ggml-backend.cpp 86 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248
  1. // Note: porting this file to C++ is a work in progress
  2. #ifdef _WIN32
  3. #define WIN32_LEAN_AND_MEAN
  4. #ifndef NOMINMAX
  5. # define NOMINMAX
  6. #endif
  7. #include <windows.h>
  8. #endif
  9. #include "ggml-backend.h"
  10. #include "ggml-backend-impl.h"
  11. #include "ggml-alloc.h"
  12. #include "ggml-impl.h"
  13. #include <assert.h>
  14. #include <limits.h>
  15. #include <stdarg.h>
  16. #include <stdio.h>
  17. #include <stdlib.h>
  18. #include <string.h>
  19. #include <algorithm>
  20. #include <vector>
  21. #ifdef __APPLE__
  22. #include <sys/types.h>
  23. #include <sys/sysctl.h>
  24. #endif
  25. // backend buffer type
  26. const char * ggml_backend_buft_name(ggml_backend_buffer_type_t buft) {
  27. GGML_ASSERT(buft);
  28. return buft->iface.get_name(buft);
  29. }
  30. ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  31. if (size == 0) {
  32. // return a dummy buffer for zero-sized allocations
  33. return ggml_backend_buffer_init(buft, {}, NULL, 0);
  34. }
  35. GGML_ASSERT(buft);
  36. return buft->iface.alloc_buffer(buft, size);
  37. }
  38. size_t ggml_backend_buft_get_alignment(ggml_backend_buffer_type_t buft) {
  39. GGML_ASSERT(buft);
  40. return buft->iface.get_alignment(buft);
  41. }
  42. size_t ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) {
  43. GGML_ASSERT(buft);
  44. // get_max_size is optional, defaults to SIZE_MAX
  45. if (buft->iface.get_max_size) {
  46. return buft->iface.get_max_size(buft);
  47. }
  48. return SIZE_MAX;
  49. }
  50. size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor) {
  51. GGML_ASSERT(buft);
  52. // get_alloc_size is optional, defaults to ggml_nbytes
  53. if (buft->iface.get_alloc_size) {
  54. size_t size = buft->iface.get_alloc_size(buft, tensor);
  55. assert(size >= ggml_nbytes(tensor));
  56. return size;
  57. }
  58. return ggml_nbytes(tensor);
  59. }
  60. bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) {
  61. GGML_ASSERT(buft);
  62. if (buft->iface.is_host) {
  63. return buft->iface.is_host(buft);
  64. }
  65. return false;
  66. }
  67. ggml_backend_dev_t ggml_backend_buft_get_device(ggml_backend_buffer_type_t buft) {
  68. GGML_ASSERT(buft);
  69. return buft->device;
  70. }
  71. // backend buffer
  72. ggml_backend_buffer_t ggml_backend_buffer_init(
  73. ggml_backend_buffer_type_t buft,
  74. struct ggml_backend_buffer_i iface,
  75. void * context,
  76. size_t size) {
  77. ggml_backend_buffer_t buffer = new ggml_backend_buffer {
  78. /* .interface = */ iface,
  79. /* .buft = */ buft,
  80. /* .context = */ context,
  81. /* .size = */ size,
  82. /* .usage = */ GGML_BACKEND_BUFFER_USAGE_ANY
  83. };
  84. return buffer;
  85. }
  86. const char * ggml_backend_buffer_name(ggml_backend_buffer_t buffer) {
  87. return ggml_backend_buft_name(ggml_backend_buffer_get_type(buffer));
  88. }
  89. void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
  90. if (buffer == NULL) {
  91. return;
  92. }
  93. if (buffer->iface.free_buffer != NULL) {
  94. buffer->iface.free_buffer(buffer);
  95. }
  96. delete buffer;
  97. }
  98. size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) {
  99. GGML_ASSERT(buffer);
  100. return buffer->size;
  101. }
  102. void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
  103. GGML_ASSERT(buffer);
  104. // get_base is optional if the buffer is zero-sized
  105. if (buffer->size == 0) {
  106. return NULL;
  107. }
  108. void * base = buffer->iface.get_base(buffer);
  109. GGML_ASSERT(base != NULL && "backend buffer base cannot be NULL");
  110. return base;
  111. }
  112. enum ggml_status ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  113. GGML_ASSERT(buffer);
  114. // init_tensor is optional
  115. if (buffer->iface.init_tensor) {
  116. return buffer->iface.init_tensor(buffer, tensor);
  117. }
  118. return GGML_STATUS_SUCCESS;
  119. }
  120. void ggml_backend_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  121. GGML_ASSERT(buffer);
  122. // clear is optional if the buffer is zero-sized
  123. if (buffer->size == 0) {
  124. return;
  125. }
  126. buffer->iface.clear(buffer, value);
  127. }
  128. size_t ggml_backend_buffer_get_alignment(ggml_backend_buffer_t buffer) {
  129. return ggml_backend_buft_get_alignment(ggml_backend_buffer_get_type(buffer));
  130. }
  131. size_t ggml_backend_buffer_get_max_size(ggml_backend_buffer_t buffer) {
  132. return ggml_backend_buft_get_max_size(ggml_backend_buffer_get_type(buffer));
  133. }
  134. size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor) {
  135. return ggml_backend_buft_get_alloc_size(ggml_backend_buffer_get_type(buffer), tensor);
  136. }
  137. bool ggml_backend_buffer_is_host(ggml_backend_buffer_t buffer) {
  138. return ggml_backend_buft_is_host(ggml_backend_buffer_get_type(buffer));
  139. }
  140. void ggml_backend_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
  141. GGML_ASSERT(buffer);
  142. buffer->usage = usage;
  143. // FIXME: add a generic callback to the buffer interface
  144. if (ggml_backend_buffer_is_multi_buffer(buffer)) {
  145. ggml_backend_multi_buffer_set_usage(buffer, usage);
  146. }
  147. }
  148. enum ggml_backend_buffer_usage ggml_backend_buffer_get_usage(ggml_backend_buffer_t buffer) {
  149. GGML_ASSERT(buffer);
  150. return buffer->usage;
  151. }
  152. ggml_backend_buffer_type_t ggml_backend_buffer_get_type(ggml_backend_buffer_t buffer) {
  153. GGML_ASSERT(buffer);
  154. return buffer->buft;
  155. }
  156. void ggml_backend_buffer_reset(ggml_backend_buffer_t buffer) {
  157. GGML_ASSERT(buffer);
  158. if (buffer->iface.reset) {
  159. buffer->iface.reset(buffer);
  160. }
  161. }
  162. bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst) {
  163. ggml_backend_buffer_t dst_buf = dst->view_src ? dst->view_src->buffer : dst->buffer;
  164. if (dst_buf->iface.cpy_tensor) {
  165. return dst_buf->iface.cpy_tensor(dst_buf, src, dst);
  166. }
  167. return false;
  168. }
  169. // backend
  170. ggml_guid_t ggml_backend_guid(ggml_backend_t backend) {
  171. if (backend == NULL) {
  172. return NULL;
  173. }
  174. return backend->guid;
  175. }
  176. const char * ggml_backend_name(ggml_backend_t backend) {
  177. if (backend == NULL) {
  178. return "NULL";
  179. }
  180. return backend->iface.get_name(backend);
  181. }
  182. void ggml_backend_free(ggml_backend_t backend) {
  183. if (backend == NULL) {
  184. return;
  185. }
  186. backend->iface.free(backend);
  187. }
  188. ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend) {
  189. GGML_ASSERT(backend);
  190. return ggml_backend_dev_buffer_type(backend->device);
  191. }
  192. ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size) {
  193. return ggml_backend_buft_alloc_buffer(ggml_backend_get_default_buffer_type(backend), size);
  194. }
  195. size_t ggml_backend_get_alignment(ggml_backend_t backend) {
  196. return ggml_backend_buft_get_alignment(ggml_backend_get_default_buffer_type(backend));
  197. }
  198. size_t ggml_backend_get_max_size(ggml_backend_t backend) {
  199. return ggml_backend_buft_get_max_size(ggml_backend_get_default_buffer_type(backend));
  200. }
  201. void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  202. GGML_ASSERT(backend);
  203. GGML_ASSERT(tensor);
  204. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  205. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  206. if (backend->iface.set_tensor_async == NULL) {
  207. ggml_backend_tensor_set(tensor, data, offset, size);
  208. } else {
  209. backend->iface.set_tensor_async(backend, tensor, data, offset, size);
  210. }
  211. }
  212. void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  213. GGML_ASSERT(backend);
  214. GGML_ASSERT(tensor);
  215. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  216. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
  217. if (backend->iface.get_tensor_async == NULL) {
  218. ggml_backend_tensor_get(tensor, data, offset, size);
  219. } else {
  220. backend->iface.get_tensor_async(backend, tensor, data, offset, size);
  221. }
  222. }
  223. void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  224. GGML_ASSERT(tensor);
  225. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  226. if (size == 0) {
  227. return;
  228. }
  229. GGML_ASSERT(buf != NULL && "tensor buffer not set");
  230. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  231. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  232. buf->iface.set_tensor(buf, tensor, data, offset, size);
  233. }
  234. void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  235. GGML_ASSERT(tensor);
  236. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  237. if (size == 0) {
  238. return;
  239. }
  240. GGML_ASSERT(buf != NULL && "tensor buffer not set");
  241. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  242. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
  243. buf->iface.get_tensor(buf, tensor, data, offset, size);
  244. }
  245. void ggml_backend_tensor_memset(struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
  246. GGML_ASSERT(tensor);
  247. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  248. if (size == 0) {
  249. return;
  250. }
  251. GGML_ASSERT(buf != NULL && "tensor buffer not set");
  252. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  253. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  254. GGML_ASSERT(buf->iface.memset_tensor != NULL && "memset not implemented by backend buffer");
  255. buf->iface.memset_tensor(buf, tensor, value, offset, size);
  256. }
  257. void ggml_backend_synchronize(ggml_backend_t backend) {
  258. GGML_ASSERT(backend);
  259. if (backend->iface.synchronize == NULL) {
  260. return;
  261. }
  262. backend->iface.synchronize(backend);
  263. }
  264. ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  265. GGML_ASSERT(backend);
  266. GGML_ASSERT(backend->iface.graph_plan_create != NULL);
  267. return backend->iface.graph_plan_create(backend, cgraph);
  268. }
  269. void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  270. GGML_ASSERT(backend);
  271. GGML_ASSERT(backend->iface.graph_plan_free != NULL);
  272. backend->iface.graph_plan_free(backend, plan);
  273. }
  274. enum ggml_status ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  275. GGML_ASSERT(backend);
