| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609 |
- #pragma once
- //
- // GGML Tensor Library
- //
- // This documentation is still a work in progress.
- // If you wish some specific topics to be covered, feel free to drop a comment:
- //
- // https://github.com/ggerganov/whisper.cpp/issues/40
- //
- // ## Overview
- //
- // This library implements:
- //
- // - a set of tensor operations
- // - automatic differentiation
- // - basic optimization algorithms
- //
- // The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
- // but is not limited to, the following:
- //
- // - linear regression
- // - support vector machines
- // - neural networks
- //
- // The library allows the user to define a certain function using the available tensor operations. This function
- // definition is represented internally via a computation graph. Each tensor operation in the function definition
- // corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
- // function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
- // using one of the available optimization algorithms.
- //
- // For example, here we define the function: f(x) = a*x^2 + b
- //
- // {
- // struct ggml_init_params params = {
- // .mem_size = 16*1024*1024,
- // .mem_buffer = NULL,
- // };
- //
- // // memory allocation happens here
- // struct ggml_context * ctx = ggml_init(params);
- //
- // struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
- //
- // ggml_set_param(ctx, x); // x is an input variable
- //
- // struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
- // struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
- // struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
- // struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
- //
- // ...
- // }
- //
- // Notice that the function definition above does not involve any actual computation. The computation is performed only
- // when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
- //
- // {
- // ...
- //
- // struct ggml_cgraph * gf = ggml_new_graph(ctx);
- // ggml_build_forward_expand(gf, f);
- //
- // // set the input variable and parameter values
- // ggml_set_f32(x, 2.0f);
- // ggml_set_f32(a, 3.0f);
- // ggml_set_f32(b, 4.0f);
- //
- // ggml_graph_compute_with_ctx(ctx, &gf, n_threads);
- //
- // printf("f = %f\n", ggml_get_f32_1d(f, 0));
- //
- // ...
- // }
- //
- // The actual computation is performed in the ggml_graph_compute() function.
- //
- // The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
- // ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
- // in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
- // and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
- // actually needed.
- //
- // The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
- // differentiation and optimization algorithms.
- //
- // The described approach allows to define the function graph once and then compute its forward or backward graphs
- // multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
- // the user can avoid the memory allocation overhead at runtime.
- //
- // The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
- // citizens, but in theory the library can be extended to support FP8 and integer data types.
- //
- // Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
- // and binary operations. Most of the available operations fall into one of these two categories. With time, it became
- // clear that the library needs to support more complex operations. The way to support these operations is not clear
- // yet, but a few examples are demonstrated in the following operations:
- //
- // - ggml_permute()
- // - ggml_conv_1d_1s()
- // - ggml_conv_1d_2s()
- //
- // For each tensor operator, the library implements a forward and backward computation function. The forward function
- // computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
- // input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
- // calculus class, or watch the following video:
- //
- // What is Automatic Differentiation?
- // https://www.youtube.com/watch?v=wG_nF1awSSY
- //
- //
- // ## Tensor data (struct ggml_tensor)
- //
- // The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
- // the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
- // pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
- //
- // {
- // struct ggml_tensor * c = ggml_add(ctx, a, b);
- //
- // assert(c->src[0] == a);
- // assert(c->src[1] == b);
- // }
- //
- // The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
- // number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
- // to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
- // permutation. All tensor operations have to take the stride into account and not assume that the tensor is
- // contiguous in memory.
- //
- // The data of the tensor is accessed via the "data" pointer. For example:
- //
- // {
- // const int nx = 2;
- // const int ny = 3;
- //
- // struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, ny);
- //
- // for (int y = 0; y < ny; y++) {
- // for (int x = 0; x < nx; x++) {
- // *(float *) ((char *) a->data + y*a->nb[1] + x*a->nb[0]) = x + y;
- // }
- // }
- //
- // ...
- // }
- //
- // Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
- //
- // ## The matrix multiplication operator (ggml_mul_mat)
- //
- // TODO
- //
- //
- // ## Multi-threading
- //
- // TODO
- //
- //
- // ## Overview of ggml.c
- //
- // TODO
- //
- //
- // ## SIMD optimizations
- //
- // TODO
- //
- //
- // ## Debugging ggml
- //
- // TODO
- //
- //
- #ifdef GGML_SHARED
- # if defined(_WIN32) && !defined(__MINGW32__)
- # ifdef GGML_BUILD
- # define GGML_API __declspec(dllexport) extern
- # else
- # define GGML_API __declspec(dllimport) extern
- # endif
- # else
- # define GGML_API __attribute__ ((visibility ("default"))) extern
- # endif
- #else
- # define GGML_API extern
- #endif
- // TODO: support for clang
- #ifdef __GNUC__
- # define GGML_DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
- #elif defined(_MSC_VER)
- # define GGML_DEPRECATED(func, hint) __declspec(deprecated(hint)) func
- #else
- # define GGML_DEPRECATED(func, hint) func
- #endif
- #ifndef __GNUC__
- # define GGML_ATTRIBUTE_FORMAT(...)
- #elif defined(__MINGW32__) && !defined(__clang__)
- # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
- #else
- # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
- #endif
- #include <stdbool.h>
- #include <stddef.h>
- #include <stdint.h>
- #include <stdio.h>
- #define GGML_FILE_MAGIC 0x67676d6c // "ggml"
- #define GGML_FILE_VERSION 2
- #define GGML_QNT_VERSION 2 // bump this on quantization format changes
- #define GGML_QNT_VERSION_FACTOR 1000 // do not change this
- #define GGML_MAX_DIMS 4
- #define GGML_MAX_PARAMS 2048
- #define GGML_MAX_SRC 10
- #define GGML_MAX_N_THREADS 512
- #define GGML_MAX_OP_PARAMS 64
- #ifndef GGML_MAX_NAME
- # define GGML_MAX_NAME 64
- #endif
- #define GGML_DEFAULT_N_THREADS 4
- #define GGML_DEFAULT_GRAPH_SIZE 2048
- #if UINTPTR_MAX == 0xFFFFFFFF
- #define GGML_MEM_ALIGN 4
- #else
- #define GGML_MEM_ALIGN 16
- #endif
- #define GGML_EXIT_SUCCESS 0
- #define GGML_EXIT_ABORTED 1
- #define GGML_ROPE_TYPE_NEOX 2
- #define GGML_ROPE_TYPE_MROPE 8
- #define GGML_ROPE_TYPE_VISION 24
- #define GGML_MROPE_SECTIONS 4
- #define GGML_DELTA_NET_CHUNK 64
- #define GGML_UNUSED(x) (void)(x)
- #ifdef __CUDACC__
- template<typename... Args>
- __host__ __device__ constexpr inline void ggml_unused_vars_impl(Args&&...) noexcept {}
- #define GGML_UNUSED_VARS(...) ggml_unused_vars_impl(__VA_ARGS__)
- #else
- #define GGML_UNUSED_VARS(...) do { (void)sizeof((__VA_ARGS__, 0)); } while(0)
- #endif // __CUDACC__
- #define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
- #ifndef NDEBUG
- # define GGML_UNREACHABLE() do { fprintf(stderr, "statement should be unreachable\n"); abort(); } while(0)
- #elif defined(__GNUC__)
- # define GGML_UNREACHABLE() __builtin_unreachable()
- #elif defined(_MSC_VER)
- # define GGML_UNREACHABLE() __assume(0)
- #else
- # define GGML_UNREACHABLE() ((void) 0)
- #endif
- #ifdef __cplusplus
- # define GGML_NORETURN [[noreturn]]
- #elif defined(_MSC_VER)
- # define GGML_NORETURN __declspec(noreturn)
- #else
- # define GGML_NORETURN _Noreturn
- #endif
- #define GGML_ABORT(...) ggml_abort(__FILE__, __LINE__, __VA_ARGS__)
- #define GGML_ASSERT(x) if (!(x)) GGML_ABORT("GGML_ASSERT(%s) failed", #x)
- // used to copy the number of elements and stride in bytes of tensors into local variables.
- // main purpose is to reduce code duplication and improve readability.
