the intermediate size as feed forward length
  4669. self.gguf_writer.add_feed_forward_length(int(2 * self.hparams["intermediate_size"] / 3))
  4670. self.gguf_writer.add_rope_freq_base(10000.0) # default value for NeoBERT
  4671. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4672. f_rms_eps = self.hparams.get("norm_eps", 1e-6) # default value for NeoBERT
  4673. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  4674. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  4675. self.gguf_writer.add_pooling_type(gguf.PoolingType.CLS) # https://huggingface.co/chandar-lab/NeoBERT#how-to-use
  4676. def modify_tensors(self, data_torch, name, bid):
  4677. if name.startswith("decoder."):
  4678. return []
  4679. if name.startswith("model."):
  4680. name = name[6:]
  4681. return super().modify_tensors(data_torch, name, bid)
  4682. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  4683. class XLMRobertaModel(BertModel):
  4684. model_arch = gguf.MODEL_ARCH.BERT
  4685. _lora_files = {}
  4686. _lora_names = []
  4687. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4688. hparams = kwargs.pop("hparams", None)
  4689. if hparams is None:
  4690. hparams = ModelBase.load_hparams(dir_model, False)
  4691. if lora_names := hparams.get("lora_adaptations"):
  4692. self._lora_names = lora_names
  4693. self.model_arch = gguf.MODEL_ARCH.JINA_BERT_V3
  4694. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4695. self._xlmroberta_tokenizer_init()
  4696. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4697. if self._lora_names:
  4698. for name in self._lora_names:
  4699. fname = self.add_prefix_to_filename(self.fname_out, f"lora-{name}-")
  4700. self._lora_files[name] = gguf.GGUFWriter(fname, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file, dry_run=self.dry_run)
  4701. return super().generate_extra_tensors()
  4702. def set_type(self):
  4703. for lora_writer in self._lora_files.values():
  4704. lora_writer.add_type(gguf.GGUFType.ADAPTER)
  4705. lora_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")
  4706. super().set_type()
  4707. def set_vocab(self):
  4708. self._xlmroberta_set_vocab()
  4709. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4710. # if name starts with "roberta.", remove the prefix
  4711. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4712. if name.startswith("roberta."):
  4713. name = name[8:]
  4714. # jina-embeddings-v3
  4715. if ".parametrizations." in name:
  4716. name = name.replace(".parametrizations.", ".")
  4717. if name.endswith(".original"):
  4718. name = name[:-9]
  4719. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4720. if name == "embeddings.position_embeddings.weight":
  4721. if self._position_offset is not None:
  4722. data_torch = data_torch[self._position_offset:,:]
  4723. if name.endswith(".0.lora_A") or name.endswith(".0.lora_B"):
  4724. if name.startswith("pooler.dense"):
  4725. return []
  4726. num_loras = data_torch.size(0)
  4727. assert num_loras == len(self._lora_names)
  4728. # Split out each LoRA in their own GGUF
  4729. for i, lora_writer in enumerate(self._lora_files.values()):
  4730. new_name = self.map_tensor_name(name[:-9]) + name[-7:].lower()
  4731. data = data_torch[i, :, :]
  4732. # Transpose/flip token_embd/types into correct shape
  4733. if new_name == "token_embd.weight.lora_b":
  4734. data = data.T
  4735. elif new_name.startswith("token_types.weight."):
  4736. new_name = new_name[:-1] + ("a" if new_name[-1:] == "b" else "b")
  4737. lora_writer.add_tensor(new_name, data.float().numpy(), raw_dtype=gguf.GGMLQuantizationType.F32)
  4738. return []
  4739. return super().modify_tensors(data_torch, name, bid)
  4740. def set_gguf_parameters(self):
  4741. super().set_gguf_parameters()
  4742. # jina-embeddings-v3
  4743. lora_alpha = self.hparams.get("lora_alpha")
  4744. if lora_prompt_prefixes := self.hparams.get("task_instructions"):
  4745. assert self._lora_files and all(lora_name in lora_prompt_prefixes for lora_name in self._lora_files.keys())
  4746. for lora_name, lora_writer in self._lora_files.items():
  4747. lora_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, lora_alpha if lora_alpha is not None else 1.0)
  4748. lora_writer.add_string(gguf.Keys.Adapter.LORA_TASK_NAME, lora_name)
  4749. if lora_prompt_prefixes:
  4750. lora_writer.add_string(gguf.Keys.Adapter.LORA_PROMPT_PREFIX, lora_prompt_prefixes[lora_name])
  4751. def write(self):
  4752. super().write()
  4753. for lora_writer in self._lora_files.values():
  4754. lora_writer.write_header_to_file()
  4755. lora_writer.write_kv_data_to_file()
  4756. lora_writer.write_tensors_to_file(progress=True)
  4757. lora_writer.close()
  4758. @ModelBase.register("GemmaForCausalLM")
  4759. class GemmaModel(TextModel):
  4760. model_arch = gguf.MODEL_ARCH.GEMMA
  4761. def set_vocab(self):
  4762. self._set_vocab_sentencepiece()
  4763. # TODO: these special tokens should be exported only for the CodeGemma family
  4764. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  4765. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  4766. special_vocab._set_special_token("prefix", 67)
  4767. special_vocab._set_special_token("suffix", 69)
  4768. special_vocab._set_special_token("middle", 68)
  4769. special_vocab._set_special_token("fsep", 70)
  4770. special_vocab._set_special_token("eot", 107)
  4771. special_vocab.chat_template = None # do not add it twice
  4772. special_vocab.add_to_gguf(self.gguf_writer)
  4773. self.gguf_writer.add_add_space_prefix(False)
  4774. def set_gguf_parameters(self):
  4775. hparams = self.hparams
  4776. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4777. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4778. self.gguf_writer.add_block_count(self.block_count)
  4779. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4780. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4781. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4782. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4783. self.gguf_writer.add_key_length(hparams["head_dim"])
  4784. self.gguf_writer.add_value_length(hparams["head_dim"])
  4785. self.gguf_writer.add_file_type(self.ftype)
  4786. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4787. del bid # unused
  4788. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4789. # To prevent errors, skip loading lm_head.weight.
  4790. if name == "lm_head.weight":
  4791. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4792. return []
  4793. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4794. if name.endswith("norm.weight"):
  4795. data_torch = data_torch + 1
  4796. return [(self.map_tensor_name(name), data_torch)]
  4797. @ModelBase.register("Gemma2ForCausalLM")
  4798. class Gemma2Model(TextModel):
  4799. model_arch = gguf.MODEL_ARCH.GEMMA2
  4800. def set_vocab(self):
  4801. self._set_vocab_sentencepiece()
  4802. self.gguf_writer.add_add_space_prefix(False)
  4803. def set_gguf_parameters(self):
  4804. hparams = self.hparams
  4805. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4806. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4807. self.gguf_writer.add_block_count(self.block_count)
  4808. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4809. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4810. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4811. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4812. self.gguf_writer.add_key_length(hparams["head_dim"])
  4813. self.gguf_writer.add_value_length(hparams["head_dim"])
  4814. self.gguf_writer.add_file_type(self.ftype)
  4815. self.gguf_writer.add_attn_logit_softcapping(
  4816. self.hparams["attn_logit_softcapping"]
  4817. )
  4818. self.gguf_writer.add_final_logit_softcapping(
  4819. self.hparams["final_logit_softcapping"]
  4820. )
  4821. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4822. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4823. del bid # unused
  4824. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4825. # To prevent errors, skip loading lm_head.weight.
  4826. if name == "lm_head.weight":
  4827. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4828. return []
  4829. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4830. if name.endswith("norm.weight"):
  4831. data_torch = data_torch + 1
  4832. return [(self.map_tensor_name(name), data_torch)]
  4833. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  4834. class Gemma3Model(TextModel):
  4835. model_arch = gguf.MODEL_ARCH.GEMMA3
  4836. norm_shift = 1.0 # Gemma3RMSNorm adds 1.0 to the norm value
  4837. def set_vocab(self):
  4838. if (self.dir_model / "tokenizer.model").is_file():
  4839. self._set_vocab_sentencepiece()
  4840. self.gguf_writer.add_add_space_prefix(False)
  4841. else:
  4842. self._set_vocab_gpt2()
  4843. def set_gguf_parameters(self):
  4844. super().set_gguf_parameters()
  4845. hparams = self.hparams
  4846. # some default values are not specified in the hparams
  4847. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  4848. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  4849. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  4850. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  4851. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  4852. self.gguf_writer.add_rope_freq_base(self.rope_parameters.get("full_attention", self.rope_parameters).get("rope_theta", 1_000_000.0)) # for global layers
  4853. # attn_logit_softcapping is removed in Gemma3
  4854. assert hparams.get("attn_logit_softcapping") is None
  4855. if (final_logit_softcap := hparams.get("final_logit_softcapping")):
  4856. self.gguf_writer.add_final_logit_softcapping(final_logit_softcap)
  4857. if hparams.get("sliding_window_pattern") != 1:
  4858. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  4859. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  4860. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4861. del bid # unused
  4862. if "language_model." in name:
  4863. name = name.replace("language_model.", "")
  4864. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4865. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4866. return [] # skip vision tensors
  4867. # remove OOV (out-of-vocabulary) rows in token_embd
  4868. if "embed_tokens.weight" in name:
  4869. if (self.dir_model / "tokenizer.model").is_file():
  4870. tokens = self._create_vocab_sentencepiece()[0]
  4871. else:
  4872. tokens = self.get_vocab_base()[0]
  4873. data_torch = data_torch[:len(tokens)]
  4874. # ref code in Gemma3RMSNorm
  4875. # output = output * (1.0 + self.weight.float())
  4876. # note: this is not the case on gemma3n
  4877. if name.endswith("norm.weight"):
  4878. data_torch = data_torch + self.norm_shift
  4879. return [(self.map_tensor_name(name), data_torch)]
  4880. @ModelBase.register("Gemma3TextModel")
  4881. class EmbeddingGemma(Gemma3Model):
  4882. model_arch = gguf.MODEL_ARCH.GEMMA_EMBEDDING
  4883. module_paths = []
  4884. dense_features_dims = {}
  4885. def __init__(self, *args, **kwargs):
  4886. super().__init__(*args, **kwargs)
  4887. if self.sentence_transformers_dense_modules:
  4888. # read modules.json to determine if model has Dense layers
  4889. modules_file = self.dir_model / "modules.json"
  4890. if modules_file.is_file():
  4891. with open(modules_file, encoding="utf-8") as modules_json_file:
  4892. mods = json.load(modules_json_file)
  4893. for mod in mods:
  4894. if mod["type"] == "sentence_transformers.models.Dense":
  4895. mod_path = mod["path"]
  4896. # check if model.safetensors file for Dense layer exists
  4897. model_tensors_file = self.dir_model / mod_path / "model.safetensors"
  4898. if model_tensors_file.is_file():
  4899. self.module_paths.append(mod_path)
  4900. # read config.json of the Dense layer to get in/out features
  4901. mod_conf_file = self.dir_model / mod_path / "config.json"
  4902. if mod_conf_file.is_file():
  4903. with open(mod_conf_file, encoding="utf-8") as mod_conf_json_file:
  4904. mod_conf = json.load(mod_conf_json_file)
  4905. # hparams dense_2_feat_out and dense_3_feat_in are required when loading model's dense weights
  4906. prefix = self._get_dense_prefix(mod_path)
  4907. if mod_conf["in_features"] is not None and mod_conf["out_features"] is not None:
  4908. self.dense_features_dims[prefix] = (mod_conf["in_features"], mod_conf["out_features"])
  4909. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4910. from safetensors.torch import load_file
  4911. module_paths = list(self.module_paths)
  4912. for i, module_path in enumerate(module_paths):
  4913. tensors_file = self.dir_model / module_path / "model.safetensors"
  4914. local_tensors = load_file(tensors_file)
  4915. tensor_name = self._get_dense_prefix(module_path)
  4916. for name, local_tensor in local_tensors.items():
  4917. if not name.endswith(".weight"):
  4918. continue
  4919. orig_name = name.replace("linear", tensor_name)
  4920. name = self.map_tensor_name(orig_name)
  4921. yield name, local_tensor.clone()
  4922. @staticmethod
  4923. def _get_dense_prefix(module_path) -> str:
  4924. """Get the tensor name prefix for the Dense layer from module path."""
  4925. tensor_name = "dense_2" if module_path == "2_Dense" else "dense_3"
  4926. return tensor_name
  4927. def set_gguf_parameters(self):
  4928. super().set_gguf_parameters()
  4929. # Override the sliding window size as it gets adjusted by the Gemma3TextConfig
  4930. # constructor. We want to use the value from the original model's config.json.
  4931. # ref: https://github.com/huggingface/transformers/pull/40700
  4932. with open(self.dir_model / "config.json", "r", encoding="utf-8") as f:
  4933. config = json.load(f)
  4934. orig_sliding_window = config.get("sliding_window")
  4935. if orig_sliding_window is None:
  4936. raise ValueError("sliding_window not found in model config - this is required for the model")
  4937. logger.info(f"Using original sliding_window from config: {orig_sliding_window} "
  4938. f"instead of {self.hparams['sliding_window']}")
  4939. self.gguf_writer.add_sliding_window(orig_sliding_window)
  4940. if self.sentence_transformers_dense_modules:
  4941. for dense, dims in self.dense_features_dims.items():
  4942. logger.info(f"Setting dense layer {dense} in/out features to {dims}")
  4943. self.gguf_writer.add_dense_features_dims(dense, dims[0], dims[1])
  4944. self._try_set_pooling_type()
  4945. @ModelBase.register("Gemma3ForConditionalGeneration")
  4946. class Gemma3VisionModel(MmprojModel):
  4947. def set_gguf_parameters(self):
  4948. super().set_gguf_parameters()
  4949. hparams = self.hparams
  4950. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GEMMA3)
  4951. # default values below are taken from HF tranformers code
  4952. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  4953. self.gguf_writer.add_vision_use_gelu(True)
  4954. # calculate proj_scale_factor (used by tinygemma3 test model)
  4955. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  4956. n_per_side = int(image_seq_length ** 0.5)
  4957. image_size = self.hparams["image_size"]
  4958. patch_size = self.hparams["patch_size"]
  4959. proj_scale_factor = (image_size // patch_size) // n_per_side
  4960. if proj_scale_factor > 0 and proj_scale_factor != 4:
  4961. # we only need to write this if it's not the default value
  4962. # in this case, we are converting a test model
  4963. self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
  4964. def tensor_force_quant(self, name, new_name, bid, n_dims):
  4965. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  4966. if "input_projection" in name:
  4967. return gguf.GGMLQuantizationType.F16
  4968. if ".embeddings." in name:
  4969. return gguf.GGMLQuantizationType.F32
  4970. return super().tensor_force_quant(name, new_name, bid, n_dims)
  4971. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4972. del bid # unused
  4973. if "vision_model.head." in name:
  4974. return [] # skip redundant tensors for tinygemma3
  4975. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4976. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4977. # process vision tensors
  4978. name = name.replace("_weight", ".weight")
  4979. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  4980. # the other norm values are part of SigLIP model, and they are already correct
  4981. # ref code: Gemma3RMSNorm
  4982. if "soft_emb_norm.weight" in name:
  4983. logger.info(f"Correcting norm value for '{name}'")
  4984. data_torch = data_torch + 1
  4985. return [(self.map_tensor_name(name), data_torch)]
  4986. return [] # skip other tensors
  4987. class ConformerAudioModel(MmprojModel):
  4988. _batch_norm_tensors: list[dict[str, Tensor]] | None = None
  4989. @staticmethod
  4990. def is_audio_tensor(name: str):
  4991. return any(p in name for p in ["audio", "codebook", "conformer", "depth_embedding", "depthformer", "depth_linear"])
  4992. def tensor_force_quant(self, name, new_name, bid, n_dims):
  4993. if ConformerAudioModel.is_audio_tensor(name):
  4994. if ".conv" in name or "_conv" in name and ".weight" in name:
  4995. return gguf.GGMLQuantizationType.F32
  4996. return super().tensor_force_quant(name, new_name, bid, n_dims)
  4997. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4998. # fold running_mean, running_var and eps into weight and bias for batch_norm
  4999. if "batch_norm" in name:
  5000. if self._batch_norm_tensors is None:
  5001. self._batch_norm_tensors = [{} for _ in range(self.block_count)]
  5002. assert bid is not None
  5003. self._batch_norm_tensors[bid][name] = data_torch
  5004. if len(self._batch_norm_tensors[bid]) < 5:
  5005. return []
  5006. weight = self._batch_norm_tensors[bid][f"conformer.layers.{bid}.conv.batch_norm.weight"]
  5007. bias = self._batch_norm_tensors[bid][f"conformer.layers.{bid}.conv.batch_norm.bias"]
  5008. running_mean = self._batch_norm_tensors[bid][f"conformer.layers.{bid}.conv.batch_norm.running_mean"]
  5009. running_var = self._batch_norm_tensors[bid][f"conformer.layers.{bid}.conv.batch_norm.running_var"]
  5010. eps = 1e-5 # default value
  5011. a = weight / torch.sqrt(running_var + eps)
  5012. b = bias - running_mean * a
  5013. return [
  5014. (self.map_tensor_name(f"conformer.layers.{bid}.conv.batch_norm.weight"), a),
  5015. (self.map_tensor_name(f"conformer.layers.{bid}.conv.batch_norm.bias"), b),
  5016. ]
  5017. # reshape conv weights
  5018. if name.startswith("conformer.pre_encode.conv.") and name.endswith(".bias"):
  5019. data_torch = data_torch[:, None, None]
  5020. if "conv.depthwise_conv" in name and name.endswith(".weight"):
  5021. assert data_torch.shape[1] == 1
  5022. data_torch = data_torch.reshape(data_torch.shape[0], data_torch.shape[2])
  5023. if "conv.pointwise_conv" in name and name.endswith(".weight"):
  5024. assert data_torch.shape[2] == 1
  5025. data_torch = data_torch.reshape(data_torch.shape[0], data_torch.shape[1])
  5026. return [(self.map_tensor_name(name), data_torch)]
  5027. @ModelBase.register("Gemma3nForConditionalGeneration")
  5028. class Gemma3nVisionAudioModel(ConformerAudioModel):
  5029. has_audio_encoder = True
  5030. has_vision_encoder = True
  5031. # Double indexed mapping for MobileNetV5 blocks (not supported by tensor_mapping.py)
  5032. # This is the only known model having this, so we prefer implementing it outside of tensor_mapping.py
  5033. block_tensor_mapping = {
  5034. "model.vision_tower.timm_model.blocks.{bid}.{sid}.conv_exp.weight": "v.blk.{bid}.{sid}.conv_exp.weight",
  5035. "model.vision_tower.timm_model.blocks.{bid}.{sid}.bn1.weight": "v.blk.{bid}.{sid}.bn1.weight",
  5036. "model.vision_tower.timm_model.blocks.{bid}.{sid}.conv_pwl.weight": "v.blk.{bid}.{sid}.conv_pwl.weight",
  5037. "model.vision_tower.timm_model.blocks.{bid}.{sid}.bn2.weight": "v.blk.{bid}.{sid}.bn2.weight",
  5038. "model.vision_tower.timm_model.blocks.{bid}.{sid}.dw_start.conv.weight": "v.blk.{bid}.{sid}.dw_start.conv.weight",
  5039. "model.vision_tower.timm_model.blocks.{bid}.{sid}.dw_start.bn.weight": "v.blk.{bid}.{sid}.dw_start.bn.weight",
  5040. "model.vision_tower.timm_model.blocks.{bid}.{sid}.dw_mid.conv.weight": "v.blk.{bid}.{sid}.dw_mid.conv.weight",
  5041. "model.vision_tower.timm_model.blocks.{bid}.{sid}.dw_mid.bn.weight": "v.blk.{bid}.{sid}.dw_mid.bn.weight",
  5042. "model.vision_tower.timm_model.blocks.{bid}.{sid}.pw_exp.conv.weight": "v.blk.{bid}.{sid}.pw_exp.conv.weight",
  5043. "model.vision_tower.timm_model.blocks.{bid}.{sid}.pw_exp.bn.weight": "v.blk.{bid}.{sid}.pw_exp.bn.weight",
  5044. "model.vision_tower.timm_model.blocks.{bid}.{sid}.pw_proj.conv.weight": "v.blk.{bid}.{sid}.pw_proj.conv.weight",
  5045. "model.vision_tower.timm_model.blocks.{bid}.{sid}.pw_proj.bn.weight": "v.blk.{bid}.{sid}.pw_proj.bn.weight",
  5046. "model.vision_tower.timm_model.blocks.{bid}.{sid}.layer_scale.gamma": "v.blk.{bid}.{sid}.layer_scale.gamma",
  5047. "model.vision_tower.timm_model.blocks.{bid}.{sid}.attn.query.proj.weight": "v.blk.{bid}.{sid}.attn.query.proj.weight",
  5048. "model.vision_tower.timm_model.blocks.{bid}.{sid}.attn.key.proj.weight": "v.blk.{bid}.{sid}.attn.key.proj.weight",
  5049. "model.vision_tower.timm_model.blocks.{bid}.{sid}.attn.value.proj.weight": "v.blk.{bid}.{sid}.attn.value.proj.weight",
  5050. "model.vision_tower.timm_model.blocks.{bid}.{sid}.attn.output.proj.weight": "v.blk.{bid}.{sid}.attn.output.proj.weight",
  5051. "model.vision_tower.timm_model.blocks.{bid}.{sid}.attn.key.down_conv.weight": "v.blk.{bid}.{sid}.attn.key.down_conv.weight",
  5052. "model.vision_tower.timm_model.blocks.{bid}.{sid}.attn.key.norm.weight": "v.blk.{bid}.{sid}.attn.key.norm.weight",
  5053. "model.vision_tower.timm_model.blocks.{bid}.{sid}.attn.value.down_conv.weight": "v.blk.{bid}.{sid}.attn.value.down_conv.weight",
  5054. "model.vision_tower.timm_model.blocks.{bid}.{sid}.attn.value.norm.weight": "v.blk.{bid}.{sid}.attn.value.norm.weight",
  5055. "model.vision_tower.timm_model.blocks.{bid}.{sid}.norm.weight": "v.blk.{bid}.{sid}.norm.weight",
  5056. }
  5057. def __init__(self, *args, **kwargs):
  5058. # Parent init will call find_hparam which now returns 0 for empty keys
  5059. super().__init__(*args, **kwargs)
  5060. assert self.hparams_vision is not None
  5061. self.hparams_vision["n_layers"] = 128 # fake value for audio encoder, vision encoder doesn't use it
  5062. self.hparams_vision["intermediate_size"] = self.hparams_vision.get("intermediate_size", 2048) * 4
  5063. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_attention_heads", 8)
  5064. # MobileNetV5 does not use image_mean/std
  5065. self.preprocessor_config["image_mean"] = [0.0 ,0.0 , 0.0]
  5066. self.preprocessor_config["image_std"] = [1.0 ,1.0 ,1.0]
  5067. self.hparams_vision["image_size"] = self.preprocessor_config.get(
  5068. "size", {"height": 768, "width": 768}
  5069. )["height"]
  5070. # Image sequence length (256 tokens = 16x16 for Gemma3n)
  5071. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  5072. image_size = self.hparams_vision["image_size"]
  5073. self.hparams_vision["patch_size"] = image_size // image_seq_length
  5074. # remap audio hparams
  5075. assert self.hparams_audio is not None
  5076. self.hparams_audio["n_layers"] = self.hparams_audio["conf_num_hidden_layers"]
  5077. self.hparams_audio["num_attention_heads"] = self.hparams_audio["conf_num_attention_heads"]
  5078. self.hparams_audio["feat_in"] = self.hparams_audio["input_feat_size"]
  5079. self.hparams_audio["intermediate_size"] = self.hparams_audio.get("intermediate_size", 6144)
  5080. def set_gguf_parameters(self):
  5081. super().set_gguf_parameters()
  5082. # vision params
  5083. self.gguf_writer.add_clip_vision_projector_type(gguf.VisionProjectorType.GEMMA3NV)
  5084. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-6))
  5085. # audio params
  5086. assert self.hparams_audio is not None
  5087. self.gguf_writer.add_clip_audio_projector_type(gguf.VisionProjectorType.GEMMA3NA)
  5088. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["feat_in"])
  5089. self.gguf_writer.add_audio_attention_layernorm_eps(1e-5)
  5090. def tensor_force_quant(self, name, new_name, bid, n_dims):
  5091. # Force quantization settings for specific tensor types
  5092. if "input_projection" in name or "input_proj" in name:
  5093. return gguf.GGMLQuantizationType.F16
  5094. if ".embeddings." in name or "stem" in name:
  5095. return gguf.GGMLQuantizationType.F32
  5096. return super().tensor_force_quant(name, new_name, bid, n_dims)
  5097. def custom_map(self, name: str) -> str:
  5098. """Parses names like model.vision_tower.timm_model.blocks.1.2.suffix and applies template mapping."""
  5099. parts = name.split(".")
  5100. # MobileNet blocks have at least 7 parts: model, vision_tower, timm_model, blocks, bid, sid, and suffix
  5101. if len(parts) >= 7:
  5102. bid, sid = parts[4], parts[5]
  5103. suffix = ".".join(parts[6:])
  5104. template = f"model.vision_tower.timm_model.blocks.{{bid}}.{{sid}}.{suffix}"
  5105. if template in self.block_tensor_mapping:
  5106. return self.block_tensor_mapping[template].format(bid=bid, sid=sid)
  5107. raise ValueError(f"Unknown name: {name}")
  5108. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5109. if (ConformerAudioModel.is_audio_tensor(name)):
  5110. name = name.replace("model.audio_tower.conformer.", "conformer.layers.")
  5111. return super().modify_tensors(data_torch, name, bid)
  5112. # Gemma3n uses
  5113. # - model.embed_vision.* for projection layers
  5114. # - model.vision_tower.* for vision encoder
  5115. # Skip non-vision tensors
  5116. if not (name.startswith("model.embed_vision.") or name.startswith("model.vision_tower.")):
  5117. return []
  5118. if name.startswith("model.vision_tower.timm_model.blocks."):
  5119. # Double-indexed block tensors through custom logic
  5120. new_name = self.custom_map(name)
  5121. else:
  5122. # Route non-repeating (conv_stem, msfa, embedding, etc.) and un-catched through tensor_mapping.py
  5123. new_name = self.map_tensor_name(name)
  5124. if new_name.endswith("conv_stem.conv.bias") or new_name.endswith("layer_scale.gamma"):
  5125. data_torch = data_torch.unsqueeze(0).unsqueeze(-1).unsqueeze(-1) # [1, C, 1, 1]
  5126. return [(new_name, data_torch)]
  5127. @ModelBase.register("Gemma3nForCausalLM", "Gemma3nForConditionalGeneration")
  5128. class Gemma3NModel(Gemma3Model):
  5129. model_arch = gguf.MODEL_ARCH.GEMMA3N
  5130. norm_shift = 0.0 # same value with Gemma3p5RMSNorm scale_shift on python code
  5131. _altup_proj: list[Tensor] = []
  5132. _altup_unembd: list[Tensor] = []
  5133. def __init__(self, *args, **kwargs):
  5134. super().__init__(*args, **kwargs)
  5135. assert self.hparams["altup_num_inputs"] == 4, "Current conversion only supports 4 altup inputs"
  5136. self._altup_proj = [
  5137. torch.Tensor(), # to be replaced
  5138. torch.Tensor(), # to be replaced
  5139. torch.Tensor(), # to be replaced
  5140. ]
  5141. self._altup_unembd = [
  5142. torch.Tensor(), # to be replaced
  5143. torch.Tensor(), # to be replaced
  5144. torch.Tensor(), # to be replaced
  5145. ]
  5146. def set_vocab(self):
  5147. # For Gemma3n multimodal models, we need the FULL vocab_size (262400)
  5148. # which includes special tokens from 262144-262399 for vision/audio.
