1
0

perplexity.cpp 78 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066
  1. #include "arg.h"
  2. #include "common.h"
  3. #include "log.h"
  4. #include "llama.h"
  5. #include <algorithm>
  6. #include <array>
  7. #include <atomic>
  8. #include <cmath>
  9. #include <cstdio>
  10. #include <cstring>
  11. #include <ctime>
  12. #include <fstream>
  13. #include <mutex>
  14. #include <random>
  15. #include <sstream>
  16. #include <thread>
  17. #include <vector>
  18. #if defined(_MSC_VER)
  19. #pragma warning(disable: 4244 4267) // possible loss of data
  20. #endif
  21. struct results_perplexity {
  22. std::vector<llama_token> tokens;
  23. double ppl_value;
  24. std::vector<float> logits;
  25. std::vector<float> probs;
  26. };
  27. struct results_log_softmax {
  28. double log_softmax;
  29. float logit;
  30. float prob;
  31. };
  32. static void write_logfile(
  33. const llama_context * ctx, const common_params & params, const llama_model * model,
  34. const struct results_perplexity & results
  35. ) {
  36. if (params.logdir.empty()) {
  37. return;
  38. }
  39. if (params.hellaswag) {
  40. LOG_WRN("%s: logging results is not implemented for HellaSwag. No files will be written.\n", __func__);
  41. return;
  42. }
  43. const std::string timestamp = string_get_sortable_timestamp();
  44. const bool success = fs_create_directory_with_parents(params.logdir);
  45. if (!success) {
  46. LOG_WRN("%s: failed to create logdir %s, cannot write logfile\n",
  47. __func__, params.logdir.c_str());
  48. return;
  49. }
  50. const std::string logfile_path = params.logdir + timestamp + ".yml";
  51. FILE * logfile = fopen(logfile_path.c_str(), "w");
  52. if (logfile == NULL) {
  53. LOG_ERR("%s: failed to open logfile %s\n", __func__, logfile_path.c_str());
  54. return;
  55. }
  56. fprintf(logfile, "binary: main\n");
  57. char model_desc[128];
  58. llama_model_desc(model, model_desc, sizeof(model_desc));
  59. yaml_dump_non_result_info(logfile, params, ctx, timestamp, results.tokens, model_desc);
  60. fprintf(logfile, "\n");
  61. fprintf(logfile, "######################\n");
  62. fprintf(logfile, "# Perplexity Results #\n");
  63. fprintf(logfile, "######################\n");
  64. fprintf(logfile, "\n");
  65. yaml_dump_vector_float(logfile, "logits", results.logits);
  66. fprintf(logfile, "ppl_value: %f\n", results.ppl_value);
  67. yaml_dump_vector_float(logfile, "probs", results.probs);
  68. llama_perf_dump_yaml(logfile, ctx);
  69. fclose(logfile);
  70. }
  71. static std::vector<float> softmax(const std::vector<float>& logits) {
  72. std::vector<float> probs(logits.size());
  73. float max_logit = logits[0];
  74. for (float v : logits) {
  75. max_logit = std::max(max_logit, v);
  76. }
  77. double sum_exp = 0.0;
  78. for (size_t i = 0; i < logits.size(); i++) {
  79. // Subtract the maximum logit value from the current logit value for numerical stability
  80. const float logit = logits[i] - max_logit;
  81. const float exp_logit = expf(logit);
  82. sum_exp += exp_logit;
  83. probs[i] = exp_logit;
  84. }
  85. for (size_t i = 0; i < probs.size(); i++) {
  86. probs[i] /= sum_exp;
  87. }
  88. return probs;
  89. }
  90. static results_log_softmax log_softmax(int n_vocab, const float * logits, int tok) {
  91. float max_logit = logits[0];
  92. for (int i = 1; i < n_vocab; ++i) {
  93. max_logit = std::max(max_logit, logits[i]);
  94. }
  95. double sum_exp = 0.0;
  96. for (int i = 0; i < n_vocab; ++i) {
  97. sum_exp += expf(logits[i] - max_logit);
  98. }
  99. return {logits[tok] - max_logit - log(sum_exp), logits[tok], expf(logits[tok] - max_logit) / (float) sum_exp};
  100. }
  101. static inline int nearest_int(float fval) {
  102. //assert(fval <= 4194303.f);
  103. float val = fval + 12582912.f;
  104. int i; memcpy(&i, &val, sizeof(int));
  105. return (i & 0x007fffff) - 0x00400000;
  106. }
  107. static double log_softmax(int n_vocab, const float * logits, uint16_t * log_prob, int tok) {
  108. float max_logit = logits[0];
  109. float min_logit = logits[0];
  110. for (int i = 1; i < n_vocab; ++i) {
  111. max_logit = std::max(max_logit, logits[i]);
  112. min_logit = std::min(min_logit, logits[i]);
  113. }
  114. min_logit = std::max(min_logit, max_logit - 16);
  115. double sum_exp = 0.0;
  116. for (int i = 0; i < n_vocab; ++i) {
  117. sum_exp += expf(logits[i] - max_logit);
  118. }
  119. const float log_sum_exp = log(sum_exp);
  120. const float min_log_prob = min_logit - max_logit - log_sum_exp;
  121. const float scale = (max_logit - min_logit)/65535.f;
  122. float * d = (float *)log_prob;
  123. d[0] = scale;
  124. d[1] = min_log_prob;
  125. log_prob += 4;
  126. if (scale) {
  127. const float inv_scale = 1/scale;
  128. for (int i = 0; i < n_vocab; ++i) {
  129. log_prob[i] = logits[i] > min_logit ? nearest_int(inv_scale*(logits[i] - min_logit)) : 0;
  130. }
  131. } else {
  132. std::memset(log_prob, 0, n_vocab*sizeof(uint16_t));
  133. }
  134. return max_logit + log_sum_exp - logits[tok];
  135. }
  136. static void process_logits(
  137. int n_vocab, const float * logits, const int * tokens, int n_token, std::vector<std::thread> & workers,
  138. double & nll, double & nll2, float * logit_history, float * prob_history
  139. ) {
  140. std::mutex mutex;
  141. int counter = 0;
  142. auto compute = [&mutex, &counter, &nll, &nll2, logit_history, prob_history, n_vocab, logits, tokens, n_token] () {
  143. double local_nll = 0;
  144. double local_nll2 = 0;
  145. while (true) {
  146. std::unique_lock<std::mutex> lock(mutex);
  147. int i = counter++;
  148. if (i >= n_token) {
  149. nll += local_nll; nll2 += local_nll2;
  150. break;
  151. }
  152. lock.unlock();
  153. const results_log_softmax results = log_softmax(n_vocab, logits + size_t(i)*n_vocab, tokens[i+1]);
  154. const double v = -results.log_softmax;
  155. local_nll += v;
  156. local_nll2 += v*v;
  157. logit_history[i] = results.logit;
  158. prob_history[i] = results.prob;
  159. }
  160. };
  161. for (auto & w : workers) {
  162. w = std::thread(compute);
  163. }
  164. compute();
  165. for (auto & w : workers) {
  166. w.join();
  167. }
  168. }
  169. static void process_logits(std::ostream& out, int n_vocab, const float * logits, const int * tokens, int n_token,
  170. std::vector<std::thread> & workers, std::vector<uint16_t> & log_probs, double & nll, double & nll2) {
  171. std::mutex mutex;
  172. const int nv = 2*((n_vocab + 1)/2) + 4;
  173. int counter = 0;
  174. auto compute = [&mutex, &counter, &log_probs, &nll, &nll2, n_vocab, logits, tokens, n_token, nv] () {
  175. double local_nll = 0;
  176. double local_nll2 = 0;
  177. while (true) {
  178. std::unique_lock<std::mutex> lock(mutex);
  179. int i = counter++;
  180. if (i >= n_token) {
  181. nll += local_nll; nll2 += local_nll2;
  182. break;
  183. }
  184. lock.unlock();
  185. const double v = log_softmax(n_vocab, logits + size_t(i)*n_vocab, log_probs.data() + i*nv, tokens[i+1]);
  186. local_nll += v;
  187. local_nll2 += v*v;
  188. }
  189. };
  190. for (auto & w : workers) {
  191. w = std::thread(compute);
  192. }
  193. compute();
  194. for (auto & w : workers) {
  195. w.join();
  196. }
  197. out.write((const char *)log_probs.data(), n_token*nv*sizeof(uint16_t));
  198. }
  199. struct kl_divergence_result {
  200. double sum_nll = 0.0;
  201. double sum_nll2 = 0.0;
  202. double sum_nll_base = 0.0;
  203. double sum_nll_base2 = 0.0;
  204. double sum_nll_nll_base = 0.0;
  205. double sum_kld = 0.0;
  206. double sum_kld2 = 0.0;
  207. double sum_p_diff = 0.0;
  208. double sum_p_diff2 = 0.0;
  209. double sum_p_diff4 = 0.0;
  210. float max_p_diff = 0.0f;
  211. size_t n_same_top = 0.0;
  212. size_t count = 0.0;
  213. };
  214. static std::pair<double, float> log_softmax(int n_vocab, const float * logits, const uint16_t * base_log_prob, int tok, kl_divergence_result & kld) {
  215. float max_logit = logits[0];
  216. int imax = 0;
  217. for (int i = 1; i < n_vocab; ++i) {
  218. if (logits[i] > max_logit) {
  219. max_logit = logits[i];
  220. imax = i;
  221. }
  222. }
  223. double sum_exp = 0.0;
  224. for (int i = 0; i < n_vocab; ++i) {
  225. sum_exp += expf(logits[i] - max_logit);
  226. }
  227. const float log_sum_exp = log(sum_exp);
  228. const float * d = (const float *)base_log_prob;
  229. const float scale = d[0];
  230. const float min_log_prob = d[1];
  231. base_log_prob += 4;
  232. const float nll = max_logit + log_sum_exp - logits[tok];
  233. kld.sum_nll += nll;
  234. kld.sum_nll2 += nll*nll;
  235. const float nll_base = -(scale*base_log_prob[tok] + min_log_prob);
  236. kld.sum_nll_base += nll_base;
  237. kld.sum_nll_base2 += nll_base*nll_base;
  238. kld.sum_nll_nll_base += nll*nll_base;
  239. max_logit += log_sum_exp;
  240. double sum = 0;
  241. int imax_base = -1;
  242. float p_log_base_max = 0;
  243. for (int i = 0; i < n_vocab; ++i) {
  244. const float p_log_base = scale*base_log_prob[i] + min_log_prob;
  245. if (i == 0 || p_log_base > p_log_base_max) {
  246. p_log_base_max = p_log_base;
  247. imax_base = i;
  248. }
  249. if (p_log_base > -16.f) {
  250. const float p_base = expf(p_log_base);
  251. sum += p_base * (p_log_base - logits[i] + max_logit);
  252. }
  253. }
  254. kld.sum_kld += sum;
  255. kld.sum_kld2 += sum*sum;
  256. ++kld.count;
  257. if (imax == imax_base) {
  258. ++kld.n_same_top;
  259. }
  260. const float p_base = expf(-nll_base);
  261. const float p = expf(-nll);
  262. const float p_diff = p - p_base;
  263. kld.sum_p_diff += p_diff;
  264. const double p_diff2 = p_diff*p_diff;
  265. kld.sum_p_diff2 += p_diff2;
  266. kld.sum_p_diff4 += p_diff2*p_diff2;
  267. kld.max_p_diff = std::max(kld.max_p_diff, std::fabs(p_diff));
  268. return std::make_pair(sum, p_diff);
  269. }
  270. static void process_logits(int n_vocab, const float * logits, const int * tokens, int n_token,
  271. std::vector<std::thread> & workers, const std::vector<uint16_t> & base_log_probs, kl_divergence_result & kld,
  272. float * kld_values, float * p_diff_values) {
  273. std::mutex mutex;
  274. const int nv = 2*((n_vocab + 1)/2) + 4;