  276. GGML_ASSERT(backend->iface.graph_plan_compute != NULL);
  277. return backend->iface.graph_plan_compute(backend, plan);
  278. }
  279. enum ggml_status ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  280. enum ggml_status err = ggml_backend_graph_compute_async(backend, cgraph);
  281. ggml_backend_synchronize(backend);
  282. return err;
  283. }
  284. enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  285. GGML_ASSERT(backend);
  286. return backend->iface.graph_compute(backend, cgraph);
  287. }
  288. bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  289. GGML_ASSERT(backend);
  290. return ggml_backend_dev_supports_op(backend->device, op);
  291. }
  292. bool ggml_backend_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
  293. GGML_ASSERT(backend);
  294. return ggml_backend_dev_supports_buft(backend->device, buft);
  295. }
  296. bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  297. GGML_ASSERT(backend);
  298. return ggml_backend_dev_offload_op(backend->device, op);
  299. }
  300. ggml_backend_dev_t ggml_backend_get_device(ggml_backend_t backend) {
  301. GGML_ASSERT(backend);
  302. return backend->device;
  303. }
  304. // backend copy
  305. void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) {
  306. GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
  307. if (src == dst) {
  308. return;
  309. }
  310. if (ggml_backend_buffer_is_host(src->buffer)) {
  311. ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src));
  312. } else if (ggml_backend_buffer_is_host(dst->buffer)) {
  313. ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
  314. } else if (!ggml_backend_buffer_copy_tensor(src, dst)) {
  315. #ifndef NDEBUG
  316. GGML_LOG_DEBUG("%s: warning: slow copy from %s to %s\n", __func__, ggml_backend_buffer_name(src->buffer), ggml_backend_buffer_name(dst->buffer));
  317. #endif
  318. size_t nbytes = ggml_nbytes(src);
  319. void * data = malloc(nbytes);
  320. ggml_backend_tensor_get(src, data, 0, nbytes);
  321. ggml_backend_tensor_set(dst, data, 0, nbytes);
  322. free(data);
  323. }
  324. }
  325. void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, struct ggml_tensor * src, struct ggml_tensor * dst) {
  326. GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
  327. if (src == dst) {
  328. return;
  329. }
  330. GGML_ASSERT(backend_dst);
  331. if (backend_dst->iface.cpy_tensor_async != NULL) {
  332. if (backend_dst->iface.cpy_tensor_async(backend_src, backend_dst, src, dst)) {
  333. return;
  334. }
  335. }
  336. // an async copy would normally happen after all the queued operations on both backends are completed
  337. // to simulate the same behavior, we need to synchronize both backends first, and do a blocking copy
  338. ggml_backend_synchronize(backend_src);
  339. ggml_backend_synchronize(backend_dst);
  340. ggml_backend_tensor_copy(src, dst);
  341. }
  342. // events
  343. ggml_backend_event_t ggml_backend_event_new(ggml_backend_dev_t device) {
  344. // null device is allowed for the transition period to the device interface
  345. if (device == NULL || device->iface.event_new == NULL) {
  346. return NULL;
  347. }
  348. return device->iface.event_new(device);
  349. }
  350. void ggml_backend_event_free(ggml_backend_event_t event) {
  351. if (event == NULL) {
  352. return;
  353. }
  354. event->device->iface.event_free(event->device, event);
  355. }
  356. void ggml_backend_event_record(ggml_backend_event_t event, ggml_backend_t backend) {
  357. GGML_ASSERT(backend);
  358. GGML_ASSERT(backend->iface.event_record != NULL);
  359. backend->iface.event_record(backend, event);
  360. }
  361. void ggml_backend_event_synchronize(ggml_backend_event_t event) {
  362. GGML_ASSERT(event);
  363. GGML_ASSERT(event->device->iface.event_synchronize);
  364. event->device->iface.event_synchronize(event->device, event);
  365. }
  366. void ggml_backend_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
  367. GGML_ASSERT(backend);
  368. GGML_ASSERT(backend->iface.event_wait != NULL);
  369. backend->iface.event_wait(backend, event);
  370. }
  371. static void ggml_backend_graph_optimize(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  372. GGML_ASSERT(backend);
  373. if (backend->iface.graph_optimize != NULL) {
  374. backend->iface.graph_optimize(backend, cgraph);
  375. }
  376. }
  377. // Backend device
  378. const char * ggml_backend_dev_name(ggml_backend_dev_t device) {
  379. GGML_ASSERT(device);
  380. return device->iface.get_name(device);
  381. }
  382. const char * ggml_backend_dev_description(ggml_backend_dev_t device) {
  383. GGML_ASSERT(device);
  384. return device->iface.get_description(device);
  385. }
  386. void ggml_backend_dev_memory(ggml_backend_dev_t device, size_t * free, size_t * total) {
  387. GGML_ASSERT(device);
  388. device->iface.get_memory(device, free, total);
  389. }
  390. enum ggml_backend_dev_type ggml_backend_dev_type(ggml_backend_dev_t device) {
  391. GGML_ASSERT(device);
  392. return device->iface.get_type(device);
  393. }
  394. void ggml_backend_dev_get_props(ggml_backend_dev_t device, struct ggml_backend_dev_props * props) {
  395. memset(props, 0, sizeof(*props));
  396. device->iface.get_props(device, props);
  397. }
  398. ggml_backend_reg_t ggml_backend_dev_backend_reg(ggml_backend_dev_t device) {
  399. GGML_ASSERT(device);
  400. return device->reg;
  401. }
  402. ggml_backend_t ggml_backend_dev_init(ggml_backend_dev_t device, const char * params) {
  403. GGML_ASSERT(device);
  404. return device->iface.init_backend(device, params);
  405. }
  406. ggml_backend_buffer_type_t ggml_backend_dev_buffer_type(ggml_backend_dev_t device) {
  407. GGML_ASSERT(device);
  408. return device->iface.get_buffer_type(device);
  409. }
  410. ggml_backend_buffer_type_t ggml_backend_dev_host_buffer_type(ggml_backend_dev_t device) {
  411. GGML_ASSERT(device);
  412. if (device->iface.get_host_buffer_type == NULL) {
  413. return NULL;
  414. }
  415. return device->iface.get_host_buffer_type(device);
  416. }
  417. ggml_backend_buffer_t ggml_backend_dev_buffer_from_host_ptr(ggml_backend_dev_t device, void * ptr, size_t size, size_t max_tensor_size) {
  418. GGML_ASSERT(device);
  419. return device->iface.buffer_from_host_ptr(device, ptr, size, max_tensor_size);
  420. }
  421. bool ggml_backend_dev_supports_op(ggml_backend_dev_t device, const struct ggml_tensor * op) {
  422. GGML_ASSERT(device);
  423. return device->iface.supports_op(device, op);
  424. }
  425. bool ggml_backend_dev_supports_buft(ggml_backend_dev_t device, ggml_backend_buffer_type_t buft) {
  426. GGML_ASSERT(device);
  427. return device->iface.supports_buft(device, buft);
  428. }
  429. bool ggml_backend_dev_offload_op(ggml_backend_dev_t device, const struct ggml_tensor * op) {
  430. GGML_ASSERT(device);
  431. if (device->iface.offload_op != NULL) {
  432. return device->iface.offload_op(device, op);
  433. }
  434. return false;
  435. }
  436. // Backend (reg)
  437. const char * ggml_backend_reg_name(ggml_backend_reg_t reg) {
  438. GGML_ASSERT(reg);
  439. return reg->iface.get_name(reg);
  440. }
  441. size_t ggml_backend_reg_dev_count(ggml_backend_reg_t reg) {
  442. GGML_ASSERT(reg);
  443. return reg->iface.get_device_count(reg);
  444. }
  445. ggml_backend_dev_t ggml_backend_reg_dev_get(ggml_backend_reg_t reg, size_t index) {
  446. GGML_ASSERT(reg);
  447. return reg->iface.get_device(reg, index);
  448. }
  449. void * ggml_backend_reg_get_proc_address(ggml_backend_reg_t reg, const char * name) {
  450. GGML_ASSERT(reg);
  451. if (!reg->iface.get_proc_address) {
  452. return NULL;
  453. }
  454. return reg->iface.get_proc_address(reg, name);
  455. }
  456. // multi-buffer buffer
  457. struct ggml_backend_multi_buffer_context {
  458. ggml_backend_buffer_t * buffers;
  459. size_t n_buffers;
  460. };
  461. static void ggml_backend_multi_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  462. GGML_ASSERT(buffer);
  463. ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context;
  464. for (size_t i = 0; i < ctx->n_buffers; i++) {
  465. ggml_backend_buffer_free(ctx->buffers[i]);
  466. }
  467. free(ctx->buffers);
  468. free(ctx);
  469. }
  470. static void ggml_backend_multi_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  471. GGML_ASSERT(buffer);
  472. ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context;
  473. for (size_t i = 0; i < ctx->n_buffers; i++) {
  474. ggml_backend_buffer_clear(ctx->buffers[i], value);
  475. }
  476. }
  477. static const struct ggml_backend_buffer_i ggml_backend_multi_buffer_i = {
  478. /* .free_buffer = */ ggml_backend_multi_buffer_free_buffer,
  479. /* .get_base = */ NULL,
  480. /* .init_tensor = */ NULL,
  481. /* .memset_tensor = */ NULL,
  482. /* .set_tensor = */ NULL,
  483. /* .get_tensor = */ NULL,
  484. /* .cpy_tensor = */ NULL,
  485. /* .clear = */ ggml_backend_multi_buffer_clear,
  486. /* .reset = */ NULL,
  487. };
  488. ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers) {
  489. ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) malloc(sizeof(struct ggml_backend_multi_buffer_context));
  490. ctx->n_buffers = n_buffers;
  491. ctx->buffers = (ggml_backend_buffer_t *) malloc(n_buffers * sizeof(ggml_backend_buffer_t));
  492. GGML_ASSERT(ctx->buffers != NULL);
  493. size_t total_size = 0;
  494. for (size_t i = 0; i < n_buffers; i++) {
  495. ctx->buffers[i] = buffers[i];
  496. total_size += ggml_backend_buffer_get_size(buffers[i]);
  497. }
  498. return ggml_backend_buffer_init(buffers[0]->buft, ggml_backend_multi_buffer_i, ctx, total_size);
  499. }
  500. bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer) {
  501. GGML_ASSERT(buffer);
  502. return buffer->iface.free_buffer == ggml_backend_multi_buffer_free_buffer;
  503. }
  504. void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
  505. GGML_ASSERT(buffer);
  506. GGML_ASSERT(ggml_backend_buffer_is_multi_buffer(buffer));
  507. ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context;
  508. for (size_t i = 0; i < ctx->n_buffers; i++) {
  509. ggml_backend_buffer_set_usage(ctx->buffers[i], usage);
  510. }
  511. }
  512. // creates a copy of the tensor with the same memory layout
  513. static struct ggml_tensor * ggml_dup_tensor_layout(struct ggml_context * ctx, const struct ggml_tensor * tensor) {