  5149. # The vocab_size_per_layer_input (262144) is only the embedding size per layer.
  5150. # Temporarily override the hparams lookup order to prioritize vocab_size.
  5151. # Store original vocab_size_per_layer_input if it exists
  5152. vocab_size_per_layer_input = self.hparams.get("vocab_size_per_layer_input")
  5153. # Temporarily remove vocab_size_per_layer_input to force using vocab_size
  5154. if vocab_size_per_layer_input is not None:
  5155. del self.hparams["vocab_size_per_layer_input"]
  5156. # Call parent set_vocab which will now use vocab_size (262400)
  5157. super().set_vocab()
  5158. # Restore vocab_size_per_layer_input for later use
  5159. if vocab_size_per_layer_input is not None:
  5160. self.hparams["vocab_size_per_layer_input"] = vocab_size_per_layer_input
  5161. def set_gguf_parameters(self):
  5162. super().set_gguf_parameters()
  5163. self.gguf_writer.add_altup_active_idx(self.hparams["altup_active_idx"])
  5164. self.gguf_writer.add_altup_num_inputs(self.hparams["altup_num_inputs"])
  5165. self.gguf_writer.add_embedding_length_per_layer_input(self.hparams["hidden_size_per_layer_input"])
  5166. self.gguf_writer.add_shared_kv_layers(self.hparams["num_kv_shared_layers"])
  5167. activation_sparsity_scale = []
  5168. for s in self.hparams["activation_sparsity_pattern"]:
  5169. normal_dist = torch.distributions.normal.Normal(0, 1)
  5170. std_multiplier = normal_dist.icdf(torch.tensor(s, dtype=torch.float32))
  5171. activation_sparsity_scale.append(std_multiplier.item())
  5172. self.gguf_writer.add_activation_sparsity_scale(activation_sparsity_scale)
  5173. sliding_window_pattern = []
  5174. for t in self.hparams["layer_types"]:
  5175. sliding_window_pattern.append(t == "sliding_attention")
  5176. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  5177. def _stack_matrices(self, matrices: list[Tensor]) -> Tensor | None:
  5178. has_all = all(m.numel() > 0 for m in matrices)
  5179. if not has_all:
  5180. return None
  5181. else:
  5182. return torch.stack(matrices, dim=0)
  5183. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5184. if name.endswith("_scale"):
  5185. name = name + ".weight"
  5186. # TODO: implement self.prediction_coefs.weight.clamp_(...)
  5187. if "language_model." not in name:
  5188. return [] # skip non-language model tensors
  5189. # Pad token embeddings for vision/audio special tokens (262144-262399)
  5190. if "embed_tokens.weight" in name or "embed_tokens_per_layer" in name:
  5191. # Move to CPU to avoid meta device issues during padding
  5192. data_torch = data_torch.to(device="cpu")
  5193. vocab_size = self.hparams.get("vocab_size", 262400)
  5194. current_size = data_torch.shape[0] # First dimension is vocab_size
  5195. if current_size < vocab_size:
  5196. # Pad with zeros for vision/audio tokens (they get embeddings from vision tower)
  5197. padding_size = vocab_size - current_size
  5198. tensor_type = "per-layer embeddings" if "per_layer" in name else "token embeddings"
  5199. logger.info(f"Padding {tensor_type} shape {list(data_torch.shape)} from {current_size} to {vocab_size} (adding {padding_size} vision/audio token slots)")
  5200. # Create padding with zeros (vision tokens won't use these embeddings)
  5201. padding = torch.zeros((padding_size, data_torch.shape[1]), dtype=data_torch.dtype, device=data_torch.device)
  5202. data_torch = torch.cat([data_torch, padding], dim=0)
  5203. # Continue with normal processing
  5204. name = name.replace("language_model.", "")
  5205. return [(self.map_tensor_name(name), data_torch)]
  5206. if "altup_unembed_projections" in name:
  5207. data_torch = data_torch.to(device="cpu")
  5208. # altup_unembed matrices are [hidden_size, hidden_size], NOT vocab-based
  5209. # They should NOT be padded
  5210. if ".0." in name:
  5211. self._altup_unembd[0] = data_torch
  5212. elif ".1." in name:
  5213. self._altup_unembd[1] = data_torch
  5214. elif ".2." in name:
  5215. self._altup_unembd[2] = data_torch
  5216. else:
  5217. raise ValueError(f"Unknown name: {name}")
  5218. out = self._stack_matrices(self._altup_unembd)
  5219. if out is not None:
  5220. return [(self.map_tensor_name("model.altup_unembed_projections.weight"), out)]
  5221. else:
  5222. return []
  5223. if "altup_projections" in name:
  5224. data_torch = data_torch.to(device="cpu")
  5225. if ".0." in name:
  5226. self._altup_proj[0] = data_torch
  5227. elif ".1." in name:
  5228. self._altup_proj[1] = data_torch
  5229. elif ".2." in name:
  5230. self._altup_proj[2] = data_torch
  5231. else:
  5232. raise ValueError(f"Unknown name: {name}")
  5233. out = self._stack_matrices(self._altup_proj)
  5234. if out is not None:
  5235. return [(self.map_tensor_name("model.altup_projections.weight"), out)]
  5236. else:
  5237. return []
  5238. return super().modify_tensors(data_torch, name, bid)
  5239. @ModelBase.register("Starcoder2ForCausalLM")
  5240. class StarCoder2Model(TextModel):
  5241. model_arch = gguf.MODEL_ARCH.STARCODER2
  5242. @ModelBase.register("Rwkv6ForCausalLM")
  5243. class Rwkv6Model(TextModel):
  5244. model_arch = gguf.MODEL_ARCH.RWKV6
  5245. def set_vocab(self):
  5246. self._set_vocab_rwkv_world()
  5247. def set_gguf_parameters(self):
  5248. head_size = self.hparams["head_size"]
  5249. hidden_size = self.hparams["hidden_size"]
  5250. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  5251. rescale_every_n_layers = self.hparams["rescale_every"]
  5252. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  5253. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  5254. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  5255. # RWKV isn't context limited
  5256. self.gguf_writer.add_context_length(1048576)
  5257. self.gguf_writer.add_embedding_length(hidden_size)
  5258. self.gguf_writer.add_block_count(self.block_count)
  5259. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  5260. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  5261. self.gguf_writer.add_wkv_head_size(head_size)
  5262. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  5263. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  5264. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5265. self.gguf_writer.add_file_type(self.ftype)
  5266. # required by llama.cpp, unused
  5267. self.gguf_writer.add_head_count(0)
  5268. lerp_weights: dict[int, dict[str, Tensor]] = {}
  5269. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5270. new_name = self.map_tensor_name(name)
  5271. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  5272. new_name += ".weight"
  5273. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  5274. data_torch = data_torch.transpose(0, 1)
  5275. if new_name.endswith("time_mix_w2.weight"):
  5276. data_torch = data_torch.permute(0, 2, 1)
  5277. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  5278. data_torch = data_torch.squeeze()
  5279. try:
  5280. rescale_every_n_layers = self.hparams["rescale_every"]
  5281. if rescale_every_n_layers > 0:
  5282. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  5283. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  5284. except KeyError:
  5285. pass
  5286. # concat time_mix_lerp weights to reduce some cpu overhead
  5287. # also reduces the number of tensors in the model
  5288. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  5289. try:
  5290. self.lerp_weights[bid][new_name] = data_torch
  5291. except KeyError:
  5292. self.lerp_weights[bid] = {new_name: data_torch}
  5293. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  5294. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5295. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  5296. yield (new_name, data)
  5297. return
  5298. yield (new_name, data_torch)
  5299. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  5300. class RWKV6Qwen2Model(Rwkv6Model):
  5301. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  5302. def set_vocab(self):
  5303. try:
  5304. self._set_vocab_sentencepiece()
  5305. except FileNotFoundError:
  5306. self._set_vocab_gpt2()
  5307. def set_gguf_parameters(self):
  5308. num_attention_heads = self.hparams["num_attention_heads"]
  5309. num_key_value_heads = self.hparams["num_key_value_heads"]
  5310. hidden_size = self.hparams["hidden_size"]
  5311. head_size = hidden_size // num_attention_heads
  5312. rms_norm_eps = self.hparams["rms_norm_eps"]
  5313. intermediate_size = self.hparams["intermediate_size"]
  5314. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  5315. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  5316. # RWKV isn't context limited
  5317. self.gguf_writer.add_context_length(1048576)
  5318. self.gguf_writer.add_embedding_length(hidden_size)
  5319. self.gguf_writer.add_block_count(self.block_count)
  5320. self.gguf_writer.add_wkv_head_size(head_size)
  5321. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  5322. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  5323. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5324. self.gguf_writer.add_file_type(self.ftype)
  5325. # special parameters for time_mixing in RWKV6QWEN2
  5326. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5327. self.gguf_writer.add_token_shift_count(1)
  5328. # RWKV6QWEN2 use grouped key/value like GQA
  5329. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  5330. # required by llama.cpp, unused
  5331. self.gguf_writer.add_head_count(0)
  5332. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5333. for new_name, data in super().modify_tensors(data_torch, name, bid):
  5334. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  5335. data = data.view(5, -1, data.shape[-1])
  5336. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  5337. # permute them here to avoid code changes
  5338. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  5339. if "w2" in new_name:
  5340. data = data.view(5, -1, data.shape[-1])
  5341. yield (new_name, data)
  5342. continue
  5343. yield (new_name, data)
  5344. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  5345. class Rwkv7Model(TextModel):
  5346. model_arch = gguf.MODEL_ARCH.RWKV7
  5347. def set_vocab(self):
  5348. self._set_vocab_rwkv_world()
  5349. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  5350. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  5351. def set_gguf_parameters(self):
  5352. try:
  5353. head_size = self.hparams["head_size"]
  5354. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  5355. except KeyError:
  5356. head_size = self.hparams["head_dim"]
  5357. layer_norm_eps = self.hparams["norm_eps"]
  5358. hidden_size = self.hparams["hidden_size"]
  5359. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  5360. # ICLR: In-Context-Learning-Rate
  5361. try:
  5362. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5363. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5364. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  5365. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  5366. except KeyError:
  5367. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5368. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5369. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  5370. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  5371. # RWKV isn't context limited
  5372. self.gguf_writer.add_context_length(1048576)
  5373. self.gguf_writer.add_embedding_length(hidden_size)
  5374. self.gguf_writer.add_block_count(self.block_count)
  5375. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  5376. self.gguf_writer.add_wkv_head_size(head_size)
  5377. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  5378. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  5379. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  5380. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  5381. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5382. self.gguf_writer.add_file_type(self.ftype)
  5383. # required by llama.cpp, unused
  5384. self.gguf_writer.add_head_count(0)
  5385. lerp_weights: dict[int, dict[str, Tensor]] = {}
  5386. lora_needs_transpose: bool = True
  5387. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5388. # unify tensor names here to make life easier
  5389. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  5390. name = name.replace("self_attn", "attention").replace("attn", "attention")
  5391. name = name.replace("time_mixer.", "")
  5392. # lora layer names in fla-hub's impl
  5393. if "_lora.lora" in name:
  5394. self.lora_needs_transpose = False
  5395. name = name.replace("_lora.lora.0.weight", "1.weight")
  5396. name = name.replace("_lora.lora.2.weight", "2.weight")
  5397. name = name.replace("_lora.lora.2.bias", "0.weight")
  5398. name = name.replace("feed_forward_norm", "ln2")
  5399. name = name.replace("g_norm", "ln_x")
  5400. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  5401. # some models have dummy v0/v1/v2 on first layer while others don't
  5402. # ignore them all since they are not used
  5403. return
  5404. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  5405. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  5406. if bid is not None and "attention.x_" in name:
  5407. if "attention.x_x" in name:
  5408. # already concatenated
  5409. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5410. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  5411. yield (new_name, data)
  5412. else:
  5413. try:
  5414. self.lerp_weights[bid][name] = data_torch
  5415. except KeyError:
  5416. self.lerp_weights[bid] = {name: data_torch}
  5417. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  5418. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5419. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  5420. yield (new_name, data)
  5421. return
  5422. else:
  5423. data_torch = data_torch.squeeze()
  5424. new_name = self.map_tensor_name(name)
  5425. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  5426. new_name += ".weight"
  5427. if self.lora_needs_transpose and any(
  5428. new_name.endswith(t) for t in [
  5429. "time_mix_w1.weight", "time_mix_w2.weight",
  5430. "time_mix_a1.weight", "time_mix_a2.weight",
  5431. "time_mix_v1.weight", "time_mix_v2.weight",
  5432. "time_mix_g1.weight", "time_mix_g2.weight",
  5433. ]
  5434. ):
  5435. data_torch = data_torch.transpose(0, 1)
  5436. if 'r_k' in new_name:
  5437. data_torch = data_torch.flatten()
  5438. if bid == 0 and "time_mix_a" in new_name:
  5439. # dummy v0/v1/v2 on first layer
  5440. # easist way to make llama happy
  5441. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  5442. yield (new_name, data_torch)
  5443. @ModelBase.register("RwkvHybridForCausalLM")
  5444. class ARwkv7Model(Rwkv7Model):
  5445. model_arch = gguf.MODEL_ARCH.ARWKV7
  5446. def set_vocab(self):
  5447. try:
  5448. self._set_vocab_sentencepiece()
  5449. except FileNotFoundError:
  5450. self._set_vocab_gpt2()
  5451. def set_gguf_parameters(self):
  5452. hidden_size = self.hparams["hidden_size"]
  5453. head_size = self.hparams["head_size"]
  5454. rms_norm_eps = self.hparams["rms_norm_eps"]
  5455. intermediate_size = self.hparams["intermediate_size"]
  5456. wkv_has_gate = self.hparams["wkv_has_gate"]
  5457. assert self.hparams["wkv_version"] == 7
  5458. # ICLR: In-Context-Learning-Rate
  5459. lora_rank_decay = 64
  5460. lora_rank_iclr = 64
  5461. lora_rank_value_residual_mix = 32
  5462. lora_rank_gate = 128 if wkv_has_gate else 0
  5463. # RWKV isn't context limited
  5464. self.gguf_writer.add_context_length(1048576)
  5465. self.gguf_writer.add_embedding_length(hidden_size)
  5466. self.gguf_writer.add_block_count(self.block_count)
  5467. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5468. self.gguf_writer.add_wkv_head_size(head_size)
  5469. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  5470. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  5471. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  5472. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  5473. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5474. self.gguf_writer.add_file_type(self.ftype)
  5475. self.gguf_writer.add_token_shift_count(1)
  5476. # required by llama.cpp, unused
  5477. self.gguf_writer.add_head_count(0)
  5478. @ModelBase.register("MaincoderForCausalLM")
  5479. class MaincoderModel(TextModel):
  5480. model_arch = gguf.MODEL_ARCH.MAINCODER
  5481. def set_gguf_parameters(self):
  5482. super().set_gguf_parameters()
  5483. if (head_dim := self.hparams.get("head_dim")) is not None:
  5484. self.gguf_writer.add_rope_dimension_count(head_dim)
  5485. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  5486. class MambaModel(TextModel):
  5487. model_arch = gguf.MODEL_ARCH.MAMBA
  5488. def __init__(self, dir_model: Path, *args, **kwargs):
  5489. # Avoid using AutoConfig for hparams
  5490. hparams = kwargs.pop("hparams", None)
  5491. if hparams is None:
  5492. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  5493. hparams = json.load(f)
  5494. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  5495. def set_vocab(self):
  5496. vocab_size = self.hparams["vocab_size"]
  5497. # Round vocab size to next multiple of 8
  5498. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  5499. # pad using ceiling division
  5500. # ref: https://stackoverflow.com/a/17511341/22827863
  5501. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  5502. self.hparams["vocab_size"] = vocab_size
  5503. if (self.dir_model / "tokenizer.json").is_file():
  5504. self._set_vocab_gpt2()
  5505. elif (self.dir_model / "tokenizer.model").is_file():
  5506. self._set_vocab_sentencepiece()
  5507. else:
  5508. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  5509. self._set_vocab_builtin("gpt-neox", vocab_size)
  5510. def set_gguf_parameters(self):
  5511. d_model = self.find_hparam(["hidden_size", "d_model"])
  5512. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  5513. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  5514. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  5515. # ceiling division
  5516. # ref: https://stackoverflow.com/a/17511341/22827863
  5517. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  5518. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  5519. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  5520. use_dt_b_c_norm = False
  5521. # For falconmamba we do apply RMS norm on B / DT and C layers
  5522. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  5523. use_dt_b_c_norm = True
  5524. # Fail early for models which don't have a block expansion factor of 2
  5525. assert d_inner == 2 * d_model
  5526. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  5527. self.gguf_writer.add_embedding_length(d_model)
  5528. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  5529. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  5530. self.gguf_writer.add_block_count(self.block_count)
  5531. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5532. self.gguf_writer.add_ssm_inner_size(d_inner)
  5533. self.gguf_writer.add_ssm_state_size(d_state)
  5534. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  5535. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5536. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  5537. self.gguf_writer.add_file_type(self.ftype)
  5538. _tok_embd = None
  5539. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5540. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  5541. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  5542. new_name = self.map_tensor_name(name)
  5543. if name.endswith(".A_log"):
  5544. logger.debug("A_log --> A ==> " + new_name)
  5545. data_torch = -torch.exp(data_torch)
  5546. # [4 1 8192 1] -> [4 8192 1 1]
  5547. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5548. data_torch = data_torch.squeeze()
  5549. # assuming token_embd.weight is seen before output.weight
  5550. if self._tok_embd is not None and new_name == output_name:
  5551. if torch.equal(self._tok_embd, data_torch):
  5552. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  5553. return []
  5554. elif new_name == tok_embd_name:
  5555. self._tok_embd = data_torch
  5556. return [(new_name, data_torch)]
  5557. @ModelBase.register("Mamba2ForCausalLM")
  5558. class Mamba2Model(TextModel):
  5559. model_arch = gguf.MODEL_ARCH.MAMBA2
  5560. def __init__(self, dir_model: Path, *args, **kwargs):
  5561. # Avoid using AutoConfig for hparams
  5562. # It wrongly assumes all Mamba2 models are Mamba-Codestral-7B-v0.1
  5563. hparams = kwargs.pop("hparams", None)
  5564. if hparams is None:
  5565. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  5566. hparams = json.load(f)
  5567. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  5568. self.d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
  5569. self.d_inner = self.find_hparam(["mamba_d_ssm", "intermediate_size", "d_inner"], optional=True) or 2 * self.d_model
  5570. self.n_group = self.find_hparam(["n_groups"], optional=True) or 1
  5571. def set_vocab(self):
  5572. vocab_size = self.hparams["vocab_size"]
  5573. # Round vocab size to next multiple of 16
  5574. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 16)
  5575. # pad using ceiling division
  5576. # ref: https://stackoverflow.com/a/17511341/22827863
  5577. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  5578. self.hparams["vocab_size"] = vocab_size
  5579. if (self.dir_model / "tokenizer.model").is_file():
  5580. self._set_vocab_sentencepiece()
  5581. elif (self.dir_model / "tokenizer.model.v3").is_file():
  5582. # mamba-codestral
  5583. raise NotImplementedError(f"Please rename {self.dir_model / 'tokenizer.model.v3'} to {self.dir_model / 'tokenizer.model'}")
  5584. elif (self.dir_model / "tokenizer.json").is_file():
  5585. self._set_vocab_gpt2()
  5586. else:
  5587. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  5588. self._set_vocab_builtin("gpt-neox", vocab_size)
  5589. def set_gguf_parameters(self):
  5590. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  5591. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 128
  5592. head_dim = self.find_hparam(["mamba_d_head", "head_dim"], optional=True) or 64
  5593. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  5594. # Fail early for models which don't have a block expansion factor of 2
  5595. # TODO: does this really matter?
  5596. # skip the assertion for FalconH1 Model
  5597. if self.model_arch != gguf.MODEL_ARCH.FALCON_H1:
  5598. assert self.d_inner == 2 * self.d_model
  5599. assert self.d_inner % head_dim == 0
  5600. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  5601. self.gguf_writer.add_embedding_length(self.d_model)
  5602. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  5603. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  5604. self.gguf_writer.add_block_count(self.block_count)
  5605. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5606. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  5607. self.gguf_writer.add_ssm_state_size(d_state)
  5608. self.gguf_writer.add_ssm_time_step_rank(self.d_inner // head_dim)
  5609. self.gguf_writer.add_ssm_group_count(self.n_group)
  5610. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5611. self.gguf_writer.add_file_type(self.ftype)
  5612. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5613. if name.startswith("model.backbone") or name.startswith("model.lm_head"):
  5614. # map Mamba-Codestral-7B-v0.1 tensor names to the names used by Mamba-2
  5615. name = name.removeprefix("model.")
  5616. if name.endswith(".dt_bias"):
  5617. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  5618. new_name = self.map_tensor_name(name)
  5619. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5620. data_torch = data_torch.squeeze()
  5621. elif any(self.match_model_tensor_name(new_name, t, bid, suffix="") for t in [
  5622. gguf.MODEL_TENSOR.SSM_A,
  5623. gguf.MODEL_TENSOR.SSM_D,
  5624. ]):
  5625. # unsqueeze A to use similar shape semantics as Mamba-1
  5626. # (D is also unsqueezed, but for more straightforward broadcast internally)
  5627. data_torch = data_torch.reshape((*data_torch.shape, 1))
  5628. elif self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_NORM, bid):
  5629. data_torch = data_torch.reshape((self.n_group, self.d_inner // self.n_group))
  5630. if name.endswith(".A_log"):
  5631. logger.debug("A_log --> A ==> " + new_name)
  5632. data_torch = -torch.exp(data_torch)
  5633. yield (new_name, data_torch)
  5634. @ModelBase.register("JambaForCausalLM")
  5635. class JambaModel(TextModel):
  5636. model_arch = gguf.MODEL_ARCH.JAMBA
  5637. def set_vocab(self):
  5638. if (self.dir_model / "tokenizer.model").is_file():
  5639. self._set_vocab_sentencepiece()
  5640. else:
  5641. self._set_vocab_llama_hf()
  5642. self.gguf_writer.add_add_space_prefix(False)
  5643. def set_gguf_parameters(self):
  5644. d_model = self.find_hparam(["hidden_size", "mamba_d_model"])
  5645. d_conv = self.find_hparam(["mamba_d_conv"], optional=True) or 4
  5646. d_inner = self.hparams["mamba_expand"] * d_model
  5647. d_state = self.find_hparam(["mamba_d_state"], optional=True) or 16
  5648. # ceiling division
  5649. # ref: https://stackoverflow.com/a/17511341/22827863
  5650. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  5651. dt_rank = self.find_hparam(["mamba_dt_rank"], optional=True) or -(d_model // -16)
  5652. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-6
  5653. n_kv_head = self.hparams["num_key_value_heads"]
  5654. attn_offset = self.hparams["attn_layer_offset"]
  5655. attn_period = self.hparams["attn_layer_period"]
  5656. n_kv_vec = [0 for _ in range(attn_offset)] + [
  5657. n_kv_head if (i - attn_offset) % attn_period == 0 else 0 for i in range(attn_offset, self.block_count)
  5658. ]
  5659. self.gguf_writer.add_block_count(self.block_count)
  5660. self.gguf_writer.add_context_length(self.find_hparam(["max_position_embeddings", "n_ctx"]))
  5661. self.gguf_writer.add_embedding_length(d_model)
  5662. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  5663. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  5664. self.gguf_writer.add_head_count_kv(n_kv_vec)
  5665. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5666. self.gguf_writer.add_ssm_inner_size(d_inner)
  5667. self.gguf_writer.add_ssm_state_size(d_state)
  5668. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  5669. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5670. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  5671. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  5672. self.gguf_writer.add_file_type(self.ftype)
  5673. _experts: list[dict[str, Tensor]] | None = None
  5674. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5675. # Mini-Jamba
  5676. name = name.replace(".moe.", ".feed_forward.")
  5677. if bid is not None:
  5678. moe_offset = self.hparams["expert_layer_offset"]
  5679. moe_period = self.hparams["expert_layer_period"]
  5680. if not (bid >= moe_offset and (bid - moe_offset) % moe_period == 0):
  5681. name = name.replace(".experts.0.", ".")
  5682. # process the experts separately
  5683. if ".feed_forward.experts." in name:
  5684. n_experts = self.hparams["num_experts"]
  5685. assert bid is not None
  5686. if self._experts is None:
  5687. self._experts = [{} for _ in range(self.block_count)]
  5688. self._experts[bid][name] = data_torch
  5689. if len(self._experts[bid]) >= n_experts * 3:
  5690. # merge the experts into a single 3d tensor
  5691. for wid in ["down_proj", "gate_proj", "up_proj"]:
  5692. datas: list[Tensor] = []
  5693. for xid in range(n_experts):
  5694. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{wid}.weight"
  5695. datas.append(self._experts[bid][ename])
  5696. del self._experts[bid][ename]
  5697. data_torch = torch.stack(datas, dim=0)
  5698. # using the same merged name as qwen2moe
  5699. merged_name = f"model.layers.{bid}.mlp.experts.{wid}.weight"
  5700. new_name = self.map_tensor_name(merged_name)
  5701. yield new_name, data_torch
  5702. return
  5703. new_name = self.map_tensor_name(name)
  5704. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5705. data_torch = data_torch.squeeze()
  5706. if name.endswith(".A_log"):
  5707. logger.debug("A_log --> A ==> " + new_name)
  5708. data_torch = -torch.exp(data_torch)
  5709. yield (new_name, data_torch)
  5710. def prepare_tensors(self):
  5711. super().prepare_tensors()
  5712. if self._experts is not None:
  5713. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5714. experts = [k for d in self._experts for k in d.keys()]
  5715. if len(experts) > 0:
  5716. raise ValueError(f"Unprocessed experts: {experts}")
  5717. @ModelBase.register("CohereForCausalLM")
  5718. class CommandR2Model(TextModel):
  5719. model_arch = gguf.MODEL_ARCH.COMMAND_R
  5720. def __init__(self, *args, **kwargs):
  5721. super().__init__(*args, **kwargs)
  5722. # max_position_embeddings = 8192 in config.json but model was actually
  5723. # trained on 128k context length
  5724. # aya-23 models don't have model_max_length specified
  5725. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  5726. def set_gguf_parameters(self):
  5727. super().set_gguf_parameters()
  5728. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  5729. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5730. @ModelBase.register("Cohere2ForCausalLM")
  5731. class Cohere2Model(TextModel):
  5732. model_arch = gguf.MODEL_ARCH.COHERE2
  5733. def set_gguf_parameters(self):
  5734. super().set_gguf_parameters()
  5735. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  5736. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  5737. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  5738. rotary_pct = self.hparams["rotary_pct"]
  5739. hidden_size = self.hparams["hidden_size"]
  5740. num_attention_heads = self.hparams["num_attention_heads"]
  5741. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  5742. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5743. @ModelBase.register("OlmoForCausalLM")
  5744. @ModelBase.register("OLMoForCausalLM")
  5745. class OlmoModel(TextModel):
  5746. model_arch = gguf.MODEL_ARCH.OLMO
  5747. def set_gguf_parameters(self):
  5748. super().set_gguf_parameters()
  5749. self.gguf_writer.add_layer_norm_eps(1e-5)
  5750. clip_qkv = self.hparams.get("clip_qkv")
  5751. if clip_qkv is not None:
  5752. self.gguf_writer.add_clamp_kqv(clip_qkv)
  5753. # Same as super class, but permuting q_proj, k_proj
  5754. # Copied from: LlamaModel
  5755. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5756. del bid # unused
  5757. n_head = self.hparams["num_attention_heads"]
  5758. n_kv_head = self.hparams.get("num_key_value_heads")
  5759. if name.endswith("q_proj.weight"):
  5760. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5761. if name.endswith("k_proj.weight"):
  5762. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5763. return [(self.map_tensor_name(name), data_torch)]
  5764. @ModelBase.register("SeedOssForCausalLM")
  5765. class SeedOssModel(TextModel):
  5766. model_arch = gguf.MODEL_ARCH.SEED_OSS
  5767. @ModelBase.register("Olmo2ForCausalLM")
  5768. @ModelBase.register("Olmo3ForCausalLM")
  5769. class Olmo2Model(TextModel):
  5770. model_arch = gguf.MODEL_ARCH.OLMO2
  5771. def set_gguf_parameters(self):
  5772. super().set_gguf_parameters()
  5773. if "sliding_window" in self.hparams:
  5774. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  5775. sliding_window_pattern = []
  5776. if "layer_types" in self.hparams:
  5777. sliding_window_pattern = [t == "sliding_attention" for t in self.hparams["layer_types"]]
  5778. else:
  5779. # Olmo2 does not use sliding window attention.
