ggml.c 417 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. #include <limits.h>
  20. // if C99 - static_assert is noop
  21. // ref: https://stackoverflow.com/a/53923785/4039976
  22. #ifndef static_assert
  23. #define static_assert(cond, msg) struct global_scope_noop_trick
  24. #endif
  25. #if defined(_WIN32)
  26. #include <windows.h>
  27. typedef volatile LONG atomic_int;
  28. typedef atomic_int atomic_bool;
  29. static void atomic_store(atomic_int* ptr, LONG val) {
  30. InterlockedExchange(ptr, val);
  31. }
  32. static LONG atomic_load(atomic_int* ptr) {
  33. return InterlockedCompareExchange(ptr, 0, 0);
  34. }
  35. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  36. return InterlockedExchangeAdd(ptr, inc);
  37. }
  38. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  39. return atomic_fetch_add(ptr, -(dec));
  40. }
  41. typedef HANDLE pthread_t;
  42. typedef DWORD thread_ret_t;
  43. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  44. (void) unused;
  45. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  46. if (handle == NULL)
  47. {
  48. return EAGAIN;
  49. }
  50. *out = handle;
  51. return 0;
  52. }
  53. static int pthread_join(pthread_t thread, void* unused) {
  54. (void) unused;
  55. return (int) WaitForSingleObject(thread, INFINITE);
  56. }
  57. static int sched_yield (void) {
  58. Sleep (0);
  59. return 0;
  60. }
  61. #else
  62. #include <pthread.h>
  63. #include <stdatomic.h>
  64. typedef void* thread_ret_t;
  65. #endif
  66. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  67. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  68. #ifndef __FMA__
  69. #define __FMA__
  70. #endif
  71. #ifndef __F16C__
  72. #define __F16C__
  73. #endif
  74. #ifndef __SSE3__
  75. #define __SSE3__
  76. #endif
  77. #endif
  78. #ifdef __HAIKU__
  79. #define static_assert(cond, msg) _Static_assert(cond, msg)
  80. #endif
  81. /*#define GGML_PERF*/
  82. #define GGML_DEBUG 0
  83. #define GGML_GELU_FP16
  84. #define GGML_SILU_FP16
  85. #define GGML_SOFT_MAX_UNROLL 4
  86. #define GGML_VEC_DOT_UNROLL 2
  87. #ifdef GGML_USE_ACCELERATE
  88. // uncomment to use vDSP for soft max computation
  89. // note: not sure if it is actually faster
  90. //#define GGML_SOFT_MAX_ACCELERATE
  91. #endif
  92. #if UINTPTR_MAX == 0xFFFFFFFF
  93. #define GGML_MEM_ALIGN 4
  94. #else
  95. #define GGML_MEM_ALIGN 16
  96. #endif
  97. #if defined(_MSC_VER) || defined(__MINGW32__)
  98. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  99. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  100. #else
  101. inline static void* ggml_aligned_malloc(size_t size) {
  102. void* aligned_memory = NULL;
  103. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  104. if (result != 0) {
  105. // Handle allocation failure
  106. return NULL;
  107. }
  108. return aligned_memory;
  109. }
  110. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  111. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  112. #endif
  113. #define UNUSED(x) (void)(x)
  114. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  115. #define GGML_ASSERT(x) \
  116. do { \
  117. if (!(x)) { \
  118. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  119. abort(); \
  120. } \
  121. } while (0)
  122. #if defined(GGML_USE_ACCELERATE)
  123. #include <Accelerate/Accelerate.h>
  124. #elif defined(GGML_USE_OPENBLAS)
  125. #include <cblas.h>
  126. #elif defined(GGML_USE_CUBLAS)
  127. #include "ggml-cuda.h"
  128. #elif defined(GGML_USE_CLBLAST)
  129. #include "ggml-opencl.h"
  130. #endif
  131. #undef MIN
  132. #undef MAX
  133. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  134. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  135. // floating point type used to accumulate sums
  136. typedef double ggml_float;
  137. // 16-bit float
  138. // on Arm, we use __fp16
  139. // on x86, we use uint16_t
  140. #ifdef __ARM_NEON
  141. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  142. //
  143. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  144. //
  145. #include <arm_neon.h>
  146. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  147. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  148. #define GGML_FP16_TO_FP32(x) ((float) (x))
  149. #define GGML_FP32_TO_FP16(x) (x)
  150. #else
  151. #ifdef __wasm_simd128__
  152. #include <wasm_simd128.h>
  153. #else
  154. #ifdef __POWER9_VECTOR__
  155. #include <altivec.h>
  156. #undef bool
  157. #define bool _Bool
  158. #else
  159. #include <immintrin.h>
  160. #endif
  161. #endif
  162. #ifdef __F16C__
  163. #ifdef _MSC_VER
  164. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  165. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  166. #else
  167. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  168. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  169. #endif
  170. #elif defined(__POWER9_VECTOR__)
  171. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  172. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  173. /* the inline asm below is about 12% faster than the lookup method */
  174. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  175. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  176. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  177. register float f;
  178. register double d;
  179. __asm__(
  180. "mtfprd %0,%2\n"
  181. "xscvhpdp %0,%0\n"
  182. "frsp %1,%0\n" :
  183. /* temp */ "=d"(d),
  184. /* out */ "=f"(f):
  185. /* in */ "r"(h));
  186. return f;
  187. }
  188. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  189. register double d;
  190. register ggml_fp16_t r;
  191. __asm__( /* xscvdphp can work on double or single precision */
  192. "xscvdphp %0,%2\n"
  193. "mffprd %1,%0\n" :
  194. /* temp */ "=d"(d),
  195. /* out */ "=r"(r):
  196. /* in */ "f"(f));
  197. return r;
  198. }
  199. #else
  200. // FP16 <-> FP32
  201. // ref: https://github.com/Maratyszcza/FP16
  202. static inline float fp32_from_bits(uint32_t w) {
  203. union {
  204. uint32_t as_bits;
  205. float as_value;
  206. } fp32;
  207. fp32.as_bits = w;
  208. return fp32.as_value;
  209. }
  210. static inline uint32_t fp32_to_bits(float f) {
  211. union {
  212. float as_value;
  213. uint32_t as_bits;
  214. } fp32;
  215. fp32.as_value = f;
  216. return fp32.as_bits;
  217. }
  218. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  219. const uint32_t w = (uint32_t) h << 16;
  220. const uint32_t sign = w & UINT32_C(0x80000000);
  221. const uint32_t two_w = w + w;
  222. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  223. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  224. const float exp_scale = 0x1.0p-112f;
  225. #else
  226. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  227. #endif
  228. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  229. const uint32_t magic_mask = UINT32_C(126) << 23;
  230. const float magic_bias = 0.5f;
  231. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  232. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  233. const uint32_t result = sign |
  234. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  235. return fp32_from_bits(result);
  236. }
  237. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  238. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  239. const float scale_to_inf = 0x1.0p+112f;
  240. const float scale_to_zero = 0x1.0p-110f;
  241. #else
  242. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  243. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  244. #endif
  245. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  246. const uint32_t w = fp32_to_bits(f);
  247. const uint32_t shl1_w = w + w;
  248. const uint32_t sign = w & UINT32_C(0x80000000);
  249. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  250. if (bias < UINT32_C(0x71000000)) {
  251. bias = UINT32_C(0x71000000);
  252. }
  253. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  254. const uint32_t bits = fp32_to_bits(base);
  255. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  256. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  257. const uint32_t nonsign = exp_bits + mantissa_bits;
  258. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  259. }
  260. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  261. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  262. #endif // __F16C__
  263. #endif // __ARM_NEON
  264. //
  265. // global data
  266. //
  267. // precomputed gelu table for f16 (128 KB)
  268. static ggml_fp16_t table_gelu_f16[1 << 16];
  269. // precomputed silu table for f16 (128 KB)
  270. static ggml_fp16_t table_silu_f16[1 << 16];
  271. // precomputed exp table for f16 (128 KB)
  272. static ggml_fp16_t table_exp_f16[1 << 16];
  273. // precomputed f32 table for f16 (256 KB)
  274. static float table_f32_f16[1 << 16];
  275. #if defined(__ARM_NEON)
  276. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  277. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  278. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  279. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  280. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  281. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  282. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  283. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  284. // precomputed tables for expanding 8bits to 8 bytes (shl 4)
  285. static const uint64_t table_b2b_u[1 << 8] = { B8(00, 10) };
  286. #endif
  287. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  288. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  289. // This is also true for POWER9.
  290. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  291. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  292. uint16_t s;
  293. memcpy(&s, &f, sizeof(uint16_t));
  294. return table_f32_f16[s];
  295. }
  296. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  297. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  298. #endif
  299. // note: do not use these inside ggml.c
  300. // these are meant to be used via the ggml.h API
  301. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  302. return (float) GGML_FP16_TO_FP32(x);
  303. }
  304. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  305. return GGML_FP32_TO_FP16(x);
  306. }
  307. //
  308. // timing
  309. //
  310. #if defined(_MSC_VER) || defined(__MINGW32__)
  311. static int64_t timer_freq;
  312. void ggml_time_init(void) {
  313. LARGE_INTEGER frequency;
  314. QueryPerformanceFrequency(&frequency);
  315. timer_freq = frequency.QuadPart;
  316. }
  317. int64_t ggml_time_ms(void) {
  318. LARGE_INTEGER t;
  319. QueryPerformanceCounter(&t);
  320. return (t.QuadPart * 1000) / timer_freq;
  321. }
  322. int64_t ggml_time_us(void) {
  323. LARGE_INTEGER t;
  324. QueryPerformanceCounter(&t);
  325. return (t.QuadPart * 1000000) / timer_freq;
  326. }
  327. #else
  328. void ggml_time_init(void) {}
  329. int64_t ggml_time_ms(void) {
  330. struct timespec ts;
  331. clock_gettime(CLOCK_MONOTONIC, &ts);
  332. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  333. }
  334. int64_t ggml_time_us(void) {
  335. struct timespec ts;
  336. clock_gettime(CLOCK_MONOTONIC, &ts);
  337. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  338. }
  339. #endif
  340. int64_t ggml_cycles(void) {
  341. return clock();
  342. }
  343. int64_t ggml_cycles_per_ms(void) {
  344. return CLOCKS_PER_SEC/1000;
  345. }
  346. #ifdef GGML_PERF
  347. #define ggml_perf_time_ms() ggml_time_ms()
  348. #define ggml_perf_time_us() ggml_time_us()
  349. #define ggml_perf_cycles() ggml_cycles()
  350. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  351. #else
  352. #define ggml_perf_time_ms() 0
  353. #define ggml_perf_time_us() 0
  354. #define ggml_perf_cycles() 0
  355. #define ggml_perf_cycles_per_ms() 0
  356. #endif
  357. //
  358. // cache line
  359. //
  360. #if defined(__cpp_lib_hardware_interference_size)
  361. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  362. #else
  363. #if defined(__POWER9_VECTOR__)
  364. #define CACHE_LINE_SIZE 128
  365. #else
  366. #define CACHE_LINE_SIZE 64
  367. #endif
  368. #endif
  369. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  370. //
  371. // quantization
  372. //
  373. #if __AVX__ || __AVX2__ || __AVX512F__
  374. // Unpack 16 4-bit fields into 16 bytes
  375. // The output vector contains 16 bytes, each one in [ 0 .. 15 ] interval
  376. static inline __m128i bytes_from_nibbles_16(const uint8_t * rsi)
  377. {
  378. // Load 8 bytes from memory
  379. __m128i tmp = _mm_loadl_epi64( ( const __m128i* )rsi );
  380. // Expand bytes into uint16_t values
  381. __m128i bytes = _mm_cvtepu8_epi16( tmp );
  382. // Unpack values into individual bytes
  383. const __m128i lowMask = _mm_set1_epi8( 0xF );
  384. __m128i high = _mm_andnot_si128( lowMask, bytes );
  385. __m128i low = _mm_and_si128( lowMask, bytes );
  386. high = _mm_slli_epi16( high, 4 );
  387. bytes = _mm_or_si128( low, high );
  388. return bytes;
  389. }
  390. // horizontally add 8 floats
  391. static inline float hsum_float_8(const __m256 x) {
  392. __m128 res = _mm256_extractf128_ps(x, 1);
  393. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  394. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  395. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  396. return _mm_cvtss_f32(res);
  397. }
  398. // horizontally add 8 int32_t
  399. static inline int hsum_i32_8(const __m256i a) {
  400. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  401. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  402. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  403. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  404. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  405. }
  406. // horizontally add 4 int32_t
  407. static inline int hsum_i32_4(const __m128i a) {
  408. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  409. const __m128i sum64 = _mm_add_epi32(hi64, a);
  410. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  411. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  412. }
  413. #if __AVX2__ || __AVX512F__
  414. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  415. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  416. uint32_t x32;
  417. memcpy(&x32, x, sizeof(uint32_t));
  418. const __m256i shuf_mask = _mm256_set_epi64x(
  419. 0x0303030303030303, 0x0202020202020202,
  420. 0x0101010101010101, 0x0000000000000000);
  421. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  422. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  423. bytes = _mm256_or_si256(bytes, bit_mask);
  424. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  425. }
  426. // Unpack 32 4-bit fields into 32 bytes
  427. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  428. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  429. {
  430. // Load 16 bytes from memory
  431. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  432. // Expand bytes into uint16_t values
  433. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  434. // Unpack values into individual bytes
  435. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  436. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  437. __m256i low = _mm256_and_si256( lowMask, bytes );
  438. high = _mm256_slli_epi16( high, 4 );
  439. bytes = _mm256_or_si256( low, high );
  440. return bytes;
  441. }
  442. // add int16_t pairwise and return as float vector
  443. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  444. const __m256i ones = _mm256_set1_epi16(1);
  445. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  446. return _mm256_cvtepi32_ps(summed_pairs);
  447. }
  448. // multiply int8_t, add results pairwise twice and return as float vector
  449. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  450. // Get absolute values of x vectors
  451. const __m256i ax = _mm256_sign_epi8(x, x);
  452. // Sign the values of the y vectors
  453. const __m256i sy = _mm256_sign_epi8(y, x);
  454. #if __AVXVNNI__
  455. const __m256i zero = _mm256_setzero_si256();
  456. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  457. return _mm256_cvtepi32_ps(summed_pairs);
  458. #else
  459. // Perform multiplication and create 16-bit values
  460. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  461. return sum_i16_pairs_float(dot);
  462. #endif
  463. }
  464. static inline __m128i packNibbles( __m256i bytes )
  465. {
  466. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  467. #if __AVX512F__
  468. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  469. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  470. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  471. #else
  472. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  473. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  474. __m256i low = _mm256_and_si256( lowByte, bytes );
  475. high = _mm256_srli_epi16( high, 4 );
  476. bytes = _mm256_or_si256( low, high );
  477. // Compress uint16_t lanes into bytes
  478. __m128i r0 = _mm256_castsi256_si128( bytes );
  479. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  480. return _mm_packus_epi16( r0, r1 );
  481. #endif
  482. }
  483. #else
  484. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  485. {
  486. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  487. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  488. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  489. __m128i low = _mm_and_si128( lowByte, bytes1 );
  490. high = _mm_srli_epi16( high, 4 );
  491. bytes1 = _mm_or_si128( low, high );
  492. high = _mm_andnot_si128( lowByte, bytes2 );
  493. low = _mm_and_si128( lowByte, bytes2 );
  494. high = _mm_srli_epi16( high, 4 );
  495. bytes2 = _mm_or_si128( low, high );
  496. return _mm_packus_epi16( bytes1, bytes2);
  497. }
  498. #endif
  499. #endif // __AVX__ || __AVX2__ || __AVX512F__
  500. #if __ARM_NEON
  501. #if !defined(__aarch64__)
  502. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  503. return
  504. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  505. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  506. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  507. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  508. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  509. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  510. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  511. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  512. }
  513. inline static int16_t vaddvq_s8(int8x16_t v) {
  514. return
  515. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  516. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  517. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  518. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  519. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  520. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  521. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  522. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  523. }
  524. inline static int32_t vaddvq_s16(int16x8_t v) {
  525. return
  526. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  527. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  528. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  529. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  530. }
  531. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  532. return
  533. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  534. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  535. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  536. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  537. }
  538. inline static int32_t vaddvq_s32(int32x4_t v) {
  539. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  540. }
  541. inline static float vaddvq_f32(float32x4_t v) {
  542. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  543. }
  544. float vminvq_f32(float32x4_t v) {
  545. return
  546. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  547. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  548. }
  549. float vmaxvq_f32(float32x4_t v) {
  550. return
  551. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  552. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  553. }
  554. int8x8_t vzip1_s8(int8x8_t a, int8x8_t b) {
  555. return vget_low_s8(vcombine_s8(a, b));
  556. }
  557. int8x8_t vzip2_s8(int8x8_t a, int8x8_t b) {
  558. return vget_high_s8(vcombine_s8(a, b));
  559. }
  560. uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
  561. return vget_low_u8(vcombine_u8(a, b));
  562. }
  563. uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
  564. return vget_high_u8(vcombine_u8(a, b));
  565. }
  566. #endif
  567. #endif
  568. #define QK4_0 32
  569. typedef struct {
  570. float d; // delta
  571. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  572. } block_q4_0;
  573. static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
  574. #define QK4_1 32
  575. typedef struct {
  576. float d; // delta
  577. float m; // min
  578. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  579. } block_q4_1;
  580. static_assert(sizeof(block_q4_1) == 2 * sizeof(float) + QK4_1 / 2, "wrong q4_1 block size/padding");
  581. #define QK4_2 16
  582. typedef struct {
  583. ggml_fp16_t d; // delta
  584. uint8_t qs[QK4_2 / 2]; // nibbles / quants
  585. } block_q4_2;
  586. static_assert(sizeof(block_q4_2) == sizeof(ggml_fp16_t) + QK4_2 / 2, "wrong q4_2 block size/padding");
  587. #define QK4_3 16
  588. typedef struct {
  589. ggml_fp16_t d; // delta
  590. ggml_fp16_t m; // min
  591. uint8_t qs[QK4_3 / 2]; // nibbles / quants
  592. } block_q4_3;
  593. static_assert(sizeof(block_q4_3) == 2 * sizeof(ggml_fp16_t) + QK4_3 / 2, "wrong q4_3 block size/padding");
  594. #define QK5_0 32
  595. typedef struct {
  596. ggml_fp16_t d; // delta
  597. uint8_t qh[4]; // 5-th bit of quants
  598. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  599. } block_q5_0;
  600. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  601. #define QK5_1 32
  602. typedef struct {
  603. ggml_fp16_t d; // delta
  604. ggml_fp16_t m; // min
  605. uint8_t qh[4]; // 5-th bit of quants
  606. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  607. } block_q5_1;
  608. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  609. #define QK8_0 32
  610. typedef struct {
  611. float d; // delta
  612. int8_t qs[QK8_0]; // quants
  613. } block_q8_0;
  614. static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding");
  615. #define QK8_1 32
  616. typedef struct {
  617. float d; // delta
  618. float s0; // d * sum(qs[i]) low
  619. float s1; // d * sum(qs[i]) high
  620. int8_t qs[QK8_1]; // quants
  621. } block_q8_1;
  622. static_assert(sizeof(block_q8_1) == 3*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  623. // reference implementation for deterministic creation of model files
  624. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  625. assert(k % QK4_0 == 0);
  626. const int nb = k / QK4_0;
  627. uint8_t pp[QK4_0/2];
  628. for (int i = 0; i < nb; i++) {
  629. float amax = 0.0f; // absolute max
  630. float max = 0.0f;
  631. for (int l = 0; l < QK4_0; l++) {
  632. const float v = x[i*QK4_0 + l];
  633. if (amax < fabsf(v)) {
  634. amax = fabsf(v);
  635. max = v;
  636. }
  637. }
  638. const float d = max / -8;
  639. const float id = d ? 1.0f/d : 0.0f;
  640. y[i].d = d;
  641. for (int l = 0; l < QK4_0; l += 2) {
  642. const float v0 = x[i*QK4_0 + l + 0]*id;
  643. const float v1 = x[i*QK4_0 + l + 1]*id;
  644. const uint8_t vi0 = MIN(15, (int8_t)roundf(v0) + 8);
  645. const uint8_t vi1 = MIN(15, (int8_t)roundf(v1) + 8);
  646. assert(vi0 < 16);
  647. assert(vi1 < 16);
  648. pp[l/2] = vi0 | (vi1 << 4);
  649. }
  650. memcpy(y[i].qs, pp, sizeof(pp));
  651. }
  652. }
  653. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  654. assert(k % QK4_0 == 0);
  655. const int nb = k / QK4_0;
  656. block_q4_0 * restrict y = vy;
  657. #if defined(__POWER9_VECTOR__)
  658. const vector float v85 = vec_splats(8.5f);
  659. const vector signed int v15 = vec_splats(15);
  660. for (int i = 0; i < nb; i++) {
  661. float max = 0.0f;
  662. float min = 0.0f;
  663. vector float srcv [8];
  664. vector float maxv[8];
  665. vector float minv[8];
  666. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  667. //for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  668. for (int l = 0; l < 4; l++) maxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  669. //for (int l = 0; l < 2; l++) maxv[4*l] = vec_max(maxv[4*l], maxv[4*l+2]);
  670. maxv[0] = vec_max(maxv[0], maxv[2]);
  671. maxv[4] = vec_max(maxv[4], maxv[6]);
  672. //for (int l = 0; l < 1; l++) maxv[8*l] = vec_max(maxv[8*l], maxv[8*l+4]);
  673. maxv[0] = vec_max(maxv[0], maxv[4]);
  674. for (int l = 0; l < 4; l++) minv[2*l] = vec_min(asrcv[2*l], asrcv[2*l+1]);
  675. //for (int l = 0; l < 2; l++) minv[4*l] = vec_min(minv[4*l], minv[4*l+2]);
  676. minv[0] = vec_min(minv[0], minv[2]);
  677. minv[4] = vec_min(minv[4], minv[6]);
  678. //for (int l = 0; l < 1; l++) minv[8*l] = vec_min(minv[8*l], minv[8*l+4]);
  679. minv[0] = vec_min(minv[0], minv[4]);
  680. max = MAX(
  681. MAX(vec_extract(maxv[0], 0), vec_extract(maxv[0], 1)),
  682. MAX(vec_extract(maxv[0], 2), vec_extract(maxv[0], 3)));
  683. min = MIN(
  684. MIN(vec_extract(minv[0], 0), vec_extract(minv[0], 1)),
  685. MIN(vec_extract(minv[0], 2), vec_extract(minv[0], 3)));
  686. const float magnitude = max >= fabsf(min) ? max : min;
  687. const float d = magnitude / -8;
  688. const float id = d ? 1.0/d : 0.0;
  689. y[i].d = d;
  690. const vector float vid = vec_splats(id);
  691. uint8_t * restrict pb = y[i].qs;
  692. for (int l = 0; l < 8; l++) {
  693. const vector float vf = vec_madd(srcv[l], vid, v85);
  694. const vector signed int vi = vec_signed(vf);
  695. const vector signed int vc = vec_min(vi, v15);
  696. pb[2*l + 0] = vec_extract(vc, 0) | (vec_extract(vc, 1) << 4);
  697. pb[2*l + 1] = vec_extract(vc, 2) | (vec_extract(vc, 3) << 4);
  698. }
  699. }
  700. #elif __ARM_NEON
  701. for (int i = 0; i < nb; i++) {
  702. float32x4_t srcv [8];
  703. float32x4_t maxv[8];
  704. float32x4_t minv[8];
  705. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  706. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l+1]);
  707. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l+2]);
  708. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l+4]);
  709. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l+1]);
  710. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l+2]);
  711. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l+4]);
  712. const float max = vmaxvq_f32(maxv[0]);
  713. const float min = vminvq_f32(minv[0]);
  714. const float magnitude = max >= fabsf(min) ? max : min;
  715. const float d = magnitude / -8;
  716. const float id = d ? 1.0f/d : 0.0f;
  717. y[i].d = d;
  718. for (int l = 0; l < 8; l++) {
  719. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  720. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  721. const int32x4_t vi = vcvtq_s32_f32(vf);
  722. const int32x4_t vc = vminq_s32(vi, vdupq_n_s32(15));
  723. y[i].qs[2*l + 0] = vgetq_lane_s32(vc, 0) | (vgetq_lane_s32(vc, 1) << 4);
  724. y[i].qs[2*l + 1] = vgetq_lane_s32(vc, 2) | (vgetq_lane_s32(vc, 3) << 4);
  725. }
  726. }
  727. #elif defined(__AVX2__)
  728. for (int i = 0; i < nb; i++) {
  729. // Load elements into 4 AVX vectors
  730. __m256 v0 = _mm256_loadu_ps( x );
  731. __m256 v1 = _mm256_loadu_ps( x + 8 );
  732. __m256 v2 = _mm256_loadu_ps( x + 16 );
  733. __m256 v3 = _mm256_loadu_ps( x + 24 );
  734. x += 32;
  735. // Compute max for the block
  736. __m256 max = _mm256_max_ps( v0, v1 );
  737. __m256 maxTmp = _mm256_max_ps( v2, v3 );
  738. max = _mm256_max_ps( max, maxTmp );
  739. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( max, 1 ), _mm256_castps256_ps128( max ) );
  740. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  741. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  742. const float maxScalar = _mm_cvtss_f32( max4 );
  743. // Compute min for the block
  744. __m256 min = _mm256_min_ps( v0, v1 );
  745. __m256 minTmp = _mm256_min_ps( v2, v3 );
  746. min = _mm256_min_ps( min, minTmp );
  747. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( min, 1 ), _mm256_castps256_ps128( min ) );
  748. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  749. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  750. const float minScalar = _mm_cvtss_f32( min4 );
  751. // Quantize these floats
  752. const float magnitude = maxScalar >= fabsf(minScalar) ? maxScalar : minScalar;
  753. const float d = magnitude / -8.0f;
  754. y[i].d = d;
  755. const float id = ( magnitude != 0.0f ) ? -8.0f / magnitude : 0.0f;
  756. const __m256 mul = _mm256_set1_ps( id );
  757. // Apply the multiplier
  758. v0 = _mm256_mul_ps( v0, mul );
  759. v1 = _mm256_mul_ps( v1, mul );
  760. v2 = _mm256_mul_ps( v2, mul );
  761. v3 = _mm256_mul_ps( v3, mul );
  762. // Round to nearest integer
  763. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  764. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  765. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  766. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  767. // Convert floats to integers
  768. __m256i i0 = _mm256_cvtps_epi32( v0 );
  769. __m256i i1 = _mm256_cvtps_epi32( v1 );
  770. __m256i i2 = _mm256_cvtps_epi32( v2 );
  771. __m256i i3 = _mm256_cvtps_epi32( v3 );
  772. // Convert int32 to int16
  773. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  774. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  775. // Convert int16 to int8
  776. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  777. // We got our precious signed bytes, but the order is now wrong
  778. // These AVX2 pack instructions process 16-byte pieces independently
  779. // The following instruction is fixing the order
  780. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  781. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  782. // Apply offset and clamp to translate the range from [ -8 .. +8 ] into [ +0 .. +15 ]
  783. const __m256i off = _mm256_set1_epi8( 8 );
  784. i0 = _mm256_add_epi8( i0, off );
  785. const __m256i maxNibble = _mm256_set1_epi8( 15 );
  786. i0 = _mm256_min_epi8( i0, maxNibble );
  787. // Compress the vector into 4 bit/value, and store
  788. __m128i res = packNibbles( i0 );
  789. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  790. }
  791. #elif defined(__AVX__)
  792. for (int i = 0; i < nb; i++) {
  793. // Load elements into 4 AVX vectors
  794. __m256 v0 = _mm256_loadu_ps( x );
  795. __m256 v1 = _mm256_loadu_ps( x + 8 );
  796. __m256 v2 = _mm256_loadu_ps( x + 16 );
  797. __m256 v3 = _mm256_loadu_ps( x + 24 );
  798. x += 32;
  799. // Compute max for the block
  800. __m256 max = _mm256_max_ps( v0, v1 );
  801. __m256 maxTmp = _mm256_max_ps( v2, v3 );
  802. max = _mm256_max_ps( max, maxTmp );
  803. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( max, 1 ), _mm256_castps256_ps128( max ) );
  804. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  805. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  806. const float maxScalar = _mm_cvtss_f32( max4 );
  807. // Compute min for the block
  808. __m256 min = _mm256_min_ps( v0, v1 );
  809. __m256 minTmp = _mm256_min_ps( v2, v3 );
  810. min = _mm256_min_ps( min, minTmp );
  811. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( min, 1 ), _mm256_castps256_ps128( min ) );
  812. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  813. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  814. const float minScalar = _mm_cvtss_f32( min4 );
  815. // Quantize these floats
  816. const float magnitude = maxScalar >= fabsf(minScalar) ? maxScalar : minScalar;
  817. const float d = magnitude / -8.0f;
  818. y[i].d = d;
  819. const float id = ( magnitude != 0.0f ) ? -8.0f / magnitude : 0.0f;
  820. const __m256 mul = _mm256_set1_ps( id );
  821. // Apply the multiplier
  822. v0 = _mm256_mul_ps( v0, mul );
  823. v1 = _mm256_mul_ps( v1, mul );
  824. v2 = _mm256_mul_ps( v2, mul );
  825. v3 = _mm256_mul_ps( v3, mul );
  826. // Round to nearest integer
  827. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  828. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  829. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  830. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  831. // Convert floats to integers
  832. __m256i i0 = _mm256_cvtps_epi32( v0 );
  833. __m256i i1 = _mm256_cvtps_epi32( v1 );
  834. __m256i i2 = _mm256_cvtps_epi32( v2 );
  835. __m256i i3 = _mm256_cvtps_epi32( v3 );
  836. // Since we don't have in AVX some necessary functions,
  837. // we split the registers in half and call AVX2 analogs from SSE
  838. __m128i ni0 = _mm256_castsi256_si128( i0 );
  839. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  840. __m128i ni2 = _mm256_castsi256_si128( i1 );
  841. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  842. __m128i ni4 = _mm256_castsi256_si128( i2 );
  843. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  844. __m128i ni6 = _mm256_castsi256_si128( i3 );
  845. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  846. // Convert int32 to int16
  847. ni0 = _mm_packs_epi32( ni0, ni1 );
  848. ni2 = _mm_packs_epi32( ni2, ni3 );
  849. ni4 = _mm_packs_epi32( ni4, ni5 );
  850. ni6 = _mm_packs_epi32( ni6, ni7 );
  851. // Convert int16 to int8
  852. ni0 = _mm_packs_epi16( ni0, ni2 );
  853. ni4 = _mm_packs_epi16( ni4, ni6 );
  854. // Apply offset and clamp to translate the range from [ -8 .. +8 ] into [ +0 .. +15 ]
  855. const __m128i off = _mm_set1_epi8( 8 );
  856. ni0 = _mm_add_epi8( ni0, off );
  857. ni4 = _mm_add_epi8( ni4, off );
  858. const __m128i maxNibble = _mm_set1_epi8( 15 );
  859. ni0 = _mm_min_epi8( ni0, maxNibble );
  860. ni4 = _mm_min_epi8( ni4, maxNibble );
  861. // Compress the vector into 4 bit/value, and store
  862. __m128i res = packNibbles( ni0, ni4 );
  863. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  864. }
  865. #elif defined(__wasm_simd128__)
  866. for (int i = 0; i < nb; i++) {
  867. float max = 0.0f;
  868. float min = 0.0f;
  869. v128_t srcv [8];
  870. v128_t maxv[8];
  871. v128_t minv[8];
  872. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  873. for (int l = 0; l < 4; l++) maxv[2*l] = wasm_f32x4_max(srcv[2*l], srcv[2*l+1]);
  874. for (int l = 0; l < 2; l++) maxv[4*l] = wasm_f32x4_max(maxv[4*l], maxv[4*l+2]);
  875. for (int l = 0; l < 1; l++) maxv[8*l] = wasm_f32x4_max(maxv[8*l], maxv[8*l+4]);
  876. for (int l = 0; l < 4; l++) minv[2*l] = wasm_f32x4_min(srcv[2*l], srcv[2*l+1]);
  877. for (int l = 0; l < 2; l++) minv[4*l] = wasm_f32x4_min(minv[4*l], minv[4*l+2]);
  878. for (int l = 0; l < 1; l++) minv[8*l] = wasm_f32x4_min(minv[8*l], minv[8*l+4]);
  879. max = MAX(
  880. MAX(wasm_f32x4_extract_lane(maxv[0], 0), wasm_f32x4_extract_lane(maxv[0], 1)),
  881. MAX(wasm_f32x4_extract_lane(maxv[0], 2), wasm_f32x4_extract_lane(maxv[0], 3)));
  882. min = MIN(
  883. MIN(wasm_f32x4_extract_lane(minv[0], 0), wasm_f32x4_extract_lane(minv[0], 1)),
  884. MIN(wasm_f32x4_extract_lane(minv[0], 2), wasm_f32x4_extract_lane(minv[0], 3)));
  885. const float magnitude = max >= fabsf(min) ? max : min;
  886. const float d = magnitude / -8;
  887. const float id = d ? 1.0/d : 0.0;
  888. y[i].d = d;
  889. for (int l = 0; l < 8; l++) {
  890. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  891. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  892. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  893. const v128_t vc = wasm_i32x4_min_u(vi, wasm_i32x4_splat(15));
  894. y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vc, 0) | (wasm_i32x4_extract_lane(vc, 1) << 4);
  895. y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vc, 2) | (wasm_i32x4_extract_lane(vc, 3) << 4);
  896. }
  897. }
  898. #else
  899. // scalar
  900. quantize_row_q4_0_reference(x, y, k);
  901. #endif
  902. }
  903. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  904. assert(k % QK4_1 == 0);
  905. const int nb = k / QK4_1;
  906. block_q4_1 * restrict y = vy;
  907. uint8_t pp[QK4_1/2];
  908. for (int i = 0; i < nb; i++) {
  909. float min = FLT_MAX;
  910. float max = -FLT_MAX;
  911. for (int l = 0; l < QK4_1; l++) {
  912. const float v = x[i*QK4_1 + l];
  913. if (v < min) min = v;
  914. if (v > max) max = v;
  915. }
  916. const float d = (max - min) / ((1 << 4) - 1);
  917. const float id = d ? 1.0f/d : 0.0f;
  918. y[i].d = d;
  919. y[i].m = min;
  920. for (int l = 0; l < QK4_1; l += 2) {
  921. const float v0 = (x[i*QK4_1 + l + 0] - min)*id;
  922. const float v1 = (x[i*QK4_1 + l + 1] - min)*id;
  923. const uint8_t vi0 = roundf(v0);
  924. const uint8_t vi1 = roundf(v1);
  925. assert(vi0 < 16);
  926. assert(vi1 < 16);
  927. pp[l/2] = vi0 | (vi1 << 4);
  928. }
  929. memcpy(y[i].qs, pp, sizeof(pp));
  930. }
  931. }
  932. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  933. assert(k % QK4_1 == 0);
  934. const int nb = k / QK4_1;
  935. block_q4_1 * restrict y = vy;
  936. #if defined(__AVX2__)
  937. for (int i = 0; i < nb; i++) {
  938. // Load elements into 4 AVX vectors
  939. __m256 v0 = _mm256_loadu_ps( x );
  940. __m256 v1 = _mm256_loadu_ps( x + 8 );
  941. __m256 v2 = _mm256_loadu_ps( x + 16 );
  942. __m256 v3 = _mm256_loadu_ps( x + 24 );
  943. x += 32;
  944. // Compute max for the block
  945. __m256 vmax;
  946. vmax = _mm256_max_ps( v0, v1 );
  947. vmax = _mm256_max_ps( vmax, v2 );
  948. vmax = _mm256_max_ps( vmax, v3 );
  949. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  950. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  951. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  952. const float maxScalar = _mm_cvtss_f32( max4 );
  953. // Compute min for the block
  954. __m256 vmin;
  955. vmin = _mm256_min_ps( v0, v1 );
  956. vmin = _mm256_min_ps( vmin, v2 );
  957. vmin = _mm256_min_ps( vmin, v3 );
  958. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  959. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  960. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  961. const float minScalar = _mm_cvtss_f32( min4 );
  962. // Quantize these floats
  963. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  964. const float id = d ? 1.0f/d : 0.0f;
  965. y[i].m = minScalar;
  966. y[i].d = d;
  967. // x = (x-min)*id
  968. const __m256 mul = _mm256_set1_ps( id );
  969. const __m256 off = _mm256_set1_ps( minScalar );
  970. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  971. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  972. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  973. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  974. // Round to nearest integer
  975. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  976. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  977. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  978. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  979. // Convert floats to integers
  980. __m256i i0 = _mm256_cvtps_epi32( v0 );
  981. __m256i i1 = _mm256_cvtps_epi32( v1 );
  982. __m256i i2 = _mm256_cvtps_epi32( v2 );
  983. __m256i i3 = _mm256_cvtps_epi32( v3 );
  984. // Convert int32 to int16
  985. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  986. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  987. // Convert int16 to int8
  988. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  989. // We got our precious signed bytes, but the order is now wrong
  990. // These AVX2 pack instructions process 16-byte pieces independently
  991. // The following instruction is fixing the order
  992. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  993. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  994. // Compress the vector into 4 bit/value, and store
  995. __m128i res = packNibbles( i0 );
  996. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  997. }
  998. #elif __ARM_NEON
  999. for (int i = 0; i < nb; i++) {
  1000. float32x4_t srcv[8];
  1001. float32x4_t minv[8];
  1002. float32x4_t maxv[8];
  1003. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*QK4_1 + 4*l);
  1004. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]);
  1005. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]);
  1006. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]);
  1007. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]);
  1008. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]);
  1009. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]);
  1010. const float min = vminvq_f32(minv[0]);
  1011. const float max = vmaxvq_f32(maxv[0]);
  1012. const float d = (max - min) / ((1 << 4) - 1);
  1013. const float id = d ? 1.0f/d : 0.0f;
  1014. y[i].d = d;
  1015. y[i].m = min;
  1016. const float32x4_t minv0 = vdupq_n_f32(min);
  1017. for (int l = 0; l < 8; l++) {
  1018. const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id);
  1019. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(0.5f)); // needed to round to nearest
  1020. const int32x4_t vi = vcvtq_s32_f32(vf);
  1021. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  1022. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  1023. }
  1024. }
  1025. #else
  1026. // scalar
  1027. quantize_row_q4_1_reference(x, vy, k);
  1028. #endif
  1029. }
  1030. // reference implementation for deterministic creation of model files
  1031. static void quantize_row_q4_2_reference(const float * restrict x, block_q4_2 * restrict y, int k) {
  1032. assert(k % QK4_2 == 0);
  1033. const int nb = k / QK4_2;
  1034. for (int i = 0; i < nb; i++) {
  1035. float amax = 0.0f; // absolute max
  1036. float max = 0.0f;
  1037. for (int l = 0; l < QK4_2; l++) {
  1038. const float v = x[i*QK4_2 + l];
  1039. if (amax < fabsf(v)) {
  1040. amax = fabsf(v);
  1041. max = v;
  1042. }
  1043. }
  1044. const float d = max / -8;
  1045. const float id = d ? 1.0f/d : 0.0f;
  1046. y[i].d = GGML_FP32_TO_FP16(d);
  1047. for (int l = 0; l < QK4_2; l += 2) {
  1048. const float v0 = x[i*QK4_2 + l + 0]*id;
  1049. const float v1 = x[i*QK4_2 + l + 1]*id;
  1050. const uint8_t vi0 = MIN(15, (uint8_t)(v0 + 8.5f));
  1051. const uint8_t vi1 = MIN(15, (uint8_t)(v1 + 8.5f));
  1052. assert(vi0 < 16);
  1053. assert(vi1 < 16);
  1054. y[i].qs[l/2] = vi0 | (vi1 << 4);
  1055. }
  1056. }
  1057. }
  1058. static void quantize_row_q4_2(const float * restrict x, void * restrict vy, int k) {
  1059. assert(k % QK4_2 == 0);
  1060. block_q4_2 * restrict y = vy;
  1061. quantize_row_q4_2_reference(x, y, k);
  1062. }
  1063. static void quantize_row_q4_3_reference(const float * restrict x, block_q4_3 * restrict y, int k) {
  1064. assert(k % QK4_3 == 0);
  1065. const int nb = k / QK4_3;
  1066. for (int i = 0; i < nb; i++) {
  1067. float min = FLT_MAX;
  1068. float max = -FLT_MAX;
  1069. for (int l = 0; l < QK4_3; l++) {
  1070. const float v = x[i*QK4_3 + l];
  1071. if (v < min) min = v;
  1072. if (v > max) max = v;
  1073. }
  1074. const float d = (max - min) / ((1 << 4) - 1);
  1075. const float id = d ? 1.0f/d : 0.0f;
  1076. y[i].d = GGML_FP32_TO_FP16(d);
  1077. y[i].m = GGML_FP32_TO_FP16(min);
  1078. for (int l = 0; l < QK4_3; l += 2) {
  1079. const float v0 = (x[i*QK4_3 + l + 0] - min)*id;
  1080. const float v1 = (x[i*QK4_3 + l + 1] - min)*id;
  1081. const uint8_t vi0 = (int) (v0 + 0.5f);
  1082. const uint8_t vi1 = (int) (v1 + 0.5f);
  1083. assert(vi0 < 16);
  1084. assert(vi1 < 16);
  1085. y[i].qs[l/2] = vi0 | (vi1 << 4);
  1086. }
  1087. }
  1088. }
  1089. static void quantize_row_q4_3(const float * restrict x, void * restrict vy, int k) {
  1090. assert(k % QK4_3 == 0);
  1091. block_q4_3 * restrict y = vy;
  1092. quantize_row_q4_3_reference(x, y, k);
  1093. }
  1094. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  1095. assert(k % QK5_0 == 0);
  1096. const int nb = k / QK5_0;
  1097. for (int i = 0; i < nb; i++) {
  1098. float amax = 0.0f; // absolute max
  1099. float max = 0.0f;
  1100. for (int l = 0; l < QK5_0; l++) {
  1101. const float v = x[i*QK5_0 + l];
  1102. if (amax < fabsf(v)) {
  1103. amax = fabsf(v);
  1104. max = v;
  1105. }
  1106. }
  1107. const float d = max / -16;
  1108. const float id = d ? 1.0f/d : 0.0f;
  1109. y[i].d = GGML_FP32_TO_FP16(d);
  1110. uint32_t qh = 0;
  1111. for (int l = 0; l < QK5_0; l += 2) {
  1112. const float v0 = x[i*QK5_0 + l + 0]*id;
  1113. const float v1 = x[i*QK5_0 + l + 1]*id;
  1114. const uint32_t vi0 = MIN(31, (int) (v0 + 16.5f));
  1115. const uint32_t vi1 = MIN(31, (int) (v1 + 16.5f));
  1116. y[i].qs[l/2] = (vi0 & 0x0F) | ((vi1 & 0x0F) << 4);
  1117. // get the 5-th bit and store it in qh at the right position
  1118. qh |= ((vi0 & 0x10) >> 4) << (l + 0);
  1119. qh |= ((vi1 & 0x10) >> 4) << (l + 1);
  1120. }
  1121. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  1122. }
  1123. }
  1124. static void quantize_row_q5_0(const float * restrict x, void * restrict vy, int k) {
  1125. assert(k % QK5_0 == 0);
  1126. block_q5_0 * restrict y = vy;
  1127. quantize_row_q5_0_reference(x, y, k);
  1128. }
  1129. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  1130. assert(k % QK5_1 == 0);
  1131. const int nb = k / QK5_1;
  1132. for (int i = 0; i < nb; i++) {
  1133. float min = FLT_MAX;
  1134. float max = -FLT_MAX;
  1135. for (int l = 0; l < QK5_1; l++) {
  1136. const float v = x[i*QK5_1 + l];
  1137. if (v < min) min = v;
  1138. if (v > max) max = v;
  1139. }
  1140. const float d = (max - min) / ((1 << 5) - 1);
  1141. const float id = d ? 1.0f/d : 0.0f;
  1142. y[i].d = GGML_FP32_TO_FP16(d);
  1143. y[i].m = GGML_FP32_TO_FP16(min);
  1144. uint32_t qh = 0;
  1145. for (int l = 0; l < QK5_1; l += 2) {
  1146. const float v0 = (x[i*QK5_1 + l + 0] - min)*id;
  1147. const float v1 = (x[i*QK5_1 + l + 1] - min)*id;
  1148. const uint32_t vi0 = (int) (v0 + 0.5f);
  1149. const uint32_t vi1 = (int) (v1 + 0.5f);
  1150. y[i].qs[l/2] = (vi0 & 0x0F) | ((vi1 & 0x0F) << 4);
  1151. // get the 5-th bit and store it in qh at the right position
  1152. qh |= ((vi0 & 0x10) >> 4) << (l + 0);
  1153. qh |= ((vi1 & 0x10) >> 4) << (l + 1);
  1154. }
  1155. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  1156. }
  1157. }
  1158. static void quantize_row_q5_1(const float * restrict x, void * restrict vy, int k) {
  1159. assert(k % QK5_1 == 0);
  1160. block_q5_1 * restrict y = vy;
  1161. quantize_row_q5_1_reference(x, y, k);
  1162. }
  1163. // reference implementation for deterministic creation of model files
  1164. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  1165. assert(k % QK8_0 == 0);
  1166. const int nb = k / QK8_0;
  1167. for (int i = 0; i < nb; i++) {
  1168. float amax = 0.0f; // absolute max
  1169. for (int l = 0; l < QK8_0; l++) {
  1170. const float v = x[i*QK8_0 + l];
  1171. amax = MAX(amax, fabsf(v));
  1172. }
  1173. const float d = amax / ((1 << 7) - 1);
  1174. const float id = d ? 1.0f/d : 0.0f;
  1175. y[i].d = d;
  1176. for (int l = 0; l < QK8_0; ++l) {
  1177. const float v0 = x[i*QK8_0 + l]*id;
  1178. y[i].qs[l] = roundf(v0);
  1179. }
  1180. }
  1181. }
  1182. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  1183. assert(k % QK8_0 == 0);
  1184. block_q8_0 * restrict y = vy;
  1185. quantize_row_q8_0_reference(x, y, k);
  1186. }
  1187. // reference implementation for deterministic creation of model files
  1188. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1189. assert(k % QK8_1 == 0);
  1190. const int nb = k / QK8_1;
  1191. for (int i = 0; i < nb; i++) {
  1192. float amax = 0.0f; // absolute max
  1193. for (int l = 0; l < QK8_1; l++) {
  1194. const float v = x[i*QK8_1 + l];
  1195. amax = MAX(amax, fabsf(v));
  1196. }
  1197. const float d = amax / ((1 << 7) - 1);
  1198. const float id = d ? 1.0f/d : 0.0f;
  1199. y[i].d = d;
  1200. int sum0 = 0;
  1201. int sum1 = 0;
  1202. for (int l = 0; l < QK8_1/2; ++l) {
  1203. const float v0 = x[i*QK8_1 + l]*id;
  1204. const float v1 = x[i*QK8_1 + QK8_1/2 + l]*id;
  1205. y[i].qs[ l] = roundf(v0);
  1206. y[i].qs[QK8_1/2 + l] = roundf(v1);
  1207. sum0 += y[i].qs[ l];
  1208. sum1 += y[i].qs[QK8_1/2 + l];
  1209. }
  1210. y[i].s0 = d * sum0;
  1211. y[i].s1 = d * sum1;
  1212. }
  1213. }
  1214. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1215. assert(k % QK8_1 == 0);
  1216. const int nb = k / QK8_1;
  1217. block_q8_1 * restrict y = vy;
  1218. #if defined(__ARM_NEON)
  1219. for (int i = 0; i < nb; i++) {
  1220. float32x4_t srcv [8];
  1221. float32x4_t asrcv[8];
  1222. float32x4_t amaxv[8];
  1223. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  1224. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  1225. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  1226. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  1227. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  1228. const float amax = vmaxvq_f32(amaxv[0]);
  1229. const float d = amax / ((1 << 7) - 1);
  1230. const float id = d ? 1.0f/d : 0.0f;
  1231. y[i].d = d;
  1232. int32x4_t accv0 = vdupq_n_s32(0);
  1233. int32x4_t accv1 = vdupq_n_s32(0);
  1234. // low half
  1235. for (int l = 0; l < 4; l++) {
  1236. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  1237. const int32x4_t vi = vcvtnq_s32_f32(v);
  1238. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  1239. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  1240. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  1241. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  1242. accv0 = vaddq_s32(accv0, vi);
  1243. }
  1244. // high half
  1245. for (int l = 4; l < 8; l++) {
  1246. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  1247. const int32x4_t vi = vcvtnq_s32_f32(v);
  1248. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  1249. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  1250. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  1251. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  1252. accv1 = vaddq_s32(accv1, vi);
  1253. }
  1254. const int32_t sum0 = vaddvq_s32(accv0);
  1255. const int32_t sum1 = vaddvq_s32(accv1);
  1256. y[i].s0 = d * sum0;
  1257. y[i].s1 = d * sum1;
  1258. }
  1259. #elif defined(__AVX2__) || defined(__AVX__)
  1260. for (int i = 0; i < nb; i++) {
  1261. // Load elements into 4 AVX vectors
  1262. __m256 v0 = _mm256_loadu_ps( x );