  275. int counter = 0;
  276. auto compute = [&mutex, &counter, &base_log_probs, &kld, n_vocab, logits, tokens, n_token, nv, kld_values, p_diff_values] () {
  277. kl_divergence_result local_kld;
  278. while (true) {
  279. std::unique_lock<std::mutex> lock(mutex);
  280. int i = counter++;
  281. if (i >= n_token) {
  282. kld.sum_nll += local_kld.sum_nll;
  283. kld.sum_nll2 += local_kld.sum_nll2;
  284. kld.sum_nll_base += local_kld.sum_nll_base;
  285. kld.sum_nll_base2 += local_kld.sum_nll_base2;
  286. kld.sum_nll_nll_base += local_kld.sum_nll_nll_base;
  287. kld.sum_kld += local_kld.sum_kld;
  288. kld.sum_kld2 += local_kld.sum_kld2;
  289. kld.sum_p_diff += local_kld.sum_p_diff;
  290. kld.sum_p_diff2 += local_kld.sum_p_diff2;
  291. kld.sum_p_diff4 += local_kld.sum_p_diff4;
  292. kld.n_same_top += local_kld.n_same_top;
  293. kld.max_p_diff = std::max(kld.max_p_diff, local_kld.max_p_diff);
  294. kld.count += local_kld.count;
  295. break;
  296. }
  297. lock.unlock();
  298. std::pair<double, float> v = log_softmax(n_vocab, logits + size_t(i)*n_vocab, base_log_probs.data() + i*nv, tokens[i+1], local_kld);
  299. kld_values[i] = (float)v.first;
  300. p_diff_values[i] = v.second;
  301. }
  302. };
  303. for (auto & w : workers) {
  304. w = std::thread(compute);
  305. }
  306. compute();
  307. for (auto & w : workers) {
  308. w.join();
  309. }
  310. }
  311. static results_perplexity perplexity_v2(llama_context * ctx, const common_params & params) {
  312. // Download: https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip
  313. // Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
  314. // Output: `perplexity: 13.5106 [114/114]`
  315. // BOS tokens will be added for each chunk before eval
  316. const bool add_bos = llama_add_bos_token(llama_get_model(ctx));
  317. GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx)));
  318. LOG_INF("%s: tokenizing the input ..\n", __func__);
  319. std::vector<llama_token> tokens = common_tokenize(ctx, params.prompt, true);
  320. const int n_ctx = llama_n_ctx(ctx);
  321. if (int(tokens.size()) < 2*n_ctx) {
  322. LOG_ERR("%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*n_ctx,
  323. n_ctx);
  324. LOG_ERR("%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size());
  325. return {std::move(tokens), 0., {}, {}};
  326. }
  327. std::vector<float> logit_history;
  328. std::vector<float> prob_history;
  329. logit_history.resize(tokens.size());
  330. prob_history.resize(tokens.size());
  331. if (params.ppl_stride <= 0) {
  332. LOG_ERR("%s: stride is %d but must be greater than zero!\n",__func__,params.ppl_stride);
  333. return {tokens, -1, logit_history, prob_history};
  334. }
  335. const int calc_chunk = n_ctx;
  336. LOG_INF("%s: have %zu tokens. Calculation chunk = %d\n", __func__, tokens.size(), calc_chunk);
  337. if (int(tokens.size()) <= calc_chunk) {
  338. LOG_ERR("%s: there are only %zu tokens, this is not enough for a context size of %d and stride %d\n",__func__,
  339. tokens.size(), n_ctx, params.ppl_stride);
  340. return {tokens, -1, logit_history, prob_history};
  341. }
  342. const int n_chunk_max = (tokens.size() - calc_chunk + params.ppl_stride - 1) / params.ppl_stride;
  343. const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
  344. const int n_batch = params.n_batch;
  345. const int n_vocab = llama_n_vocab(llama_get_model(ctx));
  346. int count = 0;
  347. double nll = 0.0;
  348. LOG_INF("%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch);
  349. for (int i = 0; i < n_chunk; ++i) {
  350. const int start = i * params.ppl_stride;
  351. const int end = start + calc_chunk;
  352. const int num_batches = (calc_chunk + n_batch - 1) / n_batch;
  353. //LOG_DBG("%s: evaluating %d...%d using %d batches\n", __func__, start, end, num_batches);
  354. std::vector<float> logits;
  355. const auto t_start = std::chrono::high_resolution_clock::now();
  356. // clear the KV cache
  357. llama_kv_cache_clear(ctx);
  358. for (int j = 0; j < num_batches; ++j) {
  359. const int batch_start = start + j * n_batch;
  360. const int batch_size = std::min(end - batch_start, n_batch);
  361. //LOG_DBG(" Batch %d: starts at %d, size is %d, n_past is %d\n",j,batch_start,batch_size,j * n_batch);
  362. // TODO: use llama_batch.logits instead of relying on logits_all == true
  363. if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) {
  364. //LOG_ERR("%s : failed to eval\n", __func__);
  365. return {tokens, -1, logit_history, prob_history};
  366. }
  367. // save original token and restore it after eval
  368. const auto token_org = tokens[batch_start];
  369. // add BOS token for the first batch of each chunk
  370. if (add_bos && j == 0) {
  371. tokens[batch_start] = llama_token_bos(llama_get_model(ctx));
  372. }
  373. const auto * batch_logits = llama_get_logits(ctx);
  374. logits.insert(logits.end(), batch_logits, batch_logits + size_t(batch_size) * n_vocab);
  375. if (j == 0) {
  376. tokens[batch_start] = token_org;
  377. }
  378. }
  379. const auto t_end = std::chrono::high_resolution_clock::now();
  380. if (i == 0) {
  381. const float t_total = std::chrono::duration<float>(t_end - t_start).count();
  382. LOG_INF("%s: %.2f seconds per pass - ETA ", __func__, t_total);
  383. int total_seconds = (int)(t_total * n_chunk);
  384. if (total_seconds >= 60*60) {
  385. LOG("%d hours ", total_seconds / (60*60));
  386. total_seconds = total_seconds % (60*60);
  387. }
  388. LOG("%.2f minutes\n", total_seconds / 60.0);
  389. }
  390. //LOG_DBG("%s: using tokens %d...%d\n",__func__,params.n_ctx - params.ppl_stride + start, params.n_ctx + start);
  391. for (int j = n_ctx - params.ppl_stride - 1; j < n_ctx - 1; ++j) {
  392. // Calculate probability of next token, given the previous ones.
  393. const std::vector<float> tok_logits(
  394. logits.begin() + size_t(j + 0) * n_vocab,
  395. logits.begin() + size_t(j + 1) * n_vocab);
  396. const float prob = softmax(tok_logits)[tokens[start + j + 1]];
  397. logit_history[start + j + 1] = tok_logits[tokens[start + j + 1]];
  398. prob_history[start + j + 1] = prob;
  399. nll += -std::log(prob);
  400. ++count;
  401. }
  402. // perplexity is e^(average negative log-likelihood)
  403. if (params.ppl_output_type == 0) {
  404. LOG("[%d]%.4lf,", i + 1, std::exp(nll / count));
  405. } else {
  406. LOG("%8d %.4lf\n", i*params.ppl_stride, std::exp(nll / count));
  407. }
  408. }
  409. LOG("\n");
  410. return {tokens, std::exp(nll / count), logit_history, prob_history};
  411. }
  412. static results_perplexity perplexity(llama_context * ctx, const common_params & params, const int32_t n_ctx) {
  413. if (params.ppl_stride > 0) {
  414. return perplexity_v2(ctx, params);
  415. }
  416. // Download: https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip
  417. // Run `./llama-perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
  418. // Output: `perplexity: 13.5106 [114/114]`
  419. // BOS tokens will be added for each chunk before eval
  420. const bool add_bos = llama_add_bos_token(llama_get_model(ctx));
  421. GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx)));
  422. std::ofstream logits_stream;
  423. if (!params.logits_file.empty()) {
  424. logits_stream.open(params.logits_file.c_str(), std::ios::binary);
  425. if (!logits_stream.is_open()) {
  426. LOG_ERR("%s: failed to open %s for writing\n", __func__, params.logits_file.c_str());
  427. return {};
  428. }
  429. LOG_INF("%s: saving all logits to %s\n", __func__, params.logits_file.c_str());
  430. logits_stream.write("_logits_", 8);
  431. logits_stream.write(reinterpret_cast<const char *>(&n_ctx), sizeof(n_ctx));
  432. }
  433. auto tim1 = std::chrono::high_resolution_clock::now();
  434. LOG_INF("%s: tokenizing the input ..\n", __func__);
  435. std::vector<llama_token> tokens = common_tokenize(ctx, params.prompt, true);
  436. auto tim2 = std::chrono::high_resolution_clock::now();
  437. LOG_INF("%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast<std::chrono::microseconds>(tim2-tim1).count());
  438. if (int(tokens.size()) < 2*n_ctx) {
  439. LOG_ERR("%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*n_ctx,
  440. n_ctx);
  441. LOG_ERR("%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size());
  442. return {std::move(tokens), 0., {}, {}};
  443. }
  444. std::vector<float> logit_history;
  445. logit_history.resize(tokens.size());
  446. std::vector<float> prob_history;
  447. prob_history.resize(tokens.size());
  448. const int n_chunk_max = tokens.size() / n_ctx;
  449. const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
  450. const int n_batch = params.n_batch;
  451. const int n_vocab = llama_n_vocab(llama_get_model(ctx));
  452. int count = 0;
  453. double nll = 0.0;
  454. double nll2 = 0.0;
  455. const int num_batches = (n_ctx + n_batch - 1) / n_batch;
  456. const int n_seq = std::max(1, n_batch / n_ctx);
  457. GGML_ASSERT(n_batch < n_ctx || n_batch % n_ctx == 0);
  458. GGML_ASSERT(params.n_ctx == n_seq * n_ctx);
  459. llama_batch batch = llama_batch_init(std::min(n_batch, n_ctx*n_seq), 0, 1);
  460. std::vector<float> logits;
  461. if (num_batches > 1) {
  462. logits.reserve(size_t(n_ctx) * n_vocab);
  463. }
  464. LOG_INF("%s: calculating perplexity over %d chunks, n_ctx=%d, batch_size=%d, n_seq=%d\n", __func__, n_chunk, n_ctx, n_batch, n_seq);
  465. std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);
  466. std::vector<uint16_t> log_probs;
  467. if (!params.logits_file.empty()) {
  468. logits_stream.write((const char *)&n_vocab, sizeof(n_vocab));
  469. logits_stream.write((const char *)&n_chunk, sizeof(n_chunk));
  470. logits_stream.write((const char *)tokens.data(), n_chunk*n_ctx*sizeof(tokens[0]));
  471. const int nv = 2*((n_vocab + 1)/2) + 4;
  472. log_probs.resize(n_ctx * nv);
  473. }
  474. // We get the logits for all the tokens in the context window (params.n_ctx)
  475. // from llama_eval above. Now, based on https://huggingface.co/docs/transformers/perplexity,
  476. // calculate the perplexity over the last half of the window (so the model always has
  477. // some context to predict the token).