  514. struct ggml_tensor * dup = ggml_dup_tensor(ctx, tensor);
  515. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  516. dup->nb[i] = tensor->nb[i];
  517. }
  518. return dup;
  519. }
  520. static bool ggml_is_view_op(enum ggml_op op) {
  521. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  522. }
  523. // scheduler
  524. #ifndef GGML_SCHED_MAX_BACKENDS
  525. #define GGML_SCHED_MAX_BACKENDS 16
  526. #endif
  527. #ifndef GGML_SCHED_MAX_SPLIT_INPUTS
  528. #define GGML_SCHED_MAX_SPLIT_INPUTS 30
  529. #endif
  530. #ifndef GGML_SCHED_MAX_COPIES
  531. #define GGML_SCHED_MAX_COPIES 4
  532. #endif
  533. struct ggml_backend_sched_split {
  534. int backend_id;
  535. int i_start;
  536. int i_end;
  537. struct ggml_tensor * inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
  538. int n_inputs;
  539. // graph view of this split
  540. struct ggml_cgraph graph;
  541. };
  542. struct ggml_backend_sched {
  543. bool is_reset; // true if the scheduler has been reset since the last graph split
  544. bool is_alloc;
  545. int n_backends;
  546. ggml_backend_t backends[GGML_SCHED_MAX_BACKENDS];
  547. ggml_backend_buffer_type_t bufts[GGML_SCHED_MAX_BACKENDS];
  548. ggml_gallocr_t galloc;
  549. // hash map of the nodes in the graph
  550. struct ggml_hash_set hash_set;
  551. int * hv_tensor_backend_ids; // [hash_set.size]
  552. struct ggml_tensor ** hv_tensor_copies; // [hash_set.size][n_backends][n_copies]
  553. int * node_backend_ids; // [graph_size]
  554. int * leaf_backend_ids; // [graph_size]
  555. int * prev_node_backend_ids; // [graph_size]
  556. int * prev_leaf_backend_ids; // [graph_size]
  557. // copy of the graph with modified inputs
  558. struct ggml_cgraph graph;
  559. // graph splits
  560. struct ggml_backend_sched_split * splits;
  561. int n_splits;
  562. int splits_capacity;
  563. // pipeline parallelism support
  564. int n_copies;
  565. int cur_copy;
  566. int next_copy;
  567. ggml_backend_event_t events[GGML_SCHED_MAX_BACKENDS][GGML_SCHED_MAX_COPIES];
  568. struct ggml_tensor * graph_inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
  569. int n_graph_inputs;
  570. struct ggml_context * ctx;
  571. ggml_backend_sched_eval_callback callback_eval;
  572. void * callback_eval_user_data;
  573. char * context_buffer;
  574. size_t context_buffer_size;
  575. bool op_offload;
  576. int debug;
  577. // used for debugging graph reallocations [GGML_SCHED_DEBUG_REALLOC]
  578. // ref: https://github.com/ggml-org/llama.cpp/pull/17617
  579. int debug_realloc;
  580. int debug_graph_size;
  581. int debug_prev_graph_size;
  582. };
  583. #define hash_id(tensor) ggml_hash_find_or_insert(&sched->hash_set, tensor)
  584. #define tensor_backend_id(tensor) sched->hv_tensor_backend_ids[hash_id(tensor)]
  585. #define tensor_id_copy(id, backend_id, copy_id) sched->hv_tensor_copies[(id) * sched->n_backends * sched->n_copies + (backend_id) * sched->n_copies + (copy_id)]
  586. #define tensor_copy(tensor, backend_id, copy_id) tensor_id_copy(hash_id(tensor), backend_id, copy_id)
  587. // returns the priority of the backend, lower id is higher priority
  588. static int ggml_backend_sched_backend_id(ggml_backend_sched_t sched, ggml_backend_t backend) {
  589. for (int i = 0; i < sched->n_backends; i++) {
  590. if (sched->backends[i] == backend) {
  591. return i;
  592. }
  593. }
  594. return -1;
  595. }
  596. static int ggml_backend_sched_backend_from_buffer(ggml_backend_sched_t sched, const struct ggml_tensor * tensor, const struct ggml_tensor * op) {
  597. ggml_backend_buffer_t buffer = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  598. if (buffer == NULL) {
  599. return -1;
  600. }
  601. // find highest prio backend that supports the buffer type and the op
  602. for (int i = 0; i < sched->n_backends; i++) {
  603. if (ggml_backend_supports_buft(sched->backends[i], buffer->buft) &&
  604. ggml_backend_supports_op(sched->backends[i], op)) {
  605. return i;
  606. }
  607. }
  608. #ifndef NDEBUG
  609. GGML_LOG_DEBUG("%s: warning: no backend supports op %s with a weight with buffer type %s used in tensor %s, the weight will need to be copied\n",
  610. __func__, ggml_op_desc(tensor), ggml_backend_buffer_name(buffer), tensor->name);
  611. #endif
  612. return -1;
  613. }
  614. #if 0
  615. #define GGML_SCHED_MAX_SPLITS_DEBUG 4096
  616. static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_SCHED_MAX_SPLITS_DEBUG*GGML_SCHED_MAX_SPLIT_INPUTS][128]; // debug only
  617. #define SET_CAUSE(node, ...) sprintf(causes[hash_id(node)], __VA_ARGS__)
  618. #define GET_CAUSE(node) causes[hash_id(node)]
  619. #else
  620. #define SET_CAUSE(node, ...)
  621. #define GET_CAUSE(node) ""
  622. #endif
  623. // returns the backend that should be used for the node based on the current locations
  624. static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, struct ggml_tensor * tensor) {
  625. // assign pre-allocated nodes to their backend
  626. int cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor, tensor);
  627. if (cur_backend_id != -1) {
  628. SET_CAUSE(tensor, "1.dst");
  629. return cur_backend_id;
  630. }
  631. // view_src
  632. if (tensor->view_src != NULL) {
  633. cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor->view_src, tensor);
  634. if (cur_backend_id != -1) {
  635. SET_CAUSE(tensor, "1.vsrc");
  636. return cur_backend_id;
  637. }
  638. }
  639. if (tensor->buffer || (tensor->view_src && tensor->view_src->buffer)) {
  640. // since the tensor is pre-allocated, it cannot be moved to another backend
  641. ggml_backend_buffer_t buffer = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  642. GGML_ABORT("pre-allocated tensor (%s) in a buffer (%s) that cannot run the operation (%s)", tensor->name, ggml_backend_buffer_name(buffer), ggml_op_name(tensor->op));
  643. }
  644. // graph input
  645. if (tensor->flags & GGML_TENSOR_FLAG_INPUT) {
  646. cur_backend_id = sched->n_backends - 1; // last backend (assumed CPU)
  647. SET_CAUSE(tensor, "1.inp");
  648. return cur_backend_id;
  649. }
  650. // operations with weights are preferably run on the same backend as the weights
  651. for (int i = 0; i < GGML_MAX_SRC; i++) {
  652. const struct ggml_tensor * src = tensor->src[i];
  653. if (src == NULL) {
  654. continue;
  655. }
  656. // skip ROPE since the rope freqs tensor is too small to choose a backend based on it
  657. // not an ideal solution
  658. if (tensor->op != GGML_OP_ROPE && src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
  659. int src_backend_id = ggml_backend_sched_backend_from_buffer(sched, src, tensor);
  660. // check if a backend with higher prio wants to offload the op
  661. if (sched->op_offload && src_backend_id == sched->n_backends - 1 && ggml_backend_buffer_is_host(src->buffer)) {
  662. for (int b = 0; b < src_backend_id; b++) {
  663. if (ggml_backend_supports_op(sched->backends[b], tensor) && ggml_backend_offload_op(sched->backends[b], tensor)) {
  664. SET_CAUSE(tensor, "1.off");
  665. return b;
  666. }
  667. }
  668. }
  669. SET_CAUSE(tensor, "1.wgt%d", i);
  670. return src_backend_id;
  671. }
  672. }
  673. return -1;
  674. }
  675. static char * fmt_size(size_t size) {
  676. static char buffer[128];
  677. if (size >= 1024*1024) {
  678. snprintf(buffer, sizeof(buffer), "%zuM", size/1024/1024);
  679. } else {
  680. snprintf(buffer, sizeof(buffer), "%zuK", size/1024);
  681. }
  682. return buffer;
  683. }
  684. static void ggml_backend_sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  685. int cur_split = 0;
  686. for (int i = 0; i < graph->n_nodes; i++) {
  687. if (cur_split < sched->n_splits && i == sched->splits[cur_split].i_start) {
  688. ggml_backend_t split_backend = sched->backends[sched->splits[cur_split].backend_id];
  689. GGML_LOG_DEBUG("\n## SPLIT #%d: %s # %d inputs", cur_split, ggml_backend_name(split_backend),
  690. sched->splits[cur_split].n_inputs);
  691. for (int j = 0; j < sched->splits[cur_split].n_inputs; j++) {
  692. if (j == 0) {
  693. GGML_LOG_DEBUG(": ");
  694. }
  695. GGML_LOG_DEBUG("[%s (%5.5s)] ", sched->splits[cur_split].inputs[j]->name,
  696. fmt_size(ggml_nbytes(sched->splits[cur_split].inputs[j])));
  697. }
  698. GGML_LOG_DEBUG("\n");
  699. cur_split++;
  700. }
  701. struct ggml_tensor * node = graph->nodes[i];
  702. if (ggml_is_view_op(node->op)) {
  703. continue;
  704. }
  705. if (sched->debug > 1) {
  706. ggml_backend_t tensor_backend = ggml_backend_sched_get_tensor_backend(sched, node);
  707. GGML_LOG_DEBUG("node #%3d (%10.10s): %20.20s (%5.5s) [%5.5s %8.8s] use=%d:", i, ggml_op_name(node->op), node->name,
  708. fmt_size(ggml_nbytes(node)), tensor_backend ? ggml_backend_name(tensor_backend) : "NULL", GET_CAUSE(node),
  709. graph->use_counts[ggml_hash_find(&graph->visited_hash_set, node)]);
  710. for (int j = 0; j < GGML_MAX_SRC; j++) {
  711. struct ggml_tensor * src = node->src[j];
  712. if (src == NULL) {
  713. continue;
  714. }
  715. ggml_backend_t src_backend = ggml_backend_sched_get_tensor_backend(sched, src);
  716. GGML_LOG_DEBUG(" %20.20s (%5.5s) [%5.5s %8.8s]", src->name,
  717. fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL", GET_CAUSE(src));
  718. }
  719. GGML_LOG_DEBUG("\n");
  720. }
  721. }
  722. }
  723. static bool ggml_backend_sched_buffer_supported(ggml_backend_sched_t sched, struct ggml_tensor * t, int backend_id) {
  724. ggml_backend_buffer_t buf = t->view_src ? t->view_src->buffer : t->buffer;
  725. ggml_backend_buffer_type_t buft = NULL;
  726. if (buf) {
  727. // the tensor is already allocated
  728. buft = buf->buft;
  729. } else {
  730. // see if the tensor already has a backend assigned, and use the buffer type of that backend
  731. int tensor_backend_id = tensor_backend_id(t);
  732. if (tensor_backend_id == -1 && t->view_src) {
  733. tensor_backend_id = tensor_backend_id(t->view_src);
  734. }
  735. if (tensor_backend_id != -1) {
  736. buft = sched->bufts[tensor_backend_id];
  737. }
  738. }
  739. return buft != NULL && ggml_backend_supports_buft(sched->backends[backend_id], buft);
  740. }
  741. static void ggml_backend_sched_set_if_supported(ggml_backend_sched_t sched, struct ggml_tensor * node, int cur_backend_id, int * node_backend_id) {
  742. if (ggml_backend_supports_op(sched->backends[cur_backend_id], node)) {
