convert_hf_to_gguf.py 487 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. from gguf.vocab import MistralTokenizerType, MistralVocab
  27. try:
  28. from mistral_common.tokens.tokenizers.base import TokenizerVersion # pyright: ignore[reportMissingImports]
  29. from mistral_common.tokens.tokenizers.multimodal import DATASET_MEAN as _MISTRAL_COMMON_DATASET_MEAN, DATASET_STD as _MISTRAL_COMMON_DATASET_STD # pyright: ignore[reportMissingImports]
  30. from mistral_common.tokens.tokenizers.tekken import Tekkenizer # pyright: ignore[reportMissingImports]
  31. from mistral_common.tokens.tokenizers.sentencepiece import ( # pyright: ignore[reportMissingImports]
  32. SentencePieceTokenizer,
  33. )
  34. _mistral_common_installed = True
  35. _mistral_import_error_msg = ""
  36. except ImportError:
  37. _MISTRAL_COMMON_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073)
  38. _MISTRAL_COMMON_DATASET_STD = (0.26862954, 0.26130258, 0.27577711)
  39. _mistral_common_installed = False
  40. TokenizerVersion = None
  41. Tekkenizer = None
  42. SentencePieceTokenizer = None
  43. _mistral_import_error_msg = (
  44. "Mistral format requires `mistral-common` to be installed. Please run "
  45. "`pip install mistral-common[image,audio]` to install it."
  46. )
  47. logger = logging.getLogger("hf-to-gguf")
  48. ###### MODEL DEFINITIONS ######
  49. class SentencePieceTokenTypes(IntEnum):
  50. NORMAL = 1
  51. UNKNOWN = 2
  52. CONTROL = 3
  53. USER_DEFINED = 4
  54. UNUSED = 5
  55. BYTE = 6
  56. class ModelType(IntEnum):
  57. TEXT = 1
  58. MMPROJ = 2
  59. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  60. class ModelBase:
  61. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  62. ModelType.TEXT: {},
  63. ModelType.MMPROJ: {},
  64. }
  65. dir_model: Path
  66. ftype: gguf.LlamaFileType
  67. fname_out: Path
  68. is_big_endian: bool
  69. endianess: gguf.GGUFEndian
  70. use_temp_file: bool
  71. lazy: bool
  72. dry_run: bool
  73. hparams: dict[str, Any]
  74. model_tensors: dict[str, Callable[[], Tensor]]
  75. gguf_writer: gguf.GGUFWriter
  76. model_name: str | None
  77. metadata_override: Path | None
  78. dir_model_card: Path
  79. remote_hf_model_id: str | None
  80. # subclasses should define this!
  81. model_arch: gguf.MODEL_ARCH
  82. # subclasses should initialize this!
  83. block_count: int
  84. tensor_map: gguf.TensorNameMap
  85. # Mistral format specifics
  86. is_mistral_format: bool = False
  87. disable_mistral_community_chat_template: bool = False
  88. sentence_transformers_dense_modules: bool = False
  89. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  90. use_temp_file: bool = False, eager: bool = False,
  91. metadata_override: Path | None = None, model_name: str | None = None,
  92. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  93. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None,
  94. disable_mistral_community_chat_template: bool = False,
  95. sentence_transformers_dense_modules: bool = False):
  96. if type(self) is ModelBase or \
  97. type(self) is TextModel or \
  98. type(self) is MmprojModel:
  99. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  100. if self.is_mistral_format and not _mistral_common_installed:
  101. raise ImportError(_mistral_import_error_msg)
  102. self.dir_model = dir_model
  103. self.ftype = ftype
  104. self.fname_out = fname_out
  105. self.is_big_endian = is_big_endian
  106. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  107. self.use_temp_file = use_temp_file
  108. self.lazy = not eager or (remote_hf_model_id is not None)
  109. self.dry_run = dry_run
  110. self.remote_hf_model_id = remote_hf_model_id
  111. self.sentence_transformers_dense_modules = sentence_transformers_dense_modules
  112. self.hparams = ModelBase.load_hparams(self.dir_model, self.is_mistral_format) if hparams is None else hparams
  113. self.model_tensors = self.index_tensors(remote_hf_model_id=remote_hf_model_id)
  114. self.metadata_override = metadata_override
  115. self.model_name = model_name
  116. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  117. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  118. if self.ftype == gguf.LlamaFileType.GUESSED:
  119. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  120. _, first_tensor = next(self.get_tensors())
  121. if first_tensor.dtype == torch.float16:
  122. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  123. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  124. else:
  125. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  126. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  127. self.dequant_model()
  128. # Configure GGUF Writer
  129. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  130. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  131. # Mistral specific
  132. self.disable_mistral_community_chat_template = disable_mistral_community_chat_template
  133. @classmethod
  134. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  135. stem, suffix = path.stem, path.suffix
  136. new_name = f"{prefix}{stem}{suffix}"
  137. return path.with_name(new_name)
  138. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  139. key = next((k for k in keys if k in self.hparams), None)
  140. if key is not None:
  141. return self.hparams[key]
  142. if optional:
  143. return None
  144. raise KeyError(f"could not find any of: {keys}")
  145. def index_tensors(self, remote_hf_model_id: str | None = None) -> dict[str, Callable[[], Tensor]]:
  146. tensors: dict[str, Callable[[], Tensor]] = {}
  147. if remote_hf_model_id is not None:
  148. is_safetensors = True
  149. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  150. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  151. for name, remote_tensor in remote_tensors.items():
  152. tensors[name] = lambda r=remote_tensor: LazyTorchTensor.from_remote_tensor(r)
  153. return tensors
  154. prefix = "model" if not self.is_mistral_format else "consolidated"
  155. part_names: set[str] = set(ModelBase.get_model_part_names(self.dir_model, prefix, ".safetensors"))
  156. is_safetensors: bool = len(part_names) > 0
  157. if not is_safetensors:
  158. part_names = set(ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin"))
  159. tensor_names_from_index: set[str] = set()
  160. if not self.is_mistral_format:
  161. index_name = "model.safetensors" if is_safetensors else "pytorch_model.bin"
  162. index_name += ".index.json"
  163. index_file = self.dir_model / index_name
  164. if index_file.is_file():
  165. logger.info(f"gguf: loading model weight map from '{index_name}'")
  166. with open(index_file, "r", encoding="utf-8") as f:
  167. index: dict[str, Any] = json.load(f)
  168. weight_map = index.get("weight_map")
  169. if weight_map is None or not isinstance(weight_map, dict):
  170. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  171. tensor_names_from_index.update(weight_map.keys())
  172. part_names |= set(weight_map.values())
  173. else:
  174. weight_map = {}
  175. else:
  176. weight_map = {}
  177. for part_name in part_names:
  178. logger.info(f"gguf: indexing model part '{part_name}'")
  179. ctx: ContextManager[Any]
  180. if is_safetensors:
  181. ctx = cast(ContextManager[Any], gguf.utility.SafetensorsLocal(self.dir_model / part_name))
  182. else:
  183. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  184. with ctx as model_part:
  185. assert model_part is not None
  186. for name in model_part.keys():
  187. if is_safetensors:
  188. data: gguf.utility.LocalTensor = model_part[name]
  189. if self.lazy:
  190. data_gen = lambda data=data: LazyTorchTensor.from_local_tensor(data) # noqa: E731
  191. else:
  192. dtype = LazyTorchTensor._dtype_str_map[data.dtype]
  193. data_gen = lambda data=data, dtype=dtype: torch.from_numpy(data.mmap_bytes()).view(dtype).reshape(data.shape) # noqa: E731
  194. else:
  195. data_torch: Tensor = model_part[name]
  196. if self.lazy:
  197. data_gen = lambda data=data_torch: LazyTorchTensor.from_eager(data) # noqa: E731
  198. else:
  199. data_gen = lambda data=data_torch: data # noqa: E731
  200. tensors[name] = data_gen
  201. # verify tensor name presence and identify potentially missing files
  202. if len(tensor_names_from_index) > 0:
  203. tensor_names_from_parts = set(tensors.keys())
  204. if len(tensor_names_from_parts.symmetric_difference(tensor_names_from_index)) > 0:
  205. missing = sorted(tensor_names_from_index.difference(tensor_names_from_parts))
  206. extra = sorted(tensor_names_from_parts.difference(tensor_names_from_index))
  207. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  208. if len(extra) == 0 and len(missing_files) > 0:
  209. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  210. f"Missing tensors: {missing}")
  211. else:
  212. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  213. f"Missing tensors: {missing}\n"
  214. f"Extra tensors: {extra}")
  215. return tensors
  216. def dequant_model(self):
  217. tensors_to_remove: list[str] = []
  218. new_tensors: dict[str, Callable[[], Tensor]] = {}
  219. if (quant_config := self.hparams.get("quantization_config")) and isinstance(quant_config, dict):
  220. quant_method = quant_config.get("quant_method")
  221. def dequant_bitnet(weight: Tensor, scale: Tensor) -> Tensor:
  222. weight = weight.view(torch.uint8)
  223. orig_shape = weight.shape
  224. shift = torch.tensor([0, 2, 4, 6], dtype=torch.uint8).reshape((4, *(1 for _ in range(len(orig_shape)))))
  225. data = weight.unsqueeze(0).expand((4, *orig_shape)) >> shift
  226. data = data & 3
  227. data = (data.float() - 1).reshape((orig_shape[0] * 4, *orig_shape[1:]))
  228. # The scale is inverted
  229. return data / scale.float()
  230. def dequant_simple(weight: Tensor, scale: Tensor, block_size: Sequence[int] | None = None) -> Tensor:
  231. scale = scale.float()
  232. if block_size is not None:
  233. for i, size in enumerate(block_size):
  234. scale = scale.repeat_interleave(size, i)
  235. # unpad the scale (e.g. when the tensor size isn't a multiple of the block size)
  236. scale = scale[tuple(slice(0, size) for size in weight.shape)]
  237. return weight.float() * scale
  238. # ref: https://github.com/ModelCloud/GPTQModel/blob/037c5c0f6c9e33c500d975b038d02e7ca437546d/gptqmodel/nn_modules/qlinear/__init__.py#L437-L476
  239. def dequant_gptq(g_idx: Tensor, qweight: Tensor, qzeros: Tensor, scales: Tensor) -> Tensor:
  240. bits = quant_config["bits"]
  241. assert bits in (2, 3, 4, 8)
  242. assert qweight.dtype == qzeros.dtype
  243. maxq = (2 ** bits) - 1
  244. weight = None
  245. zeros = None
  246. pack_dtype_bits = qweight.dtype.itemsize * 8
  247. if bits in [2, 4, 8]:
  248. pack_factor = pack_dtype_bits // bits
  249. wf = torch.tensor(list(range(0, pack_dtype_bits, bits)), dtype=torch.int32).unsqueeze(0)
  250. if self.lazy:
  251. wf = LazyTorchTensor.from_eager(wf)
  252. zeros = torch.bitwise_right_shift(
  253. qzeros.unsqueeze(2).expand(-1, -1, pack_factor),
  254. wf.unsqueeze(0)
  255. ).to(torch.int16 if bits == 8 else torch.int8)
  256. zeros = torch.bitwise_and(zeros, maxq).reshape(scales.shape)
  257. weight = torch.bitwise_and(
  258. torch.bitwise_right_shift(
  259. qweight.unsqueeze(1).expand(-1, pack_factor, -1),
  260. wf.unsqueeze(-1)
  261. ).to(torch.int16 if bits == 8 else torch.int8),
  262. maxq
  263. )
  264. elif bits == 3:
  265. raise NotImplementedError("3-bit gptq dequantization is not yet implemented")
  266. assert weight is not None
  267. assert zeros is not None
  268. weight = weight.reshape(weight.shape[0] * weight.shape[1], weight.shape[2])
  269. # gptq_v2 doesn't need to offset zeros
  270. if quant_config.get("checkpoint_format", "gptq") == "gptq":
  271. zeros += 1
  272. return (scales[g_idx].float() * (weight - zeros[g_idx]).float()).T
  273. def dequant_packed(w: Tensor, scale: Tensor, shape_tensor: Tensor, zero_point: Tensor | None, num_bits: int, group_size: int):
  274. assert w.dtype == torch.int32
  275. shape = tuple(shape_tensor.tolist())
  276. assert len(shape) == 2
  277. mask = (1 << num_bits) - 1
  278. shifts = torch.arange(0, 32 - (num_bits - 1), num_bits, dtype=torch.int32)
  279. if self.lazy:
  280. shifts = LazyTorchTensor.from_eager(shifts)
  281. if zero_point is None:
  282. offset = 1 << (num_bits - 1)
  283. else:
  284. assert len(zero_point.shape) == 2
  285. offset = (zero_point.unsqueeze(1) >> shifts.reshape(1, -1, 1)) & mask
  286. offset = offset.reshape(-1, zero_point.shape[1])
  287. # trim padding, and prepare for broadcast
  288. # NOTE: the zero-point is packed along dim 0
  289. offset = offset[:shape[0], :].unsqueeze(-1)
  290. # extract values
  291. # NOTE: the weights are packed along dim 1
  292. unpacked = (w.unsqueeze(-1) >> shifts.reshape(1, 1, -1)) & mask
  293. unpacked = unpacked.reshape(shape[0], -1)
  294. # trim padding
  295. unpacked = unpacked[:, :shape[1]]
  296. # prepare for broadcast of the scale
  297. unpacked = unpacked.reshape(shape[0], (unpacked.shape[-1] + group_size - 1) // group_size, group_size)
  298. unpacked = unpacked - offset
  299. return (unpacked * scale.unsqueeze(-1).float()).reshape(shape)
  300. if quant_method == "bitnet":
  301. for name in self.model_tensors.keys():
  302. if name.endswith(".weight_scale"):
  303. weight_name = name.removesuffix("_scale")
  304. w = self.model_tensors[weight_name]
  305. s = self.model_tensors[name]
  306. self.model_tensors[weight_name] = lambda w=w, s=s: dequant_bitnet(w(), s())
  307. tensors_to_remove.append(name)
  308. elif quant_method == "fp8":
  309. block_size = quant_config.get("weight_block_size")
  310. for name in self.model_tensors.keys():
  311. if name.endswith(".weight_scale_inv"):
  312. weight_name = name.removesuffix("_scale_inv")
  313. w = self.model_tensors[weight_name]
  314. s = self.model_tensors[name]
  315. self.model_tensors[weight_name] = lambda w=w, s=s, bs=block_size: dequant_simple(w(), s(), bs)
  316. tensors_to_remove.append(name)
  317. if name.endswith(".activation_scale"): # unused
  318. tensors_to_remove.append(name)
  319. # mistral format
  320. if name.endswith(".qscale_weight"):
  321. weight_name = name.removesuffix("qscale_weight") + "weight"
  322. w = self.model_tensors[weight_name]
  323. s = self.model_tensors[name]
  324. self.model_tensors[weight_name] = lambda w=w, s=s, bs=block_size: dequant_simple(w(), s(), bs)
  325. tensors_to_remove.append(name)
  326. if name.endswith(".qscale_act"):
  327. tensors_to_remove.append(name)
  328. elif quant_method == "gptq":
  329. for name in self.model_tensors.keys():
  330. if name.endswith(".qweight"):
  331. base_name = name.removesuffix(".qweight")
  332. g_idx = self.model_tensors[base_name + ".g_idx"]
  333. qweight = self.model_tensors[base_name + ".qweight"]
  334. qzeros = self.model_tensors[base_name + ".qzeros"]
  335. scales = self.model_tensors[base_name + ".scales"]
  336. new_tensors[base_name + ".weight"] = (
  337. lambda g=g_idx, z=qzeros, w=qweight, s=scales: dequant_gptq(
  338. g(), w(), z(), s()
  339. )
  340. )
  341. tensors_to_remove += [
  342. base_name + n
  343. for n in (
  344. ".g_idx",
  345. ".qzeros",
  346. ".qweight",
  347. ".scales",
  348. )
  349. ]
  350. elif quant_method == "compressed-tensors":
  351. quant_format = quant_config["format"]
  352. groups = quant_config["config_groups"]
  353. if len(groups) > 1:
  354. raise NotImplementedError("Can't handle multiple config groups for compressed-tensors yet")
  355. weight_config = tuple(groups.values())[0]["weights"]
  356. if quant_format == "float-quantized" or quant_format == "int-quantized" or quant_format == "naive-quantized":
  357. block_size = weight_config.get("block_structure", None)
  358. strategy = weight_config.get("strategy")
  359. assert strategy == "channel" or strategy == "block"
  360. assert weight_config.get("group_size") is None # didn't find a model using this yet
  361. for name in self.model_tensors.keys():
  362. if name.endswith(".weight_scale"):
  363. weight_name = name.removesuffix("_scale")
  364. w = self.model_tensors[weight_name]
  365. s = self.model_tensors[name]
  366. self.model_tensors[weight_name] = lambda w=w, s=s: dequant_simple(w(), s(), block_size)
  367. tensors_to_remove.append(name)
  368. elif quant_format == "pack-quantized":
  369. assert weight_config.get("strategy") == "group"
  370. assert weight_config.get("type", "int") == "int"
  371. num_bits = weight_config.get("num_bits")
  372. group_size = weight_config.get("group_size")
  373. assert isinstance(num_bits, int)
  374. assert isinstance(group_size, int)
  375. for name in self.model_tensors.keys():
  376. if name.endswith(".weight_packed"):
  377. base_name = name.removesuffix("_packed")
  378. w = self.model_tensors[name]
  379. scale = self.model_tensors[base_name + "_scale"]
  380. shape = self.model_tensors[base_name + "_shape"]
  381. zero_point = self.model_tensors.get(base_name + "_zero_point", lambda: None)
  382. new_tensors[base_name] = (
  383. lambda w=w, scale=scale, shape=shape, zero_point=zero_point: dequant_packed(
  384. w(), scale(), shape(), zero_point(), num_bits, group_size,
  385. )
  386. )
  387. tensors_to_remove += [base_name + n for n in ("_packed", "_shape", "_scale")]
  388. if (base_name + "_zero_point") in self.model_tensors:
  389. tensors_to_remove.append(base_name + "_zero_point")
  390. else:
  391. raise NotImplementedError(f"Quant format {quant_format!r} for method {quant_method!r} is not yet supported")
  392. else:
  393. raise NotImplementedError(f"Quant method is not yet supported: {quant_method!r}")
  394. for name in tensors_to_remove:
  395. if name in self.model_tensors:
  396. del self.model_tensors[name]
  397. for name, value in new_tensors.items():
  398. self.model_tensors[name] = value
  399. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  400. for name, gen in self.model_tensors.items():
  401. yield name, gen()
  402. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  403. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  404. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  405. name: str = gguf.TENSOR_NAMES[key]
  406. if "{bid}" in name:
  407. assert bid is not None
  408. name = name.format(bid=bid)
  409. return name + suffix
  410. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  411. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  412. return False
  413. key_name: str = gguf.TENSOR_NAMES[key]
  414. if "{bid}" in key_name:
  415. if bid is None:
  416. return False
  417. key_name = key_name.format(bid=bid)
  418. else:
  419. if bid is not None:
  420. return False
  421. return name == (key_name + suffix)
  422. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  423. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  424. if new_name is None:
  425. raise ValueError(f"Can not map tensor {name!r}")
  426. return new_name
  427. def set_gguf_parameters(self):
  428. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  429. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  430. del bid # unused
  431. return [(self.map_tensor_name(name), data_torch)]
  432. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  433. del name, new_name, bid, n_dims # unused
  434. return False
  435. # some models need extra generated tensors (like rope_freqs)
  436. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  437. return ()
  438. def prepare_tensors(self):
  439. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  440. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  441. # we don't need these
  442. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  443. continue
  444. old_dtype = data_torch.dtype
  445. # convert any unsupported data types to float32
  446. if data_torch.dtype not in (torch.float16, torch.float32):
  447. data_torch = data_torch.to(torch.float32)
  448. # use the first number-like part of the tensor name as the block id
  449. bid = None
  450. for part in name.split("."):
  451. if part.isdecimal():
  452. bid = int(part)
  453. break
  454. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  455. # TODO: why do we squeeze here?
  456. # data = data_torch.squeeze().numpy()
  457. data = data_torch.numpy()
  458. n_dims = len(data.shape)
  459. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  460. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  461. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  462. data_qtype = gguf.GGMLQuantizationType.F32
  463. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  464. # Some tensor types are always in float32
  465. if data_qtype is False and (
  466. any(
  467. self.match_model_tensor_name(new_name, key, bid)
  468. for key in (
  469. gguf.MODEL_TENSOR.FFN_GATE_INP,
  470. gguf.MODEL_TENSOR.POS_EMBD,
  471. gguf.MODEL_TENSOR.TOKEN_TYPES,
  472. gguf.MODEL_TENSOR.SSM_CONV1D,
  473. gguf.MODEL_TENSOR.SHORTCONV_CONV,
  474. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  475. gguf.MODEL_TENSOR.TIME_MIX_W1,
  476. gguf.MODEL_TENSOR.TIME_MIX_W2,
  477. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  478. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  479. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  480. gguf.MODEL_TENSOR.POSNET_NORM1,
  481. gguf.MODEL_TENSOR.POSNET_NORM2,
  482. gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
  483. gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
  484. gguf.MODEL_TENSOR.ALTUP_CORRECT_COEF,
  485. gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
  486. )
  487. )
  488. or new_name[-7:] not in (".weight", ".lora_a", ".lora_b")
  489. ):
  490. data_qtype = gguf.GGMLQuantizationType.F32
  491. if data_qtype is False and any(
  492. self.match_model_tensor_name(new_name, key, bid)
  493. for key in (
  494. gguf.MODEL_TENSOR.TOKEN_EMBD,
  495. gguf.MODEL_TENSOR.PER_LAYER_TOKEN_EMBD,
  496. gguf.MODEL_TENSOR.OUTPUT,
  497. gguf.MODEL_TENSOR.ALTUP_ROUTER,
  498. gguf.MODEL_TENSOR.LAUREL_L,
  499. gguf.MODEL_TENSOR.LAUREL_R,
  500. )
  501. ):
  502. if self.ftype in (
  503. gguf.LlamaFileType.MOSTLY_TQ1_0,
  504. gguf.LlamaFileType.MOSTLY_TQ2_0,
  505. ):
  506. # TODO: use Q4_K and Q6_K
  507. data_qtype = gguf.GGMLQuantizationType.F16
  508. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  509. if isinstance(data_qtype, bool):
  510. if self.ftype == gguf.LlamaFileType.ALL_F32:
  511. data_qtype = gguf.GGMLQuantizationType.F32
  512. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  513. data_qtype = gguf.GGMLQuantizationType.F16
  514. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  515. data_qtype = gguf.GGMLQuantizationType.BF16
  516. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  517. data_qtype = gguf.GGMLQuantizationType.Q8_0
  518. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  519. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  520. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  521. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  522. else:
  523. raise ValueError(f"Unknown file type: {self.ftype.name}")
  524. try:
  525. data = gguf.quants.quantize(data, data_qtype)
  526. except gguf.QuantError as e:
  527. logger.warning("%s, %s", e, "falling back to F16")
  528. data_qtype = gguf.GGMLQuantizationType.F16
  529. data = gguf.quants.quantize(data, data_qtype)
  530. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  531. # reverse shape to make it similar to the internal ggml dimension order
  532. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  533. # n_dims is implicit in the shape
  534. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  535. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  536. def set_type(self):
  537. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  538. def prepare_metadata(self, vocab_only: bool):
  539. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  540. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  541. # If we are using HF model id, set the metadata name to the model id
  542. if self.remote_hf_model_id:
  543. self.metadata.name = self.remote_hf_model_id
  544. # Fallback to model directory name if metadata name is still missing
  545. if self.metadata.name is None:
  546. self.metadata.name = self.dir_model.name
  547. # Generate parameter weight class (useful for leader boards) if not yet determined
  548. if self.metadata.size_label is None and total_params > 0:
  549. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  550. self.set_type()
  551. logger.info("Set meta model")
  552. self.metadata.set_gguf_meta_model(self.gguf_writer)
  553. logger.info("Set model parameters")
  554. self.set_gguf_parameters()
  555. logger.info("Set model quantization version")
  556. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  557. def write_vocab(self):
  558. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  559. def write(self):
  560. self.prepare_tensors()
  561. self.prepare_metadata(vocab_only=False)
  562. self.gguf_writer.write_header_to_file(path=self.fname_out)
  563. self.gguf_writer.write_kv_data_to_file()
  564. self.gguf_writer.write_tensors_to_file(progress=True)
  565. self.gguf_writer.close()
  566. @staticmethod
  567. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  568. part_names: list[str] = []
  569. for filename in os.listdir(dir_model):
  570. if filename.startswith(prefix) and filename.endswith(suffix):
  571. part_names.append(filename)
  572. part_names.sort()
  573. return part_names
  574. @staticmethod
  575. def load_hparams(dir_model: Path, is_mistral_format: bool):
  576. if is_mistral_format:
  577. with open(dir_model / "params.json", "r", encoding="utf-8") as f:
  578. config = json.load(f)
  579. return config
  580. try:
  581. # for security reason, we don't allow loading remote code by default
  582. # if a model need remote code, we will fallback to config.json
  583. config = AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
  584. except Exception as e:
  585. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  586. logger.warning("Trying to load config.json instead")
  587. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  588. config = json.load(f)
  589. if "llm_config" in config:
  590. # rename for InternVL
  591. config["text_config"] = config["llm_config"]
  592. if "lm_config" in config:
  593. # rename for GlmASR
  594. config["text_config"] = config["lm_config"]
  595. if "thinker_config" in config:
  596. # rename for Qwen2.5-Omni
  597. config["text_config"] = config["thinker_config"]["text_config"]
  598. return config
  599. @classmethod
  600. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  601. assert names
  602. def func(modelcls: AnyModel) -> AnyModel:
  603. model_type = ModelType.MMPROJ if modelcls.model_arch == gguf.MODEL_ARCH.MMPROJ else ModelType.TEXT
  604. for name in names:
  605. cls._model_classes[model_type][name] = modelcls
  606. return modelcls
  607. return func
  608. @classmethod
  609. def print_registered_models(cls):
  610. for model_type, model_classes in cls._model_classes.items():
  611. logger.error(f"{model_type.name} models:")
  612. for name in sorted(model_classes.keys()):
  613. logger.error(f" - {name}")
  614. @classmethod
  615. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  616. try:
  617. return cls._model_classes[model_type][arch]
  618. except KeyError:
  619. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  620. class TextModel(ModelBase):
  621. model_type = ModelType.TEXT
  622. hf_arch: str
  623. def __init__(self, *args, **kwargs):
  624. super().__init__(*args, **kwargs)
  625. if not self.is_mistral_format:
  626. self.hf_arch = get_model_architecture(self.hparams, self.model_type)
  627. else:
  628. self.hf_arch = ""
  629. if "text_config" in self.hparams:
  630. # move the text_config to the root level
  631. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  632. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  633. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  634. self.rope_parameters = self.hparams.get("rope_parameters", self.hparams.get("rope_scaling")) or {}
  635. # Ensure "rope_theta" and "rope_type" is mirrored in rope_parameters
  636. if "full_attention" not in self.rope_parameters and "sliding_attention" not in self.rope_parameters:
  637. if "rope_theta" not in self.rope_parameters and (rope_theta := self.find_hparam(["rope_theta", "global_rope_theta", "rotary_emb_base"], optional=True)) is not None:
  638. self.rope_parameters["rope_theta"] = rope_theta
  639. if "rope_type" not in self.rope_parameters and (rope_type := self.rope_parameters.get("type")) is not None:
  640. self.rope_parameters["rope_type"] = rope_type
  641. @classmethod
  642. def __init_subclass__(cls):
  643. # can't use an abstract property, because overriding it without type errors
  644. # would require using decorated functions instead of simply defining the property
  645. if "model_arch" not in cls.__dict__:
  646. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  647. def set_vocab(self):
  648. self._set_vocab_gpt2()
  649. def prepare_metadata(self, vocab_only: bool):
  650. super().prepare_metadata(vocab_only=vocab_only)
  651. total_params = self.gguf_writer.get_total_parameter_count()[0]
  652. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  653. output_type: str = self.ftype.name.partition("_")[2]
  654. # Filename Output
  655. if self.fname_out.is_dir():
  656. # Generate default filename based on model specification and available metadata
  657. if not vocab_only:
  658. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  659. else:
  660. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  661. # Use the default filename
  662. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  663. else:
  664. # Output path is a custom defined templated filename
  665. # Note: `not is_dir()` is used because `.is_file()` will not detect
  666. # file template strings as it doesn't actually exist as a file
  667. # Process templated file name with the output ftype, useful with the "auto" ftype
  668. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  669. logger.info("Set model tokenizer")
  670. self.set_vocab()
  671. def set_gguf_parameters(self):
  672. self.gguf_writer.add_block_count(self.block_count)
  673. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions", "max_length", "max_sequence_length", "model_max_length"], optional=True)) is not None:
  674. self.gguf_writer.add_context_length(n_ctx)
  675. logger.info(f"gguf: context length = {n_ctx}")
  676. if (n_embd := self.find_hparam(["hidden_size", "n_embd", "dim"], optional=True)) is not None:
  677. self.gguf_writer.add_embedding_length(n_embd)
  678. logger.info(f"gguf: embedding length = {n_embd}")
  679. if (n_ff := self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"], optional=True)) is not None:
  680. self.gguf_writer.add_feed_forward_length(n_ff)
  681. logger.info(f"gguf: feed forward length = {n_ff}")
  682. if (n_head := self.find_hparam(["num_attention_heads", "n_head", "n_heads"], optional=True)) is not None:
  683. self.gguf_writer.add_head_count(n_head)
  684. logger.info(f"gguf: head count = {n_head}")
  685. if (n_head_kv := self.find_hparam(["num_key_value_heads", "n_kv_heads"], optional=True)) is not None:
  686. self.gguf_writer.add_head_count_kv(n_head_kv)
  687. logger.info(f"gguf: key-value head count = {n_head_kv}")
  688. rope_params = self.rope_parameters.get("full_attention", self.rope_parameters)
  689. if (rope_type := rope_params.get("rope_type")) is not None:
  690. rope_factor = rope_params.get("factor")
  691. rope_gguf_type = gguf.RopeScalingType.NONE
  692. if rope_type == "linear" and rope_factor is not None:
  693. rope_gguf_type = gguf.RopeScalingType.LINEAR
  694. self.gguf_writer.add_rope_scaling_type(rope_gguf_type)
  695. self.gguf_writer.add_rope_scaling_factor(rope_factor)
  696. elif rope_type == "yarn" and rope_factor is not None:
  697. rope_gguf_type = gguf.RopeScalingType.YARN
  698. self.gguf_writer.add_rope_scaling_type(rope_gguf_type)
  699. self.gguf_writer.add_rope_scaling_factor(rope_factor)
  700. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_params["original_max_position_embeddings"])
  701. if (yarn_ext_factor := rope_params.get("extrapolation_factor")) is not None:
  702. self.gguf_writer.add_rope_scaling_yarn_ext_factor(yarn_ext_factor)
  703. if (yarn_attn_factor := rope_params.get("attention_factor", rope_params.get("attn_factor"))) is not None:
  704. self.gguf_writer.add_rope_scaling_yarn_attn_factor(yarn_attn_factor)
  705. if (yarn_beta_fast := rope_params.get("beta_fast")) is not None:
  706. self.gguf_writer.add_rope_scaling_yarn_beta_fast(yarn_beta_fast)
  707. if (yarn_beta_slow := rope_params.get("beta_slow")) is not None:
  708. self.gguf_writer.add_rope_scaling_yarn_beta_slow(yarn_beta_slow)
  709. # self.gguf_writer.add_rope_scaling_yarn_log_mul(rope_params["mscale_all_dim"])
  710. elif rope_type == "su" or rope_type == "longrope":
  711. rope_gguf_type = gguf.RopeScalingType.LONGROPE
  712. self.gguf_writer.add_rope_scaling_type(rope_gguf_type)
  713. elif rope_type == "dynamic":
  714. # HunYuan, handled in model class
  715. pass
  716. elif rope_type.lower() == "llama3":
  717. # Handled in generate_extra_tensors
  718. pass
  719. else:
  720. logger.warning(f"Unknown RoPE type: {rope_type}")
  721. logger.info(f"gguf: rope scaling type = {rope_gguf_type.name}")
  722. if "mrope_section" in self.rope_parameters:
  723. mrope_section = self.rope_parameters["mrope_section"]
  724. # Pad to 4 dimensions [time, height, width, extra]
  725. while len(mrope_section) < 4:
  726. mrope_section.append(0)
  727. self.gguf_writer.add_rope_dimension_sections(mrope_section[:4])
  728. logger.info(f"gguf: mrope sections: {mrope_section[:4]}")
  729. if (rope_theta := rope_params.get("rope_theta")) is not None:
  730. self.gguf_writer.add_rope_freq_base(rope_theta)
  731. logger.info(f"gguf: rope theta = {rope_theta}")
  732. if (f_rms_eps := self.find_hparam(["rms_norm_eps", "norm_eps"], optional=True)) is not None:
  733. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  734. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  735. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  736. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  737. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  738. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  739. self.gguf_writer.add_expert_count(n_experts)
  740. logger.info(f"gguf: expert count = {n_experts}")
  741. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  742. self.gguf_writer.add_expert_used_count(n_experts_used)
  743. logger.info(f"gguf: experts used count = {n_experts_used}")
  744. if (n_expert_groups := self.hparams.get("n_group")) is not None:
  745. self.gguf_writer.add_expert_group_count(n_expert_groups)
  746. logger.info(f"gguf: expert groups count = {n_expert_groups}")
  747. if (n_group_used := self.hparams.get("topk_group")) is not None:
  748. self.gguf_writer.add_expert_group_used_count(n_group_used)
  749. logger.info(f"gguf: expert groups used count = {n_group_used}")
  750. if (score_func := self.find_hparam(["score_function", "scoring_func", "score_func"], optional=True)) is not None:
  751. if score_func == "sigmoid":
  752. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  753. elif score_func == "softmax":
  754. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  755. else:
  756. raise ValueError(f"Unsupported expert score gating function value: {score_func}")
  757. logger.info(f"gguf: expert score gating function = {score_func}")
  758. if (head_dim := self.hparams.get("head_dim")) is not None:
  759. self.gguf_writer.add_key_length(head_dim)
  760. self.gguf_writer.add_value_length(head_dim)
  761. self.gguf_writer.add_file_type(self.ftype)
  762. logger.info(f"gguf: file type = {self.ftype}")
  763. def write_vocab(self):
  764. if len(self.gguf_writer.tensors) != 1:
  765. raise ValueError('Splitting the vocabulary is not supported')
  766. self.prepare_metadata(vocab_only=True)
  767. self.gguf_writer.write_header_to_file(path=self.fname_out)
  768. self.gguf_writer.write_kv_data_to_file()
  769. self.gguf_writer.close()
  770. def does_token_look_special(self, token: str | bytes) -> bool:
  771. if isinstance(token, (bytes, bytearray)):
  772. token_text = token.decode(encoding="utf-8")
  773. elif isinstance(token, memoryview):
  774. token_text = token.tobytes().decode(encoding="utf-8")
  775. else:
  776. token_text = token
  777. # Some models mark some added tokens which ought to be control tokens as not special.
  778. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  779. seems_special = token_text in (
  780. "<pad>", # deepseek-coder
  781. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  782. )
  783. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  784. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  785. # TODO: should these be marked as UNUSED instead? (maybe not)
  786. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  787. return seems_special
  788. # used for GPT-2 BPE and WordPiece vocabs
  789. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  790. tokens: list[str] = []
  791. toktypes: list[int] = []
  792. from transformers import AutoTokenizer
  793. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  794. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  795. assert max(tokenizer.vocab.values()) < vocab_size
  796. tokpre = self.get_vocab_base_pre(tokenizer)
  797. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  798. added_vocab = tokenizer.get_added_vocab()
  799. added_tokens_decoder = tokenizer.added_tokens_decoder
  800. for i in range(vocab_size):
  801. if i not in reverse_vocab:
  802. tokens.append(f"[PAD{i}]")
  803. toktypes.append(gguf.TokenType.UNUSED)
  804. else:
  805. token: str = reverse_vocab[i]
  806. if token in added_vocab:
  807. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  808. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  809. if not added_tokens_decoder[i].normalized:
  810. previous_token = token
  811. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  812. if previous_token != token:
  813. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  814. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  815. toktypes.append(gguf.TokenType.CONTROL)
  816. else:
  817. # NOTE: this was added for Gemma.
  818. # Encoding and decoding the tokens above isn't sufficient for this case.
  819. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  820. toktypes.append(gguf.TokenType.USER_DEFINED)
  821. else:
  822. toktypes.append(gguf.TokenType.NORMAL)
  823. tokens.append(token)
  824. return tokens, toktypes, tokpre
  825. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  826. # do not modify it manually!
  827. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  828. # Marker: Start get_vocab_base_pre
  829. def get_vocab_base_pre(self, tokenizer) -> str:
  830. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  831. # is specific for the BPE pre-tokenizer used by the model
  832. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  833. # use in llama.cpp to implement the same pre-tokenizer
  834. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  835. chktok = tokenizer.encode(chktxt)
  836. chkhsh = sha256(str(chktok).encode()).hexdigest()
  837. logger.debug(f"chktok: {chktok}")
  838. logger.debug(f"chkhsh: {chkhsh}")
  839. res = None
  840. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  841. # or pull the latest version of the model from Huggingface
  842. # don't edit the hashes manually!
  843. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  844. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  845. res = "chatglm-bpe"
  846. if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  847. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  848. res = "chatglm-bpe"
  849. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  850. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  851. res = "glm4"
  852. if chkhsh == "9ca2dd618e8afaf09731a7cf6e2105b373ba6a1821559f258b272fe83e6eb902":
  853. # ref: https://huggingface.co/zai-org/GLM-4.5-Air
  854. res = "glm4"
  855. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  856. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  857. res = "minerva-7b"
  858. if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664":
  859. # ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
  860. res = "hunyuan"
  861. if chkhsh == "bba3b3366b646dbdded5dbc42d59598b849371afc42f7beafa914afaa5b70aa6":
  862. # ref: https://huggingface.co/tencent/Hunyuan-4B-Instruct
  863. res = "hunyuan-dense"
  864. if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6":
  865. # ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base
  866. res = "falcon-h1"
  867. if chkhsh == "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86":
  868. # ref: https://huggingface.co/tiiuae/Falcon-H1-1B-Base
  869. res = "falcon-h1"
  870. if chkhsh == "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896":
  871. # ref: https://huggingface.co/tiiuae/Falcon-H1-7B-Base
  872. res = "falcon-h1"
  873. if chkhsh == "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b":
  874. # ref: https://huggingface.co/tiiuae/Falcon-H1-34B-Base
  875. res = "falcon-h1"
  876. if chkhsh == "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890":
  877. # ref: https://huggingface.co/moonshotai/Kimi-K2-Base
  878. res = "kimi-k2"
  879. if chkhsh == "d4540891389ea895b53b399da6ac824becc30f2fba0e9ddbb98f92e55ca0e97c":
  880. # ref: https://huggingface.co/Qwen/Qwen3-Embedding-0.6B
  881. res = "qwen2"
  882. if chkhsh == "66b8d4e19ab16c3bfd89bce5d785fb7e0155e8648708a1f42077cb9fe002c273":
  883. # ref: https://huggingface.co/alvarobartt/grok-2-tokenizer
  884. res = "grok-2"
  885. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  886. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  887. res = "llama-bpe"
  888. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  889. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  890. res = "deepseek-llm"
  891. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  892. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  893. res = "deepseek-coder"
  894. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  895. # ref: https://huggingface.co/tiiuae/falcon-7b
  896. res = "falcon"
  897. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  898. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  899. res = "bert-bge"
  900. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  901. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  902. res = "falcon3"
  903. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  904. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  905. res = "bert-bge-large"
  906. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  907. # ref: https://huggingface.co/mosaicml/mpt-7b
  908. res = "mpt"
  909. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  910. # ref: https://huggingface.co/bigcode/starcoder2-3b
  911. res = "starcoder"
  912. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  913. # ref: https://huggingface.co/openai-community/gpt2
  914. res = "gpt-2"
  915. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  916. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  917. res = "stablelm2"
  918. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  919. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  920. res = "refact"
  921. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  922. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  923. res = "command-r"
  924. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  925. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  926. res = "qwen2"
  927. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  928. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  929. res = "olmo"
  930. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  931. # ref: https://huggingface.co/databricks/dbrx-base
  932. res = "dbrx"
  933. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  934. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  935. res = "jina-v1-en"
  936. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  937. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  938. res = "jina-v2-en"
  939. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  940. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  941. res = "jina-v2-es"
  942. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  943. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  944. res = "jina-v2-de"
  945. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  946. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  947. res = "smaug-bpe"
  948. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  949. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  950. res = "poro-chat"
  951. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  952. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  953. res = "jina-v2-code"
  954. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  955. # ref: https://huggingface.co/LumiOpen/Viking-7B
  956. res = "viking"
  957. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  958. # ref: https://huggingface.co/core42/jais-13b
  959. res = "jais"
  960. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  961. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  962. res = "codeshell"
  963. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  964. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  965. res = "tekken"
  966. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  967. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  968. res = "smollm"
  969. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  970. # ref: https://huggingface.co/bigscience/bloom
  971. res = "bloom"
  972. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  973. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  974. res = "gpt3-finnish"
  975. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  976. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  977. res = "exaone"
  978. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  979. # ref: https://huggingface.co/microsoft/phi-2
  980. res = "phi-2"
  981. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  982. # ref: https://huggingface.co/facebook/chameleon-7b
  983. res = "chameleon"
  984. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  985. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  986. res = "roberta-bpe"
  987. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  988. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  989. res = "gigachat"
  990. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  991. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  992. res = "megrez"
  993. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  994. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  995. res = "deepseek-v3"
  996. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  997. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  998. res = "deepseek-r1-qwen"
  999. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  1000. # ref: https://huggingface.co/Xenova/gpt-4o
  1001. res = "gpt-4o"
  1002. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  1003. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  1004. res = "superbpe"
  1005. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  1006. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  1007. res = "trillion"
  1008. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  1009. # ref: https://huggingface.co/inclusionAI/Ling-lite
  1010. res = "bailingmoe"
  1011. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  1012. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  1013. res = "llama4"
  1014. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  1015. # ref: https://huggingface.co/mistral-community/pixtral-12b
  1016. res = "pixtral"
  1017. if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
  1018. # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
  1019. res = "seed-coder"
  1020. if chkhsh == "b0a6b1c0bd5998ebd9df08611efde34a4ff03faed45ae09c43e6b31ebd4b94cf":
  1021. # ref: https://huggingface.co/skt/A.X-4.0
  1022. res = "a.x-4.0"
  1023. if chkhsh == "f6791d196f87ce6b56a7d234be618e0d58f8cda3549416635b2bebcd22cd95c4":
  1024. # ref: https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct
  1025. res = "midm-2.0"
  1026. if chkhsh == "169bf0296a13c4d9b7672313f749eb36501d931022de052aad6e36f2bf34dd51":
  1027. # ref: https://huggingface.co/LiquidAI/LFM2-Tokenizer
  1028. res = "lfm2"
  1029. if chkhsh == "2085e1638f6c377a0aa4ead21b27bb4cb941bf800df86ed391011769c1758dfb":
  1030. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B
  1031. res = "exaone4"
  1032. if chkhsh == "a1e163ecab2e718a4c829d1148b6e86824ec36163bb71941c3dca9cd5ac25756":
  1033. # ref: https://huggingface.co/JetBrains/Mellum-4b-base
  1034. res = "mellum"
  1035. if chkhsh == "49fc0303c9e0d2c2c565c510f64b2d9b271276acdcdadff733249eda9f7d59df":
  1036. # ref: https://huggingface.co/arcee-ai/Trinity-Tokenizer
  1037. res = "afmoe"
  1038. if chkhsh == "9b1be57e70d20d9501b2b3186e792d81181ae36ada3903c26f9fea418cf87206":
  1039. # ref: https://huggingface.co/inclusionAI/Ling-mini-base-2.0
  1040. res = "bailingmoe2"
  1041. if chkhsh == "53e325976a6e142379c19b09afcae354f2f496f147afa8f9e189a33fe4e3024e":
  1042. # ref: https://huggingface.co/ibm-granite/granite-docling-258M
  1043. res = "granite-docling"
  1044. if chkhsh == "f4f37b6c8eb9ea29b3eac6bb8c8487c5ab7885f8d8022e67edc1c68ce8403e95":
  1045. # ref: https://huggingface.co/MiniMaxAI/MiniMax-M2
  1046. res = "minimax-m2"
  1047. if chkhsh == "4a2e2abae11ca2b86d570fc5b44be4d5eb5e72cc8f22dd136a94b37da83ab665":
  1048. # ref: https://huggingface.co/KORMo-Team/KORMo-tokenizer
  1049. res = "kormo"
  1050. if res is None:
  1051. logger.warning("\n")
  1052. logger.warning("**************************************************************************************")
  1053. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  1054. logger.warning("** There are 2 possible reasons for this:")
  1055. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  1056. logger.warning("** - the pre-tokenization config has changed upstream")
  1057. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  1058. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  1059. logger.warning("**")
  1060. logger.warning(f"** chkhsh: {chkhsh}")
  1061. logger.warning("**************************************************************************************")
  1062. logger.warning("\n")
  1063. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  1064. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  1065. logger.debug(f"chkhsh: {chkhsh}")
  1066. return res
  1067. # Marker: End get_vocab_base_pre
  1068. def _set_vocab_none(self) -> None:
  1069. self.gguf_writer.add_tokenizer_model("none")
  1070. def _set_vocab_gpt2(self) -> None:
  1071. tokens, toktypes, tokpre = self.get_vocab_base()
  1072. self.gguf_writer.add_tokenizer_model("gpt2")
  1073. self.gguf_writer.add_tokenizer_pre(tokpre)
  1074. self.gguf_writer.add_token_list(tokens)
  1075. self.gguf_writer.add_token_types(toktypes)
  1076. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1077. special_vocab.add_to_gguf(self.gguf_writer)
  1078. def _set_vocab_qwen(self):
  1079. dir_model = self.dir_model
  1080. hparams = self.hparams
  1081. tokens: list[str] = []
  1082. toktypes: list[int] = []
  1083. from transformers import AutoTokenizer
  1084. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  1085. vocab_size = hparams["vocab_size"]
  1086. assert max(tokenizer.get_vocab().values()) < vocab_size
  1087. tokpre = self.get_vocab_base_pre(tokenizer)
  1088. merges = []
  1089. vocab = {}
  1090. mergeable_ranks = tokenizer.mergeable_ranks
  1091. for token, rank in mergeable_ranks.items():
  1092. vocab[QwenModel.token_bytes_to_string(token)] = rank
  1093. if len(token) == 1:
  1094. continue
  1095. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  1096. assert len(merged) == 2
  1097. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  1098. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  1099. added_vocab = tokenizer.special_tokens
  1100. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  1101. for i in range(vocab_size):
  1102. if i not in reverse_vocab:
  1103. tokens.append(f"[PAD{i}]")
  1104. toktypes.append(gguf.TokenType.UNUSED)
  1105. elif reverse_vocab[i] in added_vocab:
  1106. tokens.append(reverse_vocab[i])
  1107. toktypes.append(gguf.TokenType.CONTROL)
  1108. else:
  1109. tokens.append(reverse_vocab[i])
  1110. toktypes.append(gguf.TokenType.NORMAL)
  1111. self.gguf_writer.add_tokenizer_model("gpt2")
  1112. self.gguf_writer.add_tokenizer_pre(tokpre)
  1113. self.gguf_writer.add_token_list(tokens)
  1114. self.gguf_writer.add_token_types(toktypes)
  1115. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  1116. special_vocab.merges = merges
  1117. # only add special tokens when they were not already loaded from config.json
  1118. if len(special_vocab.special_token_ids) == 0:
  1119. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  1120. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  1121. # this one is usually not in config.json anyway
  1122. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  1123. special_vocab.add_to_gguf(self.gguf_writer)
  1124. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  1125. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  1126. self.gguf_writer.add_tokenizer_model("llama")
  1127. self.gguf_writer.add_tokenizer_pre("default")
  1128. self.gguf_writer.add_token_list(tokens)
  1129. self.gguf_writer.add_token_scores(scores)
  1130. self.gguf_writer.add_token_types(toktypes)
  1131. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1132. special_vocab.add_to_gguf(self.gguf_writer)
  1133. def _create_vocab_sentencepiece(self):
  1134. from sentencepiece import SentencePieceProcessor
  1135. tokenizer_path = self.dir_model / 'tokenizer.model'
  1136. if not tokenizer_path.is_file():
  1137. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  1138. tokenizer = SentencePieceProcessor()
  1139. tokenizer.LoadFromFile(str(tokenizer_path))
  1140. vocab_size = self.find_hparam([
  1141. "vocab_size_per_layer_input", # gemma3n
  1142. "vocab_size",
  1143. ], optional=True) or tokenizer.vocab_size()
  1144. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1145. scores: list[float] = [-10000.0] * vocab_size
  1146. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  1147. for token_id in range(tokenizer.vocab_size()):
  1148. if token_id >= vocab_size:
  1149. logger.warning(f'ignore tokens from {token_id}: id is out of range, max={vocab_size - 1}')
  1150. break
  1151. piece = tokenizer.IdToPiece(token_id)
  1152. text = piece.encode("utf-8")
  1153. score = tokenizer.GetScore(token_id)
  1154. toktype = SentencePieceTokenTypes.NORMAL
  1155. if tokenizer.IsUnknown(token_id):
  1156. toktype = SentencePieceTokenTypes.UNKNOWN
  1157. elif tokenizer.IsControl(token_id):
  1158. toktype = SentencePieceTokenTypes.CONTROL
  1159. elif tokenizer.IsUnused(token_id):
  1160. toktype = SentencePieceTokenTypes.UNUSED
  1161. elif tokenizer.IsByte(token_id):
  1162. toktype = SentencePieceTokenTypes.BYTE
  1163. tokens[token_id] = text
  1164. scores[token_id] = score
  1165. toktypes[token_id] = toktype
  1166. added_tokens_file = self.dir_model / 'added_tokens.json'
  1167. if added_tokens_file.is_file():
  1168. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1169. added_tokens_json = json.load(f)
  1170. for key in added_tokens_json:
  1171. token_id = added_tokens_json[key]
  1172. if token_id >= vocab_size:
  1173. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1174. continue
  1175. tokens[token_id] = key.encode("utf-8")
  1176. scores[token_id] = -1000.0
  1177. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1178. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1179. if tokenizer_config_file.is_file():
  1180. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1181. tokenizer_config_json = json.load(f)
  1182. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1183. for token_id, token_data in added_tokens_decoder.items():
  1184. token_id = int(token_id)
  1185. token: str = token_data["content"]
  1186. if token_id >= vocab_size:
  1187. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1188. continue
  1189. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1190. if tokens[token_id] != token.encode("utf-8"):
  1191. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  1192. if token_data.get("special") or self.does_token_look_special(token):
  1193. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1194. else:
  1195. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  1196. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1197. scores[token_id] = -1000.0
  1198. tokens[token_id] = token.encode("utf-8")
  1199. if vocab_size > len(tokens):
  1200. pad_count = vocab_size - len(tokens)
  1201. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  1202. for i in range(1, pad_count + 1):
  1203. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  1204. scores.append(-1000.0)
  1205. toktypes.append(SentencePieceTokenTypes.UNUSED)
  1206. return tokens, scores, toktypes
  1207. def _set_vocab_llama_hf(self):
  1208. vocab = gguf.LlamaHfVocab(self.dir_model)
  1209. tokens = []
  1210. scores = []
  1211. toktypes = []
  1212. for text, score, toktype in vocab.all_tokens():
  1213. tokens.append(text)
  1214. scores.append(score)
  1215. toktypes.append(toktype)
  1216. assert len(tokens) == vocab.vocab_size
  1217. self.gguf_writer.add_tokenizer_model("llama")
  1218. self.gguf_writer.add_tokenizer_pre("default")
  1219. self.gguf_writer.add_token_list(tokens)
  1220. self.gguf_writer.add_token_scores(scores)
  1221. self.gguf_writer.add_token_types(toktypes)
  1222. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1223. special_vocab.add_to_gguf(self.gguf_writer)
  1224. def _set_vocab_rwkv_world(self):
  1225. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  1226. vocab_size = self.hparams.get("vocab_size", 65536)
  1227. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  1228. toktypes: list[int] = [gguf.TokenType.CONTROL]
  1229. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  1230. lines = f.readlines()
  1231. for line in lines:
  1232. parts = line.split(' ')
  1233. assert len(parts) >= 3
  1234. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  1235. token = token.encode("utf-8") if isinstance(token, str) else token
  1236. assert isinstance(token, bytes)
  1237. assert len(token) == token_len
  1238. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  1239. tokens.append(token_text.encode("utf-8"))
  1240. toktypes.append(gguf.TokenType.NORMAL)
  1241. remainder = vocab_size - len(tokens)
  1242. assert remainder >= 0
  1243. for i in range(len(tokens), vocab_size):
  1244. tokens.append(f"[PAD{i}]".encode("utf-8"))
  1245. toktypes.append(gguf.TokenType.UNUSED)
  1246. self.gguf_writer.add_tokenizer_model("rwkv")
  1247. self.gguf_writer.add_token_list(tokens)
  1248. self.gguf_writer.add_token_types(toktypes)
  1249. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  1250. if special_vocab.chat_template is None:
  1251. template_path = Path(__file__).parent / "models" / "templates" / "llama-cpp-rwkv-world.jinja"
  1252. if template_path.is_file():
  1253. with open(template_path, "r", encoding="utf-8") as f:
  1254. template = f.read()
  1255. else:
  1256. template = "rwkv-world"
  1257. special_vocab.chat_template = template
  1258. # hack: Add '\n\n' as the EOT token to make it chat normally
  1259. special_vocab._set_special_token("eot", 261)
  1260. # hack: Override these as they have already been set (incorrectly)
  1261. special_vocab.special_token_ids["bos"] = 0
  1262. special_vocab.special_token_ids["eos"] = 0
  1263. special_vocab.add_to_gguf(self.gguf_writer)
  1264. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  1265. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  1266. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  1267. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  1268. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  1269. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  1270. assert field # tokenizer model
  1271. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  1272. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  1273. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  1274. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  1275. assert field # token list
  1276. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  1277. if model_name == "llama-spm":
  1278. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  1279. assert field # token scores
  1280. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1281. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  1282. assert field # token types
  1283. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1284. if model_name != "llama-spm":
  1285. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  1286. assert field # token merges
  1287. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  1288. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  1289. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  1290. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  1291. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  1292. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  1293. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  1294. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  1295. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  1296. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  1297. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  1298. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  1299. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  1300. def _try_set_pooling_type(self) -> None:
  1301. # get pooling path
  1302. pooling_path = None
  1303. module_path = self.dir_model / "modules.json"
  1304. if module_path.is_file():
  1305. with open(module_path, encoding="utf-8") as f:
  1306. modules = json.load(f)
  1307. for mod in modules:
  1308. if mod["type"] == "sentence_transformers.models.Pooling":
  1309. pooling_path = mod["path"]
  1310. break
  1311. # get pooling type
  1312. if pooling_path is not None:
  1313. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1314. pooling = json.load(f)
  1315. if pooling["pooling_mode_mean_tokens"]:
  1316. pooling_type = gguf.PoolingType.MEAN
  1317. elif pooling["pooling_mode_cls_token"]:
  1318. pooling_type = gguf.PoolingType.CLS
  1319. elif pooling["pooling_mode_lasttoken"]:
  1320. pooling_type = gguf.PoolingType.LAST
  1321. else:
  1322. raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
  1323. self.gguf_writer.add_pooling_type(pooling_type)
  1324. def _set_vocab_glmedge(self):
  1325. from transformers import AutoTokenizer
  1326. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  1327. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1328. tokens, toktypes, tokpre = self.get_vocab_base()
  1329. self.gguf_writer.add_tokenizer_model("gpt2")
  1330. self.gguf_writer.add_tokenizer_pre(tokpre)
  1331. self.gguf_writer.add_token_list(tokens)
  1332. self.gguf_writer.add_token_types(toktypes)
  1333. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  1334. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  1335. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  1336. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  1337. special_vocab.add_to_gguf(self.gguf_writer)
  1338. def _set_vocab_interns1(self):
  1339. tokens: list[str] = []
  1340. toktypes: list[int] = []
  1341. from transformers import AutoTokenizer
  1342. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  1343. vocab = getattr(tokenizer, 'vocab', tokenizer.get_vocab())
  1344. vocab_size = self.hparams.get("vocab_size", len(vocab))
  1345. assert max(vocab.values()) < vocab_size
  1346. tokpre = self.get_vocab_base_pre(tokenizer)
  1347. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab.items()}
  1348. added_vocab = tokenizer.get_added_vocab()
  1349. added_tokens_decoder = tokenizer.added_tokens_decoder
  1350. for i in range(vocab_size):
  1351. if i not in reverse_vocab:
  1352. tokens.append(f"[PAD{i}]")
  1353. toktypes.append(gguf.TokenType.UNUSED)
  1354. else:
  1355. token: str = reverse_vocab[i]
  1356. if token in added_vocab:
  1357. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  1358. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  1359. if not added_tokens_decoder[i].normalized:
  1360. previous_token = token
  1361. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  1362. if previous_token != token:
  1363. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  1364. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  1365. toktypes.append(gguf.TokenType.CONTROL)
  1366. else:
  1367. toktypes.append(gguf.TokenType.USER_DEFINED)
  1368. else:
  1369. toktypes.append(gguf.TokenType.NORMAL)
  1370. tokens.append(token)
  1371. self.gguf_writer.add_tokenizer_model("gpt2")
  1372. self.gguf_writer.add_tokenizer_pre(tokpre)
  1373. self.gguf_writer.add_token_list(tokens)
  1374. self.gguf_writer.add_token_types(toktypes)
  1375. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1376. special_vocab._set_special_token("bos", 151643)
  1377. special_vocab.add_to_gguf(self.gguf_writer)
  1378. def _set_vocab_mistral(self):
  1379. if not _mistral_common_installed:
  1380. raise ImportError(_mistral_import_error_msg)
  1381. vocab = MistralVocab(self.dir_model)
  1382. logger.info(
  1383. f"Converting tokenizer {vocab.tokenizer_type} of size {vocab.vocab_size}."