  478. //
  479. // We rely on the fact that attention in the forward pass only looks at previous
  480. // tokens here, so the logits returned for each token are an accurate representation
  481. // of what the model would have predicted at that point.
  482. //
  483. // Example, we have a context window of 512, we will compute perplexity for each of the
  484. // last 256 tokens. Then, we split the input up into context window size chunks to
  485. // process the entire prompt.
  486. const int first = n_ctx/2;
  487. for (int i = 0; i < n_chunk; i += n_seq) {
  488. const int start = i * n_ctx;
  489. const int end = start + n_ctx;
  490. const int n_seq_batch = std::min(n_seq, n_chunk - i);
  491. const auto t_start = std::chrono::high_resolution_clock::now();
  492. // clear the KV cache
  493. llama_kv_cache_clear(ctx);
  494. for (int j = 0; j < num_batches; ++j) {
  495. const int batch_start = start + j * n_batch;
  496. const int batch_size = std::min(end - batch_start, n_batch);
  497. int n_outputs = 0;
  498. batch.n_tokens = 0;
  499. for (int seq = 0; seq < n_seq_batch; seq++) {
  500. int seq_start = batch_start + seq*n_ctx;
  501. // save original token and restore it after eval
  502. const auto token_org = tokens[seq_start];
  503. // add BOS token for the first batch of each chunk
  504. if (add_bos && j == 0) {
  505. tokens[seq_start] = llama_token_bos(llama_get_model(ctx));
  506. }
  507. for (int k = 0; k < batch_size; ++k) {
  508. const int idx = seq*n_ctx + k;
  509. batch.token [idx] = tokens[seq_start + k];
  510. batch.pos [idx] = j*n_batch + k;
  511. batch.n_seq_id[idx] = 1;
  512. batch.seq_id [idx][0] = seq;
  513. batch.logits [idx] = batch.pos[idx] >= first ? 1 : 0;
  514. n_outputs += batch.logits[idx] != 0;
  515. }
  516. batch.n_tokens += batch_size;
  517. // restore the original token in case it was set to BOS
  518. tokens[seq_start] = token_org;
  519. }
  520. if (llama_decode(ctx, batch)) {
  521. LOG_INF("%s : failed to eval\n", __func__);
  522. return {tokens, -1, logit_history, prob_history};
  523. }
  524. if (num_batches > 1 && n_outputs > 0) {
  525. const auto * batch_logits = llama_get_logits(ctx);
  526. logits.insert(logits.end(), batch_logits, batch_logits + size_t(n_outputs) * n_vocab);
  527. }
  528. }
  529. if (i == 0) {
  530. llama_synchronize(ctx);
  531. const auto t_end = std::chrono::high_resolution_clock::now();
  532. const float t_total = std::chrono::duration<float>(t_end - t_start).count();
  533. LOG_INF("%s: %.2f seconds per pass - ETA ", __func__, t_total);
  534. int total_seconds = (int)(t_total*n_chunk/n_seq);
  535. if (total_seconds >= 60*60) {
  536. LOG("%d hours ", total_seconds / (60*60));
  537. total_seconds = total_seconds % (60*60);
  538. }
  539. LOG("%.2f minutes\n", total_seconds / 60.0);
  540. }
  541. for (int seq = 0; seq < n_seq_batch; seq++) {
  542. const float * all_logits = num_batches > 1 ? logits.data() : llama_get_logits_ith(ctx, seq*n_ctx + first);
  543. llama_token * tokens_data = tokens.data() + start + seq*n_ctx + first;
  544. if (!params.logits_file.empty()) {
  545. process_logits(logits_stream, n_vocab, all_logits,
  546. tokens_data, n_ctx - 1 - first,
  547. workers, log_probs, nll, nll2);
  548. } else {
  549. process_logits(n_vocab, all_logits,
  550. tokens_data, n_ctx - 1 - first,
  551. workers, nll, nll2,
  552. logit_history.data() + start + seq*n_ctx + first,
  553. prob_history.data() + start + seq*n_ctx + first);
  554. }
  555. count += n_ctx - first - 1;
  556. // perplexity is e^(average negative log-likelihood)
  557. if (params.ppl_output_type == 0) {
  558. LOG("[%d]%.4lf,", i + seq + 1, std::exp(nll / count));
  559. } else {
  560. double av = nll/count;
  561. double av2 = nll2/count - av*av;
  562. if (av2 > 0) {
  563. av2 = sqrt(av2/(count-1));
  564. }
  565. LOG("%8d %.4lf %4lf %4lf\n", i*n_ctx, std::exp(nll / count), av, av2);
  566. }
  567. }
  568. logits.clear();
  569. }
  570. LOG("\n");
  571. nll2 /= count;
  572. nll /= count;
  573. const double ppl = exp(nll);
  574. nll2 -= nll * nll;
  575. if (nll2 > 0) {
  576. nll2 = sqrt(nll2/(count-1));
  577. LOG_INF("Final estimate: PPL = %.4lf +/- %.5lf\n", ppl, nll2*ppl);
  578. } else {
  579. LOG_ERR("Unexpected negative standard deviation of log(prob)\n");
  580. }
  581. llama_batch_free(batch);
  582. return {tokens, ppl, logit_history, prob_history};
  583. }
  584. static bool decode_helper(llama_context * ctx, llama_batch & batch, std::vector<float> & batch_logits, int n_batch, int n_vocab) {
  585. int prev_outputs = 0;
  586. for (int i = 0; i < (int) batch.n_tokens; i += n_batch) {
  587. const int n_tokens = std::min<int>(n_batch, batch.n_tokens - i);
  588. llama_batch batch_view = {
  589. n_tokens,
  590. batch.token + i,
  591. nullptr,
  592. batch.pos + i,
  593. batch.n_seq_id + i,
  594. batch.seq_id + i,
  595. batch.logits + i,
  596. 0, 0, 0, // unused
  597. };
  598. const int ret = llama_decode(ctx, batch_view);
  599. if (ret != 0) {
  600. LOG_ERR("failed to decode the batch, n_batch = %d, ret = %d\n", n_batch, ret);
  601. return false;
  602. }
  603. int n_outputs = 0;
  604. for (int i = 0; i < n_tokens; ++i) {
  605. n_outputs += batch_view.logits[i] != 0;
  606. }
  607. memcpy(batch_logits.data() + size_t(prev_outputs)*n_vocab, llama_get_logits(ctx), size_t(n_outputs)*n_vocab*sizeof(float));
  608. prev_outputs += n_outputs;
  609. }
  610. return true;
  611. }
  612. #define K_TOKEN_CHUNK 4
  613. static void compute_logprobs(const float * batch_logits, int n_vocab, std::vector<std::thread>& workers,
  614. const std::vector<std::pair<size_t, llama_token>>& eval_pairs, std::vector<float>& eval_results) {
  615. if (eval_results.size() != eval_pairs.size()) {
  616. eval_results.resize(eval_pairs.size());
  617. }
  618. if (eval_pairs.empty()) {
  619. return;
  620. }
  621. size_t max_threads = std::min((eval_pairs.size() + K_TOKEN_CHUNK - 1)/K_TOKEN_CHUNK, workers.size());
  622. std::atomic<int> counter(0);
  623. auto compute = [&counter, &eval_pairs, &eval_results, batch_logits, n_vocab] () {
  624. float local_logprobs[K_TOKEN_CHUNK];
  625. while (true) {
  626. const size_t first = counter.fetch_add(K_TOKEN_CHUNK, std::memory_order_relaxed);
  627. if (first >= eval_results.size()) {
  628. break;
  629. }
  630. const size_t last = std::min(first + K_TOKEN_CHUNK, eval_results.size());
  631. for (size_t i = first; i < last; ++i) {
  632. const auto * logits = batch_logits + eval_pairs[i].first * n_vocab;
  633. float max_logit = logits[0];
  634. for (int j = 1; j < n_vocab; ++j) {
  635. max_logit = std::max(max_logit, logits[j]);
  636. }
  637. float sum_p = 0.f;
  638. for (int j = 0; j < n_vocab; ++j) {
  639. sum_p += expf(logits[j] - max_logit);
  640. }
  641. local_logprobs[i - first] = logits[eval_pairs[i].second] - max_logit - std::log(sum_p);
  642. }
  643. std::memcpy(eval_results.data() + first, local_logprobs, (last - first)*sizeof(float));
  644. }
  645. };
  646. for (size_t it = 0; it < max_threads; ++it) {
  647. workers[it] = std::thread(compute);
  648. }
  649. for (size_t it = 0; it < max_threads; ++it) {
  650. workers[it].join();
  651. }
  652. }
  653. static void hellaswag_score(llama_context * ctx, const common_params & params) {
  654. // Calculates hellaswag score (acc_norm) from prompt
  655. //
  656. // Data extracted from the HellaSwag validation dataset (MIT license) https://github.com/rowanz/hellaswag/blob/master/data/hellaswag_val.jsonl
  657. // All used data fields are preprocessed as in https://github.com/EleutherAI/lm-evaluation-harness/blob/df3da98c5405deafd519c2ddca52bb7c3fe36bef/lm_eval/tasks/hellaswag.py#L62-L68
  658. //
  659. // All 10042 tasks should be extracted to keep the results standardized like other implementations.
  660. //
  661. // Datafile layout:
  662. // ['??'] denotes json fields
  663. // 6 lines per task:
  664. // ['activity_label'] + ": " +['ctx'] - The first part of the query, the context
  665. // ['label'] - The index the best common sense ending aka gold ending
  666. // ['endings'][0] - Endings added to the first part of the query
  667. // ['endings'][1]
  668. // ['endings'][2]
  669. // ['endings'][3]
  670. std::vector<std::string> prompt_lines;
  671. std::istringstream strstream(params.prompt);
  672. std::string line;
  673. while (std::getline(strstream,line,'\n')) {
  674. prompt_lines.push_back(line);
  675. }
  676. if (prompt_lines.size() % 6 != 0) {
  677. LOG_ERR("%s : number of lines in prompt not a multiple of 6.\n", __func__);
  678. return;
  679. }
  680. size_t hs_task_count = prompt_lines.size()/6;
  681. LOG_INF("%s : loaded %zu tasks from prompt.\n", __func__, hs_task_count);
  682. const bool is_spm = llama_vocab_type(llama_get_model(ctx)) == LLAMA_VOCAB_TYPE_SPM;
  683. LOG_INF("================================= is_spm = %d\n", is_spm);
  684. // The tasks should be randomized so the score stabilizes quickly.