  5780. # Olmo3 defaults to using sliding window for all layers except every 4th.
  5781. for i in range(self.hparams["num_hidden_layers"]):
  5782. sliding_window_pattern.append((i + 1) % 4 != 0)
  5783. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  5784. @ModelBase.register("OlmoeForCausalLM")
  5785. class OlmoeModel(TextModel):
  5786. model_arch = gguf.MODEL_ARCH.OLMOE
  5787. def set_gguf_parameters(self):
  5788. super().set_gguf_parameters()
  5789. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  5790. if (n_experts := self.hparams.get("num_experts")) is not None:
  5791. self.gguf_writer.add_expert_count(n_experts)
  5792. _experts: list[dict[str, Tensor]] | None = None
  5793. # Copied from: Qwen2MoeModel
  5794. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5795. # process the experts separately
  5796. if name.find("experts") != -1:
  5797. n_experts = self.hparams["num_experts"]
  5798. assert bid is not None
  5799. if self._experts is None:
  5800. self._experts = [{} for _ in range(self.block_count)]
  5801. self._experts[bid][name] = data_torch
  5802. if len(self._experts[bid]) >= n_experts * 3:
  5803. tensors: list[tuple[str, Tensor]] = []
  5804. # merge the experts into a single 3d tensor
  5805. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5806. datas: list[Tensor] = []
  5807. for xid in range(n_experts):
  5808. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5809. datas.append(self._experts[bid][ename])
  5810. del self._experts[bid][ename]
  5811. data_torch = torch.stack(datas, dim=0)
  5812. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5813. new_name = self.map_tensor_name(merged_name)
  5814. tensors.append((new_name, data_torch))
  5815. return tensors
  5816. else:
  5817. return []
  5818. return [(self.map_tensor_name(name), data_torch)]
  5819. # Copied from: Qwen2MoeModel
  5820. def prepare_tensors(self):
  5821. super().prepare_tensors()
  5822. if self._experts is not None:
  5823. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5824. experts = [k for d in self._experts for k in d.keys()]
  5825. if len(experts) > 0:
  5826. raise ValueError(f"Unprocessed experts: {experts}")
  5827. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  5828. class JinaBertV2Model(BertModel):
  5829. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  5830. def set_vocab(self):
  5831. tokenizer_class = 'BertTokenizer'
  5832. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  5833. tokenizer_class = json.load(f)['tokenizer_class']
  5834. if tokenizer_class == 'BertTokenizer':
  5835. super().set_vocab()
  5836. elif tokenizer_class == 'RobertaTokenizer':
  5837. self._set_vocab_gpt2()
  5838. self.gguf_writer.add_token_type_count(2)
  5839. else:
  5840. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  5841. @ModelBase.register("OpenELMForCausalLM")
  5842. class OpenELMModel(TextModel):
  5843. model_arch = gguf.MODEL_ARCH.OPENELM
  5844. @staticmethod
  5845. def _make_divisible(v: float | int, divisor: int) -> int:
  5846. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  5847. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  5848. # Make sure that round down does not go down by more than 10%.
  5849. if new_v < 0.9 * v:
  5850. new_v += divisor
  5851. return new_v
  5852. def __init__(self, *args, **kwargs):
  5853. super().__init__(*args, **kwargs)
  5854. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  5855. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  5856. self._n_embd: int = self.hparams["model_dim"]
  5857. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  5858. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  5859. self._ffn_dims: list[int] = [
  5860. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  5861. for multiplier in ffn_multipliers
  5862. ]
  5863. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  5864. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  5865. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  5866. def set_vocab(self):
  5867. try:
  5868. self._set_vocab_sentencepiece()
  5869. except FileNotFoundError:
  5870. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  5871. def set_gguf_parameters(self):
  5872. n_embd = self._n_embd
  5873. head_dim = self.hparams["head_dim"]
  5874. rot_pct = 1.0
  5875. assert self.block_count == len(self._num_kv_heads)
  5876. assert self.block_count == len(self._num_query_heads)
  5877. assert self.block_count == len(self._ffn_dims)
  5878. self.gguf_writer.add_block_count(self.block_count)
  5879. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  5880. self.gguf_writer.add_embedding_length(n_embd)
  5881. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  5882. self.gguf_writer.add_head_count(self._num_query_heads)
  5883. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  5884. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  5885. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  5886. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  5887. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  5888. self.gguf_writer.add_key_length(head_dim)
  5889. self.gguf_writer.add_value_length(head_dim)
  5890. self.gguf_writer.add_file_type(self.ftype)
  5891. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  5892. if "n_layers" in keys:
  5893. return self.hparams["num_transformer_layers"]
  5894. return super().find_hparam(keys, optional)
  5895. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5896. # split ff
  5897. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  5898. ff_dim = self._ffn_dims[bid]
  5899. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  5900. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  5901. return
  5902. yield (self.map_tensor_name(name), data_torch)
  5903. @ModelBase.register("ArcticForCausalLM")
  5904. class ArcticModel(TextModel):
  5905. model_arch = gguf.MODEL_ARCH.ARCTIC
  5906. def set_vocab(self):
  5907. # The reason for using a custom implementation here is that the
  5908. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  5909. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  5910. from sentencepiece import SentencePieceProcessor
  5911. tokenizer_path = self.dir_model / 'tokenizer.model'
  5912. if not tokenizer_path.is_file():
  5913. logger.error(f'Error: Missing {tokenizer_path}')
  5914. sys.exit(1)
  5915. # Read the whole vocabulary from the tokenizer.model file
  5916. tokenizer = SentencePieceProcessor()
  5917. tokenizer.LoadFromFile(str(tokenizer_path))
  5918. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5919. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5920. scores: list[float] = [-10000.0] * vocab_size
  5921. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5922. for token_id in range(tokenizer.vocab_size()):
  5923. piece = tokenizer.IdToPiece(token_id)
  5924. text = piece.encode("utf-8")
  5925. score = tokenizer.GetScore(token_id)
  5926. toktype = SentencePieceTokenTypes.NORMAL
  5927. if tokenizer.IsUnknown(token_id):
  5928. toktype = SentencePieceTokenTypes.UNKNOWN
  5929. elif tokenizer.IsControl(token_id):
  5930. toktype = SentencePieceTokenTypes.CONTROL
  5931. elif tokenizer.IsUnused(token_id):
  5932. toktype = SentencePieceTokenTypes.UNUSED
  5933. elif tokenizer.IsByte(token_id):
  5934. toktype = SentencePieceTokenTypes.BYTE
  5935. tokens[token_id] = text
  5936. scores[token_id] = score
  5937. toktypes[token_id] = toktype
  5938. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  5939. # of information about added/redefined tokens and modify them accordingly.
  5940. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  5941. if tokenizer_config_file.is_file():
  5942. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  5943. tokenizer_config_json = json.load(f)
  5944. if "added_tokens_decoder" in tokenizer_config_json:
  5945. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  5946. for token_id, token_json in added_tokens_decoder.items():
  5947. token_id = int(token_id)
  5948. if token_id >= vocab_size:
  5949. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5950. continue
  5951. token_content = token_json["content"]
  5952. token_type = SentencePieceTokenTypes.USER_DEFINED
  5953. token_score = -10000.0
  5954. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  5955. # Set the score to 0.0 as in the original tokenizer.model
  5956. if ("special" in token_json) and token_json["special"]:
  5957. if token_content == tokenizer_config_json["unk_token"]:
  5958. token_type = SentencePieceTokenTypes.UNKNOWN
  5959. else:
  5960. token_type = SentencePieceTokenTypes.CONTROL
  5961. token_score = 0.0
  5962. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  5963. tokens[token_id] = token_content.encode("utf-8")
  5964. toktypes[token_id] = token_type
  5965. scores[token_id] = token_score
  5966. self.gguf_writer.add_tokenizer_model("llama")
  5967. self.gguf_writer.add_tokenizer_pre("default")
  5968. self.gguf_writer.add_token_list(tokens)
  5969. self.gguf_writer.add_token_scores(scores)
  5970. self.gguf_writer.add_token_types(toktypes)
  5971. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5972. special_vocab.add_to_gguf(self.gguf_writer)
  5973. def set_gguf_parameters(self):
  5974. super().set_gguf_parameters()
  5975. hparams = self.hparams
  5976. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5977. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  5978. _experts: list[dict[str, Tensor]] | None = None
  5979. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5980. n_head = self.hparams["num_attention_heads"]
  5981. n_kv_head = self.hparams.get("num_key_value_heads")
  5982. if name.endswith("q_proj.weight"):
  5983. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5984. if name.endswith("k_proj.weight"):
  5985. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5986. # process the experts separately
  5987. if name.find("block_sparse_moe.experts") != -1:
  5988. n_experts = self.hparams["num_local_experts"]
  5989. assert bid is not None
  5990. if self._experts is None:
  5991. self._experts = [{} for _ in range(self.block_count)]
  5992. self._experts[bid][name] = data_torch
  5993. if len(self._experts[bid]) >= n_experts * 3:
  5994. tensors: list[tuple[str, Tensor]] = []
  5995. # merge the experts into a single 3d tensor
  5996. for wid in ["w1", "w2", "w3"]:
  5997. datas: list[Tensor] = []
  5998. for xid in range(n_experts):
  5999. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  6000. datas.append(self._experts[bid][ename])
  6001. del self._experts[bid][ename]
  6002. data_torch = torch.stack(datas, dim=0)
  6003. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  6004. new_name = self.map_tensor_name(merged_name)
  6005. tensors.append((new_name, data_torch))
  6006. return tensors
  6007. else:
  6008. return []
  6009. return [(self.map_tensor_name(name), data_torch)]
  6010. def prepare_tensors(self):
  6011. super().prepare_tensors()
  6012. if self._experts is not None:
  6013. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6014. experts = [k for d in self._experts for k in d.keys()]
  6015. if len(experts) > 0:
  6016. raise ValueError(f"Unprocessed experts: {experts}")
  6017. @ModelBase.register("DeepseekForCausalLM")
  6018. class DeepseekModel(TextModel):
  6019. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  6020. def set_vocab(self):
  6021. try:
  6022. self._set_vocab_sentencepiece()
  6023. except FileNotFoundError:
  6024. self._set_vocab_gpt2()
  6025. def set_gguf_parameters(self):
  6026. super().set_gguf_parameters()
  6027. hparams = self.hparams
  6028. if (rope_dim := hparams.get("head_dim")) is None:
  6029. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  6030. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6031. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6032. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  6033. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6034. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  6035. self.gguf_writer.add_expert_weights_scale(1.0)
  6036. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  6037. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  6038. _experts: list[dict[str, Tensor]] | None = None
  6039. @staticmethod
  6040. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  6041. if n_head_kv is not None and n_head != n_head_kv:
  6042. n_head = n_head_kv
  6043. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  6044. .swapaxes(1, 2)
  6045. .reshape(weights.shape))
  6046. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6047. n_head = self.hparams["num_attention_heads"]
  6048. n_kv_head = self.hparams.get("num_key_value_heads")
  6049. if name.endswith(("q_proj.weight", "q_proj.bias")):
  6050. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  6051. if name.endswith(("k_proj.weight", "k_proj.bias")):
  6052. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  6053. # process the experts separately
  6054. if name.find("mlp.experts") != -1:
  6055. n_experts = self.hparams["n_routed_experts"]
  6056. assert bid is not None
  6057. if self._experts is None:
  6058. self._experts = [{} for _ in range(self.block_count)]
  6059. self._experts[bid][name] = data_torch
  6060. if len(self._experts[bid]) >= n_experts * 3:
  6061. tensors: list[tuple[str, Tensor]] = []
  6062. # merge the experts into a single 3d tensor
  6063. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6064. datas: list[Tensor] = []
  6065. for xid in range(n_experts):
  6066. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6067. datas.append(self._experts[bid][ename])
  6068. del self._experts[bid][ename]
  6069. data_torch = torch.stack(datas, dim=0)
  6070. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6071. new_name = self.map_tensor_name(merged_name)
  6072. tensors.append((new_name, data_torch))
  6073. return tensors
  6074. else:
  6075. return []
  6076. return [(self.map_tensor_name(name), data_torch)]
  6077. def prepare_tensors(self):
  6078. super().prepare_tensors()
  6079. if self._experts is not None:
  6080. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6081. experts = [k for d in self._experts for k in d.keys()]
  6082. if len(experts) > 0:
  6083. raise ValueError(f"Unprocessed experts: {experts}")
  6084. @ModelBase.register(
  6085. "DeepseekV2ForCausalLM",
  6086. "DeepseekV3ForCausalLM",
  6087. "KimiVLForConditionalGeneration",
  6088. "YoutuForCausalLM",
  6089. "YoutuVLForConditionalGeneration",
  6090. )
  6091. class DeepseekV2Model(TextModel):
  6092. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  6093. def set_vocab(self):
  6094. try:
  6095. self._set_vocab_gpt2()
  6096. return
  6097. except Exception:
  6098. pass
  6099. from transformers import AutoTokenizer
  6100. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  6101. tokpre = self.get_vocab_base_pre(tokenizer)
  6102. if tokpre == "kimi-k2":
  6103. # Build merges list using the approach similar to HunYuanMoE
  6104. merges = []
  6105. vocab = {}
  6106. mergeable_ranks = tokenizer.model._mergeable_ranks
  6107. for token, rank in mergeable_ranks.items():
  6108. vocab[QwenModel.token_bytes_to_string(token)] = rank
  6109. if len(token) == 1:
  6110. continue
  6111. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  6112. if len(merged) == 2:
  6113. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  6114. # Build token list
  6115. vocab_size = self.hparams["vocab_size"]
  6116. special_tokens = tokenizer.special_tokens
  6117. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  6118. tokens: list[str] = []
  6119. toktypes: list[int] = []
  6120. for i in range(vocab_size):
  6121. if i not in reverse_vocab:
  6122. tokens.append(f"[PAD{i}]")
  6123. toktypes.append(gguf.TokenType.UNUSED)
  6124. else:
  6125. token = reverse_vocab[i]
  6126. tokens.append(token)
  6127. if i in special_tokens.values():
  6128. toktypes.append(gguf.TokenType.CONTROL)
  6129. else:
  6130. toktypes.append(gguf.TokenType.NORMAL)
  6131. self.gguf_writer.add_tokenizer_model("gpt2")
  6132. self.gguf_writer.add_tokenizer_pre(tokpre)
  6133. self.gguf_writer.add_token_list(tokens)
  6134. self.gguf_writer.add_token_types(toktypes)
  6135. self.gguf_writer.add_token_merges(merges)
  6136. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  6137. special_vocab.add_to_gguf(self.gguf_writer)
  6138. else:
  6139. raise NotImplementedError(f"Deepseek pre-tokenizer {tokpre!r} is not supported yet!")
  6140. def set_gguf_parameters(self):
  6141. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  6142. self.hparams["num_key_value_heads"] = 1
  6143. super().set_gguf_parameters()
  6144. hparams = self.hparams
  6145. # first_k_dense_replace: number of leading layers using dense FFN instead of MoE
  6146. # For non-MoE models (like Youtu), set to n_layer to use dense FFN for all layers
  6147. # For MoE models (like DeepSeek-V2), this is the number of leading non-MoE layers
  6148. has_moe = hparams.get("n_routed_experts") is not None
  6149. first_k_dense_replace = hparams.get("first_k_dense_replace")
  6150. if first_k_dense_replace is None:
  6151. # Default: if no MoE, all layers are dense; if MoE, none are dense
  6152. first_k_dense_replace = hparams["num_hidden_layers"] if not has_moe else 0
  6153. self.gguf_writer.add_leading_dense_block_count(first_k_dense_replace)
  6154. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6155. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  6156. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  6157. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  6158. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  6159. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  6160. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  6161. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  6162. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  6163. # MoE parameters (required by C++ code for DEEPSEEK2 arch)
  6164. # For non-MoE models like Youtu, use intermediate_size as expert_feed_forward_length
  6165. moe_intermediate_size = self.find_hparam(["moe_intermediate_size", "intermediate_size"], optional=False)
  6166. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  6167. if (n_routed_experts := hparams.get("n_routed_experts")) is not None:
  6168. self.gguf_writer.add_expert_count(n_routed_experts)
  6169. # expert_shared_count is required by C++ code, default to 0 for non-MoE models
  6170. n_shared_experts = hparams.get("n_shared_experts", 0)
  6171. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  6172. # When not set, C++ code will use scale_w = false to skip the no-op scaling
  6173. if (routed_scaling_factor := hparams.get("routed_scaling_factor")) is not None:
  6174. self.gguf_writer.add_expert_weights_scale(routed_scaling_factor)
  6175. if (norm_topk_prob := hparams.get("norm_topk_prob")) is not None and norm_topk_prob:
  6176. self.gguf_writer.add_expert_weights_norm(norm_topk_prob)
  6177. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  6178. if (rope_mscale_all := self.rope_parameters.get("mscale_all_dim")) is not None:
  6179. # [TAG_DEEPSEEK2_YARN_LOG_MUL_FIX]
  6180. # note: for legacy reasons, this is not consistent with the other usages of self.gguf_writer.add_rope_scaling_yarn_log_mul
  6181. # ref https://github.com/ggml-org/llama.cpp/pull/17945
  6182. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_mscale_all)
  6183. _experts: list[dict[str, Tensor]] | None = None
  6184. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6185. # skip vision tensors and remove "language_model." for Kimi-VL
  6186. if "vision_tower" in name or "multi_modal_projector" in name:
  6187. return []
  6188. if name.startswith("siglip2.") or name.startswith("merger."):
  6189. return []
  6190. if name.startswith("language_model."):
  6191. name = name.replace("language_model.", "")
  6192. # skip lm_head.weight if tie_word_embeddings is True
  6193. if self.hparams.get("tie_word_embeddings", False):
  6194. if name == "lm_head.weight" or name == "model.lm_head.weight":
  6195. logger.info("Skipping tied output layer 'lm_head.weight' (will use token_embd.weight)")
  6196. return []
  6197. # rename e_score_correction_bias tensors
  6198. if name.endswith("e_score_correction_bias"):
  6199. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6200. # skip Multi-Token Prediction (MTP) layers
  6201. block_count = self.hparams["num_hidden_layers"]
  6202. match = re.match(r"model.layers.(\d+)", name)
  6203. if match and int(match.group(1)) >= block_count:
  6204. return []
  6205. # process the experts separately
  6206. if name.find("mlp.experts") != -1:
  6207. n_experts = self.hparams["n_routed_experts"]
  6208. assert bid is not None
  6209. if self._experts is None:
  6210. self._experts = [{} for _ in range(self.block_count)]
  6211. self._experts[bid][name] = data_torch
  6212. if len(self._experts[bid]) >= n_experts * 3:
  6213. tensors: list[tuple[str, Tensor]] = []
  6214. # merge the experts into a single 3d tensor
  6215. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6216. datas: list[Tensor] = []
  6217. for xid in range(n_experts):
  6218. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6219. datas.append(self._experts[bid][ename])
  6220. del self._experts[bid][ename]
  6221. data_torch = torch.stack(datas, dim=0)
  6222. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6223. new_name = self.map_tensor_name(merged_name)
  6224. tensors.append((new_name, data_torch))
  6225. return tensors
  6226. else:
  6227. return []
  6228. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  6229. if name.endswith("kv_b_proj.weight"):
  6230. name_kb = name.replace("kv_b_proj", "k_b_proj")
  6231. name_vb = name.replace("kv_b_proj", "v_b_proj")
  6232. n_head_kv = self.hparams["num_key_value_heads"]
  6233. v_head_dim = self.hparams["v_head_dim"]
  6234. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  6235. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  6236. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  6237. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  6238. k_b = k_b.transpose(1, 2)
  6239. return [
  6240. (self.map_tensor_name(name_kb), k_b),
  6241. (self.map_tensor_name(name_vb), v_b)
  6242. ]
  6243. return [(self.map_tensor_name(name), data_torch)]
  6244. def prepare_tensors(self):
  6245. super().prepare_tensors()
  6246. if self._experts is not None:
  6247. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6248. experts = [k for d in self._experts for k in d.keys()]
  6249. if len(experts) > 0:
  6250. raise ValueError(f"Unprocessed experts: {experts}")
  6251. @ModelBase.register("MiniMaxM2ForCausalLM")
  6252. class MiniMaxM2Model(TextModel):
  6253. model_arch = gguf.MODEL_ARCH.MINIMAXM2
  6254. _experts_cache: dict[int, dict[str, Tensor]] = {}
  6255. def __init__(self, *args, **kwargs):
  6256. super().__init__(*args, **kwargs)
  6257. self.hparams["num_experts"] = self.hparams["num_local_experts"]
  6258. def set_gguf_parameters(self):
  6259. super().set_gguf_parameters()
  6260. self.gguf_writer.add_expert_feed_forward_length(self.find_hparam(["intermediate_size"]))
  6261. self.gguf_writer.add_rope_dimension_count(self.find_hparam(["rotary_dim"]))
  6262. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  6263. if name.endswith("e_score_correction_bias"):
  6264. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6265. # merge expert weights
  6266. if 'experts' in name:
  6267. n_experts = self.hparams["num_experts"]
  6268. assert bid is not None
  6269. expert_cache = self._experts_cache.setdefault(bid, {})
  6270. expert_cache[name] = data_torch
  6271. expert_weights = ["w1", "w2", "w3"]
  6272. # not enough expert weights to merge
  6273. if len(expert_cache) < n_experts * len(expert_weights):
  6274. return []
  6275. tensors: list[tuple[str, Tensor]] = []
  6276. for w_name in expert_weights:
  6277. datas: list[Tensor] = []
  6278. for xid in range(n_experts):
  6279. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  6280. datas.append(expert_cache[ename])
  6281. del expert_cache[ename]
  6282. data_torch = torch.stack(datas, dim=0)
  6283. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  6284. new_name = self.map_tensor_name(merged_name)
  6285. tensors.append((new_name, data_torch))
  6286. del self._experts_cache[bid]
  6287. return tensors
  6288. return super().modify_tensors(data_torch, name, bid)
  6289. @ModelBase.register("MiMoV2FlashForCausalLM")
  6290. class MimoV2Model(TextModel):
  6291. model_arch = gguf.MODEL_ARCH.MIMO2
  6292. def set_gguf_parameters(self):
  6293. super().set_gguf_parameters()
  6294. assert self.hparams["swa_head_dim"] == self.hparams["head_dim"]
  6295. assert self.hparams["swa_num_attention_heads"] == self.hparams["num_attention_heads"]
  6296. assert self.hparams["swa_v_head_dim"] == self.hparams["v_head_dim"]
  6297. assert self.hparams["topk_method"] == "noaux_tc"
  6298. n_head_kv = self.hparams["num_key_value_heads"]
  6299. n_head_kv_swa = self.hparams["swa_num_key_value_heads"]
  6300. n_head_kv_arr = [n_head_kv_swa if use_swa == 1 else n_head_kv for use_swa in self.hparams["hybrid_layer_pattern"]]
  6301. self.gguf_writer.add_head_count_kv(n_head_kv_arr)
  6302. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  6303. self.gguf_writer.add_sliding_window_pattern(self.hparams["hybrid_layer_pattern"])
  6304. self.gguf_writer.add_value_length(self.hparams["v_head_dim"])
  6305. self.gguf_writer.add_expert_count(self.hparams["n_routed_experts"])
  6306. self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
  6307. rope_dim = int(self.hparams["head_dim"] * self.hparams["partial_rotary_factor"])
  6308. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6309. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon", 1e-5))
  6310. _experts: list[dict[str, Tensor]] | None = None
  6311. def modify_tensors(self, data_torch, name, bid):
  6312. if name.endswith("e_score_correction_bias"):
  6313. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6314. if "attention_sink" in name and not name.endswith(".weight"):
  6315. name += ".weight"
  6316. # TODO: mimo v2 does not indicate the number of next-token-prediction layers, therefore we cannot do the same way as GLM4_MOE
  6317. if "model.mtp." in name:
  6318. return []
  6319. # process the experts separately
  6320. if name.find("mlp.experts") != -1:
  6321. n_experts = self.hparams["n_routed_experts"]
  6322. assert bid is not None
  6323. if self._experts is None:
  6324. self._experts = [{} for _ in range(self.block_count)]
  6325. self._experts[bid][name] = data_torch
  6326. if len(self._experts[bid]) >= n_experts * 3:
  6327. tensors: list[tuple[str, Tensor]] = []
  6328. # merge the experts into a single 3d tensor
  6329. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  6330. datas: list[Tensor] = []
  6331. for xid in range(n_experts):
  6332. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6333. datas.append(self._experts[bid][ename_to_retrieve])
  6334. del self._experts[bid][ename_to_retrieve]
  6335. data_torch = torch.stack(datas, dim=0)
  6336. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6337. new_name = self.map_tensor_name(merged_name)
  6338. tensors.append((new_name, data_torch))
  6339. return tensors
  6340. else:
  6341. return []
  6342. return [(self.map_tensor_name(name), data_torch)]
  6343. def prepare_tensors(self):
  6344. super().prepare_tensors()
  6345. if self._experts is not None:
  6346. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6347. experts = [k for d in self._experts for k in d.keys()]
  6348. if len(experts) > 0:
  6349. raise ValueError(f"Unprocessed experts: {experts}")
  6350. @ModelBase.register("PanguEmbeddedForCausalLM")
  6351. class PanguEmbeddedModel(TextModel):
  6352. model_arch = gguf.MODEL_ARCH.PANGU_EMBED
  6353. def set_vocab(self):
  6354. self._set_vocab_sentencepiece()
  6355. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  6356. if tokenizer_config_file.is_file():
  6357. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  6358. tokenizer_config_json = json.load(f)
  6359. if "add_prefix_space" in tokenizer_config_json:
  6360. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  6361. def set_gguf_parameters(self):
  6362. super().set_gguf_parameters()
  6363. hparams = self.hparams
  6364. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6365. # PanguEmbedded's hparam loaded from config.json without head_dim
  6366. if (rope_dim := hparams.get("head_dim")) is None:
  6367. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  6368. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6369. if hparams.get("head_dim") is None:
  6370. self.gguf_writer.add_key_length(rope_dim)
  6371. self.gguf_writer.add_value_length(rope_dim)
  6372. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6373. if name == "lm_head.weight":
  6374. if self.hparams.get("tie_word_embeddings", False):
  6375. logger.info("Skipping tied output layer 'lm_head.weight'")
  6376. return []
  6377. return [(self.map_tensor_name(name), data_torch)]
  6378. @ModelBase.register("Dots1ForCausalLM")
  6379. class Dots1Model(Qwen2MoeModel):
  6380. model_arch = gguf.MODEL_ARCH.DOTS1
  6381. def __init__(self, *args, **kwargs):
  6382. super().__init__(*args, **kwargs)
  6383. self.hparams["num_experts"] = self.hparams["n_routed_experts"]
  6384. def set_gguf_parameters(self):
  6385. super().set_gguf_parameters()
  6386. self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
  6387. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  6388. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  6389. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  6390. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  6391. if name.endswith("e_score_correction_bias"):
  6392. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6393. if "shared_experts" in name:
  6394. return [(self.map_tensor_name(name), data_torch)]
  6395. return super().modify_tensors(data_torch, name, bid)
  6396. @ModelBase.register("PLMForCausalLM")
  6397. class PLMModel(TextModel):
  6398. model_arch = gguf.MODEL_ARCH.PLM
  6399. def set_vocab(self):
  6400. self._set_vocab_gpt2()
  6401. def set_gguf_parameters(self):
  6402. super().set_gguf_parameters()
  6403. hparams = self.hparams
  6404. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6405. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  6406. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  6407. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  6408. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  6409. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6410. return [(self.map_tensor_name(name), data_torch)]
  6411. def prepare_tensors(self):
  6412. super().prepare_tensors()
  6413. @ModelBase.register("T5WithLMHeadModel")
  6414. @ModelBase.register("T5ForConditionalGeneration")
  6415. @ModelBase.register("MT5ForConditionalGeneration")
  6416. @ModelBase.register("UMT5ForConditionalGeneration")
  6417. @ModelBase.register("UMT5Model")
  6418. class T5Model(TextModel):
  6419. model_arch = gguf.MODEL_ARCH.T5
  6420. def __init__(self, *args, **kwargs):
  6421. super().__init__(*args, **kwargs)
  6422. self.shared_token_embeddings_found = False
  6423. def set_vocab(self):
  6424. # to avoid TypeError: Descriptors cannot be created directly
  6425. # exception when importing sentencepiece_model_pb2
  6426. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  6427. from sentencepiece import SentencePieceProcessor
  6428. from sentencepiece import sentencepiece_model_pb2 as model
  6429. tokenizer_path = self.dir_model / 'tokenizer.model'
  6430. # many older models use spiece.model tokenizer model filename
  6431. if not tokenizer_path.is_file():
  6432. tokenizer_path = self.dir_model / 'spiece.model'
  6433. if not tokenizer_path.is_file():
  6434. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  6435. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  6436. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  6437. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  6438. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  6439. # assure the tokenizer model file name is correct
  6440. assert tokenizer_path.name == 'tokenizer.model'
  6441. return self._set_vocab_sentencepiece()
  6442. else:
  6443. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  6444. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  6445. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  6446. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  6447. tokenizer = SentencePieceProcessor()
  6448. tokenizer.LoadFromFile(str(tokenizer_path))
  6449. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  6450. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  6451. scores: list[float] = [-10000.0] * vocab_size
  6452. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  6453. for token_id in range(tokenizer.vocab_size()):
  6454. piece = tokenizer.IdToPiece(token_id)
  6455. text = piece.encode("utf-8")
  6456. score = tokenizer.GetScore(token_id)
  6457. toktype = SentencePieceTokenTypes.NORMAL
  6458. if tokenizer.IsUnknown(token_id):
  6459. toktype = SentencePieceTokenTypes.UNKNOWN
  6460. elif tokenizer.IsControl(token_id):
  6461. toktype = SentencePieceTokenTypes.CONTROL
  6462. elif tokenizer.IsUnused(token_id):
  6463. toktype = SentencePieceTokenTypes.UNUSED
  6464. elif tokenizer.IsByte(token_id):
  6465. toktype = SentencePieceTokenTypes.BYTE
  6466. tokens[token_id] = text
  6467. scores[token_id] = score
  6468. toktypes[token_id] = toktype
  6469. added_tokens_file = self.dir_model / 'added_tokens.json'
  6470. if added_tokens_file.is_file():
  6471. with open(added_tokens_file, "r", encoding="utf-8") as f:
  6472. added_tokens_json = json.load(f)
  6473. for key in added_tokens_json:
  6474. token_id = added_tokens_json[key]
  6475. if token_id >= vocab_size:
  6476. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  6477. continue
  6478. tokens[token_id] = key.encode("utf-8")
  6479. scores[token_id] = -1000.0
  6480. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  6481. if vocab_size > len(tokens):
  6482. pad_count = vocab_size - len(tokens)
  6483. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  6484. for i in range(1, pad_count + 1):
  6485. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  6486. scores.append(-1000.0)
  6487. toktypes.append(SentencePieceTokenTypes.UNUSED)
  6488. self.gguf_writer.add_tokenizer_model("t5")
  6489. self.gguf_writer.add_tokenizer_pre("default")
  6490. self.gguf_writer.add_token_list(tokens)
  6491. self.gguf_writer.add_token_scores(scores)
  6492. self.gguf_writer.add_token_types(toktypes)
  6493. self.gguf_writer.add_add_space_prefix(add_prefix)
  6494. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  6495. if precompiled_charsmap:
  6496. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  6497. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6498. special_vocab.add_to_gguf(self.gguf_writer)
  6499. def set_gguf_parameters(self):
  6500. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  6501. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  6502. n_ctx = 512
  6503. self.gguf_writer.add_context_length(n_ctx)
  6504. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  6505. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  6506. self.gguf_writer.add_block_count(self.block_count)
  6507. if (dec_n_layer := self.hparams.get("num_decoder_layers")) is not None:
  6508. self.gguf_writer.add_decoder_block_count(dec_n_layer)
  6509. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  6510. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  6511. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  6512. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6513. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  6514. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  6515. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  6516. self.gguf_writer.add_file_type(self.ftype)
  6517. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6518. del bid # unused
  6519. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  6520. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  6521. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  6522. # and decoder and ignore the remaining ones.