  1384. )
  1385. self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)
  1386. tokens = []
  1387. scores = []
  1388. toktypes = []
  1389. for text, score, toktype in vocab.all_tokens():
  1390. tokens.append(text)
  1391. scores.append(score)
  1392. toktypes.append(toktype)
  1393. assert len(tokens) == vocab.vocab_size, (
  1394. f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
  1395. )
  1396. if vocab.tokenizer_type == MistralTokenizerType.tekken:
  1397. self.gguf_writer.add_tokenizer_pre("tekken")
  1398. self.gguf_writer.add_token_merges(
  1399. vocab.extract_vocab_merges_from_model()
  1400. )
  1401. logger.info(
  1402. f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
  1403. )
  1404. self.gguf_writer.add_bos_token_id(vocab.bos_id)
  1405. self.gguf_writer.add_eos_token_id(vocab.eos_id)
  1406. self.gguf_writer.add_unk_token_id(vocab.unk_id)
  1407. self.gguf_writer.add_pad_token_id(vocab.pad_id)
  1408. self.gguf_writer.add_token_list(tokens)
  1409. self.gguf_writer.add_token_scores(scores)
  1410. self.gguf_writer.add_token_types(toktypes)
  1411. self.gguf_writer.add_vocab_size(vocab.vocab_size)
  1412. self.gguf_writer.add_add_bos_token(True)
  1413. self.gguf_writer.add_add_eos_token(False)
  1414. local_template_file_path = self.dir_model / "chat_template.jinja"
  1415. if self.is_mistral_format and local_template_file_path.is_file():
  1416. # Ministral-3 and other new Mistral models come with chat templates.
  1417. # ref: https://huggingface.co/mistralai/Ministral-3-14B-Instruct-2512/tree/main
  1418. logger.info("Using an existing Mistral local chat template.")
  1419. with open(local_template_file_path, "r", encoding="utf-8") as f:
  1420. template = f.read()
  1421. elif not self.is_mistral_format or not self.disable_mistral_community_chat_template:
  1422. template_dir = Path(__file__).parent / "models/templates/"
  1423. # Log only for Mistral format that the official tokenization and detokenization is via `mistral-common`.
  1424. if self.is_mistral_format:
  1425. logger.info(
  1426. "Using a Mistral community chat template. These templates can be subject to errors in early days or weeks after a release. "
  1427. "Mistral recommends to use `mistral-common` to perform tokenization and detokenization."
  1428. )
  1429. template = MistralModel.get_community_chat_template(vocab, template_dir, self.is_mistral_format)
  1430. else:
  1431. logger.info("Not using a Mistral local or community chat template. Ensure to perform the tokenization and detokenization via `mistral-common`.")
  1432. template = None
  1433. if template is not None:
  1434. self.gguf_writer.add_chat_template(template)
  1435. class MmprojModel(ModelBase):
  1436. model_type = ModelType.MMPROJ
  1437. model_arch = gguf.MODEL_ARCH.MMPROJ
  1438. preprocessor_config: dict[str, Any]
  1439. global_config: dict[str, Any]
  1440. n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth", "encoder_layers"]
  1441. has_vision_encoder: bool = True # by default
  1442. has_audio_encoder: bool = False
  1443. # for models having multiple encoders, we need to separate their hparams
  1444. hparams_vision: dict[str, Any] | None = None
  1445. hparams_audio: dict[str, Any] | None = None
  1446. def __init__(self, *args, **kwargs):
  1447. super().__init__(*args, **kwargs)
  1448. if self.model_arch != gguf.MODEL_ARCH.MMPROJ:
  1449. raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
  1450. # get n_embd of the text model
  1451. if not self.is_mistral_format:
  1452. if "text_config" not in self.hparams:
  1453. self.hparams["text_config"] = {}
  1454. if "audio_config" not in self.hparams:
  1455. self.hparams["audio_config"] = {}
  1456. text_config = {**self.hparams, **self.hparams["text_config"]}
  1457. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  1458. else:
  1459. text_config = {
  1460. k: v for k, v in self.hparams.items() if k not in ["vision_encoder", "audio_encoder"]
  1461. }
  1462. self.n_embd_text = text_config.get("hidden_dim", 0)
  1463. assert self.n_embd_text > 0, "n_embd not found in hparams"
  1464. # move vision config to the top level, while preserving the original hparams in global_config
  1465. import copy
  1466. self.global_config = copy.deepcopy(self.hparams)
  1467. self.hparams_vision = self.get_vision_config()
  1468. self.hparams_audio = self.get_audio_config()
  1469. if self.hparams_vision is None and self.hparams_audio is None:
  1470. raise ValueError("vision_config / audio_config not found in hparams")
  1471. # for compat with vision-only models
  1472. self.hparams = self.hparams_vision or self.hparams_audio or self.hparams
  1473. # TODO @ngxson : this is a hack to support both vision and audio encoders
  1474. have_multiple_encoders = self.has_audio_encoder and self.has_vision_encoder
  1475. self.block_count = 128 if have_multiple_encoders else self.find_hparam(self.n_block_keys, True)
  1476. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
  1477. # load preprocessor config
  1478. self.preprocessor_config = {}
  1479. # prefer preprocessor_config.json if possible
  1480. preprocessor_config_path = self.dir_model / "preprocessor_config.json"
  1481. if preprocessor_config_path.is_file():
  1482. with open(preprocessor_config_path, "r", encoding="utf-8") as f:
  1483. self.preprocessor_config = json.load(f)
  1484. # prefer processor_config.json if possible
  1485. processor_config_path = self.dir_model / "processor_config.json"
  1486. if processor_config_path.is_file():
  1487. with open(processor_config_path, "r", encoding="utf-8") as f:
  1488. cfg = json.load(f)
  1489. # move image_processor to root level for compat
  1490. if "image_processor" in cfg:
  1491. cfg = {
  1492. **cfg,
  1493. **cfg["image_processor"],
  1494. }
  1495. # merge configs
  1496. self.preprocessor_config = {**self.preprocessor_config, **cfg}
  1497. def get_vision_config(self) -> dict[str, Any] | None:
  1498. config_name = "vision_config" if not self.is_mistral_format else "vision_encoder"
  1499. return self.global_config.get(config_name)
  1500. def get_audio_config(self) -> dict[str, Any] | None:
  1501. mm_config_key = "whisper_config" if "whisper_config" in self.hparams else "audio_config"
  1502. return self.global_config.get(mm_config_key)
  1503. def set_type(self):
  1504. self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
  1505. def prepare_metadata(self, vocab_only: bool):
  1506. super().prepare_metadata(vocab_only=vocab_only)
  1507. output_type: str = self.ftype.name.partition("_")[2]
  1508. if self.fname_out.is_dir():
  1509. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=output_type, model_type=None)
  1510. self.fname_out = self.fname_out / f"mmproj-{fname_default}.gguf"
  1511. else:
  1512. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  1513. def set_gguf_parameters(self):
  1514. self.gguf_writer.add_file_type(self.ftype)
  1515. if self.has_vision_encoder:
  1516. self.gguf_writer.add_clip_has_vision_encoder(True)
  1517. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  1518. # vision config
  1519. self.image_size = self.find_vparam(["image_size"])
  1520. self.gguf_writer.add_vision_image_size(self.image_size)
  1521. self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
  1522. self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
  1523. self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
  1524. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
  1525. self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads", "num_heads"]))
  1526. # preprocessor config
  1527. image_mean = _MISTRAL_COMMON_DATASET_MEAN if self.is_mistral_format else self.preprocessor_config["image_mean"]
  1528. image_std = _MISTRAL_COMMON_DATASET_STD if self.is_mistral_format else self.preprocessor_config["image_std"]
  1529. self.gguf_writer.add_vision_image_mean(image_mean)
  1530. self.gguf_writer.add_vision_image_std(image_std)
  1531. if self.has_audio_encoder:
  1532. self.gguf_writer.add_clip_has_audio_encoder(True)
  1533. self.gguf_writer.add_audio_projection_dim(self.n_embd_text)
  1534. # audio config
  1535. self.gguf_writer.add_audio_embedding_length(self.find_aparam(["hidden_size"]))
  1536. self.gguf_writer.add_audio_feed_forward_length(self.find_aparam(["intermediate_size"]))
  1537. self.gguf_writer.add_audio_block_count(self.find_aparam(self.n_block_keys))
  1538. self.gguf_writer.add_audio_head_count(self.find_aparam(["num_attention_heads"]))
  1539. if not self.has_vision_encoder and not self.has_audio_encoder:
  1540. raise ValueError("MmprojModel must have either vision or audio encoder")
  1541. def write_vocab(self):
  1542. raise ValueError("MmprojModel does not support vocab writing")
  1543. def find_vparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1544. assert self.hparams_vision is not None
  1545. return self._find_param(self.hparams_vision, keys, optional)
  1546. def find_aparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1547. assert self.hparams_audio is not None
  1548. return self._find_param(self.hparams_audio, keys, optional)
  1549. def _find_param(self, obj: dict[str, Any], keys: Iterable[str], optional: bool = False) -> Any:
  1550. key = next((k for k in keys if k in obj), None)
  1551. if key is not None:
  1552. return obj[key]
  1553. if optional:
  1554. return None
  1555. raise KeyError(f"could not find any of: {keys}")
  1556. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1557. del bid, name, n_dims # unused
  1558. if ".patch_embd.weight" in new_name:
  1559. return gguf.GGMLQuantizationType.F16 if self.ftype == gguf.LlamaFileType.MOSTLY_F16 else gguf.GGMLQuantizationType.F32
  1560. return False
  1561. @ModelBase.register("GPTNeoXForCausalLM")
  1562. class GPTNeoXModel(TextModel):
  1563. model_arch = gguf.MODEL_ARCH.GPTNEOX
  1564. def set_gguf_parameters(self):
  1565. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1566. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1567. self.gguf_writer.add_block_count(self.block_count)
  1568. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1569. self.gguf_writer.add_rope_dimension_count(
  1570. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  1571. )
  1572. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1573. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  1574. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  1575. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1576. del bid # unused
  1577. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1578. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1579. tensors: list[tuple[str, Tensor]] = []
  1580. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  1581. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1582. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1583. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1584. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1585. data_torch = torch.cat(
  1586. (
  1587. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1588. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1589. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1590. ),
  1591. dim=0,
  1592. )
  1593. logger.info("re-format attention.linear_qkv.weight")
  1594. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  1595. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1596. data_torch = torch.cat(
  1597. (
  1598. qkv_bias[:, 0, :].reshape((n_embed,)),
  1599. qkv_bias[:, 1, :].reshape((n_embed,)),
  1600. qkv_bias[:, 2, :].reshape((n_embed,)),
  1601. ),
  1602. dim=0,
  1603. )
  1604. logger.info("re-format attention.linear_qkv.bias")
  1605. tensors.append((self.map_tensor_name(name), data_torch))
  1606. return tensors
  1607. @ModelBase.register("BloomForCausalLM", "BloomModel")
  1608. class BloomModel(TextModel):
  1609. model_arch = gguf.MODEL_ARCH.BLOOM
  1610. def set_gguf_parameters(self):
  1611. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1612. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1613. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  1614. self.gguf_writer.add_embedding_length(n_embed)
  1615. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1616. self.gguf_writer.add_block_count(self.block_count)
  1617. self.gguf_writer.add_head_count(n_head)
  1618. self.gguf_writer.add_head_count_kv(n_head)
  1619. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1620. self.gguf_writer.add_file_type(self.ftype)
  1621. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1622. del bid # unused
  1623. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1624. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1625. name = re.sub(r'transformer\.', '', name)
  1626. tensors: list[tuple[str, Tensor]] = []
  1627. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1628. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1629. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1630. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1631. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1632. data_torch = torch.cat(
  1633. (
  1634. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1635. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1636. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1637. ),
  1638. dim=0,
  1639. )
  1640. logger.info("re-format attention.linear_qkv.weight")
  1641. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1642. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1643. data_torch = torch.cat(
  1644. (
  1645. qkv_bias[:, 0, :].reshape((n_embed,)),
  1646. qkv_bias[:, 1, :].reshape((n_embed,)),
  1647. qkv_bias[:, 2, :].reshape((n_embed,)),
  1648. ),
  1649. dim=0,
  1650. )
  1651. logger.info("re-format attention.linear_qkv.bias")
  1652. tensors.append((self.map_tensor_name(name), data_torch))
  1653. return tensors
  1654. @ModelBase.register("MPTForCausalLM")
  1655. class MPTModel(TextModel):
  1656. model_arch = gguf.MODEL_ARCH.MPT
  1657. def set_vocab(self):
  1658. try:
  1659. self._set_vocab_gpt2()
  1660. except Exception:
  1661. # Fallback for SEA-LION model
  1662. self._set_vocab_sentencepiece()
  1663. self.gguf_writer.add_add_bos_token(False)
  1664. self.gguf_writer.add_pad_token_id(3)
  1665. self.gguf_writer.add_eos_token_id(1)
  1666. self.gguf_writer.add_unk_token_id(0)
  1667. def set_gguf_parameters(self):
  1668. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1669. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1670. self.gguf_writer.add_block_count(self.block_count)
  1671. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1672. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1673. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1674. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1675. self.gguf_writer.add_layer_norm_eps(1e-5)
  1676. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1677. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1678. if self.hparams["attn_config"]["alibi"]:
  1679. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1680. else:
  1681. self.gguf_writer.add_max_alibi_bias(0.0)
  1682. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1683. del bid # unused
  1684. if "scales" in name:
  1685. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1686. new_name = new_name.replace("scales", "act.scales")
  1687. else:
  1688. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1689. return [(new_name, data_torch)]
  1690. @ModelBase.register("OrionForCausalLM")
  1691. class OrionModel(TextModel):
  1692. model_arch = gguf.MODEL_ARCH.ORION
  1693. def set_vocab(self):
  1694. self._set_vocab_sentencepiece()
  1695. def set_gguf_parameters(self):
  1696. head_count = self.hparams["num_attention_heads"]
  1697. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1698. ctx_length = 0
  1699. if "max_sequence_length" in self.hparams:
  1700. ctx_length = self.hparams["max_sequence_length"]
  1701. elif "max_position_embeddings" in self.hparams:
  1702. ctx_length = self.hparams["max_position_embeddings"]
  1703. elif "model_max_length" in self.hparams:
  1704. ctx_length = self.hparams["model_max_length"]
  1705. else:
  1706. raise ValueError("gguf: can not find ctx length parameter.")
  1707. self.gguf_writer.add_file_type(self.ftype)
  1708. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1709. self.gguf_writer.add_context_length(ctx_length)
  1710. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1711. self.gguf_writer.add_block_count(self.block_count)
  1712. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1713. self.gguf_writer.add_head_count(head_count)
  1714. self.gguf_writer.add_head_count_kv(head_count_kv)
  1715. # note: config provides rms norm but it is actually layer norm
  1716. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1717. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1718. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1719. class BaichuanModel(TextModel):
  1720. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1721. def set_vocab(self):
  1722. self._set_vocab_sentencepiece()
  1723. def set_gguf_parameters(self):
  1724. super().set_gguf_parameters()
  1725. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1726. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1727. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1728. head_count = self.hparams["num_attention_heads"]
  1729. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1730. tensors: list[tuple[str, Tensor]] = []
  1731. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1732. logger.info(f"Unpacking and permuting layer {bid}")
  1733. tensors = [
  1734. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1735. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1736. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1737. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1738. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1739. self._reverse_hf_part(data_torch, 2)),
  1740. ]
  1741. else:
  1742. tensors = [(self.map_tensor_name(name), data_torch)]
  1743. return tensors
  1744. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1745. if n_kv_head is not None and n_head != n_kv_head:
  1746. n_head //= n_kv_head
  1747. return (
  1748. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1749. .swapaxes(1, 2)
  1750. .reshape(weights.shape)
  1751. )
  1752. def _reverse_hf_permute_part(
  1753. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1754. ) -> Tensor:
  1755. r = weights.shape[0] // 3
  1756. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1757. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1758. r = weights.shape[0] // 3
  1759. return weights[r * n_part:r * n_part + r, ...]
  1760. @ModelBase.register("XverseForCausalLM")
  1761. class XverseModel(TextModel):
  1762. model_arch = gguf.MODEL_ARCH.XVERSE
  1763. def set_vocab(self):
  1764. assert (self.dir_model / "tokenizer.json").is_file()
  1765. dir_model = self.dir_model
  1766. hparams = self.hparams
  1767. tokens: list[bytes] = []
  1768. toktypes: list[int] = []
  1769. from transformers import AutoTokenizer
  1770. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1771. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1772. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1773. # because vocab_size is the count of items, and indexes start at 0.
  1774. max_vocab_index = max(tokenizer.get_vocab().values())
  1775. if max_vocab_index >= vocab_size:
  1776. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1777. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1778. added_vocab = tokenizer.get_added_vocab()
  1779. for token_id in range(vocab_size):
  1780. token_text = reverse_vocab[token_id].encode('utf-8')
  1781. # replace "\x00" to string with length > 0
  1782. if token_text == b"\x00":
  1783. toktype = gguf.TokenType.BYTE # special
  1784. token_text = f"<{token_text}>".encode('utf-8')
  1785. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1786. toktype = gguf.TokenType.BYTE # special
  1787. elif reverse_vocab[token_id] in added_vocab:
  1788. if tokenizer.added_tokens_decoder[token_id].special:
  1789. toktype = gguf.TokenType.CONTROL
  1790. else:
  1791. toktype = gguf.TokenType.USER_DEFINED
  1792. else:
  1793. toktype = gguf.TokenType.NORMAL
  1794. tokens.append(token_text)
  1795. toktypes.append(toktype)
  1796. self.gguf_writer.add_tokenizer_model("llama")
  1797. self.gguf_writer.add_tokenizer_pre("default")
  1798. self.gguf_writer.add_token_list(tokens)
  1799. self.gguf_writer.add_token_types(toktypes)
  1800. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1801. special_vocab.add_to_gguf(self.gguf_writer)
  1802. def set_gguf_parameters(self):
  1803. super().set_gguf_parameters()
  1804. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1805. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1806. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1807. del bid # unused
  1808. head_count = self.hparams["num_attention_heads"]
  1809. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1810. # HF models permute some of the tensors, so we need to undo that
  1811. if name.endswith("q_proj.weight"):
  1812. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1813. if name.endswith("k_proj.weight"):
  1814. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1815. return [(self.map_tensor_name(name), data_torch)]
  1816. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1817. if n_kv_head is not None and n_head != n_kv_head:
  1818. n_head //= n_kv_head
  1819. return (
  1820. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1821. .swapaxes(1, 2)
  1822. .reshape(weights.shape)
  1823. )
  1824. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1825. class FalconModel(TextModel):
  1826. model_arch = gguf.MODEL_ARCH.FALCON
  1827. def set_gguf_parameters(self):
  1828. n_head = self.hparams.get("num_attention_heads")
  1829. if n_head is None:
  1830. n_head = self.hparams["n_head"] # old name
  1831. n_head_kv = self.hparams.get("num_kv_heads")
  1832. if n_head_kv is None:
  1833. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1834. self.gguf_writer.add_context_length(2048) # not in config.json
  1835. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1836. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1837. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1838. self.gguf_writer.add_block_count(self.block_count)
  1839. self.gguf_writer.add_head_count(n_head)
  1840. self.gguf_writer.add_head_count_kv(n_head_kv)
  1841. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1842. self.gguf_writer.add_file_type(self.ftype)
  1843. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1844. del bid # unused
  1845. # QKV tensor transform
  1846. # The original query_key_value tensor contains n_head_kv "kv groups",
  1847. # each consisting of n_head/n_head_kv query weights followed by one key
  1848. # and one value weight (shared by all query heads in the kv group).
  1849. # This layout makes it a big pain to work with in GGML.
  1850. # So we rearrange them here,, so that we have n_head query weights
  1851. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1852. # in contiguous fashion.
  1853. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1854. if "query_key_value" in name:
  1855. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1856. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1857. head_dim = self.hparams["hidden_size"] // n_head
  1858. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1859. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1860. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1861. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1862. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1863. return [(self.map_tensor_name(name), data_torch)]
  1864. @ModelBase.register("GPTBigCodeForCausalLM")
  1865. class StarCoderModel(TextModel):
  1866. model_arch = gguf.MODEL_ARCH.STARCODER
  1867. def set_gguf_parameters(self):
  1868. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1869. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1870. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1871. self.gguf_writer.add_block_count(self.block_count)
  1872. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1873. self.gguf_writer.add_head_count_kv(1)
  1874. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1875. self.gguf_writer.add_file_type(self.ftype)
  1876. @ModelBase.register("GPTRefactForCausalLM")
  1877. class RefactModel(TextModel):
  1878. model_arch = gguf.MODEL_ARCH.REFACT
  1879. def set_vocab(self):
  1880. super().set_vocab()
  1881. # TODO: how to determine special FIM tokens automatically?
  1882. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1883. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1884. special_vocab._set_special_token("prefix", 1)
  1885. special_vocab._set_special_token("suffix", 3)
  1886. special_vocab._set_special_token("middle", 2)
  1887. special_vocab.chat_template = None # do not add it twice
  1888. special_vocab.add_to_gguf(self.gguf_writer)
  1889. def set_gguf_parameters(self):
  1890. hidden_dim = self.hparams["n_embd"]
  1891. inner_dim = 4 * hidden_dim
  1892. hidden_dim = int(2 * inner_dim / 3)
  1893. multiple_of = 256
  1894. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1895. # refact uses Alibi. So this is from config.json which might be used by training.
  1896. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1897. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1898. self.gguf_writer.add_feed_forward_length(ff_dim)
  1899. self.gguf_writer.add_block_count(self.block_count)
  1900. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1901. self.gguf_writer.add_head_count_kv(1)
  1902. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1903. self.gguf_writer.add_file_type(self.ftype)
  1904. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1905. hidden_dim = self.hparams["n_embd"]
  1906. inner_dim = 4 * hidden_dim
  1907. hidden_dim = int(2 * inner_dim / 3)
  1908. multiple_of = 256
  1909. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1910. n_head = self.hparams["n_head"]
  1911. n_head_kv = 1
  1912. head_dim = self.hparams["n_embd"] // n_head
  1913. tensors: list[tuple[str, Tensor]] = []
  1914. if bid is not None:
  1915. if name == f"transformer.h.{bid}.attn.kv.weight":
  1916. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1917. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1918. elif name == f"transformer.h.{bid}.attn.q.weight":
  1919. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1920. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1921. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1922. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1923. if len(tensors) == 0:
  1924. tensors.append((self.map_tensor_name(name), data_torch))
  1925. return tensors
  1926. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1927. class StableLMModel(TextModel):
  1928. model_arch = gguf.MODEL_ARCH.STABLELM
  1929. def set_vocab(self):
  1930. if (self.dir_model / "tokenizer.json").is_file():
  1931. self._set_vocab_gpt2()
  1932. else:
  1933. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1934. self._set_vocab_qwen()
  1935. def set_gguf_parameters(self):
  1936. hparams = self.hparams
  1937. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1938. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1939. self.gguf_writer.add_block_count(self.block_count)
  1940. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1941. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1942. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1943. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1944. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1945. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1946. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1947. self.gguf_writer.add_file_type(self.ftype)
  1948. _q_norms: list[dict[str, Tensor]] | None = None
  1949. _k_norms: list[dict[str, Tensor]] | None = None
  1950. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1951. n_head = self.hparams["num_attention_heads"]
  1952. n_kv_head = self.hparams["num_key_value_heads"]
  1953. if name.find("q_layernorm.norms") != -1:
  1954. assert bid is not None
  1955. if self._q_norms is None:
  1956. self._q_norms = [{} for _ in range(self.block_count)]
  1957. self._q_norms[bid][name] = data_torch
  1958. if len(self._q_norms[bid]) >= n_head:
  1959. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1960. else:
  1961. return []
  1962. if name.find("k_layernorm.norms") != -1:
  1963. assert bid is not None
  1964. if self._k_norms is None:
  1965. self._k_norms = [{} for _ in range(self.block_count)]
  1966. self._k_norms[bid][name] = data_torch
  1967. if len(self._k_norms[bid]) >= n_kv_head:
  1968. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1969. else:
  1970. return []
  1971. return [(self.map_tensor_name(name), data_torch)]
  1972. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1973. datas: list[Tensor] = []
  1974. # extract the norms in order
  1975. for xid in range(n_head):
  1976. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1977. datas.append(norms[ename])
  1978. del norms[ename]
  1979. data_torch = torch.stack(datas, dim=0)
  1980. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1981. new_name = self.map_tensor_name(merged_name)
  1982. return [(new_name, data_torch)]
  1983. def prepare_tensors(self):
  1984. super().prepare_tensors()
  1985. if self._q_norms is not None or self._k_norms is not None:
  1986. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1987. norms = (
  1988. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1989. ) + (
  1990. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1991. )
  1992. if len(norms) > 0:
  1993. raise ValueError(f"Unprocessed norms: {norms}")
  1994. @ModelBase.register(
  1995. "LLaMAForCausalLM",
  1996. "LlamaForCausalLM",
  1997. "MistralForCausalLM",
  1998. "MixtralForCausalLM",
  1999. "VLlama3ForCausalLM",
  2000. "LlavaForConditionalGeneration",
  2001. "VoxtralForConditionalGeneration",
  2002. "LlamaModel")
  2003. class LlamaModel(TextModel):
  2004. model_arch = gguf.MODEL_ARCH.LLAMA
  2005. undo_permute = True
  2006. def __init__(self, *args, **kwargs):
  2007. super().__init__(*args, **kwargs)
  2008. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  2009. if self.hf_arch == "VLlama3ForCausalLM":
  2010. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  2011. hparams = ModelBase.load_hparams(self.dir_model, is_mistral_format=False)
  2012. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  2013. def set_vocab(self):
  2014. if self.origin_hf_arch == "GlmasrModel":
  2015. return self._set_vocab_glmedge()
  2016. if self.is_mistral_format:
  2017. return self._set_vocab_mistral()
  2018. path_tekken_json = self.dir_model / "tekken.json"
  2019. path_tokenizer_json = self.dir_model / "tokenizer.json"
  2020. if path_tekken_json.is_file() and not path_tokenizer_json.is_file():
  2021. self._set_vocab_mistral()
  2022. try:
  2023. self._set_vocab_sentencepiece()
  2024. except FileNotFoundError:
  2025. try:
  2026. self._set_vocab_llama_hf()
  2027. except (FileNotFoundError, TypeError):
  2028. # Llama 3
  2029. self._set_vocab_gpt2()
  2030. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  2031. if self.hparams.get("vocab_size", 32000) == 32016:
  2032. special_vocab = gguf.SpecialVocab(
  2033. self.dir_model, load_merges=False,
  2034. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  2035. )
  2036. special_vocab._set_special_token("prefix", 32007)
  2037. special_vocab._set_special_token("suffix", 32008)
  2038. special_vocab._set_special_token("middle", 32009)
  2039. special_vocab._set_special_token("eot", 32010)
  2040. special_vocab.add_to_gguf(self.gguf_writer)
  2041. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2042. if tokenizer_config_file.is_file():
  2043. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2044. tokenizer_config_json = json.load(f)
  2045. if "add_prefix_space" in tokenizer_config_json:
  2046. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  2047. # Apply to granite small models only
  2048. if self.hparams.get("vocab_size", 32000) == 49152:
  2049. self.gguf_writer.add_add_bos_token(False)
  2050. def set_gguf_parameters(self):
  2051. super().set_gguf_parameters()
  2052. hparams = self.hparams
  2053. if not self.is_mistral_format:
  2054. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2055. if (rope_dim := hparams.get("head_dim")) is None:
  2056. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2057. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2058. @staticmethod
  2059. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2060. if n_head_kv is not None and n_head != n_head_kv:
  2061. n_head = n_head_kv
  2062. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2063. .swapaxes(1, 2)
  2064. .reshape(weights.shape))
  2065. _experts: list[dict[str, Tensor]] | None = None
  2066. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2067. n_head = self.find_hparam(["n_heads", "num_attention_heads"])
  2068. n_kv_head = self.find_hparam(["n_kv_heads", "num_key_value_heads"])
  2069. vision_prefixes = [
  2070. "vision_encoder.",
  2071. "vision_language_adapter.",
  2072. "patch_merger.",
  2073. "pre_mm_projector_norm",
  2074. "audio_encoder.",
  2075. ]
  2076. is_multimodal_tensor = "vision_tower" in name \
  2077. or "vision_model" in name \
  2078. or "audio_tower" in name \
  2079. or "model.connector" in name \
  2080. or "multi_modal_projector" in name \
  2081. or any(
  2082. name.startswith(prefix)
  2083. for prefix in vision_prefixes
  2084. )
  2085. if is_multimodal_tensor:
  2086. return [] # skip vision tensors
  2087. elif self.hf_arch == "LlamaModel":
  2088. name = "model." + name
  2089. elif name.startswith("model.text_model"):
  2090. name = name.replace("text_model.", "") # for SmolVLM
  2091. elif name.startswith("language_model."):
  2092. name = name.replace("language_model.", "") # for the rest
  2093. if self.undo_permute:
  2094. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2095. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2096. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2097. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2098. # process the experts separately
  2099. if name.find("block_sparse_moe.experts") != -1:
  2100. n_experts = self.hparams["num_local_experts"]
  2101. assert bid is not None
  2102. if self._experts is None:
  2103. self._experts = [{} for _ in range(self.block_count)]
  2104. self._experts[bid][name] = data_torch
  2105. if len(self._experts[bid]) >= n_experts * 3:
  2106. tensors: list[tuple[str, Tensor]] = []
  2107. # merge the experts into a single 3d tensor
  2108. for wid in ["w1", "w2", "w3"]:
  2109. datas: list[Tensor] = []
  2110. for xid in range(n_experts):
  2111. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  2112. datas.append(self._experts[bid][ename])
  2113. del self._experts[bid][ename]
  2114. data_torch = torch.stack(datas, dim=0)
  2115. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  2116. new_name = self.map_tensor_name(merged_name)
  2117. tensors.append((new_name, data_torch))
  2118. return tensors
  2119. else:
  2120. return []
  2121. return [(self.map_tensor_name(name), data_torch)]
  2122. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2123. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  2124. if rope_params.get("rope_type", '').lower() == "llama3":
  2125. base = rope_params.get("rope_theta", 10000.0)
  2126. if (dim := self.hparams.get("head_dim")) is None:
  2127. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2128. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2129. factor = rope_params.get("factor", 8.0)
  2130. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  2131. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  2132. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2133. low_freq_wavelen = old_context_len / low_freq_factor
  2134. high_freq_wavelen = old_context_len / high_freq_factor
  2135. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  2136. rope_factors = []
  2137. for freq in freqs:
  2138. wavelen = 2 * math.pi / freq
  2139. if wavelen < high_freq_wavelen:
  2140. rope_factors.append(1)
  2141. elif wavelen > low_freq_wavelen:
  2142. rope_factors.append(factor)
  2143. else:
  2144. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2145. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2146. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2147. def prepare_tensors(self):
  2148. super().prepare_tensors()
  2149. if self._experts is not None:
  2150. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2151. experts = [k for d in self._experts for k in d.keys()]
  2152. if len(experts) > 0:
  2153. raise ValueError(f"Unprocessed experts: {experts}")
  2154. @ModelBase.register("ArceeForCausalLM")
  2155. class ArceeModel(LlamaModel):
  2156. model_arch = gguf.MODEL_ARCH.ARCEE
  2157. def set_gguf_parameters(self):
  2158. super().set_gguf_parameters()
  2159. self._try_set_pooling_type()
  2160. @ModelBase.register("AfmoeForCausalLM")
  2161. class AfmoeModel(LlamaModel):
  2162. model_arch = gguf.MODEL_ARCH.AFMOE
  2163. def set_gguf_parameters(self):
  2164. super().set_gguf_parameters()
  2165. # MoE parameters
  2166. if (n_experts := self.hparams.get("num_experts")) is not None:
  2167. self.gguf_writer.add_expert_count(n_experts)
  2168. if (n_shared_experts := self.hparams.get("num_shared_experts")) is not None:
  2169. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  2170. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2171. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2172. if (n_dense_layers := self.hparams.get("num_dense_layers")) is not None:
  2173. self.gguf_writer.add_leading_dense_block_count(n_dense_layers)
  2174. # Route normalization and scaling
  2175. if (route_norm := self.hparams.get("route_norm")) is not None:
  2176. self.gguf_writer.add_expert_weights_norm(route_norm)
  2177. if (route_scale := self.hparams.get("route_scale")) is not None:
  2178. self.gguf_writer.add_expert_weights_scale(route_scale)
  2179. # Sliding window attention
  2180. if (sliding_window := self.hparams.get("sliding_window")) is not None:
  2181. self.gguf_writer.add_sliding_window(sliding_window)
  2182. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2183. # Handle expert weights - they're already merged in the HF format
  2184. # process the experts separately
  2185. if name.find("mlp.experts") != -1:
  2186. n_experts = self.hparams["num_experts"]
  2187. assert bid is not None
  2188. if self._experts is None:
  2189. self._experts = [{} for _ in range(self.block_count)]
  2190. self._experts[bid][name] = data_torch
  2191. if len(self._experts[bid]) >= n_experts * 3:
  2192. tensors: list[tuple[str, Tensor]] = []
  2193. # merge the experts into a single 3d tensor
  2194. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  2195. datas: list[Tensor] = []
  2196. for xid in range(n_experts):
  2197. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2198. datas.append(self._experts[bid][ename_to_retrieve])
  2199. del self._experts[bid][ename_to_retrieve]
  2200. data_torch = torch.stack(datas, dim=0)
  2201. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2202. new_name = self.map_tensor_name(merged_name)
  2203. tensors.append((new_name, data_torch))
  2204. return tensors
  2205. else:
  2206. return []
  2207. if name.endswith(".expert_bias"):
  2208. name = name.replace(".expert_bias", ".expert_bias.bias")
  2209. return [(self.map_tensor_name(name), data_torch)]
  2210. @ModelBase.register(
  2211. "LlavaForConditionalGeneration", # pixtral
  2212. "Mistral3ForConditionalGeneration", # mistral small 3.1
  2213. )
  2214. class LlavaVisionModel(MmprojModel):
  2215. img_break_tok_id = -1
  2216. use_break_tok = True
  2217. def __init__(self, *args, **kwargs):
  2218. super().__init__(*args, **kwargs)
  2219. if self.hparams.get("model_type") == "pixtral":
  2220. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  2221. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  2222. if self.use_break_tok:
  2223. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  2224. elif self.is_mistral_format:
  2225. # hparams is already vision config here so norm_eps is only defined in global_config.