  685. bool randomize_tasks = true;
  686. // Number of tasks to use when computing the score
  687. if (params.hellaswag_tasks < hs_task_count) {
  688. hs_task_count = params.hellaswag_tasks;
  689. }
  690. // The random seed should not impact the final result if the computation is done over enough tasks, so kept hardcoded for now
  691. std::mt19937 rng(1);
  692. // Dataholder for hellaswag tasks
  693. struct hs_data_t {
  694. std::string context;
  695. size_t gold_ending_idx;
  696. std::string ending[4];
  697. size_t ending_logprob_count[4];
  698. double ending_logprob[4];
  699. size_t i_logits; // starting index of logits in the llama_batch
  700. size_t common_prefix; // max number of initial tokens that are the same in all sentences
  701. size_t required_tokens; // needed number of tokens to evaluate all 4 endings
  702. std::vector<llama_token> seq_tokens[4];
  703. };
  704. LOG_INF("%s : selecting %zu %s tasks.\n", __func__, hs_task_count, (randomize_tasks?"randomized":"the first") );
  705. // Select and read data from prompt lines
  706. std::vector<hs_data_t> hs_data(hs_task_count);
  707. for (size_t i = 0; i < hs_task_count; i++) {
  708. size_t idx = i;
  709. auto & hs_cur = hs_data[i];
  710. // Select a random example of those left in the prompt
  711. if (randomize_tasks) {
  712. std::uniform_int_distribution<size_t> dist(0, prompt_lines.size()/6-1 ) ;
  713. idx = dist(rng);
  714. }
  715. hs_cur.context = prompt_lines[idx*6];
  716. hs_cur.gold_ending_idx = std::stoi( prompt_lines[idx*6+1] );
  717. for (size_t j = 0; j < 4; j++) {
  718. hs_cur.ending[j] = prompt_lines[idx*6+2+j];
  719. hs_cur.seq_tokens[j] = common_tokenize(ctx, hs_cur.context + " " + hs_cur.ending[j], true);
  720. }
  721. // determine the common prefix of the endings
  722. hs_cur.common_prefix = 0;
  723. for (size_t k = 0; k < hs_cur.seq_tokens[0].size(); k++) {
  724. if (hs_cur.seq_tokens[0][k] != hs_cur.seq_tokens[1][k] ||
  725. hs_cur.seq_tokens[0][k] != hs_cur.seq_tokens[2][k] ||
  726. hs_cur.seq_tokens[0][k] != hs_cur.seq_tokens[3][k]) {
  727. break;
  728. }
  729. hs_cur.common_prefix++;
  730. }
  731. hs_cur.required_tokens = hs_cur.common_prefix +
  732. hs_cur.seq_tokens[0].size() - hs_cur.common_prefix +
  733. hs_cur.seq_tokens[1].size() - hs_cur.common_prefix +
  734. hs_cur.seq_tokens[2].size() - hs_cur.common_prefix +
  735. hs_cur.seq_tokens[3].size() - hs_cur.common_prefix;
  736. //GGML_ASSERT(hs_cur.common_prefix >= ::llama_tokenize(ctx, hs_cur.context, true).size());
  737. // Delete the selected random example from the prompt
  738. if (randomize_tasks) {
  739. prompt_lines.erase( std::next(prompt_lines.begin(),idx*6) , std::next(prompt_lines.begin(),idx*6+6) );
  740. }
  741. }
  742. LOG_INF("%s : calculating hellaswag score over selected tasks.\n", __func__);
  743. LOG("\ntask\tacc_norm\n");
  744. double acc = 0.0f;
  745. const int n_ctx = llama_n_ctx(ctx);
  746. const int n_batch = params.n_batch;
  747. const int n_vocab = llama_n_vocab(llama_get_model(ctx));
  748. const int max_tasks_per_batch = 32;
  749. const int max_seq = std::min(4*max_tasks_per_batch, (int) llama_n_seq_max(ctx));
  750. llama_batch batch = llama_batch_init(n_ctx, 0, 4);
  751. std::vector<float> tok_logits(n_vocab);
  752. // TODO: this could be made smaller; it's currently the worst-case size
  753. std::vector<float> batch_logits(size_t(n_ctx)*n_vocab);
  754. std::vector<std::pair<size_t, llama_token>> eval_pairs;
  755. std::vector<float> eval_results;
  756. std::vector<std::thread> workers(std::thread::hardware_concurrency());
  757. for (size_t i0 = 0; i0 < hs_task_count; i0++) {
  758. int n_cur = 0;
  759. size_t i1 = i0;
  760. size_t i_logits = 0; // this tells us how many logits were needed before this point in the batch
  761. common_batch_clear(batch);
  762. // batch as much tasks as possible into the available context
  763. // each task has 4 unique sequence ids - one for each ending
  764. // the common prefix is shared among the 4 sequences to save tokens
  765. // we extract logits only from the last common token and from all ending tokens of each sequence
  766. while (n_cur + (int) hs_data[i1].required_tokens <= n_ctx) {
  767. auto & hs_cur = hs_data[i1];
  768. int n_logits = 0;
  769. const int s0 = 4*(i1 - i0);
  770. if (s0 + 4 > max_seq) {
  771. break;
  772. }
  773. for (size_t i = 0; i < hs_cur.common_prefix; ++i) {
  774. common_batch_add(batch, hs_cur.seq_tokens[0][i], i, { s0 + 0, s0 + 1, s0 + 2, s0 + 3 }, false);
  775. }
  776. batch.logits[batch.n_tokens - 1] = true; // we need logits for the last token of the common prefix
  777. n_logits += 1;
  778. for (int s = 0; s < 4; ++s) {
  779. const size_t seq_tokens_size = hs_cur.seq_tokens[s].size();
  780. // TODO: don't evaluate the last token of each sequence
  781. for (size_t i = hs_cur.common_prefix; i < seq_tokens_size; ++i) {
  782. const bool needs_logits = i < seq_tokens_size - 1;
  783. common_batch_add(batch, hs_cur.seq_tokens[s][i], i, { s0 + s }, needs_logits);
  784. n_logits += needs_logits;
  785. }
  786. }
  787. hs_cur.i_logits = i_logits;
  788. i_logits += n_logits;
  789. n_cur += hs_data[i1].required_tokens;
  790. if (++i1 == hs_task_count) {
  791. break;
  792. }
  793. }
  794. if (i0 == i1) {
  795. LOG_ERR("%s : task %zu does not fit in the context window\n", __func__, i0);
  796. return;
  797. }
  798. llama_kv_cache_clear(ctx);
  799. // decode all tasks [i0, i1)
  800. if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) {
  801. LOG_ERR("%s: llama_decode() failed\n", __func__);
  802. return;
  803. }
  804. // Compute log-probs in parallel
  805. // First we collect all tasks
  806. eval_pairs.clear();
  807. for (size_t i = i0; i < i1; ++i) {
  808. auto & hs_cur = hs_data[i];
  809. size_t li = 1; // skip the last logit of the common prefix (computed separately below)
  810. for (int s = 0; s < 4; ++s) {
  811. for (size_t j = hs_cur.common_prefix; j < hs_cur.seq_tokens[s].size() - 1; j++) {
  812. eval_pairs.emplace_back(hs_cur.i_logits + li++, hs_cur.seq_tokens[s][j + 1]);
  813. }
  814. }
  815. }
  816. // Then we do the actual calculation
  817. compute_logprobs(batch_logits.data(), n_vocab, workers, eval_pairs, eval_results);
  818. size_t ir = 0;
  819. // compute the logprobs for each ending of the decoded tasks
  820. for (size_t i = i0; i < i1; ++i) {
  821. auto & hs_cur = hs_data[i];
  822. // get the logits of the last token of the common prefix
  823. std::memcpy(tok_logits.data(), batch_logits.data() + hs_cur.i_logits*n_vocab, n_vocab*sizeof(float));
  824. const auto first_probs = softmax(tok_logits);
  825. for (int s = 0; s < 4; ++s) {
  826. hs_cur.ending_logprob_count[s] = 1;
  827. hs_cur.ending_logprob[s] = std::log(first_probs[hs_cur.seq_tokens[s][hs_cur.common_prefix]]);
  828. for (size_t j = hs_cur.common_prefix; j < hs_cur.seq_tokens[s].size() - 1; j++) {
  829. hs_cur.ending_logprob[s] += eval_results[ir++];
  830. hs_cur.ending_logprob_count[s]++;
  831. }
  832. hs_cur.ending_logprob[s] /= hs_cur.ending_logprob_count[s];
  833. }
  834. // Find the ending with maximum logprob
  835. size_t ending_logprob_max_idx = 0;
  836. double ending_logprob_max_val = hs_cur.ending_logprob[0];
  837. for (size_t s = 1; s < 4; s++) {
  838. if (hs_cur.ending_logprob[s] > ending_logprob_max_val) {
  839. ending_logprob_max_idx = s;
  840. ending_logprob_max_val = hs_cur.ending_logprob[s];
  841. }
  842. }
  843. //LOG("max logprob ending idx %lu, gold ending idx %lu\n", ending_logprob_max_idx, hs_cur.gold_ending_idx);
  844. // If the gold ending got the maximum logprobe add one accuracy point
  845. if (ending_logprob_max_idx == hs_cur.gold_ending_idx) {
  846. acc += 1.0;
  847. }
  848. // Print the accumulated accuracy mean x 100
  849. LOG("%zu\t%.8lf\n", i + 1, acc/double(i + 1)*100.0);
  850. }
  851. i0 = i1 - 1;
  852. }
  853. llama_batch_free(batch);
  854. LOG("\n");
  855. }
  856. struct winogrande_entry {
  857. std::string first;
  858. std::string second;
  859. std::array<std::string, 2> choices;
  860. int answer;
  861. size_t i_logits;
  862. size_t common_prefix;
  863. size_t required_tokens;
  864. size_t n_base1; // number of tokens for context + choice 1
  865. size_t n_base2; // number of tokens for context + choice 2
  866. std::vector<llama_token> seq_tokens[2];
  867. };
  868. static std::vector<winogrande_entry> load_winogrande_from_csv(const std::string & prompt) {
  869. std::vector<winogrande_entry> result;
  870. std::istringstream in(prompt);
  871. std::string line;
  872. std::array<int, 4> comma_pos;
  873. while (true) {
  874. std::getline(in, line);
  875. if (in.fail() || in.eof()) break;
  876. int ipos = 0;
  877. bool quote_open = false;
  878. for (int i = 0; i < int(line.size()); ++i) {
  879. if (!quote_open) {
  880. if (line[i] == ',') {
  881. comma_pos[ipos++] = i;
  882. if (ipos == 4) break;
  883. }
  884. else if (line[i] == '"') {
  885. quote_open = true;
  886. }
  887. }
  888. else {
  889. if (line[i] == '"') {
  890. quote_open = false;
  891. }
  892. }
  893. }
  894. if (ipos != 4) {
  895. LOG_ERR("%s: failed to find comma separators in <%s>\n", __func__, line.c_str());
  896. continue;
  897. }
  898. auto sentence = line[comma_pos[0]+1] == '"' ? line.substr(comma_pos[0]+2, comma_pos[1] - comma_pos[0] - 3)
  899. : line.substr(comma_pos[0]+1, comma_pos[1] - comma_pos[0] - 1);
  900. auto choice1 = line.substr(comma_pos[1]+1, comma_pos[2] - comma_pos[1] - 1);
  901. auto choice2 = line.substr(comma_pos[2]+1, comma_pos[3] - comma_pos[2] - 1);
  902. auto answer = line.substr(comma_pos[3]+1, line.size() - comma_pos[3] - 1);
  903. auto index = line.substr(0, comma_pos[0]);
  904. int where = 0;
  905. for ( ; where < int(sentence.size()); ++where) {
  906. if (sentence[where] == '_') break;
  907. }
  908. if (where == int(sentence.size())) {
  909. LOG_ERR("%s: no _ in <%s>\n", __func__, sentence.c_str());
  910. continue;
  911. }
  912. std::istringstream stream(answer.c_str());
  913. int i_answer; stream >> i_answer;
  914. if (stream.fail() || i_answer < 1 || i_answer > 2) {
  915. LOG_ERR("%s: failed to parse answer <%s>\n", __func__, answer.c_str());
  916. continue;
  917. }
  918. result.emplace_back();
  919. auto& wg = result.back();
  920. wg.first = sentence.substr(0, where);
  921. wg.second = sentence.substr(where + 1, sentence.size() - where - 1);
  922. wg.choices[0] = std::move(choice1);
  923. wg.choices[1] = std::move(choice2);
  924. wg.answer = i_answer;
  925. }
  926. return result;
  927. }
  928. /*
  929. * Evaluates the Winogrande score.
