ggml.c 372 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. // if C99 - static_assert is noop
  20. // ref: https://stackoverflow.com/a/53923785/4039976
  21. #ifndef static_assert
  22. #define static_assert(cond, msg) struct global_scope_noop_trick
  23. #endif
  24. #if defined(_WIN32)
  25. #include <windows.h>
  26. typedef volatile LONG atomic_int;
  27. typedef atomic_int atomic_bool;
  28. static void atomic_store(atomic_int* ptr, LONG val) {
  29. InterlockedExchange(ptr, val);
  30. }
  31. static LONG atomic_load(atomic_int* ptr) {
  32. return InterlockedCompareExchange(ptr, 0, 0);
  33. }
  34. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  35. return InterlockedExchangeAdd(ptr, inc);
  36. }
  37. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  38. return atomic_fetch_add(ptr, -(dec));
  39. }
  40. typedef HANDLE pthread_t;
  41. typedef DWORD thread_ret_t;
  42. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  43. (void) unused;
  44. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  45. if (handle == NULL)
  46. {
  47. return EAGAIN;
  48. }
  49. *out = handle;
  50. return 0;
  51. }
  52. static int pthread_join(pthread_t thread, void* unused) {
  53. (void) unused;
  54. return (int) WaitForSingleObject(thread, INFINITE);
  55. }
  56. static int sched_yield (void) {
  57. Sleep (0);
  58. return 0;
  59. }
  60. #else
  61. #include <pthread.h>
  62. #include <stdatomic.h>
  63. typedef void* thread_ret_t;
  64. #endif
  65. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  66. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  67. #ifndef __FMA__
  68. #define __FMA__
  69. #endif
  70. #ifndef __F16C__
  71. #define __F16C__
  72. #endif
  73. #ifndef __SSE3__
  74. #define __SSE3__
  75. #endif
  76. #endif
  77. #ifdef __HAIKU__
  78. #define static_assert(cond, msg) _Static_assert(cond, msg)
  79. #endif
  80. /*#define GGML_PERF*/
  81. #define GGML_DEBUG 0
  82. #define GGML_GELU_FP16
  83. #define GGML_SILU_FP16
  84. #define GGML_SOFT_MAX_UNROLL 4
  85. #define GGML_VEC_DOT_UNROLL 2
  86. #ifdef GGML_USE_ACCELERATE
  87. // uncomment to use vDSP for soft max computation
  88. // note: not sure if it is actually faster
  89. //#define GGML_SOFT_MAX_ACCELERATE
  90. #endif
  91. #if UINTPTR_MAX == 0xFFFFFFFF
  92. #define GGML_MEM_ALIGN 4
  93. #else
  94. #define GGML_MEM_ALIGN 16
  95. #endif
  96. #if defined(_MSC_VER) || defined(__MINGW32__)
  97. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  98. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  99. #else
  100. inline static void* ggml_aligned_malloc(size_t size) {
  101. void* aligned_memory = NULL;
  102. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  103. if (result != 0) {
  104. // Handle allocation failure
  105. return NULL;
  106. }
  107. return aligned_memory;
  108. }
  109. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  110. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  111. #endif
  112. #define UNUSED(x) (void)(x)
  113. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  114. #define GGML_ASSERT(x) \
  115. do { \
  116. if (!(x)) { \
  117. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  118. abort(); \
  119. } \
  120. } while (0)
  121. #ifdef GGML_USE_ACCELERATE
  122. #include <Accelerate/Accelerate.h>
  123. #elif GGML_USE_OPENBLAS
  124. #include <cblas.h>
  125. #endif
  126. #undef MIN
  127. #undef MAX
  128. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  129. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  130. // floating point type used to accumulate sums
  131. typedef double ggml_float;
  132. // 16-bit float
  133. // on Arm, we use __fp16
  134. // on x86, we use uint16_t
  135. #ifdef __ARM_NEON
  136. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  137. //
  138. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  139. //
  140. #include <arm_neon.h>
  141. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  142. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  143. #define GGML_FP16_TO_FP32(x) ((float) (x))
  144. #define GGML_FP32_TO_FP16(x) (x)
  145. #else
  146. #ifdef __wasm_simd128__
  147. #include <wasm_simd128.h>
  148. #else
  149. #ifdef __POWER9_VECTOR__
  150. #include <altivec.h>
  151. #undef bool
  152. #define bool _Bool
  153. #else
  154. #include <immintrin.h>
  155. #endif
  156. #endif
  157. #ifdef __F16C__
  158. #ifdef _MSC_VER
  159. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  160. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  161. #else
  162. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  163. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  164. #endif
  165. #elif defined(__POWER9_VECTOR__)
  166. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  167. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  168. /* the inline asm below is about 12% faster than the lookup method */
  169. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  170. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  171. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  172. register float f;
  173. register double d;
  174. __asm__(
  175. "mtfprd %0,%2\n"
  176. "xscvhpdp %0,%0\n"
  177. "frsp %1,%0\n" :
  178. /* temp */ "=d"(d),
  179. /* out */ "=f"(f):
  180. /* in */ "r"(h));
  181. return f;
  182. }
  183. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  184. register double d;
  185. register ggml_fp16_t r;
  186. __asm__( /* xscvdphp can work on double or single precision */
  187. "xscvdphp %0,%2\n"
  188. "mffprd %1,%0\n" :
  189. /* temp */ "=d"(d),
  190. /* out */ "=r"(r):
  191. /* in */ "f"(f));
  192. return r;
  193. }
  194. #else
  195. // FP16 <-> FP32
  196. // ref: https://github.com/Maratyszcza/FP16
  197. static inline float fp32_from_bits(uint32_t w) {
  198. union {
  199. uint32_t as_bits;
  200. float as_value;
  201. } fp32;
  202. fp32.as_bits = w;
  203. return fp32.as_value;
  204. }
  205. static inline uint32_t fp32_to_bits(float f) {
  206. union {
  207. float as_value;
  208. uint32_t as_bits;
  209. } fp32;
  210. fp32.as_value = f;
  211. return fp32.as_bits;
  212. }
  213. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  214. const uint32_t w = (uint32_t) h << 16;
  215. const uint32_t sign = w & UINT32_C(0x80000000);
  216. const uint32_t two_w = w + w;
  217. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  218. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  219. const float exp_scale = 0x1.0p-112f;
  220. #else
  221. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  222. #endif
  223. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  224. const uint32_t magic_mask = UINT32_C(126) << 23;
  225. const float magic_bias = 0.5f;
  226. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  227. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  228. const uint32_t result = sign |
  229. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  230. return fp32_from_bits(result);
  231. }
  232. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  233. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  234. const float scale_to_inf = 0x1.0p+112f;
  235. const float scale_to_zero = 0x1.0p-110f;
  236. #else
  237. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  238. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  239. #endif
  240. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  241. const uint32_t w = fp32_to_bits(f);
  242. const uint32_t shl1_w = w + w;
  243. const uint32_t sign = w & UINT32_C(0x80000000);
  244. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  245. if (bias < UINT32_C(0x71000000)) {
  246. bias = UINT32_C(0x71000000);
  247. }
  248. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  249. const uint32_t bits = fp32_to_bits(base);
  250. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  251. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  252. const uint32_t nonsign = exp_bits + mantissa_bits;
  253. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  254. }
  255. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  256. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  257. #endif // __F16C__
  258. #endif // __ARM_NEON
  259. //
  260. // global data
  261. //
  262. // precomputed gelu table for f16 (128 KB)
  263. static ggml_fp16_t table_gelu_f16[1 << 16];
  264. // precomputed silu table for f16 (128 KB)
  265. static ggml_fp16_t table_silu_f16[1 << 16];
  266. // precomputed exp table for f16 (128 KB)
  267. static ggml_fp16_t table_exp_f16[1 << 16];
  268. // precomputed f32 table for f16 (256 KB)
  269. static float table_f32_f16[1 << 16];
  270. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  271. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  272. // This is also true for POWER9.
  273. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  274. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  275. uint16_t s;
  276. memcpy(&s, &f, sizeof(uint16_t));
  277. return table_f32_f16[s];
  278. }
  279. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  280. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  281. #endif
  282. // note: do not use these inside ggml.c
  283. // these are meant to be used via the ggml.h API
  284. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  285. return (float) GGML_FP16_TO_FP32(x);
  286. }
  287. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  288. return GGML_FP32_TO_FP16(x);
  289. }
  290. //
  291. // timing
  292. //
  293. #if defined(_MSC_VER) || defined(__MINGW32__)
  294. static int64_t timer_freq;
  295. void ggml_time_init(void) {
  296. LARGE_INTEGER frequency;
  297. QueryPerformanceFrequency(&frequency);
  298. timer_freq = frequency.QuadPart;
  299. }
  300. int64_t ggml_time_ms(void) {
  301. LARGE_INTEGER t;
  302. QueryPerformanceCounter(&t);
  303. return (t.QuadPart * 1000) / timer_freq;
  304. }
  305. int64_t ggml_time_us(void) {
  306. LARGE_INTEGER t;
  307. QueryPerformanceCounter(&t);
  308. return (t.QuadPart * 1000000) / timer_freq;
  309. }
  310. #else
  311. void ggml_time_init(void) {}
  312. int64_t ggml_time_ms(void) {
  313. struct timespec ts;
  314. clock_gettime(CLOCK_MONOTONIC, &ts);
  315. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  316. }
  317. int64_t ggml_time_us(void) {
  318. struct timespec ts;
  319. clock_gettime(CLOCK_MONOTONIC, &ts);
  320. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  321. }
  322. #endif
  323. int64_t ggml_cycles(void) {
  324. return clock();
  325. }
  326. int64_t ggml_cycles_per_ms(void) {
  327. return CLOCKS_PER_SEC/1000;
  328. }
  329. #ifdef GGML_PERF
  330. #define ggml_perf_time_ms() ggml_time_ms()
  331. #define ggml_perf_time_us() ggml_time_us()
  332. #define ggml_perf_cycles() ggml_cycles()
  333. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  334. #else
  335. #define ggml_perf_time_ms() 0
  336. #define ggml_perf_time_us() 0
  337. #define ggml_perf_cycles() 0
  338. #define ggml_perf_cycles_per_ms() 0
  339. #endif
  340. //
  341. // cache line
  342. //
  343. #if defined(__cpp_lib_hardware_interference_size)
  344. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  345. #else
  346. #if defined(__POWER9_VECTOR__)
  347. #define CACHE_LINE_SIZE 128
  348. #else
  349. #define CACHE_LINE_SIZE 64
  350. #endif
  351. #endif
  352. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  353. //
  354. // quantization
  355. //
  356. // AVX routines provided by GH user Const-me
  357. // ref: https://github.com/ggerganov/ggml/pull/27#issuecomment-1464934600
  358. #if __AVX2__ || __AVX512F__
  359. // Unpack 32 4-bit fields into 32 bytes
  360. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  361. static inline __m256i bytesFromNibbles( const uint8_t* rsi )
  362. {
  363. // Load 16 bytes from memory
  364. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  365. // Expand bytes into uint16_t values
  366. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  367. // Unpack values into individual bytes
  368. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  369. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  370. __m256i low = _mm256_and_si256( lowMask, bytes );
  371. high = _mm256_slli_epi16( high, 4 );
  372. bytes = _mm256_or_si256( low, high );
  373. return bytes;
  374. }
  375. static inline __m128i packNibbles( __m256i bytes )
  376. {
  377. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  378. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  379. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  380. __m256i low = _mm256_and_si256( lowByte, bytes );
  381. high = _mm256_srli_epi16( high, 4 );
  382. bytes = _mm256_or_si256( low, high );
  383. // Compress uint16_t lanes into bytes
  384. __m128i r0 = _mm256_castsi256_si128( bytes );
  385. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  386. return _mm_packus_epi16( r0, r1 );
  387. }
  388. #elif __AVX__
  389. static inline __m128i bytesFromNibbles( const uint8_t* rsi )
  390. {
  391. // Load 8 bytes from memory
  392. __m128i tmp = _mm_loadu_si64( ( const __m128i* )rsi );
  393. // Expand bytes into uint16_t values
  394. __m128i bytes = _mm_cvtepu8_epi16( tmp );
  395. // Unpack values into individual bytes
  396. const __m128i lowMask = _mm_set1_epi8( 0xF );
  397. __m128i high = _mm_andnot_si128( lowMask, bytes );
  398. __m128i low = _mm_and_si128( lowMask, bytes );
  399. high = _mm_slli_epi16( high, 4 );
  400. bytes = _mm_or_si128( low, high );
  401. return bytes;
  402. }
  403. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  404. {
  405. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  406. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  407. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  408. __m128i low = _mm_and_si128( lowByte, bytes1 );
  409. high = _mm_srli_epi16( high, 4 );
  410. bytes1 = _mm_or_si128( low, high );
  411. high = _mm_andnot_si128( lowByte, bytes2 );
  412. low = _mm_and_si128( lowByte, bytes2 );
  413. high = _mm_srli_epi16( high, 4 );
  414. bytes2 = _mm_or_si128( low, high );
  415. return _mm_packus_epi16( bytes1, bytes2);
  416. }
  417. #endif
  418. #if __ARM_NEON
  419. #if !defined(__aarch64__)
  420. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  421. return
  422. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  423. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  424. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  425. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  426. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  427. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  428. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  429. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  430. }
  431. inline static int32_t vaddvq_s16(int16x8_t v) {
  432. return
  433. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  434. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  435. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  436. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  437. }
  438. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  439. return
  440. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  441. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  442. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  443. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  444. }
  445. inline static int32_t vaddvq_s32(int32x4_t v) {
  446. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  447. }
  448. inline static float vaddvq_f32(float32x4_t v) {
  449. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  450. }
  451. float vminvq_f32(float32x4_t v) {
  452. return
  453. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  454. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  455. }
  456. float vmaxvq_f32(float32x4_t v) {
  457. return
  458. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  459. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  460. }
  461. int8x8_t vzip1_s8(int8x8_t a, int8x8_t b) {
  462. return vget_low_s8(vcombine_s8(a, b));
  463. }
  464. int8x8_t vzip2_s8(int8x8_t a, int8x8_t b) {
  465. return vget_high_s8(vcombine_s8(a, b));
  466. }
  467. uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
  468. return vget_low_u8(vcombine_u8(a, b));
  469. }
  470. uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
  471. return vget_high_u8(vcombine_u8(a, b));
  472. }
  473. #endif
  474. #endif
  475. #define QK4_0 32
  476. typedef struct {
  477. float d; // delta
  478. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  479. } block_q4_0;
  480. static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
  481. #define QK4_1 32
  482. typedef struct {
  483. float d; // delta
  484. float m; // min
  485. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  486. } block_q4_1;
  487. static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding");
  488. #define QK8_0 32
  489. typedef struct {
  490. float d; // delta
  491. int8_t qs[QK8_0]; // quants
  492. } block_q8_0;
  493. static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding");
  494. // reference implementation for deterministic creation of model files
  495. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  496. assert(k % QK4_0 == 0);
  497. const int nb = k / QK4_0;
  498. uint8_t pp[QK4_0/2];
  499. for (int i = 0; i < nb; i++) {
  500. float amax = 0.0f; // absolute max
  501. for (int l = 0; l < QK4_0; l++) {
  502. const float v = x[i*QK4_0 + l];
  503. amax = MAX(amax, fabsf(v));
  504. }
  505. const float d = amax / ((1 << 3) - 1);
  506. const float id = d ? 1.0f/d : 0.0f;
  507. y[i].d = d;
  508. for (int l = 0; l < QK4_0; l += 2) {
  509. const float v0 = x[i*QK4_0 + l + 0]*id;
  510. const float v1 = x[i*QK4_0 + l + 1]*id;
  511. const uint8_t vi0 = (int8_t)roundf(v0) + 8;
  512. const uint8_t vi1 = (int8_t)roundf(v1) + 8;
  513. assert(vi0 < 16);
  514. assert(vi1 < 16);
  515. pp[l/2] = vi0 | (vi1 << 4);
  516. }
  517. memcpy(y[i].qs, pp, sizeof(pp));
  518. }
  519. }
  520. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  521. assert(k % QK4_0 == 0);
  522. const int nb = k / QK4_0;
  523. block_q4_0 * restrict y = vy;
  524. #if defined(__POWER9_VECTOR__)
  525. const vector float v85 = vec_splats(8.5f);
  526. for (int i = 0; i < nb; i++) {
  527. float amax = 0.0f; // absolute max
  528. vector float srcv [8];
  529. vector float asrcv[8];
  530. vector float amaxv[8];
  531. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  532. for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  533. for (int l = 0; l < 4; l++) amaxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  534. //for (int l = 0; l < 2; l++) amaxv[4*l] = vec_max(amaxv[4*l], amaxv[4*l+2]);
  535. amaxv[0] = vec_max(amaxv[0], amaxv[2]);
  536. amaxv[4] = vec_max(amaxv[4], amaxv[6]);
  537. //for (int l = 0; l < 1; l++) amaxv[8*l] = vec_max(amaxv[8*l], amaxv[8*l+4]);
  538. amaxv[0] = vec_max(amaxv[0], amaxv[4]);
  539. amax = MAX(
  540. MAX(vec_extract(amaxv[0], 0), vec_extract(amaxv[0], 1)),
  541. MAX(vec_extract(amaxv[0], 2), vec_extract(amaxv[0], 3)));
  542. const float d = amax / ((1 << 3) - 1);
  543. const float id = d ? 1.0/d : 0.0;
  544. y[i].d = d;
  545. const vector float vid = vec_splats(id);
  546. uint8_t * restrict pb = y[i].qs;
  547. for (int l = 0; l < 8; l++) {
  548. const vector float vf = vec_madd(srcv[l], vid, v85);
  549. const vector signed int vi = vec_signed(vf);
  550. pb[2*l + 0] = vec_extract(vi, 0) | (vec_extract(vi, 1) << 4);
  551. pb[2*l + 1] = vec_extract(vi, 2) | (vec_extract(vi, 3) << 4);
  552. }
  553. }
  554. #elif __ARM_NEON
  555. for (int i = 0; i < nb; i++) {
  556. float32x4_t srcv [8];
  557. float32x4_t asrcv[8];
  558. float32x4_t amaxv[8];
  559. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  560. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  561. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  562. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  563. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  564. const float amax = vmaxvq_f32(amaxv[0]);
  565. const float d = amax / ((1 << 3) - 1);
  566. const float id = d ? 1.0f/d : 0.0f;
  567. y[i].d = d;
  568. for (int l = 0; l < 8; l++) {
  569. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  570. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  571. const int32x4_t vi = vcvtq_s32_f32(vf);
  572. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  573. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  574. }
  575. }
  576. #elif defined(__AVX2__)
  577. for (int i = 0; i < nb; i++) {
  578. // Load elements into 4 AVX vectors
  579. __m256 v0 = _mm256_loadu_ps( x );
  580. __m256 v1 = _mm256_loadu_ps( x + 8 );
  581. __m256 v2 = _mm256_loadu_ps( x + 16 );
  582. __m256 v3 = _mm256_loadu_ps( x + 24 );
  583. x += 32;
  584. // Compute max(abs(e)) for the block
  585. const __m256 signBit = _mm256_set1_ps( -0.0f );
  586. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  587. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  588. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  589. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  590. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  591. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  592. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  593. const float maxScalar = _mm_cvtss_f32( max4 );
  594. // Quantize these floats
  595. const float d = maxScalar / 7.0f;
  596. y[i].d = d;
  597. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  598. const __m256 mul = _mm256_set1_ps( id );
  599. // Apply the multiplier
  600. v0 = _mm256_mul_ps( v0, mul );
  601. v1 = _mm256_mul_ps( v1, mul );
  602. v2 = _mm256_mul_ps( v2, mul );
  603. v3 = _mm256_mul_ps( v3, mul );
  604. // Round to nearest integer
  605. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  606. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  607. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  608. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  609. // Convert floats to integers
  610. __m256i i0 = _mm256_cvtps_epi32( v0 );
  611. __m256i i1 = _mm256_cvtps_epi32( v1 );
  612. __m256i i2 = _mm256_cvtps_epi32( v2 );
  613. __m256i i3 = _mm256_cvtps_epi32( v3 );
  614. // Convert int32 to int16
  615. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  616. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  617. // Convert int16 to int8
  618. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  619. // We got our precious signed bytes, but the order is now wrong
  620. // These AVX2 pack instructions process 16-byte pieces independently
  621. // The following instruction is fixing the order
  622. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  623. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  624. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  625. const __m256i off = _mm256_set1_epi8( 8 );
  626. i0 = _mm256_add_epi8( i0, off );
  627. // Compress the vector into 4 bit/value, and store
  628. __m128i res = packNibbles( i0 );
  629. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  630. }
  631. #elif defined(__AVX__)
  632. for (int i = 0; i < nb; i++) {
  633. // Load elements into 4 AVX vectors
  634. __m256 v0 = _mm256_loadu_ps( x );
  635. __m256 v1 = _mm256_loadu_ps( x + 8 );
  636. __m256 v2 = _mm256_loadu_ps( x + 16 );
  637. __m256 v3 = _mm256_loadu_ps( x + 24 );
  638. x += 32;
  639. // Compute max(abs(e)) for the block
  640. const __m256 signBit = _mm256_set1_ps( -0.0f );
  641. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  642. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  643. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  644. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  645. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  646. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  647. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  648. const float maxScalar = _mm_cvtss_f32( max4 );
  649. // Quantize these floats
  650. const float d = maxScalar / 7.0f;
  651. y[i].d = d;
  652. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  653. const __m256 mul = _mm256_set1_ps( id );
  654. // Apply the multiplier
  655. v0 = _mm256_mul_ps( v0, mul );
  656. v1 = _mm256_mul_ps( v1, mul );
  657. v2 = _mm256_mul_ps( v2, mul );
  658. v3 = _mm256_mul_ps( v3, mul );
  659. // Round to nearest integer
  660. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  661. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  662. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  663. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  664. // Convert floats to integers
  665. __m256i i0 = _mm256_cvtps_epi32( v0 );
  666. __m256i i1 = _mm256_cvtps_epi32( v1 );
  667. __m256i i2 = _mm256_cvtps_epi32( v2 );
  668. __m256i i3 = _mm256_cvtps_epi32( v3 );
  669. // Since we don't have in AVX some necessary functions,
  670. // we split the registers in half and call AVX2 analogs from SSE
  671. __m128i ni0 = _mm256_castsi256_si128( i0 );
  672. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  673. __m128i ni2 = _mm256_castsi256_si128( i1 );
  674. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  675. __m128i ni4 = _mm256_castsi256_si128( i2 );
  676. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  677. __m128i ni6 = _mm256_castsi256_si128( i3 );
  678. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  679. // Convert int32 to int16
  680. ni0 = _mm_packs_epi32( ni0, ni1 );
  681. ni2 = _mm_packs_epi32( ni2, ni3 );
  682. ni4 = _mm_packs_epi32( ni4, ni5 );
  683. ni6 = _mm_packs_epi32( ni6, ni7 );
  684. // Convert int16 to int8
  685. ni0 = _mm_packs_epi16( ni0, ni2 );
  686. ni4 = _mm_packs_epi16( ni4, ni6 );
  687. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  688. const __m128i off = _mm_set1_epi8( 8);
  689. ni0 = _mm_add_epi8( ni0, off );
  690. ni4 = _mm_add_epi8( ni4, off );
  691. // Compress the vector into 4 bit/value, and store
  692. __m128i res = packNibbles( ni0, ni4 );
  693. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  694. }
  695. #elif defined(__wasm_simd128__)
  696. for (int i = 0; i < nb; i++) {
  697. float amax = 0.0f; // absolute max
  698. v128_t srcv [8];
  699. v128_t asrcv[8];
  700. v128_t amaxv[8];
  701. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  702. for (int l = 0; l < 8; l++) asrcv[l] = wasm_f32x4_abs(srcv[l]);
  703. for (int l = 0; l < 4; l++) amaxv[2*l] = wasm_f32x4_max(asrcv[2*l], asrcv[2*l+1]);
  704. for (int l = 0; l < 2; l++) amaxv[4*l] = wasm_f32x4_max(amaxv[4*l], amaxv[4*l+2]);
  705. for (int l = 0; l < 1; l++) amaxv[8*l] = wasm_f32x4_max(amaxv[8*l], amaxv[8*l+4]);
  706. amax = MAX(
  707. MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)),
  708. MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3)));
  709. const float d = amax / ((1 << 3) - 1);
  710. const float id = d ? 1.0/d : 0.0;
  711. y[i].d = d;
  712. for (int l = 0; l < 8; l++) {
  713. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  714. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  715. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  716. y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4);
  717. y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4);
  718. }
  719. }
  720. #else
  721. // scalar
  722. quantize_row_q4_0_reference(x, y, k);
  723. #endif
  724. }
  725. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  726. assert(k % QK4_1 == 0);
  727. const int nb = k / QK4_1;
  728. block_q4_1 * restrict y = vy;
  729. uint8_t pp[QK4_1/2];
  730. for (int i = 0; i < nb; i++) {
  731. float min = FLT_MAX;
  732. float max = -FLT_MAX;
  733. for (int l = 0; l < QK4_1; l++) {
  734. const float v = x[i*QK4_1 + l];
  735. if (v < min) min = v;
  736. if (v > max) max = v;
  737. }
  738. const float d = (max - min) / ((1 << 4) - 1);
  739. const float id = d ? 1.0f/d : 0.0f;
  740. y[i].d = d;
  741. y[i].m = min;
  742. for (int l = 0; l < QK4_1; l += 2) {
  743. const float v0 = (x[i*QK4_1 + l + 0] - min)*id;
  744. const float v1 = (x[i*QK4_1 + l + 1] - min)*id;
  745. const uint8_t vi0 = roundf(v0);
  746. const uint8_t vi1 = roundf(v1);
  747. assert(vi0 < 16);
  748. assert(vi1 < 16);
  749. pp[l/2] = vi0 | (vi1 << 4);
  750. }
  751. memcpy(y[i].qs, pp, sizeof(pp));
  752. }
  753. }
  754. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  755. assert(k % QK4_1 == 0);
  756. const int nb = k / QK4_1;
  757. block_q4_1 * restrict y = vy;
  758. #if defined(__AVX2__)
  759. for (int i = 0; i < nb; i++) {
  760. // Load elements into 4 AVX vectors
  761. __m256 v0 = _mm256_loadu_ps( x );
  762. __m256 v1 = _mm256_loadu_ps( x + 8 );
  763. __m256 v2 = _mm256_loadu_ps( x + 16 );
  764. __m256 v3 = _mm256_loadu_ps( x + 24 );
  765. x += 32;
  766. // Compute max for the block
  767. __m256 vmax;
  768. vmax = _mm256_max_ps( v0, v1 );
  769. vmax = _mm256_max_ps( vmax, v2 );
  770. vmax = _mm256_max_ps( vmax, v3 );
  771. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  772. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  773. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  774. const float maxScalar = _mm_cvtss_f32( max4 );
  775. // Compute min for the block
  776. __m256 vmin;
  777. vmin = _mm256_min_ps( v0, v1 );
  778. vmin = _mm256_min_ps( vmin, v2 );
  779. vmin = _mm256_min_ps( vmin, v3 );
  780. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  781. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  782. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  783. const float minScalar = _mm_cvtss_f32( min4 );
  784. // Quantize these floats
  785. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  786. const float id = d ? 1.0f/d : 0.0f;
  787. y[i].m = minScalar;
  788. y[i].d = d;
  789. // x = (x-min)*id
  790. const __m256 mul = _mm256_set1_ps( id );
  791. const __m256 off = _mm256_set1_ps( minScalar );
  792. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  793. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  794. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  795. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  796. // Round to nearest integer
  797. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  798. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  799. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  800. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  801. // Convert floats to integers
  802. __m256i i0 = _mm256_cvtps_epi32( v0 );
  803. __m256i i1 = _mm256_cvtps_epi32( v1 );
  804. __m256i i2 = _mm256_cvtps_epi32( v2 );
  805. __m256i i3 = _mm256_cvtps_epi32( v3 );
  806. // Convert int32 to int16
  807. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  808. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  809. // Convert int16 to int8
  810. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  811. // We got our precious signed bytes, but the order is now wrong
  812. // These AVX2 pack instructions process 16-byte pieces independently
  813. // The following instruction is fixing the order
  814. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  815. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  816. // Compress the vector into 4 bit/value, and store
  817. __m128i res = packNibbles( i0 );
  818. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  819. }
  820. #elif __ARM_NEON
  821. for (int i = 0; i < nb; i++) {
  822. float32x4_t srcv[8];
  823. float32x4_t minv[8];
  824. float32x4_t maxv[8];
  825. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*QK4_1 + 4*l);
  826. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]);
  827. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]);
  828. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]);
  829. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]);
  830. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]);
  831. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]);
  832. const float min = vminvq_f32(minv[0]);
  833. const float max = vmaxvq_f32(maxv[0]);
  834. const float d = (max - min) / ((1 << 4) - 1);
  835. const float id = d ? 1.0f/d : 0.0f;
  836. y[i].d = d;
  837. y[i].m = min;
  838. const float32x4_t minv0 = vdupq_n_f32(min);
  839. for (int l = 0; l < 8; l++) {
  840. const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id);
  841. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(0.5f)); // needed to round to nearest
  842. const int32x4_t vi = vcvtq_s32_f32(vf);
  843. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  844. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  845. }
  846. }
  847. #else
  848. // scalar
  849. quantize_row_q4_1_reference(x, vy, k);
  850. #endif
  851. }
  852. // reference implementation for deterministic creation of model files
  853. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  854. assert(k % QK8_0 == 0);
  855. const int nb = k / QK8_0;
  856. for (int i = 0; i < nb; i++) {
  857. float amax = 0.0f; // absolute max
  858. for (int l = 0; l < QK8_0; l++) {
  859. const float v = x[i*QK8_0 + l];
  860. amax = MAX(amax, fabsf(v));
  861. }
  862. const float d = amax / ((1 << 7) - 1);
  863. const float id = d ? 1.0f/d : 0.0f;
  864. y[i].d = d;
  865. for (int l = 0; l < QK8_0; ++l) {
  866. const float v = x[i*QK8_0 + l]*id;
  867. y[i].qs[l] = roundf(v);
  868. }
  869. }
  870. }
  871. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  872. assert(k % QK8_0 == 0);
  873. const int nb = k / QK8_0;
  874. block_q8_0 * restrict y = vy;
  875. #if defined(__ARM_NEON)
  876. for (int i = 0; i < nb; i++) {
  877. float32x4_t srcv [8];
  878. float32x4_t asrcv[8];
  879. float32x4_t amaxv[8];
  880. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  881. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  882. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  883. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  884. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  885. const float amax = vmaxvq_f32(amaxv[0]);
  886. const float d = amax / ((1 << 7) - 1);
  887. const float id = d ? 1.0f/d : 0.0f;
  888. y[i].d = d;
  889. for (int l = 0; l < 8; l++) {
  890. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  891. const int32x4_t vi = vcvtnq_s32_f32(v);
  892. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  893. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  894. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  895. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  896. }
  897. }
  898. #elif defined(__AVX2__) || defined(__AVX__)
  899. for (int i = 0; i < nb; i++) {
  900. // Load elements into 4 AVX vectors
  901. __m256 v0 = _mm256_loadu_ps( x );
  902. __m256 v1 = _mm256_loadu_ps( x + 8 );
  903. __m256 v2 = _mm256_loadu_ps( x + 16 );
  904. __m256 v3 = _mm256_loadu_ps( x + 24 );
  905. x += 32;
  906. // Compute max(abs(e)) for the block
  907. const __m256 signBit = _mm256_set1_ps( -0.0f );
  908. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  909. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  910. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  911. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  912. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  913. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  914. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  915. const float maxScalar = _mm_cvtss_f32( max4 );
  916. // Quantize these floats
  917. const float d = maxScalar / 127.f;
  918. y[i].d = d;
  919. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  920. const __m256 mul = _mm256_set1_ps( id );
  921. // Apply the multiplier
  922. v0 = _mm256_mul_ps( v0, mul );
  923. v1 = _mm256_mul_ps( v1, mul );
  924. v2 = _mm256_mul_ps( v2, mul );
  925. v3 = _mm256_mul_ps( v3, mul );
  926. // Round to nearest integer
  927. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  928. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  929. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  930. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  931. // Convert floats to integers
  932. __m256i i0 = _mm256_cvtps_epi32( v0 );
  933. __m256i i1 = _mm256_cvtps_epi32( v1 );
  934. __m256i i2 = _mm256_cvtps_epi32( v2 );
  935. __m256i i3 = _mm256_cvtps_epi32( v3 );
  936. #if defined(__AVX2__)
  937. // Convert int32 to int16
  938. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  939. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  940. // Convert int16 to int8
  941. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  942. // We got our precious signed bytes, but the order is now wrong
  943. // These AVX2 pack instructions process 16-byte pieces independently
  944. // The following instruction is fixing the order
  945. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  946. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  947. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  948. #else
  949. // Since we don't have in AVX some necessary functions,
  950. // we split the registers in half and call AVX2 analogs from SSE
  951. __m128i ni0 = _mm256_castsi256_si128( i0 );
  952. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  953. __m128i ni2 = _mm256_castsi256_si128( i1 );
  954. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  955. __m128i ni4 = _mm256_castsi256_si128( i2 );
  956. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  957. __m128i ni6 = _mm256_castsi256_si128( i3 );
  958. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  959. // Convert int32 to int16
  960. ni0 = _mm_packs_epi32( ni0, ni1 );
  961. ni2 = _mm_packs_epi32( ni2, ni3 );
  962. ni4 = _mm_packs_epi32( ni4, ni5 );
  963. ni6 = _mm_packs_epi32( ni6, ni7 );
  964. // Convert int16 to int8
  965. ni0 = _mm_packs_epi16( ni0, ni2 );
  966. ni4 = _mm_packs_epi16( ni4, ni6 );
  967. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  968. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  969. #endif
  970. }
  971. #else
  972. // scalar
  973. quantize_row_q8_0_reference(x, y, k);
  974. #endif
  975. }
  976. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  977. assert(k % QK4_0 == 0);
  978. const int nb = k / QK4_0;
  979. const block_q4_0 * restrict x = vx;
  980. #if defined(__AVX2__)
  981. for (int i = 0; i < nb; i++) {
  982. // scale factor
  983. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  984. const uint8_t * restrict pp = x[i].qs;
  985. for (int l = 0; l < QK4_0; l += 32) {
  986. // Load 32x4-bit integers into 32x8-bit integers
  987. __m256i vx8 = bytesFromNibbles(pp+l/2);
  988. // Subtract 8 from the integers
  989. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  990. // Convert to 16-bit int
  991. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  992. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  993. // Convert to 32-bit int -> float 32
  994. const __m256 vf[4] = {
  995. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  996. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  997. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  998. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  999. };
  1000. // Scale and store
  1001. for (int j = 0; j < 4; j++) {
  1002. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  1003. _mm256_storeu_ps(y + i * QK4_0 + l + j*8, result);
  1004. }
  1005. }
  1006. }
  1007. #elif defined(__ARM_NEON)
  1008. for (int i = 0; i < nb; i++) {
  1009. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1010. const uint8_t * restrict pp = x[i].qs;
  1011. for (int l = 0; l < QK4_0; l += 16) {
  1012. // Load 16x4-bit integers into 8x8-bit integers
  1013. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1014. // Expand 4-bit qs to 8-bit bytes
  1015. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  1016. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1017. // Convert to signed 8-bit integers
  1018. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  1019. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  1020. // Subtract 8 from each byte
  1021. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  1022. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  1023. // Interleave and combine
  1024. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  1025. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  1026. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  1027. // convert to 2x int16x8_t
  1028. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  1029. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  1030. // convert to 4x float32x4_t
  1031. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  1032. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  1033. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  1034. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  1035. // Multiply by d
  1036. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  1037. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  1038. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  1039. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  1040. // Store
  1041. vst1q_f32(y + i*QK4_0 + l + 0, r0);
  1042. vst1q_f32(y + i*QK4_0 + l + 4, r1);
  1043. vst1q_f32(y + i*QK4_0 + l + 8, r2);
  1044. vst1q_f32(y + i*QK4_0 + l + 12, r3);
  1045. }
  1046. }
  1047. #else
  1048. // scalar
  1049. for (int i = 0; i < nb; i++) {
  1050. const float d = x[i].d;
  1051. const uint8_t * restrict pp = x[i].qs;
  1052. for (int l = 0; l < QK4_0; l += 2) {
  1053. const uint8_t vi = pp[l/2];
  1054. const int8_t vi0 = vi & 0xf;
  1055. const int8_t vi1 = vi >> 4;
  1056. const float v0 = (vi0 - 8)*d;
  1057. const float v1 = (vi1 - 8)*d;
  1058. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  1059. y[i*QK4_0 + l + 0] = v0;
  1060. y[i*QK4_0 + l + 1] = v1;
  1061. assert(!isnan(y[i*QK4_0 + l + 0]));
  1062. assert(!isnan(y[i*QK4_0 + l + 1]));
  1063. }
  1064. }
  1065. #endif
  1066. }
  1067. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  1068. assert(k % QK4_1 == 0);
  1069. const int nb = k / QK4_1;
  1070. const block_q4_1 * restrict x = vx;
  1071. #if defined(__AVX2__)
  1072. for (int i = 0; i < nb; i++) {
  1073. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1074. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  1075. const uint8_t * restrict pp = x[i].qs;
  1076. for (int l = 0; l < QK4_1; l += 32) {
  1077. // Load 32x4-bit integers into 32x8-bit integers
  1078. __m256i vx8 = bytesFromNibbles(pp+l/2);
  1079. // Convert to 16-bit int
  1080. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1081. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1082. // Convert to 32-bit int -> float 32
  1083. const __m256 vf[4] = {
  1084. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1085. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1086. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1087. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1088. };
  1089. // Scale, add m and store
  1090. for (int j = 0; j < 4; j++) {
  1091. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  1092. _mm256_storeu_ps(y + i * QK4_1 + l + j*8, result);
  1093. }
  1094. }
  1095. }
  1096. #elif defined(__ARM_NEON)
  1097. for (int i = 0; i < nb; i++) {
  1098. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1099. const float32x4_t vm = vdupq_n_f32(x[i].m);
  1100. const uint8_t * restrict pp = x[i].qs;
  1101. for (int l = 0; l < QK4_1; l += 16) {
  1102. // Load 16x4-bit integers into 8x8-bit integers
  1103. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1104. // Expand 4-bit qs to 8-bit bytes
  1105. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  1106. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1107. // Interleave and combine
  1108. const uint8x8_t vx_0 = vzip1_u8(v0, v1);
  1109. const uint8x8_t vx_1 = vzip2_u8(v0, v1);
  1110. const uint8x16_t vq = vcombine_u8(vx_0, vx_1);
  1111. // convert to 2x uint16x8_t
  1112. const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq));
  1113. const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq));
  1114. // convert to 4x float32x4_t
  1115. const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0)));
  1116. const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0)));
  1117. const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1)));
  1118. const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1)));
  1119. // multiply by d and add m
  1120. const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd);
  1121. const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd);
  1122. const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd);
  1123. const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd);
  1124. // Store
  1125. vst1q_f32(y + i*QK4_1 + l + 0, r0);
  1126. vst1q_f32(y + i*QK4_1 + l + 4, r1);
  1127. vst1q_f32(y + i*QK4_1 + l + 8, r2);
  1128. vst1q_f32(y + i*QK4_1 + l + 12, r3);
  1129. }
  1130. }
  1131. #else
  1132. for (int i = 0; i < nb; i++) {
  1133. const float d = x[i].d;
  1134. const float m = x[i].m;
  1135. const uint8_t * restrict pp = x[i].qs;
  1136. for (int l = 0; l < QK4_1; l += 2) {
  1137. const uint8_t vi = pp[l/2];
  1138. const int8_t vi0 = vi & 0xf;
  1139. const int8_t vi1 = vi >> 4;
  1140. const float v0 = vi0*d + m;
  1141. const float v1 = vi1*d + m;
  1142. y[i*QK4_1 + l + 0] = v0;
  1143. y[i*QK4_1 + l + 1] = v1;
  1144. assert(!isnan(y[i*QK4_1 + l + 0]));
  1145. assert(!isnan(y[i*QK4_1 + l + 1]));
  1146. }
  1147. }
  1148. #endif
  1149. }
  1150. static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1151. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1152. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1153. [GGML_TYPE_Q4_0] = {
  1154. .dequantize_row_q = dequantize_row_q4_0,
  1155. .quantize_row_q = quantize_row_q4_0,
  1156. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1157. .quantize_row_q_dot = quantize_row_q8_0,
  1158. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1159. },
  1160. [GGML_TYPE_Q4_1] = {
  1161. .dequantize_row_q = dequantize_row_q4_1,
  1162. .quantize_row_q = quantize_row_q4_1,
  1163. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1164. .quantize_row_q_dot = quantize_row_q4_1,
  1165. .vec_dot_q = ggml_vec_dot_q4_1,
  1166. },
  1167. // TODO: GGML_TYPE_Q8_0
  1168. };
  1169. // For internal test use
  1170. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1171. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1172. return quantize_fns[i];
  1173. }
  1174. //
  1175. // simd mappings
  1176. //
  1177. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1178. // we then implement the fundamental computation operations below using only these macros
  1179. // adding support for new architectures requires to define the corresponding SIMD macros
  1180. //
  1181. // GGML_F32_STEP / GGML_F16_STEP
  1182. // number of elements to process in a single step
  1183. //
  1184. // GGML_F32_EPR / GGML_F16_EPR
  1185. // number of elements to fit in a single register
  1186. //
  1187. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1188. #define GGML_SIMD
  1189. // F32 NEON
  1190. #define GGML_F32_STEP 16
  1191. #define GGML_F32_EPR 4
  1192. #define GGML_F32x4 float32x4_t
  1193. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1194. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1195. #define GGML_F32x4_LOAD vld1q_f32
  1196. #define GGML_F32x4_STORE vst1q_f32
  1197. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1198. #define GGML_F32x4_ADD vaddq_f32
  1199. #define GGML_F32x4_MUL vmulq_f32
  1200. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1201. #define GGML_F32x4_REDUCE(res, x) \
  1202. { \
  1203. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1204. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1205. } \
  1206. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1207. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1208. } \
  1209. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1210. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1211. } \
  1212. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1213. }
  1214. #define GGML_F32_VEC GGML_F32x4
  1215. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1216. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1217. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1218. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1219. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1220. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1221. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1222. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1223. // F16 NEON
  1224. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1225. #define GGML_F16_STEP 32
  1226. #define GGML_F16_EPR 8
  1227. #define GGML_F16x8 float16x8_t
  1228. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1229. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1230. #define GGML_F16x8_LOAD vld1q_f16
  1231. #define GGML_F16x8_STORE vst1q_f16
  1232. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1233. #define GGML_F16x8_ADD vaddq_f16
  1234. #define GGML_F16x8_MUL vmulq_f16
  1235. #define GGML_F16x8_REDUCE(res, x) \
  1236. { \
  1237. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1238. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1239. } \
  1240. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1241. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1242. } \
  1243. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1244. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1245. } \
  1246. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1247. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1248. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1249. }
  1250. #define GGML_F16_VEC GGML_F16x8
  1251. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1252. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1253. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1254. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1255. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1256. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1257. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1258. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1259. #else
  1260. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1261. // and take advantage of the vcvt_ functions to convert to/from FP16
  1262. #define GGML_F16_STEP 16
  1263. #define GGML_F16_EPR 4
  1264. #define GGML_F32Cx4 float32x4_t
  1265. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1266. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1267. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1268. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1269. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1270. #define GGML_F32Cx4_ADD vaddq_f32
  1271. #define GGML_F32Cx4_MUL vmulq_f32
  1272. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1273. #define GGML_F16_VEC GGML_F32Cx4
  1274. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1275. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1276. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1277. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1278. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1279. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1280. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1281. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1282. #endif
  1283. #elif defined(__AVX__)
  1284. #define GGML_SIMD
  1285. // F32 AVX
  1286. #define GGML_F32_STEP 32
  1287. #define GGML_F32_EPR 8
  1288. #define GGML_F32x8 __m256
  1289. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1290. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1291. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1292. #define GGML_F32x8_STORE _mm256_storeu_ps
  1293. #if defined(__FMA__)
  1294. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1295. #else
  1296. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1297. #endif
  1298. #define GGML_F32x8_ADD _mm256_add_ps
  1299. #define GGML_F32x8_MUL _mm256_mul_ps
  1300. #define GGML_F32x8_REDUCE(res, x) \
  1301. { \
  1302. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1303. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1304. } \
  1305. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1306. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1307. } \
  1308. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1309. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1310. } \
  1311. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1312. _mm256_extractf128_ps(x[0], 1)); \
  1313. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1314. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1315. }
  1316. // TODO: is this optimal ?
