test-backend-ops.cpp 269 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191
  1. // This file defines tests for various GGML ops and backends.
  2. // For the forward pass it asserts that the results of multiple backends computing the same GGML ops are consistent.
  3. // For the backward pass it asserts that the gradients from backpropagation are consistent
  4. // with the gradients obtained via the method of finite differences ("grad" mode, this is optional).
  5. // It is also possible to check the performance ("perf" mode).
  6. //
  7. // this file has three sections: Section 1 does general setup, section 2 defines the GGML ops to be tested,
  8. // and section 3 defines which tests to run.
  9. // Quick start for adding a new GGML op: Go to section 2 and create a struct that inherits from test_case,
  10. // then go to section 3 and add an instantiation of your struct.
  11. // ##############################
  12. // ## Section 1: General Setup ##
  13. // ##############################
  14. #include <ggml.h>
  15. #include <ggml-alloc.h>
  16. #include <ggml-backend.h>
  17. #include <ggml-cpp.h>
  18. #include <algorithm>
  19. #include <array>
  20. #include <cfloat>
  21. #include <cinttypes>
  22. #include <cstdarg>
  23. #include <cstdint>
  24. #include <cstdio>
  25. #include <cstdlib>
  26. #include <cstring>
  27. #include <ctime>
  28. #include <future>
  29. #include <memory>
  30. #include <random>
  31. #include <regex>
  32. #include <set>
  33. #include <string>
  34. #include <string_view>
  35. #include <thread>
  36. #include <vector>
  37. static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
  38. size_t nels = ggml_nelements(tensor);
  39. std::vector<float> data(nels);
  40. {
  41. // parallel initialization
  42. static const size_t n_threads = std::thread::hardware_concurrency();
  43. // static RNG initialization (revisit if n_threads stops being constant)
  44. static std::vector<std::default_random_engine> generators = []() {
  45. std::random_device rd;
  46. std::vector<std::default_random_engine> vec;
  47. vec.reserve(n_threads);
  48. //for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(1234 + i); } // fixed seed
  49. for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(rd()); }
  50. return vec;
  51. }();
  52. auto init_thread = [&](size_t ith, size_t start, size_t end) {
  53. std::uniform_real_distribution<float> distribution(min, max);
  54. auto & gen = generators[ith];
  55. for (size_t i = start; i < end; i++) {
  56. data[i] = distribution(gen);
  57. }
  58. };
  59. std::vector<std::future<void>> tasks;
  60. tasks.reserve(n_threads);
  61. for (size_t i = 0; i < n_threads; i++) {
  62. size_t start = i*nels/n_threads;
  63. size_t end = (i+1)*nels/n_threads;
  64. tasks.push_back(std::async(std::launch::async, init_thread, i, start, end));
  65. }
  66. for (auto & t : tasks) {
  67. t.get();
  68. }
  69. }
  70. if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) {
  71. ggml_backend_tensor_set(tensor, data.data(), 0, nels * sizeof(float));
  72. } else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16 || tensor->type == GGML_TYPE_BF16) {
  73. GGML_ASSERT(nels % ggml_blck_size(tensor->type) == 0);
  74. // dummy importance matrix
  75. std::vector<float> imatrix(tensor->ne[0], 1.0f);
  76. const float * im = imatrix.data();
  77. if (!ggml_quantize_requires_imatrix(tensor->type)) {
  78. // when the imatrix is optional, we want to test both quantization with and without imatrix
  79. // use one of the random numbers to decide
  80. if (data[0] > 0.5f*(min + max)) {
  81. im = nullptr;
  82. }
  83. }
  84. std::vector<uint8_t> dataq(ggml_row_size(tensor->type, nels));
  85. {
  86. // parallel quantization by block
  87. size_t blck_size = ggml_blck_size(tensor->type);
  88. size_t n_blocks = nels / blck_size;
  89. auto quantize_thread = [&](size_t start, size_t end) {
  90. ggml_quantize_chunk(tensor->type, data.data(), dataq.data(),
  91. start * blck_size, end - start, blck_size, im);
  92. };
  93. const size_t min_blocks_per_thread = 1;
  94. const size_t n_threads = std::min<size_t>(std::thread::hardware_concurrency()/2,
  95. std::max<size_t>(1, n_blocks / min_blocks_per_thread));
  96. std::vector<std::future<void>> tasks;
  97. tasks.reserve(n_threads);
  98. for (size_t i = 0; i < n_threads; i++) {
  99. size_t start = i*n_blocks/n_threads;
  100. size_t end = (i+1)*n_blocks/n_threads;
  101. tasks.push_back(std::async(std::launch::async, quantize_thread, start, end));
  102. }
  103. for (auto & t : tasks) {
  104. t.get();
  105. }
  106. }
  107. ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size());
  108. } else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) {
  109. // This is going to create some weird integers though.
  110. ggml_backend_tensor_set(tensor, data.data(), 0, ggml_nbytes(tensor));
  111. } else if (tensor->type == GGML_TYPE_I64) {
  112. // Integers with a size of 8 bytes can be set by mirroring the float data, the specific values are again not really meaningful.
  113. const size_t nbytes_half = ggml_nbytes(tensor)/2;
  114. ggml_backend_tensor_set(tensor, data.data(), 0*nbytes_half, nbytes_half);
  115. ggml_backend_tensor_set(tensor, data.data(), 1*nbytes_half, nbytes_half);
  116. } else {
  117. GGML_ABORT("fatal error");
  118. }
  119. }
  120. static std::vector<float> tensor_to_float(const ggml_tensor * t) {
  121. std::vector<float> tv;
  122. tv.reserve(ggml_nelements(t));
  123. std::vector<uint8_t> buf(ggml_nbytes(t));
  124. ggml_backend_tensor_get(t, buf.data(), 0, ggml_nbytes(t));
  125. const auto * tt = ggml_get_type_traits(t->type);
  126. size_t bs = ggml_blck_size(t->type);
  127. std::vector<float> vq(ggml_blck_size(t->type));
  128. bool quantized = ggml_is_quantized(t->type);
  129. // access elements by index to avoid gaps in views
  130. for (int64_t i3 = 0; i3 < t->ne[3]; i3++) {
  131. for (int64_t i2 = 0; i2 < t->ne[2]; i2++) {
  132. for (int64_t i1 = 0; i1 < t->ne[1]; i1++) {
  133. for (int64_t i0 = 0; i0 < t->ne[0]; i0 += bs) {
  134. size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0/bs*t->nb[0];
  135. if (t->type == GGML_TYPE_F16) {
  136. tv.push_back(ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i]));
  137. } else if (t->type == GGML_TYPE_BF16) {
  138. tv.push_back(ggml_bf16_to_fp32(*(ggml_bf16_t*)&buf[i]));
  139. } else if (t->type == GGML_TYPE_F32) {
  140. tv.push_back(*(float *) &buf[i]);
  141. } else if (t->type == GGML_TYPE_I64) {
  142. tv.push_back((float)*(int64_t *) &buf[i]);
  143. } else if (t->type == GGML_TYPE_I32) {
  144. tv.push_back((float)*(int32_t *) &buf[i]);
  145. } else if (t->type == GGML_TYPE_I16) {
  146. tv.push_back((float)*(int16_t *) &buf[i]);
  147. } else if (t->type == GGML_TYPE_I8) {
  148. tv.push_back((float)*(int8_t *) &buf[i]);
  149. } else if (quantized) {
  150. tt->to_float(&buf[i], vq.data(), bs);
  151. tv.insert(tv.end(), vq.begin(), vq.end());
  152. } else {
  153. GGML_ABORT("fatal error");
  154. }
  155. }
  156. }
  157. }
  158. }
  159. return tv;
  160. }
  161. // normalized mean squared error = mse(a, b) / mse(a, 0)
  162. static double nmse(const float * a, const float * b, size_t n) {
  163. double mse_a_b = 0.0;
  164. double mse_a_0 = 0.0;
  165. for (size_t i = 0; i < n; i++) {
  166. float a_i = a[i];
  167. float b_i = b[i];
  168. mse_a_b += (a_i - b_i) * (a_i - b_i);
  169. mse_a_0 += a_i * a_i;
  170. }
  171. return mse_a_b / mse_a_0;
  172. }
  173. // maximum absolute asymmetry between a and b
  174. // asymmetry: (a - b) / (a + b)
  175. // This is more stable than relative error if one of the values fluctuates towards zero.
  176. // n: number of values to compare.
  177. // expected_vals: optional vector of expected values for a. If expected_vals is not empty, filter out all comparisons where
  178. // a does not match any of the expected values. Needed for noncontinuous gradients where the numerical calculation can fail.
  179. static double mean_abs_asymm(const float * a, const float * b, const size_t n, const std::vector<float> & expected_vals) {
  180. double sum = 0.0f;
  181. size_t nvalid = 0;
  182. for (size_t i = 0; i < n; i++) {
  183. if (!expected_vals.empty()) {
  184. bool matches_any = false;
  185. for (const float & ev : expected_vals) {
  186. if (fabsf(a[i] - ev) < 1e-3f) {
  187. matches_any = true;
  188. break;
  189. }
  190. }
  191. if (!matches_any) {
  192. continue;
  193. }
  194. }
  195. const float asymm = (a[i] - b[i]) / (a[i] + b[i]);
  196. sum += fabsf(asymm);
  197. nvalid++;
  198. }
  199. return sum/nvalid;
  200. }
  201. // utils for printing the variables of the test cases
  202. template<typename T>
  203. static std::string var_to_str(const T & x) {
  204. return std::to_string(x);
  205. }
  206. template<typename T, size_t N>
  207. static std::string var_to_str(const T (&x)[N]) {
  208. std::string s = "[";
  209. for (size_t i = 0; i < N; i++) {
  210. if (i > 0) {
  211. s += ",";
  212. }
  213. s += var_to_str(x[i]);
  214. }
  215. s += "]";
  216. return s;
  217. }
  218. template<typename T, size_t N>
  219. static std::string var_to_str(const std::array<T, N> & x) {
  220. std::string s = "[";
  221. for (size_t i = 0; i < N; i++) {
  222. if (i > 0) {
  223. s += ",";
  224. }
  225. s += var_to_str(x[i]);
  226. }
  227. s += "]";
  228. return s;
  229. }
  230. static std::string var_to_str(ggml_type type) {
  231. return ggml_type_name(type);
  232. }
  233. static std::string var_to_str(ggml_prec prec) {
  234. return prec == GGML_PREC_F32 ? "f32" : "def";
  235. }
  236. static std::string var_to_str(ggml_op_pool pool) {
  237. switch (pool) {
  238. case GGML_OP_POOL_AVG: return "avg";
  239. case GGML_OP_POOL_MAX: return "max";
  240. default: return std::to_string(pool);
  241. }
  242. }
  243. static std::string var_to_str(ggml_scale_mode mode) {
  244. switch (mode) {
  245. case GGML_SCALE_MODE_NEAREST: return "nearest";
  246. case GGML_SCALE_MODE_BILINEAR: return "bilinear";
  247. default: return std::to_string(mode);
  248. }
  249. }
  250. #define VAR_TO_STR(x) (#x "=" + var_to_str(x))
  251. #define VARS_TO_STR1(a) VAR_TO_STR(a)
  252. #define VARS_TO_STR2(a, b) VAR_TO_STR(a) + "," + VAR_TO_STR(b)
  253. #define VARS_TO_STR3(a, b, c) VAR_TO_STR(a) + "," + VARS_TO_STR2(b, c)
  254. #define VARS_TO_STR4(a, b, c, d) VAR_TO_STR(a) + "," + VARS_TO_STR3(b, c, d)
  255. #define VARS_TO_STR5(a, b, c, d, e) VAR_TO_STR(a) + "," + VARS_TO_STR4(b, c, d, e)
  256. #define VARS_TO_STR6(a, b, c, d, e, f) VAR_TO_STR(a) + "," + VARS_TO_STR5(b, c, d, e, f)
  257. #define VARS_TO_STR7(a, b, c, d, e, f, g) VAR_TO_STR(a) + "," + VARS_TO_STR6(b, c, d, e, f, g)
  258. #define VARS_TO_STR8(a, b, c, d, e, f, g, h) VAR_TO_STR(a) + "," + VARS_TO_STR7(b, c, d, e, f, g, h)
  259. #define VARS_TO_STR9(a, b, c, d, e, f, g, h, i) VAR_TO_STR(a) + "," + VARS_TO_STR8(b, c, d, e, f, g, h, i)
  260. #define VARS_TO_STR10(a, b, c, d, e, f, g, h, i, j) VAR_TO_STR(a) + "," + VARS_TO_STR9(b, c, d, e, f, g, h, i, j)
  261. #define VARS_TO_STR11(a, b, c, d, e, f, g, h, i, j, k) VAR_TO_STR(a) + "," + VARS_TO_STR10(b, c, d, e, f, g, h, i, j, k)
  262. #define VARS_TO_STR12(a, b, c, d, e, f, g, h, i, j, k, l) VAR_TO_STR(a) + "," + VARS_TO_STR11(b, c, d, e, f, g, h, i, j, k, l)
  263. #define VARS_TO_STR13(a, b, c, d, e, f, g, h, i, j, k, l, m) VAR_TO_STR(a) + "," + VARS_TO_STR12(b, c, d, e, f, g, h, i, j, k, l, m)
  264. #define VARS_TO_STR14(a, b, c, d, e, f, g, h, i, j, k, l, m, n) VAR_TO_STR(a) + "," + VARS_TO_STR13(b, c, d, e, f, g, h, i, j, k, l, m, n)
  265. #define VARS_TO_STR15(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) VAR_TO_STR(a) + "," + VARS_TO_STR14(b, c, d, e, f, g, h, i, j, k, l, m, n, o)
  266. #define VARS_TO_STR16(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) VAR_TO_STR(a) + "," + VARS_TO_STR15(b, c, d, e, f, g, h, i, j, k, l, m, n, o, p)
  267. #ifdef GGML_USE_SYCL
  268. static bool inline _isinf(float f) {
  269. return (*(uint32_t *)&f & 0x7fffffff) == 0x7f800000;
  270. }
  271. #else
  272. static bool inline _isinf(float f) { return std::isinf(f); }
  273. #endif
  274. // accept FLT_MAX as infinity
  275. static bool isinf_or_max(float f) {
  276. return _isinf(f) || f == FLT_MAX || f == -FLT_MAX;
  277. }
  278. static bool ggml_is_view_op(enum ggml_op op) {
  279. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  280. }
  281. enum test_mode {
  282. MODE_TEST,
  283. MODE_PERF,
  284. MODE_GRAD,
  285. MODE_SUPPORT,
  286. };
  287. // Output format support similar to llama-bench
  288. enum output_formats { CONSOLE, SQL, CSV };
  289. static const char * output_format_str(output_formats format) {
  290. switch (format) {
  291. case CONSOLE:
  292. return "console";
  293. case SQL:
  294. return "sql";
  295. case CSV:
  296. return "csv";
  297. default:
  298. GGML_ABORT("invalid output format");
  299. }
  300. }
  301. static bool output_format_from_str(const std::string & s, output_formats & format) {
  302. if (s == "console") {
  303. format = CONSOLE;
  304. } else if (s == "sql") {
  305. format = SQL;
  306. } else if (s == "csv") {
  307. format = CSV;
  308. } else {
  309. return false;
  310. }
  311. return true;
  312. }
  313. // Test result structure for SQL output
  314. struct test_result {
  315. std::string test_time;
  316. std::string build_commit;
  317. std::string backend_name;
  318. std::string op_name;
  319. std::string op_params;
  320. std::string test_mode;
  321. bool supported;
  322. bool passed;
  323. std::string error_message;
  324. double time_us;
  325. double flops;
  326. double bandwidth_gb_s;
  327. size_t memory_kb;
  328. int n_runs;
  329. std::string device_description;
  330. std::string backend_reg_name;
  331. test_result() {
  332. // Initialize with default values
  333. time_us = 0.0;
  334. flops = 0.0;
  335. bandwidth_gb_s = 0.0;
  336. memory_kb = 0;
  337. n_runs = 0;
  338. supported = false;
  339. passed = false;
  340. // Set test time
  341. time_t t = time(NULL);
  342. char buf[32];
  343. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  344. test_time = buf;
  345. // Set build info
  346. build_commit = ggml_commit();
  347. }
  348. test_result(const std::string & backend_name, const std::string & op_name, const std::string & op_params,
  349. const std::string & test_mode, bool supported, bool passed, const std::string & error_message = "",
  350. double time_us = 0.0, double flops = 0.0, double bandwidth_gb_s = 0.0, size_t memory_kb = 0,
  351. int n_runs = 0, const std::string & device_description = "", const std::string & backend_reg_name = "") :
  352. backend_name(backend_name),
  353. op_name(op_name),
  354. op_params(op_params),
  355. test_mode(test_mode),
  356. supported(supported),
  357. passed(passed),
  358. error_message(error_message),
  359. time_us(time_us),
  360. flops(flops),
  361. bandwidth_gb_s(bandwidth_gb_s),
  362. memory_kb(memory_kb),
  363. n_runs(n_runs),
  364. device_description(device_description),
  365. backend_reg_name(backend_reg_name) {
  366. // Set test time
  367. time_t t = time(NULL);
  368. char buf[32];
  369. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  370. test_time = buf;
  371. // Set build info
  372. build_commit = ggml_commit();
  373. }
  374. static const std::vector<std::string> & get_fields() {
  375. static const std::vector<std::string> fields = {
  376. "test_time", "build_commit", "backend_name", "op_name", "op_params", "test_mode", "supported",
  377. "passed", "error_message", "time_us", "flops", "bandwidth_gb_s", "memory_kb", "n_runs",
  378. "device_description", "backend_reg_name"
  379. };
  380. return fields;
  381. }
  382. enum field_type { STRING, BOOL, INT, FLOAT };
  383. static field_type get_field_type(const std::string & field) {
  384. if (field == "supported" || field == "passed") {
  385. return BOOL;
  386. }
  387. if (field == "memory_kb" || field == "n_runs") {
  388. return INT;
  389. }
  390. if (field == "time_us" || field == "flops" || field == "bandwidth_gb_s") {
  391. return FLOAT;
  392. }
  393. return STRING;
  394. }
  395. std::vector<std::string> get_values() const {
  396. return { test_time,
  397. build_commit,
  398. backend_name,
  399. op_name,
  400. op_params,
  401. test_mode,
  402. std::to_string(supported),
  403. std::to_string(passed),
  404. error_message,
  405. std::to_string(time_us),
  406. std::to_string(flops),
  407. std::to_string(bandwidth_gb_s),
  408. std::to_string(memory_kb),
  409. std::to_string(n_runs),
  410. device_description,
  411. backend_reg_name };
  412. }
  413. };
  414. // Printer classes for different output formats
  415. enum class test_status_t { NOT_SUPPORTED, OK, FAIL };
  416. struct test_operation_info {
  417. std::string op_name;
  418. std::string op_params;
  419. std::string backend_name;
  420. test_status_t status = test_status_t::OK;
  421. std::string failure_reason;
  422. // Additional information fields that were previously in separate structs
  423. std::string error_component;
  424. std::string error_details;
  425. // Gradient info
  426. int64_t gradient_index = -1;
  427. std::string gradient_param_name;
  428. float gradient_value = 0.0f;
  429. // MAA error info
  430. double maa_error = 0.0;
  431. double maa_threshold = 0.0;
  432. // Flags for different types of information
  433. bool has_error = false;
  434. bool has_gradient_info = false;
  435. bool has_maa_error = false;
  436. bool is_compare_failure = false;
  437. bool is_large_tensor_skip = false;
  438. test_operation_info() = default;
  439. test_operation_info(const std::string & op_name, const std::string & op_params, const std::string & backend_name,
  440. test_status_t status = test_status_t::OK, const std::string & failure_reason = "") :
  441. op_name(op_name),
  442. op_params(op_params),
  443. backend_name(backend_name),
  444. status(status),
  445. failure_reason(failure_reason) {}
  446. // Set error information
  447. void set_error(const std::string & component, const std::string & details) {
  448. has_error = true;
  449. error_component = component;
  450. error_details = details;
  451. if (status == test_status_t::OK) {
  452. status = test_status_t::FAIL;
  453. }
  454. }
  455. // Set gradient information
  456. void set_gradient_info(int64_t index, const std::string & param_name, float value) {
  457. has_gradient_info = true;
  458. gradient_index = index;
  459. gradient_param_name = param_name;
  460. gradient_value = value;
  461. if (status == test_status_t::OK) {
  462. status = test_status_t::FAIL;
  463. }
  464. }
  465. // Set MAA error information
  466. void set_maa_error(double error, double threshold) {
  467. has_maa_error = true;
  468. maa_error = error;
  469. maa_threshold = threshold;
  470. if (status == test_status_t::OK) {
  471. status = test_status_t::FAIL;
  472. }
  473. }
  474. // Set compare failure
  475. void set_compare_failure() {
  476. is_compare_failure = true;
  477. if (status == test_status_t::OK) {
  478. status = test_status_t::FAIL;
  479. }
  480. }
  481. // Set large tensor skip
  482. void set_large_tensor_skip() { is_large_tensor_skip = true; }
  483. };
  484. struct test_summary_info {
  485. size_t tests_passed;
  486. size_t tests_total;
  487. bool is_backend_summary = false; // true for backend summary, false for test summary
  488. test_summary_info() = default;
  489. test_summary_info(size_t tests_passed, size_t tests_total, bool is_backend_summary = false) :
  490. tests_passed(tests_passed),
  491. tests_total(tests_total),
  492. is_backend_summary(is_backend_summary) {}
  493. };
  494. struct testing_start_info {
  495. size_t device_count;
  496. testing_start_info() = default;
  497. testing_start_info(size_t device_count) : device_count(device_count) {}
  498. };
  499. struct backend_init_info {
  500. size_t device_index;
  501. size_t total_devices;
  502. std::string device_name;
  503. bool skipped = false;
  504. std::string skip_reason;
  505. std::string description;
  506. size_t memory_total_mb = 0;
  507. size_t memory_free_mb = 0;
  508. bool has_memory_info = false;
  509. backend_init_info() = default;
  510. backend_init_info(size_t device_index, size_t total_devices, const std::string & device_name, bool skipped = false,
  511. const std::string & skip_reason = "", const std::string & description = "",
  512. size_t memory_total_mb = 0, size_t memory_free_mb = 0, bool has_memory_info = false) :
  513. device_index(device_index),
  514. total_devices(total_devices),
  515. device_name(device_name),
  516. skipped(skipped),
  517. skip_reason(skip_reason),
  518. description(description),
  519. memory_total_mb(memory_total_mb),
  520. memory_free_mb(memory_free_mb),
  521. has_memory_info(has_memory_info) {}
  522. };
  523. struct backend_status_info {
  524. std::string backend_name;
  525. test_status_t status;
  526. backend_status_info() = default;
  527. backend_status_info(const std::string & backend_name, test_status_t status) :
  528. backend_name(backend_name),
  529. status(status) {}
  530. };
  531. struct overall_summary_info {
  532. size_t backends_passed;
  533. size_t backends_total;
  534. bool all_passed;
  535. overall_summary_info() = default;
  536. overall_summary_info(size_t backends_passed, size_t backends_total, bool all_passed) :
  537. backends_passed(backends_passed),
  538. backends_total(backends_total),
  539. all_passed(all_passed) {}
  540. };
  541. struct printer {
  542. virtual ~printer() {}
  543. FILE * fout = stdout;
  544. virtual void print_header() {}
  545. virtual void print_test_result(const test_result & result) = 0;
  546. virtual void print_footer() {}
  547. virtual void print_operation(const test_operation_info & info) { (void) info; }
  548. virtual void print_summary(const test_summary_info & info) { (void) info; }
  549. virtual void print_testing_start(const testing_start_info & info) { (void) info; }
  550. virtual void print_backend_init(const backend_init_info & info) { (void) info; }
  551. virtual void print_backend_status(const backend_status_info & info) { (void) info; }
  552. virtual void print_overall_summary(const overall_summary_info & info) { (void) info; }
  553. };
  554. struct console_printer : public printer {
  555. void print_test_result(const test_result & result) override {
  556. if (result.test_mode == "test") {
  557. print_test_console(result);
  558. } else if (result.test_mode == "perf") {
  559. print_perf_console(result);
  560. } else if (result.test_mode == "support") {
  561. print_support_console(result);
  562. }
  563. }
  564. void print_operation(const test_operation_info & info) override {
  565. printf(" %s(%s): ", info.op_name.c_str(), info.op_params.c_str());
  566. fflush(stdout);
  567. // Handle large tensor skip first
  568. if (info.is_large_tensor_skip) {
  569. printf("skipping large tensors for speed \n");
  570. return;
  571. }
  572. // Handle not supported status
  573. if (info.status == test_status_t::NOT_SUPPORTED) {
  574. if (!info.failure_reason.empty()) {
  575. printf("not supported [%s]\n", info.failure_reason.c_str());
  576. } else {
  577. printf("not supported [%s]\n", info.backend_name.c_str());
  578. }
  579. return;
  580. }
  581. // Handle errors and additional information
  582. if (info.has_error) {
  583. if (info.error_component == "allocation") {
  584. fprintf(stderr, "failed to allocate tensors [%s] ", info.backend_name.c_str());
  585. } else if (info.error_component == "backend") {
  586. fprintf(stderr, " Failed to initialize %s backend\n", info.backend_name.c_str());
  587. } else {
  588. fprintf(stderr, "Error in %s: %s\n", info.error_component.c_str(), info.error_details.c_str());
  589. }
  590. }
  591. // Handle gradient info
  592. if (info.has_gradient_info) {
  593. printf("[%s] nonfinite gradient at index %" PRId64 " (%s=%f) ", info.op_name.c_str(), info.gradient_index,
  594. info.gradient_param_name.c_str(), info.gradient_value);
  595. }
  596. // Handle MAA error
  597. if (info.has_maa_error) {
  598. printf("[%s] MAA = %.9f > %.9f ", info.op_name.c_str(), info.maa_error, info.maa_threshold);
  599. }
  600. // Handle compare failure
  601. if (info.is_compare_failure) {
  602. printf("compare failed ");
  603. }
  604. // Print final status
  605. if (info.status == test_status_t::OK) {
  606. printf("\033[1;32mOK\033[0m\n");
  607. } else {
  608. printf("\033[1;31mFAIL\033[0m\n");
  609. }
  610. }
  611. void print_summary(const test_summary_info & info) override {
  612. if (info.is_backend_summary) {
  613. printf("%zu/%zu backends passed\n", info.tests_passed, info.tests_total);
  614. } else {
  615. printf(" %zu/%zu tests passed\n", info.tests_passed, info.tests_total);
  616. }
  617. }
  618. void print_backend_status(const backend_status_info & info) override {
  619. printf(" Backend %s: ", info.backend_name.c_str());
  620. if (info.status == test_status_t::OK) {
  621. printf("\033[1;32mOK\033[0m\n");
  622. } else {
  623. printf("\033[1;31mFAIL\033[0m\n");
  624. }
  625. }
  626. void print_testing_start(const testing_start_info & info) override {
  627. printf("Testing %zu devices\n\n", info.device_count);
  628. }
  629. void print_backend_init(const backend_init_info & info) override {
  630. printf("Backend %zu/%zu: %s\n", info.device_index + 1, info.total_devices, info.device_name.c_str());
  631. if (info.skipped) {
  632. printf(" %s\n", info.skip_reason.c_str());
  633. return;
  634. }
  635. if (!info.description.empty()) {
  636. printf(" Device description: %s\n", info.description.c_str());
  637. }
  638. if (info.has_memory_info) {
  639. printf(" Device memory: %zu MB (%zu MB free)\n", info.memory_total_mb, info.memory_free_mb);
  640. }
  641. printf("\n");
  642. }
  643. void print_overall_summary(const overall_summary_info & info) override {
  644. printf("%zu/%zu backends passed\n", info.backends_passed, info.backends_total);
  645. if (info.all_passed) {
  646. printf("\033[1;32mOK\033[0m\n");
  647. } else {
  648. printf("\033[1;31mFAIL\033[0m\n");
  649. }
  650. }
  651. private:
  652. void print_test_console(const test_result & result) {
  653. printf(" %s(%s): ", result.op_name.c_str(), result.op_params.c_str());
  654. fflush(stdout);
  655. if (!result.supported) {
  656. printf("not supported [%s] ", result.backend_name.c_str());
  657. printf("\n");
  658. return;
  659. }
  660. if (result.passed) {
  661. printf("\033[1;32mOK\033[0m\n");
  662. } else {
  663. printf("\033[1;31mFAIL\033[0m\n");
  664. }
  665. }
  666. void print_perf_console(const test_result & result) {
  667. int len = printf(" %s(%s): ", result.op_name.c_str(), result.op_params.c_str());
  668. fflush(stdout);
  669. if (!result.supported) {
  670. printf("not supported\n");
  671. return;
  672. }
  673. // align while also leaving some margin for variations in parameters
  674. int align = 8;
  675. int last = (len + align - 1) / align * align;
  676. if (last - len < 5) {
  677. last += align;
  678. }
  679. printf("%*s", last - len, "");
  680. printf(" %8d runs - %8.2f us/run - ", result.n_runs, result.time_us);
  681. if (result.flops > 0) {
  682. auto format_flops = [](double flops) -> std::string {
  683. char buf[256];
  684. if (flops >= 1e12) {
  685. snprintf(buf, sizeof(buf), "%6.2f TFLOP", flops / 1e12);
  686. } else if (flops >= 1e9) {
  687. snprintf(buf, sizeof(buf), "%6.2f GFLOP", flops / 1e9);
  688. } else if (flops >= 1e6) {
  689. snprintf(buf, sizeof(buf), "%6.2f MFLOP", flops / 1e6);
  690. } else {
  691. snprintf(buf, sizeof(buf), "%6.2f kFLOP", flops / 1e3);
  692. }
  693. return buf;
  694. };
  695. uint64_t op_flops_per_run = result.flops * result.time_us / 1e6;
  696. printf("%s/run - \033[1;34m%sS\033[0m", format_flops(op_flops_per_run).c_str(),
  697. format_flops(result.flops).c_str());
  698. } else {
  699. printf("%8zu kB/run - \033[1;34m%7.2f GB/s\033[0m", result.memory_kb, result.bandwidth_gb_s);
  700. }
  701. printf("\n");
  702. }
  703. void print_support_console(const test_result & result) {
  704. printf(" %s(%s): ", result.op_name.c_str(), result.op_params.c_str());
  705. fflush(stdout);
  706. if (result.supported) {
  707. printf("\033[1;32mSUPPORTED\033[0m\n");
  708. } else {
  709. printf("\033[1;31mNOT SUPPORTED\033[0m\n");
  710. }
  711. }
  712. };
  713. struct sql_printer : public printer {
  714. static std::string get_sql_field_type(const std::string & field) {
  715. switch (test_result::get_field_type(field)) {
  716. case test_result::STRING:
  717. return "TEXT";
  718. case test_result::BOOL:
  719. case test_result::INT:
  720. return "INTEGER";
  721. case test_result::FLOAT:
  722. return "REAL";
  723. default:
  724. GGML_ABORT("invalid field type");
  725. }
  726. }
  727. void print_header() override {
  728. std::vector<std::string> fields = test_result::get_fields();
  729. fprintf(fout, "CREATE TABLE IF NOT EXISTS test_backend_ops (\n");
  730. for (size_t i = 0; i < fields.size(); i++) {
  731. fprintf(fout, " %s %s%s\n", fields[i].c_str(), get_sql_field_type(fields[i]).c_str(),
  732. i < fields.size() - 1 ? "," : "");
  733. }
  734. fprintf(fout, ");\n\n");
  735. }
  736. void print_test_result(const test_result & result) override {
  737. fprintf(fout, "INSERT INTO test_backend_ops (");
  738. std::vector<std::string> fields = test_result::get_fields();
  739. for (size_t i = 0; i < fields.size(); i++) {
  740. fprintf(fout, "%s%s", fields[i].c_str(), i < fields.size() - 1 ? ", " : "");
  741. }
  742. fprintf(fout, ") VALUES (");
  743. std::vector<std::string> values = result.get_values();
  744. for (size_t i = 0; i < values.size(); i++) {
  745. fprintf(fout, "'%s'%s", values[i].c_str(), i < values.size() - 1 ? ", " : "");
  746. }
  747. fprintf(fout, ");\n");
  748. }
  749. };
  750. struct csv_printer : public printer {
  751. void print_header() override {
  752. std::vector<std::string> fields = test_result::get_fields();
  753. std::vector<std::string> fields_csv = get_fields_csv();
  754. for (size_t i = 0; i < fields.size(); i++) {
  755. if (std::find(std::begin(fields_csv), std::end(fields_csv), fields[i]) == std::end(fields_csv)) {
  756. continue;
  757. }
  758. printf("\"%s\"%s", fields[i].c_str(), i < fields.size() - 1 ? "," : "");
  759. }
  760. printf("\n");
  761. }
  762. void print_test_result(const test_result & result) override {
  763. std::vector<std::string> values = result.get_values();
  764. std::vector<std::string> fields = test_result::get_fields();
  765. std::vector<std::string> fields_csv = get_fields_csv();
  766. for (size_t i = 0; i < values.size(); i++) {
  767. if (std::find(std::begin(fields_csv), std::end(fields_csv), fields[i]) == std::end(fields_csv)) {
  768. continue;
  769. }
  770. // Escape quotes and wrap in quotes for CSV
  771. std::string escaped_value = values[i];
  772. size_t pos = 0;
  773. while ((pos = escaped_value.find("\"", pos)) != std::string::npos) {
  774. escaped_value.replace(pos, 1, "\"\"");
  775. pos += 2;
  776. }
  777. printf("\"%s\"%s", escaped_value.c_str(), i < values.size() - 1 ? "," : "");
  778. }
  779. printf("\n");
  780. }
  781. static std::vector<std::string> get_fields_csv() {
  782. return {
  783. "op_name",
  784. "op_params",
  785. "supported",
  786. "error_message",
  787. "test_mode",
  788. "backend_reg_name",
  789. "backend_name",
  790. };
  791. }
  792. };
  793. static std::unique_ptr<printer> create_printer(output_formats format) {
  794. switch (format) {
  795. case CONSOLE:
  796. return std::make_unique<console_printer>();
  797. case SQL:
  798. return std::make_unique<sql_printer>();
  799. case CSV:
  800. return std::make_unique<csv_printer>();
  801. }
  802. GGML_ABORT("invalid output format");
  803. }
  804. struct test_case {
  805. virtual ~test_case() {}
  806. virtual std::string op_desc(ggml_tensor * t) {
  807. return ggml_op_desc(t);
  808. }
  809. virtual std::string vars() {
  810. return "";
  811. }
  812. virtual ggml_tensor * build_graph(ggml_context * ctx) = 0;
  813. virtual double max_nmse_err() {
  814. return 1e-7;
  815. }
  816. virtual double max_maa_err() {
  817. return 1e-4;
  818. }
  819. virtual float grad_eps() {
  820. return 1e-1f;
  821. }
  822. // If false, estimate gradient with 2 points, neglects 3rd order derivative and higher.