- //
- // example:
- //
- // GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
- // GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
- //
- #define GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \
- const type prefix##0 = (pointer) ? (pointer)->array[0] : 0; \
- GGML_UNUSED(prefix##0);
- #define GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \
- GGML_TENSOR_LOCALS_1 (type, prefix, pointer, array) \
- const type prefix##1 = (pointer) ? (pointer)->array[1] : 0; \
- GGML_UNUSED(prefix##1);
- #define GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \
- GGML_TENSOR_LOCALS_2 (type, prefix, pointer, array) \
- const type prefix##2 = (pointer) ? (pointer)->array[2] : 0; \
- GGML_UNUSED(prefix##2);
- #define GGML_TENSOR_LOCALS(type, prefix, pointer, array) \
- GGML_TENSOR_LOCALS_3 (type, prefix, pointer, array) \
- const type prefix##3 = (pointer) ? (pointer)->array[3] : 0; \
- GGML_UNUSED(prefix##3);
- #define GGML_TENSOR_UNARY_OP_LOCALS \
- GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
- GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
- GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
- GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
- #define GGML_TENSOR_BINARY_OP_LOCALS \
- GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
- GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
- GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
- GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
- GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
- GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
- #define GGML_TENSOR_TERNARY_OP_LOCALS \
- GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
- GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
- GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
- GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
- GGML_TENSOR_LOCALS(int64_t, ne2, src2, ne) \
- GGML_TENSOR_LOCALS(size_t, nb2, src2, nb) \
- GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
- GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
- #define GGML_TENSOR_BINARY_OP_LOCALS01 \
- GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
- GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
- GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
- GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
- #ifdef __cplusplus
- extern "C" {
- #endif
- // Function type used in fatal error callbacks
- typedef void (*ggml_abort_callback_t)(const char * error_message);
- // Set the abort callback (passing null will restore original abort functionality: printing a message to stdout)
- // Returns the old callback for chaining
- GGML_API ggml_abort_callback_t ggml_set_abort_callback(ggml_abort_callback_t callback);
- GGML_NORETURN GGML_ATTRIBUTE_FORMAT(3, 4)
- GGML_API void ggml_abort(const char * file, int line, const char * fmt, ...);
- enum ggml_status {
- GGML_STATUS_ALLOC_FAILED = -2,
- GGML_STATUS_FAILED = -1,
- GGML_STATUS_SUCCESS = 0,
- GGML_STATUS_ABORTED = 1,
- };
- // get ggml_status name string
- GGML_API const char * ggml_status_to_string(enum ggml_status status);
- // ieee 754-2008 half-precision float16
- // todo: make this not an integral type
- typedef uint16_t ggml_fp16_t;
- GGML_API float ggml_fp16_to_fp32(ggml_fp16_t);
- GGML_API ggml_fp16_t ggml_fp32_to_fp16(float);
- GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t *, float *, int64_t);
- GGML_API void ggml_fp32_to_fp16_row(const float *, ggml_fp16_t *, int64_t);
- // google brain half-precision bfloat16
- typedef struct { uint16_t bits; } ggml_bf16_t;
- GGML_API ggml_bf16_t ggml_fp32_to_bf16(float);
- GGML_API float ggml_bf16_to_fp32(ggml_bf16_t); // consider just doing << 16
- GGML_API void ggml_bf16_to_fp32_row(const ggml_bf16_t *, float *, int64_t);
- GGML_API void ggml_fp32_to_bf16_row_ref(const float *, ggml_bf16_t *, int64_t);
- GGML_API void ggml_fp32_to_bf16_row(const float *, ggml_bf16_t *, int64_t);
- struct ggml_object;
- struct ggml_context;
- struct ggml_cgraph;
- // NOTE: always add types at the end of the enum to keep backward compatibility
- enum ggml_type {
- GGML_TYPE_F32 = 0,
- GGML_TYPE_F16 = 1,
- GGML_TYPE_Q4_0 = 2,
- GGML_TYPE_Q4_1 = 3,
- // GGML_TYPE_Q4_2 = 4, support has been removed
- // GGML_TYPE_Q4_3 = 5, support has been removed
- GGML_TYPE_Q5_0 = 6,
- GGML_TYPE_Q5_1 = 7,
- GGML_TYPE_Q8_0 = 8,
- GGML_TYPE_Q8_1 = 9,
- GGML_TYPE_Q2_K = 10,
- GGML_TYPE_Q3_K = 11,
- GGML_TYPE_Q4_K = 12,
- GGML_TYPE_Q5_K = 13,
- GGML_TYPE_Q6_K = 14,
- GGML_TYPE_Q8_K = 15,
- GGML_TYPE_IQ2_XXS = 16,
- GGML_TYPE_IQ2_XS = 17,
- GGML_TYPE_IQ3_XXS = 18,
- GGML_TYPE_IQ1_S = 19,
- GGML_TYPE_IQ4_NL = 20,
- GGML_TYPE_IQ3_S = 21,
- GGML_TYPE_IQ2_S = 22,
- GGML_TYPE_IQ4_XS = 23,
- GGML_TYPE_I8 = 24,
- GGML_TYPE_I16 = 25,
- GGML_TYPE_I32 = 26,
- GGML_TYPE_I64 = 27,
- GGML_TYPE_F64 = 28,
- GGML_TYPE_IQ1_M = 29,
- GGML_TYPE_BF16 = 30,
- // GGML_TYPE_Q4_0_4_4 = 31, support has been removed from gguf files
- // GGML_TYPE_Q4_0_4_8 = 32,
- // GGML_TYPE_Q4_0_8_8 = 33,
- GGML_TYPE_TQ1_0 = 34,
- GGML_TYPE_TQ2_0 = 35,
- // GGML_TYPE_IQ4_NL_4_4 = 36,
- // GGML_TYPE_IQ4_NL_4_8 = 37,
- // GGML_TYPE_IQ4_NL_8_8 = 38,
- GGML_TYPE_MXFP4 = 39, // MXFP4 (1 block)
- GGML_TYPE_COUNT = 40,
- };
- // precision
- enum ggml_prec {
- GGML_PREC_DEFAULT = 0, // stored as ggml_tensor.op_params, 0 by default
- GGML_PREC_F32 = 10,
- };
- // model file types
- enum ggml_ftype {
- GGML_FTYPE_UNKNOWN = -1,
- GGML_FTYPE_ALL_F32 = 0,
- GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
- GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
- GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
- GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
- GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
- GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
- GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
- GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
- GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
- GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
- GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
- GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
- GGML_FTYPE_MOSTLY_IQ2_XXS = 15, // except 1d tensors
- GGML_FTYPE_MOSTLY_IQ2_XS = 16, // except 1d tensors
- GGML_FTYPE_MOSTLY_IQ3_XXS = 17, // except 1d tensors
- GGML_FTYPE_MOSTLY_IQ1_S = 18, // except 1d tensors
- GGML_FTYPE_MOSTLY_IQ4_NL = 19, // except 1d tensors
- GGML_FTYPE_MOSTLY_IQ3_S = 20, // except 1d tensors
- GGML_FTYPE_MOSTLY_IQ2_S = 21, // except 1d tensors
- GGML_FTYPE_MOSTLY_IQ4_XS = 22, // except 1d tensors
- GGML_FTYPE_MOSTLY_IQ1_M = 23, // except 1d tensors
- GGML_FTYPE_MOSTLY_BF16 = 24, // except 1d tensors
- GGML_FTYPE_MOSTLY_MXFP4 = 25, // except 1d tensors
- };
- // available tensor operations:
- enum ggml_op {
- GGML_OP_NONE = 0,
- GGML_OP_DUP,
- GGML_OP_ADD,
- GGML_OP_ADD_ID,
- GGML_OP_ADD1,
- GGML_OP_ACC,
- GGML_OP_SUB,
- GGML_OP_MUL,
- GGML_OP_DIV,
- GGML_OP_SQR,
- GGML_OP_SQRT,
- GGML_OP_LOG,
- GGML_OP_SIN,
- GGML_OP_COS,
- GGML_OP_SUM,
- GGML_OP_SUM_ROWS,
- GGML_OP_CUMSUM,
- GGML_OP_MEAN,
- GGML_OP_ARGMAX,
- GGML_OP_COUNT_EQUAL,
- GGML_OP_REPEAT,
- GGML_OP_REPEAT_BACK,
- GGML_OP_CONCAT,
- GGML_OP_SILU_BACK,
- GGML_OP_NORM, // normalize
- GGML_OP_RMS_NORM,
- GGML_OP_RMS_NORM_BACK,
- GGML_OP_GROUP_NORM,
- GGML_OP_L2_NORM,
- GGML_OP_MUL_MAT,
- GGML_OP_MUL_MAT_ID,
- GGML_OP_OUT_PROD,
- GGML_OP_SCALE,
- GGML_OP_SET,
- GGML_OP_CPY,
- GGML_OP_CONT,
- GGML_OP_RESHAPE,
- GGML_OP_VIEW,
- GGML_OP_PERMUTE,
- GGML_OP_TRANSPOSE,
- GGML_OP_GET_ROWS,
- GGML_OP_GET_ROWS_BACK,
- GGML_OP_SET_ROWS,
- GGML_OP_DIAG,
- GGML_OP_DIAG_MASK_INF,
- GGML_OP_DIAG_MASK_ZERO,
- GGML_OP_SOFT_MAX,
- GGML_OP_SOFT_MAX_BACK,
- GGML_OP_ROPE,
- GGML_OP_ROPE_BACK,
- GGML_OP_CLAMP,
- GGML_OP_CONV_TRANSPOSE_1D,
- GGML_OP_IM2COL,
- GGML_OP_IM2COL_BACK,
- GGML_OP_IM2COL_3D,
- GGML_OP_CONV_2D,
- GGML_OP_CONV_3D,
- GGML_OP_CONV_2D_DW,
- GGML_OP_CONV_TRANSPOSE_2D,
- GGML_OP_POOL_1D,
- GGML_OP_POOL_2D,
- GGML_OP_POOL_2D_BACK,
- GGML_OP_UPSCALE,
- GGML_OP_PAD,
- GGML_OP_PAD_REFLECT_1D,
- GGML_OP_ROLL,
- GGML_OP_ARANGE,
- GGML_OP_TIMESTEP_EMBEDDING,
- GGML_OP_ARGSORT,
- GGML_OP_LEAKY_RELU,
- GGML_OP_TRI,
- GGML_OP_FLASH_ATTN_EXT,
- GGML_OP_FLASH_ATTN_BACK,
- GGML_OP_SSM_CONV,
- GGML_OP_SSM_SCAN,
- GGML_OP_WIN_PART,
- GGML_OP_WIN_UNPART,
- GGML_OP_GET_REL_POS,
- GGML_OP_ADD_REL_POS,
- GGML_OP_RWKV_WKV6,
- GGML_OP_GATED_LINEAR_ATTN,
- GGML_OP_RWKV_WKV7,
- GGML_OP_DELTA_NET,
- GGML_OP_DELTA_NET_RECURRENT,
- GGML_OP_UNARY,
- GGML_OP_MAP_CUSTOM1,
- GGML_OP_MAP_CUSTOM2,
- GGML_OP_MAP_CUSTOM3,
- GGML_OP_CUSTOM,
- GGML_OP_CROSS_ENTROPY_LOSS,