  1317. #define GGML_F32_VEC GGML_F32x8
  1318. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1319. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1320. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1321. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1322. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1323. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1324. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1325. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1326. // F16 AVX
  1327. #define GGML_F16_STEP 32
  1328. #define GGML_F16_EPR 8
  1329. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1330. #define GGML_F32Cx8 __m256
  1331. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1332. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1333. #if defined(__F16C__)
  1334. // the _mm256_cvt intrinsics require F16C
  1335. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1336. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1337. #else
  1338. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1339. float tmp[8];
  1340. for (int i = 0; i < 8; i++)
  1341. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1342. return _mm256_loadu_ps(tmp);
  1343. }
  1344. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1345. float arr[8];
  1346. _mm256_storeu_ps(arr, y);
  1347. for (int i = 0; i < 8; i++)
  1348. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1349. }
  1350. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1351. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1352. #endif
  1353. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1354. #define GGML_F32Cx8_ADD _mm256_add_ps
  1355. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1356. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1357. #define GGML_F16_VEC GGML_F32Cx8
  1358. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1359. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1360. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1361. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1362. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1363. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1364. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1365. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1366. #elif defined(__POWER9_VECTOR__)
  1367. #define GGML_SIMD
  1368. // F32 POWER9
  1369. #define GGML_F32_STEP 32
  1370. #define GGML_F32_EPR 4
  1371. #define GGML_F32x4 vector float
  1372. #define GGML_F32x4_ZERO 0.0f
  1373. #define GGML_F32x4_SET1 vec_splats
  1374. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1375. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1376. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1377. #define GGML_F32x4_ADD vec_add
  1378. #define GGML_F32x4_MUL vec_mul
  1379. #define GGML_F32x4_REDUCE(res, x) \
  1380. { \
  1381. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1382. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1383. } \
  1384. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1385. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1386. } \
  1387. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1388. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1389. } \
  1390. res = vec_extract(x[0], 0) + \
  1391. vec_extract(x[0], 1) + \
  1392. vec_extract(x[0], 2) + \
  1393. vec_extract(x[0], 3); \
  1394. }
  1395. #define GGML_F32_VEC GGML_F32x4
  1396. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1397. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1398. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1399. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1400. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1401. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1402. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1403. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1404. // F16 POWER9
  1405. #define GGML_F16_STEP GGML_F32_STEP
  1406. #define GGML_F16_EPR GGML_F32_EPR
  1407. #define GGML_F16_VEC GGML_F32x4
  1408. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1409. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1410. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1411. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1412. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1413. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1414. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1415. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1416. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1417. #define GGML_F16_VEC_STORE(p, r, i) \
  1418. if (i & 0x1) \
  1419. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1420. r[i - GGML_ENDIAN_BYTE(0)]), \
  1421. 0, p - GGML_F16_EPR)
  1422. #elif defined(__wasm_simd128__)
  1423. #define GGML_SIMD
  1424. // F32 WASM
  1425. #define GGML_F32_STEP 16
  1426. #define GGML_F32_EPR 4
  1427. #define GGML_F32x4 v128_t
  1428. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1429. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1430. #define GGML_F32x4_LOAD wasm_v128_load
  1431. #define GGML_F32x4_STORE wasm_v128_store
  1432. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1433. #define GGML_F32x4_ADD wasm_f32x4_add
  1434. #define GGML_F32x4_MUL wasm_f32x4_mul
  1435. #define GGML_F32x4_REDUCE(res, x) \
  1436. { \
  1437. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1438. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1439. } \
  1440. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1441. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1442. } \
  1443. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1444. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1445. } \
  1446. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1447. wasm_f32x4_extract_lane(x[0], 1) + \
  1448. wasm_f32x4_extract_lane(x[0], 2) + \
  1449. wasm_f32x4_extract_lane(x[0], 3); \
  1450. }
  1451. #define GGML_F32_VEC GGML_F32x4
  1452. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1453. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1454. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1455. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1456. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1457. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1458. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1459. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1460. // F16 WASM
  1461. #define GGML_F16_STEP 16
  1462. #define GGML_F16_EPR 4
  1463. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1464. float tmp[4];
  1465. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1466. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1467. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1468. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1469. return wasm_v128_load(tmp);
  1470. }
  1471. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1472. float tmp[4];
  1473. wasm_v128_store(tmp, x);
  1474. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1475. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1476. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1477. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1478. }
  1479. #define GGML_F16x4 v128_t
  1480. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1481. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1482. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1483. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1484. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1485. #define GGML_F16x4_ADD wasm_f32x4_add
  1486. #define GGML_F16x4_MUL wasm_f32x4_mul
  1487. #define GGML_F16x4_REDUCE(res, x) \
  1488. { \
  1489. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1490. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1491. } \
  1492. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1493. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1494. } \
  1495. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1496. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1497. } \
  1498. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1499. wasm_f32x4_extract_lane(x[0], 1) + \
  1500. wasm_f32x4_extract_lane(x[0], 2) + \
  1501. wasm_f32x4_extract_lane(x[0], 3); \
  1502. }
  1503. #define GGML_F16_VEC GGML_F16x4
  1504. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1505. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1506. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1507. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1508. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1509. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1510. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1511. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1512. #elif defined(__SSE3__)
  1513. #define GGML_SIMD
  1514. // F32 SSE
  1515. #define GGML_F32_STEP 32
  1516. #define GGML_F32_EPR 4
  1517. #define GGML_F32x4 __m128
  1518. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1519. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1520. #define GGML_F32x4_LOAD _mm_loadu_ps
  1521. #define GGML_F32x4_STORE _mm_storeu_ps
  1522. #if defined(__FMA__)
  1523. // TODO: Does this work?
  1524. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1525. #else
  1526. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1527. #endif
  1528. #define GGML_F32x4_ADD _mm_add_ps
  1529. #define GGML_F32x4_MUL _mm_mul_ps
  1530. #define GGML_F32x4_REDUCE(res, x) \
  1531. { \
  1532. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1533. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1534. } \
  1535. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1536. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1537. } \
  1538. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1539. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1540. } \
  1541. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1542. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1543. }
  1544. // TODO: is this optimal ?
  1545. #define GGML_F32_VEC GGML_F32x4
  1546. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1547. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1548. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1549. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1550. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1551. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1552. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1553. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1554. // F16 SSE
  1555. #define GGML_F16_STEP 32
  1556. #define GGML_F16_EPR 4
  1557. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1558. float tmp[4];
  1559. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1560. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1561. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1562. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1563. return _mm_loadu_ps(tmp);
  1564. }
  1565. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1566. float arr[4];
  1567. _mm_storeu_ps(arr, y);
  1568. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1569. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1570. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1571. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1572. }
  1573. #define GGML_F32Cx4 __m128
  1574. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1575. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1576. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1577. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1578. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1579. #define GGML_F32Cx4_ADD _mm_add_ps
  1580. #define GGML_F32Cx4_MUL _mm_mul_ps
  1581. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1582. #define GGML_F16_VEC GGML_F32Cx4
  1583. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1584. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1585. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1586. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1587. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1588. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1589. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1590. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1591. #endif
  1592. // GGML_F32_ARR / GGML_F16_ARR
  1593. // number of registers to use per step
  1594. #ifdef GGML_SIMD
  1595. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1596. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1597. #endif
  1598. //
  1599. // fundamental operations
  1600. //
  1601. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1602. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1603. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1604. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1605. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1606. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1607. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1608. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1609. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1610. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1611. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1612. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1613. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1614. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1615. #ifdef GGML_SIMD
  1616. float sumf = 0.0f;
  1617. const int np = (n & ~(GGML_F32_STEP - 1));
  1618. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1619. GGML_F32_VEC ax[GGML_F32_ARR];
  1620. GGML_F32_VEC ay[GGML_F32_ARR];
  1621. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1622. for (int j = 0; j < GGML_F32_ARR; j++) {
  1623. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1624. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1625. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1626. }
  1627. }
  1628. // reduce sum0..sum3 to sum0
  1629. GGML_F32_VEC_REDUCE(sumf, sum);
  1630. // leftovers
  1631. for (int i = np; i < n; ++i) {
  1632. sumf += x[i]*y[i];
  1633. }
  1634. #else
  1635. // scalar
  1636. ggml_float sumf = 0.0;
  1637. for (int i = 0; i < n; ++i) {
  1638. sumf += (ggml_float)(x[i]*y[i]);
  1639. }
  1640. #endif
  1641. *s = sumf;
  1642. }
  1643. #if __AVX512F__ && QK4_0 == 32
  1644. static inline __m512i bytes_from_q4_0_twoblocks_avx512( const __m512i blocks ) {
  1645. // The 64 bytes of `blocks` contain two consecutive Q4_0 blocks loaded from memory:
  1646. // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
  1647. // |63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32|
  1648. // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
  1649. // | :. =_ () [] <> () Zz Yy|
  1650. // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
  1651. // |31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00|
  1652. // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
  1653. // |Xx Ww Vv Uu Tt Ss Rr Qq Pp Oo Nn Mm Ll Kk Jj Ii Hh Gg Ff Ee Dd Cc Bb Aa |
  1654. // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
  1655. //
  1656. // Bytes 04..19 (block #0) and 24..39 (block #1) both contain 32 nibbles (4-bit unsigned integers).
  1657. // We have exactly 64 nibbles, so we want to place each nibble into a separate byte.
  1658. // Bytes 00..03 and 20..23 contain scales, which are irrelevant to this function.
  1659. // Bytes 40..63 are masked when loading the data, so they are zeroed out.
  1660. #ifdef __AVX512VBMI__
  1661. const __m512i byte_perm = _mm512_set_epi8(
  1662. 39, 38, 39, 38, 37, 36, 37, 36, 35, 34, 35, 34, 33, 32, 33, 32,
  1663. 31, 30, 31, 30, 29, 28, 29, 28, 27, 26, 27, 26, 25, 24, 25, 24,
  1664. 19, 18, 19, 18, 17, 16, 17, 16, 15, 14, 15, 14, 13, 12, 13, 12,
  1665. 11, 10, 11, 10, 9, 8, 9, 8, 7, 6, 7, 6, 5, 4, 5, 4
  1666. );
  1667. const __m512i permuted = _mm512_permutexvar_epi8( byte_perm, blocks );
  1668. // After applying VPERMB, `permuted` looks like this:
  1669. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1670. // |63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32|
  1671. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1672. // |:. =_ :. =_ () [] () [] <> () <> () Zz Yy Zz Yy Xx Ww Xx Ww Vv Uu Vv Uu Tt Ss Tt Ss Rr Qq Rr Qq|
  1673. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1674. // |31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00|
  1675. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1676. // |Pp Oo Pp Oo Nn Mm Nn Mm Ll Kk Ll Kk Jj Ii Jj Ii Hh Gg Hh Gg Ff Ee Ff Ee Dd Cc Dd Cc Bb Aa Bb Aa|
  1677. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1678. #else
  1679. const __m512i word_perm = _mm512_set_epi16(
  1680. 19, 19, 18, 18, 17, 17, 16, 16, 15, 15, 14, 14, 13, 13, 12, 12,
  1681. 9, 9, 8, 8, 7, 7, 6, 6, 5, 5, 4, 4, 3, 3, 2, 2
  1682. );
  1683. const __m512i permuted = _mm512_permutexvar_epi16( word_perm, blocks );
  1684. // This is the fallback path for CPUs that don't support VPERMB. Since we permute 16-bit groups only,
  1685. // VPERMB can be replaced with VPERMW. We could always use VPERMW, but at least on Tiger Lake and
  1686. // Ice Lake VPERMW followed by a right shift is quite noticeably slower than VPERMB.
  1687. #endif
  1688. // Shift every odd-numbered 16-bit group to the right by 4 bits.
  1689. const __mmask32 shift_mask = 0xaaaaaaaa;
  1690. const __m512i shifted = _mm512_mask_srai_epi16( permuted, shift_mask, permuted, 4 );
  1691. // After applying VPSRAW, `shifted` looks like this (the "empty" nibbles are filled with zeroes):
  1692. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1693. // |63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
  1694. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1695. // | : .= :. =_ ( )[ () [] < >( <> () Z zY Zz Yy X xW Xx Ww V vU Vv Uu T tS Tt Ss R rQ Rr Qq
  1696. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1697. // |31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00|
  1698. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1699. // | P pO Pp Oo N nM Nn Mm L lK Ll Kk J jI Jj Ii H hG Hh Gg F fE Ff Ee D dC Dd Cc B bA Bb Aa|
  1700. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1701. // Now we just need to zero out the higher nibble in each byte, and we're done.
  1702. const __m512i low_nibble_mask = _mm512_set1_epi8( 0xf );
  1703. return _mm512_and_si512( low_nibble_mask, shifted );
  1704. // The final result looks like this:
  1705. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1706. // |63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32|
  1707. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1708. // | : = . _ ( [ ) ] < ( > ) Z Y z y X W x w V U v u T S t s R Q r q|
  1709. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1710. // |31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00|
  1711. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1712. // | P O p o N M n m L K l k J I j i H G h g F E f e D C d c B A b a|
  1713. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1714. }
  1715. static inline __m512 dot_q4_0_twoblocks_avx512(
  1716. __m512 acc,
  1717. const block_q4_0 * restrict x,
  1718. const block_q4_0 * restrict y,
  1719. int i
  1720. ) {
  1721. // A pair of Q4_0 blocks spans 40 bytes, while an AVX-512 register has 64. The remaining 24 bytes
  1722. // can potentially be unaddressable, so we make sure to mask them out before the load, even though
  1723. // we don't use them at all. This might hurt the performance slightly, since the compiler is forced
  1724. // to use e.g. `VMOVDQU64 REG, MASK, [ADDR] + VPERMB ..., REG` instead of just `VPERMB ..., [ADDR]`.
  1725. const __mmask8 load_mask = 0x1f;
  1726. const __m512i blocks_0 = _mm512_maskz_loadu_epi64( load_mask, &x[i] );
  1727. const __m512i blocks_1 = _mm512_maskz_loadu_epi64( load_mask, &y[i] );
  1728. // We want to multiply the scales, so we interpret both registers as 16 32-bit floats:
  1729. // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
  1730. // | 15 | 14 | 13 | 12 | 11 | 10 | 09 | 08 | 07 | 06 | 05 | 04 | 03 | 02 | 01 | 00 |
  1731. // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
  1732. // blocks_0_float
  1733. // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
  1734. // | | | | | | | xx | xx | xx | xx | B | xx | xx | xx | xx | A |
  1735. // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
  1736. // blocks_1_float
  1737. // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
  1738. // | | | | | | | xx | xx | xx | xx | D | xx | xx | xx | xx | C |
  1739. // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
  1740. const __m512 blocks_0_float = _mm512_castsi512_ps( blocks_0 );
  1741. const __m512 blocks_1_float = _mm512_castsi512_ps( blocks_1 );
  1742. // We absolutely shouldn't touch the floats marked with `xx`: they contain some
  1743. // random data, which might very well underflow. At least on Intel, this leads
  1744. // to a huge penalty that can't be ignored (easily 100x or more) unless you
  1745. // compile your code with something like `-ffast-math` to enable FTZ/DAZ flags.
  1746. // (and ggml can't assume that you do)...
  1747. const __mmask16 scale_mul_mask = 0x21;
  1748. #ifdef __clang__
  1749. // ...however, clang decides to optimize the multiplication mask away:
  1750. // https://godbolt.org/z/P8PqdsfvW
  1751. // gcc and MSVC do the sane thing. This horrible workaround forces clang to emit the mask.
  1752. __m512i scales;
  1753. __asm__(
  1754. "vmulps %1, %2, %0%{%3%}"
  1755. : "=v" ( scales )
  1756. : "vm" ( blocks_0_float ), "v" ( blocks_1_float ), "Yk" ( scale_mul_mask )
  1757. );
  1758. #else
  1759. const __m512 scales = _mm512_maskz_mul_ps( scale_mul_mask, blocks_0_float, blocks_1_float );
  1760. #endif
  1761. const __m512i scale_perm = _mm512_set_epi32(
  1762. 5, 5, 5, 5, 5, 5, 5, 5,
  1763. 0, 0, 0, 0, 0, 0, 0, 0
  1764. );
  1765. const __m512 permuted_scales = _mm512_permutexvar_ps( scale_perm, scales );
  1766. // After VMULPS and VPERMPS, `permuted_scales` looks like this:
  1767. // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
  1768. // | 15 | 14 | 13 | 12 | 11 | 10 | 09 | 08 | 07 | 06 | 05 | 04 | 03 | 02 | 01 | 00 |
  1769. // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
  1770. // | B*D| B*D| B*D| B*D| B*D| B*D| B*D| B*D| A*C| A*C| A*C| A*C| A*C| A*C| A*C| A*C|
  1771. // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
  1772. const __m512i bytes_0 = bytes_from_q4_0_twoblocks_avx512( blocks_0 );
  1773. const __m512i bytes_1 = bytes_from_q4_0_twoblocks_avx512( blocks_1 );
  1774. // Now we want to compute dot products of 4-element byte vectors and store them in
  1775. // 32-bit integers. That is (only one 4-element vector is shown for clarity):
  1776. // +----+----+----+----+
  1777. // ... | 03 | 02 | 01 | 00 |
  1778. // +----+----+----+----+
  1779. // bytes_0
  1780. // +----+----+----+----+
  1781. // ... | D | C | B | A |
  1782. // +----+----+----+----+
  1783. // bytes_1
  1784. // +----+----+----+----+
  1785. // ... | H | G | F | E |
  1786. // +----+----+----+----+
  1787. // final_res_int
  1788. // +----+----+----+----+
  1789. // ... | A*E+B*F+C*G+D*H |
  1790. // +----+----+----+----+
  1791. const __m512i plus_8 = _mm512_set1_epi8( 8 );
  1792. const __m512i bytes_1_minus_8 = _mm512_sub_epi8( bytes_1, plus_8 );
  1793. #ifdef __AVX512VNNI__
  1794. // We have VPDPBUSDS in AVX512-VNNI, which does exactly what we want, but with a catch:
  1795. // the *left* operand is supposed to be unsigned, while Q4_0 quantization subtracts 8
  1796. // from each nibble, so they can be negative. So, instead of `(bytes_0 - 8) * (bytes_1 - 8)`,
  1797. // we compute `bytes_0 * (bytes_1 - 8) + bytes_1 * (-8) + 64`. VPDPBUSDS uses an accumulator,
  1798. // which means we only need 2 instructions.
  1799. const __m512i dot_init = _mm512_set1_epi32( 4 * 64 );
  1800. const __m512i minus_8 = _mm512_set1_epi8( -8 );
  1801. const __m512i prod_0 = _mm512_dpbusds_epi32( dot_init, bytes_1, minus_8 );
  1802. const __m512i final_res_int = _mm512_dpbusds_epi32( prod_0, bytes_0, bytes_1_minus_8 );
  1803. #else
  1804. // As a fallback, we have VPMADDUBSW in AVX512-BW, which uses 16-bit products instead of 32-bit ones.
  1805. // It has the same catch as VPDPBUSDS: the left operand should be unsigned.
  1806. // This is essentially the AVX-512 version of the AVX-2 trick used by GH user Const-me
  1807. // ref: https://gist.github.com/Const-me/4d30e1fc767ab314596e16e90f53b6f4#file-matmultest-cpp-L119
  1808. const __m512i one = _mm512_set1_epi16( 1 );
  1809. const __m512i prod_0 = _mm512_maddubs_epi16( bytes_0, bytes_1_minus_8 );
  1810. const __m512i prod_1 = _mm512_maddubs_epi16( plus_8, bytes_1_minus_8 );
  1811. const __m512i diff = _mm512_sub_epi16( prod_0, prod_1 );
  1812. const __m512i final_res_int = _mm512_madd_epi16( diff, one );
  1813. #endif
  1814. // Finally, we multiply the permuted scales and the 32-bit dot products, then accumulate.