  823. // If true, estimate gradient with 4 points, neglects 5th order derivative and higher.
  824. virtual bool grad_precise() {
  825. return false;
  826. }
  827. // Skip gradient checks if total number of gradients to be checked is larger than this (to speed up the tests).
  828. virtual int64_t grad_nmax() {
  829. return 10000;
  830. }
  831. // No effect if empty.
  832. // If not empty, skip all gradient checks where the numerical result does not match any of the values.
  833. // Needed for dealing with noncontinuous gradients (e.g. ReLU) where estimation using finite differences is unreliable.
  834. virtual std::vector<float> grad_expect() {
  835. return {};
  836. }
  837. virtual void initialize_tensors(ggml_context * ctx) {
  838. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
  839. init_tensor_uniform(t);
  840. }
  841. }
  842. virtual size_t op_size(ggml_tensor * t) {
  843. size_t size = ggml_nbytes(t);
  844. // add source tensors
  845. for (int i = 0; i < GGML_MAX_SRC; i++) {
  846. if (t->src[i] != NULL) {
  847. size += ggml_nbytes(t->src[i]);
  848. }
  849. }
  850. return size;
  851. }
  852. virtual uint64_t op_flops(ggml_tensor * t) {
  853. GGML_UNUSED(t);
  854. return 0;
  855. }
  856. virtual bool run_whole_graph() { return false; }
  857. ggml_cgraph * gf = nullptr;
  858. ggml_cgraph * gb = nullptr;
  859. static const int sentinel_size = 1024;
  860. test_mode mode;
  861. std::vector<ggml_tensor *> sentinels;
  862. void add_sentinel(ggml_context * ctx) {
  863. if (mode == MODE_PERF || mode == MODE_GRAD || mode == MODE_SUPPORT) {
  864. return;
  865. }
  866. ggml_tensor * sentinel = ::ggml_new_tensor_1d(ctx, GGML_TYPE_F32, sentinel_size);
  867. ggml_format_name(sentinel, "sent_%zu", sentinels.size());
  868. sentinels.push_back(sentinel);
  869. }
  870. // hijack ggml_new_tensor to add sentinels after each tensor to check for overflows in the backend
  871. ggml_tensor * ggml_new_tensor(ggml_context * ctx, ggml_type type, int n_dims, const int64_t * ne) {
  872. ggml_tensor * t = ::ggml_new_tensor(ctx, type, n_dims, ne);
  873. add_sentinel(ctx);
  874. return t;
  875. }
  876. ggml_tensor * ggml_new_tensor_1d(ggml_context * ctx, ggml_type type, int64_t ne0) {
  877. ggml_tensor * t = ::ggml_new_tensor_1d(ctx, type, ne0);
  878. add_sentinel(ctx);
  879. return t;
  880. }
  881. ggml_tensor * ggml_new_tensor_2d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1) {
  882. ggml_tensor * t = ::ggml_new_tensor_2d(ctx, type, ne0, ne1);
  883. add_sentinel(ctx);
  884. return t;
  885. }
  886. ggml_tensor * ggml_new_tensor_3d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2) {
  887. ggml_tensor * t = ::ggml_new_tensor_3d(ctx, type, ne0, ne1, ne2);
  888. add_sentinel(ctx);
  889. return t;
  890. }
  891. ggml_tensor * ggml_new_tensor_4d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
  892. ggml_tensor * t = ::ggml_new_tensor_4d(ctx, type, ne0, ne1, ne2, ne3);
  893. add_sentinel(ctx);
  894. return t;
  895. }
  896. // Checks an op against the test filter, which is a comma separated list of OP names or specific variations
  897. bool matches_filter(ggml_tensor * op, const char * op_names_filter) {
  898. if (op_names_filter) {
  899. const auto op_name = op_desc(op);
  900. const auto op_full_name = op_name + "(" + vars() + ")";
  901. std::string_view filter(op_names_filter);
  902. while (!filter.empty()) {
  903. auto comma_pos = filter.find_first_of(',');
  904. const auto lparen_pos = filter.find_first_of('(');
  905. if (lparen_pos < comma_pos) {
  906. auto rparen_pos = filter.find_first_of(')');
  907. comma_pos = filter.find_first_of(',', rparen_pos);
  908. const auto op_filter = filter.substr(0, comma_pos);
  909. if (op_filter == op_full_name) {
  910. return true;
  911. }
  912. } else {
  913. const auto op_filter = filter.substr(0, comma_pos);
  914. if (op_filter == op_name) {
  915. return true;
  916. }
  917. }
  918. filter = comma_pos != std::string_view::npos ? filter.substr(comma_pos + 1) : "";
  919. }
  920. return false;
  921. } else {
  922. return true;
  923. }
  924. }
  925. bool eval(ggml_backend_t backend1, ggml_backend_t backend2, const char * op_names_filter, printer * output_printer) {
  926. mode = MODE_TEST;
  927. ggml_init_params params = {
  928. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  929. /* .mem_base = */ NULL,
  930. /* .no_alloc = */ true,
  931. };
  932. ggml_context * ctx = ggml_init(params);
  933. GGML_ASSERT(ctx);
  934. gf = ggml_new_graph(ctx);
  935. // pre-graph sentinel
  936. add_sentinel(ctx);
  937. ggml_tensor * out = build_graph(ctx);
  938. std::string current_op_name = op_desc(out);
  939. if (!matches_filter(out, op_names_filter)) {
  940. //printf(" %s: skipping\n", op_desc(out).c_str());
  941. ggml_free(ctx);
  942. return true;
  943. }
  944. // check if the backends support the ops
  945. bool supported = true;
  946. for (ggml_backend_t backend : {backend1, backend2}) {
  947. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  948. if (!ggml_backend_supports_op(backend, t)) {
  949. supported = false;
  950. break;
  951. }
  952. }
  953. }
  954. if (!supported) {
  955. // Create test result for unsupported operation
  956. test_result result(ggml_backend_name(backend1), current_op_name, vars(), "test",
  957. false, false, "not supported");
  958. if (output_printer) {
  959. output_printer->print_test_result(result);
  960. }
  961. ggml_free(ctx);
  962. return true;
  963. }
  964. // post-graph sentinel
  965. add_sentinel(ctx);
  966. // allocate
  967. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1);
  968. if (buf == NULL) {
  969. printf("failed to allocate tensors [%s] ", ggml_backend_name(backend1));
  970. ggml_free(ctx);
  971. return false;
  972. }
  973. // build graph
  974. ggml_build_forward_expand(gf, out);
  975. // add sentinels as graph nodes so that they are checked in the callback
  976. for (ggml_tensor * sentinel : sentinels) {
  977. ggml_graph_add_node(gf, sentinel);
  978. }
  979. // randomize tensors
  980. initialize_tensors(ctx);
  981. // compare
  982. struct callback_userdata {
  983. bool ok;
  984. double max_err;
  985. ggml_backend_t backend1;
  986. ggml_backend_t backend2;
  987. };
  988. callback_userdata ud {
  989. true,
  990. max_nmse_err(),
  991. backend1,
  992. backend2
  993. };
  994. auto callback = [](int index, ggml_tensor * t1, ggml_tensor * t2, void * user_data) -> bool {
  995. callback_userdata * ud = (callback_userdata *) user_data;
  996. const char * bn1 = ggml_backend_name(ud->backend1);
  997. const char * bn2 = ggml_backend_name(ud->backend2);
  998. if (t1->op == GGML_OP_NONE) {
  999. // sentinels must be unchanged
  1000. std::vector<uint8_t> t1_data(ggml_nbytes(t1));
  1001. std::vector<uint8_t> t2_data(ggml_nbytes(t2));
  1002. ggml_backend_tensor_get(t1, t1_data.data(), 0, ggml_nbytes(t1));
  1003. ggml_backend_tensor_get(t2, t2_data.data(), 0, ggml_nbytes(t2));
  1004. if (memcmp(t1_data.data(), t2_data.data(), ggml_nbytes(t1)) != 0) {
  1005. printf("sentinel mismatch: %s ", t1->name);
  1006. ud->ok = false;
  1007. return true;
  1008. }
  1009. }
  1010. std::vector<float> f1 = tensor_to_float(t1);
  1011. std::vector<float> f2 = tensor_to_float(t2);
  1012. for (size_t i = 0; i < f1.size(); i++) {
  1013. // check for nans
  1014. if (std::isnan(f1[i]) || std::isnan(f2[i])) {
  1015. printf("[%s] NaN at index %zu (%s=%f %s=%f) ", ggml_op_desc(t1), i, bn1, f1[i], bn2, f2[i]);
  1016. ud->ok = false;
  1017. return true;
  1018. }
  1019. // check for infs: both must be inf of the same sign, or both must be finite
  1020. if (isinf_or_max(f1[i]) || isinf_or_max(f2[i])) {
  1021. if (isinf_or_max(f1[i]) && isinf_or_max(f2[i])) {
  1022. if (std::signbit(f1[i]) != std::signbit(f2[i])) {
  1023. printf("[%s] inf sign mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  1024. ud->ok = false;
  1025. return true;
  1026. }
  1027. } else {
  1028. printf("[%s] inf mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  1029. ud->ok = false;
  1030. return true;
  1031. }
  1032. }
  1033. }
  1034. double err = nmse(f1.data(), f2.data(), f1.size());
  1035. if (err > ud->max_err) {
  1036. printf("[%s] NMSE = %.9f > %.9f ", ggml_op_desc(t1), err, ud->max_err);
  1037. //for (int i = 0; i < (int) f1.size(); i++) {
  1038. // printf("%5d %9.6f %9.6f, diff = %9.6f\n", i, f1[i], f2[i], f1[i] - f2[i]);
  1039. //}
  1040. //printf("\n");
  1041. //exit(1);
  1042. ud->ok = false;
  1043. }
  1044. return true;
  1045. GGML_UNUSED(index);
  1046. };
  1047. const bool cmp_ok = ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud, run_whole_graph() ? out : nullptr);
  1048. ggml_backend_buffer_free(buf);
  1049. ggml_free(ctx);
  1050. // Create test result
  1051. bool test_passed = ud.ok && cmp_ok;
  1052. std::string error_msg = test_passed ? "" : (!cmp_ok ? "compare failed" : "test failed");
  1053. test_result result(ggml_backend_name(backend1), current_op_name, vars(), "test", supported, test_passed,
  1054. error_msg);
  1055. if (output_printer) {
  1056. output_printer->print_test_result(result);
  1057. }
  1058. return test_passed;
  1059. }
  1060. bool eval_perf(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) {
  1061. mode = MODE_PERF;
  1062. static const size_t graph_nodes = 8192;
  1063. ggml_init_params params = {
  1064. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
  1065. /* .mem_base = */ NULL,
  1066. /* .no_alloc = */ true,
  1067. };
  1068. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  1069. GGML_ASSERT(ctx);
  1070. ggml_tensor * out = build_graph(ctx.get());
  1071. std::string current_op_name = op_desc(out);
  1072. if (!matches_filter(out, op_names_filter)) {
  1073. //printf(" %s: skipping\n", op_desc(out).c_str());
  1074. return true;
  1075. }
  1076. if (!ggml_backend_supports_op(backend, out)) {
  1077. // Create test result for unsupported performance test
  1078. test_result result(ggml_backend_name(backend), current_op_name, vars(), "perf", false, false,
  1079. "not supported");
  1080. output_printer->print_test_result(result);
  1081. return true;
  1082. }
  1083. // allocate
  1084. ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
  1085. if (buf == NULL) {
  1086. printf("failed to allocate tensors\n");
  1087. return false;
  1088. }
  1089. // randomize tensors
  1090. initialize_tensors(ctx.get());
  1091. // build graph
  1092. ggml_cgraph * gf = ggml_new_graph_custom(ctx.get(), graph_nodes, false);
  1093. ggml_build_forward_expand(gf, out);
  1094. // warmup run
  1095. ggml_status status = ggml_backend_graph_compute(backend, gf);
  1096. if (status != GGML_STATUS_SUCCESS) {
  1097. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1098. return false;
  1099. }
  1100. // determine number of runs
  1101. int n_runs;
  1102. bool is_cpu = ggml_backend_dev_type(ggml_backend_get_device(backend)) == GGML_BACKEND_DEVICE_TYPE_CPU;
  1103. if (op_flops(out) > 0) {
  1104. // based on flops
  1105. const uint64_t GFLOP = 1000 * 1000 * 1000;
  1106. const uint64_t target_flops_cpu = 8ULL * GFLOP;
  1107. const uint64_t target_flops_gpu = 100ULL * GFLOP;
  1108. uint64_t target_flops = is_cpu ? target_flops_cpu : target_flops_gpu;
  1109. n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_flops / op_flops(out)) + 1;
  1110. } else {
  1111. // based on memory size
  1112. const size_t GB = 1ULL << 30;
  1113. const size_t target_size_cpu = 8 * GB;
  1114. const size_t target_size_gpu = 32 * GB;
  1115. size_t target_size = is_cpu ? target_size_cpu : target_size_gpu;
  1116. n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_size / op_size(out)) + 1;
  1117. }
  1118. // duplicate the op
  1119. for (int i = 1; i < n_runs; i++) {
  1120. ggml_graph_add_node(gf, out);
  1121. }
  1122. // calculate memory
  1123. size_t mem = n_runs * op_size(out);
  1124. auto tensor_op_size = [](ggml_tensor * t) {
  1125. size_t size = ggml_nbytes(t);
  1126. // add source tensors
  1127. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1128. if (t->src[i] != NULL) {
  1129. size += ggml_nbytes(t->src[i]);
  1130. }
  1131. }
  1132. return size;
  1133. };
  1134. for (int i = 0; i < ggml_graph_n_nodes(gf); ++i) {
  1135. if (ggml_is_view_op(ggml_graph_node(gf, i)->op) || ggml_graph_node(gf, i) == out) {
  1136. continue;
  1137. }
  1138. mem += tensor_op_size(ggml_graph_node(gf, i));
  1139. }
  1140. // run
  1141. int64_t total_time_us = 0;
  1142. int64_t total_mem = 0;
  1143. int total_runs = 0;
  1144. do {
  1145. int64_t start_time = ggml_time_us();
  1146. ggml_status status = ggml_backend_graph_compute(backend, gf);
  1147. if (status != GGML_STATUS_SUCCESS) {
  1148. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1149. return false;
  1150. }
  1151. int64_t end_time = ggml_time_us();
  1152. total_time_us += end_time - start_time;
  1153. total_mem += mem;
  1154. total_runs += n_runs;
  1155. } while (total_time_us < 1000*1000); // run for at least 1 second
  1156. // Create test result
  1157. double avg_time_us = (double) total_time_us / total_runs;
  1158. double calculated_flops = (op_flops(out) > 0) ? (op_flops(out) * total_runs) / (total_time_us / 1e6) : 0.0;
  1159. double calculated_bandwidth =
  1160. (op_flops(out) == 0) ? total_mem / (total_time_us / 1e6) / 1024.0 / 1024.0 / 1024.0 : 0.0;
  1161. size_t calculated_memory_kb = op_size(out) / 1024;
  1162. test_result result(ggml_backend_name(backend), current_op_name, vars(), "perf", true, true, "", avg_time_us,
  1163. calculated_flops, calculated_bandwidth, calculated_memory_kb, total_runs);
  1164. if (output_printer) {
  1165. output_printer->print_test_result(result);
  1166. }
  1167. return true;
  1168. }
  1169. bool eval_support(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) {
  1170. mode = MODE_SUPPORT;
  1171. static const size_t graph_nodes = 8192;
  1172. ggml_init_params params = {
  1173. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
  1174. /* .mem_base = */ NULL,
  1175. /* .no_alloc = */ true,
  1176. };
  1177. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  1178. GGML_ASSERT(ctx);
  1179. ggml_tensor * out = build_graph(ctx.get());
  1180. std::string current_op_name = op_desc(out);
  1181. if (!matches_filter(out, op_names_filter)) {
  1182. return true;
  1183. }
  1184. bool supported = ggml_backend_supports_op(backend, out);
  1185. std::string device_desc = ggml_backend_dev_description(ggml_backend_get_device(backend));
  1186. std::string backend_reg_name = ggml_backend_reg_name(ggml_backend_dev_backend_reg(ggml_backend_get_device(backend)));
  1187. test_result result(ggml_backend_name(backend), current_op_name, vars(), "support", supported, supported,
  1188. supported ? "yes" : "no", 0.0, 0.0, 0.0, 0, 0, device_desc, backend_reg_name);
  1189. output_printer->print_test_result(result);
  1190. return true;
  1191. }
  1192. bool eval_grad(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) {
  1193. mode = MODE_GRAD;
  1194. const std::vector<float> expect = grad_expect();
  1195. ggml_init_params params = {
  1196. /* .mem_size = */ ggml_tensor_overhead()*128 + 2*ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, true),
  1197. /* .mem_base = */ NULL,
  1198. /* .no_alloc = */ true,
  1199. };
  1200. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  1201. GGML_ASSERT(ctx);
  1202. gf = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
  1203. gb = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
  1204. ggml_tensor * out = build_graph(ctx.get());
  1205. if (!matches_filter(out, op_names_filter) || out->op == GGML_OP_OPT_STEP_ADAMW) {
  1206. return true;
  1207. }
  1208. if (out->type != GGML_TYPE_F32) {
  1209. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1210. test_status_t::NOT_SUPPORTED,
  1211. out->name + std::string("->type != FP32")));
  1212. return true;
  1213. }
  1214. // Print operation info first
  1215. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend)));
  1216. // check if the backend supports the ops
  1217. bool supported = true;
  1218. bool any_params = false;
  1219. std::string failure_reason;
  1220. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1221. if (!ggml_backend_supports_op(backend, t)) {
  1222. supported = false;
  1223. failure_reason = ggml_backend_name(backend);
  1224. break;
  1225. }
  1226. if ((t->flags & GGML_TENSOR_FLAG_PARAM)) {
  1227. any_params = true;
  1228. if (t->type != GGML_TYPE_F32) {
  1229. supported = false;
  1230. failure_reason = std::string(t->name) + "->type != FP32";
  1231. break;
  1232. }
  1233. }
  1234. }
  1235. if (!any_params) {
  1236. supported = false;
  1237. failure_reason = op_desc(out);
  1238. }
  1239. if (!supported) {
  1240. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1241. test_status_t::NOT_SUPPORTED, failure_reason));
  1242. return true;
  1243. }
  1244. int64_t ngrads = 0;
  1245. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1246. if (t->flags & GGML_TENSOR_FLAG_PARAM) {
  1247. ngrads += ggml_nelements(t);
  1248. }
  1249. }
  1250. if (ngrads > grad_nmax()) {
  1251. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1252. info.set_large_tensor_skip();
  1253. output_printer->print_operation(info);
  1254. return true;
  1255. }
  1256. if (!ggml_is_scalar(out)) {
  1257. out = ggml_sum(ctx.get(), out);
  1258. ggml_set_name(out, "sum_of_out");
  1259. }
  1260. ggml_set_loss(out);
  1261. ggml_build_forward_expand(gf, out);
  1262. ggml_graph_cpy(gf, gb);
  1263. ggml_build_backward_expand(ctx.get(), gb, nullptr);
  1264. if (expect.size() != 1 || expect[0] != 0.0f) {
  1265. GGML_ASSERT(ggml_graph_n_nodes(gb) > ggml_graph_n_nodes(gf));
  1266. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1267. GGML_ASSERT(!(t->flags & GGML_TENSOR_FLAG_PARAM) || ggml_graph_get_grad(gb, t)->op != GGML_OP_NONE);
  1268. }
  1269. }
  1270. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1271. if (!ggml_backend_supports_op(backend, t)) {
  1272. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1273. test_status_t::NOT_SUPPORTED,
  1274. ggml_backend_name(backend)));
  1275. supported = false;
  1276. break;
  1277. }
  1278. if ((t->flags & GGML_TENSOR_FLAG_PARAM) && t->type != GGML_TYPE_F32) {
  1279. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1280. test_status_t::NOT_SUPPORTED,
  1281. std::string(t->name) + "->type != FP32"));
  1282. supported = false;
  1283. break;
  1284. }
  1285. }
  1286. if (!supported) {
  1287. return true;
  1288. }
  1289. // allocate
  1290. ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
  1291. if (buf == NULL) {
  1292. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1293. info.set_error("allocation", "");
  1294. output_printer->print_operation(info);
  1295. return false;
  1296. }
  1297. initialize_tensors(ctx.get()); // Randomizes all tensors (including gradients).
  1298. ggml_graph_reset(gb); // Sets gradients to 1 if loss, 0 otherwise.
  1299. ggml_status status = ggml_backend_graph_compute(backend, gf);
  1300. if (status != GGML_STATUS_SUCCESS) {
  1301. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1302. return false;
  1303. }
  1304. status = ggml_backend_graph_compute(backend, gb);
  1305. if (status != GGML_STATUS_SUCCESS) {
  1306. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1307. return false;
  1308. }
  1309. bool ok = true;
  1310. for (struct ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != nullptr; t = ggml_get_next_tensor(ctx.get(), t)) {
  1311. if (!(t->flags & GGML_TENSOR_FLAG_PARAM)) {
  1312. continue;
  1313. }
  1314. const char * bn = ggml_backend_name(backend);
  1315. const int64_t ne = ggml_nelements(t);
  1316. std::vector<float> ga;
  1317. struct ggml_tensor * grad = ggml_graph_get_grad(gb, t);
  1318. if (grad) {
  1319. ga = tensor_to_float(grad);
  1320. } else {
  1321. ga.resize(ne); // default value is 0.0f
  1322. }
  1323. for (int64_t i = 0; i < ne; ++i) { // gradient algebraic
  1324. // check for nans
  1325. if (!std::isfinite(ga[i])) {
  1326. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1327. info.set_gradient_info(i, bn, ga[i]);
  1328. output_printer->print_operation(info);
  1329. ok = false;
  1330. break;
  1331. }
  1332. }
  1333. if (!ok) {
  1334. break;
  1335. }
  1336. std::vector<float> gn(ne); // gradient numeric
  1337. GGML_ASSERT(ga.size() == gn.size());
  1338. std::vector<float> x0 = tensor_to_float(t); // original t data
  1339. GGML_ASSERT(ggml_is_scalar(out));
  1340. GGML_ASSERT(out->type == GGML_TYPE_F32);
  1341. const float eps = grad_eps();
  1342. for (int64_t i = 0; i < ne; ++i) {
  1343. const float xiu = x0[i] + 1.0f*eps; // x, index i, up
  1344. const float xiuh = x0[i] + 0.5f*eps; // x, index i, up half
  1345. const float xidh = x0[i] - 0.5f*eps; // x, index i, down half
  1346. const float xid = x0[i] - 1.0f*eps; // x, index i, down
  1347. float fu, fuh, fdh, fd; // output values for xiu, xiuh, xid, xidh
  1348. ggml_backend_tensor_set(t, &xiu, i*sizeof(float), sizeof(float));
  1349. status = ggml_backend_graph_compute(backend, gf);
  1350. if (status != GGML_STATUS_SUCCESS) {
  1351. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1352. return false;
  1353. }
  1354. ggml_backend_tensor_get(out, &fu, 0, ggml_nbytes(out));
  1355. ggml_backend_tensor_set(t, &xid, i*sizeof(float), sizeof(float));
  1356. status = ggml_backend_graph_compute(backend, gf);
  1357. if (status != GGML_STATUS_SUCCESS) {
  1358. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1359. return false;
  1360. }
  1361. ggml_backend_tensor_get(out, &fd, 0, ggml_nbytes(out));
  1362. if (grad_precise()) {
  1363. ggml_backend_tensor_set(t, &xiuh, i*sizeof(float), sizeof(float));
  1364. status = ggml_backend_graph_compute(backend, gf);
  1365. if (status != GGML_STATUS_SUCCESS) {
  1366. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1367. return false;
  1368. }
  1369. ggml_backend_tensor_get(out, &fuh, 0, ggml_nbytes(out));
  1370. ggml_backend_tensor_set(t, &xidh, i*sizeof(float), sizeof(float));
  1371. status = ggml_backend_graph_compute(backend, gf);
  1372. if (status != GGML_STATUS_SUCCESS) {
  1373. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1374. return false;
  1375. }
  1376. ggml_backend_tensor_get(out, &fdh, 0, ggml_nbytes(out));
  1377. gn[i] = (8.0*(double)fuh + (double)fd - (8.0*(double)fdh + (double)fu)) / (6.0*(double)eps);
  1378. } else {
  1379. gn[i] = (fu - fd) / (2.0f*eps);
  1380. }
  1381. ggml_backend_tensor_set(t, x0.data(), 0, ggml_nbytes(t));
  1382. }
  1383. const double err = mean_abs_asymm(gn.data(), ga.data(), gn.size(), expect);
  1384. if (err > max_maa_err()) {
  1385. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1386. info.set_maa_error(err, max_maa_err());
  1387. output_printer->print_operation(info);
  1388. ok = false;
  1389. break;
  1390. }
  1391. if (!ok) {
  1392. break;
  1393. }
  1394. }
  1395. // Create final test result
  1396. test_operation_info final_info(op_desc(out), vars(), ggml_backend_name(backend));
  1397. if (!ok) {
  1398. final_info.set_compare_failure();
  1399. }
  1400. final_info.status = ok ? test_status_t::OK : test_status_t::FAIL;
  1401. output_printer->print_operation(final_info);
  1402. if (ok) {
  1403. return true;
  1404. }
  1405. return false;
  1406. }
  1407. };
  1408. // ###################################
  1409. // ## Section 2: GGML Op Defintions ##
  1410. // ###################################
  1411. // The following is an example showing the bare minimum for creating a test for a GGML op.
  1412. // GGML_OP_EXAMPLE
  1413. struct test_example : public test_case {
  1414. // Always define these 2 or variants thereof:
  1415. const ggml_type type; // The type of the input tensors.
  1416. const std::array<int64_t, 4> ne; // The shape of the input tensors.
  1417. // For some ops it's necessary to define multiple types or shapes for the inputs.
  1418. // Or they may need additional parameters.
  1419. // Put all parameters needed to fully define the test into one of the VARS_TO_STR macros.
  1420. // In most cases these are just the properties of the struct that you defined above.
  1421. // This is needed for info prints.
  1422. std::string vars() override {
  1423. return VARS_TO_STR2(type, ne);
  1424. }
  1425. // Define a constructor for the struct.
  1426. // In most cases it will be sufficient to have the same arguments as the struct has properties
  1427. // and just use initializer lists.
  1428. test_example(ggml_type type = GGML_TYPE_F32,
  1429. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  1430. : type(type), ne(ne) {}
  1431. // Define how a simple GGML compute graph can be constructed for the new GGML op.
  1432. ggml_tensor * build_graph(ggml_context * ctx) override {
  1433. // Step 1: create input tensors that don't depend on any other tensors:
  1434. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1435. ggml_set_name(a, "a"); // Setting names is optional but it's useful for debugging.
  1436. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1437. ggml_set_name(b, "b");
  1438. // Step 2: use the op that you want to test in the GGML compute graph.
  1439. ggml_tensor * out = ggml_add(ctx, a, b); // For this example we're just doing a simple addition.
  1440. ggml_set_name(out, "out");
  1441. // Step 3: return the output tensor.
  1442. return out;
  1443. }
  1444. // In order to also check the gradients for your op, add calls like ggml_set_param(a)
  1445. // immediately after you create the tensors.
  1446. // This is optional and only makes sense if a backward pass has actually been implemented for the new op.