- GGML_OP_CROSS_ENTROPY_LOSS_BACK,
- GGML_OP_OPT_STEP_ADAMW,
- GGML_OP_OPT_STEP_SGD,
- GGML_OP_GLU,
- GGML_OP_COUNT,
- };
- enum ggml_unary_op {
- GGML_UNARY_OP_ABS,
- GGML_UNARY_OP_SGN,
- GGML_UNARY_OP_NEG,
- GGML_UNARY_OP_STEP,
- GGML_UNARY_OP_TANH,
- GGML_UNARY_OP_ELU,
- GGML_UNARY_OP_RELU,
- GGML_UNARY_OP_SIGMOID,
- GGML_UNARY_OP_GELU,
- GGML_UNARY_OP_GELU_QUICK,
- GGML_UNARY_OP_SILU,
- GGML_UNARY_OP_HARDSWISH,
- GGML_UNARY_OP_HARDSIGMOID,
- GGML_UNARY_OP_EXP,
- GGML_UNARY_OP_EXPM1,
- GGML_UNARY_OP_SOFTPLUS,
- GGML_UNARY_OP_GELU_ERF,
- GGML_UNARY_OP_COUNT,
- };
- enum ggml_glu_op {
- GGML_GLU_OP_REGLU,
- GGML_GLU_OP_GEGLU,
- GGML_GLU_OP_SWIGLU,
- GGML_GLU_OP_SWIGLU_OAI,
- GGML_GLU_OP_GEGLU_ERF,
- GGML_GLU_OP_GEGLU_QUICK,
- GGML_GLU_OP_COUNT,
- };
- enum ggml_object_type {
- GGML_OBJECT_TYPE_TENSOR,
- GGML_OBJECT_TYPE_GRAPH,
- GGML_OBJECT_TYPE_WORK_BUFFER
- };
- enum ggml_log_level {
- GGML_LOG_LEVEL_NONE = 0,
- GGML_LOG_LEVEL_DEBUG = 1,
- GGML_LOG_LEVEL_INFO = 2,
- GGML_LOG_LEVEL_WARN = 3,
- GGML_LOG_LEVEL_ERROR = 4,
- GGML_LOG_LEVEL_CONT = 5, // continue previous log
- };
- // this tensor...
- enum ggml_tensor_flag {
- GGML_TENSOR_FLAG_INPUT = 1, // ...is an input for the GGML compute graph
- GGML_TENSOR_FLAG_OUTPUT = 2, // ...is an output for the GGML compute graph
- GGML_TENSOR_FLAG_PARAM = 4, // ...contains trainable parameters
- GGML_TENSOR_FLAG_LOSS = 8, // ...defines loss for numerical optimization (multiple loss tensors add up)
- };
- enum ggml_tri_type {
- GGML_TRI_TYPE_UPPER_DIAG = 0,
- GGML_TRI_TYPE_UPPER = 1,
- GGML_TRI_TYPE_LOWER_DIAG = 2,
- GGML_TRI_TYPE_LOWER = 3
- };
- struct ggml_init_params {
- // memory pool
- size_t mem_size; // bytes
- void * mem_buffer; // if NULL, memory will be allocated internally
- bool no_alloc; // don't allocate memory for the tensor data
- };
- // n-dimensional tensor
- struct ggml_tensor {
- enum ggml_type type;
- struct ggml_backend_buffer * buffer;
- int64_t ne[GGML_MAX_DIMS]; // number of elements
- size_t nb[GGML_MAX_DIMS]; // stride in bytes:
- // nb[0] = ggml_type_size(type)
- // nb[1] = nb[0] * (ne[0] / ggml_blck_size(type)) + padding
- // nb[i] = nb[i-1] * ne[i-1]
- // compute data
- enum ggml_op op;
- // op params - allocated as int32_t for alignment
- int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
- int32_t flags;
- struct ggml_tensor * src[GGML_MAX_SRC];
- // source tensor and offset for views
- struct ggml_tensor * view_src;
- size_t view_offs;
- void * data;
- char name[GGML_MAX_NAME];
- void * extra; // extra things e.g. for ggml-cuda.cu
- char padding[8];
- };
- static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
- // Abort callback
- // If not NULL, called before ggml computation
- // If it returns true, the computation is aborted
- typedef bool (*ggml_abort_callback)(void * data);
- //
- // GUID
- //
- // GUID types
- typedef uint8_t ggml_guid[16];
- typedef ggml_guid * ggml_guid_t;
- GGML_API bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b);
- // misc
- GGML_API const char * ggml_version(void);
- GGML_API const char * ggml_commit(void);
- GGML_API void ggml_time_init(void); // call this once at the beginning of the program
- GGML_API int64_t ggml_time_ms(void);
- GGML_API int64_t ggml_time_us(void);
- GGML_API int64_t ggml_cycles(void);
- GGML_API int64_t ggml_cycles_per_ms(void);
- // accepts a UTF-8 path, even on Windows
- GGML_API FILE * ggml_fopen(const char * fname, const char * mode);
- GGML_API void ggml_print_object (const struct ggml_object * obj);
- GGML_API void ggml_print_objects(const struct ggml_context * ctx);
- GGML_API int64_t ggml_nelements (const struct ggml_tensor * tensor);
- GGML_API int64_t ggml_nrows (const struct ggml_tensor * tensor);
- GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor);
- GGML_API size_t ggml_nbytes_pad(const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN
- GGML_API int64_t ggml_blck_size(enum ggml_type type);
- GGML_API size_t ggml_type_size(enum ggml_type type); // size in bytes for all elements in a block
- GGML_API size_t ggml_row_size (enum ggml_type type, int64_t ne); // size in bytes for all elements in a row
- GGML_DEPRECATED(
- GGML_API double ggml_type_sizef(enum ggml_type type), // ggml_type_size()/ggml_blck_size() as float
- "use ggml_row_size() instead");
- GGML_API const char * ggml_type_name(enum ggml_type type);
- GGML_API const char * ggml_op_name (enum ggml_op op);
- GGML_API const char * ggml_op_symbol(enum ggml_op op);
- GGML_API const char * ggml_unary_op_name(enum ggml_unary_op op);
- GGML_API const char * ggml_glu_op_name(enum ggml_glu_op op);
- GGML_API const char * ggml_op_desc(const struct ggml_tensor * t); // unary or op name
- GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);
- GGML_API bool ggml_is_quantized(enum ggml_type type);
- // TODO: temporary until model loading of ggml examples is refactored
- GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
- GGML_API bool ggml_is_transposed(const struct ggml_tensor * tensor);
- GGML_API bool ggml_is_permuted (const struct ggml_tensor * tensor);
- GGML_API bool ggml_is_empty (const struct ggml_tensor * tensor);
- GGML_API bool ggml_is_scalar (const struct ggml_tensor * tensor);
- GGML_API bool ggml_is_vector (const struct ggml_tensor * tensor);
- GGML_API bool ggml_is_matrix (const struct ggml_tensor * tensor);
- GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor);
- GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars
- // returns whether the tensor elements can be iterated over with a flattened index (no gaps, no permutation)
- GGML_API bool ggml_is_contiguous (const struct ggml_tensor * tensor);
- GGML_API bool ggml_is_contiguous_0(const struct ggml_tensor * tensor); // same as ggml_is_contiguous()
- GGML_API bool ggml_is_contiguous_1(const struct ggml_tensor * tensor); // contiguous for dims >= 1
- GGML_API bool ggml_is_contiguous_2(const struct ggml_tensor * tensor); // contiguous for dims >= 2
- // returns whether the tensor elements are allocated as one contiguous block of memory (no gaps, but permutation ok)
- GGML_API bool ggml_is_contiguously_allocated(const struct ggml_tensor * tensor);
- // true for tensor that is stored in memory as CxWxHxN and has been permuted to WxHxCxN
- GGML_API bool ggml_is_contiguous_channels(const struct ggml_tensor * tensor);
- // true if the elements in dimension 0 are contiguous, or there is just 1 block of elements
- GGML_API bool ggml_is_contiguous_rows(const struct ggml_tensor * tensor);
- GGML_API bool ggml_are_same_shape (const struct ggml_tensor * t0, const struct ggml_tensor * t1);
- GGML_API bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
- GGML_API bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
- // use this to compute the memory overhead of a tensor
- GGML_API size_t ggml_tensor_overhead(void);
- GGML_API bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbytes);
- // main
- GGML_API struct ggml_context * ggml_init (struct ggml_init_params params);
- GGML_API void ggml_reset(struct ggml_context * ctx);
- GGML_API void ggml_free (struct ggml_context * ctx);
- GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
- GGML_API bool ggml_get_no_alloc(struct ggml_context * ctx);
- GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
- GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx);
- GGML_API size_t ggml_get_mem_size (const struct ggml_context * ctx);
- GGML_API size_t ggml_get_max_tensor_size(const struct ggml_context * ctx);
- GGML_API struct ggml_tensor * ggml_new_tensor(
- struct ggml_context * ctx,
- enum ggml_type type,
- int n_dims,
- const int64_t *ne);
- GGML_API struct ggml_tensor * ggml_new_tensor_1d(
- struct ggml_context * ctx,
- enum ggml_type type,
- int64_t ne0);
- GGML_API struct ggml_tensor * ggml_new_tensor_2d(
- struct ggml_context * ctx,
- enum ggml_type type,
- int64_t ne0,
- int64_t ne1);
- GGML_API struct ggml_tensor * ggml_new_tensor_3d(
- struct ggml_context * ctx,
- enum ggml_type type,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2);
- GGML_API struct ggml_tensor * ggml_new_tensor_4d(
- struct ggml_context * ctx,
- enum ggml_type type,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- int64_t ne3);
- GGML_API void * ggml_new_buffer(struct ggml_context * ctx, size_t nbytes);
- GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
- GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, struct ggml_tensor * src);
- // Context tensor enumeration and lookup
- GGML_API struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx);
- GGML_API struct ggml_tensor * ggml_get_next_tensor (const struct ggml_context * ctx, struct ggml_tensor * tensor);
- GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
- // Converts a flat index into coordinates
- GGML_API void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3);
- GGML_API enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
- GGML_API enum ggml_glu_op ggml_get_glu_op(const struct ggml_tensor * tensor);
- GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
- GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
- GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor);
- GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name);
- GGML_ATTRIBUTE_FORMAT(2, 3)
- GGML_API struct ggml_tensor * ggml_format_name( struct ggml_tensor * tensor, const char * fmt, ...);
- // Tensor flags
- GGML_API void ggml_set_input(struct ggml_tensor * tensor);
- GGML_API void ggml_set_output(struct ggml_tensor * tensor);
- GGML_API void ggml_set_param(struct ggml_tensor * tensor);
- GGML_API void ggml_set_loss(struct ggml_tensor * tensor);
- //
- // operations on tensors with backpropagation
- //
- GGML_API struct ggml_tensor * ggml_dup(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // in-place, returns view(a)
- GGML_API struct ggml_tensor * ggml_dup_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_add(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- GGML_API struct ggml_tensor * ggml_add_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- GGML_API struct ggml_tensor * ggml_add_cast(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- enum ggml_type type);
- // dst[i0, i1, i2] = a[i0, i1, i2] + b[i0, ids[i1, i2]]
- GGML_API struct ggml_tensor * ggml_add_id(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * ids);
- GGML_API struct ggml_tensor * ggml_add1(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- GGML_API struct ggml_tensor * ggml_add1_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- // dst = a
- // view(dst, nb1, nb2, nb3, offset) += b
- // return dst
- GGML_API struct ggml_tensor * ggml_acc(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t nb2,
- size_t nb3,
- size_t offset);
- GGML_API struct ggml_tensor * ggml_acc_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t nb2,
- size_t nb3,
- size_t offset);
- GGML_API struct ggml_tensor * ggml_sub(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- GGML_API struct ggml_tensor * ggml_sub_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- GGML_API struct ggml_tensor * ggml_mul(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- GGML_API struct ggml_tensor * ggml_mul_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- GGML_API struct ggml_tensor * ggml_div(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- GGML_API struct ggml_tensor * ggml_div_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- GGML_API struct ggml_tensor * ggml_sqr(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_sqr_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_sqrt(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_sqrt_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_log(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_log_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_expm1(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_expm1_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_softplus(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_softplus_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_sin(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_sin_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_cos(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_cos_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // return scalar
- GGML_API struct ggml_tensor * ggml_sum(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
- GGML_API struct ggml_tensor * ggml_sum_rows(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_cumsum(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // mean along rows
- GGML_API struct ggml_tensor * ggml_mean(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // argmax along rows
- GGML_API struct ggml_tensor * ggml_argmax(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // count number of equal elements in a and b
- GGML_API struct ggml_tensor * ggml_count_equal(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- // if a is the same shape as b, and a is not parameter, return a
- // otherwise, return a new tensor: repeat(a) to fit in b
- GGML_API struct ggml_tensor * ggml_repeat(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- // repeat a to the specified shape
- GGML_API struct ggml_tensor * ggml_repeat_4d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- int64_t ne3);
- // sums repetitions in a into shape of b
- GGML_API struct ggml_tensor * ggml_repeat_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b); // sum up values that are adjacent in dims > 0 instead of repeated with same stride
- // concat a and b along dim
- // used in stable-diffusion
- GGML_API struct ggml_tensor * ggml_concat(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int dim);
- GGML_API struct ggml_tensor * ggml_abs(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_abs_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_sgn(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_sgn_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_neg(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_neg_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_step(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_step_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_tanh(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_tanh_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_elu(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_elu_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_relu(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_leaky_relu(
- struct ggml_context * ctx,
- struct ggml_tensor * a, float negative_slope, bool inplace);
- GGML_API struct ggml_tensor * ggml_relu_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_sigmoid(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_sigmoid_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_gelu(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_gelu_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // GELU using erf (error function) when possible
- // some backends may fallback to approximation based on Abramowitz and Stegun formula
- GGML_API struct ggml_tensor * ggml_gelu_erf(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_gelu_erf_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_gelu_quick(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_gelu_quick_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_silu(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_silu_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // a - x
- // b - dy
- GGML_API struct ggml_tensor * ggml_silu_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- // hardswish(x) = x * relu6(x + 3) / 6
- GGML_API struct ggml_tensor * ggml_hardswish(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // hardsigmoid(x) = relu6(x + 3) / 6
- GGML_API struct ggml_tensor * ggml_hardsigmoid(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_exp(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_exp_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_expm1(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_expm1_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_softplus(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_softplus_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // gated linear unit ops
- // A: n columns, r rows,
- // result is n / 2 columns, r rows,
- // expects gate in second half of row, unless swapped is true
- GGML_API struct ggml_tensor * ggml_glu(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- enum ggml_glu_op op,
- bool swapped);
- GGML_API struct ggml_tensor * ggml_reglu(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_reglu_swapped(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_geglu(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_geglu_swapped(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_swiglu(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_swiglu_swapped(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_geglu_erf(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_geglu_erf_swapped(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_geglu_quick(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_geglu_quick_swapped(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // A: n columns, r rows,