  1263. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1264. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1265. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1266. x += 32;
  1267. // Compute max(abs(e)) for the block
  1268. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1269. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1270. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1271. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1272. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1273. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1274. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1275. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1276. const float maxScalar = _mm_cvtss_f32( max4 );
  1277. // Quantize these floats
  1278. const float d = maxScalar / 127.f;
  1279. y[i].d = d;
  1280. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1281. const __m256 mul = _mm256_set1_ps( id );
  1282. // Apply the multiplier
  1283. v0 = _mm256_mul_ps( v0, mul );
  1284. v1 = _mm256_mul_ps( v1, mul );
  1285. v2 = _mm256_mul_ps( v2, mul );
  1286. v3 = _mm256_mul_ps( v3, mul );
  1287. // Round to nearest integer
  1288. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1289. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1290. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1291. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1292. // Convert floats to integers
  1293. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1294. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1295. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1296. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1297. #if defined(__AVX2__)
  1298. // Compute the sum of the quants and set y[i].s
  1299. //y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1300. y[i].s0 = d * hsum_i32_8(_mm256_add_epi32(i0, i1));
  1301. y[i].s1 = d * hsum_i32_8(_mm256_add_epi32(i2, i3));
  1302. // Convert int32 to int16
  1303. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1304. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1305. // Convert int16 to int8
  1306. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1307. // We got our precious signed bytes, but the order is now wrong
  1308. // These AVX2 pack instructions process 16-byte pieces independently
  1309. // The following instruction is fixing the order
  1310. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1311. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1312. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1313. #else
  1314. // Since we don't have in AVX some necessary functions,
  1315. // we split the registers in half and call AVX2 analogs from SSE
  1316. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1317. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1318. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1319. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1320. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1321. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1322. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1323. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1324. // Compute the sum of the quants and set y[i].s
  1325. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1326. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1327. y[i].s0 = d * hsum_i32_4(s0);
  1328. y[i].s1 = d * hsum_i32_4(s1);
  1329. // Convert int32 to int16
  1330. ni0 = _mm_packs_epi32( ni0, ni1 );
  1331. ni2 = _mm_packs_epi32( ni2, ni3 );
  1332. ni4 = _mm_packs_epi32( ni4, ni5 );
  1333. ni6 = _mm_packs_epi32( ni6, ni7 );
  1334. // Convert int16 to int8
  1335. ni0 = _mm_packs_epi16( ni0, ni2 );
  1336. ni4 = _mm_packs_epi16( ni4, ni6 );
  1337. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1338. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1339. #endif
  1340. }
  1341. #else
  1342. // scalar
  1343. quantize_row_q8_1_reference(x, y, k);
  1344. #endif
  1345. }
  1346. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  1347. assert(k % QK4_0 == 0);
  1348. const int nb = k / QK4_0;
  1349. const block_q4_0 * restrict x = vx;
  1350. #if defined(__AVX2__)
  1351. for (int i = 0; i < nb; i++) {
  1352. // scale factor
  1353. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1354. const uint8_t * restrict pp = x[i].qs;
  1355. for (int l = 0; l < QK4_0; l += 32) {
  1356. // Load 32x4-bit integers into 32x8-bit integers
  1357. __m256i vx8 = bytes_from_nibbles_32(pp+l/2);
  1358. // Subtract 8 from the integers
  1359. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  1360. // Convert to 16-bit int
  1361. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1362. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1363. // Convert to 32-bit int -> float 32
  1364. const __m256 vf[4] = {
  1365. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1366. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1367. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1368. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1369. };
  1370. // Scale and store
  1371. for (int j = 0; j < 4; j++) {
  1372. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  1373. _mm256_storeu_ps(y + i * QK4_0 + l + j*8, result);
  1374. }
  1375. }
  1376. }
  1377. #elif defined(__ARM_NEON)
  1378. for (int i = 0; i < nb; i++) {
  1379. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1380. const uint8_t * restrict pp = x[i].qs;
  1381. for (int l = 0; l < QK4_0; l += 16) {
  1382. // Load 16x4-bit integers into 8x8-bit integers
  1383. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1384. // Expand 4-bit qs to 8-bit bytes
  1385. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0F));
  1386. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1387. // Convert to signed 8-bit integers
  1388. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  1389. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  1390. // Subtract 8 from each byte
  1391. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  1392. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  1393. // Interleave and combine
  1394. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  1395. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  1396. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  1397. // convert to 2x int16x8_t
  1398. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  1399. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  1400. // convert to 4x float32x4_t
  1401. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  1402. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  1403. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  1404. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  1405. // Multiply by d
  1406. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  1407. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  1408. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  1409. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  1410. // Store
  1411. vst1q_f32(y + i*QK4_0 + l + 0, r0);
  1412. vst1q_f32(y + i*QK4_0 + l + 4, r1);
  1413. vst1q_f32(y + i*QK4_0 + l + 8, r2);
  1414. vst1q_f32(y + i*QK4_0 + l + 12, r3);
  1415. }
  1416. }
  1417. #else
  1418. // scalar
  1419. for (int i = 0; i < nb; i++) {
  1420. const float d = x[i].d;
  1421. const uint8_t * restrict pp = x[i].qs;
  1422. for (int l = 0; l < QK4_0; l += 2) {
  1423. const uint8_t vi = pp[l/2];
  1424. const int8_t vi0 = vi & 0x0F;
  1425. const int8_t vi1 = vi >> 4;
  1426. const float v0 = (vi0 - 8)*d;
  1427. const float v1 = (vi1 - 8)*d;
  1428. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  1429. y[i*QK4_0 + l + 0] = v0;
  1430. y[i*QK4_0 + l + 1] = v1;
  1431. assert(!isnan(y[i*QK4_0 + l + 0]));
  1432. assert(!isnan(y[i*QK4_0 + l + 1]));
  1433. }
  1434. }
  1435. #endif
  1436. }
  1437. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  1438. assert(k % QK4_1 == 0);
  1439. const int nb = k / QK4_1;
  1440. const block_q4_1 * restrict x = vx;
  1441. #if defined(__AVX2__)
  1442. for (int i = 0; i < nb; i++) {
  1443. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1444. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  1445. const uint8_t * restrict pp = x[i].qs;
  1446. for (int l = 0; l < QK4_1; l += 32) {
  1447. // Load 32x4-bit integers into 32x8-bit integers
  1448. __m256i vx8 = bytes_from_nibbles_32(pp+l/2);
  1449. // Convert to 16-bit int
  1450. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1451. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1452. // Convert to 32-bit int -> float 32
  1453. const __m256 vf[4] = {
  1454. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1455. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1456. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1457. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1458. };
  1459. // Scale, add m and store
  1460. for (int j = 0; j < 4; j++) {
  1461. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  1462. _mm256_storeu_ps(y + i * QK4_1 + l + j*8, result);
  1463. }
  1464. }
  1465. }
  1466. #elif defined(__ARM_NEON)
  1467. for (int i = 0; i < nb; i++) {
  1468. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1469. const float32x4_t vm = vdupq_n_f32(x[i].m);
  1470. const uint8_t * restrict pp = x[i].qs;
  1471. for (int l = 0; l < QK4_1; l += 16) {
  1472. // Load 16x4-bit integers into 8x8-bit integers
  1473. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1474. // Expand 4-bit qs to 8-bit bytes
  1475. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0F));
  1476. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1477. // Interleave and combine
  1478. const uint8x8_t vx_0 = vzip1_u8(v0, v1);
  1479. const uint8x8_t vx_1 = vzip2_u8(v0, v1);
  1480. const uint8x16_t vq = vcombine_u8(vx_0, vx_1);
  1481. // convert to 2x uint16x8_t
  1482. const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq));
  1483. const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq));
  1484. // convert to 4x float32x4_t
  1485. const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0)));
  1486. const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0)));
  1487. const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1)));
  1488. const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1)));
  1489. // multiply by d and add m
  1490. const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd);
  1491. const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd);
  1492. const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd);
  1493. const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd);
  1494. // Store
  1495. vst1q_f32(y + i*QK4_1 + l + 0, r0);
  1496. vst1q_f32(y + i*QK4_1 + l + 4, r1);
  1497. vst1q_f32(y + i*QK4_1 + l + 8, r2);
  1498. vst1q_f32(y + i*QK4_1 + l + 12, r3);
  1499. }
  1500. }
  1501. #else
  1502. for (int i = 0; i < nb; i++) {
  1503. const float d = x[i].d;
  1504. const float m = x[i].m;
  1505. const uint8_t * restrict pp = x[i].qs;
  1506. for (int l = 0; l < QK4_1; l += 2) {
  1507. const uint8_t vi = pp[l/2];
  1508. const int8_t vi0 = vi & 0x0F;
  1509. const int8_t vi1 = vi >> 4;
  1510. const float v0 = vi0*d + m;
  1511. const float v1 = vi1*d + m;
  1512. y[i*QK4_1 + l + 0] = v0;
  1513. y[i*QK4_1 + l + 1] = v1;
  1514. assert(!isnan(y[i*QK4_1 + l + 0]));
  1515. assert(!isnan(y[i*QK4_1 + l + 1]));
  1516. }
  1517. }
  1518. #endif
  1519. }
  1520. static void dequantize_row_q4_2(const void * restrict vx, float * restrict y, int k) {
  1521. assert(k % QK4_2 == 0);
  1522. const int nb = k / QK4_2;
  1523. const block_q4_2 * restrict x = vx;
  1524. for (int i = 0; i < nb; i++) {
  1525. const float d = GGML_FP16_TO_FP32(x[i].d);
  1526. const uint8_t * restrict pp = x[i].qs;
  1527. for (int l = 0; l < QK4_2; l += 2) {
  1528. const uint8_t vi = pp[l/2];
  1529. const int8_t vi0 = vi & 0x0F;
  1530. const int8_t vi1 = vi >> 4;
  1531. const float v0 = (vi0 - 8)*d;
  1532. const float v1 = (vi1 - 8)*d;
  1533. y[i*QK4_2 + l + 0] = v0;
  1534. y[i*QK4_2 + l + 1] = v1;
  1535. assert(!isnan(y[i*QK4_2 + l + 0]));
  1536. assert(!isnan(y[i*QK4_2 + l + 1]));
  1537. }
  1538. }
  1539. }
  1540. static void dequantize_row_q4_3(const void * restrict vx, float * restrict y, int k) {
  1541. assert(k % QK4_3 == 0);
  1542. const int nb = k / QK4_3;
  1543. const block_q4_3 * restrict x = vx;
  1544. for (int i = 0; i < nb; i++) {
  1545. const float d = GGML_FP16_TO_FP32(x[i].d);
  1546. const float m = GGML_FP16_TO_FP32(x[i].m);
  1547. const uint8_t * restrict pp = x[i].qs;
  1548. for (int l = 0; l < QK4_3; l += 2) {
  1549. const uint8_t vi = pp[l/2];
  1550. const int8_t vi0 = vi & 0x0F;
  1551. const int8_t vi1 = vi >> 4;
  1552. const float v0 = vi0*d + m;
  1553. const float v1 = vi1*d + m;
  1554. y[i*QK4_3 + l + 0] = v0;
  1555. y[i*QK4_3 + l + 1] = v1;
  1556. assert(!isnan(y[i*QK4_3 + l + 0]));
  1557. assert(!isnan(y[i*QK4_3 + l + 1]));
  1558. }
  1559. }
  1560. }
  1561. static void dequantize_row_q5_0(const void * restrict vx, float * restrict y, int k) {
  1562. assert(k % QK5_0 == 0);
  1563. const int nb = k / QK5_0;
  1564. const block_q5_0 * restrict x = vx;
  1565. for (int i = 0; i < nb; i++) {
  1566. const float d = GGML_FP16_TO_FP32(x[i].d);
  1567. const uint8_t * restrict pp = x[i].qs;
  1568. uint32_t qh;
  1569. memcpy(&qh, x[i].qh, sizeof(qh));
  1570. for (int l = 0; l < QK5_0; l += 2) {
  1571. const uint8_t vi = pp[l/2];
  1572. // extract the 5-th bit from qh
  1573. const uint8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4;
  1574. const uint8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4;
  1575. const int8_t vi0 = (vi & 0x0F) | vh0;
  1576. const int8_t vi1 = (vi >> 4) | vh1;
  1577. const float v0 = (vi0 - 16)*d;
  1578. const float v1 = (vi1 - 16)*d;
  1579. y[i*QK5_0 + l + 0] = v0;
  1580. y[i*QK5_0 + l + 1] = v1;
  1581. assert(!isnan(y[i*QK5_0 + l + 0]));
  1582. assert(!isnan(y[i*QK5_0 + l + 1]));
  1583. }
  1584. }
  1585. }
  1586. static void dequantize_row_q5_1(const void * restrict vx, float * restrict y, int k) {
  1587. assert(k % QK5_1 == 0);
  1588. const int nb = k / QK5_1;
  1589. const block_q5_1 * restrict x = vx;
  1590. for (int i = 0; i < nb; i++) {
  1591. const float d = GGML_FP16_TO_FP32(x[i].d);
  1592. const float m = GGML_FP16_TO_FP32(x[i].m);
  1593. const uint8_t * restrict pp = x[i].qs;
  1594. uint32_t qh;
  1595. memcpy(&qh, x[i].qh, sizeof(qh));
  1596. for (int l = 0; l < QK5_1; l += 2) {
  1597. const uint8_t vi = pp[l/2];
  1598. // extract the 5-th bit from qh
  1599. const uint8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4;
  1600. const uint8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4;
  1601. const uint8_t vi0 = (vi & 0x0F) | vh0;
  1602. const uint8_t vi1 = (vi >> 4) | vh1;
  1603. const float v0 = vi0*d + m;
  1604. const float v1 = vi1*d + m;
  1605. y[i*QK5_1 + l + 0] = v0;
  1606. y[i*QK5_1 + l + 1] = v1;
  1607. assert(!isnan(y[i*QK5_1 + l + 0]));
  1608. assert(!isnan(y[i*QK5_1 + l + 1]));
  1609. }
  1610. }
  1611. }
  1612. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1613. assert(k % QK8_0 == 0);
  1614. const int nb = k / QK8_0;
  1615. const block_q8_0 * restrict x = vx;
  1616. for (int i = 0; i < nb; i++) {
  1617. const float d = x[i].d;
  1618. const int8_t * restrict pp = x[i].qs;
  1619. for (int l = 0; l < QK8_0; ++l) {
  1620. y[i*QK8_0 + l] = pp[l]*d;
  1621. }
  1622. }
  1623. }
  1624. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1625. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1626. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1627. static void ggml_vec_dot_q4_3_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1628. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1629. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1630. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1631. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1632. [GGML_TYPE_Q4_0] = {
  1633. .dequantize_row_q = dequantize_row_q4_0,
  1634. .quantize_row_q = quantize_row_q4_0,
  1635. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1636. .quantize_row_q_dot = quantize_row_q8_0,
  1637. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1638. .vec_dot_type = GGML_TYPE_Q8_0,
  1639. },
  1640. [GGML_TYPE_Q4_1] = {
  1641. .dequantize_row_q = dequantize_row_q4_1,
  1642. .quantize_row_q = quantize_row_q4_1,
  1643. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1644. .quantize_row_q_dot = quantize_row_q8_1,
  1645. .vec_dot_q = ggml_vec_dot_q4_1_q8_1,
  1646. .vec_dot_type = GGML_TYPE_Q8_1,
  1647. },
  1648. [GGML_TYPE_Q4_2] = {
  1649. .dequantize_row_q = dequantize_row_q4_2,
  1650. .quantize_row_q = quantize_row_q4_2,
  1651. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_2_reference,
  1652. .quantize_row_q_dot = quantize_row_q8_0,
  1653. .vec_dot_q = ggml_vec_dot_q4_2_q8_0,
  1654. .vec_dot_type = GGML_TYPE_Q8_0,
  1655. },
  1656. [GGML_TYPE_Q4_3] = {
  1657. .dequantize_row_q = dequantize_row_q4_3,
  1658. .quantize_row_q = quantize_row_q4_3,
  1659. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_3_reference,
  1660. .quantize_row_q_dot = quantize_row_q8_1,
  1661. .vec_dot_q = ggml_vec_dot_q4_3_q8_1,
  1662. .vec_dot_type = GGML_TYPE_Q8_1,
  1663. },
  1664. [GGML_TYPE_Q5_0] = {
  1665. .dequantize_row_q = dequantize_row_q5_0,
  1666. .quantize_row_q = quantize_row_q5_0,
  1667. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference,
  1668. .quantize_row_q_dot = quantize_row_q8_0,
  1669. .vec_dot_q = ggml_vec_dot_q5_0_q8_0,
  1670. .vec_dot_type = GGML_TYPE_Q8_0,
  1671. },
  1672. [GGML_TYPE_Q5_1] = {
  1673. .dequantize_row_q = dequantize_row_q5_1,
  1674. .quantize_row_q = quantize_row_q5_1,
  1675. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference,
  1676. .quantize_row_q_dot = quantize_row_q8_1,
  1677. .vec_dot_q = ggml_vec_dot_q5_1_q8_1,
  1678. .vec_dot_type = GGML_TYPE_Q8_1,
  1679. },
  1680. [GGML_TYPE_Q8_0] = {
  1681. .dequantize_row_q = dequantize_row_q8_0,
  1682. .quantize_row_q = quantize_row_q8_0,
  1683. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1684. .quantize_row_q_dot = quantize_row_q8_0,
  1685. .vec_dot_q = ggml_vec_dot_q8_0_q8_0,
  1686. .vec_dot_type = GGML_TYPE_Q8_0,
  1687. },
  1688. [GGML_TYPE_Q8_1] = {
  1689. .dequantize_row_q = NULL, // TODO
  1690. .quantize_row_q = quantize_row_q8_1,
  1691. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference,
  1692. .quantize_row_q_dot = quantize_row_q8_1,
  1693. .vec_dot_q = NULL, // TODO
  1694. .vec_dot_type = GGML_TYPE_Q8_1,
  1695. },
  1696. };
  1697. // For internal test use
  1698. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1699. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1700. return quantize_fns[i];
  1701. }
  1702. //
  1703. // simd mappings
  1704. //
  1705. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1706. // we then implement the fundamental computation operations below using only these macros
  1707. // adding support for new architectures requires to define the corresponding SIMD macros
  1708. //
  1709. // GGML_F32_STEP / GGML_F16_STEP
  1710. // number of elements to process in a single step
  1711. //
  1712. // GGML_F32_EPR / GGML_F16_EPR
  1713. // number of elements to fit in a single register
  1714. //
  1715. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1716. #define GGML_SIMD
  1717. // F32 NEON
  1718. #define GGML_F32_STEP 16
  1719. #define GGML_F32_EPR 4
  1720. #define GGML_F32x4 float32x4_t
  1721. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1722. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1723. #define GGML_F32x4_LOAD vld1q_f32
  1724. #define GGML_F32x4_STORE vst1q_f32
  1725. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1726. #define GGML_F32x4_ADD vaddq_f32
  1727. #define GGML_F32x4_MUL vmulq_f32
  1728. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1729. #define GGML_F32x4_REDUCE(res, x) \
  1730. { \
  1731. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1732. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1733. } \
  1734. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1735. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1736. } \
  1737. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1738. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1739. } \
  1740. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1741. }
  1742. #define GGML_F32_VEC GGML_F32x4
  1743. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1744. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1745. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1746. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1747. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1748. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1749. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1750. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1751. // F16 NEON
  1752. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1753. #define GGML_F16_STEP 32
  1754. #define GGML_F16_EPR 8
  1755. #define GGML_F16x8 float16x8_t
  1756. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1757. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1758. #define GGML_F16x8_LOAD vld1q_f16
  1759. #define GGML_F16x8_STORE vst1q_f16
  1760. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1761. #define GGML_F16x8_ADD vaddq_f16
  1762. #define GGML_F16x8_MUL vmulq_f16
  1763. #define GGML_F16x8_REDUCE(res, x) \
  1764. { \
  1765. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1766. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1767. } \
  1768. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1769. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1770. } \
  1771. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1772. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1773. } \
  1774. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1775. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1776. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1777. }
  1778. #define GGML_F16_VEC GGML_F16x8
  1779. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1780. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1781. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1782. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1783. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1784. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1785. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1786. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1787. #else
  1788. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1789. // and take advantage of the vcvt_ functions to convert to/from FP16
  1790. #define GGML_F16_STEP 16
  1791. #define GGML_F16_EPR 4
  1792. #define GGML_F32Cx4 float32x4_t
  1793. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1794. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1795. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1796. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1797. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1798. #define GGML_F32Cx4_ADD vaddq_f32
  1799. #define GGML_F32Cx4_MUL vmulq_f32
  1800. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1801. #define GGML_F16_VEC GGML_F32Cx4
  1802. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1803. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1804. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1805. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1806. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1807. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1808. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1809. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1810. #endif
  1811. #elif defined(__AVX__)
  1812. #define GGML_SIMD
  1813. // F32 AVX
  1814. #define GGML_F32_STEP 32
  1815. #define GGML_F32_EPR 8
  1816. #define GGML_F32x8 __m256
  1817. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1818. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1819. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1820. #define GGML_F32x8_STORE _mm256_storeu_ps
  1821. #if defined(__FMA__)
  1822. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1823. #else
  1824. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1825. #endif
  1826. #define GGML_F32x8_ADD _mm256_add_ps
  1827. #define GGML_F32x8_MUL _mm256_mul_ps
  1828. #define GGML_F32x8_REDUCE(res, x) \
  1829. { \
  1830. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1831. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1832. } \
  1833. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1834. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1835. } \
  1836. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1837. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1838. } \
  1839. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1840. _mm256_extractf128_ps(x[0], 1)); \
  1841. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1842. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1843. }
  1844. // TODO: is this optimal ?
  1845. #define GGML_F32_VEC GGML_F32x8
  1846. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1847. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1848. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1849. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1850. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1851. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1852. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1853. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1854. // F16 AVX
  1855. #define GGML_F16_STEP 32
  1856. #define GGML_F16_EPR 8
  1857. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1858. #define GGML_F32Cx8 __m256
  1859. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1860. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1861. #if defined(__F16C__)
  1862. // the _mm256_cvt intrinsics require F16C
  1863. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1864. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1865. #else
  1866. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1867. float tmp[8];
  1868. for (int i = 0; i < 8; i++)
  1869. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1870. return _mm256_loadu_ps(tmp);
  1871. }
  1872. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1873. float arr[8];
  1874. _mm256_storeu_ps(arr, y);
  1875. for (int i = 0; i < 8; i++)
  1876. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1877. }
  1878. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1879. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1880. #endif
  1881. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1882. #define GGML_F32Cx8_ADD _mm256_add_ps
  1883. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1884. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1885. #define GGML_F16_VEC GGML_F32Cx8
  1886. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1887. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1888. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1889. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1890. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1891. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1892. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1893. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1894. #elif defined(__POWER9_VECTOR__)
  1895. #define GGML_SIMD
  1896. // F32 POWER9
  1897. #define GGML_F32_STEP 32
  1898. #define GGML_F32_EPR 4
  1899. #define GGML_F32x4 vector float
  1900. #define GGML_F32x4_ZERO 0.0f
  1901. #define GGML_F32x4_SET1 vec_splats
  1902. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1903. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1904. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1905. #define GGML_F32x4_ADD vec_add
  1906. #define GGML_F32x4_MUL vec_mul
  1907. #define GGML_F32x4_REDUCE(res, x) \
  1908. { \
  1909. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1910. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1911. } \
  1912. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1913. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1914. } \
  1915. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1916. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1917. } \
  1918. res = vec_extract(x[0], 0) + \
  1919. vec_extract(x[0], 1) + \
  1920. vec_extract(x[0], 2) + \
  1921. vec_extract(x[0], 3); \
  1922. }
  1923. #define GGML_F32_VEC GGML_F32x4
  1924. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1925. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1926. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1927. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1928. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1929. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1930. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1931. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1932. // F16 POWER9
  1933. #define GGML_F16_STEP GGML_F32_STEP
  1934. #define GGML_F16_EPR GGML_F32_EPR
  1935. #define GGML_F16_VEC GGML_F32x4
  1936. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1937. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1938. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1939. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1940. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1941. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1942. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1943. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1944. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1945. #define GGML_F16_VEC_STORE(p, r, i) \
  1946. if (i & 0x1) \
  1947. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1948. r[i - GGML_ENDIAN_BYTE(0)]), \
  1949. 0, p - GGML_F16_EPR)
  1950. #elif defined(__wasm_simd128__)
  1951. #define GGML_SIMD
  1952. // F32 WASM
  1953. #define GGML_F32_STEP 16
  1954. #define GGML_F32_EPR 4
  1955. #define GGML_F32x4 v128_t
  1956. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1957. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1958. #define GGML_F32x4_LOAD wasm_v128_load
  1959. #define GGML_F32x4_STORE wasm_v128_store
  1960. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1961. #define GGML_F32x4_ADD wasm_f32x4_add
  1962. #define GGML_F32x4_MUL wasm_f32x4_mul
  1963. #define GGML_F32x4_REDUCE(res, x) \
  1964. { \
  1965. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1966. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1967. } \
  1968. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1969. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1970. } \
  1971. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1972. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1973. } \
  1974. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1975. wasm_f32x4_extract_lane(x[0], 1) + \
  1976. wasm_f32x4_extract_lane(x[0], 2) + \
  1977. wasm_f32x4_extract_lane(x[0], 3); \
  1978. }
  1979. #define GGML_F32_VEC GGML_F32x4
  1980. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1981. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1982. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1983. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1984. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1985. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1986. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1987. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1988. // F16 WASM
  1989. #define GGML_F16_STEP 16
  1990. #define GGML_F16_EPR 4
  1991. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1992. float tmp[4];
  1993. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1994. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1995. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1996. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1997. return wasm_v128_load(tmp);
  1998. }
  1999. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  2000. float tmp[4];
  2001. wasm_v128_store(tmp, x);
  2002. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  2003. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  2004. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  2005. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  2006. }
  2007. #define GGML_F16x4 v128_t
  2008. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  2009. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  2010. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  2011. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  2012. #define GGML_F16x4_FMA GGML_F32x4_FMA
  2013. #define GGML_F16x4_ADD wasm_f32x4_add
  2014. #define GGML_F16x4_MUL wasm_f32x4_mul
  2015. #define GGML_F16x4_REDUCE(res, x) \
  2016. { \
  2017. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  2018. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  2019. } \
  2020. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  2021. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  2022. } \
  2023. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  2024. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  2025. } \
  2026. res = wasm_f32x4_extract_lane(x[0], 0) + \
  2027. wasm_f32x4_extract_lane(x[0], 1) + \
  2028. wasm_f32x4_extract_lane(x[0], 2) + \
  2029. wasm_f32x4_extract_lane(x[0], 3); \
  2030. }
  2031. #define GGML_F16_VEC GGML_F16x4
  2032. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  2033. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  2034. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  2035. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  2036. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  2037. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  2038. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  2039. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  2040. #elif defined(__SSE3__)
  2041. #define GGML_SIMD
  2042. // F32 SSE
  2043. #define GGML_F32_STEP 32
  2044. #define GGML_F32_EPR 4
  2045. #define GGML_F32x4 __m128
  2046. #define GGML_F32x4_ZERO _mm_setzero_ps()
  2047. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  2048. #define GGML_F32x4_LOAD _mm_loadu_ps
  2049. #define GGML_F32x4_STORE _mm_storeu_ps
  2050. #if defined(__FMA__)
  2051. // TODO: Does this work?
  2052. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  2053. #else
  2054. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  2055. #endif
  2056. #define GGML_F32x4_ADD _mm_add_ps
  2057. #define GGML_F32x4_MUL _mm_mul_ps
  2058. #define GGML_F32x4_REDUCE(res, x) \
  2059. { \
  2060. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  2061. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  2062. } \
  2063. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  2064. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  2065. } \
  2066. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  2067. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  2068. } \
  2069. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  2070. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  2071. }
  2072. // TODO: is this optimal ?
  2073. #define GGML_F32_VEC GGML_F32x4
  2074. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  2075. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  2076. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  2077. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  2078. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  2079. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  2080. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  2081. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  2082. // F16 SSE
  2083. #define GGML_F16_STEP 32
  2084. #define GGML_F16_EPR 4
  2085. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  2086. float tmp[4];
  2087. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  2088. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  2089. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  2090. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  2091. return _mm_loadu_ps(tmp);
  2092. }
  2093. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  2094. float arr[4];
  2095. _mm_storeu_ps(arr, y);
  2096. x[0] = GGML_FP32_TO_FP16(arr[0]);
  2097. x[1] = GGML_FP32_TO_FP16(arr[1]);
  2098. x[2] = GGML_FP32_TO_FP16(arr[2]);
  2099. x[3] = GGML_FP32_TO_FP16(arr[3]);
  2100. }
  2101. #define GGML_F32Cx4 __m128
  2102. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  2103. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  2104. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  2105. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  2106. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  2107. #define GGML_F32Cx4_ADD _mm_add_ps
  2108. #define GGML_F32Cx4_MUL _mm_mul_ps
  2109. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  2110. #define GGML_F16_VEC GGML_F32Cx4
  2111. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  2112. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  2113. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  2114. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  2115. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  2116. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  2117. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  2118. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  2119. #endif
  2120. // GGML_F32_ARR / GGML_F16_ARR
  2121. // number of registers to use per step
  2122. #ifdef GGML_SIMD
  2123. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  2124. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  2125. #endif
  2126. //
  2127. // fundamental operations
  2128. //
  2129. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2130. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2131. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2132. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2133. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  2134. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  2135. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  2136. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  2137. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2138. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  2139. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  2140. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  2141. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  2142. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  2143. #ifdef GGML_SIMD
  2144. float sumf = 0.0f;
  2145. const int np = (n & ~(GGML_F32_STEP - 1));
  2146. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  2147. GGML_F32_VEC ax[GGML_F32_ARR];
  2148. GGML_F32_VEC ay[GGML_F32_ARR];
  2149. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2150. for (int j = 0; j < GGML_F32_ARR; j++) {
  2151. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2152. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2153. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  2154. }
  2155. }
  2156. // reduce sum0..sum3 to sum0
  2157. GGML_F32_VEC_REDUCE(sumf, sum);
  2158. // leftovers
  2159. for (int i = np; i < n; ++i) {
  2160. sumf += x[i]*y[i];
  2161. }
  2162. #else
  2163. // scalar
  2164. ggml_float sumf = 0.0;
  2165. for (int i = 0; i < n; ++i) {
  2166. sumf += (ggml_float)(x[i]*y[i]);
  2167. }
  2168. #endif
  2169. *s = sumf;
  2170. }
  2171. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  2172. ggml_float sumf = 0.0;
  2173. #if defined(GGML_SIMD)
  2174. const int np = (n & ~(GGML_F16_STEP - 1));
  2175. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  2176. GGML_F16_VEC ax[GGML_F16_ARR];
  2177. GGML_F16_VEC ay[GGML_F16_ARR];
  2178. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2179. for (int j = 0; j < GGML_F16_ARR; j++) {
  2180. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  2181. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2182. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  2183. }
  2184. }
  2185. // reduce sum0..sum3 to sum0
  2186. GGML_F16_VEC_REDUCE(sumf, sum);
  2187. // leftovers
  2188. for (int i = np; i < n; ++i) {
  2189. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2190. }
  2191. #else
  2192. for (int i = 0; i < n; ++i) {
  2193. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2194. }
  2195. #endif
  2196. *s = sumf;
  2197. }
  2198. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2199. const int nb = n / QK8_0;
  2200. assert(n % QK8_0 == 0);
  2201. assert(nb % 2 == 0);
  2202. const block_q4_0 * restrict x = vx;
  2203. const block_q8_0 * restrict y = vy;
  2204. #if defined(__ARM_NEON)
  2205. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2206. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2207. for (int i = 0; i < nb; i += 2) {
  2208. const block_q4_0 * restrict x0 = &x[i + 0];
  2209. const block_q4_0 * restrict x1 = &x[i + 1];
  2210. const block_q8_0 * restrict y0 = &y[i + 0];
  2211. const block_q8_0 * restrict y1 = &y[i + 1];
  2212. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2213. const int8x16_t s8b = vdupq_n_s8(0x8);
  2214. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2215. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2216. // 4-bit -> 8-bit
  2217. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2218. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2219. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2220. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2221. // sub 8
  2222. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2223. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2224. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2225. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2226. // load y
  2227. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2228. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2229. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2230. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2231. // interleave
  2232. const int8x16_t v1_0ls = vuzp1q_s8(v1_0l, v1_0h);
  2233. const int8x16_t v1_0hs = vuzp2q_s8(v1_0l, v1_0h);
  2234. const int8x16_t v1_1ls = vuzp1q_s8(v1_1l, v1_1h);
  2235. const int8x16_t v1_1hs = vuzp2q_s8(v1_1l, v1_1h);
  2236. #if defined(__ARM_FEATURE_DOTPROD)
  2237. // dot product into int32x4_t
  2238. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls), v0_0hs, v1_0hs);
  2239. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls), v0_1hs, v1_1hs);
  2240. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  2241. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  2242. #else
  2243. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  2244. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  2245. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  2246. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  2247. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  2248. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  2249. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  2250. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  2251. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2252. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2253. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2254. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2255. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  2256. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  2257. #endif
  2258. }
  2259. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2260. #elif defined(__AVX2__)
  2261. // Initialize accumulator with zeros
  2262. __m256 acc = _mm256_setzero_ps();
  2263. // Main loop
  2264. for (int i = 0; i < nb; ++i) {
  2265. /* Compute combined scale for the block */
  2266. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2267. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2268. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2269. const __m256i off = _mm256_set1_epi8( 8 );
  2270. bx = _mm256_sub_epi8( bx, off );
  2271. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2272. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2273. /* Multiply q with scale and accumulate */
  2274. acc = _mm256_fmadd_ps( d, q, acc );
  2275. }
  2276. *s = hsum_float_8(acc);
  2277. #elif defined(__AVX__)
  2278. // Initialize accumulator with zeros
  2279. __m256 acc = _mm256_setzero_ps();
  2280. // Main loop
  2281. for (int i = 0; i < nb; ++i) {
  2282. // Compute combined scale for the block
  2283. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2284. __m128i i32[2];
  2285. for (int j = 0; j < 2; ++j) {
  2286. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  2287. __m128i bx = bytes_from_nibbles_16(x[i].qs + 8*j);
  2288. __m128i by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16*j));
  2289. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2290. const __m128i off = _mm_set1_epi8( 8 );
  2291. bx = _mm_sub_epi8( bx, off );
  2292. // Get absolute values of x vectors
  2293. const __m128i ax = _mm_sign_epi8(bx, bx);
  2294. // Sign the values of the y vectors
  2295. const __m128i sy = _mm_sign_epi8(by, bx);
  2296. // Perform multiplication and create 16-bit values
  2297. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  2298. const __m128i ones = _mm_set1_epi16(1);
  2299. i32[j] = _mm_madd_epi16(ones, dot);
  2300. }
  2301. // Convert int32_t to float
  2302. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  2303. // Apply the scale, and accumulate
  2304. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2305. }
  2306. *s = hsum_float_8(acc);
  2307. #else
  2308. // scalar
  2309. float sumf = 0.0;
  2310. for (int i = 0; i < nb; i++) {
  2311. const float d0 = x[i].d;
  2312. const float d1 = y[i].d;
  2313. const uint8_t * restrict p0 = x[i].qs;
  2314. const int8_t * restrict p1 = y[i].qs;
  2315. int sumi = 0;
  2316. for (int j = 0; j < QK8_0/2; j++) {
  2317. const uint8_t v0 = p0[j];
  2318. const int i0 = (int8_t) (v0 & 0x0F) - 8;
  2319. const int i1 = (int8_t) (v0 >> 4) - 8;
  2320. const int i2 = p1[2*j + 0];
  2321. const int i3 = p1[2*j + 1];
  2322. sumi += i0*i2 + i1*i3;
  2323. }
  2324. sumf += d0*d1*sumi;
  2325. }
  2326. *s = sumf;
  2327. #endif
  2328. }
  2329. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2330. const int nb = n / QK8_1;
  2331. assert(n % QK8_1 == 0);
  2332. assert(nb % 2 == 0);
  2333. const block_q4_1 * restrict x = vx;
  2334. const block_q8_1 * restrict y = vy;
  2335. // TODO: add AVX / WASM SIMD / etc
  2336. #if defined(__ARM_NEON)
  2337. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2338. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2339. float summs = 0;
  2340. for (int i = 0; i < nb; i += 2) {
  2341. const block_q4_1 * restrict x0 = &x[i + 0];
  2342. const block_q4_1 * restrict x1 = &x[i + 1];
  2343. const block_q8_1 * restrict y0 = &y[i + 0];
  2344. const block_q8_1 * restrict y1 = &y[i + 1];
  2345. summs += x0->m * (y0->s0 + y0->s1) + x1->m * (y1->s0 + y1->s1);
  2346. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2347. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2348. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2349. // 4-bit -> 8-bit
  2350. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2351. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2352. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2353. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2354. // interleave
  2355. const int8x16_t v0_0lz = vzip1q_s8(v0_0l, v0_0h);
  2356. const int8x16_t v0_0hz = vzip2q_s8(v0_0l, v0_0h);
  2357. const int8x16_t v0_1lz = vzip1q_s8(v0_1l, v0_1h);
  2358. const int8x16_t v0_1hz = vzip2q_s8(v0_1l, v0_1h);
  2359. // load y
  2360. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2361. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2362. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2363. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2364. #if defined(__ARM_FEATURE_DOTPROD)
  2365. // dot product into int32x4_t
  2366. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l), v0_0hz, v1_0h);
  2367. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l), v0_1hz, v1_1h);
  2368. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  2369. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  2370. #else
  2371. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2372. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2373. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2374. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2375. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2376. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2377. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2378. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2379. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2380. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2381. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2382. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2383. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  2384. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  2385. #endif
  2386. }
  2387. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2388. #elif defined(__AVX2__)
  2389. // Initialize accumulator with zeros
  2390. __m256 acc = _mm256_setzero_ps();
  2391. float summs = 0;
  2392. // Main loop
  2393. for (int i = 0; i < nb; ++i) {
  2394. const float * d0 = &x[i].d;
  2395. const float * d1 = &y[i].d;
  2396. summs += x[i].m * (y[i].s0 + y[i].s1);
  2397. const __m256 d0v = _mm256_broadcast_ss( d0 );
  2398. const __m256 d1v = _mm256_broadcast_ss( d1 );
  2399. // Compute combined scales
  2400. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2401. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2402. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2403. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2404. const __m256 xy = mul_sum_i8_pairs_float(bx, by);
  2405. // Accumulate d0*d1*x*y
  2406. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2407. }
  2408. *s = hsum_float_8(acc) + summs;
  2409. #else
  2410. // scalar
  2411. float sumf = 0.0;
  2412. for (int i = 0; i < nb; i++) {
  2413. const float d0 = x[i].d;
  2414. const float m0 = x[i].m;
  2415. const float d1 = y[i].d;
  2416. const uint8_t * restrict p0 = x[i].qs;
  2417. const int8_t * restrict p1 = y[i].qs;
  2418. // TODO: this is very slow ..