  930. * Uses a CSV containing task index, dentence, choice 1, choice 2, answer (1 or 2)
  931. * You can get one such dataset from e.g. https://huggingface.co/datasets/ikawrakow/winogrande-eval-for-llama.cpp
  932. * As an example, the 1st row in the above dataset is
  933. *
  934. * 0,Sarah was a much better surgeon than Maria so _ always got the easier cases.,Sarah,Maria,2
  935. *
  936. */
  937. static void winogrande_score(llama_context * ctx, const common_params & params) {
  938. constexpr int k_min_trailing_ctx = 3;
  939. auto data = load_winogrande_from_csv(params.prompt);
  940. if (data.empty()) {
  941. LOG_ERR("%s: no tasks\n", __func__);
  942. return;
  943. }
  944. LOG_INF("%s : loaded %zu tasks from prompt.\n", __func__, data.size());
  945. if (params.winogrande_tasks > 0 && params.winogrande_tasks < data.size()) {
  946. LOG_INF("%s : selecting %zu random tasks\n", __func__, params.winogrande_tasks);
  947. std::mt19937 rng(1);
  948. std::vector<int> aux(data.size());
  949. for (int i = 0; i < int(data.size()); ++i) {
  950. aux[i] = i;
  951. }
  952. float scale = 1/(1.f + (float)rng.max());
  953. std::vector<winogrande_entry> selected;
  954. selected.resize(params.winogrande_tasks);
  955. for (int i = 0; i < int(params.winogrande_tasks); ++i) {
  956. int j = int(scale*rng()*aux.size());
  957. selected[i] = std::move(data[aux[j]]);
  958. aux[j] = aux.back();
  959. aux.pop_back();
  960. }
  961. data = std::move(selected);
  962. }
  963. LOG_INF("%s : tokenizing selected tasks\n", __func__);
  964. for (auto & task : data) {
  965. task.seq_tokens[0] = common_tokenize(ctx, task.first + task.choices[0] + task.second, true);
  966. task.seq_tokens[1] = common_tokenize(ctx, task.first + task.choices[1] + task.second, true);
  967. task.common_prefix = 0;
  968. for (size_t k = 0; k < task.seq_tokens[0].size(); k++) {
  969. if (task.seq_tokens[0][k] != task.seq_tokens[1][k]) {
  970. break;
  971. }
  972. task.common_prefix++;
  973. }
  974. // TODO: the last token of each of the sequences don't need to be evaluated
  975. task.required_tokens = task.common_prefix +
  976. task.seq_tokens[0].size() - task.common_prefix +
  977. task.seq_tokens[1].size() - task.common_prefix;
  978. task.n_base1 = common_tokenize(ctx, task.first + task.choices[0], true).size();
  979. task.n_base2 = common_tokenize(ctx, task.first + task.choices[1], true).size();
  980. }
  981. LOG_INF("%s : calculating winogrande score over selected tasks.\n", __func__);
  982. const int n_ctx = llama_n_ctx(ctx);
  983. const int n_batch = params.n_batch;
  984. const int n_vocab = llama_n_vocab(llama_get_model(ctx));
  985. const int max_tasks_per_batch = 128;
  986. const int max_seq = std::min(2*max_tasks_per_batch, (int) llama_n_seq_max(ctx));
  987. llama_batch batch = llama_batch_init(n_ctx, 0, 2);
  988. std::vector<float> tok_logits(n_vocab);
  989. // TODO: this could be made smaller; it's currently the worst-case size
  990. std::vector<float> batch_logits(size_t(n_ctx)*n_vocab);
  991. std::vector<std::pair<size_t, llama_token>> eval_pairs;
  992. std::vector<float> eval_results;
  993. std::vector<std::thread> workers(std::thread::hardware_concurrency());
  994. int n_correct = 0;
  995. int n_done = 0;
  996. for (size_t i0 = 0; i0 < data.size(); i0++) {
  997. int n_cur = 0;
  998. size_t i1 = i0;
  999. size_t i_logits = 0;
  1000. common_batch_clear(batch);
  1001. while (n_cur + (int) data[i1].required_tokens <= n_ctx) {
  1002. int n_logits = 0;
  1003. const int s0 = 2*(i1 - i0);
  1004. if (s0 + 2 > max_seq) {
  1005. break;
  1006. }
  1007. for (size_t i = 0; i < data[i1].common_prefix; ++i) {
  1008. common_batch_add(batch, data[i1].seq_tokens[0][i], i, { s0 + 0, s0 + 1 }, false);
  1009. }
  1010. batch.logits[batch.n_tokens - 1] = true;
  1011. n_logits += 1;
  1012. for (int s = 0; s < 2; ++s) {
  1013. // TODO: end before the last token, no need to predict past the end of the sequences
  1014. for (size_t i = data[i1].common_prefix; i < data[i1].seq_tokens[s].size(); ++i) {
  1015. common_batch_add(batch, data[i1].seq_tokens[s][i], i, { s0 + s }, true);
  1016. n_logits += 1;
  1017. }
  1018. }
  1019. data[i1].i_logits = i_logits;
  1020. i_logits += n_logits;
  1021. n_cur += data[i1].required_tokens;
  1022. if (++i1 == data.size()) {
  1023. break;
  1024. }
  1025. }
  1026. if (i0 == i1) {
  1027. LOG_ERR("%s : task %zu does not fit in the context window\n", __func__, i0);
  1028. return;
  1029. }
  1030. llama_kv_cache_clear(ctx);
  1031. // decode all tasks [i0, i1)
  1032. if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) {
  1033. LOG_ERR("%s: llama_decode() failed\n", __func__);
  1034. return;
  1035. }
  1036. eval_pairs.clear();
  1037. for (size_t i = i0; i < i1; ++i) {
  1038. auto & task = data[i];
  1039. const bool skip_choice =
  1040. task.seq_tokens[0].size() - task.common_prefix > k_min_trailing_ctx &&
  1041. task.seq_tokens[1].size() - task.common_prefix > k_min_trailing_ctx;
  1042. const auto& n_base1 = skip_choice ? task.n_base1 : task.common_prefix;
  1043. const int last_1st = task.seq_tokens[0].size() - n_base1 > 1 ? 1 : 0;
  1044. size_t li = n_base1 - task.common_prefix;
  1045. for (size_t j = n_base1-1; j < task.seq_tokens[0].size()-1-last_1st; ++j) {
  1046. eval_pairs.emplace_back(task.i_logits + li++, task.seq_tokens[0][j+1]);
  1047. }
  1048. const auto& n_base2 = skip_choice ? task.n_base2 : task.common_prefix;
  1049. const int last_2nd = task.seq_tokens[1].size() - n_base2 > 1 ? 1 : 0;
  1050. // FIXME: this uses the wrong first logits when not skipping the choice word
  1051. li = task.seq_tokens[0].size() - task.common_prefix + n_base2 - task.common_prefix;
  1052. for (size_t j = n_base2-1; j < task.seq_tokens[1].size()-1-last_2nd; ++j) {
  1053. eval_pairs.emplace_back(task.i_logits + li++, task.seq_tokens[1][j+1]);
  1054. }
  1055. }
  1056. compute_logprobs(batch_logits.data(), n_vocab, workers, eval_pairs, eval_results);
  1057. size_t ir = 0;
  1058. for (size_t i = i0; i < i1; ++i) {
  1059. auto & task = data[i];
  1060. const bool skip_choice =
  1061. task.seq_tokens[0].size() - task.common_prefix > k_min_trailing_ctx &&
  1062. task.seq_tokens[1].size() - task.common_prefix > k_min_trailing_ctx;
  1063. float score_1st = 0;
  1064. const auto& n_base1 = skip_choice ? task.n_base1 : task.common_prefix;
  1065. const int last_1st = task.seq_tokens[0].size() - n_base1 > 1 ? 1 : 0;
  1066. for (size_t j = n_base1-1; j < task.seq_tokens[0].size()-1-last_1st; ++j) {
  1067. score_1st += eval_results[ir++];
  1068. }
  1069. score_1st /= (task.seq_tokens[0].size() - n_base1 - last_1st);
  1070. float score_2nd = 0;
  1071. const auto& n_base2 = skip_choice ? task.n_base2 : task.common_prefix;
  1072. const int last_2nd = task.seq_tokens[1].size() - n_base2 > 1 ? 1 : 0;
  1073. for (size_t j = n_base2-1; j < task.seq_tokens[1].size()-1-last_2nd; ++j) {
  1074. score_2nd += eval_results[ir++];
  1075. }
  1076. score_2nd /= (task.seq_tokens[1].size() - n_base2 - last_2nd);
  1077. int result = score_1st > score_2nd ? 1 : 2;
  1078. if (result == task.answer) {
  1079. ++n_correct;
  1080. }
  1081. ++n_done;
  1082. // print the accumulated accuracy mean x 100
  1083. LOG("%zu\t%.4lf\t%10.6f %10.6f %d %d\n", i+1, 100.0 * n_correct/n_done, score_1st, score_2nd, result, task.answer);
  1084. }
  1085. i0 = i1 - 1;
  1086. }
  1087. LOG("\n");
  1088. if (n_done < 100) return;
  1089. const float p = 1.f*n_correct/n_done;
  1090. const float sigma = 100.f*sqrt(p*(1-p)/(n_done-1));
  1091. LOG_INF("Final Winogrande score(%d tasks): %.4lf +/- %.4lf\n", n_done, 100*p, sigma);
  1092. }
  1093. static bool deserialize_string(std::istream & in, std::string & str) {
  1094. uint32_t size;
  1095. if (!in.read((char *)&size, sizeof(size)).fail()) {
  1096. str.resize(size);
  1097. if (!in.read((char *)&str[0], size).fail()) return true;
  1098. }
  1099. return false;
  1100. }
  1101. struct multiple_choice_answers {
  1102. std::vector<std::string> answers;
  1103. std::vector<int> labels;
  1104. bool deserialize(std::istream& in) {
  1105. uint32_t n;
  1106. in.read((char *)&n, sizeof(n));
  1107. if (in.fail() || n > 100) return false; // 100 as max. number of answers should be good enough for any practical purpose
  1108. answers.resize(n);
  1109. labels.resize(n);
  1110. for (auto& a : answers) {
  1111. if (!deserialize_string(in, a)) return false;
  1112. }
  1113. in.read((char *)labels.data(), n*sizeof(int));
  1114. return !in.fail();
  1115. }
  1116. };
  1117. struct multiple_choice_task {
  1118. std::string question; // the question (or context that needs to be continued)
  1119. multiple_choice_answers mc1; // possible answers (continuations) with a single correct answer
  1120. multiple_choice_answers mc2; // possible answers (continuations) with multiple correct answers - not handled yet
  1121. bool deserialize(std::istream& in) {
  1122. if (!deserialize_string(in, question)) return false;
  1123. return mc1.deserialize(in) && mc2.deserialize(in);
  1124. }
  1125. // For evaluation
  1126. size_t i_logits; // starting index of logits in the llama_batch
  1127. size_t common_prefix; // max number of initial tokens that are the same in all sentences
  1128. size_t required_tokens; // needed number of tokens to evaluate all answers
  1129. std::vector<std::vector<llama_token>> seq_tokens;
  1130. std::vector<float> log_probs;
  1131. };
  1132. static bool multiple_choice_prepare_one_task(llama_context * ctx, multiple_choice_task& task, bool log_error) {
  1133. if (task.question.empty() || task.mc1.answers.empty()) {
  1134. if (log_error) {
  1135. LOG_ERR("%s: found bad task with empty question and/or answers\n", __func__);
  1136. }
  1137. return false;
  1138. }
  1139. task.seq_tokens.reserve(task.mc1.answers.size());
  1140. for (auto& answer : task.mc1.answers) {
  1141. if (answer.empty()) {
  1142. if (log_error) {
  1143. LOG_ERR("%s: found empty answer\n", __func__);
  1144. }
  1145. return false;
  1146. }
  1147. task.seq_tokens.emplace_back(::common_tokenize(ctx, task.question + " " + answer, true));
  1148. }
  1149. auto min_len = task.seq_tokens.front().size();
  1150. for (auto& seq : task.seq_tokens) {
  1151. min_len = std::min(min_len, seq.size());
  1152. }
  1153. task.common_prefix = 0;
  1154. for (size_t k = 0; k < min_len; ++k) {
  1155. auto token = task.seq_tokens[0][k];
  1156. bool all_same = true;
  1157. for (size_t i = 1; i < task.seq_tokens.size(); ++i) {
  1158. if (task.seq_tokens[i][k] != token) {
  1159. all_same = false;
  1160. break;
  1161. }
  1162. }
  1163. if (!all_same) {
  1164. break;
  1165. }
  1166. ++task.common_prefix;
  1167. }
  1168. task.required_tokens = task.common_prefix;
  1169. for (auto& seq : task.seq_tokens) {
  1170. task.required_tokens += seq.size() - task.common_prefix;
  1171. }
  1172. return true;
  1173. }
  1174. //
  1175. // Calculates score for multiple choice tasks with single correct answer from prompt.