- // B: n columns, r rows,
- GGML_API struct ggml_tensor * ggml_glu_split(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- enum ggml_glu_op op);
- GGML_API struct ggml_tensor * ggml_reglu_split(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- GGML_API struct ggml_tensor * ggml_geglu_split(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- GGML_API struct ggml_tensor * ggml_swiglu_split(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- GGML_API struct ggml_tensor * ggml_geglu_erf_split(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- GGML_API struct ggml_tensor * ggml_geglu_quick_split(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- GGML_API struct ggml_tensor * ggml_swiglu_oai(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- float alpha,
- float limit);
- // normalize along rows
- GGML_API struct ggml_tensor * ggml_norm(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float eps);
- GGML_API struct ggml_tensor * ggml_norm_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float eps);
- GGML_API struct ggml_tensor * ggml_rms_norm(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float eps);
- GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float eps);
- // group normalize along ne0*ne1*n_groups
- // used in stable-diffusion
- GGML_API struct ggml_tensor * ggml_group_norm(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_groups,
- float eps);
- GGML_API struct ggml_tensor * ggml_group_norm_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_groups,
- float eps);
- // l2 normalize along rows
- // used in rwkv v7
- GGML_API struct ggml_tensor * ggml_l2_norm(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float eps);
- GGML_API struct ggml_tensor * ggml_l2_norm_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float eps);
- // a - x
- // b - dy
- GGML_API struct ggml_tensor * ggml_rms_norm_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- float eps);
- // A: k columns, n rows => [ne03, ne02, n, k]
- // B: k columns, m rows (i.e. we transpose it internally) => [ne03 * x, ne02 * y, m, k]
- // result is n columns, m rows => [ne03 * x, ne02 * y, m, n]
- GGML_API struct ggml_tensor * ggml_mul_mat(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- // change the precision of a matrix multiplication
- // set to GGML_PREC_F32 for higher precision (useful for phi-2)
- GGML_API void ggml_mul_mat_set_prec(
- struct ggml_tensor * a,
- enum ggml_prec prec);
- // indirect matrix multiplication
- GGML_API struct ggml_tensor * ggml_mul_mat_id(
- struct ggml_context * ctx,
- struct ggml_tensor * as,
- struct ggml_tensor * b,
- struct ggml_tensor * ids);
- // A: m columns, n rows,
- // B: p columns, n rows,
- // result is m columns, p rows
- GGML_API struct ggml_tensor * ggml_out_prod(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- //
- // operations on tensors without backpropagation
- //
- GGML_API struct ggml_tensor * ggml_scale(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float s);
- // in-place, returns view(a)
- GGML_API struct ggml_tensor * ggml_scale_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float s);
- // x = s * a + b
- GGML_API struct ggml_tensor * ggml_scale_bias(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float s,
- float b);
- GGML_API struct ggml_tensor * ggml_scale_bias_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float s,
- float b);
- // b -> view(a,offset,nb1,nb2,3), return modified a
- GGML_API struct ggml_tensor * ggml_set(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t nb2,
- size_t nb3,
- size_t offset); // in bytes
- // b -> view(a,offset,nb1,nb2,3), return view(a)
- GGML_API struct ggml_tensor * ggml_set_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t nb2,
- size_t nb3,
- size_t offset); // in bytes
- GGML_API struct ggml_tensor * ggml_set_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t offset); // in bytes
- GGML_API struct ggml_tensor * ggml_set_1d_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t offset); // in bytes
- // b -> view(a,offset,nb1,nb2,3), return modified a
- GGML_API struct ggml_tensor * ggml_set_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t offset); // in bytes
- // b -> view(a,offset,nb1,nb2,3), return view(a)
- GGML_API struct ggml_tensor * ggml_set_2d_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t offset); // in bytes
- // a -> b, return view(b)
- GGML_API struct ggml_tensor * ggml_cpy(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- // note: casting from f32 to i32 will discard the fractional part
- GGML_API struct ggml_tensor * ggml_cast(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- enum ggml_type type);
- // make contiguous
- GGML_API struct ggml_tensor * ggml_cont(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // make contiguous, with new shape
- GGML_API struct ggml_tensor * ggml_cont_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0);
- GGML_API struct ggml_tensor * ggml_cont_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1);
- GGML_API struct ggml_tensor * ggml_cont_3d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2);
- GGML_API struct ggml_tensor * ggml_cont_4d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- int64_t ne3);
- // return view(a), b specifies the new shape
- // TODO: when we start computing gradient, make a copy instead of view
- GGML_API struct ggml_tensor * ggml_reshape(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- // return view(a)
- // TODO: when we start computing gradient, make a copy instead of view
- GGML_API struct ggml_tensor * ggml_reshape_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0);
- GGML_API struct ggml_tensor * ggml_reshape_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1);
- // return view(a)
- // TODO: when we start computing gradient, make a copy instead of view
- GGML_API struct ggml_tensor * ggml_reshape_3d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2);
- GGML_API struct ggml_tensor * ggml_reshape_4d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- int64_t ne3);
- // offset in bytes
- GGML_API struct ggml_tensor * ggml_view_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- size_t offset);
- GGML_API struct ggml_tensor * ggml_view_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- size_t nb1, // row stride in bytes
- size_t offset);
- GGML_API struct ggml_tensor * ggml_view_3d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- size_t nb1, // row stride in bytes
- size_t nb2, // slice stride in bytes
- size_t offset);
- GGML_API struct ggml_tensor * ggml_view_4d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- int64_t ne3,
- size_t nb1, // row stride in bytes
- size_t nb2, // slice stride in bytes
- size_t nb3,
- size_t offset);
- GGML_API struct ggml_tensor * ggml_permute(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int axis0,
- int axis1,
- int axis2,
- int axis3);
- // alias for ggml_permute(ctx, a, 1, 0, 2, 3)
- GGML_API struct ggml_tensor * ggml_transpose(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // supports 4D a:
- // a [n_embd, ne1, ne2, ne3]
- // b I32 [n_rows, ne2, ne3, 1]
- //
- // return [n_embd, n_rows, ne2, ne3]
- GGML_API struct ggml_tensor * ggml_get_rows(
- struct ggml_context * ctx,
- struct ggml_tensor * a, // data
- struct ggml_tensor * b); // row indices
- GGML_API struct ggml_tensor * ggml_get_rows_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a, // gradients of ggml_get_rows result
- struct ggml_tensor * b, // row indices
- struct ggml_tensor * c); // data for ggml_get_rows, only used for its shape
- // a TD [n_embd, ne1, ne2, ne3]
- // b TS [n_embd, n_rows, ne02, ne03] | ne02 == ne2, ne03 == ne3
- // c I64 [n_rows, ne11, ne12, 1] | c[i] in [0, ne1)
- //
- // undefined behavior if destination rows overlap
- //
- // broadcast:
- // ne2 % ne11 == 0
- // ne3 % ne12 == 0
- //
- // return view(a)
- GGML_API struct ggml_tensor * ggml_set_rows(
- struct ggml_context * ctx,
- struct ggml_tensor * a, // destination
- struct ggml_tensor * b, // source
- struct ggml_tensor * c); // row indices
- GGML_API struct ggml_tensor * ggml_diag(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // set elements above the diagonal to -INF
- GGML_API struct ggml_tensor * ggml_diag_mask_inf(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past);
- // in-place, returns view(a)
- GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past);
- // set elements above the diagonal to 0
- GGML_API struct ggml_tensor * ggml_diag_mask_zero(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past);