  6523. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  6524. if not self.shared_token_embeddings_found:
  6525. name = "shared.weight"
  6526. self.shared_token_embeddings_found = True
  6527. else:
  6528. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  6529. return []
  6530. return [(self.map_tensor_name(name), data_torch)]
  6531. @ModelBase.register("T5EncoderModel")
  6532. class T5EncoderModel(TextModel):
  6533. model_arch = gguf.MODEL_ARCH.T5ENCODER
  6534. def __init__(self, *args, **kwargs):
  6535. super().__init__(*args, **kwargs)
  6536. self.shared_token_embeddings_found = False
  6537. def set_vocab(self):
  6538. # to avoid TypeError: Descriptors cannot be created directly
  6539. # exception when importing sentencepiece_model_pb2
  6540. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  6541. from sentencepiece import SentencePieceProcessor
  6542. from sentencepiece import sentencepiece_model_pb2 as model
  6543. tokenizer_path = self.dir_model / 'tokenizer.model'
  6544. # many older models use spiece.model tokenizer model filename
  6545. if not tokenizer_path.is_file():
  6546. tokenizer_path = self.dir_model / 'spiece.model'
  6547. if not tokenizer_path.is_file():
  6548. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  6549. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  6550. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  6551. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  6552. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  6553. # assure the tokenizer model file name is correct
  6554. assert tokenizer_path.name == 'tokenizer.model'
  6555. return self._set_vocab_sentencepiece()
  6556. else:
  6557. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  6558. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  6559. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  6560. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  6561. tokenizer = SentencePieceProcessor()
  6562. tokenizer.LoadFromFile(str(tokenizer_path))
  6563. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  6564. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  6565. scores: list[float] = [-10000.0] * vocab_size
  6566. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  6567. for token_id in range(tokenizer.vocab_size()):
  6568. piece = tokenizer.IdToPiece(token_id)
  6569. text = piece.encode("utf-8")
  6570. score = tokenizer.GetScore(token_id)
  6571. toktype = SentencePieceTokenTypes.NORMAL
  6572. if tokenizer.IsUnknown(token_id):
  6573. toktype = SentencePieceTokenTypes.UNKNOWN
  6574. elif tokenizer.IsControl(token_id):
  6575. toktype = SentencePieceTokenTypes.CONTROL
  6576. elif tokenizer.IsUnused(token_id):
  6577. toktype = SentencePieceTokenTypes.UNUSED
  6578. elif tokenizer.IsByte(token_id):
  6579. toktype = SentencePieceTokenTypes.BYTE
  6580. tokens[token_id] = text
  6581. scores[token_id] = score
  6582. toktypes[token_id] = toktype
  6583. added_tokens_file = self.dir_model / 'added_tokens.json'
  6584. if added_tokens_file.is_file():
  6585. with open(added_tokens_file, "r", encoding="utf-8") as f:
  6586. added_tokens_json = json.load(f)
  6587. for key in added_tokens_json:
  6588. token_id = added_tokens_json[key]
  6589. if token_id >= vocab_size:
  6590. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  6591. continue
  6592. tokens[token_id] = key.encode("utf-8")
  6593. scores[token_id] = -1000.0
  6594. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  6595. if vocab_size > len(tokens):
  6596. pad_count = vocab_size - len(tokens)
  6597. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  6598. for i in range(1, pad_count + 1):
  6599. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  6600. scores.append(-1000.0)
  6601. toktypes.append(SentencePieceTokenTypes.UNUSED)
  6602. self.gguf_writer.add_tokenizer_model("t5")
  6603. self.gguf_writer.add_tokenizer_pre("default")
  6604. self.gguf_writer.add_token_list(tokens)
  6605. self.gguf_writer.add_token_scores(scores)
  6606. self.gguf_writer.add_token_types(toktypes)
  6607. self.gguf_writer.add_add_space_prefix(add_prefix)
  6608. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  6609. if precompiled_charsmap:
  6610. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  6611. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6612. special_vocab.add_to_gguf(self.gguf_writer)
  6613. def set_gguf_parameters(self):
  6614. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  6615. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  6616. n_ctx = 512
  6617. self.gguf_writer.add_context_length(n_ctx)
  6618. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  6619. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  6620. self.gguf_writer.add_block_count(self.block_count)
  6621. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  6622. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  6623. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  6624. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6625. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  6626. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  6627. self.gguf_writer.add_file_type(self.ftype)
  6628. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6629. del bid # unused
  6630. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  6631. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  6632. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  6633. # and decoder and ignore the remaining ones.
  6634. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  6635. if not self.shared_token_embeddings_found:
  6636. name = "shared.weight"
  6637. self.shared_token_embeddings_found = True
  6638. else:
  6639. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  6640. return []
  6641. return [(self.map_tensor_name(name), data_torch)]
  6642. @ModelBase.register("JAISLMHeadModel")
  6643. class JaisModel(TextModel):
  6644. model_arch = gguf.MODEL_ARCH.JAIS
  6645. def __init__(self, *args, **kwargs):
  6646. super().__init__(*args, **kwargs)
  6647. # SwigLU activation
  6648. assert self.hparams["activation_function"] == "swiglu"
  6649. # ALiBi position embedding
  6650. assert self.hparams["position_embedding_type"] == "alibi"
  6651. # Embeddings scale
  6652. self.embeddings_scale = 1.0
  6653. if 'mup_embeddings_scale' in self.hparams:
  6654. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  6655. elif 'embeddings_scale' in self.hparams:
  6656. self.embeddings_scale = self.hparams['embeddings_scale']
  6657. else:
  6658. assert False
  6659. self.width_scale = 1.0
  6660. if 'mup_output_alpha' in self.hparams:
  6661. assert 'mup_width_scale' in self.hparams
  6662. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  6663. elif 'width_scale' in self.hparams:
  6664. self.width_scale = self.hparams['width_scale']
  6665. else:
  6666. assert False
  6667. self.max_alibi_bias = 8.0
  6668. def set_vocab(self):
  6669. self._set_vocab_gpt2()
  6670. def set_gguf_parameters(self):
  6671. self.gguf_writer.add_block_count(self.block_count)
  6672. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  6673. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  6674. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  6675. self.gguf_writer.add_head_count(self.hparams["n_head"])
  6676. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6677. self.gguf_writer.add_file_type(self.ftype)
  6678. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6679. del bid # unused
  6680. tensors: list[tuple[str, Tensor]] = []
  6681. # we don't need these
  6682. if name.endswith((".attn.bias")):
  6683. return tensors
  6684. if name.endswith(("relative_pe.slopes")):
  6685. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  6686. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  6687. # but Jais's PyTorch model simply precalculates the slope values and places them
  6688. # in relative_pes.slopes
  6689. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  6690. first_val = float(data_torch[0].item())
  6691. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  6692. return tensors
  6693. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  6694. data_torch = data_torch.transpose(1, 0)
  6695. new_name = self.map_tensor_name(name)
  6696. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  6697. tensors.append((new_name, data_torch * self.embeddings_scale))
  6698. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  6699. tensors.append((new_name, data_torch * self.width_scale))
  6700. else:
  6701. tensors.append((new_name, data_torch))
  6702. return tensors
  6703. def prepare_tensors(self):
  6704. super().prepare_tensors()
  6705. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  6706. @ModelBase.register("Glm4ForCausalLM", "Glm4vForConditionalGeneration")
  6707. class Glm4Model(TextModel):
  6708. model_arch = gguf.MODEL_ARCH.GLM4
  6709. use_mrope = False
  6710. partial_rotary_factor = 0.5
  6711. def __init__(self, *args, **kwargs):
  6712. super().__init__(*args, **kwargs)
  6713. self.partial_rotary_factor = self.rope_parameters.get("partial_rotary_factor", 0.5)
  6714. if "mrope_section" in self.rope_parameters:
  6715. self.use_mrope = True
  6716. logger.info("Q/K weight will need to be permuted for M-RoPE")
  6717. def set_vocab(self):
  6718. from transformers import AutoTokenizer
  6719. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  6720. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6721. tokens, toktypes, tokpre = self.get_vocab_base()
  6722. self.gguf_writer.add_tokenizer_model("gpt2")
  6723. self.gguf_writer.add_tokenizer_pre(tokpre)
  6724. self.gguf_writer.add_token_list(tokens)
  6725. self.gguf_writer.add_token_types(toktypes)
  6726. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6727. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6728. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  6729. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  6730. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6731. special_vocab.add_to_gguf(self.gguf_writer)
  6732. def set_gguf_parameters(self):
  6733. super().set_gguf_parameters()
  6734. if (rope_dim := self.hparams.get("head_dim")) is None:
  6735. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6736. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.partial_rotary_factor))
  6737. @staticmethod
  6738. def normal_to_neox(weights: Tensor, n_head: int, n_head_kv: int, head_dim: int, partial_rotary_factor: float) -> Tensor:
  6739. orig_shape = weights.shape
  6740. if len(orig_shape) == 1:
  6741. weights = weights.unsqueeze(1) # [out_dim, 1]
  6742. if len(weights.shape) != 2:
  6743. raise ValueError("Only 1D and 2D tensors are supported.")
  6744. n_effective_heads = weights.shape[0] // head_dim
  6745. if n_head_kv is not None and n_effective_heads != n_head:
  6746. if n_effective_heads != n_head_kv:
  6747. raise AssertionError(f"Mismatch in effective heads: computed {n_effective_heads}, expected {n_head} or {n_head_kv}")
  6748. rotary_dim = int(head_dim * partial_rotary_factor)
  6749. if rotary_dim % 2 != 0:
  6750. raise ValueError("rotary_dim must be even.")
  6751. reshaped = weights.reshape(n_effective_heads, head_dim, -1)
  6752. rot_part = reshaped[:, :rotary_dim, :]
  6753. non_rot_part = reshaped[:, rotary_dim:, :]
  6754. permuted_rot = torch.cat((rot_part[:, ::2, :], rot_part[:, 1::2, :]), dim=1)
  6755. combined = torch.cat((permuted_rot, non_rot_part), dim=1)
  6756. result = combined.reshape(weights.shape)
  6757. return result if len(orig_shape) != 1 else result.squeeze(1)
  6758. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6759. if name.startswith("model.visual."): # ignore visual part of Glm4v
  6760. return []
  6761. elif name.startswith("model.language_model."):
  6762. name = name.replace("language_model.", "") # for Glm4v
  6763. if self.use_mrope:
  6764. n_head = self.hparams["num_attention_heads"]
  6765. n_kv_head = self.hparams["num_key_value_heads"]
  6766. n_embd = self.hparams["hidden_size"]
  6767. head_dim = n_embd // n_head
  6768. # because llama.cpp M-RoPE kernel only supports Neox ordering, we have to permute the weights here
  6769. if name.endswith(("q_proj.weight", "q_proj.bias")):
  6770. data_torch = Glm4Model.normal_to_neox(data_torch, n_head, n_head, head_dim, self.partial_rotary_factor)
  6771. if name.endswith(("k_proj.weight", "k_proj.bias")):
  6772. data_torch = Glm4Model.normal_to_neox(data_torch, n_head, n_kv_head, head_dim, self.partial_rotary_factor)
  6773. return super().modify_tensors(data_torch, name, bid)
  6774. @ModelBase.register("Glm4MoeForCausalLM", "Glm4vMoeForConditionalGeneration")
  6775. class Glm4MoeModel(TextModel):
  6776. model_arch = gguf.MODEL_ARCH.GLM4_MOE
  6777. def __init__(self, *args, **kwargs):
  6778. super().__init__(*args, **kwargs)
  6779. # GLM4_MOE has num_hidden_layers + 1 actual layers (including NextN layer)
  6780. self.block_count = self.hparams["num_hidden_layers"] + self.hparams.get("num_nextn_predict_layers", 0)
  6781. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  6782. def set_vocab(self):
  6783. from transformers import AutoTokenizer
  6784. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  6785. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6786. tokens, toktypes, tokpre = self.get_vocab_base()
  6787. self.gguf_writer.add_tokenizer_model("gpt2")
  6788. self.gguf_writer.add_tokenizer_pre(tokpre)
  6789. self.gguf_writer.add_token_list(tokens)
  6790. self.gguf_writer.add_token_types(toktypes)
  6791. # Special tokens
  6792. # Note: Using <|endoftext|> (151329) for eot causes endless generation
  6793. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["[gMASK]"]) # 151331
  6794. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"]) # 151336
  6795. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"]) # 151329
  6796. special_vocab._set_special_token("eom", tokenizer.get_added_vocab()["<|observation|>"]) # 151338
  6797. special_vocab.add_to_gguf(self.gguf_writer)
  6798. def set_gguf_parameters(self):
  6799. super().set_gguf_parameters()
  6800. if (rope_dim := self.hparams.get("head_dim")) is None:
  6801. rope_dim = (
  6802. self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6803. )
  6804. self.gguf_writer.add_rope_dimension_count(
  6805. int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5))
  6806. )
  6807. # MoE parameters - Use only routed expert count (shared experts handled separately)
  6808. if (n_routed_experts := self.hparams.get("n_routed_experts")) is not None:
  6809. self.gguf_writer.add_expert_count(n_routed_experts)
  6810. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  6811. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  6812. if (n_shared_experts := self.hparams.get("n_shared_experts")) is not None:
  6813. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  6814. if (first_k_dense_replace := self.hparams.get("first_k_dense_replace")) is not None:
  6815. self.gguf_writer.add_leading_dense_block_count(first_k_dense_replace)
  6816. # Expert gating function (sigmoid for GLM4_MOE)
  6817. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  6818. # Routed scaling factor
  6819. if (routed_scaling_factor := self.hparams.get("routed_scaling_factor")) is not None:
  6820. self.gguf_writer.add_expert_weights_scale(routed_scaling_factor)
  6821. # Normalise topk probabilities
  6822. if (norm_topk_prob := self.hparams.get("norm_topk_prob")) is not None:
  6823. self.gguf_writer.add_expert_weights_norm(norm_topk_prob)
  6824. # NextN/MTP prediction layers
  6825. if (num_nextn_predict_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  6826. self.gguf_writer.add_nextn_predict_layers(num_nextn_predict_layers)
  6827. _experts: list[dict[str, Tensor]] | None = None
  6828. # note: unlike GLM4V non-MoE, we don't need to permute Q/K here since GLM4V_MOE uses Neox ordering already
  6829. def modify_tensors(
  6830. self, data_torch: Tensor, name: str, bid: int | None
  6831. ) -> Iterable[tuple[str, Tensor]]:
  6832. if name.startswith("model.visual."): # ignore visual part
  6833. return []
  6834. elif name.startswith("model.language_model."):
  6835. name = name.replace("language_model.", "") # for multimodal variants
  6836. # Handle main token embedding (but not layer-specific NextN embeddings)
  6837. if name == "model.embed_tokens.weight" and ".layers." not in name:
  6838. return [(self.map_tensor_name("token_embd.weight"), data_torch)]
  6839. # Handle routed experts
  6840. if name.find("mlp.experts") != -1:
  6841. n_experts = self.hparams["n_routed_experts"]
  6842. assert bid is not None
  6843. if self._experts is None:
  6844. self._experts = [{} for _ in range(self.block_count)]
  6845. self._experts[bid][name] = data_torch
  6846. if len(self._experts[bid]) >= n_experts * 3:
  6847. tensors: list[tuple[str, Tensor]] = []
  6848. # merge the experts into a single 3d tensor
  6849. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6850. datas: list[Tensor] = []
  6851. for xid in range(n_experts):
  6852. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6853. datas.append(self._experts[bid][ename])
  6854. del self._experts[bid][ename]
  6855. data_torch = torch.stack(datas, dim=0)
  6856. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6857. new_name = self.map_tensor_name(merged_name)
  6858. tensors.append((new_name, data_torch))
  6859. return tensors
  6860. else:
  6861. return []
  6862. if name.endswith("e_score_correction_bias"):
  6863. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6864. new_name = self.map_tensor_name(name)
  6865. return [(new_name, data_torch)]
  6866. def prepare_tensors(self):
  6867. super().prepare_tensors()
  6868. if self._experts is not None:
  6869. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6870. experts = [k for d in self._experts for k in d.keys()]
  6871. if len(experts) > 0:
  6872. raise ValueError(f"Unprocessed experts: {experts}")
  6873. @ModelBase.register("Glm4MoeLiteForCausalLM")
  6874. class Glm4MoeLiteModel(DeepseekV2Model):
  6875. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  6876. # copied from Glm4MoeModel
  6877. def set_vocab(self):
  6878. from transformers import AutoTokenizer
  6879. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  6880. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6881. tokens, toktypes, tokpre = self.get_vocab_base()
  6882. self.gguf_writer.add_tokenizer_model("gpt2")
  6883. self.gguf_writer.add_tokenizer_pre(tokpre)
  6884. self.gguf_writer.add_token_list(tokens)
  6885. self.gguf_writer.add_token_types(toktypes)
  6886. # Special tokens
  6887. # Note: Using <|endoftext|> (151329) for eot causes endless generation
  6888. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["[gMASK]"]) # 151331
  6889. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"]) # 151336
  6890. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"]) # 151329
  6891. special_vocab._set_special_token("eom", tokenizer.get_added_vocab()["<|observation|>"]) # 151338
  6892. special_vocab.add_to_gguf(self.gguf_writer)
  6893. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  6894. class ChatGLMModel(TextModel):
  6895. model_arch = gguf.MODEL_ARCH.CHATGLM
  6896. def set_vocab_chatglm3(self):
  6897. dir_model = self.dir_model
  6898. hparams = self.hparams
  6899. tokens: list[bytes] = []
  6900. toktypes: list[int] = []
  6901. scores: list[float] = []
  6902. from transformers import AutoTokenizer
  6903. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  6904. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  6905. assert max(tokenizer.get_vocab().values()) < vocab_size
  6906. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  6907. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  6908. for token_id in range(vocab_size):
  6909. piece = tokenizer._convert_id_to_token(token_id)
  6910. if token_id == 0:
  6911. piece = "<unk>"
  6912. elif token_id == 1:
  6913. piece = "<bos>"
  6914. elif token_id == 2:
  6915. piece = "<eos>"
  6916. text = piece.encode("utf-8")
  6917. score = 0.0
  6918. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  6919. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  6920. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  6921. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  6922. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  6923. if piece in special_tokens:
  6924. toktype = SentencePieceTokenTypes.CONTROL
  6925. elif len(piece) == 0:
  6926. text = f"[PAD{token_id}]".encode("utf-8")
  6927. toktype = SentencePieceTokenTypes.UNUSED
  6928. else:
  6929. toktype = SentencePieceTokenTypes.USER_DEFINED
  6930. tokens.append(text)
  6931. scores.append(score)
  6932. toktypes.append(toktype)
  6933. continue
  6934. toktype = SentencePieceTokenTypes.NORMAL
  6935. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  6936. toktype = SentencePieceTokenTypes.UNKNOWN
  6937. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  6938. toktype = SentencePieceTokenTypes.CONTROL
  6939. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  6940. toktype = SentencePieceTokenTypes.UNUSED
  6941. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  6942. toktype = SentencePieceTokenTypes.BYTE
  6943. tokens.append(text)
  6944. scores.append(score)
  6945. toktypes.append(toktype)
  6946. self.gguf_writer.add_tokenizer_model("llama")
  6947. # glm3 needs prefix and suffix formatted as:
  6948. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  6949. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  6950. self.gguf_writer.add_token_list(tokens)
  6951. self.gguf_writer.add_token_scores(scores)
  6952. self.gguf_writer.add_token_types(toktypes)
  6953. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6954. special_vocab.add_to_gguf(self.gguf_writer)
  6955. @staticmethod
  6956. def token_bytes_to_string(b):
  6957. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  6958. byte_encoder = bytes_to_unicode()
  6959. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  6960. @staticmethod
  6961. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  6962. parts = [bytes([b]) for b in token]
  6963. while True:
  6964. min_idx = None
  6965. min_rank = None
  6966. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  6967. rank = mergeable_ranks.get(pair[0] + pair[1])
  6968. if rank is not None and (min_rank is None or rank < min_rank):
  6969. min_idx = i
  6970. min_rank = rank
  6971. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  6972. break
  6973. assert min_idx is not None
  6974. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  6975. return parts
  6976. def set_vocab(self):
  6977. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  6978. self.set_vocab_chatglm3()
  6979. return
  6980. dir_model = self.dir_model
  6981. hparams = self.hparams
  6982. tokens: list[str] = []
  6983. toktypes: list[int] = []
  6984. from transformers import AutoTokenizer
  6985. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  6986. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  6987. assert max(tokenizer.get_vocab().values()) < vocab_size
  6988. tokens, toktypes, tokpre = self.get_vocab_base()
  6989. self.gguf_writer.add_tokenizer_model("gpt2")
  6990. self.gguf_writer.add_tokenizer_pre(tokpre)
  6991. self.gguf_writer.add_token_list(tokens)
  6992. self.gguf_writer.add_token_types(toktypes)
  6993. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6994. # only add special tokens when they were not already loaded from config.json
  6995. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6996. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  6997. # this one is usually not in config.json anyway
  6998. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  6999. special_vocab.add_to_gguf(self.gguf_writer)
  7000. def set_gguf_parameters(self):
  7001. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  7002. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  7003. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  7004. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  7005. self.gguf_writer.add_embedding_length(n_embed)
  7006. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  7007. self.gguf_writer.add_block_count(self.block_count)
  7008. self.gguf_writer.add_head_count(n_head)
  7009. self.gguf_writer.add_head_count_kv(n_head_kv)
  7010. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  7011. self.gguf_writer.add_file_type(self.ftype)
  7012. if "attention_dim" in self.hparams:
  7013. rope_dim = self.hparams["attention_dim"]
  7014. else:
  7015. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  7016. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  7017. self.gguf_writer.add_add_bos_token(False)
  7018. rope_freq = 10000
  7019. if "rope_ratio" in self.hparams:
  7020. rope_freq = rope_freq * self.hparams["rope_ratio"]
  7021. self.gguf_writer.add_rope_freq_base(rope_freq)
  7022. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7023. del bid # unused
  7024. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  7025. return []
  7026. name = name.removeprefix("transformer.")