  2419. for (int j = 0; j < QK8_1/2; j++) {
  2420. const uint8_t v0 = p0[j];
  2421. const float f0 = d0*(v0 & 0x0F) + m0;
  2422. const float f1 = d0*(v0 >> 4) + m0;
  2423. const float f2 = d1*p1[2*j + 0];
  2424. const float f3 = d1*p1[2*j + 1];
  2425. sumf += f0*f2 + f1*f3;
  2426. }
  2427. }
  2428. *s = sumf;
  2429. #endif
  2430. }
  2431. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2432. const int nb = n / QK8_0;
  2433. assert(n % QK8_0 == 0);
  2434. assert(nb % 2 == 0);
  2435. assert(QK8_0 == 2*QK4_2);
  2436. const block_q4_2 * restrict x = vx;
  2437. const block_q8_0 * restrict y = vy;
  2438. #if defined(__ARM_NEON)
  2439. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2440. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2441. for (int i = 0; i < nb; i += 2) {
  2442. const block_q4_2 * restrict x0_0 = &x[2*(i + 0) + 0];
  2443. const block_q4_2 * restrict x0_1 = &x[2*(i + 0) + 1];
  2444. const block_q4_2 * restrict x1_0 = &x[2*(i + 1) + 0];
  2445. const block_q4_2 * restrict x1_1 = &x[2*(i + 1) + 1];
  2446. const block_q8_0 * restrict y0 = &y[i + 0];
  2447. const block_q8_0 * restrict y1 = &y[i + 1];
  2448. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2449. const int8x16_t s8b = vdupq_n_s8(0x8);
  2450. const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs));
  2451. const uint8x16_t v0_1 = vcombine_u8(vld1_u8(x1_0->qs), vld1_u8(x1_1->qs));
  2452. // 4-bit -> 8-bit
  2453. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2454. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2455. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2456. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2457. // sub 8
  2458. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2459. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2460. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2461. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2462. // interleave
  2463. const int8x16_t v0_0lz = vzip1q_s8(v0_0ls, v0_0hs);
  2464. const int8x16_t v0_0hz = vzip2q_s8(v0_0ls, v0_0hs);
  2465. const int8x16_t v0_1lz = vzip1q_s8(v0_1ls, v0_1hs);
  2466. const int8x16_t v0_1hz = vzip2q_s8(v0_1ls, v0_1hs);
  2467. // load y
  2468. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2469. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2470. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2471. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2472. #if defined(__ARM_FEATURE_DOTPROD)
  2473. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2474. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l)), GGML_FP16_TO_FP32(x0_0->d)),
  2475. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0hz, v1_0h)), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2476. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2477. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l)), GGML_FP16_TO_FP32(x1_0->d)),
  2478. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1hz, v1_1h)), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2479. #else
  2480. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2481. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2482. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2483. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2484. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2485. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2486. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2487. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2488. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2489. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2490. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2491. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2492. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2493. vmulq_n_f32(vcvtq_f32_s32(pl0), GGML_FP16_TO_FP32(x0_0->d)),
  2494. vmulq_n_f32(vcvtq_f32_s32(ph0), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2495. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2496. vmulq_n_f32(vcvtq_f32_s32(pl1), GGML_FP16_TO_FP32(x1_0->d)),
  2497. vmulq_n_f32(vcvtq_f32_s32(ph1), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2498. #endif
  2499. }
  2500. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2501. #elif defined(__AVX2__)
  2502. // Initialize accumulator with zeros
  2503. __m256 acc = _mm256_setzero_ps();
  2504. // Main loop
  2505. for (int i = 0; i < nb; i++) {
  2506. /* Compute combined scale for the block */
  2507. const __m128 d0 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 0].d));
  2508. const __m128 d1 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 1].d));
  2509. const __m256 d = _mm256_mul_ps(_mm256_set_m128(d1, d0), _mm256_broadcast_ss(&y[i].d));
  2510. __m128i bx0 = bytes_from_nibbles_16(x[2*i + 0].qs);
  2511. __m128i bx1 = bytes_from_nibbles_16(x[2*i + 1].qs);
  2512. __m256i bx = _mm256_set_m128i(bx1, bx0);
  2513. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2514. const __m256i off = _mm256_set1_epi8(8);
  2515. bx = _mm256_sub_epi8(bx, off);
  2516. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2517. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2518. /* Multiply q with scale and accumulate */
  2519. acc = _mm256_fmadd_ps(d, q, acc);
  2520. }
  2521. *s = hsum_float_8(acc);
  2522. #else
  2523. // scalar
  2524. float sumf = 0.0;
  2525. for (int i = 0; i < nb; i++) {
  2526. const uint8_t * restrict x0 = x[2*i + 0].qs;
  2527. const uint8_t * restrict x1 = x[2*i + 1].qs;
  2528. const int8_t * restrict y0 = y[i].qs;
  2529. const float d0 = GGML_FP16_TO_FP32(x[2*i + 0].d);
  2530. const float d1 = GGML_FP16_TO_FP32(x[2*i + 1].d);
  2531. int sumi_0 = 0;
  2532. int sumi_1 = 0;
  2533. for (int j = 0; j < QK8_0/4; j++) {
  2534. const uint8_t v0 = x0[j];
  2535. const uint8_t v1 = x1[j];
  2536. const int i0_0 = (int8_t) (v0 & 0x0F) - 8;
  2537. const int i1_0 = (int8_t) (v0 >> 4) - 8;
  2538. const int i0_1 = (int8_t) (v1 & 0x0F) - 8;
  2539. const int i1_1 = (int8_t) (v1 >> 4) - 8;
  2540. const int i2_0 = y0[2*j + 0];
  2541. const int i3_0 = y0[2*j + 1];
  2542. const int i2_1 = y0[2*(j + QK8_0/4) + 0];
  2543. const int i3_1 = y0[2*(j + QK8_0/4) + 1];
  2544. sumi_0 += i0_0*i2_0 + i1_0*i3_0;
  2545. sumi_1 += i0_1*i2_1 + i1_1*i3_1;
  2546. }
  2547. sumf += (d0 * y[i].d) * sumi_0;
  2548. sumf += (d1 * y[i].d) * sumi_1;
  2549. }
  2550. *s = sumf;
  2551. #endif
  2552. }
  2553. static void ggml_vec_dot_q4_3_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2554. const int nb = n / QK8_1;
  2555. assert(n % QK8_1 == 0);
  2556. assert(nb % 2 == 0);
  2557. assert(QK8_1 == 2*QK4_3);
  2558. const block_q4_3 * restrict x = vx;
  2559. const block_q8_1 * restrict y = vy;
  2560. #if defined(__ARM_NEON)
  2561. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2562. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2563. float summs0 = 0.0f;
  2564. float summs1 = 0.0f;
  2565. for (int i = 0; i < nb; ++i) {
  2566. const block_q4_3 * restrict x0_0 = &x[2*(i + 0) + 0];
  2567. const block_q4_3 * restrict x0_1 = &x[2*(i + 0) + 1];
  2568. const block_q8_1 * restrict y0 = &y[i + 0];
  2569. summs0 += GGML_FP16_TO_FP32(x0_0->m) * y0->s0;
  2570. summs1 += GGML_FP16_TO_FP32(x0_1->m) * y0->s1;
  2571. const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs));
  2572. // 4-bit -> 8-bit
  2573. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, vdupq_n_u8(0x0F)));
  2574. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2575. // interleave
  2576. const int8x16_t v0_0lz = vzip1q_s8(v0_0l, v0_0h);
  2577. const int8x16_t v0_0hz = vzip2q_s8(v0_0l, v0_0h);
  2578. // load y
  2579. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2580. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2581. const float x0_0d = GGML_FP16_TO_FP32(x0_0->d);
  2582. const float x0_1d = GGML_FP16_TO_FP32(x0_1->d);
  2583. #if defined(__ARM_FEATURE_DOTPROD)
  2584. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l)), x0_0d*y0->d);
  2585. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0hz, v1_0h)), x0_1d*y0->d);
  2586. #else
  2587. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2588. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2589. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2590. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2591. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2592. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2593. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(pl0), x0_0d*y0->d);
  2594. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(ph0), x0_1d*y0->d);
  2595. #endif
  2596. }
  2597. *s = vaddvq_f32(vaddq_f32(sumv0, sumv1)) + summs0 + summs1;
  2598. #elif defined(__AVX2__)
  2599. // Initialize accumulator with zeros
  2600. __m256 acc = _mm256_setzero_ps();
  2601. float summs = 0.0f;
  2602. // Main loop
  2603. for (int i = 0; i < nb; i++) {
  2604. const __m128 d0 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 0].d));
  2605. const __m128 d1 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 1].d));
  2606. const __m256 dx = _mm256_set_m128(d1, d0);
  2607. summs += GGML_FP16_TO_FP32(x[2*i + 0].m) * y[i].s0
  2608. + GGML_FP16_TO_FP32(x[2*i + 1].m) * y[i].s1;
  2609. const __m128i bx0 = bytes_from_nibbles_16(x[2*i + 0].qs);
  2610. const __m128i bx1 = bytes_from_nibbles_16(x[2*i + 1].qs);
  2611. const __m256i bx = _mm256_set_m128i(bx1, bx0);
  2612. const __m256 dy = _mm256_broadcast_ss(&y[i].d);
  2613. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2614. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2615. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2616. }
  2617. *s = hsum_float_8(acc) + summs;
  2618. #else
  2619. // scalar
  2620. float sumf = 0.0;
  2621. for (int i = 0; i < nb; i++) {
  2622. const uint8_t * restrict x0 = x[2*i + 0].qs;
  2623. const uint8_t * restrict x1 = x[2*i + 1].qs;
  2624. const int8_t * restrict y0 = y[i].qs;
  2625. const float d0 = GGML_FP16_TO_FP32(x[2*i + 0].d);
  2626. const float m0 = GGML_FP16_TO_FP32(x[2*i + 0].m);
  2627. const float d1 = GGML_FP16_TO_FP32(x[2*i + 1].d);
  2628. const float m1 = GGML_FP16_TO_FP32(x[2*i + 1].m);
  2629. int sxy_0 = 0;
  2630. int sxy_1 = 0;
  2631. for (int j = 0; j < QK8_1/4; j++) {
  2632. const uint8_t v0 = x0[j];
  2633. const uint8_t v1 = x1[j];
  2634. const int x0_0 = v0 & 0x0F;
  2635. const int x1_0 = v0 >> 4;
  2636. const int x0_1 = v1 & 0x0F;
  2637. const int x1_1 = v1 >> 4;
  2638. const int y0_0 = y0[2*j + 0];
  2639. const int y1_0 = y0[2*j + 1];
  2640. const int y0_1 = y0[2*(j + QK8_1/4) + 0];
  2641. const int y1_1 = y0[2*(j + QK8_1/4) + 1];
  2642. sxy_0 += x0_0*y0_0 + x1_0*y1_0;
  2643. sxy_1 += x0_1*y0_1 + x1_1*y1_1;
  2644. }
  2645. sumf += (d0*sxy_0 + d1*sxy_1)*y[i].d + m0*y[i].s0 + m1*y[i].s1;
  2646. }
  2647. *s = sumf;
  2648. #endif
  2649. }
  2650. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2651. const int nb = n / QK8_0;
  2652. assert(n % QK8_0 == 0);
  2653. assert(nb % 2 == 0);
  2654. assert(QK8_0 == QK5_0);
  2655. const block_q5_0 * restrict x = vx;
  2656. const block_q8_0 * restrict y = vy;
  2657. #if defined(__ARM_NEON)
  2658. float32x4_t sumv = vdupq_n_f32(0.0f);
  2659. uint64_t tmp[4];
  2660. for (int i = 0; i < nb; ++i) {
  2661. const block_q5_0 * restrict x0 = &x[i];
  2662. const block_q8_0 * restrict y0 = &y[i];
  2663. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2664. const int8x16_t s16b = vdupq_n_s8(0x10);
  2665. // extract the 5th bit
  2666. uint32_t qh;
  2667. memcpy(&qh, x0->qh, sizeof(qh));
  2668. tmp[0] = table_b2b_u[(qh >> 0) & 0xFF];
  2669. tmp[1] = table_b2b_u[(qh >> 8) & 0xFF];
  2670. tmp[2] = table_b2b_u[(qh >> 16) & 0xFF];
  2671. tmp[3] = table_b2b_u[(qh >> 24) ];
  2672. const int8x16_t qhl = vld1q_s8((const int8_t *)(tmp + 0));
  2673. const int8x16_t qhh = vld1q_s8((const int8_t *)(tmp + 2));
  2674. const uint8x16_t v0 = vld1q_u8(x0->qs);
  2675. // 4-bit -> 8-bit
  2676. const int8x16_t v0l = vreinterpretq_s8_u8(vandq_u8 (v0, m4b));
  2677. const int8x16_t v0h = vreinterpretq_s8_u8(vshrq_n_u8(v0, 4));
  2678. // interleave
  2679. const int8x16_t v0lz = vzip1q_s8(v0l, v0h);
  2680. const int8x16_t v0hz = vzip2q_s8(v0l, v0h);
  2681. // add high bit and sub 16
  2682. const int8x16_t v0lf = vsubq_s8(vorrq_s8(v0lz, qhl), s16b);
  2683. const int8x16_t v0hf = vsubq_s8(vorrq_s8(v0hz, qhh), s16b);
  2684. // load y
  2685. const int8x16_t v1l = vld1q_s8(y0->qs);
  2686. const int8x16_t v1h = vld1q_s8(y0->qs + 16);
  2687. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2688. #if defined(__ARM_FEATURE_DOTPROD)
  2689. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(
  2690. vdotq_s32(vdupq_n_s32(0), v0lf, v1l),
  2691. vdotq_s32(vdupq_n_s32(0), v0hf, v1h))), x0d*y0->d);
  2692. #else
  2693. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0lf), vget_low_s8 (v1l));
  2694. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0lf), vget_high_s8(v1l));
  2695. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0hf), vget_low_s8 (v1h));
  2696. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0hf), vget_high_s8(v1h));
  2697. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2698. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2699. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d);
  2700. #endif
  2701. }
  2702. *s = vaddvq_f32(sumv);
  2703. #elif defined(__AVX2__)
  2704. // Initialize accumulator with zeros
  2705. __m256 acc = _mm256_setzero_ps();
  2706. // Main loop
  2707. for (int i = 0; i < nb; i++) {
  2708. /* Compute combined scale for the block */
  2709. const __m256 d = _mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d)), _mm256_broadcast_ss(&y[i].d));
  2710. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2711. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2712. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2713. bx = _mm256_or_si256(bx, bxhi);
  2714. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2715. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2716. /* Multiply q with scale and accumulate */
  2717. acc = _mm256_fmadd_ps(d, q, acc);
  2718. }
  2719. *s = hsum_float_8(acc);
  2720. #else
  2721. // scalar
  2722. float sumf = 0.0;
  2723. for (int i = 0; i < nb; i++) {
  2724. const uint8_t * restrict x0 = x[i].qs;
  2725. const int8_t * restrict y0 = y[i].qs;
  2726. uint32_t qh;
  2727. memcpy(&qh, x[i].qh, sizeof(qh));
  2728. const float d = GGML_FP16_TO_FP32(x[i].d);
  2729. int sxy = 0;
  2730. for (int j = 0; j < QK8_0/2; j++) {
  2731. const uint8_t v0 = x0[j];
  2732. const int x0_0h = ((qh & (1 << (2*j + 0))) >> (2*j + 0)) << 4;
  2733. const int x1_0h = ((qh & (1 << (2*j + 1))) >> (2*j + 1)) << 4;
  2734. const int x0_0 = ((v0 & 0x0F) | x0_0h) - 16;
  2735. const int x1_0 = ((v0 >> 4) | x1_0h) - 16;
  2736. const int y0_0 = y0[2*j + 0];
  2737. const int y1_0 = y0[2*j + 1];
  2738. sxy += x0_0*y0_0 + x1_0*y1_0;
  2739. }
  2740. sumf += (d*sxy)*y[i].d;
  2741. }
  2742. *s = sumf;
  2743. #endif
  2744. }
  2745. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2746. const int nb = n / QK8_1;
  2747. assert(n % QK8_1 == 0);
  2748. assert(nb % 2 == 0);
  2749. assert(QK8_1 == QK5_1);
  2750. const block_q5_1 * restrict x = vx;
  2751. const block_q8_1 * restrict y = vy;
  2752. #if defined(__ARM_NEON)
  2753. float32x4_t sumv = vdupq_n_f32(0.0f);
  2754. float summs = 0.0f;
  2755. uint64_t tmp[4];
  2756. for (int i = 0; i < nb; ++i) {
  2757. const block_q5_1 * restrict x0 = &x[i];
  2758. const block_q8_1 * restrict y0 = &y[i];
  2759. summs += GGML_FP16_TO_FP32(x0->m) * (y0->s0 + y0->s1);
  2760. // extract the 5th bit
  2761. uint32_t qh;
  2762. memcpy(&qh, x0->qh, sizeof(qh));
  2763. tmp[0] = table_b2b_u[(qh >> 0) & 0xFF];
  2764. tmp[1] = table_b2b_u[(qh >> 8) & 0xFF];
  2765. tmp[2] = table_b2b_u[(qh >> 16) & 0xFF];
  2766. tmp[3] = table_b2b_u[(qh >> 24) ];
  2767. const int8x16_t qhl = vld1q_s8((const int8_t *)(tmp + 0));
  2768. const int8x16_t qhh = vld1q_s8((const int8_t *)(tmp + 2));
  2769. const uint8x16_t v0 = vld1q_u8(x0->qs);
  2770. // 4-bit -> 8-bit
  2771. const int8x16_t v0l = vreinterpretq_s8_u8(vandq_u8 (v0, vdupq_n_u8(0x0F)));
  2772. const int8x16_t v0h = vreinterpretq_s8_u8(vshrq_n_u8(v0, 4));
  2773. // interleave
  2774. const int8x16_t v0lz = vzip1q_s8(v0l, v0h);
  2775. const int8x16_t v0hz = vzip2q_s8(v0l, v0h);
  2776. // add
  2777. const int8x16_t v0lf = vorrq_s8(v0lz, qhl);
  2778. const int8x16_t v0hf = vorrq_s8(v0hz, qhh);
  2779. // load y
  2780. const int8x16_t v1l = vld1q_s8(y0->qs);
  2781. const int8x16_t v1h = vld1q_s8(y0->qs + 16);
  2782. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2783. #if defined(__ARM_FEATURE_DOTPROD)
  2784. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(
  2785. vdotq_s32(vdupq_n_s32(0), v0lf, v1l),
  2786. vdotq_s32(vdupq_n_s32(0), v0hf, v1h))), x0d*y0->d);
  2787. #else
  2788. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0lf), vget_low_s8 (v1l));
  2789. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0lf), vget_high_s8(v1l));
  2790. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0hf), vget_low_s8 (v1h));
  2791. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0hf), vget_high_s8(v1h));
  2792. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2793. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2794. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d);
  2795. #endif
  2796. }
  2797. *s = vaddvq_f32(sumv) + summs;
  2798. #elif defined(__AVX2__)
  2799. // Initialize accumulator with zeros
  2800. __m256 acc = _mm256_setzero_ps();
  2801. float summs = 0.0f;
  2802. // Main loop
  2803. for (int i = 0; i < nb; i++) {
  2804. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2805. summs += GGML_FP16_TO_FP32(x[i].m) * (y[i].s0 + y[i].s1);
  2806. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2807. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2808. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2809. bx = _mm256_or_si256(bx, bxhi);
  2810. const __m256 dy = _mm256_broadcast_ss(&y[i].d);
  2811. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2812. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2813. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2814. }
  2815. *s = hsum_float_8(acc) + summs;
  2816. #else
  2817. float sumf = 0.0;
  2818. for (int i = 0; i < nb; i++) {
  2819. const uint8_t * restrict x0 = x[i].qs;
  2820. const int8_t * restrict y0 = y[i].qs;
  2821. uint32_t qh;
  2822. memcpy(&qh, x[i].qh, sizeof(qh));
  2823. const float d = GGML_FP16_TO_FP32(x[i].d);
  2824. const float m = GGML_FP16_TO_FP32(x[i].m);
  2825. int sxy = 0;
  2826. for (int j = 0; j < QK8_1/2; j++) {
  2827. const uint8_t v0 = x0[j];
  2828. const int x0_0h = ((qh & (1 << (2*j + 0))) >> (2*j + 0)) << 4;
  2829. const int x1_0h = ((qh & (1 << (2*j + 1))) >> (2*j + 1)) << 4;
  2830. const int x0_0 = (v0 & 0x0F) | x0_0h;
  2831. const int x1_0 = (v0 >> 4) | x1_0h;
  2832. const int y0_0 = y0[2*j + 0];
  2833. const int y1_0 = y0[2*j + 1];
  2834. sxy += x0_0*y0_0 + x1_0*y1_0;
  2835. }
  2836. sumf += (d*sxy)*y[i].d + m*(y[i].s0 + y[i].s1);
  2837. }
  2838. *s = sumf;
  2839. #endif
  2840. }
  2841. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2842. const int nb = n / QK8_0;
  2843. assert(n % QK8_0 == 0);
  2844. assert(nb % 2 == 0);
  2845. assert(QK8_0 == QK8_0);
  2846. const block_q8_0 * restrict x = vx;
  2847. const block_q8_0 * restrict y = vy;
  2848. #if defined(__ARM_NEON)
  2849. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2850. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2851. for (int i = 0; i < nb; i += 2) {
  2852. const block_q8_0 * restrict x0 = &x[i + 0];
  2853. const block_q8_0 * restrict x1 = &x[i + 1];
  2854. const block_q8_0 * restrict y0 = &y[i + 0];
  2855. const block_q8_0 * restrict y1 = &y[i + 1];
  2856. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2857. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2858. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2859. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2860. // load y
  2861. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2862. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2863. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2864. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2865. #if defined(__ARM_FEATURE_DOTPROD)
  2866. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2867. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2868. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), x0->d*y0->d);
  2869. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2870. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2871. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), x1->d*y1->d);
  2872. #else
  2873. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2874. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2875. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2876. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2877. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2878. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2879. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2880. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2881. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2882. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2883. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2884. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2885. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), x0->d*y0->d);
  2886. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), x1->d*y1->d);
  2887. #endif
  2888. }
  2889. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2890. #elif defined(__AVX2__)
  2891. // Initialize accumulator with zeros
  2892. __m256 acc = _mm256_setzero_ps();
  2893. // Main loop
  2894. for (int i = 0; i < nb; ++i) {
  2895. // Compute combined scale for the block
  2896. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2897. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2898. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2899. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2900. // Multiply q with scale and accumulate
  2901. acc = _mm256_fmadd_ps( d, q, acc );
  2902. }
  2903. *s = hsum_float_8(acc);
  2904. #else
  2905. // scalar
  2906. float sumf = 0.0;
  2907. for (int i = 0; i < nb; i++) {
  2908. const int8_t * restrict x0 = x[i].qs;
  2909. const int8_t * restrict y0 = y[i].qs;
  2910. int sumi = 0;
  2911. for (int j = 0; j < QK8_0; j++) {
  2912. const int v0 = x0[j];
  2913. const int v1 = y0[j];
  2914. sumi += v0*v1;
  2915. }
  2916. sumf += (x[i].d*y[i].d)*sumi;
  2917. }
  2918. *s = sumf;
  2919. #endif
  2920. }
  2921. // compute GGML_VEC_DOT_UNROLL dot products at once
  2922. // xs - x row stride in bytes
  2923. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2924. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2925. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2926. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2927. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2928. }
  2929. #if defined(GGML_SIMD)
  2930. const int np = (n & ~(GGML_F16_STEP - 1));
  2931. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2932. GGML_F16_VEC ax[GGML_F16_ARR];
  2933. GGML_F16_VEC ay[GGML_F16_ARR];
  2934. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2935. for (int j = 0; j < GGML_F16_ARR; j++) {
  2936. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2937. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2938. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2939. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2940. }
  2941. }
  2942. }
  2943. // reduce sum0..sum3 to sum0
  2944. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2945. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2946. }
  2947. // leftovers
  2948. for (int i = np; i < n; ++i) {
  2949. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2950. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2951. }
  2952. }
  2953. #else
  2954. for (int i = 0; i < n; ++i) {
  2955. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2956. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2957. }
  2958. }
  2959. #endif
  2960. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2961. s[i] = sumf[i];
  2962. }
  2963. }
  2964. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2965. #if defined(GGML_SIMD)
  2966. const int np = (n & ~(GGML_F32_STEP - 1));
  2967. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2968. GGML_F32_VEC ax[GGML_F32_ARR];
  2969. GGML_F32_VEC ay[GGML_F32_ARR];
  2970. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2971. for (int j = 0; j < GGML_F32_ARR; j++) {
  2972. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2973. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2974. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2975. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2976. }
  2977. }
  2978. // leftovers
  2979. for (int i = np; i < n; ++i) {
  2980. y[i] += x[i]*v;
  2981. }
  2982. #else
  2983. // scalar
  2984. for (int i = 0; i < n; ++i) {
  2985. y[i] += x[i]*v;
  2986. }
  2987. #endif
  2988. }
  2989. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2990. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2991. #if defined(GGML_SIMD)
  2992. const int np = (n & ~(GGML_F32_STEP - 1));
  2993. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2994. GGML_F32_VEC ay[GGML_F32_ARR];
  2995. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2996. for (int j = 0; j < GGML_F32_ARR; j++) {
  2997. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2998. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2999. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  3000. }
  3001. }
  3002. // leftovers
  3003. for (int i = np; i < n; ++i) {
  3004. y[i] *= v;
  3005. }
  3006. #else
  3007. // scalar
  3008. for (int i = 0; i < n; ++i) {
  3009. y[i] *= v;
  3010. }
  3011. #endif
  3012. }
  3013. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  3014. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  3015. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  3016. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  3017. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  3018. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  3019. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  3020. static const float GELU_COEF_A = 0.044715f;
  3021. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  3022. inline static float ggml_gelu_f32(float x) {
  3023. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  3024. }
  3025. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  3026. const uint16_t * i16 = (const uint16_t *) x;
  3027. for (int i = 0; i < n; ++i) {
  3028. y[i] = table_gelu_f16[i16[i]];
  3029. }
  3030. }
  3031. #ifdef GGML_GELU_FP16
  3032. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  3033. uint16_t t;
  3034. for (int i = 0; i < n; ++i) {
  3035. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3036. memcpy(&t, &fp16, sizeof(uint16_t));
  3037. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  3038. }
  3039. }
  3040. #else
  3041. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  3042. for (int i = 0; i < n; ++i) {
  3043. y[i] = ggml_gelu_f32(x[i]);
  3044. }
  3045. }
  3046. #endif
  3047. // Sigmoid Linear Unit (SiLU) function
  3048. inline static float ggml_silu_f32(float x) {
  3049. return x/(1.0f + expf(-x));
  3050. }
  3051. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  3052. const uint16_t * i16 = (const uint16_t *) x;
  3053. for (int i = 0; i < n; ++i) {
  3054. y[i] = table_silu_f16[i16[i]];
  3055. }
  3056. }
  3057. #ifdef GGML_SILU_FP16
  3058. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  3059. uint16_t t;
  3060. for (int i = 0; i < n; ++i) {
  3061. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3062. memcpy(&t, &fp16, sizeof(uint16_t));
  3063. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  3064. }
  3065. }
  3066. #else
  3067. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  3068. for (int i = 0; i < n; ++i) {
  3069. y[i] = ggml_silu_f32(x[i]);
  3070. }
  3071. }
  3072. #endif
  3073. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  3074. #ifndef GGML_USE_ACCELERATE
  3075. ggml_float sum = 0.0;
  3076. for (int i = 0; i < n; ++i) {
  3077. sum += (ggml_float)x[i];
  3078. }
  3079. *s = sum;
  3080. #else
  3081. vDSP_sve(x, 1, s, n);
  3082. #endif
  3083. }
  3084. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  3085. ggml_float sum = 0.0;
  3086. for (int i = 0; i < n; ++i) {
  3087. sum += (ggml_float)x[i];
  3088. }
  3089. *s = sum;
  3090. }
  3091. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  3092. #ifndef GGML_USE_ACCELERATE
  3093. float max = -INFINITY;
  3094. for (int i = 0; i < n; ++i) {
  3095. max = MAX(max, x[i]);
  3096. }
  3097. *s = max;
  3098. #else
  3099. vDSP_maxv(x, 1, s, n);
  3100. #endif
  3101. }
  3102. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  3103. ggml_vec_norm_f32(n, s, x);
  3104. *s = 1.f/(*s);
  3105. }
  3106. //
  3107. // logging
  3108. //
  3109. #if (GGML_DEBUG >= 1)
  3110. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  3111. #else
  3112. #define GGML_PRINT_DEBUG(...)
  3113. #endif
  3114. #if (GGML_DEBUG >= 5)
  3115. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  3116. #else
  3117. #define GGML_PRINT_DEBUG_5(...)
  3118. #endif
  3119. #if (GGML_DEBUG >= 10)
  3120. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  3121. #else
  3122. #define GGML_PRINT_DEBUG_10(...)
  3123. #endif
  3124. #define GGML_PRINT(...) printf(__VA_ARGS__)
  3125. //
  3126. // data types
  3127. //
  3128. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  3129. [GGML_TYPE_F32] = 1,
  3130. [GGML_TYPE_F16] = 1,
  3131. [GGML_TYPE_Q4_0] = QK4_0,
  3132. [GGML_TYPE_Q4_1] = QK4_1,
  3133. [GGML_TYPE_Q4_2] = QK4_2,
  3134. [GGML_TYPE_Q4_3] = QK4_3,
  3135. [GGML_TYPE_Q5_0] = QK5_0,
  3136. [GGML_TYPE_Q5_1] = QK5_1,
  3137. [GGML_TYPE_Q8_0] = QK8_0,
  3138. [GGML_TYPE_Q8_1] = QK8_1,
  3139. [GGML_TYPE_I8] = 1,
  3140. [GGML_TYPE_I16] = 1,
  3141. [GGML_TYPE_I32] = 1,
  3142. };
  3143. static_assert(GGML_TYPE_COUNT == 13, "GGML_BLCK_SIZE is outdated");
  3144. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  3145. [GGML_TYPE_F32] = sizeof(float),
  3146. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  3147. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  3148. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  3149. [GGML_TYPE_Q4_2] = sizeof(block_q4_2),
  3150. [GGML_TYPE_Q4_3] = sizeof(block_q4_3),
  3151. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  3152. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  3153. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  3154. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  3155. [GGML_TYPE_I8] = sizeof(int8_t),
  3156. [GGML_TYPE_I16] = sizeof(int16_t),
  3157. [GGML_TYPE_I32] = sizeof(int32_t),
  3158. };
  3159. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_SIZE is outdated");
  3160. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  3161. [GGML_TYPE_F32] = "f32",
  3162. [GGML_TYPE_F16] = "f16",
  3163. [GGML_TYPE_Q4_0] = "q4_0",
  3164. [GGML_TYPE_Q4_1] = "q4_1",
  3165. [GGML_TYPE_Q4_2] = "q4_2",
  3166. [GGML_TYPE_Q4_3] = "q4_3",
  3167. [GGML_TYPE_Q5_0] = "q5_0",
  3168. [GGML_TYPE_Q5_1] = "q5_1",
  3169. [GGML_TYPE_Q8_0] = "q8_0",
  3170. [GGML_TYPE_Q8_1] = "q8_1",
  3171. [GGML_TYPE_I8] = "i8",
  3172. [GGML_TYPE_I16] = "i16",
  3173. [GGML_TYPE_I32] = "i32",
  3174. };
  3175. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_NAME is outdated");
  3176. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  3177. [GGML_TYPE_F32] = false,
  3178. [GGML_TYPE_F16] = false,
  3179. [GGML_TYPE_Q4_0] = true,
  3180. [GGML_TYPE_Q4_1] = true,
  3181. [GGML_TYPE_Q4_2] = true,
  3182. [GGML_TYPE_Q4_3] = true,
  3183. [GGML_TYPE_Q5_0] = true,
  3184. [GGML_TYPE_Q5_1] = true,
  3185. [GGML_TYPE_Q8_0] = true,
  3186. [GGML_TYPE_Q8_1] = true,
  3187. [GGML_TYPE_I8] = false,
  3188. [GGML_TYPE_I16] = false,
  3189. [GGML_TYPE_I32] = false,
  3190. };
  3191. static_assert(GGML_TYPE_COUNT == 13, "GGML_IS_QUANTIZED is outdated");
  3192. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  3193. "NONE",
  3194. "DUP",
  3195. "ADD",
  3196. "SUB",
  3197. "MUL",
  3198. "DIV",
  3199. "SQR",
  3200. "SQRT",
  3201. "SUM",
  3202. "MEAN",
  3203. "REPEAT",
  3204. "ABS",
  3205. "SGN",
  3206. "NEG",
  3207. "STEP",
  3208. "RELU",
  3209. "GELU",
  3210. "SILU",
  3211. "NORM",
  3212. "RMS_NORM",
  3213. "MUL_MAT",
  3214. "SCALE",
  3215. "CPY",
  3216. "CONT",
  3217. "RESHAPE",
  3218. "VIEW",
  3219. "PERMUTE",
  3220. "TRANSPOSE",
  3221. "GET_ROWS",
  3222. "DIAG_MASK_INF",
  3223. "SOFT_MAX",
  3224. "ROPE",
  3225. "CONV_1D_1S",
  3226. "CONV_1D_2S",
  3227. "FLASH_ATTN",
  3228. "FLASH_FF",
  3229. "MAP_UNARY",
  3230. "MAP_BINARY",
  3231. };
  3232. static_assert(GGML_OP_COUNT == 39, "GGML_OP_COUNT != 39");
  3233. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  3234. "none",
  3235. "x",
  3236. "x+y",
  3237. "x-y",
  3238. "x*y",
  3239. "x/y",
  3240. "x^2",
  3241. "√x",
  3242. "Σx",
  3243. "Σx/n",
  3244. "repeat(x)",
  3245. "abs(x)",
  3246. "sgn(x)",
  3247. "-x",
  3248. "step(x)",
  3249. "relu(x)",
  3250. "gelu(x)",
  3251. "silu(x)",
  3252. "norm(x)",
  3253. "rms_norm(x)",
  3254. "X*Y",
  3255. "x*v",
  3256. "x-\\>y",
  3257. "cont(x)",
  3258. "reshape(x)",
  3259. "view(x)",
  3260. "permute(x)",
  3261. "transpose(x)",
  3262. "get_rows(x)",
  3263. "diag_mask_inf(x)",
  3264. "soft_max(x)",
  3265. "rope(x)",
  3266. "conv_1d_1s(x)",
  3267. "conv_1d_2s(x)",
  3268. "flash_attn(x)",
  3269. "flash_ff(x)",
  3270. "f(x)",
  3271. "f(x,y)",
  3272. };
  3273. static_assert(GGML_OP_COUNT == 39, "GGML_OP_COUNT != 39");
  3274. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3275. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3276. //
  3277. // ggml context
  3278. //
  3279. struct ggml_context {
  3280. size_t mem_size;
  3281. void * mem_buffer;
  3282. bool mem_buffer_owned;
  3283. bool no_alloc;
  3284. int n_objects;
  3285. struct ggml_object * objects_begin;
  3286. struct ggml_object * objects_end;
  3287. struct ggml_scratch scratch;
  3288. struct ggml_scratch scratch_save;
  3289. };
  3290. struct ggml_context_container {
  3291. bool used;
  3292. struct ggml_context context;
  3293. };
  3294. //
  3295. // compute types
  3296. //
  3297. enum ggml_task_type {
  3298. GGML_TASK_INIT = 0,
  3299. GGML_TASK_COMPUTE,
  3300. GGML_TASK_FINALIZE,
  3301. };
  3302. struct ggml_compute_params {
  3303. enum ggml_task_type type;
  3304. int ith, nth;
  3305. // work buffer for all threads
  3306. size_t wsize;
  3307. void * wdata;
  3308. };
  3309. //
  3310. // ggml state
  3311. //
  3312. struct ggml_state {
  3313. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3314. };
  3315. // global state
  3316. static struct ggml_state g_state;
  3317. static atomic_int g_state_barrier = 0;
  3318. // barrier via spin lock
  3319. inline static void ggml_critical_section_start(void) {
  3320. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3321. while (processing > 0) {
  3322. // wait for other threads to finish
  3323. atomic_fetch_sub(&g_state_barrier, 1);
  3324. sched_yield(); // TODO: reconsider this
  3325. processing = atomic_fetch_add(&g_state_barrier, 1);
  3326. }
  3327. }
  3328. // TODO: make this somehow automatically executed
  3329. // some sort of "sentry" mechanism
  3330. inline static void ggml_critical_section_end(void) {
  3331. atomic_fetch_sub(&g_state_barrier, 1);
  3332. }
  3333. ////////////////////////////////////////////////////////////////////////////////
  3334. void ggml_print_object(const struct ggml_object * obj) {
  3335. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  3336. obj->offs, obj->size, (const void *) obj->next);
  3337. }
  3338. void ggml_print_objects(const struct ggml_context * ctx) {
  3339. struct ggml_object * obj = ctx->objects_begin;
  3340. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3341. while (obj != NULL) {
  3342. ggml_print_object(obj);
  3343. obj = obj->next;
  3344. }
  3345. GGML_PRINT("%s: --- end ---\n", __func__);
  3346. }
  3347. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3348. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3349. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3350. }
  3351. int ggml_nrows(const struct ggml_tensor * tensor) {
  3352. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3353. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3354. }
  3355. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3356. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3357. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  3358. }
  3359. int ggml_blck_size(enum ggml_type type) {
  3360. return GGML_BLCK_SIZE[type];
  3361. }
  3362. size_t ggml_type_size(enum ggml_type type) {
  3363. return GGML_TYPE_SIZE[type];
  3364. }
  3365. float ggml_type_sizef(enum ggml_type type) {
  3366. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  3367. }
  3368. const char * ggml_type_name(enum ggml_type type) {
  3369. return GGML_TYPE_NAME[type];
  3370. }
  3371. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3372. return GGML_TYPE_SIZE[tensor->type];
  3373. }
  3374. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3375. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3376. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3377. }
  3378. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3379. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3380. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3381. }
  3382. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3383. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3384. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3385. }
  3386. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3387. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3388. return
  3389. (t0->ne[0] == t1->ne[0]) &&
  3390. (t0->ne[2] == t1->ne[2]) &&
  3391. (t0->ne[3] == t1->ne[3]);
  3392. }
  3393. bool ggml_is_quantized(enum ggml_type type) {
  3394. return GGML_IS_QUANTIZED[type];
  3395. }
  3396. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3397. return tensor->nb[0] > tensor->nb[1];
  3398. }
  3399. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3400. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3401. return
  3402. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3403. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3404. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3405. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3406. }
  3407. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3408. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3409. return
  3410. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3411. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3412. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3413. }
  3414. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3415. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3416. return
  3417. (t0->ne[0] == t1->ne[0] ) &&
  3418. (t0->ne[1] == t1->ne[1] ) &&
  3419. (t0->ne[2] == t1->ne[2] ) &&
  3420. (t0->ne[3] == t1->ne[3] );
  3421. }
  3422. // check if t1 can be represented as a repeatition of t0
  3423. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3424. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3425. return
  3426. (t1->ne[0]%t0->ne[0] == 0) &&
  3427. (t1->ne[1]%t0->ne[1] == 0) &&
  3428. (t1->ne[2]%t0->ne[2] == 0) &&
  3429. (t1->ne[3]%t0->ne[3] == 0);
  3430. }
  3431. static inline int ggml_up32(int n) {
  3432. return (n + 31) & ~31;
  3433. }
  3434. static inline int ggml_up64(int n) {
  3435. return (n + 63) & ~63;
  3436. }
  3437. static inline int ggml_up(int n, int m) {
  3438. // assert m is a power of 2
  3439. GGML_ASSERT((m & (m - 1)) == 0);
  3440. return (n + m - 1) & ~(m - 1);
  3441. }
  3442. // assert that pointer is aligned to GGML_MEM_ALIGN
  3443. #define ggml_assert_aligned(ptr) \
  3444. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3445. ////////////////////////////////////////////////////////////////////////////////
  3446. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3447. // make this function thread safe
  3448. ggml_critical_section_start();
  3449. static bool is_first_call = true;
  3450. if (is_first_call) {
  3451. // initialize time system (required on Windows)
  3452. ggml_time_init();
  3453. // initialize GELU, SILU and EXP F32 tables
  3454. {
  3455. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3456. ggml_fp16_t ii;
  3457. for (int i = 0; i < (1 << 16); ++i) {
  3458. uint16_t ui = i;
  3459. memcpy(&ii, &ui, sizeof(ii));
  3460. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3461. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3462. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3463. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3464. }
  3465. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3466. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3467. }
  3468. // initialize g_state
  3469. {
  3470. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3471. g_state = (struct ggml_state) {
  3472. /*.contexts =*/ { { 0 } },
  3473. };
  3474. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3475. g_state.contexts[i].used = false;
  3476. }
  3477. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3478. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3479. }
  3480. // initialize cuBLAS
  3481. #if defined(GGML_USE_CUBLAS)
  3482. ggml_init_cublas();
  3483. #elif defined(GGML_USE_CLBLAST)
  3484. ggml_cl_init();
  3485. #endif
  3486. is_first_call = false;
  3487. }
  3488. // find non-used context in g_state
  3489. struct ggml_context * ctx = NULL;
  3490. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3491. if (!g_state.contexts[i].used) {
  3492. g_state.contexts[i].used = true;
  3493. ctx = &g_state.contexts[i].context;
  3494. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3495. break;
  3496. }
  3497. }
  3498. if (ctx == NULL) {
  3499. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3500. ggml_critical_section_end();
  3501. return NULL;
  3502. }
  3503. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3504. *ctx = (struct ggml_context) {
  3505. /*.mem_size =*/ mem_size,
  3506. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3507. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3508. /*.no_alloc =*/ params.no_alloc,
  3509. /*.n_objects =*/ 0,
  3510. /*.objects_begin =*/ NULL,
  3511. /*.objects_end =*/ NULL,
  3512. /*.scratch =*/ { 0, 0, NULL, },
  3513. /*.scratch_save =*/ { 0, 0, NULL, },
  3514. };
  3515. GGML_ASSERT(ctx->mem_buffer != NULL);
  3516. ggml_assert_aligned(ctx->mem_buffer);
  3517. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3518. ggml_critical_section_end();
  3519. return ctx;
  3520. }
  3521. void ggml_free(struct ggml_context * ctx) {
  3522. // make this function thread safe
  3523. ggml_critical_section_start();
  3524. bool found = false;
  3525. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3526. if (&g_state.contexts[i].context == ctx) {
  3527. g_state.contexts[i].used = false;
  3528. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3529. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3530. if (ctx->mem_buffer_owned) {
  3531. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3532. }
  3533. found = true;
  3534. break;
  3535. }
  3536. }
  3537. if (!found) {
  3538. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3539. }
  3540. ggml_critical_section_end();
  3541. }
  3542. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3543. return ctx->objects_end->offs + ctx->objects_end->size;
  3544. }
  3545. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3546. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3547. ctx->scratch = scratch;
  3548. return result;
  3549. }
  3550. ////////////////////////////////////////////////////////////////////////////////
  3551. struct ggml_tensor * ggml_new_tensor_impl(
  3552. struct ggml_context * ctx,
  3553. enum ggml_type type,
  3554. int n_dims,
  3555. const int64_t* ne,
  3556. void* data) {
  3557. // always insert objects at the end of the context's memory pool
  3558. struct ggml_object * obj_cur = ctx->objects_end;
  3559. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3560. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3561. const size_t cur_end = cur_offs + cur_size;
  3562. size_t size_needed = 0;
  3563. if (data == NULL && !ctx->no_alloc) {
  3564. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3565. for (int i = 1; i < n_dims; i++) {
  3566. size_needed *= ne[i];
  3567. }
  3568. // align to GGML_MEM_ALIGN
  3569. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3570. }
  3571. char * const mem_buffer = ctx->mem_buffer;
  3572. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3573. if (ctx->scratch.data == NULL || data != NULL) {
  3574. size_needed += sizeof(struct ggml_tensor);
  3575. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3576. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3577. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3578. assert(false);
  3579. return NULL;
  3580. }
  3581. *obj_new = (struct ggml_object) {
  3582. .offs = cur_end + GGML_OBJECT_SIZE,
  3583. .size = size_needed,
  3584. .next = NULL,
  3585. };
  3586. } else {
  3587. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3588. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  3589. assert(false);
  3590. return NULL;
  3591. }
  3592. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  3593. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3594. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  3595. assert(false);
  3596. return NULL;
  3597. }
  3598. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3599. *obj_new = (struct ggml_object) {
  3600. .offs = cur_end + GGML_OBJECT_SIZE,
  3601. .size = sizeof(struct ggml_tensor),
  3602. .next = NULL,
  3603. };
  3604. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3605. ctx->scratch.offs += size_needed;
  3606. }
  3607. if (obj_cur != NULL) {
  3608. obj_cur->next = obj_new;
  3609. } else {
  3610. // this is the first object in this context
  3611. ctx->objects_begin = obj_new;
  3612. }
  3613. ctx->objects_end = obj_new;
  3614. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3615. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3616. ggml_assert_aligned(result);
  3617. *result = (struct ggml_tensor) {
  3618. /*.type =*/ type,
  3619. /*.n_dims =*/ n_dims,
  3620. /*.ne =*/ { 1, 1, 1, 1 },
  3621. /*.nb =*/ { 0, 0, 0, 0 },
  3622. /*.op =*/ GGML_OP_NONE,
  3623. /*.is_param =*/ false,
  3624. /*.grad =*/ NULL,
  3625. /*.src0 =*/ NULL,
  3626. /*.src1 =*/ NULL,
  3627. /*.opt =*/ { NULL },
  3628. /*.n_tasks =*/ 0,
  3629. /*.perf_runs =*/ 0,
  3630. /*.perf_cycles =*/ 0,
  3631. /*.perf_time_us =*/ 0,
  3632. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3633. /*.pad =*/ { 0 },
  3634. };
  3635. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3636. //ggml_assert_aligned(result->data);
  3637. for (int i = 0; i < n_dims; i++) {
  3638. result->ne[i] = ne[i];
  3639. }
  3640. result->nb[0] = GGML_TYPE_SIZE[type];
  3641. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3642. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3643. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3644. }
  3645. ctx->n_objects++;
  3646. return result;
  3647. }
  3648. struct ggml_tensor * ggml_new_tensor(
  3649. struct ggml_context * ctx,
  3650. enum ggml_type type,
  3651. int n_dims,
  3652. const int64_t * ne) {
  3653. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3654. }
  3655. struct ggml_tensor * ggml_new_tensor_1d(
  3656. struct ggml_context * ctx,
  3657. enum ggml_type type,
  3658. int64_t ne0) {
  3659. return ggml_new_tensor(ctx, type, 1, &ne0);
  3660. }
  3661. struct ggml_tensor * ggml_new_tensor_2d(
  3662. struct ggml_context * ctx,
  3663. enum ggml_type type,
  3664. int64_t ne0,
  3665. int64_t ne1) {
  3666. const int64_t ne[2] = { ne0, ne1 };
  3667. return ggml_new_tensor(ctx, type, 2, ne);
  3668. }
  3669. struct ggml_tensor * ggml_new_tensor_3d(
  3670. struct ggml_context * ctx,
  3671. enum ggml_type type,
  3672. int64_t ne0,
  3673. int64_t ne1,
  3674. int64_t ne2) {
  3675. const int64_t ne[3] = { ne0, ne1, ne2 };
  3676. return ggml_new_tensor(ctx, type, 3, ne);
  3677. }
  3678. struct ggml_tensor * ggml_new_tensor_4d(
  3679. struct ggml_context * ctx,
  3680. enum ggml_type type,
  3681. int64_t ne0,
  3682. int64_t ne1,
  3683. int64_t ne2,
  3684. int64_t ne3) {
  3685. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3686. return ggml_new_tensor(ctx, type, 4, ne);
  3687. }
  3688. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3689. ctx->scratch_save = ctx->scratch;
  3690. ctx->scratch.data = NULL;
  3691. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3692. ctx->scratch = ctx->scratch_save;
  3693. ggml_set_i32(result, value);
  3694. return result;
  3695. }
  3696. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3697. ctx->scratch_save = ctx->scratch;
  3698. ctx->scratch.data = NULL;
  3699. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3700. ctx->scratch = ctx->scratch_save;
  3701. ggml_set_f32(result, value);
  3702. return result;
  3703. }
  3704. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3705. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3706. }
  3707. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3708. memset(tensor->data, 0, ggml_nbytes(tensor));
  3709. return tensor;
  3710. }
  3711. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3712. const int n = ggml_nrows(tensor);
  3713. const int nc = tensor->ne[0];
  3714. const size_t n1 = tensor->nb[1];
  3715. char * const data = tensor->data;
  3716. switch (tensor->type) {
  3717. case GGML_TYPE_I8:
  3718. {
  3719. assert(tensor->nb[0] == sizeof(int8_t));
  3720. for (int i = 0; i < n; i++) {
  3721. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3722. }
  3723. } break;
  3724. case GGML_TYPE_I16:
  3725. {
  3726. assert(tensor->nb[0] == sizeof(int16_t));
  3727. for (int i = 0; i < n; i++) {
  3728. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3729. }
  3730. } break;
  3731. case GGML_TYPE_I32:
  3732. {
  3733. assert(tensor->nb[0] == sizeof(int32_t));
  3734. for (int i = 0; i < n; i++) {
  3735. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3736. }
  3737. } break;
  3738. case GGML_TYPE_F16:
  3739. {
  3740. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3741. for (int i = 0; i < n; i++) {
  3742. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3743. }
  3744. } break;
  3745. case GGML_TYPE_F32:
  3746. {
  3747. assert(tensor->nb[0] == sizeof(float));
  3748. for (int i = 0; i < n; i++) {
  3749. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3750. }
  3751. } break;
  3752. default:
  3753. {
  3754. GGML_ASSERT(false);
  3755. } break;
  3756. }
  3757. return tensor;
  3758. }
  3759. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3760. const int n = ggml_nrows(tensor);
  3761. const int nc = tensor->ne[0];
  3762. const size_t n1 = tensor->nb[1];
  3763. char * const data = tensor->data;
  3764. switch (tensor->type) {
  3765. case GGML_TYPE_I8:
  3766. {
  3767. assert(tensor->nb[0] == sizeof(int8_t));
  3768. for (int i = 0; i < n; i++) {
  3769. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3770. }
  3771. } break;
  3772. case GGML_TYPE_I16:
  3773. {
  3774. assert(tensor->nb[0] == sizeof(int16_t));
  3775. for (int i = 0; i < n; i++) {
  3776. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3777. }
  3778. } break;
  3779. case GGML_TYPE_I32:
  3780. {
  3781. assert(tensor->nb[0] == sizeof(int32_t));
  3782. for (int i = 0; i < n; i++) {
  3783. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3784. }
  3785. } break;
  3786. case GGML_TYPE_F16:
  3787. {
  3788. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3789. for (int i = 0; i < n; i++) {
  3790. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3791. }
  3792. } break;
  3793. case GGML_TYPE_F32:
  3794. {
  3795. assert(tensor->nb[0] == sizeof(float));
  3796. for (int i = 0; i < n; i++) {
  3797. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3798. }
  3799. } break;
  3800. default:
  3801. {
  3802. GGML_ASSERT(false);
  3803. } break;
  3804. }
  3805. return tensor;
  3806. }
  3807. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3808. switch (tensor->type) {
  3809. case GGML_TYPE_I8:
  3810. {
  3811. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3812. return ((int8_t *)(tensor->data))[i];
  3813. } break;
  3814. case GGML_TYPE_I16:
  3815. {
  3816. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3817. return ((int16_t *)(tensor->data))[i];
  3818. } break;
  3819. case GGML_TYPE_I32:
  3820. {
  3821. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3822. return ((int32_t *)(tensor->data))[i];
  3823. } break;
  3824. case GGML_TYPE_F16:
  3825. {
  3826. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3827. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3828. } break;
  3829. case GGML_TYPE_F32:
  3830. {
  3831. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3832. return ((float *)(tensor->data))[i];
  3833. } break;
  3834. default:
  3835. {
  3836. GGML_ASSERT(false);
  3837. } break;
  3838. }
  3839. return 0.0f;
  3840. }
  3841. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3842. switch (tensor->type) {
  3843. case GGML_TYPE_I8:
  3844. {
  3845. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3846. ((int8_t *)(tensor->data))[i] = value;
  3847. } break;
  3848. case GGML_TYPE_I16:
  3849. {
  3850. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3851. ((int16_t *)(tensor->data))[i] = value;
  3852. } break;
  3853. case GGML_TYPE_I32:
  3854. {
  3855. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3856. ((int32_t *)(tensor->data))[i] = value;
  3857. } break;
  3858. case GGML_TYPE_F16:
  3859. {
  3860. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3861. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3862. } break;
  3863. case GGML_TYPE_F32:
  3864. {
  3865. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3866. ((float *)(tensor->data))[i] = value;
  3867. } break;
  3868. default:
  3869. {
  3870. GGML_ASSERT(false);
  3871. } break;
  3872. }
  3873. }
  3874. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3875. switch (tensor->type) {
  3876. case GGML_TYPE_I8:
  3877. {
  3878. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3879. return ((int8_t *)(tensor->data))[i];
  3880. } break;
  3881. case GGML_TYPE_I16:
  3882. {
  3883. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3884. return ((int16_t *)(tensor->data))[i];
  3885. } break;
  3886. case GGML_TYPE_I32:
  3887. {
  3888. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3889. return ((int32_t *)(tensor->data))[i];
  3890. } break;
  3891. case GGML_TYPE_F16:
  3892. {
  3893. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3894. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3895. } break;
  3896. case GGML_TYPE_F32:
  3897. {
  3898. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3899. return ((float *)(tensor->data))[i];
  3900. } break;
  3901. default:
  3902. {
  3903. GGML_ASSERT(false);
  3904. } break;
  3905. }
  3906. return 0.0f;
  3907. }
  3908. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3909. switch (tensor->type) {
  3910. case GGML_TYPE_I8:
  3911. {
  3912. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3913. ((int8_t *)(tensor->data))[i] = value;
  3914. } break;
  3915. case GGML_TYPE_I16:
  3916. {
  3917. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3918. ((int16_t *)(tensor->data))[i] = value;
  3919. } break;
  3920. case GGML_TYPE_I32:
  3921. {
  3922. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3923. ((int32_t *)(tensor->data))[i] = value;
  3924. } break;
  3925. case GGML_TYPE_F16:
  3926. {
  3927. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3928. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3929. } break;
  3930. case GGML_TYPE_F32:
  3931. {
  3932. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3933. ((float *)(tensor->data))[i] = value;
  3934. } break;
  3935. default:
  3936. {
  3937. GGML_ASSERT(false);
  3938. } break;
  3939. }
  3940. }
  3941. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3942. return tensor->data;
  3943. }
  3944. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3945. assert(tensor->type == GGML_TYPE_F32);
  3946. return (float *)(tensor->data);
  3947. }
  3948. struct ggml_tensor * ggml_view_tensor(
  3949. struct ggml_context * ctx,
  3950. const struct ggml_tensor * src) {
  3951. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3952. result->nb[0] = src->nb[0];
  3953. result->nb[1] = src->nb[1];
  3954. result->nb[2] = src->nb[2];
  3955. result->nb[3] = src->nb[3];
  3956. return result;
  3957. }
  3958. ////////////////////////////////////////////////////////////////////////////////
  3959. // ggml_dup
  3960. struct ggml_tensor * ggml_dup_impl(
  3961. struct ggml_context * ctx,
  3962. struct ggml_tensor * a,
  3963. bool inplace) {
  3964. bool is_node = false;
  3965. if (!inplace && (a->grad)) {
  3966. is_node = true;
  3967. }
  3968. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3969. result->op = GGML_OP_DUP;
  3970. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3971. result->src0 = a;
  3972. result->src1 = NULL;
  3973. return result;
  3974. }
  3975. struct ggml_tensor * ggml_dup(
  3976. struct ggml_context * ctx,
  3977. struct ggml_tensor * a) {
  3978. return ggml_dup_impl(ctx, a, false);
  3979. }
  3980. struct ggml_tensor * ggml_dup_inplace(
  3981. struct ggml_context * ctx,
  3982. struct ggml_tensor * a) {
  3983. return ggml_dup_impl(ctx, a, true);
  3984. }
  3985. // ggml_add
  3986. struct ggml_tensor * ggml_add_impl(
  3987. struct ggml_context * ctx,
  3988. struct ggml_tensor * a,
  3989. struct ggml_tensor * b,
  3990. bool inplace) {
  3991. GGML_ASSERT(ggml_are_same_shape(a, b));
  3992. bool is_node = false;
  3993. if (!inplace && (a->grad || b->grad)) {
  3994. is_node = true;
  3995. }
  3996. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3997. result->op = GGML_OP_ADD;
  3998. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3999. result->src0 = a;
  4000. result->src1 = b;
  4001. return result;
  4002. }
  4003. struct ggml_tensor * ggml_add(
  4004. struct ggml_context * ctx,
  4005. struct ggml_tensor * a,
  4006. struct ggml_tensor * b) {
  4007. return ggml_add_impl(ctx, a, b, false);
  4008. }
  4009. struct ggml_tensor * ggml_add_inplace(
  4010. struct ggml_context * ctx,
  4011. struct ggml_tensor * a,
  4012. struct ggml_tensor * b) {
  4013. return ggml_add_impl(ctx, a, b, true);
  4014. }
  4015. // ggml_sub
  4016. struct ggml_tensor * ggml_sub_impl(
  4017. struct ggml_context * ctx,
  4018. struct ggml_tensor * a,
  4019. struct ggml_tensor * b,
  4020. bool inplace) {
  4021. GGML_ASSERT(ggml_are_same_shape(a, b));
  4022. bool is_node = false;
  4023. if (!inplace && (a->grad || b->grad)) {
  4024. is_node = true;
  4025. }
  4026. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4027. result->op = GGML_OP_SUB;
  4028. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4029. result->src0 = a;
  4030. result->src1 = b;
  4031. return result;
  4032. }
  4033. struct ggml_tensor * ggml_sub(
  4034. struct ggml_context * ctx,
  4035. struct ggml_tensor * a,
  4036. struct ggml_tensor * b) {
  4037. return ggml_sub_impl(ctx, a, b, false);
  4038. }
  4039. struct ggml_tensor * ggml_sub_inplace(
  4040. struct ggml_context * ctx,
  4041. struct ggml_tensor * a,
  4042. struct ggml_tensor * b) {
  4043. return ggml_sub_impl(ctx, a, b, true);
  4044. }
  4045. // ggml_mul
  4046. struct ggml_tensor * ggml_mul_impl(
  4047. struct ggml_context * ctx,
  4048. struct ggml_tensor * a,
  4049. struct ggml_tensor * b,
  4050. bool inplace) {
  4051. GGML_ASSERT(ggml_are_same_shape(a, b));
  4052. bool is_node = false;
  4053. if (!inplace && (a->grad || b->grad)) {
  4054. is_node = true;
  4055. }
  4056. if (inplace) {
  4057. GGML_ASSERT(is_node == false);
  4058. }
  4059. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4060. result->op = GGML_OP_MUL;
  4061. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4062. result->src0 = a;
  4063. result->src1 = b;
  4064. return result;
  4065. }
  4066. struct ggml_tensor * ggml_mul(
  4067. struct ggml_context * ctx,
  4068. struct ggml_tensor * a,
  4069. struct ggml_tensor * b) {
  4070. return ggml_mul_impl(ctx, a, b, false);
  4071. }
  4072. struct ggml_tensor * ggml_mul_inplace(
  4073. struct ggml_context * ctx,
  4074. struct ggml_tensor * a,
  4075. struct ggml_tensor * b) {
  4076. return ggml_mul_impl(ctx, a, b, true);
  4077. }
  4078. // ggml_div
  4079. struct ggml_tensor * ggml_div_impl(
  4080. struct ggml_context * ctx,
  4081. struct ggml_tensor * a,
  4082. struct ggml_tensor * b,
  4083. bool inplace) {
  4084. GGML_ASSERT(ggml_are_same_shape(a, b));
  4085. bool is_node = false;
  4086. if (!inplace && (a->grad || b->grad)) {
  4087. is_node = true;
  4088. }
  4089. if (inplace) {
  4090. GGML_ASSERT(is_node == false);
  4091. }
  4092. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4093. result->op = GGML_OP_DIV;
  4094. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4095. result->src0 = a;
  4096. result->src1 = b;
  4097. return result;
  4098. }
  4099. struct ggml_tensor * ggml_div(
  4100. struct ggml_context * ctx,
  4101. struct ggml_tensor * a,
  4102. struct ggml_tensor * b) {
  4103. return ggml_div_impl(ctx, a, b, false);
  4104. }
  4105. struct ggml_tensor * ggml_div_inplace(
  4106. struct ggml_context * ctx,
  4107. struct ggml_tensor * a,
  4108. struct ggml_tensor * b) {
  4109. return ggml_div_impl(ctx, a, b, true);
  4110. }
  4111. // ggml_sqr
  4112. struct ggml_tensor * ggml_sqr_impl(
  4113. struct ggml_context * ctx,
  4114. struct ggml_tensor * a,
  4115. bool inplace) {
  4116. bool is_node = false;
  4117. if (!inplace && (a->grad)) {
  4118. is_node = true;
  4119. }
  4120. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4121. result->op = GGML_OP_SQR;
  4122. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4123. result->src0 = a;
  4124. result->src1 = NULL;
  4125. return result;
  4126. }
  4127. struct ggml_tensor * ggml_sqr(
  4128. struct ggml_context * ctx,
  4129. struct ggml_tensor * a) {
  4130. return ggml_sqr_impl(ctx, a, false);
  4131. }
  4132. struct ggml_tensor * ggml_sqr_inplace(
  4133. struct ggml_context * ctx,
  4134. struct ggml_tensor * a) {
  4135. return ggml_sqr_impl(ctx, a, true);
  4136. }
  4137. // ggml_sqrt
  4138. struct ggml_tensor * ggml_sqrt_impl(
  4139. struct ggml_context * ctx,
  4140. struct ggml_tensor * a,
  4141. bool inplace) {
  4142. bool is_node = false;
  4143. if (!inplace && (a->grad)) {
  4144. is_node = true;
  4145. }
  4146. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4147. result->op = GGML_OP_SQRT;
  4148. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4149. result->src0 = a;
  4150. result->src1 = NULL;
  4151. return result;
  4152. }
  4153. struct ggml_tensor * ggml_sqrt(
  4154. struct ggml_context * ctx,
  4155. struct ggml_tensor * a) {
  4156. return ggml_sqrt_impl(ctx, a, false);
  4157. }
  4158. struct ggml_tensor * ggml_sqrt_inplace(
  4159. struct ggml_context * ctx,
  4160. struct ggml_tensor * a) {
  4161. return ggml_sqrt_impl(ctx, a, true);
  4162. }
  4163. // ggml_sum
  4164. struct ggml_tensor * ggml_sum(
  4165. struct ggml_context * ctx,
  4166. struct ggml_tensor * a) {
  4167. bool is_node = false;
  4168. if (a->grad) {
  4169. is_node = true;
  4170. }
  4171. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4172. result->op = GGML_OP_SUM;
  4173. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4174. result->src0 = a;
  4175. result->src1 = NULL;
  4176. return result;
  4177. }
  4178. // ggml_mean
  4179. struct ggml_tensor * ggml_mean(
  4180. struct ggml_context * ctx,
  4181. struct ggml_tensor * a) {
  4182. bool is_node = false;
  4183. if (a->grad) {
  4184. GGML_ASSERT(false); // TODO: implement
  4185. is_node = true;
  4186. }
  4187. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4188. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4189. result->op = GGML_OP_MEAN;
  4190. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4191. result->src0 = a;
  4192. result->src1 = NULL;
  4193. return result;
  4194. }
  4195. // ggml_repeat
  4196. struct ggml_tensor * ggml_repeat(
  4197. struct ggml_context * ctx,
  4198. struct ggml_tensor * a,
  4199. struct ggml_tensor * b) {
  4200. GGML_ASSERT(ggml_can_repeat(a, b));
  4201. bool is_node = false;
  4202. if (a->grad) {
  4203. is_node = true;
  4204. }
  4205. if (ggml_are_same_shape(a, b) && !is_node) {
  4206. return a;
  4207. }
  4208. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4209. result->op = GGML_OP_REPEAT;
  4210. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4211. result->src0 = a;
  4212. result->src1 = b;
  4213. return result;
  4214. }
  4215. // ggml_abs
  4216. struct ggml_tensor * ggml_abs_impl(
  4217. struct ggml_context * ctx,
  4218. struct ggml_tensor * a,
  4219. bool inplace) {
  4220. bool is_node = false;
  4221. if (!inplace && (a->grad)) {
  4222. is_node = true;
  4223. }
  4224. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4225. result->op = GGML_OP_ABS;
  4226. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4227. result->src0 = a;
  4228. result->src1 = NULL;
  4229. return result;
  4230. }
  4231. struct ggml_tensor * ggml_abs(
  4232. struct ggml_context * ctx,
  4233. struct ggml_tensor * a) {
  4234. return ggml_abs_impl(ctx, a, false);
  4235. }
  4236. struct ggml_tensor * ggml_abs_inplace(
  4237. struct ggml_context * ctx,
  4238. struct ggml_tensor * a) {
  4239. return ggml_abs_impl(ctx, a, true);
  4240. }
  4241. // ggml_sgn
  4242. struct ggml_tensor * ggml_sgn_impl(
  4243. struct ggml_context * ctx,
  4244. struct ggml_tensor * a,
  4245. bool inplace) {
  4246. bool is_node = false;
  4247. if (!inplace && (a->grad)) {
  4248. is_node = true;
  4249. }
  4250. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4251. result->op = GGML_OP_SGN;
  4252. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4253. result->src0 = a;
  4254. result->src1 = NULL;
  4255. return result;
  4256. }
  4257. struct ggml_tensor * ggml_sgn(
  4258. struct ggml_context * ctx,
  4259. struct ggml_tensor * a) {
  4260. return ggml_sgn_impl(ctx, a, false);
  4261. }
  4262. struct ggml_tensor * ggml_sgn_inplace(
  4263. struct ggml_context * ctx,
  4264. struct ggml_tensor * a) {
  4265. return ggml_sgn_impl(ctx, a, true);
  4266. }
  4267. // ggml_neg
  4268. struct ggml_tensor * ggml_neg_impl(
  4269. struct ggml_context * ctx,
  4270. struct ggml_tensor * a,
  4271. bool inplace) {
  4272. bool is_node = false;
  4273. if (!inplace && (a->grad)) {
  4274. is_node = true;
  4275. }
  4276. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4277. result->op = GGML_OP_NEG;
  4278. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4279. result->src0 = a;
  4280. result->src1 = NULL;
  4281. return result;
  4282. }
  4283. struct ggml_tensor * ggml_neg(
  4284. struct ggml_context * ctx,
  4285. struct ggml_tensor * a) {
  4286. return ggml_neg_impl(ctx, a, false);
  4287. }
  4288. struct ggml_tensor * ggml_neg_inplace(
  4289. struct ggml_context * ctx,
  4290. struct ggml_tensor * a) {
  4291. return ggml_neg_impl(ctx, a, true);
  4292. }
  4293. // ggml_step
  4294. struct ggml_tensor * ggml_step_impl(
  4295. struct ggml_context * ctx,
  4296. struct ggml_tensor * a,
  4297. bool inplace) {
  4298. bool is_node = false;
  4299. if (!inplace && (a->grad)) {
  4300. is_node = true;
  4301. }
  4302. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4303. result->op = GGML_OP_STEP;
  4304. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4305. result->src0 = a;
  4306. result->src1 = NULL;
  4307. return result;
  4308. }
  4309. struct ggml_tensor * ggml_step(
  4310. struct ggml_context * ctx,
  4311. struct ggml_tensor * a) {
  4312. return ggml_step_impl(ctx, a, false);
  4313. }
  4314. struct ggml_tensor * ggml_step_inplace(
  4315. struct ggml_context * ctx,
  4316. struct ggml_tensor * a) {
  4317. return ggml_step_impl(ctx, a, true);
  4318. }
  4319. // ggml_relu
  4320. struct ggml_tensor * ggml_relu_impl(
  4321. struct ggml_context * ctx,
  4322. struct ggml_tensor * a,
  4323. bool inplace) {
  4324. bool is_node = false;
  4325. if (!inplace && (a->grad)) {
  4326. is_node = true;
  4327. }
  4328. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4329. result->op = GGML_OP_RELU;
  4330. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4331. result->src0 = a;
  4332. result->src1 = NULL;
  4333. return result;
  4334. }
  4335. struct ggml_tensor * ggml_relu(
  4336. struct ggml_context * ctx,
  4337. struct ggml_tensor * a) {
  4338. return ggml_relu_impl(ctx, a, false);
  4339. }
  4340. struct ggml_tensor * ggml_relu_inplace(
  4341. struct ggml_context * ctx,
  4342. struct ggml_tensor * a) {
  4343. return ggml_relu_impl(ctx, a, true);
  4344. }
  4345. // ggml_gelu
  4346. struct ggml_tensor * ggml_gelu_impl(
  4347. struct ggml_context * ctx,
  4348. struct ggml_tensor * a,
  4349. bool inplace) {
  4350. bool is_node = false;
  4351. if (!inplace && (a->grad)) {
  4352. is_node = true;
  4353. }
  4354. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4355. result->op = GGML_OP_GELU;
  4356. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4357. result->src0 = a;
  4358. result->src1 = NULL;
  4359. return result;
  4360. }
  4361. struct ggml_tensor * ggml_gelu(
  4362. struct ggml_context * ctx,
  4363. struct ggml_tensor * a) {
  4364. return ggml_gelu_impl(ctx, a, false);
  4365. }
  4366. struct ggml_tensor * ggml_gelu_inplace(
  4367. struct ggml_context * ctx,
  4368. struct ggml_tensor * a) {
  4369. return ggml_gelu_impl(ctx, a, true);
  4370. }
  4371. // ggml_silu
  4372. struct ggml_tensor * ggml_silu_impl(
  4373. struct ggml_context * ctx,
  4374. struct ggml_tensor * a,
  4375. bool inplace) {
  4376. bool is_node = false;
  4377. if (!inplace && (a->grad)) {
  4378. is_node = true;
  4379. }
  4380. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4381. result->op = GGML_OP_SILU;
  4382. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4383. result->src0 = a;
  4384. result->src1 = NULL;
  4385. return result;
  4386. }
  4387. struct ggml_tensor * ggml_silu(
  4388. struct ggml_context * ctx,
  4389. struct ggml_tensor * a) {
  4390. return ggml_silu_impl(ctx, a, false);
  4391. }
  4392. struct ggml_tensor * ggml_silu_inplace(
  4393. struct ggml_context * ctx,
  4394. struct ggml_tensor * a) {
  4395. return ggml_silu_impl(ctx, a, true);
  4396. }
  4397. // ggml_norm
  4398. struct ggml_tensor * ggml_norm_impl(
  4399. struct ggml_context * ctx,
  4400. struct ggml_tensor * a,
  4401. bool inplace) {
  4402. bool is_node = false;
  4403. if (!inplace && (a->grad)) {
  4404. GGML_ASSERT(false); // TODO: implement backward
  4405. is_node = true;
  4406. }
  4407. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4408. result->op = GGML_OP_NORM;
  4409. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4410. result->src0 = a;
  4411. result->src1 = NULL; // TODO: maybe store epsilon here?