  2226. self.hparams["norm_eps"] = self.global_config.get("norm_eps", None)
  2227. assert self.hparams["norm_eps"] is not None, "norm_eps not found in params.json"
  2228. if self.use_break_tok:
  2229. self.img_break_tok_id = self.find_vparam(["image_break_token_id"])
  2230. else:
  2231. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  2232. logger.info(f"Image break token id: {self.img_break_tok_id}")
  2233. def get_token_id(self, token: str) -> int:
  2234. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2235. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2236. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  2237. for id_, token_data in added_tokens_decoder.items():
  2238. if token_data["content"] == token:
  2239. return int(id_)
  2240. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  2241. def set_gguf_parameters(self):
  2242. super().set_gguf_parameters()
  2243. hparams = self.hparams
  2244. if hparams.get("model_type") == "pixtral":
  2245. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  2246. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  2247. # hidden_act
  2248. if hparams["hidden_act"] == "silu":
  2249. self.gguf_writer.add_vision_use_silu(True)
  2250. elif hparams["hidden_act"] == "gelu":
  2251. self.gguf_writer.add_vision_use_gelu(True)
  2252. else:
  2253. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  2254. # spatial_merge_size
  2255. if "spatial_merge_size" in self.global_config:
  2256. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  2257. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2258. del bid # unused
  2259. n_head = (
  2260. self.hparams["num_attention_heads"] if not self.is_mistral_format else self.find_vparam(["num_attention_heads"])
  2261. )
  2262. n_kv_head = n_head
  2263. valid_prefixes = (
  2264. "multi_modal_projector.",
  2265. "vision_tower.",
  2266. "vision_encoder.",
  2267. "vision_language_adapter.",
  2268. "patch_merger.",
  2269. "pre_mm_projector_norm",
  2270. )
  2271. if any(name.startswith(prefix) for prefix in valid_prefixes):
  2272. # process vision tensors
  2273. if name.endswith(("q_proj.weight", "q_proj.bias")) and not self.is_mistral_format:
  2274. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2275. if name.endswith(("k_proj.weight", "k_proj.bias")) and not self.is_mistral_format:
  2276. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2277. return [(self.map_tensor_name(name), data_torch)]
  2278. embed_key = "embed_tokens.weight" if not self.is_mistral_format else "tok_embeddings.weight"
  2279. if self.img_break_tok_id > 0 and embed_key in name:
  2280. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  2281. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  2282. img_break_embd = data_torch[self.img_break_tok_id]
  2283. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  2284. return [(self.map_tensor_name(name), img_break_embd)]
  2285. return [] # skip other tensors
  2286. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  2287. class SmolVLMModel(MmprojModel):
  2288. def __init__(self, *args, **kwargs):
  2289. super().__init__(*args, **kwargs)
  2290. if self.hparams["model_type"] == "smolvlm_vision":
  2291. # fix for SmolVLM2, missing some keys in config.json
  2292. # default values are taken from transformers code
  2293. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  2294. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  2295. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  2296. def set_gguf_parameters(self):
  2297. super().set_gguf_parameters()
  2298. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.IDEFICS3)
  2299. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  2300. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  2301. self.gguf_writer.add_vision_use_gelu(True)
  2302. # Add the preprocessor longest edge size
  2303. preproc_image_size = self.preprocessor_config.get("size", {}).get("longest_edge", self.image_size)
  2304. self.gguf_writer.add_vision_preproc_image_size(preproc_image_size)
  2305. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2306. if ".embeddings." in name:
  2307. return gguf.GGMLQuantizationType.F32
  2308. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2309. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2310. del bid # unused
  2311. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  2312. if is_vision_tensor:
  2313. return [(self.map_tensor_name(name), data_torch)]
  2314. return [] # skip other tensors
  2315. @ModelBase.register(
  2316. "Llama4ForConditionalGeneration",
  2317. "Llama4ForCausalLM",
  2318. )
  2319. class Llama4Model(LlamaModel):
  2320. model_arch = gguf.MODEL_ARCH.LLAMA4
  2321. undo_permute = False
  2322. def __init__(self, *args, **kwargs):
  2323. super().__init__(*args, **kwargs)
  2324. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  2325. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  2326. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  2327. def set_vocab(self):
  2328. self._set_vocab_gpt2()
  2329. def set_gguf_parameters(self):
  2330. super().set_gguf_parameters()
  2331. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  2332. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  2333. if "layer_types" in self.hparams:
  2334. if all(lt == "full_attention" for lt in self.hparams["layer_types"]):
  2335. # all layers are full attention (for MobileLLM), disable swa
  2336. self.gguf_writer.add_sliding_window(0)
  2337. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2338. if name.startswith("language_model."):
  2339. name = name.replace("language_model.", "")
  2340. # split the gate_up into gate and up
  2341. if "gate_up_proj" in name:
  2342. name_up = name.replace("gate_up_proj", "up_proj.weight")
  2343. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  2344. dim_half = data_torch.shape[-1] // 2
  2345. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  2346. return [
  2347. (self.map_tensor_name(name_gate), gate_proj_weight),
  2348. (self.map_tensor_name(name_up), up_proj_weight)
  2349. ]
  2350. if name.endswith("down_proj"):
  2351. name += ".weight"
  2352. data_torch = data_torch.transpose(-1, -2)
  2353. if "multi_modal_projector" in name or "vision_model" in name:
  2354. return []
  2355. return super().modify_tensors(data_torch, name, bid)
  2356. @ModelBase.register("Llama4ForConditionalGeneration")
  2357. class Llama4VisionModel(MmprojModel):
  2358. def set_gguf_parameters(self):
  2359. super().set_gguf_parameters()
  2360. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LLAMA4)
  2361. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams["norm_eps"])
  2362. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / self.hparams["pixel_shuffle_ratio"]))
  2363. assert self.hparams["hidden_act"] == "gelu"
  2364. self.gguf_writer.add_vision_use_gelu(True)
  2365. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2366. del bid # unused
  2367. if "multi_modal_projector" in name or "vision_model" in name:
  2368. # process vision tensors
  2369. if "positional_embedding_vlm" in name and ".weight" not in name:
  2370. name += ".weight"
  2371. if "multi_modal_projector.linear_1" in name:
  2372. # despite the name with number postfix, this is a single fully connected layer
  2373. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC] + '.weight', data_torch)]
  2374. return [(self.map_tensor_name(name), data_torch)]
  2375. return []
  2376. @ModelBase.register("Mistral3ForConditionalGeneration")
  2377. class Mistral3Model(LlamaModel):
  2378. model_arch = gguf.MODEL_ARCH.MISTRAL3
  2379. def __init__(self, *args, **kwargs):
  2380. super().__init__(*args, **kwargs)
  2381. # for compatibility, we use LLAMA arch for older models
  2382. # TODO: remove this once everyone has migrated to newer version of llama.cpp
  2383. if self.hparams.get("model_type") != "ministral3":
  2384. self.model_arch = gguf.MODEL_ARCH.LLAMA
  2385. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[self.model_arch]
  2386. self.gguf_writer.add_architecture()
  2387. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  2388. def set_gguf_parameters(self):
  2389. super().set_gguf_parameters()
  2390. rope_params = self.rope_parameters
  2391. if self.hparams.get("model_type") == "ministral3":
  2392. assert rope_params, "ministral3 must have 'rope_parameters' config"
  2393. assert rope_params["rope_type"] == "yarn", "ministral3 rope_type must be 'yarn'"
  2394. self.gguf_writer.add_rope_scaling_yarn_log_mul(rope_params["mscale_all_dim"])
  2395. self.gguf_writer.add_attn_temperature_scale(rope_params["llama_4_scaling_beta"])
  2396. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2397. name = name.replace("language_model.", "")
  2398. if "multi_modal_projector" in name or "vision_tower" in name:
  2399. return []
  2400. return super().modify_tensors(data_torch, name, bid)
  2401. @ModelBase.register("DeciLMForCausalLM")
  2402. class DeciModel(TextModel):
  2403. model_arch = gguf.MODEL_ARCH.DECI
  2404. @staticmethod
  2405. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  2406. # DeciLM-specific code
  2407. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  2408. return DeciModel._find_multiple(intermediate_size, 256)
  2409. @staticmethod
  2410. def _find_multiple(n: int, k: int) -> int:
  2411. # DeciLM-specific code
  2412. if n % k == 0:
  2413. return n
  2414. return n + k - (n % k)
  2415. def __init__(self, *args, **kwargs):
  2416. super().__init__(*args, **kwargs)
  2417. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2418. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  2419. assert self.block_count == len(_block_configs)
  2420. self._num_kv_heads = list()
  2421. self._num_heads = list()
  2422. _ffn_multipliers = list()
  2423. # ***linear attention layer***
  2424. # if n_heads_in_group is None and replace_with_linear is True
  2425. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  2426. # ***attention-free layer***
  2427. # if n_heads_in_group is None and replace_with_linear is False
  2428. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  2429. # ***normal attention-layer***
  2430. # if n_heads_in_group is not None, then
  2431. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  2432. # _num_heads[il] is num_attention_head
  2433. # ***dummy layer*** for nemotron 253B
  2434. # if n_heads_in_group is None and ffn_mult is None
  2435. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
  2436. for il in range(len(_block_configs)):
  2437. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  2438. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  2439. self._num_kv_heads.append(0)
  2440. self._num_heads.append(self.hparams["num_attention_heads"])
  2441. else:
  2442. self._num_kv_heads.append(0)
  2443. self._num_heads.append(0)
  2444. else:
  2445. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  2446. self._num_heads.append(self.hparams["num_attention_heads"])
  2447. if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
  2448. _ffn_multipliers.append(0.0)
  2449. else:
  2450. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  2451. assert self.block_count == len(self._num_kv_heads)
  2452. assert self.block_count == len(self._num_heads)
  2453. assert self.block_count == len(_ffn_multipliers)
  2454. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2455. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  2456. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  2457. self._ffn_dims: list[int] = [
  2458. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  2459. for multiplier in _ffn_multipliers
  2460. ]
  2461. def set_vocab(self):
  2462. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  2463. # eos_token from '|eot_id|' to '|end_of_text|'
  2464. if self.hparams.get("vocab_size", 128256) == 128256:
  2465. tokens, toktypes, tokpre = self.get_vocab_base()
  2466. self.gguf_writer.add_tokenizer_model("gpt2")
  2467. self.gguf_writer.add_tokenizer_pre(tokpre)
  2468. self.gguf_writer.add_token_list(tokens)
  2469. self.gguf_writer.add_token_types(toktypes)
  2470. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  2471. special_vocab.add_to_gguf(self.gguf_writer)
  2472. else:
  2473. # DeciLM-7B
  2474. self._set_vocab_llama_hf()
  2475. def set_gguf_parameters(self):
  2476. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2477. assert self.block_count == len(self._num_kv_heads)
  2478. assert self.block_count == len(self._num_heads)
  2479. assert self.block_count == len(self._ffn_dims)
  2480. if (rope_theta := self.rope_parameters.get("rope_theta")) is not None:
  2481. self.gguf_writer.add_rope_freq_base(rope_theta)
  2482. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2483. self.gguf_writer.add_head_count(self._num_heads)
  2484. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2485. self.gguf_writer.add_block_count(self.block_count)
  2486. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2487. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2488. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2489. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2490. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2491. self.gguf_writer.add_file_type(self.ftype)
  2492. else: # DeciLM-7B
  2493. super().set_gguf_parameters()
  2494. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  2495. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  2496. assert self.block_count == len(self._num_kv_heads)
  2497. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2498. hparams = self.hparams
  2499. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2500. if (rope_dim := hparams.get("head_dim")) is None:
  2501. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2502. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2503. @staticmethod
  2504. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2505. if n_head_kv is not None and n_head != n_head_kv:
  2506. n_head = n_head_kv
  2507. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2508. .swapaxes(1, 2)
  2509. .reshape(weights.shape))
  2510. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2511. n_head = self.hparams["num_attention_heads"]
  2512. if bid is not None:
  2513. if "num_key_value_heads_per_layer" in self.hparams:
  2514. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  2515. elif "block_configs" in self.hparams:
  2516. n_kv_head = self._num_kv_heads[bid]
  2517. n_head = self._num_heads[bid]
  2518. else:
  2519. n_kv_head = self.hparams.get("num_key_value_heads")
  2520. else:
  2521. n_kv_head = self.hparams.get("num_key_value_heads")
  2522. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2523. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  2524. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2525. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  2526. return [(self.map_tensor_name(name), data_torch)]
  2527. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2528. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  2529. if rope_params.get("rope_type", '').lower() == "llama3":
  2530. base = rope_params.get("rope_theta", 10000.0)
  2531. if (dim := self.hparams.get("head_dim")) is None:
  2532. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2533. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2534. factor = rope_params.get("factor", 8.0)
  2535. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  2536. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  2537. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2538. low_freq_wavelen = old_context_len / low_freq_factor
  2539. high_freq_wavelen = old_context_len / high_freq_factor
  2540. assert low_freq_wavelen != high_freq_wavelen
  2541. rope_factors = []
  2542. for freq in freqs:
  2543. wavelen = 2 * math.pi / freq
  2544. if wavelen < high_freq_wavelen:
  2545. rope_factors.append(1)
  2546. elif wavelen > low_freq_wavelen:
  2547. rope_factors.append(factor)
  2548. else:
  2549. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2550. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2551. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2552. def prepare_tensors(self):
  2553. super().prepare_tensors()
  2554. @ModelBase.register("BitnetForCausalLM")
  2555. class BitnetModel(TextModel):
  2556. model_arch = gguf.MODEL_ARCH.BITNET
  2557. def set_vocab(self):
  2558. self._set_vocab_sentencepiece()
  2559. def set_gguf_parameters(self):
  2560. super().set_gguf_parameters()
  2561. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2562. self.gguf_writer.add_rope_scaling_factor(1.0)
  2563. def weight_quant(self, weight: Tensor) -> Tensor:
  2564. dtype = weight.dtype
  2565. weight = weight.float()
  2566. scale = weight.abs().mean().clamp(min=1e-5)
  2567. iscale = 1 / scale
  2568. # TODO: multiply by the scale directly instead of inverting it twice
  2569. # (this is also unnecessarily doubly inverted upstream)
  2570. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  2571. result = (weight * iscale).round().clamp(-1, 1) / iscale
  2572. return result.type(dtype)
  2573. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2574. new_name = self.map_tensor_name(name)
  2575. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  2576. gguf.MODEL_TENSOR.ATTN_Q,
  2577. gguf.MODEL_TENSOR.ATTN_K,
  2578. gguf.MODEL_TENSOR.ATTN_V,
  2579. gguf.MODEL_TENSOR.ATTN_OUT,
  2580. gguf.MODEL_TENSOR.FFN_UP,
  2581. gguf.MODEL_TENSOR.FFN_DOWN,
  2582. gguf.MODEL_TENSOR.FFN_GATE,
  2583. ]):
  2584. # transform weight into 1/0/-1 (in fp32)
  2585. data_torch = self.weight_quant(data_torch)
  2586. yield (new_name, data_torch)
  2587. @ModelBase.register("GrokForCausalLM", "Grok1ForCausalLM")
  2588. class GrokModel(TextModel):
  2589. model_arch = gguf.MODEL_ARCH.GROK
  2590. def set_vocab(self):
  2591. if (self.dir_model / 'tokenizer.model').is_file():
  2592. self._set_vocab_sentencepiece()
  2593. return
  2594. if not (self.dir_model / 'tokenizer.json').is_file() or not (self.dir_model / 'chat_template.jinja').is_file():
  2595. logger.error('Error: Missing vocab and chat template, download files from https://huggingface.co/alvarobartt/grok-2-tokenizer')
  2596. sys.exit(1)
  2597. self._set_vocab_gpt2()
  2598. def __init__(self, *args, **kwargs):
  2599. super().__init__(*args, **kwargs)
  2600. def set_gguf_parameters(self):
  2601. super().set_gguf_parameters()
  2602. self.gguf_writer.add_attn_logit_softcapping(self.hparams.get("attn_logit_softcapping", 30.0))
  2603. self.gguf_writer.add_router_logit_softcapping(self.hparams.get("router_logit_softcapping", 30.0))
  2604. if (final_logit_softcap := self.hparams.get("final_logit_softcapping")):
  2605. self.gguf_writer.add_final_logit_softcapping(final_logit_softcap)
  2606. if (rope_dim := self.hparams.get("head_dim")) is None:
  2607. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2608. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2609. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2610. # Treat "original" as "yarn", seems to have been a mistake
  2611. if self.hparams.get("rope_type") in ("yarn", "original"):
  2612. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2613. self.gguf_writer.add_rope_scaling_factor(self.hparams["scaling_factor"])
  2614. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["original_max_position_embeddings"])
  2615. self.gguf_writer.add_rope_scaling_yarn_ext_factor(self.hparams["extrapolation_factor"])
  2616. self.gguf_writer.add_rope_scaling_yarn_attn_factor(self.hparams["attn_factor"])
  2617. self.gguf_writer.add_rope_scaling_yarn_beta_fast(self.hparams["beta_fast"])
  2618. self.gguf_writer.add_rope_scaling_yarn_beta_slow(self.hparams["beta_slow"])
  2619. if temp_len := self.hparams.get("attn_temperature_len"):
  2620. self.gguf_writer.add_attn_temperature_length(temp_len)
  2621. self.gguf_writer.add_attn_output_scale(self.hparams.get("attn_output_multiplier", rope_dim**-0.5))
  2622. self.gguf_writer.add_embedding_scale(self.hparams["embedding_multiplier_scale"])
  2623. self.gguf_writer.add_logit_scale(self.hparams["output_multiplier_scale"])
  2624. _experts: list[dict[str, list[Tensor]]] | None = None
  2625. _cur_expert = ""
  2626. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2627. tensors: list[tuple[str, Tensor]] = []
  2628. is_expert = ".moe." in name or ".block_sparse_moe.experts." in name
  2629. if not is_expert:
  2630. tensors.append((self.map_tensor_name(name), data_torch))
  2631. # process the experts separately
  2632. if is_expert or self._cur_expert:
  2633. n_experts = self.hparams["num_local_experts"]
  2634. assert bid is not None
  2635. if self._experts is None:
  2636. self._experts = [{} for _ in range(self.block_count)]
  2637. # concatenate split tensors
  2638. if name in self._experts[bid]:
  2639. self._cur_expert = name
  2640. self._experts[bid][name].append(data_torch)
  2641. return []
  2642. elif is_expert:
  2643. self._cur_expert = name
  2644. self._experts[bid][name] = [data_torch]
  2645. return []
  2646. else:
  2647. self._cur_expert = ""
  2648. for bid in range(self.block_count):
  2649. if len(self._experts[bid]) >= n_experts * 3:
  2650. # merge the experts into a single 3d tensor
  2651. for wid in [("linear", "w1", 0), ("linear_1", "w2", 1), ("linear_v", "w3", 0)]:
  2652. datas: list[Tensor] = []
  2653. for xid in range(n_experts):
  2654. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid[0]}.weight"
  2655. if ename not in self._experts[bid]:
  2656. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid[1]}.weight"
  2657. tensor_list = self._experts[bid][ename]
  2658. datas.append(torch.cat(tensor_list, dim=wid[2]) if len(tensor_list) > 1 else tensor_list[0])
  2659. del self._experts[bid][ename]
  2660. data_torch = torch.stack(datas, dim=0)
  2661. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid[0]}.weight"
  2662. new_name = self.map_tensor_name(merged_name)
  2663. yield (new_name, data_torch)
  2664. yield from tensors
  2665. @ModelBase.register("DbrxForCausalLM")
  2666. class DbrxModel(TextModel):
  2667. model_arch = gguf.MODEL_ARCH.DBRX
  2668. def set_gguf_parameters(self):
  2669. ffn_config = self.hparams["ffn_config"]
  2670. attn_config = self.hparams["attn_config"]
  2671. self.gguf_writer.add_block_count(self.block_count)
  2672. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  2673. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2674. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  2675. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  2676. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  2677. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  2678. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  2679. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  2680. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  2681. self.gguf_writer.add_layer_norm_eps(1e-5)
  2682. self.gguf_writer.add_file_type(self.ftype)
  2683. logger.info(f"gguf: file type = {self.ftype}")
  2684. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2685. del bid # unused
  2686. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  2687. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  2688. n_embd = self.hparams["d_model"]
  2689. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  2690. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  2691. # But llama.cpp moe graph works differently
  2692. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  2693. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  2694. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2695. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  2696. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2697. experts = False
  2698. for exp_tensor_name in exp_tensor_names.keys():
  2699. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  2700. experts = True
  2701. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  2702. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  2703. data_torch = data_torch.permute(*permute_tensor)
  2704. break
  2705. # map tensor names
  2706. # In MoE models the ffn tensors are typically most of the model weights,
  2707. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  2708. # Every other model has the weight names ending in .weight,
  2709. # let's assume that is the convention which is not the case for dbrx:
  2710. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  2711. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  2712. return [(new_name, data_torch)]
  2713. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2714. del name, new_name, bid # unused
  2715. return n_dims > 1
  2716. @ModelBase.register("MiniCPMForCausalLM")
  2717. class MiniCPMModel(TextModel):
  2718. model_arch = gguf.MODEL_ARCH.MINICPM
  2719. def set_gguf_parameters(self):
  2720. super().set_gguf_parameters()
  2721. embedding_scale = float(self.hparams["scale_emb"])
  2722. self.gguf_writer.add_embedding_scale(embedding_scale)
  2723. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  2724. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  2725. self.gguf_writer.add_residual_scale(residual_scale)
  2726. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  2727. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  2728. self.gguf_writer.add_logit_scale(logit_scale)
  2729. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  2730. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2731. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2732. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2733. if rope_scaling is not None:
  2734. long_factors = rope_scaling.get('long_factor', None)
  2735. short_factors = rope_scaling.get('short_factor', None)
  2736. if long_factors is None or short_factors is None:
  2737. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2738. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2739. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2740. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2741. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2742. def set_vocab(self):
  2743. self._set_vocab_sentencepiece()
  2744. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2745. del bid # unused
  2746. n_head = self.hparams["num_attention_heads"]
  2747. n_kv_head = self.hparams.get("num_key_value_heads")
  2748. # HF models permute some of the tensors, so we need to undo that
  2749. if name.endswith(("q_proj.weight")):
  2750. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2751. if name.endswith(("k_proj.weight")):
  2752. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2753. return [(self.map_tensor_name(name), data_torch)]
  2754. @ModelBase.register("MiniCPM3ForCausalLM")
  2755. class MiniCPM3Model(TextModel):
  2756. model_arch = gguf.MODEL_ARCH.MINICPM3
  2757. def set_gguf_parameters(self):
  2758. hparams = self.hparams
  2759. self.gguf_writer.add_file_type(self.ftype)
  2760. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2761. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2762. self.gguf_writer.add_block_count(self.block_count)
  2763. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2764. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2765. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2766. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2767. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2768. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2769. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2770. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2771. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2772. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2773. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2774. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2775. if rope_scaling is not None:
  2776. rope_dims = self.hparams["qk_rope_head_dim"]
  2777. long_factors = rope_scaling.get('long_factor', None)
  2778. short_factors = rope_scaling.get('short_factor', None)
  2779. if long_factors is None or short_factors is None:
  2780. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2781. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2782. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2783. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2784. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2785. def set_vocab(self):
  2786. self._set_vocab_sentencepiece()
  2787. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2788. if n_kv_head is not None and n_head != n_kv_head:
  2789. n_head //= n_kv_head
  2790. return (
  2791. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2792. .swapaxes(1, 2)
  2793. .reshape(weights.shape)
  2794. )
  2795. @ModelBase.register("QWenLMHeadModel")
  2796. class QwenModel(TextModel):
  2797. model_arch = gguf.MODEL_ARCH.QWEN
  2798. @staticmethod
  2799. def token_bytes_to_string(b):
  2800. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2801. byte_encoder = bytes_to_unicode()
  2802. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2803. @staticmethod
  2804. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2805. parts = [bytes([b]) for b in token]
  2806. while True:
  2807. min_idx = None
  2808. min_rank = None
  2809. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2810. rank = mergeable_ranks.get(pair[0] + pair[1])
  2811. if rank is not None and (min_rank is None or rank < min_rank):
  2812. min_idx = i
  2813. min_rank = rank
  2814. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2815. break
  2816. assert min_idx is not None
  2817. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2818. return parts
  2819. def set_vocab(self):
  2820. self._set_vocab_qwen()
  2821. @ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration", "KORMoForCausalLM")
  2822. class Qwen2Model(TextModel):
  2823. model_arch = gguf.MODEL_ARCH.QWEN2
  2824. def set_vocab(self):
  2825. try:
  2826. self._set_vocab_sentencepiece()
  2827. except FileNotFoundError:
  2828. self._set_vocab_gpt2()
  2829. def set_gguf_parameters(self):
  2830. super().set_gguf_parameters()
  2831. self._try_set_pooling_type()
  2832. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2833. if self.hf_arch == "Qwen2Model":
  2834. name = f"model.{name}" # map to Qwen2ForCausalLM tensors
  2835. if "language_model." in name:
  2836. name = name.replace("language_model.", "") # for InternVL
  2837. if name.startswith("mlp") or name.startswith("multi_modal_projector") \
  2838. or name.startswith("vision_model") or name.startswith("audio_tower") \
  2839. or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector"):
  2840. # skip vision and audio tensors
  2841. return []
  2842. yield from super().modify_tensors(data_torch, name, bid)
  2843. @ModelBase.register("DreamModel")
  2844. class DreamModel(TextModel):
  2845. model_arch = gguf.MODEL_ARCH.DREAM
  2846. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2847. tokens: list[str] = []
  2848. toktypes: list[int] = []
  2849. from transformers import AutoTokenizer
  2850. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2851. vocab_dict = tokenizer.get_vocab()
  2852. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2853. assert max(vocab_dict.values()) < vocab_size
  2854. tokpre = self.get_vocab_base_pre(tokenizer)
  2855. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2856. added_vocab = tokenizer.get_added_vocab()
  2857. for i in range(vocab_size):
  2858. if i not in reverse_vocab:
  2859. tokens.append(f"[PAD{i}]")
  2860. toktypes.append(gguf.TokenType.UNUSED)
  2861. elif reverse_vocab[i] in added_vocab:
  2862. tokens.append(reverse_vocab[i])
  2863. # Check if it's a special token - treat special tokens as CONTROL tokens
  2864. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2865. if tokenizer.added_tokens_decoder[i].special:
  2866. toktypes.append(gguf.TokenType.CONTROL)
  2867. else:
  2868. toktypes.append(gguf.TokenType.USER_DEFINED)
  2869. else:
  2870. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2871. toktypes.append(gguf.TokenType.CONTROL)
  2872. else:
  2873. tokens.append(reverse_vocab[i])
  2874. toktypes.append(gguf.TokenType.NORMAL)
  2875. return tokens, toktypes, tokpre
  2876. def set_vocab(self):
  2877. try:
  2878. self._set_vocab_sentencepiece()
  2879. except FileNotFoundError:
  2880. self._set_vocab_gpt2()
  2881. def set_gguf_parameters(self):
  2882. super().set_gguf_parameters()
  2883. self._try_set_pooling_type()
  2884. # Dream models use non-causal attention for diffusion
  2885. self.gguf_writer.add_causal_attention(False)
  2886. # Add Dream-specific parameters
  2887. mask_token_id = self.hparams.get("mask_token_id")
  2888. if mask_token_id is not None:
  2889. self.gguf_writer.add_mask_token_id(mask_token_id)
  2890. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2891. # Dream model tensors should be mapped directly since it's the base model
  2892. yield from super().modify_tensors(data_torch, name, bid)
  2893. @ModelBase.register("LLaDAModelLM")
  2894. class LLaDAModel(TextModel):
  2895. model_arch = gguf.MODEL_ARCH.LLADA
  2896. undo_permute = True
  2897. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2898. tokens: list[str] = []
  2899. toktypes: list[int] = []
  2900. from transformers import AutoTokenizer
  2901. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2902. vocab_dict = tokenizer.get_vocab()
  2903. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2904. assert max(vocab_dict.values()) < vocab_size
  2905. tokpre = self.get_vocab_base_pre(tokenizer)
  2906. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2907. added_vocab = tokenizer.get_added_vocab()
  2908. for i in range(vocab_size):
  2909. if i not in reverse_vocab:
  2910. tokens.append(f"[PAD{i}]")
  2911. toktypes.append(gguf.TokenType.UNUSED)
  2912. elif reverse_vocab[i] in added_vocab:
  2913. tokens.append(reverse_vocab[i])
  2914. # Check if it's a special token - treat special tokens as CONTROL tokens
  2915. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2916. if tokenizer.added_tokens_decoder[i].special:
  2917. toktypes.append(gguf.TokenType.CONTROL)
  2918. else:
  2919. toktypes.append(gguf.TokenType.USER_DEFINED)
  2920. else:
  2921. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2922. toktypes.append(gguf.TokenType.CONTROL)
  2923. else:
  2924. tokens.append(reverse_vocab[i])
  2925. toktypes.append(gguf.TokenType.NORMAL)
  2926. return tokens, toktypes, tokpre
  2927. def set_vocab(self):
  2928. self._set_vocab_gpt2()
  2929. # LLaDA specific parameters
  2930. self.gguf_writer.add_add_bos_token(True)
  2931. def set_gguf_parameters(self):
  2932. super().set_gguf_parameters()
  2933. self._try_set_pooling_type()
  2934. # Add parameters similar to LlamaModel
  2935. hparams = self.hparams
  2936. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2937. if (rope_dim := hparams.get("head_dim")) is None:
  2938. n_heads = hparams.get("num_attention_heads", hparams.get("n_heads"))
  2939. rope_dim = hparams.get("hidden_size", hparams.get("d_model")) // n_heads
  2940. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2941. # Set context length for LLaDA
  2942. context_length = self.hparams.get("max_sequence_length", 4096)
  2943. self.gguf_writer.add_context_length(context_length)
  2944. # Set embedding length (dimension size)
  2945. embedding_length = self.hparams.get("d_model", 4096)
  2946. self.gguf_writer.add_embedding_length(embedding_length)
  2947. # Set feed forward length (MLP hidden size)
  2948. feed_forward_length = self.hparams.get("mlp_hidden_size", 12288)
  2949. self.gguf_writer.add_feed_forward_length(feed_forward_length)
  2950. # LLaDA models use non-causal attention for diffusion, similar to Dream
  2951. self.gguf_writer.add_causal_attention(False)
  2952. # LLaDA models don't shift their logits
  2953. self.gguf_writer.add_diffusion_shift_logits(False)
  2954. @staticmethod
  2955. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2956. if n_head_kv is not None and n_head != n_head_kv:
  2957. n_head = n_head_kv
  2958. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2959. .swapaxes(1, 2)
  2960. .reshape(weights.shape))
  2961. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2962. n_head = self.hparams.get("num_attention_heads", self.hparams.get("n_heads"))
  2963. n_kv_head = self.hparams.get("num_key_value_heads", self.hparams.get("n_kv_heads"))
  2964. if self.undo_permute:
  2965. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2966. data_torch = LLaDAModel.permute(data_torch, n_head, n_head)
  2967. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2968. data_torch = LLaDAModel.permute(data_torch, n_head, n_kv_head)
  2969. # LLaDA model tensors should be mapped directly since it's the base model
  2970. yield from super().modify_tensors(data_torch, name, bid)
  2971. @ModelBase.register("Ernie4_5_ForCausalLM", "Ernie4_5ForCausalLM")
  2972. class Ernie4_5Model(TextModel):
  2973. model_arch = gguf.MODEL_ARCH.ERNIE4_5
  2974. def set_vocab(self):
  2975. self._set_vocab_sentencepiece()
  2976. def set_gguf_parameters(self):
  2977. super().set_gguf_parameters()
  2978. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2979. num_heads = self.hparams["num_attention_heads"]
  2980. num_kv_heads = self.hparams["num_key_value_heads"]
  2981. if (head_dim := self.hparams.get("head_dim")) is None:
  2982. head_dim = self.hparams["hidden_size"] // num_heads
  2983. if "ernie." in name:
  2984. name = name.replace("ernie.", "model.")
  2985. # split the qkv weights
  2986. # qkv_proj shape: [(num_heads + 2 * num_kv_heads) * head_dim, hidden_size]
  2987. if "qkv_proj" in name:
  2988. name_q = name.replace("qkv_proj.weight", "q_proj.weight")
  2989. name_k = name.replace("qkv_proj.weight", "k_proj.weight")
  2990. name_v = name.replace("qkv_proj.weight", "v_proj.weight")
  2991. total_q_dim = num_heads * head_dim
  2992. total_k_dim = num_kv_heads * head_dim
  2993. total_v_dim = num_kv_heads * head_dim
  2994. q_proj_weight, k_proj_weight, v_proj_weight = data_torch.split([total_q_dim, total_k_dim, total_v_dim], dim=0)
  2995. return [
  2996. (self.map_tensor_name(name_q), q_proj_weight),
  2997. (self.map_tensor_name(name_k), k_proj_weight),
  2998. (self.map_tensor_name(name_v), v_proj_weight)
  2999. ]
  3000. # split the up_gate_proj into gate and up
  3001. # up_gate_proj shape: [2 * intermediate_size, hidden_size]
  3002. if "up_gate_proj" in name:
  3003. name_up = name.replace("up_gate_proj.weight", "up_proj.weight")
  3004. name_gate = name.replace("up_gate_proj.weight", "gate_proj.weight")
  3005. dim_half = data_torch.shape[0] // 2
  3006. gate_proj_weight, up_proj_weight = data_torch.split(dim_half, dim=0)
  3007. return [
  3008. (self.map_tensor_name(name_gate), gate_proj_weight),
  3009. (self.map_tensor_name(name_up), up_proj_weight)
  3010. ]
  3011. return [(self.map_tensor_name(name), data_torch)]
  3012. @ModelBase.register("Ernie4_5_MoeForCausalLM")
  3013. class Ernie4_5MoeModel(Ernie4_5Model):
  3014. model_arch = gguf.MODEL_ARCH.ERNIE4_5_MOE
  3015. _experts: list[dict[str, Tensor]] | None = None
  3016. def __init__(self, *args, **kwargs):
  3017. super().__init__(*args, **kwargs)
  3018. self._experts = [{} for _ in range(self.block_count)]
  3019. def set_gguf_parameters(self):
  3020. super().set_gguf_parameters()
  3021. self.gguf_writer.add_expert_count(self.hparams["moe_num_experts"])
  3022. self.gguf_writer.add_expert_used_count(self.hparams["moe_k"])
  3023. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["moe_layer_interval"])
  3024. self.gguf_writer.add_leading_dense_block_count(self.hparams["moe_layer_start_index"])
  3025. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  3026. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  3027. if (shared_expert_count := self.hparams.get('moe_num_shared_experts')) is not None:
  3028. self.gguf_writer.add_expert_shared_count(shared_expert_count)
  3029. if shared_expert_count > 0 and (shared_expert_intermediate_size := self.hparams.get('intermediate_size')) is not None and (num_key_value_heads := self.hparams.get('num_key_value_heads')) is not None:
  3030. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size // num_key_value_heads)
  3031. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3032. # Modify correction bias name as in DeepseekV2
  3033. if name.endswith("e_score_correction_bias"):
  3034. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  3035. # skip Multi-Token Prediction (MTP) layers (again, same as DeepseekV2)
  3036. match = re.match(r"model.mtp_block.(\d+)", name)
  3037. if match:
  3038. return []
  3039. # skip all other MTP tensors for now
  3040. match = re.match(r"model.mtp_emb_norm.(\d+)", name)
  3041. if match:
  3042. return []
  3043. match = re.match(r"model.mtp_hidden_norm.(\d+)", name)
  3044. if match:
  3045. return []
  3046. match = re.match(r"model.mtp_linear_proj.(\d+)", name)
  3047. if match:
  3048. return []
  3049. # process the experts separately
  3050. if name.find("mlp.experts") != -1:
  3051. n_experts = self.hparams["moe_num_experts"]
  3052. assert bid is not None
  3053. if self._experts is None:
  3054. self._experts = [{} for _ in range(self.block_count)]
  3055. self._experts[bid][name] = data_torch
  3056. if len(self._experts[bid]) >= n_experts * 3:
  3057. tensors: list[tuple[str, Tensor]] = []
  3058. # merge the experts into a single 3d tensor
  3059. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  3060. datas: list[Tensor] = []
  3061. for xid in range(n_experts):
  3062. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3063. datas.append(self._experts[bid][ename_to_retrieve])
  3064. del self._experts[bid][ename_to_retrieve]
  3065. data_torch = torch.stack(datas, dim=0)
  3066. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3067. new_name = self.map_tensor_name(merged_name)
  3068. tensors.append((new_name, data_torch))
  3069. return tensors
  3070. else:
  3071. return []
  3072. return [(self.map_tensor_name(name), data_torch)]
  3073. def prepare_tensors(self):
  3074. super().prepare_tensors()
  3075. if self._experts is not None:
  3076. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3077. experts = [k for d in self._experts for k in d.keys()]
  3078. if len(experts) > 0:
  3079. raise ValueError(f"Unprocessed experts: {experts}")
  3080. @ModelBase.register(
  3081. "Qwen2VLModel",
  3082. "Qwen2VLForConditionalGeneration",
  3083. "Qwen2_5_VLForConditionalGeneration",
  3084. "Qwen2_5OmniModel",
  3085. )
  3086. class Qwen2VLModel(TextModel):
  3087. model_arch = gguf.MODEL_ARCH.QWEN2VL
  3088. def set_gguf_parameters(self):
  3089. super().set_gguf_parameters()
  3090. def set_vocab(self):
  3091. try:
  3092. self._set_vocab_sentencepiece()
  3093. except FileNotFoundError:
  3094. self._set_vocab_gpt2()
  3095. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3096. del bid # unused
  3097. if name.startswith("thinker."):
  3098. name = name.replace("thinker.", "")
  3099. if name.startswith("visual") or name.startswith("audio") or \
  3100. name.startswith("talker") or name.startswith("token2wav"):
  3101. # skip multimodal tensors
  3102. return []
  3103. return [(self.map_tensor_name(name), data_torch)]
  3104. @ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  3105. class Qwen2VLVisionModel(MmprojModel):
  3106. def __init__(self, *args, **kwargs):
  3107. super().__init__(*args, **kwargs)
  3108. assert self.hparams_vision is not None
  3109. self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
  3110. # rename config.json values
  3111. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  3112. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  3113. if "embed_dim" in self.hparams_vision: # qwen2vl
  3114. self.hparams_vision["intermediate_size"] = self.hparams_vision.get("hidden_size")
  3115. self.hparams_vision["hidden_size"] = self.hparams_vision.get("embed_dim")
  3116. def set_gguf_parameters(self):
  3117. super().set_gguf_parameters()
  3118. assert self.hparams_vision is not None
  3119. hparams = self.hparams_vision
  3120. model_type = self.global_config['model_type']
  3121. if model_type == 'qwen2_vl':
  3122. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL)
  3123. elif model_type == 'qwen2_5_vl' or model_type == 'qwen2_5_omni':
  3124. if model_type == 'qwen2_5_omni':
  3125. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25O)
  3126. else:
  3127. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
  3128. self.gguf_writer.add_vision_use_silu(True)
  3129. # find n_wa_pattern (window attention pattern)
  3130. fullatt_block_indexes = hparams.get("fullatt_block_indexes")
  3131. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
  3132. n_wa_pattern = fullatt_block_indexes[0] + 1
  3133. # validate n_wa_pattern
  3134. for i in range(1, len(fullatt_block_indexes)):
  3135. if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
  3136. raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
  3137. self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
  3138. else:
  3139. raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
  3140. # default values below are taken from HF tranformers code
  3141. self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
  3142. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3143. if ".position_embd." in new_name:
  3144. return gguf.GGMLQuantizationType.F32
  3145. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3146. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3147. del bid # unused
  3148. if name.startswith("visual."):
  3149. # process visual tensors
  3150. # split QKV tensors if needed
  3151. if ".qkv." in name:
  3152. if data_torch.ndim == 2: # weight
  3153. c3, _ = data_torch.shape
  3154. else: # bias
  3155. c3 = data_torch.shape[0]
  3156. assert c3 % 3 == 0
  3157. c = c3 // 3
  3158. wq = data_torch[:c]
  3159. wk = data_torch[c: c * 2]
  3160. wv = data_torch[c * 2:]
  3161. return [
  3162. (self.map_tensor_name(name.replace("qkv", "q")), wq),
  3163. (self.map_tensor_name(name.replace("qkv", "k")), wk),
  3164. (self.map_tensor_name(name.replace("qkv", "v")), wv),
  3165. ]
  3166. elif 'patch_embed.proj.weight' in name:
  3167. # split Conv3D into Conv2Ds
  3168. c1, c2, kt, kh, kw = data_torch.shape
  3169. del c1, c2, kh, kw # unused
  3170. assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
  3171. return [
  3172. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
  3173. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  3174. ]
  3175. else:
  3176. return [(self.map_tensor_name(name), data_torch)]
  3177. return [] # skip other tensors
  3178. @ModelBase.register("Qwen2_5OmniModel")
  3179. class Qwen25OmniModel(Qwen2VLVisionModel):
  3180. has_vision_encoder = True
  3181. has_audio_encoder = True
  3182. def __init__(self, *args, **kwargs):
  3183. super().__init__(*args, **kwargs)
  3184. assert self.hparams_audio is not None
  3185. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  3186. self.hparams_audio["intermediate_size"] = self.hparams_audio["encoder_ffn_dim"]
  3187. self.hparams_audio["num_attention_heads"] = self.hparams_audio["encoder_attention_heads"]
  3188. def set_gguf_parameters(self):
  3189. super().set_gguf_parameters()
  3190. assert self.hparams_audio is not None
  3191. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["num_mel_bins"])
  3192. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams_audio.get("layer_norm_eps", 1e-5))
  3193. def get_vision_config(self) -> dict[str, Any] | None:
  3194. return self.global_config["thinker_config"].get("vision_config")
  3195. def get_audio_config(self) -> dict[str, Any] | None:
  3196. return self.global_config["thinker_config"].get("audio_config")
  3197. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3198. # SinusoidsPositionEmbedding
  3199. assert self.hparams_audio is not None
  3200. max_timescale = 10000
  3201. length = 1500
  3202. channels = self.hparams_audio["hidden_size"]
  3203. log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
  3204. inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2).float())
  3205. scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
  3206. pos_embd = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1).to(dtype=torch.float32)
  3207. yield ("audio_tower.embed_positions.weight", pos_embd)
  3208. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3209. if ".conv" in name and ".weight" in name:
  3210. return gguf.GGMLQuantizationType.F16
  3211. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3212. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3213. if name.startswith("thinker."):
  3214. name = name.replace("thinker.", "")
  3215. if name.startswith("audio_tower"):
  3216. # process audio tensors
  3217. if "conv1.bias" in name or "conv2.bias" in name:
  3218. # transpose conv1 and conv2 bias
  3219. data_torch = data_torch.unsqueeze(-1)
  3220. if "audio_bos_eos_token" in name:
  3221. # this tensor is left unused in transformers code
  3222. # https://github.com/huggingface/transformers/blob/6e3063422c4b1c014aa60c32b9254fd2902f0f28/src/transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py#L1809
  3223. return []
  3224. return [(self.map_tensor_name(name), data_torch)]
  3225. return super().modify_tensors(data_torch, name, bid)
  3226. @ModelBase.register("InternVisionModel")
  3227. class InternVisionModel(MmprojModel):
  3228. def set_gguf_parameters(self):
  3229. assert self.hparams_vision is not None
  3230. if isinstance(self.hparams_vision['image_size'], list):
  3231. self.hparams_vision['image_size'] = self.hparams_vision['image_size'][0]
  3232. if isinstance(self.hparams_vision['patch_size'], list):
  3233. self.hparams_vision['patch_size'] = self.hparams_vision['patch_size'][0]
  3234. super().set_gguf_parameters()
  3235. hparams = self.hparams
  3236. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
  3237. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  3238. # hidden_act
  3239. if hparams["hidden_act"] == "silu":
  3240. self.gguf_writer.add_vision_use_silu(True)
  3241. elif hparams["hidden_act"] == "gelu":
  3242. self.gguf_writer.add_vision_use_gelu(True)
  3243. else:
  3244. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  3245. # downsample_ratio
  3246. downsample_ratio = self.global_config.get("downsample_ratio")
  3247. assert downsample_ratio is not None
  3248. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
  3249. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3250. if ".position_embd." in new_name:
  3251. return gguf.GGMLQuantizationType.F32
  3252. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3253. def _mapping_interns1_name(self, name):
  3254. names_map = {
  3255. "model.multi_modal_projector.layer_norm.bias": "mlp1.0.bias",
  3256. "model.multi_modal_projector.layer_norm.weight": "mlp1.0.weight",
  3257. "model.multi_modal_projector.linear_1.bias": "mlp1.1.bias",
  3258. "model.multi_modal_projector.linear_1.weight": "mlp1.1.weight",
  3259. "model.multi_modal_projector.linear_2.bias": "mlp1.3.bias",
  3260. "model.multi_modal_projector.linear_2.weight": "mlp1.3.weight",
  3261. }
  3262. if name in names_map:
  3263. name = names_map[name]
  3264. return name
  3265. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3266. del bid # unused
  3267. vision_prefix = ['vision_model', 'mlp', 'model.vision_tower', 'model.multi_modal_projector']
  3268. # deal with intern-s1 special case
  3269. name = self._mapping_interns1_name(name)
  3270. if any([name.startswith(prefix) for prefix in vision_prefix]):
  3271. # process visual tensors
  3272. # correct name
  3273. if name.startswith("vision_model"):
  3274. name = "vision_tower." + name
  3275. if (".ls" in name or ".lambda_" in name or "position_embedding" in name) and not name.endswith(".weight"):
  3276. name += ".weight"
  3277. # split QKV tensors if needed
  3278. if ".qkv." in name:
  3279. if data_torch.ndim == 2: # weight
  3280. c3, _ = data_torch.shape
  3281. else: # bias
  3282. c3 = data_torch.shape[0]
  3283. assert c3 % 3 == 0
  3284. c = c3 // 3
  3285. wq = data_torch[:c]
  3286. wk = data_torch[c: c * 2]
  3287. wv = data_torch[c * 2:]
  3288. return [
  3289. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
  3290. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
  3291. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
  3292. ]
  3293. return [(self.map_tensor_name(name), data_torch)]
  3294. return [] # skip other tensors
  3295. @ModelBase.register("WavTokenizerDec")
  3296. class WavTokenizerDecModel(TextModel):
  3297. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  3298. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3299. del bid # unused
  3300. if \
  3301. name.endswith("codebook.cluster_size") or \
  3302. name.endswith("codebook.embed_avg") or \
  3303. name.endswith("codebook.inited"):
  3304. logger.debug(f"Skipping {name!r}")
  3305. return []
  3306. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  3307. return [(self.map_tensor_name(name), data_torch)]
  3308. def set_vocab(self):
  3309. self._set_vocab_none()
  3310. def set_gguf_parameters(self):
  3311. super().set_gguf_parameters()
  3312. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  3313. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  3314. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  3315. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  3316. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  3317. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  3318. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  3319. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  3320. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  3321. self.gguf_writer.add_causal_attention(False)
  3322. @ModelBase.register("Qwen2MoeForCausalLM")
  3323. class Qwen2MoeModel(TextModel):
  3324. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  3325. def set_gguf_parameters(self):
  3326. super().set_gguf_parameters()
  3327. if (n_experts := self.hparams.get("num_experts")) is not None:
  3328. self.gguf_writer.add_expert_count(n_experts)
  3329. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  3330. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  3331. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  3332. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  3333. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  3334. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  3335. _experts: list[dict[str, Tensor]] | None = None
  3336. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3337. # process the experts separately
  3338. name = name.replace("language_model.", "") # InternVL
  3339. # handle aggregated expert tensors
  3340. # GGUF stores dimensions reversed from PyTorch, so:
  3341. # PyTorch (A,B,C) -> GGUF writes [C,B,A] -> GGML reads ne={C,B,A}
  3342. # Input shapes from HF: (n_expert, n_ff_exp, n_embd) or (n_expert, n_embd, n_ff_exp)
  3343. # Expected GGML ne: {n_embd, n_ff_exp, n_expert} for gate/up, {n_ff_exp, n_embd, n_expert} for down
  3344. if name.endswith("mlp.experts.down_proj") or name.endswith("mlp.experts.down_proj.weight"):
  3345. mapped = f"{name}.weight" if not name.endswith(".weight") else name
  3346. # Input: (n_expert=128, n_ff_exp=768, n_embd=2048)
  3347. # Want GGML ne: {n_ff_exp, n_embd, n_expert} = {768, 2048, 128}
  3348. # Need PyTorch: (128, 2048, 768) [reversed of GGML]
  3349. # So: permute(0, 2, 1): (128, 768, 2048) -> (128, 2048, 768)
  3350. permuted = data_torch.permute(0, 2, 1).contiguous()
  3351. return [(self.map_tensor_name(mapped), permuted)]
  3352. if name.endswith("mlp.experts.gate_up_proj") or name.endswith("mlp.experts.gate_up_proj.weight"):
  3353. if data_torch.ndim < 3 or data_torch.shape[-1] % 2 != 0:
  3354. raise ValueError(f"Unexpected gate_up_proj shape for {name}: {tuple(data_torch.shape)}")
  3355. split_dim = data_torch.shape[-1] // 2
  3356. gate = data_torch[..., :split_dim].contiguous()
  3357. up = data_torch[..., split_dim:].contiguous()
  3358. # Input gate/up: (n_expert=128, n_embd=2048, n_ff_exp=768)
  3359. # Want GGML ne: {n_embd, n_ff_exp, n_expert} = {2048, 768, 128}
  3360. # Need PyTorch: (128, 768, 2048) [reversed of GGML]
  3361. # So: permute(0, 2, 1): (128, 2048, 768) -> (128, 768, 2048)
  3362. base_name = name.removesuffix(".weight")
  3363. base = base_name.rsplit('.', 1)[0]
  3364. mapped_gate = f"{base}.gate_proj.weight"
  3365. mapped_up = f"{base}.up_proj.weight"
  3366. perm_gate = gate.permute(0, 2, 1).contiguous()
  3367. perm_up = up.permute(0, 2, 1).contiguous()
  3368. return [
  3369. (self.map_tensor_name(mapped_gate), perm_gate),
  3370. (self.map_tensor_name(mapped_up), perm_up),
  3371. ]
  3372. if name.startswith("mlp") or name.startswith("vision_model") or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector") or name.startswith("model.visual"):
  3373. # skip visual tensors
  3374. return []
  3375. if name.find("experts") != -1:
  3376. n_experts = self.hparams["num_experts"]
  3377. assert bid is not None
  3378. if self._experts is None:
  3379. self._experts = [{} for _ in range(self.block_count)]
  3380. self._experts[bid][name] = data_torch
  3381. if len(self._experts[bid]) >= n_experts * 3:
  3382. tensors: list[tuple[str, Tensor]] = []
  3383. # merge the experts into a single 3d tensor
  3384. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3385. datas: list[Tensor] = []
  3386. for xid in range(n_experts):
  3387. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3388. datas.append(self._experts[bid][ename])
  3389. del self._experts[bid][ename]
  3390. data_torch = torch.stack(datas, dim=0)
  3391. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3392. new_name = self.map_tensor_name(merged_name)
  3393. tensors.append((new_name, data_torch))
  3394. return tensors
  3395. else:
  3396. return []
  3397. return [(self.map_tensor_name(name), data_torch)]
  3398. def prepare_tensors(self):
  3399. super().prepare_tensors()
  3400. if self._experts is not None:
  3401. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3402. experts = [k for d in self._experts for k in d.keys()]
  3403. if len(experts) > 0:
  3404. raise ValueError(f"Unprocessed experts: {experts}")
  3405. @ModelBase.register("Qwen3ForCausalLM")
  3406. class Qwen3Model(Qwen2Model):
  3407. model_arch = gguf.MODEL_ARCH.QWEN3
  3408. # extra logic for rerank models
  3409. is_rerank: bool = False
  3410. is_tied_embeddings: bool = False
  3411. token_false_id: int | None = None
  3412. token_true_id: int | None = None
  3413. def __init__(self, *args, **kwargs):
  3414. super().__init__(*args, **kwargs)
  3415. # track for intern-s1-mini
  3416. hparams = ModelBase.load_hparams(self.dir_model, is_mistral_format=False)
  3417. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3418. # a bit hacky, but currently the only way to detect if this is a rerank model
  3419. # ref: https://huggingface.co/Qwen/Qwen3-Reranker-0.6B
  3420. readme_path = self.dir_model / "README.md"
  3421. readme_text = ""
  3422. if readme_path.exists():
  3423. with readme_path.open("r", encoding="utf-8") as f:
  3424. readme_text = f.read()
  3425. if "# Qwen3-Reranker" in readme_text:
  3426. self._find_rerank_config()
  3427. def set_vocab(self):
  3428. # deal with intern-s1-mini
  3429. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3430. self._set_vocab_interns1()
  3431. return
  3432. super().set_vocab()
  3433. def _find_rerank_config(self):
  3434. from transformers import AutoTokenizer
  3435. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  3436. self.is_rerank = True
  3437. self.is_tied_embeddings = self.hparams.get("tie_word_embeddings", False)
  3438. self.token_false_id = tokenizer.convert_tokens_to_ids("no")
  3439. self.token_true_id = tokenizer.convert_tokens_to_ids("yes")
  3440. self.sep_token_id = tokenizer.convert_tokens_to_ids("|")
  3441. assert self.token_false_id is not None and self.token_true_id is not None
  3442. def set_gguf_parameters(self):
  3443. super().set_gguf_parameters()
  3444. if self.is_rerank:
  3445. self.gguf_writer.add_pooling_type(gguf.PoolingType.RANK)
  3446. self.gguf_writer.add_classifier_output_labels(["yes", "no"])
  3447. self.gguf_writer.add_chat_template([{
  3448. "name": "rerank",
  3449. "template": "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n"
  3450. "<|im_start|>user\n<Instruct>: Given a web search query, retrieve relevant passages that answer the query\n<Query>: {query}\n<Document>: {document}<|im_end|>\n"
  3451. "<|im_start|>assistant\n<think>\n\n</think>\n\n"
  3452. }])
  3453. def _get_cls_out_tensor(self, data_torch: Tensor) -> Tensor:
  3454. # extract "yes" and "no" tokens from the output lm_head tensor
  3455. false_row = data_torch[self.token_false_id]
  3456. true_row = data_torch[self.token_true_id]
  3457. return torch.stack([true_row, false_row], dim=0)
  3458. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3459. if "model.vision_" in name:
  3460. # skip multimodal tensors
  3461. return []
  3462. if self.is_rerank:
  3463. is_tied_head = self.is_tied_embeddings and "embed_tokens" in name
  3464. is_real_head = not self.is_tied_embeddings and "lm_head" in name
  3465. if is_tied_head or is_real_head:
  3466. cls_out_head = (
  3467. gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.CLS_OUT] + ".weight",
  3468. self._get_cls_out_tensor(data_torch),
  3469. )
  3470. if is_tied_head:
  3471. embed = (self.map_tensor_name(name), data_torch)
  3472. return [cls_out_head, embed]
  3473. if is_real_head:
  3474. return [cls_out_head]
  3475. return super().modify_tensors(data_torch, name, bid)
  3476. @ModelBase.register("Qwen3MoeForCausalLM")
  3477. class Qwen3MoeModel(Qwen2MoeModel):
  3478. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  3479. def __init__(self, *args, **kwargs):
  3480. super().__init__(*args, **kwargs)
  3481. hparams = ModelBase.load_hparams(self.dir_model, False)
  3482. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3483. def set_vocab(self):
  3484. # deal with intern-s1
  3485. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3486. self._set_vocab_interns1()
  3487. return
  3488. super().set_vocab()
  3489. @ModelBase.register("Qwen3NextForCausalLM")
  3490. class Qwen3NextModel(Qwen2MoeModel):
  3491. model_arch = gguf.MODEL_ARCH.QWEN3NEXT
  3492. def set_gguf_parameters(self):
  3493. super().set_gguf_parameters()
  3494. self.gguf_writer.add_ssm_conv_kernel(self.hparams["linear_conv_kernel_dim"])
  3495. self.gguf_writer.add_ssm_state_size(self.hparams["linear_key_head_dim"])
  3496. self.gguf_writer.add_ssm_group_count(self.hparams["linear_num_key_heads"])
  3497. self.gguf_writer.add_ssm_time_step_rank(self.hparams["linear_num_value_heads"])
  3498. self.gguf_writer.add_ssm_inner_size(self.hparams["linear_value_head_dim"] * self.hparams["linear_num_value_heads"])
  3499. if (rope_dim := self.hparams.get("head_dim")) is None:
  3500. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  3501. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.25)))
  3502. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3503. if name.startswith("mtp"):
  3504. return [] # ignore MTP layers for now
  3505. if name.endswith(".A_log"):
  3506. data_torch = -torch.exp(data_torch)
  3507. elif name.endswith(".dt_bias"):
  3508. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  3509. elif "conv1d" in name:
  3510. data_torch = data_torch.squeeze()
  3511. elif name.endswith("norm.weight") and not name.endswith("linear_attn.norm.weight"):
  3512. data_torch = data_torch + 1
  3513. yield from super().modify_tensors(data_torch, name, bid)
  3514. @ModelBase.register("RND1")
  3515. class RND1Model(Qwen2MoeModel):
  3516. model_arch = gguf.MODEL_ARCH.RND1
  3517. def set_gguf_parameters(self):
  3518. super().set_gguf_parameters()
  3519. # RND1 specific parameters
  3520. # RND1 uses bidirectional attention
  3521. self.gguf_writer.add_causal_attention(False)
  3522. if (mask_token_id := self.hparams.get("mask_token_id")) is not None:
  3523. self.gguf_writer.add_mask_token_id(mask_token_id)
  3524. @ModelBase.register("Qwen3VLForConditionalGeneration", "Qwen3VLMoeForConditionalGeneration")
  3525. class Qwen3VLVisionModel(MmprojModel):
  3526. def __init__(self, *args, **kwargs):
  3527. super().__init__(*args, **kwargs)
  3528. assert self.hparams_vision is not None
  3529. # Compute image_size if not present
  3530. if "image_size" not in self.hparams_vision:
  3531. # For Qwen3VL/Qwen3VLMoe, compute from num_position_embeddings
  3532. num_pos = self.hparams_vision.get("num_position_embeddings", 2304)
  3533. patch_size = self.hparams_vision.get("patch_size", 16)
  3534. # num_position_embeddings = (image_size / patch_size) ** 2
  3535. # So image_size = sqrt(num_position_embeddings) * patch_size
  3536. image_size = int(num_pos**0.5 * patch_size)
  3537. self.hparams_vision["image_size"] = image_size
  3538. # Rename config values for compatibility
  3539. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  3540. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  3541. self.is_deepstack_layers = [False] * int(self.hparams_vision["num_hidden_layers"] or 0)
  3542. for idx in self.hparams_vision.get("deepstack_visual_indexes", []):
  3543. self.is_deepstack_layers[idx] = True
  3544. def set_gguf_parameters(self):
  3545. super().set_gguf_parameters()
  3546. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN3VL)
  3547. self.gguf_writer.add_vision_use_gelu(True)
  3548. if self.hparams_vision is not None:
  3549. merge_size = self.hparams_vision.get("spatial_merge_size")
  3550. if merge_size is not None:
  3551. self.gguf_writer.add_vision_spatial_merge_size(int(merge_size))
  3552. # Use text config's rms_norm_eps for vision attention layernorm eps
  3553. rms_norm_eps = self.global_config.get("text_config", {}).get("rms_norm_eps", 1e-6)
  3554. self.gguf_writer.add_vision_attention_layernorm_eps(rms_norm_eps)
  3555. if self.is_deepstack_layers:
  3556. self.gguf_writer.add_vision_is_deepstack_layers(self.is_deepstack_layers)
  3557. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3558. assert self.hparams_vision is not None
  3559. # Skip text model tensors - they go in the text model file
  3560. if name.startswith("model.language_model.") or name.startswith("lm_head."):
  3561. return []
  3562. if name.startswith("model.visual."):
  3563. name = name.replace("model.visual.", "visual.", 1)
  3564. if name.startswith("visual.deepstack_merger_list."):
  3565. prefix, rest = name.split(".", maxsplit=3)[2:]
  3566. # prefix is the layer index, convert to absolute clip layer index!