  7027. return [(self.map_tensor_name(name), data_torch)]
  7028. @ModelBase.register("NemotronForCausalLM")
  7029. class NemotronModel(TextModel):
  7030. model_arch = gguf.MODEL_ARCH.NEMOTRON
  7031. def set_vocab(self):
  7032. self._set_vocab_sentencepiece()
  7033. self.gguf_writer.add_pad_token_id(0)
  7034. self.gguf_writer.add_unk_token_id(1)
  7035. def set_gguf_parameters(self):
  7036. super().set_gguf_parameters()
  7037. hparams = self.hparams
  7038. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  7039. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  7040. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  7041. # * Partial RoPE
  7042. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  7043. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  7044. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  7045. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  7046. # * RopeScaling for Nemotron
  7047. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  7048. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7049. else:
  7050. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  7051. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  7052. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7053. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  7054. # model.layers.{l}.input_layernorm.weight
  7055. # model.layers.{l}.post_attention_layernorm.weight
  7056. # model.norm.weight
  7057. if name.endswith("norm.weight"):
  7058. data_torch = data_torch + 1
  7059. return [(self.map_tensor_name(name), data_torch)]
  7060. @ModelBase.register("ExaoneForCausalLM")
  7061. class ExaoneModel(TextModel):
  7062. model_arch = gguf.MODEL_ARCH.EXAONE
  7063. def set_gguf_parameters(self):
  7064. super().set_gguf_parameters()
  7065. hparams = self.hparams
  7066. assert (hparams["activation_function"] == "silu")
  7067. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  7068. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  7069. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  7070. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  7071. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  7072. if rope_params.get("rope_type", '').lower() == "llama3":
  7073. base = self.rope_parameters.get("rope_theta", 10000.0)
  7074. if (dim := self.hparams.get("head_dim")) is None:
  7075. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  7076. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  7077. factor = rope_params.get("factor", 8.0)
  7078. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  7079. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  7080. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  7081. low_freq_wavelen = old_context_len / low_freq_factor
  7082. high_freq_wavelen = old_context_len / high_freq_factor
  7083. assert low_freq_wavelen != high_freq_wavelen
  7084. rope_factors = []
  7085. for freq in freqs:
  7086. wavelen = 2 * math.pi / freq
  7087. if wavelen < high_freq_wavelen:
  7088. rope_factors.append(1)
  7089. elif wavelen > low_freq_wavelen:
  7090. rope_factors.append(factor)
  7091. else:
  7092. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  7093. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  7094. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  7095. @ModelBase.register("Exaone4ForCausalLM")
  7096. class Exaone4Model(TextModel):
  7097. model_arch = gguf.MODEL_ARCH.EXAONE4
  7098. def set_vocab(self):
  7099. tokens, toktypes, tokpre = self.get_vocab_base()
  7100. self.gguf_writer.add_tokenizer_model("gpt2")
  7101. self.gguf_writer.add_tokenizer_pre(tokpre)
  7102. self.gguf_writer.add_token_list(tokens)
  7103. self.gguf_writer.add_token_types(toktypes)
  7104. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  7105. special_vocab.add_to_gguf(self.gguf_writer)
  7106. def set_gguf_parameters(self):
  7107. super().set_gguf_parameters()
  7108. hparams = self.hparams
  7109. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  7110. if hparams.get("sliding_window") is not None:
  7111. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  7112. if "layer_types" in hparams:
  7113. self.gguf_writer.add_sliding_window_pattern([t == "sliding_attention" for t in hparams["layer_types"]])
  7114. elif "sliding_window_pattern" in hparams:
  7115. sliding_window_pattern = []
  7116. if isinstance(hparams["sliding_window_pattern"], str): # e.g. LLLG
  7117. for i in range(hparams["num_hidden_layers"]):
  7118. sliding_window_pattern.append(hparams["sliding_window_pattern"][i % len(hparams["sliding_window_pattern"])] == "L")
  7119. if isinstance(hparams["sliding_window_pattern"], int): # e.g. 4
  7120. for i in range(hparams["num_hidden_layers"]):
  7121. sliding_window_pattern.append((i + 1) % hparams["sliding_window_pattern"] != 0)
  7122. if len(sliding_window_pattern) == hparams["num_hidden_layers"]:
  7123. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  7124. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  7125. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  7126. if rope_params.get("rope_type", '').lower() == "llama3":
  7127. base = rope_params.get("rope_theta", 10_000.0)
  7128. if (dim := self.hparams.get("head_dim")) is None:
  7129. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  7130. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  7131. factor = rope_params.get("factor", 16.0)
  7132. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  7133. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  7134. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  7135. low_freq_wavelen = old_context_len / low_freq_factor
  7136. high_freq_wavelen = old_context_len / high_freq_factor
  7137. rope_factors = []
  7138. for freq in freqs:
  7139. wavelen = 2 * math.pi / freq
  7140. if wavelen < high_freq_wavelen:
  7141. rope_factors.append(1)
  7142. elif wavelen > low_freq_wavelen:
  7143. rope_factors.append(factor)
  7144. else:
  7145. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  7146. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  7147. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  7148. @ModelBase.register("ExaoneMoEForCausalLM")
  7149. class ExaoneMoEModel(Exaone4Model):
  7150. model_arch = gguf.MODEL_ARCH.EXAONE_MOE
  7151. def __init__(self, *args, **kwargs):
  7152. super().__init__(*args, **kwargs)
  7153. self.block_count = self.hparams["num_hidden_layers"] + self.hparams.get("num_nextn_predict_layers", 0)
  7154. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  7155. def set_gguf_parameters(self):
  7156. super().set_gguf_parameters()
  7157. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  7158. moe_intermediate_size = self.hparams["moe_intermediate_size"]
  7159. num_shared_experts = self.hparams["num_shared_experts"]
  7160. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  7161. self.gguf_writer.add_expert_shared_count(num_shared_experts)
  7162. self.gguf_writer.add_expert_shared_feed_forward_length(moe_intermediate_size * num_shared_experts)
  7163. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  7164. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  7165. n_dense_layer = self.hparams.get("first_k_dense_replace", self.hparams.get("first_last_k_dense_replace", 0))
  7166. self.gguf_writer.add_leading_dense_block_count(n_dense_layer)
  7167. self.gguf_writer.add_nextn_predict_layers(self.hparams.get("num_nextn_predict_layers", 0))
  7168. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7169. _experts: list[dict[str, Tensor]] | None = None
  7170. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7171. if name.startswith("mtp."):
  7172. if name.find("layers.") != -1:
  7173. # `mtp.layers.0.[module_name]` format
  7174. name = name.replace(f"mtp.layers.{bid}", f"model.layers.{bid + self.hparams['num_hidden_layers']}")
  7175. else:
  7176. # mtp fc/norm weights
  7177. remapper = {
  7178. "mtp.fc": "model.layers.{bid}.eh_proj",
  7179. "mtp.pre_fc_norm_embedding": "model.layers.{bid}.enorm",
  7180. "mtp.pre_fc_norm_hidden": "model.layers.{bid}.hnorm",
  7181. "mtp.norm": "model.layers.{bid}.shared_head.norm",
  7182. }
  7183. _n = Path(name)
  7184. new_name = remapper[_n.stem] + _n.suffix
  7185. # set shared weights for all NextN/MTP layers
  7186. tensors = []
  7187. for bid in range(self.hparams['num_hidden_layers'], self.block_count):
  7188. new_name = new_name.format(bid=bid)
  7189. tensors.append((self.map_tensor_name(new_name), data_torch))
  7190. return tensors
  7191. if name.endswith("e_score_correction_bias"):
  7192. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  7193. if name.find("mlp.experts") != -1:
  7194. n_experts = self.hparams["num_experts"]
  7195. assert bid is not None
  7196. if self._experts is None:
  7197. self._experts = [{} for _ in range(self.block_count)]
  7198. self._experts[bid][name] = data_torch
  7199. if len(self._experts[bid]) >= n_experts * 3:
  7200. tensors: list[tuple[str, Tensor]] = []
  7201. # merge the experts into a single 3d tensor
  7202. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7203. datas: list[Tensor] = []
  7204. for xid in range(n_experts):
  7205. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7206. datas.append(self._experts[bid][ename])
  7207. del self._experts[bid][ename]
  7208. data_torch = torch.stack(datas, dim=0)
  7209. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7210. new_name = self.map_tensor_name(merged_name)
  7211. tensors.append((new_name, data_torch))
  7212. return tensors
  7213. else:
  7214. return []
  7215. return [(self.map_tensor_name(name), data_torch)]
  7216. def prepare_tensors(self):
  7217. super().prepare_tensors()
  7218. if self._experts is not None:
  7219. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7220. experts = [k for d in self._experts for k in d.keys()]
  7221. if len(experts) > 0:
  7222. raise ValueError(f"Unprocessed experts: {experts}")
  7223. @ModelBase.register("GraniteForCausalLM")
  7224. class GraniteModel(LlamaModel):
  7225. """Conversion for IBM's GraniteForCausalLM"""
  7226. model_arch = gguf.MODEL_ARCH.GRANITE
  7227. def set_gguf_parameters(self):
  7228. """Granite uses standard llama parameters with the following differences:
  7229. - No head_dim support
  7230. - New multiplier params:
  7231. - attention_scale
  7232. - embedding_scale
  7233. - residual_scale
  7234. - logits_scaling
  7235. """
  7236. if head_dim := self.hparams.pop("head_dim", None):
  7237. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  7238. super().set_gguf_parameters()
  7239. # NOTE: Convert _multiplier params to _scale params for naming
  7240. # consistency
  7241. if attention_scale := self.hparams.get("attention_multiplier"):
  7242. self.gguf_writer.add_attention_scale(attention_scale)
  7243. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  7244. if embedding_scale := self.hparams.get("embedding_multiplier"):
  7245. self.gguf_writer.add_embedding_scale(embedding_scale)
  7246. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  7247. if residual_scale := self.hparams.get("residual_multiplier"):
  7248. self.gguf_writer.add_residual_scale(residual_scale)
  7249. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  7250. if logits_scale := self.hparams.get("logits_scaling"):
  7251. self.gguf_writer.add_logit_scale(logits_scale)
  7252. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  7253. @ModelBase.register("GraniteMoeForCausalLM", "GraniteMoeSharedForCausalLM")
  7254. class GraniteMoeModel(GraniteModel):
  7255. """Conversion for IBM's GraniteMoeForCausalLM"""
  7256. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  7257. def set_gguf_parameters(self):
  7258. """GraniteMoeShared uses GraniteMoe parameters plus the following:
  7259. - shared_intermediate_size
  7260. """
  7261. super().set_gguf_parameters()
  7262. if shared_feed_forward_length := self.hparams.get("shared_intermediate_size"):
  7263. self.gguf_writer.add_expert_shared_feed_forward_length(shared_feed_forward_length)
  7264. logger.info("gguf: (granitemoeshared) shared_feed_forward_length = %s", shared_feed_forward_length)
  7265. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7266. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  7267. is used. This essentially merges w1 and w3 into a single tensor with 2x
  7268. the hidden size that is then split during forward. To keep compatibility
  7269. with existing mixtral support, we pull them apart here.
  7270. """
  7271. if name.endswith("block_sparse_moe.input_linear.weight"):
  7272. ffn_dim = self.hparams["intermediate_size"]
  7273. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  7274. gate, up = data_torch.split(ffn_dim, dim=-2)
  7275. return [
  7276. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  7277. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  7278. ]
  7279. has_experts = bool(self.hparams.get('num_local_experts'))
  7280. if name.endswith("shared_mlp.input_linear.weight"):
  7281. ffn_dim = self.hparams["shared_intermediate_size"]
  7282. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * shared_intermediate_size"
  7283. gate, up = data_torch.split(ffn_dim, dim=-2)
  7284. if has_experts:
  7285. return [
  7286. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), gate),
  7287. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), up),
  7288. ]
  7289. return [
  7290. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), gate),
  7291. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), up),
  7292. ]
  7293. if not has_experts and name.endswith("shared_mlp.output_linear.weight"):
  7294. return [
  7295. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, bid), data_torch)
  7296. ]
  7297. return super().modify_tensors(data_torch, name, bid)
  7298. @ModelBase.register("GraniteMoeHybridForCausalLM", "BambaForCausalLM")
  7299. class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
  7300. """GraniteHybrid is a hybrid SSM + Attention model that uses Mamba2 SSM
  7301. layers and optionally uses MoE w/ a shared expert"""
  7302. model_arch = gguf.MODEL_ARCH.GRANITE_HYBRID
  7303. undo_permute = True
  7304. def __init__(self, *args, **kwargs):
  7305. # Hybrid mamba models use a prefix for the mamba-specific params.
  7306. # TODO: Extend this if the prefix(es) need to be configurable
  7307. self.hparam_prefixes = ["mamba"]
  7308. super().__init__(*args, **kwargs)
  7309. # Lists of which layers use ssm vs attention
  7310. self._attn_layers = self.get_attn_layers()
  7311. self._ssm_layers = [
  7312. i for i in range(self.block_count)
  7313. if i not in self._attn_layers
  7314. ]
  7315. # There are some models in this family that are non-hybrid, but keep the
  7316. # same parent class by setting all layers to "attention." If this is the
  7317. # case, the model architecture needs to be updated to a standard
  7318. # "granite" or "granitemoe" model
  7319. if not self._ssm_layers:
  7320. has_experts = self.find_hparam(["num_experts_per_tok"], optional=True)
  7321. new_arch = (
  7322. gguf.MODEL_ARCH.GRANITE_MOE
  7323. if has_experts else
  7324. gguf.MODEL_ARCH.GRANITE
  7325. )
  7326. self.model_arch = new_arch
  7327. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[new_arch]
  7328. self.gguf_writer.add_architecture()
  7329. # n_group and d_inner are used during reshape_tensors for mamba2
  7330. # NOTE: Explicitly include hparam prefix prefix for d_model to
  7331. # disambiguate with top-level head_dim
  7332. # NOTE 2: If needed for future models, this can be isolated in a method
  7333. # to separate the prefix setting and teh keys used
  7334. self.d_model = self.find_hparam([f"{self.hparam_prefixes[0]}_head_dim", "hidden_size", "d_model"])
  7335. self.n_group = self.find_hparam(["n_groups", "num_groups"])
  7336. self.d_inner = self.find_hparam(["expand", "num_heads"]) * self.d_model
  7337. def get_attn_layers(self):
  7338. # Explicit list of layer type names
  7339. if layer_types := self.hparams.get("layer_types"):
  7340. return [
  7341. i for i, typ in enumerate(layer_types)
  7342. if typ == "attention"
  7343. ]
  7344. # Layer types indicated by index or period
  7345. attn_layers = self.hparams.get("attn_layer_indices", [])
  7346. if not attn_layers:
  7347. attn_period = self.hparams.get("attn_layer_period")
  7348. assert attn_period, "Didn't find attn_layer_indices or attn_layer_period"
  7349. attn_offset = self.hparams.get("attn_layer_offset")
  7350. assert attn_offset is not None, "No attention layer offset set with attn_layer_period"
  7351. attn_layers = [
  7352. i for i in range(self.block_count)
  7353. if i % attn_period == attn_offset
  7354. ]
  7355. return attn_layers
  7356. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  7357. prefixed = []
  7358. for pfx in self.hparam_prefixes:
  7359. prefixed.extend(
  7360. "_".join([pfx, k])
  7361. for k in keys
  7362. )
  7363. keys = list(keys) + prefixed
  7364. return Mamba2Model.find_hparam(self, keys, *args, **kwargs)
  7365. def modify_tensors(
  7366. self, data_torch: Tensor, name: str, bid: int | None
  7367. ) -> Iterable[tuple[str, Tensor]]:
  7368. if (
  7369. name.endswith("block_sparse_moe.input_linear.weight")
  7370. or "shared_mlp" in name
  7371. ):
  7372. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  7373. # Determine whether this is a mamba layer or an attention layer
  7374. if bid in self._ssm_layers:
  7375. return Mamba2Model.modify_tensors(self, data_torch, name, bid)
  7376. elif bid in self._attn_layers:
  7377. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  7378. return [(self.map_tensor_name(name), data_torch)]
  7379. def set_gguf_parameters(self):
  7380. """This method merges params from both parents and some that are
  7381. specific to this model. The result is some duplication of how the params
  7382. get set. The following warnings are expected during conversion:
  7383. WARNING:Duplicated key name 'granitehybrid.attention.head_count_kv'
  7384. WARNING:Duplicated key name 'granitehybrid.context_length'
  7385. """
  7386. GraniteMoeModel.set_gguf_parameters(self)
  7387. ## Mamba mixer params ##
  7388. self.gguf_writer.add_ssm_conv_kernel(self.find_hparam(["conv_kernel", "d_conv"]))
  7389. self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state", "state_dim", "ssm_state_size"]))
  7390. self.gguf_writer.add_ssm_group_count(self.n_group)
  7391. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  7392. # NOTE: The mamba_dt_rank is _not_ the right field for how this is used
  7393. # in llama.cpp
  7394. self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["n_heads", "num_heads"]))
  7395. ## Attention params ##
  7396. head_count_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  7397. head_count_kv_vec = [
  7398. head_count_kv if i in self._attn_layers else 0 for i in range(self.block_count)
  7399. ]
  7400. if rope_dim := self.hparams.get("attn_rotary_emb"):
  7401. self.gguf_writer.add_rope_dimension_count(rope_dim)
  7402. self.gguf_writer.add_head_count_kv(head_count_kv_vec)
  7403. ## If Bamba or non-hybrid, use rope, otherwise don't
  7404. use_rope = (
  7405. "BambaForCausalLM" in self.hparams["architectures"]
  7406. or not self._ssm_layers
  7407. )
  7408. self.gguf_writer.add_rope_scaling_finetuned(use_rope)
  7409. if not use_rope:
  7410. self.gguf_writer.add_context_length(2**20)
  7411. ## Validation ##
  7412. d_head = self.find_hparam(["d_head"], optional=True) or 64
  7413. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  7414. assert self.d_inner % d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {d_head}"
  7415. def set_vocab(self):
  7416. self.hparams["pad_vocab_size_multiple"] = 8
  7417. Mamba2Model.set_vocab(self)
  7418. @ModelBase.register("NemotronHForCausalLM")
  7419. class NemotronHModel(GraniteHybridModel):
  7420. """Hybrid mamba2/attention model from NVIDIA"""
  7421. model_arch = gguf.MODEL_ARCH.NEMOTRON_H
  7422. is_moe: bool = False
  7423. def __init__(self, *args, **kwargs):
  7424. # We have to determine the correct model architecture (MoE vs non-MoE) before
  7425. # calling the parent __init__. This is because the parent constructor
  7426. # uses self.model_arch to build the tensor name map, and all MoE-specific
  7427. # mappings would be missed if it were called with the default non-MoE arch.
  7428. hparams = ModelBase.load_hparams(args[0], self.is_mistral_format)
  7429. if "num_experts_per_tok" in hparams:
  7430. self.model_arch = gguf.MODEL_ARCH.NEMOTRON_H_MOE
  7431. self.is_moe = True
  7432. super().__init__(*args, **kwargs)
  7433. # Save the top-level head_dim for later
  7434. self.head_dim = self.hparams.get("head_dim", self.hparams.get("attention_head_dim"))
  7435. assert self.head_dim is not None, "Could not find the attention head dim in config"
  7436. # Don't use expand to calculate d_inner
  7437. self.d_inner = self.find_hparam(["num_heads"]) * self.d_model
  7438. # Update the ssm / attn / mlp layers
  7439. # M: Mamba2, *: Attention, -: MLP
  7440. # MoE:
  7441. # M: Mamba2, *: Attention, E: Expert
  7442. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  7443. self._ssm_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "M"]
  7444. self._mlp_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == ("E" if self.is_moe else "-")]
  7445. def get_attn_layers(self):
  7446. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  7447. assert len(hybrid_override_pattern) == self.block_count, "Mismatch between hybrid override and num_hidden_layers!"
  7448. return [i for i, val in enumerate(hybrid_override_pattern) if val == "*"]
  7449. def set_gguf_parameters(self):
  7450. super().set_gguf_parameters()
  7451. self.gguf_writer.add_key_length(self.head_dim)
  7452. self.gguf_writer.add_value_length(self.head_dim)
  7453. # Set feed_forward_length
  7454. # NOTE: This will trigger an override warning. This is preferrable to
  7455. # duplicating all the parent logic
  7456. if not self.is_moe:
  7457. n_ff = self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"])
  7458. self.gguf_writer.add_feed_forward_length([
  7459. n_ff if i in self._mlp_layers else 0 for i in range(self.block_count)
  7460. ])
  7461. else:
  7462. moe_intermediate_size = self.hparams["moe_intermediate_size"]
  7463. self.gguf_writer.add_feed_forward_length([
  7464. moe_intermediate_size if i in self._mlp_layers else 0 for i in range(self.block_count)
  7465. ])
  7466. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  7467. self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
  7468. self.gguf_writer.add_expert_shared_feed_forward_length(self.hparams["moe_shared_expert_intermediate_size"])
  7469. self.gguf_writer.add_expert_count(self.hparams["n_routed_experts"])
  7470. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  7471. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  7472. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  7473. self.gguf_writer.add_expert_group_count(self.hparams["n_group"])
  7474. # number of experts used per token (top-k)
  7475. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  7476. self.gguf_writer.add_expert_used_count(n_experts_used)
  7477. def set_vocab(self):
  7478. super().set_vocab()
  7479. # The tokenizer _does_ add a BOS token (via post_processor type
  7480. # TemplateProcessing) but does not set add_bos_token to true in the
  7481. # config, so we need to explicitly override it here.