  1815. const __m512 final_res_float = _mm512_cvtepi32_ps( final_res_int );
  1816. return _mm512_fmadd_ps( permuted_scales, final_res_float, acc );
  1817. }
  1818. #endif
  1819. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1820. ggml_float sumf = 0.0;
  1821. #if defined(GGML_SIMD)
  1822. const int np = (n & ~(GGML_F16_STEP - 1));
  1823. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1824. GGML_F16_VEC ax[GGML_F16_ARR];
  1825. GGML_F16_VEC ay[GGML_F16_ARR];
  1826. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1827. for (int j = 0; j < GGML_F16_ARR; j++) {
  1828. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1829. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1830. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1831. }
  1832. }
  1833. // reduce sum0..sum3 to sum0
  1834. GGML_F16_VEC_REDUCE(sumf, sum);
  1835. // leftovers
  1836. for (int i = np; i < n; ++i) {
  1837. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1838. }
  1839. #else
  1840. for (int i = 0; i < n; ++i) {
  1841. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1842. }
  1843. #endif
  1844. *s = sumf;
  1845. }
  1846. static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1847. const int nb = n / QK4_0;
  1848. assert(n % QK4_0 == 0);
  1849. assert(nb % 2 == 0);
  1850. const block_q4_0 * restrict x = vx;
  1851. const block_q4_0 * restrict y = vy;
  1852. float sumf = 0.0;
  1853. #if defined(__ARM_NEON)
  1854. float sum0 = 0.0f;
  1855. float sum1 = 0.0f;
  1856. for (int i = 0; i < nb; i += 2) {
  1857. const block_q4_0 * restrict x0 = &x[i + 0];
  1858. const block_q4_0 * restrict y0 = &y[i + 0];
  1859. const block_q4_0 * restrict x1 = &x[i + 1];
  1860. const block_q4_0 * restrict y1 = &y[i + 1];
  1861. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1862. const int8x16_t s8b = vdupq_n_s8(0x8);
  1863. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1864. const uint8x16_t v1_0 = vld1q_u8(y0->qs);
  1865. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1866. const uint8x16_t v1_1 = vld1q_u8(y1->qs);
  1867. // 4-bit -> 8-bit
  1868. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8(v0_0, m4b));
  1869. const int8x16_t v1_0l = vreinterpretq_s8_u8(vandq_u8(v1_0, m4b));
  1870. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1871. const int8x16_t v1_0h = vreinterpretq_s8_u8(vshrq_n_u8(v1_0, 4));
  1872. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8(v0_1, m4b));
  1873. const int8x16_t v1_1l = vreinterpretq_s8_u8(vandq_u8(v1_1, m4b));
  1874. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1875. const int8x16_t v1_1h = vreinterpretq_s8_u8(vshrq_n_u8(v1_1, 4));
  1876. // sub 8
  1877. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1878. const int8x16_t v1_0ls = vsubq_s8(v1_0l, s8b);
  1879. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1880. const int8x16_t v1_0hs = vsubq_s8(v1_0h, s8b);
  1881. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1882. const int8x16_t v1_1ls = vsubq_s8(v1_1l, s8b);
  1883. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1884. const int8x16_t v1_1hs = vsubq_s8(v1_1h, s8b);
  1885. #if defined(__ARM_FEATURE_DOTPROD)
  1886. // dot product into int32x4_t
  1887. int32x4_t p_0 = vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls);
  1888. int32x4_t p_1 = vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls);
  1889. p_0 = vdotq_s32(p_0, v0_0hs, v1_0hs);
  1890. p_1 = vdotq_s32(p_1, v0_1hs, v1_1hs);
  1891. sum0 += x0->d*y0->d*vaddvq_s32(p_0);
  1892. sum1 += x1->d*y1->d*vaddvq_s32(p_1);
  1893. #else
  1894. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  1895. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  1896. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  1897. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  1898. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  1899. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  1900. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  1901. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  1902. const int16x8_t pl_0 = vaddq_s16(pl0l, pl0h);
  1903. const int16x8_t ph_0 = vaddq_s16(ph0l, ph0h);
  1904. const int16x8_t pl_1 = vaddq_s16(pl1l, pl1h);
  1905. const int16x8_t ph_1 = vaddq_s16(ph1l, ph1h);
  1906. const int16x8_t p_0 = vaddq_s16(pl_0, ph_0);
  1907. const int16x8_t p_1 = vaddq_s16(pl_1, ph_1);
  1908. sum0 += x0->d*y0->d*vaddvq_s16(p_0);
  1909. sum1 += x1->d*y1->d*vaddvq_s16(p_1);
  1910. #endif
  1911. }
  1912. sumf = sum0 + sum1;
  1913. #elif defined(__AVX512F__)
  1914. // Initialize accumulator with zeros
  1915. __m512 acc0 = _mm512_setzero_ps();
  1916. __m512 acc1 = _mm512_setzero_ps();
  1917. const int superblock_size = 16;
  1918. const int superblock_count = nb / superblock_size;
  1919. for (int superblock_ix = 0; superblock_ix < superblock_count; superblock_ix += 1) {
  1920. int i = superblock_ix * superblock_size;
  1921. acc0 = dot_q4_0_twoblocks_avx512( acc0, x, y, i+0 );
  1922. acc1 = dot_q4_0_twoblocks_avx512( acc1, x, y, i+2 );
  1923. acc0 = dot_q4_0_twoblocks_avx512( acc0, x, y, i+4 );
  1924. acc1 = dot_q4_0_twoblocks_avx512( acc1, x, y, i+6 );
  1925. acc0 = dot_q4_0_twoblocks_avx512( acc0, x, y, i+8 );
  1926. acc1 = dot_q4_0_twoblocks_avx512( acc1, x, y, i+10 );
  1927. acc0 = dot_q4_0_twoblocks_avx512( acc0, x, y, i+12 );
  1928. acc1 = dot_q4_0_twoblocks_avx512( acc1, x, y, i+14 );
  1929. }
  1930. // Remainders
  1931. for (int i = superblock_count * superblock_size; i < nb; i += 2) {
  1932. acc0 = dot_q4_0_twoblocks_avx512( acc0, x, y, i );
  1933. }
  1934. // Horizontal sum of all lanes of the accumulator
  1935. sumf = _mm512_reduce_add_ps( acc0 ) + _mm512_reduce_add_ps( acc1 );
  1936. #elif defined(__AVX2__)
  1937. // Initialize accumulator with zeros
  1938. __m256 acc = _mm256_setzero_ps();
  1939. /* Prepare the constants we will need during execution */
  1940. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  1941. const __m256i offset_8 = _mm256_set1_epi16( 8 );
  1942. #define UNROLL_COUNT 8
  1943. // make sure we only unroll multiples of the block count
  1944. assert(nb % UNROLL_COUNT == 0);
  1945. // Main loop
  1946. for (int i = 0; i < nb; i+=UNROLL_COUNT) {
  1947. // This loop will be unrolled by the compiler
  1948. for (int u=0;u<UNROLL_COUNT;u++) {
  1949. /* Compute combined scale for the block */
  1950. const __m256 scale = _mm256_mul_ps(
  1951. _mm256_broadcast_ss( &x[i+u].d ),
  1952. _mm256_broadcast_ss( &y[i+u].d ) );
  1953. /* get input from x
  1954. Input: 32 Nibbles (16 bytes) at *x[i+u]
  1955. Output: 2 vectors with 16 values of type int16_t (x_high_q, x_low_q) */
  1956. /* Load 16 bytes from memory */
  1957. const __m128i tmp_x = _mm_loadu_si128( ( const __m128i* ) x[i+u].qs);
  1958. /* Expand bytes into uint16_t values */
  1959. const __m256i bytes_x = _mm256_cvtepu8_epi16(tmp_x);
  1960. /* Unpack values into individual bytes */
  1961. __m256i x_low_q = _mm256_and_si256( lowMask, bytes_x );
  1962. const __m256i pre_shift_x_high_q = _mm256_andnot_si256( lowMask, bytes_x );
  1963. __m256i x_high_q = _mm256_srli_epi16( pre_shift_x_high_q, 4 );
  1964. /* Now we have two vectors with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. */
  1965. x_high_q = _mm256_sub_epi16( x_high_q, offset_8 );
  1966. x_low_q = _mm256_sub_epi16( x_low_q, offset_8 );
  1967. /* get input from y
  1968. Input: 32 Nibbles (16 bytes) at *y[i+u]
  1969. Output: 2 vectors with 16 values of type int16_t (y_high_q, y_low_q) */
  1970. /* Load 16 bytes from memory */
  1971. const __m128i tmp_y = _mm_loadu_si128( (const __m128i* ) y[i+u].qs);
  1972. /* Expand bytes into uint16_t values */
  1973. const __m256i bytes_y = _mm256_cvtepu8_epi16(tmp_y);
  1974. /* Unpack values into individual bytes */
  1975. const __m256i pre_shift_y_high_q = _mm256_andnot_si256( lowMask, bytes_y );
  1976. __m256i y_high_q = _mm256_srli_epi16( pre_shift_y_high_q, 4 );
  1977. __m256i y_low_q = _mm256_and_si256( lowMask, bytes_y );
  1978. /* Now we have two vectors with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. */
  1979. y_high_q = _mm256_sub_epi16( y_high_q, offset_8 );
  1980. y_low_q = _mm256_sub_epi16( y_low_q, offset_8 );
  1981. /* Compute products of int16_t integers, add pairwise, store as int32_t */
  1982. __m256i xy_high_q = _mm256_madd_epi16( x_high_q, y_high_q );
  1983. __m256i xy_low_q = _mm256_madd_epi16( x_low_q, y_low_q );
  1984. /* Accumulate the products of int32_t integers -> we now have a vector of 8 int_32t */
  1985. __m256i xy_q = _mm256_add_epi32( xy_high_q, xy_low_q );
  1986. /* Convert to vectore of 8 int32_t to 8 floats */
  1987. __m256 q = _mm256_cvtepi32_ps( xy_q );
  1988. /* Multiply q with scale and accumulate */
  1989. acc = _mm256_fmadd_ps( scale, q, acc );
  1990. }
  1991. }
  1992. // Return horizontal sum of the acc vector
  1993. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1994. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1995. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1996. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1997. sumf = _mm_cvtss_f32( res );
  1998. #elif defined(__AVX__)
  1999. // Initialize accumulator with zeros
  2000. __m256 acc = _mm256_setzero_ps();
  2001. // Main loop
  2002. for (int i = 0; i < nb; ++i) {
  2003. // Compute combined scale for the block
  2004. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2005. __m128i i32[2];
  2006. for (int j = 0; j < 2; ++j) {
  2007. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  2008. __m128i bx = bytesFromNibbles( x[i].qs + 8*j );
  2009. __m128i by = bytesFromNibbles( y[i].qs + 8*j );
  2010. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2011. const __m128i off = _mm_set1_epi8( 8 );
  2012. bx = _mm_sub_epi8( bx, off );
  2013. by = _mm_sub_epi8( by, off );
  2014. // Get absolute values of x vectors
  2015. const __m128i ax = _mm_sign_epi8(bx, bx);
  2016. // Sign the values of the y vectors
  2017. const __m128i sy = _mm_sign_epi8(by, bx);
  2018. // Perform multiplication and create 16-bit values
  2019. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  2020. const __m128i ones = _mm_set1_epi16(1);
  2021. i32[j] = _mm_madd_epi16(ones, dot);
  2022. }
  2023. // Convert int32_t to float
  2024. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  2025. // Apply the scale, and accumulate
  2026. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2027. }
  2028. // Return horizontal sum of the acc vector
  2029. __m128 res = _mm256_extractf128_ps( acc, 1 );
  2030. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  2031. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  2032. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  2033. sumf = _mm_cvtss_f32( res );
  2034. #elif defined(__wasm_simd128__)
  2035. // wasm simd
  2036. float sum0 = 0.0f;
  2037. float sum1 = 0.0f;
  2038. for (int i = 0; i < nb; i += 2) {
  2039. const block_q4_0 * restrict x0 = &x[i + 0];
  2040. const block_q4_0 * restrict y0 = &y[i + 0];
  2041. const block_q4_0 * restrict x1 = &x[i + 1];
  2042. const block_q4_0 * restrict y1 = &y[i + 1];
  2043. const v128_t m4b = wasm_u8x16_splat(0xf);
  2044. const v128_t s8b = wasm_i8x16_splat(0x8);
  2045. const v128_t v0_0 = wasm_v128_load(x0->qs);
  2046. const v128_t v0_1 = wasm_v128_load(y0->qs);
  2047. const v128_t v1_0 = wasm_v128_load(x1->qs);
  2048. const v128_t v1_1 = wasm_v128_load(y1->qs);
  2049. // 4-bit -> 8-bit
  2050. const v128_t v0_0l = wasm_v128_and(v0_0, m4b);
  2051. const v128_t v1_0l = wasm_v128_and(v1_0, m4b);
  2052. const v128_t v0_0h = wasm_u8x16_shr(v0_0, 4);
  2053. const v128_t v1_0h = wasm_u8x16_shr(v1_0, 4);
  2054. const v128_t v0_1l = wasm_v128_and(v0_1, m4b);
  2055. const v128_t v1_1l = wasm_v128_and(v1_1, m4b);
  2056. const v128_t v0_1h = wasm_u8x16_shr(v0_1, 4);
  2057. const v128_t v1_1h = wasm_u8x16_shr(v1_1, 4);
  2058. // sub 8
  2059. const v128_t v0_0ls = wasm_i8x16_sub(v0_0l, s8b);
  2060. const v128_t v1_0ls = wasm_i8x16_sub(v1_0l, s8b);
  2061. const v128_t v0_0hs = wasm_i8x16_sub(v0_0h, s8b);
  2062. const v128_t v1_0hs = wasm_i8x16_sub(v1_0h, s8b);
  2063. const v128_t v0_1ls = wasm_i8x16_sub(v0_1l, s8b);
  2064. const v128_t v1_1ls = wasm_i8x16_sub(v1_1l, s8b);
  2065. const v128_t v0_1hs = wasm_i8x16_sub(v0_1h, s8b);
  2066. const v128_t v1_1hs = wasm_i8x16_sub(v1_1h, s8b);
  2067. // dot product into int16x8_t
  2068. const v128_t pl0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0ls), wasm_i16x8_extend_low_i8x16(v1_0ls));
  2069. const v128_t pl0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0ls), wasm_i16x8_extend_high_i8x16(v1_0ls));
  2070. const v128_t ph0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0hs), wasm_i16x8_extend_low_i8x16(v1_0hs));
  2071. const v128_t ph0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0hs), wasm_i16x8_extend_high_i8x16(v1_0hs));
  2072. const v128_t pl1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1ls), wasm_i16x8_extend_low_i8x16(v1_1ls));
  2073. const v128_t pl1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1ls), wasm_i16x8_extend_high_i8x16(v1_1ls));
  2074. const v128_t ph1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1hs), wasm_i16x8_extend_low_i8x16(v1_1hs));
  2075. const v128_t ph1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1hs), wasm_i16x8_extend_high_i8x16(v1_1hs));
  2076. const v128_t pl_0 = wasm_i16x8_add(pl0l, pl0h);
  2077. const v128_t ph_0 = wasm_i16x8_add(ph0l, ph0h);
  2078. const v128_t pl_1 = wasm_i16x8_add(pl1l, pl1h);
  2079. const v128_t ph_1 = wasm_i16x8_add(ph1l, ph1h);
  2080. const v128_t p_0 = wasm_i16x8_add(pl_0, ph_0);
  2081. const v128_t p_1 = wasm_i16x8_add(pl_1, ph_1);
  2082. sum0 += x0->d * y0->d * (
  2083. wasm_i16x8_extract_lane(p_0, 0) + wasm_i16x8_extract_lane(p_0, 1) +
  2084. wasm_i16x8_extract_lane(p_0, 2) + wasm_i16x8_extract_lane(p_0, 3) +
  2085. wasm_i16x8_extract_lane(p_0, 4) + wasm_i16x8_extract_lane(p_0, 5) +
  2086. wasm_i16x8_extract_lane(p_0, 6) + wasm_i16x8_extract_lane(p_0, 7));
  2087. sum1 += x1->d * y1->d * (
  2088. wasm_i16x8_extract_lane(p_1, 0) + wasm_i16x8_extract_lane(p_1, 1) +
  2089. wasm_i16x8_extract_lane(p_1, 2) + wasm_i16x8_extract_lane(p_1, 3) +
  2090. wasm_i16x8_extract_lane(p_1, 4) + wasm_i16x8_extract_lane(p_1, 5) +
  2091. wasm_i16x8_extract_lane(p_1, 6) + wasm_i16x8_extract_lane(p_1, 7));
  2092. }
  2093. sumf = sum0 + sum1;
  2094. #else
  2095. // scalar
  2096. for (int i = 0; i < nb; i++) {
  2097. const float d0 = x[i].d;
  2098. const float d1 = y[i].d;
  2099. const uint8_t * restrict p0 = x[i].qs;
  2100. const uint8_t * restrict p1 = y[i].qs;
  2101. int sumi = 0;
  2102. for (int j = 0; j < QK4_0/2; j++) {
  2103. const uint8_t v0 = p0[j];
  2104. const uint8_t v1 = p1[j];
  2105. const int i0 = (v0 & 0xf) - 8;
  2106. const int i1 = (v0 >> 4) - 8;
  2107. const int i2 = (v1 & 0xf) - 8;
  2108. const int i3 = (v1 >> 4) - 8;
  2109. sumi += i0*i2 + i1*i3;
  2110. }
  2111. sumf += d0 * d1 * sumi;
  2112. }
  2113. #endif
  2114. *s = sumf;
  2115. }
  2116. static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2117. const int nb = n / QK4_1;
  2118. const block_q4_1 * restrict x = vx;
  2119. const block_q4_1 * restrict y = vy;
  2120. float sumf = 0.0;
  2121. #if defined(__AVX2__)
  2122. // Initialize accumulator with zeros
  2123. __m256 acc = _mm256_setzero_ps();
  2124. // Accumulator for constant offsets
  2125. float acc_offset = 0.0f;
  2126. // Main loop
  2127. for (int i = 0; i < nb; ++i) {
  2128. const float * d0 = &x[i].d;
  2129. const float * d1 = &y[i].d;
  2130. const float * m0 = &x[i].m;
  2131. const float * m1 = &y[i].m;
  2132. const __m256 d0v = _mm256_broadcast_ss( d0 );
  2133. const __m256 d1v = _mm256_broadcast_ss( d1 );
  2134. const __m256 m0v = _mm256_broadcast_ss( m0 );
  2135. const __m256 m1v = _mm256_broadcast_ss( m1 );
  2136. // Compute combined scale for the block
  2137. const __m256 scale_01 = _mm256_mul_ps( d0v, d1v );
  2138. // Compute cross scales for the block
  2139. const __m256 scale_0 = _mm256_mul_ps( d0v, m1v );
  2140. const __m256 scale_1 = _mm256_mul_ps( m0v, d1v );
  2141. const __m256 cross_scales = _mm256_blend_ps( scale_0, scale_1, 0xAA /* 0b10101010 */ );
  2142. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2143. __m256i bx = bytesFromNibbles( x[i].qs );
  2144. __m256i by = bytesFromNibbles( y[i].qs );
  2145. // Now we have a vector with bytes in [ 0 .. 15 ] interval.
  2146. // Sign-extend first 16 signed bytes into int16_t
  2147. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  2148. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  2149. // Compute products of int16_t integers, add pairwise
  2150. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  2151. // Sign-extend last 16 signed bytes into int16_t vectors
  2152. __m256i x16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  2153. __m256i y16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  2154. // Accumulate products of int16_t integers
  2155. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16_h, y16_h ) );
  2156. // compute sums of unsigned bytes in bx, by in blocks of 8.
  2157. // This results in a layout like X100 0000 X200 0000 X300 0000 X400 0000,
  2158. // which we then interleave as X100 Y100 X200 Y200 X300 Y300 X400 Y400.
  2159. // so if we then cast to 8 singles, we get 8 floats like [ x0_7, y0_7, x8_15, y8_15, x16_23, y16_23, x24_31, y24_31 ]
  2160. __m256i xsumi = _mm256_sad_epu8( bx, _mm256_setzero_si256() );
  2161. __m256i ysumi = _mm256_sad_epu8( by, _mm256_setzero_si256() );
  2162. __m256i sumsi = _mm256_or_si256( xsumi, _mm256_slli_si256( ysumi, 4 ) );
  2163. __m256 sums = _mm256_cvtepi32_ps( sumsi );
  2164. // Convert int32_t to float
  2165. __m256 p = _mm256_cvtepi32_ps( i32 );
  2166. // Apply the scale, and accumulate
  2167. // acc += d0*d1*x*y + d0*m1*x + d1*m0*y
  2168. acc = _mm256_fmadd_ps( scale_01, p, acc );
  2169. acc = _mm256_fmadd_ps( cross_scales, sums, acc );
  2170. // acc_offset += m0*m1 (for each entry in the block)
  2171. acc_offset += (*m0)*(*m1);
  2172. }
  2173. // Return horizontal sum of the acc vector
  2174. __m128 res = _mm256_extractf128_ps( acc, 1 );
  2175. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  2176. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  2177. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  2178. sumf = _mm_cvtss_f32( res ) + acc_offset * QK4_1;
  2179. #elif defined(__ARM_NEON)
  2180. float sum00 = 0.0f;
  2181. float sum01 = 0.0f;
  2182. float sum10 = 0.0f;
  2183. float sum11 = 0.0f;
  2184. for (int i = 0; i < nb; i += 2) {
  2185. const block_q4_1 * restrict x0 = &x[i + 0];
  2186. const block_q4_1 * restrict y0 = &y[i + 0];
  2187. const block_q4_1 * restrict x1 = &x[i + 1];
  2188. const block_q4_1 * restrict y1 = &y[i + 1];
  2189. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2190. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2191. const uint8x16_t v1_0 = vld1q_u8(y0->qs);
  2192. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2193. const uint8x16_t v1_1 = vld1q_u8(y1->qs);
  2194. // 4-bit -> 8-bit
  2195. const uint8x16_t v0_0l = vandq_u8(v0_0, m4b);
  2196. const uint8x16_t v1_0l = vandq_u8(v1_0, m4b);
  2197. const uint8x16_t v0_0h = vshrq_n_u8(v0_0, 4);
  2198. const uint8x16_t v1_0h = vshrq_n_u8(v1_0, 4);
  2199. const uint8x16_t v0_1l = vandq_u8(v0_1, m4b);
  2200. const uint8x16_t v1_1l = vandq_u8(v1_1, m4b);
  2201. const uint8x16_t v0_1h = vshrq_n_u8(v0_1, 4);
  2202. const uint8x16_t v1_1h = vshrq_n_u8(v1_1, 4);
  2203. sum00 += x0->m*y0->m;
  2204. sum01 += y0->m*x0->d*((uint16_t)vaddvq_u8(v0_0l) + (uint16_t)vaddvq_u8(v0_0h));
  2205. sum10 += x0->m*y0->d*((uint16_t)vaddvq_u8(v1_0l) + (uint16_t)vaddvq_u8(v1_0h));
  2206. sum00 += x1->m*y1->m;
  2207. sum01 += y1->m*x1->d*((uint16_t)vaddvq_u8(v0_1l) + (uint16_t)vaddvq_u8(v0_1h));
  2208. sum10 += x1->m*y1->d*((uint16_t)vaddvq_u8(v1_1l) + (uint16_t)vaddvq_u8(v1_1h));
  2209. #if defined(__ARM_FEATURE_DOTPROD)
  2210. // dot product into int32x4_t
  2211. uint32x4_t p_0 = vdotq_u32(vdupq_n_u32(0), v0_0l, v1_0l);
  2212. uint32x4_t p_1 = vdotq_u32(vdupq_n_u32(0), v0_1l, v1_1l);
  2213. p_0 = vdotq_u32(p_0, v0_0h, v1_0h);
  2214. p_1 = vdotq_u32(p_1, v0_1h, v1_1h);
  2215. sum11 += x0->d*y0->d*vaddvq_u32(p_0);
  2216. sum11 += x1->d*y1->d*vaddvq_u32(p_1);
  2217. #else
  2218. const uint16x8_t pl0l = vmull_u8(vget_low_u8 (v0_0l), vget_low_u8 (v1_0l));
  2219. const uint16x8_t pl0h = vmull_u8(vget_high_u8(v0_0l), vget_high_u8(v1_0l));
  2220. const uint16x8_t ph0l = vmull_u8(vget_low_u8 (v0_0h), vget_low_u8 (v1_0h));
  2221. const uint16x8_t ph0h = vmull_u8(vget_high_u8(v0_0h), vget_high_u8(v1_0h));
  2222. const uint16x8_t pl1l = vmull_u8(vget_low_u8 (v0_1l), vget_low_u8 (v1_1l));
  2223. const uint16x8_t pl1h = vmull_u8(vget_high_u8(v0_1l), vget_high_u8(v1_1l));
  2224. const uint16x8_t ph1l = vmull_u8(vget_low_u8 (v0_1h), vget_low_u8 (v1_1h));
  2225. const uint16x8_t ph1h = vmull_u8(vget_high_u8(v0_1h), vget_high_u8(v1_1h));
  2226. const uint16x8_t pl_0 = vaddq_u16(pl0l, pl0h);
  2227. const uint16x8_t ph_0 = vaddq_u16(ph0l, ph0h);
  2228. const uint16x8_t pl_1 = vaddq_u16(pl1l, pl1h);
  2229. const uint16x8_t ph_1 = vaddq_u16(ph1l, ph1h);
  2230. const uint16x8_t p_0 = vaddq_u16(pl_0, ph_0);
  2231. const uint16x8_t p_1 = vaddq_u16(pl_1, ph_1);
  2232. sum11 += x0->d*y0->d*vaddvq_u16(p_0);
  2233. sum11 += x1->d*y1->d*vaddvq_u16(p_1);
  2234. #endif
  2235. }
  2236. sumf = QK4_1*sum00 + sum01 + sum10 + sum11;
  2237. #else
  2238. // scalar
  2239. for (int i = 0; i < nb; i++) {
  2240. const float d0 = x[i].d;
  2241. const float d1 = y[i].d;
  2242. const float m0 = x[i].m;
  2243. const float m1 = y[i].m;
  2244. const uint8_t * restrict p0 = x[i].qs;
  2245. const uint8_t * restrict p1 = y[i].qs;
  2246. for (int j = 0; j < QK4_1/2; j++) {
  2247. const uint8_t v0 = p0[j];
  2248. const uint8_t v1 = p1[j];
  2249. const float f0 = d0*(v0 & 0xf) + m0;
  2250. const float f1 = d0*(v0 >> 4) + m0;
  2251. const float f2 = d1*(v1 & 0xf) + m1;
  2252. const float f3 = d1*(v1 >> 4) + m1;
  2253. sumf += f0*f2 + f1*f3;
  2254. }
  2255. }
  2256. #endif
  2257. *s = sumf;
  2258. }
  2259. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2260. const int nb = n / QK8_0;
  2261. assert(n % QK8_0 == 0);
  2262. assert(nb % 2 == 0);
  2263. const block_q4_0 * restrict x = vx;
  2264. const block_q8_0 * restrict y = vy;
  2265. float sumf = 0.0;
  2266. #if defined(__ARM_NEON)
  2267. float sum0 = 0.0f;
  2268. float sum1 = 0.0f;
  2269. for (int i = 0; i < nb; i += 2) {
  2270. const block_q4_0 * restrict x0 = &x[i + 0];
  2271. const block_q4_0 * restrict x1 = &x[i + 1];
  2272. const block_q8_0 * restrict y0 = &y[i + 0];
  2273. const block_q8_0 * restrict y1 = &y[i + 1];
  2274. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2275. const int8x16_t s8b = vdupq_n_s8(0x8);
  2276. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2277. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2278. // 4-bit -> 8-bit
  2279. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2280. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2281. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2282. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2283. // sub 8
  2284. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2285. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2286. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2287. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2288. // load y
  2289. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2290. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2291. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2292. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2293. // interleave
  2294. const int8x16_t v1_0ls = vuzp1q_s8(v1_0l, v1_0h);
  2295. const int8x16_t v1_0hs = vuzp2q_s8(v1_0l, v1_0h);
  2296. const int8x16_t v1_1ls = vuzp1q_s8(v1_1l, v1_1h);
  2297. const int8x16_t v1_1hs = vuzp2q_s8(v1_1l, v1_1h);
  2298. #if defined(__ARM_FEATURE_DOTPROD)
  2299. // dot product into int32x4_t
  2300. int32x4_t p_0 = vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls);
  2301. int32x4_t p_1 = vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls);
  2302. p_0 = vdotq_s32(p_0, v0_0hs, v1_0hs);
  2303. p_1 = vdotq_s32(p_1, v0_1hs, v1_1hs);
  2304. sum0 += x0->d*y0->d*vaddvq_s32(p_0);
  2305. sum1 += x1->d*y1->d*vaddvq_s32(p_1);
  2306. #else
  2307. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  2308. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  2309. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  2310. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  2311. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  2312. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  2313. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  2314. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  2315. const int16x8_t pl_0 = vaddq_s16(pl0l, pl0h);
  2316. const int16x8_t ph_0 = vaddq_s16(ph0l, ph0h);
  2317. const int16x8_t pl_1 = vaddq_s16(pl1l, pl1h);
  2318. const int16x8_t ph_1 = vaddq_s16(ph1l, ph1h);
  2319. const int16x8_t p_0 = vaddq_s16(pl_0, ph_0);
  2320. const int16x8_t p_1 = vaddq_s16(pl_1, ph_1);
  2321. sum0 += x0->d*y0->d*vaddvq_s16(p_0);
  2322. sum1 += x1->d*y1->d*vaddvq_s16(p_1);
  2323. #endif
  2324. }
  2325. sumf = sum0 + sum1;
  2326. #elif defined(__AVX2__)
  2327. // Initialize accumulator with zeros
  2328. __m256 acc = _mm256_setzero_ps();
  2329. // Main loop
  2330. for (int i = 0; i < nb; ++i) {
  2331. /* Compute combined scale for the block */
  2332. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2333. __m256i bx = bytesFromNibbles(x[i].qs);
  2334. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2335. const __m256i off = _mm256_set1_epi8( 8 );
  2336. bx = _mm256_sub_epi8( bx, off );
  2337. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2338. // Get absolute values of x vectors
  2339. const __m256i ax = _mm256_sign_epi8(bx, bx);
  2340. // Sign the values of the y vectors
  2341. const __m256i sy = _mm256_sign_epi8(by, bx);
  2342. // Perform multiplication and create 16-bit values
  2343. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  2344. const __m256i ones = _mm256_set1_epi16(1);
  2345. __m256i xy_q = _mm256_madd_epi16(ones, dot);
  2346. /* Convert to vectore of 8 int32_t to 8 floats */
  2347. __m256 q = _mm256_cvtepi32_ps( xy_q );
  2348. /* Multiply q with scale and accumulate */
  2349. acc = _mm256_fmadd_ps( d, q, acc );
  2350. }
  2351. // Return horizontal sum of the acc vector
  2352. __m128 res = _mm256_extractf128_ps( acc, 1 );
  2353. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  2354. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  2355. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  2356. sumf = _mm_cvtss_f32( res );
  2357. #elif defined(__AVX__)
  2358. // Initialize accumulator with zeros
  2359. __m256 acc = _mm256_setzero_ps();
  2360. // Main loop
  2361. for (int i = 0; i < nb; ++i) {
  2362. // Compute combined scale for the block
  2363. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2364. __m128i i32[2];
  2365. for (int j = 0; j < 2; ++j) {
  2366. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  2367. __m128i bx = bytesFromNibbles( x[i].qs + 8*j );
  2368. __m128i by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16*j));
  2369. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2370. const __m128i off = _mm_set1_epi8( 8 );
  2371. bx = _mm_sub_epi8( bx, off );
  2372. // Get absolute values of x vectors
  2373. const __m128i ax = _mm_sign_epi8(bx, bx);
  2374. // Sign the values of the y vectors
  2375. const __m128i sy = _mm_sign_epi8(by, bx);
  2376. // Perform multiplication and create 16-bit values
  2377. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  2378. const __m128i ones = _mm_set1_epi16(1);
  2379. i32[j] = _mm_madd_epi16(ones, dot);
  2380. }
  2381. // Convert int32_t to float
  2382. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  2383. // Apply the scale, and accumulate
  2384. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2385. }
  2386. // Return horizontal sum of the acc vector
  2387. __m128 res = _mm256_extractf128_ps( acc, 1 );
  2388. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  2389. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  2390. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  2391. sumf = _mm_cvtss_f32( res );
  2392. #else
  2393. // scalar
  2394. for (int i = 0; i < nb; i++) {
  2395. const float d0 = x[i].d;
  2396. const float d1 = y[i].d;
  2397. const uint8_t * restrict p0 = x[i].qs;
  2398. const int8_t * restrict p1 = y[i].qs;
  2399. int sumi = 0;
  2400. for (int j = 0; j < QK8_0/2; j++) {
  2401. const uint8_t v0 = p0[j];
  2402. const int i0 = (int8_t) (v0 & 0xf) - 8;
  2403. const int i1 = (int8_t) (v0 >> 4) - 8;
  2404. const int i2 = p1[2*j + 0];
  2405. const int i3 = p1[2*j + 1];
  2406. sumi += i0*i2 + i1*i3;
  2407. }
  2408. sumf += d0*d1*sumi;
  2409. }
  2410. #endif
  2411. *s = sumf;
  2412. }
  2413. // compute GGML_VEC_DOT_UNROLL dot products at once
  2414. // xs - x row stride in bytes
  2415. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2416. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2417. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2418. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2419. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2420. }
  2421. #if defined(GGML_SIMD)
  2422. const int np = (n & ~(GGML_F16_STEP - 1));
  2423. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2424. GGML_F16_VEC ax[GGML_F16_ARR];
  2425. GGML_F16_VEC ay[GGML_F16_ARR];
  2426. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2427. for (int j = 0; j < GGML_F16_ARR; j++) {
  2428. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2429. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2430. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2431. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2432. }
  2433. }
  2434. }
  2435. // reduce sum0..sum3 to sum0
  2436. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2437. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2438. }
  2439. // leftovers
  2440. for (int i = np; i < n; ++i) {
  2441. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2442. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2443. }
  2444. }
  2445. #else
  2446. for (int i = 0; i < n; ++i) {
  2447. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2448. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2449. }
  2450. }
  2451. #endif
  2452. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2453. s[i] = sumf[i];
  2454. }
  2455. }
  2456. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2457. #if defined(GGML_SIMD)
  2458. const int np = (n & ~(GGML_F32_STEP - 1));
  2459. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2460. GGML_F32_VEC ax[GGML_F32_ARR];
  2461. GGML_F32_VEC ay[GGML_F32_ARR];
  2462. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2463. for (int j = 0; j < GGML_F32_ARR; j++) {
  2464. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2465. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2466. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2467. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2468. }
  2469. }
  2470. // leftovers
  2471. for (int i = np; i < n; ++i) {
  2472. y[i] += x[i]*v;
  2473. }
  2474. #else
  2475. // scalar
  2476. for (int i = 0; i < n; ++i) {
  2477. y[i] += x[i]*v;
  2478. }
  2479. #endif
  2480. }
  2481. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2482. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2483. #if defined(GGML_SIMD)
  2484. const int np = (n & ~(GGML_F32_STEP - 1));
  2485. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2486. GGML_F32_VEC ay[GGML_F32_ARR];
  2487. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2488. for (int j = 0; j < GGML_F32_ARR; j++) {
  2489. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2490. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2491. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2492. }
  2493. }
  2494. // leftovers
  2495. for (int i = np; i < n; ++i) {
  2496. y[i] *= v;
  2497. }
  2498. #else
  2499. // scalar
  2500. for (int i = 0; i < n; ++i) {
  2501. y[i] *= v;
  2502. }
  2503. #endif
  2504. }
  2505. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2506. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2507. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2508. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2509. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2510. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2511. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2512. static const float GELU_COEF_A = 0.044715f;
  2513. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2514. inline static float ggml_gelu_f32(float x) {
  2515. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2516. }
  2517. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2518. const uint16_t * i16 = (const uint16_t *) x;
  2519. for (int i = 0; i < n; ++i) {
  2520. y[i] = table_gelu_f16[i16[i]];
  2521. }
  2522. }
  2523. #ifdef GGML_GELU_FP16
  2524. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2525. uint16_t t;
  2526. for (int i = 0; i < n; ++i) {
  2527. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2528. memcpy(&t, &fp16, sizeof(uint16_t));
  2529. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2530. }
  2531. }
  2532. #else
  2533. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2534. for (int i = 0; i < n; ++i) {
  2535. y[i] = ggml_gelu_f32(x[i]);
  2536. }
  2537. }
  2538. #endif
  2539. // Sigmoid Linear Unit (SiLU) function
  2540. inline static float ggml_silu_f32(float x) {
  2541. return x/(1.0f + expf(-x));
  2542. }
  2543. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2544. const uint16_t * i16 = (const uint16_t *) x;
  2545. for (int i = 0; i < n; ++i) {
  2546. y[i] = table_silu_f16[i16[i]];
  2547. }
  2548. }
  2549. #ifdef GGML_SILU_FP16
  2550. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2551. uint16_t t;
  2552. for (int i = 0; i < n; ++i) {
  2553. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2554. memcpy(&t, &fp16, sizeof(uint16_t));
  2555. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2556. }
  2557. }
  2558. #else
  2559. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2560. for (int i = 0; i < n; ++i) {
  2561. y[i] = ggml_silu_f32(x[i]);
  2562. }
  2563. }
  2564. #endif
  2565. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2566. #ifndef GGML_USE_ACCELERATE
  2567. ggml_float sum = 0.0;
  2568. for (int i = 0; i < n; ++i) {
  2569. sum += (ggml_float)x[i];
  2570. }
  2571. *s = sum;
  2572. #else
  2573. vDSP_sve(x, 1, s, n);
  2574. #endif
  2575. }
  2576. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2577. #ifndef GGML_USE_ACCELERATE
  2578. float max = -INFINITY;
  2579. for (int i = 0; i < n; ++i) {
  2580. max = MAX(max, x[i]);
  2581. }
  2582. *s = max;
  2583. #else
  2584. vDSP_maxv(x, 1, s, n);
  2585. #endif
  2586. }
  2587. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2588. ggml_vec_norm_f32(n, s, x);
  2589. *s = 1.f/(*s);
  2590. }
  2591. //
  2592. // logging
  2593. //
  2594. #if (GGML_DEBUG >= 1)
  2595. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2596. #else
  2597. #define GGML_PRINT_DEBUG(...)
  2598. #endif
  2599. #if (GGML_DEBUG >= 5)
  2600. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2601. #else
  2602. #define GGML_PRINT_DEBUG_5(...)
  2603. #endif
  2604. #if (GGML_DEBUG >= 10)
  2605. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2606. #else
  2607. #define GGML_PRINT_DEBUG_10(...)