  1176. // Commonly used LLM evaluation metrics of this type are
  1177. // * ARC
  1178. // * HellaSwag
  1179. // * MMLU
  1180. // * TruthfulQA
  1181. //
  1182. // Validation datasets for these 4 tests can be found at
  1183. // https://huggingface.co/datasets/ikawrakow/validation-datasets-for-llama.cpp
  1184. // The data for these datasets was extracted from
  1185. // git@hf.co:datasets/allenai/ai2_arc
  1186. // https://github.com/rowanz/hellaswag/blob/master/data/hellaswag_val.jsonl
  1187. // git@hf.co:datasets/Stevross/mmlu
  1188. // https://huggingface.co/datasets/truthful_qa
  1189. //
  1190. static void multiple_choice_score(llama_context * ctx, const common_params & params) {
  1191. std::istringstream strstream(params.prompt);
  1192. uint32_t n_task;
  1193. strstream.read((char *)&n_task, sizeof(n_task));
  1194. if (strstream.fail() || n_task == 0) {
  1195. LOG_ERR("%s: no tasks\n", __func__);
  1196. return;
  1197. }
  1198. LOG_INF("%s: there are %u tasks in prompt\n", __func__, n_task);
  1199. std::vector<uint32_t> task_pos(n_task);
  1200. strstream.read((char *)task_pos.data(), task_pos.size()*sizeof(uint32_t));
  1201. if (strstream.fail()) {
  1202. LOG_ERR("%s: failed to read task positions from prompt\n", __func__);
  1203. return;
  1204. }
  1205. std::vector<multiple_choice_task> tasks;
  1206. if (params.multiple_choice_tasks == 0 || params.multiple_choice_tasks >= (size_t)n_task) {
  1207. // Use all tasks
  1208. tasks.resize(n_task);
  1209. LOG_INF("%s: reading tasks", __func__);
  1210. int n_dot = std::max((int) n_task/100, 1);
  1211. int i = 0;
  1212. for (auto& task : tasks) {
  1213. ++i;
  1214. if (!task.deserialize(strstream)) {
  1215. LOG_ERR("%s: failed to read task %d of %u\n", __func__, i, n_task);
  1216. return;
  1217. }
  1218. if (i%n_dot == 0) LOG(".");
  1219. }
  1220. LOG("done\n");
  1221. }
  1222. else {
  1223. LOG_INF("%s: selecting %zu random tasks from %u tasks available\n", __func__, params.multiple_choice_tasks, n_task);
  1224. std::mt19937 rng(1);
  1225. std::vector<int> aux(n_task);
  1226. for (uint32_t i = 0; i < n_task; ++i) aux[i] = i;
  1227. float scale = 1.f/(1.f + (float)std::mt19937::max());
  1228. tasks.resize(params.multiple_choice_tasks);
  1229. for (auto& task : tasks) {
  1230. int j = (int)(scale * rng() * aux.size());
  1231. int idx = aux[j];
  1232. aux[j] = aux.back();
  1233. aux.pop_back();
  1234. strstream.seekg(task_pos[idx], std::ios::beg);
  1235. if (!task.deserialize(strstream)) {
  1236. LOG_ERR("%s: failed to read task %d at position %u\n", __func__, idx, task_pos[idx]);
  1237. return;
  1238. }
  1239. }
  1240. n_task = params.multiple_choice_tasks;
  1241. }
  1242. LOG_INF("%s: preparing task data", __func__);
  1243. if (n_task > 500) {
  1244. LOG("...");
  1245. std::atomic<int> counter(0);
  1246. std::atomic<int> n_bad(0);
  1247. auto prepare = [&counter, &n_bad, &tasks, ctx] () {
  1248. int num_tasks = tasks.size();
  1249. int n_bad_local = 0;
  1250. while (true) {
  1251. int first = counter.fetch_add(K_TOKEN_CHUNK);
  1252. if (first >= num_tasks) {
  1253. if (n_bad_local > 0) n_bad += n_bad_local;
  1254. break;
  1255. }
  1256. int last = std::min(first + K_TOKEN_CHUNK, num_tasks);
  1257. for (int i = first; i < last; ++i) {
  1258. if (!multiple_choice_prepare_one_task(ctx, tasks[i], false)) ++n_bad_local;
  1259. }
  1260. }
  1261. };
  1262. size_t max_thread = std::thread::hardware_concurrency();
  1263. max_thread = std::min(max_thread, (tasks.size() + K_TOKEN_CHUNK - 1)/K_TOKEN_CHUNK);
  1264. std::vector<std::thread> workers(max_thread-1);
  1265. for (auto& w : workers) w = std::thread(prepare);
  1266. prepare();
  1267. for (auto& w : workers) w.join();
  1268. LOG("done\n");
  1269. int nbad = n_bad;
  1270. if (nbad > 0) {
  1271. LOG_ERR("%s: found %d malformed tasks\n", __func__, nbad);
  1272. return;
  1273. }
  1274. } else {
  1275. int n_dot = std::max((int) n_task/100, 1);
  1276. int i_task = 0;
  1277. for (auto& task : tasks) {
  1278. ++i_task;
  1279. if (!multiple_choice_prepare_one_task(ctx, task, true)) {
  1280. return;
  1281. }
  1282. if (i_task%n_dot == 0) {
  1283. LOG(".");
  1284. }
  1285. }
  1286. LOG("done\n");
  1287. }
  1288. LOG_INF("%s : calculating TruthfulQA score over %zu tasks.\n", __func__, tasks.size());
  1289. LOG("\ntask\tacc_norm\n");
  1290. const int n_ctx = llama_n_ctx(ctx);
  1291. const int n_batch = params.n_batch;
  1292. const int n_vocab = llama_n_vocab(llama_get_model(ctx));
  1293. const int max_tasks_per_batch = 32;
  1294. const int max_seq = std::min(4*max_tasks_per_batch, (int) llama_n_seq_max(ctx));
  1295. llama_batch batch = llama_batch_init(n_ctx, 0, max_seq);
  1296. std::vector<float> tok_logits(n_vocab);
  1297. std::vector<float> batch_logits(size_t(n_ctx)*n_vocab);
  1298. std::vector<std::pair<size_t, llama_token>> eval_pairs;
  1299. std::vector<float> eval_results;
  1300. std::vector<std::thread> workers(std::thread::hardware_concurrency());
  1301. std::vector<int> batch_indeces;
  1302. int n_done = 0;
  1303. int n_correct = 0;
  1304. int n_tot_answers = 0;
  1305. for (size_t i0 = 0; i0 < tasks.size(); i0++) {
  1306. int n_cur = 0;
  1307. size_t i1 = i0;
  1308. size_t i_logits = 0; // this tells us how many logits were needed before this point in the batch
  1309. common_batch_clear(batch);
  1310. // batch as much tasks as possible into the available context
  1311. // each task has 4 unique sequence ids - one for each ending
  1312. // the common prefix is shared among the 4 sequences to save tokens
  1313. // we extract logits only from the last common token and from all ending tokens of each sequence
  1314. int s0 = 0;
  1315. while (n_cur + (int) tasks[i1].required_tokens <= n_ctx) {
  1316. auto& cur_task = tasks[i1];
  1317. int n_logits = 0;
  1318. int num_answers = cur_task.seq_tokens.size();
  1319. if (s0 + num_answers > max_seq) {
  1320. break;
  1321. }
  1322. if (int(batch_indeces.size()) != num_answers) {
  1323. batch_indeces.resize(num_answers);
  1324. }
  1325. for (int s = 0; s < num_answers; ++s) batch_indeces[s] = s0 + s;
  1326. for (size_t i = 0; i < cur_task.common_prefix; ++i) {
  1327. //llama_batch_add(batch, cur_task.seq_tokens[0][i], i, { s0 + 0, s0 + 1, s0 + 2, s0 + 3}, false);
  1328. common_batch_add(batch, cur_task.seq_tokens[0][i], i, batch_indeces, false);
  1329. }
  1330. batch.logits[batch.n_tokens - 1] = true; // we need logits for the last token of the common prefix
  1331. n_logits += 1;
  1332. for (int s = 0; s < int(cur_task.seq_tokens.size()); ++s) {
  1333. const size_t seq_tokens_size = cur_task.seq_tokens[s].size();
  1334. // TODO: don't evaluate the last token of each sequence
  1335. for (size_t i = cur_task.common_prefix; i < seq_tokens_size; ++i) {
  1336. const bool needs_logits = i < seq_tokens_size - 1;
  1337. common_batch_add(batch, cur_task.seq_tokens[s][i], i, { s0 + s }, needs_logits);
  1338. n_logits += needs_logits;
  1339. }
  1340. }
  1341. s0 += num_answers;
  1342. cur_task.i_logits = i_logits;
  1343. i_logits += n_logits;
  1344. n_cur += cur_task.required_tokens;
  1345. if (++i1 == tasks.size()) {
  1346. break;
  1347. }
  1348. }
  1349. if (i0 == i1) {
  1350. LOG_ERR("%s : task %zu does not fit in the context window\n", __func__, i0);
  1351. return;
  1352. }
  1353. llama_kv_cache_clear(ctx);
  1354. // decode all tasks [i0, i1)
  1355. if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) {
  1356. LOG_ERR("%s: llama_decode() failed\n", __func__);
  1357. return;
  1358. }
  1359. // Compute log-probs in parallel
  1360. // First we collect all tasks
  1361. eval_pairs.clear();
  1362. for (size_t i = i0; i < i1; ++i) {
  1363. auto& cur_task = tasks[i];
  1364. size_t li = 1; // skip the last logit of the common prefix (computed separately below)
  1365. for (int s = 0; s < int(cur_task.seq_tokens.size()); ++s) {
  1366. for (size_t j = cur_task.common_prefix; j < cur_task.seq_tokens[s].size() - 1; j++) {
  1367. eval_pairs.emplace_back(cur_task.i_logits + li++, cur_task.seq_tokens[s][j + 1]);
  1368. }
  1369. }
  1370. }
  1371. // Then we do the actual calculation
  1372. compute_logprobs(batch_logits.data(), n_vocab, workers, eval_pairs, eval_results);
  1373. size_t ir = 0;
  1374. // compute the logprobs for each ending of the decoded tasks
  1375. for (size_t i = i0; i < i1; ++i) {
  1376. auto & cur_task = tasks[i];
  1377. //LOG("==== Evaluating <%s> with correct answer ", cur_task.question.c_str());
  1378. //for (int j = 0; j < int(cur_task.mc1.labels.size()); ++j) {
  1379. // if (cur_task.mc1.labels[j] == 1) {
  1380. // LOG("%d", j+1);
  1381. // }
  1382. //}
  1383. //LOG("\n common_prefix: %zu\n", cur_task.common_prefix);
  1384. // get the logits of the last token of the common prefix