  743. *node_backend_id = cur_backend_id;
  744. SET_CAUSE(node, "2.sup");
  745. }
  746. }
  747. // assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend
  748. void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  749. // reset splits
  750. sched->n_splits = 0;
  751. sched->n_graph_inputs = 0;
  752. sched->is_reset = false;
  753. struct ggml_init_params params = {
  754. /* .mem_size = */ sched->context_buffer_size,
  755. /* .mem_buffer = */ sched->context_buffer,
  756. /* .no_alloc = */ true
  757. };
  758. ggml_free(sched->ctx);
  759. sched->ctx = ggml_init(params);
  760. if (sched->ctx == NULL) {
  761. GGML_ABORT("%s: failed to initialize context\n", __func__);
  762. }
  763. // pass 1: assign backends to ops with pre-allocated inputs
  764. for (int i = 0; i < graph->n_leafs; i++) {
  765. struct ggml_tensor * leaf = graph->leafs[i];
  766. int * leaf_backend_id = &tensor_backend_id(leaf);
  767. // do not overwrite user assignments
  768. if (*leaf_backend_id == -1) {
  769. *leaf_backend_id = ggml_backend_sched_backend_id_from_cur(sched, leaf);
  770. }
  771. }
  772. for (int i = 0; i < graph->n_nodes; i++) {
  773. struct ggml_tensor * node = graph->nodes[i];
  774. int * node_backend_id = &tensor_backend_id(node);
  775. // do not overwrite user assignments
  776. if (*node_backend_id == -1) {
  777. *node_backend_id = ggml_backend_sched_backend_id_from_cur(sched, node);
  778. #if 0
  779. // src
  780. if (node->op == GGML_OP_NONE) {
  781. continue;
  782. }
  783. for (int j = 0; j < GGML_MAX_SRC; j++) {
  784. struct ggml_tensor * src = node->src[j];
  785. if (src == NULL) {
  786. continue;
  787. }
  788. int * src_backend_id = &tensor_backend_id(src);
  789. if (*src_backend_id == -1) {
  790. *src_backend_id = ggml_backend_sched_backend_id_from_cur(sched, src);
  791. }
  792. }
  793. #endif
  794. }
  795. }
  796. // pass 2: expand current backend assignments
  797. // assign the same backend to adjacent nodes
  798. // expand gpu backends (i.e. non last prio) up and down, ignoring cpu (the lowest priority backend)
  799. // thus, cpu will never be used unless weights are on cpu, or there are no gpu ops between cpu ops
  800. // ops unsupported by the backend being expanded will be left unassigned so that they can be assigned later when the locations of its inputs are known
  801. // expand gpu down
  802. {
  803. int cur_backend_id = -1;
  804. for (int i = 0; i < graph->n_nodes; i++) {
  805. struct ggml_tensor * node = graph->nodes[i];
  806. if (ggml_is_view_op(node->op)) {
  807. continue;
  808. }
  809. int * node_backend_id = &tensor_backend_id(node);
  810. if (*node_backend_id != -1) {
  811. if (*node_backend_id == sched->n_backends - 1) {
  812. // skip cpu (lowest prio backend)
  813. cur_backend_id = -1;
  814. } else {
  815. cur_backend_id = *node_backend_id;
  816. }
  817. } else if (cur_backend_id != -1) {
  818. ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
  819. }
  820. }
  821. }
  822. // expand gpu up
  823. {
  824. int cur_backend_id = -1;
  825. for (int i = graph->n_nodes - 1; i >= 0; i--) {
  826. struct ggml_tensor * node = graph->nodes[i];
  827. if (ggml_is_view_op(node->op)) {
  828. continue;
  829. }
  830. int * node_backend_id = &tensor_backend_id(node);
  831. if (*node_backend_id != -1) {
  832. if (*node_backend_id == sched->n_backends - 1) {
  833. // skip cpu (lowest prio backend)
  834. cur_backend_id = -1;
  835. } else {
  836. cur_backend_id = *node_backend_id;
  837. }
  838. } else if (cur_backend_id != -1) {
  839. ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
  840. }
  841. }
  842. }
  843. // expand rest down
  844. {
  845. int cur_backend_id = -1;
  846. for (int i = 0; i < graph->n_nodes; i++) {
  847. struct ggml_tensor * node = graph->nodes[i];
  848. if (ggml_is_view_op(node->op)) {
  849. continue;
  850. }
  851. int * node_backend_id = &tensor_backend_id(node);
  852. if (*node_backend_id != -1) {
  853. cur_backend_id = *node_backend_id;
  854. } else if (cur_backend_id != -1) {
  855. ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
  856. }
  857. }
  858. }
  859. // expand rest up
  860. {
  861. int cur_backend_id = -1;
  862. for (int i = graph->n_nodes - 1; i >= 0; i--) {
  863. struct ggml_tensor * node = graph->nodes[i];
  864. if (ggml_is_view_op(node->op)) {
  865. continue;
  866. }
  867. int * node_backend_id = &tensor_backend_id(node);
  868. if (*node_backend_id != -1) {
  869. cur_backend_id = *node_backend_id;
  870. } else if (cur_backend_id != -1) {
  871. ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
  872. }
  873. }
  874. }
  875. // pass 3: upgrade nodes to higher prio backends with compatible buffer types
  876. // if the tensor is already in the same buffer type (*) as another higher priority backend, we should move it there
  877. // however, we also need to verify that the sources are in compatible buffer types
  878. // (*) the actual requirement is more relaxed, the buffer type of the backend should be supported by all the users of this tensor further down the graph
  879. // however, this is slow to verify, so we have a more strict requirement that the buffer type is the same
  880. // this is not uncommon since multiple backends can use host memory, with the same buffer type (eg. BLAS and CPU)
  881. // additionally, set remaining unassigned nodes to the backend with the most supported inputs
  882. // only nodes that could not be assigned during expansion due to the backend not supporting the op should be unassigned at this point
  883. for (int i = 0; i < graph->n_nodes; i++) {
  884. struct ggml_tensor * node = graph->nodes[i];
  885. if (ggml_is_view_op(node->op)) {
  886. continue;
  887. }
  888. int * node_backend_id = &tensor_backend_id(node);
  889. if (*node_backend_id == -1) {
  890. // unassigned node: find the backend with the most supported inputs
  891. int n_supported_best = -1;
  892. for (int b = 0; b < sched->n_backends; b++) {
  893. if (ggml_backend_supports_op(sched->backends[b], node)) {
  894. int n_supported = 0;
  895. for (int j = 0; j < GGML_MAX_SRC; j++) {
  896. struct ggml_tensor * src = node->src[j];
  897. if (src == NULL) {
  898. continue;
  899. }
  900. if ((tensor_backend_id(src) != -1 || tensor_backend_id(src->view_src) != -1) && ggml_backend_sched_buffer_supported(sched, src, b)) {
  901. n_supported++;
  902. }
  903. }
  904. if (n_supported > n_supported_best) {
  905. n_supported_best = n_supported;
  906. *node_backend_id = b;
  907. SET_CAUSE(node, "3.best");
  908. }
  909. }
  910. }
  911. } else {
  912. // assigned node: upgrade to higher prio backend if possible
  913. for (int b = 0; b < *node_backend_id; b++) {
  914. if (sched->bufts[b] == sched->bufts[*node_backend_id] && ggml_backend_supports_op(sched->backends[b], node)) {
  915. bool supported = true;
  916. for (int j = 0; j < GGML_MAX_SRC; j++) {
  917. struct ggml_tensor * src = node->src[j];
  918. if (src == NULL) {
  919. continue;
  920. }
  921. if (!ggml_backend_sched_buffer_supported(sched, src, b)) {
  922. supported = false;
  923. break;
  924. }
  925. }
  926. if (supported) {
  927. *node_backend_id = b;
  928. SET_CAUSE(node, "3.upg");
  929. break;
  930. }
  931. }
  932. }
  933. }
  934. }
  935. // pass 4: assign backends to remaining src from dst and view_src
  936. for (int i = 0; i < graph->n_nodes; i++) {
  937. struct ggml_tensor * node = graph->nodes[i];
  938. int * cur_backend_id = &tensor_backend_id(node);
  939. if (node->view_src != NULL && *cur_backend_id == -1) {
  940. *cur_backend_id = tensor_backend_id(node->view_src);
  941. SET_CAUSE(node, "4.vsrc");
  942. }
  943. for (int j = 0; j < GGML_MAX_SRC; j++) {
  944. struct ggml_tensor * src = node->src[j];
  945. if (src == NULL) {
  946. continue;
  947. }
  948. int * src_backend_id = &tensor_backend_id(src);
  949. if (*src_backend_id == -1) {
  950. if (src->view_src != NULL) {
  951. // views are always on the same backend as the source
  952. *src_backend_id = tensor_backend_id(src->view_src);
  953. SET_CAUSE(src, "4.vsrc");
  954. } else {
  955. *src_backend_id = *cur_backend_id;
  956. SET_CAUSE(src, "4.cur");
  957. }
  958. }
  959. }
  960. // if the node is still unassigned, assign it to the first backend that supports it
  961. for (int b = 0; b < sched->n_backends && *cur_backend_id == -1; b++) {
  962. ggml_backend_sched_set_if_supported(sched, node, b, cur_backend_id);
  963. }
  964. GGML_ASSERT(*cur_backend_id != -1);
  965. }
  966. // pass 5: split graph, find tensors that need to be copied
  967. {
  968. int i_split = 0;
  969. struct ggml_backend_sched_split * split = &sched->splits[0];
  970. // find the backend of the first split, skipping view ops
  971. int i = 0;
  972. for (; i < graph->n_nodes; i++) {
  973. struct ggml_tensor * node = graph->nodes[i];
  974. if (!ggml_is_view_op(node->op)) {
  975. split->backend_id = tensor_backend_id(node);
  976. break;
  977. }
  978. }
  979. split->i_start = 0;
  980. split->n_inputs = 0;
  981. int cur_backend_id = split->backend_id;
  982. for (; i < graph->n_nodes; i++) {
  983. struct ggml_tensor * node = graph->nodes[i];
  984. if (ggml_is_view_op(node->op)) {
  985. continue;
  986. }
  987. const int node_backend_id = tensor_backend_id(node);
  988. GGML_ASSERT(node_backend_id != -1); // all nodes should be assigned by now, this can happen if there is no CPU fallback
  989. // check if we should start a new split based on the sources of the current node
  990. bool need_new_split = false;
  991. if (node_backend_id == cur_backend_id && split->n_inputs > 0) {
  992. for (int j = 0; j < GGML_MAX_SRC; j++) {
  993. struct ggml_tensor * src = node->src[j];
  994. if (src == NULL) {
  995. continue;
  996. }
  997. // check if a weight is on a different and incompatible backend
  998. // by starting a new split, the memory of the previously offloaded weights can be reused
  999. if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
  1000. int src_backend_id = tensor_backend_id(src);
  1001. if (src_backend_id != cur_backend_id && !ggml_backend_sched_buffer_supported(sched, src, cur_backend_id)) {
  1002. need_new_split = true;
  1003. break;
  1004. }
  1005. }
  1006. // check if the split has too many inputs
  1007. // FIXME: count the number of inputs instead of only checking when full