  2608. #endif
  2609. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2610. //
  2611. // data types
  2612. //
  2613. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2614. [GGML_TYPE_F32] = 1,
  2615. [GGML_TYPE_F16] = 1,
  2616. [GGML_TYPE_Q4_0] = QK4_0,
  2617. [GGML_TYPE_Q4_1] = QK4_1,
  2618. [GGML_TYPE_Q8_0] = QK8_0,
  2619. [GGML_TYPE_I8] = 1,
  2620. [GGML_TYPE_I16] = 1,
  2621. [GGML_TYPE_I32] = 1,
  2622. };
  2623. static_assert(GGML_TYPE_COUNT == 8, "GGML_BLCK_SIZE is outdated");
  2624. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2625. [GGML_TYPE_F32] = sizeof(float),
  2626. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2627. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2628. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2629. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2630. [GGML_TYPE_I8] = sizeof(int8_t),
  2631. [GGML_TYPE_I16] = sizeof(int16_t),
  2632. [GGML_TYPE_I32] = sizeof(int32_t),
  2633. };
  2634. static_assert(GGML_TYPE_COUNT == 8, "GGML_TYPE_SIZE is outdated");
  2635. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  2636. [GGML_TYPE_F32] = "f32",
  2637. [GGML_TYPE_F16] = "f16",
  2638. [GGML_TYPE_Q4_0] = "q4_0",
  2639. [GGML_TYPE_Q4_1] = "q4_1",
  2640. [GGML_TYPE_Q8_0] = "q8_0",
  2641. [GGML_TYPE_I8] = "i8",
  2642. [GGML_TYPE_I16] = "i16",
  2643. [GGML_TYPE_I32] = "i32",
  2644. };
  2645. static_assert(GGML_TYPE_COUNT == 8, "GGML_TYPE_NAME is outdated");
  2646. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  2647. "NONE",
  2648. "DUP",
  2649. "ADD",
  2650. "SUB",
  2651. "MUL",
  2652. "DIV",
  2653. "SQR",
  2654. "SQRT",
  2655. "SUM",
  2656. "MEAN",
  2657. "REPEAT",
  2658. "ABS",
  2659. "SGN",
  2660. "NEG",
  2661. "STEP",
  2662. "RELU",
  2663. "GELU",
  2664. "SILU",
  2665. "NORM",
  2666. "RMS_NORM",
  2667. "MUL_MAT",
  2668. "SCALE",
  2669. "CPY",
  2670. "CONT",
  2671. "RESHAPE",
  2672. "VIEW",
  2673. "PERMUTE",
  2674. "TRANSPOSE",
  2675. "GET_ROWS",
  2676. "DIAG_MASK_INF",
  2677. "SOFT_MAX",
  2678. "ROPE",
  2679. "CONV_1D_1S",
  2680. "CONV_1D_2S",
  2681. "FLASH_ATTN",
  2682. "FLASH_FF",
  2683. "MAP_UNARY",
  2684. "MAP_BINARY",
  2685. };
  2686. static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38");
  2687. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2688. "none",
  2689. "x",
  2690. "x+y",
  2691. "x-y",
  2692. "x*y",
  2693. "x/y",
  2694. "x^2",
  2695. "√x",
  2696. "Σx",
  2697. "Σx/n",
  2698. "repeat(x)",
  2699. "abs(x)",
  2700. "sgn(x)",
  2701. "-x",
  2702. "step(x)",
  2703. "relu(x)",
  2704. "gelu(x)",
  2705. "silu(x)",
  2706. "norm(x)",
  2707. "rms_norm(x)",
  2708. "X*Y",
  2709. "x*v",
  2710. "x-\\>y",
  2711. "cont(x)",
  2712. "reshape(x)",
  2713. "view(x)",
  2714. "permute(x)",
  2715. "transpose(x)",
  2716. "get_rows(x)",
  2717. "diag_mask_inf(x)",
  2718. "soft_max(x)",
  2719. "rope(x)",
  2720. "conv_1d_1s(x)",
  2721. "conv_1d_2s(x)",
  2722. "flash_attn(x)",
  2723. "flash_ff(x)",
  2724. "f(x)",
  2725. "f(x,y)",
  2726. };
  2727. static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38");
  2728. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2729. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2730. //
  2731. // ggml context
  2732. //
  2733. struct ggml_context {
  2734. size_t mem_size;
  2735. void * mem_buffer;
  2736. bool mem_buffer_owned;
  2737. bool no_alloc;
  2738. int n_objects;
  2739. struct ggml_object * objects_begin;
  2740. struct ggml_object * objects_end;
  2741. struct ggml_scratch scratch;
  2742. struct ggml_scratch scratch_save;
  2743. };
  2744. struct ggml_context_container {
  2745. bool used;
  2746. struct ggml_context context;
  2747. };
  2748. //
  2749. // compute types
  2750. //
  2751. enum ggml_task_type {
  2752. GGML_TASK_INIT = 0,
  2753. GGML_TASK_COMPUTE,
  2754. GGML_TASK_FINALIZE,
  2755. };
  2756. struct ggml_compute_params {
  2757. enum ggml_task_type type;
  2758. int ith, nth;
  2759. // work buffer for all threads
  2760. size_t wsize;
  2761. void * wdata;
  2762. };
  2763. //
  2764. // ggml state
  2765. //
  2766. struct ggml_state {
  2767. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2768. };
  2769. // global state
  2770. static struct ggml_state g_state;
  2771. static atomic_int g_state_barrier = 0;
  2772. // barrier via spin lock
  2773. inline static void ggml_critical_section_start(void) {
  2774. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2775. while (processing > 0) {
  2776. // wait for other threads to finish
  2777. atomic_fetch_sub(&g_state_barrier, 1);
  2778. sched_yield(); // TODO: reconsider this
  2779. processing = atomic_fetch_add(&g_state_barrier, 1);
  2780. }
  2781. }
  2782. // TODO: make this somehow automatically executed
  2783. // some sort of "sentry" mechanism
  2784. inline static void ggml_critical_section_end(void) {
  2785. atomic_fetch_sub(&g_state_barrier, 1);
  2786. }
  2787. ////////////////////////////////////////////////////////////////////////////////
  2788. void ggml_print_object(const struct ggml_object * obj) {
  2789. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  2790. obj->offs, obj->size, (const void *) obj->next);
  2791. }
  2792. void ggml_print_objects(const struct ggml_context * ctx) {
  2793. struct ggml_object * obj = ctx->objects_begin;
  2794. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2795. while (obj != NULL) {
  2796. ggml_print_object(obj);
  2797. obj = obj->next;
  2798. }
  2799. GGML_PRINT("%s: --- end ---\n", __func__);
  2800. }
  2801. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2802. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2803. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2804. }
  2805. int ggml_nrows(const struct ggml_tensor * tensor) {
  2806. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2807. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2808. }
  2809. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2810. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2811. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  2812. }
  2813. int ggml_blck_size(enum ggml_type type) {
  2814. return GGML_BLCK_SIZE[type];
  2815. }
  2816. size_t ggml_type_size(enum ggml_type type) {
  2817. return GGML_TYPE_SIZE[type];
  2818. }
  2819. float ggml_type_sizef(enum ggml_type type) {
  2820. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  2821. }
  2822. const char * ggml_type_name(enum ggml_type type) {
  2823. return GGML_TYPE_NAME[type];
  2824. }
  2825. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2826. return GGML_TYPE_SIZE[tensor->type];
  2827. }
  2828. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2829. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2830. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2831. }
  2832. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2833. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2834. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2835. }
  2836. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2837. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2838. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2839. }
  2840. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2841. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2842. return
  2843. (t0->ne[0] == t1->ne[0]) &&
  2844. (t0->ne[2] == t1->ne[2]) &&
  2845. (t0->ne[3] == t1->ne[3]);
  2846. }
  2847. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2848. return tensor->nb[0] > tensor->nb[1];
  2849. }
  2850. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2851. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2852. return
  2853. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2854. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  2855. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2856. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2857. }
  2858. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2859. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2860. return
  2861. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2862. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2863. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2864. }
  2865. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2866. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2867. return
  2868. (t0->ne[0] == t1->ne[0] ) &&
  2869. (t0->ne[1] == t1->ne[1] ) &&
  2870. (t0->ne[2] == t1->ne[2] ) &&
  2871. (t0->ne[3] == t1->ne[3] );
  2872. }
  2873. // check if t1 can be represented as a repeatition of t0
  2874. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2875. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2876. return
  2877. (t1->ne[0]%t0->ne[0] == 0) &&
  2878. (t1->ne[1]%t0->ne[1] == 0) &&
  2879. (t1->ne[2]%t0->ne[2] == 0) &&
  2880. (t1->ne[3]%t0->ne[3] == 0);
  2881. }
  2882. static inline int ggml_up32(int n) {
  2883. return (n + 31) & ~31;
  2884. }
  2885. static inline int ggml_up64(int n) {
  2886. return (n + 63) & ~63;
  2887. }
  2888. static inline int ggml_up(int n, int m) {
  2889. // assert m is a power of 2
  2890. GGML_ASSERT((m & (m - 1)) == 0);
  2891. return (n + m - 1) & ~(m - 1);
  2892. }
  2893. // assert that pointer is aligned to GGML_MEM_ALIGN
  2894. #define ggml_assert_aligned(ptr) \
  2895. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2896. ////////////////////////////////////////////////////////////////////////////////
  2897. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2898. // make this function thread safe
  2899. ggml_critical_section_start();
  2900. static bool is_first_call = true;
  2901. if (is_first_call) {
  2902. // initialize time system (required on Windows)
  2903. ggml_time_init();
  2904. // initialize GELU, SILU and EXP F32 tables
  2905. {
  2906. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2907. ggml_fp16_t ii;
  2908. for (int i = 0; i < (1 << 16); ++i) {
  2909. uint16_t ui = i;
  2910. memcpy(&ii, &ui, sizeof(ii));
  2911. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2912. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2913. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2914. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2915. }
  2916. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2917. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2918. }
  2919. // initialize g_state
  2920. {
  2921. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2922. g_state = (struct ggml_state) {
  2923. /*.contexts =*/ { { 0 } },
  2924. };
  2925. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2926. g_state.contexts[i].used = false;
  2927. }
  2928. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2929. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2930. }
  2931. is_first_call = false;
  2932. }
  2933. // find non-used context in g_state
  2934. struct ggml_context * ctx = NULL;
  2935. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2936. if (!g_state.contexts[i].used) {
  2937. g_state.contexts[i].used = true;
  2938. ctx = &g_state.contexts[i].context;
  2939. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2940. break;
  2941. }
  2942. }
  2943. if (ctx == NULL) {
  2944. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2945. ggml_critical_section_end();
  2946. return NULL;
  2947. }
  2948. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  2949. *ctx = (struct ggml_context) {
  2950. /*.mem_size =*/ mem_size,
  2951. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2952. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2953. /*.no_alloc =*/ params.no_alloc,
  2954. /*.n_objects =*/ 0,
  2955. /*.objects_begin =*/ NULL,
  2956. /*.objects_end =*/ NULL,
  2957. /*.scratch =*/ { 0, 0, NULL, },
  2958. /*.scratch_save =*/ { 0, 0, NULL, },
  2959. };
  2960. GGML_ASSERT(ctx->mem_buffer != NULL);
  2961. ggml_assert_aligned(ctx->mem_buffer);
  2962. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2963. ggml_critical_section_end();
  2964. return ctx;
  2965. }
  2966. void ggml_free(struct ggml_context * ctx) {
  2967. // make this function thread safe
  2968. ggml_critical_section_start();
  2969. bool found = false;
  2970. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2971. if (&g_state.contexts[i].context == ctx) {
  2972. g_state.contexts[i].used = false;
  2973. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  2974. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  2975. if (ctx->mem_buffer_owned) {
  2976. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2977. }
  2978. found = true;
  2979. break;
  2980. }
  2981. }
  2982. if (!found) {
  2983. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2984. }
  2985. ggml_critical_section_end();
  2986. }
  2987. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2988. return ctx->objects_end->offs + ctx->objects_end->size;
  2989. }
  2990. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2991. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2992. ctx->scratch = scratch;
  2993. return result;
  2994. }
  2995. ////////////////////////////////////////////////////////////////////////////////
  2996. struct ggml_tensor * ggml_new_tensor_impl(
  2997. struct ggml_context * ctx,
  2998. enum ggml_type type,
  2999. int n_dims,
  3000. const int64_t* ne,
  3001. void* data) {
  3002. // always insert objects at the end of the context's memory pool
  3003. struct ggml_object * obj_cur = ctx->objects_end;
  3004. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3005. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3006. const size_t cur_end = cur_offs + cur_size;
  3007. size_t size_needed = 0;
  3008. if (data == NULL && !ctx->no_alloc) {
  3009. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3010. for (int i = 1; i < n_dims; i++) {
  3011. size_needed *= ne[i];
  3012. }
  3013. // align to GGML_MEM_ALIGN
  3014. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3015. }
  3016. char * const mem_buffer = ctx->mem_buffer;
  3017. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3018. if (ctx->scratch.data == NULL || data != NULL) {
  3019. size_needed += sizeof(struct ggml_tensor);
  3020. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3021. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3022. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3023. assert(false);
  3024. return NULL;
  3025. }
  3026. *obj_new = (struct ggml_object) {
  3027. .offs = cur_end + GGML_OBJECT_SIZE,
  3028. .size = size_needed,
  3029. .next = NULL,
  3030. };
  3031. } else {
  3032. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3033. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  3034. assert(false);
  3035. return NULL;
  3036. }
  3037. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  3038. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3039. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  3040. assert(false);
  3041. return NULL;
  3042. }
  3043. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3044. *obj_new = (struct ggml_object) {
  3045. .offs = cur_end + GGML_OBJECT_SIZE,
  3046. .size = sizeof(struct ggml_tensor),
  3047. .next = NULL,
  3048. };
  3049. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3050. ctx->scratch.offs += size_needed;
  3051. }
  3052. if (obj_cur != NULL) {
  3053. obj_cur->next = obj_new;
  3054. } else {
  3055. // this is the first object in this context
  3056. ctx->objects_begin = obj_new;
  3057. }
  3058. ctx->objects_end = obj_new;
  3059. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3060. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3061. ggml_assert_aligned(result);
  3062. *result = (struct ggml_tensor) {
  3063. /*.type =*/ type,
  3064. /*.n_dims =*/ n_dims,
  3065. /*.ne =*/ { 1, 1, 1, 1 },
  3066. /*.nb =*/ { 0, 0, 0, 0 },
  3067. /*.op =*/ GGML_OP_NONE,
  3068. /*.is_param =*/ false,
  3069. /*.grad =*/ NULL,
  3070. /*.src0 =*/ NULL,
  3071. /*.src1 =*/ NULL,
  3072. /*.opt =*/ { NULL },
  3073. /*.n_tasks =*/ 0,
  3074. /*.perf_runs =*/ 0,
  3075. /*.perf_cycles =*/ 0,
  3076. /*.perf_time_us =*/ 0,
  3077. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3078. /*.pad =*/ { 0 },
  3079. };
  3080. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3081. //ggml_assert_aligned(result->data);
  3082. for (int i = 0; i < n_dims; i++) {
  3083. result->ne[i] = ne[i];
  3084. }
  3085. result->nb[0] = GGML_TYPE_SIZE[type];
  3086. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3087. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3088. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3089. }
  3090. ctx->n_objects++;
  3091. return result;
  3092. }
  3093. struct ggml_tensor * ggml_new_tensor(
  3094. struct ggml_context * ctx,
  3095. enum ggml_type type,
  3096. int n_dims,
  3097. const int64_t * ne) {
  3098. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3099. }
  3100. struct ggml_tensor * ggml_new_tensor_1d(
  3101. struct ggml_context * ctx,
  3102. enum ggml_type type,
  3103. int64_t ne0) {
  3104. return ggml_new_tensor(ctx, type, 1, &ne0);
  3105. }
  3106. struct ggml_tensor * ggml_new_tensor_2d(
  3107. struct ggml_context * ctx,
  3108. enum ggml_type type,
  3109. int64_t ne0,
  3110. int64_t ne1) {
  3111. const int64_t ne[2] = { ne0, ne1 };
  3112. return ggml_new_tensor(ctx, type, 2, ne);
  3113. }
  3114. struct ggml_tensor * ggml_new_tensor_3d(
  3115. struct ggml_context * ctx,
  3116. enum ggml_type type,
  3117. int64_t ne0,
  3118. int64_t ne1,
  3119. int64_t ne2) {
  3120. const int64_t ne[3] = { ne0, ne1, ne2 };
  3121. return ggml_new_tensor(ctx, type, 3, ne);
  3122. }
  3123. struct ggml_tensor * ggml_new_tensor_4d(
  3124. struct ggml_context * ctx,
  3125. enum ggml_type type,
  3126. int64_t ne0,
  3127. int64_t ne1,
  3128. int64_t ne2,
  3129. int64_t ne3) {
  3130. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3131. return ggml_new_tensor(ctx, type, 4, ne);
  3132. }
  3133. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3134. ctx->scratch_save = ctx->scratch;
  3135. ctx->scratch.data = NULL;
  3136. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3137. ctx->scratch = ctx->scratch_save;
  3138. ggml_set_i32(result, value);
  3139. return result;
  3140. }
  3141. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3142. ctx->scratch_save = ctx->scratch;
  3143. ctx->scratch.data = NULL;
  3144. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3145. ctx->scratch = ctx->scratch_save;
  3146. ggml_set_f32(result, value);
  3147. return result;
  3148. }
  3149. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3150. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3151. }
  3152. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3153. memset(tensor->data, 0, ggml_nbytes(tensor));
  3154. return tensor;
  3155. }
  3156. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3157. const int n = ggml_nrows(tensor);
  3158. const int nc = tensor->ne[0];
  3159. const size_t n1 = tensor->nb[1];
  3160. char * const data = tensor->data;
  3161. switch (tensor->type) {
  3162. case GGML_TYPE_I8:
  3163. {
  3164. assert(tensor->nb[0] == sizeof(int8_t));
  3165. for (int i = 0; i < n; i++) {
  3166. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3167. }
  3168. } break;
  3169. case GGML_TYPE_I16:
  3170. {
  3171. assert(tensor->nb[0] == sizeof(int16_t));
  3172. for (int i = 0; i < n; i++) {
  3173. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3174. }
  3175. } break;
  3176. case GGML_TYPE_I32:
  3177. {
  3178. assert(tensor->nb[0] == sizeof(int32_t));
  3179. for (int i = 0; i < n; i++) {
  3180. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3181. }
  3182. } break;
  3183. case GGML_TYPE_F16:
  3184. {
  3185. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3186. for (int i = 0; i < n; i++) {
  3187. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3188. }
  3189. } break;
  3190. case GGML_TYPE_F32:
  3191. {
  3192. assert(tensor->nb[0] == sizeof(float));
  3193. for (int i = 0; i < n; i++) {
  3194. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3195. }
  3196. } break;
  3197. default:
  3198. {
  3199. GGML_ASSERT(false);
  3200. } break;
  3201. }
  3202. return tensor;
  3203. }
  3204. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3205. const int n = ggml_nrows(tensor);
  3206. const int nc = tensor->ne[0];
  3207. const size_t n1 = tensor->nb[1];
  3208. char * const data = tensor->data;
  3209. switch (tensor->type) {
  3210. case GGML_TYPE_I8:
  3211. {
  3212. assert(tensor->nb[0] == sizeof(int8_t));
  3213. for (int i = 0; i < n; i++) {
  3214. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3215. }
  3216. } break;
  3217. case GGML_TYPE_I16:
  3218. {
  3219. assert(tensor->nb[0] == sizeof(int16_t));
  3220. for (int i = 0; i < n; i++) {
  3221. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3222. }
  3223. } break;
  3224. case GGML_TYPE_I32:
  3225. {
  3226. assert(tensor->nb[0] == sizeof(int32_t));
  3227. for (int i = 0; i < n; i++) {
  3228. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3229. }
  3230. } break;
  3231. case GGML_TYPE_F16:
  3232. {
  3233. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3234. for (int i = 0; i < n; i++) {
  3235. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3236. }
  3237. } break;
  3238. case GGML_TYPE_F32:
  3239. {
  3240. assert(tensor->nb[0] == sizeof(float));
  3241. for (int i = 0; i < n; i++) {
  3242. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3243. }
  3244. } break;
  3245. default:
  3246. {
  3247. GGML_ASSERT(false);
  3248. } break;
  3249. }
  3250. return tensor;
  3251. }
  3252. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3253. switch (tensor->type) {
  3254. case GGML_TYPE_I8:
  3255. {
  3256. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3257. return ((int8_t *)(tensor->data))[i];
  3258. } break;
  3259. case GGML_TYPE_I16:
  3260. {
  3261. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3262. return ((int16_t *)(tensor->data))[i];
  3263. } break;
  3264. case GGML_TYPE_I32:
  3265. {
  3266. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3267. return ((int32_t *)(tensor->data))[i];
  3268. } break;
  3269. case GGML_TYPE_F16:
  3270. {
  3271. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3272. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3273. } break;
  3274. case GGML_TYPE_F32:
  3275. {
  3276. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3277. return ((float *)(tensor->data))[i];
  3278. } break;
  3279. default:
  3280. {
  3281. GGML_ASSERT(false);
  3282. } break;
  3283. }
  3284. return 0.0f;
  3285. }
  3286. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3287. switch (tensor->type) {
  3288. case GGML_TYPE_I8:
  3289. {
  3290. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3291. ((int8_t *)(tensor->data))[i] = value;
  3292. } break;
  3293. case GGML_TYPE_I16:
  3294. {
  3295. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3296. ((int16_t *)(tensor->data))[i] = value;
  3297. } break;
  3298. case GGML_TYPE_I32:
  3299. {
  3300. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3301. ((int32_t *)(tensor->data))[i] = value;
  3302. } break;
  3303. case GGML_TYPE_F16:
  3304. {
  3305. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3306. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3307. } break;
  3308. case GGML_TYPE_F32:
  3309. {
  3310. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3311. ((float *)(tensor->data))[i] = value;
  3312. } break;
  3313. default:
  3314. {
  3315. GGML_ASSERT(false);
  3316. } break;
  3317. }
  3318. }
  3319. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3320. switch (tensor->type) {
  3321. case GGML_TYPE_I8:
  3322. {
  3323. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3324. return ((int8_t *)(tensor->data))[i];
  3325. } break;
  3326. case GGML_TYPE_I16:
  3327. {
  3328. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3329. return ((int16_t *)(tensor->data))[i];
  3330. } break;
  3331. case GGML_TYPE_I32:
  3332. {
  3333. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3334. return ((int32_t *)(tensor->data))[i];
  3335. } break;
  3336. case GGML_TYPE_F16:
  3337. {
  3338. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3339. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3340. } break;
  3341. case GGML_TYPE_F32:
  3342. {
  3343. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3344. return ((float *)(tensor->data))[i];
  3345. } break;
  3346. default:
  3347. {
  3348. GGML_ASSERT(false);
  3349. } break;
  3350. }
  3351. return 0.0f;
  3352. }
  3353. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3354. switch (tensor->type) {
  3355. case GGML_TYPE_I8:
  3356. {
  3357. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3358. ((int8_t *)(tensor->data))[i] = value;
  3359. } break;
  3360. case GGML_TYPE_I16:
  3361. {
  3362. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3363. ((int16_t *)(tensor->data))[i] = value;
  3364. } break;
  3365. case GGML_TYPE_I32:
  3366. {
  3367. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3368. ((int32_t *)(tensor->data))[i] = value;
  3369. } break;
  3370. case GGML_TYPE_F16:
  3371. {
  3372. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3373. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3374. } break;
  3375. case GGML_TYPE_F32:
  3376. {
  3377. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3378. ((float *)(tensor->data))[i] = value;
  3379. } break;
  3380. default:
  3381. {
  3382. GGML_ASSERT(false);
  3383. } break;
  3384. }
  3385. }
  3386. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3387. return tensor->data;
  3388. }
  3389. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3390. assert(tensor->type == GGML_TYPE_F32);
  3391. return (float *)(tensor->data);
  3392. }
  3393. struct ggml_tensor * ggml_view_tensor(
  3394. struct ggml_context * ctx,
  3395. const struct ggml_tensor * src) {
  3396. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3397. result->nb[0] = src->nb[0];
  3398. result->nb[1] = src->nb[1];
  3399. result->nb[2] = src->nb[2];
  3400. result->nb[3] = src->nb[3];
  3401. return result;
  3402. }
  3403. ////////////////////////////////////////////////////////////////////////////////
  3404. // ggml_dup
  3405. struct ggml_tensor * ggml_dup_impl(
  3406. struct ggml_context * ctx,
  3407. struct ggml_tensor * a,
  3408. bool inplace) {
  3409. bool is_node = false;
  3410. if (!inplace && (a->grad)) {
  3411. is_node = true;
  3412. }
  3413. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3414. result->op = GGML_OP_DUP;
  3415. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3416. result->src0 = a;
  3417. result->src1 = NULL;
  3418. return result;
  3419. }
  3420. struct ggml_tensor * ggml_dup(
  3421. struct ggml_context * ctx,
  3422. struct ggml_tensor * a) {
  3423. return ggml_dup_impl(ctx, a, false);
  3424. }
  3425. struct ggml_tensor * ggml_dup_inplace(
  3426. struct ggml_context * ctx,
  3427. struct ggml_tensor * a) {
  3428. return ggml_dup_impl(ctx, a, true);
  3429. }
  3430. // ggml_add
  3431. struct ggml_tensor * ggml_add_impl(
  3432. struct ggml_context * ctx,
  3433. struct ggml_tensor * a,
  3434. struct ggml_tensor * b,
  3435. bool inplace) {
  3436. GGML_ASSERT(ggml_are_same_shape(a, b));
  3437. bool is_node = false;
  3438. if (!inplace && (a->grad || b->grad)) {
  3439. is_node = true;
  3440. }
  3441. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3442. result->op = GGML_OP_ADD;
  3443. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3444. result->src0 = a;
  3445. result->src1 = b;
  3446. return result;
  3447. }
  3448. struct ggml_tensor * ggml_add(
  3449. struct ggml_context * ctx,
  3450. struct ggml_tensor * a,
  3451. struct ggml_tensor * b) {
  3452. return ggml_add_impl(ctx, a, b, false);
  3453. }
  3454. struct ggml_tensor * ggml_add_inplace(
  3455. struct ggml_context * ctx,
  3456. struct ggml_tensor * a,
  3457. struct ggml_tensor * b) {
  3458. return ggml_add_impl(ctx, a, b, true);
  3459. }
  3460. // ggml_sub
  3461. struct ggml_tensor * ggml_sub_impl(
  3462. struct ggml_context * ctx,
  3463. struct ggml_tensor * a,
  3464. struct ggml_tensor * b,
  3465. bool inplace) {
  3466. GGML_ASSERT(ggml_are_same_shape(a, b));
  3467. bool is_node = false;
  3468. if (!inplace && (a->grad || b->grad)) {
  3469. is_node = true;
  3470. }
  3471. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3472. result->op = GGML_OP_SUB;
  3473. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3474. result->src0 = a;
  3475. result->src1 = b;
  3476. return result;
  3477. }
  3478. struct ggml_tensor * ggml_sub(
  3479. struct ggml_context * ctx,
  3480. struct ggml_tensor * a,
  3481. struct ggml_tensor * b) {
  3482. return ggml_sub_impl(ctx, a, b, false);
  3483. }
  3484. struct ggml_tensor * ggml_sub_inplace(
  3485. struct ggml_context * ctx,
  3486. struct ggml_tensor * a,
  3487. struct ggml_tensor * b) {
  3488. return ggml_sub_impl(ctx, a, b, true);
  3489. }
  3490. // ggml_mul
  3491. struct ggml_tensor * ggml_mul_impl(
  3492. struct ggml_context * ctx,
  3493. struct ggml_tensor * a,
  3494. struct ggml_tensor * b,
  3495. bool inplace) {
  3496. GGML_ASSERT(ggml_are_same_shape(a, b));
  3497. bool is_node = false;
  3498. if (!inplace && (a->grad || b->grad)) {
  3499. is_node = true;
  3500. }
  3501. if (inplace) {
  3502. GGML_ASSERT(is_node == false);
  3503. }
  3504. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3505. result->op = GGML_OP_MUL;
  3506. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3507. result->src0 = a;
  3508. result->src1 = b;
  3509. return result;
  3510. }
  3511. struct ggml_tensor * ggml_mul(
  3512. struct ggml_context * ctx,
  3513. struct ggml_tensor * a,
  3514. struct ggml_tensor * b) {
  3515. return ggml_mul_impl(ctx, a, b, false);
  3516. }
  3517. struct ggml_tensor * ggml_mul_inplace(
  3518. struct ggml_context * ctx,
  3519. struct ggml_tensor * a,
  3520. struct ggml_tensor * b) {
  3521. return ggml_mul_impl(ctx, a, b, true);
  3522. }
  3523. // ggml_div
  3524. struct ggml_tensor * ggml_div_impl(
  3525. struct ggml_context * ctx,
  3526. struct ggml_tensor * a,
  3527. struct ggml_tensor * b,
  3528. bool inplace) {
  3529. GGML_ASSERT(ggml_are_same_shape(a, b));
  3530. bool is_node = false;
  3531. if (!inplace && (a->grad || b->grad)) {
  3532. is_node = true;
  3533. }
  3534. if (inplace) {
  3535. GGML_ASSERT(is_node == false);
  3536. }
  3537. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3538. result->op = GGML_OP_DIV;
  3539. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3540. result->src0 = a;
  3541. result->src1 = b;
  3542. return result;
  3543. }
  3544. struct ggml_tensor * ggml_div(
  3545. struct ggml_context * ctx,
  3546. struct ggml_tensor * a,
  3547. struct ggml_tensor * b) {
  3548. return ggml_div_impl(ctx, a, b, false);
  3549. }
  3550. struct ggml_tensor * ggml_div_inplace(
  3551. struct ggml_context * ctx,
  3552. struct ggml_tensor * a,
  3553. struct ggml_tensor * b) {
  3554. return ggml_div_impl(ctx, a, b, true);
  3555. }
  3556. // ggml_sqr
  3557. struct ggml_tensor * ggml_sqr_impl(
  3558. struct ggml_context * ctx,
  3559. struct ggml_tensor * a,
  3560. bool inplace) {
  3561. bool is_node = false;
  3562. if (!inplace && (a->grad)) {
  3563. is_node = true;
  3564. }
  3565. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3566. result->op = GGML_OP_SQR;
  3567. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3568. result->src0 = a;
  3569. result->src1 = NULL;
  3570. return result;
  3571. }
  3572. struct ggml_tensor * ggml_sqr(
  3573. struct ggml_context * ctx,
  3574. struct ggml_tensor * a) {
  3575. return ggml_sqr_impl(ctx, a, false);
  3576. }
  3577. struct ggml_tensor * ggml_sqr_inplace(
  3578. struct ggml_context * ctx,
  3579. struct ggml_tensor * a) {
  3580. return ggml_sqr_impl(ctx, a, true);
  3581. }
  3582. // ggml_sqrt
  3583. struct ggml_tensor * ggml_sqrt_impl(
  3584. struct ggml_context * ctx,
  3585. struct ggml_tensor * a,
  3586. bool inplace) {
  3587. bool is_node = false;
  3588. if (!inplace && (a->grad)) {
  3589. is_node = true;
  3590. }
  3591. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3592. result->op = GGML_OP_SQRT;
  3593. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3594. result->src0 = a;
  3595. result->src1 = NULL;
  3596. return result;
  3597. }
  3598. struct ggml_tensor * ggml_sqrt(
  3599. struct ggml_context * ctx,
  3600. struct ggml_tensor * a) {
  3601. return ggml_sqrt_impl(ctx, a, false);
  3602. }
  3603. struct ggml_tensor * ggml_sqrt_inplace(
  3604. struct ggml_context * ctx,
  3605. struct ggml_tensor * a) {
  3606. return ggml_sqrt_impl(ctx, a, true);
  3607. }
  3608. // ggml_sum
  3609. struct ggml_tensor * ggml_sum(
  3610. struct ggml_context * ctx,
  3611. struct ggml_tensor * a) {
  3612. bool is_node = false;
  3613. if (a->grad) {
  3614. is_node = true;
  3615. }
  3616. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3617. result->op = GGML_OP_SUM;
  3618. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3619. result->src0 = a;
  3620. result->src1 = NULL;
  3621. return result;
  3622. }
  3623. // ggml_mean
  3624. struct ggml_tensor * ggml_mean(
  3625. struct ggml_context * ctx,
  3626. struct ggml_tensor * a) {
  3627. bool is_node = false;
  3628. if (a->grad) {
  3629. GGML_ASSERT(false); // TODO: implement
  3630. is_node = true;
  3631. }
  3632. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3633. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  3634. result->op = GGML_OP_MEAN;
  3635. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3636. result->src0 = a;
  3637. result->src1 = NULL;
  3638. return result;
  3639. }
  3640. // ggml_repeat
  3641. struct ggml_tensor * ggml_repeat(
  3642. struct ggml_context * ctx,
  3643. struct ggml_tensor * a,
  3644. struct ggml_tensor * b) {
  3645. GGML_ASSERT(ggml_can_repeat(a, b));
  3646. bool is_node = false;
  3647. if (a->grad) {
  3648. is_node = true;
  3649. }
  3650. if (ggml_are_same_shape(a, b) && !is_node) {
  3651. return a;
  3652. }
  3653. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3654. result->op = GGML_OP_REPEAT;
  3655. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3656. result->src0 = a;
  3657. result->src1 = b;
  3658. return result;
  3659. }
  3660. // ggml_abs
  3661. struct ggml_tensor * ggml_abs_impl(
  3662. struct ggml_context * ctx,
  3663. struct ggml_tensor * a,
  3664. bool inplace) {
  3665. bool is_node = false;
  3666. if (!inplace && (a->grad)) {
  3667. is_node = true;
  3668. }
  3669. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3670. result->op = GGML_OP_ABS;
  3671. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3672. result->src0 = a;
  3673. result->src1 = NULL;
  3674. return result;
  3675. }
  3676. struct ggml_tensor * ggml_abs(
  3677. struct ggml_context * ctx,
  3678. struct ggml_tensor * a) {
  3679. return ggml_abs_impl(ctx, a, false);
  3680. }
  3681. struct ggml_tensor * ggml_abs_inplace(
  3682. struct ggml_context * ctx,
  3683. struct ggml_tensor * a) {
  3684. return ggml_abs_impl(ctx, a, true);
  3685. }
  3686. // ggml_sgn
  3687. struct ggml_tensor * ggml_sgn_impl(
  3688. struct ggml_context * ctx,
  3689. struct ggml_tensor * a,
  3690. bool inplace) {
  3691. bool is_node = false;
  3692. if (!inplace && (a->grad)) {
  3693. is_node = true;
  3694. }
  3695. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3696. result->op = GGML_OP_SGN;
  3697. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3698. result->src0 = a;
  3699. result->src1 = NULL;
  3700. return result;
  3701. }
  3702. struct ggml_tensor * ggml_sgn(
  3703. struct ggml_context * ctx,
  3704. struct ggml_tensor * a) {
  3705. return ggml_sgn_impl(ctx, a, false);
  3706. }
  3707. struct ggml_tensor * ggml_sgn_inplace(
  3708. struct ggml_context * ctx,
  3709. struct ggml_tensor * a) {
  3710. return ggml_sgn_impl(ctx, a, true);
  3711. }
  3712. // ggml_neg
  3713. struct ggml_tensor * ggml_neg_impl(
  3714. struct ggml_context * ctx,
  3715. struct ggml_tensor * a,
  3716. bool inplace) {
  3717. bool is_node = false;
  3718. if (!inplace && (a->grad)) {
  3719. is_node = true;
  3720. }
  3721. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3722. result->op = GGML_OP_NEG;
  3723. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3724. result->src0 = a;
  3725. result->src1 = NULL;
  3726. return result;
  3727. }
  3728. struct ggml_tensor * ggml_neg(
  3729. struct ggml_context * ctx,
  3730. struct ggml_tensor * a) {
  3731. return ggml_neg_impl(ctx, a, false);
  3732. }
  3733. struct ggml_tensor * ggml_neg_inplace(
  3734. struct ggml_context * ctx,
  3735. struct ggml_tensor * a) {
  3736. return ggml_neg_impl(ctx, a, true);
  3737. }
  3738. // ggml_step
  3739. struct ggml_tensor * ggml_step_impl(
  3740. struct ggml_context * ctx,
  3741. struct ggml_tensor * a,
  3742. bool inplace) {
  3743. bool is_node = false;
  3744. if (!inplace && (a->grad)) {
  3745. is_node = true;
  3746. }
  3747. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3748. result->op = GGML_OP_STEP;
  3749. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3750. result->src0 = a;
  3751. result->src1 = NULL;
  3752. return result;
  3753. }
  3754. struct ggml_tensor * ggml_step(
  3755. struct ggml_context * ctx,
  3756. struct ggml_tensor * a) {
  3757. return ggml_step_impl(ctx, a, false);
  3758. }
  3759. struct ggml_tensor * ggml_step_inplace(
  3760. struct ggml_context * ctx,
  3761. struct ggml_tensor * a) {
  3762. return ggml_step_impl(ctx, a, true);
  3763. }
  3764. // ggml_relu
  3765. struct ggml_tensor * ggml_relu_impl(
  3766. struct ggml_context * ctx,
  3767. struct ggml_tensor * a,
  3768. bool inplace) {
  3769. bool is_node = false;
  3770. if (!inplace && (a->grad)) {
  3771. is_node = true;
  3772. }
  3773. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3774. result->op = GGML_OP_RELU;
  3775. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3776. result->src0 = a;
  3777. result->src1 = NULL;
  3778. return result;
  3779. }
  3780. struct ggml_tensor * ggml_relu(
  3781. struct ggml_context * ctx,
  3782. struct ggml_tensor * a) {
  3783. return ggml_relu_impl(ctx, a, false);
  3784. }
  3785. struct ggml_tensor * ggml_relu_inplace(
  3786. struct ggml_context * ctx,
  3787. struct ggml_tensor * a) {
  3788. return ggml_relu_impl(ctx, a, true);
  3789. }
  3790. // ggml_gelu
  3791. struct ggml_tensor * ggml_gelu_impl(
  3792. struct ggml_context * ctx,
  3793. struct ggml_tensor * a,
  3794. bool inplace) {
  3795. bool is_node = false;
  3796. if (!inplace && (a->grad)) {
  3797. is_node = true;
  3798. }
  3799. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3800. result->op = GGML_OP_GELU;
  3801. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3802. result->src0 = a;
  3803. result->src1 = NULL;
  3804. return result;
  3805. }
  3806. struct ggml_tensor * ggml_gelu(
  3807. struct ggml_context * ctx,
  3808. struct ggml_tensor * a) {
  3809. return ggml_gelu_impl(ctx, a, false);
  3810. }
  3811. struct ggml_tensor * ggml_gelu_inplace(
  3812. struct ggml_context * ctx,
  3813. struct ggml_tensor * a) {
  3814. return ggml_gelu_impl(ctx, a, true);
  3815. }
  3816. // ggml_silu
  3817. struct ggml_tensor * ggml_silu_impl(
  3818. struct ggml_context * ctx,
  3819. struct ggml_tensor * a,
  3820. bool inplace) {
  3821. bool is_node = false;
  3822. if (!inplace && (a->grad)) {
  3823. is_node = true;
  3824. }
  3825. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3826. result->op = GGML_OP_SILU;
  3827. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3828. result->src0 = a;
  3829. result->src1 = NULL;
  3830. return result;
  3831. }
  3832. struct ggml_tensor * ggml_silu(
  3833. struct ggml_context * ctx,
  3834. struct ggml_tensor * a) {
  3835. return ggml_silu_impl(ctx, a, false);
  3836. }
  3837. struct ggml_tensor * ggml_silu_inplace(
  3838. struct ggml_context * ctx,
  3839. struct ggml_tensor * a) {
  3840. return ggml_silu_impl(ctx, a, true);
  3841. }
  3842. // ggml_norm
  3843. struct ggml_tensor * ggml_norm_impl(
  3844. struct ggml_context * ctx,
  3845. struct ggml_tensor * a,
  3846. bool inplace) {
  3847. bool is_node = false;
  3848. if (!inplace && (a->grad)) {
  3849. GGML_ASSERT(false); // TODO: implement backward
  3850. is_node = true;
  3851. }
  3852. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3853. result->op = GGML_OP_NORM;
  3854. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3855. result->src0 = a;
  3856. result->src1 = NULL; // TODO: maybe store epsilon here?