- // in-place, returns view(a)
- GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past);
- GGML_API struct ggml_tensor * ggml_soft_max(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // in-place, returns view(a)
- GGML_API struct ggml_tensor * ggml_soft_max_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // a [ne0, ne01, ne02, ne03]
- // mask [ne0, ne11, ne12, ne13] | ne11 >= ne01, F16 or F32, optional
- //
- // broadcast:
- // ne02 % ne12 == 0
- // ne03 % ne13 == 0
- //
- // fused soft_max(a*scale + mask*(ALiBi slope))
- // max_bias = 0.0f for no ALiBi
- GGML_API struct ggml_tensor * ggml_soft_max_ext(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * mask,
- float scale,
- float max_bias);
- GGML_API void ggml_soft_max_add_sinks(
- struct ggml_tensor * a,
- struct ggml_tensor * sinks);
- GGML_API struct ggml_tensor * ggml_soft_max_ext_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- float scale,
- float max_bias);
- // in-place, returns view(a)
- GGML_API struct ggml_tensor * ggml_soft_max_ext_back_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- float scale,
- float max_bias);
- // rotary position embedding
- // if (mode & 1) - skip n_past elements (NOT SUPPORTED)
- // if (mode & GGML_ROPE_TYPE_NEOX) - GPT-NeoX style
- //
- // b is an int32 vector with size a->ne[2], it contains the positions
- GGML_API struct ggml_tensor * ggml_rope(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int n_dims,
- int mode);
- // in-place, returns view(a)
- GGML_API struct ggml_tensor * ggml_rope_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int n_dims,
- int mode);
- // custom RoPE
- // c is freq factors (e.g. phi3-128k), (optional)
- GGML_API struct ggml_tensor * ggml_rope_ext(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- int n_dims,
- int mode,
- int n_ctx_orig,
- float freq_base,
- float freq_scale,
- float ext_factor,
- float attn_factor,
- float beta_fast,
- float beta_slow);
- GGML_API struct ggml_tensor * ggml_rope_multi(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- int n_dims,
- int sections[GGML_MROPE_SECTIONS],
- int mode,
- int n_ctx_orig,
- float freq_base,
- float freq_scale,
- float ext_factor,
- float attn_factor,
- float beta_fast,
- float beta_slow);
- // in-place, returns view(a)
- GGML_API struct ggml_tensor * ggml_rope_ext_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- int n_dims,
- int mode,
- int n_ctx_orig,
- float freq_base,
- float freq_scale,
- float ext_factor,
- float attn_factor,
- float beta_fast,
- float beta_slow);
- GGML_API struct ggml_tensor * ggml_rope_multi_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- int n_dims,
- int sections[GGML_MROPE_SECTIONS],
- int mode,
- int n_ctx_orig,
- float freq_base,
- float freq_scale,
- float ext_factor,
- float attn_factor,
- float beta_fast,
- float beta_slow);
- GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int n_dims,
- int mode,
- int n_ctx_orig,
- float freq_base,
- float freq_scale,
- float ext_factor,
- float attn_factor,
- float beta_fast,
- float beta_slow),
- "use ggml_rope_ext instead");
- GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int n_dims,
- int mode,
- int n_ctx_orig,
- float freq_base,
- float freq_scale,
- float ext_factor,
- float attn_factor,
- float beta_fast,
- float beta_slow),
- "use ggml_rope_ext_inplace instead");
- // compute correction dims for YaRN RoPE scaling
- GGML_API void ggml_rope_yarn_corr_dims(
- int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]);
- // rotary position embedding backward, i.e compute dx from dy
- // a - dy
- GGML_API struct ggml_tensor * ggml_rope_ext_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a, // gradients of ggml_rope result
- struct ggml_tensor * b, // positions
- struct ggml_tensor * c, // freq factors
- int n_dims,
- int mode,
- int n_ctx_orig,
- float freq_base,
- float freq_scale,
- float ext_factor,
- float attn_factor,
- float beta_fast,
- float beta_slow);
- GGML_API struct ggml_tensor * ggml_rope_multi_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- int n_dims,
- int sections[4],
- int mode,
- int n_ctx_orig,
- float freq_base,
- float freq_scale,
- float ext_factor,
- float attn_factor,
- float beta_fast,
- float beta_slow);
- // clamp
- // in-place, returns view(a)
- GGML_API struct ggml_tensor * ggml_clamp(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float min,
- float max);
- // im2col
- // converts data into a format that effectively results in a convolution when combined with matrix multiplication
- GGML_API struct ggml_tensor * ggml_im2col(
- struct ggml_context * ctx,
- struct ggml_tensor * a, // convolution kernel
- struct ggml_tensor * b, // data
- int s0, // stride dimension 0
- int s1, // stride dimension 1
- int p0, // padding dimension 0
- int p1, // padding dimension 1
- int d0, // dilation dimension 0
- int d1, // dilation dimension 1
- bool is_2D,
- enum ggml_type dst_type);
- GGML_API struct ggml_tensor * ggml_im2col_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a, // convolution kernel
- struct ggml_tensor * b, // gradient of im2col output
- int64_t * ne, // shape of im2col input
- int s0, // stride dimension 0
- int s1, // stride dimension 1
- int p0, // padding dimension 0
- int p1, // padding dimension 1
- int d0, // dilation dimension 0
- int d1, // dilation dimension 1
- bool is_2D);
- GGML_API struct ggml_tensor * ggml_conv_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a, // convolution kernel
- struct ggml_tensor * b, // data
- int s0, // stride
- int p0, // padding
- int d0); // dilation
- // conv_1d with padding = half
- // alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
- GGML_API struct ggml_tensor* ggml_conv_1d_ph(
- struct ggml_context * ctx,
- struct ggml_tensor * a, // convolution kernel
- struct ggml_tensor * b, // data
- int s, // stride
- int d); // dilation
- // depthwise
- // TODO: this is very likely wrong for some cases! - needs more testing
- GGML_API struct ggml_tensor * ggml_conv_1d_dw(
- struct ggml_context * ctx,
- struct ggml_tensor * a, // convolution kernel
- struct ggml_tensor * b, // data
- int s0, // stride
- int p0, // padding
- int d0); // dilation
- GGML_API struct ggml_tensor * ggml_conv_1d_dw_ph(
- struct ggml_context * ctx,
- struct ggml_tensor * a, // convolution kernel
- struct ggml_tensor * b, // data
- int s0, // stride
- int d0); // dilation
- GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a, // convolution kernel
- struct ggml_tensor * b, // data
- int s0, // stride
- int p0, // padding
- int d0); // dilation
- GGML_API struct ggml_tensor * ggml_conv_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a, // convolution kernel
- struct ggml_tensor * b, // data
- int s0, // stride dimension 0
- int s1, // stride dimension 1
- int p0, // padding dimension 0
- int p1, // padding dimension 1
- int d0, // dilation dimension 0
- int d1); // dilation dimension 1
- GGML_API struct ggml_tensor * ggml_im2col_3d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int64_t IC,
- int s0, // stride width
- int s1, // stride height
- int s2, // stride depth
- int p0, // padding width
- int p1, // padding height
- int p2, // padding depth
- int d0, // dilation width
- int d1, // dilation height
- int d2, // dilation depth
- enum ggml_type dst_type);
- // a: [OC*IC, KD, KH, KW]
- // b: [N*IC, ID, IH, IW]
- // result: [N*OC, OD, OH, OW]
- GGML_API struct ggml_tensor * ggml_conv_3d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int64_t IC,
- int s0, // stride width
- int s1, // stride height
- int s2, // stride depth
- int p0, // padding width
- int p1, // padding height
- int p2, // padding depth
- int d0, // dilation width
- int d1, // dilation height
- int d2 // dilation depth
- );
- // kernel size is a->ne[0] x a->ne[1]
- // stride is equal to kernel size
- // padding is zero
- // example:
- // a: 16 16 3 768
- // b: 1024 1024 3 1
- // res: 64 64 768 1
- // used in sam
- GGML_API struct ggml_tensor * ggml_conv_2d_sk_p0(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- // kernel size is a->ne[0] x a->ne[1]
- // stride is 1
- // padding is half
- // example:
- // a: 3 3 256 256
- // b: 64 64 256 1
- // res: 64 64 256 1
- // used in sam
- GGML_API struct ggml_tensor * ggml_conv_2d_s1_ph(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- // depthwise (via im2col and mul_mat)
- GGML_API struct ggml_tensor * ggml_conv_2d_dw(
- struct ggml_context * ctx,
- struct ggml_tensor * a, // convolution kernel
- struct ggml_tensor * b, // data
- int s0, // stride dimension 0
- int s1, // stride dimension 1