  3567. idx = self.hparams_vision.get("deepstack_visual_indexes", [])[int(prefix)]
  3568. target = rest
  3569. tensor_type: gguf.MODEL_TENSOR
  3570. if target.startswith("norm."):
  3571. tensor_type = gguf.MODEL_TENSOR.V_DS_NORM
  3572. suffix = target.split(".", 1)[1]
  3573. elif target.startswith("linear_fc1."):
  3574. tensor_type = gguf.MODEL_TENSOR.V_DS_FC1
  3575. suffix = target.split(".", 1)[1]
  3576. elif target.startswith("linear_fc2."):
  3577. tensor_type = gguf.MODEL_TENSOR.V_DS_FC2
  3578. suffix = target.split(".", 1)[1]
  3579. else:
  3580. raise ValueError(f"Unexpected deepstack tensor: {name}")
  3581. new_name = self.format_tensor_name(tensor_type, idx, suffix=f".{suffix}")
  3582. return [(new_name, data_torch)]
  3583. if name.startswith("visual.merger."):
  3584. suffix = name.split(".", 2)[2]
  3585. if suffix.startswith("linear_fc"):
  3586. fc_idx_str, tail = suffix.split(".", 1)
  3587. fc_num = int(fc_idx_str.replace("linear_fc", ""))
  3588. # Qwen3VL has linear_fc1 and linear_fc2
  3589. # Map to indices 0 and 2 (matching Qwen2VL which uses indices 0 and 2)
  3590. if fc_num == 1:
  3591. fc_idx = 0
  3592. elif fc_num == 2:
  3593. fc_idx = 2
  3594. else:
  3595. raise ValueError(f"unexpected fc index {fc_num} in {name}")
  3596. new_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_MMPROJ, fc_idx, suffix=f".{tail}")
  3597. elif suffix.startswith("norm."):
  3598. new_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_POST_NORM, suffix=f".{suffix.split('.', 1)[1]}")
  3599. else:
  3600. raise ValueError(f"Unexpected merger tensor: {name}")
  3601. return [(new_name, data_torch)]
  3602. if name == "visual.patch_embed.proj.weight":
  3603. # split Conv3D into Conv2Ds along temporal dimension
  3604. c1, c2, kt, _, _ = data_torch.shape
  3605. del c1, c2
  3606. if kt != 2:
  3607. raise ValueError("Current implementation only supports temporal_patch_size of 2")
  3608. return [
  3609. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight", data_torch[:, :, 0, ...]),
  3610. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  3611. ]
  3612. if name == "visual.patch_embed.proj.bias":
  3613. # Include the bias - it's used by the C++ code
  3614. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".bias", data_torch)]
  3615. if name.startswith("visual."):
  3616. return [(self.map_tensor_name(name), data_torch)]
  3617. # Fall back to parent class for other tensors
  3618. return super().modify_tensors(data_torch, name, bid)
  3619. @ModelBase.register("Glm4vForConditionalGeneration", "Glm4vMoeForConditionalGeneration")
  3620. class Glm4VVisionModel(Qwen3VLVisionModel):
  3621. def set_gguf_parameters(self):
  3622. MmprojModel.set_gguf_parameters(self) # skip Qwen3VLVisionModel parameters
  3623. assert self.hparams_vision is not None
  3624. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GLM4V)
  3625. hidden_act = str(self.hparams_vision.get("hidden_act", "")).lower()
  3626. if hidden_act == "gelu":
  3627. self.gguf_writer.add_vision_use_gelu(True)
  3628. elif hidden_act == "silu":
  3629. self.gguf_writer.add_vision_use_silu(True)
  3630. rms_norm_eps = self.hparams_vision.get("rms_norm_eps", 1e-5)
  3631. self.gguf_writer.add_vision_attention_layernorm_eps(rms_norm_eps)
  3632. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3633. if name.startswith("model.visual."):
  3634. name = name.replace("model.visual.", "visual.")
  3635. if name.startswith("visual.merger."):
  3636. return [(self.map_tensor_name(name), data_torch)]
  3637. return super().modify_tensors(data_torch, name, bid)
  3638. @ModelBase.register("Qwen3VLForConditionalGeneration")
  3639. class Qwen3VLTextModel(Qwen3Model):
  3640. model_arch = gguf.MODEL_ARCH.QWEN3VL
  3641. def set_gguf_parameters(self):
  3642. super().set_gguf_parameters()
  3643. # Handle MRoPE (Multi-axis Rotary Position Embedding) for Qwen3-VL
  3644. vision_config = self.hparams.get("vision_config", {})
  3645. deepstack_layer_num = len(vision_config.get("deepstack_visual_indexes", []))
  3646. self.gguf_writer.add_num_deepstack_layers(deepstack_layer_num)
  3647. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3648. # Skip vision tensors - they go in the mmproj file
  3649. if name.startswith("model.visual."):
  3650. return []
  3651. return super().modify_tensors(data_torch, name, bid)
  3652. @ModelBase.register("Qwen3VLMoeForConditionalGeneration")
  3653. class Qwen3VLMoeTextModel(Qwen3MoeModel):
  3654. model_arch = gguf.MODEL_ARCH.QWEN3VLMOE
  3655. def set_gguf_parameters(self):
  3656. super().set_gguf_parameters()
  3657. vision_config = self.hparams.get("vision_config", {})
  3658. deepstack_layer_num = len(vision_config.get("deepstack_visual_indexes", []))
  3659. self.gguf_writer.add_num_deepstack_layers(deepstack_layer_num)
  3660. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3661. # Skip vision tensors - they go in the mmproj file
  3662. if name.startswith("model.visual."):
  3663. return []
  3664. return super().modify_tensors(data_torch, name, bid)
  3665. @ModelBase.register("GPT2LMHeadModel")
  3666. class GPT2Model(TextModel):
  3667. model_arch = gguf.MODEL_ARCH.GPT2
  3668. def set_gguf_parameters(self):
  3669. self.gguf_writer.add_block_count(self.block_count)
  3670. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  3671. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3672. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  3673. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3674. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3675. self.gguf_writer.add_file_type(self.ftype)
  3676. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3677. del bid # unused
  3678. tensors: list[tuple[str, Tensor]] = []
  3679. # we don't need these
  3680. if name.endswith((".attn.bias", ".attn.masked_bias")):
  3681. return tensors
  3682. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  3683. data_torch = data_torch.transpose(1, 0)
  3684. new_name = self.map_tensor_name(name)
  3685. tensors.append((new_name, data_torch))
  3686. return tensors
  3687. @ModelBase.register("PhiForCausalLM")
  3688. class Phi2Model(TextModel):
  3689. model_arch = gguf.MODEL_ARCH.PHI2
  3690. def set_gguf_parameters(self):
  3691. rot_pct = self.find_hparam(["partial_rotary_factor"])
  3692. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3693. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3694. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  3695. self.gguf_writer.add_embedding_length(n_embd)
  3696. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  3697. self.gguf_writer.add_block_count(self.block_count)
  3698. self.gguf_writer.add_head_count(n_head)
  3699. self.gguf_writer.add_head_count_kv(n_head)
  3700. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  3701. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3702. self.gguf_writer.add_file_type(self.ftype)
  3703. self.gguf_writer.add_add_bos_token(False)
  3704. @ModelBase.register("Phi3ForCausalLM")
  3705. class Phi3MiniModel(TextModel):
  3706. model_arch = gguf.MODEL_ARCH.PHI3
  3707. def set_vocab(self):
  3708. # Phi-4 model uses GPT2Tokenizer
  3709. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3710. if tokenizer_config_file.is_file():
  3711. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3712. tokenizer_config_json = json.load(f)
  3713. tokenizer_class = tokenizer_config_json['tokenizer_class']
  3714. if tokenizer_class == 'GPT2Tokenizer':
  3715. return self._set_vocab_gpt2()
  3716. from sentencepiece import SentencePieceProcessor
  3717. tokenizer_path = self.dir_model / 'tokenizer.model'
  3718. if not tokenizer_path.is_file():
  3719. raise ValueError(f'Error: Missing {tokenizer_path}')
  3720. tokenizer = SentencePieceProcessor()
  3721. tokenizer.LoadFromFile(str(tokenizer_path))
  3722. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3723. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3724. scores: list[float] = [-10000.0] * vocab_size
  3725. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3726. for token_id in range(tokenizer.vocab_size()):
  3727. piece = tokenizer.IdToPiece(token_id)
  3728. text = piece.encode("utf-8")
  3729. score = tokenizer.GetScore(token_id)
  3730. toktype = SentencePieceTokenTypes.NORMAL
  3731. if tokenizer.IsUnknown(token_id):
  3732. toktype = SentencePieceTokenTypes.UNKNOWN
  3733. elif tokenizer.IsControl(token_id):
  3734. toktype = SentencePieceTokenTypes.CONTROL
  3735. elif tokenizer.IsUnused(token_id):
  3736. toktype = SentencePieceTokenTypes.UNUSED
  3737. elif tokenizer.IsByte(token_id):
  3738. toktype = SentencePieceTokenTypes.BYTE
  3739. tokens[token_id] = text
  3740. scores[token_id] = score
  3741. toktypes[token_id] = toktype
  3742. added_tokens_file = self.dir_model / 'added_tokens.json'
  3743. if added_tokens_file.is_file():
  3744. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3745. added_tokens_json = json.load(f)
  3746. for key in added_tokens_json:
  3747. token_id = added_tokens_json[key]
  3748. if token_id >= vocab_size:
  3749. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3750. continue
  3751. tokens[token_id] = key.encode("utf-8")
  3752. scores[token_id] = -1000.0
  3753. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3754. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3755. if tokenizer_config_file.is_file():
  3756. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3757. tokenizer_config_json = json.load(f)
  3758. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  3759. for token_id, foken_data in added_tokens_decoder.items():
  3760. token_id = int(token_id)
  3761. token = foken_data["content"].encode("utf-8")
  3762. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3763. if tokens[token_id] != token:
  3764. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3765. tokens[token_id] = token
  3766. scores[token_id] = -1000.0
  3767. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3768. if foken_data.get("special"):
  3769. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3770. tokenizer_file = self.dir_model / 'tokenizer.json'
  3771. if tokenizer_file.is_file():
  3772. with open(tokenizer_file, "r", encoding="utf-8") as f:
  3773. tokenizer_json = json.load(f)
  3774. added_tokens = tokenizer_json.get("added_tokens", [])
  3775. for foken_data in added_tokens:
  3776. token_id = int(foken_data["id"])
  3777. token = foken_data["content"].encode("utf-8")
  3778. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3779. if tokens[token_id] != token:
  3780. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3781. tokens[token_id] = token
  3782. scores[token_id] = -1000.0
  3783. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3784. if foken_data.get("special"):
  3785. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3786. self.gguf_writer.add_tokenizer_model("llama")
  3787. self.gguf_writer.add_tokenizer_pre("default")
  3788. self.gguf_writer.add_token_list(tokens)
  3789. self.gguf_writer.add_token_scores(scores)
  3790. self.gguf_writer.add_token_types(toktypes)
  3791. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3792. special_vocab.add_to_gguf(self.gguf_writer)
  3793. def set_gguf_parameters(self):
  3794. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3795. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3796. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  3797. rms_eps = self.find_hparam(["rms_norm_eps"])
  3798. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3799. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3800. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3801. rope_dims = int(rot_pct * n_embd) // n_head
  3802. self.gguf_writer.add_context_length(max_pos_embds)
  3803. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  3804. self.gguf_writer.add_embedding_length(n_embd)
  3805. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  3806. self.gguf_writer.add_block_count(self.block_count)
  3807. self.gguf_writer.add_head_count(n_head)
  3808. self.gguf_writer.add_head_count_kv(n_head_kv)
  3809. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  3810. self.gguf_writer.add_rope_dimension_count(rope_dims)
  3811. self.gguf_writer.add_rope_freq_base(self.rope_parameters.get("full_attention", self.rope_parameters)["rope_theta"])
  3812. self.gguf_writer.add_file_type(self.ftype)
  3813. sliding_window = self.hparams.get("sliding_window")
  3814. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  3815. if sliding_window is None:
  3816. sliding_window = 0
  3817. self.gguf_writer.add_sliding_window(sliding_window)
  3818. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3819. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3820. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3821. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3822. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3823. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3824. rope_dims = int(rot_pct * n_embd) // n_head
  3825. # write rope scaling for long context (128k) model
  3826. rope_scaling = self.find_hparam(['rope_scaling'], True)
  3827. if rope_scaling is None:
  3828. return
  3829. scale = max_pos_embds / orig_max_pos_embds
  3830. rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
  3831. if len(rope_scaling_type) == 0:
  3832. raise KeyError('Missing the required key rope_scaling.type')
  3833. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  3834. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  3835. elif rope_scaling_type == 'yarn':
  3836. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  3837. else:
  3838. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  3839. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  3840. long_factors = rope_scaling.get('long_factor', None)
  3841. short_factors = rope_scaling.get('short_factor', None)
  3842. if long_factors is None or short_factors is None:
  3843. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  3844. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  3845. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  3846. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  3847. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  3848. @ModelBase.register("PhiMoEForCausalLM")
  3849. class PhiMoeModel(Phi3MiniModel):
  3850. model_arch = gguf.MODEL_ARCH.PHIMOE
  3851. _experts: list[dict[str, Tensor]] | None = None
  3852. def set_gguf_parameters(self):
  3853. super().set_gguf_parameters()
  3854. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  3855. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  3856. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3857. # process the experts separately
  3858. if name.find("block_sparse_moe.experts") != -1:
  3859. n_experts = self.hparams["num_local_experts"]
  3860. assert bid is not None
  3861. if self._experts is None:
  3862. self._experts = [{} for _ in range(self.block_count)]
  3863. self._experts[bid][name] = data_torch
  3864. if len(self._experts[bid]) >= n_experts * 3:
  3865. tensors: list[tuple[str, Tensor]] = []
  3866. # merge the experts into a single 3d tensor
  3867. for w_name in ["w1", "w2", "w3"]:
  3868. datas: list[Tensor] = []
  3869. for xid in range(n_experts):
  3870. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  3871. datas.append(self._experts[bid][ename])
  3872. del self._experts[bid][ename]
  3873. data_torch = torch.stack(datas, dim=0)
  3874. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  3875. new_name = self.map_tensor_name(merged_name)
  3876. tensors.append((new_name, data_torch))
  3877. return tensors
  3878. else:
  3879. return []
  3880. return [(self.map_tensor_name(name), data_torch)]
  3881. def prepare_tensors(self):
  3882. super().prepare_tensors()
  3883. if self._experts is not None:
  3884. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3885. experts = [k for d in self._experts for k in d.keys()]
  3886. if len(experts) > 0:
  3887. raise ValueError(f"Unprocessed experts: {experts}")
  3888. @ModelBase.register("PlamoForCausalLM")
  3889. class PlamoModel(TextModel):
  3890. model_arch = gguf.MODEL_ARCH.PLAMO
  3891. def set_vocab(self):
  3892. self._set_vocab_sentencepiece()
  3893. def set_gguf_parameters(self):
  3894. hparams = self.hparams
  3895. self.gguf_writer.add_context_length(4096) # not in config.json
  3896. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3897. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3898. self.gguf_writer.add_block_count(self.block_count)
  3899. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3900. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  3901. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  3902. self.gguf_writer.add_file_type(self.ftype)
  3903. def shuffle_attn_q_weight(self, data_torch):
  3904. assert data_torch.size() == (5120, 5120)
  3905. data_torch = data_torch.reshape(8, 5, 128, 5120)
  3906. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  3907. data_torch = torch.reshape(data_torch, (5120, 5120))
  3908. return data_torch
  3909. def shuffle_attn_output_weight(self, data_torch):
  3910. assert data_torch.size() == (5120, 5120)
  3911. data_torch = data_torch.reshape(5120, 8, 5, 128)
  3912. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  3913. data_torch = torch.reshape(data_torch, (5120, 5120))
  3914. return data_torch
  3915. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3916. del bid # unused
  3917. new_name = self.map_tensor_name(name)
  3918. # shuffle for broadcasting of gqa in ggml_mul_mat
  3919. if new_name.endswith("attn_q.weight"):
  3920. data_torch = self.shuffle_attn_q_weight(data_torch)
  3921. elif new_name.endswith("attn_output.weight"):
  3922. data_torch = self.shuffle_attn_output_weight(data_torch)
  3923. return [(new_name, data_torch)]
  3924. @ModelBase.register("Plamo2ForCausalLM", "PLaMo2ForCausalLM")
  3925. class Plamo2Model(TextModel):
  3926. model_arch = gguf.MODEL_ARCH.PLAMO2
  3927. def set_vocab(self):
  3928. # PLaMo 2 uses a custom tokenizer with a .jsonl file
  3929. # We need to handle this specially
  3930. tokenizer_jsonl_path = self.dir_model / "tokenizer.jsonl"
  3931. tokenizer_config_path = self.dir_model / "tokenizer_config.json"
  3932. if not tokenizer_jsonl_path.is_file():
  3933. raise FileNotFoundError(f"PLaMo 2 tokenizer file not found: {tokenizer_jsonl_path}")
  3934. # Load tokenizer config
  3935. with open(tokenizer_config_path, 'r', encoding='utf-8') as f:
  3936. tokenizer_config = json.load(f)
  3937. # Load tokens from JSONL file (actually a list format)
  3938. tokens = []
  3939. scores = []
  3940. toktypes = []
  3941. with open(tokenizer_jsonl_path, 'r', encoding='utf-8') as f:
  3942. for line_num, line in enumerate(f):
  3943. if line.strip():
  3944. token_data = json.loads(line)
  3945. # Format: [token, score, type, ?, ?, ?, ?]
  3946. token = token_data[0].encode("utf-8")
  3947. score = float(token_data[1])
  3948. token_type_str = token_data[2] if len(token_data) > 2 else "NORMAL"
  3949. tokens.append(token)
  3950. scores.append(score)
  3951. # Map token type strings to GGUF token types
  3952. if token_type_str == "UNKNOWN":
  3953. toktypes.append(gguf.TokenType.UNKNOWN)
  3954. elif token_type_str == "CONTROL":
  3955. toktypes.append(gguf.TokenType.CONTROL)
  3956. elif token_type_str == "BYTE":
  3957. toktypes.append(gguf.TokenType.BYTE)
  3958. else:
  3959. # Check for PLaMo-2 special tokens
  3960. token_str = token_data[0]
  3961. if token_str.startswith("<|plamo:") and token_str.endswith("|>"):
  3962. toktypes.append(gguf.TokenType.CONTROL)
  3963. else:
  3964. toktypes.append(gguf.TokenType.NORMAL)
  3965. vocab_size = self.hparams["vocab_size"]
  3966. if vocab_size > len(tokens):
  3967. pad_count = vocab_size - len(tokens)
  3968. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3969. for i in range(1, pad_count + 1):
  3970. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3971. scores.append(-1000.0)
  3972. toktypes.append(gguf.TokenType.UNUSED)
  3973. # Use "plamo2" tokenizer type for PLaMo-2's custom Aho-Corasick tokenizer
  3974. self.gguf_writer.add_tokenizer_model("plamo2")
  3975. self.gguf_writer.add_tokenizer_pre("default")
  3976. self.gguf_writer.add_token_list(tokens)
  3977. self.gguf_writer.add_token_scores(scores)
  3978. self.gguf_writer.add_token_types(toktypes)
  3979. # Add special tokens from config
  3980. if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] is not None:
  3981. token_id = tokens.index(tokenizer_config["bos_token"].encode("utf-8"))
  3982. self.gguf_writer.add_bos_token_id(token_id)
  3983. if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] is not None:
  3984. token_id = tokens.index(tokenizer_config["eos_token"].encode("utf-8"))
  3985. self.gguf_writer.add_eos_token_id(token_id)
  3986. if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] is not None:
  3987. token_id = tokens.index(tokenizer_config["pad_token"].encode("utf-8"))
  3988. self.gguf_writer.add_pad_token_id(token_id)
  3989. if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] is not None:
  3990. token_id = tokens.index(tokenizer_config["sep_token"].encode("utf-8"))
  3991. self.gguf_writer.add_sep_token_id(token_id)
  3992. if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] is not None:
  3993. token_id = tokens.index(tokenizer_config["unk_token"].encode("utf-8"))
  3994. self.gguf_writer.add_unk_token_id(token_id)
  3995. # Add <|plamo:op|> as EOT to ensure appropriate end of generation
  3996. self.gguf_writer.add_eot_token_id(4)
  3997. self.gguf_writer.add_add_space_prefix(False)
  3998. def set_gguf_parameters(self):
  3999. hparams = self.hparams
  4000. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  4001. # Which layers are Mamba layers
  4002. # PLaMo 2 uses mamba_step to indicate the pattern (e.g., 2 means every other layer)
  4003. # This logic matches modeling_plamo.py's is_mamba function
  4004. mamba_step = hparams.get("mamba_step", 2)
  4005. mamba_enabled = hparams.get("mamba_enabled", True)
  4006. num_key_value_heads = []
  4007. num_attention_heads = []
  4008. if mamba_enabled:
  4009. for i in range(self.block_count):
  4010. if self.block_count <= (mamba_step // 2):
  4011. # use attention in last layer
  4012. is_mamba = (i != self.block_count - 1)
  4013. else:
  4014. is_mamba = (i % mamba_step) != (mamba_step // 2)
  4015. if is_mamba:
  4016. num_key_value_heads.append(0)
  4017. num_attention_heads.append(0)
  4018. else:
  4019. num_key_value_heads.append(hparams.get("num_key_value_heads", 4))
  4020. num_attention_heads.append(hparams.get("num_attention_heads", 32))
  4021. if num_key_value_heads and num_attention_heads:
  4022. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  4023. self.gguf_writer.add_head_count(num_attention_heads)
  4024. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 2048))
  4025. self.gguf_writer.add_embedding_length(hparams.get("hidden_size", 4096))
  4026. self.gguf_writer.add_key_length(hparams.get("hidden_size_per_head", 128))
  4027. self.gguf_writer.add_value_length(hparams.get("hidden_size_per_head", 128))
  4028. self.gguf_writer.add_block_count(self.block_count)
  4029. self.gguf_writer.add_layer_norm_rms_eps(hparams.get("rms_norm_eps", 1e-06))
  4030. self.gguf_writer.add_rope_freq_base(self.rope_parameters.get("rope_theta", 10000))
  4031. # Mamba parameters
  4032. self.gguf_writer.add_ssm_state_size(hparams.get("mamba_d_state", 64))
  4033. self.gguf_writer.add_ssm_conv_kernel(hparams.get("mamba_d_conv", 4))
  4034. self.gguf_writer.add_ssm_time_step_rank(hparams.get("mamba_num_heads", 64))
  4035. intermediate_size = hparams.get("mamba_num_heads", 64) * hparams.get("hidden_size_per_head", 128)
  4036. self.gguf_writer.add_ssm_inner_size(intermediate_size)
  4037. self.gguf_writer.add_ssm_group_count(0)
  4038. # MLP feed forward parameters (for attention layers)
  4039. self.gguf_writer.add_feed_forward_length(hparams.get("intermediate_size", 13312))
  4040. self.gguf_writer.add_file_type(self.ftype)
  4041. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4042. del bid # unused
  4043. if name.endswith(".A_log"):
  4044. data_torch = -torch.exp(data_torch)
  4045. elif name.endswith(".dt_bias"):
  4046. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  4047. elif name.endswith(".dt_norm_weight"):
  4048. name = name.rpartition(".dt_norm_weight")[0] + ".dt_norm.weight"
  4049. elif name.endswith(".B_norm_weight"):
  4050. name = name.rpartition(".B_norm_weight")[0] + ".B_norm.weight"
  4051. elif name.endswith(".C_norm_weight"):
  4052. name = name.rpartition(".C_norm_weight")[0] + ".C_norm.weight"
  4053. elif name.endswith(".k_weight"):
  4054. name = name.rpartition(".k_weight")[0] + ".k.weight"
  4055. elif name.endswith(".q_weight"):
  4056. name = name.rpartition(".q_weight")[0] + ".q.weight"
  4057. elif name.endswith(".conv1d.weight"):
  4058. data_torch = torch.squeeze(data_torch) # remove (, 1, )
  4059. assert data_torch.ndim == 2
  4060. elif name.endswith(".pre_mixer_norm.weight"):
  4061. data_torch += 1.0
  4062. elif name.endswith(".post_mixer_norm.weight"):
  4063. data_torch += 1.0 / 5
  4064. elif name.endswith(".pre_mlp_norm.weight"):
  4065. data_torch += 1.0
  4066. elif name.endswith(".post_mlp_norm.weight"):
  4067. data_torch += 1.0 / (5**1.5)
  4068. elif name.endswith(".norm.weight"):
  4069. data_torch += 1.0
  4070. new_name = self.map_tensor_name(name)
  4071. return [(new_name, data_torch)]
  4072. @ModelBase.register("CodeShellForCausalLM")
  4073. class CodeShellModel(TextModel):
  4074. model_arch = gguf.MODEL_ARCH.CODESHELL
  4075. def set_gguf_parameters(self):
  4076. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  4077. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  4078. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  4079. self.gguf_writer.add_block_count(self.block_count)
  4080. self.gguf_writer.add_head_count(self.hparams["n_head"])
  4081. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  4082. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4083. self.gguf_writer.add_file_type(self.ftype)
  4084. self.gguf_writer.add_rope_freq_base(10000.0)
  4085. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4086. self.gguf_writer.add_rope_scaling_factor(1.0)
  4087. @ModelBase.register("InternLM2ForCausalLM")
  4088. class InternLM2Model(TextModel):
  4089. model_arch = gguf.MODEL_ARCH.INTERNLM2
  4090. def set_vocab(self):
  4091. # (TODO): Is there a better way?
  4092. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  4093. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  4094. # recognized as an empty string in C++.
  4095. from sentencepiece import SentencePieceProcessor
  4096. from sentencepiece import sentencepiece_model_pb2 as model
  4097. tokenizer_path = self.dir_model / 'tokenizer.model'
  4098. tokens: list[bytes] = []
  4099. scores: list[float] = []
  4100. toktypes: list[int] = []
  4101. if not tokenizer_path.is_file():
  4102. logger.error(f'Error: Missing {tokenizer_path}')
  4103. sys.exit(1)
  4104. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4105. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4106. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4107. tokenizer = SentencePieceProcessor()
  4108. tokenizer.LoadFromFile(str(tokenizer_path))
  4109. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4110. for token_id in range(vocab_size):
  4111. piece = tokenizer.IdToPiece(token_id)
  4112. text = piece.encode("utf-8")
  4113. score = tokenizer.GetScore(token_id)
  4114. if text == b"\x00":
  4115. # (TODO): fixme
  4116. # Hack here and replace the \x00 characters.
  4117. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  4118. text = "🐉".encode("utf-8")
  4119. toktype = SentencePieceTokenTypes.NORMAL
  4120. if tokenizer.IsUnknown(token_id):
  4121. toktype = SentencePieceTokenTypes.UNKNOWN
  4122. elif tokenizer.IsControl(token_id):
  4123. toktype = SentencePieceTokenTypes.CONTROL
  4124. elif tokenizer.IsUnused(token_id):
  4125. toktype = SentencePieceTokenTypes.UNUSED
  4126. elif tokenizer.IsByte(token_id):
  4127. toktype = SentencePieceTokenTypes.BYTE
  4128. # take care of ununsed raw token
  4129. if piece.startswith('[UNUSED'):
  4130. toktype = SentencePieceTokenTypes.UNUSED
  4131. tokens.append(text)
  4132. scores.append(score)
  4133. toktypes.append(toktype)
  4134. added_tokens_file = self.dir_model / 'added_tokens.json'
  4135. if added_tokens_file.is_file():
  4136. with open(added_tokens_file, "r", encoding="utf-8") as f:
  4137. added_tokens_json = json.load(f)
  4138. for key in added_tokens_json:
  4139. tokens.append(key.encode("utf-8"))
  4140. scores.append(-1000.0)
  4141. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  4142. chat_eos_token = '<|im_end|>'
  4143. chat_eos_token_id = None
  4144. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4145. if tokenizer_config_file.is_file():
  4146. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4147. tokenizer_config_json = json.load(f)
  4148. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  4149. for token_id, foken_data in added_tokens_decoder.items():
  4150. token_id = int(token_id)
  4151. token = foken_data["content"]
  4152. if token == chat_eos_token:
  4153. chat_eos_token_id = token_id
  4154. token = token.encode("utf-8")
  4155. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  4156. if tokens[token_id] != token:
  4157. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  4158. tokens[token_id] = token
  4159. scores[token_id] = -1000.0
  4160. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4161. if foken_data.get("special"):
  4162. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  4163. tokenizer_file = self.dir_model / 'tokenizer.json'
  4164. if tokenizer_file.is_file():
  4165. with open(tokenizer_file, "r", encoding="utf-8") as f:
  4166. tokenizer_json = json.load(f)
  4167. added_tokens = tokenizer_json.get("added_tokens", [])
  4168. for foken_data in added_tokens:
  4169. token_id = int(foken_data["id"])
  4170. token = foken_data["content"]
  4171. if token == chat_eos_token:
  4172. chat_eos_token_id = token_id
  4173. token = token.encode("utf-8")
  4174. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  4175. if tokens[token_id] != token:
  4176. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  4177. tokens[token_id] = token
  4178. scores[token_id] = -1000.0
  4179. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4180. if foken_data.get("special"):
  4181. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  4182. self.gguf_writer.add_tokenizer_model("llama")
  4183. self.gguf_writer.add_tokenizer_pre("default")
  4184. self.gguf_writer.add_token_list(tokens)
  4185. self.gguf_writer.add_token_scores(scores)
  4186. self.gguf_writer.add_token_types(toktypes)
  4187. self.gguf_writer.add_add_space_prefix(add_prefix)
  4188. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4189. old_eos = special_vocab.special_token_ids["eos"]
  4190. if chat_eos_token_id is not None:
  4191. # For the chat model, we replace the eos with '<|im_end|>'.
  4192. # TODO: this is a hack, should be fixed
  4193. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  4194. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  4195. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  4196. " in chat mode so that the conversation can end normally.")
  4197. special_vocab.add_to_gguf(self.gguf_writer)
  4198. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4199. num_heads = self.hparams["num_attention_heads"]
  4200. num_kv_heads = self.hparams["num_key_value_heads"]
  4201. n_embd = self.hparams["hidden_size"]
  4202. q_per_kv = num_heads // num_kv_heads
  4203. head_dim = n_embd // num_heads
  4204. num_groups = num_heads // q_per_kv
  4205. name = name.replace("language_model.", "") # InternVL
  4206. if name.startswith("mlp") or name.startswith("vision_model"):
  4207. # skip visual tensors
  4208. return []
  4209. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  4210. qkv = data_torch
  4211. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  4212. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  4213. # The model weights of q and k equire additional reshape.
  4214. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  4215. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  4216. v = v.reshape((-1, v.shape[-1]))
  4217. return [
  4218. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  4219. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  4220. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  4221. ]
  4222. else:
  4223. return [(self.map_tensor_name(name), data_torch)]
  4224. @ModelBase.register("InternLM3ForCausalLM")
  4225. class InternLM3Model(TextModel):
  4226. model_arch = gguf.MODEL_ARCH.LLAMA
  4227. def set_vocab(self):
  4228. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  4229. self.gguf_writer.add_tokenizer_model("llama")
  4230. self.gguf_writer.add_tokenizer_pre("default")
  4231. self.gguf_writer.add_token_list(tokens)
  4232. self.gguf_writer.add_token_scores(scores)
  4233. self.gguf_writer.add_token_types(toktypes)
  4234. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4235. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4236. if tokenizer_config_file.is_file():
  4237. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4238. tokenizer_config_json = json.load(f)
  4239. if "add_prefix_space" in tokenizer_config_json:
  4240. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  4241. if "added_tokens_decoder" in tokenizer_config_json:
  4242. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  4243. if token_data.get("special"):
  4244. token_id = int(token_id)
  4245. token = token_data["content"]
  4246. special_vocab._set_special_token(token, token_id)
  4247. # update eos token
  4248. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  4249. special_vocab.special_token_ids["eos"] = token_id
  4250. special_vocab.add_to_gguf(self.gguf_writer)
  4251. def set_gguf_parameters(self):
  4252. super().set_gguf_parameters()
  4253. hparams = self.hparams
  4254. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4255. if (rope_dim := hparams.get("head_dim")) is None:
  4256. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  4257. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4258. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4259. n_head = self.hparams["num_attention_heads"]
  4260. n_kv_head = self.hparams.get("num_key_value_heads")
  4261. name = name.replace("language_model.", "") # InternVL
  4262. if name.startswith("mlp") or name.startswith("vision_model"):
  4263. # skip visual tensors
  4264. return []
  4265. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4266. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4267. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4268. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4269. return [(self.map_tensor_name(name), data_torch)]
  4270. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel", "BertForSequenceClassification")
  4271. class BertModel(TextModel):
  4272. model_arch = gguf.MODEL_ARCH.BERT
  4273. def __init__(self, *args, **kwargs):
  4274. super().__init__(*args, **kwargs)
  4275. self.vocab_size = None
  4276. if cls_out_labels := self.hparams.get("id2label"):
  4277. if len(cls_out_labels) == 2 and cls_out_labels[0] == "LABEL_0":
  4278. # Remove dummy labels added by AutoConfig
  4279. cls_out_labels = None
  4280. self.cls_out_labels = cls_out_labels
  4281. def set_gguf_parameters(self):
  4282. super().set_gguf_parameters()
  4283. self.gguf_writer.add_causal_attention(False)
  4284. self._try_set_pooling_type()
  4285. if self.cls_out_labels:
  4286. self.gguf_writer.add_classifier_output_labels([v for k, v in sorted(self.cls_out_labels.items())])
  4287. def set_vocab(self):
  4288. tokens, toktypes, tokpre = self.get_vocab_base()
  4289. self.vocab_size = len(tokens)
  4290. # we need this to validate the size of the token_type embeddings
  4291. # though currently we are passing all zeros to the token_type embeddings
  4292. # "Sequence A" or "Sequence B"
  4293. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4294. # convert to phantom space vocab
  4295. def phantom(tok):
  4296. if tok.startswith("[") and tok.endswith("]"):
  4297. return tok
  4298. if tok.startswith("##"):
  4299. return tok[2:]
  4300. return "\u2581" + tok
  4301. tokens = list(map(phantom, tokens))
  4302. # add vocab to gguf
  4303. self.gguf_writer.add_tokenizer_model("bert")
  4304. self.gguf_writer.add_tokenizer_pre(tokpre)
  4305. self.gguf_writer.add_token_list(tokens)
  4306. self.gguf_writer.add_token_types(toktypes)
  4307. # handle special tokens
  4308. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4309. special_vocab.add_to_gguf(self.gguf_writer)
  4310. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4311. del bid # unused
  4312. if name.startswith("bert."):
  4313. name = name[5:]
  4314. if name.endswith(".gamma"):
  4315. name = name[:-6] + ".weight"
  4316. if name.endswith(".beta"):
  4317. name = name[:-5] + ".bias"
  4318. # we are only using BERT for embeddings so we don't need the pooling layer
  4319. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  4320. return [] # we don't need these
  4321. if name.startswith("cls.predictions"):
  4322. return []
  4323. if name.startswith("cls.seq_relationship"):
  4324. return []
  4325. if self.cls_out_labels:
  4326. # For BertForSequenceClassification (direct projection layer)
  4327. if name == "classifier.weight":
  4328. name = "classifier.out_proj.weight"
  4329. if name == "classifier.bias":
  4330. name = "classifier.out_proj.bias"
  4331. return [(self.map_tensor_name(name), data_torch)]
  4332. def _xlmroberta_tokenizer_init(self) -> None:
  4333. # we need the pad_token_id to know how to chop down position_embd matrix
  4334. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  4335. self._position_offset = 1 + pad_token_id
  4336. if "max_position_embeddings" in self.hparams:
  4337. self.hparams["max_position_embeddings"] -= self._position_offset
  4338. else:
  4339. self._position_offset = None
  4340. def _xlmroberta_set_vocab(self) -> None:
  4341. # to avoid TypeError: Descriptors cannot be created directly
  4342. # exception when importing sentencepiece_model_pb2
  4343. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  4344. from sentencepiece import SentencePieceProcessor
  4345. from sentencepiece import sentencepiece_model_pb2 as model
  4346. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  4347. tokenizer_json = {}
  4348. tokenizer_config_json = {}
  4349. if not tokenizer_path.is_file():
  4350. tokenizer_path = self.dir_model / 'tokenizer.json'
  4351. tokenizer_config_path = self.dir_model / 'tokenizer_config.json'
  4352. if not tokenizer_path.is_file():
  4353. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  4354. from base64 import b64decode
  4355. from transformers import AutoTokenizer
  4356. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  4357. with open(tokenizer_path, "r", encoding="utf-8") as fp:
  4358. tokenizer_json = json.load(fp)
  4359. if tokenizer_config_path.is_file():
  4360. with open(tokenizer_config_path, "r", encoding="utf-8") as fp:
  4361. tokenizer_config_json = json.load(fp)
  4362. add_prefix = tokenizer.add_prefix_space
  4363. remove_whitespaces = tokenizer.clean_up_tokenization_spaces
  4364. precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])
  4365. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size)
  4366. else:
  4367. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4368. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4369. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  4370. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4371. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4372. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  4373. tokenizer = SentencePieceProcessor()
  4374. tokenizer.LoadFromFile(str(tokenizer_path))
  4375. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size())
  4376. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4377. scores: list[float] = [-10000.0] * vocab_size
  4378. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4379. if isinstance(tokenizer, SentencePieceProcessor):
  4380. for token_id in range(tokenizer.vocab_size()):
  4381. piece = tokenizer.IdToPiece(token_id)
  4382. text = piece.encode("utf-8")
  4383. score = tokenizer.GetScore(token_id)
  4384. toktype = SentencePieceTokenTypes.NORMAL
  4385. if tokenizer.IsUnknown(token_id):
  4386. toktype = SentencePieceTokenTypes.UNKNOWN
  4387. elif tokenizer.IsControl(token_id):
  4388. toktype = SentencePieceTokenTypes.CONTROL
  4389. elif tokenizer.IsUnused(token_id):
  4390. toktype = SentencePieceTokenTypes.UNUSED
  4391. elif tokenizer.IsByte(token_id):
  4392. toktype = SentencePieceTokenTypes.BYTE
  4393. tokens[token_id] = text
  4394. scores[token_id] = score
  4395. toktypes[token_id] = toktype
  4396. else:
  4397. added_vocab = tokenizer.get_added_vocab()
  4398. unk_token = tokenizer_config_json.get("unk_token")
  4399. unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))
  4400. for token_id in range(tokenizer.vocab_size):
  4401. piece = tokenizer._convert_id_to_token(token_id)
  4402. if (piece := tokenizer._convert_id_to_token(token_id)) is not None:
  4403. text = piece.encode("utf-8")
  4404. score = tokenizer_json["model"]["vocab"][token_id][1]
  4405. toktype = SentencePieceTokenTypes.NORMAL
  4406. if token_id == unk_token_id:
  4407. toktype = SentencePieceTokenTypes.UNKNOWN
  4408. elif token_id in tokenizer.all_special_ids:
  4409. toktype = SentencePieceTokenTypes.CONTROL
  4410. elif token_id in added_vocab.values():
  4411. toktype = SentencePieceTokenTypes.USER_DEFINED
  4412. # No reliable way to detect this, but jina doesn't have any
  4413. # elif tokenizer.IsByte(token_id):
  4414. # toktype = SentencePieceTokenTypes.BYTE
  4415. tokens[token_id] = text
  4416. scores[token_id] = score
  4417. toktypes[token_id] = toktype
  4418. if isinstance(tokenizer, SentencePieceProcessor):
  4419. # realign tokens (see HF tokenizer code)
  4420. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  4421. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  4422. toktypes = [
  4423. SentencePieceTokenTypes.CONTROL,
  4424. SentencePieceTokenTypes.CONTROL,
  4425. SentencePieceTokenTypes.CONTROL,
  4426. SentencePieceTokenTypes.UNKNOWN,
  4427. ] + toktypes[3:-1]
  4428. if self.model_arch == gguf.MODEL_ARCH.NOMIC_BERT_MOE:
  4429. # Add mask token missing from sentencepiece.bpe.model
  4430. tokens[250001] = b'<mask>'
  4431. scores[250001] = 0.0
  4432. toktypes[250001] = SentencePieceTokenTypes.CONTROL
  4433. self.gguf_writer.add_tokenizer_model("t5")
  4434. self.gguf_writer.add_tokenizer_pre("default")
  4435. self.gguf_writer.add_token_list(tokens)
  4436. self.gguf_writer.add_token_scores(scores)
  4437. self.gguf_writer.add_token_types(toktypes)
  4438. self.gguf_writer.add_add_space_prefix(add_prefix)
  4439. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4440. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  4441. if precompiled_charsmap:
  4442. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  4443. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4444. special_vocab.add_to_gguf(self.gguf_writer)
  4445. @ModelBase.register("DistilBertModel", "DistilBertForMaskedLM", "DistilBertForSequenceClassification")
  4446. class DistilBertModel(BertModel):
  4447. model_arch = gguf.MODEL_ARCH.BERT
  4448. def set_gguf_parameters(self):
  4449. self.gguf_writer.add_layer_norm_eps(1e-12)
  4450. logger.info("gguf: layer norm epsilon = 1e-12")
  4451. super().set_gguf_parameters()
  4452. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4453. if name.startswith("distilbert."):
  4454. name = name[11:]
  4455. # These layers act as MLM head, so we don't need them
  4456. if name.startswith("vocab_"):
  4457. return []
  4458. return super().modify_tensors(data_torch, name, bid)
  4459. @ModelBase.register("RobertaModel", "RobertaForSequenceClassification")
  4460. class RobertaModel(BertModel):
  4461. model_arch = gguf.MODEL_ARCH.BERT
  4462. def __init__(self, *args, **kwargs):
  4463. super().__init__(*args, **kwargs)
  4464. # we need the pad_token_id to know how to chop down position_embd matrix
  4465. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  4466. self._position_offset = 1 + pad_token_id
  4467. if "max_position_embeddings" in self.hparams:
  4468. self.hparams["max_position_embeddings"] -= self._position_offset
  4469. else:
  4470. self._position_offset = None
  4471. def set_vocab(self):
  4472. """Support BPE tokenizers for roberta models"""
  4473. bpe_tok_path = self.dir_model / "tokenizer.json"
  4474. if bpe_tok_path.exists():
  4475. self._set_vocab_gpt2()
  4476. # we need this to validate the size of the token_type embeddings
  4477. # though currently we are passing all zeros to the token_type embeddings
  4478. # "Sequence A" or "Sequence B"
  4479. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4480. else:
  4481. return super().set_vocab()
  4482. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4483. # if name starts with "roberta.", remove the prefix
  4484. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4485. if name.startswith("roberta."):
  4486. name = name[8:]
  4487. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4488. if name == "embeddings.position_embeddings.weight":
  4489. if self._position_offset is not None:
  4490. data_torch = data_torch[self._position_offset:,:]
  4491. return super().modify_tensors(data_torch, name, bid)
  4492. @ModelBase.register("NomicBertModel")
  4493. class NomicBertModel(BertModel):
  4494. model_arch = gguf.MODEL_ARCH.BERT
  4495. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4496. hparams = kwargs.pop("hparams", None)
  4497. if hparams is None:
  4498. hparams = ModelBase.load_hparams(dir_model, False)
  4499. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  4500. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  4501. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4502. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  4503. if self._tokenizer_is_xlmroberta:
  4504. self._xlmroberta_tokenizer_init()
  4505. npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
  4506. if npos == 8192 and mtp == 2048:
  4507. self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
  4508. elif npos == 2048 and mtp == 2048:
  4509. self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
  4510. else:
  4511. raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
  4512. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  4513. # this doesn't do anything in the HF version
  4514. assert self.hparams["causal"] is False
  4515. # no bias tensors unless MoE
  4516. assert self.hparams["qkv_proj_bias"] == self.is_moe
  4517. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  4518. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  4519. # norm at end of layer
  4520. assert self.hparams["prenorm"] is False
  4521. # standard RoPE
  4522. assert self.hparams["rotary_emb_fraction"] == 1.0
  4523. assert self.hparams["rotary_emb_interleaved"] is False
  4524. assert self.hparams["rotary_emb_scale_base"] is None
  4525. def set_vocab(self) -> None:
  4526. if self._tokenizer_is_xlmroberta:
  4527. return self._xlmroberta_set_vocab()
  4528. return super().set_vocab()
  4529. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  4530. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  4531. if "mlp.experts.bias" in name:
  4532. return [] # Explicitly return an empty list.