  3857. return result;
  3858. }
  3859. struct ggml_tensor * ggml_norm(
  3860. struct ggml_context * ctx,
  3861. struct ggml_tensor * a) {
  3862. return ggml_norm_impl(ctx, a, false);
  3863. }
  3864. struct ggml_tensor * ggml_norm_inplace(
  3865. struct ggml_context * ctx,
  3866. struct ggml_tensor * a) {
  3867. return ggml_norm_impl(ctx, a, true);
  3868. }
  3869. struct ggml_tensor * ggml_rms_norm_impl(
  3870. struct ggml_context * ctx,
  3871. struct ggml_tensor * a,
  3872. bool inplace) {
  3873. bool is_node = false;
  3874. if (!inplace && (a->grad)) {
  3875. GGML_ASSERT(false); // TODO: implement backward
  3876. is_node = true;
  3877. }
  3878. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3879. result->op = GGML_OP_RMS_NORM;
  3880. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3881. result->src0 = a;
  3882. result->src1 = NULL; // TODO: maybe store epsilon here?
  3883. return result;
  3884. }
  3885. struct ggml_tensor * ggml_rms_norm(
  3886. struct ggml_context * ctx,
  3887. struct ggml_tensor * a) {
  3888. return ggml_rms_norm_impl(ctx, a, false);
  3889. }
  3890. struct ggml_tensor * ggml_rms_norm_inplace(
  3891. struct ggml_context * ctx,
  3892. struct ggml_tensor * a) {
  3893. return ggml_rms_norm_impl(ctx, a, true);
  3894. }
  3895. // ggml_mul_mat
  3896. struct ggml_tensor * ggml_mul_mat(
  3897. struct ggml_context * ctx,
  3898. struct ggml_tensor * a,
  3899. struct ggml_tensor * b) {
  3900. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3901. GGML_ASSERT(!ggml_is_transposed(a));
  3902. bool is_node = false;
  3903. if (a->grad || b->grad) {
  3904. is_node = true;
  3905. }
  3906. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  3907. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  3908. result->op = GGML_OP_MUL_MAT;
  3909. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3910. result->src0 = a;
  3911. result->src1 = b;
  3912. return result;
  3913. }
  3914. // ggml_scale
  3915. struct ggml_tensor * ggml_scale_impl(
  3916. struct ggml_context * ctx,
  3917. struct ggml_tensor * a,
  3918. struct ggml_tensor * b,
  3919. bool inplace) {
  3920. GGML_ASSERT(ggml_is_scalar(b));
  3921. GGML_ASSERT(ggml_is_padded_1d(a));
  3922. bool is_node = false;
  3923. if (!inplace && (a->grad || b->grad)) {
  3924. GGML_ASSERT(false); // TODO: implement backward
  3925. is_node = true;
  3926. }
  3927. // TODO: when implement backward, fix this:
  3928. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3929. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3930. result->op = GGML_OP_SCALE;
  3931. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3932. result->src0 = a;
  3933. result->src1 = b;
  3934. return result;
  3935. }
  3936. struct ggml_tensor * ggml_scale(
  3937. struct ggml_context * ctx,
  3938. struct ggml_tensor * a,
  3939. struct ggml_tensor * b) {
  3940. return ggml_scale_impl(ctx, a, b, false);
  3941. }
  3942. struct ggml_tensor * ggml_scale_inplace(
  3943. struct ggml_context * ctx,
  3944. struct ggml_tensor * a,
  3945. struct ggml_tensor * b) {
  3946. return ggml_scale_impl(ctx, a, b, true);
  3947. }
  3948. // ggml_cpy
  3949. struct ggml_tensor * ggml_cpy_impl(
  3950. struct ggml_context * ctx,
  3951. struct ggml_tensor * a,
  3952. struct ggml_tensor * b,
  3953. bool inplace) {
  3954. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3955. bool is_node = false;
  3956. if (!inplace && (a->grad || b->grad)) {
  3957. GGML_ASSERT(false); // TODO: implement backward
  3958. is_node = true;
  3959. }
  3960. // make a view of the destination
  3961. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3962. result->op = GGML_OP_CPY;
  3963. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3964. result->src0 = a;
  3965. result->src1 = b;
  3966. return result;
  3967. }
  3968. struct ggml_tensor * ggml_cpy(
  3969. struct ggml_context * ctx,
  3970. struct ggml_tensor * a,
  3971. struct ggml_tensor * b) {
  3972. return ggml_cpy_impl(ctx, a, b, false);
  3973. }
  3974. struct ggml_tensor * ggml_cpy_inplace(
  3975. struct ggml_context * ctx,
  3976. struct ggml_tensor * a,
  3977. struct ggml_tensor * b) {
  3978. return ggml_cpy_impl(ctx, a, b, true);
  3979. }
  3980. // ggml_cont
  3981. struct ggml_tensor * ggml_cont_impl(
  3982. struct ggml_context * ctx,
  3983. struct ggml_tensor * a,
  3984. bool inplace) {
  3985. bool is_node = false;
  3986. if (!inplace && a->grad) {
  3987. GGML_ASSERT(false); // TODO: implement backward
  3988. is_node = true;
  3989. }
  3990. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3991. result->op = GGML_OP_CONT;
  3992. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3993. result->src0 = a;
  3994. result->src1 = NULL;
  3995. return result;
  3996. }
  3997. struct ggml_tensor * ggml_cont(
  3998. struct ggml_context * ctx,
  3999. struct ggml_tensor * a) {
  4000. return ggml_cont_impl(ctx, a, false);
  4001. }
  4002. struct ggml_tensor * ggml_cont_inplace(
  4003. struct ggml_context * ctx,
  4004. struct ggml_tensor * a) {
  4005. return ggml_cont_impl(ctx, a, true);
  4006. }
  4007. // ggml_reshape
  4008. struct ggml_tensor * ggml_reshape(
  4009. struct ggml_context * ctx,
  4010. struct ggml_tensor * a,
  4011. struct ggml_tensor * b) {
  4012. GGML_ASSERT(ggml_is_contiguous(a));
  4013. GGML_ASSERT(ggml_is_contiguous(b));
  4014. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4015. bool is_node = false;
  4016. if (a->grad || b->grad) {
  4017. GGML_ASSERT(false); // TODO: implement backward
  4018. is_node = true;
  4019. }
  4020. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4021. result->op = GGML_OP_RESHAPE;
  4022. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4023. result->src0 = a;
  4024. result->src1 = NULL;
  4025. return result;
  4026. }
  4027. struct ggml_tensor * ggml_reshape_2d(
  4028. struct ggml_context * ctx,
  4029. struct ggml_tensor * a,
  4030. int64_t ne0,
  4031. int64_t ne1) {
  4032. GGML_ASSERT(ggml_is_contiguous(a));
  4033. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4034. bool is_node = false;
  4035. if (a->grad) {
  4036. GGML_ASSERT(false); // TODO: implement backward
  4037. is_node = true;
  4038. }
  4039. const int64_t ne[2] = { ne0, ne1 };
  4040. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4041. result->op = GGML_OP_RESHAPE;
  4042. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4043. result->src0 = a;
  4044. result->src1 = NULL;
  4045. return result;
  4046. }
  4047. struct ggml_tensor * ggml_reshape_3d(
  4048. struct ggml_context * ctx,
  4049. struct ggml_tensor * a,
  4050. int64_t ne0,
  4051. int64_t ne1,
  4052. int64_t ne2) {
  4053. GGML_ASSERT(ggml_is_contiguous(a));
  4054. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4055. bool is_node = false;
  4056. if (a->grad) {
  4057. GGML_ASSERT(false); // TODO: implement backward
  4058. is_node = true;
  4059. }
  4060. const int64_t ne[3] = { ne0, ne1, ne2 };
  4061. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4062. result->op = GGML_OP_RESHAPE;
  4063. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4064. result->src0 = a;
  4065. result->src1 = NULL;
  4066. return result;
  4067. }
  4068. // ggml_view_1d
  4069. struct ggml_tensor * ggml_view_1d(
  4070. struct ggml_context * ctx,
  4071. struct ggml_tensor * a,
  4072. int64_t ne0,
  4073. size_t offset) {
  4074. if (a->grad) {
  4075. GGML_ASSERT(false); // gradient propagation is not supported
  4076. }
  4077. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4078. result->op = GGML_OP_VIEW;
  4079. result->grad = NULL;
  4080. result->src0 = a;
  4081. result->src1 = NULL; // TODO: maybe store the offset here?
  4082. return result;
  4083. }
  4084. // ggml_view_2d
  4085. struct ggml_tensor * ggml_view_2d(
  4086. struct ggml_context * ctx,
  4087. struct ggml_tensor * a,
  4088. int64_t ne0,
  4089. int64_t ne1,
  4090. size_t nb1,
  4091. size_t offset) {
  4092. if (a->grad) {
  4093. GGML_ASSERT(false); // gradient propagation is not supported
  4094. }
  4095. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4096. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4097. result->nb[1] = nb1;
  4098. result->nb[2] = result->nb[1]*ne1;
  4099. result->nb[3] = result->nb[2];
  4100. result->op = GGML_OP_VIEW;
  4101. result->grad = NULL;
  4102. result->src0 = a;
  4103. result->src1 = NULL; // TODO: maybe store the offset here?
  4104. return result;
  4105. }
  4106. // ggml_view_3d
  4107. struct ggml_tensor * ggml_view_3d(
  4108. struct ggml_context * ctx,
  4109. struct ggml_tensor * a,
  4110. int64_t ne0,
  4111. int64_t ne1,
  4112. int64_t ne2,
  4113. size_t nb1,
  4114. size_t nb2,
  4115. size_t offset) {
  4116. if (a->grad) {
  4117. GGML_ASSERT(false); // gradient propagation is not supported
  4118. }
  4119. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4120. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4121. result->nb[1] = nb1;
  4122. result->nb[2] = nb2;
  4123. result->nb[3] = result->nb[2]*ne2;
  4124. result->op = GGML_OP_VIEW;
  4125. result->grad = NULL;
  4126. result->src0 = a;
  4127. result->src1 = NULL; // TODO: maybe store the offset here?
  4128. return result;
  4129. }
  4130. // ggml_permute
  4131. struct ggml_tensor * ggml_permute(
  4132. struct ggml_context * ctx,
  4133. struct ggml_tensor * a,
  4134. int axis0,
  4135. int axis1,
  4136. int axis2,
  4137. int axis3) {
  4138. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4139. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4140. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4141. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4142. GGML_ASSERT(axis0 != axis1);
  4143. GGML_ASSERT(axis0 != axis2);
  4144. GGML_ASSERT(axis0 != axis3);
  4145. GGML_ASSERT(axis1 != axis2);
  4146. GGML_ASSERT(axis1 != axis3);
  4147. GGML_ASSERT(axis2 != axis3);
  4148. bool is_node = false;
  4149. if (a->grad) {
  4150. GGML_ASSERT(false); // TODO: implement backward
  4151. is_node = true;
  4152. }
  4153. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4154. int ne[GGML_MAX_DIMS];
  4155. int nb[GGML_MAX_DIMS];
  4156. ne[axis0] = a->ne[0];
  4157. ne[axis1] = a->ne[1];
  4158. ne[axis2] = a->ne[2];
  4159. ne[axis3] = a->ne[3];
  4160. nb[axis0] = a->nb[0];
  4161. nb[axis1] = a->nb[1];
  4162. nb[axis2] = a->nb[2];
  4163. nb[axis3] = a->nb[3];
  4164. result->ne[0] = ne[0];
  4165. result->ne[1] = ne[1];
  4166. result->ne[2] = ne[2];
  4167. result->ne[3] = ne[3];
  4168. result->nb[0] = nb[0];
  4169. result->nb[1] = nb[1];
  4170. result->nb[2] = nb[2];
  4171. result->nb[3] = nb[3];
  4172. result->op = GGML_OP_PERMUTE;
  4173. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4174. result->src0 = a;
  4175. result->src1 = NULL; // TODO: maybe store the permutation here?
  4176. return result;
  4177. }
  4178. // ggml_transpose
  4179. struct ggml_tensor * ggml_transpose(
  4180. struct ggml_context * ctx,
  4181. struct ggml_tensor * a) {
  4182. bool is_node = false;
  4183. if (a->grad) {
  4184. GGML_ASSERT(false); // TODO: implement backward
  4185. is_node = true;
  4186. }
  4187. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4188. result->ne[0] = a->ne[1];
  4189. result->ne[1] = a->ne[0];
  4190. result->nb[0] = a->nb[1];
  4191. result->nb[1] = a->nb[0];
  4192. result->op = GGML_OP_TRANSPOSE;
  4193. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4194. result->src0 = a;
  4195. result->src1 = NULL;
  4196. return result;
  4197. }
  4198. // ggml_get_rows
  4199. struct ggml_tensor * ggml_get_rows(
  4200. struct ggml_context * ctx,
  4201. struct ggml_tensor * a,
  4202. struct ggml_tensor * b) {
  4203. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4204. bool is_node = false;
  4205. if (a->grad || b->grad) {
  4206. GGML_ASSERT(false); // TODO: implement backward
  4207. is_node = true;
  4208. }
  4209. // TODO: implement non F32 return
  4210. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4211. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4212. result->op = GGML_OP_GET_ROWS;
  4213. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4214. result->src0 = a;
  4215. result->src1 = b;
  4216. return result;
  4217. }
  4218. // ggml_diag_mask_inf
  4219. struct ggml_tensor * ggml_diag_mask_inf(
  4220. struct ggml_context * ctx,
  4221. struct ggml_tensor * a,
  4222. int n_past) {
  4223. bool is_node = false;
  4224. if (a->grad) {
  4225. GGML_ASSERT(false); // TODO: implement backward
  4226. is_node = true;
  4227. }
  4228. // TODO: when implement backward, fix this:
  4229. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4230. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4231. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  4232. result->op = GGML_OP_DIAG_MASK_INF;
  4233. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4234. result->src0 = a;
  4235. result->src1 = b;
  4236. return result;
  4237. }
  4238. // ggml_soft_max
  4239. struct ggml_tensor * ggml_soft_max(
  4240. struct ggml_context * ctx,
  4241. struct ggml_tensor * a) {
  4242. bool is_node = false;
  4243. if (a->grad) {
  4244. GGML_ASSERT(false); // TODO: implement backward
  4245. is_node = true;
  4246. }
  4247. // TODO: when implement backward, fix this:
  4248. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4249. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4250. result->op = GGML_OP_SOFT_MAX;
  4251. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4252. result->src0 = a;
  4253. result->src1 = NULL;
  4254. return result;
  4255. }
  4256. // ggml_rope
  4257. struct ggml_tensor * ggml_rope(
  4258. struct ggml_context * ctx,
  4259. struct ggml_tensor * a,
  4260. int n_past,
  4261. int n_dims,
  4262. int mode) {
  4263. GGML_ASSERT(n_past >= 0);
  4264. bool is_node = false;
  4265. if (a->grad) {
  4266. GGML_ASSERT(false); // TODO: implement backward
  4267. is_node = true;
  4268. }
  4269. // TODO: when implement backward, fix this:
  4270. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4271. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4272. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4273. ((int32_t *) b->data)[0] = n_past;
  4274. ((int32_t *) b->data)[1] = n_dims;
  4275. ((int32_t *) b->data)[2] = mode;
  4276. result->op = GGML_OP_ROPE;
  4277. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4278. result->src0 = a;
  4279. result->src1 = b;
  4280. return result;
  4281. }
  4282. // ggml_conv_1d_1s
  4283. struct ggml_tensor * ggml_conv_1d_1s(
  4284. struct ggml_context * ctx,
  4285. struct ggml_tensor * a,
  4286. struct ggml_tensor * b) {
  4287. GGML_ASSERT(ggml_is_matrix(b));
  4288. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4289. GGML_ASSERT(a->ne[3] == 1);
  4290. bool is_node = false;
  4291. if (a->grad || b->grad) {
  4292. GGML_ASSERT(false); // TODO: implement backward
  4293. is_node = true;
  4294. }
  4295. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  4296. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4297. result->op = GGML_OP_CONV_1D_1S;
  4298. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4299. result->src0 = a;
  4300. result->src1 = b;
  4301. return result;
  4302. }
  4303. // ggml_conv_1d_2s
  4304. struct ggml_tensor * ggml_conv_1d_2s(
  4305. struct ggml_context * ctx,
  4306. struct ggml_tensor * a,
  4307. struct ggml_tensor * b) {
  4308. GGML_ASSERT(ggml_is_matrix(b));
  4309. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4310. GGML_ASSERT(a->ne[3] == 1);
  4311. bool is_node = false;
  4312. if (a->grad || b->grad) {
  4313. GGML_ASSERT(false); // TODO: implement backward
  4314. is_node = true;
  4315. }
  4316. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  4317. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4318. result->op = GGML_OP_CONV_1D_2S;
  4319. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4320. result->src0 = a;
  4321. result->src1 = b;
  4322. return result;
  4323. }
  4324. // ggml_flash_attn
  4325. struct ggml_tensor * ggml_flash_attn(
  4326. struct ggml_context * ctx,
  4327. struct ggml_tensor * q,
  4328. struct ggml_tensor * k,
  4329. struct ggml_tensor * v,
  4330. bool masked) {
  4331. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4332. // TODO: check if vT can be multiplied by (k*qT)
  4333. bool is_node = false;
  4334. if (q->grad || k->grad || v->grad) {
  4335. GGML_ASSERT(false); // TODO: implement backward
  4336. is_node = true;
  4337. }
  4338. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4339. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  4340. result->op = GGML_OP_FLASH_ATTN;
  4341. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4342. result->src0 = q;
  4343. result->src1 = k;
  4344. result->opt[0] = v;
  4345. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  4346. return result;
  4347. }
  4348. // ggml_flash_ff
  4349. struct ggml_tensor * ggml_flash_ff(
  4350. struct ggml_context * ctx,
  4351. struct ggml_tensor * a,
  4352. struct ggml_tensor * b0,
  4353. struct ggml_tensor * b1,
  4354. struct ggml_tensor * c0,
  4355. struct ggml_tensor * c1) {
  4356. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4357. // TODO: more checks
  4358. bool is_node = false;
  4359. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4360. GGML_ASSERT(false); // TODO: implement backward
  4361. is_node = true;
  4362. }
  4363. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4364. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  4365. result->op = GGML_OP_FLASH_FF;
  4366. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4367. result->src0 = a;
  4368. result->src1 = b0;
  4369. result->opt[0] = b1;
  4370. result->opt[1] = c0;
  4371. result->opt[2] = c1;
  4372. return result;
  4373. }
  4374. // ggml_map_unary
  4375. struct ggml_tensor * ggml_map_unary_impl_f32(
  4376. struct ggml_context * ctx,
  4377. struct ggml_tensor * a,
  4378. const ggml_unary_op_f32_t fun,
  4379. bool inplace) {
  4380. bool is_node = false;
  4381. if (!inplace && a->grad) {
  4382. is_node = true;
  4383. }
  4384. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4385. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4386. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4387. result->op = GGML_OP_MAP_UNARY;
  4388. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4389. result->src0 = a;
  4390. result->opt[0] = addr_tensor;
  4391. return result;
  4392. }
  4393. struct ggml_tensor * ggml_map_unary_f32(
  4394. struct ggml_context * ctx,
  4395. struct ggml_tensor * a,
  4396. const ggml_unary_op_f32_t fun) {
  4397. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4398. }
  4399. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4400. struct ggml_context * ctx,
  4401. struct ggml_tensor * a,
  4402. const ggml_unary_op_f32_t fun) {
  4403. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4404. }
  4405. // ggml_map_binary
  4406. struct ggml_tensor * ggml_map_binary_impl_f32(
  4407. struct ggml_context * ctx,
  4408. struct ggml_tensor * a,
  4409. struct ggml_tensor * b,
  4410. const ggml_binary_op_f32_t fun,
  4411. bool inplace) {
  4412. GGML_ASSERT(ggml_are_same_shape(a, b));
  4413. bool is_node = false;
  4414. if (!inplace && (a->grad || b->grad)) {
  4415. is_node = true;
  4416. }
  4417. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4418. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4419. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4420. result->op = GGML_OP_MAP_BINARY;
  4421. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4422. result->src0 = a;
  4423. result->src1 = b;
  4424. result->opt[0] = addr_tensor;
  4425. return result;
  4426. }
  4427. struct ggml_tensor * ggml_map_binary_f32(
  4428. struct ggml_context * ctx,
  4429. struct ggml_tensor * a,
  4430. struct ggml_tensor * b,
  4431. const ggml_binary_op_f32_t fun) {
  4432. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4433. }
  4434. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4435. struct ggml_context * ctx,
  4436. struct ggml_tensor * a,
  4437. struct ggml_tensor * b,
  4438. const ggml_binary_op_f32_t fun) {
  4439. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4440. }
  4441. ////////////////////////////////////////////////////////////////////////////////
  4442. void ggml_set_param(
  4443. struct ggml_context * ctx,
  4444. struct ggml_tensor * tensor) {
  4445. tensor->is_param = true;
  4446. GGML_ASSERT(tensor->grad == NULL);
  4447. tensor->grad = ggml_dup_tensor(ctx, tensor);
  4448. }
  4449. // ggml_compute_forward_dup
  4450. static void ggml_compute_forward_dup_f16(
  4451. const struct ggml_compute_params * params,
  4452. const struct ggml_tensor * src0,
  4453. struct ggml_tensor * dst) {
  4454. GGML_ASSERT(params->ith == 0);
  4455. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4456. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4457. return;
  4458. }
  4459. const int64_t ne00 = src0->ne[0];
  4460. const int64_t ne01 = src0->ne[1];
  4461. const int64_t ne02 = src0->ne[2];
  4462. const int64_t ne03 = src0->ne[3];
  4463. const size_t nb00 = src0->nb[0];
  4464. const size_t nb01 = src0->nb[1];
  4465. const size_t nb02 = src0->nb[2];
  4466. const size_t nb03 = src0->nb[3];
  4467. const size_t nb0 = dst->nb[0];
  4468. const size_t nb1 = dst->nb[1];
  4469. const size_t nb2 = dst->nb[2];
  4470. const size_t nb3 = dst->nb[3];
  4471. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4472. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  4473. return;
  4474. }
  4475. if (src0->type == dst->type &&
  4476. src0->ne[0] == dst->ne[0] &&
  4477. src0->nb[0] == GGML_TYPE_SIZE[src0->type] && dst->nb[0] == GGML_TYPE_SIZE[dst->type]) {
  4478. // copy by rows
  4479. const size_t rs = ne00*nb00;
  4480. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4481. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4482. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4483. memcpy(
  4484. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4485. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4486. rs);
  4487. }
  4488. }
  4489. }
  4490. return;
  4491. }
  4492. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  4493. if (ggml_is_contiguous(dst)) {
  4494. if (src0->nb[0] == sizeof(ggml_fp16_t)) {
  4495. if (dst->type == GGML_TYPE_F16) {
  4496. size_t id = 0;
  4497. const size_t rs = ne00*nb00;
  4498. for (int i03 = 0; i03 < ne03; i03++) {
  4499. for (int i02 = 0; i02 < ne02; i02++) {
  4500. for (int i01 = 0; i01 < ne01; i01++) {
  4501. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4502. char * dst_ptr = (char *) dst->data + id*rs;
  4503. memcpy(dst_ptr, src0_ptr, rs);
  4504. id++;
  4505. }
  4506. }
  4507. }
  4508. } else if (dst->type == GGML_TYPE_F32) {
  4509. size_t id = 0;
  4510. float * dst_ptr = (float *) dst->data;
  4511. for (int i03 = 0; i03 < ne03; i03++) {
  4512. for (int i02 = 0; i02 < ne02; i02++) {
  4513. for (int i01 = 0; i01 < ne01; i01++) {
  4514. for (int i00 = 0; i00 < ne00; i00++) {
  4515. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4516. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  4517. id++;
  4518. }
  4519. }
  4520. }
  4521. }
  4522. } else if (dst->type == GGML_TYPE_Q4_0 || dst->type == GGML_TYPE_Q4_1) {
  4523. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  4524. size_t id = 0;
  4525. uint8_t * dst_ptr = (uint8_t *) dst->data;
  4526. size_t dst_row_size = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  4527. float * src0_f32 = (float *) params->wdata;
  4528. for (int i03 = 0; i03 < ne03; i03++) {
  4529. for (int i02 = 0; i02 < ne02; i02++) {
  4530. for (int i01 = 0; i01 < ne01; i01++) {
  4531. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4532. // convert to f32 and quantize
  4533. for (int i00 = 0; i00 < ne00; i00++) {
  4534. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  4535. }
  4536. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  4537. id += dst_row_size;
  4538. }
  4539. }
  4540. }
  4541. } else {
  4542. GGML_ASSERT(false); // TODO: implement
  4543. }
  4544. } else {
  4545. //printf("%s: this is not optimal - fix me\n", __func__);
  4546. if (dst->type == GGML_TYPE_F32) {
  4547. size_t id = 0;
  4548. float * dst_ptr = (float *) dst->data;
  4549. for (int i03 = 0; i03 < ne03; i03++) {
  4550. for (int i02 = 0; i02 < ne02; i02++) {
  4551. for (int i01 = 0; i01 < ne01; i01++) {
  4552. for (int i00 = 0; i00 < ne00; i00++) {
  4553. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4554. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  4555. id++;
  4556. }
  4557. }
  4558. }
  4559. }
  4560. } else if (dst->type == GGML_TYPE_F16) {
  4561. size_t id = 0;
  4562. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4563. for (int i03 = 0; i03 < ne03; i03++) {
  4564. for (int i02 = 0; i02 < ne02; i02++) {
  4565. for (int i01 = 0; i01 < ne01; i01++) {
  4566. for (int i00 = 0; i00 < ne00; i00++) {
  4567. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4568. dst_ptr[id] = *src0_ptr;
  4569. id++;
  4570. }
  4571. }
  4572. }
  4573. }
  4574. } else {
  4575. GGML_ASSERT(false); // TODO: implement
  4576. }
  4577. }
  4578. return;
  4579. }
  4580. // dst counters
  4581. int64_t i10 = 0;
  4582. int64_t i11 = 0;
  4583. int64_t i12 = 0;
  4584. int64_t i13 = 0;
  4585. if (dst->type == GGML_TYPE_F16) {
  4586. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4587. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4588. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4589. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4590. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4591. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4592. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  4593. if (++i10 == ne00) {
  4594. i10 = 0;
  4595. if (++i11 == ne01) {
  4596. i11 = 0;
  4597. if (++i12 == ne02) {
  4598. i12 = 0;
  4599. if (++i13 == ne03) {
  4600. i13 = 0;
  4601. }
  4602. }
  4603. }
  4604. }
  4605. }
  4606. }
  4607. }
  4608. }
  4609. } else if (dst->type == GGML_TYPE_F32) {
  4610. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4611. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4612. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4613. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4614. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4615. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4616. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  4617. if (++i10 == ne00) {
  4618. i10 = 0;
  4619. if (++i11 == ne01) {
  4620. i11 = 0;
  4621. if (++i12 == ne02) {
  4622. i12 = 0;
  4623. if (++i13 == ne03) {
  4624. i13 = 0;
  4625. }
  4626. }
  4627. }
  4628. }
  4629. }
  4630. }
  4631. }
  4632. }
  4633. } else {
  4634. GGML_ASSERT(false); // TODO: implement
  4635. }
  4636. }
  4637. static void ggml_compute_forward_dup_f32(
  4638. const struct ggml_compute_params * params,
  4639. const struct ggml_tensor * src0,
  4640. struct ggml_tensor * dst) {
  4641. GGML_ASSERT(params->ith == 0);
  4642. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4643. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4644. return;
  4645. }
  4646. const int64_t ne00 = src0->ne[0];
  4647. const int64_t ne01 = src0->ne[1];
  4648. const int64_t ne02 = src0->ne[2];
  4649. const int64_t ne03 = src0->ne[3];
  4650. const size_t nb00 = src0->nb[0];
  4651. const size_t nb01 = src0->nb[1];
  4652. const size_t nb02 = src0->nb[2];
  4653. const size_t nb03 = src0->nb[3];
  4654. const size_t nb0 = dst->nb[0];
  4655. const size_t nb1 = dst->nb[1];
  4656. const size_t nb2 = dst->nb[2];
  4657. const size_t nb3 = dst->nb[3];
  4658. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4659. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  4660. return;
  4661. }
  4662. if (src0->type == dst->type &&
  4663. src0->ne[0] == dst->ne[0] &&
  4664. src0->nb[0] == GGML_TYPE_SIZE[src0->type] && dst->nb[0] == GGML_TYPE_SIZE[dst->type]) {
  4665. // copy by rows
  4666. const size_t rs = ne00*nb00;
  4667. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4668. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4669. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4670. memcpy(
  4671. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4672. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4673. rs);
  4674. }
  4675. }
  4676. }
  4677. return;
  4678. }
  4679. if (ggml_is_contiguous(dst)) {
  4680. // TODO: simplify
  4681. if (src0->nb[0] == sizeof(float)) {
  4682. if (dst->type == GGML_TYPE_F32) {
  4683. size_t id = 0;
  4684. const size_t rs = ne00*nb00;
  4685. for (int i03 = 0; i03 < ne03; i03++) {
  4686. for (int i02 = 0; i02 < ne02; i02++) {
  4687. for (int i01 = 0; i01 < ne01; i01++) {
  4688. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4689. char * dst_ptr = (char *) dst->data + id*rs;
  4690. memcpy(dst_ptr, src0_ptr, rs);
  4691. id++;
  4692. }
  4693. }
  4694. }
  4695. } else if (dst->type == GGML_TYPE_F16) {
  4696. size_t id = 0;
  4697. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4698. for (int i03 = 0; i03 < ne03; i03++) {
  4699. for (int i02 = 0; i02 < ne02; i02++) {
  4700. for (int i01 = 0; i01 < ne01; i01++) {
  4701. for (int i00 = 0; i00 < ne00; i00++) {
  4702. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4703. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4704. id++;
  4705. }
  4706. }
  4707. }
  4708. }
  4709. } else if (dst->type == GGML_TYPE_Q4_0 || dst->type == GGML_TYPE_Q4_1) {
  4710. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  4711. size_t id = 0;
  4712. uint8_t * dst_ptr = (uint8_t *) dst->data;
  4713. size_t dst_row_size = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  4714. for (int i03 = 0; i03 < ne03; i03++) {
  4715. for (int i02 = 0; i02 < ne02; i02++) {
  4716. for (int i01 = 0; i01 < ne01; i01++) {
  4717. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4718. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  4719. id += dst_row_size;
  4720. }
  4721. }
  4722. }
  4723. } else {
  4724. GGML_ASSERT(false); // TODO: implement
  4725. }
  4726. } else {
  4727. //printf("%s: this is not optimal - fix me\n", __func__);
  4728. if (dst->type == GGML_TYPE_F32) {
  4729. size_t id = 0;
  4730. float * dst_ptr = (float *) dst->data;
  4731. for (int i03 = 0; i03 < ne03; i03++) {
  4732. for (int i02 = 0; i02 < ne02; i02++) {
  4733. for (int i01 = 0; i01 < ne01; i01++) {
  4734. for (int i00 = 0; i00 < ne00; i00++) {
  4735. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4736. dst_ptr[id] = *src0_ptr;
  4737. id++;
  4738. }
  4739. }
  4740. }
  4741. }
  4742. } else if (dst->type == GGML_TYPE_F16) {
  4743. size_t id = 0;
  4744. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4745. for (int i03 = 0; i03 < ne03; i03++) {
  4746. for (int i02 = 0; i02 < ne02; i02++) {
  4747. for (int i01 = 0; i01 < ne01; i01++) {
  4748. for (int i00 = 0; i00 < ne00; i00++) {
  4749. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4750. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4751. id++;
  4752. }
  4753. }
  4754. }
  4755. }
  4756. } else {
  4757. GGML_ASSERT(false); // TODO: implement
  4758. }
  4759. }
  4760. return;
  4761. }
  4762. // dst counters
  4763. int64_t i10 = 0;
  4764. int64_t i11 = 0;
  4765. int64_t i12 = 0;
  4766. int64_t i13 = 0;
  4767. if (dst->type == GGML_TYPE_F32) {
  4768. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4769. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4770. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4771. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4772. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4773. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4774. memcpy(dst_ptr, src0_ptr, sizeof(float));
  4775. if (++i10 == dst->ne[0]) {
  4776. i10 = 0;
  4777. if (++i11 == dst->ne[1]) {
  4778. i11 = 0;
  4779. if (++i12 == dst->ne[2]) {
  4780. i12 = 0;
  4781. if (++i13 == dst->ne[3]) {
  4782. i13 = 0;
  4783. }
  4784. }
  4785. }
  4786. }
  4787. }
  4788. }
  4789. }
  4790. }
  4791. } else if (dst->type == GGML_TYPE_F16) {
  4792. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4793. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4794. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4795. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4796. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4797. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4798. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  4799. if (++i10 == dst->ne[0]) {
  4800. i10 = 0;
  4801. if (++i11 == dst->ne[1]) {
  4802. i11 = 0;
  4803. if (++i12 == dst->ne[2]) {
  4804. i12 = 0;
  4805. if (++i13 == dst->ne[3]) {
  4806. i13 = 0;
  4807. }
  4808. }
  4809. }
  4810. }
  4811. }
  4812. }
  4813. }
  4814. }
  4815. } else {
  4816. GGML_ASSERT(false); // TODO: implement
  4817. }
  4818. }
  4819. static void ggml_compute_forward_dup(
  4820. const struct ggml_compute_params * params,
  4821. const struct ggml_tensor * src0,
  4822. struct ggml_tensor * dst) {
  4823. switch (src0->type) {
  4824. case GGML_TYPE_F16:
  4825. {
  4826. ggml_compute_forward_dup_f16(params, src0, dst);
  4827. } break;
  4828. case GGML_TYPE_F32:
  4829. {
  4830. ggml_compute_forward_dup_f32(params, src0, dst);
  4831. } break;
  4832. default:
  4833. {
  4834. GGML_ASSERT(false);
  4835. } break;
  4836. }
  4837. }
  4838. // ggml_compute_forward_add
  4839. static void ggml_compute_forward_add_f32(
  4840. const struct ggml_compute_params * params,
  4841. const struct ggml_tensor * src0,
  4842. const struct ggml_tensor * src1,
  4843. struct ggml_tensor * dst) {
  4844. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4845. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4846. return;
  4847. }
  4848. const int ith = params->ith;
  4849. const int nth = params->nth;
  4850. const int n = ggml_nrows(src0);
  4851. const int nc = src0->ne[0];
  4852. const size_t nb00 = src0->nb[0];
  4853. const size_t nb01 = src0->nb[1];
  4854. const size_t nb10 = src1->nb[0];
  4855. const size_t nb11 = src1->nb[1];
  4856. const size_t nb0 = dst->nb[0];
  4857. const size_t nb1 = dst->nb[1];
  4858. GGML_ASSERT( nb0 == sizeof(float));
  4859. GGML_ASSERT(nb00 == sizeof(float));
  4860. if (nb10 == sizeof(float)) {
  4861. for (int j = ith; j < n; j += nth) {
  4862. #ifdef GGML_USE_ACCELERATE
  4863. vDSP_vadd(
  4864. (float *) ((char *) src0->data + j*nb01), 1,
  4865. (float *) ((char *) src1->data + j*nb11), 1,
  4866. (float *) ((char *) dst->data + j*nb1), 1, nc);
  4867. #else
  4868. ggml_vec_add_f32(nc,
  4869. (float *) ((char *) dst->data + j*nb1),
  4870. (float *) ((char *) src0->data + j*nb01),
  4871. (float *) ((char *) src1->data + j*nb11));
  4872. #endif
  4873. }
  4874. } else {
  4875. // src1 is not contiguous
  4876. for (int j = ith; j < n; j += nth) {