  1008. if (split->n_inputs == GGML_SCHED_MAX_SPLIT_INPUTS) {
  1009. const size_t id = hash_id(src);
  1010. int src_backend_id = sched->hv_tensor_backend_ids[id];
  1011. bool supported = ggml_backend_sched_buffer_supported(sched, src, cur_backend_id);
  1012. if (src_backend_id != cur_backend_id && tensor_id_copy(id, cur_backend_id, 0) == NULL && !supported) {
  1013. need_new_split = true;
  1014. break;
  1015. }
  1016. }
  1017. }
  1018. }
  1019. if (node_backend_id != cur_backend_id || need_new_split) {
  1020. split->i_end = i;
  1021. i_split++;
  1022. if (i_split >= sched->splits_capacity) {
  1023. sched->splits_capacity *= 2;
  1024. sched->splits = (ggml_backend_sched_split *)
  1025. realloc(sched->splits, sched->splits_capacity * sizeof(struct ggml_backend_sched_split));
  1026. GGML_ASSERT(sched->splits != NULL);
  1027. }
  1028. split = &sched->splits[i_split];
  1029. split->backend_id = node_backend_id;
  1030. split->i_start = i;
  1031. split->n_inputs = 0;
  1032. cur_backend_id = node_backend_id;
  1033. }
  1034. // find inputs that are not on the same backend
  1035. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1036. struct ggml_tensor * src = node->src[j];
  1037. if (src == NULL) {
  1038. continue;
  1039. }
  1040. size_t src_id = hash_id(src);
  1041. const int src_backend_id = sched->hv_tensor_backend_ids[src_id];
  1042. GGML_ASSERT(src_backend_id != -1); // all inputs should be assigned by now
  1043. if (src->flags & GGML_TENSOR_FLAG_INPUT && sched->n_copies > 1) {
  1044. if (tensor_id_copy(src_id, src_backend_id, 0) == NULL) {
  1045. ggml_backend_t backend = sched->backends[src_backend_id];
  1046. for (int c = 0; c < sched->n_copies; c++) {
  1047. struct ggml_tensor * tensor_copy;
  1048. if (c == sched->cur_copy) {
  1049. tensor_copy = src; // use the original tensor as the current copy
  1050. } else {
  1051. tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
  1052. ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
  1053. }
  1054. ggml_set_input(tensor_copy);
  1055. ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
  1056. tensor_id_copy(src_id, src_backend_id, c) = tensor_copy;
  1057. SET_CAUSE(tensor_copy, "4.cpy");
  1058. }
  1059. int n_graph_inputs = sched->n_graph_inputs++;
  1060. GGML_ASSERT(n_graph_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
  1061. sched->graph_inputs[n_graph_inputs] = src;
  1062. }
  1063. }
  1064. if (src_backend_id != cur_backend_id && !ggml_backend_sched_buffer_supported(sched, src, cur_backend_id)) {
  1065. // create a copy of the input in the split's backend
  1066. if (tensor_id_copy(src_id, cur_backend_id, 0) == NULL) {
  1067. ggml_backend_t backend = sched->backends[cur_backend_id];
  1068. for (int c = 0; c < sched->n_copies; c++) {
  1069. struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
  1070. ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
  1071. if (sched->n_copies > 1) {
  1072. ggml_set_input(tensor_copy);
  1073. ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
  1074. }
  1075. tensor_id_copy(src_id, cur_backend_id, c) = tensor_copy;
  1076. SET_CAUSE(tensor_copy, "4.cpy");
  1077. }
  1078. int n_inputs = split->n_inputs++;
  1079. GGML_ASSERT(n_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
  1080. split->inputs[n_inputs] = src;
  1081. }
  1082. node->src[j] = tensor_id_copy(src_id, cur_backend_id, sched->cur_copy);
  1083. }
  1084. }
  1085. }
  1086. split->i_end = graph->n_nodes;
  1087. sched->n_splits = i_split + 1;
  1088. }
  1089. if (sched->debug) {
  1090. ggml_backend_sched_print_assignments(sched, graph);
  1091. }
  1092. // swap node_backend_ids and leaf _backend_ids with prevs
  1093. {
  1094. int * tmp = sched->node_backend_ids;
  1095. sched->node_backend_ids = sched->prev_node_backend_ids;
  1096. sched->prev_node_backend_ids = tmp;
  1097. tmp = sched->leaf_backend_ids;
  1098. sched->leaf_backend_ids = sched->prev_leaf_backend_ids;
  1099. sched->prev_leaf_backend_ids = tmp;
  1100. }
  1101. int graph_size = std::max(graph->n_nodes, graph->n_leafs) + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2*sched->n_copies;
  1102. // remember the actual graph_size for performing reallocation checks later [GGML_SCHED_DEBUG_REALLOC]
  1103. sched->debug_prev_graph_size = sched->debug_graph_size;
  1104. sched->debug_graph_size = graph_size;
  1105. if (sched->graph.size < graph_size) {
  1106. sched->graph.size = graph_size;
  1107. sched->graph.nodes = (ggml_tensor **) realloc(sched->graph.nodes, graph_size * sizeof(struct ggml_tensor *));
  1108. sched->graph.leafs = (ggml_tensor **) realloc(sched->graph.leafs, graph_size * sizeof(struct ggml_tensor *));
  1109. GGML_ASSERT(sched->graph.nodes != NULL);
  1110. GGML_ASSERT(sched->graph.leafs != NULL);
  1111. }
  1112. sched->graph.n_nodes = 0;
  1113. sched->graph.n_leafs = 0;
  1114. struct ggml_cgraph * graph_copy = &sched->graph;
  1115. for (int i = 0; i < sched->n_splits; i++) {
  1116. struct ggml_backend_sched_split * split = &sched->splits[i];
  1117. split->graph = ggml_graph_view(graph, split->i_start, split->i_end);
  1118. // Optimize this split of the graph. This needs to happen before we make graph_copy,
  1119. // so they are in sync.
  1120. ggml_backend_graph_optimize(sched->backends[split->backend_id], &split->graph);
  1121. // add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split
  1122. for (int j = 0; j < split->n_inputs; j++) {
  1123. assert(graph_copy->size > (graph_copy->n_nodes + 1));
  1124. struct ggml_tensor * input = split->inputs[j];
  1125. const size_t input_id = hash_id(input);
  1126. struct ggml_tensor * input_cpy = tensor_id_copy(input_id, split->backend_id, sched->cur_copy);
  1127. // add a dependency to the input source so that it is not freed before the copy is done
  1128. struct ggml_tensor * input_dep = ggml_view_tensor(sched->ctx, input);
  1129. input_dep->src[0] = input;
  1130. sched->node_backend_ids[graph_copy->n_nodes] = sched->hv_tensor_backend_ids[input_id];
  1131. graph_copy->nodes[graph_copy->n_nodes++] = input_dep;
  1132. // add a dependency to the input copy so that it is allocated at the start of the split
  1133. sched->node_backend_ids[graph_copy->n_nodes] = split->backend_id;
  1134. graph_copy->nodes[graph_copy->n_nodes++] = input_cpy;
  1135. }
  1136. for (int j = split->i_start; j < split->i_end; j++) {
  1137. assert(graph_copy->size > graph_copy->n_nodes);
  1138. sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(graph->nodes[j]);
  1139. graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j];
  1140. }
  1141. }
  1142. if (sched->n_copies > 1) {
  1143. // add input copies as leafs so that they are allocated first
  1144. for (int i = 0; i < sched->n_graph_inputs; i++) {
  1145. struct ggml_tensor * input = sched->graph_inputs[i];
  1146. size_t id = hash_id(input);
  1147. int backend_id = tensor_backend_id(input);
  1148. for (int c = 0; c < sched->n_copies; c++) {
  1149. struct ggml_tensor * input_cpy = tensor_id_copy(id, backend_id, c);
  1150. sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
  1151. assert(graph_copy->size > graph_copy->n_leafs);
  1152. graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
  1153. }
  1154. }
  1155. for (int i = 0; i < sched->n_splits; i++) {
  1156. struct ggml_backend_sched_split * split = &sched->splits[i];
  1157. int backend_id = split->backend_id;
  1158. for (int j = 0; j < split->n_inputs; j++) {
  1159. struct ggml_tensor * input = split->inputs[j];
  1160. size_t id = hash_id(input);
  1161. for (int c = 0; c < sched->n_copies; c++) {
  1162. struct ggml_tensor * input_cpy = tensor_id_copy(id, backend_id, c);
  1163. sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
  1164. assert(graph_copy->size > graph_copy->n_leafs);
  1165. graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
  1166. }
  1167. }
  1168. }
  1169. }
  1170. // add leafs from the original graph
  1171. for (int i = 0; i < graph->n_leafs; i++) {
  1172. struct ggml_tensor * leaf = graph->leafs[i];
  1173. sched->leaf_backend_ids[graph_copy->n_leafs] = tensor_backend_id(leaf);
  1174. assert(graph_copy->size > graph_copy->n_leafs);
  1175. graph_copy->leafs[graph_copy->n_leafs++] = leaf;
  1176. }
  1177. }
  1178. static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
  1179. bool backend_ids_changed = false;
  1180. for (int i = 0; i < sched->graph.n_nodes; i++) {
  1181. if (sched->node_backend_ids[i] != sched->prev_node_backend_ids[i] &&
  1182. sched->bufts[sched->node_backend_ids[i]] != sched->bufts[sched->prev_node_backend_ids[i]]) {
  1183. backend_ids_changed = true;
  1184. break;
  1185. }
  1186. }
  1187. if (!backend_ids_changed) {
  1188. for (int i = 0; i < sched->graph.n_leafs; i++) {
  1189. if (sched->leaf_backend_ids[i] != sched->prev_leaf_backend_ids[i] &&
  1190. sched->bufts[sched->leaf_backend_ids[i]] != sched->bufts[sched->prev_leaf_backend_ids[i]]) {
  1191. backend_ids_changed = true;
  1192. break;
  1193. }
  1194. }
  1195. }
  1196. // allocate graph
  1197. if (backend_ids_changed || !ggml_gallocr_alloc_graph(sched->galloc, &sched->graph)) {
  1198. #ifndef NDEBUG
  1199. GGML_LOG_DEBUG("%s: failed to allocate graph, reserving (backend_ids_changed = %d)\n", __func__, backend_ids_changed);
  1200. #endif
  1201. if (sched->debug_realloc > 0) {
  1202. // we are interested only in situations where the graph was reallocated even though its size remained the same [GGML_SCHED_DEBUG_REALLOC]
  1203. // example: https://github.com/ggml-org/llama.cpp/pull/17143
  1204. const bool unexpected = !backend_ids_changed && sched->debug_prev_graph_size == sched->debug_graph_size;
  1205. if (unexpected || sched->debug_realloc > 1) {
  1206. GGML_ABORT("%s: unexpected graph reallocation (graph size = %d, nodes = %d, leafs = %d), debug_realloc = %d\n", __func__,
  1207. sched->debug_graph_size, sched->graph.n_nodes, sched->graph.n_leafs, sched->debug_realloc);
  1208. }
  1209. }
  1210. // the re-allocation may cause the split inputs to be moved to a different address
  1211. // synchronize without ggml_backend_sched_synchronize to avoid changing cur_copy
  1212. for (int i = 0; i < sched->n_backends; i++) {
  1213. ggml_backend_synchronize(sched->backends[i]);
  1214. }
  1215. ggml_gallocr_reserve_n(sched->galloc, &sched->graph, sched->node_backend_ids, sched->leaf_backend_ids);