  1447. };
  1448. // GGML_OP_UNARY
  1449. struct test_unary : public test_case {
  1450. const ggml_unary_op op;
  1451. const ggml_type type;
  1452. const std::array<int64_t, 4> ne_a;
  1453. int v; // view (1 : non-contiguous a)
  1454. std::string vars() override {
  1455. return VARS_TO_STR3(type, ne_a, v);
  1456. }
  1457. test_unary(ggml_unary_op op,
  1458. ggml_type type = GGML_TYPE_F32,
  1459. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1460. int v = 0)
  1461. : op(op), type(type), ne_a(ne_a), v(v) {}
  1462. ggml_tensor * build_graph(ggml_context * ctx) override {
  1463. const bool grad_supported = op == GGML_UNARY_OP_ABS || op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_NEG ||
  1464. op == GGML_UNARY_OP_STEP || op == GGML_UNARY_OP_RELU || op == GGML_UNARY_OP_SILU;
  1465. ggml_tensor * a;
  1466. if (v & 1) {
  1467. auto ne = ne_a; ne[0] *= 3;
  1468. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1469. if (grad_supported) {
  1470. ggml_set_param(a);
  1471. }
  1472. ggml_set_name(a, "a");
  1473. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1474. ggml_set_name(a, "view_of_a");
  1475. } else {
  1476. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1477. if (grad_supported) {
  1478. ggml_set_param(a);
  1479. }
  1480. ggml_set_name(a, "a");
  1481. }
  1482. ggml_tensor * out = ggml_unary(ctx, a, op);
  1483. ggml_set_name(out, "out");
  1484. return out;
  1485. }
  1486. void initialize_tensors(ggml_context * ctx) override {
  1487. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1488. // test extended range of values to check for NaNs in GELU
  1489. init_tensor_uniform(t, -150.f, 150.f);
  1490. }
  1491. }
  1492. float grad_eps() override {
  1493. return 15.0f;
  1494. }
  1495. std::vector<float> grad_expect() override {
  1496. if (op == GGML_UNARY_OP_ABS) {
  1497. return {-1.0f, 1.0f};
  1498. }
  1499. if (op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_STEP) {
  1500. return {0.0f};
  1501. }
  1502. if (op == GGML_UNARY_OP_RELU) {
  1503. return {0.0f, 1.0f};
  1504. }
  1505. return {};
  1506. }
  1507. };
  1508. // GGML_OP_GLU
  1509. struct test_glu : public test_case {
  1510. const ggml_glu_op op;
  1511. const ggml_type type;
  1512. const std::array<int64_t, 4> ne_a;
  1513. int v; // view (1 : non-contiguous a)
  1514. bool swapped;
  1515. std::string vars() override {
  1516. return VARS_TO_STR4(type, ne_a, v, swapped);
  1517. }
  1518. test_glu(ggml_glu_op op,
  1519. ggml_type type = GGML_TYPE_F32,
  1520. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1521. int v = 0,
  1522. bool swapped = false)
  1523. : op(op), type(type), ne_a(ne_a), v(v), swapped(swapped) {}
  1524. ggml_tensor * build_graph(ggml_context * ctx) override {
  1525. ggml_tensor * a;
  1526. if (v & 1) {
  1527. auto ne = ne_a; ne[0] *= 3;
  1528. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1529. ggml_set_name(a, "a");
  1530. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1531. ggml_set_name(a, "view_of_a");
  1532. } else {
  1533. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1534. ggml_set_name(a, "a");
  1535. }
  1536. ggml_tensor * out = ggml_glu(ctx, a, op, swapped);
  1537. ggml_set_name(out, "out");
  1538. return out;
  1539. }
  1540. void initialize_tensors(ggml_context * ctx) override {
  1541. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1542. // test extended range of values to check for NaNs in GELU
  1543. init_tensor_uniform(t, -150.f, 150.f);
  1544. }
  1545. }
  1546. };
  1547. struct test_glu_split : public test_case {
  1548. const ggml_glu_op op;
  1549. const ggml_type type;
  1550. const std::array<int64_t, 4> ne_a;
  1551. int v; // view (1 : non-contiguous a)
  1552. std::string vars() override {
  1553. return VARS_TO_STR3(type, ne_a, v) + ",split";
  1554. }
  1555. test_glu_split(ggml_glu_op op,
  1556. ggml_type type = GGML_TYPE_F32,
  1557. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1558. int v = 0)
  1559. : op(op), type(type), ne_a(ne_a), v(v) {}
  1560. ggml_tensor * build_graph(ggml_context * ctx) override {
  1561. ggml_tensor * a;
  1562. ggml_tensor * b;
  1563. if (v & 1) {
  1564. auto ne = ne_a; ne[0] *= 3;
  1565. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1566. ggml_set_param(a);
  1567. ggml_set_name(a, "a");
  1568. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1569. ggml_set_name(a, "view_of_a");
  1570. b = ggml_new_tensor(ctx, type, 4, ne.data());
  1571. ggml_set_param(b);
  1572. ggml_set_name(b, "b");
  1573. b = ggml_view_4d(ctx, b, ne_a[0], ne_a[1], ne_a[2], ne_a[3], b->nb[1], b->nb[2], b->nb[3], 0);
  1574. ggml_set_name(a, "view_of_b");
  1575. } else {
  1576. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1577. ggml_set_param(a);
  1578. ggml_set_name(a, "a");
  1579. b = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1580. ggml_set_param(b);
  1581. ggml_set_name(b, "b");
  1582. }
  1583. ggml_tensor * out = ggml_glu_split(ctx, a, b, op);
  1584. ggml_set_name(out, "out");
  1585. return out;
  1586. }
  1587. void initialize_tensors(ggml_context * ctx) override {
  1588. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1589. // test extended range of values to check for NaNs in GELU
  1590. init_tensor_uniform(t, -150.f, 150.f);
  1591. }
  1592. }
  1593. };
  1594. struct test_swiglu_oai : public test_case {
  1595. const ggml_type type;
  1596. const std::array<int64_t, 4> ne_a;
  1597. int v; // view (1 : non-contiguous a)
  1598. float alpha;
  1599. float limit;
  1600. std::string vars() override {
  1601. return VARS_TO_STR5(type, ne_a, v, alpha, limit);
  1602. }
  1603. test_swiglu_oai(ggml_type type = GGML_TYPE_F32,
  1604. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1605. int v = 0,
  1606. float alpha = 1.702f,
  1607. float limit = 7.0f)
  1608. : type(type), ne_a(ne_a), v(v), alpha(alpha), limit(limit) {}
  1609. ggml_tensor * build_graph(ggml_context * ctx) override {
  1610. ggml_tensor * a;
  1611. ggml_tensor * b;
  1612. if (v & 1) {
  1613. auto ne = ne_a; ne[0] *= 3;
  1614. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1615. ggml_set_param(a);
  1616. ggml_set_name(a, "a");
  1617. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1618. ggml_set_name(a, "view_of_a");
  1619. b = ggml_new_tensor(ctx, type, 4, ne.data());
  1620. ggml_set_param(b);
  1621. ggml_set_name(b, "b");
  1622. b = ggml_view_4d(ctx, b, ne_a[0], ne_a[1], ne_a[2], ne_a[3], b->nb[1], b->nb[2], b->nb[3], 0);
  1623. ggml_set_name(a, "view_of_b");
  1624. } else {
  1625. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1626. ggml_set_param(a);
  1627. ggml_set_name(a, "a");
  1628. b = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1629. ggml_set_param(b);
  1630. ggml_set_name(b, "b");
  1631. }
  1632. ggml_tensor * out = ggml_swiglu_oai(ctx, a, b, alpha, limit);
  1633. ggml_set_name(out, "out");
  1634. return out;
  1635. }
  1636. void initialize_tensors(ggml_context * ctx) override {
  1637. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1638. // test extended range of values to check for NaNs in GELU
  1639. init_tensor_uniform(t, -150.f, 150.f);
  1640. }
  1641. }
  1642. };
  1643. // GGML_OP_GET_ROWS
  1644. struct test_get_rows : public test_case {
  1645. const ggml_type type;
  1646. const int n; // cols
  1647. const int m; // rows
  1648. const int r; // rows to get
  1649. const int be1; // batch size
  1650. const int be2; // batch size
  1651. const bool v; // view (non-contiguous src1)
  1652. std::string vars() override {
  1653. return VARS_TO_STR7(type, n, m, r, be1, be2, v);
  1654. }
  1655. test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int be1 = 1, int be2 = 1, bool v = false)
  1656. : type(type), n(n), m(m), r(r), be1(be1), be2(be2), v(v) {}
  1657. ggml_tensor * build_graph(ggml_context * ctx) override {
  1658. ggml_tensor * in = ggml_new_tensor_4d(ctx, type, n, m, be1, be2);
  1659. ggml_set_name(in, "in");
  1660. ggml_tensor * rows = ggml_new_tensor_3d(ctx, GGML_TYPE_I32, r, be1, be2);
  1661. ggml_set_name(rows, "rows");
  1662. if (v) {
  1663. rows = ggml_view_3d(ctx, rows, r/2, be1, be2, rows->nb[1], rows->nb[2], 0);
  1664. ggml_set_name(rows, "view_of_rows");
  1665. }
  1666. const bool grad_supported = ggml_is_matrix(in) && ggml_is_vector(rows);
  1667. if (grad_supported) {
  1668. ggml_set_param(in);
  1669. // rows is a constant input -> no gradients
  1670. }
  1671. ggml_tensor * out = ggml_get_rows(ctx, in, rows);
  1672. ggml_set_name(out, "out");
  1673. return out;
  1674. }
  1675. void initialize_tensors(ggml_context * ctx) override {
  1676. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1677. if (t->type == GGML_TYPE_I32) {
  1678. if (ggml_is_view_op(t->op)) { continue; }
  1679. // rows
  1680. std::vector<int> data(r*be1*be2);
  1681. for (int i = 0; i < r*be1*be2; i++) {
  1682. data[i] = rand() % m;
  1683. }
  1684. ggml_backend_tensor_set(t, data.data(), 0, r * be1 * be2 * sizeof(int));
  1685. } else {
  1686. init_tensor_uniform(t);
  1687. }
  1688. }
  1689. }
  1690. };
  1691. // GGML_OP_GET_ROWS_BACK
  1692. struct test_get_rows_back : public test_case {
  1693. const ggml_type type;
  1694. const int n; // cols
  1695. const int m; // rows
  1696. const int r; // rows to get
  1697. const int b; // batch size
  1698. const bool v; // view (non-contiguous src1)
  1699. std::string vars() override {
  1700. return VARS_TO_STR6(type, n, m, r, b, v);
  1701. }
  1702. test_get_rows_back(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
  1703. : type(type), n(n), m(m), r(r), b(b), v(v) {}
  1704. ggml_tensor * build_graph(ggml_context * ctx) override {
  1705. ggml_tensor * in_forward = ggml_new_tensor_3d(ctx, type, n, m, b);
  1706. ggml_set_name(in_forward, "in_forward");
  1707. ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
  1708. ggml_set_name(rows, "rows");
  1709. if (v) {
  1710. rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
  1711. ggml_set_name(rows, "view_of_rows");
  1712. }
  1713. ggml_tensor * grad = ggml_new_tensor_3d(ctx, type, n, r, b);
  1714. ggml_set_name(grad, "grad");
  1715. ggml_tensor * out = ggml_get_rows_back(ctx, grad, rows, in_forward);
  1716. ggml_set_name(out, "out");
  1717. return out;
  1718. }
  1719. void initialize_tensors(ggml_context * ctx) override {
  1720. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1721. if (t->type == GGML_TYPE_I32) {
  1722. if (ggml_is_view_op(t->op)) { continue; }
  1723. // rows
  1724. std::vector<int> data(r*b);
  1725. for (int i = 0; i < r*b; i++) {
  1726. data[i] = rand() % m;
  1727. }
  1728. ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
  1729. } else {
  1730. init_tensor_uniform(t);
  1731. }
  1732. }
  1733. }
  1734. };
  1735. // GGML_OP_SET_ROWS
  1736. struct test_set_rows : public test_case {
  1737. const ggml_type type;
  1738. const std::array<int64_t, 4> ne;
  1739. const std::array<int, 2> nr23; // broadcast only dims 2 and 3
  1740. const int r; // rows to set
  1741. const bool v; // view (non-contiguous src1)
  1742. std::string vars() override {
  1743. return VARS_TO_STR5(type, ne, nr23, r, v);
  1744. }
  1745. test_set_rows(ggml_type type,
  1746. std::array<int64_t, 4> ne,
  1747. std::array<int, 2> nr23,
  1748. int r, bool v = false)
  1749. : type(type), ne(ne), nr23(nr23), r(r), v(v) {}
  1750. ggml_tensor * build_graph(ggml_context * ctx) override {
  1751. ggml_tensor * dst = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2]*nr23[0], ne[3]*nr23[1]);
  1752. ggml_set_name(dst, "dst");
  1753. ggml_tensor * src = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne[0], r, ne[2]*nr23[0], ne[3]*nr23[1]);
  1754. ggml_set_name(src, "src");
  1755. ggml_tensor * row_idxs = ggml_new_tensor_3d(ctx, GGML_TYPE_I64, r, ne[2], ne[3]);
  1756. ggml_set_name(row_idxs, "row_idxs");
  1757. if (v) {
  1758. src = ggml_view_4d(ctx, src, ne[0], r/2, ne[2]*nr23[0], ne[3]*nr23[1], src->nb[1], src->nb[2], src->nb[3], 0);
  1759. row_idxs = ggml_view_3d(ctx, row_idxs, r/2, ne[2], ne[3], row_idxs->nb[1], row_idxs->nb[2], 0);
  1760. ggml_set_name(row_idxs, "view_of_rows");
  1761. }
  1762. ggml_tensor * out = ggml_set_rows(ctx, dst, src, row_idxs);
  1763. ggml_set_name(out, "out");
  1764. return out;
  1765. }
  1766. void initialize_tensors(ggml_context * ctx) override {
  1767. std::random_device rd;
  1768. std::default_random_engine rng(rd());
  1769. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1770. if (t->type == GGML_TYPE_I64) {
  1771. if (ggml_is_view_op(t->op)) {
  1772. continue;
  1773. }
  1774. for (int i2 = 0; i2 < t->ne[2]; i2++) {
  1775. for (int i1 = 0; i1 < t->ne[1]; i1++) {
  1776. // generate a shuffled subset of row indices
  1777. std::vector<int64_t> data(ne[1]);
  1778. for (int i = 0; i < ne[1]; i++) {
  1779. data[i] = i;
  1780. }
  1781. std::shuffle(data.begin(), data.end(), rng);
  1782. data.resize(t->ne[0]);
  1783. const size_t offs = i1*t->nb[1] + i2*t->nb[2];
  1784. ggml_backend_tensor_set(t, data.data(), offs, t->ne[0]*sizeof(int64_t));
  1785. }
  1786. }
  1787. } else {
  1788. init_tensor_uniform(t);
  1789. }
  1790. }
  1791. }
  1792. };
  1793. // GGML_OP_ARGMAX
  1794. struct test_argmax : public test_case {
  1795. const ggml_type type;
  1796. const std::array<int64_t, 4> ne;
  1797. std::string vars() override {
  1798. return VARS_TO_STR2(type, ne);
  1799. }
  1800. test_argmax(ggml_type type = GGML_TYPE_F32,
  1801. std::array<int64_t, 4> ne = {10, 100, 1, 1})
  1802. : type(type), ne(ne) {}
  1803. ggml_tensor * build_graph(ggml_context * ctx) override {
  1804. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1805. ggml_set_name(a, "a");
  1806. ggml_tensor * out = ggml_argmax(ctx, a);
  1807. ggml_set_name(out, "out");
  1808. return out;
  1809. }
  1810. void initialize_tensors(ggml_context * ctx) override {
  1811. std::random_device rd;
  1812. std::default_random_engine rng(rd());
  1813. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1814. if (t->type == GGML_TYPE_F32) {
  1815. // initialize with unique values to avoid ties
  1816. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  1817. std::vector<float> data(t->ne[0]);
  1818. for (int i = 0; i < t->ne[0]; i++) {
  1819. data[i] = i;
  1820. }
  1821. std::shuffle(data.begin(), data.end(), rng);
  1822. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  1823. }
  1824. } else {
  1825. init_tensor_uniform(t);
  1826. }
  1827. }
  1828. }
  1829. double max_nmse_err() override {
  1830. return 0.0;
  1831. }
  1832. };
  1833. // GGML_OP_COUNT_EQUAL
  1834. struct test_count_equal : public test_case {
  1835. const ggml_type type;
  1836. const std::array<int64_t, 4> ne;
  1837. std::string vars() override {
  1838. return VARS_TO_STR2(type, ne);
  1839. }
  1840. test_count_equal(ggml_type type = GGML_TYPE_F32,
  1841. std::array<int64_t, 4> ne = {4, 500, 1, 1})
  1842. : type(type), ne(ne) {}
  1843. ggml_tensor * build_graph(ggml_context * ctx) override {
  1844. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1845. ggml_set_name(a, "a");
  1846. ggml_tensor * a_argmax = ggml_argmax(ctx, a);
  1847. ggml_set_name(a_argmax, "a_argmax");
  1848. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1849. ggml_set_name(b, "b");
  1850. ggml_tensor * b_argmax = ggml_argmax(ctx, b);
  1851. ggml_set_name(b_argmax, "b_argmax");
  1852. ggml_tensor * out = ggml_count_equal(ctx, a_argmax, b_argmax);
  1853. ggml_set_name(out, "out");
  1854. return out;
  1855. }
  1856. double max_nmse_err() override {
  1857. return 0.0;
  1858. }
  1859. void initialize_tensors(ggml_context * ctx) override {
  1860. std::random_device rd;
  1861. std::default_random_engine rng(rd());
  1862. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1863. if (t->type == GGML_TYPE_F32) {
  1864. // initialize with unique values to avoid ties
  1865. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  1866. std::vector<float> data(t->ne[0]);
  1867. for (int i = 0; i < t->ne[0]; i++) {
  1868. data[i] = i;
  1869. }
  1870. std::shuffle(data.begin(), data.end(), rng);
  1871. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  1872. }
  1873. } else {
  1874. init_tensor_uniform(t);
  1875. }
  1876. }
  1877. }
  1878. };
  1879. // GGML_OP_REPEAT
  1880. struct test_repeat : public test_case {
  1881. const ggml_type type;
  1882. const std::array<int64_t, 4> ne;
  1883. const std::array<int, 4> nr;
  1884. std::string vars() override {
  1885. return VARS_TO_STR3(type, ne, nr);
  1886. }
  1887. size_t op_size(ggml_tensor * t) override {
  1888. return ggml_nbytes(t) * 2;
  1889. }
  1890. test_repeat(ggml_type type = GGML_TYPE_F32,
  1891. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  1892. std::array<int, 4> nr = {2, 2, 2, 2})
  1893. : type(type), ne(ne), nr(nr) {}
  1894. ggml_tensor * build_graph(ggml_context * ctx) override {
  1895. ggml_tensor * target = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  1896. ggml_set_name(target, "target");
  1897. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  1898. ggml_set_param(src);
  1899. ggml_set_name(src, "src");
  1900. ggml_tensor * out = ggml_repeat(ctx, src, target);
  1901. ggml_set_name(out, "out");
  1902. return out;
  1903. }
  1904. };
  1905. // GGML_OP_REPEAT_BACK
  1906. struct test_repeat_back : public test_case {
  1907. const ggml_type type;
  1908. const std::array<int64_t, 4> ne;
  1909. const std::array<int, 4> nr;
  1910. const bool v; // whether src is a noncontiguous view
  1911. std::string vars() override {
  1912. return VARS_TO_STR4(type, ne, nr, v);
  1913. }
  1914. size_t op_size(ggml_tensor * t) override {
  1915. return ggml_nbytes(t) * 2;
  1916. }
  1917. test_repeat_back(ggml_type type = GGML_TYPE_F32,
  1918. std::array<int64_t, 4> ne = {8, 6, 4, 2},
  1919. std::array<int, 4> nr = {2, 2, 2, 2},
  1920. bool v = false)
  1921. : type(type), ne(ne), nr(nr), v(v) {}
  1922. ggml_tensor * build_graph(ggml_context * ctx) override {
  1923. ggml_tensor * src = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  1924. ggml_set_name(src, "src");
  1925. if (v) {
  1926. GGML_ASSERT(ne[0] % 2 == 0);
  1927. GGML_ASSERT(ne[1] % 2 == 0);
  1928. GGML_ASSERT(ne[2] % 2 == 0);
  1929. GGML_ASSERT(ne[3] % 2 == 0);
  1930. GGML_ASSERT(nr[0] % 2 == 0 || nr[0] == 1);
  1931. GGML_ASSERT(nr[1] % 2 == 0 || nr[1] == 1);
  1932. GGML_ASSERT(nr[2] % 2 == 0 || nr[2] == 1);
  1933. GGML_ASSERT(nr[3] % 2 == 0 || nr[3] == 1);
  1934. const int64_t ne00 = nr[0] == 1 ? src->ne[0] : src->ne[0] / 2;
  1935. const int64_t ne01 = nr[1] == 1 ? src->ne[1] : src->ne[1] / 2;
  1936. const int64_t ne02 = nr[2] == 1 ? src->ne[2] : src->ne[2] / 2;
  1937. const int64_t ne03 = nr[3] == 1 ? src->ne[3] : src->ne[3] / 2;
  1938. src = ggml_view_4d(ctx, src, ne00, ne01, ne02, ne03, src->nb[1], src->nb[2], src->nb[3], 0);
  1939. }
  1940. ggml_tensor * target = ggml_new_tensor(ctx, type, 4, ne.data());
  1941. ggml_set_name(target, "target");
  1942. ggml_tensor * out = ggml_repeat_back(ctx, src, target);
  1943. ggml_set_name(out, "out");
  1944. return out;
  1945. }
  1946. };
  1947. // GGML_OP_DUP
  1948. struct test_dup : public test_case {
  1949. const ggml_type type;
  1950. const std::array<int64_t, 4> ne;
  1951. const std::array<int64_t, 4> permute;
  1952. bool _use_permute;
  1953. std::string vars() override {
  1954. std::string v = VARS_TO_STR2(type, ne);
  1955. if (_use_permute) v += "," + VAR_TO_STR(permute);
  1956. return v;
  1957. }
  1958. test_dup(ggml_type type = GGML_TYPE_F32,
  1959. std::array<int64_t, 4> ne = {10, 10, 20, 1},
  1960. std::array<int64_t, 4> permute = {0, 0, 0, 0})
  1961. : type(type), ne(ne), permute(permute),
  1962. _use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
  1963. ggml_tensor * build_graph(ggml_context * ctx) override {
  1964. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  1965. ggml_set_param(src);
  1966. ggml_set_name(src, "src");
  1967. if (_use_permute) {
  1968. src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]);
  1969. ggml_set_name(src, "src_permuted");
  1970. }
  1971. ggml_tensor * out = ggml_dup(ctx, src);
  1972. ggml_set_name(out, "out");
  1973. return out;
  1974. }
  1975. };
  1976. // GGML_OP_SET
  1977. struct test_set : public test_case {
  1978. const ggml_type type_src;
  1979. const ggml_type type_dst;
  1980. const std::array<int64_t, 4> ne;
  1981. const int dim;
  1982. std::string vars() override {
  1983. return VARS_TO_STR4(type_src, type_dst, ne, dim);
  1984. }
  1985. size_t op_size(ggml_tensor * t) override {
  1986. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  1987. }
  1988. test_set(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  1989. std::array<int64_t, 4> ne = {6, 5, 4, 3}, int dim = 1)
  1990. : type_src(type_src), type_dst(type_dst), ne(ne), dim(dim) {}
  1991. ggml_tensor * build_graph(ggml_context * ctx) override {
  1992. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  1993. ggml_set_param(src);
  1994. ggml_set_name(src, "src");
  1995. auto ne_dst = ne;
  1996. for (int i = 0; i < dim; ++i) {
  1997. ne_dst[i] *= 2;
  1998. }
  1999. ggml_tensor* dst = ggml_new_tensor(ctx, type_dst, 4, ne_dst.data());
  2000. ggml_set_param(dst);
  2001. ggml_set_name(dst, "dst");
  2002. size_t offset = 0;
  2003. for (int i = 0; i < dim; ++i) {
  2004. offset += ((ne_dst[i] - ne[i])/2)*dst->nb[i];
  2005. }
  2006. ggml_tensor * out = ggml_set(ctx, dst, src,
  2007. // The backward pass requires setting a contiguous region:
  2008. src->nb[1], src->nb[2], src->nb[3], offset);
  2009. ggml_set_name(out, "out");
  2010. return out;
  2011. }
  2012. };
  2013. // GGML_OP_CPY
  2014. struct test_cpy : public test_case {
  2015. const ggml_type type_src;
  2016. const ggml_type type_dst;
  2017. const std::array<int64_t, 4> ne;
  2018. const std::array<int64_t, 4> permute_src;
  2019. const std::array<int64_t, 4> permute_dst;
  2020. bool _src_use_permute;
  2021. bool _dst_use_permute;
  2022. std::string vars() override {
  2023. return VARS_TO_STR5(type_src, type_dst, ne, permute_src, permute_dst);
  2024. }
  2025. double max_nmse_err() override {
  2026. return 1e-6;
  2027. }
  2028. size_t op_size(ggml_tensor * t) override {
  2029. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  2030. }
  2031. test_cpy(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  2032. std::array<int64_t, 4> ne = {10, 10, 10, 1},
  2033. std::array<int64_t, 4> permute_src = {0, 0, 0, 0},
  2034. std::array<int64_t, 4> permute_dst = {0, 0, 0, 0})
  2035. : type_src(type_src), type_dst(type_dst), ne(ne), permute_src(permute_src), permute_dst(permute_dst),
  2036. _src_use_permute(permute_src[0] + permute_src[1] + permute_src[2] + permute_src[3] > 0),
  2037. _dst_use_permute(permute_dst[0] + permute_dst[1] + permute_dst[2] + permute_dst[3] > 0) {}
  2038. ggml_tensor * build_graph(ggml_context * ctx) override {
  2039. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  2040. ggml_set_param(src);
  2041. ggml_set_name(src, "src");
  2042. if (_src_use_permute) {
  2043. src = ggml_permute(ctx, src, permute_src[0], permute_src[1], permute_src[2], permute_src[3]);
  2044. ggml_set_name(src, "src_permuted");
  2045. }
  2046. ggml_tensor * dst = ggml_new_tensor(ctx, type_dst, 4, src->ne);
  2047. ggml_set_name(dst, "dst");
  2048. if (_dst_use_permute) {
  2049. dst = ggml_permute(ctx, dst, permute_dst[0], permute_dst[1], permute_dst[2], permute_dst[3]);
  2050. ggml_set_name(dst, "dst_permuted");
  2051. }
  2052. ggml_tensor * out = ggml_cpy(ctx, src, dst);
  2053. ggml_set_name(out, "out");
  2054. return out;
  2055. }
  2056. void initialize_tensors(ggml_context * ctx) override {
  2057. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2058. // test extended range of values to check if casting between f32 and i32 is consistent
  2059. init_tensor_uniform(t, -150.f, 150.f);
  2060. }
  2061. }
  2062. };
  2063. // GGML_OP_CONT
  2064. struct test_cont : public test_case {
  2065. const ggml_type type;
  2066. const std::array<int64_t, 4> ne;
  2067. std::string vars() override {
  2068. return VARS_TO_STR2(type, ne);
  2069. }
  2070. test_cont(ggml_type type = GGML_TYPE_F32,
  2071. std::array<int64_t, 4> ne = {10, 10, 10, 1})
  2072. : type(type), ne(ne) {}
  2073. ggml_tensor * build_graph(ggml_context * ctx) override {
  2074. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  2075. ggml_set_param(src);
  2076. ggml_set_name(src, "src");
  2077. src = ggml_transpose(ctx, src);
  2078. ggml_set_name(src, "src_transposed");
  2079. ggml_tensor * out = ggml_cont(ctx, src);
  2080. ggml_set_name(out, "out");
  2081. return out;
  2082. }
  2083. };
  2084. // GGML_OP_ADD
  2085. // GGML_OP_SUB
  2086. // GGML_OP_MUL
  2087. // GGML_OP_DIV
  2088. struct test_bin_bcast : public test_case {
  2089. using op_t = ggml_tensor * (*) (ggml_context *, ggml_tensor *, ggml_tensor *);
  2090. op_t op;
  2091. const ggml_type type;
  2092. const std::array<int64_t, 4> ne;
  2093. const std::array<int, 4> nr;
  2094. int nf; // number of fused ops, nf == 1 -> single op (no fusion)
  2095. bool run_whole_graph() override { return true; }
  2096. std::string vars() override {
  2097. return VARS_TO_STR4(type, ne, nr, nf);
  2098. }
  2099. size_t op_size(ggml_tensor * t) override {
  2100. return ggml_nbytes(t) * 3;
  2101. }
  2102. test_bin_bcast(op_t op, ggml_type type = GGML_TYPE_F32,
  2103. std::array<int64_t, 4> ne = {10, 10, 1, 1},
  2104. std::array<int, 4> nr = {1, 2, 1, 1},
  2105. int nf = 1)
  2106. : op(op), type(type), ne(ne), nr(nr), nf(nf) {}
  2107. ggml_tensor * build_graph(ggml_context * ctx) override {
  2108. GGML_ASSERT(nf <= 16);
  2109. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  2110. ggml_set_name(a, "a");
  2111. ggml_tensor * b[16];
  2112. for (int i = 0; i < nf; ++i) {
  2113. b[i] = ggml_new_tensor(ctx, type, 4, ne.data());
  2114. ggml_set_name(b[i], (std::string("b") + std::to_string(i)).c_str());
  2115. }
  2116. // The backward pass supports broadcasting only for GGML_ADD:
  2117. const bool grad_supported = op == ggml_add && ggml_are_same_shape(a, b[0]) && nf == 1;
  2118. if (grad_supported) {
  2119. ggml_set_param(a);
  2120. ggml_set_param(b[0]);
  2121. }
  2122. ggml_tensor * out = a;
  2123. for (int i = 0; i < nf; ++i) {
  2124. out = op(ctx, out, b[i]);
  2125. }
  2126. ggml_set_name(out, "out");
  2127. return out;
  2128. }
  2129. void initialize_tensors(ggml_context * ctx) override {
  2130. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2131. if (op == ggml_mul || op == ggml_div) {
  2132. // MUL and DIV have numerical issues around zero:
  2133. init_tensor_uniform(t, 0.9f, 1.1f);
  2134. } else {
  2135. init_tensor_uniform(t);
  2136. }
  2137. }
  2138. }
  2139. float grad_eps() override {
  2140. return 0.1f * (op == ggml_mul ? ne[0]*ne[1]*ne[2]*ne[3] : 1);
  2141. }
  2142. bool grad_precise() override {
  2143. return op == ggml_div;
  2144. }
  2145. double max_maa_err() override {
  2146. return op == ggml_add ? 1e-4 : 1e-3;
  2147. }
  2148. };
  2149. // GGML_OP_ADD_ID
  2150. struct test_add_id : public test_case {
  2151. const ggml_type type_a;
  2152. const ggml_type type_b;
  2153. const int64_t n_embd;
  2154. const int64_t n_experts;
  2155. const int64_t n_experts_used;
  2156. const int64_t n_token;
  2157. std::string vars() override {
  2158. return VARS_TO_STR6(type_a, type_b, n_embd, n_experts, n_experts_used, n_token);
  2159. }
  2160. size_t op_size(ggml_tensor * t) override {
  2161. return ggml_nbytes(t) + ggml_nbytes(t->src[0]) + ggml_nbytes(t->src[2]);
  2162. }
  2163. test_add_id(ggml_type type_a = GGML_TYPE_F32,
  2164. ggml_type type_b = GGML_TYPE_F32,
  2165. int64_t n_embd = 128,
  2166. int64_t n_experts = 16,
  2167. int64_t n_experts_used = 8,
  2168. int64_t n_token = 10)
  2169. : type_a(type_a), type_b(type_b), n_embd(n_embd),
  2170. n_experts(n_experts), n_experts_used(n_experts_used), n_token(n_token) {}
  2171. ggml_tensor * build_graph(ggml_context * ctx) override {
  2172. ggml_tensor * a = ggml_new_tensor_3d(ctx, type_a, n_embd, n_experts_used, n_token);
  2173. ggml_tensor * b = ggml_new_tensor_2d(ctx, type_b, n_embd, n_experts);
  2174. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_experts, n_token);
  2175. if (n_experts_used != n_experts) {
  2176. ids = ggml_view_2d(ctx, ids, n_experts_used, n_token, ids->nb[1], 0);
  2177. ggml_set_name(ids, "view_of_ids");
  2178. }
  2179. ggml_tensor * out = ggml_add_id(ctx, a, b, ids);
  2180. ggml_set_name(out, "out");
  2181. return out;
  2182. }
  2183. void initialize_tensors(ggml_context * ctx) override {
  2184. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2185. if (t->type == GGML_TYPE_I32) {
  2186. if (ggml_is_view_op(t->op)) { continue; }
  2187. std::random_device rd;
  2188. std::default_random_engine rng(rd());
  2189. // ids
  2190. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2191. std::vector<int32_t> data(t->ne[0]);
  2192. for (int i = 0; i < t->ne[0]; i++) {
  2193. data[i] = i % n_experts;
  2194. }
  2195. std::shuffle(data.begin(), data.end(), rng);
  2196. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  2197. }
  2198. } else {
  2199. init_tensor_uniform(t);
  2200. }
  2201. }
  2202. }
  2203. };
  2204. // GGML_OP_ADD1
  2205. struct test_add1 : public test_case {
  2206. const ggml_type type;
  2207. const std::array<int64_t, 4> ne;
  2208. std::string vars() override {
  2209. return VARS_TO_STR2(type, ne);
  2210. }
  2211. test_add1(ggml_type type = GGML_TYPE_F32,
  2212. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2213. : type(type), ne(ne) {}