  4533. if "mlp.experts.mlp.w1" in name:
  4534. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4535. name += ".weight"
  4536. if "mlp.experts.mlp.w2" in name:
  4537. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4538. data_torch = data_torch.transpose(1, 2)
  4539. name += ".weight"
  4540. return [(self.map_tensor_name(name), data_torch)]
  4541. def set_gguf_parameters(self):
  4542. super().set_gguf_parameters()
  4543. if self.is_moe:
  4544. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  4545. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  4546. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  4547. def _is_tokenizer_xlmroberta(self) -> bool:
  4548. with open(self.dir_model / "tokenizer.json") as f:
  4549. tokenizer_json = json.load(f)
  4550. toktyp = tokenizer_json["model"]["type"]
  4551. if toktyp == "Unigram":
  4552. return True
  4553. if toktyp == "WordPiece":
  4554. return False
  4555. raise ValueError(f"unknown tokenizer: {toktyp}")
  4556. @ModelBase.register("NeoBERT", "NeoBERTLMHead", "NeoBERTForSequenceClassification")
  4557. class NeoBert(BertModel):
  4558. model_arch = gguf.MODEL_ARCH.NEO_BERT
  4559. def set_gguf_parameters(self):
  4560. super().set_gguf_parameters()
  4561. # NeoBERT uses 2/3 of the intermediate size as feed forward length
  4562. self.gguf_writer.add_feed_forward_length(int(2 * self.hparams["intermediate_size"] / 3))
  4563. self.gguf_writer.add_rope_freq_base(10000.0) # default value for NeoBERT
  4564. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4565. f_rms_eps = self.hparams.get("norm_eps", 1e-6) # default value for NeoBERT
  4566. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  4567. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  4568. self.gguf_writer.add_pooling_type(gguf.PoolingType.CLS) # https://huggingface.co/chandar-lab/NeoBERT#how-to-use
  4569. def modify_tensors(self, data_torch, name, bid):
  4570. if name.startswith("decoder."):
  4571. return []
  4572. if name.startswith("model."):
  4573. name = name[6:]
  4574. return super().modify_tensors(data_torch, name, bid)
  4575. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  4576. class XLMRobertaModel(BertModel):
  4577. model_arch = gguf.MODEL_ARCH.BERT
  4578. _lora_files = {}
  4579. _lora_names = []
  4580. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4581. hparams = kwargs.pop("hparams", None)
  4582. if hparams is None:
  4583. hparams = ModelBase.load_hparams(dir_model, False)
  4584. if lora_names := hparams.get("lora_adaptations"):
  4585. self._lora_names = lora_names
  4586. self.model_arch = gguf.MODEL_ARCH.JINA_BERT_V3
  4587. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4588. self._xlmroberta_tokenizer_init()
  4589. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4590. if self._lora_names:
  4591. for name in self._lora_names:
  4592. fname = self.add_prefix_to_filename(self.fname_out, f"lora-{name}-")
  4593. self._lora_files[name] = gguf.GGUFWriter(fname, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file, dry_run=self.dry_run)
  4594. return super().generate_extra_tensors()
  4595. def set_type(self):
  4596. for lora_writer in self._lora_files.values():
  4597. lora_writer.add_type(gguf.GGUFType.ADAPTER)
  4598. lora_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")
  4599. super().set_type()
  4600. def set_vocab(self):
  4601. self._xlmroberta_set_vocab()
  4602. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4603. # if name starts with "roberta.", remove the prefix
  4604. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4605. if name.startswith("roberta."):
  4606. name = name[8:]
  4607. # jina-embeddings-v3
  4608. if ".parametrizations." in name:
  4609. name = name.replace(".parametrizations.", ".")
  4610. if name.endswith(".original"):
  4611. name = name[:-9]
  4612. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4613. if name == "embeddings.position_embeddings.weight":
  4614. if self._position_offset is not None:
  4615. data_torch = data_torch[self._position_offset:,:]
  4616. if name.endswith(".0.lora_A") or name.endswith(".0.lora_B"):
  4617. if name.startswith("pooler.dense"):
  4618. return []
  4619. num_loras = data_torch.size(0)
  4620. assert num_loras == len(self._lora_names)
  4621. # Split out each LoRA in their own GGUF
  4622. for i, lora_writer in enumerate(self._lora_files.values()):
  4623. new_name = self.map_tensor_name(name[:-9]) + name[-7:].lower()
  4624. data = data_torch[i, :, :]
  4625. # Transpose/flip token_embd/types into correct shape
  4626. if new_name == "token_embd.weight.lora_b":
  4627. data = data.T
  4628. elif new_name.startswith("token_types.weight."):
  4629. new_name = new_name[:-1] + ("a" if new_name[-1:] == "b" else "b")
  4630. lora_writer.add_tensor(new_name, data.float().numpy(), raw_dtype=gguf.GGMLQuantizationType.F32)
  4631. return []
  4632. return super().modify_tensors(data_torch, name, bid)
  4633. def set_gguf_parameters(self):
  4634. super().set_gguf_parameters()
  4635. # jina-embeddings-v3
  4636. lora_alpha = self.hparams.get("lora_alpha")
  4637. if lora_prompt_prefixes := self.hparams.get("task_instructions"):
  4638. assert self._lora_files and all(lora_name in lora_prompt_prefixes for lora_name in self._lora_files.keys())
  4639. for lora_name, lora_writer in self._lora_files.items():
  4640. lora_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, lora_alpha if lora_alpha is not None else 1.0)
  4641. lora_writer.add_string(gguf.Keys.Adapter.LORA_TASK_NAME, lora_name)
  4642. if lora_prompt_prefixes:
  4643. lora_writer.add_string(gguf.Keys.Adapter.LORA_PROMPT_PREFIX, lora_prompt_prefixes[lora_name])
  4644. def write(self):
  4645. super().write()
  4646. for lora_writer in self._lora_files.values():
  4647. lora_writer.write_header_to_file()
  4648. lora_writer.write_kv_data_to_file()
  4649. lora_writer.write_tensors_to_file(progress=True)
  4650. lora_writer.close()
  4651. @ModelBase.register("GemmaForCausalLM")
  4652. class GemmaModel(TextModel):
  4653. model_arch = gguf.MODEL_ARCH.GEMMA
  4654. def set_vocab(self):
  4655. self._set_vocab_sentencepiece()
  4656. # TODO: these special tokens should be exported only for the CodeGemma family
  4657. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  4658. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  4659. special_vocab._set_special_token("prefix", 67)
  4660. special_vocab._set_special_token("suffix", 69)
  4661. special_vocab._set_special_token("middle", 68)
  4662. special_vocab._set_special_token("fsep", 70)
  4663. special_vocab._set_special_token("eot", 107)
  4664. special_vocab.chat_template = None # do not add it twice
  4665. special_vocab.add_to_gguf(self.gguf_writer)
  4666. self.gguf_writer.add_add_space_prefix(False)
  4667. def set_gguf_parameters(self):
  4668. hparams = self.hparams
  4669. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4670. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4671. self.gguf_writer.add_block_count(self.block_count)
  4672. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4673. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4674. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4675. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4676. self.gguf_writer.add_key_length(hparams["head_dim"])
  4677. self.gguf_writer.add_value_length(hparams["head_dim"])
  4678. self.gguf_writer.add_file_type(self.ftype)
  4679. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4680. del bid # unused
  4681. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4682. # To prevent errors, skip loading lm_head.weight.
  4683. if name == "lm_head.weight":
  4684. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4685. return []
  4686. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4687. if name.endswith("norm.weight"):
  4688. data_torch = data_torch + 1
  4689. return [(self.map_tensor_name(name), data_torch)]
  4690. @ModelBase.register("Gemma2ForCausalLM")
  4691. class Gemma2Model(TextModel):
  4692. model_arch = gguf.MODEL_ARCH.GEMMA2
  4693. def set_vocab(self):
  4694. self._set_vocab_sentencepiece()
  4695. self.gguf_writer.add_add_space_prefix(False)
  4696. def set_gguf_parameters(self):
  4697. hparams = self.hparams
  4698. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4699. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4700. self.gguf_writer.add_block_count(self.block_count)
  4701. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4702. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4703. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4704. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4705. self.gguf_writer.add_key_length(hparams["head_dim"])
  4706. self.gguf_writer.add_value_length(hparams["head_dim"])
  4707. self.gguf_writer.add_file_type(self.ftype)
  4708. self.gguf_writer.add_attn_logit_softcapping(
  4709. self.hparams["attn_logit_softcapping"]
  4710. )
  4711. self.gguf_writer.add_final_logit_softcapping(
  4712. self.hparams["final_logit_softcapping"]
  4713. )
  4714. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4715. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4716. del bid # unused
  4717. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4718. # To prevent errors, skip loading lm_head.weight.
  4719. if name == "lm_head.weight":
  4720. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4721. return []
  4722. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4723. if name.endswith("norm.weight"):
  4724. data_torch = data_torch + 1
  4725. return [(self.map_tensor_name(name), data_torch)]
  4726. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  4727. class Gemma3Model(TextModel):
  4728. model_arch = gguf.MODEL_ARCH.GEMMA3
  4729. norm_shift = 1.0 # Gemma3RMSNorm adds 1.0 to the norm value
  4730. def set_vocab(self):
  4731. if (self.dir_model / "tokenizer.model").is_file():
  4732. self._set_vocab_sentencepiece()
  4733. self.gguf_writer.add_add_space_prefix(False)
  4734. else:
  4735. self._set_vocab_gpt2()
  4736. def set_gguf_parameters(self):
  4737. super().set_gguf_parameters()
  4738. hparams = self.hparams
  4739. # some default values are not specified in the hparams
  4740. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  4741. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  4742. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  4743. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  4744. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  4745. self.gguf_writer.add_rope_freq_base(self.rope_parameters.get("full_attention", self.rope_parameters).get("rope_theta", 1_000_000.0)) # for global layers
  4746. # attn_logit_softcapping is removed in Gemma3
  4747. assert hparams.get("attn_logit_softcapping") is None
  4748. if (final_logit_softcap := hparams.get("final_logit_softcapping")):
  4749. self.gguf_writer.add_final_logit_softcapping(final_logit_softcap)
  4750. if hparams.get("sliding_window_pattern") != 1:
  4751. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  4752. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  4753. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4754. del bid # unused
  4755. if "language_model." in name:
  4756. name = name.replace("language_model.", "")
  4757. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4758. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4759. return [] # skip vision tensors
  4760. # remove OOV (out-of-vocabulary) rows in token_embd
  4761. if "embed_tokens.weight" in name:
  4762. if (self.dir_model / "tokenizer.model").is_file():
  4763. tokens = self._create_vocab_sentencepiece()[0]
  4764. else:
  4765. tokens = self.get_vocab_base()[0]
  4766. data_torch = data_torch[:len(tokens)]
  4767. # ref code in Gemma3RMSNorm
  4768. # output = output * (1.0 + self.weight.float())
  4769. # note: this is not the case on gemma3n
  4770. if name.endswith("norm.weight"):
  4771. data_torch = data_torch + self.norm_shift
  4772. return [(self.map_tensor_name(name), data_torch)]
  4773. @ModelBase.register("Gemma3TextModel")
  4774. class EmbeddingGemma(Gemma3Model):
  4775. model_arch = gguf.MODEL_ARCH.GEMMA_EMBEDDING
  4776. module_paths = []
  4777. dense_features_dims = {}
  4778. def __init__(self, *args, **kwargs):
  4779. super().__init__(*args, **kwargs)
  4780. if self.sentence_transformers_dense_modules:
  4781. # read modules.json to determine if model has Dense layers
  4782. modules_file = self.dir_model / "modules.json"
  4783. if modules_file.is_file():
  4784. with open(modules_file, encoding="utf-8") as modules_json_file:
  4785. mods = json.load(modules_json_file)
  4786. for mod in mods:
  4787. if mod["type"] == "sentence_transformers.models.Dense":
  4788. mod_path = mod["path"]
  4789. # check if model.safetensors file for Dense layer exists
  4790. model_tensors_file = self.dir_model / mod_path / "model.safetensors"
  4791. if model_tensors_file.is_file():
  4792. self.module_paths.append(mod_path)
  4793. # read config.json of the Dense layer to get in/out features
  4794. mod_conf_file = self.dir_model / mod_path / "config.json"
  4795. if mod_conf_file.is_file():
  4796. with open(mod_conf_file, encoding="utf-8") as mod_conf_json_file:
  4797. mod_conf = json.load(mod_conf_json_file)
  4798. # hparams dense_2_feat_out and dense_3_feat_in are required when loading model's dense weights
  4799. prefix = self._get_dense_prefix(mod_path)
  4800. if mod_conf["in_features"] is not None and mod_conf["out_features"] is not None:
  4801. self.dense_features_dims[prefix] = (mod_conf["in_features"], mod_conf["out_features"])
  4802. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4803. from safetensors.torch import load_file
  4804. module_paths = list(self.module_paths)
  4805. for i, module_path in enumerate(module_paths):
  4806. tensors_file = self.dir_model / module_path / "model.safetensors"
  4807. local_tensors = load_file(tensors_file)
  4808. tensor_name = self._get_dense_prefix(module_path)
  4809. for name, local_tensor in local_tensors.items():
  4810. if not name.endswith(".weight"):
  4811. continue
  4812. orig_name = name.replace("linear", tensor_name)
  4813. name = self.map_tensor_name(orig_name)
  4814. yield name, local_tensor.clone()
  4815. @staticmethod
  4816. def _get_dense_prefix(module_path) -> str:
  4817. """Get the tensor name prefix for the Dense layer from module path."""
  4818. tensor_name = "dense_2" if module_path == "2_Dense" else "dense_3"
  4819. return tensor_name
  4820. def set_gguf_parameters(self):
  4821. super().set_gguf_parameters()
  4822. # Override the sliding window size as it gets adjusted by the Gemma3TextConfig
  4823. # constructor. We want to use the value from the original model's config.json.
  4824. # ref: https://github.com/huggingface/transformers/pull/40700
  4825. with open(self.dir_model / "config.json", "r", encoding="utf-8") as f:
  4826. config = json.load(f)
  4827. orig_sliding_window = config.get("sliding_window")
  4828. if orig_sliding_window is None:
  4829. raise ValueError("sliding_window not found in model config - this is required for the model")
  4830. logger.info(f"Using original sliding_window from config: {orig_sliding_window} "
  4831. f"instead of {self.hparams['sliding_window']}")
  4832. self.gguf_writer.add_sliding_window(orig_sliding_window)
  4833. if self.sentence_transformers_dense_modules:
  4834. for dense, dims in self.dense_features_dims.items():
  4835. logger.info(f"Setting dense layer {dense} in/out features to {dims}")
  4836. self.gguf_writer.add_dense_features_dims(dense, dims[0], dims[1])
  4837. self._try_set_pooling_type()
  4838. @ModelBase.register("Gemma3ForConditionalGeneration")
  4839. class Gemma3VisionModel(MmprojModel):
  4840. def set_gguf_parameters(self):
  4841. super().set_gguf_parameters()
  4842. hparams = self.hparams
  4843. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GEMMA3)
  4844. # default values below are taken from HF tranformers code
  4845. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  4846. self.gguf_writer.add_vision_use_gelu(True)
  4847. # calculate proj_scale_factor (used by tinygemma3 test model)
  4848. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  4849. n_per_side = int(image_seq_length ** 0.5)
  4850. image_size = self.hparams["image_size"]
  4851. patch_size = self.hparams["patch_size"]
  4852. proj_scale_factor = (image_size // patch_size) // n_per_side
  4853. if proj_scale_factor > 0 and proj_scale_factor != 4:
  4854. # we only need to write this if it's not the default value
  4855. # in this case, we are converting a test model
  4856. self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
  4857. def tensor_force_quant(self, name, new_name, bid, n_dims):
  4858. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  4859. if "input_projection" in name:
  4860. return gguf.GGMLQuantizationType.F16
  4861. if ".embeddings." in name:
  4862. return gguf.GGMLQuantizationType.F32
  4863. return super().tensor_force_quant(name, new_name, bid, n_dims)
  4864. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4865. del bid # unused
  4866. if "vision_model.head." in name:
  4867. return [] # skip redundant tensors for tinygemma3
  4868. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4869. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4870. # process vision tensors
  4871. name = name.replace("_weight", ".weight")
  4872. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  4873. # the other norm values are part of SigLIP model, and they are already correct
  4874. # ref code: Gemma3RMSNorm
  4875. if "soft_emb_norm.weight" in name:
  4876. logger.info(f"Correcting norm value for '{name}'")
  4877. data_torch = data_torch + 1
  4878. return [(self.map_tensor_name(name), data_torch)]
  4879. return [] # skip other tensors
  4880. @ModelBase.register("Gemma3nForConditionalGeneration")
  4881. class Gemma3NModel(Gemma3Model):
  4882. model_arch = gguf.MODEL_ARCH.GEMMA3N
  4883. norm_shift = 0.0 # same value with Gemma3p5RMSNorm scale_shift on python code
  4884. _altup_proj: list[Tensor] = []
  4885. _altup_unembd: list[Tensor] = []
  4886. def __init__(self, *args, **kwargs):
  4887. super().__init__(*args, **kwargs)
  4888. assert self.hparams["altup_num_inputs"] == 4, "Current conversion only supports 4 altup inputs"
  4889. self._altup_proj = [
  4890. torch.Tensor(), # to be replaced
  4891. torch.Tensor(), # to be replaced
  4892. torch.Tensor(), # to be replaced
  4893. ]
  4894. self._altup_unembd = [
  4895. torch.Tensor(), # to be replaced
  4896. torch.Tensor(), # to be replaced
  4897. torch.Tensor(), # to be replaced
  4898. ]
  4899. def set_vocab(self):
  4900. super().set_vocab()
  4901. def set_gguf_parameters(self):
  4902. super().set_gguf_parameters()
  4903. self.gguf_writer.add_altup_active_idx(self.hparams["altup_active_idx"])
  4904. self.gguf_writer.add_altup_num_inputs(self.hparams["altup_num_inputs"])
  4905. self.gguf_writer.add_embedding_length_per_layer_input(self.hparams["hidden_size_per_layer_input"])
  4906. self.gguf_writer.add_shared_kv_layers(self.hparams["num_kv_shared_layers"])
  4907. activation_sparsity_scale = []
  4908. for s in self.hparams["activation_sparsity_pattern"]:
  4909. normal_dist = torch.distributions.normal.Normal(0, 1)
  4910. std_multiplier = normal_dist.icdf(torch.tensor(s, dtype=torch.float32))
  4911. activation_sparsity_scale.append(std_multiplier.item())
  4912. self.gguf_writer.add_activation_sparsity_scale(activation_sparsity_scale)
  4913. sliding_window_pattern = []
  4914. for t in self.hparams["layer_types"]:
  4915. sliding_window_pattern.append(t == "sliding_attention")
  4916. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  4917. def _stack_matrices(self, matrices: list[Tensor]) -> Tensor | None:
  4918. has_all = all(m.numel() > 0 for m in matrices)
  4919. if not has_all:
  4920. return None
  4921. else:
  4922. return torch.stack(matrices, dim=0)
  4923. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4924. if name.endswith("_scale"):
  4925. name = name + ".weight"
  4926. # TODO: implement self.prediction_coefs.weight.clamp_(...)
  4927. if "language_model." not in name:
  4928. return [] # skip non-language model tensors
  4929. if "altup_unembed_projections" in name:
  4930. data_torch = data_torch.to(device="cpu")
  4931. if ".0." in name:
  4932. self._altup_unembd[0] = data_torch
  4933. elif ".1." in name:
  4934. self._altup_unembd[1] = data_torch
  4935. elif ".2." in name:
  4936. self._altup_unembd[2] = data_torch
  4937. else:
  4938. raise ValueError(f"Unknown name: {name}")
  4939. out = self._stack_matrices(self._altup_unembd)
  4940. if out is not None:
  4941. return [(self.map_tensor_name("model.altup_unembed_projections.weight"), out)]
  4942. else:
  4943. return []
  4944. if "altup_projections" in name:
  4945. data_torch = data_torch.to(device="cpu")
  4946. if ".0." in name:
  4947. self._altup_proj[0] = data_torch
  4948. elif ".1." in name:
  4949. self._altup_proj[1] = data_torch
  4950. elif ".2." in name:
  4951. self._altup_proj[2] = data_torch
  4952. else:
  4953. raise ValueError(f"Unknown name: {name}")
  4954. out = self._stack_matrices(self._altup_proj)
  4955. if out is not None:
  4956. return [(self.map_tensor_name("model.altup_projections.weight"), out)]
  4957. else:
  4958. return []
  4959. return super().modify_tensors(data_torch, name, bid)
  4960. @ModelBase.register("Starcoder2ForCausalLM")
  4961. class StarCoder2Model(TextModel):
  4962. model_arch = gguf.MODEL_ARCH.STARCODER2
  4963. @ModelBase.register("Rwkv6ForCausalLM")
  4964. class Rwkv6Model(TextModel):
  4965. model_arch = gguf.MODEL_ARCH.RWKV6
  4966. def set_vocab(self):
  4967. self._set_vocab_rwkv_world()
  4968. def set_gguf_parameters(self):
  4969. head_size = self.hparams["head_size"]
  4970. hidden_size = self.hparams["hidden_size"]
  4971. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  4972. rescale_every_n_layers = self.hparams["rescale_every"]
  4973. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  4974. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  4975. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  4976. # RWKV isn't context limited
  4977. self.gguf_writer.add_context_length(1048576)
  4978. self.gguf_writer.add_embedding_length(hidden_size)
  4979. self.gguf_writer.add_block_count(self.block_count)
  4980. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  4981. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  4982. self.gguf_writer.add_wkv_head_size(head_size)
  4983. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  4984. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  4985. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4986. self.gguf_writer.add_file_type(self.ftype)
  4987. # required by llama.cpp, unused
  4988. self.gguf_writer.add_head_count(0)
  4989. lerp_weights: dict[int, dict[str, Tensor]] = {}
  4990. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4991. new_name = self.map_tensor_name(name)
  4992. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  4993. new_name += ".weight"
  4994. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  4995. data_torch = data_torch.transpose(0, 1)
  4996. if new_name.endswith("time_mix_w2.weight"):
  4997. data_torch = data_torch.permute(0, 2, 1)
  4998. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  4999. data_torch = data_torch.squeeze()
  5000. try:
  5001. rescale_every_n_layers = self.hparams["rescale_every"]
  5002. if rescale_every_n_layers > 0:
  5003. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  5004. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  5005. except KeyError:
  5006. pass
  5007. # concat time_mix_lerp weights to reduce some cpu overhead
  5008. # also reduces the number of tensors in the model
  5009. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  5010. try:
  5011. self.lerp_weights[bid][new_name] = data_torch
  5012. except KeyError:
  5013. self.lerp_weights[bid] = {new_name: data_torch}
  5014. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  5015. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5016. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  5017. yield (new_name, data)
  5018. return
  5019. yield (new_name, data_torch)
  5020. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  5021. class RWKV6Qwen2Model(Rwkv6Model):
  5022. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  5023. def set_vocab(self):
  5024. try:
  5025. self._set_vocab_sentencepiece()
  5026. except FileNotFoundError:
  5027. self._set_vocab_gpt2()
  5028. def set_gguf_parameters(self):
  5029. num_attention_heads = self.hparams["num_attention_heads"]
  5030. num_key_value_heads = self.hparams["num_key_value_heads"]
  5031. hidden_size = self.hparams["hidden_size"]
  5032. head_size = hidden_size // num_attention_heads
  5033. rms_norm_eps = self.hparams["rms_norm_eps"]
  5034. intermediate_size = self.hparams["intermediate_size"]
  5035. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  5036. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  5037. # RWKV isn't context limited
  5038. self.gguf_writer.add_context_length(1048576)
  5039. self.gguf_writer.add_embedding_length(hidden_size)
  5040. self.gguf_writer.add_block_count(self.block_count)
  5041. self.gguf_writer.add_wkv_head_size(head_size)
  5042. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  5043. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  5044. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5045. self.gguf_writer.add_file_type(self.ftype)
  5046. # special parameters for time_mixing in RWKV6QWEN2
  5047. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5048. self.gguf_writer.add_token_shift_count(1)
  5049. # RWKV6QWEN2 use grouped key/value like GQA
  5050. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  5051. # required by llama.cpp, unused
  5052. self.gguf_writer.add_head_count(0)
  5053. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5054. for new_name, data in super().modify_tensors(data_torch, name, bid):
  5055. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  5056. data = data.view(5, -1, data.shape[-1])
  5057. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  5058. # permute them here to avoid code changes
  5059. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  5060. if "w2" in new_name:
  5061. data = data.view(5, -1, data.shape[-1])
  5062. yield (new_name, data)
  5063. continue
  5064. yield (new_name, data)
  5065. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  5066. class Rwkv7Model(TextModel):
  5067. model_arch = gguf.MODEL_ARCH.RWKV7
  5068. def set_vocab(self):
  5069. self._set_vocab_rwkv_world()
  5070. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  5071. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  5072. def set_gguf_parameters(self):
  5073. try:
  5074. head_size = self.hparams["head_size"]
  5075. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  5076. except KeyError:
  5077. head_size = self.hparams["head_dim"]
  5078. layer_norm_eps = self.hparams["norm_eps"]
  5079. hidden_size = self.hparams["hidden_size"]
  5080. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  5081. # ICLR: In-Context-Learning-Rate
  5082. try:
  5083. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5084. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5085. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  5086. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  5087. except KeyError:
  5088. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5089. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5090. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  5091. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  5092. # RWKV isn't context limited
  5093. self.gguf_writer.add_context_length(1048576)
  5094. self.gguf_writer.add_embedding_length(hidden_size)
  5095. self.gguf_writer.add_block_count(self.block_count)
  5096. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  5097. self.gguf_writer.add_wkv_head_size(head_size)
  5098. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  5099. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  5100. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  5101. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  5102. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5103. self.gguf_writer.add_file_type(self.ftype)
  5104. # required by llama.cpp, unused
  5105. self.gguf_writer.add_head_count(0)
  5106. lerp_weights: dict[int, dict[str, Tensor]] = {}
  5107. lora_needs_transpose: bool = True
  5108. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5109. # unify tensor names here to make life easier
  5110. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  5111. name = name.replace("self_attn", "attention").replace("attn", "attention")
  5112. name = name.replace("time_mixer.", "")
  5113. # lora layer names in fla-hub's impl
  5114. if "_lora.lora" in name:
  5115. self.lora_needs_transpose = False
  5116. name = name.replace("_lora.lora.0.weight", "1.weight")
  5117. name = name.replace("_lora.lora.2.weight", "2.weight")
  5118. name = name.replace("_lora.lora.2.bias", "0.weight")
  5119. name = name.replace("feed_forward_norm", "ln2")
  5120. name = name.replace("g_norm", "ln_x")
  5121. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  5122. # some models have dummy v0/v1/v2 on first layer while others don't
  5123. # ignore them all since they are not used
  5124. return
  5125. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  5126. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  5127. if bid is not None and "attention.x_" in name:
  5128. if "attention.x_x" in name:
  5129. # already concatenated
  5130. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5131. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  5132. yield (new_name, data)
  5133. else:
  5134. try:
  5135. self.lerp_weights[bid][name] = data_torch
  5136. except KeyError:
  5137. self.lerp_weights[bid] = {name: data_torch}
  5138. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  5139. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5140. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  5141. yield (new_name, data)
  5142. return
  5143. else:
  5144. data_torch = data_torch.squeeze()
  5145. new_name = self.map_tensor_name(name)
  5146. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  5147. new_name += ".weight"
  5148. if self.lora_needs_transpose and any(
  5149. new_name.endswith(t) for t in [
  5150. "time_mix_w1.weight", "time_mix_w2.weight",
  5151. "time_mix_a1.weight", "time_mix_a2.weight",
  5152. "time_mix_v1.weight", "time_mix_v2.weight",
  5153. "time_mix_g1.weight", "time_mix_g2.weight",
  5154. ]
  5155. ):
  5156. data_torch = data_torch.transpose(0, 1)
  5157. if 'r_k' in new_name:
  5158. data_torch = data_torch.flatten()
  5159. if bid == 0 and "time_mix_a" in new_name:
  5160. # dummy v0/v1/v2 on first layer
  5161. # easist way to make llama happy
  5162. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  5163. yield (new_name, data_torch)
  5164. @ModelBase.register("RwkvHybridForCausalLM")
  5165. class ARwkv7Model(Rwkv7Model):
  5166. model_arch = gguf.MODEL_ARCH.ARWKV7
  5167. def set_vocab(self):
  5168. try:
  5169. self._set_vocab_sentencepiece()
  5170. except FileNotFoundError:
  5171. self._set_vocab_gpt2()
  5172. def set_gguf_parameters(self):
  5173. hidden_size = self.hparams["hidden_size"]
  5174. head_size = self.hparams["head_size"]
  5175. rms_norm_eps = self.hparams["rms_norm_eps"]
  5176. intermediate_size = self.hparams["intermediate_size"]
  5177. wkv_has_gate = self.hparams["wkv_has_gate"]
  5178. assert self.hparams["wkv_version"] == 7
  5179. # ICLR: In-Context-Learning-Rate
  5180. lora_rank_decay = 64
  5181. lora_rank_iclr = 64
  5182. lora_rank_value_residual_mix = 32
  5183. lora_rank_gate = 128 if wkv_has_gate else 0
  5184. # RWKV isn't context limited
  5185. self.gguf_writer.add_context_length(1048576)
  5186. self.gguf_writer.add_embedding_length(hidden_size)
  5187. self.gguf_writer.add_block_count(self.block_count)
  5188. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5189. self.gguf_writer.add_wkv_head_size(head_size)
  5190. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  5191. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  5192. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  5193. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  5194. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5195. self.gguf_writer.add_file_type(self.ftype)
  5196. self.gguf_writer.add_token_shift_count(1)
  5197. # required by llama.cpp, unused
  5198. self.gguf_writer.add_head_count(0)
  5199. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  5200. class MambaModel(TextModel):
  5201. model_arch = gguf.MODEL_ARCH.MAMBA
  5202. def __init__(self, dir_model: Path, *args, **kwargs):
  5203. # Avoid using AutoConfig for hparams
  5204. hparams = kwargs.pop("hparams", None)
  5205. if hparams is None:
  5206. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  5207. hparams = json.load(f)
  5208. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  5209. def set_vocab(self):
  5210. vocab_size = self.hparams["vocab_size"]
  5211. # Round vocab size to next multiple of 8
  5212. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  5213. # pad using ceiling division
  5214. # ref: https://stackoverflow.com/a/17511341/22827863
  5215. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  5216. self.hparams["vocab_size"] = vocab_size
  5217. if (self.dir_model / "tokenizer.json").is_file():
  5218. self._set_vocab_gpt2()
  5219. elif (self.dir_model / "tokenizer.model").is_file():
  5220. self._set_vocab_sentencepiece()
  5221. else:
  5222. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  5223. self._set_vocab_builtin("gpt-neox", vocab_size)
  5224. def set_gguf_parameters(self):
  5225. d_model = self.find_hparam(["hidden_size", "d_model"])
  5226. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  5227. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  5228. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  5229. # ceiling division
  5230. # ref: https://stackoverflow.com/a/17511341/22827863
  5231. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  5232. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  5233. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  5234. use_dt_b_c_norm = False
  5235. # For falconmamba we do apply RMS norm on B / DT and C layers
  5236. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  5237. use_dt_b_c_norm = True
  5238. # Fail early for models which don't have a block expansion factor of 2
  5239. assert d_inner == 2 * d_model
  5240. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  5241. self.gguf_writer.add_embedding_length(d_model)
  5242. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  5243. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  5244. self.gguf_writer.add_block_count(self.block_count)
  5245. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5246. self.gguf_writer.add_ssm_inner_size(d_inner)
  5247. self.gguf_writer.add_ssm_state_size(d_state)
  5248. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  5249. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5250. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  5251. self.gguf_writer.add_file_type(self.ftype)
  5252. _tok_embd = None
  5253. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5254. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  5255. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  5256. new_name = self.map_tensor_name(name)
  5257. if name.endswith(".A_log"):
  5258. logger.debug("A_log --> A ==> " + new_name)
  5259. data_torch = -torch.exp(data_torch)
  5260. # [4 1 8192 1] -> [4 8192 1 1]
  5261. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5262. data_torch = data_torch.squeeze()
  5263. # assuming token_embd.weight is seen before output.weight
  5264. if self._tok_embd is not None and new_name == output_name:
  5265. if torch.equal(self._tok_embd, data_torch):
  5266. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  5267. return []
  5268. elif new_name == tok_embd_name:
  5269. self._tok_embd = data_torch
  5270. return [(new_name, data_torch)]
  5271. @ModelBase.register("Mamba2ForCausalLM")
  5272. class Mamba2Model(TextModel):
  5273. model_arch = gguf.MODEL_ARCH.MAMBA2
  5274. def __init__(self, dir_model: Path, *args, **kwargs):
  5275. # Avoid using AutoConfig for hparams
  5276. # It wrongly assumes all Mamba2 models are Mamba-Codestral-7B-v0.1
  5277. hparams = kwargs.pop("hparams", None)
  5278. if hparams is None:
  5279. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  5280. hparams = json.load(f)
  5281. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  5282. self.d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
  5283. self.d_inner = self.find_hparam(["mamba_d_ssm", "intermediate_size", "d_inner"], optional=True) or 2 * self.d_model
  5284. self.n_group = self.find_hparam(["n_groups"], optional=True) or 1
  5285. def set_vocab(self):
  5286. vocab_size = self.hparams["vocab_size"]
  5287. # Round vocab size to next multiple of 16
  5288. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 16)
  5289. # pad using ceiling division
  5290. # ref: https://stackoverflow.com/a/17511341/22827863
  5291. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  5292. self.hparams["vocab_size"] = vocab_size
  5293. if (self.dir_model / "tokenizer.model").is_file():
  5294. self._set_vocab_sentencepiece()
  5295. elif (self.dir_model / "tokenizer.model.v3").is_file():
  5296. # mamba-codestral
  5297. raise NotImplementedError(f"Please rename {self.dir_model / 'tokenizer.model.v3'} to {self.dir_model / 'tokenizer.model'}")
  5298. elif (self.dir_model / "tokenizer.json").is_file():
  5299. self._set_vocab_gpt2()
  5300. else:
  5301. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  5302. self._set_vocab_builtin("gpt-neox", vocab_size)
  5303. def set_gguf_parameters(self):
  5304. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  5305. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 128
  5306. head_dim = self.find_hparam(["mamba_d_head", "head_dim"], optional=True) or 64
  5307. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  5308. # Fail early for models which don't have a block expansion factor of 2
  5309. # TODO: does this really matter?
  5310. # skip the assertion for FalconH1 Model
  5311. if self.model_arch != gguf.MODEL_ARCH.FALCON_H1:
  5312. assert self.d_inner == 2 * self.d_model
  5313. assert self.d_inner % head_dim == 0
  5314. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  5315. self.gguf_writer.add_embedding_length(self.d_model)
  5316. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  5317. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  5318. self.gguf_writer.add_block_count(self.block_count)
  5319. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5320. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  5321. self.gguf_writer.add_ssm_state_size(d_state)
  5322. self.gguf_writer.add_ssm_time_step_rank(self.d_inner // head_dim)
  5323. self.gguf_writer.add_ssm_group_count(self.n_group)
  5324. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5325. self.gguf_writer.add_file_type(self.ftype)
  5326. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5327. if name.startswith("model.backbone") or name.startswith("model.lm_head"):
  5328. # map Mamba-Codestral-7B-v0.1 tensor names to the names used by Mamba-2
  5329. name = name.removeprefix("model.")
  5330. if name.endswith(".dt_bias"):
  5331. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  5332. new_name = self.map_tensor_name(name)
  5333. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5334. data_torch = data_torch.squeeze()
  5335. elif any(self.match_model_tensor_name(new_name, t, bid, suffix="") for t in [
  5336. gguf.MODEL_TENSOR.SSM_A,
  5337. gguf.MODEL_TENSOR.SSM_D,
  5338. ]):
  5339. # unsqueeze A to use similar shape semantics as Mamba-1
  5340. # (D is also unsqueezed, but for more straightforward broadcast internally)
  5341. data_torch = data_torch.reshape((*data_torch.shape, 1))
  5342. elif self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_NORM, bid):
  5343. data_torch = data_torch.reshape((self.n_group, self.d_inner // self.n_group))
  5344. if name.endswith(".A_log"):
  5345. logger.debug("A_log --> A ==> " + new_name)
  5346. data_torch = -torch.exp(data_torch)
  5347. yield (new_name, data_torch)
  5348. @ModelBase.register("JambaForCausalLM")
  5349. class JambaModel(TextModel):
  5350. model_arch = gguf.MODEL_ARCH.JAMBA
  5351. def set_vocab(self):
  5352. if (self.dir_model / "tokenizer.model").is_file():
  5353. self._set_vocab_sentencepiece()
  5354. else:
  5355. self._set_vocab_llama_hf()
  5356. self.gguf_writer.add_add_space_prefix(False)
  5357. def set_gguf_parameters(self):
  5358. d_model = self.find_hparam(["hidden_size", "mamba_d_model"])
  5359. d_conv = self.find_hparam(["mamba_d_conv"], optional=True) or 4
  5360. d_inner = self.hparams["mamba_expand"] * d_model
  5361. d_state = self.find_hparam(["mamba_d_state"], optional=True) or 16
  5362. # ceiling division
  5363. # ref: https://stackoverflow.com/a/17511341/22827863
  5364. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  5365. dt_rank = self.find_hparam(["mamba_dt_rank"], optional=True) or -(d_model // -16)
  5366. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-6
  5367. n_kv_head = self.hparams["num_key_value_heads"]
  5368. attn_offset = self.hparams["attn_layer_offset"]
  5369. attn_period = self.hparams["attn_layer_period"]
  5370. n_kv_vec = [0 for _ in range(attn_offset)] + [
  5371. n_kv_head if (i - attn_offset) % attn_period == 0 else 0 for i in range(attn_offset, self.block_count)
  5372. ]
  5373. self.gguf_writer.add_block_count(self.block_count)
  5374. self.gguf_writer.add_context_length(self.find_hparam(["max_position_embeddings", "n_ctx"]))
  5375. self.gguf_writer.add_embedding_length(d_model)
  5376. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  5377. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  5378. self.gguf_writer.add_head_count_kv(n_kv_vec)
  5379. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5380. self.gguf_writer.add_ssm_inner_size(d_inner)
  5381. self.gguf_writer.add_ssm_state_size(d_state)
  5382. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  5383. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5384. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  5385. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  5386. self.gguf_writer.add_file_type(self.ftype)
  5387. _experts: list[dict[str, Tensor]] | None = None
  5388. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5389. # Mini-Jamba
  5390. name = name.replace(".moe.", ".feed_forward.")
  5391. if bid is not None:
  5392. moe_offset = self.hparams["expert_layer_offset"]
  5393. moe_period = self.hparams["expert_layer_period"]
  5394. if not (bid >= moe_offset and (bid - moe_offset) % moe_period == 0):
  5395. name = name.replace(".experts.0.", ".")
  5396. # process the experts separately
  5397. if ".feed_forward.experts." in name:
  5398. n_experts = self.hparams["num_experts"]
  5399. assert bid is not None
  5400. if self._experts is None:
  5401. self._experts = [{} for _ in range(self.block_count)]
  5402. self._experts[bid][name] = data_torch
  5403. if len(self._experts[bid]) >= n_experts * 3:
  5404. # merge the experts into a single 3d tensor
  5405. for wid in ["down_proj", "gate_proj", "up_proj"]:
  5406. datas: list[Tensor] = []
  5407. for xid in range(n_experts):
  5408. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{wid}.weight"
  5409. datas.append(self._experts[bid][ename])
  5410. del self._experts[bid][ename]
  5411. data_torch = torch.stack(datas, dim=0)
  5412. # using the same merged name as qwen2moe
  5413. merged_name = f"model.layers.{bid}.mlp.experts.{wid}.weight"
  5414. new_name = self.map_tensor_name(merged_name)
  5415. yield new_name, data_torch
  5416. return
  5417. new_name = self.map_tensor_name(name)
  5418. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5419. data_torch = data_torch.squeeze()
  5420. if name.endswith(".A_log"):
  5421. logger.debug("A_log --> A ==> " + new_name)
  5422. data_torch = -torch.exp(data_torch)
  5423. yield (new_name, data_torch)
  5424. def prepare_tensors(self):
  5425. super().prepare_tensors()
  5426. if self._experts is not None:
  5427. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5428. experts = [k for d in self._experts for k in d.keys()]
  5429. if len(experts) > 0:
  5430. raise ValueError(f"Unprocessed experts: {experts}")
  5431. @ModelBase.register("CohereForCausalLM")
  5432. class CommandR2Model(TextModel):
  5433. model_arch = gguf.MODEL_ARCH.COMMAND_R
  5434. def __init__(self, *args, **kwargs):
  5435. super().__init__(*args, **kwargs)
  5436. # max_position_embeddings = 8192 in config.json but model was actually
  5437. # trained on 128k context length
  5438. # aya-23 models don't have model_max_length specified
  5439. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  5440. def set_gguf_parameters(self):
  5441. super().set_gguf_parameters()
  5442. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  5443. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5444. @ModelBase.register("Cohere2ForCausalLM")
  5445. class Cohere2Model(TextModel):
  5446. model_arch = gguf.MODEL_ARCH.COHERE2
  5447. def set_gguf_parameters(self):
  5448. super().set_gguf_parameters()
  5449. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  5450. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  5451. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  5452. rotary_pct = self.hparams["rotary_pct"]
  5453. hidden_size = self.hparams["hidden_size"]
  5454. num_attention_heads = self.hparams["num_attention_heads"]
  5455. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  5456. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5457. @ModelBase.register("OlmoForCausalLM")
  5458. @ModelBase.register("OLMoForCausalLM")
  5459. class OlmoModel(TextModel):
  5460. model_arch = gguf.MODEL_ARCH.OLMO
  5461. def set_gguf_parameters(self):
  5462. super().set_gguf_parameters()
  5463. self.gguf_writer.add_layer_norm_eps(1e-5)
  5464. clip_qkv = self.hparams.get("clip_qkv")
  5465. if clip_qkv is not None:
  5466. self.gguf_writer.add_clamp_kqv(clip_qkv)
  5467. # Same as super class, but permuting q_proj, k_proj
  5468. # Copied from: LlamaModel
  5469. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5470. del bid # unused
  5471. n_head = self.hparams["num_attention_heads"]
  5472. n_kv_head = self.hparams.get("num_key_value_heads")
  5473. if name.endswith("q_proj.weight"):
  5474. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5475. if name.endswith("k_proj.weight"):
  5476. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5477. return [(self.map_tensor_name(name), data_torch)]
  5478. @ModelBase.register("SeedOssForCausalLM")
  5479. class SeedOssModel(TextModel):
  5480. model_arch = gguf.MODEL_ARCH.SEED_OSS
  5481. @ModelBase.register("Olmo2ForCausalLM")
  5482. @ModelBase.register("Olmo3ForCausalLM")
  5483. class Olmo2Model(TextModel):
  5484. model_arch = gguf.MODEL_ARCH.OLMO2
  5485. def set_gguf_parameters(self):
  5486. super().set_gguf_parameters()
  5487. if "sliding_window" in self.hparams:
  5488. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  5489. sliding_window_pattern = []
  5490. if "layer_types" in self.hparams:
  5491. sliding_window_pattern = [t == "sliding_attention" for t in self.hparams["layer_types"]]
  5492. else:
  5493. # Olmo2 does not use sliding window attention.
  5494. # Olmo3 defaults to using sliding window for all layers except every 4th.