  1216. if (!ggml_gallocr_alloc_graph(sched->galloc, &sched->graph)) {
  1217. GGML_LOG_ERROR("%s: failed to allocate graph\n", __func__);
  1218. return false;
  1219. }
  1220. }
  1221. return true;
  1222. }
  1223. static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t sched) {
  1224. GGML_ASSERT(sched);
  1225. struct ggml_backend_sched_split * splits = sched->splits;
  1226. ggml_tensor * prev_ids_tensor = nullptr;
  1227. std::vector<int32_t> ids;
  1228. std::vector<ggml_bitset_t> used_ids;
  1229. for (int split_id = 0; split_id < sched->n_splits; split_id++) {
  1230. struct ggml_backend_sched_split * split = &splits[split_id];
  1231. int split_backend_id = split->backend_id;
  1232. ggml_backend_t split_backend = sched->backends[split_backend_id];
  1233. // copy the input tensors to the split backend
  1234. for (int input_id = 0; input_id < split->n_inputs; input_id++) {
  1235. ggml_backend_t input_backend = ggml_backend_sched_get_tensor_backend(sched, split->inputs[input_id]);
  1236. struct ggml_tensor * input = split->inputs[input_id];
  1237. struct ggml_tensor * input_cpy = tensor_copy(input, split_backend_id, sched->cur_copy);
  1238. if (input->flags & GGML_TENSOR_FLAG_INPUT) {
  1239. // inputs from the user must be copied immediately to prevent the user overwriting the data before the copy is done
  1240. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1241. ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]);
  1242. } else {
  1243. ggml_backend_synchronize(split_backend);
  1244. }
  1245. ggml_backend_tensor_copy(input, input_cpy);
  1246. } else {
  1247. // wait for the split backend to finish using the input before overwriting it
  1248. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1249. ggml_backend_event_wait(split_backend, sched->events[split_backend_id][sched->cur_copy]);
  1250. } else {
  1251. ggml_backend_synchronize(split_backend);
  1252. }
  1253. // when offloading MoE weights, we can reduce the amount of data copied by copying only the experts that are used
  1254. ggml_tensor * node = split->graph.nodes[0];
  1255. if (split->graph.n_nodes > 0 &&
  1256. ggml_backend_buffer_get_usage(input->buffer) == GGML_BACKEND_BUFFER_USAGE_WEIGHTS &&
  1257. ggml_backend_buffer_is_host(input->buffer) && (
  1258. (node->src[0] == input_cpy && node->op == GGML_OP_MUL_MAT_ID)
  1259. //|| (node->src[1] == input_cpy && node->op == GGML_OP_ADD_ID) /* GGML_OP_ADD_ID weights are small and not worth splitting */
  1260. )) {
  1261. const int64_t n_expert = node->op == GGML_OP_MUL_MAT_ID ? input->ne[2] : input->ne[1];
  1262. const size_t expert_size = node->op == GGML_OP_MUL_MAT_ID ? input->nb[2] : input->nb[1];
  1263. ggml_backend_synchronize(input_backend);
  1264. // get the ids
  1265. ggml_tensor * ids_tensor = node->src[2];
  1266. ggml_backend_t ids_backend = split_backend;
  1267. // if the ids tensor is also an input of the split, it may not have been copied yet to the split backend
  1268. // in that case, we use the original ids tensor
  1269. for (int i = input_id + 1; i < split->n_inputs; i++) {
  1270. if (ids_tensor == tensor_copy(split->inputs[i], split_backend_id, sched->cur_copy)) {
  1271. ids_tensor = split->inputs[i];
  1272. ids_backend = ggml_backend_sched_get_tensor_backend(sched, split->inputs[i]);
  1273. break;
  1274. }
  1275. }
  1276. if (ids_tensor != prev_ids_tensor) {
  1277. ids.resize(ggml_nbytes(ids_tensor) / sizeof(int32_t));
  1278. ggml_backend_tensor_get_async(ids_backend, ids_tensor, ids.data(), 0, ggml_nbytes(ids_tensor));
  1279. ggml_backend_synchronize(ids_backend);
  1280. // find the used experts
  1281. used_ids.clear();
  1282. used_ids.resize(ggml_bitset_size(n_expert));
  1283. for (int64_t i1 = 0; i1 < ids_tensor->ne[1]; i1++) {
  1284. for (int64_t i0 = 0; i0 < ids_tensor->ne[0]; i0++) {
  1285. int32_t id = ids[i1 * ids_tensor->nb[1]/sizeof(int32_t) + i0 * ids_tensor->nb[0]/sizeof(int32_t)];
  1286. GGML_ASSERT(id >= 0 && id < n_expert);
  1287. ggml_bitset_set(used_ids.data(), id);
  1288. }
  1289. }
  1290. prev_ids_tensor = ids_tensor;
  1291. }
  1292. // group consecutive experts and copy them together
  1293. auto copy_experts = [&](int32_t first_id, int32_t last_id) {
  1294. const size_t expert_offset = first_id * expert_size;
  1295. const size_t expert_size_copy = (last_id - first_id + 1) * expert_size;
  1296. const size_t padding = std::min<size_t>(expert_size, 512);
  1297. const size_t padding_end = last_id < n_expert - 1 ? padding : 0;
  1298. ggml_backend_tensor_set_async(split_backend,
  1299. input_cpy,
  1300. (const uint8_t *)input->data + expert_offset, expert_offset,
  1301. // copy a bit extra at the to ensure there are no NaNs in the padding of the last expert
  1302. // this is necessary for MMQ in the CUDA backend
  1303. expert_size_copy + padding_end);
  1304. };
  1305. int id = 0;
  1306. while (!ggml_bitset_get(used_ids.data(), id)) {
  1307. id++;
  1308. }
  1309. int32_t first_id = id;
  1310. int32_t last_id = first_id;
  1311. for (++id; id < n_expert; ++id) {
  1312. if (!ggml_bitset_get(used_ids.data(), id)) {
  1313. continue;
  1314. }
  1315. if (id == last_id + 1) {
  1316. last_id = id;
  1317. continue;
  1318. }
  1319. copy_experts(first_id, last_id);
  1320. first_id = id;
  1321. last_id = id;
  1322. }
  1323. copy_experts(first_id, last_id);
  1324. } else {
  1325. // try async copy, but if not possible, we can still use a sync copy without synchronizing the dst backend, since we handle the synchronization here with multiple copies and events
  1326. // TODO: add public function to facilitate this, since applications do not have direct access to the backend interface
  1327. if (!split_backend->iface.cpy_tensor_async || !split_backend->iface.cpy_tensor_async(input_backend, split_backend, input, input_cpy)) {
  1328. ggml_backend_synchronize(input_backend);
  1329. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1330. ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]);
  1331. } else {
  1332. ggml_backend_synchronize(split_backend);
  1333. }
  1334. ggml_backend_tensor_copy(input, input_cpy);
  1335. }
  1336. }
  1337. }
  1338. }
  1339. if (!sched->callback_eval) {
  1340. enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &split->graph);
  1341. if (ec != GGML_STATUS_SUCCESS) {
  1342. return ec;
  1343. }
  1344. } else {
  1345. // similar to ggml_backend_compare_graph_backend
  1346. for (int j0 = 0; j0 < split->graph.n_nodes; j0++) {
  1347. struct ggml_tensor * t = split->graph.nodes[j0];
  1348. // check if the user needs data from this node
  1349. bool need = sched->callback_eval(t, true, sched->callback_eval_user_data);
  1350. int j1 = j0;
  1351. // determine the range [j0, j1] of nodes that can be computed together
  1352. while (!need && j1 < split->graph.n_nodes - 1) {
  1353. t = split->graph.nodes[++j1];
  1354. need = sched->callback_eval(t, true, sched->callback_eval_user_data);
  1355. }
  1356. struct ggml_cgraph gv = ggml_graph_view(&split->graph, j0, j1 + 1);
  1357. enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &gv);
  1358. if (ec != GGML_STATUS_SUCCESS) {
  1359. return ec;
  1360. }
  1361. // TODO: pass backend to the callback, then the user can decide if they want to synchronize
  1362. ggml_backend_synchronize(split_backend);
  1363. if (need && !sched->callback_eval(t, false, sched->callback_eval_user_data)) {
  1364. break;
  1365. }
  1366. j0 = j1;
  1367. }
  1368. }
  1369. // record the event of this copy
  1370. if (split->n_inputs > 0) {
  1371. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1372. ggml_backend_event_record(sched->events[split_backend_id][sched->cur_copy], split_backend);
  1373. }
  1374. }
  1375. }
  1376. return GGML_STATUS_SUCCESS;
  1377. }
  1378. ggml_backend_sched_t ggml_backend_sched_new(
  1379. ggml_backend_t * backends,
  1380. ggml_backend_buffer_type_t * bufts,
  1381. int n_backends,
  1382. size_t graph_size,
  1383. bool parallel,
  1384. bool op_offload) {
  1385. GGML_ASSERT(n_backends > 0);
  1386. GGML_ASSERT(n_backends <= GGML_SCHED_MAX_BACKENDS);
  1387. GGML_ASSERT(ggml_backend_dev_type(ggml_backend_get_device(backends[n_backends - 1])) == GGML_BACKEND_DEVICE_TYPE_CPU);
  1388. struct ggml_backend_sched * sched = (ggml_backend_sched *) calloc(1, sizeof(struct ggml_backend_sched));
  1389. const char * GGML_SCHED_DEBUG = getenv("GGML_SCHED_DEBUG");
  1390. sched->debug = GGML_SCHED_DEBUG ? atoi(GGML_SCHED_DEBUG) : 0;
  1391. sched->debug_realloc = 0;
  1392. #ifdef GGML_SCHED_NO_REALLOC
  1393. sched->debug_realloc = 1;
  1394. #endif
  1395. const char * GGML_SCHED_DEBUG_REALLOC = getenv("GGML_SCHED_DEBUG_REALLOC");
  1396. sched->debug_realloc = GGML_SCHED_DEBUG_REALLOC ? atoi(GGML_SCHED_DEBUG_REALLOC) : sched->debug_realloc;
  1397. sched->n_backends = n_backends;
  1398. sched->n_copies = parallel ? GGML_SCHED_MAX_COPIES : 1;
  1399. // initialize hash table
  1400. // FIXME: needs to be size*2 to account for leafs (do it in graph_split instead)
  1401. sched->hash_set = ggml_hash_set_new(graph_size);
  1402. sched->hv_tensor_backend_ids = (int *) malloc(sched->hash_set.size * sizeof(sched->hv_tensor_backend_ids[0]));
  1403. sched->hv_tensor_copies = (ggml_tensor **) malloc(sched->hash_set.size * sched->n_backends * sched->n_copies * sizeof(struct ggml_tensor *));
  1404. const size_t ggml_sched_max_splits = graph_size; // at most there is one split for each node in the graph
  1405. const size_t nodes_size = graph_size + ggml_sched_max_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2;
  1406. sched->node_backend_ids = (int *) calloc(nodes_size, sizeof(sched->node_backend_ids[0]));
  1407. sched->leaf_backend_ids = (int *) calloc(nodes_size, sizeof(sched->leaf_backend_ids[0]));
  1408. sched->prev_node_backend_ids = (int *) calloc(nodes_size, sizeof(sched->prev_node_backend_ids[0]));
  1409. sched->prev_leaf_backend_ids = (int *) calloc(nodes_size, sizeof(sched->prev_leaf_backend_ids[0]));
  1410. sched->debug_graph_size = 0;
  1411. sched->debug_prev_graph_size = 0;
  1412. sched->context_buffer_size = ggml_sched_max_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2*sizeof(struct ggml_tensor) + ggml_graph_overhead_custom(graph_size, false);
  1413. sched->context_buffer = (char *) malloc(sched->context_buffer_size);