  4412. return result;
  4413. }
  4414. struct ggml_tensor * ggml_norm(
  4415. struct ggml_context * ctx,
  4416. struct ggml_tensor * a) {
  4417. return ggml_norm_impl(ctx, a, false);
  4418. }
  4419. struct ggml_tensor * ggml_norm_inplace(
  4420. struct ggml_context * ctx,
  4421. struct ggml_tensor * a) {
  4422. return ggml_norm_impl(ctx, a, true);
  4423. }
  4424. struct ggml_tensor * ggml_rms_norm_impl(
  4425. struct ggml_context * ctx,
  4426. struct ggml_tensor * a,
  4427. bool inplace) {
  4428. bool is_node = false;
  4429. if (!inplace && (a->grad)) {
  4430. GGML_ASSERT(false); // TODO: implement backward
  4431. is_node = true;
  4432. }
  4433. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4434. result->op = GGML_OP_RMS_NORM;
  4435. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4436. result->src0 = a;
  4437. result->src1 = NULL; // TODO: maybe store epsilon here?
  4438. return result;
  4439. }
  4440. struct ggml_tensor * ggml_rms_norm(
  4441. struct ggml_context * ctx,
  4442. struct ggml_tensor * a) {
  4443. return ggml_rms_norm_impl(ctx, a, false);
  4444. }
  4445. struct ggml_tensor * ggml_rms_norm_inplace(
  4446. struct ggml_context * ctx,
  4447. struct ggml_tensor * a) {
  4448. return ggml_rms_norm_impl(ctx, a, true);
  4449. }
  4450. // ggml_mul_mat
  4451. struct ggml_tensor * ggml_mul_mat(
  4452. struct ggml_context * ctx,
  4453. struct ggml_tensor * a,
  4454. struct ggml_tensor * b) {
  4455. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4456. GGML_ASSERT(!ggml_is_transposed(a));
  4457. bool is_node = false;
  4458. if (a->grad || b->grad) {
  4459. is_node = true;
  4460. }
  4461. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  4462. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4463. result->op = GGML_OP_MUL_MAT;
  4464. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4465. result->src0 = a;
  4466. result->src1 = b;
  4467. return result;
  4468. }
  4469. // ggml_scale
  4470. struct ggml_tensor * ggml_scale_impl(
  4471. struct ggml_context * ctx,
  4472. struct ggml_tensor * a,
  4473. struct ggml_tensor * b,
  4474. bool inplace) {
  4475. GGML_ASSERT(ggml_is_scalar(b));
  4476. GGML_ASSERT(ggml_is_padded_1d(a));
  4477. bool is_node = false;
  4478. if (!inplace && (a->grad || b->grad)) {
  4479. GGML_ASSERT(false); // TODO: implement backward
  4480. is_node = true;
  4481. }
  4482. // TODO: when implement backward, fix this:
  4483. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4484. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4485. result->op = GGML_OP_SCALE;
  4486. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4487. result->src0 = a;
  4488. result->src1 = b;
  4489. return result;
  4490. }
  4491. struct ggml_tensor * ggml_scale(
  4492. struct ggml_context * ctx,
  4493. struct ggml_tensor * a,
  4494. struct ggml_tensor * b) {
  4495. return ggml_scale_impl(ctx, a, b, false);
  4496. }
  4497. struct ggml_tensor * ggml_scale_inplace(
  4498. struct ggml_context * ctx,
  4499. struct ggml_tensor * a,
  4500. struct ggml_tensor * b) {
  4501. return ggml_scale_impl(ctx, a, b, true);
  4502. }
  4503. // ggml_cpy
  4504. struct ggml_tensor * ggml_cpy_impl(
  4505. struct ggml_context * ctx,
  4506. struct ggml_tensor * a,
  4507. struct ggml_tensor * b,
  4508. bool inplace) {
  4509. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4510. bool is_node = false;
  4511. if (!inplace && (a->grad || b->grad)) {
  4512. GGML_ASSERT(false); // TODO: implement backward
  4513. is_node = true;
  4514. }
  4515. // make a view of the destination
  4516. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4517. result->op = GGML_OP_CPY;
  4518. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4519. result->src0 = a;
  4520. result->src1 = b;
  4521. return result;
  4522. }
  4523. struct ggml_tensor * ggml_cpy(
  4524. struct ggml_context * ctx,
  4525. struct ggml_tensor * a,
  4526. struct ggml_tensor * b) {
  4527. return ggml_cpy_impl(ctx, a, b, false);
  4528. }
  4529. struct ggml_tensor * ggml_cpy_inplace(
  4530. struct ggml_context * ctx,
  4531. struct ggml_tensor * a,
  4532. struct ggml_tensor * b) {
  4533. return ggml_cpy_impl(ctx, a, b, true);
  4534. }
  4535. // ggml_cont
  4536. struct ggml_tensor * ggml_cont_impl(
  4537. struct ggml_context * ctx,
  4538. struct ggml_tensor * a,
  4539. bool inplace) {
  4540. bool is_node = false;
  4541. if (!inplace && a->grad) {
  4542. GGML_ASSERT(false); // TODO: implement backward
  4543. is_node = true;
  4544. }
  4545. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4546. result->op = GGML_OP_CONT;
  4547. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4548. result->src0 = a;
  4549. result->src1 = NULL;
  4550. return result;
  4551. }
  4552. struct ggml_tensor * ggml_cont(
  4553. struct ggml_context * ctx,
  4554. struct ggml_tensor * a) {
  4555. return ggml_cont_impl(ctx, a, false);
  4556. }
  4557. struct ggml_tensor * ggml_cont_inplace(
  4558. struct ggml_context * ctx,
  4559. struct ggml_tensor * a) {
  4560. return ggml_cont_impl(ctx, a, true);
  4561. }
  4562. // ggml_reshape
  4563. struct ggml_tensor * ggml_reshape(
  4564. struct ggml_context * ctx,
  4565. struct ggml_tensor * a,
  4566. struct ggml_tensor * b) {
  4567. GGML_ASSERT(ggml_is_contiguous(a));
  4568. GGML_ASSERT(ggml_is_contiguous(b));
  4569. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4570. bool is_node = false;
  4571. if (a->grad || b->grad) {
  4572. GGML_ASSERT(false); // TODO: implement backward
  4573. is_node = true;
  4574. }
  4575. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4576. result->op = GGML_OP_RESHAPE;
  4577. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4578. result->src0 = a;
  4579. result->src1 = NULL;
  4580. return result;
  4581. }
  4582. struct ggml_tensor * ggml_reshape_2d(
  4583. struct ggml_context * ctx,
  4584. struct ggml_tensor * a,
  4585. int64_t ne0,
  4586. int64_t ne1) {
  4587. GGML_ASSERT(ggml_is_contiguous(a));
  4588. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4589. bool is_node = false;
  4590. if (a->grad) {
  4591. GGML_ASSERT(false); // TODO: implement backward
  4592. is_node = true;
  4593. }
  4594. const int64_t ne[2] = { ne0, ne1 };
  4595. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4596. result->op = GGML_OP_RESHAPE;
  4597. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4598. result->src0 = a;
  4599. result->src1 = NULL;
  4600. return result;
  4601. }
  4602. struct ggml_tensor * ggml_reshape_3d(
  4603. struct ggml_context * ctx,
  4604. struct ggml_tensor * a,
  4605. int64_t ne0,
  4606. int64_t ne1,
  4607. int64_t ne2) {
  4608. GGML_ASSERT(ggml_is_contiguous(a));
  4609. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4610. bool is_node = false;
  4611. if (a->grad) {
  4612. GGML_ASSERT(false); // TODO: implement backward
  4613. is_node = true;
  4614. }
  4615. const int64_t ne[3] = { ne0, ne1, ne2 };
  4616. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4617. result->op = GGML_OP_RESHAPE;
  4618. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4619. result->src0 = a;
  4620. result->src1 = NULL;
  4621. return result;
  4622. }
  4623. // ggml_view_1d
  4624. struct ggml_tensor * ggml_view_1d(
  4625. struct ggml_context * ctx,
  4626. struct ggml_tensor * a,
  4627. int64_t ne0,
  4628. size_t offset) {
  4629. if (a->grad) {
  4630. GGML_ASSERT(false); // gradient propagation is not supported
  4631. }
  4632. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4633. result->op = GGML_OP_VIEW;
  4634. result->grad = NULL;
  4635. result->src0 = a;
  4636. result->src1 = NULL; // TODO: maybe store the offset here?
  4637. return result;
  4638. }
  4639. // ggml_view_2d
  4640. struct ggml_tensor * ggml_view_2d(
  4641. struct ggml_context * ctx,
  4642. struct ggml_tensor * a,
  4643. int64_t ne0,
  4644. int64_t ne1,
  4645. size_t nb1,
  4646. size_t offset) {
  4647. if (a->grad) {
  4648. GGML_ASSERT(false); // gradient propagation is not supported
  4649. }
  4650. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4651. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4652. result->nb[1] = nb1;
  4653. result->nb[2] = result->nb[1]*ne1;
  4654. result->nb[3] = result->nb[2];
  4655. result->op = GGML_OP_VIEW;
  4656. result->grad = NULL;
  4657. result->src0 = a;
  4658. result->src1 = NULL; // TODO: maybe store the offset here?
  4659. return result;
  4660. }
  4661. // ggml_view_3d
  4662. struct ggml_tensor * ggml_view_3d(
  4663. struct ggml_context * ctx,
  4664. struct ggml_tensor * a,
  4665. int64_t ne0,
  4666. int64_t ne1,
  4667. int64_t ne2,
  4668. size_t nb1,
  4669. size_t nb2,
  4670. size_t offset) {
  4671. if (a->grad) {
  4672. GGML_ASSERT(false); // gradient propagation is not supported
  4673. }
  4674. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4675. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4676. result->nb[1] = nb1;
  4677. result->nb[2] = nb2;
  4678. result->nb[3] = result->nb[2]*ne2;
  4679. result->op = GGML_OP_VIEW;
  4680. result->grad = NULL;
  4681. result->src0 = a;
  4682. result->src1 = NULL; // TODO: maybe store the offset here?
  4683. return result;
  4684. }
  4685. // ggml_permute
  4686. struct ggml_tensor * ggml_permute(
  4687. struct ggml_context * ctx,
  4688. struct ggml_tensor * a,
  4689. int axis0,
  4690. int axis1,
  4691. int axis2,
  4692. int axis3) {
  4693. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4694. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4695. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4696. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4697. GGML_ASSERT(axis0 != axis1);
  4698. GGML_ASSERT(axis0 != axis2);
  4699. GGML_ASSERT(axis0 != axis3);
  4700. GGML_ASSERT(axis1 != axis2);
  4701. GGML_ASSERT(axis1 != axis3);
  4702. GGML_ASSERT(axis2 != axis3);
  4703. bool is_node = false;
  4704. if (a->grad) {
  4705. GGML_ASSERT(false); // TODO: implement backward
  4706. is_node = true;
  4707. }
  4708. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4709. int ne[GGML_MAX_DIMS];
  4710. int nb[GGML_MAX_DIMS];
  4711. ne[axis0] = a->ne[0];
  4712. ne[axis1] = a->ne[1];
  4713. ne[axis2] = a->ne[2];
  4714. ne[axis3] = a->ne[3];
  4715. nb[axis0] = a->nb[0];
  4716. nb[axis1] = a->nb[1];
  4717. nb[axis2] = a->nb[2];
  4718. nb[axis3] = a->nb[3];
  4719. result->ne[0] = ne[0];
  4720. result->ne[1] = ne[1];
  4721. result->ne[2] = ne[2];
  4722. result->ne[3] = ne[3];
  4723. result->nb[0] = nb[0];
  4724. result->nb[1] = nb[1];
  4725. result->nb[2] = nb[2];
  4726. result->nb[3] = nb[3];
  4727. result->op = GGML_OP_PERMUTE;
  4728. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4729. result->src0 = a;
  4730. result->src1 = NULL; // TODO: maybe store the permutation here?
  4731. return result;
  4732. }
  4733. // ggml_transpose
  4734. struct ggml_tensor * ggml_transpose(
  4735. struct ggml_context * ctx,
  4736. struct ggml_tensor * a) {
  4737. bool is_node = false;
  4738. if (a->grad) {
  4739. GGML_ASSERT(false); // TODO: implement backward
  4740. is_node = true;
  4741. }
  4742. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4743. result->ne[0] = a->ne[1];
  4744. result->ne[1] = a->ne[0];
  4745. result->nb[0] = a->nb[1];
  4746. result->nb[1] = a->nb[0];
  4747. result->op = GGML_OP_TRANSPOSE;
  4748. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4749. result->src0 = a;
  4750. result->src1 = NULL;
  4751. return result;
  4752. }
  4753. // ggml_get_rows
  4754. struct ggml_tensor * ggml_get_rows(
  4755. struct ggml_context * ctx,
  4756. struct ggml_tensor * a,
  4757. struct ggml_tensor * b) {
  4758. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4759. bool is_node = false;
  4760. if (a->grad || b->grad) {
  4761. GGML_ASSERT(false); // TODO: implement backward
  4762. is_node = true;
  4763. }
  4764. // TODO: implement non F32 return
  4765. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4766. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4767. result->op = GGML_OP_GET_ROWS;
  4768. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4769. result->src0 = a;
  4770. result->src1 = b;
  4771. return result;
  4772. }
  4773. // ggml_diag_mask_inf
  4774. struct ggml_tensor * ggml_diag_mask_inf(
  4775. struct ggml_context * ctx,
  4776. struct ggml_tensor * a,
  4777. int n_past) {
  4778. bool is_node = false;
  4779. if (a->grad) {
  4780. GGML_ASSERT(false); // TODO: implement backward
  4781. is_node = true;
  4782. }
  4783. // TODO: when implement backward, fix this:
  4784. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4785. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4786. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  4787. result->op = GGML_OP_DIAG_MASK_INF;
  4788. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4789. result->src0 = a;
  4790. result->src1 = b;
  4791. return result;
  4792. }
  4793. // ggml_soft_max
  4794. struct ggml_tensor * ggml_soft_max(
  4795. struct ggml_context * ctx,
  4796. struct ggml_tensor * a) {
  4797. bool is_node = false;
  4798. if (a->grad) {
  4799. GGML_ASSERT(false); // TODO: implement backward
  4800. is_node = true;
  4801. }
  4802. // TODO: when implement backward, fix this:
  4803. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4804. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4805. result->op = GGML_OP_SOFT_MAX;
  4806. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4807. result->src0 = a;
  4808. result->src1 = NULL;
  4809. return result;
  4810. }
  4811. // ggml_rope
  4812. struct ggml_tensor * ggml_rope(
  4813. struct ggml_context * ctx,
  4814. struct ggml_tensor * a,
  4815. int n_past,
  4816. int n_dims,
  4817. int mode) {
  4818. GGML_ASSERT(n_past >= 0);
  4819. bool is_node = false;
  4820. if (a->grad) {
  4821. GGML_ASSERT(false); // TODO: implement backward
  4822. is_node = true;
  4823. }
  4824. // TODO: when implement backward, fix this:
  4825. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4826. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4827. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4828. ((int32_t *) b->data)[0] = n_past;
  4829. ((int32_t *) b->data)[1] = n_dims;
  4830. ((int32_t *) b->data)[2] = mode;
  4831. result->op = GGML_OP_ROPE;
  4832. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4833. result->src0 = a;
  4834. result->src1 = b;
  4835. return result;
  4836. }
  4837. // ggml_alibi
  4838. struct ggml_tensor * ggml_alibi(
  4839. struct ggml_context * ctx,
  4840. struct ggml_tensor * a,
  4841. int n_past,
  4842. int n_head) {
  4843. GGML_ASSERT(n_past >= 0);
  4844. bool is_node = false;
  4845. if (a->grad) {
  4846. GGML_ASSERT(false); // TODO: implement backward
  4847. is_node = true;
  4848. }
  4849. // TODO: when implement backward, fix this:
  4850. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4851. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4852. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4853. ((int32_t *) b->data)[0] = n_past;
  4854. ((int32_t *) b->data)[1] = n_head;
  4855. result->op = GGML_OP_ALIBI;
  4856. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4857. result->src0 = a;
  4858. result->src1 = b;
  4859. return result;
  4860. }
  4861. // ggml_conv_1d_1s
  4862. struct ggml_tensor * ggml_conv_1d_1s(
  4863. struct ggml_context * ctx,
  4864. struct ggml_tensor * a,
  4865. struct ggml_tensor * b) {
  4866. GGML_ASSERT(ggml_is_matrix(b));
  4867. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4868. GGML_ASSERT(a->ne[3] == 1);
  4869. bool is_node = false;
  4870. if (a->grad || b->grad) {
  4871. GGML_ASSERT(false); // TODO: implement backward
  4872. is_node = true;
  4873. }
  4874. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  4875. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4876. result->op = GGML_OP_CONV_1D_1S;
  4877. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4878. result->src0 = a;
  4879. result->src1 = b;
  4880. return result;
  4881. }
  4882. // ggml_conv_1d_2s
  4883. struct ggml_tensor * ggml_conv_1d_2s(
  4884. struct ggml_context * ctx,
  4885. struct ggml_tensor * a,
  4886. struct ggml_tensor * b) {
  4887. GGML_ASSERT(ggml_is_matrix(b));
  4888. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4889. GGML_ASSERT(a->ne[3] == 1);
  4890. bool is_node = false;
  4891. if (a->grad || b->grad) {
  4892. GGML_ASSERT(false); // TODO: implement backward
  4893. is_node = true;
  4894. }
  4895. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  4896. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4897. result->op = GGML_OP_CONV_1D_2S;
  4898. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4899. result->src0 = a;
  4900. result->src1 = b;
  4901. return result;
  4902. }
  4903. // ggml_flash_attn
  4904. struct ggml_tensor * ggml_flash_attn(
  4905. struct ggml_context * ctx,
  4906. struct ggml_tensor * q,
  4907. struct ggml_tensor * k,
  4908. struct ggml_tensor * v,
  4909. bool masked) {
  4910. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4911. // TODO: check if vT can be multiplied by (k*qT)
  4912. bool is_node = false;
  4913. if (q->grad || k->grad || v->grad) {
  4914. GGML_ASSERT(false); // TODO: implement backward
  4915. is_node = true;
  4916. }
  4917. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4918. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  4919. result->op = GGML_OP_FLASH_ATTN;
  4920. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4921. result->src0 = q;
  4922. result->src1 = k;
  4923. result->opt[0] = v;
  4924. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  4925. return result;
  4926. }
  4927. // ggml_flash_ff
  4928. struct ggml_tensor * ggml_flash_ff(
  4929. struct ggml_context * ctx,
  4930. struct ggml_tensor * a,
  4931. struct ggml_tensor * b0,
  4932. struct ggml_tensor * b1,
  4933. struct ggml_tensor * c0,
  4934. struct ggml_tensor * c1) {
  4935. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4936. // TODO: more checks
  4937. bool is_node = false;
  4938. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4939. GGML_ASSERT(false); // TODO: implement backward
  4940. is_node = true;
  4941. }
  4942. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4943. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  4944. result->op = GGML_OP_FLASH_FF;
  4945. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4946. result->src0 = a;
  4947. result->src1 = b0;
  4948. result->opt[0] = b1;
  4949. result->opt[1] = c0;
  4950. result->opt[2] = c1;
  4951. return result;
  4952. }
  4953. // ggml_map_unary
  4954. struct ggml_tensor * ggml_map_unary_impl_f32(
  4955. struct ggml_context * ctx,
  4956. struct ggml_tensor * a,
  4957. const ggml_unary_op_f32_t fun,
  4958. bool inplace) {
  4959. bool is_node = false;
  4960. if (!inplace && a->grad) {
  4961. is_node = true;
  4962. }
  4963. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4964. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4965. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4966. result->op = GGML_OP_MAP_UNARY;
  4967. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4968. result->src0 = a;
  4969. result->opt[0] = addr_tensor;
  4970. return result;
  4971. }
  4972. struct ggml_tensor * ggml_map_unary_f32(
  4973. struct ggml_context * ctx,
  4974. struct ggml_tensor * a,
  4975. const ggml_unary_op_f32_t fun) {
  4976. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4977. }
  4978. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4979. struct ggml_context * ctx,
  4980. struct ggml_tensor * a,
  4981. const ggml_unary_op_f32_t fun) {
  4982. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4983. }
  4984. // ggml_map_binary
  4985. struct ggml_tensor * ggml_map_binary_impl_f32(
  4986. struct ggml_context * ctx,
  4987. struct ggml_tensor * a,
  4988. struct ggml_tensor * b,
  4989. const ggml_binary_op_f32_t fun,
  4990. bool inplace) {
  4991. GGML_ASSERT(ggml_are_same_shape(a, b));
  4992. bool is_node = false;
  4993. if (!inplace && (a->grad || b->grad)) {
  4994. is_node = true;
  4995. }
  4996. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4997. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4998. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4999. result->op = GGML_OP_MAP_BINARY;
  5000. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5001. result->src0 = a;
  5002. result->src1 = b;
  5003. result->opt[0] = addr_tensor;
  5004. return result;
  5005. }
  5006. struct ggml_tensor * ggml_map_binary_f32(
  5007. struct ggml_context * ctx,
  5008. struct ggml_tensor * a,
  5009. struct ggml_tensor * b,
  5010. const ggml_binary_op_f32_t fun) {
  5011. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5012. }
  5013. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5014. struct ggml_context * ctx,
  5015. struct ggml_tensor * a,
  5016. struct ggml_tensor * b,
  5017. const ggml_binary_op_f32_t fun) {
  5018. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5019. }
  5020. ////////////////////////////////////////////////////////////////////////////////
  5021. void ggml_set_param(
  5022. struct ggml_context * ctx,
  5023. struct ggml_tensor * tensor) {
  5024. tensor->is_param = true;
  5025. GGML_ASSERT(tensor->grad == NULL);
  5026. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5027. }
  5028. // ggml_compute_forward_dup
  5029. static void ggml_compute_forward_dup_f16(
  5030. const struct ggml_compute_params * params,
  5031. const struct ggml_tensor * src0,
  5032. struct ggml_tensor * dst) {
  5033. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5034. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5035. return;
  5036. }
  5037. const int64_t ne00 = src0->ne[0];
  5038. const int64_t ne01 = src0->ne[1];
  5039. const int64_t ne02 = src0->ne[2];
  5040. const int64_t ne03 = src0->ne[3];
  5041. const int64_t ne0 = dst->ne[0];
  5042. const int64_t ne1 = dst->ne[1];
  5043. const int64_t ne2 = dst->ne[2];
  5044. const int64_t ne3 = dst->ne[3];
  5045. const size_t nb00 = src0->nb[0];
  5046. const size_t nb01 = src0->nb[1];
  5047. const size_t nb02 = src0->nb[2];
  5048. const size_t nb03 = src0->nb[3];
  5049. const size_t nb0 = dst->nb[0];
  5050. const size_t nb1 = dst->nb[1];
  5051. const size_t nb2 = dst->nb[2];
  5052. const size_t nb3 = dst->nb[3];
  5053. const int ith = params->ith; // thread index
  5054. const int nth = params->nth; // number of threads
  5055. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5056. // parallelize by elements
  5057. const int ne = ggml_nelements(dst);
  5058. const int dr = (ne + nth - 1) / nth;
  5059. const int ie0 = dr * ith;
  5060. const int ie1 = MIN(ie0 + dr, ne);
  5061. memcpy(
  5062. ((char *) dst->data + ie0*nb0),
  5063. ((char *) src0->data + ie0*nb00),
  5064. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  5065. return;
  5066. }
  5067. // parallelize by rows
  5068. const int nr = ne01;
  5069. // number of rows per thread
  5070. const int dr = (nr + nth - 1) / nth;
  5071. // row range for this thread
  5072. const int ir0 = dr * ith;
  5073. const int ir1 = MIN(ir0 + dr, nr);
  5074. if (src0->type == dst->type &&
  5075. ne00 == ne0 &&
  5076. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5077. // copy by rows
  5078. const size_t rs = ne00*nb00;
  5079. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5080. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5081. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5082. memcpy(
  5083. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5084. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5085. rs);
  5086. }
  5087. }
  5088. }
  5089. return;
  5090. }
  5091. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5092. if (ggml_is_contiguous(dst)) {
  5093. if (nb00 == sizeof(ggml_fp16_t)) {
  5094. if (dst->type == GGML_TYPE_F16) {
  5095. size_t id = 0;
  5096. const size_t rs = ne00 * nb00;
  5097. char * dst_ptr = (char *) dst->data;
  5098. for (int i03 = 0; i03 < ne03; i03++) {
  5099. for (int i02 = 0; i02 < ne02; i02++) {
  5100. id += rs * ir0;
  5101. for (int i01 = ir0; i01 < ir1; i01++) {
  5102. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5103. memcpy(dst_ptr + id, src0_ptr, rs);
  5104. id += rs;
  5105. }
  5106. id += rs * (ne01 - ir1);
  5107. }
  5108. }
  5109. } else if (dst->type == GGML_TYPE_F32) {
  5110. size_t id = 0;
  5111. float * dst_ptr = (float *) dst->data;
  5112. for (int i03 = 0; i03 < ne03; i03++) {
  5113. for (int i02 = 0; i02 < ne02; i02++) {
  5114. id += ne00 * ir0;
  5115. for (int i01 = ir0; i01 < ir1; i01++) {
  5116. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5117. for (int i00 = 0; i00 < ne00; i00++) {
  5118. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5119. id++;
  5120. }
  5121. }
  5122. id += ne00 * (ne01 - ir1);
  5123. }
  5124. }
  5125. } else if (ggml_is_quantized(dst->type)) {
  5126. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5127. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5128. size_t id = 0;
  5129. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5130. char * dst_ptr = (char *) dst->data;
  5131. for (int i03 = 0; i03 < ne03; i03++) {
  5132. for (int i02 = 0; i02 < ne02; i02++) {
  5133. id += rs * ir0;
  5134. for (int i01 = ir0; i01 < ir1; i01++) {
  5135. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5136. for (int i00 = 0; i00 < ne00; i00++) {
  5137. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5138. }
  5139. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5140. id += rs;
  5141. }
  5142. id += rs * (ne01 - ir1);
  5143. }
  5144. }
  5145. } else {
  5146. GGML_ASSERT(false); // TODO: implement
  5147. }
  5148. } else {
  5149. //printf("%s: this is not optimal - fix me\n", __func__);
  5150. if (dst->type == GGML_TYPE_F32) {
  5151. size_t id = 0;
  5152. float * dst_ptr = (float *) dst->data;
  5153. for (int i03 = 0; i03 < ne03; i03++) {
  5154. for (int i02 = 0; i02 < ne02; i02++) {
  5155. id += ne00 * ir0;
  5156. for (int i01 = ir0; i01 < ir1; i01++) {
  5157. for (int i00 = 0; i00 < ne00; i00++) {
  5158. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5159. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5160. id++;
  5161. }
  5162. }
  5163. id += ne00 * (ne01 - ir1);
  5164. }
  5165. }
  5166. } else if (dst->type == GGML_TYPE_F16) {
  5167. size_t id = 0;
  5168. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5169. for (int i03 = 0; i03 < ne03; i03++) {
  5170. for (int i02 = 0; i02 < ne02; i02++) {
  5171. id += ne00 * ir0;
  5172. for (int i01 = ir0; i01 < ir1; i01++) {
  5173. for (int i00 = 0; i00 < ne00; i00++) {
  5174. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5175. dst_ptr[id] = *src0_ptr;
  5176. id++;
  5177. }
  5178. }
  5179. id += ne00 * (ne01 - ir1);
  5180. }
  5181. }
  5182. } else {
  5183. GGML_ASSERT(false); // TODO: implement
  5184. }
  5185. }
  5186. return;
  5187. }
  5188. // dst counters
  5189. int64_t i10 = 0;
  5190. int64_t i11 = 0;
  5191. int64_t i12 = 0;
  5192. int64_t i13 = 0;
  5193. if (dst->type == GGML_TYPE_F16) {
  5194. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5195. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5196. i10 += ne00 * ir0;
  5197. while (i10 >= ne0) {
  5198. i10 -= ne0;
  5199. if (++i11 == ne1) {
  5200. i11 = 0;
  5201. if (++i12 == ne2) {
  5202. i12 = 0;
  5203. if (++i13 == ne3) {
  5204. i13 = 0;
  5205. }
  5206. }
  5207. }
  5208. }
  5209. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5210. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5211. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5212. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5213. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5214. if (++i10 == ne00) {
  5215. i10 = 0;
  5216. if (++i11 == ne01) {
  5217. i11 = 0;
  5218. if (++i12 == ne02) {
  5219. i12 = 0;
  5220. if (++i13 == ne03) {
  5221. i13 = 0;
  5222. }
  5223. }
  5224. }
  5225. }
  5226. }
  5227. }
  5228. i10 += ne00 * (ne01 - ir1);
  5229. while (i10 >= ne0) {
  5230. i10 -= ne0;
  5231. if (++i11 == ne1) {
  5232. i11 = 0;
  5233. if (++i12 == ne2) {
  5234. i12 = 0;
  5235. if (++i13 == ne3) {
  5236. i13 = 0;
  5237. }
  5238. }
  5239. }
  5240. }
  5241. }
  5242. }
  5243. } else if (dst->type == GGML_TYPE_F32) {
  5244. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5245. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5246. i10 += ne00 * ir0;
  5247. while (i10 >= ne0) {
  5248. i10 -= ne0;
  5249. if (++i11 == ne1) {
  5250. i11 = 0;
  5251. if (++i12 == ne2) {
  5252. i12 = 0;
  5253. if (++i13 == ne3) {
  5254. i13 = 0;
  5255. }
  5256. }
  5257. }
  5258. }
  5259. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5260. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5261. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5262. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5263. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5264. if (++i10 == ne0) {
  5265. i10 = 0;
  5266. if (++i11 == ne1) {
  5267. i11 = 0;
  5268. if (++i12 == ne2) {
  5269. i12 = 0;
  5270. if (++i13 == ne3) {
  5271. i13 = 0;
  5272. }
  5273. }
  5274. }
  5275. }
  5276. }
  5277. }
  5278. i10 += ne00 * (ne01 - ir1);
  5279. while (i10 >= ne0) {
  5280. i10 -= ne0;
  5281. if (++i11 == ne1) {
  5282. i11 = 0;
  5283. if (++i12 == ne2) {
  5284. i12 = 0;
  5285. if (++i13 == ne3) {
  5286. i13 = 0;
  5287. }
  5288. }
  5289. }
  5290. }
  5291. }
  5292. }
  5293. } else {
  5294. GGML_ASSERT(false); // TODO: implement
  5295. }
  5296. }
  5297. static void ggml_compute_forward_dup_f32(
  5298. const struct ggml_compute_params * params,
  5299. const struct ggml_tensor * src0,
  5300. struct ggml_tensor * dst) {
  5301. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5302. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5303. return;
  5304. }
  5305. const int64_t ne00 = src0->ne[0];
  5306. const int64_t ne01 = src0->ne[1];
  5307. const int64_t ne02 = src0->ne[2];
  5308. const int64_t ne03 = src0->ne[3];
  5309. const int64_t ne0 = dst->ne[0];
  5310. const int64_t ne1 = dst->ne[1];
  5311. const int64_t ne2 = dst->ne[2];
  5312. const int64_t ne3 = dst->ne[3];
  5313. const size_t nb00 = src0->nb[0];
  5314. const size_t nb01 = src0->nb[1];
  5315. const size_t nb02 = src0->nb[2];
  5316. const size_t nb03 = src0->nb[3];
  5317. const size_t nb0 = dst->nb[0];
  5318. const size_t nb1 = dst->nb[1];
  5319. const size_t nb2 = dst->nb[2];
  5320. const size_t nb3 = dst->nb[3];
  5321. const int ith = params->ith; // thread index
  5322. const int nth = params->nth; // number of threads
  5323. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5324. // parallelize by elements
  5325. const int ne = ggml_nelements(dst);
  5326. const int dr = (ne + nth - 1) / nth;
  5327. const int ie0 = dr * ith;
  5328. const int ie1 = MIN(ie0 + dr, ne);
  5329. memcpy(
  5330. ((char *) dst->data + ie0*nb0),
  5331. ((char *) src0->data + ie0*nb00),
  5332. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  5333. return;
  5334. }
  5335. // parallelize by rows
  5336. const int nr = ne01;
  5337. // number of rows per thread
  5338. const int dr = (nr + nth - 1) / nth;
  5339. // row range for this thread
  5340. const int ir0 = dr * ith;
  5341. const int ir1 = MIN(ir0 + dr, nr);
  5342. if (src0->type == dst->type &&
  5343. ne00 == ne0 &&
  5344. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5345. // copy by rows
  5346. const size_t rs = ne00*nb00;
  5347. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5348. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5349. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5350. memcpy(
  5351. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5352. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5353. rs);
  5354. }
  5355. }
  5356. }
  5357. return;
  5358. }
  5359. if (ggml_is_contiguous(dst)) {
  5360. // TODO: simplify
  5361. if (nb00 == sizeof(float)) {
  5362. if (dst->type == GGML_TYPE_F32) {
  5363. size_t id = 0;
  5364. const size_t rs = ne00 * nb00;
  5365. char * dst_ptr = (char *) dst->data;
  5366. for (int i03 = 0; i03 < ne03; i03++) {
  5367. for (int i02 = 0; i02 < ne02; i02++) {
  5368. id += rs * ir0;
  5369. for (int i01 = ir0; i01 < ir1; i01++) {
  5370. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5371. memcpy(dst_ptr + id, src0_ptr, rs);
  5372. id += rs;
  5373. }
  5374. id += rs * (ne01 - ir1);
  5375. }
  5376. }
  5377. } else if (dst->type == GGML_TYPE_F16) {
  5378. size_t id = 0;
  5379. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5380. for (int i03 = 0; i03 < ne03; i03++) {
  5381. for (int i02 = 0; i02 < ne02; i02++) {
  5382. id += ne00 * ir0;
  5383. for (int i01 = ir0; i01 < ir1; i01++) {
  5384. for (int i00 = 0; i00 < ne00; i00++) {
  5385. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5386. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5387. id++;
  5388. }
  5389. }
  5390. id += ne00 * (ne01 - ir1);
  5391. }
  5392. }
  5393. } else if (ggml_is_quantized(dst->type)) {
  5394. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5395. size_t id = 0;
  5396. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5397. char * dst_ptr = (char *) dst->data;
  5398. for (int i03 = 0; i03 < ne03; i03++) {
  5399. for (int i02 = 0; i02 < ne02; i02++) {
  5400. id += rs * ir0;
  5401. for (int i01 = ir0; i01 < ir1; i01++) {
  5402. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5403. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5404. id += rs;
  5405. }
  5406. id += rs * (ne01 - ir1);
  5407. }
  5408. }
  5409. } else {
  5410. GGML_ASSERT(false); // TODO: implement
  5411. }
  5412. } else {
  5413. //printf("%s: this is not optimal - fix me\n", __func__);
  5414. if (dst->type == GGML_TYPE_F32) {
  5415. size_t id = 0;
  5416. float * dst_ptr = (float *) dst->data;
  5417. for (int i03 = 0; i03 < ne03; i03++) {
  5418. for (int i02 = 0; i02 < ne02; i02++) {
  5419. id += ne00 * ir0;
  5420. for (int i01 = ir0; i01 < ir1; i01++) {
  5421. for (int i00 = 0; i00 < ne00; i00++) {
  5422. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5423. dst_ptr[id] = *src0_ptr;
  5424. id++;
  5425. }
  5426. }
  5427. id += ne00 * (ne01 - ir1);
  5428. }
  5429. }
  5430. } else if (dst->type == GGML_TYPE_F16) {
  5431. size_t id = 0;
  5432. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5433. for (int i03 = 0; i03 < ne03; i03++) {
  5434. for (int i02 = 0; i02 < ne02; i02++) {
  5435. id += ne00 * ir0;
  5436. for (int i01 = ir0; i01 < ir1; i01++) {
  5437. for (int i00 = 0; i00 < ne00; i00++) {
  5438. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5439. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5440. id++;
  5441. }
  5442. }
  5443. id += ne00 * (ne01 - ir1);
  5444. }
  5445. }
  5446. } else {
  5447. GGML_ASSERT(false); // TODO: implement
  5448. }
  5449. }
  5450. return;
  5451. }
  5452. // dst counters
  5453. int64_t i10 = 0;
  5454. int64_t i11 = 0;
  5455. int64_t i12 = 0;
  5456. int64_t i13 = 0;
  5457. if (dst->type == GGML_TYPE_F32) {
  5458. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5459. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5460. i10 += ne00 * ir0;
  5461. while (i10 >= ne0) {
  5462. i10 -= ne0;
  5463. if (++i11 == ne1) {
  5464. i11 = 0;
  5465. if (++i12 == ne2) {
  5466. i12 = 0;
  5467. if (++i13 == ne3) {
  5468. i13 = 0;
  5469. }
  5470. }
  5471. }
  5472. }
  5473. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5474. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5475. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5476. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5477. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5478. if (++i10 == ne0) {
  5479. i10 = 0;
  5480. if (++i11 == ne1) {
  5481. i11 = 0;
  5482. if (++i12 == ne2) {
  5483. i12 = 0;
  5484. if (++i13 == ne3) {
  5485. i13 = 0;
  5486. }
  5487. }
  5488. }
  5489. }
  5490. }
  5491. }
  5492. i10 += ne00 * (ne01 - ir1);
  5493. while (i10 >= ne0) {
  5494. i10 -= ne0;
  5495. if (++i11 == ne1) {
  5496. i11 = 0;
  5497. if (++i12 == ne2) {
  5498. i12 = 0;
  5499. if (++i13 == ne3) {
  5500. i13 = 0;
  5501. }
  5502. }
  5503. }
  5504. }
  5505. }
  5506. }
  5507. } else if (dst->type == GGML_TYPE_F16) {
  5508. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5509. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5510. i10 += ne00 * ir0;
  5511. while (i10 >= ne0) {
  5512. i10 -= ne0;
  5513. if (++i11 == ne1) {
  5514. i11 = 0;
  5515. if (++i12 == ne2) {
  5516. i12 = 0;
  5517. if (++i13 == ne3) {
  5518. i13 = 0;
  5519. }
  5520. }
  5521. }
  5522. }
  5523. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5524. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5525. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5526. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5527. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5528. if (++i10 == ne0) {
  5529. i10 = 0;
  5530. if (++i11 == ne1) {
  5531. i11 = 0;
  5532. if (++i12 == ne2) {
  5533. i12 = 0;
  5534. if (++i13 == ne3) {
  5535. i13 = 0;
  5536. }
  5537. }
  5538. }
  5539. }
  5540. }
  5541. }
  5542. i10 += ne00 * (ne01 - ir1);
  5543. while (i10 >= ne0) {
  5544. i10 -= ne0;
  5545. if (++i11 == ne1) {
  5546. i11 = 0;
  5547. if (++i12 == ne2) {
  5548. i12 = 0;
  5549. if (++i13 == ne3) {
  5550. i13 = 0;
  5551. }
  5552. }
  5553. }
  5554. }
  5555. }
  5556. }
  5557. } else {
  5558. GGML_ASSERT(false); // TODO: implement
  5559. }
  5560. }
  5561. static void ggml_compute_forward_dup(
  5562. const struct ggml_compute_params * params,
  5563. const struct ggml_tensor * src0,
  5564. struct ggml_tensor * dst) {
  5565. switch (src0->type) {
  5566. case GGML_TYPE_F16:
  5567. {
  5568. ggml_compute_forward_dup_f16(params, src0, dst);
  5569. } break;
  5570. case GGML_TYPE_F32:
  5571. {
  5572. ggml_compute_forward_dup_f32(params, src0, dst);
  5573. } break;
  5574. default:
  5575. {
  5576. GGML_ASSERT(false);
  5577. } break;
  5578. }
  5579. }
  5580. // ggml_compute_forward_add
  5581. static void ggml_compute_forward_add_f32(
  5582. const struct ggml_compute_params * params,
  5583. const struct ggml_tensor * src0,
  5584. const struct ggml_tensor * src1,
  5585. struct ggml_tensor * dst) {
  5586. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5587. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5588. return;
  5589. }
  5590. const int ith = params->ith;
  5591. const int nth = params->nth;
  5592. const int n = ggml_nrows(src0);
  5593. const int nc = src0->ne[0];
  5594. const size_t nb00 = src0->nb[0];
  5595. const size_t nb01 = src0->nb[1];
  5596. const size_t nb10 = src1->nb[0];
  5597. const size_t nb11 = src1->nb[1];
  5598. const size_t nb0 = dst->nb[0];
  5599. const size_t nb1 = dst->nb[1];
  5600. GGML_ASSERT( nb0 == sizeof(float));
  5601. GGML_ASSERT(nb00 == sizeof(float));
  5602. if (nb10 == sizeof(float)) {
  5603. for (int j = ith; j < n; j += nth) {
  5604. #ifdef GGML_USE_ACCELERATE
  5605. vDSP_vadd(
  5606. (float *) ((char *) src0->data + j*nb01), 1,
  5607. (float *) ((char *) src1->data + j*nb11), 1,
  5608. (float *) ((char *) dst->data + j*nb1), 1, nc);
  5609. #else
  5610. ggml_vec_add_f32(nc,
  5611. (float *) ((char *) dst->data + j*nb1),
  5612. (float *) ((char *) src0->data + j*nb01),
  5613. (float *) ((char *) src1->data + j*nb11));
  5614. #endif
  5615. }
  5616. } else {
  5617. // src1 is not contiguous
  5618. for (int j = ith; j < n; j += nth) {
  5619. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  5620. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  5621. for (int i = 0; i < nc; i++) {
  5622. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5623. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  5624. }
  5625. }
  5626. }
  5627. }
  5628. static void ggml_compute_forward_add_f16_f32(
  5629. const struct ggml_compute_params * params,
  5630. const struct ggml_tensor * src0,
  5631. const struct ggml_tensor * src1,
  5632. struct ggml_tensor * dst) {
  5633. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5634. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5635. return;
  5636. }
  5637. const int ith = params->ith;
  5638. const int nth = params->nth;
  5639. const int n = ggml_nrows(src0);
  5640. const int nc = src0->ne[0];
  5641. const size_t nb00 = src0->nb[0];
  5642. const size_t nb01 = src0->nb[1];
  5643. const size_t nb10 = src1->nb[0];
  5644. const size_t nb11 = src1->nb[1];
  5645. const size_t nb0 = dst->nb[0];
  5646. const size_t nb1 = dst->nb[1];
  5647. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5648. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5649. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5650. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5651. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5652. if (nb10 == sizeof(float)) {
  5653. for (int j = ith; j < n; j += nth) {
  5654. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5655. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5656. for (int i = 0; i < nc; i++) {
  5657. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5658. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + *src1_ptr);
  5659. }
  5660. }
  5661. }
  5662. else {
  5663. // src1 is not contiguous
  5664. GGML_ASSERT(false);
  5665. }
  5666. }
  5667. static void ggml_compute_forward_add_f16_f16(
  5668. const struct ggml_compute_params * params,
  5669. const struct ggml_tensor * src0,
  5670. const struct ggml_tensor * src1,
  5671. struct ggml_tensor * dst) {
  5672. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5673. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5674. return;
  5675. }
  5676. const int ith = params->ith;
  5677. const int nth = params->nth;
  5678. const int n = ggml_nrows(src0);
  5679. const int nc = src0->ne[0];
  5680. const size_t nb00 = src0->nb[0];
  5681. const size_t nb01 = src0->nb[1];
  5682. const size_t nb10 = src1->nb[0];
  5683. const size_t nb11 = src1->nb[1];
  5684. const size_t nb0 = dst->nb[0];
  5685. const size_t nb1 = dst->nb[1];
  5686. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5687. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5688. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5689. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5690. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5691. if (nb10 == sizeof(ggml_fp16_t)) {
  5692. for (int j = ith; j < n; j += nth) {
  5693. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5694. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5695. for (int i = 0; i < nc; i++) {
  5696. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + j*nb11 + i*nb10);
  5697. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(*src1_ptr));
  5698. }
  5699. }
  5700. }
  5701. else {
  5702. // src1 is not contiguous
  5703. GGML_ASSERT(false);
  5704. }
  5705. }
  5706. static void ggml_compute_forward_add_q_f32(
  5707. const struct ggml_compute_params * params,
  5708. const struct ggml_tensor * src0,
  5709. const struct ggml_tensor * src1,
  5710. struct ggml_tensor * dst) {
  5711. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5712. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5713. return;
  5714. }
  5715. const int64_t ne00 = src0->ne[0];
  5716. const int64_t ne01 = src0->ne[1];
  5717. const int64_t ne02 = src0->ne[2];
  5718. const int64_t ne03 = src0->ne[3];
  5719. //const int64_t ne10 = src1->ne[0];
  5720. //const int64_t ne11 = src1->ne[1];
  5721. const int64_t ne12 = src1->ne[2];
  5722. const int64_t ne13 = src1->ne[3];
  5723. //const int64_t ne0 = dst->ne[0];
  5724. //const int64_t ne1 = dst->ne[1];
  5725. const int64_t ne2 = dst->ne[2];
  5726. const int64_t ne3 = dst->ne[3];
  5727. const int nb00 = src0->nb[0];
  5728. const int nb01 = src0->nb[1];
  5729. const int nb02 = src0->nb[2];
  5730. const int nb03 = src0->nb[3];
  5731. const int nb10 = src1->nb[0];
  5732. const int nb11 = src1->nb[1];
  5733. const int nb12 = src1->nb[2];
  5734. const int nb13 = src1->nb[3];