  5495. for i in range(self.hparams["num_hidden_layers"]):
  5496. sliding_window_pattern.append((i + 1) % 4 != 0)
  5497. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  5498. @ModelBase.register("OlmoeForCausalLM")
  5499. class OlmoeModel(TextModel):
  5500. model_arch = gguf.MODEL_ARCH.OLMOE
  5501. def set_gguf_parameters(self):
  5502. super().set_gguf_parameters()
  5503. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  5504. if (n_experts := self.hparams.get("num_experts")) is not None:
  5505. self.gguf_writer.add_expert_count(n_experts)
  5506. _experts: list[dict[str, Tensor]] | None = None
  5507. # Copied from: Qwen2MoeModel
  5508. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5509. # process the experts separately
  5510. if name.find("experts") != -1:
  5511. n_experts = self.hparams["num_experts"]
  5512. assert bid is not None
  5513. if self._experts is None:
  5514. self._experts = [{} for _ in range(self.block_count)]
  5515. self._experts[bid][name] = data_torch
  5516. if len(self._experts[bid]) >= n_experts * 3:
  5517. tensors: list[tuple[str, Tensor]] = []
  5518. # merge the experts into a single 3d tensor
  5519. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5520. datas: list[Tensor] = []
  5521. for xid in range(n_experts):
  5522. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5523. datas.append(self._experts[bid][ename])
  5524. del self._experts[bid][ename]
  5525. data_torch = torch.stack(datas, dim=0)
  5526. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5527. new_name = self.map_tensor_name(merged_name)
  5528. tensors.append((new_name, data_torch))
  5529. return tensors
  5530. else:
  5531. return []
  5532. return [(self.map_tensor_name(name), data_torch)]
  5533. # Copied from: Qwen2MoeModel
  5534. def prepare_tensors(self):
  5535. super().prepare_tensors()
  5536. if self._experts is not None:
  5537. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5538. experts = [k for d in self._experts for k in d.keys()]
  5539. if len(experts) > 0:
  5540. raise ValueError(f"Unprocessed experts: {experts}")
  5541. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  5542. class JinaBertV2Model(BertModel):
  5543. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  5544. def set_vocab(self):
  5545. tokenizer_class = 'BertTokenizer'
  5546. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  5547. tokenizer_class = json.load(f)['tokenizer_class']
  5548. if tokenizer_class == 'BertTokenizer':
  5549. super().set_vocab()
  5550. elif tokenizer_class == 'RobertaTokenizer':
  5551. self._set_vocab_gpt2()
  5552. self.gguf_writer.add_token_type_count(2)
  5553. else:
  5554. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  5555. @ModelBase.register("OpenELMForCausalLM")
  5556. class OpenELMModel(TextModel):
  5557. model_arch = gguf.MODEL_ARCH.OPENELM
  5558. @staticmethod
  5559. def _make_divisible(v: float | int, divisor: int) -> int:
  5560. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  5561. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  5562. # Make sure that round down does not go down by more than 10%.
  5563. if new_v < 0.9 * v:
  5564. new_v += divisor
  5565. return new_v
  5566. def __init__(self, *args, **kwargs):
  5567. super().__init__(*args, **kwargs)
  5568. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  5569. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  5570. self._n_embd: int = self.hparams["model_dim"]
  5571. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  5572. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  5573. self._ffn_dims: list[int] = [
  5574. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  5575. for multiplier in ffn_multipliers
  5576. ]
  5577. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  5578. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  5579. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  5580. def set_vocab(self):
  5581. try:
  5582. self._set_vocab_sentencepiece()
  5583. except FileNotFoundError:
  5584. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  5585. def set_gguf_parameters(self):
  5586. n_embd = self._n_embd
  5587. head_dim = self.hparams["head_dim"]
  5588. rot_pct = 1.0
  5589. assert self.block_count == len(self._num_kv_heads)
  5590. assert self.block_count == len(self._num_query_heads)
  5591. assert self.block_count == len(self._ffn_dims)
  5592. self.gguf_writer.add_block_count(self.block_count)
  5593. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  5594. self.gguf_writer.add_embedding_length(n_embd)
  5595. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  5596. self.gguf_writer.add_head_count(self._num_query_heads)
  5597. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  5598. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  5599. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  5600. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  5601. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  5602. self.gguf_writer.add_key_length(head_dim)
  5603. self.gguf_writer.add_value_length(head_dim)
  5604. self.gguf_writer.add_file_type(self.ftype)
  5605. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  5606. if "n_layers" in keys:
  5607. return self.hparams["num_transformer_layers"]
  5608. return super().find_hparam(keys, optional)
  5609. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5610. # split ff
  5611. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  5612. ff_dim = self._ffn_dims[bid]
  5613. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  5614. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  5615. return
  5616. yield (self.map_tensor_name(name), data_torch)
  5617. @ModelBase.register("ArcticForCausalLM")
  5618. class ArcticModel(TextModel):
  5619. model_arch = gguf.MODEL_ARCH.ARCTIC
  5620. def set_vocab(self):
  5621. # The reason for using a custom implementation here is that the
  5622. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  5623. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  5624. from sentencepiece import SentencePieceProcessor
  5625. tokenizer_path = self.dir_model / 'tokenizer.model'
  5626. if not tokenizer_path.is_file():
  5627. logger.error(f'Error: Missing {tokenizer_path}')
  5628. sys.exit(1)
  5629. # Read the whole vocabulary from the tokenizer.model file
  5630. tokenizer = SentencePieceProcessor()
  5631. tokenizer.LoadFromFile(str(tokenizer_path))
  5632. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5633. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5634. scores: list[float] = [-10000.0] * vocab_size
  5635. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5636. for token_id in range(tokenizer.vocab_size()):
  5637. piece = tokenizer.IdToPiece(token_id)
  5638. text = piece.encode("utf-8")
  5639. score = tokenizer.GetScore(token_id)
  5640. toktype = SentencePieceTokenTypes.NORMAL
  5641. if tokenizer.IsUnknown(token_id):
  5642. toktype = SentencePieceTokenTypes.UNKNOWN
  5643. elif tokenizer.IsControl(token_id):
  5644. toktype = SentencePieceTokenTypes.CONTROL
  5645. elif tokenizer.IsUnused(token_id):
  5646. toktype = SentencePieceTokenTypes.UNUSED
  5647. elif tokenizer.IsByte(token_id):
  5648. toktype = SentencePieceTokenTypes.BYTE
  5649. tokens[token_id] = text
  5650. scores[token_id] = score
  5651. toktypes[token_id] = toktype
  5652. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  5653. # of information about added/redefined tokens and modify them accordingly.
  5654. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  5655. if tokenizer_config_file.is_file():
  5656. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  5657. tokenizer_config_json = json.load(f)
  5658. if "added_tokens_decoder" in tokenizer_config_json:
  5659. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  5660. for token_id, token_json in added_tokens_decoder.items():
  5661. token_id = int(token_id)
  5662. if token_id >= vocab_size:
  5663. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5664. continue
  5665. token_content = token_json["content"]
  5666. token_type = SentencePieceTokenTypes.USER_DEFINED
  5667. token_score = -10000.0
  5668. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  5669. # Set the score to 0.0 as in the original tokenizer.model
  5670. if ("special" in token_json) and token_json["special"]:
  5671. if token_content == tokenizer_config_json["unk_token"]:
  5672. token_type = SentencePieceTokenTypes.UNKNOWN
  5673. else:
  5674. token_type = SentencePieceTokenTypes.CONTROL
  5675. token_score = 0.0
  5676. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  5677. tokens[token_id] = token_content.encode("utf-8")
  5678. toktypes[token_id] = token_type
  5679. scores[token_id] = token_score
  5680. self.gguf_writer.add_tokenizer_model("llama")
  5681. self.gguf_writer.add_tokenizer_pre("default")
  5682. self.gguf_writer.add_token_list(tokens)
  5683. self.gguf_writer.add_token_scores(scores)
  5684. self.gguf_writer.add_token_types(toktypes)
  5685. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5686. special_vocab.add_to_gguf(self.gguf_writer)
  5687. def set_gguf_parameters(self):
  5688. super().set_gguf_parameters()
  5689. hparams = self.hparams
  5690. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5691. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  5692. _experts: list[dict[str, Tensor]] | None = None
  5693. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5694. n_head = self.hparams["num_attention_heads"]
  5695. n_kv_head = self.hparams.get("num_key_value_heads")
  5696. if name.endswith("q_proj.weight"):
  5697. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5698. if name.endswith("k_proj.weight"):
  5699. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5700. # process the experts separately
  5701. if name.find("block_sparse_moe.experts") != -1:
  5702. n_experts = self.hparams["num_local_experts"]
  5703. assert bid is not None
  5704. if self._experts is None:
  5705. self._experts = [{} for _ in range(self.block_count)]
  5706. self._experts[bid][name] = data_torch
  5707. if len(self._experts[bid]) >= n_experts * 3:
  5708. tensors: list[tuple[str, Tensor]] = []
  5709. # merge the experts into a single 3d tensor
  5710. for wid in ["w1", "w2", "w3"]:
  5711. datas: list[Tensor] = []
  5712. for xid in range(n_experts):
  5713. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  5714. datas.append(self._experts[bid][ename])
  5715. del self._experts[bid][ename]
  5716. data_torch = torch.stack(datas, dim=0)
  5717. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  5718. new_name = self.map_tensor_name(merged_name)
  5719. tensors.append((new_name, data_torch))
  5720. return tensors
  5721. else:
  5722. return []
  5723. return [(self.map_tensor_name(name), data_torch)]
  5724. def prepare_tensors(self):
  5725. super().prepare_tensors()
  5726. if self._experts is not None:
  5727. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5728. experts = [k for d in self._experts for k in d.keys()]
  5729. if len(experts) > 0:
  5730. raise ValueError(f"Unprocessed experts: {experts}")
  5731. @ModelBase.register("DeepseekForCausalLM")
  5732. class DeepseekModel(TextModel):
  5733. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  5734. def set_vocab(self):
  5735. try:
  5736. self._set_vocab_sentencepiece()
  5737. except FileNotFoundError:
  5738. self._set_vocab_gpt2()
  5739. def set_gguf_parameters(self):
  5740. super().set_gguf_parameters()
  5741. hparams = self.hparams
  5742. if (rope_dim := hparams.get("head_dim")) is None:
  5743. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  5744. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5745. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5746. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5747. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5748. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5749. self.gguf_writer.add_expert_weights_scale(1.0)
  5750. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5751. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5752. _experts: list[dict[str, Tensor]] | None = None
  5753. @staticmethod
  5754. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  5755. if n_head_kv is not None and n_head != n_head_kv:
  5756. n_head = n_head_kv
  5757. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  5758. .swapaxes(1, 2)
  5759. .reshape(weights.shape))
  5760. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5761. n_head = self.hparams["num_attention_heads"]
  5762. n_kv_head = self.hparams.get("num_key_value_heads")
  5763. if name.endswith(("q_proj.weight", "q_proj.bias")):
  5764. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  5765. if name.endswith(("k_proj.weight", "k_proj.bias")):
  5766. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  5767. # process the experts separately
  5768. if name.find("mlp.experts") != -1:
  5769. n_experts = self.hparams["n_routed_experts"]
  5770. assert bid is not None
  5771. if self._experts is None:
  5772. self._experts = [{} for _ in range(self.block_count)]
  5773. self._experts[bid][name] = data_torch
  5774. if len(self._experts[bid]) >= n_experts * 3:
  5775. tensors: list[tuple[str, Tensor]] = []
  5776. # merge the experts into a single 3d tensor
  5777. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5778. datas: list[Tensor] = []
  5779. for xid in range(n_experts):
  5780. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5781. datas.append(self._experts[bid][ename])
  5782. del self._experts[bid][ename]
  5783. data_torch = torch.stack(datas, dim=0)
  5784. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5785. new_name = self.map_tensor_name(merged_name)
  5786. tensors.append((new_name, data_torch))
  5787. return tensors
  5788. else:
  5789. return []
  5790. return [(self.map_tensor_name(name), data_torch)]
  5791. def prepare_tensors(self):
  5792. super().prepare_tensors()
  5793. if self._experts is not None:
  5794. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5795. experts = [k for d in self._experts for k in d.keys()]
  5796. if len(experts) > 0:
  5797. raise ValueError(f"Unprocessed experts: {experts}")
  5798. @ModelBase.register(
  5799. "DeepseekV2ForCausalLM",
  5800. "DeepseekV3ForCausalLM",
  5801. "KimiVLForConditionalGeneration",
  5802. )
  5803. class DeepseekV2Model(TextModel):
  5804. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  5805. def set_vocab(self):
  5806. try:
  5807. self._set_vocab_gpt2()
  5808. return
  5809. except Exception:
  5810. pass
  5811. from transformers import AutoTokenizer
  5812. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  5813. tokpre = self.get_vocab_base_pre(tokenizer)
  5814. if tokpre == "kimi-k2":
  5815. # Build merges list using the approach similar to HunYuanMoE
  5816. merges = []
  5817. vocab = {}
  5818. mergeable_ranks = tokenizer.model._mergeable_ranks
  5819. for token, rank in mergeable_ranks.items():
  5820. vocab[QwenModel.token_bytes_to_string(token)] = rank
  5821. if len(token) == 1:
  5822. continue
  5823. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  5824. if len(merged) == 2:
  5825. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  5826. # Build token list
  5827. vocab_size = self.hparams["vocab_size"]
  5828. special_tokens = tokenizer.special_tokens
  5829. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  5830. tokens: list[str] = []
  5831. toktypes: list[int] = []
  5832. for i in range(vocab_size):
  5833. if i not in reverse_vocab:
  5834. tokens.append(f"[PAD{i}]")
  5835. toktypes.append(gguf.TokenType.UNUSED)
  5836. else:
  5837. token = reverse_vocab[i]
  5838. tokens.append(token)
  5839. if i in special_tokens.values():
  5840. toktypes.append(gguf.TokenType.CONTROL)
  5841. else:
  5842. toktypes.append(gguf.TokenType.NORMAL)
  5843. self.gguf_writer.add_tokenizer_model("gpt2")
  5844. self.gguf_writer.add_tokenizer_pre(tokpre)
  5845. self.gguf_writer.add_token_list(tokens)
  5846. self.gguf_writer.add_token_types(toktypes)
  5847. self.gguf_writer.add_token_merges(merges)
  5848. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  5849. special_vocab.add_to_gguf(self.gguf_writer)
  5850. else:
  5851. raise NotImplementedError(f"Deepseek pre-tokenizer {tokpre!r} is not supported yet!")
  5852. def set_gguf_parameters(self):
  5853. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  5854. self.hparams["num_key_value_heads"] = 1
  5855. super().set_gguf_parameters()
  5856. hparams = self.hparams
  5857. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5858. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5859. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  5860. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  5861. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  5862. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  5863. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  5864. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  5865. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  5866. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  5867. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5868. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5869. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5870. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  5871. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  5872. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  5873. if (rope_mscale_all := self.rope_parameters.get("mscale_all_dim")) is not None:
  5874. # [TAG_DEEPSEEK2_YARN_LOG_MUL_FIX]
  5875. # note: for legacy reasons, this is not consistent with the other usages of self.gguf_writer.add_rope_scaling_yarn_log_mul
  5876. # ref https://github.com/ggml-org/llama.cpp/pull/17945
  5877. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_mscale_all)
  5878. _experts: list[dict[str, Tensor]] | None = None
  5879. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5880. # skip vision tensors and remove "language_model." for Kimi-VL
  5881. if "vision_tower" in name or "multi_modal_projector" in name:
  5882. return []
  5883. if name.startswith("language_model."):
  5884. name = name.replace("language_model.", "")
  5885. # rename e_score_correction_bias tensors
  5886. if name.endswith("e_score_correction_bias"):
  5887. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5888. # skip Multi-Token Prediction (MTP) layers
  5889. block_count = self.hparams["num_hidden_layers"]
  5890. match = re.match(r"model.layers.(\d+)", name)
  5891. if match and int(match.group(1)) >= block_count:
  5892. return []
  5893. # process the experts separately
  5894. if name.find("mlp.experts") != -1:
  5895. n_experts = self.hparams["n_routed_experts"]
  5896. assert bid is not None
  5897. if self._experts is None:
  5898. self._experts = [{} for _ in range(self.block_count)]
  5899. self._experts[bid][name] = data_torch
  5900. if len(self._experts[bid]) >= n_experts * 3:
  5901. tensors: list[tuple[str, Tensor]] = []
  5902. # merge the experts into a single 3d tensor
  5903. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5904. datas: list[Tensor] = []
  5905. for xid in range(n_experts):
  5906. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5907. datas.append(self._experts[bid][ename])
  5908. del self._experts[bid][ename]
  5909. data_torch = torch.stack(datas, dim=0)
  5910. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5911. new_name = self.map_tensor_name(merged_name)
  5912. tensors.append((new_name, data_torch))
  5913. return tensors
  5914. else:
  5915. return []
  5916. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  5917. if name.endswith("kv_b_proj.weight"):
  5918. name_kb = name.replace("kv_b_proj", "k_b_proj")
  5919. name_vb = name.replace("kv_b_proj", "v_b_proj")
  5920. n_head_kv = self.hparams["num_key_value_heads"]
  5921. v_head_dim = self.hparams["v_head_dim"]
  5922. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  5923. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  5924. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  5925. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  5926. k_b = k_b.transpose(1, 2)
  5927. return [
  5928. (self.map_tensor_name(name_kb), k_b),
  5929. (self.map_tensor_name(name_vb), v_b)
  5930. ]
  5931. return [(self.map_tensor_name(name), data_torch)]
  5932. def prepare_tensors(self):
  5933. super().prepare_tensors()
  5934. if self._experts is not None:
  5935. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5936. experts = [k for d in self._experts for k in d.keys()]
  5937. if len(experts) > 0:
  5938. raise ValueError(f"Unprocessed experts: {experts}")
  5939. @ModelBase.register("MiniMaxM2ForCausalLM")
  5940. class MiniMaxM2Model(TextModel):
  5941. model_arch = gguf.MODEL_ARCH.MINIMAXM2
  5942. _experts_cache: dict[int, dict[str, Tensor]] = {}
  5943. def __init__(self, *args, **kwargs):
  5944. super().__init__(*args, **kwargs)
  5945. self.hparams["num_experts"] = self.hparams["num_local_experts"]
  5946. def set_gguf_parameters(self):
  5947. super().set_gguf_parameters()
  5948. self.gguf_writer.add_expert_feed_forward_length(self.find_hparam(["intermediate_size"]))
  5949. self.gguf_writer.add_rope_dimension_count(self.find_hparam(["rotary_dim"]))
  5950. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  5951. if name.endswith("e_score_correction_bias"):
  5952. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5953. # merge expert weights
  5954. if 'experts' in name:
  5955. n_experts = self.hparams["num_experts"]
  5956. assert bid is not None
  5957. expert_cache = self._experts_cache.setdefault(bid, {})
  5958. expert_cache[name] = data_torch
  5959. expert_weights = ["w1", "w2", "w3"]
  5960. # not enough expert weights to merge
  5961. if len(expert_cache) < n_experts * len(expert_weights):
  5962. return []
  5963. tensors: list[tuple[str, Tensor]] = []
  5964. for w_name in expert_weights:
  5965. datas: list[Tensor] = []
  5966. for xid in range(n_experts):
  5967. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  5968. datas.append(expert_cache[ename])
  5969. del expert_cache[ename]
  5970. data_torch = torch.stack(datas, dim=0)
  5971. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  5972. new_name = self.map_tensor_name(merged_name)
  5973. tensors.append((new_name, data_torch))
  5974. del self._experts_cache[bid]
  5975. return tensors
  5976. return super().modify_tensors(data_torch, name, bid)
  5977. @ModelBase.register("PanguEmbeddedForCausalLM")
  5978. class PanguEmbeddedModel(TextModel):
  5979. model_arch = gguf.MODEL_ARCH.PANGU_EMBED
  5980. def set_vocab(self):
  5981. self._set_vocab_sentencepiece()
  5982. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  5983. if tokenizer_config_file.is_file():
  5984. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  5985. tokenizer_config_json = json.load(f)
  5986. if "add_prefix_space" in tokenizer_config_json:
  5987. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  5988. def set_gguf_parameters(self):
  5989. super().set_gguf_parameters()
  5990. hparams = self.hparams
  5991. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5992. # PanguEmbedded's hparam loaded from config.json without head_dim
  5993. if (rope_dim := hparams.get("head_dim")) is None:
  5994. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  5995. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5996. if hparams.get("head_dim") is None:
  5997. self.gguf_writer.add_key_length(rope_dim)
  5998. self.gguf_writer.add_value_length(rope_dim)
  5999. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6000. if name == "lm_head.weight":
  6001. if self.hparams.get("tie_word_embeddings", False):
  6002. logger.info("Skipping tied output layer 'lm_head.weight'")
  6003. return []
  6004. return [(self.map_tensor_name(name), data_torch)]
  6005. @ModelBase.register("Dots1ForCausalLM")
  6006. class Dots1Model(Qwen2MoeModel):
  6007. model_arch = gguf.MODEL_ARCH.DOTS1
  6008. def __init__(self, *args, **kwargs):
  6009. super().__init__(*args, **kwargs)
  6010. self.hparams["num_experts"] = self.hparams["n_routed_experts"]
  6011. def set_gguf_parameters(self):
  6012. super().set_gguf_parameters()
  6013. self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
  6014. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  6015. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  6016. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  6017. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  6018. if name.endswith("e_score_correction_bias"):
  6019. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6020. if "shared_experts" in name:
  6021. return [(self.map_tensor_name(name), data_torch)]
  6022. return super().modify_tensors(data_torch, name, bid)
  6023. @ModelBase.register("PLMForCausalLM")
  6024. class PLMModel(TextModel):
  6025. model_arch = gguf.MODEL_ARCH.PLM
  6026. def set_vocab(self):
  6027. self._set_vocab_gpt2()
  6028. def set_gguf_parameters(self):
  6029. super().set_gguf_parameters()
  6030. hparams = self.hparams
  6031. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6032. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  6033. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  6034. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  6035. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  6036. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6037. return [(self.map_tensor_name(name), data_torch)]
  6038. def prepare_tensors(self):
  6039. super().prepare_tensors()
  6040. @ModelBase.register("T5WithLMHeadModel")
  6041. @ModelBase.register("T5ForConditionalGeneration")
  6042. @ModelBase.register("MT5ForConditionalGeneration")
  6043. @ModelBase.register("UMT5ForConditionalGeneration")
  6044. @ModelBase.register("UMT5Model")
  6045. class T5Model(TextModel):
  6046. model_arch = gguf.MODEL_ARCH.T5
  6047. def __init__(self, *args, **kwargs):
  6048. super().__init__(*args, **kwargs)
  6049. self.shared_token_embeddings_found = False
  6050. def set_vocab(self):
  6051. # to avoid TypeError: Descriptors cannot be created directly
  6052. # exception when importing sentencepiece_model_pb2
  6053. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  6054. from sentencepiece import SentencePieceProcessor
  6055. from sentencepiece import sentencepiece_model_pb2 as model
  6056. tokenizer_path = self.dir_model / 'tokenizer.model'
  6057. # many older models use spiece.model tokenizer model filename
  6058. if not tokenizer_path.is_file():
  6059. tokenizer_path = self.dir_model / 'spiece.model'
  6060. if not tokenizer_path.is_file():
  6061. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  6062. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  6063. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  6064. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  6065. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  6066. # assure the tokenizer model file name is correct
  6067. assert tokenizer_path.name == 'tokenizer.model'
  6068. return self._set_vocab_sentencepiece()
  6069. else:
  6070. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  6071. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  6072. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  6073. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  6074. tokenizer = SentencePieceProcessor()
  6075. tokenizer.LoadFromFile(str(tokenizer_path))
  6076. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  6077. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  6078. scores: list[float] = [-10000.0] * vocab_size
  6079. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  6080. for token_id in range(tokenizer.vocab_size()):
  6081. piece = tokenizer.IdToPiece(token_id)
  6082. text = piece.encode("utf-8")
  6083. score = tokenizer.GetScore(token_id)
  6084. toktype = SentencePieceTokenTypes.NORMAL
  6085. if tokenizer.IsUnknown(token_id):
  6086. toktype = SentencePieceTokenTypes.UNKNOWN
  6087. elif tokenizer.IsControl(token_id):
  6088. toktype = SentencePieceTokenTypes.CONTROL
  6089. elif tokenizer.IsUnused(token_id):
  6090. toktype = SentencePieceTokenTypes.UNUSED
  6091. elif tokenizer.IsByte(token_id):
  6092. toktype = SentencePieceTokenTypes.BYTE
  6093. tokens[token_id] = text
  6094. scores[token_id] = score
  6095. toktypes[token_id] = toktype
  6096. added_tokens_file = self.dir_model / 'added_tokens.json'
  6097. if added_tokens_file.is_file():
  6098. with open(added_tokens_file, "r", encoding="utf-8") as f:
  6099. added_tokens_json = json.load(f)
  6100. for key in added_tokens_json:
  6101. token_id = added_tokens_json[key]
  6102. if token_id >= vocab_size:
  6103. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  6104. continue
  6105. tokens[token_id] = key.encode("utf-8")
  6106. scores[token_id] = -1000.0
  6107. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  6108. if vocab_size > len(tokens):
  6109. pad_count = vocab_size - len(tokens)
  6110. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  6111. for i in range(1, pad_count + 1):
  6112. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  6113. scores.append(-1000.0)
  6114. toktypes.append(SentencePieceTokenTypes.UNUSED)
  6115. self.gguf_writer.add_tokenizer_model("t5")
  6116. self.gguf_writer.add_tokenizer_pre("default")
  6117. self.gguf_writer.add_token_list(tokens)
  6118. self.gguf_writer.add_token_scores(scores)
  6119. self.gguf_writer.add_token_types(toktypes)
  6120. self.gguf_writer.add_add_space_prefix(add_prefix)
  6121. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  6122. if precompiled_charsmap:
  6123. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  6124. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6125. special_vocab.add_to_gguf(self.gguf_writer)
  6126. def set_gguf_parameters(self):
  6127. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  6128. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  6129. n_ctx = 512
  6130. self.gguf_writer.add_context_length(n_ctx)
  6131. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  6132. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  6133. self.gguf_writer.add_block_count(self.block_count)
  6134. if (dec_n_layer := self.hparams.get("num_decoder_layers")) is not None:
  6135. self.gguf_writer.add_decoder_block_count(dec_n_layer)
  6136. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  6137. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  6138. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  6139. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6140. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  6141. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  6142. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  6143. self.gguf_writer.add_file_type(self.ftype)
  6144. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6145. del bid # unused
  6146. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  6147. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  6148. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  6149. # and decoder and ignore the remaining ones.
  6150. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  6151. if not self.shared_token_embeddings_found:
  6152. name = "shared.weight"
  6153. self.shared_token_embeddings_found = True
  6154. else:
  6155. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  6156. return []
  6157. return [(self.map_tensor_name(name), data_torch)]
  6158. @ModelBase.register("T5EncoderModel")
  6159. class T5EncoderModel(TextModel):
  6160. model_arch = gguf.MODEL_ARCH.T5ENCODER
  6161. def __init__(self, *args, **kwargs):
  6162. super().__init__(*args, **kwargs)
  6163. self.shared_token_embeddings_found = False
  6164. def set_vocab(self):
  6165. # to avoid TypeError: Descriptors cannot be created directly
  6166. # exception when importing sentencepiece_model_pb2
  6167. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  6168. from sentencepiece import SentencePieceProcessor
  6169. from sentencepiece import sentencepiece_model_pb2 as model
  6170. tokenizer_path = self.dir_model / 'tokenizer.model'
  6171. # many older models use spiece.model tokenizer model filename
  6172. if not tokenizer_path.is_file():
  6173. tokenizer_path = self.dir_model / 'spiece.model'
  6174. if not tokenizer_path.is_file():
  6175. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  6176. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  6177. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  6178. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  6179. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  6180. # assure the tokenizer model file name is correct
  6181. assert tokenizer_path.name == 'tokenizer.model'
  6182. return self._set_vocab_sentencepiece()
  6183. else:
  6184. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  6185. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  6186. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  6187. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  6188. tokenizer = SentencePieceProcessor()
  6189. tokenizer.LoadFromFile(str(tokenizer_path))
  6190. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  6191. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  6192. scores: list[float] = [-10000.0] * vocab_size
  6193. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  6194. for token_id in range(tokenizer.vocab_size()):
  6195. piece = tokenizer.IdToPiece(token_id)
  6196. text = piece.encode("utf-8")
  6197. score = tokenizer.GetScore(token_id)
  6198. toktype = SentencePieceTokenTypes.NORMAL
  6199. if tokenizer.IsUnknown(token_id):
  6200. toktype = SentencePieceTokenTypes.UNKNOWN
  6201. elif tokenizer.IsControl(token_id):
  6202. toktype = SentencePieceTokenTypes.CONTROL
  6203. elif tokenizer.IsUnused(token_id):
  6204. toktype = SentencePieceTokenTypes.UNUSED
  6205. elif tokenizer.IsByte(token_id):
  6206. toktype = SentencePieceTokenTypes.BYTE
  6207. tokens[token_id] = text
  6208. scores[token_id] = score
  6209. toktypes[token_id] = toktype
  6210. added_tokens_file = self.dir_model / 'added_tokens.json'
  6211. if added_tokens_file.is_file():
  6212. with open(added_tokens_file, "r", encoding="utf-8") as f:
  6213. added_tokens_json = json.load(f)
  6214. for key in added_tokens_json:
  6215. token_id = added_tokens_json[key]
  6216. if token_id >= vocab_size:
  6217. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  6218. continue
  6219. tokens[token_id] = key.encode("utf-8")
  6220. scores[token_id] = -1000.0
  6221. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  6222. if vocab_size > len(tokens):
  6223. pad_count = vocab_size - len(tokens)
  6224. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  6225. for i in range(1, pad_count + 1):
  6226. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  6227. scores.append(-1000.0)
  6228. toktypes.append(SentencePieceTokenTypes.UNUSED)
  6229. self.gguf_writer.add_tokenizer_model("t5")
  6230. self.gguf_writer.add_tokenizer_pre("default")
  6231. self.gguf_writer.add_token_list(tokens)
  6232. self.gguf_writer.add_token_scores(scores)
  6233. self.gguf_writer.add_token_types(toktypes)
  6234. self.gguf_writer.add_add_space_prefix(add_prefix)
  6235. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  6236. if precompiled_charsmap:
  6237. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  6238. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6239. special_vocab.add_to_gguf(self.gguf_writer)
  6240. def set_gguf_parameters(self):
  6241. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  6242. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  6243. n_ctx = 512
  6244. self.gguf_writer.add_context_length(n_ctx)
  6245. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  6246. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  6247. self.gguf_writer.add_block_count(self.block_count)
  6248. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  6249. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  6250. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  6251. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6252. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  6253. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  6254. self.gguf_writer.add_file_type(self.ftype)
  6255. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6256. del bid # unused
  6257. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  6258. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  6259. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  6260. # and decoder and ignore the remaining ones.
  6261. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  6262. if not self.shared_token_embeddings_found:
  6263. name = "shared.weight"
  6264. self.shared_token_embeddings_found = True
  6265. else:
  6266. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  6267. return []
  6268. return [(self.map_tensor_name(name), data_torch)]
  6269. @ModelBase.register("JAISLMHeadModel")
  6270. class JaisModel(TextModel):
  6271. model_arch = gguf.MODEL_ARCH.JAIS
  6272. def __init__(self, *args, **kwargs):
  6273. super().__init__(*args, **kwargs)
  6274. # SwigLU activation
  6275. assert self.hparams["activation_function"] == "swiglu"
  6276. # ALiBi position embedding
  6277. assert self.hparams["position_embedding_type"] == "alibi"
  6278. # Embeddings scale
  6279. self.embeddings_scale = 1.0
  6280. if 'mup_embeddings_scale' in self.hparams:
  6281. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  6282. elif 'embeddings_scale' in self.hparams:
  6283. self.embeddings_scale = self.hparams['embeddings_scale']
  6284. else:
  6285. assert False
  6286. self.width_scale = 1.0
  6287. if 'mup_output_alpha' in self.hparams:
  6288. assert 'mup_width_scale' in self.hparams
  6289. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  6290. elif 'width_scale' in self.hparams:
  6291. self.width_scale = self.hparams['width_scale']
  6292. else:
  6293. assert False
  6294. self.max_alibi_bias = 8.0
  6295. def set_vocab(self):
  6296. self._set_vocab_gpt2()
  6297. def set_gguf_parameters(self):
  6298. self.gguf_writer.add_block_count(self.block_count)
  6299. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  6300. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  6301. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  6302. self.gguf_writer.add_head_count(self.hparams["n_head"])
  6303. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6304. self.gguf_writer.add_file_type(self.ftype)
  6305. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6306. del bid # unused
  6307. tensors: list[tuple[str, Tensor]] = []
  6308. # we don't need these
  6309. if name.endswith((".attn.bias")):
  6310. return tensors
  6311. if name.endswith(("relative_pe.slopes")):
  6312. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  6313. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  6314. # but Jais's PyTorch model simply precalculates the slope values and places them
  6315. # in relative_pes.slopes
  6316. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  6317. first_val = float(data_torch[0].item())
  6318. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  6319. return tensors
  6320. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  6321. data_torch = data_torch.transpose(1, 0)
  6322. new_name = self.map_tensor_name(name)
  6323. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  6324. tensors.append((new_name, data_torch * self.embeddings_scale))
  6325. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  6326. tensors.append((new_name, data_torch * self.width_scale))
  6327. else:
  6328. tensors.append((new_name, data_torch))
  6329. return tensors
  6330. def prepare_tensors(self):
  6331. super().prepare_tensors()
  6332. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  6333. @ModelBase.register("Glm4ForCausalLM", "Glm4vForConditionalGeneration")
  6334. class Glm4Model(TextModel):
  6335. model_arch = gguf.MODEL_ARCH.GLM4
  6336. use_mrope = False
  6337. partial_rotary_factor = 0.5
  6338. def __init__(self, *args, **kwargs):
  6339. super().__init__(*args, **kwargs)
  6340. self.partial_rotary_factor = self.rope_parameters.get("partial_rotary_factor", 0.5)
  6341. if "mrope_section" in self.rope_parameters:
  6342. self.use_mrope = True
  6343. logger.info("Q/K weight will need to be permuted for M-RoPE")
  6344. def set_vocab(self):
  6345. from transformers import AutoTokenizer
  6346. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  6347. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6348. tokens, toktypes, tokpre = self.get_vocab_base()
  6349. self.gguf_writer.add_tokenizer_model("gpt2")
  6350. self.gguf_writer.add_tokenizer_pre(tokpre)
  6351. self.gguf_writer.add_token_list(tokens)
  6352. self.gguf_writer.add_token_types(toktypes)
  6353. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6354. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6355. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  6356. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  6357. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6358. special_vocab.add_to_gguf(self.gguf_writer)
  6359. def set_gguf_parameters(self):
  6360. super().set_gguf_parameters()
  6361. if (rope_dim := self.hparams.get("head_dim")) is None:
  6362. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6363. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.partial_rotary_factor))
  6364. @staticmethod
  6365. def normal_to_neox(weights: Tensor, n_head: int, n_head_kv: int, head_dim: int, partial_rotary_factor: float) -> Tensor:
  6366. orig_shape = weights.shape
  6367. if len(orig_shape) == 1:
  6368. weights = weights.unsqueeze(1) # [out_dim, 1]
  6369. if len(weights.shape) != 2:
  6370. raise ValueError("Only 1D and 2D tensors are supported.")
  6371. n_effective_heads = weights.shape[0] // head_dim
  6372. if n_head_kv is not None and n_effective_heads != n_head:
  6373. if n_effective_heads != n_head_kv:
  6374. raise AssertionError(f"Mismatch in effective heads: computed {n_effective_heads}, expected {n_head} or {n_head_kv}")
  6375. rotary_dim = int(head_dim * partial_rotary_factor)
  6376. if rotary_dim % 2 != 0:
  6377. raise ValueError("rotary_dim must be even.")
  6378. reshaped = weights.reshape(n_effective_heads, head_dim, -1)
  6379. rot_part = reshaped[:, :rotary_dim, :]
  6380. non_rot_part = reshaped[:, rotary_dim:, :]
  6381. permuted_rot = torch.cat((rot_part[:, ::2, :], rot_part[:, 1::2, :]), dim=1)
  6382. combined = torch.cat((permuted_rot, non_rot_part), dim=1)
  6383. result = combined.reshape(weights.shape)
  6384. return result if len(orig_shape) != 1 else result.squeeze(1)
  6385. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6386. if name.startswith("model.visual."): # ignore visual part of Glm4v
  6387. return []
  6388. elif name.startswith("model.language_model."):
  6389. name = name.replace("language_model.", "") # for Glm4v
  6390. if self.use_mrope:
  6391. n_head = self.hparams["num_attention_heads"]
  6392. n_kv_head = self.hparams["num_key_value_heads"]
  6393. n_embd = self.hparams["hidden_size"]
  6394. head_dim = n_embd // n_head
  6395. # because llama.cpp M-RoPE kernel only supports Neox ordering, we have to permute the weights here
  6396. if name.endswith(("q_proj.weight", "q_proj.bias")):
  6397. data_torch = Glm4Model.normal_to_neox(data_torch, n_head, n_head, head_dim, self.partial_rotary_factor)
  6398. if name.endswith(("k_proj.weight", "k_proj.bias")):
  6399. data_torch = Glm4Model.normal_to_neox(data_torch, n_head, n_kv_head, head_dim, self.partial_rotary_factor)
  6400. return super().modify_tensors(data_torch, name, bid)
  6401. @ModelBase.register("Glm4MoeForCausalLM", "Glm4vMoeForConditionalGeneration")
  6402. class Glm4MoeModel(TextModel):
  6403. model_arch = gguf.MODEL_ARCH.GLM4_MOE
  6404. def __init__(self, *args, **kwargs):
  6405. super().__init__(*args, **kwargs)
  6406. # GLM4_MOE has num_hidden_layers + 1 actual layers (including NextN layer)
  6407. self.block_count = self.hparams["num_hidden_layers"] + self.hparams.get("num_nextn_predict_layers", 0)
  6408. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  6409. def set_vocab(self):
  6410. from transformers import AutoTokenizer
  6411. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  6412. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6413. tokens, toktypes, tokpre = self.get_vocab_base()
  6414. self.gguf_writer.add_tokenizer_model("gpt2")
  6415. self.gguf_writer.add_tokenizer_pre(tokpre)
  6416. self.gguf_writer.add_token_list(tokens)
  6417. self.gguf_writer.add_token_types(toktypes)
  6418. # Special tokens
  6419. # Note: Using <|endoftext|> (151329) for eot causes endless generation
  6420. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["[gMASK]"]) # 151331
  6421. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"]) # 151336
  6422. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"]) # 151329
  6423. special_vocab._set_special_token("eom", tokenizer.get_added_vocab()["<|observation|>"]) # 151338
  6424. special_vocab.add_to_gguf(self.gguf_writer)
  6425. def set_gguf_parameters(self):
  6426. super().set_gguf_parameters()
  6427. if (rope_dim := self.hparams.get("head_dim")) is None:
  6428. rope_dim = (
  6429. self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6430. )
  6431. self.gguf_writer.add_rope_dimension_count(
  6432. int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5))
  6433. )
  6434. # MoE parameters - Use only routed expert count (shared experts handled separately)
  6435. if (n_routed_experts := self.hparams.get("n_routed_experts")) is not None:
  6436. self.gguf_writer.add_expert_count(n_routed_experts)
  6437. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  6438. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  6439. if (n_shared_experts := self.hparams.get("n_shared_experts")) is not None:
  6440. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  6441. if (first_k_dense_replace := self.hparams.get("first_k_dense_replace")) is not None:
  6442. self.gguf_writer.add_leading_dense_block_count(first_k_dense_replace)
  6443. # Expert gating function (sigmoid for GLM4_MOE)
  6444. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  6445. # Routed scaling factor
  6446. if (routed_scaling_factor := self.hparams.get("routed_scaling_factor")) is not None:
  6447. self.gguf_writer.add_expert_weights_scale(routed_scaling_factor)
  6448. # Normalise topk probabilities
  6449. if (norm_topk_prob := self.hparams.get("norm_topk_prob")) is not None:
  6450. self.gguf_writer.add_expert_weights_norm(norm_topk_prob)
  6451. # NextN/MTP prediction layers
  6452. if (num_nextn_predict_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  6453. self.gguf_writer.add_nextn_predict_layers(num_nextn_predict_layers)
  6454. _experts: list[dict[str, Tensor]] | None = None
  6455. # note: unlike GLM4V non-MoE, we don't need to permute Q/K here since GLM4V_MOE uses Neox ordering already
  6456. def modify_tensors(
  6457. self, data_torch: Tensor, name: str, bid: int | None
  6458. ) -> Iterable[tuple[str, Tensor]]:
  6459. if name.startswith("model.visual."): # ignore visual part
  6460. return []
  6461. elif name.startswith("model.language_model."):
  6462. name = name.replace("language_model.", "") # for multimodal variants
  6463. # Handle main token embedding (but not layer-specific NextN embeddings)
  6464. if name == "model.embed_tokens.weight" and ".layers." not in name:
  6465. return [(self.map_tensor_name("token_embd.weight"), data_torch)]
  6466. # Handle routed experts
  6467. if name.find("mlp.experts") != -1:
  6468. n_experts = self.hparams["n_routed_experts"]
  6469. assert bid is not None
  6470. if self._experts is None:
  6471. self._experts = [{} for _ in range(self.block_count)]
  6472. self._experts[bid][name] = data_torch
  6473. if len(self._experts[bid]) >= n_experts * 3:
  6474. tensors: list[tuple[str, Tensor]] = []
  6475. # merge the experts into a single 3d tensor
  6476. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6477. datas: list[Tensor] = []
  6478. for xid in range(n_experts):
  6479. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6480. datas.append(self._experts[bid][ename])
  6481. del self._experts[bid][ename]
  6482. data_torch = torch.stack(datas, dim=0)
  6483. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6484. new_name = self.map_tensor_name(merged_name)
  6485. tensors.append((new_name, data_torch))
  6486. return tensors
  6487. else:
  6488. return []
  6489. if name.endswith("e_score_correction_bias"):
  6490. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6491. new_name = self.map_tensor_name(name)
  6492. return [(new_name, data_torch)]
  6493. def prepare_tensors(self):
  6494. super().prepare_tensors()
  6495. if self._experts is not None:
  6496. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6497. experts = [k for d in self._experts for k in d.keys()]
  6498. if len(experts) > 0:
  6499. raise ValueError(f"Unprocessed experts: {experts}")
  6500. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  6501. class ChatGLMModel(TextModel):
  6502. model_arch = gguf.MODEL_ARCH.CHATGLM
  6503. def set_vocab_chatglm3(self):
  6504. dir_model = self.dir_model
  6505. hparams = self.hparams
  6506. tokens: list[bytes] = []
  6507. toktypes: list[int] = []
  6508. scores: list[float] = []
  6509. from transformers import AutoTokenizer
  6510. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  6511. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  6512. assert max(tokenizer.get_vocab().values()) < vocab_size
  6513. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  6514. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  6515. for token_id in range(vocab_size):
  6516. piece = tokenizer._convert_id_to_token(token_id)
  6517. if token_id == 0:
  6518. piece = "<unk>"
  6519. elif token_id == 1:
  6520. piece = "<bos>"
  6521. elif token_id == 2:
  6522. piece = "<eos>"
  6523. text = piece.encode("utf-8")
  6524. score = 0.0
  6525. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  6526. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  6527. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  6528. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  6529. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  6530. if piece in special_tokens:
  6531. toktype = SentencePieceTokenTypes.CONTROL
  6532. elif len(piece) == 0:
  6533. text = f"[PAD{token_id}]".encode("utf-8")
  6534. toktype = SentencePieceTokenTypes.UNUSED
  6535. else:
  6536. toktype = SentencePieceTokenTypes.USER_DEFINED
  6537. tokens.append(text)
  6538. scores.append(score)
  6539. toktypes.append(toktype)
  6540. continue
  6541. toktype = SentencePieceTokenTypes.NORMAL
  6542. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  6543. toktype = SentencePieceTokenTypes.UNKNOWN
  6544. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  6545. toktype = SentencePieceTokenTypes.CONTROL
  6546. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  6547. toktype = SentencePieceTokenTypes.UNUSED
  6548. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  6549. toktype = SentencePieceTokenTypes.BYTE
  6550. tokens.append(text)
  6551. scores.append(score)
  6552. toktypes.append(toktype)
  6553. self.gguf_writer.add_tokenizer_model("llama")
  6554. # glm3 needs prefix and suffix formatted as:
  6555. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  6556. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  6557. self.gguf_writer.add_token_list(tokens)
  6558. self.gguf_writer.add_token_scores(scores)
  6559. self.gguf_writer.add_token_types(toktypes)
  6560. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6561. special_vocab.add_to_gguf(self.gguf_writer)
  6562. @staticmethod
  6563. def token_bytes_to_string(b):
  6564. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  6565. byte_encoder = bytes_to_unicode()
  6566. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  6567. @staticmethod
  6568. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  6569. parts = [bytes([b]) for b in token]
  6570. while True:
  6571. min_idx = None
  6572. min_rank = None
  6573. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  6574. rank = mergeable_ranks.get(pair[0] + pair[1])
  6575. if rank is not None and (min_rank is None or rank < min_rank):
  6576. min_idx = i
  6577. min_rank = rank
  6578. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  6579. break
  6580. assert min_idx is not None
  6581. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  6582. return parts
  6583. def set_vocab(self):
  6584. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  6585. self.set_vocab_chatglm3()
  6586. return
  6587. dir_model = self.dir_model
  6588. hparams = self.hparams
  6589. tokens: list[str] = []
  6590. toktypes: list[int] = []
  6591. from transformers import AutoTokenizer
  6592. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  6593. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  6594. assert max(tokenizer.get_vocab().values()) < vocab_size
  6595. tokens, toktypes, tokpre = self.get_vocab_base()
  6596. self.gguf_writer.add_tokenizer_model("gpt2")
  6597. self.gguf_writer.add_tokenizer_pre(tokpre)
  6598. self.gguf_writer.add_token_list(tokens)
  6599. self.gguf_writer.add_token_types(toktypes)
  6600. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6601. # only add special tokens when they were not already loaded from config.json
  6602. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6603. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  6604. # this one is usually not in config.json anyway
  6605. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  6606. special_vocab.add_to_gguf(self.gguf_writer)
  6607. def set_gguf_parameters(self):
  6608. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  6609. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  6610. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  6611. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  6612. self.gguf_writer.add_embedding_length(n_embed)
  6613. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  6614. self.gguf_writer.add_block_count(self.block_count)
  6615. self.gguf_writer.add_head_count(n_head)
  6616. self.gguf_writer.add_head_count_kv(n_head_kv)
  6617. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  6618. self.gguf_writer.add_file_type(self.ftype)
  6619. if "attention_dim" in self.hparams:
  6620. rope_dim = self.hparams["attention_dim"]
  6621. else:
  6622. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6623. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  6624. self.gguf_writer.add_add_bos_token(False)
  6625. rope_freq = 10000
  6626. if "rope_ratio" in self.hparams:
  6627. rope_freq = rope_freq * self.hparams["rope_ratio"]
  6628. self.gguf_writer.add_rope_freq_base(rope_freq)
  6629. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6630. del bid # unused
  6631. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  6632. return []
  6633. name = name.removeprefix("transformer.")