  1385. std::memcpy(tok_logits.data(), batch_logits.data() + cur_task.i_logits*n_vocab, n_vocab*sizeof(float));
  1386. const auto first_probs = softmax(tok_logits);
  1387. cur_task.log_probs.resize(cur_task.seq_tokens.size());
  1388. for (int s = 0; s < int(cur_task.seq_tokens.size()); ++s) {
  1389. size_t count = 1;
  1390. float log_prob = std::log(first_probs[cur_task.seq_tokens[s][cur_task.common_prefix]]);
  1391. for (size_t j = cur_task.common_prefix; j < cur_task.seq_tokens[s].size() - 1; j++) {
  1392. //LOG(" %zu %g\n", ir, eval_results[ir]);
  1393. ++count;
  1394. log_prob += eval_results[ir++];
  1395. }
  1396. cur_task.log_probs[s] = log_prob / count;
  1397. //LOG(" Final: %g\n", log_prob / count);
  1398. //LOG(" <%s> : %g\n", cur_task.mc1.answers[s].c_str(), log_prob/count);
  1399. }
  1400. // Find the ending with maximum logprob
  1401. size_t logprob_max_idx = 0;
  1402. float logprob_max_val = cur_task.log_probs[0];
  1403. for (size_t s = 1; s < cur_task.log_probs.size(); s++) {
  1404. if (cur_task.log_probs[s] > logprob_max_val) {
  1405. logprob_max_val = cur_task.log_probs[s];
  1406. logprob_max_idx = s;
  1407. }
  1408. }
  1409. n_tot_answers += cur_task.log_probs.size();
  1410. if (cur_task.mc1.labels[logprob_max_idx] == 1) {
  1411. ++n_correct;
  1412. }
  1413. ++n_done;
  1414. // Print the accumulated accuracy mean x 100
  1415. LOG("%d\t%.8lf\n", n_done, 100.*n_correct/n_done);
  1416. }
  1417. i0 = i1 - 1;
  1418. }
  1419. llama_batch_free(batch);
  1420. if (n_done < 100 && (params.multiple_choice_tasks != 0 && params.multiple_choice_tasks < (size_t)n_task)) return;
  1421. float p = 1.f*n_correct/n_done;
  1422. float sigma = sqrt(p*(1-p)/(n_done-1));
  1423. LOG("\n");
  1424. LOG_INF("Final result: %.4f +/- %.4f\n", 100.f*p, 100.f*sigma);
  1425. p = 1.f*n_done/n_tot_answers;
  1426. sigma = sqrt(p*(1-p)/(n_done-1));
  1427. LOG_INF("Random chance: %.4f +/- %.4f\n", 100.f*p, 100.f*sigma);
  1428. LOG_INF("\n");
  1429. }
  1430. static void kl_divergence(llama_context * ctx, const common_params & params) {
  1431. if (params.logits_file.empty()) {
  1432. LOG_ERR("%s: you must provide a name of a file containing the log probabilities of the base model\n", __func__);
  1433. return;
  1434. }
  1435. std::ifstream in(params.logits_file.c_str(), std::ios::binary);
  1436. if (!in) {
  1437. LOG_ERR("%s: failed to open %s\n", __func__, params.logits_file.c_str());
  1438. return;
  1439. }
  1440. {
  1441. char check[9]; check[8] = 0;
  1442. in.read(check, 8);
  1443. if (in.fail() || strncmp("_logits_", check, 8) != 0) {
  1444. LOG_ERR("%s: %s does not look like a file containing log-probabilities\n", __func__, params.logits_file.c_str());
  1445. return;
  1446. }
  1447. }
  1448. uint32_t n_ctx;
  1449. in.read((char *)&n_ctx, sizeof(n_ctx));
  1450. if (n_ctx > llama_n_ctx(ctx)) {
  1451. LOG_ERR("%s: %s has been computed with %u, while the current context is %d. Increase it with -c and retry\n",
  1452. __func__, params.logits_file.c_str(), n_ctx, params.n_ctx);
  1453. }
  1454. int n_vocab;
  1455. int n_chunk;
  1456. in.read((char *)&n_vocab, sizeof(n_vocab));
  1457. in.read((char *)&n_chunk, sizeof(n_chunk));
  1458. if (in.fail()) {
  1459. LOG_ERR("%s: failed reading n_vocab, n_chunk from %s\n", __func__, params.logits_file.c_str());
  1460. return;
  1461. }
  1462. if (n_vocab != llama_n_vocab(llama_get_model(ctx))) {
  1463. LOG_ERR("%s: inconsistent vocabulary (%d vs %d)\n", __func__, n_vocab, llama_n_vocab(llama_get_model(ctx)));
  1464. }
  1465. std::vector<llama_token> tokens(size_t(n_ctx) * n_chunk);
  1466. if (in.read((char *)tokens.data(), tokens.size()*sizeof(tokens[0])).fail()) {
  1467. LOG_ERR("%s: failed reading evaluation tokens from %s\n", __func__, params.logits_file.c_str());
  1468. return;
  1469. }
  1470. const int n_batch = params.n_batch;
  1471. const int num_batches = (n_ctx + n_batch - 1)/n_batch;
  1472. const int nv = 2*((n_vocab + 1)/2) + 4;
  1473. const bool add_bos = llama_add_bos_token(llama_get_model(ctx));
  1474. GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx)));
  1475. std::vector<uint16_t> log_probs_uint16(size_t(n_ctx - 1 - n_ctx/2) * nv);
  1476. std::vector<float> kld_values(size_t(n_ctx - 1 - n_ctx/2)*n_chunk);
  1477. std::vector<float> p_diff_values(size_t(n_ctx - 1 - n_ctx/2)*n_chunk);
  1478. std::vector<float> logits;
  1479. if (num_batches > 1) {
  1480. logits.reserve(size_t(n_ctx) * n_vocab);
  1481. }
  1482. std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);
  1483. auto mean_and_uncertainty = [] (double sum, double sum2, size_t count) {
  1484. if (count < 1) {
  1485. return std::make_pair(0., 0.);
  1486. }
  1487. double f = sum/count;
  1488. double df = sum2/count - f*f;
  1489. df = df > 0 && count > 10 ? sqrt(df/(count-1)) : 0.;
  1490. return std::make_pair(f, df);
  1491. };
  1492. auto covariance = [] (double suma, double sumb, double sumab, size_t count) {
  1493. if (count < 10) {
  1494. return 0.0;
  1495. }
  1496. double var = sumab/count - (suma/count)*(sumb/count);
  1497. var /= count - 1;
  1498. return var;
  1499. };
  1500. kl_divergence_result kld;
  1501. auto kld_ptr = kld_values.data();
  1502. auto p_diff_ptr = p_diff_values.data();
  1503. for (int i = 0; i < n_chunk; ++i) {
  1504. const int start = i * n_ctx;
  1505. const int end = start + n_ctx;
  1506. const auto t_start = std::chrono::high_resolution_clock::now();
  1507. if (in.read((char *)log_probs_uint16.data(), log_probs_uint16.size()*sizeof(uint16_t)).fail()) {
  1508. LOG_ERR("%s: failed reading log-probs for chunk %d\n", __func__, i);
  1509. return;
  1510. }
  1511. // clear the KV cache
  1512. llama_kv_cache_clear(ctx);
  1513. for (int j = 0; j < num_batches; ++j) {
  1514. const int batch_start = start + j * n_batch;
  1515. const int batch_size = std::min(end - batch_start, n_batch);
  1516. // save original token and restore it after eval
  1517. const auto token_org = tokens[batch_start];
  1518. // add BOS token for the first batch of each chunk
  1519. if (add_bos && j == 0) {
  1520. tokens[batch_start] = llama_token_bos(llama_get_model(ctx));
  1521. }
  1522. // TODO: use llama_batch.logits instead of relying on logits_all == true
  1523. if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) {
  1524. LOG_ERR("%s : failed to eval\n", __func__);
  1525. return;
  1526. }
  1527. // restore the original token in case it was set to BOS
  1528. tokens[batch_start] = token_org;
  1529. if (num_batches > 1) {
  1530. const auto * batch_logits = llama_get_logits(ctx);
  1531. logits.insert(logits.end(), batch_logits, batch_logits + size_t(batch_size) * n_vocab);
  1532. }
  1533. }
  1534. const auto t_end = std::chrono::high_resolution_clock::now();
  1535. if (i == 0) {
  1536. const float t_total = std::chrono::duration<float>(t_end - t_start).count();
  1537. LOG_INF("%s: %.2f seconds per pass - ETA ", __func__, t_total);
  1538. int total_seconds = (int)(t_total * n_chunk);
  1539. if (total_seconds >= 60*60) {
  1540. LOG("%d hours ", total_seconds / (60*60));
  1541. total_seconds = total_seconds % (60*60);
  1542. }
  1543. LOG("%.2f minutes\n", total_seconds / 60.0);
  1544. }
  1545. LOG("\n");
  1546. LOG("chunk PPL ln(PPL(Q)/PPL(base)) KL Divergence Δp RMS Same top p\n");
  1547. const int first = n_ctx/2;
  1548. const float * all_logits = num_batches > 1 ? logits.data() : llama_get_logits(ctx);
  1549. process_logits(n_vocab, all_logits + size_t(first)*n_vocab, tokens.data() + start + first, n_ctx - 1 - first,
  1550. workers, log_probs_uint16, kld, kld_ptr, p_diff_ptr);
  1551. p_diff_ptr += n_ctx - 1 - first;
  1552. kld_ptr += n_ctx - 1 - first;
  1553. LOG("%4d", i+1);
  1554. auto log_ppl = mean_and_uncertainty(kld.sum_nll, kld.sum_nll2, kld.count);
  1555. const double ppl_val = exp(log_ppl.first);
  1556. const double ppl_unc = ppl_val * log_ppl.second; // ppl_unc = sqrt( (dexp(x) / dx) ** 2 * log_ppl.second ** 2 )
  1557. LOG(" %9.4lf ± %9.4lf", ppl_val, ppl_unc);
  1558. auto log_ppl_base = mean_and_uncertainty(kld.sum_nll_base, kld.sum_nll_base2, kld.count);
  1559. const double log_ppl_cov = covariance(kld.sum_nll, kld.sum_nll_base, kld.sum_nll_nll_base, kld.count);
  1560. const double log_ppl_ratio_val = log_ppl.first - log_ppl_base.first;
  1561. const double log_ppl_ratio_unc = sqrt(log_ppl.second*log_ppl.second + log_ppl_base.second*log_ppl_base.second - 2.0*log_ppl_cov);
  1562. LOG(" %10.5lf ± %10.5lf", log_ppl_ratio_val, log_ppl_ratio_unc);
  1563. auto kl_div = mean_and_uncertainty(kld.sum_kld, kld.sum_kld2, kld.count);
  1564. LOG(" %10.5lf ± %10.5lf", kl_div.first, kl_div.second);
  1565. auto p_diff_mse = mean_and_uncertainty(kld.sum_p_diff2, kld.sum_p_diff4, kld.count);
  1566. const double p_diff_rms_val = sqrt(p_diff_mse.first);