  4877. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  4878. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  4879. for (int i = 0; i < nc; i++) {
  4880. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  4881. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  4882. }
  4883. }
  4884. }
  4885. }
  4886. static void ggml_compute_forward_add_f16_f32(
  4887. const struct ggml_compute_params * params,
  4888. const struct ggml_tensor * src0,
  4889. const struct ggml_tensor * src1,
  4890. struct ggml_tensor * dst) {
  4891. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4892. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4893. return;
  4894. }
  4895. const int ith = params->ith;
  4896. const int nth = params->nth;
  4897. const int n = ggml_nrows(src0);
  4898. const int nc = src0->ne[0];
  4899. const size_t nb00 = src0->nb[0];
  4900. const size_t nb01 = src0->nb[1];
  4901. const size_t nb10 = src1->nb[0];
  4902. const size_t nb11 = src1->nb[1];
  4903. const size_t nb0 = dst->nb[0];
  4904. const size_t nb1 = dst->nb[1];
  4905. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  4906. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  4907. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  4908. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  4909. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  4910. if (nb10 == sizeof(float)) {
  4911. for (int j = ith; j < n; j += nth) {
  4912. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  4913. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  4914. for (int i = 0; i < nc; i++) {
  4915. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  4916. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + *src1_ptr);
  4917. }
  4918. }
  4919. }
  4920. else {
  4921. // src1 is not contiguous
  4922. GGML_ASSERT(false);
  4923. }
  4924. }
  4925. static void ggml_compute_forward_add_f16_f16(
  4926. const struct ggml_compute_params * params,
  4927. const struct ggml_tensor * src0,
  4928. const struct ggml_tensor * src1,
  4929. struct ggml_tensor * dst) {
  4930. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4931. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4932. return;
  4933. }
  4934. const int ith = params->ith;
  4935. const int nth = params->nth;
  4936. const int n = ggml_nrows(src0);
  4937. const int nc = src0->ne[0];
  4938. const size_t nb00 = src0->nb[0];
  4939. const size_t nb01 = src0->nb[1];
  4940. const size_t nb10 = src1->nb[0];
  4941. const size_t nb11 = src1->nb[1];
  4942. const size_t nb0 = dst->nb[0];
  4943. const size_t nb1 = dst->nb[1];
  4944. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  4945. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  4946. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  4947. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  4948. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  4949. if (nb10 == sizeof(ggml_fp16_t)) {
  4950. for (int j = ith; j < n; j += nth) {
  4951. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  4952. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  4953. for (int i = 0; i < nc; i++) {
  4954. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + j*nb11 + i*nb10);
  4955. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(*src1_ptr));
  4956. }
  4957. }
  4958. }
  4959. else {
  4960. // src1 is not contiguous
  4961. GGML_ASSERT(false);
  4962. }
  4963. }
  4964. static void ggml_compute_forward_add_q_f32(
  4965. const struct ggml_compute_params * params,
  4966. const struct ggml_tensor * src0,
  4967. const struct ggml_tensor * src1,
  4968. struct ggml_tensor * dst) {
  4969. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4970. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4971. return;
  4972. }
  4973. const int64_t ne00 = src0->ne[0];
  4974. const int64_t ne01 = src0->ne[1];
  4975. const int64_t ne02 = src0->ne[2];
  4976. const int64_t ne03 = src0->ne[3];
  4977. //const int64_t ne10 = src1->ne[0];
  4978. //const int64_t ne11 = src1->ne[1];
  4979. const int64_t ne12 = src1->ne[2];
  4980. const int64_t ne13 = src1->ne[3];
  4981. //const int64_t ne0 = dst->ne[0];
  4982. //const int64_t ne1 = dst->ne[1];
  4983. const int64_t ne2 = dst->ne[2];
  4984. const int64_t ne3 = dst->ne[3];
  4985. const int nb00 = src0->nb[0];
  4986. const int nb01 = src0->nb[1];
  4987. const int nb02 = src0->nb[2];
  4988. const int nb03 = src0->nb[3];
  4989. const int nb10 = src1->nb[0];
  4990. const int nb11 = src1->nb[1];
  4991. const int nb12 = src1->nb[2];
  4992. const int nb13 = src1->nb[3];
  4993. const int nb0 = dst->nb[0];
  4994. const int nb1 = dst->nb[1];
  4995. const int nb2 = dst->nb[2];
  4996. const int nb3 = dst->nb[3];
  4997. const int ith = params->ith;
  4998. const int nth = params->nth;
  4999. GGML_ASSERT(ne02 == ne12);
  5000. GGML_ASSERT(ne03 == ne13);
  5001. GGML_ASSERT(ne2 == ne12);
  5002. GGML_ASSERT(ne3 == ne13);
  5003. const enum ggml_type type = src0->type;
  5004. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5005. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5006. // we don't support permuted src0 or src1
  5007. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5008. GGML_ASSERT(nb10 == sizeof(float));
  5009. // dst cannot be transposed or permuted
  5010. GGML_ASSERT(nb0 <= nb1);
  5011. GGML_ASSERT(nb1 <= nb2);
  5012. GGML_ASSERT(nb2 <= nb3);
  5013. GGML_ASSERT(src0->type == GGML_TYPE_Q4_0 || src0->type == GGML_TYPE_Q4_1);
  5014. GGML_ASSERT(dst->type == src0->type);
  5015. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5016. // total rows in src0
  5017. const int nr = ne01*ne02*ne03;
  5018. // rows per thread
  5019. const int dr = (nr + nth - 1)/nth;
  5020. // row range for this thread
  5021. const int ir0 = dr*ith;
  5022. const int ir1 = MIN(ir0 + dr, nr);
  5023. float * wdata = (float*) params->wdata + ne00 * ith;
  5024. for (int ir = ir0; ir < ir1; ++ir) {
  5025. // src0 indices
  5026. const int i03 = ir/(ne02*ne01);
  5027. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5028. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5029. // src1 and dst are same shape as src0 => same indices
  5030. const int i13 = i03;
  5031. const int i12 = i02;
  5032. const int i11 = i01;
  5033. const int i3 = i03;
  5034. const int i2 = i02;
  5035. const int i1 = i01;
  5036. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5037. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  5038. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  5039. assert(ne00 % 32 == 0);
  5040. // unquantize row from src0 to temp buffer
  5041. dequantize_row_q(src0_row, wdata, ne00);
  5042. // add src1
  5043. ggml_vec_acc_f32(ne00, wdata, src1_row);
  5044. // quantize row to dst
  5045. quantize_row_q(wdata, dst_row, ne00);
  5046. }
  5047. }
  5048. static void ggml_compute_forward_add(
  5049. const struct ggml_compute_params * params,
  5050. const struct ggml_tensor * src0,
  5051. const struct ggml_tensor * src1,
  5052. struct ggml_tensor * dst) {
  5053. switch (src0->type) {
  5054. case GGML_TYPE_F32:
  5055. {
  5056. ggml_compute_forward_add_f32(params, src0, src1, dst);
  5057. } break;
  5058. case GGML_TYPE_F16:
  5059. {
  5060. if (src1->type == GGML_TYPE_F16) {
  5061. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  5062. }
  5063. else if (src1->type == GGML_TYPE_F32) {
  5064. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  5065. }
  5066. else {
  5067. GGML_ASSERT(false);
  5068. }
  5069. } break;
  5070. case GGML_TYPE_Q4_0:
  5071. case GGML_TYPE_Q4_1:
  5072. {
  5073. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  5074. } break;
  5075. default:
  5076. {
  5077. GGML_ASSERT(false);
  5078. } break;
  5079. }
  5080. }
  5081. // ggml_compute_forward_sub
  5082. static void ggml_compute_forward_sub_f32(
  5083. const struct ggml_compute_params * params,
  5084. const struct ggml_tensor * src0,
  5085. const struct ggml_tensor * src1,
  5086. struct ggml_tensor * dst) {
  5087. assert(params->ith == 0);
  5088. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5089. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5090. return;
  5091. }
  5092. const int n = ggml_nrows(src0);
  5093. const int nc = src0->ne[0];
  5094. assert( dst->nb[0] == sizeof(float));
  5095. assert(src0->nb[0] == sizeof(float));
  5096. assert(src1->nb[0] == sizeof(float));
  5097. for (int i = 0; i < n; i++) {
  5098. ggml_vec_sub_f32(nc,
  5099. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5100. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5101. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5102. }
  5103. }
  5104. static void ggml_compute_forward_sub(
  5105. const struct ggml_compute_params * params,
  5106. const struct ggml_tensor * src0,
  5107. const struct ggml_tensor * src1,
  5108. struct ggml_tensor * dst) {
  5109. switch (src0->type) {
  5110. case GGML_TYPE_F32:
  5111. {
  5112. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  5113. } break;
  5114. default:
  5115. {
  5116. GGML_ASSERT(false);
  5117. } break;
  5118. }
  5119. }
  5120. // ggml_compute_forward_mul
  5121. static void ggml_compute_forward_mul_f32(
  5122. const struct ggml_compute_params * params,
  5123. const struct ggml_tensor * src0,
  5124. const struct ggml_tensor * src1,
  5125. struct ggml_tensor * dst) {
  5126. assert(params->ith == 0);
  5127. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5128. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5129. return;
  5130. }
  5131. const int n = ggml_nrows(src0);
  5132. const int nc = src0->ne[0];
  5133. assert( dst->nb[0] == sizeof(float));
  5134. assert(src0->nb[0] == sizeof(float));
  5135. assert(src1->nb[0] == sizeof(float));
  5136. for (int i = 0; i < n; i++) {
  5137. ggml_vec_mul_f32(nc,
  5138. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5139. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5140. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5141. }
  5142. }
  5143. static void ggml_compute_forward_mul(
  5144. const struct ggml_compute_params * params,
  5145. const struct ggml_tensor * src0,
  5146. const struct ggml_tensor * src1,
  5147. struct ggml_tensor * dst) {
  5148. switch (src0->type) {
  5149. case GGML_TYPE_F32:
  5150. {
  5151. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  5152. } break;
  5153. default:
  5154. {
  5155. GGML_ASSERT(false);
  5156. } break;
  5157. }
  5158. }
  5159. // ggml_compute_forward_div
  5160. static void ggml_compute_forward_div_f32(
  5161. const struct ggml_compute_params * params,
  5162. const struct ggml_tensor * src0,
  5163. const struct ggml_tensor * src1,
  5164. struct ggml_tensor * dst) {
  5165. assert(params->ith == 0);
  5166. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5167. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5168. return;
  5169. }
  5170. const int n = ggml_nrows(src0);
  5171. const int nc = src0->ne[0];
  5172. assert( dst->nb[0] == sizeof(float));
  5173. assert(src0->nb[0] == sizeof(float));
  5174. assert(src1->nb[0] == sizeof(float));
  5175. for (int i = 0; i < n; i++) {
  5176. ggml_vec_div_f32(nc,
  5177. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5178. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5179. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5180. }
  5181. }
  5182. static void ggml_compute_forward_div(
  5183. const struct ggml_compute_params * params,
  5184. const struct ggml_tensor * src0,
  5185. const struct ggml_tensor * src1,
  5186. struct ggml_tensor * dst) {
  5187. switch (src0->type) {
  5188. case GGML_TYPE_F32:
  5189. {
  5190. ggml_compute_forward_div_f32(params, src0, src1, dst);
  5191. } break;
  5192. default:
  5193. {
  5194. GGML_ASSERT(false);
  5195. } break;
  5196. }
  5197. }
  5198. // ggml_compute_forward_sqr
  5199. static void ggml_compute_forward_sqr_f32(
  5200. const struct ggml_compute_params * params,
  5201. const struct ggml_tensor * src0,
  5202. struct ggml_tensor * dst) {
  5203. assert(params->ith == 0);
  5204. assert(ggml_are_same_shape(src0, dst));
  5205. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5206. return;
  5207. }
  5208. const int n = ggml_nrows(src0);
  5209. const int nc = src0->ne[0];
  5210. assert( dst->nb[0] == sizeof(float));
  5211. assert(src0->nb[0] == sizeof(float));
  5212. for (int i = 0; i < n; i++) {
  5213. ggml_vec_sqr_f32(nc,
  5214. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5215. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5216. }
  5217. }
  5218. static void ggml_compute_forward_sqr(
  5219. const struct ggml_compute_params * params,
  5220. const struct ggml_tensor * src0,
  5221. struct ggml_tensor * dst) {
  5222. switch (src0->type) {
  5223. case GGML_TYPE_F32:
  5224. {
  5225. ggml_compute_forward_sqr_f32(params, src0, dst);
  5226. } break;
  5227. default:
  5228. {
  5229. GGML_ASSERT(false);
  5230. } break;
  5231. }
  5232. }
  5233. // ggml_compute_forward_sqrt
  5234. static void ggml_compute_forward_sqrt_f32(
  5235. const struct ggml_compute_params * params,
  5236. const struct ggml_tensor * src0,
  5237. struct ggml_tensor * dst) {
  5238. assert(params->ith == 0);
  5239. assert(ggml_are_same_shape(src0, dst));
  5240. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5241. return;
  5242. }
  5243. const int n = ggml_nrows(src0);
  5244. const int nc = src0->ne[0];
  5245. assert( dst->nb[0] == sizeof(float));
  5246. assert(src0->nb[0] == sizeof(float));
  5247. for (int i = 0; i < n; i++) {
  5248. ggml_vec_sqrt_f32(nc,
  5249. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5250. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5251. }
  5252. }
  5253. static void ggml_compute_forward_sqrt(
  5254. const struct ggml_compute_params * params,
  5255. const struct ggml_tensor * src0,
  5256. struct ggml_tensor * dst) {
  5257. switch (src0->type) {
  5258. case GGML_TYPE_F32:
  5259. {
  5260. ggml_compute_forward_sqrt_f32(params, src0, dst);
  5261. } break;
  5262. default:
  5263. {
  5264. GGML_ASSERT(false);
  5265. } break;
  5266. }
  5267. }
  5268. // ggml_compute_forward_sum
  5269. static void ggml_compute_forward_sum_f32(
  5270. const struct ggml_compute_params * params,
  5271. const struct ggml_tensor * src0,
  5272. struct ggml_tensor * dst) {
  5273. assert(params->ith == 0);
  5274. assert(ggml_is_scalar(dst));
  5275. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5276. return;
  5277. }
  5278. assert(ggml_is_scalar(dst));
  5279. assert(src0->nb[0] == sizeof(float));
  5280. const int64_t ne00 = src0->ne[0];
  5281. const int64_t ne01 = src0->ne[1];
  5282. const int64_t ne02 = src0->ne[2];
  5283. const int64_t ne03 = src0->ne[3];
  5284. const size_t nb01 = src0->nb[1];
  5285. const size_t nb02 = src0->nb[2];
  5286. const size_t nb03 = src0->nb[3];
  5287. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5288. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5289. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5290. ggml_vec_sum_f32(ne00,
  5291. (float *) (dst->data),
  5292. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  5293. }
  5294. }
  5295. }
  5296. }
  5297. static void ggml_compute_forward_sum(
  5298. const struct ggml_compute_params * params,
  5299. const struct ggml_tensor * src0,
  5300. struct ggml_tensor * dst) {
  5301. switch (src0->type) {
  5302. case GGML_TYPE_F32:
  5303. {
  5304. ggml_compute_forward_sum_f32(params, src0, dst);
  5305. } break;
  5306. default:
  5307. {
  5308. GGML_ASSERT(false);
  5309. } break;
  5310. }
  5311. }
  5312. // ggml_compute_forward_mean
  5313. static void ggml_compute_forward_mean_f32(
  5314. const struct ggml_compute_params * params,
  5315. const struct ggml_tensor * src0,
  5316. struct ggml_tensor * dst) {
  5317. assert(params->ith == 0);
  5318. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5319. return;
  5320. }
  5321. assert(src0->nb[0] == sizeof(float));
  5322. const int64_t ne00 = src0->ne[0];
  5323. const int64_t ne01 = src0->ne[1];
  5324. const int64_t ne02 = src0->ne[2];
  5325. const int64_t ne03 = src0->ne[3];
  5326. const size_t nb01 = src0->nb[1];
  5327. const size_t nb02 = src0->nb[2];
  5328. const size_t nb03 = src0->nb[3];
  5329. const int64_t ne0 = dst->ne[0];
  5330. const int64_t ne1 = dst->ne[1];
  5331. const int64_t ne2 = dst->ne[2];
  5332. const int64_t ne3 = dst->ne[3];
  5333. assert(ne0 == 1);
  5334. assert(ne1 == ne01);
  5335. assert(ne2 == ne02);
  5336. assert(ne3 == ne03);
  5337. UNUSED(ne0);
  5338. UNUSED(ne1);
  5339. UNUSED(ne2);
  5340. UNUSED(ne3);
  5341. const size_t nb1 = dst->nb[1];
  5342. const size_t nb2 = dst->nb[2];
  5343. const size_t nb3 = dst->nb[3];
  5344. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5345. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5346. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5347. ggml_vec_sum_f32(ne00,
  5348. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5349. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  5350. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  5351. }
  5352. }
  5353. }
  5354. }
  5355. static void ggml_compute_forward_mean(
  5356. const struct ggml_compute_params * params,
  5357. const struct ggml_tensor * src0,
  5358. struct ggml_tensor * dst) {
  5359. switch (src0->type) {
  5360. case GGML_TYPE_F32:
  5361. {
  5362. ggml_compute_forward_mean_f32(params, src0, dst);
  5363. } break;
  5364. default:
  5365. {
  5366. GGML_ASSERT(false);
  5367. } break;
  5368. }
  5369. }
  5370. // ggml_compute_forward_repeat
  5371. static void ggml_compute_forward_repeat_f32(
  5372. const struct ggml_compute_params * params,
  5373. const struct ggml_tensor * src0,
  5374. struct ggml_tensor * dst) {
  5375. assert(params->ith == 0);
  5376. assert(ggml_can_repeat(src0, dst));
  5377. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5378. return;
  5379. }
  5380. // TODO: implement support for rank > 2 tensors
  5381. assert(src0->ne[2] == 1);
  5382. assert(src0->ne[3] == 1);
  5383. assert( dst->ne[2] == 1);
  5384. assert( dst->ne[3] == 1);
  5385. const int nc = dst->ne[0];
  5386. const int nr = dst->ne[1];
  5387. const int nc0 = src0->ne[0];
  5388. const int nr0 = src0->ne[1];
  5389. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  5390. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  5391. // TODO: support for transposed / permuted tensors
  5392. assert( dst->nb[0] == sizeof(float));
  5393. assert(src0->nb[0] == sizeof(float));
  5394. // TODO: maybe this is not optimal?
  5395. for (int i = 0; i < nrr; i++) {
  5396. for (int j = 0; j < ncr; j++) {
  5397. for (int k = 0; k < nr0; k++) {
  5398. ggml_vec_cpy_f32(nc0,
  5399. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  5400. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  5401. }
  5402. }
  5403. }
  5404. }
  5405. static void ggml_compute_forward_repeat(
  5406. const struct ggml_compute_params * params,
  5407. const struct ggml_tensor * src0,
  5408. struct ggml_tensor * dst) {
  5409. switch (src0->type) {
  5410. case GGML_TYPE_F32:
  5411. {
  5412. ggml_compute_forward_repeat_f32(params, src0, dst);
  5413. } break;
  5414. default:
  5415. {
  5416. GGML_ASSERT(false);
  5417. } break;
  5418. }
  5419. }
  5420. // ggml_compute_forward_abs
  5421. static void ggml_compute_forward_abs_f32(
  5422. const struct ggml_compute_params * params,
  5423. const struct ggml_tensor * src0,
  5424. struct ggml_tensor * dst) {
  5425. assert(params->ith == 0);
  5426. assert(ggml_are_same_shape(src0, dst));
  5427. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5428. return;
  5429. }
  5430. const int n = ggml_nrows(src0);
  5431. const int nc = src0->ne[0];
  5432. assert(dst->nb[0] == sizeof(float));
  5433. assert(src0->nb[0] == sizeof(float));
  5434. for (int i = 0; i < n; i++) {
  5435. ggml_vec_abs_f32(nc,
  5436. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5437. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5438. }
  5439. }
  5440. static void ggml_compute_forward_abs(
  5441. const struct ggml_compute_params * params,
  5442. const struct ggml_tensor * src0,
  5443. struct ggml_tensor * dst) {
  5444. switch (src0->type) {
  5445. case GGML_TYPE_F32:
  5446. {
  5447. ggml_compute_forward_abs_f32(params, src0, dst);
  5448. } break;
  5449. default:
  5450. {
  5451. GGML_ASSERT(false);
  5452. } break;
  5453. }
  5454. }
  5455. // ggml_compute_forward_sgn
  5456. static void ggml_compute_forward_sgn_f32(
  5457. const struct ggml_compute_params * params,
  5458. const struct ggml_tensor * src0,
  5459. struct ggml_tensor * dst) {
  5460. assert(params->ith == 0);
  5461. assert(ggml_are_same_shape(src0, dst));
  5462. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5463. return;
  5464. }
  5465. const int n = ggml_nrows(src0);
  5466. const int nc = src0->ne[0];
  5467. assert(dst->nb[0] == sizeof(float));
  5468. assert(src0->nb[0] == sizeof(float));
  5469. for (int i = 0; i < n; i++) {
  5470. ggml_vec_sgn_f32(nc,
  5471. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5472. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5473. }
  5474. }
  5475. static void ggml_compute_forward_sgn(
  5476. const struct ggml_compute_params * params,
  5477. const struct ggml_tensor * src0,
  5478. struct ggml_tensor * dst) {
  5479. switch (src0->type) {
  5480. case GGML_TYPE_F32:
  5481. {
  5482. ggml_compute_forward_sgn_f32(params, src0, dst);
  5483. } break;
  5484. default:
  5485. {
  5486. GGML_ASSERT(false);
  5487. } break;
  5488. }
  5489. }
  5490. // ggml_compute_forward_neg
  5491. static void ggml_compute_forward_neg_f32(
  5492. const struct ggml_compute_params * params,
  5493. const struct ggml_tensor * src0,
  5494. struct ggml_tensor * dst) {
  5495. assert(params->ith == 0);
  5496. assert(ggml_are_same_shape(src0, dst));
  5497. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5498. return;
  5499. }
  5500. const int n = ggml_nrows(src0);
  5501. const int nc = src0->ne[0];
  5502. assert(dst->nb[0] == sizeof(float));
  5503. assert(src0->nb[0] == sizeof(float));
  5504. for (int i = 0; i < n; i++) {
  5505. ggml_vec_neg_f32(nc,
  5506. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5507. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5508. }
  5509. }
  5510. static void ggml_compute_forward_neg(
  5511. const struct ggml_compute_params * params,
  5512. const struct ggml_tensor * src0,
  5513. struct ggml_tensor * dst) {
  5514. switch (src0->type) {
  5515. case GGML_TYPE_F32:
  5516. {
  5517. ggml_compute_forward_neg_f32(params, src0, dst);
  5518. } break;
  5519. default:
  5520. {
  5521. GGML_ASSERT(false);
  5522. } break;
  5523. }
  5524. }
  5525. // ggml_compute_forward_step
  5526. static void ggml_compute_forward_step_f32(
  5527. const struct ggml_compute_params * params,
  5528. const struct ggml_tensor * src0,
  5529. struct ggml_tensor * dst) {
  5530. assert(params->ith == 0);
  5531. assert(ggml_are_same_shape(src0, dst));
  5532. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5533. return;
  5534. }
  5535. const int n = ggml_nrows(src0);
  5536. const int nc = src0->ne[0];
  5537. assert(dst->nb[0] == sizeof(float));
  5538. assert(src0->nb[0] == sizeof(float));
  5539. for (int i = 0; i < n; i++) {
  5540. ggml_vec_step_f32(nc,
  5541. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5542. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5543. }
  5544. }
  5545. static void ggml_compute_forward_step(
  5546. const struct ggml_compute_params * params,
  5547. const struct ggml_tensor * src0,
  5548. struct ggml_tensor * dst) {
  5549. switch (src0->type) {
  5550. case GGML_TYPE_F32:
  5551. {
  5552. ggml_compute_forward_step_f32(params, src0, dst);
  5553. } break;
  5554. default:
  5555. {
  5556. GGML_ASSERT(false);
  5557. } break;
  5558. }
  5559. }
  5560. // ggml_compute_forward_relu
  5561. static void ggml_compute_forward_relu_f32(
  5562. const struct ggml_compute_params * params,
  5563. const struct ggml_tensor * src0,
  5564. struct ggml_tensor * dst) {
  5565. assert(params->ith == 0);
  5566. assert(ggml_are_same_shape(src0, dst));
  5567. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5568. return;
  5569. }
  5570. const int n = ggml_nrows(src0);
  5571. const int nc = src0->ne[0];
  5572. assert(dst->nb[0] == sizeof(float));
  5573. assert(src0->nb[0] == sizeof(float));
  5574. for (int i = 0; i < n; i++) {
  5575. ggml_vec_relu_f32(nc,
  5576. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5577. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5578. }
  5579. }
  5580. static void ggml_compute_forward_relu(
  5581. const struct ggml_compute_params * params,
  5582. const struct ggml_tensor * src0,
  5583. struct ggml_tensor * dst) {
  5584. switch (src0->type) {
  5585. case GGML_TYPE_F32:
  5586. {
  5587. ggml_compute_forward_relu_f32(params, src0, dst);
  5588. } break;
  5589. default:
  5590. {
  5591. GGML_ASSERT(false);
  5592. } break;
  5593. }
  5594. }
  5595. // ggml_compute_forward_gelu
  5596. static void ggml_compute_forward_gelu_f32(
  5597. const struct ggml_compute_params * params,
  5598. const struct ggml_tensor * src0,
  5599. struct ggml_tensor * dst) {
  5600. GGML_ASSERT(ggml_is_contiguous(src0));
  5601. GGML_ASSERT(ggml_is_contiguous(dst));
  5602. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5603. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5604. return;
  5605. }
  5606. const int ith = params->ith;
  5607. const int nth = params->nth;
  5608. const int nc = src0->ne[0];
  5609. const int nr = ggml_nrows(src0);
  5610. // rows per thread
  5611. const int dr = (nr + nth - 1)/nth;
  5612. // row range for this thread
  5613. const int ir0 = dr*ith;
  5614. const int ir1 = MIN(ir0 + dr, nr);
  5615. for (int i1 = ir0; i1 < ir1; i1++) {
  5616. ggml_vec_gelu_f32(nc,
  5617. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5618. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  5619. #ifndef NDEBUG
  5620. for (int k = 0; k < nc; k++) {
  5621. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  5622. UNUSED(x);
  5623. assert(!isnan(x));
  5624. assert(!isinf(x));
  5625. }
  5626. #endif
  5627. }
  5628. }
  5629. static void ggml_compute_forward_gelu(
  5630. const struct ggml_compute_params * params,
  5631. const struct ggml_tensor * src0,
  5632. struct ggml_tensor * dst) {
  5633. switch (src0->type) {
  5634. case GGML_TYPE_F32:
  5635. {
  5636. ggml_compute_forward_gelu_f32(params, src0, dst);
  5637. } break;
  5638. default:
  5639. {
  5640. GGML_ASSERT(false);
  5641. } break;
  5642. }
  5643. //printf("XXXXXXXX gelu\n");
  5644. }
  5645. // ggml_compute_forward_silu
  5646. static void ggml_compute_forward_silu_f32(
  5647. const struct ggml_compute_params * params,
  5648. const struct ggml_tensor * src0,
  5649. struct ggml_tensor * dst) {
  5650. GGML_ASSERT(ggml_is_contiguous(src0));
  5651. GGML_ASSERT(ggml_is_contiguous(dst));
  5652. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5653. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5654. return;
  5655. }
  5656. const int ith = params->ith;
  5657. const int nth = params->nth;
  5658. const int nc = src0->ne[0];
  5659. const int nr = ggml_nrows(src0);
  5660. // rows per thread
  5661. const int dr = (nr + nth - 1)/nth;
  5662. // row range for this thread
  5663. const int ir0 = dr*ith;
  5664. const int ir1 = MIN(ir0 + dr, nr);
  5665. for (int i1 = ir0; i1 < ir1; i1++) {
  5666. ggml_vec_silu_f32(nc,
  5667. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5668. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  5669. #ifndef NDEBUG
  5670. for (int k = 0; k < nc; k++) {
  5671. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  5672. UNUSED(x);
  5673. assert(!isnan(x));
  5674. assert(!isinf(x));
  5675. }
  5676. #endif
  5677. }
  5678. }
  5679. static void ggml_compute_forward_silu(
  5680. const struct ggml_compute_params * params,
  5681. const struct ggml_tensor * src0,
  5682. struct ggml_tensor * dst) {
  5683. switch (src0->type) {
  5684. case GGML_TYPE_F32:
  5685. {
  5686. ggml_compute_forward_silu_f32(params, src0, dst);
  5687. } break;
  5688. default:
  5689. {
  5690. GGML_ASSERT(false);
  5691. } break;
  5692. }
  5693. }
  5694. // ggml_compute_forward_norm
  5695. static void ggml_compute_forward_norm_f32(
  5696. const struct ggml_compute_params * params,
  5697. const struct ggml_tensor * src0,
  5698. struct ggml_tensor * dst) {
  5699. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5700. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5701. return;
  5702. }
  5703. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5704. const int ith = params->ith;
  5705. const int nth = params->nth;
  5706. const int64_t ne00 = src0->ne[0];
  5707. const int64_t ne01 = src0->ne[1];
  5708. const int64_t ne02 = src0->ne[2];
  5709. const int64_t ne03 = src0->ne[3];
  5710. const size_t nb01 = src0->nb[1];
  5711. const size_t nb02 = src0->nb[2];
  5712. const size_t nb03 = src0->nb[3];
  5713. const size_t nb1 = dst->nb[1];
  5714. const size_t nb2 = dst->nb[2];
  5715. const size_t nb3 = dst->nb[3];
  5716. const float eps = 1e-5f; // TODO: make this a parameter
  5717. // TODO: optimize
  5718. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5719. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5720. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5721. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5722. ggml_float sum = 0.0;
  5723. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5724. sum += (ggml_float)x[i00];
  5725. }
  5726. float mean = sum/ne00;
  5727. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  5728. ggml_float sum2 = 0.0;
  5729. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5730. float v = x[i00] - mean;
  5731. y[i00] = v;
  5732. sum2 += (ggml_float)(v*v);
  5733. }
  5734. float variance = sum2/ne00;
  5735. const float scale = 1.0f/sqrtf(variance + eps);
  5736. ggml_vec_scale_f32(ne00, y, scale);
  5737. }
  5738. }
  5739. }
  5740. }
  5741. static void ggml_compute_forward_norm(
  5742. const struct ggml_compute_params * params,
  5743. const struct ggml_tensor * src0,
  5744. struct ggml_tensor * dst) {
  5745. switch (src0->type) {
  5746. case GGML_TYPE_F32:
  5747. {
  5748. ggml_compute_forward_norm_f32(params, src0, dst);
  5749. } break;
  5750. default:
  5751. {
  5752. GGML_ASSERT(false);
  5753. } break;
  5754. }
  5755. }
  5756. static void ggml_compute_forward_rms_norm_f32(
  5757. const struct ggml_compute_params * params,
  5758. const struct ggml_tensor * src0,
  5759. struct ggml_tensor * dst) {
  5760. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5761. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5762. return;
  5763. }
  5764. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5765. const int ith = params->ith;
  5766. const int nth = params->nth;
  5767. const int64_t ne00 = src0->ne[0];
  5768. const int64_t ne01 = src0->ne[1];
  5769. const int64_t ne02 = src0->ne[2];
  5770. const int64_t ne03 = src0->ne[3];
  5771. const size_t nb01 = src0->nb[1];
  5772. const size_t nb02 = src0->nb[2];
  5773. const size_t nb03 = src0->nb[3];
  5774. const size_t nb1 = dst->nb[1];
  5775. const size_t nb2 = dst->nb[2];
  5776. const size_t nb3 = dst->nb[3];
  5777. const float eps = 1e-6f; // TODO: make this a parameter
  5778. // TODO: optimize
  5779. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5780. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5781. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5782. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5783. ggml_float sum = 0.0;
  5784. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5785. sum += (ggml_float)(x[i00] * x[i00]);
  5786. }
  5787. float mean = sum/ne00;
  5788. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  5789. memcpy(y, x, ne00 * sizeof(float));
  5790. // for (int i00 = 0; i00 < ne00; i00++) {
  5791. // y[i00] = x[i00];
  5792. // }
  5793. const float scale = 1.0f/sqrtf(mean + eps);
  5794. ggml_vec_scale_f32(ne00, y, scale);
  5795. }
  5796. }
  5797. }
  5798. }
  5799. static void ggml_compute_forward_rms_norm(
  5800. const struct ggml_compute_params * params,
  5801. const struct ggml_tensor * src0,
  5802. struct ggml_tensor * dst) {
  5803. switch (src0->type) {
  5804. case GGML_TYPE_F32:
  5805. {
  5806. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  5807. } break;
  5808. default:
  5809. {
  5810. GGML_ASSERT(false);
  5811. } break;
  5812. }
  5813. }
  5814. // ggml_compute_forward_mul_mat
  5815. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5816. // helper function to determine if it is better to use BLAS or not
  5817. // for large matrices, BLAS is faster
  5818. static bool ggml_compute_forward_mul_mat_use_blas(
  5819. const struct ggml_tensor * src0,
  5820. const struct ggml_tensor * src1,
  5821. struct ggml_tensor * dst) {
  5822. //const int64_t ne00 = src0->ne[0];
  5823. //const int64_t ne01 = src0->ne[1];
  5824. const int64_t ne10 = src1->ne[0];
  5825. const int64_t ne0 = dst->ne[0];
  5826. const int64_t ne1 = dst->ne[1];
  5827. // TODO: find the optimal values for these
  5828. if (ggml_is_contiguous(src0) &&
  5829. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  5830. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  5831. return true;
  5832. }
  5833. return false;
  5834. }
  5835. #endif
  5836. static void ggml_compute_forward_mul_mat_f32(
  5837. const struct ggml_compute_params * params,
  5838. const struct ggml_tensor * src0,
  5839. const struct ggml_tensor * src1,
  5840. struct ggml_tensor * dst) {
  5841. int64_t t0 = ggml_perf_time_us();
  5842. UNUSED(t0);
  5843. const int64_t ne00 = src0->ne[0];
  5844. const int64_t ne01 = src0->ne[1];
  5845. const int64_t ne02 = src0->ne[2];
  5846. const int64_t ne03 = src0->ne[3];
  5847. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5848. const int64_t ne10 = src1->ne[0];
  5849. #endif
  5850. const int64_t ne11 = src1->ne[1];
  5851. #ifndef NDEBUG
  5852. const int64_t ne12 = src1->ne[2];
  5853. const int64_t ne13 = src1->ne[3];
  5854. const int64_t ne0 = dst->ne[0];
  5855. const int64_t ne1 = dst->ne[1];
  5856. const int64_t ne2 = dst->ne[2];
  5857. const int64_t ne3 = dst->ne[3];
  5858. const int nb00 = src0->nb[0];
  5859. #endif
  5860. const int nb01 = src0->nb[1];
  5861. const int nb02 = src0->nb[2];
  5862. const int nb03 = src0->nb[3];
  5863. #ifndef NDEBUG
  5864. const int nb10 = src1->nb[0];
  5865. #endif
  5866. const int nb11 = src1->nb[1];
  5867. const int nb12 = src1->nb[2];
  5868. const int nb13 = src1->nb[3];
  5869. const int nb0 = dst->nb[0];
  5870. const int nb1 = dst->nb[1];
  5871. const int nb2 = dst->nb[2];
  5872. const int nb3 = dst->nb[3];
  5873. const int ith = params->ith;
  5874. const int nth = params->nth;
  5875. assert(ne02 == ne12);
  5876. assert(ne03 == ne13);