  6634. return [(self.map_tensor_name(name), data_torch)]
  6635. @ModelBase.register("NemotronForCausalLM")
  6636. class NemotronModel(TextModel):
  6637. model_arch = gguf.MODEL_ARCH.NEMOTRON
  6638. def set_vocab(self):
  6639. self._set_vocab_sentencepiece()
  6640. self.gguf_writer.add_pad_token_id(0)
  6641. self.gguf_writer.add_unk_token_id(1)
  6642. def set_gguf_parameters(self):
  6643. super().set_gguf_parameters()
  6644. hparams = self.hparams
  6645. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6646. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  6647. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  6648. # * Partial RoPE
  6649. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  6650. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  6651. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  6652. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  6653. # * RopeScaling for Nemotron
  6654. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  6655. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6656. else:
  6657. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  6658. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  6659. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6660. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  6661. # model.layers.{l}.input_layernorm.weight
  6662. # model.layers.{l}.post_attention_layernorm.weight
  6663. # model.norm.weight
  6664. if name.endswith("norm.weight"):
  6665. data_torch = data_torch + 1
  6666. return [(self.map_tensor_name(name), data_torch)]
  6667. @ModelBase.register("ExaoneForCausalLM")
  6668. class ExaoneModel(TextModel):
  6669. model_arch = gguf.MODEL_ARCH.EXAONE
  6670. def set_gguf_parameters(self):
  6671. super().set_gguf_parameters()
  6672. hparams = self.hparams
  6673. assert (hparams["activation_function"] == "silu")
  6674. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  6675. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  6676. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  6677. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6678. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  6679. if rope_params.get("rope_type", '').lower() == "llama3":
  6680. base = self.rope_parameters.get("rope_theta", 10000.0)
  6681. if (dim := self.hparams.get("head_dim")) is None:
  6682. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6683. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  6684. factor = rope_params.get("factor", 8.0)
  6685. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  6686. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  6687. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  6688. low_freq_wavelen = old_context_len / low_freq_factor
  6689. high_freq_wavelen = old_context_len / high_freq_factor
  6690. assert low_freq_wavelen != high_freq_wavelen
  6691. rope_factors = []
  6692. for freq in freqs:
  6693. wavelen = 2 * math.pi / freq
  6694. if wavelen < high_freq_wavelen:
  6695. rope_factors.append(1)
  6696. elif wavelen > low_freq_wavelen:
  6697. rope_factors.append(factor)
  6698. else:
  6699. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  6700. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  6701. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  6702. @ModelBase.register("Exaone4ForCausalLM")
  6703. class Exaone4Model(TextModel):
  6704. model_arch = gguf.MODEL_ARCH.EXAONE4
  6705. def set_vocab(self):
  6706. tokens, toktypes, tokpre = self.get_vocab_base()
  6707. self.gguf_writer.add_tokenizer_model("gpt2")
  6708. self.gguf_writer.add_tokenizer_pre(tokpre)
  6709. self.gguf_writer.add_token_list(tokens)
  6710. self.gguf_writer.add_token_types(toktypes)
  6711. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6712. special_vocab.add_to_gguf(self.gguf_writer)
  6713. def set_gguf_parameters(self):
  6714. super().set_gguf_parameters()
  6715. hparams = self.hparams
  6716. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6717. if hparams.get("sliding_window") is not None:
  6718. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  6719. if "layer_types" in hparams:
  6720. self.gguf_writer.add_sliding_window_pattern([t == "sliding_attention" for t in hparams["layer_types"]])
  6721. elif "sliding_window_pattern" in hparams:
  6722. sliding_window_pattern = []
  6723. if isinstance(hparams["sliding_window_pattern"], str): # e.g. LLLG
  6724. for i in range(hparams["num_hidden_layers"]):
  6725. sliding_window_pattern.append(hparams["sliding_window_pattern"][i % len(hparams["sliding_window_pattern"])] == "L")
  6726. if isinstance(hparams["sliding_window_pattern"], int): # e.g. 4
  6727. for i in range(hparams["num_hidden_layers"]):
  6728. sliding_window_pattern.append((i + 1) % hparams["sliding_window_pattern"] != 0)
  6729. if len(sliding_window_pattern) == hparams["num_hidden_layers"]:
  6730. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  6731. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6732. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  6733. if rope_params.get("rope_type", '').lower() == "llama3":
  6734. base = rope_params.get("rope_theta", 10_000.0)
  6735. if (dim := self.hparams.get("head_dim")) is None:
  6736. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6737. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  6738. factor = rope_params.get("factor", 16.0)
  6739. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  6740. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  6741. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  6742. low_freq_wavelen = old_context_len / low_freq_factor
  6743. high_freq_wavelen = old_context_len / high_freq_factor
  6744. rope_factors = []
  6745. for freq in freqs:
  6746. wavelen = 2 * math.pi / freq
  6747. if wavelen < high_freq_wavelen:
  6748. rope_factors.append(1)
  6749. elif wavelen > low_freq_wavelen:
  6750. rope_factors.append(factor)
  6751. else:
  6752. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  6753. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  6754. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  6755. @ModelBase.register("GraniteForCausalLM")
  6756. class GraniteModel(LlamaModel):
  6757. """Conversion for IBM's GraniteForCausalLM"""
  6758. model_arch = gguf.MODEL_ARCH.GRANITE
  6759. def set_gguf_parameters(self):
  6760. """Granite uses standard llama parameters with the following differences:
  6761. - No head_dim support
  6762. - New multiplier params:
  6763. - attention_scale
  6764. - embedding_scale
  6765. - residual_scale
  6766. - logits_scaling
  6767. """
  6768. if head_dim := self.hparams.pop("head_dim", None):
  6769. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  6770. super().set_gguf_parameters()
  6771. # NOTE: Convert _multiplier params to _scale params for naming
  6772. # consistency
  6773. if attention_scale := self.hparams.get("attention_multiplier"):
  6774. self.gguf_writer.add_attention_scale(attention_scale)
  6775. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  6776. if embedding_scale := self.hparams.get("embedding_multiplier"):
  6777. self.gguf_writer.add_embedding_scale(embedding_scale)
  6778. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  6779. if residual_scale := self.hparams.get("residual_multiplier"):
  6780. self.gguf_writer.add_residual_scale(residual_scale)
  6781. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  6782. if logits_scale := self.hparams.get("logits_scaling"):
  6783. self.gguf_writer.add_logit_scale(logits_scale)
  6784. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  6785. @ModelBase.register("GraniteMoeForCausalLM", "GraniteMoeSharedForCausalLM")
  6786. class GraniteMoeModel(GraniteModel):
  6787. """Conversion for IBM's GraniteMoeForCausalLM"""
  6788. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  6789. def set_gguf_parameters(self):
  6790. """GraniteMoeShared uses GraniteMoe parameters plus the following:
  6791. - shared_intermediate_size
  6792. """
  6793. super().set_gguf_parameters()
  6794. if shared_feed_forward_length := self.hparams.get("shared_intermediate_size"):
  6795. self.gguf_writer.add_expert_shared_feed_forward_length(shared_feed_forward_length)
  6796. logger.info("gguf: (granitemoeshared) shared_feed_forward_length = %s", shared_feed_forward_length)
  6797. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6798. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  6799. is used. This essentially merges w1 and w3 into a single tensor with 2x
  6800. the hidden size that is then split during forward. To keep compatibility
  6801. with existing mixtral support, we pull them apart here.
  6802. """
  6803. if name.endswith("block_sparse_moe.input_linear.weight"):
  6804. ffn_dim = self.hparams["intermediate_size"]
  6805. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  6806. gate, up = data_torch.split(ffn_dim, dim=-2)
  6807. return [
  6808. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  6809. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  6810. ]
  6811. has_experts = bool(self.hparams.get('num_local_experts'))
  6812. if name.endswith("shared_mlp.input_linear.weight"):
  6813. ffn_dim = self.hparams["shared_intermediate_size"]
  6814. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * shared_intermediate_size"
  6815. gate, up = data_torch.split(ffn_dim, dim=-2)
  6816. if has_experts:
  6817. return [
  6818. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), gate),
  6819. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), up),
  6820. ]
  6821. return [
  6822. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), gate),
  6823. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), up),
  6824. ]
  6825. if not has_experts and name.endswith("shared_mlp.output_linear.weight"):
  6826. return [
  6827. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, bid), data_torch)
  6828. ]
  6829. return super().modify_tensors(data_torch, name, bid)
  6830. @ModelBase.register("GraniteMoeHybridForCausalLM", "BambaForCausalLM")
  6831. class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
  6832. """GraniteHybrid is a hybrid SSM + Attention model that uses Mamba2 SSM
  6833. layers and optionally uses MoE w/ a shared expert"""
  6834. model_arch = gguf.MODEL_ARCH.GRANITE_HYBRID
  6835. undo_permute = True
  6836. def __init__(self, *args, **kwargs):
  6837. # Hybrid mamba models use a prefix for the mamba-specific params.
  6838. # TODO: Extend this if the prefix(es) need to be configurable
  6839. self.hparam_prefixes = ["mamba"]
  6840. super().__init__(*args, **kwargs)
  6841. # Lists of which layers use ssm vs attention
  6842. self._attn_layers = self.get_attn_layers()
  6843. self._ssm_layers = [
  6844. i for i in range(self.block_count)
  6845. if i not in self._attn_layers
  6846. ]
  6847. # There are some models in this family that are non-hybrid, but keep the
  6848. # same parent class by setting all layers to "attention." If this is the
  6849. # case, the model architecture needs to be updated to a standard
  6850. # "granite" or "granitemoe" model
  6851. if not self._ssm_layers:
  6852. has_experts = self.find_hparam(["num_experts_per_tok"], optional=True)
  6853. new_arch = (
  6854. gguf.MODEL_ARCH.GRANITE_MOE
  6855. if has_experts else
  6856. gguf.MODEL_ARCH.GRANITE
  6857. )
  6858. self.model_arch = new_arch
  6859. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[new_arch]
  6860. self.gguf_writer.add_architecture()
  6861. # n_group and d_inner are used during reshape_tensors for mamba2
  6862. # NOTE: Explicitly include hparam prefix prefix for d_model to
  6863. # disambiguate with top-level head_dim
  6864. # NOTE 2: If needed for future models, this can be isolated in a method
  6865. # to separate the prefix setting and teh keys used
  6866. self.d_model = self.find_hparam([f"{self.hparam_prefixes[0]}_head_dim", "hidden_size", "d_model"])
  6867. self.n_group = self.find_hparam(["n_groups", "num_groups"])
  6868. self.d_inner = self.find_hparam(["expand", "num_heads"]) * self.d_model
  6869. def get_attn_layers(self):
  6870. # Explicit list of layer type names
  6871. if layer_types := self.hparams.get("layer_types"):
  6872. return [
  6873. i for i, typ in enumerate(layer_types)
  6874. if typ == "attention"
  6875. ]
  6876. # Layer types indicated by index or period
  6877. attn_layers = self.hparams.get("attn_layer_indices", [])
  6878. if not attn_layers:
  6879. attn_period = self.hparams.get("attn_layer_period")
  6880. assert attn_period, "Didn't find attn_layer_indices or attn_layer_period"
  6881. attn_offset = self.hparams.get("attn_layer_offset")
  6882. assert attn_offset is not None, "No attention layer offset set with attn_layer_period"
  6883. attn_layers = [
  6884. i for i in range(self.block_count)
  6885. if i % attn_period == attn_offset
  6886. ]
  6887. return attn_layers
  6888. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  6889. prefixed = []
  6890. for pfx in self.hparam_prefixes:
  6891. prefixed.extend(
  6892. "_".join([pfx, k])
  6893. for k in keys
  6894. )
  6895. keys = list(keys) + prefixed
  6896. return Mamba2Model.find_hparam(self, keys, *args, **kwargs)
  6897. def modify_tensors(
  6898. self, data_torch: Tensor, name: str, bid: int | None
  6899. ) -> Iterable[tuple[str, Tensor]]:
  6900. if (
  6901. name.endswith("block_sparse_moe.input_linear.weight")
  6902. or "shared_mlp" in name
  6903. ):
  6904. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  6905. # Determine whether this is a mamba layer or an attention layer
  6906. if bid in self._ssm_layers:
  6907. return Mamba2Model.modify_tensors(self, data_torch, name, bid)
  6908. elif bid in self._attn_layers:
  6909. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  6910. return [(self.map_tensor_name(name), data_torch)]
  6911. def set_gguf_parameters(self):
  6912. """This method merges params from both parents and some that are
  6913. specific to this model. The result is some duplication of how the params
  6914. get set. The following warnings are expected during conversion:
  6915. WARNING:Duplicated key name 'granitehybrid.attention.head_count_kv'
  6916. WARNING:Duplicated key name 'granitehybrid.context_length'
  6917. """
  6918. GraniteMoeModel.set_gguf_parameters(self)
  6919. ## Mamba mixer params ##
  6920. self.gguf_writer.add_ssm_conv_kernel(self.find_hparam(["conv_kernel", "d_conv"]))
  6921. self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state", "state_dim", "ssm_state_size"]))
  6922. self.gguf_writer.add_ssm_group_count(self.n_group)
  6923. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  6924. # NOTE: The mamba_dt_rank is _not_ the right field for how this is used
  6925. # in llama.cpp
  6926. self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["n_heads", "num_heads"]))
  6927. ## Attention params ##
  6928. head_count_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  6929. head_count_kv_vec = [
  6930. head_count_kv if i in self._attn_layers else 0 for i in range(self.block_count)
  6931. ]
  6932. if rope_dim := self.hparams.get("attn_rotary_emb"):
  6933. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6934. self.gguf_writer.add_head_count_kv(head_count_kv_vec)
  6935. ## If Bamba or non-hybrid, use rope, otherwise don't
  6936. use_rope = (
  6937. "BambaForCausalLM" in self.hparams["architectures"]
  6938. or not self._ssm_layers
  6939. )
  6940. self.gguf_writer.add_rope_scaling_finetuned(use_rope)
  6941. if not use_rope:
  6942. self.gguf_writer.add_context_length(2**20)
  6943. ## Validation ##
  6944. d_head = self.find_hparam(["d_head"], optional=True) or 64
  6945. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  6946. assert self.d_inner % d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {d_head}"
  6947. def set_vocab(self):
  6948. self.hparams["pad_vocab_size_multiple"] = 8
  6949. Mamba2Model.set_vocab(self)
  6950. @ModelBase.register("NemotronHForCausalLM")
  6951. class NemotronHModel(GraniteHybridModel):
  6952. """Hybrid mamba2/attention model from NVIDIA"""
  6953. model_arch = gguf.MODEL_ARCH.NEMOTRON_H
  6954. is_moe: bool = False
  6955. def __init__(self, *args, **kwargs):
  6956. # We have to determine the correct model architecture (MoE vs non-MoE) before
  6957. # calling the parent __init__. This is because the parent constructor
  6958. # uses self.model_arch to build the tensor name map, and all MoE-specific
  6959. # mappings would be missed if it were called with the default non-MoE arch.
  6960. hparams = ModelBase.load_hparams(args[0], self.is_mistral_format)
  6961. if "num_experts_per_tok" in hparams:
  6962. self.model_arch = gguf.MODEL_ARCH.NEMOTRON_H_MOE
  6963. self.is_moe = True
  6964. super().__init__(*args, **kwargs)
  6965. # Save the top-level head_dim for later
  6966. self.head_dim = self.hparams.get("head_dim", self.hparams.get("attention_head_dim"))
  6967. assert self.head_dim is not None, "Could not find the attention head dim in config"
  6968. # Don't use expand to calculate d_inner
  6969. self.d_inner = self.find_hparam(["num_heads"]) * self.d_model
  6970. # Update the ssm / attn / mlp layers
  6971. # M: Mamba2, *: Attention, -: MLP
  6972. # MoE:
  6973. # M: Mamba2, *: Attention, E: Expert
  6974. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  6975. self._ssm_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "M"]
  6976. self._mlp_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == ("E" if self.is_moe else "-")]
  6977. def get_attn_layers(self):
  6978. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  6979. assert len(hybrid_override_pattern) == self.block_count, "Mismatch between hybrid override and num_hidden_layers!"
  6980. return [i for i, val in enumerate(hybrid_override_pattern) if val == "*"]
  6981. def set_gguf_parameters(self):
  6982. super().set_gguf_parameters()
  6983. self.gguf_writer.add_key_length(self.head_dim)
  6984. self.gguf_writer.add_value_length(self.head_dim)
  6985. # Set feed_forward_length
  6986. # NOTE: This will trigger an override warning. This is preferrable to
  6987. # duplicating all the parent logic
  6988. if not self.is_moe:
  6989. n_ff = self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"])
  6990. self.gguf_writer.add_feed_forward_length([
  6991. n_ff if i in self._mlp_layers else 0 for i in range(self.block_count)
  6992. ])
  6993. else:
  6994. moe_intermediate_size = self.hparams["moe_intermediate_size"]
  6995. self.gguf_writer.add_feed_forward_length([
  6996. moe_intermediate_size if i in self._mlp_layers else 0 for i in range(self.block_count)
  6997. ])
  6998. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  6999. self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
  7000. self.gguf_writer.add_expert_shared_feed_forward_length(self.hparams["moe_shared_expert_intermediate_size"])
  7001. self.gguf_writer.add_expert_count(self.hparams["n_routed_experts"])
  7002. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  7003. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  7004. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  7005. self.gguf_writer.add_expert_group_count(self.hparams["n_group"])
  7006. # number of experts used per token (top-k)
  7007. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  7008. self.gguf_writer.add_expert_used_count(n_experts_used)
  7009. def set_vocab(self):
  7010. super().set_vocab()
  7011. # The tokenizer _does_ add a BOS token (via post_processor type
  7012. # TemplateProcessing) but does not set add_bos_token to true in the
  7013. # config, so we need to explicitly override it here.
  7014. if not self.is_moe:
  7015. self.gguf_writer.add_add_bos_token(True)
  7016. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7017. if self.is_moe and bid is not None:
  7018. if name.endswith("mixer.gate.e_score_correction_bias"):
  7019. new_name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  7020. mapped_name = self.map_tensor_name(new_name)
  7021. return [(mapped_name, data_torch)]
  7022. if name.endswith("mixer.dt_bias"):
  7023. new_name = name.replace("dt_bias", "dt.bias")
  7024. mapped_name = self.map_tensor_name(new_name)
  7025. return [(mapped_name, data_torch)]
  7026. if name.endswith("mixer.conv1d.weight"):
  7027. squeezed_data = data_torch.squeeze()
  7028. mapped_name = self.map_tensor_name(name)
  7029. return [(mapped_name, squeezed_data)]
  7030. if name.endswith("mixer.A_log"):
  7031. transformed_data = -torch.exp(data_torch)
  7032. reshaped_data = transformed_data.squeeze().reshape(-1, 1)
  7033. mapped_name = self.map_tensor_name(name)
  7034. return [(mapped_name, reshaped_data)]
  7035. if name.endswith("mixer.D"):
  7036. reshaped_data = data_torch.squeeze().reshape(-1, 1)
  7037. mapped_name = self.map_tensor_name(name)
  7038. return [(mapped_name, reshaped_data)]
  7039. if name.endswith("mixer.norm.weight"):
  7040. reshaped_data = data_torch.reshape(8, 512)
  7041. mapped_name = self.map_tensor_name(name)
  7042. return [(mapped_name, reshaped_data)]
  7043. if name.find("mixer.experts") != -1:
  7044. n_experts = self.hparams["n_routed_experts"]
  7045. assert bid is not None
  7046. if self._experts is None:
  7047. self._experts = [{} for _ in range(self.block_count)]
  7048. self._experts[bid][name] = data_torch
  7049. if len(self._experts[bid]) >= n_experts * 2:
  7050. # merge the experts into a single tensor
  7051. tensors: list[tuple[str, Tensor]] = []
  7052. for w_name in ["down_proj", "up_proj"]:
  7053. datas: list[Tensor] = []
  7054. for xid in range(n_experts):
  7055. ename = f"backbone.layers.{bid}.mixer.experts.{xid}.{w_name}.weight"
  7056. datas.append(self._experts[bid][ename])
  7057. del self._experts[bid][ename]
  7058. data_torch = torch.stack(datas, dim=0)
  7059. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7060. new_name = self.map_tensor_name(merged_name)
  7061. tensors.append((new_name, data_torch))
  7062. return tensors
  7063. else:
  7064. return []
  7065. return super().modify_tensors(data_torch, name, bid)
  7066. def prepare_tensors(self):
  7067. super().prepare_tensors()
  7068. if self._experts is not None:
  7069. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7070. experts = [k for d in self._experts for k in d.keys()]
  7071. if len(experts) > 0:
  7072. raise ValueError(f"Unprocessed experts: {experts}")
  7073. @ModelBase.register("BailingMoeForCausalLM")
  7074. class BailingMoeModel(TextModel):
  7075. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  7076. def set_vocab(self):
  7077. self._set_vocab_gpt2()
  7078. def set_gguf_parameters(self):
  7079. super().set_gguf_parameters()
  7080. hparams = self.hparams
  7081. if (rope_dim := hparams.get("head_dim")) is None:
  7082. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  7083. self.gguf_writer.add_rope_dimension_count(rope_dim)
  7084. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  7085. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  7086. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  7087. self.gguf_writer.add_expert_weights_scale(1.0)
  7088. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7089. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  7090. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  7091. _experts: list[dict[str, Tensor]] | None = None
  7092. @staticmethod
  7093. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  7094. if n_head_kv is not None and n_head != n_head_kv:
  7095. n_head = n_head_kv
  7096. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  7097. .swapaxes(1, 2)
  7098. .reshape(weights.shape))
  7099. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7100. n_head = self.hparams["num_attention_heads"]
  7101. n_kv_head = self.hparams.get("num_key_value_heads")
  7102. n_embd = self.hparams["hidden_size"]
  7103. if (head_dim := self.hparams.get("head_dim")) is None:
  7104. head_dim = n_embd // n_head
  7105. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  7106. if name.endswith("attention.dense.weight"):
  7107. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  7108. elif name.endswith("query_key_value.weight"):
  7109. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  7110. return [
  7111. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  7112. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  7113. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  7114. ]
  7115. elif name.find("mlp.experts") != -1:
  7116. n_experts = self.hparams["num_experts"]
  7117. assert bid is not None
  7118. tensors: list[tuple[str, Tensor]] = []
  7119. if self._experts is None:
  7120. self._experts = [{} for _ in range(self.block_count)]
  7121. self._experts[bid][name] = data_torch
  7122. if len(self._experts[bid]) >= n_experts * 3:
  7123. # merge the experts into a single 3d tensor
  7124. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7125. datas: list[Tensor] = []
  7126. for xid in range(n_experts):
  7127. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7128. datas.append(self._experts[bid][ename])
  7129. del self._experts[bid][ename]
  7130. data_torch = torch.stack(datas, dim=0)
  7131. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7132. new_name = self.map_tensor_name(merged_name)
  7133. tensors.append((new_name, data_torch))
  7134. return tensors
  7135. new_name = self.map_tensor_name(name)
  7136. if new_name == output_name and self.hparams.get("norm_head"):
  7137. data_torch = data_torch.float()
  7138. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  7139. return [(new_name, data_torch)]
  7140. def prepare_tensors(self):
  7141. super().prepare_tensors()
  7142. if self._experts is not None:
  7143. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7144. experts = [k for d in self._experts for k in d.keys()]
  7145. if len(experts) > 0:
  7146. raise ValueError(f"Unprocessed experts: {experts}")
  7147. @ModelBase.register("BailingMoeV2ForCausalLM")
  7148. class BailingMoeV2Model(TextModel):
  7149. model_arch = gguf.MODEL_ARCH.BAILINGMOE2
  7150. def __init__(self, *args, **kwargs):
  7151. super().__init__(*args, **kwargs)
  7152. if nextn_layers := self.hparams.get("num_nextn_predict_layers", 0):
  7153. self.block_count = self.hparams["num_hidden_layers"] + nextn_layers
  7154. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  7155. def set_vocab(self):
  7156. self._set_vocab_gpt2()
  7157. def set_gguf_parameters(self):
  7158. super().set_gguf_parameters()
  7159. hparams = self.hparams
  7160. if (rope_dim := hparams.get("head_dim")) is None:
  7161. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  7162. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  7163. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  7164. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  7165. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  7166. self.gguf_writer.add_expert_shared_feed_forward_length(hparams.get("moe_shared_expert_intermediate_size", hparams["moe_intermediate_size"] * hparams["num_shared_experts"]))
  7167. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  7168. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7169. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  7170. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  7171. if (nextn_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  7172. self.gguf_writer.add_nextn_predict_layers(nextn_layers)
  7173. _experts: list[dict[str, Tensor]] | None = None
  7174. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7175. if "mlp.experts" in name:
  7176. n_experts = self.hparams["num_experts"]
  7177. assert bid is not None
  7178. tensors: list[tuple[str, Tensor]] = []
  7179. if self._experts is None:
  7180. self._experts = [{} for _ in range(self.block_count)]
  7181. self._experts[bid][name] = data_torch
  7182. if len(self._experts[bid]) >= n_experts * 3:
  7183. # merge the experts into a single 3d tensor
  7184. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7185. datas: list[Tensor] = []
  7186. for xid in range(n_experts):
  7187. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7188. datas.append(self._experts[bid][ename])
  7189. del self._experts[bid][ename]
  7190. data_torch = torch.stack(datas, dim=0)
  7191. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7192. new_name = self.map_tensor_name(merged_name)
  7193. tensors.append((new_name, data_torch))
  7194. return tensors
  7195. if name.endswith(".expert_bias"):
  7196. name = name.replace(".expert_bias", ".expert_bias.bias")
  7197. return [(self.map_tensor_name(name), data_torch)]
  7198. def prepare_tensors(self):
  7199. super().prepare_tensors()
  7200. if self._experts is not None:
  7201. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7202. experts = [k for d in self._experts for k in d.keys()]
  7203. if len(experts) > 0:
  7204. raise ValueError(f"Unprocessed experts: {experts}")
  7205. @ModelBase.register("GroveMoeForCausalLM", "modeling_grove_moe.GroveMoeForCausalLM")
  7206. class GroveMoeModel(TextModel):
  7207. model_arch = gguf.MODEL_ARCH.GROVEMOE
  7208. def set_gguf_parameters(self):
  7209. super().set_gguf_parameters()
  7210. if (n_experts := self.hparams.get("num_experts")) is not None:
  7211. self.gguf_writer.add_expert_count(n_experts)
  7212. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  7213. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  7214. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  7215. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L299
  7216. self.gguf_writer.add_expert_chunk_feed_forward_length(self.hparams.get("head_dim") or 128)
  7217. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L298
  7218. self.gguf_writer.add_experts_per_group(2)
  7219. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L376
  7220. self.gguf_writer.add_expert_group_scale(0.05)
  7221. _experts: list[dict[str, Tensor]] | None = None
  7222. _chunk_experts: list[dict[str, Tensor]] | None = None
  7223. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7224. if name.endswith(".expert_bias"):
  7225. # FIXME?: Unused https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L303
  7226. return []
  7227. # process the experts separately
  7228. if name.find("chunk_experts") != -1:
  7229. n_experts = self.hparams["num_experts"] // 2 # see add_experts_per_group
  7230. assert bid is not None
  7231. if self._chunk_experts is None:
  7232. self._chunk_experts = [{} for _ in range(self.block_count)]
  7233. self._chunk_experts[bid][name] = data_torch
  7234. if len(self._chunk_experts[bid]) >= n_experts * 3:
  7235. tensors: list[tuple[str, Tensor]] = []
  7236. # merge the experts into a single 3d tensor
  7237. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7238. datas: list[Tensor] = []
  7239. for xid in range(n_experts):
  7240. ename = f"model.layers.{bid}.mlp.chunk_experts.{xid}.{w_name}.weight"
  7241. datas.append(self._chunk_experts[bid][ename])
  7242. del self._chunk_experts[bid][ename]
  7243. data_torch = torch.stack(datas, dim=0)
  7244. merged_name = f"model.layers.{bid}.mlp.chunk_experts.{w_name}.weight"
  7245. new_name = self.map_tensor_name(merged_name)
  7246. tensors.append((new_name, data_torch))
  7247. return tensors
  7248. else:
  7249. return []
  7250. elif name.find("experts") != -1:
  7251. n_experts = self.hparams["num_experts"]
  7252. assert bid is not None
  7253. if self._experts is None:
  7254. self._experts = [{} for _ in range(self.block_count)]
  7255. self._experts[bid][name] = data_torch
  7256. if len(self._experts[bid]) >= n_experts * 3:
  7257. tensors: list[tuple[str, Tensor]] = []
  7258. # merge the experts into a single 3d tensor
  7259. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7260. datas: list[Tensor] = []
  7261. for xid in range(n_experts):
  7262. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7263. datas.append(self._experts[bid][ename])
  7264. del self._experts[bid][ename]
  7265. data_torch = torch.stack(datas, dim=0)
  7266. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7267. new_name = self.map_tensor_name(merged_name)
  7268. tensors.append((new_name, data_torch))
  7269. return tensors
  7270. else:
  7271. return []
  7272. return [(self.map_tensor_name(name), data_torch)]
  7273. def prepare_tensors(self):
  7274. super().prepare_tensors()
  7275. if self._chunk_experts is not None:
  7276. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7277. chunk_experts = [k for d in self._chunk_experts for k in d.keys()]
  7278. if len(chunk_experts) > 0:
  7279. raise ValueError(f"Unprocessed adjugate experts: {chunk_experts}")
  7280. if self._experts is not None:
  7281. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7282. experts = [k for d in self._experts for k in d.keys()]
  7283. if len(experts) > 0:
  7284. raise ValueError(f"Unprocessed experts: {experts}")
  7285. @ModelBase.register("ChameleonForConditionalGeneration")
  7286. @ModelBase.register("ChameleonForCausalLM") # obsolete
  7287. class ChameleonModel(TextModel):
  7288. model_arch = gguf.MODEL_ARCH.CHAMELEON
  7289. def set_gguf_parameters(self):
  7290. super().set_gguf_parameters()
  7291. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  7292. def set_vocab(self):
  7293. self._set_vocab_gpt2()
  7294. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7295. # ignore image tokenizer for now
  7296. # TODO: remove this once image support is implemented for Chameleon
  7297. if name.startswith("model.vqmodel"):
  7298. return []
  7299. n_head = self.hparams["num_attention_heads"]
  7300. n_kv_head = self.hparams.get("num_key_value_heads")
  7301. hidden_dim = self.hparams.get("hidden_size")
  7302. if name.endswith(("q_proj.weight", "q_proj.bias")):
  7303. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  7304. if name.endswith(("k_proj.weight", "k_proj.bias")):
  7305. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  7306. if name.endswith(("q_norm.weight", "q_norm.bias")):
  7307. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  7308. if name.endswith(("k_norm.weight", "k_norm.bias")):
  7309. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  7310. return [(self.map_tensor_name(name), data_torch)]
  7311. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  7312. @staticmethod
  7313. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  7314. head_dim = hidden_dim // n_heads
  7315. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  7316. data_torch = data_torch.repeat_interleave(n_heads, 0)
  7317. return data_torch
  7318. @ModelBase.register("UltravoxModel")
  7319. class UltravoxModel(TextModel):
  7320. model_arch = gguf.MODEL_ARCH.LLAMA # dummy
  7321. def __init__(self, *args, **kwargs):
  7322. super().__init__(*args, **kwargs)
  7323. raise NotImplementedError("Ultravox does not have text decoder. Instead, it uses Llama or other models for text. If you want to get the audio encoder, please use --mmproj argument")
  7324. @ModelBase.register("GlmasrModel")
  7325. class GlmASRWhisperEncoderModel(MmprojModel):
  7326. has_vision_encoder = False
  7327. has_audio_encoder = True
  7328. def __init__(self, *args, **kwargs):
  7329. super().__init__(*args, **kwargs)
  7330. if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
  7331. self.hparams["hidden_size"] = self.hparams["d_model"]
  7332. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  7333. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  7334. def set_gguf_parameters(self):
  7335. super().set_gguf_parameters()
  7336. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GLMA)
  7337. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  7338. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  7339. self.gguf_writer.add_audio_stack_factor(self.global_config["merge_factor"])
  7340. def tensor_force_quant(self, name, new_name, bid, n_dims):
  7341. if ".conv" in name and ".weight" in name:
  7342. return gguf.GGMLQuantizationType.F16
  7343. return super().tensor_force_quant(name, new_name, bid, n_dims)
  7344. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7345. del bid # unused
  7346. if name.startswith("model.") or name.startswith("lm_head."):
  7347. # skip language model tensors
  7348. return []
  7349. if name.startswith("audio_encoder.whisper."):
  7350. name = name.replace("audio_encoder.whisper.","audio_tower.")
  7351. if "audio_encoder.layer_norm." in name or "audio_encoder.proj." in name:
  7352. name = name.replace("audio_encoder.", "audio_encoder.adapting.")
  7353. if name.startswith("audio_encoder.audio_bos_eos_token."):
  7354. return [(self.map_tensor_name("model.vision.boi"), data_torch[0]), (self.map_tensor_name("model.vision.eoi"), data_torch[1])]
  7355. if name.startswith("audio_encoder.adapting."):
  7356. name = name.replace("audio_encoder.adapting.","audio.multi_modal_projector.")
  7357. if ".layer_norm." in name:
  7358. name = name.replace(".layer_norm.", ".ln_pre.")
  7359. if ".0." in name:
  7360. name = name.replace(".0.", ".linear_1.")
  7361. if ".2." in name:
  7362. name = name.replace(".2.", ".linear_2.")
  7363. if ".proj." in name:
  7364. return []
  7365. if "conv1.bias" in name or "conv2.bias" in name:
  7366. # transpose conv1 and conv2 bias
  7367. data_torch = data_torch.unsqueeze(-1)
  7368. return [(self.map_tensor_name(name), data_torch)]
  7369. @ModelBase.register("Qwen2AudioForConditionalGeneration")
  7370. class WhisperEncoderModel(MmprojModel):
  7371. has_vision_encoder = False # no vision encoder
  7372. has_audio_encoder = True
  7373. def __init__(self, *args, **kwargs):
  7374. super().__init__(*args, **kwargs)
  7375. if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
  7376. self.hparams["hidden_size"] = self.hparams["d_model"]
  7377. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  7378. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  7379. def set_gguf_parameters(self):
  7380. super().set_gguf_parameters()
  7381. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2A)
  7382. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  7383. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  7384. def tensor_force_quant(self, name, new_name, bid, n_dims):
  7385. if ".conv" in name and ".weight" in name:
  7386. return gguf.GGMLQuantizationType.F16
  7387. return super().tensor_force_quant(name, new_name, bid, n_dims)
  7388. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7389. del bid # unused
  7390. if name.startswith("language_model."):
  7391. # skip language model tensors
  7392. return []
  7393. # prevent clash naming with vision tensors
  7394. if name.startswith("multi_modal_projector"):
  7395. name = "audio." + name
  7396. if "conv1.bias" in name or "conv2.bias" in name:
  7397. # transpose conv1 and conv2 bias
  7398. data_torch = data_torch.unsqueeze(-1)
  7399. return [(self.map_tensor_name(name), data_torch)]
  7400. @ModelBase.register("UltravoxModel")
  7401. class UltravoxWhisperEncoderModel(WhisperEncoderModel):
  7402. has_vision_encoder = False # no vision encoder
  7403. has_audio_encoder = True
  7404. def set_gguf_parameters(self):
  7405. super().set_gguf_parameters()
  7406. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.ULTRAVOX)
  7407. self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
  7408. @ModelBase.register("VoxtralForConditionalGeneration")
  7409. class VoxtralWhisperEncoderModel(WhisperEncoderModel):
  7410. has_vision_encoder = False # no vision encoder
  7411. has_audio_encoder = True
  7412. def set_gguf_parameters(self):
  7413. super().set_gguf_parameters()
  7414. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.VOXTRAL)
  7415. self.gguf_writer.add_audio_stack_factor(4) # == intermediate_size // hidden_size
  7416. @ModelBase.register("FalconH1ForCausalLM")
  7417. class FalconH1Model(Mamba2Model):
  7418. model_arch = gguf.MODEL_ARCH.FALCON_H1
  7419. def __init__(self, *args, **kwargs):
  7420. # Set the hparam prefixes for Falcon Mamba2
  7421. self.hparam_prefixes = ["mamba"]
  7422. # Initialize the base Mamba2Model
  7423. super().__init__(*args, **kwargs)
  7424. # Use Llama conversion for attention
  7425. self._transformer_model_class = LlamaModel
  7426. # n_group and d_inner are used during reshape_tensors for mamba2
  7427. self.n_group = self.find_hparam(["n_groups"])
  7428. self.d_inner = self.find_hparam(["mamba_d_ssm"])
  7429. self.d_head = self.find_hparam(["d_head"])
  7430. # Initialize any Falcon Mamba2 specific attributes
  7431. self.has_attention = True # Falcon Mamba2 has attention components
  7432. # Load Falcon-H1 multipliers from hyperparameters
  7433. self.attention_in_multiplier = self.find_hparam(["attention_in_multiplier"], optional=True)
  7434. self.attention_out_multiplier = self.find_hparam(["attention_out_multiplier"], optional=True)
  7435. self.ssm_in_multiplier = self.find_hparam(["ssm_in_multiplier"], optional=True)
  7436. self.ssm_out_multiplier = self.find_hparam(["ssm_out_multiplier"], optional=True)
  7437. self.mlp_multipliers = self.find_hparam(["mlp_multipliers"], optional=True)
  7438. self.ssm_multipliers = self.find_hparam(["ssm_multipliers"], optional=True)
  7439. self.intermediate_size = self.find_hparam(["intermediate_size"])
  7440. self.key_multiplier = self.find_hparam(["key_multiplier"], optional=True)
  7441. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  7442. prefixed = []
  7443. for pfx in self.hparam_prefixes:
  7444. prefixed.extend(
  7445. "_".join([pfx, k])
  7446. for k in keys
  7447. )
  7448. keys = list(keys) + prefixed
  7449. return super().find_hparam(keys, *args, **kwargs)
  7450. def set_vocab(self):
  7451. self._set_vocab_gpt2()
  7452. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7453. tensors = list(super().modify_tensors(data_torch, name, bid))
  7454. tensor = tensors[0][1]
  7455. if "down_proj" in name:
  7456. tensor = tensor * self.mlp_multipliers[1]
  7457. elif "gate_proj" in name:
  7458. tensor = tensor * self.mlp_multipliers[0]
  7459. elif "k_proj" in name:
  7460. tensor = tensor * self.key_multiplier * self.attention_in_multiplier
  7461. elif "q_proj" in name:
  7462. tensor = tensor * self.attention_in_multiplier
  7463. elif "v_proj" in name:
  7464. tensor = tensor * self.attention_in_multiplier
  7465. elif "o_proj" in name:
  7466. tensor = tensor * self.attention_out_multiplier
  7467. elif "out_proj" in name:
  7468. tensor = tensor * self.ssm_out_multiplier
  7469. elif "in_proj" in name:
  7470. tensor = tensor * self.ssm_in_multiplier
  7471. zxbcdt_multipliers = self.hparams["ssm_multipliers"]
  7472. intermediate_size = self.hparams["mamba_d_ssm"]
  7473. groups_time_state_size = self.hparams["mamba_n_groups"] * self.hparams["mamba_d_state"]
  7474. tensor[:intermediate_size, :] *= zxbcdt_multipliers[0]
  7475. tensor[intermediate_size:2 * intermediate_size, :] *= zxbcdt_multipliers[1]
  7476. tensor[2 * intermediate_size:2 * intermediate_size + groups_time_state_size, :] *= zxbcdt_multipliers[2]
  7477. tensor[2 * intermediate_size + groups_time_state_size:2 * intermediate_size + 2 * groups_time_state_size, :] *= zxbcdt_multipliers[3]
  7478. tensor[2 * intermediate_size + 2 * groups_time_state_size:, :] *= zxbcdt_multipliers[4]
  7479. elif "lm_head" in name:
  7480. tensor = tensor * self.hparams["lm_head_multiplier"]
  7481. elif "embed_tokens" in name:
  7482. tensor = tensor * self.hparams["embedding_multiplier"]
  7483. elif "mamba.norm" in name:
  7484. tensor = tensor.reshape(self.n_group, self.d_inner // self.n_group)
  7485. tensors = [(tensors[0][0], tensor)]
  7486. return tensors
  7487. def set_gguf_parameters(self):
  7488. super().set_gguf_parameters()
  7489. ## General Params ##
  7490. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7491. # Override some Mamba2 defaults
  7492. self.gguf_writer.add_block_count(self.block_count)
  7493. self.gguf_writer.add_context_length(self.hparams.get("max_position_embeddings", 0))
  7494. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  7495. ## Attention params ##
  7496. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) # Override value 0 from Mamba2
  7497. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  7498. self.gguf_writer.add_key_length(self.hparams["head_dim"])
  7499. self.gguf_writer.add_value_length(self.hparams["head_dim"])
  7500. ## Validation ##
  7501. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  7502. assert self.d_inner % self.d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {self.d_head}"
  7503. # Add any other Falcon Mamba2 specific configuration
  7504. self.gguf_writer.add_rope_freq_base(self.rope_parameters["rope_theta"])
  7505. @ModelBase.register("HunYuanMoEV1ForCausalLM")
  7506. class HunYuanMoEModel(TextModel):
  7507. model_arch = gguf.MODEL_ARCH.HUNYUAN_MOE
  7508. def set_vocab(self):
  7509. from transformers import AutoTokenizer
  7510. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  7511. # 1. Get the pre-tokenizer identifier hash
  7512. tokpre = self.get_vocab_base_pre(tokenizer)
  7513. # 2. Reverse-engineer the merges list from mergeable_ranks
  7514. merges = []
  7515. vocab = {}
  7516. mergeable_ranks = tokenizer.mergeable_ranks
  7517. for token, rank in mergeable_ranks.items():
  7518. vocab[QwenModel.token_bytes_to_string(token)] = rank
  7519. if len(token) == 1:
  7520. continue
  7521. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  7522. if len(merged) == 2: # todo this is an assert in Qwen, why?
  7523. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  7524. # 3. Generate the tokens and toktypes lists
  7525. vocab_size = self.hparams["vocab_size"]
  7526. assert tokenizer.vocab_size == vocab_size
  7527. special_tokens = tokenizer.special_tokens
  7528. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  7529. tokens: list[str] = []
  7530. toktypes: list[int] = []
  7531. for i in range(vocab_size):
  7532. if i not in reverse_vocab:
  7533. tokens.append(f"[PAD{i}]")
  7534. toktypes.append(gguf.TokenType.UNUSED)
  7535. else:
  7536. token = reverse_vocab[i]
  7537. tokens.append(token)
  7538. if i in special_tokens.values():
  7539. toktypes.append(gguf.TokenType.CONTROL)
  7540. else:
  7541. toktypes.append(gguf.TokenType.NORMAL)
  7542. # 4. Write all vocab-related fields to the GGUF writer
  7543. self.gguf_writer.add_tokenizer_model("gpt2")
  7544. self.gguf_writer.add_tokenizer_pre(tokpre)
  7545. self.gguf_writer.add_token_list(tokens)
  7546. self.gguf_writer.add_token_types(toktypes)
  7547. self.gguf_writer.add_token_merges(merges)
  7548. # 5. Add special tokens and chat templates
  7549. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  7550. special_vocab.add_to_gguf(self.gguf_writer)
  7551. # FIX for BOS token: Overwrite incorrect id read from config.json
  7552. self.gguf_writer.add_bos_token_id(127959) # <|bos|>
  7553. def set_gguf_parameters(self):
  7554. super().set_gguf_parameters()
  7555. hparams = self.hparams
  7556. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7557. self.gguf_writer.add_expert_shared_feed_forward_length(hparams["intermediate_size"])
  7558. moe_intermediate_size = hparams["moe_intermediate_size"]
  7559. assert all(n == moe_intermediate_size[0] for n in moe_intermediate_size)
  7560. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size[0])
  7561. moe_topk = hparams["moe_topk"]
  7562. assert all(topk == moe_topk[0] for topk in moe_topk)
  7563. self.gguf_writer.add_expert_used_count(moe_topk[0])
  7564. moe_shared_expert = hparams["num_shared_expert"]
  7565. assert all(n == moe_shared_expert[0] for n in moe_shared_expert)
  7566. self.gguf_writer.add_expert_shared_count(moe_shared_expert[0])
  7567. # Rope
  7568. if self.rope_parameters.get("rope_type") == "dynamic":
  7569. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  7570. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  7571. alpha = self.rope_parameters.get("alpha", 1000)
  7572. base = self.rope_parameters.get("rope_theta", 10000.0)
  7573. dim = (hparams["hidden_size"] // hparams["num_attention_heads"]) # 128
  7574. scaled_base = base * (alpha ** (dim / (dim - 2))) # 10000 * (1000 ** (128 / 126)) = 11158839.9251
  7575. self.gguf_writer.add_rope_freq_base(scaled_base)
  7576. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7577. self.gguf_writer.add_rope_scaling_factor(1)
  7578. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  7579. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  7580. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  7581. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  7582. assert alpha == 1000 and base == 10000.0 and dim == 128 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  7583. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  7584. _experts: list[dict[str, Tensor]] | None = None
  7585. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7586. if name == "lm_head.weight":
  7587. if self.hparams.get("tie_word_embeddings", False):
  7588. logger.info("Skipping tied output layer 'lm_head.weight'")
  7589. return []
  7590. if name.find("mlp.experts") != -1:
  7591. n_experts = self.hparams["num_experts"]
  7592. assert bid is not None
  7593. if self._experts is None:
  7594. self._experts = [{} for _ in range(self.block_count)]
  7595. self._experts[bid][name] = data_torch
  7596. if len(self._experts[bid]) >= n_experts * 3:
  7597. # merge the experts into a single 3d tensor
  7598. tensors: list[tuple[str, Tensor]] = []
  7599. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7600. datas: list[Tensor] = []
  7601. for xid in range(n_experts):
  7602. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7603. datas.append(self._experts[bid][ename])
  7604. del self._experts[bid][ename]
  7605. data_torch = torch.stack(datas, dim=0)
  7606. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7607. new_name = self.map_tensor_name(merged_name)
  7608. tensors.append((new_name, data_torch))
  7609. return tensors
  7610. else:
  7611. return []
  7612. return [(self.map_tensor_name(name), data_torch)]
  7613. def prepare_tensors(self):
  7614. super().prepare_tensors()
  7615. if self._experts is not None:
  7616. experts = [k for d in self._experts for k in d.keys()]
  7617. if len(experts) > 0:
  7618. raise ValueError(f"Unprocessed experts: {experts}")
  7619. @ModelBase.register("LLaDAMoEModel", "LLaDAMoEModelLM")
  7620. class LLaDAMoEModel(TextModel):
  7621. model_arch = gguf.MODEL_ARCH.LLADA_MOE
  7622. def set_gguf_parameters(self):
  7623. super().set_gguf_parameters()
  7624. if (n_experts := self.hparams.get("num_experts")) is not None:
  7625. self.gguf_writer.add_expert_count(n_experts)
  7626. if (expert_intermediate_size := self.hparams.get("expert_intermediate_size")) is not None:
  7627. self.gguf_writer.add_expert_feed_forward_length(expert_intermediate_size)
  7628. # number of experts used per token (top-k)
  7629. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  7630. self.gguf_writer.add_expert_used_count(n_experts_used)
  7631. self.gguf_writer.add_mask_token_id(156895)
  7632. self.gguf_writer.add_causal_attention(False)
  7633. self.gguf_writer.add_diffusion_shift_logits(False)
  7634. _experts: list[dict[str, Tensor]] | None = None
  7635. # Copied from: Qwen2MoeModel
  7636. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7637. # process the experts separately
  7638. if name.find("experts") != -1:
  7639. n_experts = self.hparams["num_experts"]
  7640. assert bid is not None
  7641. if self._experts is None:
  7642. self._experts = [{} for _ in range(self.block_count)]
  7643. self._experts[bid][name] = data_torch
  7644. if len(self._experts[bid]) >= n_experts * 3:
  7645. tensors: list[tuple[str, Tensor]] = []
  7646. # merge the experts into a single 3d tensor
  7647. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7648. datas: list[Tensor] = []
  7649. for xid in range(n_experts):
  7650. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7651. datas.append(self._experts[bid][ename])
  7652. del self._experts[bid][ename]
  7653. data_torch = torch.stack(datas, dim=0)
  7654. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7655. new_name = self.map_tensor_name(merged_name)
  7656. tensors.append((new_name, data_torch))
  7657. return tensors
  7658. else:
  7659. return []
  7660. return [(self.map_tensor_name(name), data_torch)]
  7661. # Copied from: Qwen2MoeModel
  7662. def prepare_tensors(self):
  7663. super().prepare_tensors()
  7664. if self._experts is not None:
  7665. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7666. experts = [k for d in self._experts for k in d.keys()]
  7667. if len(experts) > 0:
  7668. raise ValueError(f"Unprocessed experts: {experts}")
  7669. @ModelBase.register("HunYuanDenseV1ForCausalLM")
  7670. class HunYuanModel(TextModel):
  7671. model_arch = gguf.MODEL_ARCH.HUNYUAN_DENSE
  7672. def set_vocab(self):
  7673. if (self.dir_model / "tokenizer.json").is_file():
  7674. self._set_vocab_gpt2()
  7675. else:
  7676. from transformers import AutoTokenizer
  7677. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  7678. # 1. Get the pre-tokenizer identifier hash
  7679. tokpre = self.get_vocab_base_pre(tokenizer)
  7680. # 2. Reverse-engineer the merges list from mergeable_ranks
  7681. merges = []
  7682. vocab = {}
  7683. mergeable_ranks = tokenizer.mergeable_ranks
  7684. for token, rank in mergeable_ranks.items():
  7685. vocab[QwenModel.token_bytes_to_string(token)] = rank
  7686. if len(token) == 1:
  7687. continue
  7688. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  7689. if len(merged) == 2:
  7690. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  7691. # 3. Generate the tokens and toktypes lists
  7692. vocab_size = self.hparams["vocab_size"]
  7693. assert tokenizer.vocab_size == vocab_size
  7694. special_tokens = tokenizer.special_tokens
  7695. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  7696. tokens: list[str] = []
  7697. toktypes: list[int] = []
  7698. for i in range(vocab_size):
  7699. if i not in reverse_vocab:
  7700. tokens.append(f"[PAD{i}]")
  7701. toktypes.append(gguf.TokenType.UNUSED)
  7702. else:
  7703. token = reverse_vocab[i]
  7704. tokens.append(token)
  7705. if i in special_tokens.values():
  7706. toktypes.append(gguf.TokenType.CONTROL)
  7707. else:
  7708. toktypes.append(gguf.TokenType.NORMAL)
  7709. # 4. Write all vocab-related fields to the GGUF writer
  7710. self.gguf_writer.add_tokenizer_model("gpt2")
  7711. self.gguf_writer.add_tokenizer_pre(tokpre)
  7712. self.gguf_writer.add_token_list(tokens)
  7713. self.gguf_writer.add_token_types(toktypes)
  7714. self.gguf_writer.add_token_merges(merges)
  7715. # 5. Add special tokens and chat templates
  7716. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  7717. special_vocab.add_to_gguf(self.gguf_writer)
  7718. # FIX for BOS token: Overwrite incorrect id read from config.json
  7719. if self.hparams['hidden_size'] == 4096:
  7720. self.gguf_writer.add_bos_token_id(127958) # only for 7b dense, fix <|bos|> token
  7721. def set_gguf_parameters(self):
  7722. super().set_gguf_parameters()
  7723. hparams = self.hparams
  7724. # Rope
  7725. if self.rope_parameters.get("rope_type") == "dynamic":
  7726. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  7727. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  7728. alpha = self.rope_parameters.get("alpha", 50)
  7729. base = self.rope_parameters.get("rope_theta", 10000.0)
  7730. dim = hparams["head_dim"]
  7731. scaled_base = base * (alpha ** (dim / (dim - 2)))
  7732. self.gguf_writer.add_rope_freq_base(scaled_base)
  7733. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7734. self.gguf_writer.add_rope_scaling_factor(1)
  7735. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  7736. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  7737. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  7738. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  7739. assert base == 10000.0 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  7740. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  7741. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7742. if name == "lm_head.weight":
  7743. if self.hparams.get("tie_word_embeddings", False):
  7744. logger.info("Skipping tied output layer 'lm_head.weight'")
  7745. return []
  7746. return [(self.map_tensor_name(name), data_torch)]
  7747. @ModelBase.register("SmolLM3ForCausalLM")
  7748. class SmolLM3Model(LlamaModel):
  7749. model_arch = gguf.MODEL_ARCH.SMOLLM3
  7750. @ModelBase.register("GptOssForCausalLM")
  7751. class GptOssModel(TextModel):
  7752. model_arch = gguf.MODEL_ARCH.GPT_OSS
  7753. # TODO: remove once MXFP4 is supported more generally
  7754. def dequant_model(self):
  7755. quant_config = self.hparams.get("quantization_config")
  7756. if quant_config is not None and quant_config.get("quant_method") == "mxfp4":
  7757. return
  7758. return super().dequant_model()
  7759. def transform_nibble_layout(self, tensor):
  7760. assert tensor.dtype == torch.uint8
  7761. assert tensor.shape[-1] == 16
  7762. # swap nibbles
  7763. t_lo = tensor & 0x0F
  7764. t_hi = tensor & 0xF0
  7765. t_swapped = (t_lo << 4) | (t_hi >> 4)
  7766. tensor = t_swapped
  7767. # transform aaaa...bbbb... to abababab...