  2214. ggml_tensor * build_graph(ggml_context * ctx) override {
  2215. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2216. ggml_set_param(a);
  2217. ggml_set_name(a, "a");
  2218. ggml_tensor * b = ggml_new_tensor_1d(ctx, type, 1);
  2219. // ggml_set_param(b); // TODO: implement
  2220. ggml_set_name(b, "b");
  2221. ggml_tensor * out = ggml_add1(ctx, a, b);
  2222. ggml_set_name(out, "out");
  2223. return out;
  2224. }
  2225. float grad_eps() override {
  2226. return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
  2227. }
  2228. };
  2229. // GGML_OP_SCALE
  2230. struct test_scale : public test_case {
  2231. const ggml_type type;
  2232. const std::array<int64_t, 4> ne;
  2233. float scale;
  2234. float bias;
  2235. std::string vars() override {
  2236. return VARS_TO_STR4(type, ne, scale, bias);
  2237. }
  2238. test_scale(ggml_type type = GGML_TYPE_F32,
  2239. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  2240. float scale = 2.0f,
  2241. float bias = 0.0f)
  2242. : type(type), ne(ne), scale(scale), bias(bias) {}
  2243. ggml_tensor * build_graph(ggml_context * ctx) override {
  2244. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2245. ggml_set_param(a);
  2246. ggml_set_name(a, "a");
  2247. ggml_tensor * out = ggml_scale_bias(ctx, a, scale, bias);
  2248. ggml_set_name(out, "out");
  2249. return out;
  2250. }
  2251. };
  2252. // GGML_OP_SCALE + GGML_UNARY_OP_TANH + GGML_OP_SCALE
  2253. struct test_softcap : public test_case {
  2254. const ggml_type type;
  2255. const std::array<int64_t, 4> ne;
  2256. float softcap;
  2257. std::string op_desc(ggml_tensor * t) override {
  2258. GGML_UNUSED(t);
  2259. return "SOFTCAP";
  2260. }
  2261. bool run_whole_graph() override { return true; }
  2262. std::string vars() override {
  2263. return VARS_TO_STR3(type, ne, softcap);
  2264. }
  2265. test_softcap(ggml_type type = GGML_TYPE_F32,
  2266. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  2267. float softcap = 30.0f)
  2268. : type(type), ne(ne), softcap(softcap) {}
  2269. ggml_tensor * build_graph(ggml_context * ctx) override {
  2270. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2271. ggml_set_param(a);
  2272. ggml_set_name(a, "a");
  2273. ggml_tensor * out = ggml_scale(ctx, ggml_tanh(ctx, ggml_scale(ctx, a, 1.0f / softcap)), softcap);
  2274. ggml_set_name(out, "out");
  2275. return out;
  2276. }
  2277. };
  2278. // GGML_OP_SILU_BACK
  2279. struct test_silu_back : public test_case {
  2280. const ggml_type type;
  2281. const std::array<int64_t, 4> ne;
  2282. float eps;
  2283. std::string vars() override {
  2284. return VARS_TO_STR3(type, ne, eps);
  2285. }
  2286. test_silu_back(ggml_type type = GGML_TYPE_F32,
  2287. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2288. float eps = 1e-6f)
  2289. : type(type), ne(ne), eps(eps) {}
  2290. ggml_tensor * build_graph(ggml_context * ctx) override {
  2291. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2292. ggml_set_name(a, "a");
  2293. ggml_tensor * grad = ggml_new_tensor(ctx, type, 4, ne.data());
  2294. ggml_set_name(grad, "grad");
  2295. ggml_tensor * out = ggml_silu_back(ctx, a, grad);
  2296. ggml_set_name(out, "out");
  2297. return out;
  2298. }
  2299. bool grad_precise() override {
  2300. return true;
  2301. }
  2302. };
  2303. // GGML_OP_NORM
  2304. struct test_norm : public test_case {
  2305. const ggml_type type;
  2306. const std::array<int64_t, 4> ne;
  2307. const bool v; // whether a is a non-contiguous view
  2308. const float eps;
  2309. std::string vars() override {
  2310. return VARS_TO_STR4(type, ne, v, eps);
  2311. }
  2312. test_norm(ggml_type type = GGML_TYPE_F32,
  2313. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2314. bool v = false,
  2315. float eps = 1e-6f)
  2316. : type(type), ne(ne), v(v), eps(eps) {}
  2317. ggml_tensor * build_graph(ggml_context * ctx) override {
  2318. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2319. ggml_set_name(a, "a");
  2320. if (v) {
  2321. a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
  2322. ggml_set_name(a, "view of a");
  2323. }
  2324. ggml_tensor * out = ggml_norm(ctx, a, eps);
  2325. ggml_set_name(out, "out");
  2326. return out;
  2327. }
  2328. };
  2329. // GGML_OP_NORM + GGML_OP_MUL + GGML_OP_ADD
  2330. struct test_norm_mul_add : public test_case {
  2331. const ggml_type type;
  2332. const std::array<int64_t, 4> ne;
  2333. float eps;
  2334. const bool broadcast;
  2335. std::string op_desc(ggml_tensor * t) override {
  2336. GGML_UNUSED(t);
  2337. return "NORM_MUL_ADD";
  2338. }
  2339. bool run_whole_graph() override { return true; }
  2340. std::string vars() override {
  2341. return VARS_TO_STR4(type, ne, eps, broadcast);
  2342. }
  2343. test_norm_mul_add(ggml_type type = GGML_TYPE_F32,
  2344. std::array<int64_t, 4> ne = {128, 2, 1, 1},
  2345. float eps = 1e-5f,
  2346. bool broadcast = false)
  2347. : type(type), ne(ne), eps(eps), broadcast(broadcast) {}
  2348. ggml_tensor * build_graph(ggml_context * ctx) override {
  2349. std::array<int64_t, 4> broadcast_dims = {ne[0], ne[1] * 2, ne[2] * 2, ne[3] * 2};
  2350. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, broadcast ? broadcast_dims.data() : ne.data());
  2351. ggml_tensor * w = ggml_new_tensor(ctx, type, 4, ne.data());
  2352. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2353. ggml_set_param(a); ggml_set_param(w); ggml_set_param(b);
  2354. ggml_set_name(a, "a"); ggml_set_name(w, "w"); ggml_set_name(b, "b");
  2355. // Use a, w and b early to avoid OP_NONE in graph
  2356. a = ggml_add(ctx, ggml_add(ctx, a, w), b);
  2357. ggml_tensor * n = ggml_norm(ctx, a, eps);
  2358. ggml_tensor * m = ggml_mul(ctx, n, w);
  2359. ggml_tensor * out = ggml_add(ctx, m, b);
  2360. ggml_set_name(out, "out");
  2361. return out;
  2362. }
  2363. };
  2364. // GGML_OP_RMS_NORM
  2365. struct test_rms_norm : public test_case {
  2366. const ggml_type type;
  2367. const std::array<int64_t, 4> ne;
  2368. const bool v; // whether a is a non-contiguous view
  2369. const float eps;
  2370. std::string vars() override {
  2371. return VARS_TO_STR4(type, ne, v, eps);
  2372. }
  2373. test_rms_norm(ggml_type type = GGML_TYPE_F32,
  2374. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2375. bool v = false,
  2376. float eps = 1e-6f)
  2377. : type(type), ne(ne), v(v), eps(eps) {}
  2378. ggml_tensor * build_graph(ggml_context * ctx) override {
  2379. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2380. ggml_set_param(a);
  2381. ggml_set_name(a, "a");
  2382. if (v) {
  2383. a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
  2384. ggml_set_name(a, "view of a");
  2385. }
  2386. ggml_tensor * out = ggml_rms_norm(ctx, a, eps);
  2387. ggml_set_name(out, "out");
  2388. return out;
  2389. }
  2390. void initialize_tensors(ggml_context * ctx) override {
  2391. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2392. init_tensor_uniform(t, -10.f, 10.f);
  2393. }
  2394. }
  2395. float grad_eps() override {
  2396. return 1.0f;
  2397. }
  2398. bool grad_precise() override {
  2399. return true;
  2400. }
  2401. };
  2402. // GGML_OP_RMS_NORM_BACK
  2403. struct test_rms_norm_back : public test_case {
  2404. const ggml_type type;
  2405. const std::array<int64_t, 4> ne;
  2406. const float eps;
  2407. std::string vars() override {
  2408. return VARS_TO_STR3(type, ne, eps);
  2409. }
  2410. test_rms_norm_back(ggml_type type = GGML_TYPE_F32,
  2411. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2412. float eps = 1e-6f)
  2413. : type(type), ne(ne), eps(eps) {}
  2414. ggml_tensor * build_graph(ggml_context * ctx) override {
  2415. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2416. ggml_set_name(a, "a");
  2417. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2418. ggml_set_name(b, "b");
  2419. ggml_tensor * out = ggml_rms_norm_back(ctx, a, b, eps);
  2420. ggml_set_name(out, "out");
  2421. return out;
  2422. }
  2423. void initialize_tensors(ggml_context * ctx) override {
  2424. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2425. init_tensor_uniform(t, -10.f, 10.f);
  2426. }
  2427. }
  2428. };
  2429. // GGML_OP_RMS_NORM + GGML_OP_MUL + GGML_OP_ADD
  2430. struct test_rms_norm_mul_add : public test_case {
  2431. const ggml_type type;
  2432. const std::array<int64_t, 4> ne;
  2433. const float eps;
  2434. const bool broadcast;
  2435. const bool multi_add; // test a sequence of adds feeding into rms_norm
  2436. std::string op_desc(ggml_tensor * t) override {
  2437. GGML_UNUSED(t);
  2438. return "RMS_NORM_MUL_ADD";
  2439. }
  2440. bool run_whole_graph() override { return true; }
  2441. std::string vars() override {
  2442. return VARS_TO_STR5(type, ne, eps, broadcast, multi_add);
  2443. }
  2444. test_rms_norm_mul_add(ggml_type type = GGML_TYPE_F32,
  2445. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2446. float eps = 1e-6f, bool broadcast = false, bool multi_add = false)
  2447. : type(type), ne(ne), eps(eps), broadcast(broadcast), multi_add(multi_add) {}
  2448. ggml_tensor * build_graph(ggml_context * ctx) override {
  2449. std::array<int64_t, 4> broadcast_dims = {ne[0]*2, ne[1]*3, ne[2]*3, ne[3]*4};
  2450. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, broadcast ? broadcast_dims.data() : ne.data());
  2451. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2452. ggml_tensor * c = ggml_new_tensor(ctx, type, 4, ne.data());
  2453. ggml_set_param(a);
  2454. ggml_set_name(a, "a");
  2455. ggml_set_param(b);
  2456. ggml_set_name(b, "b");
  2457. ggml_set_param(c);
  2458. ggml_set_name(c, "c");
  2459. // Use a, b and c early, so we don't end up with an OP_NONE between rms_norm and mul
  2460. a = ggml_add(ctx, ggml_add(ctx, a, b), c);
  2461. if (multi_add) {
  2462. a = ggml_add(ctx, ggml_add(ctx, a, b), c);
  2463. }
  2464. ggml_tensor * out = ggml_add(ctx, ggml_mul(ctx, ggml_rms_norm(ctx, a, eps), b), c);
  2465. ggml_set_name(out, "out");
  2466. return out;
  2467. }
  2468. void initialize_tensors(ggml_context * ctx) override {
  2469. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2470. init_tensor_uniform(t, -10.f, 10.f);
  2471. }
  2472. }
  2473. float grad_eps() override {
  2474. return 1.0f;
  2475. }
  2476. bool grad_precise() override {
  2477. return true;
  2478. }
  2479. };
  2480. // GGML_OP_SSM_CONV
  2481. struct test_ssm_conv : public test_case {
  2482. const ggml_type type;
  2483. const std::array<int64_t, 4> ne_a;
  2484. const std::array<int64_t, 4> ne_b;
  2485. std::string vars() override {
  2486. return VARS_TO_STR3(type, ne_a, ne_b);
  2487. }
  2488. test_ssm_conv(ggml_type type = GGML_TYPE_F32,
  2489. std::array<int64_t, 4> ne_a = {10, 10, 10, 1},
  2490. std::array<int64_t, 4> ne_b = {3, 3, 1, 1})
  2491. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  2492. ggml_tensor * build_graph(ggml_context * ctx) override {
  2493. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2494. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  2495. ggml_tensor * out = ggml_ssm_conv(ctx, a, b);
  2496. return out;
  2497. }
  2498. };
  2499. // GGML_OP_SSM_SCAN
  2500. struct test_ssm_scan : public test_case {
  2501. const ggml_type type;
  2502. const int64_t d_state;
  2503. const int64_t head_dim;
  2504. const int64_t n_head;
  2505. const int64_t n_group;
  2506. const int64_t n_seq_tokens;
  2507. const int64_t n_seqs;
  2508. std::string vars() override {
  2509. return VARS_TO_STR7(type, d_state, head_dim, n_head, n_group, n_seq_tokens, n_seqs);
  2510. }
  2511. test_ssm_scan(ggml_type type = GGML_TYPE_F32,
  2512. int64_t d_state = 32,
  2513. int64_t head_dim = 1, // non-zero for Mamba-2
  2514. int64_t n_head = 32,
  2515. int64_t n_group = 1,
  2516. int64_t n_seq_tokens = 32,
  2517. int64_t n_seqs = 32)
  2518. : type(type), d_state(d_state), head_dim(head_dim), n_head(n_head), n_group(n_group), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2519. ggml_tensor * build_graph(ggml_context * ctx) override {
  2520. ggml_tensor * s = ggml_new_tensor_4d(ctx, type, d_state, head_dim, n_head, n_seqs);
  2521. ggml_tensor * x = ggml_new_tensor_4d(ctx, type, head_dim, n_head, n_seq_tokens, n_seqs);
  2522. ggml_tensor * dt = ggml_new_tensor_3d(ctx, type, n_head, n_seq_tokens, n_seqs);
  2523. ggml_tensor * A = ggml_new_tensor_2d(ctx, type, (head_dim > 1) ? 1 : d_state, n_head);
  2524. ggml_tensor * B = ggml_new_tensor_4d(ctx, type, d_state, n_group, n_seq_tokens, n_seqs);
  2525. ggml_tensor * C = ggml_new_tensor_4d(ctx, type, d_state, n_group, n_seq_tokens, n_seqs);
  2526. ggml_tensor * ids = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, n_seqs);
  2527. ggml_tensor * out = ggml_ssm_scan(ctx, s, x, dt, A, B, C, ids);
  2528. return out;
  2529. }
  2530. // similar to test_mul_mat_id
  2531. void initialize_tensors(ggml_context * ctx) override {
  2532. std::random_device rd;
  2533. std::default_random_engine rng(rd());
  2534. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2535. if (t->type == GGML_TYPE_I32) {
  2536. if (ggml_is_view_op(t->op)) { continue; }
  2537. // ids
  2538. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2539. std::vector<int32_t> data(t->ne[0]);
  2540. for (int i = 0; i < t->ne[0]; i++) {
  2541. data[i] = i;
  2542. }
  2543. std::shuffle(data.begin(), data.end(), rng);
  2544. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  2545. }
  2546. } else {
  2547. init_tensor_uniform(t);
  2548. }
  2549. }
  2550. }
  2551. };
  2552. // GGML_OP_RWKV_WKV6
  2553. struct test_rwkv_wkv6 : public test_case {
  2554. const ggml_type type;
  2555. const int64_t head_count;
  2556. const int64_t head_size;
  2557. const int64_t n_seq_tokens;
  2558. const int64_t n_seqs;
  2559. std::string vars() override {
  2560. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  2561. }
  2562. test_rwkv_wkv6(ggml_type type = GGML_TYPE_F32,
  2563. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  2564. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2565. ggml_tensor * build_graph(ggml_context * ctx) override {
  2566. const int64_t n_tokens = n_seq_tokens * n_seqs;
  2567. ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2568. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2569. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2570. ggml_tensor * tf = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size, head_count }.data());
  2571. ggml_tensor * td = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2572. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  2573. ggml_tensor * out = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, s);
  2574. return out;
  2575. }
  2576. };
  2577. // GGML_OP_GATED_LINEAR_ATTN
  2578. struct test_gla : public test_case {
  2579. const ggml_type type;
  2580. const int64_t head_count;
  2581. const int64_t head_size;
  2582. const int64_t n_seq_tokens;
  2583. const int64_t n_seqs;
  2584. std::string vars() override {
  2585. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  2586. }
  2587. test_gla(ggml_type type = GGML_TYPE_F32,
  2588. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  2589. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2590. ggml_tensor * build_graph(ggml_context * ctx) override {
  2591. const int64_t n_tokens = n_seq_tokens * n_seqs;
  2592. ggml_tensor * q = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2593. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2594. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2595. ggml_tensor * g = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2596. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  2597. ggml_tensor * out = ggml_gated_linear_attn(ctx, k, v, q, g, s, pow(head_size, -0.5));
  2598. return out;
  2599. }
  2600. };
  2601. // GGML_OP_RWKV_WKV7
  2602. struct test_rwkv_wkv7 : public test_case {
  2603. const ggml_type type;
  2604. const int64_t head_count;
  2605. const int64_t head_size;
  2606. const int64_t n_seq_tokens;
  2607. const int64_t n_seqs;
  2608. std::string vars() override {
  2609. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  2610. }
  2611. test_rwkv_wkv7(ggml_type type = GGML_TYPE_F32,
  2612. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  2613. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2614. ggml_tensor * build_graph(ggml_context * ctx) override {
  2615. const int64_t n_tokens = n_seq_tokens * n_seqs;
  2616. ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2617. ggml_tensor * w = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2618. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2619. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2620. ggml_tensor * a = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2621. ggml_tensor * b = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2622. // Outputs may become NaN with long seqlen without these normalization
  2623. a = ggml_l2_norm(ctx, a, 1e-7F);
  2624. b = ggml_l2_norm(ctx, b, 1e-7F);
  2625. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  2626. ggml_tensor * out = ggml_rwkv_wkv7(ctx, r, w, k, v, a, b, s);
  2627. return out;
  2628. }
  2629. };
  2630. // GGML_OP_MUL_MAT
  2631. struct test_mul_mat : public test_case {
  2632. const ggml_type type_a;
  2633. const ggml_type type_b;
  2634. const int64_t m;
  2635. const int64_t n;
  2636. const int64_t k;
  2637. const std::array<int64_t, 2> bs; // dims 3 and 4
  2638. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  2639. const std::array<int64_t, 4> per; // permutation of dimensions
  2640. const bool v; // whether a and b are non-contiguous views
  2641. const uint32_t o; // number of outputs
  2642. std::string vars() override {
  2643. return VARS_TO_STR10(type_a, type_b, m, n, k, bs, nr, per, v, o);
  2644. }
  2645. double max_nmse_err() override {
  2646. return 5e-4;
  2647. }
  2648. int64_t grad_nmax() override {
  2649. return 20000;
  2650. }
  2651. uint64_t op_flops(ggml_tensor * t) override {
  2652. GGML_UNUSED(t);
  2653. return 2 * m * n * k * bs[0] * nr[0] * bs[1] * nr[1];
  2654. }
  2655. test_mul_mat(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  2656. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  2657. std::array<int64_t, 2> bs = {10, 10},
  2658. std::array<int64_t, 2> nr = {2, 2},
  2659. std::array<int64_t, 4> per = {0, 1, 2, 3},
  2660. bool v = false, uint32_t o = 1)
  2661. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), per(per), v(v), o(o) {}
  2662. ggml_tensor * build_graph(ggml_context * ctx) override {
  2663. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  2664. ggml_tensor * a;
  2665. ggml_tensor * b;
  2666. const int npermuted = (per[0] != 0) + (per[1] != 1) + (per[2] != 2) + (per[3] != 3);
  2667. if (npermuted > 0) {
  2668. GGML_ASSERT(npermuted == 2);
  2669. GGML_ASSERT(!v); // not handled
  2670. GGML_ASSERT(!ggml_is_quantized(type_a) || per[0] == 0);
  2671. GGML_ASSERT(!ggml_is_quantized(type_b) || per[0] == 0);
  2672. // Create tensors with the permuted dimensions, then permute them back to the dimensions given by m,n,k.
  2673. const int64_t ne_a[4] = {k, m, bs[0], bs[1]};
  2674. const int64_t ne_b[4] = {k, n, bs[0]*nr[0], bs[1]*nr[1]};
  2675. a = ggml_new_tensor_4d(ctx, type_a, ne_a[per[0]], ne_a[per[1]], ne_a[per[2]], ne_a[per[3]]);
  2676. b = ggml_new_tensor_4d(ctx, type_b, ne_b[per[0]], ne_b[per[1]], ne_b[per[2]], ne_b[per[3]]);
  2677. if (!ggml_is_quantized(type_a)) {
  2678. if (bs[1] == 1 && nr[1] == 1) {
  2679. ggml_set_param(a);
  2680. }
  2681. ggml_set_param(b);
  2682. }
  2683. ggml_set_name(a, "a");
  2684. ggml_set_name(b, "b");
  2685. a = ggml_permute(ctx, a, per[0], per[1], per[2], per[3]);
  2686. b = ggml_permute(ctx, b, per[0], per[1], per[2], per[3]);
  2687. ggml_set_name(a, "a_permuted");
  2688. ggml_set_name(b, "b_permuted");
  2689. } else {
  2690. if (v) {
  2691. a = ggml_new_tensor_4d(ctx, type_a, k*2, m, bs[0], bs[1]);
  2692. b = ggml_new_tensor_4d(ctx, type_b, k*2, n, bs[0]*nr[0], bs[1]*nr[1]);
  2693. if (!ggml_is_quantized(type_a)) {
  2694. if (bs[1] == 1 && nr[1] == 1) {
  2695. ggml_set_param(a);
  2696. }
  2697. ggml_set_param(b);
  2698. }
  2699. a = ggml_view_4d(ctx, a, k, m, bs[0], bs[1], a->nb[1], a->nb[2], a->nb[3], 0);
  2700. b = ggml_view_4d(ctx, b, k, n, bs[0]*nr[0], bs[1]*nr[1], b->nb[1], b->nb[2], b->nb[3], 0);
  2701. } else {
  2702. a = ggml_new_tensor_4d(ctx, type_a, k, m, bs[0], bs[1]);
  2703. b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
  2704. if (!ggml_is_quantized(type_a)) {
  2705. if (bs[1] == 1 && nr[1] == 1) {
  2706. ggml_set_param(a);
  2707. }
  2708. ggml_set_param(b);
  2709. }
  2710. }
  2711. ggml_set_name(a, "a");
  2712. ggml_set_name(b, "b");
  2713. }
  2714. ggml_tensor * out = ggml_mul_mat(ctx, a, b);
  2715. ggml_set_name(out, "out");
  2716. for (uint32_t i = 1; i < o; ++i) {
  2717. ggml_tensor * out2 = ggml_mul_mat(ctx, a, b);
  2718. ggml_set_name(out2, "out2");
  2719. out = ggml_add(ctx, out, out2);
  2720. }
  2721. return out;
  2722. }
  2723. bool run_whole_graph() override { return o > 1; }
  2724. std::string op_desc(ggml_tensor * t) override {
  2725. GGML_UNUSED(t);
  2726. return ggml_op_name(GGML_OP_MUL_MAT);
  2727. }
  2728. };
  2729. // GGML_OP_MUL_MAT_ID
  2730. struct test_mul_mat_id : public test_case {
  2731. const ggml_type type_a;
  2732. const ggml_type type_b;
  2733. const int n_mats;
  2734. const int n_used;
  2735. const bool b; // broadcast b matrix
  2736. const int64_t m;
  2737. const int64_t n;
  2738. const int64_t k;
  2739. const uint32_t o; // number of outputs
  2740. std::string vars() override {
  2741. return VARS_TO_STR9(type_a, type_b, n_mats, n_used, b, m, n, k, o);
  2742. }
  2743. double max_nmse_err() override {
  2744. return 5e-4;
  2745. }
  2746. uint64_t op_flops(ggml_tensor * t) override {
  2747. GGML_UNUSED(t);
  2748. return 2 * m * k * n * n_used;
  2749. }
  2750. test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  2751. int n_mats = 8, int n_used = 2, bool b = false,
  2752. int64_t m = 32, int64_t n = 32, int64_t k = 32, uint32_t o = 1)
  2753. : type_a(type_a), type_b(type_b), n_mats(n_mats), n_used(n_used), b(b),
  2754. m(m), n(n), k(k), o(o) {
  2755. GGML_ASSERT(n_used <= n_mats);
  2756. }
  2757. ggml_tensor * build_graph(ggml_context * ctx) override {
  2758. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  2759. ggml_tensor * as = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
  2760. ggml_set_name(as, "as");
  2761. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
  2762. ggml_set_name(ids, "ids");
  2763. if (n_used != n_mats) {
  2764. ids = ggml_view_2d(ctx, ids, n_used, n, ids->nb[1], 0);
  2765. ggml_set_name(ids, "view_of_ids");
  2766. }
  2767. ggml_tensor * b = ggml_new_tensor_3d(ctx, type_b, k, this->b ? 1 : n_used, n);
  2768. ggml_set_name(b, "b");
  2769. ggml_tensor * out = ggml_mul_mat_id(ctx, as, b, ids);
  2770. ggml_set_name(out, "out");
  2771. for (uint32_t i = 1; i < o; ++i) {
  2772. ggml_tensor * a2 = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
  2773. ggml_tensor * out2 = ggml_mul_mat_id(ctx, a2, b, ids);
  2774. ggml_set_name(out2, "out2");
  2775. out = ggml_add(ctx, out, out2);
  2776. }
  2777. return out;
  2778. }
  2779. void initialize_tensors(ggml_context * ctx) override {
  2780. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2781. if (t->type == GGML_TYPE_I32) {
  2782. if (ggml_is_view_op(t->op)) { continue; }
  2783. std::random_device rd;
  2784. std::default_random_engine rng(rd());
  2785. // ids
  2786. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2787. std::vector<int32_t> data(t->ne[0]);
  2788. for (int i = 0; i < t->ne[0]; i++) {
  2789. data[i] = i % n_mats;
  2790. }
  2791. std::shuffle(data.begin(), data.end(), rng);
  2792. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  2793. }
  2794. } else {
  2795. init_tensor_uniform(t);
  2796. }
  2797. }
  2798. }
  2799. bool run_whole_graph() override { return o > 1; }
  2800. std::string op_desc(ggml_tensor * t) override {
  2801. GGML_UNUSED(t);
  2802. return ggml_op_name(GGML_OP_MUL_MAT_ID);
  2803. }
  2804. };
  2805. // GGML_OP_OUT_PROD
  2806. struct test_out_prod : public test_case {
  2807. const ggml_type type_a;
  2808. const ggml_type type_b;
  2809. const int64_t m;
  2810. const int64_t n;
  2811. const int64_t k;
  2812. const std::array<int64_t, 2> bs; // dims 3 and 4
  2813. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  2814. const bool trans_b;
  2815. std::string vars() override {
  2816. return VARS_TO_STR8(type_a, type_b, m, n, k, bs, nr, trans_b);
  2817. }
  2818. double max_nmse_err() override {
  2819. return 5e-4;
  2820. }
  2821. test_out_prod(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  2822. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  2823. std::array<int64_t, 2> bs = {10, 10},
  2824. std::array<int64_t, 2> nr = {2, 2},
  2825. bool trans_b = false)
  2826. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), trans_b(trans_b) {}
  2827. ggml_tensor * build_graph(ggml_context * ctx) override {
  2828. ggml_tensor * a = ggml_new_tensor_4d(ctx, type_a, m, k, bs[0], bs[1]);
  2829. ggml_set_name(a, "a");
  2830. ggml_tensor * b;
  2831. if (trans_b) {
  2832. b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
  2833. b = ggml_transpose(ctx, b);
  2834. } else {
  2835. b = ggml_new_tensor_4d(ctx, type_b, n, k, bs[0]*nr[0], bs[1]*nr[1]);
  2836. }
  2837. ggml_set_name(b, "b");
  2838. ggml_tensor * out = ggml_out_prod(ctx, a, b);
  2839. ggml_set_name(out, "out");
  2840. return out;
  2841. }
  2842. };
  2843. // GGML_OP_SQR
  2844. struct test_sqr : public test_case {
  2845. const ggml_type type;
  2846. const std::array<int64_t, 4> ne;
  2847. std::string vars() override {
  2848. return VARS_TO_STR2(type, ne);
  2849. }
  2850. test_sqr(ggml_type type = GGML_TYPE_F32,
  2851. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2852. : type(type), ne(ne) {}
  2853. ggml_tensor * build_graph(ggml_context * ctx) override {
  2854. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2855. ggml_set_param(a);
  2856. ggml_set_name(a, "a");
  2857. ggml_tensor * out = ggml_sqr(ctx, a);
  2858. ggml_set_name(out, "out");
  2859. return out;
  2860. }
  2861. float grad_eps() override {
  2862. return 0.1f * 0.25f*ne[0]*ne[1]*ne[2]*ne[3]; // 10% of expected value of sum.
  2863. }
  2864. };
  2865. // GGML_OP_SQRT
  2866. struct test_sqrt : public test_case {
  2867. const ggml_type type;
  2868. const std::array<int64_t, 4> ne;
  2869. std::string vars() override {
  2870. return VARS_TO_STR2(type, ne);
  2871. }
  2872. test_sqrt(ggml_type type = GGML_TYPE_F32,
  2873. std::array<int64_t, 4> ne = {10, 3, 3, 2})
  2874. : type(type), ne(ne) {}
  2875. ggml_tensor * build_graph(ggml_context * ctx) override {
  2876. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2877. ggml_set_param(a);
  2878. ggml_set_name(a, "a");
  2879. ggml_tensor * out = ggml_sqrt(ctx, a);
  2880. ggml_set_name(out, "out");
  2881. return out;
  2882. }
  2883. void initialize_tensors(ggml_context * ctx) override {
  2884. // fill with positive values
  2885. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2886. init_tensor_uniform(t, 50.0f, 100.0f);
  2887. }
  2888. }
  2889. float grad_eps() override {
  2890. return 20.0f;
  2891. }
  2892. bool grad_precise() override {
  2893. return true;
  2894. }
  2895. };
  2896. // GGML_OP_LOG
  2897. struct test_log : public test_case {
  2898. const ggml_type type;
  2899. const std::array<int64_t, 4> ne;
  2900. std::string vars() override {
  2901. return VARS_TO_STR2(type, ne);
  2902. }
  2903. test_log(ggml_type type = GGML_TYPE_F32,
  2904. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2905. : type(type), ne(ne) {}
  2906. ggml_tensor * build_graph(ggml_context * ctx) override {
  2907. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2908. ggml_set_param(a);
  2909. ggml_set_name(a, "a");
  2910. ggml_tensor * out = ggml_log(ctx, a);
  2911. ggml_set_name(out, "out");
  2912. return out;
  2913. }
  2914. void initialize_tensors(ggml_context * ctx) override {
  2915. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2916. // log(1) == 0, cluster values there to keep the sum low for better precision in the backward pass:
  2917. init_tensor_uniform(t, 0.9f, 1.1f);
  2918. }
  2919. }
  2920. bool grad_precise() override {
  2921. return true;
  2922. }
  2923. };
  2924. // GGML_OP_SIN
  2925. struct test_sin : public test_case {
  2926. const ggml_type type;
  2927. const std::array<int64_t, 4> ne;
  2928. std::string vars() override {
  2929. return VARS_TO_STR2(type, ne);
  2930. }
  2931. test_sin(ggml_type type = GGML_TYPE_F32,
  2932. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  2933. : type(type), ne(ne) {}
  2934. ggml_tensor * build_graph(ggml_context * ctx) override {
  2935. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2936. ggml_set_param(a);
  2937. ggml_set_name(a, "a");
  2938. ggml_tensor * out = ggml_sin(ctx, a);
  2939. ggml_set_name(out, "out");
  2940. return out;
  2941. }
  2942. void initialize_tensors(ggml_context * ctx) override {
  2943. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2944. init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
  2945. }
  2946. }
  2947. double max_maa_err() override {
  2948. return 1e-3;
  2949. }
  2950. float grad_eps() override {
  2951. return 0.2f;
  2952. }
  2953. bool grad_precise() override {
  2954. return true;
  2955. }
  2956. };
  2957. // GGML_OP_COS
  2958. struct test_cos : public test_case {