  5877. assert(ne2 == ne12);
  5878. assert(ne3 == ne13);
  5879. // we don't support permuted src0 or src1
  5880. assert(nb00 == sizeof(float));
  5881. assert(nb10 == sizeof(float));
  5882. // dst cannot be transposed or permuted
  5883. assert(nb0 == sizeof(float));
  5884. assert(nb0 <= nb1);
  5885. assert(nb1 <= nb2);
  5886. assert(nb2 <= nb3);
  5887. assert(ne0 == ne01);
  5888. assert(ne1 == ne11);
  5889. assert(ne2 == ne02);
  5890. assert(ne3 == ne03);
  5891. // nb01 >= nb00 - src0 is not transposed
  5892. // compute by src0 rows
  5893. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5894. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5895. if (params->ith != 0) {
  5896. return;
  5897. }
  5898. if (params->type == GGML_TASK_INIT) {
  5899. return;
  5900. }
  5901. if (params->type == GGML_TASK_FINALIZE) {
  5902. return;
  5903. }
  5904. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5905. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5906. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  5907. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5908. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5909. // zT = y * xT
  5910. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5911. ne11, ne01, ne10,
  5912. 1.0f, y, ne10,
  5913. x, ne00,
  5914. 0.0f, d, ne01);
  5915. }
  5916. }
  5917. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5918. return;
  5919. }
  5920. #endif
  5921. if (params->type == GGML_TASK_INIT) {
  5922. return;
  5923. }
  5924. if (params->type == GGML_TASK_FINALIZE) {
  5925. return;
  5926. }
  5927. // parallelize by src0 rows using ggml_vec_dot_f32
  5928. // total rows in src0
  5929. const int nr = ne01*ne02*ne03;
  5930. // rows per thread
  5931. const int dr = (nr + nth - 1)/nth;
  5932. // row range for this thread
  5933. const int ir0 = dr*ith;
  5934. const int ir1 = MIN(ir0 + dr, nr);
  5935. for (int ir = ir0; ir < ir1; ++ir) {
  5936. // src0 indices
  5937. const int i03 = ir/(ne02*ne01);
  5938. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5939. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5940. for (int64_t ic = 0; ic < ne11; ++ic) {
  5941. // src1 indices
  5942. const int i13 = i03;
  5943. const int i12 = i02;
  5944. const int i11 = ic;
  5945. // dst indices
  5946. const int i0 = i01;
  5947. const int i1 = i11;
  5948. const int i2 = i02;
  5949. const int i3 = i03;
  5950. ggml_vec_dot_f32(ne00,
  5951. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  5952. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  5953. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  5954. }
  5955. }
  5956. //int64_t t1 = ggml_perf_time_us();
  5957. //static int64_t acc = 0;
  5958. //acc += t1 - t0;
  5959. //if (t1 - t0 > 10) {
  5960. // printf("\n");
  5961. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5962. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5963. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5964. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  5965. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5966. //}
  5967. }
  5968. static void ggml_compute_forward_mul_mat_f16_f32(
  5969. const struct ggml_compute_params * params,
  5970. const struct ggml_tensor * src0,
  5971. const struct ggml_tensor * src1,
  5972. struct ggml_tensor * dst) {
  5973. int64_t t0 = ggml_perf_time_us();
  5974. UNUSED(t0);
  5975. const int64_t ne00 = src0->ne[0];
  5976. const int64_t ne01 = src0->ne[1];
  5977. const int64_t ne02 = src0->ne[2];
  5978. const int64_t ne03 = src0->ne[3];
  5979. const int64_t ne10 = src1->ne[0];
  5980. const int64_t ne11 = src1->ne[1];
  5981. const int64_t ne12 = src1->ne[2];
  5982. const int64_t ne13 = src1->ne[3];
  5983. const int64_t ne0 = dst->ne[0];
  5984. const int64_t ne1 = dst->ne[1];
  5985. const int64_t ne2 = dst->ne[2];
  5986. const int64_t ne3 = dst->ne[3];
  5987. //const int64_t ne = ne0*ne1*ne2*ne3;
  5988. const int nb00 = src0->nb[0];
  5989. const int nb01 = src0->nb[1];
  5990. const int nb02 = src0->nb[2];
  5991. const int nb03 = src0->nb[3];
  5992. const int nb10 = src1->nb[0];
  5993. const int nb11 = src1->nb[1];
  5994. const int nb12 = src1->nb[2];
  5995. const int nb13 = src1->nb[3];
  5996. const int nb0 = dst->nb[0];
  5997. const int nb1 = dst->nb[1];
  5998. const int nb2 = dst->nb[2];
  5999. const int nb3 = dst->nb[3];
  6000. const int ith = params->ith;
  6001. const int nth = params->nth;
  6002. GGML_ASSERT(ne02 == ne12);
  6003. GGML_ASSERT(ne03 == ne13);
  6004. GGML_ASSERT(ne2 == ne12);
  6005. GGML_ASSERT(ne3 == ne13);
  6006. // TODO: we don't support permuted src0
  6007. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6008. // dst cannot be transposed or permuted
  6009. GGML_ASSERT(nb0 == sizeof(float));
  6010. GGML_ASSERT(nb0 <= nb1);
  6011. GGML_ASSERT(nb1 <= nb2);
  6012. GGML_ASSERT(nb2 <= nb3);
  6013. GGML_ASSERT(ne0 == ne01);
  6014. GGML_ASSERT(ne1 == ne11);
  6015. GGML_ASSERT(ne2 == ne02);
  6016. GGML_ASSERT(ne3 == ne03);
  6017. // nb01 >= nb00 - src0 is not transposed
  6018. // compute by src0 rows
  6019. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  6020. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6021. GGML_ASSERT(nb10 == sizeof(float));
  6022. if (params->ith != 0) {
  6023. return;
  6024. }
  6025. if (params->type == GGML_TASK_INIT) {
  6026. return;
  6027. }
  6028. if (params->type == GGML_TASK_FINALIZE) {
  6029. return;
  6030. }
  6031. float * const wdata = params->wdata;
  6032. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6033. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6034. {
  6035. size_t id = 0;
  6036. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6037. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  6038. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  6039. }
  6040. }
  6041. }
  6042. const float * x = wdata;
  6043. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6044. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6045. // zT = y * xT
  6046. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6047. ne11, ne01, ne10,
  6048. 1.0f, y, ne10,
  6049. x, ne00,
  6050. 0.0f, d, ne01);
  6051. }
  6052. }
  6053. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  6054. return;
  6055. }
  6056. #endif
  6057. if (params->type == GGML_TASK_INIT) {
  6058. ggml_fp16_t * const wdata = params->wdata;
  6059. size_t id = 0;
  6060. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6061. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6062. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6063. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  6064. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  6065. }
  6066. }
  6067. }
  6068. }
  6069. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  6070. return;
  6071. }
  6072. if (params->type == GGML_TASK_FINALIZE) {
  6073. return;
  6074. }
  6075. // fp16 -> half the size, so divide by 2
  6076. // TODO: do not support transposed src1
  6077. assert(nb10/2 == sizeof(ggml_fp16_t));
  6078. // parallelize by src0 rows using ggml_vec_dot_f16
  6079. // total rows in src0
  6080. const int nr = ne01*ne02*ne03;
  6081. // rows per thread
  6082. const int dr = (nr + nth - 1)/nth;
  6083. // row range for this thread
  6084. const int ir0 = dr*ith;
  6085. const int ir1 = MIN(ir0 + dr, nr);
  6086. ggml_fp16_t * wdata = params->wdata;
  6087. for (int ir = ir0; ir < ir1; ++ir) {
  6088. // src0 indices
  6089. const int i03 = ir/(ne02*ne01);
  6090. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6091. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6092. const int i13 = i03;
  6093. const int i12 = i02;
  6094. const int i0 = i01;
  6095. const int i2 = i02;
  6096. const int i3 = i03;
  6097. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6098. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  6099. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  6100. for (int64_t ic = 0; ic < ne11; ++ic) {
  6101. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  6102. }
  6103. }
  6104. //int64_t t1 = ggml_time_us();
  6105. //static int64_t acc = 0;
  6106. //acc += t1 - t0;
  6107. //if (t1 - t0 > 10) {
  6108. // printf("\n");
  6109. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6110. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6111. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6112. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6113. //}
  6114. }
  6115. static void ggml_compute_forward_mul_mat_q_f32(
  6116. const struct ggml_compute_params * params,
  6117. const struct ggml_tensor * src0,
  6118. const struct ggml_tensor * src1,
  6119. struct ggml_tensor * dst) {
  6120. int64_t t0 = ggml_perf_time_us();
  6121. UNUSED(t0);
  6122. const int64_t ne00 = src0->ne[0];
  6123. const int64_t ne01 = src0->ne[1];
  6124. const int64_t ne02 = src0->ne[2];
  6125. const int64_t ne03 = src0->ne[3];
  6126. const int64_t ne10 = src1->ne[0];
  6127. const int64_t ne11 = src1->ne[1];
  6128. const int64_t ne12 = src1->ne[2];
  6129. const int64_t ne13 = src1->ne[3];
  6130. const int64_t ne0 = dst->ne[0];
  6131. const int64_t ne1 = dst->ne[1];
  6132. const int64_t ne2 = dst->ne[2];
  6133. const int64_t ne3 = dst->ne[3];
  6134. const int nb00 = src0->nb[0];
  6135. const int nb01 = src0->nb[1];
  6136. const int nb02 = src0->nb[2];
  6137. const int nb03 = src0->nb[3];
  6138. const int nb10 = src1->nb[0];
  6139. const int nb11 = src1->nb[1];
  6140. const int nb12 = src1->nb[2];
  6141. const int nb13 = src1->nb[3];
  6142. const int nb0 = dst->nb[0];
  6143. const int nb1 = dst->nb[1];
  6144. const int nb2 = dst->nb[2];
  6145. const int nb3 = dst->nb[3];
  6146. const int ith = params->ith;
  6147. const int nth = params->nth;
  6148. GGML_ASSERT(ne02 == ne12);
  6149. GGML_ASSERT(ne03 == ne13);
  6150. GGML_ASSERT(ne2 == ne12);
  6151. GGML_ASSERT(ne3 == ne13);
  6152. const enum ggml_type type = src0->type;
  6153. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  6154. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  6155. // we don't support permuted src0 or src1
  6156. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  6157. GGML_ASSERT(nb10 == sizeof(float));
  6158. // dst cannot be transposed or permuted
  6159. GGML_ASSERT(nb0 == sizeof(float));
  6160. GGML_ASSERT(nb0 <= nb1);
  6161. GGML_ASSERT(nb1 <= nb2);
  6162. GGML_ASSERT(nb2 <= nb3);
  6163. GGML_ASSERT(ne0 == ne01);
  6164. GGML_ASSERT(ne1 == ne11);
  6165. GGML_ASSERT(ne2 == ne02);
  6166. GGML_ASSERT(ne3 == ne03);
  6167. // nb01 >= nb00 - src0 is not transposed
  6168. // compute by src0 rows
  6169. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  6170. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6171. if (params->ith != 0) {
  6172. return;
  6173. }
  6174. if (params->type == GGML_TASK_INIT) {
  6175. return;
  6176. }
  6177. if (params->type == GGML_TASK_FINALIZE) {
  6178. return;
  6179. }
  6180. float * const wdata = params->wdata;
  6181. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6182. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6183. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6184. {
  6185. size_t id = 0;
  6186. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6187. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  6188. id += ne00;
  6189. }
  6190. }
  6191. const float * x = wdata;
  6192. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6193. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6194. // zT = y * xT
  6195. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6196. ne11, ne01, ne10,
  6197. 1.0f, y, ne10,
  6198. x, ne00,
  6199. 0.0f, d, ne01);
  6200. }
  6201. }
  6202. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  6203. return;
  6204. }
  6205. #endif
  6206. if (params->type == GGML_TASK_INIT) {
  6207. char * wdata = params->wdata;
  6208. const size_t row_size = ne10*GGML_TYPE_SIZE[GGML_TYPE_Q8_0]/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  6209. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6210. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6211. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6212. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  6213. wdata += row_size;
  6214. }
  6215. }
  6216. }
  6217. return;
  6218. }
  6219. if (params->type == GGML_TASK_FINALIZE) {
  6220. return;
  6221. }
  6222. // parallelize by src0 rows using ggml_vec_dot_q
  6223. // total rows in src0
  6224. const int nr = ne01*ne02*ne03;
  6225. // rows per thread
  6226. const int dr = (nr + nth - 1)/nth;
  6227. // row range for this thread
  6228. const int ir0 = dr*ith;
  6229. const int ir1 = MIN(ir0 + dr, nr);
  6230. void * wdata = params->wdata;
  6231. const size_t row_size = ne00*GGML_TYPE_SIZE[GGML_TYPE_Q8_0]/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  6232. for (int ir = ir0; ir < ir1; ++ir) {
  6233. // src0 indices
  6234. const int i03 = ir/(ne02*ne01);
  6235. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6236. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6237. const int i13 = i03;
  6238. const int i12 = i02;
  6239. const int i0 = i01;
  6240. const int i2 = i02;
  6241. const int i3 = i03;
  6242. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6243. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  6244. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  6245. assert(ne00 % 32 == 0);
  6246. for (int64_t ic = 0; ic < ne11; ++ic) {
  6247. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  6248. }
  6249. }
  6250. //int64_t t1 = ggml_time_us();
  6251. //static int64_t acc = 0;
  6252. //acc += t1 - t0;
  6253. //if (t1 - t0 > 10) {
  6254. // printf("\n");
  6255. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6256. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6257. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6258. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6259. //}
  6260. }
  6261. static void ggml_compute_forward_mul_mat(
  6262. const struct ggml_compute_params * params,
  6263. const struct ggml_tensor * src0,
  6264. const struct ggml_tensor * src1,
  6265. struct ggml_tensor * dst) {
  6266. switch (src0->type) {
  6267. case GGML_TYPE_Q4_0:
  6268. case GGML_TYPE_Q4_1:
  6269. case GGML_TYPE_Q8_0:
  6270. {
  6271. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  6272. } break;
  6273. case GGML_TYPE_F16:
  6274. {
  6275. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  6276. } break;
  6277. case GGML_TYPE_F32:
  6278. {
  6279. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  6280. } break;
  6281. default:
  6282. {
  6283. GGML_ASSERT(false);
  6284. } break;
  6285. }
  6286. #if 0
  6287. if (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_Q4_1) {
  6288. static int first = 8;
  6289. printf("src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  6290. printf("src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  6291. printf("dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  6292. if (first) {
  6293. --first;
  6294. } else {
  6295. for (int k = 0; k < dst->ne[1]; ++k) {
  6296. for (int j = 0; j < dst->ne[0]/16; ++j) {
  6297. for (int i = 0; i < 16; ++i) {
  6298. printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  6299. }
  6300. printf("\n");
  6301. }
  6302. printf("\n");
  6303. }
  6304. printf("\n");
  6305. exit(0);
  6306. }
  6307. } else {
  6308. printf("aaaa src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  6309. printf("aaaa src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  6310. printf("aaaa dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  6311. }
  6312. #endif
  6313. }
  6314. // ggml_compute_forward_scale
  6315. static void ggml_compute_forward_scale_f32(
  6316. const struct ggml_compute_params * params,
  6317. const struct ggml_tensor * src0,
  6318. const struct ggml_tensor * src1,
  6319. struct ggml_tensor * dst) {
  6320. GGML_ASSERT(ggml_is_contiguous(src0));
  6321. GGML_ASSERT(ggml_is_contiguous(dst));
  6322. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6323. GGML_ASSERT(ggml_is_scalar(src1));
  6324. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6325. return;
  6326. }
  6327. // scale factor
  6328. const float v = *(float *) src1->data;
  6329. const int ith = params->ith;
  6330. const int nth = params->nth;
  6331. const int nc = src0->ne[0];
  6332. const int nr = ggml_nrows(src0);
  6333. // rows per thread
  6334. const int dr = (nr + nth - 1)/nth;
  6335. // row range for this thread
  6336. const int ir0 = dr*ith;
  6337. const int ir1 = MIN(ir0 + dr, nr);
  6338. for (int i1 = ir0; i1 < ir1; i1++) {
  6339. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  6340. }
  6341. }
  6342. static void ggml_compute_forward_scale(
  6343. const struct ggml_compute_params * params,
  6344. const struct ggml_tensor * src0,
  6345. const struct ggml_tensor * src1,
  6346. struct ggml_tensor * dst) {
  6347. switch (src0->type) {
  6348. case GGML_TYPE_F32:
  6349. {
  6350. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  6351. } break;
  6352. default:
  6353. {
  6354. GGML_ASSERT(false);
  6355. } break;
  6356. }
  6357. }
  6358. // ggml_compute_forward_cpy
  6359. static void ggml_compute_forward_cpy(
  6360. const struct ggml_compute_params * params,
  6361. const struct ggml_tensor * src0,
  6362. struct ggml_tensor * dst) {
  6363. ggml_compute_forward_dup(params, src0, dst);
  6364. }
  6365. // ggml_compute_forward_cont
  6366. static void ggml_compute_forward_cont(
  6367. const struct ggml_compute_params * params,
  6368. const struct ggml_tensor * src0,
  6369. struct ggml_tensor * dst) {
  6370. ggml_compute_forward_dup(params, src0, dst);
  6371. }
  6372. // ggml_compute_forward_reshape
  6373. static void ggml_compute_forward_reshape(
  6374. const struct ggml_compute_params * params,
  6375. const struct ggml_tensor * src0,
  6376. struct ggml_tensor * dst) {
  6377. // NOP
  6378. UNUSED(params);
  6379. UNUSED(src0);
  6380. UNUSED(dst);
  6381. }
  6382. // ggml_compute_forward_view
  6383. static void ggml_compute_forward_view(
  6384. const struct ggml_compute_params * params,
  6385. const struct ggml_tensor * src0) {
  6386. // NOP
  6387. UNUSED(params);
  6388. UNUSED(src0);
  6389. }
  6390. // ggml_compute_forward_permute
  6391. static void ggml_compute_forward_permute(
  6392. const struct ggml_compute_params * params,
  6393. const struct ggml_tensor * src0) {
  6394. // NOP
  6395. UNUSED(params);
  6396. UNUSED(src0);
  6397. }
  6398. // ggml_compute_forward_transpose
  6399. static void ggml_compute_forward_transpose(
  6400. const struct ggml_compute_params * params,
  6401. const struct ggml_tensor * src0) {
  6402. // NOP
  6403. UNUSED(params);
  6404. UNUSED(src0);
  6405. }
  6406. // ggml_compute_forward_get_rows
  6407. static void ggml_compute_forward_get_rows_q(
  6408. const struct ggml_compute_params * params,
  6409. const struct ggml_tensor * src0,
  6410. const struct ggml_tensor * src1,
  6411. struct ggml_tensor * dst) {
  6412. assert(params->ith == 0);
  6413. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6414. return;
  6415. }
  6416. const int nc = src0->ne[0];
  6417. const int nr = ggml_nelements(src1);
  6418. const enum ggml_type type = src0->type;
  6419. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6420. assert( dst->ne[0] == nc);
  6421. assert( dst->ne[1] == nr);
  6422. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  6423. for (int i = 0; i < nr; ++i) {
  6424. const int r = ((int32_t *) src1->data)[i];
  6425. dequantize_row_q(
  6426. (const void *) ((char *) src0->data + r*src0->nb[1]),
  6427. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  6428. }
  6429. }
  6430. static void ggml_compute_forward_get_rows_f16(
  6431. const struct ggml_compute_params * params,
  6432. const struct ggml_tensor * src0,
  6433. const struct ggml_tensor * src1,
  6434. struct ggml_tensor * dst) {
  6435. assert(params->ith == 0);
  6436. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6437. return;
  6438. }
  6439. const int nc = src0->ne[0];
  6440. const int nr = ggml_nelements(src1);
  6441. assert( dst->ne[0] == nc);
  6442. assert( dst->ne[1] == nr);
  6443. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  6444. for (int i = 0; i < nr; ++i) {
  6445. const int r = ((int32_t *) src1->data)[i];
  6446. for (int j = 0; j < nc; ++j) {
  6447. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  6448. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  6449. }
  6450. }
  6451. }
  6452. static void ggml_compute_forward_get_rows_f32(
  6453. const struct ggml_compute_params * params,
  6454. const struct ggml_tensor * src0,
  6455. const struct ggml_tensor * src1,
  6456. struct ggml_tensor * dst) {
  6457. assert(params->ith == 0);
  6458. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6459. return;
  6460. }
  6461. const int nc = src0->ne[0];
  6462. const int nr = ggml_nelements(src1);
  6463. assert( dst->ne[0] == nc);
  6464. assert( dst->ne[1] == nr);
  6465. assert(src0->nb[0] == sizeof(float));
  6466. for (int i = 0; i < nr; ++i) {
  6467. const int r = ((int32_t *) src1->data)[i];
  6468. ggml_vec_cpy_f32(nc,
  6469. (float *) ((char *) dst->data + i*dst->nb[1]),
  6470. (float *) ((char *) src0->data + r*src0->nb[1]));
  6471. }
  6472. }
  6473. static void ggml_compute_forward_get_rows(
  6474. const struct ggml_compute_params * params,
  6475. const struct ggml_tensor * src0,
  6476. const struct ggml_tensor * src1,
  6477. struct ggml_tensor * dst) {
  6478. switch (src0->type) {
  6479. case GGML_TYPE_Q4_0:
  6480. case GGML_TYPE_Q4_1:
  6481. case GGML_TYPE_Q8_0:
  6482. {
  6483. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  6484. } break;
  6485. case GGML_TYPE_F16:
  6486. {
  6487. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  6488. } break;
  6489. case GGML_TYPE_F32:
  6490. {
  6491. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  6492. } break;
  6493. default:
  6494. {
  6495. GGML_ASSERT(false);
  6496. } break;
  6497. }
  6498. //static bool first = true;
  6499. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  6500. //if (first) {
  6501. // first = false;
  6502. //} else {
  6503. // for (int k = 0; k < dst->ne[1]; ++k) {
  6504. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  6505. // for (int i = 0; i < 16; ++i) {
  6506. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  6507. // }
  6508. // printf("\n");
  6509. // }
  6510. // printf("\n");
  6511. // }
  6512. // printf("\n");
  6513. // exit(0);
  6514. //}
  6515. }
  6516. // ggml_compute_forward_diag_mask_inf
  6517. static void ggml_compute_forward_diag_mask_inf_f32(
  6518. const struct ggml_compute_params * params,
  6519. const struct ggml_tensor * src0,
  6520. const struct ggml_tensor * src1,
  6521. struct ggml_tensor * dst) {
  6522. assert(params->ith == 0);
  6523. assert(src1->type == GGML_TYPE_I32);
  6524. assert(ggml_nelements(src1) == 1);
  6525. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6526. return;
  6527. }
  6528. const int n_past = ((int32_t *) src1->data)[0];
  6529. // TODO: handle transposed/permuted matrices
  6530. const int n = ggml_nrows(src0);
  6531. const int nc = src0->ne[0];
  6532. const int nr = src0->ne[1];
  6533. const int nz = n/nr;
  6534. assert( dst->nb[0] == sizeof(float));
  6535. assert(src0->nb[0] == sizeof(float));
  6536. for (int k = 0; k < nz; k++) {
  6537. for (int j = 0; j < nr; j++) {
  6538. for (int i = n_past; i < nc; i++) {
  6539. if (i > n_past + j) {
  6540. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  6541. }
  6542. }
  6543. }
  6544. }
  6545. }
  6546. static void ggml_compute_forward_diag_mask_inf(
  6547. const struct ggml_compute_params * params,
  6548. const struct ggml_tensor * src0,
  6549. const struct ggml_tensor * src1,
  6550. struct ggml_tensor * dst) {
  6551. switch (src0->type) {
  6552. case GGML_TYPE_F32:
  6553. {
  6554. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  6555. } break;
  6556. default:
  6557. {
  6558. GGML_ASSERT(false);
  6559. } break;
  6560. }
  6561. }
  6562. // ggml_compute_forward_soft_max
  6563. static void ggml_compute_forward_soft_max_f32(
  6564. const struct ggml_compute_params * params,
  6565. const struct ggml_tensor * src0,
  6566. struct ggml_tensor * dst) {
  6567. GGML_ASSERT(ggml_is_contiguous(src0));
  6568. GGML_ASSERT(ggml_is_contiguous(dst));
  6569. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6570. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6571. return;
  6572. }
  6573. // TODO: handle transposed/permuted matrices
  6574. const int ith = params->ith;
  6575. const int nth = params->nth;
  6576. const int nc = src0->ne[0];
  6577. const int nr = ggml_nrows(src0);
  6578. // rows per thread
  6579. const int dr = (nr + nth - 1)/nth;
  6580. // row range for this thread
  6581. const int ir0 = dr*ith;
  6582. const int ir1 = MIN(ir0 + dr, nr);
  6583. for (int i1 = ir0; i1 < ir1; i1++) {
  6584. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  6585. #ifndef NDEBUG
  6586. for (int i = 0; i < nc; ++i) {
  6587. //printf("p[%d] = %f\n", i, p[i]);
  6588. assert(!isnan(p[i]));
  6589. }
  6590. #endif
  6591. float max = -INFINITY;
  6592. ggml_vec_max_f32(nc, &max, p);
  6593. ggml_float sum = 0.0;
  6594. uint16_t scvt;
  6595. for (int i = 0; i < nc; i++) {
  6596. if (p[i] == -INFINITY) {
  6597. p[i] = 0.0f;
  6598. } else {
  6599. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  6600. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  6601. memcpy(&scvt, &s, sizeof(scvt));
  6602. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  6603. sum += (ggml_float)val;
  6604. p[i] = val;
  6605. }
  6606. }
  6607. assert(sum > 0.0);
  6608. sum = 1.0/sum;
  6609. ggml_vec_scale_f32(nc, p, sum);
  6610. #ifndef NDEBUG
  6611. for (int i = 0; i < nc; ++i) {
  6612. assert(!isnan(p[i]));
  6613. assert(!isinf(p[i]));
  6614. }
  6615. #endif
  6616. }
  6617. }
  6618. static void ggml_compute_forward_soft_max(
  6619. const struct ggml_compute_params * params,
  6620. const struct ggml_tensor * src0,
  6621. struct ggml_tensor * dst) {
  6622. switch (src0->type) {
  6623. case GGML_TYPE_F32:
  6624. {
  6625. ggml_compute_forward_soft_max_f32(params, src0, dst);
  6626. } break;
  6627. default:
  6628. {
  6629. GGML_ASSERT(false);
  6630. } break;
  6631. }
  6632. }
  6633. // ggml_compute_forward_rope
  6634. static void ggml_compute_forward_rope_f32(
  6635. const struct ggml_compute_params * params,
  6636. const struct ggml_tensor * src0,
  6637. const struct ggml_tensor * src1,
  6638. struct ggml_tensor * dst) {
  6639. assert(src1->type == GGML_TYPE_I32);
  6640. assert(ggml_nelements(src1) == 3);
  6641. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6642. return;
  6643. }
  6644. const int n_past = ((int32_t *) src1->data)[0];
  6645. const int n_dims = ((int32_t *) src1->data)[1];
  6646. const int mode = ((int32_t *) src1->data)[2];
  6647. //const int64_t ne0 = src0->ne[0];
  6648. const int64_t ne1 = src0->ne[1];
  6649. const int64_t ne2 = src0->ne[2];
  6650. const int64_t ne3 = src0->ne[3];
  6651. const int nb0 = src0->nb[0];
  6652. const int nb1 = src0->nb[1];
  6653. const int nb2 = src0->nb[2];
  6654. const int nb3 = src0->nb[3];
  6655. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  6656. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  6657. assert(nb0 == sizeof(float));
  6658. const int ith = params->ith;
  6659. const int nth = params->nth;
  6660. const int nr = ggml_nrows(src0);
  6661. // rows per thread
  6662. const int dr = (nr + nth - 1)/nth;
  6663. // row range for this thread
  6664. const int ir0 = dr*ith;
  6665. const int ir1 = MIN(ir0 + dr, nr);
  6666. // row index used to determine which thread to use
  6667. int ir = 0;
  6668. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  6669. for (int64_t i3 = 0; i3 < ne3; i3++) {
  6670. for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  6671. const int p = (mode == 0 ? n_past + i2 : i2);
  6672. for (int64_t i1 = 0; i1 < ne1; i1++) {
  6673. if (ir++ < ir0) continue;
  6674. if (ir > ir1) break;
  6675. float theta = (float)p;
  6676. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  6677. const float cos_theta = cosf(theta);
  6678. const float sin_theta = sinf(theta);
  6679. theta *= theta_scale;
  6680. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6681. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6682. const float x0 = src[0];
  6683. const float x1 = src[1];
  6684. dst_data[0] = x0*cos_theta - x1*sin_theta;
  6685. dst_data[1] = x0*sin_theta + x1*cos_theta;
  6686. }
  6687. }
  6688. }
  6689. }
  6690. }
  6691. static void ggml_compute_forward_rope_f16(
  6692. const struct ggml_compute_params * params,
  6693. const struct ggml_tensor * src0,
  6694. const struct ggml_tensor * src1,
  6695. struct ggml_tensor * dst) {
  6696. assert(src1->type == GGML_TYPE_I32);
  6697. assert(ggml_nelements(src1) == 3);
  6698. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6699. return;
  6700. }
  6701. const int n_past = ((int32_t *) src1->data)[0];
  6702. const int n_dims = ((int32_t *) src1->data)[1];
  6703. const int mode = ((int32_t *) src1->data)[2];
  6704. //const int64_t ne0 = src0->ne[0];
  6705. const int64_t ne1 = src0->ne[1];
  6706. const int64_t ne2 = src0->ne[2];
  6707. const int64_t ne3 = src0->ne[3];
  6708. const int nb0 = src0->nb[0];
  6709. const int nb1 = src0->nb[1];
  6710. const int nb2 = src0->nb[2];
  6711. const int nb3 = src0->nb[3];
  6712. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  6713. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  6714. assert(nb0 == sizeof(ggml_fp16_t));
  6715. const int ith = params->ith;
  6716. const int nth = params->nth;
  6717. const int nr = ggml_nrows(src0);
  6718. // rows per thread
  6719. const int dr = (nr + nth - 1)/nth;
  6720. // row range for this thread
  6721. const int ir0 = dr*ith;
  6722. const int ir1 = MIN(ir0 + dr, nr);
  6723. // row index used to determine which thread to use
  6724. int ir = 0;
  6725. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  6726. for (int64_t i3 = 0; i3 < ne3; i3++) {
  6727. for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  6728. const int p = (mode == 0 ? n_past + i2 : i2);
  6729. for (int64_t i1 = 0; i1 < ne1; i1++) {
  6730. if (ir++ < ir0) continue;
  6731. if (ir > ir1) break;
  6732. float theta = (float)p;
  6733. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  6734. const float cos_theta = cosf(theta);
  6735. const float sin_theta = sinf(theta);
  6736. theta *= theta_scale;
  6737. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6738. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6739. const float x0 = GGML_FP16_TO_FP32(src[0]);
  6740. const float x1 = GGML_FP16_TO_FP32(src[1]);
  6741. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  6742. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  6743. }
  6744. }
  6745. }
  6746. }
  6747. }
  6748. static void ggml_compute_forward_rope(
  6749. const struct ggml_compute_params * params,
  6750. const struct ggml_tensor * src0,
  6751. const struct ggml_tensor * src1,
  6752. struct ggml_tensor * dst) {
  6753. switch (src0->type) {
  6754. case GGML_TYPE_F16:
  6755. {
  6756. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  6757. } break;
  6758. case GGML_TYPE_F32:
  6759. {
  6760. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  6761. } break;
  6762. default:
  6763. {
  6764. GGML_ASSERT(false);
  6765. } break;
  6766. }
  6767. }
  6768. // ggml_compute_forward_conv_1d_1s
  6769. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  6770. const struct ggml_compute_params * params,
  6771. const struct ggml_tensor * src0,
  6772. const struct ggml_tensor * src1,
  6773. struct ggml_tensor * dst) {
  6774. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6775. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6776. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6777. int64_t t0 = ggml_perf_time_us();
  6778. UNUSED(t0);
  6779. const int64_t ne00 = src0->ne[0];
  6780. const int64_t ne01 = src0->ne[1];
  6781. const int64_t ne02 = src0->ne[2];
  6782. //const int64_t ne03 = src0->ne[3];
  6783. const int64_t ne10 = src1->ne[0];
  6784. const int64_t ne11 = src1->ne[1];
  6785. //const int64_t ne12 = src1->ne[2];
  6786. //const int64_t ne13 = src1->ne[3];
  6787. //const int64_t ne0 = dst->ne[0];
  6788. //const int64_t ne1 = dst->ne[1];
  6789. //const int64_t ne2 = dst->ne[2];
  6790. //const int64_t ne3 = dst->ne[3];
  6791. //const int64_t ne = ne0*ne1*ne2*ne3;
  6792. const int nb00 = src0->nb[0];
  6793. const int nb01 = src0->nb[1];
  6794. const int nb02 = src0->nb[2];
  6795. //const int nb03 = src0->nb[3];
  6796. const int nb10 = src1->nb[0];
  6797. const int nb11 = src1->nb[1];
  6798. //const int nb12 = src1->nb[2];
  6799. //const int nb13 = src1->nb[3];
  6800. //const int nb0 = dst->nb[0];
  6801. const int nb1 = dst->nb[1];
  6802. //const int nb2 = dst->nb[2];
  6803. //const int nb3 = dst->nb[3];
  6804. const int ith = params->ith;
  6805. const int nth = params->nth;
  6806. const int nk = ne00;
  6807. const int nh = nk/2;
  6808. const int ew0 = ggml_up32(ne01);
  6809. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6810. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6811. GGML_ASSERT(nb10 == sizeof(float));
  6812. if (params->type == GGML_TASK_INIT) {
  6813. // TODO: fix this memset (wsize is overestimated)
  6814. memset(params->wdata, 0, params->wsize);
  6815. // prepare kernel data (src0)
  6816. {
  6817. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6818. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6819. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6820. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6821. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6822. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6823. dst_data[i00*ew0 + i01] = src[i00];
  6824. }
  6825. }
  6826. }
  6827. }
  6828. // prepare source data (src1)
  6829. {
  6830. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6831. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6832. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6833. ggml_fp16_t * dst_data = wdata;
  6834. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6835. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6836. }
  6837. }
  6838. }
  6839. return;
  6840. }
  6841. if (params->type == GGML_TASK_FINALIZE) {
  6842. return;
  6843. }
  6844. // total rows in dst
  6845. const int nr = ne02;
  6846. // rows per thread
  6847. const int dr = (nr + nth - 1)/nth;
  6848. // row range for this thread
  6849. const int ir0 = dr*ith;
  6850. const int ir1 = MIN(ir0 + dr, nr);
  6851. for (int i1 = ir0; i1 < ir1; i1++) {
  6852. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6853. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  6854. dst_data[i0] = 0;