  1567. const double p_diff_rms_unc = 0.5/p_diff_rms_val * p_diff_mse.second;
  1568. LOG(" %6.3lf ± %6.3lf %%", 100.0*p_diff_rms_val, 100.0*p_diff_rms_unc);
  1569. double p_top_val = 1.*kld.n_same_top/kld.count;
  1570. double p_top_unc = sqrt(p_top_val*(1 - p_top_val)/(kld.count - 1));
  1571. LOG(" %6.3lf ± %6.3lf %%", 100.0*p_top_val, 100.0*p_top_unc);
  1572. LOG("\n");
  1573. logits.clear();
  1574. }
  1575. LOG("\n");
  1576. if (kld.count < 100) return; // we do not wish to do statistics on so few values
  1577. std::sort(kld_values.begin(), kld_values.end());
  1578. std::sort(p_diff_values.begin(), p_diff_values.end());
  1579. LOG("====== Perplexity statistics ======\n");
  1580. auto log_ppl = mean_and_uncertainty(kld.sum_nll, kld.sum_nll2, kld.count);
  1581. const double ppl_val = exp(log_ppl.first);
  1582. const double ppl_unc = ppl_val * log_ppl.second; // ppl_unc = sqrt( (dexp(x) / dx) ** 2 * log_ppl.second ** 2 )
  1583. LOG("Mean PPL(Q) : %10.6lf ± %10.6lf\n", ppl_val, ppl_unc);
  1584. auto log_ppl_base = mean_and_uncertainty(kld.sum_nll_base, kld.sum_nll_base2, kld.count);
  1585. const double ppl_base_val = exp(log_ppl_base.first);
  1586. const double ppl_base_unc = ppl_base_val * log_ppl_base.second; // ppl_base_unc = sqrt( (dexp(x) / dx) ** 2 * log_ppl_base.second ** 2 )
  1587. LOG("Mean PPL(base) : %10.6lf ± %10.6lf\n", ppl_base_val, ppl_base_unc);
  1588. const double log_ppl_cov = covariance(kld.sum_nll, kld.sum_nll_base, kld.sum_nll_nll_base, kld.count);
  1589. // LOG("Cov(ln(PPL(Q)), ln(PPL(base))): %10.6lf\n", log_ppl_cov);
  1590. const double log_ppl_cor = log_ppl_cov / (log_ppl.second*log_ppl_base.second);
  1591. LOG("Cor(ln(PPL(Q)), ln(PPL(base))): %6.2lf%%\n", 100.0*log_ppl_cor);
  1592. const double log_ppl_ratio_val = log_ppl.first - log_ppl_base.first;
  1593. const double log_ppl_ratio_unc = sqrt(log_ppl.second*log_ppl.second + log_ppl_base.second*log_ppl_base.second - 2.0*log_ppl_cov);
  1594. LOG("Mean ln(PPL(Q)/PPL(base)) : %10.6lf ± %10.6lf\n", log_ppl_ratio_val, log_ppl_ratio_unc);
  1595. const double ppl_ratio_val = exp(log_ppl_ratio_val);
  1596. const double ppl_ratio_unc = ppl_ratio_val * log_ppl_ratio_unc; // ppl_ratio_unc = sqrt( (dexp(x) / dx) ** 2 * log_ppl_ratio.second ** 2 )
  1597. LOG("Mean PPL(Q)/PPL(base) : %10.6lf ± %10.6lf\n", ppl_ratio_val, ppl_ratio_unc);
  1598. const double ppl_cov = ppl_val * ppl_base_val * log_ppl_cov;
  1599. const double ppl_diff_val = ppl_val - ppl_base_val;
  1600. const double ppl_diff_unc = sqrt(ppl_unc*ppl_unc + ppl_base_unc*ppl_base_unc - 2.0*ppl_cov);
  1601. LOG("Mean PPL(Q)-PPL(base) : %10.6lf ± %10.6lf\n", ppl_diff_val, ppl_diff_unc);
  1602. LOG("\n");
  1603. LOG("====== KL divergence statistics ======\n");
  1604. auto kl_div = mean_and_uncertainty(kld.sum_kld, kld.sum_kld2, kld.count);
  1605. LOG("Mean KLD: %10.6lf ± %10.6lf\n", kl_div.first, kl_div.second);
  1606. auto kld_median = kld_values.size()%2 == 0 ? 0.5f*(kld_values[kld_values.size()/2] + kld_values[kld_values.size()/2-1])
  1607. : kld_values[kld_values.size()/2];
  1608. auto percentile = [] (std::vector<float> values, float fraction) {
  1609. if (fraction <= 0) return values.front();
  1610. if (fraction >= 1) return values.back();
  1611. float p = fraction*(values.size() - 1);
  1612. size_t ip = size_t(p); p -= ip;
  1613. return (1 - p)*values[ip] + p*values[std::min(ip+1, values.size()-1)];
  1614. };
  1615. LOG("Maximum KLD: %10.6f\n", kld_values.back());
  1616. LOG("99.9%% KLD: %10.6f\n", percentile(kld_values, 0.999f));
  1617. LOG("99.0%% KLD: %10.6f\n", percentile(kld_values, 0.990f));
  1618. LOG("99.0%% KLD: %10.6f\n", percentile(kld_values, 0.990f));
  1619. LOG("Median KLD: %10.6f\n", kld_median);
  1620. LOG("10.0%% KLD: %10.6f\n", percentile(kld_values, 0.100f));
  1621. LOG(" 5.0%% KLD: %10.6f\n", percentile(kld_values, 0.050f));
  1622. LOG(" 1.0%% KLD: %10.6f\n", percentile(kld_values, 0.010f));
  1623. LOG("Minimum KLD: %10.6f\n", kld_values.front());
  1624. LOG("\n");
  1625. LOG("====== Token probability statistics ======\n");
  1626. auto p_diff = mean_and_uncertainty(kld.sum_p_diff, kld.sum_p_diff2, kld.count);
  1627. LOG("Mean Δp: %6.3lf ± %5.3lf %%\n", 100.0*p_diff.first, 100.0*p_diff.second);
  1628. auto p_diff_median = p_diff_values.size()%2 == 0 ? 0.5f*(p_diff_values[p_diff_values.size()/2] + p_diff_values[p_diff_values.size()/2-1])
  1629. : p_diff_values[p_diff_values.size()/2];
  1630. LOG("Maximum Δp: %6.3lf%%\n", 100.0*p_diff_values.back());
  1631. LOG("99.9%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.999f));
  1632. LOG("99.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.990f));
  1633. LOG("95.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.950f));
  1634. LOG("90.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.900f));
  1635. LOG("75.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.750f));
  1636. LOG("Median Δp: %6.3lf%%\n", 100.0*p_diff_median);
  1637. LOG("25.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.250f));
  1638. LOG("10.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.100f));
  1639. LOG(" 5.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.050f));
  1640. LOG(" 1.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.010f));
  1641. LOG(" 0.1%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.001f));
  1642. LOG("Minimum Δp: %6.3lf%%\n", 100.0*p_diff_values.front());
  1643. auto p_diff_mse = mean_and_uncertainty(kld.sum_p_diff2, kld.sum_p_diff4, kld.count);
  1644. // LOG("MSE Δp : %10.6lf ± %10.6lf\n", p_diff_mse.first, p_diff_mse.second);
  1645. const double p_diff_rms_val = sqrt(p_diff_mse.first);
  1646. const double p_diff_rms_unc = 0.5/p_diff_rms_val * p_diff_mse.second;
  1647. LOG("RMS Δp : %6.3lf ± %5.3lf %%\n", 100.0*p_diff_rms_val, 100.0*p_diff_rms_unc);
  1648. const double same_top_p = 1.0*kld.n_same_top/kld.count;
  1649. LOG("Same top p: %6.3lf ± %5.3lf %%\n", 100.0*same_top_p, 100.0*sqrt(same_top_p*(1.0 - same_top_p)/(kld.count - 1)));
  1650. }
  1651. int main(int argc, char ** argv) {
  1652. common_params params;
  1653. params.n_ctx = 512;
  1654. params.logits_all = true;
  1655. params.escape = false;
  1656. if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_PERPLEXITY)) {
  1657. return 1;
  1658. }
  1659. common_init();
  1660. const int32_t n_ctx = params.n_ctx;
  1661. if (n_ctx <= 0) {
  1662. LOG_ERR("%s: perplexity tool requires '--ctx-size' > 0\n", __func__);
  1663. return 1;
  1664. }
  1665. const bool ppl = !params.hellaswag && !params.winogrande && !params.multiple_choice && !params.kl_divergence;
  1666. if (ppl) {
  1667. const int32_t n_seq = std::max(1, params.n_batch / n_ctx);
  1668. const int32_t n_kv = n_seq * n_ctx;
  1669. params.n_parallel = n_seq;
  1670. params.n_ctx = n_kv;
  1671. params.n_batch = std::min(params.n_batch, n_kv);
  1672. } else {
  1673. params.n_batch = std::min(params.n_batch, params.n_ctx);
  1674. if (params.kl_divergence) {
  1675. params.n_parallel = 1;
  1676. } else {
  1677. // ensure there's at least enough seq_ids for HellaSwag
  1678. params.n_parallel = std::max(4, params.n_parallel);
  1679. }
  1680. }
  1681. if (params.ppl_stride > 0) {
  1682. LOG_INF("Will perform strided perplexity calculation -> adjusting context size from %d to %d\n",
  1683. params.n_ctx, params.n_ctx + params.ppl_stride/2);
  1684. params.n_ctx += params.ppl_stride/2;
  1685. }
  1686. llama_backend_init();
  1687. llama_numa_init(params.numa);
  1688. // load the model and apply lora adapter, if any
  1689. common_init_result llama_init = common_init_from_params(params);
  1690. llama_model * model = llama_init.model;
  1691. llama_context * ctx = llama_init.context;
  1692. if (model == NULL) {
  1693. LOG_ERR("%s: unable to load model\n", __func__);
  1694. return 1;
  1695. }
  1696. const int n_ctx_train = llama_n_ctx_train(model);
  1697. if (params.n_ctx > n_ctx_train) {
  1698. LOG_WRN("%s: model was trained on only %d context tokens (%d specified)\n",
  1699. __func__, n_ctx_train, params.n_ctx);
  1700. }
  1701. // print system information
  1702. {
  1703. LOG_INF("\n");
  1704. LOG_INF("%s\n", common_params_get_system_info(params).c_str());
  1705. }
  1706. struct results_perplexity results;
  1707. if (params.hellaswag) {
  1708. hellaswag_score(ctx, params);
  1709. } else if (params.winogrande) {
  1710. winogrande_score(ctx, params);
  1711. } else if (params.multiple_choice) {
  1712. multiple_choice_score(ctx, params);
  1713. } else if (params.kl_divergence) {
  1714. kl_divergence(ctx, params);
  1715. } else {
  1716. results = perplexity(ctx, params, n_ctx);
  1717. }
  1718. LOG("\n");
  1719. llama_perf_context_print(ctx);
  1720. write_logfile(ctx, params, model, results);
  1721. llama_free(ctx);
  1722. llama_free_model(model);
  1723. llama_backend_free();
  1724. return 0;
  1725. }