  2959. const ggml_type type;
  2960. const std::array<int64_t, 4> ne;
  2961. std::string vars() override {
  2962. return VARS_TO_STR2(type, ne);
  2963. }
  2964. test_cos(ggml_type type = GGML_TYPE_F32,
  2965. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  2966. : type(type), ne(ne) {}
  2967. ggml_tensor * build_graph(ggml_context * ctx) override {
  2968. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2969. ggml_set_param(a);
  2970. ggml_set_name(a, "a");
  2971. ggml_tensor * out = ggml_cos(ctx, a);
  2972. ggml_set_name(out, "out");
  2973. return out;
  2974. }
  2975. void initialize_tensors(ggml_context * ctx) override {
  2976. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2977. init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
  2978. }
  2979. }
  2980. double max_maa_err() override {
  2981. return 1e-3;
  2982. }
  2983. float grad_eps() override {
  2984. return 0.2f;
  2985. }
  2986. bool grad_precise() override {
  2987. return true;
  2988. }
  2989. };
  2990. // GGML_OP_EXPM1
  2991. struct test_expm1 : public test_case {
  2992. const ggml_type type;
  2993. const std::array<int64_t, 4> ne;
  2994. std::string vars() override {
  2995. return VARS_TO_STR2(type, ne);
  2996. }
  2997. test_expm1(ggml_type type = GGML_TYPE_F32,
  2998. std::array<int64_t, 4> ne = {10, 3, 3, 2})
  2999. : type(type), ne(ne) {}
  3000. ggml_tensor * build_graph(ggml_context * ctx) override {
  3001. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3002. ggml_set_param(a);
  3003. ggml_set_name(a, "a");
  3004. ggml_tensor * out = ggml_expm1(ctx, a);
  3005. ggml_set_name(out, "out");
  3006. return out;
  3007. }
  3008. void initialize_tensors(ggml_context * ctx) override {
  3009. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3010. // Use small values to avoid overflow in expm1
  3011. init_tensor_uniform(t, -2.0f, 2.0f);
  3012. }
  3013. }
  3014. bool grad_precise() override {
  3015. return true;
  3016. }
  3017. };
  3018. // GGML_OP_SOFTPLUS
  3019. struct test_softplus : public test_case {
  3020. const ggml_type type;
  3021. const std::array<int64_t, 4> ne;
  3022. std::string vars() override {
  3023. return VARS_TO_STR2(type, ne);
  3024. }
  3025. test_softplus(ggml_type type = GGML_TYPE_F32,
  3026. std::array<int64_t, 4> ne = {10, 3, 3, 2})
  3027. : type(type), ne(ne) {}
  3028. ggml_tensor * build_graph(ggml_context * ctx) override {
  3029. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3030. ggml_set_param(a);
  3031. ggml_set_name(a, "a");
  3032. ggml_tensor * out = ggml_softplus(ctx, a);
  3033. ggml_set_name(out, "out");
  3034. return out;
  3035. }
  3036. void initialize_tensors(ggml_context * ctx) override {
  3037. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3038. // Use values around the threshold (20) to test both branches of softplus
  3039. init_tensor_uniform(t, -25.0f, 25.0f);
  3040. }
  3041. }
  3042. bool grad_precise() override {
  3043. return true;
  3044. }
  3045. };
  3046. // GGML_OP_EXPM1_INPLACE
  3047. struct test_expm1_inplace : public test_case {
  3048. const ggml_type type;
  3049. const std::array<int64_t, 4> ne;
  3050. std::string vars() override {
  3051. return VARS_TO_STR2(type, ne);
  3052. }
  3053. test_expm1_inplace(ggml_type type = GGML_TYPE_F32,
  3054. std::array<int64_t, 4> ne = {10, 3, 3, 2})
  3055. : type(type), ne(ne) {}
  3056. ggml_tensor * build_graph(ggml_context * ctx) override {
  3057. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3058. ggml_set_param(a);
  3059. ggml_set_name(a, "a");
  3060. ggml_tensor * out = ggml_expm1_inplace(ctx, a);
  3061. ggml_set_name(out, "out");
  3062. return out;
  3063. }
  3064. void initialize_tensors(ggml_context * ctx) override {
  3065. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3066. // Use small values to avoid overflow in expm1
  3067. init_tensor_uniform(t, -2.0f, 2.0f);
  3068. }
  3069. }
  3070. bool grad_precise() override {
  3071. return true;
  3072. }
  3073. };
  3074. // GGML_OP_SOFTPLUS_INPLACE
  3075. struct test_softplus_inplace : public test_case {
  3076. const ggml_type type;
  3077. const std::array<int64_t, 4> ne;
  3078. std::string vars() override {
  3079. return VARS_TO_STR2(type, ne);
  3080. }
  3081. test_softplus_inplace(ggml_type type = GGML_TYPE_F32,
  3082. std::array<int64_t, 4> ne = {10, 3, 3, 2})
  3083. : type(type), ne(ne) {}
  3084. ggml_tensor * build_graph(ggml_context * ctx) override {
  3085. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3086. ggml_set_param(a);
  3087. ggml_set_name(a, "a");
  3088. ggml_tensor * out = ggml_softplus_inplace(ctx, a);
  3089. ggml_set_name(out, "out");
  3090. return out;
  3091. }
  3092. void initialize_tensors(ggml_context * ctx) override {
  3093. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3094. // Use values around the threshold (20) to test both branches of softplus
  3095. init_tensor_uniform(t, -25.0f, 25.0f);
  3096. }
  3097. }
  3098. bool grad_precise() override {
  3099. return true;
  3100. }
  3101. };
  3102. // GGML_OP_CLAMP
  3103. struct test_clamp : public test_case {
  3104. const ggml_type type;
  3105. const std::array<int64_t, 4> ne;
  3106. float min;
  3107. float max;
  3108. std::string vars() override {
  3109. return VARS_TO_STR4(type, ne, min, max);
  3110. }
  3111. test_clamp(ggml_type type = GGML_TYPE_F32,
  3112. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  3113. float min = -0.5f, float max = 0.5f)
  3114. : type(type), ne(ne), min(min), max(max) {}
  3115. ggml_tensor * build_graph(ggml_context * ctx) override {
  3116. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3117. ggml_set_name(a, "a");
  3118. ggml_tensor * out = ggml_clamp(ctx, a, min, max);
  3119. ggml_set_name(out, "out");
  3120. return out;
  3121. }
  3122. float grad_eps() override {
  3123. return 1e-2f;
  3124. }
  3125. std::vector<float> grad_expect() override {
  3126. return {0.0f, 1.0f};
  3127. }
  3128. };
  3129. // GGML_OP_DIAG_MASK_INF
  3130. struct test_diag_mask_inf : public test_case {
  3131. const ggml_type type;
  3132. const std::array<int64_t, 4> ne;
  3133. const int n_past;
  3134. std::string vars() override {
  3135. return VARS_TO_STR3(type, ne, n_past);
  3136. }
  3137. test_diag_mask_inf(ggml_type type = GGML_TYPE_F32,
  3138. std::array<int64_t, 4> ne = {10, 10, 3, 2},
  3139. int n_past = 5)
  3140. : type(type), ne(ne), n_past(n_past) {}
  3141. ggml_tensor * build_graph(ggml_context * ctx) override {
  3142. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3143. ggml_set_param(a);
  3144. ggml_set_name(a, "a");
  3145. ggml_tensor * out = ggml_diag_mask_inf(ctx, a, n_past);
  3146. ggml_set_name(out, "out");
  3147. return out;
  3148. }
  3149. };
  3150. // GGML_OP_SOFT_MAX
  3151. struct test_soft_max : public test_case {
  3152. const ggml_type type;
  3153. const std::array<int64_t, 4> ne;
  3154. const bool mask;
  3155. const bool sinks;
  3156. const ggml_type m_prec;
  3157. const std::array<int64_t, 2> nr23; // broadcast only dims 2 and 3
  3158. const float scale;
  3159. const float max_bias;
  3160. std::string vars() override {
  3161. return VARS_TO_STR8(type, ne, mask, sinks, m_prec, nr23, scale, max_bias);
  3162. }
  3163. // the 1024 test with bias occasionally fails:
  3164. // SOFT_MAX(type=f32,ne=[1024,16,1,1],mask=1,scale=1.000000,max_bias=8.000000): [SOFT_MAX] NMSE = 0.000000103 > 0.000000100 FAIL
  3165. virtual double max_nmse_err() override {
  3166. return 1e-6;
  3167. }
  3168. test_soft_max(ggml_type type = GGML_TYPE_F32,
  3169. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  3170. bool mask = false,
  3171. bool sinks = false,
  3172. ggml_type m_prec = GGML_TYPE_F32,
  3173. std::array<int64_t, 2> nr23 = {1, 1},
  3174. float scale = 1.0f,
  3175. float max_bias = 0.0f)
  3176. : type(type), ne(ne), mask(mask), sinks(sinks), m_prec(m_prec), nr23(nr23), scale(scale), max_bias(max_bias) {}
  3177. ggml_tensor * build_graph(ggml_context * ctx) override {
  3178. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2]*nr23[0], ne[3]*nr23[1]);
  3179. ggml_set_param(a);
  3180. ggml_set_name(a, "a");
  3181. ggml_tensor * mask = nullptr;
  3182. if (this->mask) {
  3183. mask = ggml_new_tensor_4d(ctx, m_prec, ne[0], ne[1], ne[2], ne[3]);
  3184. ggml_set_name(mask, "mask");
  3185. }
  3186. ggml_tensor * sinks = nullptr;
  3187. if (this->sinks) {
  3188. sinks = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ne[2]*nr23[0]);
  3189. ggml_set_name(sinks, "sinks");
  3190. }
  3191. ggml_tensor * out = ggml_soft_max_ext(ctx, a, mask, scale, max_bias);
  3192. ggml_soft_max_add_sinks(out, sinks);
  3193. ggml_set_name(out, "out");
  3194. return out;
  3195. }
  3196. bool grad_precise() override {
  3197. return true;
  3198. }
  3199. };
  3200. // GGML_OP_SOFT_MAX_BACK
  3201. struct test_soft_max_back : public test_case {
  3202. const ggml_type type;
  3203. const std::array<int64_t, 4> ne;
  3204. const float scale;
  3205. const float max_bias;
  3206. std::string vars() override {
  3207. return VARS_TO_STR4(type, ne, scale, max_bias);
  3208. }
  3209. test_soft_max_back(ggml_type type = GGML_TYPE_F32,
  3210. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  3211. float scale = 1.0f,
  3212. float max_bias = 0.0f)
  3213. : type(type), ne(ne), scale(scale), max_bias(max_bias) {}
  3214. ggml_tensor * build_graph(ggml_context * ctx) override {
  3215. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3216. ggml_set_name(a, "a");
  3217. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  3218. ggml_set_name(a, "a");
  3219. ggml_tensor * out = ggml_soft_max_ext_back(ctx, a, b, scale, max_bias);
  3220. ggml_set_name(out, "out");
  3221. return out;
  3222. }
  3223. };
  3224. // GGML_OP_ROPE + GGML_OP_ROPE_BACK
  3225. struct test_rope : public test_case {
  3226. const ggml_type type;
  3227. const std::array<int64_t, 4> ne_a;
  3228. int n_dims;
  3229. int mode;
  3230. int n_ctx; // used to generate positions
  3231. float fs; // freq_scale
  3232. float ef; // ext_factor
  3233. float af; // attn_factor
  3234. bool ff;
  3235. int v; // view (1 : non-contiguous a)
  3236. bool forward;
  3237. std::string vars() override {
  3238. // forward can be inferred from the op, does not need to be printed
  3239. return VARS_TO_STR10(type, ne_a, n_dims, mode, n_ctx, fs, ef, af, ff, v);
  3240. }
  3241. test_rope(ggml_type type = GGML_TYPE_F32,
  3242. std::array<int64_t, 4> ne_a = {10, 5, 3, 1},
  3243. int n_dims = 10, int mode = 0, int n_ctx = 512, float fs = 1.0f,
  3244. float ef = 0.0f, float af = 0.0f, bool ff = false, int v = 0, bool forward = true)
  3245. : type(type), ne_a(ne_a), n_dims(n_dims), mode(mode), n_ctx(n_ctx), fs(fs), ef(ef), af(af), ff(ff), v(v), forward(forward) {}
  3246. ggml_tensor * build_graph(ggml_context * ctx) override {
  3247. ggml_tensor * a;
  3248. if (v & 1) {
  3249. auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
  3250. a = ggml_new_tensor(ctx, type, 4, ne.data());
  3251. if (forward) {
  3252. ggml_set_param(a);
  3253. }
  3254. ggml_set_name(a, "a");
  3255. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  3256. ggml_set_name(a, "view_of_a");
  3257. } else {
  3258. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  3259. if (forward) {
  3260. ggml_set_param(a);
  3261. }
  3262. ggml_set_name(a, "a");
  3263. }
  3264. const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
  3265. const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
  3266. ggml_tensor * pos;
  3267. if (is_mrope || is_vision) {
  3268. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2] * 4);
  3269. } else {
  3270. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2]);
  3271. }
  3272. ggml_set_name(pos, "pos");
  3273. ggml_tensor * freq = nullptr;
  3274. if (ff) {
  3275. freq = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_dims/2);
  3276. ggml_set_name(freq, "freq");
  3277. }
  3278. ggml_tensor * out;
  3279. if (is_mrope) {
  3280. if (is_vision) {
  3281. GGML_ASSERT(n_dims/4 > 0);
  3282. int rope_sections[4] = {n_dims/4, n_dims/4, 0, 0}; // Vision-RoPE only use first two dimension for image (x, y) coordinate
  3283. if (forward) {
  3284. out = ggml_rope_multi (ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3285. } else {
  3286. out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3287. }
  3288. } else {
  3289. GGML_ASSERT(n_dims/3 > 0);
  3290. int rope_sections[4] = {n_dims/3, n_dims/3, n_dims/3, 0};
  3291. if (forward) {
  3292. out = ggml_rope_multi (ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3293. } else {
  3294. out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3295. }
  3296. }
  3297. } else {
  3298. if (forward) {
  3299. out = ggml_rope_ext (ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3300. } else {
  3301. out = ggml_rope_ext_back(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3302. }
  3303. // TODO: add test with a non-contiguous view as input ; this case is needed for build_rope_2d in clip.cpp
  3304. }
  3305. ggml_set_name(out, "out");
  3306. return out;
  3307. }
  3308. void initialize_tensors(ggml_context * ctx) override {
  3309. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3310. if (t->type == GGML_TYPE_I32) {
  3311. // pos
  3312. const int num_pos_ids = (mode & GGML_ROPE_TYPE_MROPE) ? ne_a[2] * 4 : ne_a[2];
  3313. std::vector<int> data(num_pos_ids);
  3314. for (int i = 0; i < num_pos_ids; i++) {
  3315. data[i] = rand() % n_ctx;
  3316. }
  3317. ggml_backend_tensor_set(t, data.data(), 0, num_pos_ids * sizeof(int));
  3318. } else {
  3319. if (t->ne[0] == n_dims/2) {
  3320. // frequency factors in the range [0.9f, 1.1f]
  3321. init_tensor_uniform(t, 0.9f, 1.1f);
  3322. } else {
  3323. init_tensor_uniform(t);
  3324. }
  3325. }
  3326. }
  3327. }
  3328. double max_maa_err() override {
  3329. return 1e-3;
  3330. }
  3331. bool grad_precise() override {
  3332. return true;
  3333. }
  3334. };
  3335. // GGML_OP_POOL2D
  3336. struct test_pool2d : public test_case {
  3337. enum ggml_op_pool pool_type;
  3338. const ggml_type type_input;
  3339. const std::array<int64_t, 4> ne_input;
  3340. // kernel size
  3341. const int k0;
  3342. const int k1;
  3343. // stride
  3344. const int s0;
  3345. const int s1;
  3346. // padding
  3347. const int p0;
  3348. const int p1;
  3349. std::string vars() override {
  3350. return VARS_TO_STR9(pool_type, type_input, ne_input, k0, k1, s0, s1, p0, p1);
  3351. }
  3352. test_pool2d(ggml_op_pool pool_type = GGML_OP_POOL_AVG,
  3353. ggml_type type_input = GGML_TYPE_F32,
  3354. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  3355. int k0 = 3, int k1 = 3,
  3356. int s0 = 1, int s1 = 1,
  3357. int p0 = 1, int p1 = 1)
  3358. : pool_type(pool_type), type_input(type_input), ne_input(ne_input), k0(k0), k1(k1), s0(s0), s1(s1), p0(p0), p1(p1) {}
  3359. ggml_tensor * build_graph(ggml_context * ctx) override {
  3360. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  3361. ggml_set_param(input);
  3362. ggml_set_name(input, "input");
  3363. ggml_tensor * out = ggml_pool_2d(ctx, input, pool_type, k0, k1, s0, s1, p0, p1);
  3364. ggml_set_name(out, "out");
  3365. return out;
  3366. }
  3367. };
  3368. // GGML_OP_CONV_TRANSPOSE_1D
  3369. struct test_conv_transpose_1d : public test_case {
  3370. const std::array<int64_t, 4> ne_input;
  3371. const std::array<int64_t, 4> ne_kernel;
  3372. const int s0; // stride
  3373. const int p0; // padding
  3374. const int d0; // dilation
  3375. std::string vars() override {
  3376. return VARS_TO_STR5(ne_input, ne_kernel, s0, p0, d0);
  3377. }
  3378. test_conv_transpose_1d(std::array<int64_t, 4> ne_input = {197, 32, 1, 1}, // [input_width, input_channels, 1 /* assert in cpu kernel*/, 1 (should be batch)]
  3379. std::array<int64_t, 4> ne_kernel = {16, 32, 32, 1}, // [kernel_width, output_channels, input_channels, 1 (should be batch)]
  3380. int s0 = 1, int p0 = 0, int d0 = 1)
  3381. : ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), p0(p0), d0(d0) {}
  3382. ggml_tensor * build_graph(ggml_context * ctx) override {
  3383. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3384. ggml_set_name(input, "input");
  3385. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
  3386. ggml_set_name(kernel, "kernel");
  3387. ggml_tensor * out = ggml_conv_transpose_1d(ctx, kernel, input, s0, p0, d0);
  3388. ggml_set_name(out, "out");
  3389. return out;
  3390. }
  3391. };
  3392. // GGML_OP_CONV_TRANSPOSE_2D
  3393. struct test_conv_transpose_2d : public test_case {
  3394. const std::array<int64_t, 4> ne_input;
  3395. const std::array<int64_t, 4> ne_kernel;
  3396. const int stride;
  3397. std::string vars() override {
  3398. return VARS_TO_STR3(ne_input, ne_kernel, stride);
  3399. }
  3400. test_conv_transpose_2d(std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  3401. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
  3402. int stride = 1)
  3403. : ne_input(ne_input), ne_kernel(ne_kernel), stride(stride){}
  3404. ggml_tensor * build_graph(ggml_context * ctx) override {
  3405. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3406. ggml_set_name(input, "input");
  3407. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne_kernel.data());
  3408. ggml_set_name(kernel, "kernel");
  3409. ggml_tensor * out = ggml_conv_transpose_2d_p0(ctx, kernel, input, stride);
  3410. ggml_set_name(out, "out");
  3411. return out;
  3412. }
  3413. };
  3414. // GGML_OP_IM2COL
  3415. struct test_im2col : public test_case {
  3416. const ggml_type type_input;
  3417. const ggml_type type_kernel;
  3418. const ggml_type dst_type;
  3419. const std::array<int64_t, 4> ne_input;
  3420. const std::array<int64_t, 4> ne_kernel;
  3421. // stride
  3422. const int s0;
  3423. const int s1;
  3424. // padding
  3425. const int p0;
  3426. const int p1;
  3427. // dilation
  3428. const int d0;
  3429. const int d1;
  3430. // mode
  3431. const bool is_2D;
  3432. std::string vars() override {
  3433. return VARS_TO_STR12(type_input, type_kernel, dst_type, ne_input, ne_kernel, s0, s1, p0, p1, d0, d1, is_2D);
  3434. }
  3435. test_im2col(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
  3436. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  3437. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
  3438. int s0 = 1, int s1 = 1,
  3439. int p0 = 1, int p1 = 1,
  3440. int d0 = 1, int d1 = 1,
  3441. bool is_2D = true)
  3442. : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), p0(p0), p1(p1), d0(d0), d1(d1), is_2D(is_2D) {}
  3443. ggml_tensor * build_graph(ggml_context * ctx) override {
  3444. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  3445. ggml_set_param(input);
  3446. ggml_set_name(input, "input");
  3447. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  3448. ggml_set_name(kernel, "kernel");
  3449. ggml_tensor * out = ggml_im2col(ctx, kernel, input, s0, s1, p0, p1, d0, d1, is_2D, dst_type);
  3450. ggml_set_name(out, "out");
  3451. return out;
  3452. }
  3453. };
  3454. // GGML_OP_IM2COL_3D
  3455. struct test_im2col_3d : public test_case {
  3456. const ggml_type type_input;
  3457. const ggml_type type_kernel;
  3458. const ggml_type dst_type;
  3459. const std::array<int64_t, 4> ne_input;
  3460. const std::array<int64_t, 4> ne_kernel;
  3461. // stride
  3462. const int s0;
  3463. const int s1;
  3464. const int s2;
  3465. // padding
  3466. const int p0;
  3467. const int p1;
  3468. const int p2;
  3469. // dilation
  3470. const int d0;
  3471. const int d1;
  3472. const int d2;
  3473. const int64_t IC;
  3474. const bool v;
  3475. std::string vars() override {
  3476. return VARS_TO_STR16(type_input, type_kernel, dst_type, ne_input, ne_kernel, IC, s0, s1, s2, p0, p1, p2, d0, d1, d2, v);
  3477. }
  3478. test_im2col_3d(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
  3479. std::array<int64_t, 4> ne_input = {10, 10, 10, 9}, // [OC*IC, KD, KH, KW]
  3480. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [N*IC, ID, IH, IW]
  3481. int64_t IC = 3,
  3482. int s0 = 1, int s1 = 1, int s2 = 1,
  3483. int p0 = 1, int p1 = 1, int p2 = 1,
  3484. int d0 = 1, int d1 = 1, int d2 = 1,
  3485. bool v = false)
  3486. : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), s2(s2), p0(p0), p1(p1), p2(p2), d0(d0), d1(d1), d2(d2), IC(IC), v(v) {}
  3487. ggml_tensor * build_graph(ggml_context * ctx) override {
  3488. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  3489. ggml_set_param(input);
  3490. ggml_set_name(input, "input");
  3491. if (v) {
  3492. input = ggml_view_4d(ctx, input, ne_input[0] - 2, ne_input[1] - 2, ne_input[2] - 2, ne_input[3] - 2, input->nb[1], input->nb[2], input->nb[3], 0);
  3493. ggml_set_name(input, "view_of_input");
  3494. }
  3495. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  3496. ggml_set_name(kernel, "kernel");
  3497. ggml_tensor * out = ggml_im2col_3d(ctx, kernel, input, IC, s0, s1, s2, p0, p1, p2, d0, d1, d2, dst_type);
  3498. ggml_set_name(out, "out");
  3499. return out;
  3500. }
  3501. };
  3502. // CONV_2D
  3503. struct test_conv_2d : public test_case {
  3504. const std::array<int64_t, 4> ne_input;
  3505. const std::array<int64_t, 4> ne_kernel;
  3506. const ggml_type type_kernel;
  3507. const int stride0;
  3508. const int stride1;
  3509. const int padding0;
  3510. const int padding1;
  3511. const int dilation0;
  3512. const int dilation1;
  3513. // Whether the inputs are contiguous in the channel dim or the width dim
  3514. const bool cwhn;
  3515. // If true, the direct CONV_2D will be used in the graph, otherwise it
  3516. // uses ggml_conv_2d:
  3517. // * if the program is called with -o CONV_2D_DIRECT_IMPL, the
  3518. // CONV_2D graph will be built, while
  3519. // * if the program is called with -o CONV_2D_INDIRECT_IMPL, the
  3520. // IM2COL -> MUL_MM graph will be built.
  3521. std::string vars() override {
  3522. return VARS_TO_STR10(ne_input, ne_kernel, type_kernel, stride0, stride1, padding0, padding1, dilation0, dilation1, cwhn);
  3523. }
  3524. double max_nmse_err() override {
  3525. return 5e-4;
  3526. }
  3527. uint64_t op_flops(ggml_tensor * t) override {
  3528. GGML_UNUSED(t);
  3529. // Just counting matmul costs:
  3530. // KxCRS @ CRSxNPQ = KxNPQ --> KxNPQx(CRS+CRS-1) flops
  3531. // Copied from ggml.c: int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d)
  3532. auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  3533. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  3534. };
  3535. int64_t W = ne_input[0];
  3536. int64_t H = ne_input[1];
  3537. int64_t KW = ne_kernel[0];
  3538. int64_t KH = ne_kernel[1];
  3539. int64_t Cin = ne_kernel[2];
  3540. int64_t Cout = ne_kernel[3];
  3541. int64_t N = ne_input[3];
  3542. int64_t OH = calc_conv_output_size(H, KH, stride0, padding0, dilation0);
  3543. int64_t OW = calc_conv_output_size(W, KW, stride0, padding0, dilation0);
  3544. int64_t K = Cout;
  3545. int64_t CRS = Cin * KH * KW;
  3546. int64_t NPQ = N * OH * OW;
  3547. return K * NPQ * (2 * CRS - 1);
  3548. }
  3549. test_conv_2d(std::array<int64_t, 4> ne_input = { 64, 64, 16, 1 },
  3550. std::array<int64_t, 4> ne_kernel = { 3, 3, 1, 16 }, ggml_type type_kernel = GGML_TYPE_F32, int stride0 = 1,
  3551. int stride1 = 1, int padding0 = 0, int padding1 = 0, int dilation0 = 1, int dilation1 = 1, bool cwhn = false) :
  3552. ne_input(ne_input),
  3553. ne_kernel(ne_kernel),
  3554. type_kernel(type_kernel),
  3555. stride0(stride0),
  3556. stride1(stride1),
  3557. padding0(padding0),
  3558. padding1(padding1),
  3559. dilation0(dilation0),
  3560. dilation1(dilation1),
  3561. cwhn(cwhn) {}
  3562. ggml_tensor * build_graph(ggml_context * ctx) override {
  3563. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3564. ggml_set_name(input, "input");
  3565. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  3566. ggml_set_name(kernel, "kernel");
  3567. if (cwhn) {
  3568. // change memory layout to channel-most-contiguous (CWHN),
  3569. // then permute it back so NE matches the original input
  3570. input = ggml_cont(ctx, ggml_permute(ctx, input, 1, 2, 0, 3));
  3571. input = ggml_permute(ctx, input, 2, 0, 1, 3);
  3572. kernel = ggml_cont(ctx, ggml_permute(ctx, kernel, 2, 3, 1, 0));
  3573. kernel = ggml_permute(ctx, kernel, 3, 2, 0, 1);
  3574. }
  3575. ggml_tensor * out =
  3576. ggml_conv_2d_direct(ctx, kernel, input, stride0, stride1, padding0, padding1, dilation0, dilation1);
  3577. ggml_set_name(out, "out");
  3578. return out;
  3579. }
  3580. };
  3581. // GGML_OP_CONV_2D_DW
  3582. struct test_conv_2d_dw : public test_case {
  3583. const std::array<int64_t, 4> ne_input;
  3584. const std::array<int64_t, 4> ne_kernel;
  3585. const int stride;
  3586. const int padding;
  3587. const int dilation;
  3588. const bool cwhn;
  3589. std::string vars() override {
  3590. return VARS_TO_STR6(ne_input, ne_kernel, stride, padding, dilation, cwhn);
  3591. }
  3592. test_conv_2d_dw(std::array<int64_t, 4> ne_input = {64, 64, 16, 1},
  3593. std::array<int64_t, 4> ne_kernel = {3, 3, 1, 16},
  3594. int stride = 1, int padding = 0, int dilation = 1, bool cwhn = false)
  3595. : ne_input(ne_input), ne_kernel(ne_kernel), stride(stride), padding(padding), dilation(dilation), cwhn(cwhn) {}
  3596. ggml_tensor * build_graph(ggml_context * ctx) override {
  3597. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3598. ggml_set_name(input, "input");
  3599. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
  3600. ggml_set_name(kernel, "kernel");
  3601. if (cwhn) {
  3602. // change memory layout to channel-most-contiguous (CWHN),
  3603. // then permute it back so NE matches the original input
  3604. input = ggml_cont(ctx, ggml_permute(ctx, input, 1, 2, 0, 3));
  3605. input = ggml_permute(ctx, input, 2, 0, 1, 3);
  3606. kernel = ggml_cont(ctx, ggml_permute(ctx, kernel, 2, 3, 1, 0));
  3607. kernel = ggml_permute(ctx, kernel, 3, 2, 0, 1);
  3608. }
  3609. ggml_tensor * out = ggml_conv_2d_dw_direct(
  3610. ctx, kernel, input,
  3611. stride, stride, padding, padding, dilation, dilation);
  3612. ggml_set_name(out, "out");
  3613. return out;
  3614. }
  3615. };
  3616. // GGML_OP_CONV_3D
  3617. struct test_conv_3d : public test_case {
  3618. // Logical 5D dimensions
  3619. const int64_t N, IC, ID, IH, IW;
  3620. const int64_t OC, KD, KH, KW;
  3621. // Conv params
  3622. const int s0, s1, s2;
  3623. const int p0, p1, p2;
  3624. const int d0, d1, d2;
  3625. // Types
  3626. const ggml_type type_kernel;
  3627. std::string op_desc(ggml_tensor * t) override {
  3628. GGML_UNUSED(t);
  3629. return "CONV_3D";
  3630. }
  3631. std::string vars() override {
  3632. return VARS_TO_STR11(N, IC, ID, IH, IW, OC, KD, KH, KW, s0, s1) + "," +
  3633. VARS_TO_STR8(s2, p0, p1, p2, d0, d1, d2, type_kernel);
  3634. }
  3635. double max_nmse_err() override {
  3636. return 5e-4;
  3637. }
  3638. uint64_t op_flops(ggml_tensor * t) override {
  3639. GGML_UNUSED(t);
  3640. auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  3641. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  3642. };
  3643. const int64_t OD = calc_conv_output_size(ID, KD, s2, p2, d2);
  3644. const int64_t OH = calc_conv_output_size(IH, KH, s1, p1, d1);
  3645. const int64_t OW = calc_conv_output_size(IW, KW, s0, p0, d0);
  3646. return (uint64_t)N * OC * OD * OH * OW * (2 * IC * KD * KH * KW - 1);
  3647. }
  3648. test_conv_3d(
  3649. int64_t N, int64_t IC, int64_t ID, int64_t IH, int64_t IW,
  3650. int64_t OC, int64_t KD, int64_t KH, int64_t KW,
  3651. int s0, int s1, int s2,
  3652. int p0, int p1, int p2,
  3653. int d0, int d1, int d2,
  3654. ggml_type type_kernel
  3655. ) : N(N), IC(IC), ID(ID), IH(IH), IW(IW),
  3656. OC(OC), KD(KD), KH(KH), KW(KW),
  3657. s0(s0), s1(s1), s2(s2),
  3658. p0(p0), p1(p1), p2(p2),
  3659. d0(d0), d1(d1), d2(d2),
  3660. type_kernel(type_kernel) {}
  3661. ggml_tensor * build_graph(ggml_context * ctx) override {
  3662. // GGML input tensor is packed as [W, H, D, C*N]
  3663. const int64_t ne_input[] = {IW, IH, ID, IC * N};
  3664. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input);
  3665. ggml_set_name(input, "input");
  3666. // GGML kernel tensor is packed as [KW, KH, KD, IC*OC]
  3667. const int64_t ne_kernel[] = {KW, KH, KD, IC * OC};
  3668. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel);
  3669. ggml_set_name(kernel, "kernel");
  3670. ggml_tensor * out = ggml_conv_3d_direct(ctx, kernel, input, s0, s1, s2, p0, p1, p2, d0, d1, d2, (int)IC, (int)N, (int)OC);
  3671. ggml_set_name(out, "out");
  3672. return out;
  3673. }
  3674. };
  3675. // GGML_OP_CONCAT
  3676. struct test_concat : public test_case {
  3677. const ggml_type type;
  3678. const std::array<int64_t, 4> ne_a;
  3679. const int64_t ne_b_d;
  3680. const int dim;
  3681. const int v; // view (1 << 0: non-cont a, 1 << 1: non-cont b)
  3682. std::string vars() override {
  3683. return VARS_TO_STR5(type, ne_a, ne_b_d, dim, v);
  3684. }
  3685. test_concat(ggml_type type = GGML_TYPE_F32,
  3686. std::array<int64_t, 4> ne_a = {10, 5, 5, 5},
  3687. int64_t ne_b_d = 5,
  3688. int dim = 2, int v = 0)
  3689. : type(type), ne_a(ne_a), ne_b_d(ne_b_d), dim(dim), v(v) {}
  3690. ggml_tensor * build_graph(ggml_context * ctx) override {
  3691. auto ne_b = ne_a;
  3692. ne_b[dim] = ne_b_d;
  3693. ggml_tensor * a;
  3694. if (v & 1) {
  3695. auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
  3696. a = ggml_new_tensor(ctx, type, 4, ne.data());
  3697. ggml_set_name(a, "a");
  3698. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  3699. ggml_set_name(a, "view_of_a");