  7482. if not self.is_moe:
  7483. self.gguf_writer.add_add_bos_token(True)
  7484. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7485. if self.is_moe and bid is not None:
  7486. if name.endswith("mixer.gate.e_score_correction_bias"):
  7487. new_name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  7488. mapped_name = self.map_tensor_name(new_name)
  7489. return [(mapped_name, data_torch)]
  7490. if name.endswith("mixer.dt_bias"):
  7491. new_name = name.replace("dt_bias", "dt.bias")
  7492. mapped_name = self.map_tensor_name(new_name)
  7493. return [(mapped_name, data_torch)]
  7494. if name.endswith("mixer.conv1d.weight"):
  7495. squeezed_data = data_torch.squeeze()
  7496. mapped_name = self.map_tensor_name(name)
  7497. return [(mapped_name, squeezed_data)]
  7498. if name.endswith("mixer.A_log"):
  7499. transformed_data = -torch.exp(data_torch)
  7500. reshaped_data = transformed_data.squeeze().reshape(-1, 1)
  7501. mapped_name = self.map_tensor_name(name)
  7502. return [(mapped_name, reshaped_data)]
  7503. if name.endswith("mixer.D"):
  7504. reshaped_data = data_torch.squeeze().reshape(-1, 1)
  7505. mapped_name = self.map_tensor_name(name)
  7506. return [(mapped_name, reshaped_data)]
  7507. if name.endswith("mixer.norm.weight"):
  7508. reshaped_data = data_torch.reshape(self.n_group, -1)
  7509. mapped_name = self.map_tensor_name(name)
  7510. return [(mapped_name, reshaped_data)]
  7511. if name.find("mixer.experts") != -1:
  7512. n_experts = self.hparams["n_routed_experts"]
  7513. assert bid is not None
  7514. if self._experts is None:
  7515. self._experts = [{} for _ in range(self.block_count)]
  7516. self._experts[bid][name] = data_torch
  7517. if len(self._experts[bid]) >= n_experts * 2:
  7518. # merge the experts into a single tensor
  7519. tensors: list[tuple[str, Tensor]] = []
  7520. for w_name in ["down_proj", "up_proj"]:
  7521. datas: list[Tensor] = []
  7522. for xid in range(n_experts):
  7523. ename = f"backbone.layers.{bid}.mixer.experts.{xid}.{w_name}.weight"
  7524. datas.append(self._experts[bid][ename])
  7525. del self._experts[bid][ename]
  7526. data_torch = torch.stack(datas, dim=0)
  7527. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7528. new_name = self.map_tensor_name(merged_name)
  7529. tensors.append((new_name, data_torch))
  7530. return tensors
  7531. else:
  7532. return []
  7533. return super().modify_tensors(data_torch, name, bid)
  7534. def prepare_tensors(self):
  7535. super().prepare_tensors()
  7536. if self._experts is not None:
  7537. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7538. experts = [k for d in self._experts for k in d.keys()]
  7539. if len(experts) > 0:
  7540. raise ValueError(f"Unprocessed experts: {experts}")
  7541. @ModelBase.register("LlamaBidirectionalModel")
  7542. class LlamaEmbedNemotronModel(LlamaModel):
  7543. model_arch = gguf.MODEL_ARCH.LLAMA_EMBED
  7544. @ModelBase.register("BailingMoeForCausalLM")
  7545. class BailingMoeModel(TextModel):
  7546. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  7547. def set_vocab(self):
  7548. self._set_vocab_gpt2()
  7549. def set_gguf_parameters(self):
  7550. super().set_gguf_parameters()
  7551. hparams = self.hparams
  7552. if (rope_dim := hparams.get("head_dim")) is None:
  7553. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  7554. self.gguf_writer.add_rope_dimension_count(rope_dim)
  7555. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  7556. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  7557. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  7558. self.gguf_writer.add_expert_weights_scale(1.0)
  7559. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7560. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  7561. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  7562. _experts: list[dict[str, Tensor]] | None = None
  7563. @staticmethod
  7564. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  7565. if n_head_kv is not None and n_head != n_head_kv:
  7566. n_head = n_head_kv
  7567. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  7568. .swapaxes(1, 2)
  7569. .reshape(weights.shape))
  7570. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7571. n_head = self.hparams["num_attention_heads"]
  7572. n_kv_head = self.hparams.get("num_key_value_heads")
  7573. n_embd = self.hparams["hidden_size"]
  7574. if (head_dim := self.hparams.get("head_dim")) is None:
  7575. head_dim = n_embd // n_head
  7576. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  7577. if name.endswith("attention.dense.weight"):
  7578. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  7579. elif name.endswith("query_key_value.weight"):
  7580. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  7581. return [
  7582. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  7583. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  7584. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  7585. ]
  7586. elif name.find("mlp.experts") != -1:
  7587. n_experts = self.hparams["num_experts"]
  7588. assert bid is not None
  7589. tensors: list[tuple[str, Tensor]] = []
  7590. if self._experts is None:
  7591. self._experts = [{} for _ in range(self.block_count)]
  7592. self._experts[bid][name] = data_torch
  7593. if len(self._experts[bid]) >= n_experts * 3:
  7594. # merge the experts into a single 3d tensor
  7595. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7596. datas: list[Tensor] = []
  7597. for xid in range(n_experts):
  7598. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7599. datas.append(self._experts[bid][ename])
  7600. del self._experts[bid][ename]
  7601. data_torch = torch.stack(datas, dim=0)
  7602. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7603. new_name = self.map_tensor_name(merged_name)
  7604. tensors.append((new_name, data_torch))
  7605. return tensors
  7606. new_name = self.map_tensor_name(name)
  7607. if new_name == output_name and self.hparams.get("norm_head"):
  7608. data_torch = data_torch.float()
  7609. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  7610. return [(new_name, data_torch)]
  7611. def prepare_tensors(self):
  7612. super().prepare_tensors()
  7613. if self._experts is not None:
  7614. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7615. experts = [k for d in self._experts for k in d.keys()]
  7616. if len(experts) > 0:
  7617. raise ValueError(f"Unprocessed experts: {experts}")
  7618. @ModelBase.register("BailingMoeV2ForCausalLM")
  7619. class BailingMoeV2Model(TextModel):
  7620. model_arch = gguf.MODEL_ARCH.BAILINGMOE2
  7621. def __init__(self, *args, **kwargs):
  7622. super().__init__(*args, **kwargs)
  7623. if nextn_layers := self.hparams.get("num_nextn_predict_layers", 0):
  7624. self.block_count = self.hparams["num_hidden_layers"] + nextn_layers
  7625. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  7626. def set_vocab(self):
  7627. self._set_vocab_gpt2()
  7628. def set_gguf_parameters(self):
  7629. super().set_gguf_parameters()
  7630. hparams = self.hparams
  7631. if (rope_dim := hparams.get("head_dim")) is None:
  7632. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  7633. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  7634. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  7635. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  7636. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  7637. self.gguf_writer.add_expert_shared_feed_forward_length(hparams.get("moe_shared_expert_intermediate_size", hparams["moe_intermediate_size"] * hparams["num_shared_experts"]))
  7638. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  7639. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7640. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  7641. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  7642. if (nextn_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  7643. self.gguf_writer.add_nextn_predict_layers(nextn_layers)
  7644. _experts: list[dict[str, Tensor]] | None = None
  7645. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7646. if "mlp.experts" in name:
  7647. n_experts = self.hparams["num_experts"]
  7648. assert bid is not None
  7649. tensors: list[tuple[str, Tensor]] = []
  7650. if self._experts is None:
  7651. self._experts = [{} for _ in range(self.block_count)]
  7652. self._experts[bid][name] = data_torch
  7653. if len(self._experts[bid]) >= n_experts * 3:
  7654. # merge the experts into a single 3d tensor
  7655. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7656. datas: list[Tensor] = []
  7657. for xid in range(n_experts):
  7658. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7659. datas.append(self._experts[bid][ename])
  7660. del self._experts[bid][ename]
  7661. data_torch = torch.stack(datas, dim=0)
  7662. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7663. new_name = self.map_tensor_name(merged_name)
  7664. tensors.append((new_name, data_torch))
  7665. return tensors
  7666. if name.endswith(".expert_bias"):
  7667. name = name.replace(".expert_bias", ".expert_bias.bias")
  7668. return [(self.map_tensor_name(name), data_torch)]
  7669. def prepare_tensors(self):
  7670. super().prepare_tensors()
  7671. if self._experts is not None:
  7672. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7673. experts = [k for d in self._experts for k in d.keys()]
  7674. if len(experts) > 0:
  7675. raise ValueError(f"Unprocessed experts: {experts}")
  7676. @ModelBase.register("GroveMoeForCausalLM", "modeling_grove_moe.GroveMoeForCausalLM")
  7677. class GroveMoeModel(TextModel):
  7678. model_arch = gguf.MODEL_ARCH.GROVEMOE
  7679. def set_gguf_parameters(self):
  7680. super().set_gguf_parameters()
  7681. if (n_experts := self.hparams.get("num_experts")) is not None:
  7682. self.gguf_writer.add_expert_count(n_experts)
  7683. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  7684. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  7685. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  7686. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L299
  7687. self.gguf_writer.add_expert_chunk_feed_forward_length(self.hparams.get("head_dim") or 128)
  7688. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L298
  7689. self.gguf_writer.add_experts_per_group(2)
  7690. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L376
  7691. self.gguf_writer.add_expert_group_scale(0.05)
  7692. _experts: list[dict[str, Tensor]] | None = None
  7693. _chunk_experts: list[dict[str, Tensor]] | None = None
  7694. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7695. if name.endswith(".expert_bias"):
  7696. # FIXME?: Unused https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L303
  7697. return []
  7698. # process the experts separately
  7699. if name.find("chunk_experts") != -1:
  7700. n_experts = self.hparams["num_experts"] // 2 # see add_experts_per_group
  7701. assert bid is not None
  7702. if self._chunk_experts is None:
  7703. self._chunk_experts = [{} for _ in range(self.block_count)]
  7704. self._chunk_experts[bid][name] = data_torch
  7705. if len(self._chunk_experts[bid]) >= n_experts * 3:
  7706. tensors: list[tuple[str, Tensor]] = []
  7707. # merge the experts into a single 3d tensor
  7708. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7709. datas: list[Tensor] = []
  7710. for xid in range(n_experts):
  7711. ename = f"model.layers.{bid}.mlp.chunk_experts.{xid}.{w_name}.weight"
  7712. datas.append(self._chunk_experts[bid][ename])
  7713. del self._chunk_experts[bid][ename]
  7714. data_torch = torch.stack(datas, dim=0)
  7715. merged_name = f"model.layers.{bid}.mlp.chunk_experts.{w_name}.weight"
  7716. new_name = self.map_tensor_name(merged_name)
  7717. tensors.append((new_name, data_torch))
  7718. return tensors
  7719. else:
  7720. return []
  7721. elif name.find("experts") != -1:
  7722. n_experts = self.hparams["num_experts"]
  7723. assert bid is not None
  7724. if self._experts is None:
  7725. self._experts = [{} for _ in range(self.block_count)]
  7726. self._experts[bid][name] = data_torch
  7727. if len(self._experts[bid]) >= n_experts * 3:
  7728. tensors: list[tuple[str, Tensor]] = []
  7729. # merge the experts into a single 3d tensor
  7730. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7731. datas: list[Tensor] = []
  7732. for xid in range(n_experts):
  7733. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7734. datas.append(self._experts[bid][ename])
  7735. del self._experts[bid][ename]
  7736. data_torch = torch.stack(datas, dim=0)
  7737. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7738. new_name = self.map_tensor_name(merged_name)
  7739. tensors.append((new_name, data_torch))
  7740. return tensors
  7741. else:
  7742. return []
  7743. return [(self.map_tensor_name(name), data_torch)]
  7744. def prepare_tensors(self):
  7745. super().prepare_tensors()
  7746. if self._chunk_experts is not None:
  7747. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7748. chunk_experts = [k for d in self._chunk_experts for k in d.keys()]
  7749. if len(chunk_experts) > 0:
  7750. raise ValueError(f"Unprocessed adjugate experts: {chunk_experts}")
  7751. if self._experts is not None:
  7752. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7753. experts = [k for d in self._experts for k in d.keys()]
  7754. if len(experts) > 0:
  7755. raise ValueError(f"Unprocessed experts: {experts}")
  7756. @ModelBase.register("ChameleonForConditionalGeneration")
  7757. @ModelBase.register("ChameleonForCausalLM") # obsolete
  7758. class ChameleonModel(TextModel):
  7759. model_arch = gguf.MODEL_ARCH.CHAMELEON
  7760. def set_gguf_parameters(self):
  7761. super().set_gguf_parameters()
  7762. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  7763. def set_vocab(self):
  7764. self._set_vocab_gpt2()
  7765. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7766. # ignore image tokenizer for now
  7767. # TODO: remove this once image support is implemented for Chameleon
  7768. if name.startswith("model.vqmodel"):
  7769. return []
  7770. n_head = self.hparams["num_attention_heads"]
  7771. n_kv_head = self.hparams.get("num_key_value_heads")
  7772. hidden_dim = self.hparams.get("hidden_size")
  7773. if name.endswith(("q_proj.weight", "q_proj.bias")):
  7774. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  7775. if name.endswith(("k_proj.weight", "k_proj.bias")):
  7776. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  7777. if name.endswith(("q_norm.weight", "q_norm.bias")):
  7778. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  7779. if name.endswith(("k_norm.weight", "k_norm.bias")):
  7780. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  7781. return [(self.map_tensor_name(name), data_torch)]
  7782. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  7783. @staticmethod
  7784. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  7785. head_dim = hidden_dim // n_heads
  7786. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  7787. data_torch = data_torch.repeat_interleave(n_heads, 0)
  7788. return data_torch
  7789. @ModelBase.register("UltravoxModel")
  7790. class UltravoxModel(TextModel):
  7791. model_arch = gguf.MODEL_ARCH.LLAMA # dummy
  7792. def __init__(self, *args, **kwargs):
  7793. super().__init__(*args, **kwargs)
  7794. raise NotImplementedError("Ultravox does not have text decoder. Instead, it uses Llama or other models for text. If you want to get the audio encoder, please use --mmproj argument")
  7795. @ModelBase.register("GlmasrModel")
  7796. class GlmASRWhisperEncoderModel(MmprojModel):
  7797. has_vision_encoder = False
  7798. has_audio_encoder = True
  7799. def __init__(self, *args, **kwargs):
  7800. super().__init__(*args, **kwargs)
  7801. if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
  7802. self.hparams["hidden_size"] = self.hparams["d_model"]
  7803. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  7804. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  7805. def set_gguf_parameters(self):
  7806. super().set_gguf_parameters()
  7807. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GLMA)
  7808. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  7809. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  7810. self.gguf_writer.add_audio_stack_factor(self.global_config["merge_factor"])
  7811. def tensor_force_quant(self, name, new_name, bid, n_dims):
  7812. if ".conv" in name and ".weight" in name:
  7813. return gguf.GGMLQuantizationType.F16
  7814. return super().tensor_force_quant(name, new_name, bid, n_dims)
  7815. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7816. del bid # unused
  7817. if name.startswith("model.") or name.startswith("lm_head."):
  7818. # skip language model tensors
  7819. return []
  7820. if name.startswith("audio_encoder.whisper."):
  7821. name = name.replace("audio_encoder.whisper.","audio_tower.")
  7822. if "audio_encoder.layer_norm." in name or "audio_encoder.proj." in name:
  7823. name = name.replace("audio_encoder.", "audio_encoder.adapting.")
  7824. if name.startswith("audio_encoder.audio_bos_eos_token."):
  7825. return [(self.map_tensor_name("model.vision.boi"), data_torch[0]), (self.map_tensor_name("model.vision.eoi"), data_torch[1])]
  7826. if name.startswith("audio_encoder.adapting."):
  7827. name = name.replace("audio_encoder.adapting.","audio.multi_modal_projector.")
  7828. if ".layer_norm." in name:
  7829. name = name.replace(".layer_norm.", ".ln_pre.")
  7830. if ".0." in name:
  7831. name = name.replace(".0.", ".linear_1.")
  7832. if ".2." in name:
  7833. name = name.replace(".2.", ".linear_2.")
  7834. if ".proj." in name:
  7835. return []
  7836. if "conv1.bias" in name or "conv2.bias" in name:
  7837. # transpose conv1 and conv2 bias
  7838. data_torch = data_torch.unsqueeze(-1)
  7839. return [(self.map_tensor_name(name), data_torch)]
  7840. @ModelBase.register("Qwen2AudioForConditionalGeneration")
  7841. class WhisperEncoderModel(MmprojModel):
  7842. has_vision_encoder = False # no vision encoder
  7843. has_audio_encoder = True
  7844. def __init__(self, *args, **kwargs):
  7845. super().__init__(*args, **kwargs)
  7846. if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
  7847. self.hparams["hidden_size"] = self.hparams["d_model"]
  7848. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  7849. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  7850. def set_gguf_parameters(self):
  7851. super().set_gguf_parameters()
  7852. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2A)
  7853. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  7854. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  7855. def tensor_force_quant(self, name, new_name, bid, n_dims):
  7856. if ".conv" in name and ".weight" in name:
  7857. return gguf.GGMLQuantizationType.F16
  7858. return super().tensor_force_quant(name, new_name, bid, n_dims)
  7859. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7860. del bid # unused
  7861. if name.startswith("language_model."):
  7862. # skip language model tensors
  7863. return []
  7864. # prevent clash naming with vision tensors
  7865. if name.startswith("multi_modal_projector"):
  7866. name = "audio." + name
  7867. if "conv1.bias" in name or "conv2.bias" in name:
  7868. # transpose conv1 and conv2 bias
  7869. data_torch = data_torch.unsqueeze(-1)
  7870. return [(self.map_tensor_name(name), data_torch)]
  7871. @ModelBase.register("UltravoxModel")
  7872. class UltravoxWhisperEncoderModel(WhisperEncoderModel):
  7873. has_vision_encoder = False # no vision encoder
  7874. has_audio_encoder = True
  7875. def set_gguf_parameters(self):
  7876. super().set_gguf_parameters()
  7877. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.ULTRAVOX)
  7878. self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
  7879. @ModelBase.register("VoxtralForConditionalGeneration")
  7880. class VoxtralWhisperEncoderModel(WhisperEncoderModel):
  7881. has_vision_encoder = False # no vision encoder
  7882. has_audio_encoder = True
  7883. def set_gguf_parameters(self):
  7884. super().set_gguf_parameters()
  7885. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.VOXTRAL)
  7886. self.gguf_writer.add_audio_stack_factor(4) # == intermediate_size // hidden_size
  7887. @ModelBase.register("AudioFlamingo3ForConditionalGeneration")
  7888. class AudioFlamingo3WhisperEncoderModel(WhisperEncoderModel):
  7889. def set_gguf_parameters(self):
  7890. super().set_gguf_parameters()
  7891. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.MUSIC_FLAMINGO)
  7892. def tensor_force_quant(self, name, new_name, bid, n_dims):
  7893. if ".conv" in name and ".weight" in name:
  7894. # Was trained in BF16, being safe, avoiding quantizing to FP16
  7895. return gguf.GGMLQuantizationType.F32
  7896. return super().tensor_force_quant(name, new_name, bid, n_dims)
  7897. @ModelBase.register("FalconH1ForCausalLM")
  7898. class FalconH1Model(Mamba2Model):
  7899. model_arch = gguf.MODEL_ARCH.FALCON_H1
  7900. def __init__(self, *args, **kwargs):
  7901. # Set the hparam prefixes for Falcon Mamba2
  7902. self.hparam_prefixes = ["mamba"]
  7903. # Initialize the base Mamba2Model
  7904. super().__init__(*args, **kwargs)
  7905. # Use Llama conversion for attention
  7906. self._transformer_model_class = LlamaModel
  7907. # n_group and d_inner are used during reshape_tensors for mamba2
  7908. self.n_group = self.find_hparam(["n_groups"])
  7909. self.d_inner = self.find_hparam(["mamba_d_ssm"])
  7910. self.d_head = self.find_hparam(["d_head"])
  7911. # Initialize any Falcon Mamba2 specific attributes
  7912. self.has_attention = True # Falcon Mamba2 has attention components
  7913. # Load Falcon-H1 multipliers from hyperparameters
  7914. self.attention_in_multiplier = self.find_hparam(["attention_in_multiplier"], optional=True)
  7915. self.attention_out_multiplier = self.find_hparam(["attention_out_multiplier"], optional=True)
  7916. self.ssm_in_multiplier = self.find_hparam(["ssm_in_multiplier"], optional=True)
  7917. self.ssm_out_multiplier = self.find_hparam(["ssm_out_multiplier"], optional=True)
  7918. self.mlp_multipliers = self.find_hparam(["mlp_multipliers"], optional=True)
  7919. self.ssm_multipliers = self.find_hparam(["ssm_multipliers"], optional=True)
  7920. self.intermediate_size = self.find_hparam(["intermediate_size"])
  7921. self.key_multiplier = self.find_hparam(["key_multiplier"], optional=True)
  7922. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  7923. prefixed = []
  7924. for pfx in self.hparam_prefixes:
  7925. prefixed.extend(
  7926. "_".join([pfx, k])
  7927. for k in keys
  7928. )
  7929. keys = list(keys) + prefixed
  7930. return super().find_hparam(keys, *args, **kwargs)
  7931. def set_vocab(self):
  7932. self._set_vocab_gpt2()
  7933. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7934. tensors = list(super().modify_tensors(data_torch, name, bid))
  7935. tensor = tensors[0][1]
  7936. if "down_proj" in name:
  7937. tensor = tensor * self.mlp_multipliers[1]
  7938. elif "gate_proj" in name:
  7939. tensor = tensor * self.mlp_multipliers[0]
  7940. elif "k_proj" in name:
  7941. tensor = tensor * self.key_multiplier * self.attention_in_multiplier
  7942. elif "q_proj" in name:
  7943. tensor = tensor * self.attention_in_multiplier
  7944. elif "v_proj" in name:
  7945. tensor = tensor * self.attention_in_multiplier
  7946. elif "o_proj" in name:
  7947. tensor = tensor * self.attention_out_multiplier
  7948. elif "out_proj" in name:
  7949. tensor = tensor * self.ssm_out_multiplier
  7950. elif "in_proj" in name:
  7951. tensor = tensor * self.ssm_in_multiplier
  7952. zxbcdt_multipliers = self.hparams["ssm_multipliers"]
  7953. intermediate_size = self.hparams["mamba_d_ssm"]
  7954. groups_time_state_size = self.hparams["mamba_n_groups"] * self.hparams["mamba_d_state"]
  7955. tensor[:intermediate_size, :] *= zxbcdt_multipliers[0]
  7956. tensor[intermediate_size:2 * intermediate_size, :] *= zxbcdt_multipliers[1]
  7957. tensor[2 * intermediate_size:2 * intermediate_size + groups_time_state_size, :] *= zxbcdt_multipliers[2]
  7958. tensor[2 * intermediate_size + groups_time_state_size:2 * intermediate_size + 2 * groups_time_state_size, :] *= zxbcdt_multipliers[3]
  7959. tensor[2 * intermediate_size + 2 * groups_time_state_size:, :] *= zxbcdt_multipliers[4]
  7960. elif "lm_head" in name:
  7961. tensor = tensor * self.hparams["lm_head_multiplier"]
  7962. elif "embed_tokens" in name:
  7963. tensor = tensor * self.hparams["embedding_multiplier"]
  7964. elif "mamba.norm" in name:
  7965. tensor = tensor.reshape(self.n_group, self.d_inner // self.n_group)
  7966. tensors = [(tensors[0][0], tensor)]
  7967. return tensors
  7968. def set_gguf_parameters(self):
  7969. super().set_gguf_parameters()
  7970. ## General Params ##
  7971. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7972. # Override some Mamba2 defaults
  7973. self.gguf_writer.add_block_count(self.block_count)
  7974. self.gguf_writer.add_context_length(self.hparams.get("max_position_embeddings", 0))
  7975. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  7976. ## Attention params ##
  7977. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) # Override value 0 from Mamba2
  7978. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  7979. self.gguf_writer.add_key_length(self.hparams["head_dim"])
  7980. self.gguf_writer.add_value_length(self.hparams["head_dim"])
  7981. ## Validation ##
  7982. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  7983. assert self.d_inner % self.d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {self.d_head}"
  7984. # Add any other Falcon Mamba2 specific configuration
  7985. self.gguf_writer.add_rope_freq_base(self.rope_parameters["rope_theta"])
  7986. @ModelBase.register("HunYuanMoEV1ForCausalLM")
  7987. class HunYuanMoEModel(TextModel):
  7988. model_arch = gguf.MODEL_ARCH.HUNYUAN_MOE
  7989. def set_vocab(self):
  7990. from transformers import AutoTokenizer
  7991. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  7992. # 1. Get the pre-tokenizer identifier hash
  7993. tokpre = self.get_vocab_base_pre(tokenizer)
  7994. # 2. Reverse-engineer the merges list from mergeable_ranks
  7995. merges = []
  7996. vocab = {}
  7997. mergeable_ranks = tokenizer.mergeable_ranks
  7998. for token, rank in mergeable_ranks.items():
  7999. vocab[QwenModel.token_bytes_to_string(token)] = rank
  8000. if len(token) == 1:
  8001. continue
  8002. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  8003. if len(merged) == 2: # todo this is an assert in Qwen, why?
  8004. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  8005. # 3. Generate the tokens and toktypes lists
  8006. vocab_size = self.hparams["vocab_size"]
  8007. assert tokenizer.vocab_size == vocab_size
  8008. special_tokens = tokenizer.special_tokens
  8009. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  8010. tokens: list[str] = []
  8011. toktypes: list[int] = []
  8012. for i in range(vocab_size):
  8013. if i not in reverse_vocab:
  8014. tokens.append(f"[PAD{i}]")
  8015. toktypes.append(gguf.TokenType.UNUSED)
  8016. else:
  8017. token = reverse_vocab[i]
  8018. tokens.append(token)
  8019. if i in special_tokens.values():
  8020. toktypes.append(gguf.TokenType.CONTROL)
  8021. else:
  8022. toktypes.append(gguf.TokenType.NORMAL)
  8023. # 4. Write all vocab-related fields to the GGUF writer
  8024. self.gguf_writer.add_tokenizer_model("gpt2")
  8025. self.gguf_writer.add_tokenizer_pre(tokpre)
  8026. self.gguf_writer.add_token_list(tokens)
  8027. self.gguf_writer.add_token_types(toktypes)
  8028. self.gguf_writer.add_token_merges(merges)
  8029. # 5. Add special tokens and chat templates
  8030. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  8031. special_vocab.add_to_gguf(self.gguf_writer)
  8032. # FIX for BOS token: Overwrite incorrect id read from config.json
  8033. self.gguf_writer.add_bos_token_id(127959) # <|bos|>
  8034. def set_gguf_parameters(self):
  8035. super().set_gguf_parameters()
  8036. hparams = self.hparams
  8037. self.gguf_writer.add_expert_count(hparams["num_experts"])
  8038. self.gguf_writer.add_expert_shared_feed_forward_length(hparams["intermediate_size"])
  8039. moe_intermediate_size = hparams["moe_intermediate_size"]
  8040. assert all(n == moe_intermediate_size[0] for n in moe_intermediate_size)
  8041. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size[0])
  8042. moe_topk = hparams["moe_topk"]
  8043. assert all(topk == moe_topk[0] for topk in moe_topk)
  8044. self.gguf_writer.add_expert_used_count(moe_topk[0])
  8045. moe_shared_expert = hparams["num_shared_expert"]
  8046. assert all(n == moe_shared_expert[0] for n in moe_shared_expert)
  8047. self.gguf_writer.add_expert_shared_count(moe_shared_expert[0])
  8048. # Rope
  8049. if self.rope_parameters.get("rope_type") == "dynamic":
  8050. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  8051. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  8052. alpha = self.rope_parameters.get("alpha", 1000)
  8053. base = self.rope_parameters.get("rope_theta", 10000.0)
  8054. dim = (hparams["hidden_size"] // hparams["num_attention_heads"]) # 128
  8055. scaled_base = base * (alpha ** (dim / (dim - 2))) # 10000 * (1000 ** (128 / 126)) = 11158839.9251
  8056. self.gguf_writer.add_rope_freq_base(scaled_base)
  8057. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  8058. self.gguf_writer.add_rope_scaling_factor(1)
  8059. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  8060. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  8061. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  8062. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  8063. assert alpha == 1000 and base == 10000.0 and dim == 128 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  8064. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  8065. _experts: list[dict[str, Tensor]] | None = None
  8066. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8067. if name == "lm_head.weight":
  8068. if self.hparams.get("tie_word_embeddings", False):
  8069. logger.info("Skipping tied output layer 'lm_head.weight'")
  8070. return []
  8071. if name.find("mlp.experts") != -1:
  8072. n_experts = self.hparams["num_experts"]
  8073. assert bid is not None
  8074. if self._experts is None:
  8075. self._experts = [{} for _ in range(self.block_count)]
  8076. self._experts[bid][name] = data_torch
  8077. if len(self._experts[bid]) >= n_experts * 3:
  8078. # merge the experts into a single 3d tensor
  8079. tensors: list[tuple[str, Tensor]] = []
  8080. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  8081. datas: list[Tensor] = []
  8082. for xid in range(n_experts):
  8083. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  8084. datas.append(self._experts[bid][ename])
  8085. del self._experts[bid][ename]
  8086. data_torch = torch.stack(datas, dim=0)
  8087. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  8088. new_name = self.map_tensor_name(merged_name)
  8089. tensors.append((new_name, data_torch))
  8090. return tensors
  8091. else:
  8092. return []
  8093. return [(self.map_tensor_name(name), data_torch)]
  8094. def prepare_tensors(self):
  8095. super().prepare_tensors()
  8096. if self._experts is not None:
  8097. experts = [k for d in self._experts for k in d.keys()]
  8098. if len(experts) > 0:
  8099. raise ValueError(f"Unprocessed experts: {experts}")
  8100. @ModelBase.register("LLaDAMoEModel", "LLaDAMoEModelLM")
  8101. class LLaDAMoEModel(TextModel):
  8102. model_arch = gguf.MODEL_ARCH.LLADA_MOE
  8103. def set_gguf_parameters(self):
  8104. super().set_gguf_parameters()
  8105. if (n_experts := self.hparams.get("num_experts")) is not None:
  8106. self.gguf_writer.add_expert_count(n_experts)
  8107. if (expert_intermediate_size := self.hparams.get("expert_intermediate_size")) is not None:
  8108. self.gguf_writer.add_expert_feed_forward_length(expert_intermediate_size)
  8109. # number of experts used per token (top-k)
  8110. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  8111. self.gguf_writer.add_expert_used_count(n_experts_used)
  8112. self.gguf_writer.add_mask_token_id(156895)
  8113. self.gguf_writer.add_causal_attention(False)
  8114. self.gguf_writer.add_diffusion_shift_logits(False)
  8115. _experts: list[dict[str, Tensor]] | None = None
  8116. # Copied from: Qwen2MoeModel
  8117. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8118. # process the experts separately
  8119. if name.find("experts") != -1:
  8120. n_experts = self.hparams["num_experts"]
  8121. assert bid is not None
  8122. if self._experts is None:
  8123. self._experts = [{} for _ in range(self.block_count)]
  8124. self._experts[bid][name] = data_torch
  8125. if len(self._experts[bid]) >= n_experts * 3:
  8126. tensors: list[tuple[str, Tensor]] = []
  8127. # merge the experts into a single 3d tensor
  8128. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  8129. datas: list[Tensor] = []
  8130. for xid in range(n_experts):
  8131. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  8132. datas.append(self._experts[bid][ename])
  8133. del self._experts[bid][ename]
  8134. data_torch = torch.stack(datas, dim=0)
  8135. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  8136. new_name = self.map_tensor_name(merged_name)
  8137. tensors.append((new_name, data_torch))
  8138. return tensors
  8139. else:
  8140. return []
  8141. return [(self.map_tensor_name(name), data_torch)]
  8142. # Copied from: Qwen2MoeModel
  8143. def prepare_tensors(self):
  8144. super().prepare_tensors()
  8145. if self._experts is not None:
  8146. # flatten `list[dict[str, Tensor]]` into `list[str]`
  8147. experts = [k for d in self._experts for k in d.keys()]
  8148. if len(experts) > 0:
  8149. raise ValueError(f"Unprocessed experts: {experts}")
  8150. @ModelBase.register("HunYuanDenseV1ForCausalLM")
  8151. class HunYuanModel(TextModel):
  8152. model_arch = gguf.MODEL_ARCH.HUNYUAN_DENSE
  8153. def set_vocab(self):
  8154. if (self.dir_model / "tokenizer.json").is_file():
  8155. self._set_vocab_gpt2()
  8156. else:
  8157. from transformers import AutoTokenizer
  8158. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  8159. # 1. Get the pre-tokenizer identifier hash
  8160. tokpre = self.get_vocab_base_pre(tokenizer)
  8161. # 2. Reverse-engineer the merges list from mergeable_ranks
  8162. merges = []
  8163. vocab = {}
  8164. mergeable_ranks = tokenizer.mergeable_ranks
  8165. for token, rank in mergeable_ranks.items():
  8166. vocab[QwenModel.token_bytes_to_string(token)] = rank
  8167. if len(token) == 1:
  8168. continue
  8169. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  8170. if len(merged) == 2:
  8171. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  8172. # 3. Generate the tokens and toktypes lists
  8173. vocab_size = self.hparams["vocab_size"]
  8174. assert tokenizer.vocab_size == vocab_size
  8175. special_tokens = tokenizer.special_tokens
  8176. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  8177. tokens: list[str] = []
  8178. toktypes: list[int] = []
  8179. for i in range(vocab_size):
  8180. if i not in reverse_vocab:
  8181. tokens.append(f"[PAD{i}]")
  8182. toktypes.append(gguf.TokenType.UNUSED)
  8183. else:
  8184. token = reverse_vocab[i]
  8185. tokens.append(token)
  8186. if i in special_tokens.values():
  8187. toktypes.append(gguf.TokenType.CONTROL)
  8188. else:
  8189. toktypes.append(gguf.TokenType.NORMAL)
  8190. # 4. Write all vocab-related fields to the GGUF writer
  8191. self.gguf_writer.add_tokenizer_model("gpt2")
  8192. self.gguf_writer.add_tokenizer_pre(tokpre)
  8193. self.gguf_writer.add_token_list(tokens)
  8194. self.gguf_writer.add_token_types(toktypes)
  8195. self.gguf_writer.add_token_merges(merges)
  8196. # 5. Add special tokens and chat templates
  8197. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  8198. special_vocab.add_to_gguf(self.gguf_writer)
  8199. # FIX for BOS token: Overwrite incorrect id read from config.json
  8200. if self.hparams['hidden_size'] == 4096:
  8201. self.gguf_writer.add_bos_token_id(127958) # only for 7b dense, fix <|bos|> token
  8202. def set_gguf_parameters(self):
  8203. super().set_gguf_parameters()
  8204. hparams = self.hparams
  8205. # Rope
  8206. if self.rope_parameters.get("rope_type") == "dynamic":
  8207. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  8208. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  8209. alpha = self.rope_parameters.get("alpha", 50)
  8210. base = self.rope_parameters.get("rope_theta", 10000.0)
  8211. dim = hparams["head_dim"]
  8212. scaled_base = base * (alpha ** (dim / (dim - 2)))
  8213. self.gguf_writer.add_rope_freq_base(scaled_base)
  8214. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  8215. self.gguf_writer.add_rope_scaling_factor(1)
  8216. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  8217. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  8218. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  8219. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  8220. assert base == 10000.0 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  8221. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  8222. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8223. if name == "lm_head.weight":
  8224. if self.hparams.get("tie_word_embeddings", False):
  8225. logger.info("Skipping tied output layer 'lm_head.weight'")
  8226. return []
  8227. return [(self.map_tensor_name(name), data_torch)]
  8228. @ModelBase.register("SmolLM3ForCausalLM")
  8229. class SmolLM3Model(LlamaModel):
  8230. model_arch = gguf.MODEL_ARCH.SMOLLM3
  8231. @ModelBase.register("GptOssForCausalLM")
  8232. class GptOssModel(TextModel):
  8233. model_arch = gguf.MODEL_ARCH.GPT_OSS
  8234. # TODO: remove once MXFP4 is supported more generally
  8235. def dequant_model(self):
  8236. quant_config = self.hparams.get("quantization_config")
  8237. if quant_config is not None and quant_config.get("quant_method") == "mxfp4":
  8238. return
  8239. return super().dequant_model()
  8240. def transform_nibble_layout(self, tensor):
  8241. assert tensor.dtype == torch.uint8
  8242. assert tensor.shape[-1] == 16
  8243. # swap nibbles
  8244. t_lo = tensor & 0x0F
  8245. t_hi = tensor & 0xF0
  8246. t_swapped = (t_lo << 4) | (t_hi >> 4)
  8247. tensor = t_swapped
  8248. # transform aaaa...bbbb... to abababab...