  5735. const int nb0 = dst->nb[0];
  5736. const int nb1 = dst->nb[1];
  5737. const int nb2 = dst->nb[2];
  5738. const int nb3 = dst->nb[3];
  5739. const int ith = params->ith;
  5740. const int nth = params->nth;
  5741. GGML_ASSERT(ne02 == ne12);
  5742. GGML_ASSERT(ne03 == ne13);
  5743. GGML_ASSERT(ne2 == ne12);
  5744. GGML_ASSERT(ne3 == ne13);
  5745. const enum ggml_type type = src0->type;
  5746. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5747. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5748. // we don't support permuted src0 or src1
  5749. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5750. GGML_ASSERT(nb10 == sizeof(float));
  5751. // dst cannot be transposed or permuted
  5752. GGML_ASSERT(nb0 <= nb1);
  5753. GGML_ASSERT(nb1 <= nb2);
  5754. GGML_ASSERT(nb2 <= nb3);
  5755. GGML_ASSERT(ggml_is_quantized(src0->type));
  5756. GGML_ASSERT(dst->type == src0->type);
  5757. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5758. // total rows in src0
  5759. const int nr = ne01*ne02*ne03;
  5760. // rows per thread
  5761. const int dr = (nr + nth - 1)/nth;
  5762. // row range for this thread
  5763. const int ir0 = dr*ith;
  5764. const int ir1 = MIN(ir0 + dr, nr);
  5765. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5766. for (int ir = ir0; ir < ir1; ++ir) {
  5767. // src0 indices
  5768. const int i03 = ir/(ne02*ne01);
  5769. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5770. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5771. // src1 and dst are same shape as src0 => same indices
  5772. const int i13 = i03;
  5773. const int i12 = i02;
  5774. const int i11 = i01;
  5775. const int i3 = i03;
  5776. const int i2 = i02;
  5777. const int i1 = i01;
  5778. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5779. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  5780. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  5781. assert(ne00 % 32 == 0);
  5782. // unquantize row from src0 to temp buffer
  5783. dequantize_row_q(src0_row, wdata, ne00);
  5784. // add src1
  5785. ggml_vec_acc_f32(ne00, wdata, src1_row);
  5786. // quantize row to dst
  5787. quantize_row_q(wdata, dst_row, ne00);
  5788. }
  5789. }
  5790. static void ggml_compute_forward_add(
  5791. const struct ggml_compute_params * params,
  5792. const struct ggml_tensor * src0,
  5793. const struct ggml_tensor * src1,
  5794. struct ggml_tensor * dst) {
  5795. switch (src0->type) {
  5796. case GGML_TYPE_F32:
  5797. {
  5798. ggml_compute_forward_add_f32(params, src0, src1, dst);
  5799. } break;
  5800. case GGML_TYPE_F16:
  5801. {
  5802. if (src1->type == GGML_TYPE_F16) {
  5803. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  5804. }
  5805. else if (src1->type == GGML_TYPE_F32) {
  5806. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  5807. }
  5808. else {
  5809. GGML_ASSERT(false);
  5810. }
  5811. } break;
  5812. case GGML_TYPE_Q4_0:
  5813. case GGML_TYPE_Q4_1:
  5814. case GGML_TYPE_Q4_2:
  5815. case GGML_TYPE_Q4_3:
  5816. case GGML_TYPE_Q5_0:
  5817. case GGML_TYPE_Q5_1:
  5818. case GGML_TYPE_Q8_0:
  5819. {
  5820. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  5821. } break;
  5822. default:
  5823. {
  5824. GGML_ASSERT(false);
  5825. } break;
  5826. }
  5827. }
  5828. // ggml_compute_forward_sub
  5829. static void ggml_compute_forward_sub_f32(
  5830. const struct ggml_compute_params * params,
  5831. const struct ggml_tensor * src0,
  5832. const struct ggml_tensor * src1,
  5833. struct ggml_tensor * dst) {
  5834. assert(params->ith == 0);
  5835. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5836. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5837. return;
  5838. }
  5839. const int n = ggml_nrows(src0);
  5840. const int nc = src0->ne[0];
  5841. assert( dst->nb[0] == sizeof(float));
  5842. assert(src0->nb[0] == sizeof(float));
  5843. assert(src1->nb[0] == sizeof(float));
  5844. for (int i = 0; i < n; i++) {
  5845. ggml_vec_sub_f32(nc,
  5846. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5847. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5848. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5849. }
  5850. }
  5851. static void ggml_compute_forward_sub(
  5852. const struct ggml_compute_params * params,
  5853. const struct ggml_tensor * src0,
  5854. const struct ggml_tensor * src1,
  5855. struct ggml_tensor * dst) {
  5856. switch (src0->type) {
  5857. case GGML_TYPE_F32:
  5858. {
  5859. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  5860. } break;
  5861. default:
  5862. {
  5863. GGML_ASSERT(false);
  5864. } break;
  5865. }
  5866. }
  5867. // ggml_compute_forward_mul
  5868. static void ggml_compute_forward_mul_f32(
  5869. const struct ggml_compute_params * params,
  5870. const struct ggml_tensor * src0,
  5871. const struct ggml_tensor * src1,
  5872. struct ggml_tensor * dst) {
  5873. assert(params->ith == 0);
  5874. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5875. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5876. return;
  5877. }
  5878. const int n = ggml_nrows(src0);
  5879. const int nc = src0->ne[0];
  5880. assert( dst->nb[0] == sizeof(float));
  5881. assert(src0->nb[0] == sizeof(float));
  5882. assert(src1->nb[0] == sizeof(float));
  5883. for (int i = 0; i < n; i++) {
  5884. ggml_vec_mul_f32(nc,
  5885. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5886. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5887. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5888. }
  5889. }
  5890. static void ggml_compute_forward_mul(
  5891. const struct ggml_compute_params * params,
  5892. const struct ggml_tensor * src0,
  5893. const struct ggml_tensor * src1,
  5894. struct ggml_tensor * dst) {
  5895. switch (src0->type) {
  5896. case GGML_TYPE_F32:
  5897. {
  5898. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  5899. } break;
  5900. default:
  5901. {
  5902. GGML_ASSERT(false);
  5903. } break;
  5904. }
  5905. }
  5906. // ggml_compute_forward_div
  5907. static void ggml_compute_forward_div_f32(
  5908. const struct ggml_compute_params * params,
  5909. const struct ggml_tensor * src0,
  5910. const struct ggml_tensor * src1,
  5911. struct ggml_tensor * dst) {
  5912. assert(params->ith == 0);
  5913. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5914. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5915. return;
  5916. }
  5917. const int n = ggml_nrows(src0);
  5918. const int nc = src0->ne[0];
  5919. assert( dst->nb[0] == sizeof(float));
  5920. assert(src0->nb[0] == sizeof(float));
  5921. assert(src1->nb[0] == sizeof(float));
  5922. for (int i = 0; i < n; i++) {
  5923. ggml_vec_div_f32(nc,
  5924. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5925. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5926. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5927. }
  5928. }
  5929. static void ggml_compute_forward_div(
  5930. const struct ggml_compute_params * params,
  5931. const struct ggml_tensor * src0,
  5932. const struct ggml_tensor * src1,
  5933. struct ggml_tensor * dst) {
  5934. switch (src0->type) {
  5935. case GGML_TYPE_F32:
  5936. {
  5937. ggml_compute_forward_div_f32(params, src0, src1, dst);
  5938. } break;
  5939. default:
  5940. {
  5941. GGML_ASSERT(false);
  5942. } break;
  5943. }
  5944. }
  5945. // ggml_compute_forward_sqr
  5946. static void ggml_compute_forward_sqr_f32(
  5947. const struct ggml_compute_params * params,
  5948. const struct ggml_tensor * src0,
  5949. struct ggml_tensor * dst) {
  5950. assert(params->ith == 0);
  5951. assert(ggml_are_same_shape(src0, dst));
  5952. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5953. return;
  5954. }
  5955. const int n = ggml_nrows(src0);
  5956. const int nc = src0->ne[0];
  5957. assert( dst->nb[0] == sizeof(float));
  5958. assert(src0->nb[0] == sizeof(float));
  5959. for (int i = 0; i < n; i++) {
  5960. ggml_vec_sqr_f32(nc,
  5961. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5962. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5963. }
  5964. }
  5965. static void ggml_compute_forward_sqr(
  5966. const struct ggml_compute_params * params,
  5967. const struct ggml_tensor * src0,
  5968. struct ggml_tensor * dst) {
  5969. switch (src0->type) {
  5970. case GGML_TYPE_F32:
  5971. {
  5972. ggml_compute_forward_sqr_f32(params, src0, dst);
  5973. } break;
  5974. default:
  5975. {
  5976. GGML_ASSERT(false);
  5977. } break;
  5978. }
  5979. }
  5980. // ggml_compute_forward_sqrt
  5981. static void ggml_compute_forward_sqrt_f32(
  5982. const struct ggml_compute_params * params,
  5983. const struct ggml_tensor * src0,
  5984. struct ggml_tensor * dst) {
  5985. assert(params->ith == 0);
  5986. assert(ggml_are_same_shape(src0, dst));
  5987. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5988. return;
  5989. }
  5990. const int n = ggml_nrows(src0);
  5991. const int nc = src0->ne[0];
  5992. assert( dst->nb[0] == sizeof(float));
  5993. assert(src0->nb[0] == sizeof(float));
  5994. for (int i = 0; i < n; i++) {
  5995. ggml_vec_sqrt_f32(nc,
  5996. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5997. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5998. }
  5999. }
  6000. static void ggml_compute_forward_sqrt(
  6001. const struct ggml_compute_params * params,
  6002. const struct ggml_tensor * src0,
  6003. struct ggml_tensor * dst) {
  6004. switch (src0->type) {
  6005. case GGML_TYPE_F32:
  6006. {
  6007. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6008. } break;
  6009. default:
  6010. {
  6011. GGML_ASSERT(false);
  6012. } break;
  6013. }
  6014. }
  6015. // ggml_compute_forward_sum
  6016. static void ggml_compute_forward_sum_f32(
  6017. const struct ggml_compute_params * params,
  6018. const struct ggml_tensor * src0,
  6019. struct ggml_tensor * dst) {
  6020. assert(params->ith == 0);
  6021. assert(ggml_is_scalar(dst));
  6022. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6023. return;
  6024. }
  6025. assert(ggml_is_scalar(dst));
  6026. assert(src0->nb[0] == sizeof(float));
  6027. const int64_t ne00 = src0->ne[0];
  6028. const int64_t ne01 = src0->ne[1];
  6029. const int64_t ne02 = src0->ne[2];
  6030. const int64_t ne03 = src0->ne[3];
  6031. const size_t nb01 = src0->nb[1];
  6032. const size_t nb02 = src0->nb[2];
  6033. const size_t nb03 = src0->nb[3];
  6034. ggml_float sum = 0;
  6035. ggml_float row_sum = 0;
  6036. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6037. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6038. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6039. ggml_vec_sum_ggf(ne00,
  6040. &row_sum,
  6041. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6042. sum += row_sum;
  6043. }
  6044. }
  6045. }
  6046. ((float *) dst->data)[0] = sum;
  6047. }
  6048. static void ggml_compute_forward_sum(
  6049. const struct ggml_compute_params * params,
  6050. const struct ggml_tensor * src0,
  6051. struct ggml_tensor * dst) {
  6052. switch (src0->type) {
  6053. case GGML_TYPE_F32:
  6054. {
  6055. ggml_compute_forward_sum_f32(params, src0, dst);
  6056. } break;
  6057. default:
  6058. {
  6059. GGML_ASSERT(false);
  6060. } break;
  6061. }
  6062. }
  6063. // ggml_compute_forward_mean
  6064. static void ggml_compute_forward_mean_f32(
  6065. const struct ggml_compute_params * params,
  6066. const struct ggml_tensor * src0,
  6067. struct ggml_tensor * dst) {
  6068. assert(params->ith == 0);
  6069. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6070. return;
  6071. }
  6072. assert(src0->nb[0] == sizeof(float));
  6073. const int64_t ne00 = src0->ne[0];
  6074. const int64_t ne01 = src0->ne[1];
  6075. const int64_t ne02 = src0->ne[2];
  6076. const int64_t ne03 = src0->ne[3];
  6077. const size_t nb01 = src0->nb[1];
  6078. const size_t nb02 = src0->nb[2];
  6079. const size_t nb03 = src0->nb[3];
  6080. const int64_t ne0 = dst->ne[0];
  6081. const int64_t ne1 = dst->ne[1];
  6082. const int64_t ne2 = dst->ne[2];
  6083. const int64_t ne3 = dst->ne[3];
  6084. assert(ne0 == 1);
  6085. assert(ne1 == ne01);
  6086. assert(ne2 == ne02);
  6087. assert(ne3 == ne03);
  6088. UNUSED(ne0);
  6089. UNUSED(ne1);
  6090. UNUSED(ne2);
  6091. UNUSED(ne3);
  6092. const size_t nb1 = dst->nb[1];
  6093. const size_t nb2 = dst->nb[2];
  6094. const size_t nb3 = dst->nb[3];
  6095. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6096. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6097. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6098. ggml_vec_sum_f32(ne00,
  6099. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6100. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6101. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  6102. }
  6103. }
  6104. }
  6105. }
  6106. static void ggml_compute_forward_mean(
  6107. const struct ggml_compute_params * params,
  6108. const struct ggml_tensor * src0,
  6109. struct ggml_tensor * dst) {
  6110. switch (src0->type) {
  6111. case GGML_TYPE_F32:
  6112. {
  6113. ggml_compute_forward_mean_f32(params, src0, dst);
  6114. } break;
  6115. default:
  6116. {
  6117. GGML_ASSERT(false);
  6118. } break;
  6119. }
  6120. }
  6121. // ggml_compute_forward_repeat
  6122. static void ggml_compute_forward_repeat_f32(
  6123. const struct ggml_compute_params * params,
  6124. const struct ggml_tensor * src0,
  6125. struct ggml_tensor * dst) {
  6126. assert(params->ith == 0);
  6127. assert(ggml_can_repeat(src0, dst));
  6128. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6129. return;
  6130. }
  6131. // TODO: implement support for rank > 2 tensors
  6132. assert(src0->ne[2] == 1);
  6133. assert(src0->ne[3] == 1);
  6134. assert( dst->ne[2] == 1);
  6135. assert( dst->ne[3] == 1);
  6136. const int nc = dst->ne[0];
  6137. const int nr = dst->ne[1];
  6138. const int nc0 = src0->ne[0];
  6139. const int nr0 = src0->ne[1];
  6140. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  6141. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  6142. // TODO: support for transposed / permuted tensors
  6143. assert( dst->nb[0] == sizeof(float));
  6144. assert(src0->nb[0] == sizeof(float));
  6145. // TODO: maybe this is not optimal?
  6146. for (int i = 0; i < nrr; i++) {
  6147. for (int j = 0; j < ncr; j++) {
  6148. for (int k = 0; k < nr0; k++) {
  6149. ggml_vec_cpy_f32(nc0,
  6150. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  6151. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  6152. }
  6153. }
  6154. }
  6155. }
  6156. static void ggml_compute_forward_repeat(
  6157. const struct ggml_compute_params * params,
  6158. const struct ggml_tensor * src0,
  6159. struct ggml_tensor * dst) {
  6160. switch (src0->type) {
  6161. case GGML_TYPE_F32:
  6162. {
  6163. ggml_compute_forward_repeat_f32(params, src0, dst);
  6164. } break;
  6165. default:
  6166. {
  6167. GGML_ASSERT(false);
  6168. } break;
  6169. }
  6170. }
  6171. // ggml_compute_forward_abs
  6172. static void ggml_compute_forward_abs_f32(
  6173. const struct ggml_compute_params * params,
  6174. const struct ggml_tensor * src0,
  6175. struct ggml_tensor * dst) {
  6176. assert(params->ith == 0);
  6177. assert(ggml_are_same_shape(src0, dst));
  6178. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6179. return;
  6180. }
  6181. const int n = ggml_nrows(src0);
  6182. const int nc = src0->ne[0];
  6183. assert(dst->nb[0] == sizeof(float));
  6184. assert(src0->nb[0] == sizeof(float));
  6185. for (int i = 0; i < n; i++) {
  6186. ggml_vec_abs_f32(nc,
  6187. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6188. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6189. }
  6190. }
  6191. static void ggml_compute_forward_abs(
  6192. const struct ggml_compute_params * params,
  6193. const struct ggml_tensor * src0,
  6194. struct ggml_tensor * dst) {
  6195. switch (src0->type) {
  6196. case GGML_TYPE_F32:
  6197. {
  6198. ggml_compute_forward_abs_f32(params, src0, dst);
  6199. } break;
  6200. default:
  6201. {
  6202. GGML_ASSERT(false);
  6203. } break;
  6204. }
  6205. }
  6206. // ggml_compute_forward_sgn
  6207. static void ggml_compute_forward_sgn_f32(
  6208. const struct ggml_compute_params * params,
  6209. const struct ggml_tensor * src0,
  6210. struct ggml_tensor * dst) {
  6211. assert(params->ith == 0);
  6212. assert(ggml_are_same_shape(src0, dst));
  6213. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6214. return;
  6215. }
  6216. const int n = ggml_nrows(src0);
  6217. const int nc = src0->ne[0];
  6218. assert(dst->nb[0] == sizeof(float));
  6219. assert(src0->nb[0] == sizeof(float));
  6220. for (int i = 0; i < n; i++) {
  6221. ggml_vec_sgn_f32(nc,
  6222. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6223. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6224. }
  6225. }
  6226. static void ggml_compute_forward_sgn(
  6227. const struct ggml_compute_params * params,
  6228. const struct ggml_tensor * src0,
  6229. struct ggml_tensor * dst) {
  6230. switch (src0->type) {
  6231. case GGML_TYPE_F32:
  6232. {
  6233. ggml_compute_forward_sgn_f32(params, src0, dst);
  6234. } break;
  6235. default:
  6236. {
  6237. GGML_ASSERT(false);
  6238. } break;
  6239. }
  6240. }
  6241. // ggml_compute_forward_neg
  6242. static void ggml_compute_forward_neg_f32(
  6243. const struct ggml_compute_params * params,
  6244. const struct ggml_tensor * src0,
  6245. struct ggml_tensor * dst) {
  6246. assert(params->ith == 0);
  6247. assert(ggml_are_same_shape(src0, dst));
  6248. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6249. return;
  6250. }
  6251. const int n = ggml_nrows(src0);
  6252. const int nc = src0->ne[0];
  6253. assert(dst->nb[0] == sizeof(float));
  6254. assert(src0->nb[0] == sizeof(float));
  6255. for (int i = 0; i < n; i++) {
  6256. ggml_vec_neg_f32(nc,
  6257. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6258. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6259. }
  6260. }
  6261. static void ggml_compute_forward_neg(
  6262. const struct ggml_compute_params * params,
  6263. const struct ggml_tensor * src0,
  6264. struct ggml_tensor * dst) {
  6265. switch (src0->type) {
  6266. case GGML_TYPE_F32:
  6267. {
  6268. ggml_compute_forward_neg_f32(params, src0, dst);
  6269. } break;
  6270. default:
  6271. {
  6272. GGML_ASSERT(false);
  6273. } break;
  6274. }
  6275. }
  6276. // ggml_compute_forward_step
  6277. static void ggml_compute_forward_step_f32(
  6278. const struct ggml_compute_params * params,
  6279. const struct ggml_tensor * src0,
  6280. struct ggml_tensor * dst) {
  6281. assert(params->ith == 0);
  6282. assert(ggml_are_same_shape(src0, dst));
  6283. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6284. return;
  6285. }
  6286. const int n = ggml_nrows(src0);
  6287. const int nc = src0->ne[0];
  6288. assert(dst->nb[0] == sizeof(float));
  6289. assert(src0->nb[0] == sizeof(float));
  6290. for (int i = 0; i < n; i++) {
  6291. ggml_vec_step_f32(nc,
  6292. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6293. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6294. }
  6295. }
  6296. static void ggml_compute_forward_step(
  6297. const struct ggml_compute_params * params,
  6298. const struct ggml_tensor * src0,
  6299. struct ggml_tensor * dst) {
  6300. switch (src0->type) {
  6301. case GGML_TYPE_F32:
  6302. {
  6303. ggml_compute_forward_step_f32(params, src0, dst);
  6304. } break;
  6305. default:
  6306. {
  6307. GGML_ASSERT(false);
  6308. } break;
  6309. }
  6310. }
  6311. // ggml_compute_forward_relu
  6312. static void ggml_compute_forward_relu_f32(
  6313. const struct ggml_compute_params * params,
  6314. const struct ggml_tensor * src0,
  6315. struct ggml_tensor * dst) {
  6316. assert(params->ith == 0);
  6317. assert(ggml_are_same_shape(src0, dst));
  6318. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6319. return;
  6320. }
  6321. const int n = ggml_nrows(src0);
  6322. const int nc = src0->ne[0];
  6323. assert(dst->nb[0] == sizeof(float));
  6324. assert(src0->nb[0] == sizeof(float));
  6325. for (int i = 0; i < n; i++) {
  6326. ggml_vec_relu_f32(nc,
  6327. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6328. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6329. }
  6330. }
  6331. static void ggml_compute_forward_relu(
  6332. const struct ggml_compute_params * params,
  6333. const struct ggml_tensor * src0,
  6334. struct ggml_tensor * dst) {
  6335. switch (src0->type) {
  6336. case GGML_TYPE_F32:
  6337. {
  6338. ggml_compute_forward_relu_f32(params, src0, dst);
  6339. } break;
  6340. default:
  6341. {
  6342. GGML_ASSERT(false);
  6343. } break;
  6344. }
  6345. }
  6346. // ggml_compute_forward_gelu
  6347. static void ggml_compute_forward_gelu_f32(
  6348. const struct ggml_compute_params * params,
  6349. const struct ggml_tensor * src0,
  6350. struct ggml_tensor * dst) {
  6351. GGML_ASSERT(ggml_is_contiguous(src0));
  6352. GGML_ASSERT(ggml_is_contiguous(dst));
  6353. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6354. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6355. return;
  6356. }
  6357. const int ith = params->ith;
  6358. const int nth = params->nth;
  6359. const int nc = src0->ne[0];
  6360. const int nr = ggml_nrows(src0);
  6361. // rows per thread
  6362. const int dr = (nr + nth - 1)/nth;
  6363. // row range for this thread
  6364. const int ir0 = dr*ith;
  6365. const int ir1 = MIN(ir0 + dr, nr);
  6366. for (int i1 = ir0; i1 < ir1; i1++) {
  6367. ggml_vec_gelu_f32(nc,
  6368. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  6369. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  6370. #ifndef NDEBUG
  6371. for (int k = 0; k < nc; k++) {
  6372. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  6373. UNUSED(x);
  6374. assert(!isnan(x));
  6375. assert(!isinf(x));
  6376. }
  6377. #endif
  6378. }
  6379. }
  6380. static void ggml_compute_forward_gelu(
  6381. const struct ggml_compute_params * params,
  6382. const struct ggml_tensor * src0,
  6383. struct ggml_tensor * dst) {
  6384. switch (src0->type) {
  6385. case GGML_TYPE_F32:
  6386. {
  6387. ggml_compute_forward_gelu_f32(params, src0, dst);
  6388. } break;
  6389. default:
  6390. {
  6391. GGML_ASSERT(false);
  6392. } break;
  6393. }
  6394. //printf("XXXXXXXX gelu\n");
  6395. }
  6396. // ggml_compute_forward_silu
  6397. static void ggml_compute_forward_silu_f32(
  6398. const struct ggml_compute_params * params,
  6399. const struct ggml_tensor * src0,
  6400. struct ggml_tensor * dst) {
  6401. GGML_ASSERT(ggml_is_contiguous(src0));
  6402. GGML_ASSERT(ggml_is_contiguous(dst));
  6403. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6404. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6405. return;
  6406. }
  6407. const int ith = params->ith;
  6408. const int nth = params->nth;
  6409. const int nc = src0->ne[0];
  6410. const int nr = ggml_nrows(src0);
  6411. // rows per thread
  6412. const int dr = (nr + nth - 1)/nth;
  6413. // row range for this thread
  6414. const int ir0 = dr*ith;
  6415. const int ir1 = MIN(ir0 + dr, nr);
  6416. for (int i1 = ir0; i1 < ir1; i1++) {
  6417. ggml_vec_silu_f32(nc,
  6418. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  6419. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  6420. #ifndef NDEBUG
  6421. for (int k = 0; k < nc; k++) {
  6422. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  6423. UNUSED(x);
  6424. assert(!isnan(x));
  6425. assert(!isinf(x));
  6426. }
  6427. #endif
  6428. }
  6429. }
  6430. static void ggml_compute_forward_silu(
  6431. const struct ggml_compute_params * params,
  6432. const struct ggml_tensor * src0,
  6433. struct ggml_tensor * dst) {
  6434. switch (src0->type) {
  6435. case GGML_TYPE_F32:
  6436. {
  6437. ggml_compute_forward_silu_f32(params, src0, dst);
  6438. } break;
  6439. default:
  6440. {
  6441. GGML_ASSERT(false);
  6442. } break;
  6443. }
  6444. }
  6445. // ggml_compute_forward_norm
  6446. static void ggml_compute_forward_norm_f32(
  6447. const struct ggml_compute_params * params,
  6448. const struct ggml_tensor * src0,
  6449. struct ggml_tensor * dst) {
  6450. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6451. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6452. return;
  6453. }
  6454. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6455. const int ith = params->ith;
  6456. const int nth = params->nth;
  6457. const int64_t ne00 = src0->ne[0];
  6458. const int64_t ne01 = src0->ne[1];
  6459. const int64_t ne02 = src0->ne[2];
  6460. const int64_t ne03 = src0->ne[3];
  6461. const size_t nb01 = src0->nb[1];
  6462. const size_t nb02 = src0->nb[2];
  6463. const size_t nb03 = src0->nb[3];
  6464. const size_t nb1 = dst->nb[1];
  6465. const size_t nb2 = dst->nb[2];
  6466. const size_t nb3 = dst->nb[3];
  6467. const float eps = 1e-5f; // TODO: make this a parameter
  6468. // TODO: optimize
  6469. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6470. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6471. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  6472. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6473. ggml_float sum = 0.0;
  6474. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6475. sum += (ggml_float)x[i00];
  6476. }
  6477. float mean = sum/ne00;
  6478. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  6479. ggml_float sum2 = 0.0;
  6480. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6481. float v = x[i00] - mean;
  6482. y[i00] = v;
  6483. sum2 += (ggml_float)(v*v);
  6484. }
  6485. float variance = sum2/ne00;
  6486. const float scale = 1.0f/sqrtf(variance + eps);
  6487. ggml_vec_scale_f32(ne00, y, scale);
  6488. }
  6489. }
  6490. }
  6491. }
  6492. static void ggml_compute_forward_norm(
  6493. const struct ggml_compute_params * params,
  6494. const struct ggml_tensor * src0,
  6495. struct ggml_tensor * dst) {
  6496. switch (src0->type) {
  6497. case GGML_TYPE_F32:
  6498. {
  6499. ggml_compute_forward_norm_f32(params, src0, dst);
  6500. } break;
  6501. default:
  6502. {
  6503. GGML_ASSERT(false);
  6504. } break;
  6505. }
  6506. }
  6507. static void ggml_compute_forward_rms_norm_f32(
  6508. const struct ggml_compute_params * params,
  6509. const struct ggml_tensor * src0,
  6510. struct ggml_tensor * dst) {
  6511. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6512. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6513. return;
  6514. }
  6515. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6516. const int ith = params->ith;
  6517. const int nth = params->nth;
  6518. const int64_t ne00 = src0->ne[0];
  6519. const int64_t ne01 = src0->ne[1];
  6520. const int64_t ne02 = src0->ne[2];
  6521. const int64_t ne03 = src0->ne[3];
  6522. const size_t nb01 = src0->nb[1];
  6523. const size_t nb02 = src0->nb[2];
  6524. const size_t nb03 = src0->nb[3];
  6525. const size_t nb1 = dst->nb[1];
  6526. const size_t nb2 = dst->nb[2];
  6527. const size_t nb3 = dst->nb[3];
  6528. const float eps = 1e-6f; // TODO: make this a parameter
  6529. // TODO: optimize
  6530. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6531. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6532. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  6533. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6534. ggml_float sum = 0.0;
  6535. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6536. sum += (ggml_float)(x[i00] * x[i00]);
  6537. }
  6538. float mean = sum/ne00;
  6539. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  6540. memcpy(y, x, ne00 * sizeof(float));
  6541. // for (int i00 = 0; i00 < ne00; i00++) {
  6542. // y[i00] = x[i00];
  6543. // }
  6544. const float scale = 1.0f/sqrtf(mean + eps);
  6545. ggml_vec_scale_f32(ne00, y, scale);
  6546. }
  6547. }
  6548. }
  6549. }
  6550. static void ggml_compute_forward_rms_norm(
  6551. const struct ggml_compute_params * params,
  6552. const struct ggml_tensor * src0,
  6553. struct ggml_tensor * dst) {
  6554. switch (src0->type) {
  6555. case GGML_TYPE_F32:
  6556. {
  6557. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  6558. } break;
  6559. default:
  6560. {
  6561. GGML_ASSERT(false);
  6562. } break;
  6563. }
  6564. }
  6565. // ggml_compute_forward_mul_mat
  6566. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  6567. // helper function to determine if it is better to use BLAS or not
  6568. // for large matrices, BLAS is faster
  6569. static bool ggml_compute_forward_mul_mat_use_blas(
  6570. const struct ggml_tensor * src0,
  6571. const struct ggml_tensor * src1,
  6572. struct ggml_tensor * dst) {
  6573. //const int64_t ne00 = src0->ne[0];
  6574. //const int64_t ne01 = src0->ne[1];
  6575. const int64_t ne10 = src1->ne[0];
  6576. const int64_t ne0 = dst->ne[0];
  6577. const int64_t ne1 = dst->ne[1];
  6578. // TODO: find the optimal values for these
  6579. if (ggml_is_contiguous(src0) &&
  6580. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  6581. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  6582. return true;
  6583. }
  6584. return false;
  6585. }
  6586. #endif
  6587. static void ggml_compute_forward_mul_mat_f32(
  6588. const struct ggml_compute_params * params,
  6589. const struct ggml_tensor * src0,
  6590. const struct ggml_tensor * src1,
  6591. struct ggml_tensor * dst) {
  6592. int64_t t0 = ggml_perf_time_us();
  6593. UNUSED(t0);
  6594. const int64_t ne00 = src0->ne[0];
  6595. const int64_t ne01 = src0->ne[1];
  6596. const int64_t ne02 = src0->ne[2];
  6597. const int64_t ne03 = src0->ne[3];
  6598. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  6599. const int64_t ne10 = src1->ne[0];
  6600. #endif
  6601. const int64_t ne11 = src1->ne[1];
  6602. #ifndef NDEBUG
  6603. const int64_t ne12 = src1->ne[2];
  6604. const int64_t ne13 = src1->ne[3];
  6605. const int64_t ne0 = dst->ne[0];
  6606. const int64_t ne1 = dst->ne[1];
  6607. const int64_t ne2 = dst->ne[2];
  6608. const int64_t ne3 = dst->ne[3];
  6609. const int nb00 = src0->nb[0];
  6610. #endif
  6611. const int nb01 = src0->nb[1];
  6612. const int nb02 = src0->nb[2];
  6613. const int nb03 = src0->nb[3];
  6614. #ifndef NDEBUG
  6615. const int nb10 = src1->nb[0];
  6616. #endif
  6617. const int nb11 = src1->nb[1];
  6618. const int nb12 = src1->nb[2];
  6619. const int nb13 = src1->nb[3];
  6620. const int nb0 = dst->nb[0];
  6621. const int nb1 = dst->nb[1];
  6622. const int nb2 = dst->nb[2];
  6623. const int nb3 = dst->nb[3];
  6624. const int ith = params->ith;
  6625. const int nth = params->nth;
  6626. assert(ne02 == ne12);
  6627. assert(ne03 == ne13);
  6628. assert(ne2 == ne12);
  6629. assert(ne3 == ne13);
  6630. // we don't support permuted src0 or src1
  6631. assert(nb00 == sizeof(float));
  6632. assert(nb10 == sizeof(float));
  6633. // dst cannot be transposed or permuted
  6634. assert(nb0 == sizeof(float));
  6635. assert(nb0 <= nb1);
  6636. assert(nb1 <= nb2);
  6637. assert(nb2 <= nb3);
  6638. assert(ne0 == ne01);
  6639. assert(ne1 == ne11);
  6640. assert(ne2 == ne02);
  6641. assert(ne3 == ne03);
  6642. // nb01 >= nb00 - src0 is not transposed
  6643. // compute by src0 rows
  6644. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  6645. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6646. if (params->ith != 0) {
  6647. return;
  6648. }
  6649. if (params->type == GGML_TASK_INIT) {
  6650. return;
  6651. }
  6652. if (params->type == GGML_TASK_FINALIZE) {
  6653. return;
  6654. }
  6655. #if defined(GGML_USE_CUBLAS)
  6656. const float alpha = 1.0f;
  6657. const float beta = 0.0f;
  6658. const int x_ne = ne01 * ne10;
  6659. const int y_ne = ne11 * ne10;
  6660. const int d_ne = ne11 * ne01;
  6661. size_t x_size, y_size, d_size;
  6662. float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
  6663. float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
  6664. float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
  6665. #endif
  6666. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6667. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6668. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  6669. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6670. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6671. #if defined(GGML_USE_CUBLAS)
  6672. // copy data to device
  6673. CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(float) * x_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6674. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6675. // compute
  6676. CUBLAS_CHECK(
  6677. cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6678. ne01, ne11, ne10,
  6679. &alpha, d_X, ne00,
  6680. d_Y, ne10,
  6681. &beta, d_D, ne01));
  6682. // copy data to host
  6683. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
  6684. #elif defined(GGML_USE_CLBLAST)
  6685. // zT = y * xT
  6686. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  6687. ne11, ne01, ne10,
  6688. 1.0f, y, ne10,
  6689. x, ne10,
  6690. 0.0f, d, ne01,
  6691. GGML_TYPE_F32);
  6692. #else
  6693. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6694. ne11, ne01, ne10,
  6695. 1.0f, y, ne10,
  6696. x, ne00,
  6697. 0.0f, d, ne01);
  6698. #endif
  6699. }
  6700. }
  6701. #if defined(GGML_USE_CUBLAS)
  6702. CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
  6703. ggml_cuda_pool_free(d_X, x_size);
  6704. ggml_cuda_pool_free(d_Y, y_size);
  6705. ggml_cuda_pool_free(d_D, d_size);
  6706. #endif
  6707. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  6708. return;
  6709. }
  6710. #endif
  6711. if (params->type == GGML_TASK_INIT) {
  6712. return;
  6713. }
  6714. if (params->type == GGML_TASK_FINALIZE) {
  6715. return;
  6716. }
  6717. // parallelize by src0 rows using ggml_vec_dot_f32
  6718. // total rows in src0
  6719. const int nr = ne01*ne02*ne03;
  6720. // rows per thread
  6721. const int dr = (nr + nth - 1)/nth;
  6722. // row range for this thread
  6723. const int ir0 = dr*ith;
  6724. const int ir1 = MIN(ir0 + dr, nr);
  6725. for (int ir = ir0; ir < ir1; ++ir) {
  6726. // src0 indices
  6727. const int i03 = ir/(ne02*ne01);
  6728. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6729. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6730. for (int64_t ic = 0; ic < ne11; ++ic) {
  6731. // src1 indices
  6732. const int i13 = i03;
  6733. const int i12 = i02;
  6734. const int i11 = ic;
  6735. // dst indices
  6736. const int i0 = i01;
  6737. const int i1 = i11;
  6738. const int i2 = i02;
  6739. const int i3 = i03;
  6740. ggml_vec_dot_f32(ne00,
  6741. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6742. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  6743. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  6744. }
  6745. }
  6746. //int64_t t1 = ggml_perf_time_us();
  6747. //static int64_t acc = 0;
  6748. //acc += t1 - t0;
  6749. //if (t1 - t0 > 10) {
  6750. // printf("\n");
  6751. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6752. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6753. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6754. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  6755. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6756. //}
  6757. }
  6758. static void ggml_compute_forward_mul_mat_f16_f32(
  6759. const struct ggml_compute_params * params,
  6760. const struct ggml_tensor * src0,
  6761. const struct ggml_tensor * src1,
  6762. struct ggml_tensor * dst) {
  6763. int64_t t0 = ggml_perf_time_us();
  6764. UNUSED(t0);
  6765. const int64_t ne00 = src0->ne[0];
  6766. const int64_t ne01 = src0->ne[1];
  6767. const int64_t ne02 = src0->ne[2];
  6768. const int64_t ne03 = src0->ne[3];
  6769. const int64_t ne10 = src1->ne[0];
  6770. const int64_t ne11 = src1->ne[1];
  6771. const int64_t ne12 = src1->ne[2];
  6772. const int64_t ne13 = src1->ne[3];
  6773. const int64_t ne0 = dst->ne[0];
  6774. const int64_t ne1 = dst->ne[1];
  6775. const int64_t ne2 = dst->ne[2];
  6776. const int64_t ne3 = dst->ne[3];
  6777. //const int64_t ne = ne0*ne1*ne2*ne3;
  6778. const int nb00 = src0->nb[0];
  6779. const int nb01 = src0->nb[1];
  6780. const int nb02 = src0->nb[2];
  6781. const int nb03 = src0->nb[3];
  6782. const int nb10 = src1->nb[0];
  6783. const int nb11 = src1->nb[1];
  6784. const int nb12 = src1->nb[2];
  6785. const int nb13 = src1->nb[3];
  6786. const int nb0 = dst->nb[0];
  6787. const int nb1 = dst->nb[1];
  6788. const int nb2 = dst->nb[2];
  6789. const int nb3 = dst->nb[3];
  6790. const int ith = params->ith;
  6791. const int nth = params->nth;
  6792. GGML_ASSERT(ne02 == ne12);
  6793. GGML_ASSERT(ne03 == ne13);
  6794. GGML_ASSERT(ne2 == ne12);
  6795. GGML_ASSERT(ne3 == ne13);
  6796. // TODO: we don't support permuted src0
  6797. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6798. // dst cannot be transposed or permuted
  6799. GGML_ASSERT(nb0 == sizeof(float));
  6800. GGML_ASSERT(nb0 <= nb1);
  6801. GGML_ASSERT(nb1 <= nb2);
  6802. GGML_ASSERT(nb2 <= nb3);
  6803. GGML_ASSERT(ne0 == ne01);
  6804. GGML_ASSERT(ne1 == ne11);
  6805. GGML_ASSERT(ne2 == ne02);
  6806. GGML_ASSERT(ne3 == ne03);
  6807. // nb01 >= nb00 - src0 is not transposed
  6808. // compute by src0 rows
  6809. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  6810. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6811. GGML_ASSERT(nb10 == sizeof(float));
  6812. if (params->ith != 0) {
  6813. return;
  6814. }
  6815. if (params->type == GGML_TASK_INIT) {
  6816. return;
  6817. }
  6818. if (params->type == GGML_TASK_FINALIZE) {
  6819. return;
  6820. }
  6821. #if defined(GGML_USE_CUBLAS)
  6822. ggml_fp16_t * const wdata = params->wdata;
  6823. const float alpha = 1.0f;
  6824. const float beta = 0.0f;
  6825. const int x_ne = ne01 * ne10;
  6826. const int y_ne = ne11 * ne10;
  6827. const int d_ne = ne11 * ne01;
  6828. size_t x_size, y_size, d_size;
  6829. float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
  6830. float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
  6831. float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
  6832. #else
  6833. float * const wdata = params->wdata;
  6834. #endif
  6835. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6836. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6837. #if defined(GGML_USE_CUBLAS)
  6838. // with cuBlAS, instead of converting src0 to fp32, we convert src1 to fp16
  6839. {
  6840. size_t id = 0;
  6841. for (int64_t i01 = 0; i01 < ne11; ++i01) {
  6842. for (int64_t i00 = 0; i00 < ne10; ++i00) {
  6843. wdata[id++] = GGML_FP32_TO_FP16(*(float *) ((char *) src1->data + i03*nb13 + i02*nb12 + i01*nb11 + i00*nb10));
  6844. }
  6845. }
  6846. }
  6847. #else
  6848. {
  6849. size_t id = 0;
  6850. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6851. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  6852. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  6853. }
  6854. }
  6855. }
  6856. #endif
  6857. #if defined(GGML_USE_CUBLAS)
  6858. const ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + i02*nb02 + i03*nb03);
  6859. const ggml_fp16_t * y = (ggml_fp16_t *) wdata;
  6860. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6861. // copy data to device
  6862. CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(ggml_fp16_t) * x_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6863. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(ggml_fp16_t) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6864. // compute
  6865. CUBLAS_CHECK(
  6866. cublasGemmEx(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6867. ne01, ne11, ne10,
  6868. &alpha, d_X, CUDA_R_16F, ne00,
  6869. d_Y, CUDA_R_16F, ne10,
  6870. &beta, d_D, CUDA_R_32F, ne01,
  6871. CUBLAS_COMPUTE_32F,
  6872. CUBLAS_GEMM_DEFAULT));
  6873. // copy data to host
  6874. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
  6875. #elif defined(GGML_USE_CLBLAST)
  6876. const float * x = wdata;
  6877. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6878. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6879. // zT = y * xT
  6880. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  6881. ne11, ne01, ne10,
  6882. 1.0f, y, ne10,
  6883. x, ne10,
  6884. 0.0f, d, ne01,
  6885. GGML_TYPE_F32);
  6886. #else
  6887. const float * x = wdata;
  6888. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6889. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6890. // zT = y * xT
  6891. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6892. ne11, ne01, ne10,
  6893. 1.0f, y, ne10,
  6894. x, ne00,
  6895. 0.0f, d, ne01);
  6896. #endif
  6897. }
  6898. }
  6899. #if defined(GGML_USE_CUBLAS)
  6900. CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
  6901. ggml_cuda_pool_free(d_X, x_size);
  6902. ggml_cuda_pool_free(d_Y, y_size);
  6903. ggml_cuda_pool_free(d_D, d_size);
  6904. #endif
  6905. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  6906. return;
  6907. }
  6908. #endif
  6909. if (params->type == GGML_TASK_INIT) {
  6910. ggml_fp16_t * const wdata = params->wdata;
  6911. size_t id = 0;
  6912. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6913. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6914. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6915. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  6916. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  6917. }
  6918. }
  6919. }
  6920. }
  6921. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  6922. return;
  6923. }
  6924. if (params->type == GGML_TASK_FINALIZE) {
  6925. return;
  6926. }
  6927. // fp16 -> half the size, so divide by 2
  6928. // TODO: do not support transposed src1
  6929. assert(nb10/2 == sizeof(ggml_fp16_t));
  6930. // parallelize by src0 rows using ggml_vec_dot_f16
  6931. // total rows in src0
  6932. const int nr = ne01*ne02*ne03;
  6933. // rows per thread
  6934. const int dr = (nr + nth - 1)/nth;
  6935. // row range for this thread
  6936. const int ir0 = dr*ith;
  6937. const int ir1 = MIN(ir0 + dr, nr);
  6938. ggml_fp16_t * wdata = params->wdata;
  6939. for (int ir = ir0; ir < ir1; ++ir) {
  6940. // src0 indices
  6941. const int i03 = ir/(ne02*ne01);
  6942. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6943. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6944. const int i13 = i03;
  6945. const int i12 = i02;
  6946. const int i0 = i01;
  6947. const int i2 = i02;
  6948. const int i3 = i03;
  6949. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6950. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  6951. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  6952. for (int64_t ic = 0; ic < ne11; ++ic) {
  6953. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  6954. }
  6955. }
  6956. //int64_t t1 = ggml_time_us();
  6957. //static int64_t acc = 0;
  6958. //acc += t1 - t0;
  6959. //if (t1 - t0 > 10) {
  6960. // printf("\n");
  6961. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6962. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6963. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6964. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6965. //}
  6966. }
  6967. static void ggml_compute_forward_mul_mat_q_f32(
  6968. const struct ggml_compute_params * params,
  6969. const struct ggml_tensor * src0,
  6970. const struct ggml_tensor * src1,
  6971. struct ggml_tensor * dst) {
  6972. int64_t t0 = ggml_perf_time_us();
  6973. UNUSED(t0);
  6974. const int64_t ne00 = src0->ne[0];
  6975. const int64_t ne01 = src0->ne[1];
  6976. const int64_t ne02 = src0->ne[2];
  6977. const int64_t ne03 = src0->ne[3];
  6978. const int64_t ne10 = src1->ne[0];
  6979. const int64_t ne11 = src1->ne[1];
  6980. const int64_t ne12 = src1->ne[2];
  6981. const int64_t ne13 = src1->ne[3];
  6982. const int64_t ne0 = dst->ne[0];
  6983. const int64_t ne1 = dst->ne[1];
  6984. const int64_t ne2 = dst->ne[2];
  6985. const int64_t ne3 = dst->ne[3];
  6986. const int nb00 = src0->nb[0];
  6987. const int nb01 = src0->nb[1];
  6988. const int nb02 = src0->nb[2];
  6989. const int nb03 = src0->nb[3];
  6990. const int nb10 = src1->nb[0];
  6991. const int nb11 = src1->nb[1];
  6992. const int nb12 = src1->nb[2];
  6993. const int nb13 = src1->nb[3];