  3700. } else {
  3701. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  3702. ggml_set_name(a, "a");
  3703. }
  3704. ggml_tensor * b;
  3705. if (v & 2) {
  3706. auto ne = ne_b; ne[0] *= 3; ne[1] *= 2; ne[2] *= 4;
  3707. b = ggml_new_tensor(ctx, type, 4, ne.data());
  3708. ggml_set_name(b, "b");
  3709. b = ggml_view_4d(ctx, b, ne_b[0], ne_b[1], ne_b[2], ne_b[3], b->nb[1], b->nb[2], b->nb[3], 0);
  3710. ggml_set_name(b, "view_of_b");
  3711. } else {
  3712. b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  3713. ggml_set_name(b, "b");
  3714. }
  3715. ggml_tensor * out = ggml_concat(ctx, a, b, dim);
  3716. ggml_set_name(out, "out");
  3717. return out;
  3718. }
  3719. };
  3720. // GGML_OP_ARGSORT
  3721. struct test_argsort : public test_case {
  3722. const ggml_type type;
  3723. const std::array<int64_t, 4> ne;
  3724. ggml_sort_order order;
  3725. std::string vars() override {
  3726. return VARS_TO_STR3(type, ne, order);
  3727. }
  3728. test_argsort(ggml_type type = GGML_TYPE_F32,
  3729. std::array<int64_t, 4> ne = {16, 10, 10, 10},
  3730. ggml_sort_order order = GGML_SORT_ORDER_ASC)
  3731. : type(type), ne(ne), order(order) {}
  3732. ggml_tensor * build_graph(ggml_context * ctx) override {
  3733. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3734. ggml_set_name(a, "a");
  3735. ggml_tensor * out = ggml_argsort(ctx, a, order);
  3736. ggml_set_name(out, "out");
  3737. return out;
  3738. }
  3739. void initialize_tensors(ggml_context * ctx) override {
  3740. std::random_device rd;
  3741. std::default_random_engine rng(rd());
  3742. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3743. if (t->type == GGML_TYPE_I32) {
  3744. // indices
  3745. std::vector<int> data(ggml_nelements(t));
  3746. for (int i = 0; i < ggml_nelements(t); i++) {
  3747. data[i] = rand();
  3748. }
  3749. std::shuffle(data.begin(), data.end(), rng);
  3750. ggml_backend_tensor_set(t, data.data(), 0, ne[0]*ne[1]*ne[2]*ne[3] * sizeof(int));
  3751. } else if (t->type == GGML_TYPE_F32) {
  3752. // initialize with unique values to avoid ties
  3753. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  3754. std::vector<float> data(t->ne[0]);
  3755. for (int i = 0; i < t->ne[0]; i++) {
  3756. data[i] = i;
  3757. }
  3758. std::shuffle(data.begin(), data.end(), rng);
  3759. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  3760. }
  3761. } else {
  3762. GGML_ABORT("fatal error");
  3763. }
  3764. }
  3765. }
  3766. };
  3767. // GGML_OP_SUM
  3768. struct test_sum : public test_case {
  3769. const ggml_type type;
  3770. const std::array<int64_t, 4> ne;
  3771. std::string vars() override {
  3772. return VARS_TO_STR2(type, ne);
  3773. }
  3774. test_sum(ggml_type type = GGML_TYPE_F32,
  3775. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  3776. : type(type), ne(ne) {}
  3777. ggml_tensor * build_graph(ggml_context * ctx) override {
  3778. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3779. ggml_set_param(a);
  3780. ggml_set_name(a, "a");
  3781. ggml_tensor * out = ggml_sum(ctx, a);
  3782. ggml_set_name(out, "out");
  3783. return out;
  3784. }
  3785. float grad_eps() override {
  3786. return 0.1f * sqrtf(ne[0]*ne[1]*ne[2]*ne[3]);
  3787. }
  3788. };
  3789. // GGML_OP_SUM_ROWS
  3790. struct test_sum_rows : public test_case {
  3791. const ggml_type type;
  3792. const std::array<int64_t, 4> ne;
  3793. const bool permute;
  3794. const bool slice;
  3795. std::string vars() override {
  3796. return VARS_TO_STR4(type, ne, permute, slice);
  3797. }
  3798. test_sum_rows(ggml_type type = GGML_TYPE_F32,
  3799. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  3800. bool permute = false, bool slice = false)
  3801. : type(type), ne(ne), permute(permute), slice(slice) {}
  3802. ggml_tensor * build_graph(ggml_context * ctx) override {
  3803. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3804. ggml_set_param(a);
  3805. ggml_set_name(a, "a");
  3806. if (slice) {
  3807. a = ggml_view_4d(ctx, a,
  3808. ne[0], ne[1], ne[2] / 2, ne[3] - 1,
  3809. a->nb[1], a->nb[2] * 2, a->nb[3], /*offset=*/a->nb[3]);
  3810. }
  3811. if (permute) {
  3812. a = ggml_permute(ctx, a, 0, 2, 3, 1);
  3813. }
  3814. ggml_tensor * out = ggml_sum_rows(ctx, a);
  3815. ggml_set_name(out, "out");
  3816. return out;
  3817. }
  3818. };
  3819. // GGML_OP_MEAN
  3820. struct test_mean : public test_case {
  3821. const ggml_type type;
  3822. const std::array<int64_t, 4> ne;
  3823. std::string vars() override {
  3824. return VARS_TO_STR2(type, ne);
  3825. }
  3826. test_mean(ggml_type type = GGML_TYPE_F32,
  3827. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  3828. : type(type), ne(ne) {}
  3829. ggml_tensor * build_graph(ggml_context * ctx) override {
  3830. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3831. ggml_set_param(a);
  3832. ggml_set_name(a, "a");
  3833. ggml_tensor * out = ggml_mean(ctx, a);
  3834. ggml_set_name(out, "out");
  3835. return out;
  3836. }
  3837. float grad_eps() override {
  3838. return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
  3839. }
  3840. };
  3841. // GGML_OP_UPSCALE
  3842. struct test_upscale : public test_case {
  3843. const ggml_type type;
  3844. const std::array<int64_t, 4> ne;
  3845. const int32_t scale_factor;
  3846. const bool transpose;
  3847. const ggml_scale_mode mode;
  3848. std::string vars() override {
  3849. return VARS_TO_STR5(type, ne, scale_factor, mode, transpose);
  3850. }
  3851. test_upscale(ggml_type type = GGML_TYPE_F32,
  3852. std::array<int64_t, 4> ne = {512, 512, 3, 1},
  3853. int32_t scale_factor = 2, ggml_scale_mode mode = GGML_SCALE_MODE_NEAREST, bool transpose = false)
  3854. : type(type), ne(ne), scale_factor(scale_factor), transpose(transpose), mode(mode) {}
  3855. ggml_tensor * build_graph(ggml_context * ctx) override {
  3856. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3857. ggml_set_name(a, "a");
  3858. if (transpose) {
  3859. a = ggml_transpose(ctx, a);
  3860. ggml_set_name(a, "a_transposed");
  3861. }
  3862. ggml_tensor * out = ggml_upscale(ctx, a, scale_factor, mode);
  3863. ggml_set_name(out, "out");
  3864. return out;
  3865. }
  3866. };
  3867. // GGML_OP_UPSCALE (via ggml_interpolate)
  3868. struct test_interpolate : public test_case {
  3869. const ggml_type type;
  3870. const std::array<int64_t, 4> ne;
  3871. const std::array<int64_t, 4> ne_tgt;
  3872. const uint32_t mode = GGML_SCALE_MODE_NEAREST;
  3873. std::string vars() override {
  3874. return VARS_TO_STR4(type, ne, ne_tgt, mode);
  3875. }
  3876. test_interpolate(ggml_type type = GGML_TYPE_F32,
  3877. std::array<int64_t, 4> ne = {2, 5, 7, 11},
  3878. std::array<int64_t, 4> ne_tgt = {5, 7, 11, 13},
  3879. uint32_t mode = GGML_SCALE_MODE_NEAREST)
  3880. : type(type), ne(ne), ne_tgt(ne_tgt), mode(mode) {}
  3881. ggml_tensor * build_graph(ggml_context * ctx) override {
  3882. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3883. ggml_set_name(a, "a");
  3884. ggml_tensor * out = ggml_interpolate(ctx, a, ne_tgt[0], ne_tgt[1],ne_tgt[2], ne_tgt[3], mode);
  3885. ggml_set_name(out, "out");
  3886. return out;
  3887. }
  3888. };
  3889. // GGML_OP_GROUP_NORM
  3890. struct test_group_norm : public test_case {
  3891. const ggml_type type;
  3892. const std::array<int64_t, 4> ne;
  3893. const int32_t num_groups;
  3894. const float eps;
  3895. std::string vars() override {
  3896. return VARS_TO_STR4(type, ne, num_groups, eps);
  3897. }
  3898. test_group_norm(ggml_type type = GGML_TYPE_F32,
  3899. std::array<int64_t, 4> ne = {64, 64, 320, 1},
  3900. int32_t num_groups = 32,
  3901. float eps = 1e-6f)
  3902. : type(type), ne(ne), num_groups(num_groups), eps(eps) {}
  3903. ggml_tensor * build_graph(ggml_context * ctx) override {
  3904. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3905. ggml_set_name(a, "a");
  3906. ggml_tensor * out = ggml_group_norm(ctx, a, num_groups, eps);
  3907. ggml_set_name(out, "out");
  3908. return out;
  3909. }
  3910. };
  3911. // GGML_OP_GROUP_NORM + GGML_OP_MUL + GGML_OP_ADD
  3912. struct test_group_norm_mul_add : public test_case {
  3913. const ggml_type type;
  3914. const std::array<int64_t, 4> ne;
  3915. int num_groups;
  3916. float eps;
  3917. std::string op_desc(ggml_tensor * t) override {
  3918. GGML_UNUSED(t);
  3919. return "GROUP_NORM_MUL_ADD";
  3920. }
  3921. bool run_whole_graph() override { return true; }
  3922. std::string vars() override {
  3923. return VARS_TO_STR4(type, ne, num_groups, eps);
  3924. }
  3925. test_group_norm_mul_add(ggml_type type = GGML_TYPE_F32,
  3926. std::array<int64_t, 4> ne = {128, 1, 1, 1},
  3927. int num_groups = 4,
  3928. float eps = 1e-5f)
  3929. : type(type), ne(ne), num_groups(num_groups), eps(eps) {}
  3930. ggml_tensor * build_graph(ggml_context * ctx) override {
  3931. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3932. ggml_tensor * w = ggml_new_tensor(ctx, type, 4, ne.data());
  3933. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  3934. ggml_set_param(a); ggml_set_param(w); ggml_set_param(b);
  3935. ggml_set_name(a, "a"); ggml_set_name(w, "w"); ggml_set_name(b, "b");
  3936. ggml_tensor * n = ggml_group_norm(ctx, a, num_groups, eps);
  3937. ggml_tensor * m = ggml_mul(ctx, n, w);
  3938. ggml_tensor * out = ggml_add(ctx, m, b);
  3939. ggml_set_name(out, "out");
  3940. return out;
  3941. }
  3942. };
  3943. // GGML_OP_L2_NORM
  3944. struct test_l2_norm : public test_case {
  3945. const ggml_type type;
  3946. const std::array<int64_t, 4> ne;
  3947. const float eps;
  3948. std::string vars() override {
  3949. return VARS_TO_STR2(type, ne);
  3950. }
  3951. test_l2_norm(ggml_type type = GGML_TYPE_F32,
  3952. std::array<int64_t, 4> ne = {64, 64, 320, 1},
  3953. float eps = 1e-12f)
  3954. : type(type), ne(ne), eps(eps) {}
  3955. ggml_tensor * build_graph(ggml_context * ctx) override {
  3956. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3957. ggml_set_name(a, "a");
  3958. ggml_tensor * out = ggml_l2_norm(ctx, a, eps);
  3959. ggml_set_name(out, "out");
  3960. return out;
  3961. }
  3962. };
  3963. // GGML_OP_ACC
  3964. struct test_acc : public test_case {
  3965. const ggml_type type;
  3966. const std::array<int64_t, 4> ne_a;
  3967. const std::array<int64_t, 4> ne_b;
  3968. std::string vars() override {
  3969. return VARS_TO_STR3(type, ne_a, ne_b);
  3970. }
  3971. test_acc(ggml_type type = GGML_TYPE_F32,
  3972. std::array<int64_t, 4> ne_a = {256, 17, 1, 1},
  3973. std::array<int64_t, 4> ne_b = {256, 16, 1, 1})
  3974. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  3975. ggml_tensor * build_graph(ggml_context * ctx) override {
  3976. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  3977. ggml_set_param(a);
  3978. ggml_set_name(a, "a");
  3979. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  3980. ggml_set_param(b);
  3981. ggml_set_name(b, "b");
  3982. ggml_tensor * out = ggml_acc(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], b->nb[1]);
  3983. ggml_set_name(out, "out");
  3984. return out;
  3985. }
  3986. };
  3987. // GGML_OP_PAD
  3988. struct test_pad : public test_case {
  3989. const ggml_type type;
  3990. const std::array<int64_t, 4> ne_a;
  3991. const int pad_0;
  3992. const int pad_1;
  3993. std::string vars() override {
  3994. return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
  3995. }
  3996. test_pad(ggml_type type = GGML_TYPE_F32,
  3997. std::array<int64_t, 4> ne_a = {512, 512, 1, 1},
  3998. int pad_0 = 1, int pad_1 = 1)
  3999. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
  4000. ggml_tensor * build_graph(ggml_context * ctx) override {
  4001. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4002. ggml_set_name(a, "a");
  4003. ggml_tensor * out = ggml_pad(ctx, a, pad_0, pad_1, 0, 0);
  4004. ggml_set_name(out, "out");
  4005. return out;
  4006. }
  4007. };
  4008. struct test_pad_ext : public test_case {
  4009. const ggml_type type;
  4010. const std::array<int64_t, 4> ne_a;
  4011. const int lp0;
  4012. const int rp0;
  4013. const int lp1;
  4014. const int rp1;
  4015. const int lp2;
  4016. const int rp2;
  4017. const int lp3;
  4018. const int rp3;
  4019. const bool v;
  4020. std::string vars() override {
  4021. return VARS_TO_STR11(type, ne_a, lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3, v);
  4022. }
  4023. test_pad_ext(ggml_type type = GGML_TYPE_F32,
  4024. std::array<int64_t, 4> ne_a = {512, 512, 3, 1},
  4025. int lp0 = 1, int rp0 = 1, int lp1 = 1, int rp1 = 1,
  4026. int lp2 = 1, int rp2 = 1, int lp3 = 1, int rp3 = 1,
  4027. bool v = false)
  4028. : type(type), ne_a(ne_a), lp0(lp0), rp0(rp0), lp1(lp1), rp1(rp1), lp2(lp2), rp2(rp2), lp3(lp3), rp3(rp3), v(v) {}
  4029. ggml_tensor * build_graph(ggml_context * ctx) override {
  4030. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4031. ggml_set_name(a, "a");
  4032. if (v) {
  4033. a = ggml_view_4d(ctx, a, (a->ne[0] + 1) / 2, (a->ne[1] + 1) / 2, (a->ne[2] + 1) / 2, (a->ne[3] + 1) / 2, a->nb[1], a->nb[2], a->nb[3], 0);
  4034. ggml_set_name(a, "view of a");
  4035. }
  4036. ggml_tensor * out = ggml_pad_ext(ctx, a, lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3);
  4037. ggml_set_name(out, "out");
  4038. return out;
  4039. }
  4040. };
  4041. // GGML_OP_PAD_REFLECT_1D
  4042. struct test_pad_reflect_1d : public test_case {
  4043. const ggml_type type;
  4044. const std::array<int64_t, 4> ne_a;
  4045. const int pad_0;
  4046. const int pad_1;
  4047. std::string vars() override {
  4048. return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
  4049. }
  4050. test_pad_reflect_1d(ggml_type type = GGML_TYPE_F32,
  4051. std::array<int64_t, 4> ne_a = {512, 34, 2, 1},
  4052. int pad_0 = 10, int pad_1 = 9)
  4053. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
  4054. ggml_tensor * build_graph(ggml_context * ctx) override {
  4055. ggml_tensor * a = ggml_new_tensor(ctx, type, 2, ne_a.data());
  4056. ggml_set_name(a, "a");
  4057. ggml_tensor * out = ggml_pad_reflect_1d(ctx, a, pad_0, pad_1);
  4058. ggml_set_name(out, "out");
  4059. return out;
  4060. }
  4061. };
  4062. // GGML_OP_ROLL
  4063. struct test_roll : public test_case {
  4064. const int shift0;
  4065. const int shift1;
  4066. const int shift3;
  4067. const int shift4;
  4068. std::string vars() override {
  4069. return VARS_TO_STR4(shift0, shift1, shift3, shift4);
  4070. }
  4071. test_roll(int shift0 = 3, int shift1 = -2, int shift3 = 1, int shift4 = -1)
  4072. : shift0(shift0), shift1(shift1), shift3(shift3), shift4(shift4) {}
  4073. ggml_tensor * build_graph(ggml_context * ctx) override {
  4074. int64_t ne[4] = {10, 5, 4, 3};
  4075. ggml_tensor * a = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4076. ggml_set_name(a, "a");
  4077. ggml_tensor * out = ggml_roll(ctx, a, shift0, shift1, shift3, shift4);
  4078. ggml_set_name(out, "out");
  4079. return out;
  4080. }
  4081. };
  4082. // GGML_OP_ARANGE
  4083. struct test_arange : public test_case {
  4084. const ggml_type type;
  4085. const float start;
  4086. const float stop;
  4087. const float step;
  4088. std::string vars() override {
  4089. return VARS_TO_STR4(type, start, stop, step);
  4090. }
  4091. test_arange(ggml_type type = GGML_TYPE_F32,
  4092. float start = 0.f, float stop = 10.f, float step = 1.f)
  4093. : type(type), start(start), stop(stop), step(step) {}
  4094. ggml_tensor * build_graph(ggml_context * ctx) override {
  4095. ggml_tensor * out = ggml_arange(ctx, start, stop, step);
  4096. ggml_set_name(out, "out");
  4097. return out;
  4098. }
  4099. };
  4100. // GGML_OP_TIMESTEP_EMBEDDING
  4101. struct test_timestep_embedding : public test_case {
  4102. const ggml_type type;
  4103. const std::array<int64_t, 4> ne_a;
  4104. const int dim;
  4105. const int max_period;
  4106. std::string vars() override {
  4107. return VARS_TO_STR4(type, ne_a, dim, max_period);
  4108. }
  4109. test_timestep_embedding(ggml_type type = GGML_TYPE_F32,
  4110. std::array<int64_t, 4> ne_a = {2, 1, 1, 1},
  4111. int dim = 320, int max_period=10000)
  4112. : type(type), ne_a(ne_a), dim(dim), max_period(max_period) {}
  4113. ggml_tensor * build_graph(ggml_context * ctx) override {
  4114. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4115. ggml_set_name(a, "a");
  4116. ggml_tensor * out = ggml_timestep_embedding(ctx, a, dim, max_period);
  4117. ggml_set_name(out, "out");
  4118. return out;
  4119. }
  4120. };
  4121. // GGML_OP_LEAKY_RELU
  4122. struct test_leaky_relu : public test_case {
  4123. const ggml_type type;
  4124. const std::array<int64_t, 4> ne_a;
  4125. const float negative_slope;
  4126. std::string vars() override {
  4127. return VARS_TO_STR3(type, ne_a, negative_slope);
  4128. }
  4129. test_leaky_relu(ggml_type type = GGML_TYPE_F32,
  4130. std::array<int64_t, 4> ne_a = {10, 5, 4, 3},
  4131. float negative_slope = 0.1f)
  4132. : type(type), ne_a(ne_a), negative_slope(negative_slope) {}
  4133. ggml_tensor * build_graph(ggml_context * ctx) override {
  4134. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4135. ggml_set_name(a, "a");
  4136. ggml_tensor * out = ggml_leaky_relu(ctx, a, negative_slope, true);
  4137. ggml_set_name(out, "out");
  4138. return out;
  4139. }
  4140. };
  4141. // GGML_OP_FLASH_ATTN_EXT
  4142. struct test_flash_attn_ext : public test_case {
  4143. const int64_t hsk; // K head size
  4144. const int64_t hsv; // V head size
  4145. const int64_t nh; // num heads
  4146. const std::array<int64_t, 2> nr23; // repeat in dim 2 and 3, tests for grouped-query attention
  4147. const int64_t kv; // kv size
  4148. const int64_t nb; // batch size
  4149. const bool mask; // use mask
  4150. const bool sinks; // use sinks
  4151. const float max_bias; // ALiBi
  4152. const float logit_softcap; // Gemma 2
  4153. const ggml_prec prec;
  4154. const ggml_type type_KV;
  4155. std::array<int32_t, 4> permute;
  4156. std::string vars() override {
  4157. return VARS_TO_STR13(hsk, hsv, nh, nr23, kv, nb, mask, sinks, max_bias, logit_softcap, prec, type_KV, permute);
  4158. }
  4159. double max_nmse_err() override {
  4160. return 5e-4;
  4161. }
  4162. uint64_t op_flops(ggml_tensor * t) override {
  4163. GGML_UNUSED(t);
  4164. // Just counting matmul costs:
  4165. // Q*K^T is nb x hsk x kv, P*V is nb x kv x hsv, per head
  4166. return (2 * nh*nr23[0] * nb * (hsk + hsv) * kv)*nr23[1];
  4167. }
  4168. test_flash_attn_ext(int64_t hsk = 128, int64_t hsv = 128, int64_t nh = 32, std::array<int64_t, 2> nr23 = {1, 1}, int64_t kv = 96, int64_t nb = 8,
  4169. bool mask = true, bool sinks = false, float max_bias = 0.0f, float logit_softcap = 0.0f, ggml_prec prec = GGML_PREC_F32,
  4170. ggml_type type_KV = GGML_TYPE_F16, std::array<int32_t, 4> permute = {0, 1, 2, 3})
  4171. : hsk(hsk), hsv(hsv), nh(nh), nr23(nr23), kv(kv), nb(nb), mask(mask), sinks(sinks), max_bias(max_bias), logit_softcap(logit_softcap), prec(prec), type_KV(type_KV), permute(permute) {}
  4172. ggml_tensor * build_graph(ggml_context * ctx) override {
  4173. const int64_t hsk_padded = GGML_PAD(hsk, ggml_blck_size(type_KV));
  4174. const int64_t hsv_padded = GGML_PAD(hsv, ggml_blck_size(type_KV));
  4175. auto const &create_permuted = [&](ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3, bool is_view) -> ggml_tensor * {
  4176. int64_t ne[4] = {ne0, ne1, ne2, ne3};
  4177. int64_t ne_perm[4];
  4178. for (int i = 0; i < 4; ++i) {
  4179. ne_perm[permute[i]] = ne[i];
  4180. }
  4181. ggml_tensor * t;
  4182. if (is_view) {
  4183. ggml_tensor * t0 = ggml_new_tensor_4d(ctx, type, ne_perm[0], 2*ne_perm[1], ne_perm[2], ne_perm[3]);
  4184. t = ggml_view_4d(ctx, t0, ne_perm[0], ne_perm[1], ne_perm[2], ne_perm[3], t0->nb[1], t0->nb[2], t0->nb[3], 0);
  4185. } else {
  4186. t = ggml_new_tensor_4d(ctx, type, ne_perm[0], ne_perm[1], ne_perm[2], ne_perm[3]);
  4187. }
  4188. if (permute != std::array<int32_t, 4>{0, 1, 2, 3}) {
  4189. t = ggml_permute(ctx, t, permute[0], permute[1], permute[2], permute[3]);
  4190. }
  4191. return t;
  4192. };
  4193. ggml_tensor * q = create_permuted(GGML_TYPE_F32, hsk_padded, nb, nh*nr23[0], nr23[1], false);
  4194. ggml_set_name(q, "q");
  4195. ggml_tensor * k = create_permuted(type_KV, hsk_padded, kv, nh, nr23[1], true); // the K tensor is usually a view of the K cache
  4196. ggml_set_name(k, "k");
  4197. ggml_tensor * v = create_permuted(type_KV, hsv_padded, kv, nh, nr23[1], true); // the V tensor is usually a view of the V cache
  4198. ggml_set_name(v, "v");
  4199. ggml_tensor * m = nullptr;
  4200. if (mask) {
  4201. m = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), 1, nr23[1]);
  4202. ggml_set_name(m, "m");
  4203. }
  4204. ggml_tensor * s = nullptr;
  4205. if (sinks) {
  4206. s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, q->ne[2]);
  4207. ggml_set_name(s, "s");
  4208. }
  4209. ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, m, 1.0f/sqrtf(hsk), max_bias, logit_softcap);
  4210. ggml_flash_attn_ext_add_sinks(out, s);
  4211. ggml_flash_attn_ext_set_prec (out, prec);
  4212. ggml_set_name(out, "out");
  4213. return out;
  4214. }
  4215. void initialize_tensors(ggml_context * ctx) override {
  4216. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4217. if (strcmp(t->name, "s") == 0) {
  4218. // make the sink values more noticable in order to trigger a test failure when the implementation is wrong
  4219. init_tensor_uniform(t, -10.0f, 10.0f);
  4220. } else {
  4221. init_tensor_uniform(t);
  4222. }
  4223. }
  4224. }
  4225. bool grad_precise() override {
  4226. return true;
  4227. }
  4228. };
  4229. // GGML_OP_CROSS_ENTROPY_LOSS
  4230. struct test_cross_entropy_loss : public test_case {
  4231. const ggml_type type;
  4232. const std::array<int64_t, 4> ne;
  4233. std::string vars() override {
  4234. return VARS_TO_STR2(type, ne);
  4235. }
  4236. test_cross_entropy_loss(ggml_type type = GGML_TYPE_F32,
  4237. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  4238. : type(type), ne(ne) {}
  4239. ggml_tensor * build_graph(ggml_context * ctx) override {
  4240. ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
  4241. ggml_set_param(logits);
  4242. ggml_set_name(logits, "logits");
  4243. ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
  4244. // The labels are assumed to be constant -> no gradients.
  4245. ggml_set_name(labels, "labels");
  4246. // Ensure labels add up to 1:
  4247. labels = ggml_soft_max(ctx, labels);
  4248. ggml_set_name(labels, "labels_normalized");
  4249. ggml_tensor * out = ggml_cross_entropy_loss(ctx, logits, labels);
  4250. ggml_set_name(out, "out");
  4251. return out;
  4252. }
  4253. void initialize_tensors(ggml_context * ctx) override {
  4254. // For larger abs. diffs between logits softmax is more linear, therefore more precise num. gradients.
  4255. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4256. init_tensor_uniform(t, -100.0f, 100.0f);
  4257. }
  4258. }
  4259. float grad_eps() override {
  4260. return 1.0f;
  4261. }
  4262. bool grad_precise() override {
  4263. return true;
  4264. }
  4265. };
  4266. // GGML_OP_CROSS_ENTROPY_LOSS_BACK
  4267. struct test_cross_entropy_loss_back : public test_case {
  4268. const ggml_type type;
  4269. const std::array<int64_t, 4> ne;
  4270. std::string vars() override {
  4271. return VARS_TO_STR2(type, ne);
  4272. }
  4273. test_cross_entropy_loss_back(ggml_type type = GGML_TYPE_F32,
  4274. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  4275. : type(type), ne(ne) {}
  4276. ggml_tensor * build_graph(ggml_context * ctx) override {
  4277. ggml_tensor * grad = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  4278. ggml_set_name(grad, "grad");
  4279. ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
  4280. ggml_set_name(logits, "logits");
  4281. ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
  4282. ggml_set_name(labels, "labels");
  4283. // Ensure labels add up to 1:
  4284. labels = ggml_soft_max(ctx, labels);
  4285. ggml_set_name(labels, "labels_normalized");
  4286. ggml_tensor * out = ggml_cross_entropy_loss_back(ctx, grad, logits, labels);
  4287. ggml_set_name(out, "out");
  4288. return out;
  4289. }
  4290. };
  4291. // GGML_OP_OPT_STEP_ADAMW
  4292. struct test_opt_step_adamw : public test_case {
  4293. const ggml_type type;
  4294. const std::array<int64_t, 4> ne;
  4295. std::string vars() override {
  4296. return VARS_TO_STR2(type, ne);
  4297. }
  4298. test_opt_step_adamw(ggml_type type = GGML_TYPE_F32,
  4299. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  4300. : type(type), ne(ne) {}
  4301. ggml_tensor * build_graph(ggml_context * ctx) override {
  4302. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4303. ggml_set_param(a); // Despite tensor a having gradients the output tensor will not.
  4304. ggml_set_name(a, "a");
  4305. ggml_tensor * grad = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4306. ggml_set_name(grad, "grad");
  4307. ggml_tensor * grad_m = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4308. ggml_set_name(grad_m, "grad_m");
  4309. ggml_tensor * grad_v = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4310. ggml_set_name(grad_v, "grad_v");
  4311. ggml_tensor * adamw_params = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 7);
  4312. ggml_set_name(adamw_params, "adamw_params");
  4313. ggml_tensor * out = ggml_opt_step_adamw(ctx, a, grad, grad_m, grad_v, adamw_params);
  4314. ggml_set_name(out, "out");
  4315. return out;
  4316. }
  4317. void initialize_tensors(ggml_context * ctx) override {
  4318. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4319. init_tensor_uniform(t, 0.0f, 1.0f); // grad_v and adamw_params need non-negative values.
  4320. }
  4321. }
  4322. bool grad_precise() override {
  4323. return true;
  4324. }
  4325. };
  4326. struct test_opt_step_sgd : public test_case {
  4327. const ggml_type type;
  4328. const std::array<int64_t, 4> ne;
  4329. std::string vars() override { return VARS_TO_STR2(type, ne); }
  4330. test_opt_step_sgd(ggml_type type = GGML_TYPE_F32,
  4331. std::array<int64_t, 4> ne = { 10, 5, 4, 3 })
  4332. : type(type), ne(ne) {}
  4333. ggml_tensor * build_graph(ggml_context * ctx) override {
  4334. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4335. ggml_set_param(a); // Despite tensor a having gradients the output tensor will not.
  4336. ggml_set_name(a, "a");
  4337. ggml_tensor * grad = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4338. ggml_set_name(grad, "grad");
  4339. ggml_tensor * sgd_params = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 2);
  4340. ggml_set_name(sgd_params, "sgd_params");
  4341. ggml_tensor * out = ggml_opt_step_sgd(ctx, a, grad, sgd_params);
  4342. ggml_set_name(out, "out");
  4343. return out;
  4344. }
  4345. void initialize_tensors(ggml_context * ctx) override {
  4346. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4347. init_tensor_uniform(t, 0.0f, 1.0f); // sgd_params need non-negative values.
  4348. }
  4349. }
  4350. bool grad_precise() override {
  4351. return true;
  4352. }
  4353. };
  4354. enum llm_norm_type {
  4355. LLM_NORM,
  4356. LLM_NORM_RMS,
  4357. };
  4358. struct llama_hparams {
  4359. uint32_t n_vocab;
  4360. uint32_t n_embd;
  4361. uint32_t n_head;
  4362. uint32_t n_head_kv;
  4363. static constexpr uint32_t n_layer = 1;
  4364. uint32_t n_rot;
  4365. uint32_t n_embd_head; // dimension of values (d_v)
  4366. uint32_t n_ff;
  4367. float f_norm_eps;
  4368. float f_norm_rms_eps;
  4369. // cparams
  4370. static constexpr uint32_t n_ctx = 512; // user-specified context size
  4371. static constexpr uint32_t n_ctx_orig = n_ctx;
  4372. // batch
  4373. int32_t n_tokens;
  4374. // llm_build_context
  4375. static constexpr int32_t n_kv = 32; // size of KV cache to consider (n_kv <= n_ctx
  4376. static constexpr int32_t kv_head = 1; // index of where we store new KV data in the cache
  4377. uint32_t n_embd_gqa() const { // dimension of key embeddings across all k-v heads
  4378. return n_embd_head * n_head_kv;
  4379. }
  4380. };
  4381. // LLM base class
  4382. struct test_llm : public test_case {
  4383. llama_hparams hp;
  4384. protected:
  4385. test_llm(llama_hparams hp)
  4386. : hp(std::move(hp)) {
  4387. }
  4388. public:
  4389. struct ggml_tensor * llm_build_norm(
  4390. struct ggml_context * ctx,
  4391. struct ggml_tensor * cur,
  4392. struct ggml_tensor * mw,
  4393. struct ggml_tensor * mb,
  4394. llm_norm_type type) {
  4395. switch (type) {
  4396. case LLM_NORM: cur = ggml_norm (ctx, cur, hp.f_norm_eps); break;
  4397. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hp.f_norm_rms_eps); break;
  4398. }
  4399. cur = ggml_mul(ctx, cur, mw);
  4400. if (mb) {
  4401. cur = ggml_add(ctx, cur, mb);
  4402. }
  4403. return cur;
  4404. }
  4405. void llm_build_kv_store(
  4406. struct ggml_context * ctx,
  4407. struct ggml_tensor * k_l,
  4408. struct ggml_tensor * v_l,
  4409. struct ggml_tensor * k_cur,
  4410. struct ggml_tensor * v_cur) {
  4411. // compute the transposed [n_tokens, n_embd] V matrix
  4412. struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, hp.n_embd_gqa(), hp.n_tokens));
  4413. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, k_l, hp.n_tokens*hp.n_embd_gqa(),
  4414. (ggml_row_size(k_l->type, hp.n_embd_gqa()))*hp.kv_head);
  4415. struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, v_l, hp.n_tokens, hp.n_embd_gqa(),
  4416. ( hp.n_ctx)*ggml_element_size(v_l),
  4417. (hp.kv_head)*ggml_element_size(v_l));
  4418. // important: storing RoPE-ed version of K in the KV cache!