  8249. blk_a, blk_b = tensor.chunk(2, dim=-1)
  8250. # get a_
  8251. blk_a0 = (blk_a & 0xF0).view(-1, 1)
  8252. blk_a1 = (blk_a << 4).view(-1, 1)
  8253. blk_a = torch.stack((blk_a0, blk_a1), dim=2).view(tensor.shape)
  8254. # get _b
  8255. blk_b0 = (blk_b >> 4).view(-1, 1)
  8256. blk_b1 = (blk_b & 0x0F).view(-1, 1)
  8257. blk_b = torch.stack((blk_b0, blk_b1), dim=2).view(tensor.shape)
  8258. # swap once more
  8259. out = blk_a | blk_b
  8260. out_h = out & 0xF0
  8261. out_l = out & 0x0F
  8262. out = (out_h >> 4) | (out_l << 4)
  8263. return out
  8264. def repack_mxfp4(self, new_name: str, blocks: Tensor, scales: Tensor):
  8265. assert blocks.dtype == torch.uint8
  8266. assert scales.dtype == torch.uint8
  8267. scales = scales.unsqueeze(-1)
  8268. assert len(blocks.shape) == 4
  8269. assert len(scales.shape) == 4
  8270. blocks = self.transform_nibble_layout(blocks)
  8271. new_data = torch.concat((scales, blocks), dim=-1)
  8272. new_shape = [new_data.shape[0], new_data.shape[1], new_data.shape[2] * 32]
  8273. logger.info(f"Repacked {new_name} with shape {new_shape} and quantization MXFP4")
  8274. # flatten last dim
  8275. new_data = new_data.view(new_data.shape[0], new_data.shape[1], new_data.shape[2] * new_data.shape[3])
  8276. new_data = new_data.numpy()
  8277. self.gguf_writer.add_tensor(new_name, new_data, raw_dtype=gguf.GGMLQuantizationType.MXFP4)
  8278. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  8279. blocks0: Tensor = torch.zeros(1)
  8280. blocks1: Tensor = torch.zeros(1)
  8281. # we assume that tensors are loaded in the correct order
  8282. for name, data_torch in self.get_tensors():
  8283. if "mlp.experts.down_proj_blocks" in name:
  8284. blocks0 = data_torch
  8285. elif "mlp.experts.down_proj_scales" in name:
  8286. new_name = self.map_tensor_name(name.replace("_scales", ".weight"))
  8287. self.repack_mxfp4(new_name, blocks0, data_torch)
  8288. elif "mlp.experts.gate_up_proj_blocks" in name:
  8289. blocks0, blocks1 = data_torch[:, ::2, :, :], data_torch[:, 1::2, :, :]
  8290. elif "mlp.experts.gate_up_proj_scales" in name:
  8291. scales0, scales1 = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  8292. new_name_gate = self.map_tensor_name(name.replace("gate_up_proj_scales", "gate_proj.weight"))
  8293. new_name_up = self.map_tensor_name(name.replace("gate_up_proj_scales", "up_proj.weight"))
  8294. self.repack_mxfp4(new_name_gate, blocks0, scales0)
  8295. self.repack_mxfp4(new_name_up, blocks1, scales1)
  8296. return []
  8297. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8298. del bid # unused
  8299. if "sinks" in name:
  8300. name += ".weight"
  8301. # correct naming for down_proj
  8302. if "down_proj" in name:
  8303. if name.endswith("_bias"):
  8304. name = name.replace("down_proj_bias", "down_proj.bias")
  8305. elif "_blocks" not in name and "_scales" not in name:
  8306. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  8307. name = name.replace("down_proj", "down_proj.weight")
  8308. data_torch = data_torch.transpose(-1, -2)
  8309. else:
  8310. # otherwise, it should already be repacked to ggml MXFP4 format
  8311. return []
  8312. # split the gate_up into gate and up
  8313. if "gate_up_proj" in name:
  8314. if name.endswith("_bias"):
  8315. name_up = name.replace("gate_up_proj_bias", "up_proj.bias")
  8316. name_gate = name.replace("gate_up_proj_bias", "gate_proj.bias")
  8317. gate_proj_bias, up_proj_bias = data_torch[..., ::2], data_torch[..., 1::2]
  8318. return [
  8319. (self.map_tensor_name(name_gate), gate_proj_bias),
  8320. (self.map_tensor_name(name_up), up_proj_bias)
  8321. ]
  8322. elif "_blocks" not in name and "_scales" not in name:
  8323. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  8324. name_up = name.replace("gate_up_proj", "up_proj.weight")
  8325. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  8326. data_torch = data_torch.transpose(-1, -2)
  8327. gate_proj_weight, up_proj_weight = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  8328. return [
  8329. (self.map_tensor_name(name_gate), gate_proj_weight),
  8330. (self.map_tensor_name(name_up), up_proj_weight)
  8331. ]
  8332. else:
  8333. # otherwise, it should already be repacked to ggml MXFP4 format
  8334. return []
  8335. return [(self.map_tensor_name(name), data_torch)]
  8336. def set_vocab(self):
  8337. self._set_vocab_gpt2()
  8338. def set_gguf_parameters(self):
  8339. super().set_gguf_parameters()
  8340. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  8341. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size"])
  8342. @ModelBase.register("Lfm2ForCausalLM", "LFM2ForCausalLM")
  8343. class LFM2Model(TextModel):
  8344. model_arch = gguf.MODEL_ARCH.LFM2
  8345. def _add_feed_forward_length(self):
  8346. ff_dim = self.hparams["block_ff_dim"]
  8347. auto_adjust_ff_dim = self.hparams["block_auto_adjust_ff_dim"]
  8348. ff_dim = self.hparams["block_ff_dim"]
  8349. ffn_dim_multiplier = self.hparams["block_ffn_dim_multiplier"]
  8350. multiple_of = self.hparams["block_multiple_of"]
  8351. if auto_adjust_ff_dim:
  8352. ff_dim = int(2 * ff_dim / 3)
  8353. # custom dim factor multiplier
  8354. if ffn_dim_multiplier is not None:
  8355. ff_dim = int(ffn_dim_multiplier * ff_dim)
  8356. ff_dim = multiple_of * ((ff_dim + multiple_of - 1) // multiple_of)
  8357. self.gguf_writer.add_feed_forward_length(ff_dim)
  8358. def set_gguf_parameters(self):
  8359. # set num_key_value_heads only for attention layers
  8360. self.hparams["num_key_value_heads"] = [
  8361. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  8362. for layer_type in self.hparams["layer_types"]
  8363. ]
  8364. super().set_gguf_parameters()
  8365. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  8366. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  8367. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["norm_eps"])
  8368. self._add_feed_forward_length()
  8369. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8370. if self._is_vision_tensor(name) or ConformerAudioModel.is_audio_tensor(name):
  8371. # skip multimodal tensors
  8372. return []
  8373. name = name.replace("language_model.", "") # vision
  8374. name = name.replace("lfm.", "model.") # audio
  8375. # conv op requires 2d tensor
  8376. if 'conv.conv' in name:
  8377. data_torch = data_torch.squeeze(1)
  8378. return [(self.map_tensor_name(name), data_torch)]
  8379. def _is_vision_tensor(self, name: str) -> bool:
  8380. return "vision_tower" in name or "multi_modal_projector" in name
  8381. @ModelBase.register("Lfm2Model")
  8382. class LFM2ColBertModel(LFM2Model):
  8383. model_arch = gguf.MODEL_ARCH.LFM2
  8384. dense_tensor_name = "dense_2"
  8385. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8386. if not name.startswith(self.dense_tensor_name):
  8387. name = "model." + name
  8388. return super().modify_tensors(data_torch, name, bid)
  8389. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  8390. # dense tensor is stored in a separate safetensors file
  8391. from safetensors.torch import load_file
  8392. tensors_file = self.dir_model / "1_Dense" / "model.safetensors"
  8393. assert tensors_file.is_file()
  8394. tensor = load_file(tensors_file)["linear.weight"]
  8395. self.gguf_writer.add_embedding_length_out(tensor.shape[0])
  8396. yield f"{self.dense_tensor_name}.weight", tensor.clone()
  8397. @ModelBase.register("Lfm2MoeForCausalLM")
  8398. class LFM2MoeModel(TextModel):
  8399. model_arch = gguf.MODEL_ARCH.LFM2MOE
  8400. def set_gguf_parameters(self):
  8401. # set num_key_value_heads only for attention layers
  8402. self.hparams["num_key_value_heads"] = [
  8403. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  8404. for layer_type in self.hparams["layer_types"]
  8405. ]
  8406. super().set_gguf_parameters()
  8407. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  8408. self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
  8409. self.gguf_writer.add_leading_dense_block_count(self.hparams["num_dense_layers"])
  8410. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  8411. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  8412. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  8413. # cache for experts weights for merging
  8414. _experts_cache: dict[int, dict[str, Tensor]] = {}
  8415. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8416. # conv op requires 2d tensor
  8417. if 'conv.conv' in name:
  8418. data_torch = data_torch.squeeze(1)
  8419. if name.endswith(".expert_bias"):
  8420. name = name.replace(".expert_bias", ".expert_bias.bias")
  8421. # merge expert weights
  8422. if 'experts' in name:
  8423. n_experts = self.hparams["num_experts"]
  8424. assert bid is not None
  8425. expert_cache = self._experts_cache.setdefault(bid, {})
  8426. expert_cache[name] = data_torch
  8427. expert_weights = ["w1", "w2", "w3"]
  8428. # not enough expert weights to merge
  8429. if len(expert_cache) < n_experts * len(expert_weights):
  8430. return []
  8431. tensors: list[tuple[str, Tensor]] = []
  8432. for w_name in expert_weights:
  8433. datas: list[Tensor] = []
  8434. for xid in range(n_experts):
  8435. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{w_name}.weight"
  8436. datas.append(expert_cache[ename])
  8437. del expert_cache[ename]
  8438. data_torch = torch.stack(datas, dim=0)
  8439. merged_name = f"layers.{bid}.feed_forward.experts.{w_name}.weight"
  8440. new_name = self.map_tensor_name(merged_name)
  8441. tensors.append((new_name, data_torch))
  8442. del self._experts_cache[bid]
  8443. return tensors
  8444. return [(self.map_tensor_name(name), data_torch)]
  8445. def prepare_tensors(self):
  8446. super().prepare_tensors()
  8447. assert not self._experts_cache
  8448. @ModelBase.register("Lfm2VlForConditionalGeneration")
  8449. class LFM2VLModel(MmprojModel):
  8450. def __init__(self, *args, **kwargs):
  8451. super().__init__(*args, **kwargs)
  8452. assert self.hparams_vision is not None
  8453. # TODO(tarek): for dynamic resolution image_size is not specified, setting here for compatibility
  8454. self.hparams_vision["image_size"] = 256
  8455. def set_gguf_parameters(self):
  8456. super().set_gguf_parameters()
  8457. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LFM2)
  8458. self.gguf_writer.add_vision_attention_layernorm_eps(self.find_vparam(["layer_norm_eps"]))
  8459. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("downsample_factor", 2))
  8460. self.gguf_writer.add_vision_use_gelu(True)
  8461. # python notation, e.g. for vision_feature_layer == -1, we pick last layer -> vision_feature_layers_to_drop = 0
  8462. vision_feature_layers_to_drop = -(self.global_config.get("vision_feature_layer", -1) + 1)
  8463. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys) - vision_feature_layers_to_drop)
  8464. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8465. del bid # unused
  8466. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  8467. if is_vision_tensor:
  8468. # remove "model." prefix
  8469. name = name.replace("model.vision_tower.", "vision_tower.")
  8470. name = name.replace("model.multi_modal_projector.", "multi_modal_projector.")
  8471. if "patch_embedding.weight" in name:
  8472. data_torch = data_torch.view(data_torch.shape[0], 16, 16, 3).permute(0, 3, 1, 2)
  8473. return [(self.map_tensor_name(name), data_torch)]
  8474. return [] # skip other tensors
  8475. @ModelBase.register("Lfm2AudioForConditionalGeneration")
  8476. class LFM2AudioModel(ConformerAudioModel):
  8477. has_vision_encoder = False
  8478. has_audio_encoder = True
  8479. model_name = "Lfm2AudioEncoder"
  8480. def get_audio_config(self) -> dict[str, Any] | None:
  8481. return self.global_config.get("encoder")
  8482. def set_gguf_parameters(self):
  8483. assert self.hparams_audio is not None
  8484. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  8485. self.hparams_audio["intermediate_size"] = self.hparams_audio["d_model"]
  8486. self.hparams_audio["num_attention_heads"] = self.hparams_audio["n_heads"]
  8487. super().set_gguf_parameters()
  8488. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LFM2A)
  8489. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["feat_in"])
  8490. self.gguf_writer.add_audio_attention_layernorm_eps(1e-5)
  8491. def modify_tensors(self, data_torch, name, bid):
  8492. # skip language model tensors
  8493. if name.startswith("lfm."):
  8494. return []
  8495. # for training only
  8496. if any(p in name for p in ["audio_loss_weight"]):
  8497. return []
  8498. # for audio output
  8499. if any(p in name for p in ["codebook_offsets", "depth_embeddings", "depth_linear", "depthformer"]):
  8500. return []
  8501. return super().modify_tensors(data_torch, name, bid)
  8502. @ModelBase.register("SmallThinkerForCausalLM")
  8503. class SmallThinkerModel(TextModel):
  8504. model_arch = gguf.MODEL_ARCH.SMALLTHINKER
  8505. def set_gguf_parameters(self):
  8506. super().set_gguf_parameters()
  8507. if (n_experts := self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))) is not None:
  8508. self.gguf_writer.add_expert_count(n_experts)
  8509. if (n_experts_used := self.hparams.get("num_experts_per_tok", self.hparams.get("moe_num_active_primary_experts"))) is not None:
  8510. self.gguf_writer.add_expert_used_count(n_experts_used)
  8511. if (moe_intermediate_size := self.hparams.get("moe_ffn_hidden_size")) is not None:
  8512. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  8513. self.gguf_writer.add_feed_forward_length(moe_intermediate_size)
  8514. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  8515. if (self.hparams.get('moe_primary_router_apply_softmax')):
  8516. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  8517. else:
  8518. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  8519. sliding_window_layout = self.hparams.get("sliding_window_layout")
  8520. if sliding_window_layout:
  8521. for i in sliding_window_layout:
  8522. if i != 0:
  8523. sliding_window = self.hparams.get("sliding_window_size")
  8524. if sliding_window:
  8525. self.gguf_writer.add_sliding_window(sliding_window)
  8526. break
  8527. _experts: list[dict[str, Tensor]] | None = None
  8528. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8529. # process the experts separately
  8530. if name.find("experts") != -1:
  8531. n_experts = self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))
  8532. assert bid is not None
  8533. if self._experts is None:
  8534. self._experts = [{} for _ in range(self.block_count)]
  8535. self._experts[bid][name] = data_torch
  8536. if len(self._experts[bid]) >= n_experts * 3:
  8537. tensors: list[tuple[str, Tensor]] = []
  8538. # merge the experts into a single 3d tensor
  8539. for w_name in ["down", "gate", "up"]:
  8540. datas: list[Tensor] = []
  8541. for xid in range(n_experts):
  8542. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  8543. datas.append(self._experts[bid][ename])
  8544. del self._experts[bid][ename]
  8545. data_torch = torch.stack(datas, dim=0)
  8546. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  8547. new_name = self.map_tensor_name(merged_name)
  8548. tensors.append((new_name, data_torch))
  8549. return tensors
  8550. else:
  8551. return []
  8552. return [(self.map_tensor_name(name), data_torch)]
  8553. def prepare_tensors(self):
  8554. super().prepare_tensors()
  8555. if self._experts is not None:
  8556. # flatten `list[dict[str, Tensor]]` into `list[str]`
  8557. experts = [k for d in self._experts for k in d.keys()]
  8558. if len(experts) > 0:
  8559. raise ValueError(f"Unprocessed experts: {experts}")
  8560. @ModelBase.register("ModernBertModel", "ModernBertForMaskedLM", "ModernBertForSequenceClassification")
  8561. class ModernBertModel(BertModel):
  8562. model_arch = gguf.MODEL_ARCH.MODERN_BERT
  8563. def set_vocab(self):
  8564. self.gguf_writer.add_add_bos_token(True)
  8565. self.gguf_writer.add_add_eos_token(True)
  8566. self.gguf_writer.add_add_sep_token(True)
  8567. self._set_vocab_gpt2()
  8568. def set_gguf_parameters(self):
  8569. super().set_gguf_parameters()
  8570. self.gguf_writer.add_sliding_window(self.hparams["local_attention"])
  8571. if (sliding_window_pattern := self.hparams.get("global_attn_every_n_layers")) is not None:
  8572. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  8573. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  8574. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  8575. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8576. # these layers act as MLM head, so we don't need them
  8577. if name.startswith("decoder."):
  8578. return []
  8579. if name.startswith("model."):
  8580. name = name[6:]
  8581. return super().modify_tensors(data_torch, name, bid)
  8582. @ModelBase.register("ApertusForCausalLM")
  8583. class ApertusModel(LlamaModel):
  8584. model_arch = gguf.MODEL_ARCH.APERTUS
  8585. undo_permute = False
  8586. _alpha_n = {}
  8587. _alpha_p = {}
  8588. _beta = {}
  8589. _eps = {}
  8590. def modify_tensors(self, data_torch, name, bid):
  8591. # Handle xIELU activation parameters
  8592. n_layers = self.hparams["num_hidden_layers"]
  8593. if name.endswith(".act_fn.alpha_n"):
  8594. self._alpha_n[bid] = data_torch.to("cpu").float().item()
  8595. if (len(self._alpha_n) == n_layers):
  8596. self.gguf_writer.add_xielu_alpha_n([self._alpha_n[k] for k in sorted(self._alpha_n)])
  8597. return []
  8598. if name.endswith(".act_fn.alpha_p"):
  8599. self._alpha_p[bid] = data_torch.to("cpu").float().item()
  8600. if (len(self._alpha_p) == n_layers):
  8601. self.gguf_writer.add_xielu_alpha_p([self._alpha_p[k] for k in sorted(self._alpha_p)])
  8602. return []
  8603. if name.endswith(".act_fn.beta"):
  8604. self._beta[bid] = data_torch.to("cpu").float().item()
  8605. if (len(self._beta) == n_layers):
  8606. self.gguf_writer.add_xielu_beta([self._beta[k] for k in sorted(self._beta)])
  8607. return []
  8608. if name.endswith(".act_fn.eps"):
  8609. self._eps[bid] = data_torch.to("cpu").float().item()
  8610. if (len(self._eps) == n_layers):
  8611. self.gguf_writer.add_xielu_eps([self._eps[k] for k in sorted(self._eps)])
  8612. return []
  8613. return super().modify_tensors(data_torch, name, bid)
  8614. class MistralModel(LlamaModel):
  8615. model_arch = gguf.MODEL_ARCH.MISTRAL3
  8616. model_name = "Mistral"
  8617. hf_arch = ""
  8618. is_mistral_format = True
  8619. undo_permute = False
  8620. def __init__(self, *args, **kwargs):
  8621. super().__init__(*args, **kwargs)
  8622. # for compatibility, we use LLAMA arch for older models
  8623. # TODO: remove this once everyone migrates to newer version of llama.cpp
  8624. if "llama_4_scaling" not in self.hparams:
  8625. self.model_arch = gguf.MODEL_ARCH.LLAMA
  8626. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[self.model_arch]
  8627. self.gguf_writer.add_architecture()
  8628. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  8629. def dequant_model(self):
  8630. # transform quantization config into HF format
  8631. quant_config = self.hparams.get("quantization")
  8632. if quant_config is not None:
  8633. assert quant_config["qformat_weight"] == "fp8_e4m3"
  8634. self.hparams["quantization_config"] = {
  8635. "activation_scheme": "static",
  8636. "quant_method": "fp8",
  8637. "weight_block_size": None,
  8638. }
  8639. return super().dequant_model()
  8640. @staticmethod
  8641. def get_community_chat_template(vocab: MistralVocab, templates_dir: Path, is_mistral_format: bool):
  8642. assert TokenizerVersion is not None and Tekkenizer is not None and SentencePieceTokenizer is not None, _mistral_import_error_msg
  8643. assert isinstance(vocab.tokenizer, (Tekkenizer, SentencePieceTokenizer)), (
  8644. f"Expected Tekkenizer or SentencePieceTokenizer, got {type(vocab.tokenizer)}"
  8645. )
  8646. if vocab.tokenizer.version == TokenizerVersion.v1:
  8647. return "mistral-v1"
  8648. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.spm:
  8649. return "mistral-v3"
  8650. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  8651. return "mistral-v3-tekken"
  8652. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.spm:
  8653. return "mistral-v7"
  8654. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  8655. return "mistral-v7-tekken"
  8656. elif vocab.tokenizer.version == TokenizerVersion.v11:
  8657. template_file = "Mistral-Small-3.2-24B-Instruct-2506.jinja"
  8658. elif vocab.tokenizer.version == TokenizerVersion.v13:
  8659. template_file = "unsloth-mistral-Devstral-Small-2507.jinja"
  8660. else:
  8661. err_message = f"Unknown tokenizer type: {vocab.tokenizer_type} and version {vocab.tokenizer.version}"
  8662. if is_mistral_format:
  8663. err_message += (
  8664. " . Please pass --disable-mistral-community-chat-template argument to the CLI "
  8665. "if you want to skip this error and use the Mistral official `mistral-common` pre-processing library."
  8666. )
  8667. raise ValueError(err_message)
  8668. template_path = templates_dir / template_file
  8669. if not template_path.exists():
  8670. raise FileNotFoundError(f"Template file not found: {template_path}")
  8671. with open(template_path, "r", encoding="utf-8") as f:
  8672. template = f.read()
  8673. return template
  8674. def set_gguf_parameters(self):
  8675. super().set_gguf_parameters()
  8676. MistralModel.set_mistral_config(self.gguf_writer, self.hparams)
  8677. @staticmethod
  8678. def set_mistral_config(gguf_writer: gguf.GGUFWriter, hparams: dict):
  8679. if "yarn" in hparams:
  8680. yarn_params = hparams["yarn"]
  8681. gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  8682. gguf_writer.add_rope_scaling_factor(yarn_params["factor"])
  8683. gguf_writer.add_rope_scaling_yarn_beta_fast(yarn_params["beta"])
  8684. gguf_writer.add_rope_scaling_yarn_beta_slow(yarn_params["alpha"])
  8685. gguf_writer.add_rope_scaling_yarn_log_mul(1.0) # mscale_all_dim
  8686. gguf_writer.add_rope_scaling_orig_ctx_len(yarn_params["original_max_position_embeddings"])
  8687. if "llama_4_scaling" in hparams:
  8688. gguf_writer.add_attn_temperature_scale(hparams["llama_4_scaling"]["beta"])
  8689. class MistralMoeModel(DeepseekV2Model):
  8690. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  8691. model_name = "Mistral"
  8692. hf_arch = ""
  8693. is_mistral_format = True
  8694. def __init__(self, *args, **kwargs):
  8695. super().__init__(*args, **kwargs)
  8696. logger.info("Using MistralMoeModel")
  8697. # remap hparams from Mistral MoE format to DeepseekV2 format
  8698. # we do this way to be able to reuse DeepseekV2Model set_gguf_parameters logic
  8699. # ref: https://github.com/vllm-project/vllm/blob/b294e28db2c5dee61bc25157664edcada8b90b31/vllm/transformers_utils/configs/mistral.py
  8700. config = self.hparams
  8701. # Mistral key -> HF key
  8702. config_mapping = {
  8703. "dim": "hidden_size",
  8704. "norm_eps": "rms_norm_eps",
  8705. "n_kv_heads": "num_key_value_heads",
  8706. "n_layers": "num_hidden_layers",
  8707. "n_heads": "num_attention_heads",
  8708. "hidden_dim": "intermediate_size",
  8709. }
  8710. # HF key -> (Mistral key, default value)
  8711. top_level_mapping_with_default = {
  8712. "model_type": ("model_type", "transformer"),
  8713. "hidden_act": ("activation", "silu"),
  8714. "tie_word_embeddings": ("tied_embeddings", False),
  8715. "max_seq_len": ("max_seq_len", config.get("max_position_embeddings", 128_000)),
  8716. "max_position_embeddings": ("max_position_embeddings", 128_000),
  8717. }
  8718. # mapping top-level keys
  8719. for key, new_key in config_mapping.items():
  8720. if key in config:
  8721. config[new_key] = config[key]
  8722. for new_key, (key, default_value) in top_level_mapping_with_default.items():
  8723. config[new_key] = config.get(key, default_value)
  8724. # mapping MoE-specific keys
  8725. moe_config_map = {
  8726. "route_every_n": "moe_layer_freq",
  8727. "first_k_dense_replace": "first_k_dense_replace",
  8728. "num_experts_per_tok": "num_experts_per_tok",
  8729. "num_experts": "n_routed_experts",
  8730. "expert_hidden_dim": "moe_intermediate_size",
  8731. "routed_scale": "routed_scaling_factor",
  8732. "num_shared_experts": "n_shared_experts",
  8733. "num_expert_groups": "n_group",
  8734. "num_expert_groups_per_tok": "topk_group",
  8735. }
  8736. moe = config["moe"]
  8737. for key, new_key in moe_config_map.items():
  8738. if key in moe:
  8739. config[new_key] = moe[key]
  8740. # provide missing values
  8741. config["topk_method"] = None
  8742. config["norm_topk_prob"] = True
  8743. config["scoring_func"] = "softmax"
  8744. def set_vocab(self):
  8745. self._set_vocab_mistral()
  8746. def set_gguf_parameters(self):
  8747. super().set_gguf_parameters()
  8748. MistralModel.set_mistral_config(self.gguf_writer, self.hparams)
  8749. yarn_params = self.hparams["yarn"]
  8750. self.gguf_writer.add_attn_temperature_length(yarn_params["original_max_position_embeddings"])
  8751. # [TAG_DEEPSEEK2_YARN_LOG_MUL_FIX]
  8752. # note: for legacy reasons, this is not consistent with the other usages of self.gguf_writer.add_rope_scaling_yarn_log_mul
  8753. # ref https://github.com/ggml-org/llama.cpp/pull/17945
  8754. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1) # mscale_all_dim * 0.1
  8755. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  8756. if name.startswith("vision_") or name.startswith("patch_merger.") or "mm_projector" in name:
  8757. return []
  8758. # rename certain tensors so that we can reuse DeepseekV2Model modify_tensors logic
  8759. if name.endswith(".qscale_act"):
  8760. name = name.replace(".qscale_act", ".input_scale")
  8761. if name.endswith(".qscale_weight"):
  8762. name = name.replace(".qscale_weight", ".weight_scale")
  8763. if ".wkv_b." in name:
  8764. name = name.replace(".wkv_b.", ".kv_b_proj.")