  6994. const int nb0 = dst->nb[0];
  6995. const int nb1 = dst->nb[1];
  6996. const int nb2 = dst->nb[2];
  6997. const int nb3 = dst->nb[3];
  6998. const int ith = params->ith;
  6999. const int nth = params->nth;
  7000. GGML_ASSERT(ne02 == ne12);
  7001. GGML_ASSERT(ne03 == ne13);
  7002. GGML_ASSERT(ne2 == ne12);
  7003. GGML_ASSERT(ne3 == ne13);
  7004. const enum ggml_type type = src0->type;
  7005. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  7006. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  7007. enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type;
  7008. // we don't support permuted src0 or src1
  7009. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  7010. GGML_ASSERT(nb10 == sizeof(float));
  7011. // dst cannot be transposed or permuted
  7012. GGML_ASSERT(nb0 == sizeof(float));
  7013. GGML_ASSERT(nb0 <= nb1);
  7014. GGML_ASSERT(nb1 <= nb2);
  7015. GGML_ASSERT(nb2 <= nb3);
  7016. GGML_ASSERT(ne0 == ne01);
  7017. GGML_ASSERT(ne1 == ne11);
  7018. GGML_ASSERT(ne2 == ne02);
  7019. GGML_ASSERT(ne3 == ne03);
  7020. // nb01 >= nb00 - src0 is not transposed
  7021. // compute by src0 rows
  7022. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  7023. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7024. if (params->ith != 0) {
  7025. return;
  7026. }
  7027. if (params->type == GGML_TASK_INIT) {
  7028. return;
  7029. }
  7030. if (params->type == GGML_TASK_FINALIZE) {
  7031. return;
  7032. }
  7033. #if defined(GGML_USE_CUBLAS)
  7034. const float alpha = 1.0f;
  7035. const float beta = 0.0f;
  7036. const int x_ne = ne01 * ne10;
  7037. const int y_ne = ne11 * ne10;
  7038. const int d_ne = ne11 * ne01;
  7039. size_t x_size, y_size, d_size, q_size;
  7040. float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
  7041. float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
  7042. float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
  7043. float *d_Q = ggml_cuda_pool_malloc(GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type], &q_size);
  7044. void (*dequantize_row_q_cuda)(const void * x, float * y, int k, cudaStream_t stream) = NULL;
  7045. if (type == GGML_TYPE_Q4_0) {
  7046. dequantize_row_q_cuda = dequantize_row_q4_0_cuda;
  7047. }
  7048. else if (type == GGML_TYPE_Q4_1) {
  7049. dequantize_row_q_cuda = dequantize_row_q4_1_cuda;
  7050. }
  7051. else if (type == GGML_TYPE_Q4_2) {
  7052. dequantize_row_q_cuda = dequantize_row_q4_2_cuda;
  7053. }
  7054. else if (type == GGML_TYPE_Q4_3) {
  7055. dequantize_row_q_cuda = dequantize_row_q4_3_cuda;
  7056. }
  7057. else if (type == GGML_TYPE_Q5_0) {
  7058. dequantize_row_q_cuda = dequantize_row_q5_0_cuda;
  7059. }
  7060. else if (type == GGML_TYPE_Q5_1) {
  7061. dequantize_row_q_cuda = dequantize_row_q5_1_cuda;
  7062. }
  7063. else if (type == GGML_TYPE_Q8_0) {
  7064. dequantize_row_q_cuda = dequantize_row_q8_0_cuda;
  7065. }
  7066. else {
  7067. GGML_ASSERT(false);
  7068. }
  7069. #elif !defined(GGML_USE_CLBLAST)
  7070. float * const wdata = params->wdata;
  7071. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  7072. #endif
  7073. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7074. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7075. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  7076. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  7077. #if defined(GGML_USE_CUBLAS)
  7078. // copy and dequantize on device
  7079. CUDA_CHECK(
  7080. cudaMemcpyAsync(d_Q, (char *) src0->data + i03*nb03 + i02*nb02,
  7081. GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type], cudaMemcpyHostToDevice, g_cudaStream));
  7082. dequantize_row_q_cuda(d_Q, d_X, ne01 * ne00, g_cudaStream);
  7083. CUDA_CHECK(cudaGetLastError());
  7084. #elif defined(GGML_USE_CLBLAST)
  7085. const void* x = (char *) src0->data + i03*nb03 + i02*nb02;
  7086. #else
  7087. {
  7088. size_t id = 0;
  7089. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  7090. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  7091. id += ne00;
  7092. }
  7093. }
  7094. const float * x = wdata;
  7095. #endif
  7096. #if defined(GGML_USE_CUBLAS)
  7097. // copy data to device
  7098. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
  7099. // compute
  7100. CUBLAS_CHECK(
  7101. cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  7102. ne01, ne11, ne10,
  7103. &alpha, d_X, ne00,
  7104. d_Y, ne10,
  7105. &beta, d_D, ne01));
  7106. // copy data to host
  7107. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
  7108. #elif defined(GGML_USE_CLBLAST)
  7109. // zT = y * xT
  7110. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  7111. ne11, ne01, ne10,
  7112. 1.0f, y, ne10,
  7113. x, ne10,
  7114. 0.0f, d, ne01,
  7115. type);
  7116. #else
  7117. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7118. ne11, ne01, ne10,
  7119. 1.0f, y, ne10,
  7120. x, ne00,
  7121. 0.0f, d, ne01);
  7122. #endif
  7123. }
  7124. }
  7125. #if defined(GGML_USE_CUBLAS)
  7126. CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
  7127. ggml_cuda_pool_free(d_X, x_size);
  7128. ggml_cuda_pool_free(d_Y, y_size);
  7129. ggml_cuda_pool_free(d_D, d_size);
  7130. ggml_cuda_pool_free(d_Q, q_size);
  7131. #endif
  7132. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  7133. return;
  7134. }
  7135. #endif
  7136. if (params->type == GGML_TASK_INIT) {
  7137. char * wdata = params->wdata;
  7138. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  7139. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  7140. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  7141. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  7142. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  7143. wdata += row_size;
  7144. }
  7145. }
  7146. }
  7147. return;
  7148. }
  7149. if (params->type == GGML_TASK_FINALIZE) {
  7150. return;
  7151. }
  7152. // parallelize by src0 rows using ggml_vec_dot_q
  7153. // total rows in src0
  7154. const int nr = ne01*ne02*ne03;
  7155. // rows per thread
  7156. const int dr = (nr + nth - 1)/nth;
  7157. // row range for this thread
  7158. const int ir0 = dr*ith;
  7159. const int ir1 = MIN(ir0 + dr, nr);
  7160. void * wdata = params->wdata;
  7161. const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  7162. for (int ir = ir0; ir < ir1; ++ir) {
  7163. // src0 indices
  7164. const int i03 = ir/(ne02*ne01);
  7165. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7166. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7167. const int i13 = i03;
  7168. const int i12 = i02;
  7169. const int i0 = i01;
  7170. const int i2 = i02;
  7171. const int i3 = i03;
  7172. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7173. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  7174. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  7175. assert(ne00 % 32 == 0);
  7176. for (int64_t ic = 0; ic < ne11; ++ic) {
  7177. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  7178. }
  7179. }
  7180. //int64_t t1 = ggml_time_us();
  7181. //static int64_t acc = 0;
  7182. //acc += t1 - t0;
  7183. //if (t1 - t0 > 10) {
  7184. // printf("\n");
  7185. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  7186. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  7187. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  7188. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  7189. //}
  7190. }
  7191. static void ggml_compute_forward_mul_mat(
  7192. const struct ggml_compute_params * params,
  7193. const struct ggml_tensor * src0,
  7194. const struct ggml_tensor * src1,
  7195. struct ggml_tensor * dst) {
  7196. switch (src0->type) {
  7197. case GGML_TYPE_Q4_0:
  7198. case GGML_TYPE_Q4_1:
  7199. case GGML_TYPE_Q4_2:
  7200. case GGML_TYPE_Q4_3:
  7201. case GGML_TYPE_Q5_0:
  7202. case GGML_TYPE_Q5_1:
  7203. case GGML_TYPE_Q8_0:
  7204. case GGML_TYPE_Q8_1:
  7205. {
  7206. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  7207. } break;
  7208. case GGML_TYPE_F16:
  7209. {
  7210. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  7211. } break;
  7212. case GGML_TYPE_F32:
  7213. {
  7214. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  7215. } break;
  7216. default:
  7217. {
  7218. GGML_ASSERT(false);
  7219. } break;
  7220. }
  7221. }
  7222. // ggml_compute_forward_scale
  7223. static void ggml_compute_forward_scale_f32(
  7224. const struct ggml_compute_params * params,
  7225. const struct ggml_tensor * src0,
  7226. const struct ggml_tensor * src1,
  7227. struct ggml_tensor * dst) {
  7228. GGML_ASSERT(ggml_is_contiguous(src0));
  7229. GGML_ASSERT(ggml_is_contiguous(dst));
  7230. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7231. GGML_ASSERT(ggml_is_scalar(src1));
  7232. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7233. return;
  7234. }
  7235. // scale factor
  7236. const float v = *(float *) src1->data;
  7237. const int ith = params->ith;
  7238. const int nth = params->nth;
  7239. const int nc = src0->ne[0];
  7240. const int nr = ggml_nrows(src0);
  7241. // rows per thread
  7242. const int dr = (nr + nth - 1)/nth;
  7243. // row range for this thread
  7244. const int ir0 = dr*ith;
  7245. const int ir1 = MIN(ir0 + dr, nr);
  7246. for (int i1 = ir0; i1 < ir1; i1++) {
  7247. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  7248. }
  7249. }
  7250. static void ggml_compute_forward_scale(
  7251. const struct ggml_compute_params * params,
  7252. const struct ggml_tensor * src0,
  7253. const struct ggml_tensor * src1,
  7254. struct ggml_tensor * dst) {
  7255. switch (src0->type) {
  7256. case GGML_TYPE_F32:
  7257. {
  7258. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  7259. } break;
  7260. default:
  7261. {
  7262. GGML_ASSERT(false);
  7263. } break;
  7264. }
  7265. }
  7266. // ggml_compute_forward_cpy
  7267. static void ggml_compute_forward_cpy(
  7268. const struct ggml_compute_params * params,
  7269. const struct ggml_tensor * src0,
  7270. struct ggml_tensor * dst) {
  7271. ggml_compute_forward_dup(params, src0, dst);
  7272. }
  7273. // ggml_compute_forward_cont
  7274. static void ggml_compute_forward_cont(
  7275. const struct ggml_compute_params * params,
  7276. const struct ggml_tensor * src0,
  7277. struct ggml_tensor * dst) {
  7278. ggml_compute_forward_dup(params, src0, dst);
  7279. }
  7280. // ggml_compute_forward_reshape
  7281. static void ggml_compute_forward_reshape(
  7282. const struct ggml_compute_params * params,
  7283. const struct ggml_tensor * src0,
  7284. struct ggml_tensor * dst) {
  7285. // NOP
  7286. UNUSED(params);
  7287. UNUSED(src0);
  7288. UNUSED(dst);
  7289. }
  7290. // ggml_compute_forward_view
  7291. static void ggml_compute_forward_view(
  7292. const struct ggml_compute_params * params,
  7293. const struct ggml_tensor * src0) {
  7294. // NOP
  7295. UNUSED(params);
  7296. UNUSED(src0);
  7297. }
  7298. // ggml_compute_forward_permute
  7299. static void ggml_compute_forward_permute(
  7300. const struct ggml_compute_params * params,
  7301. const struct ggml_tensor * src0) {
  7302. // NOP
  7303. UNUSED(params);
  7304. UNUSED(src0);
  7305. }
  7306. // ggml_compute_forward_transpose
  7307. static void ggml_compute_forward_transpose(
  7308. const struct ggml_compute_params * params,
  7309. const struct ggml_tensor * src0) {
  7310. // NOP
  7311. UNUSED(params);
  7312. UNUSED(src0);
  7313. }
  7314. // ggml_compute_forward_get_rows
  7315. static void ggml_compute_forward_get_rows_q(
  7316. const struct ggml_compute_params * params,
  7317. const struct ggml_tensor * src0,
  7318. const struct ggml_tensor * src1,
  7319. struct ggml_tensor * dst) {
  7320. assert(params->ith == 0);
  7321. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7322. return;
  7323. }
  7324. const int nc = src0->ne[0];
  7325. const int nr = ggml_nelements(src1);
  7326. const enum ggml_type type = src0->type;
  7327. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  7328. assert( dst->ne[0] == nc);
  7329. assert( dst->ne[1] == nr);
  7330. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  7331. for (int i = 0; i < nr; ++i) {
  7332. const int r = ((int32_t *) src1->data)[i];
  7333. dequantize_row_q(
  7334. (const void *) ((char *) src0->data + r*src0->nb[1]),
  7335. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  7336. }
  7337. }
  7338. static void ggml_compute_forward_get_rows_f16(
  7339. const struct ggml_compute_params * params,
  7340. const struct ggml_tensor * src0,
  7341. const struct ggml_tensor * src1,
  7342. struct ggml_tensor * dst) {
  7343. assert(params->ith == 0);
  7344. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7345. return;
  7346. }
  7347. const int nc = src0->ne[0];
  7348. const int nr = ggml_nelements(src1);
  7349. assert( dst->ne[0] == nc);
  7350. assert( dst->ne[1] == nr);
  7351. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7352. for (int i = 0; i < nr; ++i) {
  7353. const int r = ((int32_t *) src1->data)[i];
  7354. for (int j = 0; j < nc; ++j) {
  7355. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  7356. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  7357. }
  7358. }
  7359. }
  7360. static void ggml_compute_forward_get_rows_f32(
  7361. const struct ggml_compute_params * params,
  7362. const struct ggml_tensor * src0,
  7363. const struct ggml_tensor * src1,
  7364. struct ggml_tensor * dst) {
  7365. assert(params->ith == 0);
  7366. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7367. return;
  7368. }
  7369. const int nc = src0->ne[0];
  7370. const int nr = ggml_nelements(src1);
  7371. assert( dst->ne[0] == nc);
  7372. assert( dst->ne[1] == nr);
  7373. assert(src0->nb[0] == sizeof(float));
  7374. for (int i = 0; i < nr; ++i) {
  7375. const int r = ((int32_t *) src1->data)[i];
  7376. ggml_vec_cpy_f32(nc,
  7377. (float *) ((char *) dst->data + i*dst->nb[1]),
  7378. (float *) ((char *) src0->data + r*src0->nb[1]));
  7379. }
  7380. }
  7381. static void ggml_compute_forward_get_rows(
  7382. const struct ggml_compute_params * params,
  7383. const struct ggml_tensor * src0,
  7384. const struct ggml_tensor * src1,
  7385. struct ggml_tensor * dst) {
  7386. switch (src0->type) {
  7387. case GGML_TYPE_Q4_0:
  7388. case GGML_TYPE_Q4_1:
  7389. case GGML_TYPE_Q4_2:
  7390. case GGML_TYPE_Q4_3:
  7391. case GGML_TYPE_Q5_0:
  7392. case GGML_TYPE_Q5_1:
  7393. case GGML_TYPE_Q8_0:
  7394. case GGML_TYPE_Q8_1:
  7395. {
  7396. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  7397. } break;
  7398. case GGML_TYPE_F16:
  7399. {
  7400. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  7401. } break;
  7402. case GGML_TYPE_F32:
  7403. {
  7404. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  7405. } break;
  7406. default:
  7407. {
  7408. GGML_ASSERT(false);
  7409. } break;
  7410. }
  7411. //static bool first = true;
  7412. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  7413. //if (first) {
  7414. // first = false;
  7415. //} else {
  7416. // for (int k = 0; k < dst->ne[1]; ++k) {
  7417. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  7418. // for (int i = 0; i < 16; ++i) {
  7419. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  7420. // }
  7421. // printf("\n");
  7422. // }
  7423. // printf("\n");
  7424. // }
  7425. // printf("\n");
  7426. // exit(0);
  7427. //}
  7428. }
  7429. // ggml_compute_forward_diag_mask_inf
  7430. static void ggml_compute_forward_diag_mask_inf_f32(
  7431. const struct ggml_compute_params * params,
  7432. const struct ggml_tensor * src0,
  7433. const struct ggml_tensor * src1,
  7434. struct ggml_tensor * dst) {
  7435. assert(params->ith == 0);
  7436. assert(src1->type == GGML_TYPE_I32);
  7437. assert(ggml_nelements(src1) == 1);
  7438. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7439. return;
  7440. }
  7441. const int n_past = ((int32_t *) src1->data)[0];
  7442. // TODO: handle transposed/permuted matrices
  7443. const int n = ggml_nrows(src0);
  7444. const int nc = src0->ne[0];
  7445. const int nr = src0->ne[1];
  7446. const int nz = n/nr;
  7447. assert( dst->nb[0] == sizeof(float));
  7448. assert(src0->nb[0] == sizeof(float));
  7449. for (int k = 0; k < nz; k++) {
  7450. for (int j = 0; j < nr; j++) {
  7451. for (int i = n_past; i < nc; i++) {
  7452. if (i > n_past + j) {
  7453. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  7454. }
  7455. }
  7456. }
  7457. }
  7458. }
  7459. static void ggml_compute_forward_diag_mask_inf(
  7460. const struct ggml_compute_params * params,
  7461. const struct ggml_tensor * src0,
  7462. const struct ggml_tensor * src1,
  7463. struct ggml_tensor * dst) {
  7464. switch (src0->type) {
  7465. case GGML_TYPE_F32:
  7466. {
  7467. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  7468. } break;
  7469. default:
  7470. {
  7471. GGML_ASSERT(false);
  7472. } break;
  7473. }
  7474. }
  7475. // ggml_compute_forward_soft_max
  7476. static void ggml_compute_forward_soft_max_f32(
  7477. const struct ggml_compute_params * params,
  7478. const struct ggml_tensor * src0,
  7479. struct ggml_tensor * dst) {
  7480. GGML_ASSERT(ggml_is_contiguous(src0));
  7481. GGML_ASSERT(ggml_is_contiguous(dst));
  7482. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7483. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7484. return;
  7485. }
  7486. // TODO: handle transposed/permuted matrices
  7487. const int ith = params->ith;
  7488. const int nth = params->nth;
  7489. const int nc = src0->ne[0];
  7490. const int nr = ggml_nrows(src0);
  7491. // rows per thread
  7492. const int dr = (nr + nth - 1)/nth;
  7493. // row range for this thread
  7494. const int ir0 = dr*ith;
  7495. const int ir1 = MIN(ir0 + dr, nr);
  7496. for (int i1 = ir0; i1 < ir1; i1++) {
  7497. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  7498. #ifndef NDEBUG
  7499. for (int i = 0; i < nc; ++i) {
  7500. //printf("p[%d] = %f\n", i, p[i]);
  7501. assert(!isnan(p[i]));
  7502. }
  7503. #endif
  7504. float max = -INFINITY;
  7505. ggml_vec_max_f32(nc, &max, p);
  7506. ggml_float sum = 0.0;
  7507. uint16_t scvt;
  7508. for (int i = 0; i < nc; i++) {
  7509. //printf("p[%3d] = %8.4f\n", i, p[i]);
  7510. if (p[i] == -INFINITY) {
  7511. p[i] = 0.0f;
  7512. } else {
  7513. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  7514. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  7515. memcpy(&scvt, &s, sizeof(scvt));
  7516. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  7517. sum += (ggml_float)val;
  7518. p[i] = val;
  7519. }
  7520. }
  7521. assert(sum > 0.0);
  7522. sum = 1.0/sum;
  7523. ggml_vec_scale_f32(nc, p, sum);
  7524. #ifndef NDEBUG
  7525. for (int i = 0; i < nc; ++i) {
  7526. assert(!isnan(p[i]));
  7527. assert(!isinf(p[i]));
  7528. }
  7529. #endif
  7530. }
  7531. }
  7532. static void ggml_compute_forward_soft_max(
  7533. const struct ggml_compute_params * params,
  7534. const struct ggml_tensor * src0,
  7535. struct ggml_tensor * dst) {
  7536. switch (src0->type) {
  7537. case GGML_TYPE_F32:
  7538. {
  7539. ggml_compute_forward_soft_max_f32(params, src0, dst);
  7540. } break;
  7541. default:
  7542. {
  7543. GGML_ASSERT(false);
  7544. } break;
  7545. }
  7546. }
  7547. // ggml_compute_forward_alibi
  7548. static void ggml_compute_forward_alibi_f32(
  7549. const struct ggml_compute_params * params,
  7550. const struct ggml_tensor * src0,
  7551. const struct ggml_tensor * src1,
  7552. struct ggml_tensor * dst) {
  7553. assert(params->ith == 0);
  7554. assert(src1->type == GGML_TYPE_I32);
  7555. assert(ggml_nelements(src1) == 2);
  7556. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7557. return;
  7558. }
  7559. const int n_past = ((int32_t *) src1->data)[0];
  7560. const int n_head = ((int32_t *) src1->data)[1];
  7561. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  7562. const int ne1 = src0->ne[1]; // seq_len_without_past
  7563. //const int ne2 = src0->ne[2]; // n_head -> this is k
  7564. //const int ne3 = src0->ne[3]; // 1 -> bsz
  7565. const int n = ggml_nrows(src0);
  7566. const int ne2_ne3 = n/ne1; // ne2*ne3
  7567. const int nb0 = src0->nb[0];
  7568. const int nb1 = src0->nb[1];
  7569. const int nb2 = src0->nb[2];
  7570. //const int nb3 = src0->nb[3];
  7571. assert(nb0 == sizeof(float));
  7572. assert(ne1+n_past == ne0);
  7573. // add alibi to src0 (KQ_scaled)
  7574. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  7575. const float m0 = powf(2.0f, -8.0f / n_heads_log2_floor);
  7576. const float m1 = powf(2.0f, -4.0f / n_heads_log2_floor);
  7577. for (int i = 0; i < ne0; i++) {
  7578. for (int j = 0; j < ne1; j++) {
  7579. for (int k = 0; k < ne2_ne3; k++) {
  7580. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  7581. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  7582. // TODO: k*nb2 or k*nb3
  7583. float m_k;
  7584. if (k < n_heads_log2_floor) {
  7585. m_k = powf(m0, k + 1);
  7586. } else {
  7587. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  7588. }
  7589. pdst[0] = (j+1) * m_k + src[0];
  7590. }
  7591. }
  7592. }
  7593. }
  7594. static void ggml_compute_forward_alibi_f16(
  7595. const struct ggml_compute_params * params,
  7596. const struct ggml_tensor * src0,
  7597. const struct ggml_tensor * src1,
  7598. struct ggml_tensor * dst) {
  7599. assert(params->ith == 0);
  7600. assert(src1->type == GGML_TYPE_I32);
  7601. assert(ggml_nelements(src1) == 2);
  7602. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7603. return;
  7604. }
  7605. const int n_past = ((int32_t *) src1->data)[0];
  7606. const int n_head = ((int32_t *) src1->data)[1];
  7607. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  7608. const int ne1 = src0->ne[1]; // seq_len_without_past
  7609. //const int ne2 = src0->ne[2]; // n_head -> this is k
  7610. //const int ne3 = src0->ne[3]; // 1 -> bsz
  7611. const int n = ggml_nrows(src0);
  7612. const int ne2_ne3 = n/ne1; // ne2*ne3
  7613. const int nb0 = src0->nb[0];
  7614. const int nb1 = src0->nb[1];
  7615. const int nb2 = src0->nb[2];
  7616. //const int nb3 = src0->nb[3];
  7617. assert(nb0 == sizeof(ggml_fp16_t));
  7618. assert(ne1+n_past == ne0);
  7619. // add alibi to src0 (KQ_scaled)
  7620. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  7621. const float m0 = powf(2.0f, -8.0f / n_heads_log2_floor);
  7622. const float m1 = powf(2.0f, -4.0f / n_heads_log2_floor);
  7623. for (int i = 0; i < ne0; i++) {
  7624. for (int j = 0; j < ne1; j++) {
  7625. for (int k = 0; k < ne2_ne3; k++) {
  7626. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  7627. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  7628. // TODO: k*nb2 or k*nb3
  7629. float m_k;
  7630. if (k < n_heads_log2_floor) {
  7631. m_k = powf(m0, k + 1);
  7632. } else {
  7633. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  7634. }
  7635. // we return F32
  7636. pdst[0] = (j+1) * m_k + GGML_FP16_TO_FP32(src[0]);
  7637. }
  7638. }
  7639. }
  7640. }
  7641. static void ggml_compute_forward_alibi(
  7642. const struct ggml_compute_params * params,
  7643. const struct ggml_tensor * src0,
  7644. const struct ggml_tensor * src1,
  7645. struct ggml_tensor * dst) {
  7646. switch (src0->type) {
  7647. case GGML_TYPE_F16:
  7648. {
  7649. ggml_compute_forward_alibi_f16(params, src0, src1, dst);
  7650. } break;
  7651. case GGML_TYPE_F32:
  7652. {
  7653. ggml_compute_forward_alibi_f32(params, src0, src1, dst);
  7654. } break;
  7655. case GGML_TYPE_Q4_0:
  7656. case GGML_TYPE_Q4_1:
  7657. case GGML_TYPE_Q4_2:
  7658. case GGML_TYPE_Q4_3:
  7659. case GGML_TYPE_Q5_0:
  7660. case GGML_TYPE_Q5_1:
  7661. case GGML_TYPE_Q8_0:
  7662. case GGML_TYPE_Q8_1:
  7663. case GGML_TYPE_I8:
  7664. case GGML_TYPE_I16:
  7665. case GGML_TYPE_I32:
  7666. case GGML_TYPE_COUNT:
  7667. {
  7668. GGML_ASSERT(false);
  7669. } break;
  7670. }
  7671. }
  7672. // ggml_compute_forward_rope
  7673. static void ggml_compute_forward_rope_f32(
  7674. const struct ggml_compute_params * params,
  7675. const struct ggml_tensor * src0,
  7676. const struct ggml_tensor * src1,
  7677. struct ggml_tensor * dst) {
  7678. assert(src1->type == GGML_TYPE_I32);
  7679. assert(ggml_nelements(src1) == 3);
  7680. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7681. return;
  7682. }
  7683. const int n_past = ((int32_t *) src1->data)[0];
  7684. const int n_dims = ((int32_t *) src1->data)[1];
  7685. const int mode = ((int32_t *) src1->data)[2];
  7686. //const int64_t ne0 = src0->ne[0];
  7687. const int64_t ne1 = src0->ne[1];
  7688. const int64_t ne2 = src0->ne[2];
  7689. const int64_t ne3 = src0->ne[3];
  7690. const int nb0 = src0->nb[0];
  7691. const int nb1 = src0->nb[1];
  7692. const int nb2 = src0->nb[2];
  7693. const int nb3 = src0->nb[3];
  7694. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7695. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7696. assert(nb0 == sizeof(float));
  7697. const int ith = params->ith;
  7698. const int nth = params->nth;
  7699. const int nr = ggml_nrows(src0);
  7700. // rows per thread
  7701. const int dr = (nr + nth - 1)/nth;
  7702. // row range for this thread
  7703. const int ir0 = dr*ith;
  7704. const int ir1 = MIN(ir0 + dr, nr);
  7705. // row index used to determine which thread to use
  7706. int ir = 0;
  7707. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  7708. const bool is_neox = mode & 2;
  7709. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7710. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  7711. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  7712. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7713. if (ir++ < ir0) continue;
  7714. if (ir > ir1) break;
  7715. float theta = (float)p;
  7716. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  7717. const float cos_theta = cosf(theta);
  7718. const float sin_theta = sinf(theta);
  7719. theta *= theta_scale;
  7720. if (!is_neox) {
  7721. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7722. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7723. const float x0 = src[0];
  7724. const float x1 = src[1];
  7725. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7726. dst_data[1] = x0*sin_theta + x1*cos_theta;
  7727. } else {
  7728. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7729. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7730. const float x0 = src[0];
  7731. const float x1 = src[n_dims/2];
  7732. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7733. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  7734. }
  7735. }
  7736. }
  7737. }
  7738. }
  7739. }
  7740. static void ggml_compute_forward_rope_f16(
  7741. const struct ggml_compute_params * params,
  7742. const struct ggml_tensor * src0,
  7743. const struct ggml_tensor * src1,
  7744. struct ggml_tensor * dst) {
  7745. assert(src1->type == GGML_TYPE_I32);
  7746. assert(ggml_nelements(src1) == 3);
  7747. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7748. return;
  7749. }
  7750. const int n_past = ((int32_t *) src1->data)[0];
  7751. const int n_dims = ((int32_t *) src1->data)[1];
  7752. const int mode = ((int32_t *) src1->data)[2];
  7753. //const int64_t ne0 = src0->ne[0];
  7754. const int64_t ne1 = src0->ne[1];
  7755. const int64_t ne2 = src0->ne[2];
  7756. const int64_t ne3 = src0->ne[3];
  7757. const int nb0 = src0->nb[0];
  7758. const int nb1 = src0->nb[1];
  7759. const int nb2 = src0->nb[2];
  7760. const int nb3 = src0->nb[3];
  7761. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7762. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7763. assert(nb0 == sizeof(ggml_fp16_t));
  7764. const int ith = params->ith;
  7765. const int nth = params->nth;
  7766. const int nr = ggml_nrows(src0);
  7767. // rows per thread
  7768. const int dr = (nr + nth - 1)/nth;
  7769. // row range for this thread
  7770. const int ir0 = dr*ith;
  7771. const int ir1 = MIN(ir0 + dr, nr);
  7772. // row index used to determine which thread to use
  7773. int ir = 0;
  7774. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  7775. const bool is_neox = mode & 2;
  7776. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7777. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  7778. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  7779. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7780. if (ir++ < ir0) continue;
  7781. if (ir > ir1) break;
  7782. float theta = (float)p;
  7783. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  7784. const float cos_theta = cosf(theta);
  7785. const float sin_theta = sinf(theta);
  7786. theta *= theta_scale;
  7787. if (!is_neox) {
  7788. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7789. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7790. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7791. const float x1 = GGML_FP16_TO_FP32(src[1]);
  7792. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7793. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7794. } else {
  7795. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7796. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7797. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7798. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  7799. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7800. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7801. }
  7802. }
  7803. }
  7804. }
  7805. }
  7806. }
  7807. static void ggml_compute_forward_rope(
  7808. const struct ggml_compute_params * params,
  7809. const struct ggml_tensor * src0,
  7810. const struct ggml_tensor * src1,
  7811. struct ggml_tensor * dst) {
  7812. switch (src0->type) {
  7813. case GGML_TYPE_F16:
  7814. {
  7815. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  7816. } break;
  7817. case GGML_TYPE_F32:
  7818. {
  7819. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  7820. } break;
  7821. default:
  7822. {
  7823. GGML_ASSERT(false);
  7824. } break;
  7825. }
  7826. }
  7827. // ggml_compute_forward_conv_1d_1s
  7828. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  7829. const struct ggml_compute_params * params,
  7830. const struct ggml_tensor * src0,
  7831. const struct ggml_tensor * src1,
  7832. struct ggml_tensor * dst) {
  7833. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7834. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7835. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7836. int64_t t0 = ggml_perf_time_us();
  7837. UNUSED(t0);
  7838. const int64_t ne00 = src0->ne[0];
  7839. const int64_t ne01 = src0->ne[1];
  7840. const int64_t ne02 = src0->ne[2];
  7841. //const int64_t ne03 = src0->ne[3];
  7842. const int64_t ne10 = src1->ne[0];
  7843. const int64_t ne11 = src1->ne[1];
  7844. //const int64_t ne12 = src1->ne[2];
  7845. //const int64_t ne13 = src1->ne[3];
  7846. //const int64_t ne0 = dst->ne[0];
  7847. //const int64_t ne1 = dst->ne[1];
  7848. //const int64_t ne2 = dst->ne[2];
  7849. //const int64_t ne3 = dst->ne[3];
  7850. //const int64_t ne = ne0*ne1*ne2*ne3;
  7851. const int nb00 = src0->nb[0];
  7852. const int nb01 = src0->nb[1];
  7853. const int nb02 = src0->nb[2];
  7854. //const int nb03 = src0->nb[3];
  7855. const int nb10 = src1->nb[0];
  7856. const int nb11 = src1->nb[1];
  7857. //const int nb12 = src1->nb[2];
  7858. //const int nb13 = src1->nb[3];
  7859. //const int nb0 = dst->nb[0];
  7860. const int nb1 = dst->nb[1];
  7861. //const int nb2 = dst->nb[2];
  7862. //const int nb3 = dst->nb[3];
  7863. const int ith = params->ith;
  7864. const int nth = params->nth;
  7865. const int nk = ne00;
  7866. const int nh = nk/2;
  7867. const int ew0 = ggml_up32(ne01);
  7868. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7869. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7870. GGML_ASSERT(nb10 == sizeof(float));
  7871. if (params->type == GGML_TASK_INIT) {
  7872. // TODO: fix this memset (wsize is overestimated)
  7873. memset(params->wdata, 0, params->wsize);
  7874. // prepare kernel data (src0)
  7875. {
  7876. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7877. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7878. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7879. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7880. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7881. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7882. dst_data[i00*ew0 + i01] = src[i00];
  7883. }
  7884. }
  7885. }
  7886. }
  7887. // prepare source data (src1)
  7888. {
  7889. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7890. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7891. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7892. ggml_fp16_t * dst_data = wdata;
  7893. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7894. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7895. }
  7896. }
  7897. }
  7898. return;
  7899. }
  7900. if (params->type == GGML_TASK_FINALIZE) {
  7901. return;
  7902. }
  7903. // total rows in dst
  7904. const int nr = ne02;
  7905. // rows per thread
  7906. const int dr = (nr + nth - 1)/nth;
  7907. // row range for this thread
  7908. const int ir0 = dr*ith;
  7909. const int ir1 = MIN(ir0 + dr, nr);
  7910. for (int i1 = ir0; i1 < ir1; i1++) {
  7911. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7912. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7913. dst_data[i0] = 0;
  7914. for (int k = -nh; k <= nh; k++) {
  7915. float v = 0.0f;
  7916. ggml_vec_dot_f16(ew0, &v,
  7917. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7918. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7919. dst_data[i0] += v;
  7920. }
  7921. }
  7922. }
  7923. }
  7924. static void ggml_compute_forward_conv_1d_1s_f32(
  7925. const struct ggml_compute_params * params,
  7926. const struct ggml_tensor * src0,
  7927. const struct ggml_tensor * src1,
  7928. struct ggml_tensor * dst) {
  7929. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7930. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7931. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7932. int64_t t0 = ggml_perf_time_us();
  7933. UNUSED(t0);
  7934. const int64_t ne00 = src0->ne[0];
  7935. const int64_t ne01 = src0->ne[1];
  7936. const int64_t ne02 = src0->ne[2];
  7937. //const int64_t ne03 = src0->ne[3];
  7938. const int64_t ne10 = src1->ne[0];
  7939. const int64_t ne11 = src1->ne[1];
  7940. //const int64_t ne12 = src1->ne[2];
  7941. //const int64_t ne13 = src1->ne[3];
  7942. //const int64_t ne0 = dst->ne[0];
  7943. //const int64_t ne1 = dst->ne[1];
  7944. //const int64_t ne2 = dst->ne[2];
  7945. //const int64_t ne3 = dst->ne[3];
  7946. //const int64_t ne = ne0*ne1*ne2*ne3;
  7947. const int nb00 = src0->nb[0];
  7948. const int nb01 = src0->nb[1];
  7949. const int nb02 = src0->nb[2];
  7950. //const int nb03 = src0->nb[3];
  7951. const int nb10 = src1->nb[0];
  7952. const int nb11 = src1->nb[1];
  7953. //const int nb12 = src1->nb[2];
  7954. //const int nb13 = src1->nb[3];
  7955. //const int nb0 = dst->nb[0];
  7956. const int nb1 = dst->nb[1];
  7957. //const int nb2 = dst->nb[2];
  7958. //const int nb3 = dst->nb[3];
  7959. const int ith = params->ith;
  7960. const int nth = params->nth;
  7961. const int nk = ne00;
  7962. const int nh = nk/2;
  7963. const int ew0 = ggml_up32(ne01);
  7964. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7965. GGML_ASSERT(nb00 == sizeof(float));
  7966. GGML_ASSERT(nb10 == sizeof(float));
  7967. if (params->type == GGML_TASK_INIT) {
  7968. // TODO: fix this memset (wsize is overestimated)
  7969. memset(params->wdata, 0, params->wsize);
  7970. // prepare kernel data (src0)
  7971. {
  7972. float * const wdata = (float *) params->wdata + 0;
  7973. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7974. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7975. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  7976. float * dst_data = wdata + i02*ew0*ne00;
  7977. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7978. dst_data[i00*ew0 + i01] = src[i00];
  7979. }
  7980. }
  7981. }
  7982. }
  7983. // prepare source data (src1)
  7984. {
  7985. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  7986. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7987. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7988. float * dst_data = wdata;
  7989. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7990. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  7991. }
  7992. }
  7993. }
  7994. return;
  7995. }
  7996. if (params->type == GGML_TASK_FINALIZE) {
  7997. return;
  7998. }
  7999. // total rows in dst
  8000. const int nr = ne02;
  8001. // rows per thread
  8002. const int dr = (nr + nth - 1)/nth;
  8003. // row range for this thread
  8004. const int ir0 = dr*ith;
  8005. const int ir1 = MIN(ir0 + dr, nr);
  8006. for (int i1 = ir0; i1 < ir1; i1++) {
  8007. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  8008. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  8009. dst_data[i0] = 0;
  8010. for (int k = -nh; k <= nh; k++) {
  8011. float v = 0.0f;
  8012. ggml_vec_dot_f32(ew0, &v,
  8013. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  8014. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  8015. dst_data[i0] += v;
  8016. }
  8017. }
  8018. }
  8019. }
  8020. static void ggml_compute_forward_conv_1d_1s(
  8021. const struct ggml_compute_params * params,
  8022. const struct ggml_tensor * src0,
  8023. const struct ggml_tensor * src1,
  8024. struct ggml_tensor * dst) {
  8025. switch (src0->type) {
  8026. case GGML_TYPE_F16:
  8027. {
  8028. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  8029. } break;
  8030. case GGML_TYPE_F32:
  8031. {
  8032. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  8033. } break;
  8034. default:
  8035. {
  8036. GGML_ASSERT(false);
  8037. } break;
  8038. }
  8039. }
  8040. // ggml_compute_forward_conv_1d_2s
  8041. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  8042. const struct ggml_compute_params * params,
  8043. const struct ggml_tensor * src0,
  8044. const struct ggml_tensor * src1,
  8045. struct ggml_tensor * dst) {
  8046. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  8047. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8048. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  8049. int64_t t0 = ggml_perf_time_us();
  8050. UNUSED(t0);
  8051. const int64_t ne00 = src0->ne[0];
  8052. const int64_t ne01 = src0->ne[1];
  8053. const int64_t ne02 = src0->ne[2];
  8054. //const int64_t ne03 = src0->ne[3];
  8055. const int64_t ne10 = src1->ne[0];
  8056. const int64_t ne11 = src1->ne[1];
  8057. //const int64_t ne12 = src1->ne[2];
  8058. //const int64_t ne13 = src1->ne[3];
  8059. //const int64_t ne0 = dst->ne[0];
  8060. //const int64_t ne1 = dst->ne[1];
  8061. //const int64_t ne2 = dst->ne[2];
  8062. //const int64_t ne3 = dst->ne[3];
  8063. //const int64_t ne = ne0*ne1*ne2*ne3;
  8064. const int nb00 = src0->nb[0];
  8065. const int nb01 = src0->nb[1];
  8066. const int nb02 = src0->nb[2];
  8067. //const int nb03 = src0->nb[3];
  8068. const int nb10 = src1->nb[0];
  8069. const int nb11 = src1->nb[1];
  8070. //const int nb12 = src1->nb[2];
  8071. //const int nb13 = src1->nb[3];
  8072. //const int nb0 = dst->nb[0];
  8073. const int nb1 = dst->nb[1];
  8074. //const int nb2 = dst->nb[2];
  8075. //const int nb3 = dst->nb[3];
  8076. const int ith = params->ith;
  8077. const int nth = params->nth;
  8078. const int nk = ne00;
  8079. const int nh = nk/2;
  8080. const int ew0 = ggml_up32(ne01);
  8081. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  8082. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8083. GGML_ASSERT(nb10 == sizeof(float));
  8084. if (params->type == GGML_TASK_INIT) {
  8085. // TODO: fix this memset (wsize is overestimated)
  8086. memset(params->wdata, 0, params->wsize);
  8087. // prepare kernel data (src0)
  8088. {
  8089. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  8090. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8091. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8092. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  8093. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  8094. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8095. dst_data[i00*ew0 + i01] = src[i00];
  8096. }
  8097. }
  8098. }
  8099. }
  8100. // prepare source data (src1)
  8101. {
  8102. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  8103. for (int64_t i11 = 0; i11 < ne11; i11++) {
  8104. const float * const src = (float *)((char *) src1->data + i11*nb11);
  8105. ggml_fp16_t * dst_data = wdata;
  8106. for (int64_t i10 = 0; i10 < ne10; i10++) {
  8107. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  8108. }
  8109. }
  8110. }
  8111. return;
  8112. }
  8113. if (params->type == GGML_TASK_FINALIZE) {
  8114. return;
  8115. }
  8116. // total rows in dst
  8117. const int nr = ne02;
  8118. // rows per thread
  8119. const int dr = (nr + nth - 1)/nth;
  8120. // row range for this thread
  8121. const int ir0 = dr*ith;
  8122. const int ir1 = MIN(ir0 + dr, nr);
  8123. for (int i1 = ir0; i1 < ir1; i1++) {
  8124. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  8125. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  8126. dst_data[i0/2] = 0;
  8127. for (int k = -nh; k <= nh; k++) {
  8128. float v = 0.0f;
  8129. ggml_vec_dot_f16(ew0, &v,
  8130. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  8131. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  8132. dst_data[i0/2] += v;
  8133. }
  8134. }
  8135. }
  8136. }
  8137. static void ggml_compute_forward_conv_1d_2s_f32(
  8138. const struct ggml_compute_params * params,
  8139. const struct ggml_tensor * src0,
  8140. const struct ggml_tensor * src1,
  8141. struct ggml_tensor * dst) {
  8142. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  8143. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8144. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  8145. int64_t t0 = ggml_perf_time_us();
  8146. UNUSED(t0);
  8147. const int64_t ne00 = src0->ne[0];
  8148. const int64_t ne01 = src0->ne[1];
  8149. const int64_t ne02 = src0->ne[2];
  8150. //const int64_t ne03 = src0->ne[3];
  8151. const int64_t ne10 = src1->ne[0];
  8152. const int64_t ne11 = src1->ne[1];
  8153. //const int64_t ne12 = src1->ne[2];
  8154. //const int64_t ne13 = src1->ne[3];
  8155. //const int64_t ne0 = dst->ne[0];
  8156. //const int64_t ne1 = dst->ne[1];
  8157. //const int64_t ne2 = dst->ne[2];
  8158. //const int64_t ne3 = dst->ne[3];
  8159. //const int64_t ne = ne0*ne1*ne2*ne3;
  8160. const int nb00 = src0->nb[0];
  8161. const int nb01 = src0->nb[1];
  8162. const int nb02 = src0->nb[2];
  8163. //const int nb03 = src0->nb[3];
  8164. const int nb10 = src1->nb[0];
  8165. const int nb11 = src1->nb[1];
  8166. //const int nb12 = src1->nb[2];
  8167. //const int nb13 = src1->nb[3];
  8168. //const int nb0 = dst->nb[0];
  8169. const int nb1 = dst->nb[1];
  8170. //const int nb2 = dst->nb[2];
  8171. //const int nb3 = dst->nb[3];
  8172. const int ith = params->ith;
  8173. const int nth = params->nth;
  8174. const int nk = ne00;
  8175. const int nh = nk/2;
  8176. const int ew0 = ggml_up32(ne01);
  8177. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  8178. GGML_ASSERT(nb00 == sizeof(float));
  8179. GGML_ASSERT(nb10 == sizeof(float));
  8180. if (params->type == GGML_TASK_INIT) {
  8181. // TODO: fix this memset (wsize is overestimated)
  8182. memset(params->wdata, 0, params->wsize);
  8183. // prepare kernel data (src0)
  8184. {
  8185. float * const wdata = (float *) params->wdata + 0;
  8186. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8187. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8188. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  8189. float * dst_data = wdata + i02*ew0*ne00;
  8190. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8191. dst_data[i00*ew0 + i01] = src[i00];
  8192. }
  8193. }
  8194. }
  8195. }
  8196. // prepare source data (src1)
  8197. {
  8198. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  8199. for (int64_t i11 = 0; i11 < ne11; i11++) {
  8200. const float * const src = (float *)((char *) src1->data + i11*nb11);
  8201. float * dst_data = wdata;