  4419. ggml_cpy(ctx, k_cur, k_cache_view);
  4420. ggml_cpy(ctx, v_cur_t, v_cache_view);
  4421. }
  4422. struct ggml_tensor * llm_build_kqv(
  4423. struct ggml_context * ctx,
  4424. struct ggml_tensor * k_l,
  4425. struct ggml_tensor * v_l,
  4426. struct ggml_tensor * q_cur,
  4427. struct ggml_tensor * kq_mask,
  4428. float kq_scale) {
  4429. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  4430. struct ggml_tensor * k =
  4431. ggml_view_3d(ctx, k_l,
  4432. hp.n_embd_head, hp.n_kv, hp.n_head_kv,
  4433. ggml_row_size(k_l->type, hp.n_embd_gqa()),
  4434. ggml_row_size(k_l->type, hp.n_embd_head),
  4435. 0);
  4436. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  4437. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, 0.0f);
  4438. // split cached v into n_head heads
  4439. struct ggml_tensor * v =
  4440. ggml_view_3d(ctx, v_l,
  4441. hp.n_kv, hp.n_embd_head, hp.n_head_kv,
  4442. ggml_element_size(v_l)*hp.n_ctx,
  4443. ggml_element_size(v_l)*hp.n_ctx*hp.n_embd_head,
  4444. 0);
  4445. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  4446. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  4447. struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, hp.n_embd_head*hp.n_head, hp.n_tokens);
  4448. struct ggml_tensor * wo = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  4449. cur = ggml_mul_mat(ctx, wo, cur);
  4450. return cur;
  4451. }
  4452. void initialize_tensors(ggml_context * ctx) override {
  4453. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4454. if (t->type == GGML_TYPE_I32) {
  4455. // pos
  4456. std::vector<int> data(hp.n_tokens);
  4457. for (int i = 0; i < hp.n_tokens; i++) {
  4458. data[i] = rand() % hp.n_ctx;
  4459. }
  4460. ggml_backend_tensor_set(t, data.data(), 0, hp.n_tokens * sizeof(int));
  4461. } else {
  4462. init_tensor_uniform(t);
  4463. }
  4464. }
  4465. }
  4466. };
  4467. // Llama
  4468. struct test_llama : public test_llm {
  4469. static constexpr float freq_base = 10000.0f;
  4470. static constexpr float freq_scale = 1.0f;
  4471. static constexpr float ext_factor = 0.0f;
  4472. static constexpr float attn_factor = 1.0f;
  4473. static constexpr float beta_fast = 32.0f;
  4474. static constexpr float beta_slow = 1.0f;
  4475. bool fused;
  4476. std::string op_desc(ggml_tensor * t) override {
  4477. GGML_UNUSED(t);
  4478. return "LLAMA";
  4479. }
  4480. std::string vars() override {
  4481. auto n_tokens = hp.n_tokens;
  4482. return VARS_TO_STR1(n_tokens);
  4483. }
  4484. double max_nmse_err() override {
  4485. return 2e-3;
  4486. }
  4487. bool run_whole_graph() override { return fused; }
  4488. test_llama(int n_tokens = 1, bool fused = false)
  4489. : test_llm({
  4490. /*n_vocab =*/ 32000,
  4491. /*n_embd =*/ 3200,
  4492. /*n_head =*/ 32,
  4493. /*n_head_kv =*/ 32,
  4494. /*n_rot =*/ 100,
  4495. /*n_embd_head =*/ 100,
  4496. /*n_ff =*/ 8640,
  4497. /*f_norm_eps =*/ 0.f,
  4498. /*f_norm_rms_eps =*/ 1e-5f,
  4499. /*n_tokens =*/ n_tokens,
  4500. })
  4501. , fused(fused)
  4502. {
  4503. }
  4504. ggml_tensor * build_graph(ggml_context * ctx) override {
  4505. struct ggml_tensor * cur;
  4506. struct ggml_tensor * inpL;
  4507. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  4508. // inp_pos - contains the positions
  4509. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  4510. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  4511. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  4512. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  4513. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  4514. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  4515. struct ggml_tensor * inpSA = inpL;
  4516. // norm
  4517. ggml_tensor * attn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  4518. cur = llm_build_norm(ctx, inpL, attn_norm, nullptr, LLM_NORM_RMS);
  4519. // self-attention
  4520. {
  4521. ggml_tensor * wq = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  4522. ggml_tensor * wk = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  4523. ggml_tensor * wv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  4524. // compute Q and K and RoPE them
  4525. struct ggml_tensor * Qcur = ggml_mul_mat(ctx, wq, cur);
  4526. struct ggml_tensor * Kcur = ggml_mul_mat(ctx, wk, cur);
  4527. struct ggml_tensor * Vcur = ggml_mul_mat(ctx, wv, cur);
  4528. Qcur = ggml_rope_ext(
  4529. ctx, ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens), inp_pos, nullptr,
  4530. hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
  4531. ext_factor, attn_factor, beta_fast, beta_slow
  4532. );
  4533. Kcur = ggml_rope_ext(
  4534. ctx, ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens), inp_pos, nullptr,
  4535. hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
  4536. ext_factor, attn_factor, beta_fast, beta_slow
  4537. );
  4538. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  4539. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  4540. }
  4541. struct ggml_tensor * ffn_inp = ggml_add(ctx, cur, inpSA);
  4542. // feed-forward network
  4543. ggml_tensor * ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  4544. cur = llm_build_norm(ctx, ffn_inp, ffn_norm, nullptr, LLM_NORM_RMS);
  4545. ggml_tensor * ffn_gate = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  4546. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  4547. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  4548. struct ggml_tensor * tmp = ggml_mul_mat(ctx, ffn_up, cur);
  4549. cur = ggml_mul_mat(ctx, ffn_gate, cur);
  4550. cur = ggml_silu(ctx, cur);
  4551. cur = ggml_mul(ctx, cur, tmp);
  4552. cur = ggml_mul_mat(ctx, ffn_down, cur);
  4553. cur = ggml_add(ctx, cur, ffn_inp);
  4554. // input for next layer
  4555. inpL = cur;
  4556. }
  4557. cur = inpL;
  4558. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  4559. cur = llm_build_norm(ctx, cur, output_norm, nullptr, LLM_NORM_RMS);
  4560. // lm_head
  4561. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_vocab);
  4562. cur = ggml_mul_mat(ctx, output, cur);
  4563. return cur;
  4564. }
  4565. };
  4566. // Falcon
  4567. struct test_falcon : public test_llm {
  4568. static constexpr float freq_base = 10000.0f;
  4569. static constexpr float freq_scale = 1.0f;
  4570. static constexpr float ext_factor = 0.0f;
  4571. static constexpr float attn_factor = 1.0f;
  4572. static constexpr float beta_fast = 32.0f;
  4573. static constexpr float beta_slow = 1.0f;
  4574. std::string op_desc(ggml_tensor * t) override {
  4575. GGML_UNUSED(t);
  4576. return "FALCON";
  4577. }
  4578. std::string vars() override {
  4579. auto n_tokens = hp.n_tokens;
  4580. return VARS_TO_STR1(n_tokens);
  4581. }
  4582. double max_nmse_err() override {
  4583. return 2e-3;
  4584. }
  4585. test_falcon(int n_tokens = 1)
  4586. : test_llm({
  4587. /*n_vocab =*/ 32000,
  4588. /*n_embd =*/ 3200,
  4589. /*n_head =*/ 50,
  4590. /*n_head_kv =*/ 1,
  4591. /*n_rot =*/ 64,
  4592. /*n_embd_head =*/ 64,
  4593. /*n_ff =*/ 8640,
  4594. /*f_norm_eps =*/ 1e-5f,
  4595. /*f_norm_rms_eps =*/ 0.f,
  4596. /*n_tokens =*/ n_tokens,
  4597. }) {
  4598. }
  4599. ggml_tensor * build_graph(ggml_context * ctx) override {
  4600. struct ggml_tensor * cur;
  4601. struct ggml_tensor * inpL;
  4602. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  4603. // inp_pos - contains the positions
  4604. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  4605. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  4606. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  4607. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  4608. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  4609. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  4610. // norm
  4611. ggml_tensor * attn_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  4612. ggml_tensor * attn_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  4613. ggml_tensor * attn_norm = llm_build_norm(ctx, inpL, attn_norm_w, attn_norm_b, LLM_NORM);
  4614. // self-attention
  4615. {
  4616. cur = attn_norm;
  4617. ggml_tensor * wqkv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd + 2*hp.n_embd_gqa());
  4618. cur = ggml_mul_mat(ctx, wqkv, cur);
  4619. struct ggml_tensor * Qcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd, hp.n_tokens, cur->nb[1], 0*sizeof(float)*(hp.n_embd)));
  4620. struct ggml_tensor * Kcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd)));
  4621. struct ggml_tensor * Vcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd + hp.n_embd_gqa())));
  4622. Qcur = ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens);
  4623. Kcur = ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens);
  4624. // using mode = 2 for neox mode
  4625. Qcur = ggml_rope_ext(
  4626. ctx, Qcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
  4627. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  4628. );
  4629. Kcur = ggml_rope_ext(
  4630. ctx, Kcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
  4631. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  4632. );
  4633. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  4634. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  4635. }
  4636. struct ggml_tensor * ffn_inp = cur;
  4637. // feed forward
  4638. {
  4639. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  4640. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  4641. cur = attn_norm;
  4642. cur = ggml_mul_mat(ctx, ffn_up, cur);
  4643. cur = ggml_gelu(ctx, cur);
  4644. cur = ggml_mul_mat(ctx, ffn_down, cur);
  4645. }
  4646. cur = ggml_add(ctx, cur, ffn_inp);
  4647. cur = ggml_add(ctx, cur, inpL);
  4648. // input for next layer
  4649. inpL = cur;
  4650. }
  4651. cur = inpL;
  4652. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  4653. ggml_tensor * output_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  4654. cur = llm_build_norm(ctx, cur, output_norm, output_norm_b, LLM_NORM);
  4655. // lm_head
  4656. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q8_0, hp.n_embd, hp.n_vocab);
  4657. cur = ggml_mul_mat(ctx, output, cur);
  4658. return cur;
  4659. }
  4660. };
  4661. // ###########################################
  4662. // ## Section 3: GGML Op Test Instantiation ##
  4663. // ###########################################
  4664. static const ggml_type all_types[] = {
  4665. GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16,
  4666. GGML_TYPE_Q4_0, GGML_TYPE_Q4_1,
  4667. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  4668. GGML_TYPE_Q8_0,
  4669. GGML_TYPE_MXFP4,
  4670. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  4671. GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
  4672. GGML_TYPE_Q6_K,
  4673. // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
  4674. GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  4675. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  4676. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  4677. };
  4678. static const ggml_type base_types[] = {
  4679. GGML_TYPE_F32, GGML_TYPE_F16,
  4680. GGML_TYPE_Q8_0, // for I8MM tests
  4681. GGML_TYPE_Q4_0,
  4682. GGML_TYPE_Q4_1, // for I8MM tests
  4683. GGML_TYPE_Q4_K,
  4684. GGML_TYPE_MXFP4, // TODO: or "other"
  4685. GGML_TYPE_IQ2_XXS
  4686. };
  4687. static const ggml_type other_types[] = {
  4688. GGML_TYPE_Q4_1,
  4689. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  4690. GGML_TYPE_Q8_0,
  4691. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  4692. GGML_TYPE_Q5_K,
  4693. GGML_TYPE_Q6_K,
  4694. // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
  4695. GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  4696. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  4697. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  4698. GGML_TYPE_BF16,
  4699. };
  4700. // Test cases for evaluation: should try to cover edge cases while using small input sizes to keep the runtime low
  4701. static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
  4702. std::vector<std::unique_ptr<test_case>> test_cases;
  4703. std::default_random_engine rng(0);
  4704. // unary ops
  4705. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  4706. for (int v : {0, 1}) {
  4707. for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) {
  4708. test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 128, 2, 2, 2 }, v));
  4709. test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 5, 7, 11, 13 }, v));
  4710. }
  4711. }
  4712. }
  4713. // glu ops
  4714. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  4715. for (int v : {0, 1}) {
  4716. for (int op = 0; op < GGML_GLU_OP_COUNT; op++) {
  4717. if (op == GGML_GLU_OP_SWIGLU_OAI) {
  4718. // SWIGLU_OAI is handled separately
  4719. continue;
  4720. }
  4721. for (bool swapped : {false, true}) {
  4722. test_cases.emplace_back(new test_glu((ggml_glu_op) op, type, { 128, 2, 2, 2 }, v, swapped));
  4723. test_cases.emplace_back(new test_glu((ggml_glu_op) op, type, { 5, 7, 11, 13 }, v, swapped));
  4724. }
  4725. test_cases.emplace_back(new test_glu_split((ggml_glu_op) op, type, { 128, 2, 2, 2 }, v));
  4726. test_cases.emplace_back(new test_glu_split((ggml_glu_op) op, type, { 5, 7, 11, 13 }, v));
  4727. }
  4728. }
  4729. }
  4730. for (int v : {0, 1}) {
  4731. for (float alpha : {.5f, 1.702f}) {
  4732. for (float limit : {2.0f, 7.0f}) {
  4733. test_cases.emplace_back(new test_swiglu_oai(GGML_TYPE_F32, { 128, 2, 2, 2 }, v, alpha, limit));
  4734. }
  4735. }
  4736. }
  4737. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_Q4_0}) {
  4738. test_cases.emplace_back(new test_get_rows(type, 300*256, 5, 4, 1, 2, false));
  4739. test_cases.emplace_back(new test_get_rows(type, 256, 80000, 70000, 2, 1, false));
  4740. test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, 700, 100, false));
  4741. }
  4742. test_cases.emplace_back(new test_get_rows(GGML_TYPE_F32, 1, 8, 2, 1, 1, false));
  4743. for (ggml_type type : all_types) {
  4744. for (int b : {1, 7}) {
  4745. for (bool v : {false, true}) {
  4746. test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, b, 1, v));
  4747. }
  4748. }
  4749. }
  4750. for (int b : {1, 7}) {
  4751. for (bool v : {false, true}) {
  4752. test_cases.emplace_back(new test_get_rows(GGML_TYPE_I32, 256, 5, 4, b, 1, v));
  4753. }
  4754. }
  4755. test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_F32, 1, 8, 2, 1, false));
  4756. for (ggml_type type : all_types) {
  4757. for (bool v : {false, true}) {
  4758. test_cases.emplace_back(new test_get_rows_back(type, 256, 5, 4, 1, v));
  4759. }
  4760. }
  4761. for (bool v : {false, true}) {
  4762. test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_I32, 256, 5, 4, 1, v));
  4763. }
  4764. test_cases.emplace_back(new test_set_rows(GGML_TYPE_F32, { 1, 8, 1, 3 }, { 1, 1 }, 2, false));
  4765. for (ggml_type type : all_types) {
  4766. for (int b : {1, 7}) {
  4767. for (bool v : {false, true}) {
  4768. test_cases.emplace_back(new test_set_rows(type, { 256, 5, b, 3 }, { 1, 1, }, 1, v));
  4769. test_cases.emplace_back(new test_set_rows(type, { 256, 11, 1, b }, { 2, 3, }, 7, v));
  4770. test_cases.emplace_back(new test_set_rows(type, { 3*ggml_blck_size(type), 3, b, 1 }, { 2, 3, }, 2, v));
  4771. if (ggml_blck_size(type) == 1) {
  4772. test_cases.emplace_back(new test_set_rows(type, { 31, 3, b, 1 }, { 2, 3, }, 2, v));
  4773. test_cases.emplace_back(new test_set_rows(type, { 33, 5, 1, b }, { 2, 3, }, 1, v));
  4774. }
  4775. }
  4776. }
  4777. }
  4778. for (ggml_type type_input : {GGML_TYPE_F32}) {
  4779. for (ggml_op_pool pool_type : {GGML_OP_POOL_AVG, GGML_OP_POOL_MAX}) {
  4780. for (int k0 : {1, 3}) {
  4781. for (int k1 : {1, 3}) {
  4782. for (int s0 : {1, 2}) {
  4783. for (int s1 : {1, 2}) {
  4784. for (int p0 : {0, 1}) {
  4785. for (int p1 : {0, 1}) {
  4786. test_cases.emplace_back(new test_pool2d(pool_type, type_input, {10, 10, 3, 1}, k0, k1, s0, s1, p0, p1));
  4787. }
  4788. }
  4789. }
  4790. }
  4791. }
  4792. }
  4793. }
  4794. }
  4795. // im2col 1D
  4796. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  4797. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  4798. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  4799. for (int s0 : {1, 3}) {
  4800. for (int p0 : {0, 3}) {
  4801. for (int d0 : {1, 3}) {
  4802. test_cases.emplace_back(new test_im2col(
  4803. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 2, 2, 1}, {3, 2, 2, 1},
  4804. s0, 0, p0, 0, d0, 0, false));
  4805. }
  4806. }
  4807. }
  4808. // im2col 2D
  4809. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32));
  4810. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
  4811. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
  4812. for (int s0 : {1, 3}) {
  4813. for (int s1 : {1, 3}) {
  4814. for (int p0 : {0, 3}) {
  4815. for (int p1 : {0, 3}) {
  4816. for (int d0 : {1, 3}) {
  4817. for (int d1 : {1, 3}) {
  4818. test_cases.emplace_back(new test_im2col(
  4819. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 20, 2, 2}, {3, 3, 2, 2},
  4820. s0, s1, p0, p1, d0, d1, true));
  4821. }
  4822. }
  4823. }
  4824. }
  4825. }
  4826. }
  4827. // extra tests for im2col 2D
  4828. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 32}, {3, 3, 1, 32}, 1, 1, 1, 1, 1, 1, true));
  4829. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 32}, {3, 3, 2, 32}, 1, 1, 1, 1, 1, 1, true));
  4830. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 1024}, {3, 3, 1, 1024}, 1, 1, 1, 1, 1, 1, true));
  4831. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 1024}, {3, 3, 2, 1024}, 1, 1, 1, 1, 1, 1, true));
  4832. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2048}, {3, 3, 1, 2048}, 1, 1, 1, 1, 1, 1, true));
  4833. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2048}, {3, 3, 2, 2048}, 1, 1, 1, 1, 1, 1, true));
  4834. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2560}, {3, 3, 1, 2560}, 1, 1, 1, 1, 1, 1, true));
  4835. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2560}, {3, 3, 2, 2560}, 1, 1, 1, 1, 1, 1, true));
  4836. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {5, 5, 1, 32}, {3, 4, 1, 32}, 1, 1, 0, 0, 1, 1, true));
  4837. // im2col 3D
  4838. test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32));
  4839. test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
  4840. test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
  4841. for (int s0 : {1, 3}) {
  4842. for (int s1 : {1, 3}) {
  4843. for (int s2 : {1, 3}) {
  4844. for (int p0 : {0, 3}) {
  4845. for (int p1 : {0, 3}) {
  4846. for (int p2 : {0, 3}) {
  4847. for (int d0 : {1, 3}) {
  4848. for (int d1 : {1, 3}) {
  4849. for (int d2 : {1, 3}) {
  4850. for (int IC : {1, 3}) {
  4851. for (bool v : {false, true}) {
  4852. test_cases.emplace_back(new test_im2col_3d(
  4853. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 20, 10, 3}, {3, 3, 3, 3},
  4854. IC, s0, s1, s2, p0, p1, p2, d0, d1, d2, v));
  4855. }
  4856. }
  4857. }
  4858. }
  4859. }
  4860. }
  4861. }
  4862. }
  4863. }
  4864. }
  4865. }
  4866. // Conv_2D test cases
  4867. #ifdef DETAILED_TESTS
  4868. // Probably we do not have enough time to execute these in the pipeline.
  4869. uint32_t iwh_idx = 0;
  4870. uint32_t kwh_idx = 1;
  4871. uint32_t Cout_idx = 2;
  4872. uint32_t Cin_idx = 3;
  4873. uint32_t B_idx = 4;
  4874. std::vector<std::array<int, 5>> cases = {
  4875. //{IWH, KWH, Cout, Cin, B}
  4876. // K=CRS=NPQ=4096 conv_2d matmul performance
  4877. {19, 4, 4096, 256, 16},
  4878. // K=128, CRS=128, NPQ=4096
  4879. { 19, 4, 128, 8, 16},
  4880. // K=130, CRS=128, NPQ=4096
  4881. { 19, 4, 130, 8, 16},
  4882. // Edge case: K x CRS is small
  4883. { 19, 2, 4, 4, 16},
  4884. // A ConvNet's first layer
  4885. { 224, 3, 8, 3, 1 },
  4886. // A ConvNet's first layer with 2x2 convolution, and 1 channel
  4887. { 224, 2, 8, 1, 1 },
  4888. // A ConvNet's first layer with 2x2 convolution, and 1 channel, several images in the batch
  4889. { 224, 2, 8, 1, 8 },
  4890. // A middle layer of a ConvNet
  4891. { 58, 3, 64, 32, 1 },
  4892. // A middle layer of a ConvNet, several images in the batch
  4893. { 58, 3, 64, 32, 8 },
  4894. // A deep layer of a ConvNet, several images in the batch
  4895. { 16, 3, 256, 128, 8 }
  4896. };
  4897. for (auto kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  4898. for (auto act_case : cases) {
  4899. test_cases.emplace_back(new test_conv_2d(
  4900. { act_case[iwh_idx], act_case[iwh_idx], act_case[Cin_idx], act_case[B_idx] },
  4901. { act_case[kwh_idx], act_case[kwh_idx], act_case[Cin_idx], act_case[Cout_idx] },
  4902. kernel_type, 1, 1, 0, 0, 1, 1, false));
  4903. }
  4904. }
  4905. #endif
  4906. // CONV_2D:
  4907. auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  4908. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4909. };
  4910. //uint32_t s0 = 3;
  4911. uint32_t s1 = 5;
  4912. uint32_t p0 = 5;
  4913. //uint32_t p1 = 2;
  4914. uint32_t d0 = 2;
  4915. uint32_t d1 = 4;
  4916. for (uint32_t s0 : { 1, 3 }) {
  4917. for (uint32_t p1 : { 2, 5 }) {
  4918. for (uint32_t Cin : { 1, 25 }) {
  4919. for (uint32_t Cout : { 1, 12 }) {
  4920. for (uint32_t KH : { 1, 2, 3, 11 }) {
  4921. for (uint32_t KW : { 1, 2, 3, 11 }) {
  4922. for (uint32_t H : { 1, 133 }) {
  4923. for (uint32_t W : { 1, 141 }) {
  4924. if (calc_conv_output_size(W, KW, s0, p0, d0) > 0 &&
  4925. calc_conv_output_size(H, KH, s1, p1, d1) > 0) {
  4926. for (auto kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  4927. test_cases.emplace_back(new test_conv_2d(
  4928. { W, H, Cin, 2 }, { KW, KH, Cin, Cout }, kernel_type, s0, s1, p0, p1, d0, d1, false));
  4929. }
  4930. }
  4931. }
  4932. }
  4933. }
  4934. }
  4935. }
  4936. }
  4937. }
  4938. }
  4939. // sycl backend will limit task global_range < MAX_INT
  4940. // test cases for 2D im2col with large input W and H (occurs in stable-diffusion)
  4941. // however these cases need to alloc more memory which may fail in some devices (Intel Arc770, etc.)
  4942. // these cases are verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
  4943. // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
  4944. // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
  4945. test_cases.emplace_back(new test_conv_2d_dw({17, 34, 9, 1}, {3, 3, 1, 9}, 1, 0, 1, false));
  4946. test_cases.emplace_back(new test_conv_2d_dw({17, 34, 9, 1}, {3, 3, 1, 9}, 1, 0, 1, true));
  4947. test_cases.emplace_back(new test_conv_2d_dw({32, 8, 64, 1}, {3, 3, 1, 64}, 2, 1, 1, false));
  4948. test_cases.emplace_back(new test_conv_2d_dw({32, 8, 64, 1}, {3, 3, 1, 64}, 2, 1, 1, true));
  4949. // CONV_3D
  4950. auto calc_conv_output_size_3d = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  4951. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4952. };
  4953. for (ggml_type kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  4954. for (int N : {1, 2}) {
  4955. for (int IC : {1, 3}) {
  4956. for (int OC : {1, 4}) {
  4957. for (int s0 : {1, 2}) {
  4958. for (int p1 : {0, 1}) {
  4959. for (int d2 : {1, 2}) {
  4960. int64_t IW = 20, IH = 22, ID = 18;
  4961. int64_t KW = 3, KH = 3, KD = 3;
  4962. int s1 = s0, s2 = s0;
  4963. int p0 = p1, p2 = p1;
  4964. int d0 = d2, d1 = d2;
  4965. if (calc_conv_output_size_3d(IW, KW, s0, p0, d0) <= 0 ||
  4966. calc_conv_output_size_3d(IH, KH, s1, p1, d1) <= 0 ||
  4967. calc_conv_output_size_3d(ID, KD, s2, p2, d2) <= 0) {
  4968. continue;
  4969. }
  4970. test_cases.emplace_back(new test_conv_3d(
  4971. N, IC, ID, IH, IW,
  4972. OC, KD, KH, KW,
  4973. s0, s1, s2, p0, p1, p2, d0, d1, d2,
  4974. kernel_type));
  4975. // Asymmetric kernel and params
  4976. int64_t asym_KW = 5, asym_KH = 1, asym_KD = 3;
  4977. int asym_s0 = 2, asym_s1 = 1, asym_s2 = 1;
  4978. int asym_p0 = 2, asym_p1 = 0, asym_p2 = 1;
  4979. int asym_d0 = 1, asym_d1 = 1, asym_d2 = 2;
  4980. if (calc_conv_output_size_3d(IW, asym_KW, asym_s0, asym_p0, asym_d0) <= 0 ||
  4981. calc_conv_output_size_3d(IH, asym_KH, asym_s1, asym_p1, asym_d1) <= 0 ||
  4982. calc_conv_output_size_3d(ID, asym_KD, asym_s2, asym_p2, asym_d2) <= 0) {
  4983. continue;
  4984. }
  4985. test_cases.emplace_back(new test_conv_3d(
  4986. N, IC, ID, IH, IW,
  4987. OC, asym_KD, asym_KH, asym_KW,
  4988. asym_s0, asym_s1, asym_s2, asym_p0, asym_p1, asym_p2, asym_d0, asym_d1, asym_d2,
  4989. kernel_type));
  4990. }
  4991. }
  4992. }
  4993. }
  4994. }
  4995. }
  4996. // Case with kernel size 1
  4997. test_cases.emplace_back(new test_conv_3d(1, 4, 8, 8, 8, 8, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, kernel_type));
  4998. }
  4999. for(uint32_t Cout : {1, 9}){
  5000. for(uint32_t Cin : {1, 7}){
  5001. for(uint32_t K : {1, 3, 1337}){
  5002. for(uint32_t L : {1, 2, 13}){
  5003. for(uint32_t s0: {1, 2, 3}){
  5004. test_cases.emplace_back(new test_conv_transpose_1d({L,Cin,1,1}, {K,Cout,Cin,1}, s0, 0, 1));
  5005. }
  5006. }
  5007. }
  5008. }
  5009. }
  5010. test_cases.emplace_back(new test_conv_transpose_1d());
  5011. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 3, 0, 1));
  5012. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 2, 0, 1));
  5013. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 1, 0, 1));
  5014. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 2, 0, 1));
  5015. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 1, 0, 1));
  5016. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,1,2,1}, 1, 0, 1));
  5017. test_cases.emplace_back(new test_conv_transpose_1d({2,1,1,1}, {3,1,1,1}, 1, 0, 1));
  5018. test_cases.emplace_back(new test_conv_transpose_2d({3, 2, 3, 1}, {2, 2, 1, 3}, 1));
  5019. test_cases.emplace_back(new test_conv_transpose_2d({10, 10, 9, 1}, {3, 3, 1, 9}, 2));
  5020. test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 500, 1, 1}));
  5021. test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 5000, 1, 1}));
  5022. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 1, 1, 1}));
  5023. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 513, 1, 1}));
  5024. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {100, 10, 1, 1}));
  5025. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
  5026. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 12, 1, 1}));
  5027. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {2000, 10, 1, 1}));
  5028. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {5438, 3, 1, 1}));
  5029. for (int ne3 : {1, 3}) { // CUDA backward pass only supports ne3 == 1
  5030. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 1}));
  5031. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
  5032. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 2, 1, 1}));
  5033. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 2, 1}));
  5034. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 2}));
  5035. test_cases.emplace_back(new test_repeat(GGML_TYPE_I32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
  5036. test_cases.emplace_back(new test_repeat(GGML_TYPE_I16, {10, 5, 4, ne3}, {1, 1, 1, 2}));
  5037. }
  5038. for (bool view : {false, true}) {
  5039. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 1}, view));
  5040. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {2, 1, 1, 1}, view));
  5041. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 2, 1, 1}, view));
  5042. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 2, 1}, view));
  5043. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 2}, view));
  5044. }
  5045. test_cases.emplace_back(new test_dup(GGML_TYPE_F32));
  5046. test_cases.emplace_back(new test_dup(GGML_TYPE_F16));
  5047. test_cases.emplace_back(new test_dup(GGML_TYPE_I32));
  5048. test_cases.emplace_back(new test_dup(GGML_TYPE_I16));
  5049. test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {0, 2, 1, 3}));
  5050. test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {0, 2, 1, 3})); // dup by rows
  5051. test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {1, 0, 2, 3}));
  5052. test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {1, 0, 2, 3})); // dup dst not-contiguous
  5053. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {0, 2, 1, 3}));
  5054. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {1, 2, 0, 3}));
  5055. for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
  5056. test_cases.emplace_back(new test_set(GGML_TYPE_F32, GGML_TYPE_F32, {6, 5, 4, 3}, dim));
  5057. }
  5058. for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
  5059. test_cases.emplace_back(new test_set(GGML_TYPE_I32, GGML_TYPE_I32, {6, 5, 4, 3}, dim));
  5060. }
  5061. // same-type copy
  5062. for (ggml_type type : all_types) {
  5063. const auto nk = ggml_blck_size(type);
  5064. for (int k = 1; k < 4; ++k) {
  5065. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}));
  5066. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}, {0, 2, 1, 3}));
  5067. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}, {0, 3, 1, 2}, {0, 2, 1, 3}));
  5068. }
  5069. }
  5070. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_F32}) {
  5071. for (ggml_type type_dst : all_types) {
  5072. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  5073. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
  5074. }
  5075. }
  5076. for (ggml_type type_src : all_types) {
  5077. for (ggml_type type_dst : {GGML_TYPE_F32}) {
  5078. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  5079. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
  5080. }
  5081. }
  5082. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5083. for (ggml_type type_dst : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5084. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {1, 0, 2, 3})); // cpy not-contiguous
  5085. }
  5086. }
  5087. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_I32, {256, 2, 3, 4}));
  5088. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_I32, {256, 2, 3, 4}, {1, 0, 2, 3}));
  5089. test_cases.emplace_back(new test_cpy(GGML_TYPE_I32, GGML_TYPE_F32, {256, 2, 3, 4}));
  5090. test_cases.emplace_back(new test_cpy(GGML_TYPE_I32, GGML_TYPE_F32, {256, 2, 3, 4}, {1, 0, 2, 3}));
  5091. test_cases.emplace_back(new test_cont());
  5092. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 1 ,1}));
  5093. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 3 ,5}));
  5094. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 3, 5 ,7}));
  5095. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 1 ,1}));
  5096. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 3 ,5}));
  5097. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 3, 5 ,7}));
  5098. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 1 ,1}));
  5099. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 3 ,5}));
  5100. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 3, 5 ,7}));
  5101. auto add_test_bin_bcast = [&](ggml_type type, std::array<int64_t, 4> ne, std::array<int, 4> nr) {
  5102. for (auto op : {ggml_add, ggml_sub, ggml_mul, ggml_div}) {
  5103. test_cases.emplace_back(new test_bin_bcast(op, type, ne, nr));
  5104. }
  5105. };
  5106. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5107. add_test_bin_bcast(type, {1, 1, 8, 1}, {1, 1, 1, 1});
  5108. add_test_bin_bcast(type, {1, 1, 1, 1}, {32, 1, 1, 1});
  5109. add_test_bin_bcast(type, {1, 1, 320, 320}, {1, 1, 1, 1});
  5110. add_test_bin_bcast(type, {10, 5, 1, 1}, {1, 1, 1, 1});
  5111. add_test_bin_bcast(type, {10, 5, 4, 1}, {1, 1, 1, 1});
  5112. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 1});
  5113. add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 1, 1, 1});
  5114. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 1, 1});
  5115. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 1});
  5116. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 2});
  5117. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 2});
  5118. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 2, 2});
  5119. add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 2, 2, 2});
  5120. // test case for k_bin_bcast_unravel in CUDA backend
  5121. add_test_bin_bcast(type, {1, 1, 65536, 1}, {256, 1, 1, 1});
  5122. // stable diffusion
  5123. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 1, 1, 1});
  5124. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 16, 16, 1});
  5125. add_test_bin_bcast(type, {1280, 16, 16, 1}, {1, 1, 1, 1});
  5126. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 256, 1, 1});
  5127. add_test_bin_bcast(type, {1, 1, 1280, 1}, {16, 16, 1, 1});
  5128. add_test_bin_bcast(type, {16, 16, 1280, 1}, {1, 1, 1, 1});
  5129. add_test_bin_bcast(type, {1, 1, 1920, 1}, {16, 16, 1, 1});
  5130. add_test_bin_bcast(type, {1, 1, 2560, 1}, {16, 16, 1, 1});
  5131. add_test_bin_bcast(type, {1, 1, 1280, 1}, {32, 32, 1, 1});
  5132. add_test_bin_bcast(type, {1, 1, 1920, 1}, {32, 32, 1, 1});
  5133. add_test_bin_bcast(type, {1, 1, 640, 1}, {32, 32, 1, 1});
  5134. add_test_bin_bcast(type, {5120, 1, 1, 1}, {1, 256, 1, 1});
  5135. add_test_bin_bcast(type, {640, 1, 1, 1}, {1, 1, 1, 1});
  5136. //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {1, 1, 1, 1});
  5137. //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {2, 1, 1, 1});
  5138. }
  5139. // single in-place tests, especially important for WebGPU backend since kernels for in-place vs. not are different
  5140. test_cases.emplace_back(new test_bin_bcast(ggml_add_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  5141. test_cases.emplace_back(new test_bin_bcast(ggml_mul_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  5142. // fusion
  5143. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {2, 1, 1, 1}, 2));
  5144. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 2, 1, 1}, 3));
  5145. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 2, 1}, 4));
  5146. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 2}, 5));
  5147. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 2, 2}, 6));
  5148. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 2, 2, 2}, 7));
  5149. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {2, 2, 2, 2}, 8));
  5150. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  5151. test_cases.emplace_back(new test_add1());
  5152. test_cases.emplace_back(new test_scale());
  5153. test_cases.emplace_back(new test_scale(GGML_TYPE_F32, {10, 10, 10, 10}, 2.0f, 1.0f));
  5154. test_cases.emplace_back(new test_softcap(GGML_TYPE_F32, {10, 10, 10, 10}, 50.0f));
  5155. test_cases.emplace_back(new test_silu_back());
  5156. for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f}) {
  5157. for (bool v : {false, true}) {
  5158. test_cases.emplace_back(new test_norm (GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
  5159. test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
  5160. }
  5161. test_cases.emplace_back(new test_rms_norm_back(GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  5162. test_cases.emplace_back(new test_l2_norm (GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  5163. }
  5164. for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f, 1.0f}) {
  5165. test_cases.emplace_back(new test_rms_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  5166. test_cases.emplace_back(new test_rms_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, true));
  5167. test_cases.emplace_back(new test_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, false));
  5168. test_cases.emplace_back(new test_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, true));
  5169. }
  5170. for (uint32_t n : {1, 511, 1025, 8192, 33*512}) {
  5171. for (bool multi_add : {false, true}) {
  5172. test_cases.emplace_back(new test_rms_norm_mul_add(GGML_TYPE_F32, {n, 1, 1, 1}, 1e-6f, false, multi_add));
  5173. }
  5174. }
  5175. test_cases.emplace_back(new test_l2_norm(GGML_TYPE_F32, {64, 5, 4, 3}, 1e-12f));
  5176. for (int64_t d_conv : {3, 4}) {
  5177. for (int64_t d_inner: {1024, 1536, 2048}) {
  5178. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, d_inner, 1, 1}, {d_conv, d_inner, 1, 1}));
  5179. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {8, d_inner, 1, 1}, {d_conv, d_inner, 1, 1}));
  5180. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, d_inner, 4, 1}, {d_conv, d_inner, 1, 1}));
  5181. }
  5182. }
  5183. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 16, 1, 1024, 1, 32, 4)); // Mamba-1
  5184. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 128, 64, 16, 2, 32, 4)); // Mamba-2
  5185. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 256, 64, 8, 2, 32, 4)); // Falcon-H1
  5186. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 1, 1));
  5187. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 1));
  5188. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 4));
  5189. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 128, 4));
  5190. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 1, 1));
  5191. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 32, 1));
  5192. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 32, 4));
  5193. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 128, 4));
  5194. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 1, 1));
  5195. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 1));
  5196. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 4));
  5197. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 128, 4));
  5198. for (ggml_type type_a : all_types) {
  5199. for (int i = 1; i < 10; ++i) {
  5200. test_cases.emplace_back(new test_mul_mat(type_a, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
  5201. }
  5202. }
  5203. #if 1
  5204. for (ggml_type type_a : base_types) {
  5205. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5206. std::vector<int> ks = { 256 };
  5207. if (ggml_blck_size(type_a) == 1) {
  5208. ks.push_back(4);
  5209. }
  5210. for (auto k : ks) {
  5211. // test cases without permutation
  5212. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {1, 1}));
  5213. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {2, 1}));
  5214. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {1, 2}));
  5215. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 1}, {1, 1}));
  5216. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 1}, {2, 1}));
  5217. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {1, 1}));
  5218. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {2, 1}));
  5219. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {1, 2}));
  5220. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {2, 2}));
  5221. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {1, 1}));
  5222. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {2, 1}));
  5223. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {1, 2}));
  5224. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 1}, {1, 1}));
  5225. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 1}, {2, 1}));
  5226. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {1, 1}));
  5227. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {2, 1}));
  5228. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {1, 2}));
  5229. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {2, 2}));
  5230. // test cases with permutation
  5231. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  5232. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  5233. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  5234. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  5235. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  5236. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  5237. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  5238. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  5239. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  5240. }
  5241. // test cases with large ne00/ne10 to cover stream-k fixup
  5242. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 1024, {3, 2}, {1, 1}));
  5243. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 1024, {3, 2}, {1, 1}));
  5244. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 1024, {3, 2}, {1, 1}));
  5245. }
  5246. }
  5247. for (ggml_type type_a : other_types) {
  5248. for (ggml_type type_b : {GGML_TYPE_F32}) {
  5249. if (ggml_blck_size(type_a) != 256) {
  5250. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, ggml_blck_size(type_a), {1, 1}, {1, 1}));
  5251. }
  5252. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 1}));
  5253. }
  5254. }
  5255. #else
  5256. // m = a rows
  5257. // n = b rows
  5258. // k = cols
  5259. std::uniform_int_distribution<> dist_m(1, 128);
  5260. std::uniform_int_distribution<> dist_n(16, 128);
  5261. std::uniform_int_distribution<> dist_k(1, 16);
  5262. for (int i = 0; i < 1000; i++) {
  5263. for (ggml_type type_a : all_types) {
  5264. for (ggml_type type_b : {GGML_TYPE_F32}) {
  5265. int m = dist_m(rng);
  5266. int n = dist_n(rng);
  5267. int k = dist_k(rng) * ggml_blck_size(type_a);
  5268. test_cases.emplace_back(new test_mul_mat(type_a, type_b, m, n, k, { 1, 1}, {1, 1}));
  5269. }
  5270. }
  5271. }
  5272. #endif
  5273. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 128, { 8, 1}, {1, 1}));
  5274. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 128, { 8, 1}, {4, 1}));
  5275. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 64, { 8, 1}, {4, 1}));
  5276. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 64, { 8, 1}, {4, 1}));
  5277. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 45, 128, { 8, 1}, {4, 1}));
  5278. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 45, 64, { 8, 1}, {4, 1}));
  5279. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056, 1, 193, {1, 1}, {4, 1}, {0, 2, 1, 3}));
  5280. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056, 1, 67, {1, 1}, {4, 1}, {0, 2, 1, 3}));
  5281. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 16, 32, 32, { 1, 1}, {1, 1}, {0, 1, 2, 3}, true, 3));
  5282. for (auto bs2 : {1,3}) {
  5283. for (auto bs : {1,2,4,8}) {
  5284. for (auto nr : {1,4}) {
  5285. for (uint32_t m = 0; m < 2; ++m) {
  5286. for (uint32_t k = 0; k < 2; ++k) {
  5287. for (ggml_type type: {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_F32}) {
  5288. test_cases.emplace_back(new test_mul_mat(type, GGML_TYPE_F32, 1056 + m, 1, 128 + k, {bs, bs2}, {nr, 1}, {0, 2, 1, 3}));
  5289. test_cases.emplace_back(new test_mul_mat(type, GGML_TYPE_F32, 128 + m, 1, 1056 + k, {bs, bs2}, {nr, 1}, {0, 1, 2, 3}, true));
  5290. }
  5291. }
  5292. }
  5293. }
  5294. }
  5295. }
  5296. // sycl backend will limit task global_range < MAX_INT
  5297. // test case for f16-type-convert-to-fp32 kernel with large k under fp32 compute dtype (occurs in stable-diffusion)
  5298. // however this case needs to alloc more memory which may fail in some devices (Intel Arc770, etc.)