- int p0, // padding dimension 0
- int p1, // padding dimension 1
- int d0, // dilation dimension 0
- int d1); // dilation dimension 1
- // Depthwise 2D convolution
- // may be faster than ggml_conv_2d_dw, but not available in all backends
- // a: KW KH 1 C convolution kernel
- // b: W H C N input data
- // res: W_out H_out C N
- GGML_API struct ggml_tensor * ggml_conv_2d_dw_direct(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int stride0,
- int stride1,
- int pad0,
- int pad1,
- int dilation0,
- int dilation1);
- GGML_API struct ggml_tensor * ggml_conv_transpose_2d_p0(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int stride);
- GGML_API struct ggml_tensor * ggml_conv_2d_direct(
- struct ggml_context * ctx,
- struct ggml_tensor * a, // convolution kernel [KW, KH, IC, OC]
- struct ggml_tensor * b, // input data [W, H, C, N]
- int s0, // stride dimension 0
- int s1, // stride dimension 1
- int p0, // padding dimension 0
- int p1, // padding dimension 1
- int d0, // dilation dimension 0
- int d1); // dilation dimension 1
- GGML_API struct ggml_tensor * ggml_conv_3d_direct(
- struct ggml_context * ctx,
- struct ggml_tensor * a, // kernel [KW, KH, KD, IC * OC]
- struct ggml_tensor * b, // input [W, H, D, C * N]
- int s0, // stride
- int s1,
- int s2,
- int p0, // padding
- int p1,
- int p2,
- int d0, // dilation
- int d1,
- int d2,
- int n_channels,
- int n_batch,
- int n_channels_out);
- enum ggml_op_pool {
- GGML_OP_POOL_MAX,
- GGML_OP_POOL_AVG,
- GGML_OP_POOL_COUNT,
- };
- GGML_API struct ggml_tensor * ggml_pool_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- enum ggml_op_pool op,
- int k0, // kernel size
- int s0, // stride
- int p0); // padding
- // the result will have 2*p0 padding for the first dimension
- // and 2*p1 padding for the second dimension
- GGML_API struct ggml_tensor * ggml_pool_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- enum ggml_op_pool op,
- int k0,
- int k1,
- int s0,
- int s1,
- float p0,
- float p1);
- GGML_API struct ggml_tensor * ggml_pool_2d_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * af, // "a"/input used in forward pass
- enum ggml_op_pool op,
- int k0,
- int k1,
- int s0,
- int s1,
- float p0,
- float p1);
- enum ggml_scale_mode {
- GGML_SCALE_MODE_NEAREST = 0,
- GGML_SCALE_MODE_BILINEAR = 1,
- GGML_SCALE_MODE_COUNT
- };
- enum ggml_scale_flag {
- GGML_SCALE_FLAG_ALIGN_CORNERS = (1 << 8)
- };
- // interpolate
- // multiplies ne0 and ne1 by scale factor
- GGML_API struct ggml_tensor * ggml_upscale(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int scale_factor,
- enum ggml_scale_mode mode);
- // interpolate
- // interpolate scale to specified dimensions
- GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_upscale_ext(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int ne0,
- int ne1,
- int ne2,
- int ne3,
- enum ggml_scale_mode mode),
- "use ggml_interpolate instead");
- // Up- or downsamples the input to the specified size.
- // 2D scale modes (eg. bilinear) are applied to the first two dimensions.
- GGML_API struct ggml_tensor * ggml_interpolate(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- int64_t ne3,
- uint32_t mode); // ggml_scale_mode [ | ggml_scale_flag...]
- // pad each dimension with zeros: [x, ..., x] -> [x, ..., x, 0, ..., 0]
- GGML_API struct ggml_tensor * ggml_pad(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int p0,
- int p1,
- int p2,
- int p3);
- GGML_API struct ggml_tensor * ggml_pad_ext(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int lp0,
- int rp0,
- int lp1,
- int rp1,
- int lp2,
- int rp2,
- int lp3,
- int rp3
- );
- // pad each dimension with reflection: [a, b, c, d] -> [b, a, b, c, d, c]
- GGML_API struct ggml_tensor * ggml_pad_reflect_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int p0,
- int p1);
- // Move tensor elements by an offset given for each dimension. Elements that
- // are shifted beyond the last position are wrapped around to the beginning.
- GGML_API struct ggml_tensor * ggml_roll(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int shift0,
- int shift1,
- int shift2,
- int shift3);
- // Make matrix into a triangular one (upper, upper + diagonal, lower or lower + diagonal) with constant value
- GGML_API struct ggml_tensor * ggml_tri(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float constant,
- enum ggml_tri_type tritype);
- GGML_API struct ggml_tensor * ggml_tri_keep(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- enum ggml_tri_type tritype);
- // Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151
- // timesteps: [N,]
- // return: [N, dim]
- GGML_API struct ggml_tensor * ggml_timestep_embedding(
- struct ggml_context * ctx,
- struct ggml_tensor * timesteps,
- int dim,
- int max_period);
- // sort rows
- enum ggml_sort_order {
- GGML_SORT_ORDER_ASC,
- GGML_SORT_ORDER_DESC,
- };
- GGML_API struct ggml_tensor * ggml_argsort(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- enum ggml_sort_order order);
- GGML_API struct ggml_tensor * ggml_arange(
- struct ggml_context * ctx,
- float start,
- float stop,
- float step);
- // top k elements per row
- GGML_API struct ggml_tensor * ggml_top_k(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int k);
- #define GGML_KQ_MASK_PAD 64
- // q: [n_embd_k, n_batch, n_head, ne3 ]
- // k: [n_embd_k, n_kv, n_head_kv, ne3 ]
- // v: [n_embd_v, n_kv, n_head_kv, ne3 ] !! not transposed !!
- // mask: [n_kv, n_batch_pad, ne32, ne33] !! n_batch_pad = GGML_PAD(n_batch, GGML_KQ_MASK_PAD) !!
- // res: [n_embd_v, n_head, n_batch, ne3 ] !! permuted !!
- //
- // broadcast:
- // n_head % n_head_kv == 0
- // n_head % ne32 == 0
- // ne3 % ne33 == 0
- //
- GGML_API struct ggml_tensor * ggml_flash_attn_ext(
- struct ggml_context * ctx,
- struct ggml_tensor * q,
- struct ggml_tensor * k,
- struct ggml_tensor * v,
- struct ggml_tensor * mask,
- float scale,
- float max_bias,
- float logit_softcap);
- GGML_API void ggml_flash_attn_ext_set_prec(
- struct ggml_tensor * a,
- enum ggml_prec prec);
- GGML_API enum ggml_prec ggml_flash_attn_ext_get_prec(
- const struct ggml_tensor * a);
- GGML_API void ggml_flash_attn_ext_add_sinks(
- struct ggml_tensor * a,
- struct ggml_tensor * sinks);
- // TODO: needs to be adapted to ggml_flash_attn_ext
- GGML_API struct ggml_tensor * ggml_flash_attn_back(
- struct ggml_context * ctx,
- struct ggml_tensor * q,
- struct ggml_tensor * k,
- struct ggml_tensor * v,
- struct ggml_tensor * d,
- bool masked);
- GGML_API struct ggml_tensor * ggml_ssm_conv(
- struct ggml_context * ctx,
- struct ggml_tensor * sx,
- struct ggml_tensor * c);
- GGML_API struct ggml_tensor * ggml_ssm_scan(
- struct ggml_context * ctx,
- struct ggml_tensor * s,
- struct ggml_tensor * x,
- struct ggml_tensor * dt,
- struct ggml_tensor * A,
- struct ggml_tensor * B,
- struct ggml_tensor * C,
- struct ggml_tensor * ids);
- // partition into non-overlapping windows with padding if needed
- // example:
- // a: 768 64 64 1
- // w: 14
- // res: 768 14 14 25
- // used in sam
- GGML_API struct ggml_tensor * ggml_win_part(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int w);
- // reverse of ggml_win_part
- // used in sam
- GGML_API struct ggml_tensor * ggml_win_unpart(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int w0,
- int h0,
- int w);
- GGML_API struct ggml_tensor * ggml_unary(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- enum ggml_unary_op op);
- GGML_API struct ggml_tensor * ggml_unary_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- enum ggml_unary_op op);
- // used in sam
- GGML_API struct ggml_tensor * ggml_get_rel_pos(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int qh,
- int kh);
- // used in sam
- GGML_API struct ggml_tensor * ggml_add_rel_pos(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * pw,
- struct ggml_tensor * ph);
- GGML_API struct ggml_tensor * ggml_add_rel_pos_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * pw,
- struct ggml_tensor * ph);
- GGML_API struct ggml_tensor * ggml_rwkv_wkv6(
- struct ggml_context * ctx,
- struct ggml_tensor * k,
- struct ggml_tensor * v,
- struct ggml_tensor * r,
- struct ggml_tensor * tf,
- struct ggml_tensor * td,
- struct ggml_tensor * state);
- GGML_API struct ggml_tensor * ggml_gated_linear_attn(
- struct ggml_context * ctx,
- struct ggml_tensor * k,
- struct ggml_tensor * v,
- struct ggml_tensor * q,
- struct ggml_tensor * g,
- struct ggml_tensor * state,
- float scale);
- GGML_API struct ggml_tensor * ggml_rwkv_wkv7(
- struct ggml_context * ctx,
- struct ggml_tensor * r,
- struct ggml_tensor * w,
- struct ggml_tensor * k,
- struct ggml_tensor * v,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * state);