  8202. for (int64_t i10 = 0; i10 < ne10; i10++) {
  8203. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  8204. }
  8205. }
  8206. }
  8207. return;
  8208. }
  8209. if (params->type == GGML_TASK_FINALIZE) {
  8210. return;
  8211. }
  8212. // total rows in dst
  8213. const int nr = ne02;
  8214. // rows per thread
  8215. const int dr = (nr + nth - 1)/nth;
  8216. // row range for this thread
  8217. const int ir0 = dr*ith;
  8218. const int ir1 = MIN(ir0 + dr, nr);
  8219. for (int i1 = ir0; i1 < ir1; i1++) {
  8220. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  8221. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  8222. dst_data[i0/2] = 0;
  8223. for (int k = -nh; k <= nh; k++) {
  8224. float v = 0.0f;
  8225. ggml_vec_dot_f32(ew0, &v,
  8226. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  8227. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  8228. dst_data[i0/2] += v;
  8229. }
  8230. }
  8231. }
  8232. }
  8233. static void ggml_compute_forward_conv_1d_2s(
  8234. const struct ggml_compute_params * params,
  8235. const struct ggml_tensor * src0,
  8236. const struct ggml_tensor * src1,
  8237. struct ggml_tensor * dst) {
  8238. switch (src0->type) {
  8239. case GGML_TYPE_F16:
  8240. {
  8241. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  8242. } break;
  8243. case GGML_TYPE_F32:
  8244. {
  8245. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  8246. } break;
  8247. default:
  8248. {
  8249. GGML_ASSERT(false);
  8250. } break;
  8251. }
  8252. }
  8253. // ggml_compute_forward_flash_attn
  8254. static void ggml_compute_forward_flash_attn_f32(
  8255. const struct ggml_compute_params * params,
  8256. const struct ggml_tensor * q,
  8257. const struct ggml_tensor * k,
  8258. const struct ggml_tensor * v,
  8259. const bool masked,
  8260. struct ggml_tensor * dst) {
  8261. int64_t t0 = ggml_perf_time_us();
  8262. UNUSED(t0);
  8263. const int64_t neq0 = q->ne[0];
  8264. const int64_t neq1 = q->ne[1];
  8265. const int64_t neq2 = q->ne[2];
  8266. const int64_t neq3 = q->ne[3];
  8267. const int64_t nek0 = k->ne[0];
  8268. const int64_t nek1 = k->ne[1];
  8269. //const int64_t nek2 = k->ne[2];
  8270. //const int64_t nek3 = k->ne[3];
  8271. //const int64_t nev0 = v->ne[0];
  8272. const int64_t nev1 = v->ne[1];
  8273. //const int64_t nev2 = v->ne[2];
  8274. //const int64_t nev3 = v->ne[3];
  8275. const int64_t ne0 = dst->ne[0];
  8276. const int64_t ne1 = dst->ne[1];
  8277. //const int64_t ne2 = dst->ne[2];
  8278. //const int64_t ne3 = dst->ne[3];
  8279. const int nbk0 = k->nb[0];
  8280. const int nbk1 = k->nb[1];
  8281. const int nbk2 = k->nb[2];
  8282. const int nbk3 = k->nb[3];
  8283. const int nbq0 = q->nb[0];
  8284. const int nbq1 = q->nb[1];
  8285. const int nbq2 = q->nb[2];
  8286. const int nbq3 = q->nb[3];
  8287. const int nbv0 = v->nb[0];
  8288. const int nbv1 = v->nb[1];
  8289. const int nbv2 = v->nb[2];
  8290. const int nbv3 = v->nb[3];
  8291. const int nb0 = dst->nb[0];
  8292. const int nb1 = dst->nb[1];
  8293. const int nb2 = dst->nb[2];
  8294. const int nb3 = dst->nb[3];
  8295. const int ith = params->ith;
  8296. const int nth = params->nth;
  8297. const int64_t D = neq0;
  8298. const int64_t N = neq1;
  8299. const int64_t P = nek1 - N;
  8300. const int64_t M = P + N;
  8301. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  8302. GGML_ASSERT(ne0 == D);
  8303. GGML_ASSERT(ne1 == N);
  8304. GGML_ASSERT(P >= 0);
  8305. GGML_ASSERT(nbq0 == sizeof(float));
  8306. GGML_ASSERT(nbk0 == sizeof(float));
  8307. GGML_ASSERT(nbv0 == sizeof(float));
  8308. GGML_ASSERT(neq0 == D);
  8309. GGML_ASSERT(nek0 == D);
  8310. GGML_ASSERT(nev1 == D);
  8311. GGML_ASSERT(neq1 == N);
  8312. GGML_ASSERT(nek1 == N + P);
  8313. GGML_ASSERT(nev1 == D);
  8314. // dst cannot be transposed or permuted
  8315. GGML_ASSERT(nb0 == sizeof(float));
  8316. GGML_ASSERT(nb0 <= nb1);
  8317. GGML_ASSERT(nb1 <= nb2);
  8318. GGML_ASSERT(nb2 <= nb3);
  8319. if (params->type == GGML_TASK_INIT) {
  8320. return;
  8321. }
  8322. if (params->type == GGML_TASK_FINALIZE) {
  8323. return;
  8324. }
  8325. // parallelize by q rows using ggml_vec_dot_f32
  8326. // total rows in q
  8327. const int nr = neq1*neq2*neq3;
  8328. // rows per thread
  8329. const int dr = (nr + nth - 1)/nth;
  8330. // row range for this thread
  8331. const int ir0 = dr*ith;
  8332. const int ir1 = MIN(ir0 + dr, nr);
  8333. const float scale = 1.0f/sqrtf(D);
  8334. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  8335. for (int ir = ir0; ir < ir1; ++ir) {
  8336. // q indices
  8337. const int iq3 = ir/(neq2*neq1);
  8338. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  8339. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  8340. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  8341. for (int i = M; i < Mup; ++i) {
  8342. S[i] = -INFINITY;
  8343. }
  8344. for (int64_t ic = 0; ic < nek1; ++ic) {
  8345. // k indices
  8346. const int ik3 = iq3;
  8347. const int ik2 = iq2;
  8348. const int ik1 = ic;
  8349. // S indices
  8350. const int i1 = ik1;
  8351. ggml_vec_dot_f32(neq0,
  8352. S + i1,
  8353. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  8354. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  8355. }
  8356. // scale
  8357. ggml_vec_scale_f32(nek1, S, scale);
  8358. if (masked) {
  8359. for (int64_t i = P; i < M; i++) {
  8360. if (i > P + iq1) {
  8361. S[i] = -INFINITY;
  8362. }
  8363. }
  8364. }
  8365. // softmax
  8366. {
  8367. float max = -INFINITY;
  8368. ggml_vec_max_f32(M, &max, S);
  8369. ggml_float sum = 0.0;
  8370. {
  8371. #ifdef GGML_SOFT_MAX_ACCELERATE
  8372. max = -max;
  8373. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  8374. vvexpf(S, S, &Mup);
  8375. ggml_vec_sum_f32(Mup, &sum, S);
  8376. #else
  8377. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  8378. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  8379. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  8380. float * SS = S + i;
  8381. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  8382. if (SS[j] == -INFINITY) {
  8383. SS[j] = 0.0f;
  8384. } else {
  8385. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  8386. memcpy(&scvt[j], &s, sizeof(uint16_t));
  8387. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  8388. sump[j] += (ggml_float)val;
  8389. SS[j] = val;
  8390. }
  8391. }
  8392. }
  8393. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  8394. sum += sump[i];
  8395. }
  8396. #endif
  8397. }
  8398. assert(sum > 0.0);
  8399. sum = 1.0/sum;
  8400. ggml_vec_scale_f32(M, S, sum);
  8401. #ifndef NDEBUG
  8402. for (int i = 0; i < M; ++i) {
  8403. assert(!isnan(S[i]));
  8404. assert(!isinf(S[i]));
  8405. }
  8406. #endif
  8407. }
  8408. for (int64_t ic = 0; ic < nev1; ++ic) {
  8409. // dst indices
  8410. const int i1 = iq1;
  8411. const int i2 = iq2;
  8412. const int i3 = iq3;
  8413. ggml_vec_dot_f32(nek1,
  8414. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8415. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  8416. S);
  8417. }
  8418. }
  8419. }
  8420. static void ggml_compute_forward_flash_attn_f16(
  8421. const struct ggml_compute_params * params,
  8422. const struct ggml_tensor * q,
  8423. const struct ggml_tensor * k,
  8424. const struct ggml_tensor * v,
  8425. const bool masked,
  8426. struct ggml_tensor * dst) {
  8427. int64_t t0 = ggml_perf_time_us();
  8428. UNUSED(t0);
  8429. const int64_t neq0 = q->ne[0];
  8430. const int64_t neq1 = q->ne[1];
  8431. const int64_t neq2 = q->ne[2];
  8432. const int64_t neq3 = q->ne[3];
  8433. const int64_t nek0 = k->ne[0];
  8434. const int64_t nek1 = k->ne[1];
  8435. //const int64_t nek2 = k->ne[2];
  8436. //const int64_t nek3 = k->ne[3];
  8437. //const int64_t nev0 = v->ne[0];
  8438. const int64_t nev1 = v->ne[1];
  8439. //const int64_t nev2 = v->ne[2];
  8440. //const int64_t nev3 = v->ne[3];
  8441. const int64_t ne0 = dst->ne[0];
  8442. const int64_t ne1 = dst->ne[1];
  8443. //const int64_t ne2 = dst->ne[2];
  8444. //const int64_t ne3 = dst->ne[3];
  8445. const int nbk0 = k->nb[0];
  8446. const int nbk1 = k->nb[1];
  8447. const int nbk2 = k->nb[2];
  8448. const int nbk3 = k->nb[3];
  8449. const int nbq0 = q->nb[0];
  8450. const int nbq1 = q->nb[1];
  8451. const int nbq2 = q->nb[2];
  8452. const int nbq3 = q->nb[3];
  8453. const int nbv0 = v->nb[0];
  8454. const int nbv1 = v->nb[1];
  8455. const int nbv2 = v->nb[2];
  8456. const int nbv3 = v->nb[3];
  8457. const int nb0 = dst->nb[0];
  8458. const int nb1 = dst->nb[1];
  8459. const int nb2 = dst->nb[2];
  8460. const int nb3 = dst->nb[3];
  8461. const int ith = params->ith;
  8462. const int nth = params->nth;
  8463. const int64_t D = neq0;
  8464. const int64_t N = neq1;
  8465. const int64_t P = nek1 - N;
  8466. const int64_t M = P + N;
  8467. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  8468. GGML_ASSERT(ne0 == D);
  8469. GGML_ASSERT(ne1 == N);
  8470. GGML_ASSERT(P >= 0);
  8471. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  8472. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  8473. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  8474. GGML_ASSERT(neq0 == D);
  8475. GGML_ASSERT(nek0 == D);
  8476. GGML_ASSERT(nev1 == D);
  8477. GGML_ASSERT(neq1 == N);
  8478. GGML_ASSERT(nek1 == N + P);
  8479. GGML_ASSERT(nev1 == D);
  8480. // dst cannot be transposed or permuted
  8481. GGML_ASSERT(nb0 == sizeof(float));
  8482. GGML_ASSERT(nb0 <= nb1);
  8483. GGML_ASSERT(nb1 <= nb2);
  8484. GGML_ASSERT(nb2 <= nb3);
  8485. if (params->type == GGML_TASK_INIT) {
  8486. return;
  8487. }
  8488. if (params->type == GGML_TASK_FINALIZE) {
  8489. return;
  8490. }
  8491. // parallelize by q rows using ggml_vec_dot_f32
  8492. // total rows in q
  8493. const int nr = neq1*neq2*neq3;
  8494. // rows per thread
  8495. const int dr = (nr + nth - 1)/nth;
  8496. // row range for this thread
  8497. const int ir0 = dr*ith;
  8498. const int ir1 = MIN(ir0 + dr, nr);
  8499. const float scale = 1.0f/sqrtf(D);
  8500. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  8501. for (int ir = ir0; ir < ir1; ++ir) {
  8502. // q indices
  8503. const int iq3 = ir/(neq2*neq1);
  8504. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  8505. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  8506. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  8507. for (int i = M; i < Mup; ++i) {
  8508. S[i] = -INFINITY;
  8509. }
  8510. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  8511. for (int64_t ic = 0; ic < nek1; ++ic) {
  8512. // k indices
  8513. const int ik3 = iq3;
  8514. const int ik2 = iq2;
  8515. const int ik1 = ic;
  8516. // S indices
  8517. const int i1 = ik1;
  8518. ggml_vec_dot_f16(neq0,
  8519. S + i1,
  8520. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  8521. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  8522. }
  8523. } else {
  8524. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  8525. // k indices
  8526. const int ik3 = iq3;
  8527. const int ik2 = iq2;
  8528. const int ik1 = ic;
  8529. // S indices
  8530. const int i1 = ik1;
  8531. ggml_vec_dot_f16_unroll(neq0, nbk1,
  8532. S + i1,
  8533. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  8534. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  8535. }
  8536. }
  8537. // scale
  8538. ggml_vec_scale_f32(nek1, S, scale);
  8539. if (masked) {
  8540. for (int64_t i = P; i < M; i++) {
  8541. if (i > P + iq1) {
  8542. S[i] = -INFINITY;
  8543. }
  8544. }
  8545. }
  8546. // softmax
  8547. {
  8548. float max = -INFINITY;
  8549. ggml_vec_max_f32(M, &max, S);
  8550. ggml_float sum = 0.0;
  8551. {
  8552. #ifdef GGML_SOFT_MAX_ACCELERATE
  8553. max = -max;
  8554. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  8555. vvexpf(S, S, &Mup);
  8556. ggml_vec_sum_f32(Mup, &sum, S);
  8557. #else
  8558. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  8559. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  8560. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  8561. float * SS = S + i;
  8562. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  8563. if (SS[j] == -INFINITY) {
  8564. SS[j] = 0.0f;
  8565. } else {
  8566. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  8567. memcpy(&scvt[j], &s, sizeof(uint16_t));
  8568. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  8569. sump[j] += (ggml_float)val;
  8570. SS[j] = val;
  8571. }
  8572. }
  8573. }
  8574. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  8575. sum += sump[i];
  8576. }
  8577. #endif
  8578. }
  8579. assert(sum > 0.0);
  8580. sum = 1.0/sum;
  8581. ggml_vec_scale_f32(M, S, sum);
  8582. #ifndef NDEBUG
  8583. for (int i = 0; i < M; ++i) {
  8584. assert(!isnan(S[i]));
  8585. assert(!isinf(S[i]));
  8586. }
  8587. #endif
  8588. }
  8589. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  8590. for (int64_t i = 0; i < M; i++) {
  8591. S16[i] = GGML_FP32_TO_FP16(S[i]);
  8592. }
  8593. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  8594. for (int64_t ic = 0; ic < nev1; ++ic) {
  8595. // dst indices
  8596. const int i1 = iq1;
  8597. const int i2 = iq2;
  8598. const int i3 = iq3;
  8599. ggml_vec_dot_f16(nek1,
  8600. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8601. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  8602. S16);
  8603. }
  8604. } else {
  8605. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  8606. // dst indices
  8607. const int i1 = iq1;
  8608. const int i2 = iq2;
  8609. const int i3 = iq3;
  8610. ggml_vec_dot_f16_unroll(nek1, nbv1,
  8611. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8612. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  8613. S16);
  8614. }
  8615. }
  8616. }
  8617. }
  8618. static void ggml_compute_forward_flash_attn(
  8619. const struct ggml_compute_params * params,
  8620. const struct ggml_tensor * q,
  8621. const struct ggml_tensor * k,
  8622. const struct ggml_tensor * v,
  8623. const bool masked,
  8624. struct ggml_tensor * dst) {
  8625. switch (q->type) {
  8626. case GGML_TYPE_F16:
  8627. {
  8628. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  8629. } break;
  8630. case GGML_TYPE_F32:
  8631. {
  8632. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  8633. } break;
  8634. default:
  8635. {
  8636. GGML_ASSERT(false);
  8637. } break;
  8638. }
  8639. }
  8640. // ggml_compute_forward_flash_ff
  8641. static void ggml_compute_forward_flash_ff_f16(
  8642. const struct ggml_compute_params * params,
  8643. const struct ggml_tensor * a, // F16
  8644. const struct ggml_tensor * b0, // F16 fc_w
  8645. const struct ggml_tensor * b1, // F32 fc_b
  8646. const struct ggml_tensor * c0, // F16 proj_w
  8647. const struct ggml_tensor * c1, // F32 proj_b
  8648. struct ggml_tensor * dst) {
  8649. int64_t t0 = ggml_perf_time_us();
  8650. UNUSED(t0);
  8651. const int64_t nea0 = a->ne[0];
  8652. const int64_t nea1 = a->ne[1];
  8653. const int64_t nea2 = a->ne[2];
  8654. const int64_t nea3 = a->ne[3];
  8655. const int64_t neb00 = b0->ne[0];
  8656. const int64_t neb01 = b0->ne[1];
  8657. //const int64_t neb02 = b0->ne[2];
  8658. //const int64_t neb03 = b0->ne[3];
  8659. const int64_t neb10 = b1->ne[0];
  8660. const int64_t neb11 = b1->ne[1];
  8661. //const int64_t neb12 = b1->ne[2];
  8662. //const int64_t neb13 = b1->ne[3];
  8663. const int64_t nec00 = c0->ne[0];
  8664. const int64_t nec01 = c0->ne[1];
  8665. //const int64_t nec02 = c0->ne[2];
  8666. //const int64_t nec03 = c0->ne[3];
  8667. const int64_t nec10 = c1->ne[0];
  8668. const int64_t nec11 = c1->ne[1];
  8669. //const int64_t nec12 = c1->ne[2];
  8670. //const int64_t nec13 = c1->ne[3];
  8671. const int64_t ne0 = dst->ne[0];
  8672. const int64_t ne1 = dst->ne[1];
  8673. const int64_t ne2 = dst->ne[2];
  8674. //const int64_t ne3 = dst->ne[3];
  8675. const int nba0 = a->nb[0];
  8676. const int nba1 = a->nb[1];
  8677. const int nba2 = a->nb[2];
  8678. const int nba3 = a->nb[3];
  8679. const int nbb00 = b0->nb[0];
  8680. const int nbb01 = b0->nb[1];
  8681. const int nbb02 = b0->nb[2];
  8682. const int nbb03 = b0->nb[3];
  8683. const int nbb10 = b1->nb[0];
  8684. //const int nbb11 = b1->nb[1];
  8685. //const int nbb12 = b1->nb[2];
  8686. //const int nbb13 = b1->nb[3];
  8687. const int nbc00 = c0->nb[0];
  8688. const int nbc01 = c0->nb[1];
  8689. const int nbc02 = c0->nb[2];
  8690. const int nbc03 = c0->nb[3];
  8691. const int nbc10 = c1->nb[0];
  8692. //const int nbc11 = c1->nb[1];
  8693. //const int nbc12 = c1->nb[2];
  8694. //const int nbc13 = c1->nb[3];
  8695. const int nb0 = dst->nb[0];
  8696. const int nb1 = dst->nb[1];
  8697. const int nb2 = dst->nb[2];
  8698. const int nb3 = dst->nb[3];
  8699. const int ith = params->ith;
  8700. const int nth = params->nth;
  8701. const int64_t D = nea0;
  8702. //const int64_t N = nea1;
  8703. const int64_t M = neb01;
  8704. GGML_ASSERT(ne0 == nea0);
  8705. GGML_ASSERT(ne1 == nea1);
  8706. GGML_ASSERT(ne2 == nea2);
  8707. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  8708. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  8709. GGML_ASSERT(nbb10 == sizeof(float));
  8710. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  8711. GGML_ASSERT(nbc10 == sizeof(float));
  8712. GGML_ASSERT(neb00 == D);
  8713. GGML_ASSERT(neb01 == M);
  8714. GGML_ASSERT(neb10 == M);
  8715. GGML_ASSERT(neb11 == 1);
  8716. GGML_ASSERT(nec00 == M);
  8717. GGML_ASSERT(nec01 == D);
  8718. GGML_ASSERT(nec10 == D);
  8719. GGML_ASSERT(nec11 == 1);
  8720. // dst cannot be transposed or permuted
  8721. GGML_ASSERT(nb0 == sizeof(float));
  8722. GGML_ASSERT(nb0 <= nb1);
  8723. GGML_ASSERT(nb1 <= nb2);
  8724. GGML_ASSERT(nb2 <= nb3);
  8725. if (params->type == GGML_TASK_INIT) {
  8726. return;
  8727. }
  8728. if (params->type == GGML_TASK_FINALIZE) {
  8729. return;
  8730. }
  8731. // parallelize by a rows using ggml_vec_dot_f32
  8732. // total rows in a
  8733. const int nr = nea1*nea2*nea3;
  8734. // rows per thread
  8735. const int dr = (nr + nth - 1)/nth;
  8736. // row range for this thread
  8737. const int ir0 = dr*ith;
  8738. const int ir1 = MIN(ir0 + dr, nr);
  8739. for (int ir = ir0; ir < ir1; ++ir) {
  8740. // a indices
  8741. const int ia3 = ir/(nea2*nea1);
  8742. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  8743. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  8744. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  8745. for (int64_t ic = 0; ic < neb01; ++ic) {
  8746. // b0 indices
  8747. const int ib03 = ia3;
  8748. const int ib02 = ia2;
  8749. const int ib01 = ic;
  8750. // S indices
  8751. const int i1 = ib01;
  8752. ggml_vec_dot_f16(nea0,
  8753. S + i1,
  8754. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  8755. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  8756. }
  8757. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  8758. //ggml_vec_gelu_f32(neb01, S, S);
  8759. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  8760. for (int64_t i = 0; i < M; i++) {
  8761. S16[i] = GGML_FP32_TO_FP16(S[i]);
  8762. }
  8763. ggml_vec_gelu_f16(neb01, S16, S16);
  8764. {
  8765. // dst indices
  8766. const int i1 = ia1;
  8767. const int i2 = ia2;
  8768. const int i3 = ia3;
  8769. for (int64_t ic = 0; ic < nec01; ++ic) {
  8770. ggml_vec_dot_f16(neb01,
  8771. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8772. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  8773. S16);
  8774. }
  8775. ggml_vec_add_f32(nec01,
  8776. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8777. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8778. (float *) c1->data);
  8779. }
  8780. }
  8781. }
  8782. static void ggml_compute_forward_flash_ff(
  8783. const struct ggml_compute_params * params,
  8784. const struct ggml_tensor * a,
  8785. const struct ggml_tensor * b0,
  8786. const struct ggml_tensor * b1,
  8787. const struct ggml_tensor * c0,
  8788. const struct ggml_tensor * c1,
  8789. struct ggml_tensor * dst) {
  8790. switch (b0->type) {
  8791. case GGML_TYPE_F16:
  8792. {
  8793. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  8794. } break;
  8795. case GGML_TYPE_F32:
  8796. {
  8797. GGML_ASSERT(false); // TODO
  8798. } break;
  8799. default:
  8800. {
  8801. GGML_ASSERT(false);
  8802. } break;
  8803. }
  8804. }
  8805. // ggml_compute_forward_map_unary
  8806. static void ggml_compute_forward_map_unary_f32(
  8807. const struct ggml_compute_params * params,
  8808. const struct ggml_tensor * src0,
  8809. struct ggml_tensor * dst,
  8810. const ggml_unary_op_f32_t fun) {
  8811. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8812. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8813. return;
  8814. }
  8815. const int n = ggml_nrows(src0);
  8816. const int nc = src0->ne[0];
  8817. assert( dst->nb[0] == sizeof(float));
  8818. assert(src0->nb[0] == sizeof(float));
  8819. for (int i = 0; i < n; i++) {
  8820. fun(nc,
  8821. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8822. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8823. }
  8824. }
  8825. static void ggml_compute_forward_map_unary(
  8826. const struct ggml_compute_params * params,
  8827. const struct ggml_tensor * src0,
  8828. struct ggml_tensor * dst,
  8829. const ggml_unary_op_f32_t fun) {
  8830. switch (src0->type) {
  8831. case GGML_TYPE_F32:
  8832. {
  8833. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  8834. } break;
  8835. default:
  8836. {
  8837. GGML_ASSERT(false);
  8838. } break;
  8839. }
  8840. }
  8841. // ggml_compute_forward_map_binary
  8842. static void ggml_compute_forward_map_binary_f32(
  8843. const struct ggml_compute_params * params,
  8844. const struct ggml_tensor * src0,
  8845. const struct ggml_tensor * src1,
  8846. struct ggml_tensor * dst,
  8847. const ggml_binary_op_f32_t fun) {
  8848. assert(params->ith == 0);
  8849. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8850. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8851. return;
  8852. }
  8853. const int n = ggml_nrows(src0);
  8854. const int nc = src0->ne[0];
  8855. assert( dst->nb[0] == sizeof(float));
  8856. assert(src0->nb[0] == sizeof(float));
  8857. assert(src1->nb[0] == sizeof(float));
  8858. for (int i = 0; i < n; i++) {
  8859. fun(nc,
  8860. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8861. (float *) ((char *) src0->data + i*(src0->nb[1])),
  8862. (float *) ((char *) src1->data + i*(src1->nb[1])));
  8863. }
  8864. }
  8865. static void ggml_compute_forward_map_binary(
  8866. const struct ggml_compute_params * params,
  8867. const struct ggml_tensor * src0,
  8868. const struct ggml_tensor * src1,
  8869. struct ggml_tensor * dst,
  8870. const ggml_binary_op_f32_t fun) {
  8871. switch (src0->type) {
  8872. case GGML_TYPE_F32:
  8873. {
  8874. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  8875. } break;
  8876. default:
  8877. {
  8878. GGML_ASSERT(false);
  8879. } break;
  8880. }
  8881. }
  8882. /////////////////////////////////
  8883. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  8884. GGML_ASSERT(params);
  8885. switch (tensor->op) {
  8886. case GGML_OP_DUP:
  8887. {
  8888. ggml_compute_forward_dup(params, tensor->src0, tensor);
  8889. } break;
  8890. case GGML_OP_ADD:
  8891. {
  8892. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  8893. } break;
  8894. case GGML_OP_SUB:
  8895. {
  8896. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  8897. } break;
  8898. case GGML_OP_MUL:
  8899. {
  8900. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  8901. } break;
  8902. case GGML_OP_DIV:
  8903. {
  8904. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  8905. } break;
  8906. case GGML_OP_SQR:
  8907. {
  8908. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  8909. } break;
  8910. case GGML_OP_SQRT:
  8911. {
  8912. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  8913. } break;
  8914. case GGML_OP_SUM:
  8915. {
  8916. ggml_compute_forward_sum(params, tensor->src0, tensor);
  8917. } break;
  8918. case GGML_OP_MEAN:
  8919. {
  8920. ggml_compute_forward_mean(params, tensor->src0, tensor);
  8921. } break;
  8922. case GGML_OP_REPEAT:
  8923. {
  8924. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  8925. } break;
  8926. case GGML_OP_ABS:
  8927. {
  8928. ggml_compute_forward_abs(params, tensor->src0, tensor);
  8929. } break;
  8930. case GGML_OP_SGN:
  8931. {
  8932. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  8933. } break;
  8934. case GGML_OP_NEG:
  8935. {
  8936. ggml_compute_forward_neg(params, tensor->src0, tensor);
  8937. } break;
  8938. case GGML_OP_STEP:
  8939. {
  8940. ggml_compute_forward_step(params, tensor->src0, tensor);
  8941. } break;
  8942. case GGML_OP_RELU:
  8943. {
  8944. ggml_compute_forward_relu(params, tensor->src0, tensor);
  8945. } break;
  8946. case GGML_OP_GELU:
  8947. {
  8948. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  8949. } break;
  8950. case GGML_OP_SILU:
  8951. {
  8952. ggml_compute_forward_silu(params, tensor->src0, tensor);
  8953. } break;
  8954. case GGML_OP_NORM:
  8955. {
  8956. ggml_compute_forward_norm(params, tensor->src0, tensor);
  8957. } break;
  8958. case GGML_OP_RMS_NORM:
  8959. {
  8960. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  8961. } break;
  8962. case GGML_OP_MUL_MAT:
  8963. {
  8964. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  8965. } break;
  8966. case GGML_OP_SCALE:
  8967. {
  8968. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  8969. } break;
  8970. case GGML_OP_CPY:
  8971. {
  8972. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  8973. } break;
  8974. case GGML_OP_CONT:
  8975. {
  8976. ggml_compute_forward_cont(params, tensor->src0, tensor);
  8977. } break;
  8978. case GGML_OP_RESHAPE:
  8979. {
  8980. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  8981. } break;
  8982. case GGML_OP_VIEW:
  8983. {
  8984. ggml_compute_forward_view(params, tensor->src0);
  8985. } break;
  8986. case GGML_OP_PERMUTE:
  8987. {
  8988. ggml_compute_forward_permute(params, tensor->src0);
  8989. } break;
  8990. case GGML_OP_TRANSPOSE:
  8991. {
  8992. ggml_compute_forward_transpose(params, tensor->src0);
  8993. } break;
  8994. case GGML_OP_GET_ROWS:
  8995. {
  8996. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  8997. } break;
  8998. case GGML_OP_DIAG_MASK_INF:
  8999. {
  9000. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  9001. } break;
  9002. case GGML_OP_SOFT_MAX:
  9003. {
  9004. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  9005. } break;
  9006. case GGML_OP_ROPE:
  9007. {
  9008. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  9009. } break;
  9010. case GGML_OP_ALIBI:
  9011. {
  9012. ggml_compute_forward_alibi(params, tensor->src0, tensor->src1, tensor);
  9013. } break;
  9014. case GGML_OP_CONV_1D_1S:
  9015. {
  9016. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  9017. } break;
  9018. case GGML_OP_CONV_1D_2S:
  9019. {
  9020. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  9021. } break;
  9022. case GGML_OP_FLASH_ATTN:
  9023. {
  9024. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  9025. GGML_ASSERT(t == 0 || t == 1);
  9026. bool masked = t != 0;
  9027. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  9028. } break;
  9029. case GGML_OP_FLASH_FF:
  9030. {
  9031. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  9032. } break;
  9033. case GGML_OP_MAP_UNARY:
  9034. {
  9035. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  9036. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  9037. }
  9038. break;
  9039. case GGML_OP_MAP_BINARY:
  9040. {
  9041. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  9042. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  9043. }
  9044. break;
  9045. case GGML_OP_NONE:
  9046. {
  9047. // nop
  9048. } break;
  9049. case GGML_OP_COUNT:
  9050. {
  9051. GGML_ASSERT(false);
  9052. } break;
  9053. }
  9054. }
  9055. ////////////////////////////////////////////////////////////////////////////////
  9056. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  9057. struct ggml_tensor * src0 = tensor->src0;
  9058. struct ggml_tensor * src1 = tensor->src1;
  9059. switch (tensor->op) {
  9060. case GGML_OP_DUP:
  9061. {
  9062. if (src0->grad) {
  9063. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  9064. }
  9065. } break;
  9066. case GGML_OP_ADD:
  9067. {
  9068. if (src0->grad) {
  9069. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  9070. }
  9071. if (src1->grad) {
  9072. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  9073. }
  9074. } break;
  9075. case GGML_OP_SUB:
  9076. {
  9077. if (src0->grad) {
  9078. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  9079. }
  9080. if (src1->grad) {
  9081. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  9082. }
  9083. } break;
  9084. case GGML_OP_MUL:
  9085. {
  9086. if (src0->grad) {
  9087. src0->grad =
  9088. ggml_add_impl(ctx,
  9089. src0->grad,
  9090. ggml_mul(ctx, src1, tensor->grad),
  9091. inplace);
  9092. }
  9093. if (src1->grad) {
  9094. src1->grad =
  9095. ggml_add_impl(ctx,
  9096. src1->grad,
  9097. ggml_mul(ctx, src0, tensor->grad),
  9098. inplace);
  9099. }
  9100. } break;
  9101. case GGML_OP_DIV:
  9102. {
  9103. if (src0->grad) {
  9104. src0->grad =
  9105. ggml_add_impl(ctx,
  9106. src0->grad,
  9107. ggml_div(ctx, tensor->grad, src1),
  9108. inplace);
  9109. }
  9110. if (src1->grad) {
  9111. src1->grad =
  9112. ggml_sub_impl(ctx,
  9113. src1->grad,
  9114. ggml_mul(ctx,
  9115. tensor->grad,
  9116. ggml_div(ctx, tensor, src1)),
  9117. inplace);
  9118. }
  9119. } break;
  9120. case GGML_OP_SQR:
  9121. {
  9122. if (src0->grad) {
  9123. src0->grad =
  9124. ggml_add_impl(ctx,
  9125. src0->grad,
  9126. ggml_mul(ctx,
  9127. ggml_mul(ctx, src0, tensor->grad),
  9128. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  9129. inplace);
  9130. }
  9131. } break;
  9132. case GGML_OP_SQRT:
  9133. {
  9134. if (src0->grad) {
  9135. src0->grad =
  9136. ggml_add_impl(ctx,
  9137. src0->grad,
  9138. ggml_div(ctx,
  9139. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  9140. tensor),
  9141. inplace);
  9142. }
  9143. } break;
  9144. case GGML_OP_SUM:
  9145. {
  9146. if (src0->grad) {
  9147. src0->grad =
  9148. ggml_add_impl(ctx,
  9149. src0->grad,
  9150. ggml_repeat(ctx, tensor->grad, src0->grad),
  9151. inplace);
  9152. }
  9153. } break;
  9154. case GGML_OP_MEAN:
  9155. {
  9156. GGML_ASSERT(false); // TODO: implement
  9157. } break;
  9158. case GGML_OP_REPEAT:
  9159. {
  9160. if (src0->grad) {
  9161. src0->grad =
  9162. ggml_add_impl(ctx,
  9163. src0->grad,
  9164. ggml_sum(ctx, tensor->grad),
  9165. inplace);
  9166. }
  9167. } break;
  9168. case GGML_OP_ABS:
  9169. {
  9170. if (src0->grad) {
  9171. src0->grad =
  9172. ggml_add_impl(ctx,
  9173. src0->grad,
  9174. ggml_mul(ctx,
  9175. ggml_sgn(ctx, src0),
  9176. tensor->grad),
  9177. inplace);
  9178. }
  9179. } break;
  9180. case GGML_OP_SGN:
  9181. {
  9182. if (src0->grad) {
  9183. // noop
  9184. }
  9185. } break;
  9186. case GGML_OP_NEG:
  9187. {
  9188. if (src0->grad) {
  9189. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  9190. }
  9191. } break;
  9192. case GGML_OP_STEP:
  9193. {
  9194. if (src0->grad) {
  9195. // noop
  9196. }
  9197. } break;
  9198. case GGML_OP_RELU:
  9199. {
  9200. if (src0->grad) {
  9201. src0->grad = ggml_sub_impl(ctx,
  9202. src0->grad,
  9203. ggml_mul(ctx,
  9204. ggml_step(ctx, src0),
  9205. tensor->grad),
  9206. inplace);
  9207. }
  9208. } break;
  9209. case GGML_OP_GELU:
  9210. {
  9211. GGML_ASSERT(false); // TODO: not implemented
  9212. } break;
  9213. case GGML_OP_ALIBI:
  9214. {
  9215. GGML_ASSERT(false); // TODO: not implemented
  9216. } break;
  9217. case GGML_OP_SILU:
  9218. {
  9219. GGML_ASSERT(false); // TODO: not implemented
  9220. } break;
  9221. case GGML_OP_NORM:
  9222. {
  9223. GGML_ASSERT(false); // TODO: not implemented
  9224. } break;
  9225. case GGML_OP_RMS_NORM:
  9226. {
  9227. GGML_ASSERT(false); // TODO: not implemented
  9228. } break;
  9229. case GGML_OP_MUL_MAT:
  9230. {
  9231. if (src0->grad) {
  9232. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  9233. GGML_ASSERT(false);
  9234. }
  9235. if (src1->grad) {
  9236. src1->grad =
  9237. ggml_add_impl(ctx,
  9238. src1->grad,
  9239. ggml_mul_mat(ctx,
  9240. ggml_cont(ctx, ggml_transpose(ctx, src0)),
  9241. tensor->grad),
  9242. inplace);
  9243. }
  9244. } break;
  9245. case GGML_OP_SCALE:
  9246. {
  9247. GGML_ASSERT(false); // TODO: not implemented
  9248. } break;
  9249. case GGML_OP_CPY:
  9250. {
  9251. GGML_ASSERT(false); // TODO: not implemented
  9252. } break;
  9253. case GGML_OP_CONT:
  9254. {
  9255. GGML_ASSERT(false); // TODO: not implemented
  9256. } break;
  9257. case GGML_OP_RESHAPE:
  9258. {
  9259. GGML_ASSERT(false); // TODO: not implemented
  9260. } break;
  9261. case GGML_OP_VIEW:
  9262. {
  9263. GGML_ASSERT(false); // not supported
  9264. } break;
  9265. case GGML_OP_PERMUTE:
  9266. {
  9267. GGML_ASSERT(false); // TODO: not implemented
  9268. } break;
  9269. case GGML_OP_TRANSPOSE:
  9270. {
  9271. GGML_ASSERT(false); // TODO: not implemented
  9272. } break;
  9273. case GGML_OP_GET_ROWS:
  9274. {
  9275. GGML_ASSERT(false); // TODO: not implemented
  9276. } break;
  9277. case GGML_OP_DIAG_MASK_INF:
  9278. {
  9279. GGML_ASSERT(false); // TODO: not implemented
  9280. } break;
  9281. case GGML_OP_SOFT_MAX:
  9282. {
  9283. GGML_ASSERT(false); // TODO: not implemented
  9284. } break;
  9285. case GGML_OP_ROPE:
  9286. {
  9287. GGML_ASSERT(false); // TODO: not implemented
  9288. } break;
  9289. case GGML_OP_CONV_1D_1S:
  9290. {
  9291. GGML_ASSERT(false); // TODO: not implemented
  9292. } break;
  9293. case GGML_OP_CONV_1D_2S:
  9294. {
  9295. GGML_ASSERT(false); // TODO: not implemented
  9296. } break;
  9297. case GGML_OP_FLASH_ATTN:
  9298. {
  9299. GGML_ASSERT(false); // not supported
  9300. } break;
  9301. case GGML_OP_FLASH_FF:
  9302. {
  9303. GGML_ASSERT(false); // not supported
  9304. } break;
  9305. case GGML_OP_MAP_UNARY:
  9306. case GGML_OP_MAP_BINARY:
  9307. {
  9308. GGML_ASSERT(false); // not supported
  9309. } break;
  9310. case GGML_OP_NONE:
  9311. {
  9312. // nop
  9313. } break;
  9314. case GGML_OP_COUNT:
  9315. {
  9316. GGML_ASSERT(false);
  9317. } break;
  9318. }
  9319. }
  9320. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  9321. if (node->grad == NULL) {
  9322. // this usually happens when we generate intermediate nodes from constants in the backward pass
  9323. // it can also happen during forward pass, if the user performs computations with constants
  9324. if (node->op != GGML_OP_NONE) {
  9325. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  9326. }
  9327. }
  9328. // check if already visited
  9329. for (int i = 0; i < cgraph->n_nodes; i++) {
  9330. if (cgraph->nodes[i] == node) {
  9331. return;
  9332. }
  9333. }
  9334. for (int i = 0; i < cgraph->n_leafs; i++) {
  9335. if (cgraph->leafs[i] == node) {
  9336. return;
  9337. }
  9338. }
  9339. if (node->src0) {
  9340. ggml_visit_parents(cgraph, node->src0);
  9341. }
  9342. if (node->src1) {
  9343. ggml_visit_parents(cgraph, node->src1);
  9344. }
  9345. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  9346. if (node->opt[i]) {
  9347. ggml_visit_parents(cgraph, node->opt[i]);
  9348. }
  9349. }
  9350. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  9351. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  9352. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  9353. cgraph->leafs[cgraph->n_leafs] = node;
  9354. cgraph->n_leafs++;
  9355. } else {
  9356. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  9357. cgraph->nodes[cgraph->n_nodes] = node;
  9358. cgraph->grads[cgraph->n_nodes] = node->grad;
  9359. cgraph->n_nodes++;
  9360. }
  9361. }
  9362. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  9363. if (!expand) {
  9364. cgraph->n_nodes = 0;
  9365. cgraph->n_leafs = 0;
  9366. }
  9367. const int n0 = cgraph->n_nodes;
  9368. UNUSED(n0);
  9369. ggml_visit_parents(cgraph, tensor);
  9370. const int n_new = cgraph->n_nodes - n0;
  9371. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  9372. if (n_new > 0) {
  9373. // the last added node should always be starting point
  9374. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  9375. }
  9376. }
  9377. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  9378. ggml_build_forward_impl(cgraph, tensor, true);
  9379. }
  9380. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  9381. struct ggml_cgraph result = {
  9382. /*.n_nodes =*/ 0,
  9383. /*.n_leafs =*/ 0,
  9384. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  9385. /*.work_size =*/ 0,
  9386. /*.work =*/ NULL,
  9387. /*.nodes =*/ { NULL },
  9388. /*.grads =*/ { NULL },
  9389. /*.leafs =*/ { NULL },
  9390. /*.perf_runs =*/ 0,
  9391. /*.perf_cycles =*/ 0,
  9392. /*.perf_time_us =*/ 0,
  9393. };
  9394. ggml_build_forward_impl(&result, tensor, false);
  9395. return result;
  9396. }
  9397. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  9398. struct ggml_cgraph result = *gf;
  9399. GGML_ASSERT(gf->n_nodes > 0);
  9400. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  9401. if (keep) {
  9402. for (int i = 0; i < gf->n_nodes; i++) {
  9403. struct ggml_tensor * node = gf->nodes[i];
  9404. if (node->grad) {
  9405. node->grad = ggml_dup_tensor(ctx, node);
  9406. gf->grads[i] = node->grad;
  9407. }
  9408. }
  9409. }
  9410. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  9411. struct ggml_tensor * node = gf->nodes[i];
  9412. // because we detached the grad nodes from the original graph, we can afford inplace operations
  9413. if (node->grad) {
  9414. ggml_compute_backward(ctx, node, keep);
  9415. }
  9416. }
  9417. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  9418. struct ggml_tensor * node = gf->nodes[i];
  9419. if (node->is_param) {
  9420. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  9421. ggml_build_forward_impl(&result, node->grad, true);
  9422. }
  9423. }
  9424. return result;
  9425. }
  9426. //
  9427. // thread data
  9428. //
  9429. // synchronization is done via busy loops
  9430. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  9431. //
  9432. #ifdef __APPLE__
  9433. //#include <os/lock.h>
  9434. //
  9435. //typedef os_unfair_lock ggml_lock_t;
  9436. //
  9437. //#define ggml_lock_init(x) UNUSED(x)
  9438. //#define ggml_lock_destroy(x) UNUSED(x)
  9439. //#define ggml_lock_lock os_unfair_lock_lock
  9440. //#define ggml_lock_unlock os_unfair_lock_unlock
  9441. //
  9442. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  9443. typedef int ggml_lock_t;
  9444. #define ggml_lock_init(x) UNUSED(x)
  9445. #define ggml_lock_destroy(x) UNUSED(x)
  9446. #define ggml_lock_lock(x) UNUSED(x)
  9447. #define ggml_lock_unlock(x) UNUSED(x)
  9448. #define GGML_LOCK_INITIALIZER 0
  9449. typedef pthread_t ggml_thread_t;
  9450. #define ggml_thread_create pthread_create
  9451. #define ggml_thread_join pthread_join
  9452. #else
  9453. //typedef pthread_spinlock_t ggml_lock_t;
  9454. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  9455. //#define ggml_lock_destroy pthread_spin_destroy
  9456. //#define ggml_lock_lock pthread_spin_lock
  9457. //#define ggml_lock_unlock pthread_spin_unlock
  9458. typedef int ggml_lock_t;
  9459. #define ggml_lock_init(x) UNUSED(x)
  9460. #define ggml_lock_destroy(x) UNUSED(x)
  9461. #define ggml_lock_lock(x) UNUSED(x)
  9462. #define ggml_lock_unlock(x) UNUSED(x)
  9463. #define GGML_LOCK_INITIALIZER 0
  9464. typedef pthread_t ggml_thread_t;
  9465. #define ggml_thread_create pthread_create
  9466. #define ggml_thread_join pthread_join
  9467. #endif
  9468. struct ggml_compute_state_shared {
  9469. ggml_lock_t spin;
  9470. int n_threads;
  9471. // synchronization primitives
  9472. atomic_int n_ready;
  9473. atomic_bool has_work;
  9474. atomic_bool stop; // stop all threads
  9475. };
  9476. struct ggml_compute_state {
  9477. ggml_thread_t thrd;
  9478. struct ggml_compute_params params;
  9479. struct ggml_tensor * node;
  9480. struct ggml_compute_state_shared * shared;
  9481. };
  9482. static thread_ret_t ggml_graph_compute_thread(void * data) {
  9483. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  9484. const int n_threads = state->shared->n_threads;
  9485. while (true) {
  9486. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  9487. atomic_store(&state->shared->has_work, false);
  9488. } else {
  9489. while (atomic_load(&state->shared->has_work)) {
  9490. if (atomic_load(&state->shared->stop)) {
  9491. return 0;
  9492. }
  9493. ggml_lock_lock (&state->shared->spin);
  9494. ggml_lock_unlock(&state->shared->spin);
  9495. }
  9496. }
  9497. atomic_fetch_sub(&state->shared->n_ready, 1);
  9498. // wait for work
  9499. while (!atomic_load(&state->shared->has_work)) {
  9500. if (atomic_load(&state->shared->stop)) {
  9501. return 0;
  9502. }
  9503. ggml_lock_lock (&state->shared->spin);
  9504. ggml_lock_unlock(&state->shared->spin);
  9505. }
  9506. // check if we should stop
  9507. if (atomic_load(&state->shared->stop)) {
  9508. break;
  9509. }
  9510. if (state->node) {
  9511. if (state->params.ith < state->params.nth) {
  9512. ggml_compute_forward(&state->params, state->node);
  9513. }
  9514. state->node = NULL;
  9515. } else {
  9516. break;
  9517. }
  9518. }
  9519. return 0;
  9520. }
  9521. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  9522. const int n_threads = cgraph->n_threads;
  9523. struct ggml_compute_state_shared state_shared = {
  9524. /*.spin =*/ GGML_LOCK_INITIALIZER,
  9525. /*.n_threads =*/ n_threads,
  9526. /*.n_ready =*/ 0,
  9527. /*.has_work =*/ false,
  9528. /*.stop =*/ false,
  9529. };
  9530. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  9531. // create thread pool
  9532. if (n_threads > 1) {
  9533. ggml_lock_init(&state_shared.spin);
  9534. atomic_store(&state_shared.has_work, true);
  9535. for (int j = 0; j < n_threads - 1; j++) {
  9536. workers[j] = (struct ggml_compute_state) {
  9537. .thrd = 0,
  9538. .params = {
  9539. .type = GGML_TASK_COMPUTE,
  9540. .ith = j + 1,
  9541. .nth = n_threads,
  9542. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9543. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9544. },
  9545. .node = NULL,
  9546. .shared = &state_shared,
  9547. };
  9548. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  9549. GGML_ASSERT(rc == 0);
  9550. UNUSED(rc);
  9551. }
  9552. }
  9553. // initialize tasks + work buffer
  9554. {
  9555. size_t work_size = 0;
  9556. // thread scheduling for the different operations
  9557. for (int i = 0; i < cgraph->n_nodes; i++) {
  9558. struct ggml_tensor * node = cgraph->nodes[i];
  9559. switch (node->op) {
  9560. case GGML_OP_CPY:
  9561. case GGML_OP_DUP:
  9562. {
  9563. node->n_tasks = n_threads;
  9564. size_t cur = 0;
  9565. if (ggml_is_quantized(node->type)) {
  9566. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  9567. }
  9568. work_size = MAX(work_size, cur);
  9569. } break;
  9570. case GGML_OP_ADD:
  9571. {
  9572. node->n_tasks = n_threads;
  9573. size_t cur = 0;
  9574. if (ggml_is_quantized(node->src0->type)) {
  9575. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  9576. }
  9577. work_size = MAX(work_size, cur);
  9578. } break;
  9579. case GGML_OP_SUB:
  9580. case GGML_OP_MUL:
  9581. case GGML_OP_DIV:
  9582. case GGML_OP_SQR:
  9583. case GGML_OP_SQRT:
  9584. case GGML_OP_SUM:
  9585. case GGML_OP_MEAN:
  9586. case GGML_OP_REPEAT:
  9587. case GGML_OP_ABS:
  9588. case GGML_OP_SGN:
  9589. case GGML_OP_NEG:
  9590. case GGML_OP_STEP:
  9591. case GGML_OP_RELU:
  9592. {
  9593. node->n_tasks = 1;
  9594. } break;
  9595. case GGML_OP_GELU:
  9596. {
  9597. node->n_tasks = n_threads;
  9598. } break;
  9599. case GGML_OP_SILU:
  9600. {
  9601. node->n_tasks = n_threads;
  9602. } break;
  9603. case GGML_OP_NORM:
  9604. case GGML_OP_RMS_NORM:
  9605. {
  9606. node->n_tasks = n_threads;
  9607. } break;
  9608. case GGML_OP_MUL_MAT:
  9609. {
  9610. node->n_tasks = n_threads;
  9611. // TODO: use different scheduling for different matrix sizes
  9612. //const int nr0 = ggml_nrows(node->src0);
  9613. //const int nr1 = ggml_nrows(node->src1);
  9614. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  9615. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  9616. size_t cur = 0;
  9617. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  9618. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  9619. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  9620. node->n_tasks = 1; // TODO: this actually is doing nothing
  9621. // the threads are still spinning
  9622. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  9623. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  9624. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  9625. //printf("cur = %zu\n", cur);
  9626. } else {
  9627. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  9628. }
  9629. #else
  9630. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  9631. #endif
  9632. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  9633. cur = 0;
  9634. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  9635. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  9636. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  9637. node->n_tasks = 1;
  9638. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  9639. } else
  9640. #endif
  9641. {
  9642. const enum ggml_type type_q = quantize_fns[node->src0->type].vec_dot_type;
  9643. cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q];
  9644. }
  9645. } else {
  9646. GGML_ASSERT(false);
  9647. }
  9648. work_size = MAX(work_size, cur);
  9649. } break;
  9650. case GGML_OP_SCALE:
  9651. {
  9652. node->n_tasks = n_threads;
  9653. } break;
  9654. case GGML_OP_CONT:
  9655. case GGML_OP_RESHAPE:
  9656. case GGML_OP_VIEW:
  9657. case GGML_OP_PERMUTE:
  9658. case GGML_OP_TRANSPOSE:
  9659. case GGML_OP_GET_ROWS:
  9660. case GGML_OP_DIAG_MASK_INF:
  9661. {
  9662. node->n_tasks = 1;
  9663. } break;
  9664. case GGML_OP_SOFT_MAX:
  9665. {
  9666. node->n_tasks = n_threads;
  9667. } break;
  9668. case GGML_OP_ROPE:
  9669. {
  9670. node->n_tasks = n_threads;
  9671. } break;
  9672. case GGML_OP_ALIBI:
  9673. {
  9674. node->n_tasks = 1; //TODO
  9675. } break;
  9676. case GGML_OP_CONV_1D_1S:
  9677. case GGML_OP_CONV_1D_2S:
  9678. {
  9679. node->n_tasks = n_threads;
  9680. GGML_ASSERT(node->src0->ne[3] == 1);
  9681. GGML_ASSERT(node->src1->ne[2] == 1);
  9682. GGML_ASSERT(node->src1->ne[3] == 1);
  9683. size_t cur = 0;
  9684. const int nk = node->src0->ne[0];
  9685. if (node->src0->type == GGML_TYPE_F16 &&
  9686. node->src1->type == GGML_TYPE_F32) {
  9687. cur = sizeof(ggml_fp16_t)*(
  9688. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  9689. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  9690. );
  9691. } else if (node->src0->type == GGML_TYPE_F32 &&
  9692. node->src1->type == GGML_TYPE_F32) {
  9693. cur = sizeof(float)*(
  9694. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  9695. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  9696. );
  9697. } else {
  9698. GGML_ASSERT(false);
  9699. }
  9700. work_size = MAX(work_size, cur);
  9701. } break;
  9702. case GGML_OP_FLASH_ATTN:
  9703. {
  9704. node->n_tasks = n_threads;
  9705. size_t cur = 0;
  9706. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  9707. if (node->src1->type == GGML_TYPE_F32) {
  9708. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  9709. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  9710. }
  9711. if (node->src1->type == GGML_TYPE_F16) {
  9712. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  9713. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  9714. }
  9715. work_size = MAX(work_size, cur);
  9716. } break;
  9717. case GGML_OP_FLASH_FF:
  9718. {
  9719. node->n_tasks = n_threads;
  9720. size_t cur = 0;
  9721. if (node->src1->type == GGML_TYPE_F32) {
  9722. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  9723. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  9724. }
  9725. if (node->src1->type == GGML_TYPE_F16) {
  9726. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  9727. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  9728. }
  9729. work_size = MAX(work_size, cur);
  9730. } break;
  9731. case GGML_OP_MAP_UNARY:
  9732. case GGML_OP_MAP_BINARY:
  9733. {
  9734. node->n_tasks = 1;
  9735. } break;
  9736. case GGML_OP_NONE:
  9737. {
  9738. node->n_tasks = 1;
  9739. } break;
  9740. case GGML_OP_COUNT:
  9741. {
  9742. GGML_ASSERT(false);
  9743. } break;
  9744. }
  9745. }
  9746. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  9747. GGML_ASSERT(false); // TODO: better handling
  9748. }
  9749. if (work_size > 0 && cgraph->work == NULL) {
  9750. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  9751. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  9752. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  9753. }
  9754. }
  9755. const int64_t perf_start_cycles = ggml_perf_cycles();
  9756. const int64_t perf_start_time_us = ggml_perf_time_us();
  9757. for (int i = 0; i < cgraph->n_nodes; i++) {
  9758. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  9759. struct ggml_tensor * node = cgraph->nodes[i];
  9760. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  9761. //if (node->grad == NULL && node->perf_runs > 0) {
  9762. // continue;
  9763. //}
  9764. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  9765. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  9766. // INIT
  9767. struct ggml_compute_params params = {
  9768. /*.type =*/ GGML_TASK_INIT,
  9769. /*.ith =*/ 0,
  9770. /*.nth =*/ node->n_tasks,
  9771. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9772. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  9773. };
  9774. ggml_compute_forward(&params, node);
  9775. // COMPUTE
  9776. if (node->n_tasks > 1) {
  9777. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9778. atomic_store(&state_shared.has_work, false);
  9779. }
  9780. while (atomic_load(&state_shared.has_work)) {
  9781. ggml_lock_lock (&state_shared.spin);
  9782. ggml_lock_unlock(&state_shared.spin);
  9783. }
  9784. // launch thread pool
  9785. for (int j = 0; j < n_threads - 1; j++) {
  9786. workers[j].params = (struct ggml_compute_params) {
  9787. .type = GGML_TASK_COMPUTE,
  9788. .ith = j + 1,
  9789. .nth = node->n_tasks,
  9790. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9791. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9792. };
  9793. workers[j].node = node;
  9794. }
  9795. atomic_fetch_sub(&state_shared.n_ready, 1);
  9796. while (atomic_load(&state_shared.n_ready) > 0) {
  9797. ggml_lock_lock (&state_shared.spin);
  9798. ggml_lock_unlock(&state_shared.spin);
  9799. }
  9800. atomic_store(&state_shared.has_work, true);
  9801. }
  9802. params.type = GGML_TASK_COMPUTE;
  9803. ggml_compute_forward(&params, node);
  9804. // wait for thread pool
  9805. if (node->n_tasks > 1) {
  9806. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9807. atomic_store(&state_shared.has_work, false);
  9808. }
  9809. while (atomic_load(&state_shared.has_work)) {
  9810. ggml_lock_lock (&state_shared.spin);
  9811. ggml_lock_unlock(&state_shared.spin);
  9812. }
  9813. atomic_fetch_sub(&state_shared.n_ready, 1);
  9814. while (atomic_load(&state_shared.n_ready) != 0) {
  9815. ggml_lock_lock (&state_shared.spin);
  9816. ggml_lock_unlock(&state_shared.spin);
  9817. }
  9818. }
  9819. // FINALIZE
  9820. if (node->n_tasks > 1) {
  9821. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9822. atomic_store(&state_shared.has_work, false);
  9823. }
  9824. while (atomic_load(&state_shared.has_work)) {
  9825. ggml_lock_lock (&state_shared.spin);
  9826. ggml_lock_unlock(&state_shared.spin);
  9827. }
  9828. // launch thread pool
  9829. for (int j = 0; j < n_threads - 1; j++) {
  9830. workers[j].params = (struct ggml_compute_params) {
  9831. .type = GGML_TASK_FINALIZE,
  9832. .ith = j + 1,
  9833. .nth = node->n_tasks,
  9834. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9835. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9836. };
  9837. workers[j].node = node;
  9838. }
  9839. atomic_fetch_sub(&state_shared.n_ready, 1);
  9840. while (atomic_load(&state_shared.n_ready) > 0) {
  9841. ggml_lock_lock (&state_shared.spin);
  9842. ggml_lock_unlock(&state_shared.spin);
  9843. }
  9844. atomic_store(&state_shared.has_work, true);
  9845. }
  9846. params.type = GGML_TASK_FINALIZE;
  9847. ggml_compute_forward(&params, node);
  9848. // wait for thread pool
  9849. if (node->n_tasks > 1) {
  9850. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9851. atomic_store(&state_shared.has_work, false);
  9852. }
  9853. while (atomic_load(&state_shared.has_work)) {
  9854. ggml_lock_lock (&state_shared.spin);
  9855. ggml_lock_unlock(&state_shared.spin);
  9856. }
  9857. atomic_fetch_sub(&state_shared.n_ready, 1);
  9858. while (atomic_load(&state_shared.n_ready) != 0) {
  9859. ggml_lock_lock (&state_shared.spin);
  9860. ggml_lock_unlock(&state_shared.spin);
  9861. }
  9862. }
  9863. // performance stats (node)
  9864. {
  9865. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  9866. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  9867. node->perf_runs++;
  9868. node->perf_cycles += perf_cycles_cur;
  9869. node->perf_time_us += perf_time_us_cur;
  9870. }
  9871. }
  9872. // join thread pool
  9873. if (n_threads > 1) {
  9874. atomic_store(&state_shared.stop, true);
  9875. atomic_store(&state_shared.has_work, true);
  9876. for (int j = 0; j < n_threads - 1; j++) {
  9877. int rc = ggml_thread_join(workers[j].thrd, NULL);
  9878. GGML_ASSERT(rc == 0);
  9879. UNUSED(rc);
  9880. }
  9881. ggml_lock_destroy(&state_shared.spin);
  9882. }
  9883. // performance stats (graph)
  9884. {
  9885. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  9886. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  9887. cgraph->perf_runs++;
  9888. cgraph->perf_cycles += perf_cycles_cur;
  9889. cgraph->perf_time_us += perf_time_us_cur;
  9890. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  9891. __func__, cgraph->perf_runs,
  9892. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  9893. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  9894. (double) perf_time_us_cur / 1000.0,
  9895. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  9896. }
  9897. }
  9898. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  9899. for (int i = 0; i < cgraph->n_nodes; i++) {
  9900. struct ggml_tensor * grad = cgraph->grads[i];
  9901. if (grad) {
  9902. ggml_set_zero(grad);
  9903. }
  9904. }
  9905. }
  9906. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  9907. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  9908. GGML_PRINT("=== GRAPH ===\n");
  9909. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  9910. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  9911. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  9912. for (int i = 0; i < cgraph->n_nodes; i++) {
  9913. struct ggml_tensor * node = cgraph->nodes[i];
  9914. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  9915. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  9916. i,
  9917. node->ne[0], node->ne[1], node->ne[2],
  9918. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  9919. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  9920. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  9921. (double) node->perf_time_us / 1000.0,
  9922. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  9923. }
  9924. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  9925. for (int i = 0; i < cgraph->n_leafs; i++) {
  9926. struct ggml_tensor * node = cgraph->leafs[i];
  9927. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  9928. i,
  9929. node->ne[0], node->ne[1],
  9930. GGML_OP_LABEL[node->op]);
  9931. }
  9932. for (int i = 0; i < GGML_OP_COUNT; i++) {
  9933. if (perf_total_per_op_us[i] == 0) {
  9934. continue;
  9935. }
  9936. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  9937. }
  9938. GGML_PRINT("========================================\n");
  9939. }
  9940. // check if node is part of the graph
  9941. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9942. if (cgraph == NULL) {
  9943. return true;
  9944. }
  9945. for (int i = 0; i < cgraph->n_nodes; i++) {
  9946. if (cgraph->nodes[i] == node) {
  9947. return true;
  9948. }
  9949. }
  9950. return false;
  9951. }
  9952. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9953. for (int i = 0; i < cgraph->n_nodes; i++) {
  9954. struct ggml_tensor * parent = cgraph->nodes[i];
  9955. if (parent->grad == node) {
  9956. return parent;
  9957. }
  9958. }
  9959. return NULL;
  9960. }
  9961. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  9962. char color[16];
  9963. FILE * fp = fopen(filename, "w");
  9964. GGML_ASSERT(fp);
  9965. fprintf(fp, "digraph G {\n");
  9966. fprintf(fp, " newrank = true;\n");
  9967. fprintf(fp, " rankdir = LR;\n");
  9968. for (int i = 0; i < gb->n_nodes; i++) {
  9969. struct ggml_tensor * node = gb->nodes[i];
  9970. if (ggml_graph_get_parent(gb, node) != NULL) {
  9971. continue;
  9972. }
  9973. if (node->is_param) {
  9974. snprintf(color, sizeof(color), "yellow");
  9975. } else if (node->grad) {
  9976. if (ggml_graph_find(gf, node)) {
  9977. snprintf(color, sizeof(color), "green");
  9978. } else {
  9979. snprintf(color, sizeof(color), "lightblue");
  9980. }
  9981. } else {
  9982. snprintf(color, sizeof(color), "white");
  9983. }
  9984. fprintf(fp, " \"%p\" [ \
  9985. style = filled; fillcolor = %s; shape = record; \
  9986. label=\"%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  9987. (void *) node, color,
  9988. i, node->ne[0], node->ne[1],
  9989. GGML_OP_SYMBOL[node->op]);
  9990. if (node->grad) {
  9991. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  9992. } else {
  9993. fprintf(fp, "\"; ]\n");
  9994. }
  9995. }
  9996. for (int i = 0; i < gb->n_leafs; i++) {
  9997. struct ggml_tensor * node = gb->leafs[i];
  9998. snprintf(color, sizeof(color), "pink");
  9999. if (ggml_nelements(node) == 1) {
  10000. fprintf(fp, " \"%p\" [ \
  10001. style = filled; fillcolor = %s; shape = record; \
  10002. label=\"<x>%.1e\"; ]\n",
  10003. (void *) node, color, (double)ggml_get_f32_1d(node, 0));
  10004. } else {
  10005. fprintf(fp, " \"%p\" [ \
  10006. style = filled; fillcolor = %s; shape = record; \
  10007. label=\"<x>CONST %d [%" PRId64 ", %" PRId64 "]\"; ]\n",
  10008. (void *) node, color,
  10009. i, node->ne[0], node->ne[1]);
  10010. }
  10011. }
  10012. for (int i = 0; i < gb->n_nodes; i++) {
  10013. struct ggml_tensor * node = gb->nodes[i];
  10014. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  10015. if (node->src0) {
  10016. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  10017. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  10018. parent0 ? (void *) parent0 : (void *) node->src0,
  10019. parent0 ? "g" : "x",
  10020. parent ? (void *) parent : (void *) node,
  10021. parent ? "g" : "x",
  10022. parent ? "empty" : "vee",
  10023. parent ? "dashed" : "solid");
  10024. }
  10025. if (node->src1) {
  10026. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  10027. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  10028. parent1 ? (void *) parent1 : (void *) node->src1,
  10029. parent1 ? "g" : "x",
  10030. parent ? (void *) parent : (void *) node,
  10031. parent ? "g" : "x",
  10032. parent ? "empty" : "vee",
  10033. parent ? "dashed" : "solid");
  10034. }
  10035. }
  10036. for (int i = 0; i < gb->n_leafs; i++) {
  10037. struct ggml_tensor * node = gb->leafs[i];
  10038. if (node->src0) {
  10039. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  10040. (void *) node->src0, "x",
  10041. (void *) node, "x");
  10042. }
  10043. if (node->src1) {
  10044. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  10045. (void *) node->src1, "x",
  10046. (void *) node, "x");
  10047. }
  10048. }
  10049. fprintf(fp, "}\n");
  10050. fclose(fp);
  10051. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  10052. }
  10053. ////////////////////////////////////////////////////////////////////////////////
  10054. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  10055. int i = 0;
  10056. for (int p = 0; p < np; ++p) {
  10057. const int64_t ne = ggml_nelements(ps[p]) ;
  10058. // TODO: add function to set tensor from array
  10059. for (int64_t j = 0; j < ne; ++j) {
  10060. ggml_set_f32_1d(ps[p], j, x[i++]);
  10061. }
  10062. }
  10063. }
  10064. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  10065. int i = 0;
  10066. for (int p = 0; p < np; ++p) {
  10067. const int64_t ne = ggml_nelements(ps[p]) ;
  10068. // TODO: add function to get all elements at once
  10069. for (int64_t j = 0; j < ne; ++j) {
  10070. x[i++] = ggml_get_f32_1d(ps[p], j);
  10071. }
  10072. }
  10073. }
  10074. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  10075. int i = 0;
  10076. for (int p = 0; p < np; ++p) {
  10077. const int64_t ne = ggml_nelements(ps[p]) ;
  10078. // TODO: add function to get all elements at once
  10079. for (int64_t j = 0; j < ne; ++j) {
  10080. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  10081. }
  10082. }
  10083. }
  10084. //
  10085. // ADAM
  10086. //
  10087. // ref: https://arxiv.org/pdf/1412.6980.pdf
  10088. //
  10089. static enum ggml_opt_result ggml_opt_adam(
  10090. struct ggml_context * ctx,
  10091. struct ggml_opt_params params,
  10092. struct ggml_tensor * f,
  10093. struct ggml_cgraph * gf,
  10094. struct ggml_cgraph * gb) {
  10095. GGML_ASSERT(ggml_is_scalar(f));
  10096. gf->n_threads = params.n_threads;
  10097. gb->n_threads = params.n_threads;
  10098. // these will store the parameters we want to optimize
  10099. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  10100. int np = 0;
  10101. int nx = 0;
  10102. for (int i = 0; i < gf->n_nodes; ++i) {
  10103. if (gf->nodes[i]->is_param) {
  10104. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  10105. GGML_ASSERT(np < GGML_MAX_PARAMS);
  10106. ps[np++] = gf->nodes[i];
  10107. nx += ggml_nelements(gf->nodes[i]);
  10108. }
  10109. }
  10110. // constants
  10111. const float alpha = params.adam.alpha;
  10112. const float beta1 = params.adam.beta1;
  10113. const float beta2 = params.adam.beta2;
  10114. const float eps = params.adam.eps;
  10115. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  10116. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  10117. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  10118. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  10119. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  10120. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  10121. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  10122. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  10123. // initialize
  10124. ggml_vec_set_f32(nx, m, 0.0f);
  10125. ggml_vec_set_f32(nx, v, 0.0f);
  10126. // update view
  10127. ggml_opt_get_params(np, ps, x);
  10128. // compute the function value
  10129. ggml_graph_reset (gf);
  10130. ggml_set_f32 (f->grad, 1.0f);
  10131. ggml_graph_compute(ctx, gb);
  10132. float fx_prev = ggml_get_f32_1d(f, 0);
  10133. if (pf) {
  10134. pf[0] = fx_prev;
  10135. }
  10136. int n_no_improvement = 0;
  10137. float fx_best = fx_prev;
  10138. // run the optimizer
  10139. for (int t = 0; t < params.adam.n_iter; ++t) {
  10140. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  10141. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  10142. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  10143. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  10144. for (int i = 0; i < np; ++i) {
  10145. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  10146. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  10147. }
  10148. const int64_t t_start_wall = ggml_time_us();
  10149. const int64_t t_start_cpu = ggml_cycles();
  10150. UNUSED(t_start_wall);
  10151. UNUSED(t_start_cpu);
  10152. {
  10153. // update the gradient
  10154. ggml_opt_get_grad(np, ps, g1);
  10155. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  10156. ggml_vec_scale_f32(nx, m, beta1);
  10157. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  10158. // g2 = g1^2
  10159. ggml_vec_sqr_f32 (nx, g2, g1);
  10160. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  10161. ggml_vec_scale_f32(nx, v, beta2);
  10162. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  10163. // m^hat = m_t / (1 - beta1^t)
  10164. // v^hat = v_t / (1 - beta2^t)
  10165. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  10166. ggml_vec_cpy_f32 (nx, mh, m);
  10167. ggml_vec_cpy_f32 (nx, vh, v);
  10168. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  10169. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  10170. ggml_vec_sqrt_f32 (nx, vh, vh);
  10171. ggml_vec_acc1_f32 (nx, vh, eps);
  10172. ggml_vec_div_f32 (nx, mh, mh, vh);
  10173. ggml_vec_sub_f32 (nx, x, x, mh);
  10174. // update the parameters
  10175. ggml_opt_set_params(np, ps, x);
  10176. }
  10177. ggml_graph_reset (gf);
  10178. ggml_set_f32 (f->grad, 1.0f);
  10179. ggml_graph_compute(ctx, gb);
  10180. const float fx = ggml_get_f32_1d(f, 0);
  10181. // check convergence
  10182. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  10183. GGML_PRINT_DEBUG("converged\n");
  10184. return GGML_OPT_OK;
  10185. }
  10186. // delta-based convergence test
  10187. if (pf != NULL) {
  10188. // need at least params.past iterations to start checking for convergence
  10189. if (params.past <= t) {
  10190. const float rate = (pf[t%params.past] - fx)/fx;
  10191. if (fabsf(rate) < params.delta) {
  10192. return GGML_OPT_OK;
  10193. }
  10194. }
  10195. pf[t%params.past] = fx;
  10196. }
  10197. // check for improvement
  10198. if (params.max_no_improvement > 0) {
  10199. if (fx_best > fx) {
  10200. fx_best = fx;
  10201. n_no_improvement = 0;
  10202. } else {
  10203. ++n_no_improvement;
  10204. if (n_no_improvement >= params.max_no_improvement) {
  10205. return GGML_OPT_OK;
  10206. }
  10207. }
  10208. }
  10209. fx_prev = fx;
  10210. {
  10211. const int64_t t_end_cpu = ggml_cycles();
  10212. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  10213. UNUSED(t_end_cpu);
  10214. const int64_t t_end_wall = ggml_time_us();
  10215. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  10216. UNUSED(t_end_wall);
  10217. }
  10218. }
  10219. return GGML_OPT_DID_NOT_CONVERGE;
  10220. }
  10221. //
  10222. // L-BFGS
  10223. //
  10224. // the L-BFGS implementation below is based on the following implementation:
  10225. //
  10226. // https://github.com/chokkan/liblbfgs
  10227. //
  10228. struct ggml_lbfgs_iteration_data {
  10229. float alpha;
  10230. float ys;
  10231. float * s;
  10232. float * y;
  10233. };
  10234. static enum ggml_opt_result linesearch_backtracking(
  10235. struct ggml_context * ctx,
  10236. const struct ggml_opt_params * params,
  10237. int nx,
  10238. float * x,
  10239. float * fx,
  10240. float * g,
  10241. float * d,
  10242. float * step,
  10243. const float * xp,
  10244. struct ggml_tensor * f,
  10245. struct ggml_cgraph * gf,
  10246. struct ggml_cgraph * gb,
  10247. const int np,
  10248. struct ggml_tensor * ps[]) {
  10249. int count = 0;
  10250. float width = 0.0f;
  10251. float dg = 0.0f;
  10252. float finit = 0.0f;
  10253. float dginit = 0.0f;
  10254. float dgtest = 0.0f;
  10255. const float dec = 0.5f;
  10256. const float inc = 2.1f;
  10257. if (*step <= 0.f) {
  10258. return GGML_LINESEARCH_INVALID_PARAMETERS;
  10259. }
  10260. // compute the initial gradient in the search direction
  10261. ggml_vec_dot_f32(nx, &dginit, g, d);
  10262. // make sure that d points to a descent direction
  10263. if (0 < dginit) {
  10264. return GGML_LINESEARCH_FAIL;
  10265. }
  10266. // initialize local variables
  10267. finit = *fx;
  10268. dgtest = params->lbfgs.ftol*dginit;
  10269. while (true) {
  10270. ggml_vec_cpy_f32(nx, x, xp);
  10271. ggml_vec_mad_f32(nx, x, d, *step);
  10272. // evaluate the function and gradient values
  10273. {
  10274. ggml_opt_set_params(np, ps, x);
  10275. ggml_graph_reset (gf);
  10276. ggml_set_f32 (f->grad, 1.0f);
  10277. ggml_graph_compute(ctx, gb);
  10278. ggml_opt_get_grad(np, ps, g);
  10279. *fx = ggml_get_f32_1d(f, 0);
  10280. }
  10281. ++count;
  10282. if (*fx > finit + (*step)*dgtest) {
  10283. width = dec;
  10284. } else {
  10285. // Armijo condition is satisfied
  10286. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  10287. return count;
  10288. }
  10289. ggml_vec_dot_f32(nx, &dg, g, d);
  10290. // check the Wolfe condition
  10291. if (dg < params->lbfgs.wolfe * dginit) {
  10292. width = inc;
  10293. } else {
  10294. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  10295. // regular Wolfe conditions
  10296. return count;
  10297. }
  10298. if(dg > -params->lbfgs.wolfe*dginit) {
  10299. width = dec;
  10300. } else {
  10301. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  10302. return count;
  10303. }
  10304. return count;
  10305. }
  10306. }
  10307. if (*step < params->lbfgs.min_step) {
  10308. return GGML_LINESEARCH_MINIMUM_STEP;
  10309. }
  10310. if (*step > params->lbfgs.max_step) {
  10311. return GGML_LINESEARCH_MAXIMUM_STEP;
  10312. }
  10313. if (params->lbfgs.max_linesearch <= count) {
  10314. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  10315. }
  10316. (*step) *= width;
  10317. }
  10318. return GGML_LINESEARCH_FAIL;
  10319. }
  10320. static enum ggml_opt_result ggml_opt_lbfgs(
  10321. struct ggml_context * ctx,
  10322. struct ggml_opt_params params,
  10323. struct ggml_tensor * f,
  10324. struct ggml_cgraph * gf,
  10325. struct ggml_cgraph * gb) {
  10326. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  10327. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  10328. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  10329. return GGML_OPT_INVALID_WOLFE;
  10330. }
  10331. }
  10332. gf->n_threads = params.n_threads;
  10333. gb->n_threads = params.n_threads;
  10334. const int m = params.lbfgs.m;
  10335. // these will store the parameters we want to optimize
  10336. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  10337. int np = 0;
  10338. int nx = 0;
  10339. for (int i = 0; i < gf->n_nodes; ++i) {
  10340. if (gf->nodes[i]->is_param) {
  10341. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  10342. GGML_ASSERT(np < GGML_MAX_PARAMS);
  10343. ps[np++] = gf->nodes[i];
  10344. nx += ggml_nelements(gf->nodes[i]);
  10345. }
  10346. }
  10347. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  10348. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  10349. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  10350. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  10351. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  10352. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  10353. float fx = 0.0f; // cost function value
  10354. float xnorm = 0.0f; // ||x||
  10355. float gnorm = 0.0f; // ||g||
  10356. float step = 0.0f;
  10357. // initialize x from the graph nodes
  10358. ggml_opt_get_params(np, ps, x);
  10359. // the L-BFGS memory
  10360. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  10361. for (int i = 0; i < m; ++i) {
  10362. lm[i].alpha = 0.0f;
  10363. lm[i].ys = 0.0f;
  10364. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  10365. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  10366. }
  10367. // evaluate the function value and its gradient
  10368. {
  10369. ggml_opt_set_params(np, ps, x);
  10370. ggml_graph_reset (gf);
  10371. ggml_set_f32 (f->grad, 1.0f);
  10372. ggml_graph_compute(ctx, gb);
  10373. ggml_opt_get_grad(np, ps, g);
  10374. fx = ggml_get_f32_1d(f, 0);
  10375. }
  10376. if (pf) {
  10377. pf[0] = fx;
  10378. }
  10379. float fx_best = fx;
  10380. // search direction = -gradient
  10381. ggml_vec_neg_f32(nx, d, g);
  10382. // ||x||, ||g||
  10383. ggml_vec_norm_f32(nx, &xnorm, x);
  10384. ggml_vec_norm_f32(nx, &gnorm, g);
  10385. if (xnorm < 1.0f) {
  10386. xnorm = 1.0f;
  10387. }
  10388. // already optimized
  10389. if (gnorm/xnorm <= params.lbfgs.eps) {
  10390. return GGML_OPT_OK;
  10391. }
  10392. // initial step
  10393. ggml_vec_norm_inv_f32(nx, &step, d);
  10394. int j = 0;
  10395. int k = 1;
  10396. int ls = 0;
  10397. int end = 0;
  10398. int bound = 0;
  10399. int n_no_improvement = 0;
  10400. float ys = 0.0f;
  10401. float yy = 0.0f;
  10402. float beta = 0.0f;
  10403. while (true) {
  10404. // store the current position and gradient vectors
  10405. ggml_vec_cpy_f32(nx, xp, x);
  10406. ggml_vec_cpy_f32(nx, gp, g);
  10407. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  10408. if (ls < 0) {
  10409. // linesearch failed - go back to the previous point and return
  10410. ggml_vec_cpy_f32(nx, x, xp);
  10411. ggml_vec_cpy_f32(nx, g, gp);
  10412. return ls;
  10413. }
  10414. ggml_vec_norm_f32(nx, &xnorm, x);
  10415. ggml_vec_norm_f32(nx, &gnorm, g);
  10416. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  10417. if (xnorm < 1.0f) {
  10418. xnorm = 1.0f;
  10419. }
  10420. if (gnorm/xnorm <= params.lbfgs.eps) {
  10421. // converged
  10422. return GGML_OPT_OK;
  10423. }
  10424. // delta-based convergence test
  10425. if (pf != NULL) {
  10426. // need at least params.past iterations to start checking for convergence
  10427. if (params.past <= k) {
  10428. const float rate = (pf[k%params.past] - fx)/fx;
  10429. if (fabsf(rate) < params.delta) {
  10430. return GGML_OPT_OK;
  10431. }
  10432. }
  10433. pf[k%params.past] = fx;
  10434. }
  10435. // check for improvement
  10436. if (params.max_no_improvement > 0) {
  10437. if (fx < fx_best) {
  10438. fx_best = fx;
  10439. n_no_improvement = 0;
  10440. } else {
  10441. n_no_improvement++;
  10442. if (n_no_improvement >= params.max_no_improvement) {
  10443. return GGML_OPT_OK;
  10444. }
  10445. }
  10446. }
  10447. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  10448. // reached the maximum number of iterations
  10449. return GGML_OPT_DID_NOT_CONVERGE;
  10450. }
  10451. // update vectors s and y:
  10452. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  10453. // y_{k+1} = g_{k+1} - g_{k}.
  10454. //
  10455. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  10456. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  10457. // compute scalars ys and yy:
  10458. // ys = y^t \cdot s -> 1 / \rho.
  10459. // yy = y^t \cdot y.
  10460. //
  10461. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  10462. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  10463. lm[end].ys = ys;
  10464. // find new search direction
  10465. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  10466. bound = (m <= k) ? m : k;
  10467. k++;
  10468. end = (end + 1)%m;
  10469. // initialize search direction with -g
  10470. ggml_vec_neg_f32(nx, d, g);
  10471. j = end;
  10472. for (int i = 0; i < bound; ++i) {
  10473. j = (j + m - 1) % m;
  10474. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  10475. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  10476. lm[j].alpha /= lm[j].ys;
  10477. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  10478. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  10479. }
  10480. ggml_vec_scale_f32(nx, d, ys/yy);
  10481. for (int i = 0; i < bound; ++i) {
  10482. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  10483. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  10484. beta /= lm[j].ys;
  10485. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  10486. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  10487. j = (j + 1)%m;
  10488. }
  10489. step = 1.0;
  10490. }
  10491. return GGML_OPT_DID_NOT_CONVERGE;
  10492. }
  10493. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  10494. struct ggml_opt_params result;
  10495. switch (type) {
  10496. case GGML_OPT_ADAM:
  10497. {
  10498. result = (struct ggml_opt_params) {
  10499. .type = GGML_OPT_ADAM,
  10500. .n_threads = 1,
  10501. .past = 0,
  10502. .delta = 1e-5f,
  10503. .max_no_improvement = 100,
  10504. .print_forward_graph = true,
  10505. .print_backward_graph = true,
  10506. .adam = {
  10507. .n_iter = 10000,
  10508. .alpha = 0.001f,
  10509. .beta1 = 0.9f,
  10510. .beta2 = 0.999f,
  10511. .eps = 1e-8f,
  10512. .eps_f = 1e-5f,
  10513. .eps_g = 1e-3f,
  10514. },
  10515. };
  10516. } break;
  10517. case GGML_OPT_LBFGS:
  10518. {
  10519. result = (struct ggml_opt_params) {
  10520. .type = GGML_OPT_LBFGS,
  10521. .n_threads = 1,
  10522. .past = 0,
  10523. .delta = 1e-5f,
  10524. .max_no_improvement = 0,
  10525. .print_forward_graph = true,
  10526. .print_backward_graph = true,
  10527. .lbfgs = {
  10528. .m = 6,
  10529. .n_iter = 100,
  10530. .max_linesearch = 20,
  10531. .eps = 1e-5f,
  10532. .ftol = 1e-4f,
  10533. .wolfe = 0.9f,
  10534. .min_step = 1e-20f,
  10535. .max_step = 1e+20f,
  10536. .linesearch = GGML_LINESEARCH_DEFAULT,
  10537. },
  10538. };
  10539. } break;
  10540. }
  10541. return result;
  10542. }
  10543. enum ggml_opt_result ggml_opt(
  10544. struct ggml_context * ctx,
  10545. struct ggml_opt_params params,
  10546. struct ggml_tensor * f) {
  10547. bool free_ctx = false;
  10548. if (ctx == NULL) {
  10549. struct ggml_init_params params_ctx = {
  10550. .mem_size = 16*1024*1024,
  10551. .mem_buffer = NULL,
  10552. .no_alloc = false,
  10553. };
  10554. ctx = ggml_init(params_ctx);
  10555. if (ctx == NULL) {
  10556. return GGML_OPT_NO_CONTEXT;
  10557. }
  10558. free_ctx = true;
  10559. }
  10560. enum ggml_opt_result result = GGML_OPT_OK;
  10561. // build forward + backward compute graphs
  10562. struct ggml_cgraph gf = ggml_build_forward (f);
  10563. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  10564. switch (params.type) {
  10565. case GGML_OPT_ADAM:
  10566. {
  10567. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  10568. } break;
  10569. case GGML_OPT_LBFGS:
  10570. {
  10571. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  10572. } break;
  10573. }
  10574. if (params.print_forward_graph) {
  10575. ggml_graph_print (&gf);
  10576. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  10577. }
  10578. if (params.print_backward_graph) {
  10579. ggml_graph_print (&gb);
  10580. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  10581. }
  10582. if (free_ctx) {
  10583. ggml_free(ctx);
  10584. }
  10585. return result;
  10586. }
  10587. ////////////////////////////////////////////////////////////////////////////////
  10588. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  10589. assert(k % QK4_0 == 0);
  10590. const int nb = k / QK4_0;
  10591. for (int j = 0; j < n; j += k) {
  10592. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK4_0;
  10593. quantize_row_q4_0_reference(src + j, y, k);
  10594. for (int i = 0; i < nb; i++) {
  10595. for (int l = 0; l < QK4_0; l += 2) {
  10596. const uint8_t vi0 = y[i].qs[l/2] & 0x0F;
  10597. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10598. hist[vi0]++;
  10599. hist[vi1]++;
  10600. }
  10601. }
  10602. }
  10603. return (n/QK4_0*sizeof(block_q4_0));
  10604. }
  10605. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  10606. assert(k % QK4_1 == 0);
  10607. const int nb = k / QK4_1;
  10608. for (int j = 0; j < n; j += k) {
  10609. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK4_1;
  10610. quantize_row_q4_1_reference(src + j, y, k);
  10611. for (int i = 0; i < nb; i++) {
  10612. for (int l = 0; l < QK4_1; l += 2) {
  10613. const uint8_t vi0 = y[i].qs[l/2] & 0x0F;
  10614. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10615. hist[vi0]++;
  10616. hist[vi1]++;
  10617. }
  10618. }
  10619. }
  10620. return (n/QK4_1*sizeof(block_q4_1));
  10621. }
  10622. size_t ggml_quantize_q4_2(const float * src, void * dst, int n, int k, int64_t * hist) {
  10623. assert(k % QK4_2 == 0);
  10624. const int nb = k / QK4_2;
  10625. for (int j = 0; j < n; j += k) {
  10626. block_q4_2 * restrict y = (block_q4_2 *)dst + j/QK4_2;
  10627. quantize_row_q4_2_reference(src + j, y, k);
  10628. for (int i = 0; i < nb; i++) {
  10629. for (int l = 0; l < QK4_2; l += 2) {
  10630. const uint8_t vi0 = y[i].qs[l/2] & 0x0F;
  10631. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10632. hist[vi0]++;
  10633. hist[vi1]++;
  10634. }
  10635. }
  10636. }
  10637. return (n/QK4_2*sizeof(block_q4_2));
  10638. }
  10639. size_t ggml_quantize_q4_3(const float * src, void * dst, int n, int k, int64_t * hist) {
  10640. assert(k % QK4_3 == 0);
  10641. const int nb = k / QK4_3;
  10642. for (int j = 0; j < n; j += k) {
  10643. block_q4_3 * restrict y = (block_q4_3 *)dst + j/QK4_3;
  10644. quantize_row_q4_3_reference(src + j, y, k);
  10645. for (int i = 0; i < nb; i++) {
  10646. for (int l = 0; l < QK4_3; l += 2) {
  10647. const uint8_t vi0 = y[i].qs[l/2] & 0x0F;
  10648. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10649. hist[vi0]++;
  10650. hist[vi1]++;
  10651. }
  10652. }
  10653. }
  10654. return (n/QK4_3*sizeof(block_q4_3));
  10655. }
  10656. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  10657. assert(k % QK5_0 == 0);
  10658. const int nb = k / QK5_0;
  10659. for (int j = 0; j < n; j += k) {
  10660. block_q5_0 * restrict y = (block_q5_0 *)dst + j/QK5_0;
  10661. quantize_row_q5_0_reference(src + j, y, k);
  10662. for (int i = 0; i < nb; i++) {
  10663. uint32_t qh;
  10664. memcpy(&qh, &y[i].qh, sizeof(qh));
  10665. for (int l = 0; l < QK5_0; l += 2) {
  10666. const uint8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4;
  10667. const uint8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4;
  10668. // cast to 16 bins
  10669. const uint8_t vi0 = ((y[i].qs[l/2] & 0x0F) | vh0) / 2;
  10670. const uint8_t vi1 = ((y[i].qs[l/2] >> 4) | vh1) / 2;
  10671. hist[vi0]++;
  10672. hist[vi1]++;
  10673. }
  10674. }
  10675. }
  10676. return (n/QK5_0*sizeof(block_q5_0));
  10677. }
  10678. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  10679. assert(k % QK5_1 == 0);
  10680. const int nb = k / QK5_1;
  10681. for (int j = 0; j < n; j += k) {
  10682. block_q5_1 * restrict y = (block_q5_1 *)dst + j/QK5_1;
  10683. quantize_row_q5_1_reference(src + j, y, k);
  10684. for (int i = 0; i < nb; i++) {
  10685. uint32_t qh;
  10686. memcpy(&qh, &y[i].qh, sizeof(qh));
  10687. for (int l = 0; l < QK5_1; l += 2) {
  10688. const uint8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4;
  10689. const uint8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4;
  10690. // cast to 16 bins
  10691. const uint8_t vi0 = ((y[i].qs[l/2] & 0x0F) | vh0) / 2;
  10692. const uint8_t vi1 = ((y[i].qs[l/2] >> 4) | vh1) / 2;
  10693. hist[vi0]++;
  10694. hist[vi1]++;
  10695. }
  10696. }
  10697. }
  10698. return (n/QK5_1*sizeof(block_q5_1));
  10699. }
  10700. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  10701. assert(k % QK8_0 == 0);
  10702. const int nb = k / QK8_0;
  10703. for (int j = 0; j < n; j += k) {
  10704. block_q8_0 * restrict y = (block_q8_0 *)dst + j/QK8_0;
  10705. quantize_row_q8_0_reference(src + j, y, k);
  10706. for (int i = 0; i < nb; i++) {
  10707. for (int l = 0; l < QK8_0; ++l) {
  10708. const int8_t vi = y[i].qs[l];
  10709. hist[vi/16 + 8]++;
  10710. }
  10711. }
  10712. }
  10713. return (n/QK8_0*sizeof(block_q8_0));
  10714. }
  10715. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  10716. size_t result = 0;
  10717. switch (type) {
  10718. case GGML_TYPE_Q4_0:
  10719. {
  10720. GGML_ASSERT(start % QK4_0 == 0);
  10721. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  10722. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  10723. } break;
  10724. case GGML_TYPE_Q4_1:
  10725. {
  10726. GGML_ASSERT(start % QK4_1 == 0);
  10727. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  10728. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  10729. } break;
  10730. case GGML_TYPE_Q4_2:
  10731. {
  10732. GGML_ASSERT(start % QK4_2 == 0);
  10733. block_q4_2 * block = (block_q4_2*)dst + start / QK4_2;
  10734. result = ggml_quantize_q4_2(src + start, block, n, n, hist);
  10735. } break;
  10736. case GGML_TYPE_Q4_3:
  10737. {
  10738. GGML_ASSERT(start % QK4_3 == 0);
  10739. block_q4_3 * block = (block_q4_3*)dst + start / QK4_3;
  10740. result = ggml_quantize_q4_3(src + start, block, n, n, hist);
  10741. } break;
  10742. case GGML_TYPE_Q5_0:
  10743. {
  10744. GGML_ASSERT(start % QK5_0 == 0);
  10745. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  10746. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  10747. } break;
  10748. case GGML_TYPE_Q5_1:
  10749. {
  10750. GGML_ASSERT(start % QK5_1 == 0);
  10751. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  10752. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  10753. } break;
  10754. case GGML_TYPE_Q8_0:
  10755. {
  10756. GGML_ASSERT(start % QK8_0 == 0);
  10757. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  10758. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  10759. } break;
  10760. default:
  10761. assert(false);
  10762. }
  10763. return result;
  10764. }
  10765. ////////////////////////////////////////////////////////////////////////////////
  10766. int ggml_cpu_has_avx(void) {
  10767. #if defined(__AVX__)
  10768. return 1;
  10769. #else
  10770. return 0;
  10771. #endif
  10772. }
  10773. int ggml_cpu_has_avx2(void) {
  10774. #if defined(__AVX2__)
  10775. return 1;
  10776. #else
  10777. return 0;
  10778. #endif
  10779. }
  10780. int ggml_cpu_has_avx512(void) {
  10781. #if defined(__AVX512F__)
  10782. return 1;
  10783. #else
  10784. return 0;
  10785. #endif
  10786. }
  10787. int ggml_cpu_has_avx512_vbmi(void) {
  10788. #if defined(__AVX512VBMI__)
  10789. return 1;
  10790. #else
  10791. return 0;
  10792. #endif
  10793. }
  10794. int ggml_cpu_has_avx512_vnni(void) {
  10795. #if defined(__AVX512VNNI__)
  10796. return 1;
  10797. #else
  10798. return 0;
  10799. #endif
  10800. }
  10801. int ggml_cpu_has_fma(void) {
  10802. #if defined(__FMA__)
  10803. return 1;
  10804. #else
  10805. return 0;
  10806. #endif
  10807. }
  10808. int ggml_cpu_has_neon(void) {
  10809. #if defined(__ARM_NEON)
  10810. return 1;
  10811. #else
  10812. return 0;
  10813. #endif
  10814. }
  10815. int ggml_cpu_has_arm_fma(void) {
  10816. #if defined(__ARM_FEATURE_FMA)
  10817. return 1;
  10818. #else
  10819. return 0;
  10820. #endif
  10821. }
  10822. int ggml_cpu_has_f16c(void) {
  10823. #if defined(__F16C__)
  10824. return 1;
  10825. #else
  10826. return 0;
  10827. #endif
  10828. }
  10829. int ggml_cpu_has_fp16_va(void) {
  10830. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  10831. return 1;
  10832. #else
  10833. return 0;
  10834. #endif
  10835. }
  10836. int ggml_cpu_has_wasm_simd(void) {
  10837. #if defined(__wasm_simd128__)
  10838. return 1;
  10839. #else
  10840. return 0;
  10841. #endif
  10842. }
  10843. int ggml_cpu_has_blas(void) {
  10844. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  10845. return 1;
  10846. #else
  10847. return 0;
  10848. #endif
  10849. }
  10850. int ggml_cpu_has_cublas(void) {
  10851. #if defined(GGML_USE_CUBLAS)
  10852. return 1;
  10853. #else
  10854. return 0;
  10855. #endif
  10856. }
  10857. int ggml_cpu_has_clblast(void) {
  10858. #if defined(GGML_USE_CLBLAST)
  10859. return 1;
  10860. #else
  10861. return 0;
  10862. #endif
  10863. }
  10864. int ggml_cpu_has_gpublas(void) {
  10865. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  10866. }
  10867. int ggml_cpu_has_sse3(void) {
  10868. #if defined(__SSE3__)
  10869. return 1;
  10870. #else
  10871. return 0;
  10872. #endif
  10873. }
  10874. int ggml_cpu_has_vsx(void) {
  10875. #if defined(__POWER9_VECTOR__)
  10876. return 1;
  10877. #else
  10878. return 0;
  10879. #endif
  10880. }
  10881. ////////////////////////////////////////////////////////////////////////////////