  5299. // this case is verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
  5300. // test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 512, 262144, 9216, {1, 1}, {1, 1}));
  5301. // test large experts*tokens
  5302. for (bool b : {false, true}) {
  5303. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, b, 32, 1024, 16));
  5304. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 2, 2, b, 32, 8192, 64));
  5305. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, b, 50, 200, 64));
  5306. }
  5307. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 1, 1, false, 8, 16, 1));
  5308. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, false, 32, 32, 32, 3));
  5309. for (ggml_type type_a : base_types) {
  5310. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  5311. for (int n_mats : {4, 8}) {
  5312. for (int n_used : {1, 2, 4}) {
  5313. for (bool b : {false, true}) {
  5314. for (int n : {1, 4, 5, 32, 129}) {
  5315. int m = 512;
  5316. int k = 256;
  5317. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  5318. }
  5319. }
  5320. }
  5321. }
  5322. }
  5323. }
  5324. for (ggml_type type_a : other_types) {
  5325. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  5326. for (int n_mats : {4}) {
  5327. for (int n_used : {2}) {
  5328. for (bool b : {false}) {
  5329. for (int n : {1, 32}) {
  5330. int m = 512;
  5331. int k = 256;
  5332. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  5333. }
  5334. }
  5335. }
  5336. }
  5337. }
  5338. }
  5339. for (ggml_type type_a : base_types) {
  5340. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5341. for (int n : {1, 16}) {
  5342. for (int k : {1, 16}) {
  5343. for (int bs2 : {1, 3}) {
  5344. for (int bs3 : {1, 3}) {
  5345. for (int nr2 : {1, 2}) {
  5346. for (int nr3 : {1, 2}) {
  5347. test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, n, k, {bs2, bs3}, {nr2, nr3}));
  5348. }
  5349. }
  5350. }
  5351. }
  5352. }
  5353. }
  5354. }
  5355. }
  5356. // add_id
  5357. for (ggml_type type_a : {GGML_TYPE_F32}) {
  5358. for (ggml_type type_b : {GGML_TYPE_F32}) {
  5359. for (int n_mats : {4, 8}) {
  5360. for (int n_used : {1, 2, 4}) {
  5361. for (int n_embd : {32, 129}) {
  5362. for (int n_token : {1, 32, 129}) {
  5363. test_cases.emplace_back(new test_add_id(type_a, type_b, n_embd, n_mats, n_used, n_token));
  5364. }
  5365. }
  5366. }
  5367. }
  5368. }
  5369. }
  5370. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5371. test_cases.emplace_back(new test_sqr (type));
  5372. test_cases.emplace_back(new test_sqrt (type));
  5373. test_cases.emplace_back(new test_log (type));
  5374. test_cases.emplace_back(new test_expm1 (type));
  5375. test_cases.emplace_back(new test_softplus (type));
  5376. test_cases.emplace_back(new test_expm1_inplace (type));
  5377. test_cases.emplace_back(new test_softplus_inplace (type));
  5378. test_cases.emplace_back(new test_sin (type));
  5379. test_cases.emplace_back(new test_cos (type));
  5380. test_cases.emplace_back(new test_clamp (type));
  5381. test_cases.emplace_back(new test_leaky_relu(type));
  5382. test_cases.emplace_back(new test_sqr (type, {7, 1, 5, 3}));
  5383. test_cases.emplace_back(new test_sqrt (type, {7, 1, 5, 3}));
  5384. test_cases.emplace_back(new test_log (type, {7, 1, 5, 3}));
  5385. test_cases.emplace_back(new test_expm1 (type, {7, 1, 5, 3}));
  5386. test_cases.emplace_back(new test_softplus (type, {7, 1, 5, 3}));
  5387. test_cases.emplace_back(new test_expm1_inplace (type, {7, 1, 5, 3}));
  5388. test_cases.emplace_back(new test_softplus_inplace (type, {7, 1, 5, 3}));
  5389. test_cases.emplace_back(new test_sin (type, {7, 1, 5, 3}));
  5390. test_cases.emplace_back(new test_cos (type, {7, 1, 5, 3}));
  5391. test_cases.emplace_back(new test_clamp (type, {7, 1, 5, 3}));
  5392. test_cases.emplace_back(new test_leaky_relu(type, {7, 1, 5, 3}));
  5393. }
  5394. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 1, 1}, 5));
  5395. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 1}, 5));
  5396. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 2}, 5));
  5397. #if 0
  5398. std::uniform_int_distribution<> dist_ne1(1, 50);
  5399. int exponent = 1;
  5400. while (exponent < (1 << 17)) {
  5401. std::uniform_int_distribution<> dist_ne0(exponent, 2*exponent);
  5402. for (int n = 0; n < 10; ++n) {
  5403. int64_t ne0 = dist_ne0(rng);
  5404. int64_t ne1 = dist_ne1(rng);
  5405. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, GGML_TYPE_F32, {ne0, ne1, 1, 1}, n/2 == 0, 0.1f, ne0 < 1000 ? 4.0f : 0.0f));
  5406. }
  5407. exponent <<= 1;
  5408. }
  5409. #endif
  5410. for (bool mask : {false, true}) {
  5411. for (bool sinks : {false, true}) {
  5412. for (float max_bias : {0.0f, 8.0f}) {
  5413. if (!mask && max_bias > 0.0f) continue;
  5414. for (float scale : {1.0f, 0.1f}) {
  5415. for (int64_t ne0 : {16, 1024}) {
  5416. for (int64_t ne1 : {16, 1024}) {
  5417. if (mask) {
  5418. for (ggml_type m_prec : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5419. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, sinks, m_prec, {1, 1}, scale, max_bias));
  5420. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, sinks, m_prec, {1, 1}, scale, max_bias));
  5421. if (ne0 <= 32 && ne1 <= 32) {
  5422. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 3}, mask, sinks, m_prec, {3, 1}, scale, max_bias));
  5423. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, sinks, m_prec, {2, 3}, scale, max_bias));
  5424. }
  5425. }
  5426. } else {
  5427. /* The precision of mask here doesn't matter as boolean mask is false */
  5428. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, sinks, GGML_TYPE_F32, {1, 1}, scale, max_bias));
  5429. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, sinks, GGML_TYPE_F32, {1, 1}, scale, max_bias));
  5430. }
  5431. }
  5432. }
  5433. }
  5434. }
  5435. }
  5436. }
  5437. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
  5438. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, false, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f));
  5439. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
  5440. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
  5441. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, false, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f));
  5442. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, true, GGML_TYPE_F32, {1, 1}, 0.1f, 8.0f));
  5443. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, true, GGML_TYPE_F16, {1, 1}, 0.1f, 8.0f));
  5444. for (float max_bias : {0.0f, 8.0f}) {
  5445. for (float scale : {1.0f, 0.1f}) {
  5446. for (int64_t ne0 : {16, 1024}) {
  5447. for (int64_t ne1 : {16, 1024}) {
  5448. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0, ne1, 1, 1}, scale, max_bias));
  5449. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, scale, max_bias));
  5450. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0, ne1, 2, 3}, scale, max_bias));
  5451. }
  5452. }
  5453. }
  5454. }
  5455. for (bool fw : {true, false}) { // fw == forward
  5456. bool all = true;
  5457. for (float fs : { 1.0f, 1.4245f }) {
  5458. for (float ef : { 0.0f, 0.7465f }) {
  5459. for (float af : { 1.0f, 1.4245f }) {
  5460. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5461. for (bool ff : {false, true}) { // freq_factors
  5462. for (float v : { 0, 1 }) {
  5463. test_cases.emplace_back(new test_rope(type, {128, 32, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 7B
  5464. if (all) {
  5465. test_cases.emplace_back(new test_rope(type, {128, 40, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 13B
  5466. test_cases.emplace_back(new test_rope(type, {128, 52, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 30B
  5467. test_cases.emplace_back(new test_rope(type, {128, 64, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 65B
  5468. }
  5469. if (all) {
  5470. test_cases.emplace_back(new test_rope(type, { 64, 1, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
  5471. test_cases.emplace_back(new test_rope(type, { 64, 71, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
  5472. test_cases.emplace_back(new test_rope(type, { 64, 8, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
  5473. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 20, 0, 512, fs, ef, af, ff, v, fw));
  5474. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 32, 0, 512, fs, ef, af, ff, v, fw));
  5475. test_cases.emplace_back(new test_rope(type, { 80, 32, 4, 1}, 32, 0, 512, fs, ef, af, ff, v, fw));
  5476. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 20, 2, 512, fs, ef, af, ff, v, fw)); // neox (stablelm)
  5477. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 32, 2, 512, fs, ef, af, ff, v, fw)); // neox (phi-2)
  5478. test_cases.emplace_back(new test_rope(type, { 80, 32, 4, 1}, 32, 2, 512, fs, ef, af, ff, v, fw)); // neox (phi-2)
  5479. }
  5480. if (all) {
  5481. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 2B)
  5482. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 7B)
  5483. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 20, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw));
  5484. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 32, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw));
  5485. test_cases.emplace_back(new test_rope(type, { 80, 16, 2, 1}, 80, GGML_ROPE_TYPE_VISION, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl ViT)
  5486. }
  5487. test_cases.emplace_back(new test_rope(type, { 64, 128, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
  5488. }
  5489. }
  5490. all = false;
  5491. }
  5492. }
  5493. }
  5494. }
  5495. }
  5496. for (int v : { 0, 1, 2, 3 }) {
  5497. for (int dim : { 0, 1, 2, 3, }) {
  5498. test_cases.emplace_back(new test_concat(GGML_TYPE_F32, {11, 12, 13, 14}, 7, dim, v));
  5499. test_cases.emplace_back(new test_concat(GGML_TYPE_I32, {11, 12, 13, 14}, 7, dim, v));
  5500. }
  5501. }
  5502. for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) {
  5503. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order));
  5504. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order));
  5505. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {60, 10, 10, 10}, order)); // qwen
  5506. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {1024, 1, 1, 1}, order));
  5507. }
  5508. for (ggml_scale_mode mode : {GGML_SCALE_MODE_NEAREST, GGML_SCALE_MODE_BILINEAR}) {
  5509. test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, {512, 512, 3, 2}, 2, mode));
  5510. test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, {512, 512, 3, 2}, 2, mode, true));
  5511. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {2, 5, 7, 11}, {5, 7, 11, 13}, mode));
  5512. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {5, 7, 11, 13}, {2, 5, 7, 11}, mode));
  5513. }
  5514. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {2, 5, 7, 11}, {5, 7, 11, 13}, GGML_SCALE_MODE_BILINEAR | GGML_SCALE_FLAG_ALIGN_CORNERS));
  5515. test_cases.emplace_back(new test_sum());
  5516. test_cases.emplace_back(new test_sum_rows());
  5517. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 11, 5, 6, 3 }, true, false));
  5518. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 11, 5, 6, 3 }, false, true));
  5519. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 11, 5, 6, 3 }, true, true));
  5520. test_cases.emplace_back(new test_mean());
  5521. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 1, 1, 1 }));
  5522. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 33, 1, 1, 1 }));
  5523. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 33, 1, 1, 1 }));
  5524. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 1024, 1, 1 }));
  5525. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 33, 1024, 1, 1 }));
  5526. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 256, 1, 1 }));
  5527. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 33, 256, 1, 1 }));
  5528. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 33, 256, 1, 1 }));
  5529. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 32769, 1, 1, 1 }));
  5530. test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {64, 64, 320, 1}));
  5531. test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {9, 9, 1280, 1}));
  5532. test_cases.emplace_back(new test_group_norm_mul_add(GGML_TYPE_F32, {64, 64, 320, 1}));
  5533. test_cases.emplace_back(new test_group_norm_mul_add(GGML_TYPE_F32, {9, 9, 1280, 1}));
  5534. test_cases.emplace_back(new test_acc());
  5535. test_cases.emplace_back(new test_pad());
  5536. test_cases.emplace_back(new test_pad_ext());
  5537. test_cases.emplace_back(new test_pad_reflect_1d());
  5538. test_cases.emplace_back(new test_roll());
  5539. test_cases.emplace_back(new test_arange());
  5540. test_cases.emplace_back(new test_timestep_embedding());
  5541. test_cases.emplace_back(new test_leaky_relu());
  5542. for (bool v : {false, true}) {
  5543. test_cases.emplace_back(new test_pad_ext(GGML_TYPE_F32, {512, 512, 1, 1}, 0, 1, 0, 1, 0, 0, 0, 0, v));
  5544. test_cases.emplace_back(new test_pad_ext(GGML_TYPE_F32, {11, 22, 33, 44}, 1, 2, 3, 4, 5, 6, 7, 8, v));
  5545. }
  5546. for (int hsk : { 40, 64, 80, 96, 128, 192, 256, 576 }) {
  5547. for (int hsv : { 40, 64, 80, 96, 128, 192, 256, 512 }) {
  5548. if (hsk != 192 && hsk != 576 && hsk != hsv) continue;
  5549. if (hsk == 192 && (hsv != 128 && hsv != 192)) continue;
  5550. if (hsk == 576 && hsv != 512) continue; // DeepSeek MLA
  5551. for (bool mask : { true, false } ) {
  5552. for (bool sinks : { true, false } ) {
  5553. for (float max_bias : { 0.0f, 8.0f }) {
  5554. if (!mask && max_bias > 0.0f) continue;
  5555. for (float logit_softcap : {0.0f, 10.0f}) {
  5556. if (hsk != 128 && logit_softcap != 0.0f) continue;
  5557. for (int nh : { 4, }) {
  5558. for (int nr3 : { 1, 3, }) {
  5559. if (hsk > 64 && nr3 > 1) continue; // skip broadcast for large head sizes
  5560. for (int nr2 : { 1, 4, 16 }) {
  5561. if (nr2 == 16 && hsk != 128) continue;
  5562. for (int kv : { 512, 1024, }) {
  5563. if (nr2 != 1 && kv != 512) continue;
  5564. for (int nb : { 1, 3, 32, 35, }) {
  5565. for (ggml_prec prec : {GGML_PREC_F32, GGML_PREC_DEFAULT}) {
  5566. if (hsk != 128 && prec == GGML_PREC_DEFAULT) continue;
  5567. for (ggml_type type_KV : {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) {
  5568. test_cases.emplace_back(new test_flash_attn_ext(
  5569. hsk, hsv, nh, {nr2, nr3}, kv, nb, mask, sinks, max_bias, logit_softcap, prec, type_KV));
  5570. // run fewer test cases permuted
  5571. if (mask == true && max_bias == 0.0f && logit_softcap == 0 && kv == 512) {
  5572. test_cases.emplace_back(new test_flash_attn_ext(
  5573. hsk, hsv, nh, {nr2, nr3}, kv, nb, mask, sinks, max_bias, logit_softcap, prec, type_KV, {0, 2, 1, 3}));
  5574. }
  5575. }
  5576. }
  5577. }
  5578. }
  5579. }
  5580. }
  5581. }
  5582. }
  5583. }
  5584. }
  5585. }
  5586. }
  5587. }
  5588. test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, { 10, 5, 4, 3}));
  5589. test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, {30000, 1, 1, 1}));
  5590. test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, { 10, 5, 4, 3}));
  5591. test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, {30000, 1, 1, 1}));
  5592. test_cases.emplace_back(new test_opt_step_adamw(GGML_TYPE_F32, {10, 5, 4, 3}));
  5593. test_cases.emplace_back(new test_opt_step_sgd(GGML_TYPE_F32, {10, 5, 4, 3}));
  5594. #if 0
  5595. // these tests are disabled to save execution time, sbut they can be handy for debugging
  5596. test_cases.emplace_back(new test_llama(2, true));
  5597. test_cases.emplace_back(new test_llama(1));
  5598. test_cases.emplace_back(new test_llama(2));
  5599. test_cases.emplace_back(new test_falcon(1));
  5600. test_cases.emplace_back(new test_falcon(2));
  5601. #endif
  5602. return test_cases;
  5603. }
  5604. // Test cases for performance evaluation: should be representative of real-world use cases
  5605. static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
  5606. std::vector<std::unique_ptr<test_case>> test_cases;
  5607. // Conv2d: K=CRS=NPQ=4096 matmul performance
  5608. uint32_t iwh_idx = 0;
  5609. uint32_t kwh_idx = 1;
  5610. uint32_t Cout_idx = 2;
  5611. uint32_t Cin_idx = 3;
  5612. uint32_t B_idx = 4;
  5613. std::vector<std::array<int, 5>> cases = {
  5614. //{IWH, KWH, Cout, Cin, B}
  5615. // K=CRS=NPQ=4096 conv2d matmul performance
  5616. {19, 4, 4096, 256, 16},
  5617. // K=128, CRS=128, NPQ=4096
  5618. { 19, 4, 128, 8, 16},
  5619. // K=130, CRS=128, NPQ=4096
  5620. { 19, 4, 130, 8, 16},
  5621. // Edge case: K x CRS is small
  5622. { 19, 2, 4, 4, 16},
  5623. // A ConvNet's first layer
  5624. { 224, 3, 8, 3, 1 },
  5625. // A ConvNet's first layer with 2x2 convolution, and 1 channel
  5626. { 224, 2, 8, 1, 1 },
  5627. // A ConvNet's first layer with 2x2 convolution, and 1 channel, several images in the batch
  5628. { 224, 2, 8, 1, 8 },
  5629. // A middle layer of a ConvNet
  5630. { 58, 3, 64, 32, 1 },
  5631. // A middle layer of a ConvNet, several images in the batch
  5632. { 58, 3, 64, 32, 8 },
  5633. // A deep layer of a ConvNet, several images in the batch
  5634. { 16, 3, 512, 128, 8 },
  5635. };
  5636. for (auto kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5637. for (auto act_case : cases) {
  5638. // Direct CONV_2D
  5639. test_cases.emplace_back(new test_conv_2d(
  5640. { act_case[iwh_idx], act_case[iwh_idx], act_case[Cin_idx], act_case[B_idx] },
  5641. { act_case[kwh_idx], act_case[kwh_idx], act_case[Cin_idx], act_case[Cout_idx] },
  5642. kernel_type, 1, 1, 0, 0, 1, 1, false));
  5643. }
  5644. }
  5645. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 1, 1, 1}));
  5646. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 512, 1, 1}));
  5647. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F16, {512, 3072, 1, 1}));
  5648. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {8192, 512, 2, 1}, {0, 2, 1, 3}));
  5649. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {3072, 512, 2, 1}, {0, 2, 1, 3}));
  5650. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {4096, 4096, 5, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  5651. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {12888, 256, 5, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  5652. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 4096, 5, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  5653. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {1024, 1024, 10, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  5654. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 1024, 10, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  5655. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {256, 256, 20, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  5656. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {64, 64, 20, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  5657. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 64, 20, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  5658. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 10, 1, 1}));
  5659. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
  5660. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32000, 512, 1, 1}));
  5661. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 16416, 1, 128, {8, 1}, {4, 1}, {0, 2, 1, 3}));
  5662. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 1, 16416, {8, 1}, {4, 1}, {0, 1, 2, 3}, true));
  5663. for (int bs : {1, 2, 3, 4, 5, 8, 512}) {
  5664. for (ggml_type type_a : all_types) {
  5665. for (ggml_type type_b : {GGML_TYPE_F32}) {
  5666. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 4096, bs, 14336, {1, 1}, {1, 1}));
  5667. }
  5668. }
  5669. }
  5670. // qwen3-30b-a3b
  5671. for (int bs : {1, 4, 8, 512}) {
  5672. for (ggml_type type_a : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0, GGML_TYPE_Q4_K, GGML_TYPE_Q6_K, GGML_TYPE_IQ2_XS}) {
  5673. for (ggml_type type_b : {GGML_TYPE_F32}) {
  5674. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, 128, 8, false, 768, bs, 2048, 1));
  5675. }
  5676. }
  5677. }
  5678. // gpt-oss-20b
  5679. for (int bs : {1, 4, 8, 512}) {
  5680. for (ggml_type type_a : {GGML_TYPE_MXFP4}) {
  5681. for (ggml_type type_b : {GGML_TYPE_F32}) {
  5682. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, 32, 4, false, 2880, bs, 2880, 1));
  5683. }
  5684. }
  5685. }
  5686. for (int K : {3, 5}) {
  5687. for (int IC : {256, 2560}) {
  5688. for (int IW_IH : {32, 64, 256}) {
  5689. if (IC == 2560 && IW_IH == 256) {
  5690. // too big
  5691. continue;
  5692. }
  5693. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {IW_IH, IW_IH, IC, 1}, {K, K, IC, 1}, 1, 1, 1, 1, 1, 1, true));
  5694. }
  5695. }
  5696. }
  5697. for (int kv : { 4096, 8192, 16384, }) {
  5698. for (int hs : { 64, 128, }) {
  5699. for (int nr : { 1, 4, }) {
  5700. test_cases.emplace_back(new test_flash_attn_ext(hs, hs, 8, {nr, 1}, kv, 1, true, false, 0, 0, GGML_PREC_F32, GGML_TYPE_F16));
  5701. }
  5702. }
  5703. }
  5704. test_cases.emplace_back(new test_conv_2d_dw({512, 512, 256, 1}, {3, 3, 1, 256}, 1, 1, 1, false));
  5705. test_cases.emplace_back(new test_conv_2d_dw({512, 512, 256, 1}, {3, 3, 1, 256}, 1, 1, 1, true));
  5706. test_cases.emplace_back(new test_conv_transpose_2d({256, 256, 256, 1}, {3, 3, 16, 256}, 1));
  5707. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, {256, 256, 3, 1}));
  5708. for (int n_token : {1, 512}) {
  5709. test_cases.emplace_back(new test_add_id(GGML_TYPE_F32, GGML_TYPE_F32, 2880, 128, 4, n_token));
  5710. test_cases.emplace_back(new test_add_id(GGML_TYPE_F32, GGML_TYPE_F32, 2880, 32, 4, n_token));
  5711. }
  5712. std::vector<std::array<int64_t, 4>> reduce_rows_cases = {
  5713. { 8192, 1, 1, 1 },
  5714. { 8192, 8192, 1, 1 },
  5715. { 128, 8192, 1, 1 },
  5716. };
  5717. for (auto it: reduce_rows_cases){
  5718. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, it));
  5719. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, it));
  5720. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, it));
  5721. }
  5722. return test_cases;
  5723. }
  5724. static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_names_filter, const char * params_filter,
  5725. printer * output_printer) {
  5726. auto filter_test_cases = [](std::vector<std::unique_ptr<test_case>> & test_cases, const char * params_filter) {
  5727. if (params_filter == nullptr) {
  5728. return;
  5729. }
  5730. std::regex params_filter_regex(params_filter);
  5731. for (auto it = test_cases.begin(); it != test_cases.end();) {
  5732. if (!std::regex_search((*it)->vars(), params_filter_regex)) {
  5733. it = test_cases.erase(it);
  5734. continue;
  5735. }
  5736. it++;
  5737. }
  5738. };
  5739. if (mode == MODE_TEST) {
  5740. auto test_cases = make_test_cases_eval();
  5741. filter_test_cases(test_cases, params_filter);
  5742. ggml_backend_t backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, NULL);
  5743. if (backend_cpu == NULL) {
  5744. test_operation_info info("", "", "CPU");
  5745. info.set_error("backend", "Failed to initialize CPU backend");
  5746. output_printer->print_operation(info);
  5747. return false;
  5748. }
  5749. size_t n_ok = 0;
  5750. for (auto & test : test_cases) {
  5751. if (test->eval(backend, backend_cpu, op_names_filter, output_printer)) {
  5752. n_ok++;
  5753. }
  5754. }
  5755. output_printer->print_summary(test_summary_info(n_ok, test_cases.size(), false));
  5756. ggml_backend_free(backend_cpu);
  5757. return n_ok == test_cases.size();
  5758. }
  5759. if (mode == MODE_GRAD) {
  5760. auto test_cases = make_test_cases_eval();
  5761. filter_test_cases(test_cases, params_filter);
  5762. size_t n_ok = 0;
  5763. for (auto & test : test_cases) {
  5764. if (test->eval_grad(backend, op_names_filter, output_printer)) {
  5765. n_ok++;
  5766. }
  5767. }
  5768. output_printer->print_summary(test_summary_info(n_ok, test_cases.size(), false));
  5769. return n_ok == test_cases.size();
  5770. }
  5771. if (mode == MODE_PERF) {
  5772. auto test_cases = make_test_cases_perf();
  5773. filter_test_cases(test_cases, params_filter);
  5774. for (auto & test : test_cases) {
  5775. test->eval_perf(backend, op_names_filter, output_printer);
  5776. }
  5777. return true;
  5778. }
  5779. if (mode == MODE_SUPPORT) {
  5780. auto test_cases = make_test_cases_eval();
  5781. filter_test_cases(test_cases, params_filter);
  5782. for (auto & test : test_cases) {
  5783. test->eval_support(backend, op_names_filter, output_printer);
  5784. }
  5785. return true;
  5786. }
  5787. GGML_ABORT("fatal error");
  5788. }
  5789. static void list_all_ops() {
  5790. printf("GGML operations:\n");
  5791. std::set<std::string> all_ops;
  5792. for (int i = 1; i < GGML_OP_COUNT; i++) {
  5793. all_ops.insert(ggml_op_name((enum ggml_op)i));
  5794. }
  5795. for (int i = 0; i < GGML_UNARY_OP_COUNT; i++) {
  5796. all_ops.insert(ggml_unary_op_name((enum ggml_unary_op)i));
  5797. }
  5798. for (int i = 0; i < GGML_GLU_OP_COUNT; i++) {
  5799. all_ops.insert(ggml_glu_op_name((enum ggml_glu_op)i));
  5800. }
  5801. for (const auto & op : all_ops) {
  5802. printf(" %s\n", op.c_str());
  5803. }
  5804. printf("\nTotal: %zu operations\n", all_ops.size());
  5805. }
  5806. static void show_test_coverage() {
  5807. std::set<std::string> all_ops;
  5808. for (int i = 1; i < GGML_OP_COUNT; i++) {
  5809. auto op = (enum ggml_op)i;
  5810. if (op == GGML_OP_VIEW ||
  5811. op == GGML_OP_RESHAPE ||
  5812. op == GGML_OP_PERMUTE ||
  5813. op == GGML_OP_TRANSPOSE ||
  5814. op == GGML_OP_CONT ||
  5815. op == GGML_OP_GLU ||
  5816. op == GGML_OP_UNARY) {
  5817. continue;
  5818. }
  5819. all_ops.insert(ggml_op_name(op));
  5820. }
  5821. for (int i = 0; i < GGML_UNARY_OP_COUNT; i++) {
  5822. all_ops.insert(ggml_unary_op_name((enum ggml_unary_op)i));
  5823. }
  5824. for (int i = 0; i < GGML_GLU_OP_COUNT; i++) {
  5825. all_ops.insert(ggml_glu_op_name((enum ggml_glu_op)i));
  5826. }
  5827. auto test_cases = make_test_cases_eval();
  5828. std::set<std::string> tested_ops;
  5829. ggml_init_params params = {
  5830. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  5831. /* .mem_base = */ NULL,
  5832. /* .no_alloc = */ true,
  5833. };
  5834. for (auto & test_case : test_cases) {
  5835. ggml_context * ctx = ggml_init(params);
  5836. if (ctx) {
  5837. test_case->mode = MODE_TEST;
  5838. ggml_tensor * out = test_case->build_graph(ctx);
  5839. if (out && out->op != GGML_OP_NONE) {
  5840. if (out->op == GGML_OP_UNARY) {
  5841. tested_ops.insert(ggml_unary_op_name(ggml_get_unary_op(out)));
  5842. } else if (out->op == GGML_OP_GLU) {
  5843. tested_ops.insert(ggml_glu_op_name(ggml_get_glu_op(out)));
  5844. } else {
  5845. tested_ops.insert(ggml_op_name(out->op));
  5846. }
  5847. }
  5848. ggml_free(ctx);
  5849. }
  5850. }
  5851. std::set<std::string> covered_ops;
  5852. std::set<std::string> uncovered_ops;
  5853. for (const auto & op : all_ops) {
  5854. if (tested_ops.count(op) > 0) {
  5855. covered_ops.insert(op);
  5856. } else {
  5857. uncovered_ops.insert(op);
  5858. }
  5859. }
  5860. printf("Operations covered by tests (%zu):\n", covered_ops.size());
  5861. for (const auto & op : covered_ops) {
  5862. printf(" ✓ %s\n", op.c_str());
  5863. }
  5864. printf("\nOperations without tests (%zu):\n", uncovered_ops.size());
  5865. for (const auto & op : uncovered_ops) {
  5866. printf(" ✗ %s\n", op.c_str());
  5867. }
  5868. printf("\nCoverage Summary:\n");
  5869. printf(" Total operations: %zu\n", all_ops.size());
  5870. printf(" Tested operations: %zu\n", covered_ops.size());
  5871. printf(" Untested operations: %zu\n", uncovered_ops.size());
  5872. printf(" Coverage: %.1f%%\n", (double)covered_ops.size() / all_ops.size() * 100.0);
  5873. }
  5874. static void usage(char ** argv) {
  5875. printf("Usage: %s [mode] [-o <op,..>] [-b <backend>] [-p <params regex>] [--output <console|sql|csv>] [--list-ops] [--show-coverage]\n", argv[0]);
  5876. printf(" valid modes:\n");
  5877. printf(" - test (default, compare with CPU backend for correctness)\n");
  5878. printf(" - grad (compare gradients from backpropagation with method of finite differences)\n");
  5879. printf(" - perf (performance evaluation)\n");
  5880. printf(" - support (probe backend operation support)\n");
  5881. printf(" op names for -o are as given by ggml_op_desc() (e.g. ADD, MUL_MAT, etc),\n");
  5882. printf(" optionally including the full test case string (e.g. \"ADD(type=f16,ne=[1,1,8,1],nr=[1,1,1,1],nf=1)\")\n");
  5883. printf(" --output specifies output format (default: console, options: console, sql, csv)\n");
  5884. printf(" --list-ops lists all available GGML operations\n");
  5885. printf(" --show-coverage shows test coverage\n");
  5886. }
  5887. int main(int argc, char ** argv) {
  5888. test_mode mode = MODE_TEST;
  5889. output_formats output_format = CONSOLE;
  5890. const char * op_names_filter = nullptr;
  5891. const char * backend_filter = nullptr;
  5892. const char * params_filter = nullptr;
  5893. for (int i = 1; i < argc; i++) {
  5894. if (strcmp(argv[i], "test") == 0) {
  5895. mode = MODE_TEST;
  5896. } else if (strcmp(argv[i], "perf") == 0) {
  5897. mode = MODE_PERF;
  5898. } else if (strcmp(argv[i], "grad") == 0) {
  5899. mode = MODE_GRAD;
  5900. } else if (strcmp(argv[i], "support") == 0) {
  5901. mode = MODE_SUPPORT;
  5902. } else if (strcmp(argv[i], "-o") == 0) {
  5903. if (i + 1 < argc) {
  5904. op_names_filter = argv[++i];
  5905. } else {
  5906. usage(argv);
  5907. return 1;
  5908. }
  5909. } else if (strcmp(argv[i], "-b") == 0) {
  5910. if (i + 1 < argc) {
  5911. backend_filter = argv[++i];
  5912. } else {
  5913. usage(argv);
  5914. return 1;
  5915. }
  5916. } else if (strcmp(argv[i], "-p") == 0) {
  5917. if (i + 1 < argc) {
  5918. params_filter = argv[++i];
  5919. } else {
  5920. usage(argv);
  5921. return 1;
  5922. }
  5923. } else if (strcmp(argv[i], "--output") == 0) {
  5924. if (i + 1 < argc) {
  5925. if (!output_format_from_str(argv[++i], output_format)) {
  5926. usage(argv);
  5927. return 1;
  5928. }
  5929. } else {
  5930. usage(argv);
  5931. return 1;
  5932. }
  5933. } else if (strcmp(argv[i], "--list-ops") == 0) {
  5934. list_all_ops();
  5935. return 0;
  5936. } else if (strcmp(argv[i], "--show-coverage") == 0) {
  5937. show_test_coverage();
  5938. return 0;
  5939. } else {
  5940. usage(argv);
  5941. return 1;
  5942. }
  5943. }
  5944. // load and enumerate backends
  5945. ggml_backend_load_all();
  5946. // Create printer for output format
  5947. std::unique_ptr<printer> output_printer = create_printer(output_format);
  5948. if (output_printer) {
  5949. output_printer->print_header();
  5950. }
  5951. output_printer->print_testing_start(testing_start_info(ggml_backend_dev_count()));
  5952. size_t n_ok = 0;
  5953. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  5954. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  5955. if (backend_filter != NULL && strcmp(backend_filter, ggml_backend_dev_name(dev)) != 0) {
  5956. output_printer->print_backend_init(
  5957. backend_init_info(i, ggml_backend_dev_count(), ggml_backend_dev_name(dev), true, "Skipping"));
  5958. n_ok++;
  5959. continue;
  5960. }
  5961. if (backend_filter == NULL && ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU && mode != MODE_GRAD) {
  5962. output_printer->print_backend_init(backend_init_info(
  5963. i, ggml_backend_dev_count(), ggml_backend_dev_name(dev), true, "Skipping CPU backend"));
  5964. n_ok++;
  5965. continue;
  5966. }
  5967. ggml_backend_t backend = ggml_backend_dev_init(dev, NULL);
  5968. GGML_ASSERT(backend != NULL);
  5969. ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
  5970. auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
  5971. if (ggml_backend_set_n_threads_fn) {
  5972. // TODO: better value for n_threads
  5973. ggml_backend_set_n_threads_fn(backend, std::thread::hardware_concurrency());
  5974. }
  5975. size_t free, total; // NOLINT
  5976. ggml_backend_dev_memory(dev, &free, &total);
  5977. output_printer->print_backend_init(backend_init_info(i, ggml_backend_dev_count(), ggml_backend_dev_name(dev),
  5978. false, "", ggml_backend_dev_description(dev),
  5979. total / 1024 / 1024, free / 1024 / 1024, true));
  5980. bool ok = test_backend(backend, mode, op_names_filter, params_filter, output_printer.get());
  5981. if (ok) {
  5982. n_ok++;
  5983. }
  5984. output_printer->print_backend_status(
  5985. backend_status_info(ggml_backend_name(backend), ok ? test_status_t::OK : test_status_t::FAIL));
  5986. ggml_backend_free(backend);
  5987. }
  5988. ggml_quantize_free();
  5989. if (output_printer) {
  5990. output_printer->print_footer();
  5991. }
  5992. output_printer->print_overall_summary(
  5993. overall_summary_info(n_ok, ggml_backend_dev_count(), n_ok == ggml_backend_dev_count()));
  5994. if (n_ok != ggml_backend_dev_count()) {
  5995. return 1;
  5996. }
  5997. return 0;
  5998. }