  7768. blk_a, blk_b = tensor.chunk(2, dim=-1)
  7769. # get a_
  7770. blk_a0 = (blk_a & 0xF0).view(-1, 1)
  7771. blk_a1 = (blk_a << 4).view(-1, 1)
  7772. blk_a = torch.stack((blk_a0, blk_a1), dim=2).view(tensor.shape)
  7773. # get _b
  7774. blk_b0 = (blk_b >> 4).view(-1, 1)
  7775. blk_b1 = (blk_b & 0x0F).view(-1, 1)
  7776. blk_b = torch.stack((blk_b0, blk_b1), dim=2).view(tensor.shape)
  7777. # swap once more
  7778. out = blk_a | blk_b
  7779. out_h = out & 0xF0
  7780. out_l = out & 0x0F
  7781. out = (out_h >> 4) | (out_l << 4)
  7782. return out
  7783. def repack_mxfp4(self, new_name: str, blocks: Tensor, scales: Tensor):
  7784. assert blocks.dtype == torch.uint8
  7785. assert scales.dtype == torch.uint8
  7786. scales = scales.unsqueeze(-1)
  7787. assert len(blocks.shape) == 4
  7788. assert len(scales.shape) == 4
  7789. blocks = self.transform_nibble_layout(blocks)
  7790. new_data = torch.concat((scales, blocks), dim=-1)
  7791. new_shape = [new_data.shape[0], new_data.shape[1], new_data.shape[2] * 32]
  7792. logger.info(f"Repacked {new_name} with shape {new_shape} and quantization MXFP4")
  7793. # flatten last dim
  7794. new_data = new_data.view(new_data.shape[0], new_data.shape[1], new_data.shape[2] * new_data.shape[3])
  7795. new_data = new_data.numpy()
  7796. self.gguf_writer.add_tensor(new_name, new_data, raw_dtype=gguf.GGMLQuantizationType.MXFP4)
  7797. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  7798. blocks0: Tensor = torch.zeros(1)
  7799. blocks1: Tensor = torch.zeros(1)
  7800. # we assume that tensors are loaded in the correct order
  7801. for name, data_torch in self.get_tensors():
  7802. if "mlp.experts.down_proj_blocks" in name:
  7803. blocks0 = data_torch
  7804. elif "mlp.experts.down_proj_scales" in name:
  7805. new_name = self.map_tensor_name(name.replace("_scales", ".weight"))
  7806. self.repack_mxfp4(new_name, blocks0, data_torch)
  7807. elif "mlp.experts.gate_up_proj_blocks" in name:
  7808. blocks0, blocks1 = data_torch[:, ::2, :, :], data_torch[:, 1::2, :, :]
  7809. elif "mlp.experts.gate_up_proj_scales" in name:
  7810. scales0, scales1 = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  7811. new_name_gate = self.map_tensor_name(name.replace("gate_up_proj_scales", "gate_proj.weight"))
  7812. new_name_up = self.map_tensor_name(name.replace("gate_up_proj_scales", "up_proj.weight"))
  7813. self.repack_mxfp4(new_name_gate, blocks0, scales0)
  7814. self.repack_mxfp4(new_name_up, blocks1, scales1)
  7815. return []
  7816. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7817. del bid # unused
  7818. if "sinks" in name:
  7819. name += ".weight"
  7820. # correct naming for down_proj
  7821. if "down_proj" in name:
  7822. if name.endswith("_bias"):
  7823. name = name.replace("down_proj_bias", "down_proj.bias")
  7824. elif "_blocks" not in name and "_scales" not in name:
  7825. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  7826. name = name.replace("down_proj", "down_proj.weight")
  7827. data_torch = data_torch.transpose(-1, -2)
  7828. else:
  7829. # otherwise, it should already be repacked to ggml MXFP4 format
  7830. return []
  7831. # split the gate_up into gate and up
  7832. if "gate_up_proj" in name:
  7833. if name.endswith("_bias"):
  7834. name_up = name.replace("gate_up_proj_bias", "up_proj.bias")
  7835. name_gate = name.replace("gate_up_proj_bias", "gate_proj.bias")
  7836. gate_proj_bias, up_proj_bias = data_torch[..., ::2], data_torch[..., 1::2]
  7837. return [
  7838. (self.map_tensor_name(name_gate), gate_proj_bias),
  7839. (self.map_tensor_name(name_up), up_proj_bias)
  7840. ]
  7841. elif "_blocks" not in name and "_scales" not in name:
  7842. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  7843. name_up = name.replace("gate_up_proj", "up_proj.weight")
  7844. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  7845. data_torch = data_torch.transpose(-1, -2)
  7846. gate_proj_weight, up_proj_weight = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  7847. return [
  7848. (self.map_tensor_name(name_gate), gate_proj_weight),
  7849. (self.map_tensor_name(name_up), up_proj_weight)
  7850. ]
  7851. else:
  7852. # otherwise, it should already be repacked to ggml MXFP4 format
  7853. return []
  7854. return [(self.map_tensor_name(name), data_torch)]
  7855. def set_vocab(self):
  7856. self._set_vocab_gpt2()
  7857. def set_gguf_parameters(self):
  7858. super().set_gguf_parameters()
  7859. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  7860. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size"])
  7861. @ModelBase.register("Lfm2ForCausalLM", "LFM2ForCausalLM")
  7862. class LFM2Model(TextModel):
  7863. model_arch = gguf.MODEL_ARCH.LFM2
  7864. def _add_feed_forward_length(self):
  7865. ff_dim = self.hparams["block_ff_dim"]
  7866. auto_adjust_ff_dim = self.hparams["block_auto_adjust_ff_dim"]
  7867. ff_dim = self.hparams["block_ff_dim"]
  7868. ffn_dim_multiplier = self.hparams["block_ffn_dim_multiplier"]
  7869. multiple_of = self.hparams["block_multiple_of"]
  7870. if auto_adjust_ff_dim:
  7871. ff_dim = int(2 * ff_dim / 3)
  7872. # custom dim factor multiplier
  7873. if ffn_dim_multiplier is not None:
  7874. ff_dim = int(ffn_dim_multiplier * ff_dim)
  7875. ff_dim = multiple_of * ((ff_dim + multiple_of - 1) // multiple_of)
  7876. self.gguf_writer.add_feed_forward_length(ff_dim)
  7877. def set_gguf_parameters(self):
  7878. # set num_key_value_heads only for attention layers
  7879. self.hparams["num_key_value_heads"] = [
  7880. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  7881. for layer_type in self.hparams["layer_types"]
  7882. ]
  7883. super().set_gguf_parameters()
  7884. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7885. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  7886. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["norm_eps"])
  7887. self._add_feed_forward_length()
  7888. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7889. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  7890. if is_vision_tensor:
  7891. # skip vision tensors
  7892. return []
  7893. name = name.replace("language_model.", "")
  7894. # conv op requires 2d tensor
  7895. if 'conv.conv' in name:
  7896. data_torch = data_torch.squeeze(1)
  7897. return [(self.map_tensor_name(name), data_torch)]
  7898. @ModelBase.register("Lfm2MoeForCausalLM")
  7899. class LFM2MoeModel(TextModel):
  7900. model_arch = gguf.MODEL_ARCH.LFM2MOE
  7901. def set_gguf_parameters(self):
  7902. # set num_key_value_heads only for attention layers
  7903. self.hparams["num_key_value_heads"] = [
  7904. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  7905. for layer_type in self.hparams["layer_types"]
  7906. ]
  7907. super().set_gguf_parameters()
  7908. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  7909. self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
  7910. self.gguf_writer.add_leading_dense_block_count(self.hparams["num_dense_layers"])
  7911. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  7912. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7913. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  7914. # cache for experts weights for merging
  7915. _experts_cache: dict[int, dict[str, Tensor]] = {}
  7916. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7917. # conv op requires 2d tensor
  7918. if 'conv.conv' in name:
  7919. data_torch = data_torch.squeeze(1)
  7920. if name.endswith(".expert_bias"):
  7921. name = name.replace(".expert_bias", ".expert_bias.bias")
  7922. # merge expert weights
  7923. if 'experts' in name:
  7924. n_experts = self.hparams["num_experts"]
  7925. assert bid is not None
  7926. expert_cache = self._experts_cache.setdefault(bid, {})
  7927. expert_cache[name] = data_torch
  7928. expert_weights = ["w1", "w2", "w3"]
  7929. # not enough expert weights to merge
  7930. if len(expert_cache) < n_experts * len(expert_weights):
  7931. return []
  7932. tensors: list[tuple[str, Tensor]] = []
  7933. for w_name in expert_weights:
  7934. datas: list[Tensor] = []
  7935. for xid in range(n_experts):
  7936. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{w_name}.weight"
  7937. datas.append(expert_cache[ename])
  7938. del expert_cache[ename]
  7939. data_torch = torch.stack(datas, dim=0)
  7940. merged_name = f"layers.{bid}.feed_forward.experts.{w_name}.weight"
  7941. new_name = self.map_tensor_name(merged_name)
  7942. tensors.append((new_name, data_torch))
  7943. del self._experts_cache[bid]
  7944. return tensors
  7945. return [(self.map_tensor_name(name), data_torch)]
  7946. def prepare_tensors(self):
  7947. super().prepare_tensors()
  7948. assert not self._experts_cache
  7949. @ModelBase.register("Lfm2VlForConditionalGeneration")
  7950. class LFM2VLModel(MmprojModel):
  7951. def __init__(self, *args, **kwargs):
  7952. super().__init__(*args, **kwargs)
  7953. assert self.hparams_vision is not None
  7954. # TODO(tarek): for dynamic resolution image_size is not specified, setting here for compatibility
  7955. self.hparams_vision["image_size"] = 256
  7956. def set_gguf_parameters(self):
  7957. super().set_gguf_parameters()
  7958. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LFM2)
  7959. self.gguf_writer.add_vision_attention_layernorm_eps(self.find_vparam(["layer_norm_eps"]))
  7960. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("downsample_factor", 2))
  7961. self.gguf_writer.add_vision_use_gelu(True)
  7962. # python notation, e.g. for vision_feature_layer == -1, we pick last layer -> vision_feature_layers_to_drop = 0
  7963. vision_feature_layers_to_drop = -(self.global_config.get("vision_feature_layer", -1) + 1)
  7964. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys) - vision_feature_layers_to_drop)
  7965. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7966. del bid # unused
  7967. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  7968. if is_vision_tensor:
  7969. # remove "model." prefix
  7970. name = name.replace("model.vision_tower.", "vision_tower.")
  7971. name = name.replace("model.multi_modal_projector.", "multi_modal_projector.")
  7972. if "patch_embedding.weight" in name:
  7973. data_torch = data_torch.view(data_torch.shape[0], 16, 16, 3).permute(0, 3, 1, 2)
  7974. return [(self.map_tensor_name(name), data_torch)]
  7975. return [] # skip other tensors
  7976. @ModelBase.register("SmallThinkerForCausalLM")
  7977. class SmallThinkerModel(TextModel):
  7978. model_arch = gguf.MODEL_ARCH.SMALLTHINKER
  7979. def set_gguf_parameters(self):
  7980. super().set_gguf_parameters()
  7981. if (n_experts := self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))) is not None:
  7982. self.gguf_writer.add_expert_count(n_experts)
  7983. if (n_experts_used := self.hparams.get("num_experts_per_tok", self.hparams.get("moe_num_active_primary_experts"))) is not None:
  7984. self.gguf_writer.add_expert_used_count(n_experts_used)
  7985. if (moe_intermediate_size := self.hparams.get("moe_ffn_hidden_size")) is not None:
  7986. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  7987. self.gguf_writer.add_feed_forward_length(moe_intermediate_size)
  7988. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  7989. if (self.hparams.get('moe_primary_router_apply_softmax')):
  7990. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  7991. else:
  7992. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  7993. sliding_window_layout = self.hparams.get("sliding_window_layout")
  7994. if sliding_window_layout:
  7995. for i in sliding_window_layout:
  7996. if i != 0:
  7997. sliding_window = self.hparams.get("sliding_window_size")
  7998. if sliding_window:
  7999. self.gguf_writer.add_sliding_window(sliding_window)
  8000. break
  8001. _experts: list[dict[str, Tensor]] | None = None
  8002. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8003. # process the experts separately
  8004. if name.find("experts") != -1:
  8005. n_experts = self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))
  8006. assert bid is not None
  8007. if self._experts is None:
  8008. self._experts = [{} for _ in range(self.block_count)]
  8009. self._experts[bid][name] = data_torch
  8010. if len(self._experts[bid]) >= n_experts * 3:
  8011. tensors: list[tuple[str, Tensor]] = []
  8012. # merge the experts into a single 3d tensor
  8013. for w_name in ["down", "gate", "up"]:
  8014. datas: list[Tensor] = []
  8015. for xid in range(n_experts):
  8016. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  8017. datas.append(self._experts[bid][ename])
  8018. del self._experts[bid][ename]
  8019. data_torch = torch.stack(datas, dim=0)
  8020. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  8021. new_name = self.map_tensor_name(merged_name)
  8022. tensors.append((new_name, data_torch))
  8023. return tensors
  8024. else:
  8025. return []
  8026. return [(self.map_tensor_name(name), data_torch)]
  8027. def prepare_tensors(self):
  8028. super().prepare_tensors()
  8029. if self._experts is not None:
  8030. # flatten `list[dict[str, Tensor]]` into `list[str]`
  8031. experts = [k for d in self._experts for k in d.keys()]
  8032. if len(experts) > 0:
  8033. raise ValueError(f"Unprocessed experts: {experts}")
  8034. @ModelBase.register("ApertusForCausalLM")
  8035. class ApertusModel(LlamaModel):
  8036. model_arch = gguf.MODEL_ARCH.APERTUS
  8037. undo_permute = False
  8038. _alpha_n = {}
  8039. _alpha_p = {}
  8040. _beta = {}
  8041. _eps = {}
  8042. def modify_tensors(self, data_torch, name, bid):
  8043. # Handle xIELU activation parameters
  8044. n_layers = self.hparams["num_hidden_layers"]
  8045. if name.endswith(".act_fn.alpha_n"):
  8046. self._alpha_n[bid] = data_torch.to("cpu").float().item()
  8047. if (len(self._alpha_n) == n_layers):
  8048. self.gguf_writer.add_xielu_alpha_n([self._alpha_n[k] for k in sorted(self._alpha_n)])
  8049. return []
  8050. if name.endswith(".act_fn.alpha_p"):
  8051. self._alpha_p[bid] = data_torch.to("cpu").float().item()
  8052. if (len(self._alpha_p) == n_layers):
  8053. self.gguf_writer.add_xielu_alpha_p([self._alpha_p[k] for k in sorted(self._alpha_p)])
  8054. return []
  8055. if name.endswith(".act_fn.beta"):
  8056. self._beta[bid] = data_torch.to("cpu").float().item()
  8057. if (len(self._beta) == n_layers):
  8058. self.gguf_writer.add_xielu_beta([self._beta[k] for k in sorted(self._beta)])
  8059. return []
  8060. if name.endswith(".act_fn.eps"):
  8061. self._eps[bid] = data_torch.to("cpu").float().item()
  8062. if (len(self._eps) == n_layers):
  8063. self.gguf_writer.add_xielu_eps([self._eps[k] for k in sorted(self._eps)])
  8064. return []
  8065. return super().modify_tensors(data_torch, name, bid)
  8066. class MistralModel(LlamaModel):
  8067. model_arch = gguf.MODEL_ARCH.MISTRAL3
  8068. model_name = "Mistral"
  8069. hf_arch = ""
  8070. is_mistral_format = True
  8071. undo_permute = False
  8072. def __init__(self, *args, **kwargs):
  8073. super().__init__(*args, **kwargs)
  8074. # for compatibility, we use LLAMA arch for older models
  8075. # TODO: remove this once everyone migrates to newer version of llama.cpp
  8076. if "llama_4_scaling" not in self.hparams:
  8077. self.model_arch = gguf.MODEL_ARCH.LLAMA
  8078. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[self.model_arch]
  8079. self.gguf_writer.add_architecture()
  8080. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  8081. def dequant_model(self):
  8082. # transform quantization config into HF format
  8083. quant_config = self.hparams.get("quantization")
  8084. if quant_config is not None:
  8085. assert quant_config["qformat_weight"] == "fp8_e4m3"
  8086. self.hparams["quantization_config"] = {
  8087. "activation_scheme": "static",
  8088. "quant_method": "fp8",
  8089. "weight_block_size": None,
  8090. }
  8091. return super().dequant_model()
  8092. @staticmethod
  8093. def get_community_chat_template(vocab: MistralVocab, templates_dir: Path, is_mistral_format: bool):
  8094. assert TokenizerVersion is not None and Tekkenizer is not None and SentencePieceTokenizer is not None, _mistral_import_error_msg
  8095. assert isinstance(vocab.tokenizer, (Tekkenizer, SentencePieceTokenizer)), (
  8096. f"Expected Tekkenizer or SentencePieceTokenizer, got {type(vocab.tokenizer)}"
  8097. )
  8098. if vocab.tokenizer.version == TokenizerVersion.v1:
  8099. return "mistral-v1"
  8100. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.spm:
  8101. return "mistral-v3"
  8102. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  8103. return "mistral-v3-tekken"
  8104. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.spm:
  8105. return "mistral-v7"
  8106. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  8107. return "mistral-v7-tekken"
  8108. elif vocab.tokenizer.version == TokenizerVersion.v11:
  8109. template_file = "Mistral-Small-3.2-24B-Instruct-2506.jinja"
  8110. elif vocab.tokenizer.version == TokenizerVersion.v13:
  8111. template_file = "unsloth-mistral-Devstral-Small-2507.jinja"
  8112. else:
  8113. err_message = f"Unknown tokenizer type: {vocab.tokenizer_type} and version {vocab.tokenizer.version}"
  8114. if is_mistral_format:
  8115. err_message += (
  8116. " . Please pass --disable-mistral-community-chat-template argument to the CLI "
  8117. "if you want to skip this error and use the Mistral official `mistral-common` pre-processing library."
  8118. )
  8119. raise ValueError(err_message)
  8120. template_path = templates_dir / template_file
  8121. if not template_path.exists():
  8122. raise FileNotFoundError(f"Template file not found: {template_path}")
  8123. with open(template_path, "r", encoding="utf-8") as f:
  8124. template = f.read()
  8125. return template
  8126. def set_gguf_parameters(self):
  8127. super().set_gguf_parameters()
  8128. MistralModel.set_mistral_config(self.gguf_writer, self.hparams)
  8129. @staticmethod
  8130. def set_mistral_config(gguf_writer: gguf.GGUFWriter, hparams: dict):
  8131. if "yarn" in hparams:
  8132. yarn_params = hparams["yarn"]
  8133. gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  8134. gguf_writer.add_rope_scaling_factor(yarn_params["factor"])
  8135. gguf_writer.add_rope_scaling_yarn_beta_fast(yarn_params["beta"])
  8136. gguf_writer.add_rope_scaling_yarn_beta_slow(yarn_params["alpha"])
  8137. gguf_writer.add_rope_scaling_yarn_log_mul(1.0) # mscale_all_dim
  8138. gguf_writer.add_rope_scaling_orig_ctx_len(yarn_params["original_max_position_embeddings"])
  8139. if "llama_4_scaling" in hparams:
  8140. gguf_writer.add_attn_temperature_scale(hparams["llama_4_scaling"]["beta"])
  8141. class MistralMoeModel(DeepseekV2Model):
  8142. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  8143. model_name = "Mistral"
  8144. hf_arch = ""
  8145. is_mistral_format = True
  8146. def __init__(self, *args, **kwargs):
  8147. super().__init__(*args, **kwargs)
  8148. logger.info("Using MistralMoeModel")
  8149. # remap hparams from Mistral MoE format to DeepseekV2 format
  8150. # we do this way to be able to reuse DeepseekV2Model set_gguf_parameters logic
  8151. # ref: https://github.com/vllm-project/vllm/blob/b294e28db2c5dee61bc25157664edcada8b90b31/vllm/transformers_utils/configs/mistral.py
  8152. config = self.hparams
  8153. # Mistral key -> HF key
  8154. config_mapping = {
  8155. "dim": "hidden_size",
  8156. "norm_eps": "rms_norm_eps",
  8157. "n_kv_heads": "num_key_value_heads",
  8158. "n_layers": "num_hidden_layers",
  8159. "n_heads": "num_attention_heads",
  8160. "hidden_dim": "intermediate_size",
  8161. }
  8162. # HF key -> (Mistral key, default value)
  8163. top_level_mapping_with_default = {
  8164. "model_type": ("model_type", "transformer"),
  8165. "hidden_act": ("activation", "silu"),
  8166. "tie_word_embeddings": ("tied_embeddings", False),
  8167. "max_seq_len": ("max_seq_len", config.get("max_position_embeddings", 128_000)),
  8168. "max_position_embeddings": ("max_position_embeddings", 128_000),
  8169. }
  8170. # mapping top-level keys
  8171. for key, new_key in config_mapping.items():
  8172. if key in config:
  8173. config[new_key] = config[key]
  8174. for new_key, (key, default_value) in top_level_mapping_with_default.items():
  8175. config[new_key] = config.get(key, default_value)
  8176. # mapping MoE-specific keys
  8177. moe_config_map = {
  8178. "route_every_n": "moe_layer_freq",
  8179. "first_k_dense_replace": "first_k_dense_replace",
  8180. "num_experts_per_tok": "num_experts_per_tok",
  8181. "num_experts": "n_routed_experts",
  8182. "expert_hidden_dim": "moe_intermediate_size",
  8183. "routed_scale": "routed_scaling_factor",
  8184. "num_shared_experts": "n_shared_experts",
  8185. "num_expert_groups": "n_group",
  8186. "num_expert_groups_per_tok": "topk_group",
  8187. }
  8188. moe = config["moe"]
  8189. for key, new_key in moe_config_map.items():
  8190. if key in moe:
  8191. config[new_key] = moe[key]
  8192. # provide missing values
  8193. config["topk_method"] = None
  8194. config["norm_topk_prob"] = True
  8195. config["scoring_func"] = "softmax"
  8196. def set_vocab(self):
  8197. self._set_vocab_mistral()
  8198. def set_gguf_parameters(self):
  8199. super().set_gguf_parameters()
  8200. MistralModel.set_mistral_config(self.gguf_writer, self.hparams)
  8201. yarn_params = self.hparams["yarn"]
  8202. self.gguf_writer.add_attn_temperature_length(yarn_params["original_max_position_embeddings"])
  8203. # [TAG_DEEPSEEK2_YARN_LOG_MUL_FIX]
  8204. # note: for legacy reasons, this is not consistent with the other usages of self.gguf_writer.add_rope_scaling_yarn_log_mul
  8205. # ref https://github.com/ggml-org/llama.cpp/pull/17945
  8206. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1) # mscale_all_dim * 0.1
  8207. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  8208. if name.startswith("vision_") or name.startswith("patch_merger.") or "mm_projector" in name:
  8209. return []
  8210. # rename certain tensors so that we can reuse DeepseekV2Model modify_tensors logic
  8211. if name.endswith(".qscale_act"):
  8212. name = name.replace(".qscale_act", ".input_scale")
  8213. if name.endswith(".qscale_weight"):
  8214. name = name.replace(".qscale_weight", ".weight_scale")
  8215. if ".wkv_b." in name:
  8216. name = name.replace(".wkv_b.", ".kv_b_proj.")
  8217. if ".experts." in name:
  8218. name = name.replace(".experts.", ".mlp.experts.")
  8219. name = name.replace(".w1.", ".gate_proj.")
  8220. name = name.replace(".w2.", ".down_proj.")
  8221. name = name.replace(".w3.", ".up_proj.")
  8222. name = "model." + name
  8223. return super().modify_tensors(data_torch, name, bid)
  8224. class PixtralModel(LlavaVisionModel):
  8225. model_name = "Pixtral"
  8226. hf_arch = ""
  8227. is_mistral_format = True
  8228. def set_gguf_parameters(self):
  8229. super().set_gguf_parameters()
  8230. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  8231. self.gguf_writer.add_vision_attention_layernorm_eps(
  8232. self.find_hparam(["norm_eps"])
  8233. )
  8234. self.gguf_writer.add_rope_freq_base(self.find_vparam(["rope_theta"]))
  8235. self.gguf_writer.add_vision_use_silu(True)
  8236. # spatial_merge_size
  8237. if self.find_vparam(["mm_projector_id"]) == "patch_merge":
  8238. self.gguf_writer.add_vision_spatial_merge_size(
  8239. self.find_vparam(["spatial_merge_size"])
  8240. )
  8241. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  8242. if name == "vision_language_adapter.w_in.weight":
  8243. return "mm.1.weight"
  8244. elif name == "vision_language_adapter.w_out.weight":
  8245. return "mm.2.weight"
  8246. return super().map_tensor_name(name, try_suffixes)
  8247. @ModelBase.register("LightOnOCRForConditionalGeneration")
  8248. class LightOnOCRVisionModel(LlavaVisionModel):
  8249. is_mistral_format = False
  8250. use_break_tok = False
  8251. def set_gguf_parameters(self):
  8252. super().set_gguf_parameters()
  8253. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LIGHTONOCR)
  8254. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  8255. name = name.replace("model.vision_encoder.", "vision_tower.")
  8256. name = name.replace("model.vision_projection.", "multi_modal_projector.")
  8257. return super().modify_tensors(data_torch, name, bid)
  8258. @ModelBase.register("KimiVLForConditionalGeneration")
  8259. class KimiVLModel(MmprojModel):
  8260. def __init__(self, *args, **kwargs):
  8261. super().__init__(*args, **kwargs)
  8262. assert self.hparams_vision is not None
  8263. self.hparams_vision["image_size"] = 64 * 14 # for compatibility
  8264. def set_gguf_parameters(self):
  8265. super().set_gguf_parameters()
  8266. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.KIMIVL)
  8267. self.gguf_writer.add_vision_use_gelu(True)
  8268. self.gguf_writer.add_vision_projector_scale_factor(2)
  8269. # eps is the same as pytorch's default value
  8270. assert self.hparams_vision is not None
  8271. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-5))
  8272. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8273. del bid # unused
  8274. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  8275. if is_vision_tensor:
  8276. if "pos_emb.weight" in name:
  8277. data_torch = data_torch.view(data_torch.shape[0] * data_torch.shape[1], data_torch.shape[2])
  8278. elif "wqkv" in name:
  8279. split_dim = 0 if "weight" in name else -1
  8280. wq, wk, wv = data_torch.chunk(3, dim=split_dim)
  8281. return [
  8282. (self.map_tensor_name(name.replace("wqkv", "wq")), wq),
  8283. (self.map_tensor_name(name.replace("wqkv", "wk")), wk),
  8284. (self.map_tensor_name(name.replace("wqkv", "wv")), wv)
  8285. ]
  8286. return [(self.map_tensor_name(name), data_torch)]
  8287. return [] # skip other tensors
  8288. @ModelBase.register("CogVLMForCausalLM")
  8289. class CogVLMVisionModel(MmprojModel):
  8290. def set_gguf_parameters(self):
  8291. super().set_gguf_parameters()
  8292. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-6))
  8293. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.COGVLM)
  8294. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8295. del bid # unused
  8296. if not name.startswith("model.vision."):
  8297. return []
  8298. return [(self.map_tensor_name(name), data_torch)]
  8299. @ModelBase.register("CogVLMForCausalLM")
  8300. class CogVLMModel(LlamaModel):
  8301. model_arch = gguf.MODEL_ARCH.COGVLM
  8302. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8303. del bid # unused
  8304. # block vision tensors
  8305. if name.startswith("model.vision."):
  8306. return []
  8307. return [(self.map_tensor_name(name), data_torch)]
  8308. @ModelBase.register("JanusForConditionalGeneration")
  8309. class JanusProModel(LlamaModel):
  8310. model_arch = gguf.MODEL_ARCH.LLAMA # reuse Llama arch
  8311. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8312. # Skip vision, aligner, and generation tensors
  8313. skip_prefixes = (
  8314. 'model.vision_model.',
  8315. 'model.aligner.',
  8316. 'model.vqmodel.',
  8317. 'model.generation_embeddings.',
  8318. 'model.generation_aligner.',
  8319. 'model.generation_head.',
  8320. )
  8321. if name.startswith(skip_prefixes):
  8322. return []
  8323. if name.startswith('model.language_model.'):
  8324. name = name.replace('model.language_model.', 'model.')
  8325. elif name.startswith('language_model.'):
  8326. name = name.replace('language_model.', '')
  8327. return super().modify_tensors(data_torch, name, bid)
  8328. @ModelBase.register("JanusForConditionalGeneration")
  8329. class JanusProVisionModel(MmprojModel):
  8330. def __init__(self, *args, **kwargs):
  8331. super().__init__(*args, **kwargs)
  8332. assert self.hparams_vision is not None
  8333. if "intermediate_size" not in self.hparams_vision:
  8334. mlp_ratio = self.hparams_vision.get("mlp_ratio")
  8335. hidden_size = self.hparams_vision.get("hidden_size")
  8336. if mlp_ratio is not None and hidden_size is not None:
  8337. self.hparams_vision["intermediate_size"] = int(round(hidden_size * mlp_ratio))
  8338. def set_gguf_parameters(self):
  8339. super().set_gguf_parameters()
  8340. assert self.hparams_vision is not None
  8341. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.JANUS_PRO)
  8342. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-6))
  8343. hidden_act = str(self.hparams_vision.get("hidden_act", "")).lower()
  8344. if hidden_act == "gelu":
  8345. self.gguf_writer.add_vision_use_gelu(True)
  8346. elif hidden_act == "silu":
  8347. self.gguf_writer.add_vision_use_silu(True)
  8348. def _map_aligner_tensor(self, data_torch: Tensor, name: str) -> Iterable[tuple[str, Tensor]]:
  8349. """Map aligner tensors to projector format"""
  8350. suffix = ".bias" if name.endswith(".bias") else ".weight"
  8351. if name.startswith("model.aligner."):
  8352. local_name = name[len("model.aligner."):]
  8353. elif name.startswith("aligner."):
  8354. local_name = name[len("aligner."):]
  8355. else:
  8356. raise ValueError(f"Unsupported Janus aligner prefix: {name}")
  8357. if local_name.startswith("fc1."):
  8358. mm_index = 0
  8359. elif local_name.startswith("hidden_layers."):
  8360. parts = local_name.split(".", 2)
  8361. if len(parts) < 3:
  8362. raise ValueError(f"Unexpected Janus aligner tensor name: {name}")
  8363. mm_index = int(parts[1]) + 1
  8364. else:
  8365. raise ValueError(f"Unsupported Janus aligner tensor: {name}")
  8366. tensor_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_MMPROJ, mm_index, suffix=suffix)
  8367. return [(tensor_name, data_torch)]
  8368. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8369. del bid # unused
  8370. # Skip language model tensors as they will be handled by `JanusProModel`
  8371. if name.startswith(('model.language_model.', 'language_model.')):
  8372. return []
  8373. # Skip generation-related components
  8374. skip_generation_prefixes = (
  8375. 'model.vqmodel.',
  8376. 'vqmodel.',
  8377. 'model.generation_embeddings.',
  8378. 'generation_embeddings.',
  8379. 'model.generation_aligner.',
  8380. 'generation_aligner.',
  8381. 'model.generation_head.',
  8382. 'generation_head.',
  8383. )
  8384. if name.startswith(skip_generation_prefixes):
  8385. return []
  8386. # Handle aligner tensors
  8387. if name.startswith(('model.aligner.', 'aligner.')):
  8388. return list(self._map_aligner_tensor(data_torch, name))
  8389. # Handle vision tensors
  8390. if name.startswith(('model.vision_model.', 'vision_model.')):
  8391. return [(self.map_tensor_name(name), data_torch)]
  8392. return []
  8393. ###### CONVERSION LOGIC ######
  8394. # tree of lazy tensors
  8395. class LazyTorchTensor(gguf.LazyBase):
  8396. _tensor_type = torch.Tensor
  8397. # to keep the type-checker happy
  8398. dtype: torch.dtype
  8399. shape: torch.Size
  8400. # only used when converting a torch.Tensor to a np.ndarray
  8401. _dtype_map: dict[torch.dtype, type] = {
  8402. torch.float16: np.float16,
  8403. torch.float32: np.float32,
  8404. torch.uint8: np.uint8,
  8405. }
  8406. # only used when byteswapping data. Only correct size is needed
  8407. _dtype_byteswap_map: dict[torch.dtype, type] = {
  8408. torch.float64: np.float64,
  8409. torch.float32: np.float32,
  8410. torch.bfloat16: np.float16,
  8411. torch.float16: np.float16,
  8412. torch.int64: np.int64,
  8413. torch.uint64: np.uint64,
  8414. torch.int32: np.int32,
  8415. torch.uint32: np.uint32,
  8416. torch.int16: np.int16,
  8417. torch.uint16: np.uint16,
  8418. torch.int8: np.int8,
  8419. torch.uint8: np.uint8,
  8420. torch.bool: np.uint8,
  8421. torch.float8_e4m3fn: np.uint8,
  8422. torch.float8_e5m2: np.uint8,
  8423. }
  8424. # used for safetensors slices
  8425. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  8426. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  8427. _dtype_str_map: dict[str, torch.dtype] = {
  8428. "F64": torch.float64,
  8429. "F32": torch.float32,
  8430. "BF16": torch.bfloat16,
  8431. "F16": torch.float16,
  8432. # "U64": torch.uint64,
  8433. "I64": torch.int64,
  8434. # "U32": torch.uint32,
  8435. "I32": torch.int32,
  8436. # "U16": torch.uint16,
  8437. "I16": torch.int16,
  8438. "U8": torch.uint8,
  8439. "I8": torch.int8,
  8440. "BOOL": torch.bool,
  8441. "F8_E4M3": torch.float8_e4m3fn,
  8442. "F8_E5M2": torch.float8_e5m2,
  8443. }
  8444. def numpy(self) -> gguf.LazyNumpyTensor:
  8445. dtype = self._dtype_map[self.dtype]
  8446. return gguf.LazyNumpyTensor(
  8447. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  8448. args=(self,),
  8449. func=(lambda s: s.numpy())
  8450. )
  8451. @classmethod
  8452. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  8453. return torch.empty(size=shape, dtype=dtype, device="meta")
  8454. @classmethod
  8455. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  8456. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  8457. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  8458. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[...] if len(s.get_shape()) == 0 else s[:])
  8459. return cast(torch.Tensor, lazy)
  8460. @classmethod
  8461. def from_local_tensor(cls, t: gguf.utility.LocalTensor) -> Tensor:
  8462. def load_tensor(tensor: gguf.utility.LocalTensor) -> Tensor:
  8463. def byteswap_tensor(tensor: np.ndarray, dtype: type) -> np.ndarray:
  8464. if sys.byteorder == 'big':
  8465. # switch data back to big endian
  8466. tensor = tensor.view(dtype).byteswap(inplace=False)
  8467. return tensor
  8468. dtype = cls._dtype_str_map[tensor.dtype]
  8469. numpy_dtype = cls._dtype_byteswap_map[dtype]
  8470. return torch.from_numpy(byteswap_tensor(tensor.mmap_bytes(), numpy_dtype)).view(dtype).reshape(tensor.shape)
  8471. dtype = cls._dtype_str_map[t.dtype]
  8472. shape = t.shape
  8473. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(t,), func=lambda r: load_tensor(r))
  8474. return cast(torch.Tensor, lazy)
  8475. @classmethod
  8476. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  8477. def byteswap_tensor(tensor: np.ndarray, dtype: type) -> np.ndarray:
  8478. if sys.byteorder == 'big':
  8479. # switch data back to big endian
  8480. tensor = tensor.view(dtype).byteswap(inplace=False)
  8481. return tensor
  8482. dtype = cls._dtype_str_map[remote_tensor.dtype]
  8483. numpy_dtype = cls._dtype_byteswap_map[dtype]
  8484. shape = remote_tensor.shape
  8485. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  8486. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.from_numpy(byteswap_tensor(np.frombuffer(r.data(), dtype=numpy_dtype), numpy_dtype)).view(dtype).reshape(shape))
  8487. return cast(torch.Tensor, lazy)
  8488. @classmethod
  8489. def __torch_function__(cls, func, types, args=(), kwargs=None):
  8490. del types # unused
  8491. if kwargs is None:
  8492. kwargs = {}
  8493. if func is torch.Tensor.numpy:
  8494. return args[0].numpy()
  8495. return cls._wrap_fn(func)(*args, **kwargs)
  8496. def parse_args() -> argparse.Namespace:
  8497. parser = argparse.ArgumentParser(
  8498. description="Convert a huggingface model to a GGML compatible file")
  8499. parser.add_argument(
  8500. "--vocab-only", action="store_true",
  8501. help="extract only the vocab",
  8502. )
  8503. parser.add_argument(
  8504. "--outfile", type=Path,
  8505. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  8506. )
  8507. parser.add_argument(
  8508. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  8509. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  8510. )
  8511. parser.add_argument(
  8512. "--bigendian", action="store_true",
  8513. help="model is executed on big endian machine",
  8514. )
  8515. parser.add_argument(
  8516. "model", type=str,
  8517. help="directory containing model file or huggingface repository ID (if --remote)",
  8518. nargs="?",
  8519. )
  8520. parser.add_argument(
  8521. "--use-temp-file", action="store_true",
  8522. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  8523. )
  8524. parser.add_argument(
  8525. "--no-lazy", action="store_true",
  8526. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  8527. )
  8528. parser.add_argument(
  8529. "--model-name", type=str, default=None,
  8530. help="name of the model",
  8531. )
  8532. parser.add_argument(
  8533. "--verbose", action="store_true",
  8534. help="increase output verbosity",
  8535. )
  8536. parser.add_argument(
  8537. "--split-max-tensors", type=int, default=0,
  8538. help="max tensors in each split",
  8539. )
  8540. parser.add_argument(
  8541. "--split-max-size", type=str, default="0",
  8542. help="max size per split N(M|G)",
  8543. )
  8544. parser.add_argument(
  8545. "--dry-run", action="store_true",
  8546. help="only print out a split plan and exit, without writing any new files",
  8547. )
  8548. parser.add_argument(
  8549. "--no-tensor-first-split", action="store_true",
  8550. help="do not add tensors to the first split (disabled by default)"
  8551. )
  8552. parser.add_argument(
  8553. "--metadata", type=Path,
  8554. help="Specify the path for an authorship metadata override file"
  8555. )
  8556. parser.add_argument(
  8557. "--print-supported-models", action="store_true",
  8558. help="Print the supported models"
  8559. )
  8560. parser.add_argument(
  8561. "--remote", action="store_true",
  8562. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  8563. )
  8564. parser.add_argument(
  8565. "--mmproj", action="store_true",
  8566. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  8567. )
  8568. parser.add_argument(
  8569. "--mistral-format", action="store_true",
  8570. help="Whether the model is stored following the Mistral format.",
  8571. )
  8572. parser.add_argument(
  8573. "--disable-mistral-community-chat-template", action="store_true",
  8574. help=(
  8575. "Whether to disable usage of Mistral community chat templates. If set, use the Mistral official `mistral-common` library for tokenization and detokenization of Mistral models. "
  8576. "Using `mistral-common` ensure correctness and zero-day support of tokenization for models converted from the Mistral format but requires to manually setup the tokenization server."
  8577. )
  8578. )
  8579. parser.add_argument(
  8580. "--sentence-transformers-dense-modules", action="store_true",
  8581. help=("Whether to include sentence-transformers dense modules."
  8582. "It can be used for sentence-transformers models, like google/embeddinggemma-300m"
  8583. "Default these modules are not included.")
  8584. )
  8585. args = parser.parse_args()
  8586. if not args.print_supported_models and args.model is None:
  8587. parser.error("the following arguments are required: model")
  8588. return args
  8589. def split_str_to_n_bytes(split_str: str) -> int:
  8590. if split_str.endswith("K"):
  8591. n = int(split_str[:-1]) * 1000
  8592. elif split_str.endswith("M"):
  8593. n = int(split_str[:-1]) * 1000 * 1000
  8594. elif split_str.endswith("G"):
  8595. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  8596. elif split_str.isnumeric():
  8597. n = int(split_str)
  8598. else:
  8599. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  8600. if n < 0:
  8601. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  8602. return n
  8603. def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
  8604. # TODO @ngxson : this won't work correctly if the model has both audio & vision encoders
  8605. # maybe we should fallback to text model's arch in that case, since not many models have both
  8606. text_config = hparams.get("text_config", {})
  8607. vision_config = hparams.get("vision_config", {})
  8608. arch = None
  8609. if (arches := hparams.get("architectures")) is not None and len(arches) > 0:
  8610. arch = arches[0]
  8611. elif "ssm_cfg" in hparams:
  8612. # For non-hf Mamba and Mamba2 models
  8613. arch = hparams["ssm_cfg"].get("layer", "Mamba") + "ForCausalLM"
  8614. # if "architectures" is found in the sub-config, use that instead
  8615. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  8616. arch = text_config["architectures"][0]
  8617. elif model_type == ModelType.MMPROJ and vision_config.get("architectures") is not None:
  8618. arch = vision_config["architectures"][0]
  8619. if arch is None:
  8620. raise ValueError("Failed to detect model architecture")
  8621. return arch
  8622. def main() -> None:
  8623. args = parse_args()
  8624. if args.print_supported_models:
  8625. logger.error("Supported models:")
  8626. ModelBase.print_registered_models()
  8627. sys.exit(0)
  8628. if args.verbose:
  8629. logging.basicConfig(level=logging.DEBUG)
  8630. else:
  8631. logging.basicConfig(level=logging.INFO)
  8632. if args.remote:
  8633. hf_repo_id = args.model
  8634. from huggingface_hub import snapshot_download
  8635. allowed_patterns = ["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"]
  8636. if args.sentence_transformers_dense_modules:
  8637. # include sentence-transformers dense modules safetensors files
  8638. allowed_patterns.append("*.safetensors")
  8639. local_dir = snapshot_download(
  8640. repo_id=hf_repo_id,
  8641. allow_patterns=allowed_patterns)
  8642. dir_model = Path(local_dir)
  8643. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  8644. else:
  8645. hf_repo_id = None
  8646. dir_model = Path(args.model)
  8647. if not dir_model.is_dir():
  8648. logger.error(f'Error: {dir_model} is not a directory')
  8649. sys.exit(1)
  8650. ftype_map: dict[str, gguf.LlamaFileType] = {
  8651. "f32": gguf.LlamaFileType.ALL_F32,
  8652. "f16": gguf.LlamaFileType.MOSTLY_F16,
  8653. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  8654. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  8655. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  8656. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  8657. "auto": gguf.LlamaFileType.GUESSED,
  8658. }
  8659. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  8660. if args.use_temp_file and is_split:
  8661. logger.error("Error: Cannot use temp file when splitting")
  8662. sys.exit(1)
  8663. if args.outfile is not None:
  8664. fname_out = args.outfile
  8665. elif hf_repo_id:
  8666. # if remote, use the model ID as the output file name
  8667. fname_out = Path("./" + hf_repo_id.replace("/", "-") + "-{ftype}.gguf")
  8668. else:
  8669. fname_out = dir_model
  8670. logger.info(f"Loading model: {dir_model.name}")
  8671. is_mistral_format = args.mistral_format
  8672. if is_mistral_format and not _mistral_common_installed:
  8673. raise ImportError(_mistral_import_error_msg)
  8674. disable_mistral_community_chat_template = args.disable_mistral_community_chat_template
  8675. with torch.inference_mode():
  8676. output_type = ftype_map[args.outtype]
  8677. model_type = ModelType.MMPROJ if args.mmproj else ModelType.TEXT
  8678. hparams = ModelBase.load_hparams(dir_model, is_mistral_format)
  8679. if not is_mistral_format:
  8680. model_architecture = get_model_architecture(hparams, model_type)
  8681. logger.info(f"Model architecture: {model_architecture}")
  8682. try:
  8683. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  8684. except NotImplementedError:
  8685. logger.error(f"Model {model_architecture} is not supported")
  8686. sys.exit(1)
  8687. elif args.mmproj:
  8688. assert hparams.get("vision_encoder") is not None, "This model does not support multimodal"
  8689. model_class = PixtralModel
  8690. elif "moe" in hparams:
  8691. model_class = MistralMoeModel
  8692. else:
  8693. model_class = MistralModel
  8694. model_instance = model_class(dir_model, output_type, fname_out,
  8695. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  8696. eager=args.no_lazy,
  8697. metadata_override=args.metadata, model_name=args.model_name,
  8698. split_max_tensors=args.split_max_tensors,
  8699. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  8700. small_first_shard=args.no_tensor_first_split,
  8701. remote_hf_model_id=hf_repo_id, disable_mistral_community_chat_template=disable_mistral_community_chat_template,
  8702. sentence_transformers_dense_modules=args.sentence_transformers_dense_modules
  8703. )
  8704. if args.vocab_only:
  8705. logger.info("Exporting model vocab...")
  8706. model_instance.write_vocab()
  8707. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  8708. else:
  8709. logger.info("Exporting model...")
  8710. model_instance.write()
  8711. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  8712. logger.info(f"Model successfully exported to {out_path}")
  8713. if __name__ == '__main__':
  8714. main()