  1414. const int initial_splits_capacity = 16;
  1415. sched->splits = (ggml_backend_sched_split *) calloc(initial_splits_capacity, sizeof(sched->splits[0]));
  1416. sched->splits_capacity = initial_splits_capacity;
  1417. for (int b = 0; b < n_backends; b++) {
  1418. sched->backends[b] = backends[b];
  1419. sched->bufts[b] = bufts ? bufts[b] : ggml_backend_get_default_buffer_type(backends[b]);
  1420. GGML_ASSERT(ggml_backend_supports_buft(backends[b], sched->bufts[b]));
  1421. if (sched->n_copies > 1) {
  1422. for (int c = 0; c < sched->n_copies; c++) {
  1423. sched->events[b][c] = ggml_backend_event_new(backends[b]->device);
  1424. }
  1425. }
  1426. }
  1427. sched->galloc = ggml_gallocr_new_n(sched->bufts, n_backends);
  1428. sched->op_offload = op_offload;
  1429. ggml_backend_sched_reset(sched);
  1430. return sched;
  1431. }
  1432. void ggml_backend_sched_free(ggml_backend_sched_t sched) {
  1433. if (sched == NULL) {
  1434. return;
  1435. }
  1436. for (int b = 0; b < sched->n_backends; b++) {
  1437. for (int c = 0; c < sched->n_copies; c++) {
  1438. ggml_backend_event_free(sched->events[b][c]);
  1439. }
  1440. }
  1441. ggml_gallocr_free(sched->galloc);
  1442. ggml_free(sched->ctx);
  1443. ggml_hash_set_free(&sched->hash_set);
  1444. free(sched->splits);
  1445. free(sched->hv_tensor_backend_ids);
  1446. free(sched->hv_tensor_copies);
  1447. free(sched->node_backend_ids);
  1448. free(sched->leaf_backend_ids);
  1449. free(sched->prev_node_backend_ids);
  1450. free(sched->prev_leaf_backend_ids);
  1451. free(sched->context_buffer);
  1452. free(sched->graph.nodes);
  1453. free(sched->graph.leafs);
  1454. free(sched);
  1455. }
  1456. void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
  1457. GGML_ASSERT(sched);
  1458. // reset state for the next run
  1459. if (!sched->is_reset) {
  1460. ggml_hash_set_reset(&sched->hash_set);
  1461. memset(sched->hv_tensor_backend_ids, -1, sched->hash_set.size * sizeof(sched->hv_tensor_backend_ids[0]));
  1462. memset(sched->hv_tensor_copies, 0, sched->hash_set.size * sched->n_backends * sched->n_copies * sizeof(struct ggml_tensor *));
  1463. sched->is_reset = true;
  1464. }
  1465. sched->is_alloc = false;
  1466. }
  1467. bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
  1468. GGML_ASSERT(sched);
  1469. GGML_ASSERT((int)sched->hash_set.size >= measure_graph->n_nodes + measure_graph->n_leafs);
  1470. ggml_backend_sched_synchronize(sched);
  1471. ggml_backend_sched_split_graph(sched, measure_graph);
  1472. if (!ggml_gallocr_reserve_n(sched->galloc, &sched->graph, sched->node_backend_ids, sched->leaf_backend_ids)) {
  1473. return false;
  1474. }
  1475. ggml_backend_sched_reset(sched);
  1476. return true;
  1477. }
  1478. bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1479. GGML_ASSERT(sched);
  1480. GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes + graph->n_leafs);
  1481. GGML_ASSERT(!sched->is_alloc);
  1482. sched->cur_copy = sched->next_copy;
  1483. sched->next_copy = (sched->next_copy + 1) % sched->n_copies;
  1484. ggml_backend_sched_split_graph(sched, graph);
  1485. if (!ggml_backend_sched_alloc_splits(sched)) {
  1486. return false;
  1487. }
  1488. sched->is_alloc = true;
  1489. return true;
  1490. }
  1491. enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1492. enum ggml_status err = ggml_backend_sched_graph_compute_async(sched, graph);
  1493. ggml_backend_sched_synchronize(sched);
  1494. return err;
  1495. }
  1496. enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1497. GGML_ASSERT(sched);
  1498. if (!sched->is_reset && !sched->is_alloc) {
  1499. ggml_backend_sched_reset(sched);
  1500. }
  1501. if (!sched->is_alloc) {
  1502. if (!ggml_backend_sched_alloc_graph(sched, graph)) {
  1503. return GGML_STATUS_ALLOC_FAILED;
  1504. }
  1505. }
  1506. return ggml_backend_sched_compute_splits(sched);
  1507. }
  1508. void ggml_backend_sched_synchronize(ggml_backend_sched_t sched) {
  1509. GGML_ASSERT(sched);
  1510. for (int i = 0; i < sched->n_backends; i++) {
  1511. ggml_backend_synchronize(sched->backends[i]);
  1512. }
  1513. if (!sched->is_alloc) {
  1514. // if the graph is not already allocated, always use copy 0 after a synchronization
  1515. // this ensures that during generation the same copy is used every time,
  1516. // which avoids changes in the graph that could cause CUDA or other graphs to be disabled
  1517. sched->next_copy = 0;
  1518. }
  1519. }
  1520. void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data) {
  1521. GGML_ASSERT(sched);
  1522. sched->callback_eval = callback;
  1523. sched->callback_eval_user_data = user_data;
  1524. }
  1525. int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched) {
  1526. GGML_ASSERT(sched);
  1527. return sched->n_splits;
  1528. }
  1529. int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched) {
  1530. GGML_ASSERT(sched);
  1531. return sched->n_copies;
  1532. }
  1533. int ggml_backend_sched_get_n_backends(ggml_backend_sched_t sched) {
  1534. GGML_ASSERT(sched);
  1535. return sched->n_backends;
  1536. }
  1537. ggml_backend_t ggml_backend_sched_get_backend(ggml_backend_sched_t sched, int i) {
  1538. GGML_ASSERT(sched);
  1539. GGML_ASSERT(i >= 0 && i < sched->n_backends);
  1540. return sched->backends[i];
  1541. }
  1542. ggml_backend_buffer_type_t ggml_backend_sched_get_buffer_type(ggml_backend_sched_t sched, ggml_backend_t backend) {
  1543. GGML_ASSERT(sched);
  1544. int backend_index = ggml_backend_sched_backend_id(sched, backend);
  1545. GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
  1546. return sched->bufts[backend_index];
  1547. }
  1548. size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) {
  1549. GGML_ASSERT(sched);
  1550. int backend_index = ggml_backend_sched_backend_id(sched, backend);
  1551. GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
  1552. return ggml_gallocr_get_buffer_size(sched->galloc, backend_index);
  1553. }
  1554. void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
  1555. GGML_ASSERT(sched);
  1556. int backend_index = ggml_backend_sched_backend_id(sched, backend);
  1557. GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
  1558. tensor_backend_id(node) = backend_index;
  1559. SET_CAUSE(node, "usr");
  1560. sched->is_reset = false;
  1561. }
  1562. ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node) {
  1563. GGML_ASSERT(sched);
  1564. int backend_index = tensor_backend_id(node);
  1565. if (backend_index == -1) {
  1566. return NULL;
  1567. }
  1568. return sched->backends[backend_index];
  1569. }
  1570. // utils
  1571. enum ggml_status ggml_backend_view_init(struct ggml_tensor * tensor) {
  1572. GGML_ASSERT(tensor);
  1573. GGML_ASSERT(tensor->buffer == NULL);
  1574. GGML_ASSERT(tensor->view_src != NULL);
  1575. GGML_ASSERT(tensor->view_src->buffer != NULL);
  1576. GGML_ASSERT(tensor->view_src->data != NULL);
  1577. tensor->buffer = tensor->view_src->buffer;
  1578. tensor->data = (char *)tensor->view_src->data + tensor->view_offs;
  1579. return ggml_backend_buffer_init_tensor(tensor->buffer, tensor);
  1580. }
  1581. enum ggml_status ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr) {
  1582. GGML_ASSERT(tensor);
  1583. GGML_ASSERT(tensor->buffer == NULL);
  1584. GGML_ASSERT(tensor->data == NULL);
  1585. GGML_ASSERT(tensor->view_src == NULL);
  1586. GGML_ASSERT(addr >= ggml_backend_buffer_get_base(buffer));
  1587. GGML_ASSERT((char *)addr + ggml_backend_buffer_get_alloc_size(buffer, tensor) <=
  1588. (char *)ggml_backend_buffer_get_base(buffer) + ggml_backend_buffer_get_size(buffer));
  1589. tensor->buffer = buffer;
  1590. tensor->data = addr;
  1591. return ggml_backend_buffer_init_tensor(buffer, tensor);
  1592. }
  1593. static struct ggml_tensor * graph_copy_dup_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies,
  1594. struct ggml_context * ctx_allocated, struct ggml_context * ctx_unallocated, struct ggml_tensor * src) {
  1595. GGML_ASSERT(src != NULL);
  1596. GGML_ASSERT(src->data && "graph must be allocated");
  1597. size_t id = ggml_hash_insert(&hash_set, src);
  1598. if (id == GGML_HASHSET_ALREADY_EXISTS) {
  1599. return node_copies[ggml_hash_find(&hash_set, src)];
  1600. }
  1601. struct ggml_tensor * dst = ggml_dup_tensor_layout(src->data && !src->view_src ? ctx_allocated : ctx_unallocated, src);
  1602. if (src->view_src != NULL) {
  1603. dst->view_src = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, src->view_src);
  1604. dst->view_offs = src->view_offs;
  1605. }
  1606. dst->op = src->op;
  1607. memcpy(dst->op_params, src->op_params, sizeof(dst->op_params));
  1608. ggml_set_name(dst, src->name);
  1609. // copy src
  1610. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1611. struct ggml_tensor * s = src->src[i];
  1612. if (s == NULL) {
  1613. continue;
  1614. }
  1615. dst->src[i] = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, s);
  1616. }
  1617. node_copies[id] = dst;
  1618. return dst;
  1619. }
  1620. static void graph_copy_init_tensor(struct ggml_hash_set * hash_set, struct ggml_tensor ** node_copies, bool * node_init, struct ggml_tensor * src) {
  1621. size_t id = ggml_hash_find(hash_set, src);
  1622. if (node_init[id]) {
  1623. return;
  1624. }
  1625. node_init[id] = true;
  1626. struct ggml_tensor * dst = node_copies[id];
  1627. if (dst->view_src != NULL) {
  1628. graph_copy_init_tensor(hash_set, node_copies, node_init, src->view_src);
  1629. enum ggml_status status = ggml_backend_view_init(dst);
  1630. GGML_ASSERT(status == GGML_STATUS_SUCCESS);
  1631. }
  1632. else {
  1633. ggml_backend_tensor_copy(src, dst);
  1634. }
  1635. // init src
  1636. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1637. struct ggml_tensor * s = src->src[i];
  1638. if (s == NULL) {
  1639. continue;
  1640. }
  1641. graph_copy_init_tensor(hash_set, node_copies, node_init, s);
  1642. }
  1643. }
  1644. struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) {
  1645. GGML_ASSERT(graph);
  1646. struct ggml_hash_set hash_set = ggml_hash_set_new(graph->visited_hash_set.size);
  1647. struct ggml_tensor ** node_copies = (ggml_tensor **) calloc(hash_set.size, sizeof(node_copies[0])); // NOLINT
  1648. bool * node_init = (bool *) calloc(hash_set.size, sizeof(node_init[0]));
  1649. struct ggml_init_params params = {