  8765. if ".experts." in name:
  8766. name = name.replace(".experts.", ".mlp.experts.")
  8767. name = name.replace(".w1.", ".gate_proj.")
  8768. name = name.replace(".w2.", ".down_proj.")
  8769. name = name.replace(".w3.", ".up_proj.")
  8770. name = "model." + name
  8771. return super().modify_tensors(data_torch, name, bid)
  8772. class PixtralModel(LlavaVisionModel):
  8773. model_name = "Pixtral"
  8774. hf_arch = ""
  8775. is_mistral_format = True
  8776. def set_gguf_parameters(self):
  8777. super().set_gguf_parameters()
  8778. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  8779. self.gguf_writer.add_vision_attention_layernorm_eps(
  8780. self.find_hparam(["norm_eps"])
  8781. )
  8782. self.gguf_writer.add_rope_freq_base(self.find_vparam(["rope_theta"]))
  8783. self.gguf_writer.add_vision_use_silu(True)
  8784. # spatial_merge_size
  8785. if self.find_vparam(["mm_projector_id"]) == "patch_merge":
  8786. self.gguf_writer.add_vision_spatial_merge_size(
  8787. self.find_vparam(["spatial_merge_size"])
  8788. )
  8789. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  8790. if name == "vision_language_adapter.w_in.weight":
  8791. return "mm.1.weight"
  8792. elif name == "vision_language_adapter.w_out.weight":
  8793. return "mm.2.weight"
  8794. return super().map_tensor_name(name, try_suffixes)
  8795. @ModelBase.register("LightOnOCRForConditionalGeneration")
  8796. class LightOnOCRVisionModel(LlavaVisionModel):
  8797. is_mistral_format = False
  8798. use_break_tok = False
  8799. def set_gguf_parameters(self):
  8800. super().set_gguf_parameters()
  8801. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LIGHTONOCR)
  8802. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  8803. name = name.replace("model.vision_encoder.", "vision_tower.")
  8804. name = name.replace("model.vision_projection.", "multi_modal_projector.")
  8805. return super().modify_tensors(data_torch, name, bid)
  8806. @ModelBase.register("KimiVLForConditionalGeneration")
  8807. class KimiVLModel(MmprojModel):
  8808. def __init__(self, *args, **kwargs):
  8809. super().__init__(*args, **kwargs)
  8810. assert self.hparams_vision is not None
  8811. self.hparams_vision["image_size"] = 64 * 14 # for compatibility
  8812. def set_gguf_parameters(self):
  8813. super().set_gguf_parameters()
  8814. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.KIMIVL)
  8815. self.gguf_writer.add_vision_use_gelu(True)
  8816. self.gguf_writer.add_vision_projector_scale_factor(2)
  8817. # eps is the same as pytorch's default value
  8818. assert self.hparams_vision is not None
  8819. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-5))
  8820. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8821. del bid # unused
  8822. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  8823. if is_vision_tensor:
  8824. if "pos_emb.weight" in name:
  8825. data_torch = data_torch.view(data_torch.shape[0] * data_torch.shape[1], data_torch.shape[2])
  8826. elif "wqkv" in name:
  8827. split_dim = 0 if "weight" in name else -1
  8828. wq, wk, wv = data_torch.chunk(3, dim=split_dim)
  8829. return [
  8830. (self.map_tensor_name(name.replace("wqkv", "wq")), wq),
  8831. (self.map_tensor_name(name.replace("wqkv", "wk")), wk),
  8832. (self.map_tensor_name(name.replace("wqkv", "wv")), wv)
  8833. ]
  8834. return [(self.map_tensor_name(name), data_torch)]
  8835. return [] # skip other tensors
  8836. @ModelBase.register("CogVLMForCausalLM")
  8837. class CogVLMVisionModel(MmprojModel):
  8838. def set_gguf_parameters(self):
  8839. super().set_gguf_parameters()
  8840. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-6))
  8841. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.COGVLM)
  8842. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8843. del bid # unused
  8844. if not name.startswith("model.vision."):
  8845. return []
  8846. return [(self.map_tensor_name(name), data_torch)]
  8847. @ModelBase.register("CogVLMForCausalLM")
  8848. class CogVLMModel(LlamaModel):
  8849. model_arch = gguf.MODEL_ARCH.COGVLM
  8850. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8851. del bid # unused
  8852. # block vision tensors
  8853. if name.startswith("model.vision."):
  8854. return []
  8855. return [(self.map_tensor_name(name), data_torch)]
  8856. @ModelBase.register("JanusForConditionalGeneration")
  8857. class JanusProModel(LlamaModel):
  8858. model_arch = gguf.MODEL_ARCH.LLAMA # reuse Llama arch
  8859. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8860. # Skip vision, aligner, and generation tensors
  8861. skip_prefixes = (
  8862. 'model.vision_model.',
  8863. 'model.aligner.',
  8864. 'model.vqmodel.',
  8865. 'model.generation_embeddings.',
  8866. 'model.generation_aligner.',
  8867. 'model.generation_head.',
  8868. )
  8869. if name.startswith(skip_prefixes):
  8870. return []
  8871. if name.startswith('model.language_model.'):
  8872. name = name.replace('model.language_model.', 'model.')
  8873. elif name.startswith('language_model.'):
  8874. name = name.replace('language_model.', '')
  8875. return super().modify_tensors(data_torch, name, bid)
  8876. @ModelBase.register("JanusForConditionalGeneration")
  8877. class JanusProVisionModel(MmprojModel):
  8878. def __init__(self, *args, **kwargs):
  8879. super().__init__(*args, **kwargs)
  8880. assert self.hparams_vision is not None
  8881. if "intermediate_size" not in self.hparams_vision:
  8882. mlp_ratio = self.hparams_vision.get("mlp_ratio")
  8883. hidden_size = self.hparams_vision.get("hidden_size")
  8884. if mlp_ratio is not None and hidden_size is not None:
  8885. self.hparams_vision["intermediate_size"] = int(round(hidden_size * mlp_ratio))
  8886. def set_gguf_parameters(self):
  8887. super().set_gguf_parameters()
  8888. assert self.hparams_vision is not None
  8889. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.JANUS_PRO)
  8890. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-6))
  8891. hidden_act = str(self.hparams_vision.get("hidden_act", "")).lower()
  8892. if hidden_act == "gelu":
  8893. self.gguf_writer.add_vision_use_gelu(True)
  8894. elif hidden_act == "silu":
  8895. self.gguf_writer.add_vision_use_silu(True)
  8896. def _map_aligner_tensor(self, data_torch: Tensor, name: str) -> Iterable[tuple[str, Tensor]]:
  8897. """Map aligner tensors to projector format"""
  8898. suffix = ".bias" if name.endswith(".bias") else ".weight"
  8899. if name.startswith("model.aligner."):
  8900. local_name = name[len("model.aligner."):]
  8901. elif name.startswith("aligner."):
  8902. local_name = name[len("aligner."):]
  8903. else:
  8904. raise ValueError(f"Unsupported Janus aligner prefix: {name}")
  8905. if local_name.startswith("fc1."):
  8906. mm_index = 0
  8907. elif local_name.startswith("hidden_layers."):
  8908. parts = local_name.split(".", 2)
  8909. if len(parts) < 3:
  8910. raise ValueError(f"Unexpected Janus aligner tensor name: {name}")
  8911. mm_index = int(parts[1]) + 1
  8912. else:
  8913. raise ValueError(f"Unsupported Janus aligner tensor: {name}")
  8914. tensor_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_MMPROJ, mm_index, suffix=suffix)
  8915. return [(tensor_name, data_torch)]
  8916. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8917. del bid # unused
  8918. # Skip language model tensors as they will be handled by `JanusProModel`
  8919. if name.startswith(('model.language_model.', 'language_model.')):
  8920. return []
  8921. # Skip generation-related components
  8922. skip_generation_prefixes = (
  8923. 'model.vqmodel.',
  8924. 'vqmodel.',
  8925. 'model.generation_embeddings.',
  8926. 'generation_embeddings.',
  8927. 'model.generation_aligner.',
  8928. 'generation_aligner.',
  8929. 'model.generation_head.',
  8930. 'generation_head.',
  8931. )
  8932. if name.startswith(skip_generation_prefixes):
  8933. return []
  8934. # Handle aligner tensors
  8935. if name.startswith(('model.aligner.', 'aligner.')):
  8936. return list(self._map_aligner_tensor(data_torch, name))
  8937. # Handle vision tensors
  8938. if name.startswith(('model.vision_model.', 'vision_model.')):
  8939. return [(self.map_tensor_name(name), data_torch)]
  8940. return []
  8941. @ModelBase.register("YoutuVLForConditionalGeneration")
  8942. class YoutuVLVisionModel(MmprojModel):
  8943. def __init__(self, *args, **kwargs):
  8944. super().__init__(*args, **kwargs)
  8945. assert self.hparams_vision is not None
  8946. self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
  8947. def set_gguf_parameters(self):
  8948. super().set_gguf_parameters()
  8949. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.YOUTUVL)
  8950. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-6))
  8951. # Handle activation function
  8952. hidden_act = str(self.hparams.get("hidden_act", "gelu_pytorch_tanh")).lower()
  8953. if hidden_act in ("gelu", "gelu_pytorch_tanh", "gelu_fast", "gelu_new", "gelu_accurate"):
  8954. self.gguf_writer.add_vision_use_gelu(True)
  8955. elif hidden_act == "silu":
  8956. self.gguf_writer.add_vision_use_silu(True)
  8957. else:
  8958. raise ValueError(f"Unsupported activation function for YOUTUVL: {hidden_act}")
  8959. self.gguf_writer.add_vision_spatial_merge_size(self.hparams.get("spatial_merge_size", 2))
  8960. window_size = self.hparams.get("window_size")
  8961. if window_size is not None:
  8962. self.gguf_writer.add_vision_window_size(window_size)
  8963. # fullatt_block_indexes contains explicit layer indices that use full attention
  8964. # e.g., [2, 5, 8, 11] means layers 2, 5, 8, 11 use full attention
  8965. # All other layers use window attention
  8966. fullatt_block_indexes = self.hparams.get("fullatt_block_indexes")
  8967. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for youtuvl"
  8968. # Store the explicit layer indices for YoutuVL (irregular pattern approach)
  8969. self.gguf_writer.add_vision_wa_layer_indexes(layers=fullatt_block_indexes)
  8970. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8971. del bid # unused
  8972. # Skip language model tensors
  8973. skip_prefixes = ('lm_head.', 'model.layers.', 'model.embed_tokens.', 'model.norm.')
  8974. if name.startswith(skip_prefixes):
  8975. return []
  8976. # Try to map the tensor using TensorNameMap (handles vision encoder and projector)
  8977. try:
  8978. new_name = self.map_tensor_name(name)
  8979. return [(new_name, data_torch)]
  8980. except ValueError:
  8981. # If mapping fails, log warning and skip
  8982. logger.warning(f"Cannot map tensor: {name}")
  8983. return []
  8984. @ModelBase.register("SolarOpenForCausalLM")
  8985. class SolarOpenModel(Glm4MoeModel):
  8986. model_arch = gguf.MODEL_ARCH.GLM4_MOE
  8987. def set_vocab(self):
  8988. from transformers import AutoTokenizer
  8989. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  8990. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  8991. tokens, toktypes, tokpre = self.get_vocab_base()
  8992. self.gguf_writer.add_tokenizer_model("gpt2")
  8993. self.gguf_writer.add_tokenizer_pre(tokpre)
  8994. self.gguf_writer.add_token_list(tokens)
  8995. self.gguf_writer.add_token_types(toktypes)
  8996. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  8997. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|endoftext|>"])
  8998. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<unk>"])
  8999. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|startoftext|>"])
  9000. special_vocab.add_to_gguf(self.gguf_writer)
  9001. ###### CONVERSION LOGIC ######
  9002. # tree of lazy tensors
  9003. class LazyTorchTensor(gguf.LazyBase):
  9004. _tensor_type = torch.Tensor
  9005. # to keep the type-checker happy
  9006. dtype: torch.dtype
  9007. shape: torch.Size
  9008. # only used when converting a torch.Tensor to a np.ndarray
  9009. _dtype_map: dict[torch.dtype, type] = {
  9010. torch.float16: np.float16,
  9011. torch.float32: np.float32,
  9012. torch.uint8: np.uint8,
  9013. }
  9014. # only used when byteswapping data. Only correct size is needed
  9015. _dtype_byteswap_map: dict[torch.dtype, type] = {
  9016. torch.float64: np.float64,
  9017. torch.float32: np.float32,
  9018. torch.bfloat16: np.float16,
  9019. torch.float16: np.float16,
  9020. torch.int64: np.int64,
  9021. torch.uint64: np.uint64,
  9022. torch.int32: np.int32,
  9023. torch.uint32: np.uint32,
  9024. torch.int16: np.int16,
  9025. torch.uint16: np.uint16,
  9026. torch.int8: np.int8,
  9027. torch.uint8: np.uint8,
  9028. torch.bool: np.uint8,
  9029. torch.float8_e4m3fn: np.uint8,
  9030. torch.float8_e5m2: np.uint8,
  9031. }
  9032. # used for safetensors slices
  9033. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  9034. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  9035. _dtype_str_map: dict[str, torch.dtype] = {
  9036. "F64": torch.float64,
  9037. "F32": torch.float32,
  9038. "BF16": torch.bfloat16,
  9039. "F16": torch.float16,
  9040. # "U64": torch.uint64,
  9041. "I64": torch.int64,
  9042. # "U32": torch.uint32,
  9043. "I32": torch.int32,
  9044. # "U16": torch.uint16,
  9045. "I16": torch.int16,
  9046. "U8": torch.uint8,
  9047. "I8": torch.int8,
  9048. "BOOL": torch.bool,
  9049. "F8_E4M3": torch.float8_e4m3fn,
  9050. "F8_E5M2": torch.float8_e5m2,
  9051. }
  9052. def numpy(self) -> gguf.LazyNumpyTensor:
  9053. dtype = self._dtype_map[self.dtype]
  9054. return gguf.LazyNumpyTensor(
  9055. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  9056. args=(self,),
  9057. func=(lambda s: s.numpy())
  9058. )
  9059. @classmethod
  9060. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  9061. return torch.empty(size=shape, dtype=dtype, device="meta")
  9062. @classmethod
  9063. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  9064. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  9065. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  9066. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[...] if len(s.get_shape()) == 0 else s[:])
  9067. return cast(torch.Tensor, lazy)
  9068. @classmethod
  9069. def from_local_tensor(cls, t: gguf.utility.LocalTensor) -> Tensor:
  9070. def load_tensor(tensor: gguf.utility.LocalTensor) -> Tensor:
  9071. def byteswap_tensor(tensor: np.ndarray, dtype: type) -> np.ndarray:
  9072. if sys.byteorder == 'big':
  9073. # switch data back to big endian
  9074. tensor = tensor.view(dtype).byteswap(inplace=False)
  9075. return tensor
  9076. dtype = cls._dtype_str_map[tensor.dtype]
  9077. numpy_dtype = cls._dtype_byteswap_map[dtype]
  9078. return torch.from_numpy(byteswap_tensor(tensor.mmap_bytes(), numpy_dtype)).view(dtype).reshape(tensor.shape)
  9079. dtype = cls._dtype_str_map[t.dtype]
  9080. shape = t.shape
  9081. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(t,), func=lambda r: load_tensor(r))
  9082. return cast(torch.Tensor, lazy)
  9083. @classmethod
  9084. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  9085. def byteswap_tensor(tensor: np.ndarray, dtype: type) -> np.ndarray:
  9086. if sys.byteorder == 'big':
  9087. # switch data back to big endian
  9088. tensor = tensor.view(dtype).byteswap(inplace=False)
  9089. return tensor
  9090. dtype = cls._dtype_str_map[remote_tensor.dtype]
  9091. numpy_dtype = cls._dtype_byteswap_map[dtype]
  9092. shape = remote_tensor.shape
  9093. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  9094. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.from_numpy(byteswap_tensor(np.frombuffer(r.data(), dtype=numpy_dtype), numpy_dtype)).view(dtype).reshape(shape))
  9095. return cast(torch.Tensor, lazy)
  9096. @classmethod
  9097. def __torch_function__(cls, func, types, args=(), kwargs=None):
  9098. del types # unused
  9099. if kwargs is None:
  9100. kwargs = {}
  9101. if func is torch.Tensor.numpy:
  9102. return args[0].numpy()
  9103. return cls._wrap_fn(func)(*args, **kwargs)
  9104. def parse_args() -> argparse.Namespace:
  9105. parser = argparse.ArgumentParser(
  9106. description="Convert a huggingface model to a GGML compatible file")
  9107. parser.add_argument(
  9108. "--vocab-only", action="store_true",
  9109. help="extract only the vocab",
  9110. )
  9111. parser.add_argument(
  9112. "--outfile", type=Path,
  9113. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  9114. )
  9115. parser.add_argument(
  9116. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="auto",
  9117. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type",
  9118. )
  9119. parser.add_argument(
  9120. "--bigendian", action="store_true",
  9121. help="model is executed on big endian machine",
  9122. )
  9123. parser.add_argument(
  9124. "model", type=str,
  9125. help="directory containing model file or huggingface repository ID (if --remote)",
  9126. nargs="?",
  9127. )
  9128. parser.add_argument(
  9129. "--use-temp-file", action="store_true",
  9130. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  9131. )
  9132. parser.add_argument(
  9133. "--no-lazy", action="store_true",
  9134. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  9135. )
  9136. parser.add_argument(
  9137. "--model-name", type=str, default=None,
  9138. help="name of the model",
  9139. )
  9140. parser.add_argument(
  9141. "--verbose", action="store_true",
  9142. help="increase output verbosity",
  9143. )
  9144. parser.add_argument(
  9145. "--split-max-tensors", type=int, default=0,
  9146. help="max tensors in each split",
  9147. )
  9148. parser.add_argument(
  9149. "--split-max-size", type=str, default="0",
  9150. help="max size per split N(M|G)",
  9151. )
  9152. parser.add_argument(
  9153. "--dry-run", action="store_true",
  9154. help="only print out a split plan and exit, without writing any new files",
  9155. )
  9156. parser.add_argument(
  9157. "--no-tensor-first-split", action="store_true",
  9158. help="do not add tensors to the first split (disabled by default)"
  9159. )
  9160. parser.add_argument(
  9161. "--metadata", type=Path,
  9162. help="Specify the path for an authorship metadata override file"
  9163. )
  9164. parser.add_argument(
  9165. "--print-supported-models", action="store_true",
  9166. help="Print the supported models"
  9167. )
  9168. parser.add_argument(
  9169. "--remote", action="store_true",
  9170. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  9171. )
  9172. parser.add_argument(
  9173. "--mmproj", action="store_true",
  9174. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  9175. )
  9176. parser.add_argument(
  9177. "--mistral-format", action="store_true",
  9178. help="Whether the model is stored following the Mistral format.",
  9179. )
  9180. parser.add_argument(
  9181. "--disable-mistral-community-chat-template", action="store_true",
  9182. help=(
  9183. "Whether to disable usage of Mistral community chat templates. If set, use the Mistral official `mistral-common` library for tokenization and detokenization of Mistral models. "
  9184. "Using `mistral-common` ensure correctness and zero-day support of tokenization for models converted from the Mistral format but requires to manually setup the tokenization server."
  9185. )
  9186. )
  9187. parser.add_argument(
  9188. "--sentence-transformers-dense-modules", action="store_true",
  9189. help=("Whether to include sentence-transformers dense modules. "
  9190. "It can be used for sentence-transformers models, like google/embeddinggemma-300m. "
  9191. "Default these modules are not included.")
  9192. )
  9193. args = parser.parse_args()
  9194. if not args.print_supported_models and args.model is None:
  9195. parser.error("the following arguments are required: model")
  9196. return args
  9197. def split_str_to_n_bytes(split_str: str) -> int:
  9198. if split_str.endswith("K"):
  9199. n = int(split_str[:-1]) * 1000
  9200. elif split_str.endswith("M"):
  9201. n = int(split_str[:-1]) * 1000 * 1000
  9202. elif split_str.endswith("G"):
  9203. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  9204. elif split_str.isnumeric():
  9205. n = int(split_str)
  9206. else:
  9207. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  9208. if n < 0:
  9209. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  9210. return n
  9211. def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
  9212. # TODO @ngxson : this won't work correctly if the model has both audio & vision encoders
  9213. # maybe we should fallback to text model's arch in that case, since not many models have both
  9214. text_config = hparams.get("text_config", {})
  9215. vision_config = hparams.get("vision_config", {})
  9216. arch = None
  9217. if (arches := hparams.get("architectures")) is not None and len(arches) > 0:
  9218. arch = arches[0]
  9219. elif "ssm_cfg" in hparams:
  9220. # For non-hf Mamba and Mamba2 models
  9221. arch = hparams["ssm_cfg"].get("layer", "Mamba") + "ForCausalLM"
  9222. # if "architectures" is found in the sub-config, use that instead
  9223. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  9224. arch = text_config["architectures"][0]
  9225. elif model_type == ModelType.MMPROJ and vision_config.get("architectures") is not None:
  9226. arch = vision_config["architectures"][0]
  9227. if arch is None:
  9228. raise ValueError("Failed to detect model architecture")
  9229. return arch
  9230. def main() -> None:
  9231. args = parse_args()
  9232. if args.print_supported_models:
  9233. logger.error("Supported models:")
  9234. ModelBase.print_registered_models()
  9235. sys.exit(0)
  9236. if args.verbose:
  9237. logging.basicConfig(level=logging.DEBUG)
  9238. else:
  9239. logging.basicConfig(level=logging.INFO)
  9240. if args.remote:
  9241. hf_repo_id = args.model
  9242. from huggingface_hub import snapshot_download
  9243. allowed_patterns = ["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"]
  9244. if args.sentence_transformers_dense_modules:
  9245. # include sentence-transformers dense modules safetensors files
  9246. allowed_patterns.append("*.safetensors")
  9247. local_dir = snapshot_download(
  9248. repo_id=hf_repo_id,
  9249. allow_patterns=allowed_patterns)
  9250. dir_model = Path(local_dir)
  9251. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  9252. else:
  9253. hf_repo_id = None
  9254. dir_model = Path(args.model)
  9255. if not dir_model.is_dir():
  9256. logger.error(f'Error: {dir_model} is not a directory')
  9257. sys.exit(1)
  9258. ftype_map: dict[str, gguf.LlamaFileType] = {
  9259. "f32": gguf.LlamaFileType.ALL_F32,
  9260. "f16": gguf.LlamaFileType.MOSTLY_F16,
  9261. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  9262. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  9263. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  9264. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  9265. "auto": gguf.LlamaFileType.GUESSED,
  9266. }
  9267. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  9268. if args.use_temp_file and is_split:
  9269. logger.error("Error: Cannot use temp file when splitting")
  9270. sys.exit(1)
  9271. if args.outfile is not None:
  9272. fname_out = args.outfile
  9273. elif hf_repo_id:
  9274. # if remote, use the model ID as the output file name
  9275. fname_out = Path("./" + hf_repo_id.replace("/", "-") + "-{ftype}.gguf")
  9276. else:
  9277. fname_out = dir_model
  9278. logger.info(f"Loading model: {dir_model.name}")
  9279. is_mistral_format = args.mistral_format
  9280. if is_mistral_format and not _mistral_common_installed:
  9281. raise ImportError(_mistral_import_error_msg)
  9282. disable_mistral_community_chat_template = args.disable_mistral_community_chat_template
  9283. with torch.inference_mode():
  9284. output_type = ftype_map[args.outtype]
  9285. model_type = ModelType.MMPROJ if args.mmproj else ModelType.TEXT
  9286. hparams = ModelBase.load_hparams(dir_model, is_mistral_format)
  9287. if not is_mistral_format:
  9288. model_architecture = get_model_architecture(hparams, model_type)
  9289. logger.info(f"Model architecture: {model_architecture}")
  9290. try:
  9291. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  9292. except NotImplementedError:
  9293. logger.error(f"Model {model_architecture} is not supported")
  9294. sys.exit(1)
  9295. elif args.mmproj:
  9296. assert hparams.get("vision_encoder") is not None, "This model does not support multimodal"
  9297. model_class = PixtralModel
  9298. elif "moe" in hparams:
  9299. model_class = MistralMoeModel
  9300. else:
  9301. model_class = MistralModel
  9302. model_instance = model_class(dir_model, output_type, fname_out,
  9303. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  9304. eager=args.no_lazy,
  9305. metadata_override=args.metadata, model_name=args.model_name,
  9306. split_max_tensors=args.split_max_tensors,
  9307. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  9308. small_first_shard=args.no_tensor_first_split,
  9309. remote_hf_model_id=hf_repo_id, disable_mistral_community_chat_template=disable_mistral_community_chat_template,
  9310. sentence_transformers_dense_modules=args.sentence_transformers_dense_modules
  9311. )
  9312. if args.vocab_only:
  9313. logger.info("Exporting model vocab...")
  9314. model_instance.write_vocab()
  9315. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  9316. else:
  9317. logger.info("Exporting model...")
  9318. model_instance.write()
  9319. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  9320. logger.info(f"Model successfully exported to {out_path}")
  9321. if __name__ == '__main__':
  9322. main()