- // custom operators
- typedef void (*ggml_custom1_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata);
- typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata);
- typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata);
- #define GGML_N_TASKS_MAX (-1)
- // n_tasks == GGML_N_TASKS_MAX means to use max number of tasks
- GGML_API struct ggml_tensor * ggml_map_custom1(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- ggml_custom1_op_t fun,
- int n_tasks,
- void * userdata);
- GGML_API struct ggml_tensor * ggml_map_custom1_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- ggml_custom1_op_t fun,
- int n_tasks,
- void * userdata);
- GGML_API struct ggml_tensor * ggml_map_custom2(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- ggml_custom2_op_t fun,
- int n_tasks,
- void * userdata);
- GGML_API struct ggml_tensor * ggml_map_custom2_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- ggml_custom2_op_t fun,
- int n_tasks,
- void * userdata);
- GGML_API struct ggml_tensor * ggml_map_custom3(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- ggml_custom3_op_t fun,
- int n_tasks,
- void * userdata);
- GGML_API struct ggml_tensor * ggml_map_custom3_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- ggml_custom3_op_t fun,
- int n_tasks,
- void * userdata);
- typedef void (*ggml_custom_op_t)(struct ggml_tensor * dst , int ith, int nth, void * userdata);
- GGML_API struct ggml_tensor * ggml_custom_4d(
- struct ggml_context * ctx,
- enum ggml_type type,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- int64_t ne3,
- struct ggml_tensor ** args,
- int n_args,
- ggml_custom_op_t fun,
- int n_tasks,
- void * userdata);
- GGML_API struct ggml_tensor * ggml_custom_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor ** args,
- int n_args,
- ggml_custom_op_t fun,
- int n_tasks,
- void * userdata);
- // loss function
- GGML_API struct ggml_tensor * ggml_cross_entropy_loss(
- struct ggml_context * ctx,
- struct ggml_tensor * a, // logits
- struct ggml_tensor * b); // labels
- GGML_API struct ggml_tensor * ggml_cross_entropy_loss_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a, // logits
- struct ggml_tensor * b, // labels
- struct ggml_tensor * c); // gradients of cross_entropy_loss result
- // AdamW optimizer step
- // Paper: https://arxiv.org/pdf/1711.05101v3.pdf
- // PyTorch: https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
- GGML_API struct ggml_tensor * ggml_opt_step_adamw(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * grad,
- struct ggml_tensor * m,
- struct ggml_tensor * v,
- struct ggml_tensor * adamw_params); // parameters such as the learning rate
- // stochastic gradient descent step (with weight decay)
- GGML_API struct ggml_tensor * ggml_opt_step_sgd(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * grad,
- struct ggml_tensor * sgd_params); // alpha, weight decay
- //
- // automatic differentiation
- //
- GGML_API void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
- GGML_API void ggml_build_backward_expand(
- struct ggml_context * ctx, // context for gradient computation
- struct ggml_cgraph * cgraph,
- struct ggml_tensor ** grad_accs);
- // graph allocation in a context
- GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx); // size = GGML_DEFAULT_GRAPH_SIZE, grads = false
- GGML_API struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads);
- GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph, bool force_grads);
- GGML_API void ggml_graph_cpy (struct ggml_cgraph * src, struct ggml_cgraph * dst);
- GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); // set regular grads + optimizer momenta to 0, set loss grad to 1
- GGML_API void ggml_graph_clear (struct ggml_cgraph * cgraph);
- GGML_API int ggml_graph_size (struct ggml_cgraph * cgraph);
- GGML_API struct ggml_tensor * ggml_graph_node (struct ggml_cgraph * cgraph, int i); // if i < 0, returns nodes[n_nodes + i]
- GGML_API struct ggml_tensor ** ggml_graph_nodes (struct ggml_cgraph * cgraph);
- GGML_API int ggml_graph_n_nodes(struct ggml_cgraph * cgraph);
- GGML_API void ggml_graph_add_node(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
- GGML_API size_t ggml_graph_overhead(void);
- GGML_API size_t ggml_graph_overhead_custom(size_t size, bool grads);
- GGML_API struct ggml_tensor * ggml_graph_get_tensor (const struct ggml_cgraph * cgraph, const char * name);
- GGML_API struct ggml_tensor * ggml_graph_get_grad (const struct ggml_cgraph * cgraph, const struct ggml_tensor * node);
- GGML_API struct ggml_tensor * ggml_graph_get_grad_acc(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node);
- // print info and performance information for the graph
- GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
- // dump the graph into a file using the dot format
- GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
- // TODO these functions were sandwiched in the old optimization interface, is there a better place for them?
- typedef void (*ggml_log_callback)(enum ggml_log_level level, const char * text, void * user_data);
- // Set callback for all future logging events.
- // If this is not called, or NULL is supplied, everything is output on stderr.
- GGML_API void ggml_log_set(ggml_log_callback log_callback, void * user_data);
- GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
- //
- // quantization
- //
- // - ggml_quantize_init can be called multiple times with the same type
- // it will only initialize the quantization tables for the first call or after ggml_quantize_free
- // automatically called by ggml_quantize_chunk for convenience
- //
- // - ggml_quantize_free will free any memory allocated by ggml_quantize_init
- // call this at the end of the program to avoid memory leaks
- //
- // note: these are thread-safe
- //
- GGML_API void ggml_quantize_init(enum ggml_type type);
- GGML_API void ggml_quantize_free(void);
- // some quantization type cannot be used without an importance matrix
- GGML_API bool ggml_quantize_requires_imatrix(enum ggml_type type);
- // calls ggml_quantize_init internally (i.e. can allocate memory)
- GGML_API size_t ggml_quantize_chunk(
- enum ggml_type type,
- const float * src,
- void * dst,
- int64_t start,
- int64_t nrows,
- int64_t n_per_row,
- const float * imatrix);
- #ifdef __cplusplus
- // restrict not standard in C++
- # if defined(__GNUC__)
- # define GGML_RESTRICT __restrict__
- # elif defined(__clang__)
- # define GGML_RESTRICT __restrict
- # elif defined(_MSC_VER)
- # define GGML_RESTRICT __restrict
- # else
- # define GGML_RESTRICT
- # endif
- #else
- # if defined (_MSC_VER) && (__STDC_VERSION__ < 201112L)
- # define GGML_RESTRICT __restrict
- # else
- # define GGML_RESTRICT restrict
- # endif
- #endif
- typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
- typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
- struct ggml_type_traits {
- const char * type_name;
- int64_t blck_size;
- int64_t blck_size_interleave; // interleave elements in blocks
- size_t type_size;
- bool is_quantized;
- ggml_to_float_t to_float;
- ggml_from_float_t from_float_ref;
- };
- GGML_API const struct ggml_type_traits * ggml_get_type_traits(enum ggml_type type);
- // ggml threadpool
- // TODO: currently, only a few functions are in the base ggml API, while the rest are in the CPU backend
- // the goal should be to create an API that other backends can use move everything to the ggml base
- // scheduling priorities
- enum ggml_sched_priority {
- GGML_SCHED_PRIO_LOW = -1,
- GGML_SCHED_PRIO_NORMAL,
- GGML_SCHED_PRIO_MEDIUM,
- GGML_SCHED_PRIO_HIGH,
- GGML_SCHED_PRIO_REALTIME
- };
- // threadpool params
- // Use ggml_threadpool_params_default() or ggml_threadpool_params_init() to populate the defaults
- struct ggml_threadpool_params {
- bool cpumask[GGML_MAX_N_THREADS]; // mask of cpu cores (all-zeros means use default affinity settings)
- int n_threads; // number of threads
- enum ggml_sched_priority prio; // thread priority
- uint32_t poll; // polling level (0 - no polling, 100 - aggressive polling)
- bool strict_cpu; // strict cpu placement
- bool paused; // start in paused state
- };
- struct ggml_threadpool; // forward declaration, see ggml.c
- typedef struct ggml_threadpool * ggml_threadpool_t;
- GGML_API struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads);
- GGML_API void ggml_threadpool_params_init (struct ggml_threadpool_params * p, int n_threads);
- GGML_API bool ggml_threadpool_params_match (const struct ggml_threadpool_params * p0, const struct ggml_threadpool_params * p1);
- #ifdef __cplusplus
- }
- #endif
|