  1650. /* .mem_size = */ ggml_tensor_overhead()*hash_set.size + ggml_graph_overhead_custom(graph->size, false),
  1651. /* .mem_buffer = */ NULL,
  1652. /* .no_alloc = */ true
  1653. };
  1654. struct ggml_context * ctx_allocated = ggml_init(params);
  1655. struct ggml_context * ctx_unallocated = ggml_init(params);
  1656. if (ctx_allocated == NULL || ctx_unallocated == NULL) {
  1657. GGML_LOG_ERROR("%s: failed to allocate context for graph copy\n", __func__);
  1658. ggml_hash_set_free(&hash_set);
  1659. free(node_copies);
  1660. free(node_init);
  1661. ggml_free(ctx_allocated);
  1662. ggml_free(ctx_unallocated);
  1663. return {
  1664. /* .buffer = */ NULL,
  1665. /* .ctx_allocated = */ NULL,
  1666. /* .ctx_unallocated = */ NULL,
  1667. /* .graph = */ NULL,
  1668. };
  1669. }
  1670. // dup nodes
  1671. for (int i = 0; i < graph->n_nodes; i++) {
  1672. struct ggml_tensor * node = graph->nodes[i];
  1673. graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, node);
  1674. }
  1675. // allocate nodes
  1676. ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx_allocated, backend);
  1677. if (buffer == NULL) {
  1678. GGML_LOG_ERROR("%s: failed to allocate buffer for graph copy\n", __func__);
  1679. ggml_hash_set_free(&hash_set);
  1680. free(node_copies);
  1681. free(node_init);
  1682. ggml_free(ctx_allocated);
  1683. ggml_free(ctx_unallocated);
  1684. return {
  1685. /* .buffer = */ NULL,
  1686. /* .ctx_allocated = */ NULL,
  1687. /* .ctx_unallocated = */ NULL,
  1688. /* .graph = */ NULL,
  1689. };
  1690. }
  1691. //printf("copy buffer size: %zu MB\n", ggml_backend_buffer_get_size(buffer) / 1024 / 1024);
  1692. // copy data and init views
  1693. for (int i = 0; i < graph->n_nodes; i++) {
  1694. struct ggml_tensor * node = graph->nodes[i];
  1695. graph_copy_init_tensor(&hash_set, node_copies, node_init, node);
  1696. }
  1697. // build graph copy
  1698. struct ggml_cgraph * graph_copy = ggml_new_graph_custom(ctx_allocated, graph->size, false);
  1699. for (int i = 0; i < graph->n_nodes; i++) {
  1700. struct ggml_tensor * node = graph->nodes[i];
  1701. struct ggml_tensor * node_copy = node_copies[ggml_hash_find(&hash_set, node)];
  1702. graph_copy->nodes[i] = node_copy;
  1703. }
  1704. graph_copy->n_nodes = graph->n_nodes;
  1705. ggml_hash_set_free(&hash_set);
  1706. free(node_copies);
  1707. free(node_init);
  1708. return {
  1709. /* .buffer = */ buffer,
  1710. /* .ctx_allocated = */ ctx_allocated,
  1711. /* .ctx_unallocated = */ ctx_unallocated,
  1712. /* .graph = */ graph_copy,
  1713. };
  1714. }
  1715. void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy) {
  1716. ggml_backend_buffer_free(copy.buffer);
  1717. ggml_free(copy.ctx_allocated);
  1718. ggml_free(copy.ctx_unallocated);
  1719. }
  1720. bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data, struct ggml_tensor * test_node) {
  1721. struct ggml_backend_graph_copy copy = ggml_backend_graph_copy(backend2, graph);
  1722. if (copy.buffer == NULL) {
  1723. return false;
  1724. }
  1725. struct ggml_cgraph * g1 = graph;
  1726. struct ggml_cgraph * g2 = copy.graph;
  1727. assert(g1->n_nodes == g2->n_nodes);
  1728. if (test_node != nullptr) {
  1729. // Compute the whole graph and only test the output for a specific tensor
  1730. ggml_backend_graph_compute(backend1, g1);
  1731. ggml_backend_graph_compute(backend2, g2);
  1732. int test_node_idx = -1;
  1733. for (int i = 0; i < g1->n_nodes; i++) {
  1734. struct ggml_tensor * t1 = g1->nodes[i];
  1735. if (t1 == test_node) {
  1736. test_node_idx = i;
  1737. break;
  1738. }
  1739. }
  1740. GGML_ASSERT(test_node_idx != -1);
  1741. callback(test_node_idx, g1->nodes[test_node_idx], g2->nodes[test_node_idx], user_data);
  1742. } else {
  1743. for (int i = 0; i < g1->n_nodes; i++) {
  1744. struct ggml_tensor * t1 = g1->nodes[i];
  1745. struct ggml_tensor * t2 = g2->nodes[i];
  1746. assert(t1->op == t2->op && ggml_are_same_layout(t1, t2));
  1747. struct ggml_cgraph g1v = ggml_graph_view(g1, i, i + 1);
  1748. struct ggml_cgraph g2v = ggml_graph_view(g2, i, i + 1);
  1749. ggml_backend_graph_compute(backend1, &g1v);
  1750. ggml_backend_graph_compute(backend2, &g2v);
  1751. if (ggml_is_view_op(t1->op)) {
  1752. continue;
  1753. }
  1754. // compare results, calculate rms etc
  1755. if (!callback(i, t1, t2, user_data)) {
  1756. break;
  1757. }
  1758. }
  1759. }
  1760. ggml_backend_graph_copy_free(copy);
  1761. return true;
  1762. }
  1763. // CPU backend - buffer
  1764. static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
  1765. GGML_ASSERT(buffer);
  1766. uintptr_t data = (uintptr_t)buffer->context;
  1767. // align the buffer
  1768. if (data % TENSOR_ALIGNMENT != 0) {
  1769. data = GGML_PAD(data, TENSOR_ALIGNMENT);
  1770. }
  1771. return (void *)data;
  1772. }
  1773. static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  1774. GGML_ASSERT(buffer);
  1775. ggml_aligned_free(buffer->context, buffer->size);
  1776. }
  1777. static void ggml_backend_cpu_buffer_memset_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
  1778. GGML_ASSERT(tensor);
  1779. memset((char *)tensor->data + offset, value, size);
  1780. GGML_UNUSED(buffer);
  1781. }
  1782. static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  1783. GGML_ASSERT(tensor);
  1784. memcpy((char *)tensor->data + offset, data, size);
  1785. GGML_UNUSED(buffer);
  1786. }
  1787. static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  1788. GGML_ASSERT(tensor);
  1789. memcpy(data, (const char *)tensor->data + offset, size);
  1790. GGML_UNUSED(buffer);
  1791. }
  1792. static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
  1793. GGML_ASSERT(src);
  1794. if (ggml_backend_buffer_is_host(src->buffer)) {
  1795. memcpy(dst->data, src->data, ggml_nbytes(src));
  1796. return true;
  1797. }
  1798. return false;
  1799. GGML_UNUSED(buffer);
  1800. }
  1801. static void ggml_backend_cpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  1802. GGML_ASSERT(buffer);
  1803. memset(buffer->context, value, buffer->size);
  1804. }
  1805. static const struct ggml_backend_buffer_i ggml_backend_cpu_buffer_i = {
  1806. /* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer,
  1807. /* .get_base = */ ggml_backend_cpu_buffer_get_base,
  1808. /* .init_tensor = */ NULL, // no initialization required
  1809. /* .memset_tensor = */ ggml_backend_cpu_buffer_memset_tensor,
  1810. /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
  1811. /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
  1812. /* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
  1813. /* .clear = */ ggml_backend_cpu_buffer_clear,
  1814. /* .reset = */ NULL,
  1815. };
  1816. static const struct ggml_backend_buffer_i ggml_backend_cpu_buffer_from_ptr_i = {
  1817. /* .free_buffer = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed
  1818. /* .get_base = */ ggml_backend_cpu_buffer_get_base,
  1819. /* .init_tensor = */ NULL, // no initialization required
  1820. /* .memset_tensor = */ ggml_backend_cpu_buffer_memset_tensor,
  1821. /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
  1822. /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
  1823. /* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
  1824. /* .clear = */ ggml_backend_cpu_buffer_clear,
  1825. /* .reset = */ NULL,
  1826. };
  1827. // CPU backend buffer type
  1828. // this buffer type is defined here to make it available to all backends
  1829. static const char * ggml_backend_cpu_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
  1830. return "CPU";
  1831. GGML_UNUSED(buft);
  1832. }
  1833. static ggml_backend_buffer_t ggml_backend_cpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  1834. void * data = ggml_aligned_malloc(size);
  1835. if (data == NULL) {
  1836. GGML_LOG_ERROR("%s: failed to allocate buffer of size %zu\n", __func__, size);
  1837. return NULL;
  1838. }
  1839. return ggml_backend_buffer_init(buft, ggml_backend_cpu_buffer_i, data, size);
  1840. }
  1841. static size_t ggml_backend_cpu_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
  1842. return TENSOR_ALIGNMENT;
  1843. GGML_UNUSED(buft);
  1844. }
  1845. static bool ggml_backend_cpu_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
  1846. return true;
  1847. GGML_UNUSED(buft);
  1848. }
  1849. ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) {
  1850. static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type = {
  1851. /* .iface = */ {
  1852. /* .get_name = */ ggml_backend_cpu_buffer_type_get_name,
  1853. /* .alloc_buffer = */ ggml_backend_cpu_buffer_type_alloc_buffer,
  1854. /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
  1855. /* .get_max_size = */ NULL, // defaults to SIZE_MAX
  1856. /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
  1857. /* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
  1858. },
  1859. /* .device = */ NULL, // FIXME ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0),
  1860. /* .context = */ NULL,
  1861. };
  1862. return &ggml_backend_cpu_buffer_type;
  1863. }
  1864. static const char * ggml_backend_cpu_buffer_from_ptr_type_get_name(ggml_backend_buffer_type_t buft) {
  1865. return "CPU_Mapped";
  1866. GGML_UNUSED(buft);
  1867. }
  1868. static ggml_backend_buffer_type_t ggml_backend_cpu_buffer_from_ptr_type(void) {
  1869. static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type = {
  1870. /* .iface = */ {
  1871. /* .get_name = */ ggml_backend_cpu_buffer_from_ptr_type_get_name,
  1872. /* .alloc_buffer = */ ggml_backend_cpu_buffer_type_alloc_buffer,
  1873. /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
  1874. /* .get_max_size = */ NULL, // defaults to SIZE_MAX
  1875. /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
  1876. /* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
  1877. },
  1878. /* .device = */ NULL, // FIXME ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0),
  1879. /* .context = */ NULL,
  1880. };
  1881. return &ggml_backend_cpu_buffer_type;
  1882. }
  1883. ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size) {
  1884. GGML_ASSERT((uintptr_t)ptr % TENSOR_ALIGNMENT == 0 && "buffer pointer must be aligned");
  1885. return ggml_backend_buffer_init(ggml_backend_cpu_buffer_from_ptr_type(), ggml_backend_cpu_buffer_from_ptr_i, ptr, size);
  1886. }