  6855. for (int k = -nh; k <= nh; k++) {
  6856. float v = 0.0f;
  6857. ggml_vec_dot_f16(ew0, &v,
  6858. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6859. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6860. dst_data[i0] += v;
  6861. }
  6862. }
  6863. }
  6864. }
  6865. static void ggml_compute_forward_conv_1d_1s_f32(
  6866. const struct ggml_compute_params * params,
  6867. const struct ggml_tensor * src0,
  6868. const struct ggml_tensor * src1,
  6869. struct ggml_tensor * dst) {
  6870. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6871. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6872. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6873. int64_t t0 = ggml_perf_time_us();
  6874. UNUSED(t0);
  6875. const int64_t ne00 = src0->ne[0];
  6876. const int64_t ne01 = src0->ne[1];
  6877. const int64_t ne02 = src0->ne[2];
  6878. //const int64_t ne03 = src0->ne[3];
  6879. const int64_t ne10 = src1->ne[0];
  6880. const int64_t ne11 = src1->ne[1];
  6881. //const int64_t ne12 = src1->ne[2];
  6882. //const int64_t ne13 = src1->ne[3];
  6883. //const int64_t ne0 = dst->ne[0];
  6884. //const int64_t ne1 = dst->ne[1];
  6885. //const int64_t ne2 = dst->ne[2];
  6886. //const int64_t ne3 = dst->ne[3];
  6887. //const int64_t ne = ne0*ne1*ne2*ne3;
  6888. const int nb00 = src0->nb[0];
  6889. const int nb01 = src0->nb[1];
  6890. const int nb02 = src0->nb[2];
  6891. //const int nb03 = src0->nb[3];
  6892. const int nb10 = src1->nb[0];
  6893. const int nb11 = src1->nb[1];
  6894. //const int nb12 = src1->nb[2];
  6895. //const int nb13 = src1->nb[3];
  6896. //const int nb0 = dst->nb[0];
  6897. const int nb1 = dst->nb[1];
  6898. //const int nb2 = dst->nb[2];
  6899. //const int nb3 = dst->nb[3];
  6900. const int ith = params->ith;
  6901. const int nth = params->nth;
  6902. const int nk = ne00;
  6903. const int nh = nk/2;
  6904. const int ew0 = ggml_up32(ne01);
  6905. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6906. GGML_ASSERT(nb00 == sizeof(float));
  6907. GGML_ASSERT(nb10 == sizeof(float));
  6908. if (params->type == GGML_TASK_INIT) {
  6909. // TODO: fix this memset (wsize is overestimated)
  6910. memset(params->wdata, 0, params->wsize);
  6911. // prepare kernel data (src0)
  6912. {
  6913. float * const wdata = (float *) params->wdata + 0;
  6914. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6915. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6916. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6917. float * dst_data = wdata + i02*ew0*ne00;
  6918. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6919. dst_data[i00*ew0 + i01] = src[i00];
  6920. }
  6921. }
  6922. }
  6923. }
  6924. // prepare source data (src1)
  6925. {
  6926. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6927. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6928. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6929. float * dst_data = wdata;
  6930. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6931. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6932. }
  6933. }
  6934. }
  6935. return;
  6936. }
  6937. if (params->type == GGML_TASK_FINALIZE) {
  6938. return;
  6939. }
  6940. // total rows in dst
  6941. const int nr = ne02;
  6942. // rows per thread
  6943. const int dr = (nr + nth - 1)/nth;
  6944. // row range for this thread
  6945. const int ir0 = dr*ith;
  6946. const int ir1 = MIN(ir0 + dr, nr);
  6947. for (int i1 = ir0; i1 < ir1; i1++) {
  6948. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6949. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  6950. dst_data[i0] = 0;
  6951. for (int k = -nh; k <= nh; k++) {
  6952. float v = 0.0f;
  6953. ggml_vec_dot_f32(ew0, &v,
  6954. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6955. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6956. dst_data[i0] += v;
  6957. }
  6958. }
  6959. }
  6960. }
  6961. static void ggml_compute_forward_conv_1d_1s(
  6962. const struct ggml_compute_params * params,
  6963. const struct ggml_tensor * src0,
  6964. const struct ggml_tensor * src1,
  6965. struct ggml_tensor * dst) {
  6966. switch (src0->type) {
  6967. case GGML_TYPE_F16:
  6968. {
  6969. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  6970. } break;
  6971. case GGML_TYPE_F32:
  6972. {
  6973. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  6974. } break;
  6975. default:
  6976. {
  6977. GGML_ASSERT(false);
  6978. } break;
  6979. }
  6980. }
  6981. // ggml_compute_forward_conv_1d_2s
  6982. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  6983. const struct ggml_compute_params * params,
  6984. const struct ggml_tensor * src0,
  6985. const struct ggml_tensor * src1,
  6986. struct ggml_tensor * dst) {
  6987. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6988. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6989. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6990. int64_t t0 = ggml_perf_time_us();
  6991. UNUSED(t0);
  6992. const int64_t ne00 = src0->ne[0];
  6993. const int64_t ne01 = src0->ne[1];
  6994. const int64_t ne02 = src0->ne[2];
  6995. //const int64_t ne03 = src0->ne[3];
  6996. const int64_t ne10 = src1->ne[0];
  6997. const int64_t ne11 = src1->ne[1];
  6998. //const int64_t ne12 = src1->ne[2];
  6999. //const int64_t ne13 = src1->ne[3];
  7000. //const int64_t ne0 = dst->ne[0];
  7001. //const int64_t ne1 = dst->ne[1];
  7002. //const int64_t ne2 = dst->ne[2];
  7003. //const int64_t ne3 = dst->ne[3];
  7004. //const int64_t ne = ne0*ne1*ne2*ne3;
  7005. const int nb00 = src0->nb[0];
  7006. const int nb01 = src0->nb[1];
  7007. const int nb02 = src0->nb[2];
  7008. //const int nb03 = src0->nb[3];
  7009. const int nb10 = src1->nb[0];
  7010. const int nb11 = src1->nb[1];
  7011. //const int nb12 = src1->nb[2];
  7012. //const int nb13 = src1->nb[3];
  7013. //const int nb0 = dst->nb[0];
  7014. const int nb1 = dst->nb[1];
  7015. //const int nb2 = dst->nb[2];
  7016. //const int nb3 = dst->nb[3];
  7017. const int ith = params->ith;
  7018. const int nth = params->nth;
  7019. const int nk = ne00;
  7020. const int nh = nk/2;
  7021. const int ew0 = ggml_up32(ne01);
  7022. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7023. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7024. GGML_ASSERT(nb10 == sizeof(float));
  7025. if (params->type == GGML_TASK_INIT) {
  7026. // TODO: fix this memset (wsize is overestimated)
  7027. memset(params->wdata, 0, params->wsize);
  7028. // prepare kernel data (src0)
  7029. {
  7030. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7031. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7032. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7033. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7034. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7035. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7036. dst_data[i00*ew0 + i01] = src[i00];
  7037. }
  7038. }
  7039. }
  7040. }
  7041. // prepare source data (src1)
  7042. {
  7043. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7044. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7045. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7046. ggml_fp16_t * dst_data = wdata;
  7047. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7048. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7049. }
  7050. }
  7051. }
  7052. return;
  7053. }
  7054. if (params->type == GGML_TASK_FINALIZE) {
  7055. return;
  7056. }
  7057. // total rows in dst
  7058. const int nr = ne02;
  7059. // rows per thread
  7060. const int dr = (nr + nth - 1)/nth;
  7061. // row range for this thread
  7062. const int ir0 = dr*ith;
  7063. const int ir1 = MIN(ir0 + dr, nr);
  7064. for (int i1 = ir0; i1 < ir1; i1++) {
  7065. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7066. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  7067. dst_data[i0/2] = 0;
  7068. for (int k = -nh; k <= nh; k++) {
  7069. float v = 0.0f;
  7070. ggml_vec_dot_f16(ew0, &v,
  7071. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7072. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7073. dst_data[i0/2] += v;
  7074. }
  7075. }
  7076. }
  7077. }
  7078. static void ggml_compute_forward_conv_1d_2s_f32(
  7079. const struct ggml_compute_params * params,
  7080. const struct ggml_tensor * src0,
  7081. const struct ggml_tensor * src1,
  7082. struct ggml_tensor * dst) {
  7083. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7084. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7085. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7086. int64_t t0 = ggml_perf_time_us();
  7087. UNUSED(t0);
  7088. const int64_t ne00 = src0->ne[0];
  7089. const int64_t ne01 = src0->ne[1];
  7090. const int64_t ne02 = src0->ne[2];
  7091. //const int64_t ne03 = src0->ne[3];
  7092. const int64_t ne10 = src1->ne[0];
  7093. const int64_t ne11 = src1->ne[1];
  7094. //const int64_t ne12 = src1->ne[2];
  7095. //const int64_t ne13 = src1->ne[3];
  7096. //const int64_t ne0 = dst->ne[0];
  7097. //const int64_t ne1 = dst->ne[1];
  7098. //const int64_t ne2 = dst->ne[2];
  7099. //const int64_t ne3 = dst->ne[3];
  7100. //const int64_t ne = ne0*ne1*ne2*ne3;
  7101. const int nb00 = src0->nb[0];
  7102. const int nb01 = src0->nb[1];
  7103. const int nb02 = src0->nb[2];
  7104. //const int nb03 = src0->nb[3];
  7105. const int nb10 = src1->nb[0];
  7106. const int nb11 = src1->nb[1];
  7107. //const int nb12 = src1->nb[2];
  7108. //const int nb13 = src1->nb[3];
  7109. //const int nb0 = dst->nb[0];
  7110. const int nb1 = dst->nb[1];
  7111. //const int nb2 = dst->nb[2];
  7112. //const int nb3 = dst->nb[3];
  7113. const int ith = params->ith;
  7114. const int nth = params->nth;
  7115. const int nk = ne00;
  7116. const int nh = nk/2;
  7117. const int ew0 = ggml_up32(ne01);
  7118. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7119. GGML_ASSERT(nb00 == sizeof(float));
  7120. GGML_ASSERT(nb10 == sizeof(float));
  7121. if (params->type == GGML_TASK_INIT) {
  7122. // TODO: fix this memset (wsize is overestimated)
  7123. memset(params->wdata, 0, params->wsize);
  7124. // prepare kernel data (src0)
  7125. {
  7126. float * const wdata = (float *) params->wdata + 0;
  7127. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7128. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7129. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  7130. float * dst_data = wdata + i02*ew0*ne00;
  7131. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7132. dst_data[i00*ew0 + i01] = src[i00];
  7133. }
  7134. }
  7135. }
  7136. }
  7137. // prepare source data (src1)
  7138. {
  7139. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  7140. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7141. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7142. float * dst_data = wdata;
  7143. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7144. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  7145. }
  7146. }
  7147. }
  7148. return;
  7149. }
  7150. if (params->type == GGML_TASK_FINALIZE) {
  7151. return;
  7152. }
  7153. // total rows in dst
  7154. const int nr = ne02;
  7155. // rows per thread
  7156. const int dr = (nr + nth - 1)/nth;
  7157. // row range for this thread
  7158. const int ir0 = dr*ith;
  7159. const int ir1 = MIN(ir0 + dr, nr);
  7160. for (int i1 = ir0; i1 < ir1; i1++) {
  7161. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7162. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  7163. dst_data[i0/2] = 0;
  7164. for (int k = -nh; k <= nh; k++) {
  7165. float v = 0.0f;
  7166. ggml_vec_dot_f32(ew0, &v,
  7167. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7168. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7169. dst_data[i0/2] += v;
  7170. }
  7171. }
  7172. }
  7173. }
  7174. static void ggml_compute_forward_conv_1d_2s(
  7175. const struct ggml_compute_params * params,
  7176. const struct ggml_tensor * src0,
  7177. const struct ggml_tensor * src1,
  7178. struct ggml_tensor * dst) {
  7179. switch (src0->type) {
  7180. case GGML_TYPE_F16:
  7181. {
  7182. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  7183. } break;
  7184. case GGML_TYPE_F32:
  7185. {
  7186. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  7187. } break;
  7188. default:
  7189. {
  7190. GGML_ASSERT(false);
  7191. } break;
  7192. }
  7193. }
  7194. // ggml_compute_forward_flash_attn
  7195. static void ggml_compute_forward_flash_attn_f32(
  7196. const struct ggml_compute_params * params,
  7197. const struct ggml_tensor * q,
  7198. const struct ggml_tensor * k,
  7199. const struct ggml_tensor * v,
  7200. const bool masked,
  7201. struct ggml_tensor * dst) {
  7202. int64_t t0 = ggml_perf_time_us();
  7203. UNUSED(t0);
  7204. const int64_t neq0 = q->ne[0];
  7205. const int64_t neq1 = q->ne[1];
  7206. const int64_t neq2 = q->ne[2];
  7207. const int64_t neq3 = q->ne[3];
  7208. const int64_t nek0 = k->ne[0];
  7209. const int64_t nek1 = k->ne[1];
  7210. //const int64_t nek2 = k->ne[2];
  7211. //const int64_t nek3 = k->ne[3];
  7212. //const int64_t nev0 = v->ne[0];
  7213. const int64_t nev1 = v->ne[1];
  7214. //const int64_t nev2 = v->ne[2];
  7215. //const int64_t nev3 = v->ne[3];
  7216. const int64_t ne0 = dst->ne[0];
  7217. const int64_t ne1 = dst->ne[1];
  7218. //const int64_t ne2 = dst->ne[2];
  7219. //const int64_t ne3 = dst->ne[3];
  7220. const int nbk0 = k->nb[0];
  7221. const int nbk1 = k->nb[1];
  7222. const int nbk2 = k->nb[2];
  7223. const int nbk3 = k->nb[3];
  7224. const int nbq0 = q->nb[0];
  7225. const int nbq1 = q->nb[1];
  7226. const int nbq2 = q->nb[2];
  7227. const int nbq3 = q->nb[3];
  7228. const int nbv0 = v->nb[0];
  7229. const int nbv1 = v->nb[1];
  7230. const int nbv2 = v->nb[2];
  7231. const int nbv3 = v->nb[3];
  7232. const int nb0 = dst->nb[0];
  7233. const int nb1 = dst->nb[1];
  7234. const int nb2 = dst->nb[2];
  7235. const int nb3 = dst->nb[3];
  7236. const int ith = params->ith;
  7237. const int nth = params->nth;
  7238. const int64_t D = neq0;
  7239. const int64_t N = neq1;
  7240. const int64_t P = nek1 - N;
  7241. const int64_t M = P + N;
  7242. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  7243. GGML_ASSERT(ne0 == D);
  7244. GGML_ASSERT(ne1 == N);
  7245. GGML_ASSERT(P >= 0);
  7246. GGML_ASSERT(nbq0 == sizeof(float));
  7247. GGML_ASSERT(nbk0 == sizeof(float));
  7248. GGML_ASSERT(nbv0 == sizeof(float));
  7249. GGML_ASSERT(neq0 == D);
  7250. GGML_ASSERT(nek0 == D);
  7251. GGML_ASSERT(nev1 == D);
  7252. GGML_ASSERT(neq1 == N);
  7253. GGML_ASSERT(nek1 == N + P);
  7254. GGML_ASSERT(nev1 == D);
  7255. // dst cannot be transposed or permuted
  7256. GGML_ASSERT(nb0 == sizeof(float));
  7257. GGML_ASSERT(nb0 <= nb1);
  7258. GGML_ASSERT(nb1 <= nb2);
  7259. GGML_ASSERT(nb2 <= nb3);
  7260. if (params->type == GGML_TASK_INIT) {
  7261. return;
  7262. }
  7263. if (params->type == GGML_TASK_FINALIZE) {
  7264. return;
  7265. }
  7266. // parallelize by q rows using ggml_vec_dot_f32
  7267. // total rows in q
  7268. const int nr = neq1*neq2*neq3;
  7269. // rows per thread
  7270. const int dr = (nr + nth - 1)/nth;
  7271. // row range for this thread
  7272. const int ir0 = dr*ith;
  7273. const int ir1 = MIN(ir0 + dr, nr);
  7274. const float scale = 1.0f/sqrtf(D);
  7275. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  7276. for (int ir = ir0; ir < ir1; ++ir) {
  7277. // q indices
  7278. const int iq3 = ir/(neq2*neq1);
  7279. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  7280. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  7281. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  7282. for (int i = M; i < Mup; ++i) {
  7283. S[i] = -INFINITY;
  7284. }
  7285. for (int64_t ic = 0; ic < nek1; ++ic) {
  7286. // k indices
  7287. const int ik3 = iq3;
  7288. const int ik2 = iq2;
  7289. const int ik1 = ic;
  7290. // S indices
  7291. const int i1 = ik1;
  7292. ggml_vec_dot_f32(neq0,
  7293. S + i1,
  7294. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7295. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7296. }
  7297. // scale
  7298. ggml_vec_scale_f32(nek1, S, scale);
  7299. if (masked) {
  7300. for (int64_t i = P; i < M; i++) {
  7301. if (i > P + iq1) {
  7302. S[i] = -INFINITY;
  7303. }
  7304. }
  7305. }
  7306. // softmax
  7307. {
  7308. float max = -INFINITY;
  7309. ggml_vec_max_f32(M, &max, S);
  7310. ggml_float sum = 0.0;
  7311. {
  7312. #ifdef GGML_SOFT_MAX_ACCELERATE
  7313. max = -max;
  7314. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  7315. vvexpf(S, S, &Mup);
  7316. ggml_vec_sum_f32(Mup, &sum, S);
  7317. #else
  7318. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  7319. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  7320. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  7321. float * SS = S + i;
  7322. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  7323. if (SS[j] == -INFINITY) {
  7324. SS[j] = 0.0f;
  7325. } else {
  7326. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  7327. memcpy(&scvt[j], &s, sizeof(uint16_t));
  7328. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  7329. sump[j] += (ggml_float)val;
  7330. SS[j] = val;
  7331. }
  7332. }
  7333. }
  7334. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  7335. sum += sump[i];
  7336. }
  7337. #endif
  7338. }
  7339. assert(sum > 0.0);
  7340. sum = 1.0/sum;
  7341. ggml_vec_scale_f32(M, S, sum);
  7342. #ifndef NDEBUG
  7343. for (int i = 0; i < M; ++i) {
  7344. assert(!isnan(S[i]));
  7345. assert(!isinf(S[i]));
  7346. }
  7347. #endif
  7348. }
  7349. for (int64_t ic = 0; ic < nev1; ++ic) {
  7350. // dst indices
  7351. const int i1 = iq1;
  7352. const int i2 = iq2;
  7353. const int i3 = iq3;
  7354. ggml_vec_dot_f32(nek1,
  7355. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7356. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7357. S);
  7358. }
  7359. }
  7360. }
  7361. static void ggml_compute_forward_flash_attn_f16(
  7362. const struct ggml_compute_params * params,
  7363. const struct ggml_tensor * q,
  7364. const struct ggml_tensor * k,
  7365. const struct ggml_tensor * v,
  7366. const bool masked,
  7367. struct ggml_tensor * dst) {
  7368. int64_t t0 = ggml_perf_time_us();
  7369. UNUSED(t0);
  7370. const int64_t neq0 = q->ne[0];
  7371. const int64_t neq1 = q->ne[1];
  7372. const int64_t neq2 = q->ne[2];
  7373. const int64_t neq3 = q->ne[3];
  7374. const int64_t nek0 = k->ne[0];
  7375. const int64_t nek1 = k->ne[1];
  7376. //const int64_t nek2 = k->ne[2];
  7377. //const int64_t nek3 = k->ne[3];
  7378. //const int64_t nev0 = v->ne[0];
  7379. const int64_t nev1 = v->ne[1];
  7380. //const int64_t nev2 = v->ne[2];
  7381. //const int64_t nev3 = v->ne[3];
  7382. const int64_t ne0 = dst->ne[0];
  7383. const int64_t ne1 = dst->ne[1];
  7384. //const int64_t ne2 = dst->ne[2];
  7385. //const int64_t ne3 = dst->ne[3];
  7386. const int nbk0 = k->nb[0];
  7387. const int nbk1 = k->nb[1];
  7388. const int nbk2 = k->nb[2];
  7389. const int nbk3 = k->nb[3];
  7390. const int nbq0 = q->nb[0];
  7391. const int nbq1 = q->nb[1];
  7392. const int nbq2 = q->nb[2];
  7393. const int nbq3 = q->nb[3];
  7394. const int nbv0 = v->nb[0];
  7395. const int nbv1 = v->nb[1];
  7396. const int nbv2 = v->nb[2];
  7397. const int nbv3 = v->nb[3];
  7398. const int nb0 = dst->nb[0];
  7399. const int nb1 = dst->nb[1];
  7400. const int nb2 = dst->nb[2];
  7401. const int nb3 = dst->nb[3];
  7402. const int ith = params->ith;
  7403. const int nth = params->nth;
  7404. const int64_t D = neq0;
  7405. const int64_t N = neq1;
  7406. const int64_t P = nek1 - N;
  7407. const int64_t M = P + N;
  7408. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  7409. GGML_ASSERT(ne0 == D);
  7410. GGML_ASSERT(ne1 == N);
  7411. GGML_ASSERT(P >= 0);
  7412. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  7413. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  7414. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  7415. GGML_ASSERT(neq0 == D);
  7416. GGML_ASSERT(nek0 == D);
  7417. GGML_ASSERT(nev1 == D);
  7418. GGML_ASSERT(neq1 == N);
  7419. GGML_ASSERT(nek1 == N + P);
  7420. GGML_ASSERT(nev1 == D);
  7421. // dst cannot be transposed or permuted
  7422. GGML_ASSERT(nb0 == sizeof(float));
  7423. GGML_ASSERT(nb0 <= nb1);
  7424. GGML_ASSERT(nb1 <= nb2);
  7425. GGML_ASSERT(nb2 <= nb3);
  7426. if (params->type == GGML_TASK_INIT) {
  7427. return;
  7428. }
  7429. if (params->type == GGML_TASK_FINALIZE) {
  7430. return;
  7431. }
  7432. // parallelize by q rows using ggml_vec_dot_f32
  7433. // total rows in q
  7434. const int nr = neq1*neq2*neq3;
  7435. // rows per thread
  7436. const int dr = (nr + nth - 1)/nth;
  7437. // row range for this thread
  7438. const int ir0 = dr*ith;
  7439. const int ir1 = MIN(ir0 + dr, nr);
  7440. const float scale = 1.0f/sqrtf(D);
  7441. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  7442. for (int ir = ir0; ir < ir1; ++ir) {
  7443. // q indices
  7444. const int iq3 = ir/(neq2*neq1);
  7445. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  7446. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  7447. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  7448. for (int i = M; i < Mup; ++i) {
  7449. S[i] = -INFINITY;
  7450. }
  7451. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  7452. for (int64_t ic = 0; ic < nek1; ++ic) {
  7453. // k indices
  7454. const int ik3 = iq3;
  7455. const int ik2 = iq2;
  7456. const int ik1 = ic;
  7457. // S indices
  7458. const int i1 = ik1;
  7459. ggml_vec_dot_f16(neq0,
  7460. S + i1,
  7461. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7462. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7463. }
  7464. } else {
  7465. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  7466. // k indices
  7467. const int ik3 = iq3;
  7468. const int ik2 = iq2;
  7469. const int ik1 = ic;
  7470. // S indices
  7471. const int i1 = ik1;
  7472. ggml_vec_dot_f16_unroll(neq0, nbk1,
  7473. S + i1,
  7474. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7475. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7476. }
  7477. }
  7478. // scale
  7479. ggml_vec_scale_f32(nek1, S, scale);
  7480. if (masked) {
  7481. for (int64_t i = P; i < M; i++) {
  7482. if (i > P + iq1) {
  7483. S[i] = -INFINITY;
  7484. }
  7485. }
  7486. }
  7487. // softmax
  7488. {
  7489. float max = -INFINITY;
  7490. ggml_vec_max_f32(M, &max, S);
  7491. ggml_float sum = 0.0;
  7492. {
  7493. #ifdef GGML_SOFT_MAX_ACCELERATE
  7494. max = -max;
  7495. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  7496. vvexpf(S, S, &Mup);
  7497. ggml_vec_sum_f32(Mup, &sum, S);
  7498. #else
  7499. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  7500. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  7501. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  7502. float * SS = S + i;
  7503. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  7504. if (SS[j] == -INFINITY) {
  7505. SS[j] = 0.0f;
  7506. } else {
  7507. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  7508. memcpy(&scvt[j], &s, sizeof(uint16_t));
  7509. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  7510. sump[j] += (ggml_float)val;
  7511. SS[j] = val;
  7512. }
  7513. }
  7514. }
  7515. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  7516. sum += sump[i];
  7517. }
  7518. #endif
  7519. }
  7520. assert(sum > 0.0);
  7521. sum = 1.0/sum;
  7522. ggml_vec_scale_f32(M, S, sum);
  7523. #ifndef NDEBUG
  7524. for (int i = 0; i < M; ++i) {
  7525. assert(!isnan(S[i]));
  7526. assert(!isinf(S[i]));
  7527. }
  7528. #endif
  7529. }
  7530. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  7531. for (int64_t i = 0; i < M; i++) {
  7532. S16[i] = GGML_FP32_TO_FP16(S[i]);
  7533. }
  7534. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  7535. for (int64_t ic = 0; ic < nev1; ++ic) {
  7536. // dst indices
  7537. const int i1 = iq1;
  7538. const int i2 = iq2;
  7539. const int i3 = iq3;
  7540. ggml_vec_dot_f16(nek1,
  7541. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7542. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7543. S16);
  7544. }
  7545. } else {
  7546. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  7547. // dst indices
  7548. const int i1 = iq1;
  7549. const int i2 = iq2;
  7550. const int i3 = iq3;
  7551. ggml_vec_dot_f16_unroll(nek1, nbv1,
  7552. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7553. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7554. S16);
  7555. }
  7556. }
  7557. }
  7558. }
  7559. static void ggml_compute_forward_flash_attn(
  7560. const struct ggml_compute_params * params,
  7561. const struct ggml_tensor * q,
  7562. const struct ggml_tensor * k,
  7563. const struct ggml_tensor * v,
  7564. const bool masked,
  7565. struct ggml_tensor * dst) {
  7566. switch (q->type) {
  7567. case GGML_TYPE_F16:
  7568. {
  7569. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  7570. } break;
  7571. case GGML_TYPE_F32:
  7572. {
  7573. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  7574. } break;
  7575. default:
  7576. {
  7577. GGML_ASSERT(false);
  7578. } break;
  7579. }
  7580. }
  7581. // ggml_compute_forward_flash_ff
  7582. static void ggml_compute_forward_flash_ff_f16(
  7583. const struct ggml_compute_params * params,
  7584. const struct ggml_tensor * a, // F16
  7585. const struct ggml_tensor * b0, // F16 fc_w
  7586. const struct ggml_tensor * b1, // F32 fc_b
  7587. const struct ggml_tensor * c0, // F16 proj_w
  7588. const struct ggml_tensor * c1, // F32 proj_b
  7589. struct ggml_tensor * dst) {
  7590. int64_t t0 = ggml_perf_time_us();
  7591. UNUSED(t0);
  7592. const int64_t nea0 = a->ne[0];
  7593. const int64_t nea1 = a->ne[1];
  7594. const int64_t nea2 = a->ne[2];
  7595. const int64_t nea3 = a->ne[3];
  7596. const int64_t neb00 = b0->ne[0];
  7597. const int64_t neb01 = b0->ne[1];
  7598. //const int64_t neb02 = b0->ne[2];
  7599. //const int64_t neb03 = b0->ne[3];
  7600. const int64_t neb10 = b1->ne[0];
  7601. const int64_t neb11 = b1->ne[1];
  7602. //const int64_t neb12 = b1->ne[2];
  7603. //const int64_t neb13 = b1->ne[3];
  7604. const int64_t nec00 = c0->ne[0];
  7605. const int64_t nec01 = c0->ne[1];
  7606. //const int64_t nec02 = c0->ne[2];
  7607. //const int64_t nec03 = c0->ne[3];
  7608. const int64_t nec10 = c1->ne[0];
  7609. const int64_t nec11 = c1->ne[1];
  7610. //const int64_t nec12 = c1->ne[2];
  7611. //const int64_t nec13 = c1->ne[3];
  7612. const int64_t ne0 = dst->ne[0];
  7613. const int64_t ne1 = dst->ne[1];
  7614. const int64_t ne2 = dst->ne[2];
  7615. //const int64_t ne3 = dst->ne[3];
  7616. const int nba0 = a->nb[0];
  7617. const int nba1 = a->nb[1];
  7618. const int nba2 = a->nb[2];
  7619. const int nba3 = a->nb[3];
  7620. const int nbb00 = b0->nb[0];
  7621. const int nbb01 = b0->nb[1];
  7622. const int nbb02 = b0->nb[2];
  7623. const int nbb03 = b0->nb[3];
  7624. const int nbb10 = b1->nb[0];
  7625. //const int nbb11 = b1->nb[1];
  7626. //const int nbb12 = b1->nb[2];
  7627. //const int nbb13 = b1->nb[3];
  7628. const int nbc00 = c0->nb[0];
  7629. const int nbc01 = c0->nb[1];
  7630. const int nbc02 = c0->nb[2];
  7631. const int nbc03 = c0->nb[3];
  7632. const int nbc10 = c1->nb[0];
  7633. //const int nbc11 = c1->nb[1];
  7634. //const int nbc12 = c1->nb[2];
  7635. //const int nbc13 = c1->nb[3];
  7636. const int nb0 = dst->nb[0];
  7637. const int nb1 = dst->nb[1];
  7638. const int nb2 = dst->nb[2];
  7639. const int nb3 = dst->nb[3];
  7640. const int ith = params->ith;
  7641. const int nth = params->nth;
  7642. const int64_t D = nea0;
  7643. //const int64_t N = nea1;
  7644. const int64_t M = neb01;
  7645. GGML_ASSERT(ne0 == nea0);
  7646. GGML_ASSERT(ne1 == nea1);
  7647. GGML_ASSERT(ne2 == nea2);
  7648. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  7649. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  7650. GGML_ASSERT(nbb10 == sizeof(float));
  7651. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  7652. GGML_ASSERT(nbc10 == sizeof(float));
  7653. GGML_ASSERT(neb00 == D);
  7654. GGML_ASSERT(neb01 == M);
  7655. GGML_ASSERT(neb10 == M);
  7656. GGML_ASSERT(neb11 == 1);
  7657. GGML_ASSERT(nec00 == M);
  7658. GGML_ASSERT(nec01 == D);
  7659. GGML_ASSERT(nec10 == D);
  7660. GGML_ASSERT(nec11 == 1);
  7661. // dst cannot be transposed or permuted
  7662. GGML_ASSERT(nb0 == sizeof(float));
  7663. GGML_ASSERT(nb0 <= nb1);
  7664. GGML_ASSERT(nb1 <= nb2);
  7665. GGML_ASSERT(nb2 <= nb3);
  7666. if (params->type == GGML_TASK_INIT) {
  7667. return;
  7668. }
  7669. if (params->type == GGML_TASK_FINALIZE) {
  7670. return;
  7671. }
  7672. // parallelize by a rows using ggml_vec_dot_f32
  7673. // total rows in a
  7674. const int nr = nea1*nea2*nea3;
  7675. // rows per thread
  7676. const int dr = (nr + nth - 1)/nth;
  7677. // row range for this thread
  7678. const int ir0 = dr*ith;
  7679. const int ir1 = MIN(ir0 + dr, nr);
  7680. for (int ir = ir0; ir < ir1; ++ir) {
  7681. // a indices
  7682. const int ia3 = ir/(nea2*nea1);
  7683. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  7684. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  7685. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  7686. for (int64_t ic = 0; ic < neb01; ++ic) {
  7687. // b0 indices
  7688. const int ib03 = ia3;
  7689. const int ib02 = ia2;
  7690. const int ib01 = ic;
  7691. // S indices
  7692. const int i1 = ib01;
  7693. ggml_vec_dot_f16(nea0,
  7694. S + i1,
  7695. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  7696. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  7697. }
  7698. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  7699. //ggml_vec_gelu_f32(neb01, S, S);
  7700. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  7701. for (int64_t i = 0; i < M; i++) {
  7702. S16[i] = GGML_FP32_TO_FP16(S[i]);
  7703. }
  7704. ggml_vec_gelu_f16(neb01, S16, S16);
  7705. {
  7706. // dst indices
  7707. const int i1 = ia1;
  7708. const int i2 = ia2;
  7709. const int i3 = ia3;
  7710. for (int64_t ic = 0; ic < nec01; ++ic) {
  7711. ggml_vec_dot_f16(neb01,
  7712. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7713. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  7714. S16);
  7715. }
  7716. ggml_vec_add_f32(nec01,
  7717. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  7718. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  7719. (float *) c1->data);
  7720. }
  7721. }
  7722. }
  7723. static void ggml_compute_forward_flash_ff(
  7724. const struct ggml_compute_params * params,
  7725. const struct ggml_tensor * a,
  7726. const struct ggml_tensor * b0,
  7727. const struct ggml_tensor * b1,
  7728. const struct ggml_tensor * c0,
  7729. const struct ggml_tensor * c1,
  7730. struct ggml_tensor * dst) {
  7731. switch (b0->type) {
  7732. case GGML_TYPE_F16:
  7733. {
  7734. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  7735. } break;
  7736. case GGML_TYPE_F32:
  7737. {
  7738. GGML_ASSERT(false); // TODO
  7739. } break;
  7740. default:
  7741. {
  7742. GGML_ASSERT(false);
  7743. } break;
  7744. }
  7745. }
  7746. // ggml_compute_forward_map_unary
  7747. static void ggml_compute_forward_map_unary_f32(
  7748. const struct ggml_compute_params * params,
  7749. const struct ggml_tensor * src0,
  7750. struct ggml_tensor * dst,
  7751. const ggml_unary_op_f32_t fun) {
  7752. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7753. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7754. return;
  7755. }
  7756. const int n = ggml_nrows(src0);
  7757. const int nc = src0->ne[0];
  7758. assert( dst->nb[0] == sizeof(float));
  7759. assert(src0->nb[0] == sizeof(float));
  7760. for (int i = 0; i < n; i++) {
  7761. fun(nc,
  7762. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7763. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7764. }
  7765. }
  7766. static void ggml_compute_forward_map_unary(
  7767. const struct ggml_compute_params * params,
  7768. const struct ggml_tensor * src0,
  7769. struct ggml_tensor * dst,
  7770. const ggml_unary_op_f32_t fun) {
  7771. switch (src0->type) {
  7772. case GGML_TYPE_F32:
  7773. {
  7774. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  7775. } break;
  7776. default:
  7777. {
  7778. GGML_ASSERT(false);
  7779. } break;
  7780. }
  7781. }
  7782. // ggml_compute_forward_map_binary
  7783. static void ggml_compute_forward_map_binary_f32(
  7784. const struct ggml_compute_params * params,
  7785. const struct ggml_tensor * src0,
  7786. const struct ggml_tensor * src1,
  7787. struct ggml_tensor * dst,
  7788. const ggml_binary_op_f32_t fun) {
  7789. assert(params->ith == 0);
  7790. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7791. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7792. return;
  7793. }
  7794. const int n = ggml_nrows(src0);
  7795. const int nc = src0->ne[0];
  7796. assert( dst->nb[0] == sizeof(float));
  7797. assert(src0->nb[0] == sizeof(float));
  7798. assert(src1->nb[0] == sizeof(float));
  7799. for (int i = 0; i < n; i++) {
  7800. fun(nc,
  7801. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7802. (float *) ((char *) src0->data + i*(src0->nb[1])),
  7803. (float *) ((char *) src1->data + i*(src1->nb[1])));
  7804. }
  7805. }
  7806. static void ggml_compute_forward_map_binary(
  7807. const struct ggml_compute_params * params,
  7808. const struct ggml_tensor * src0,
  7809. const struct ggml_tensor * src1,
  7810. struct ggml_tensor * dst,
  7811. const ggml_binary_op_f32_t fun) {
  7812. switch (src0->type) {
  7813. case GGML_TYPE_F32:
  7814. {
  7815. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  7816. } break;
  7817. default:
  7818. {
  7819. GGML_ASSERT(false);
  7820. } break;
  7821. }
  7822. }
  7823. /////////////////////////////////
  7824. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  7825. GGML_ASSERT(params);
  7826. switch (tensor->op) {
  7827. case GGML_OP_DUP:
  7828. {
  7829. ggml_compute_forward_dup(params, tensor->src0, tensor);
  7830. } break;
  7831. case GGML_OP_ADD:
  7832. {
  7833. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  7834. } break;
  7835. case GGML_OP_SUB:
  7836. {
  7837. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  7838. } break;
  7839. case GGML_OP_MUL:
  7840. {
  7841. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  7842. } break;
  7843. case GGML_OP_DIV:
  7844. {
  7845. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  7846. } break;
  7847. case GGML_OP_SQR:
  7848. {
  7849. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  7850. } break;
  7851. case GGML_OP_SQRT:
  7852. {
  7853. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  7854. } break;
  7855. case GGML_OP_SUM:
  7856. {
  7857. ggml_compute_forward_sum(params, tensor->src0, tensor);
  7858. } break;
  7859. case GGML_OP_MEAN:
  7860. {
  7861. ggml_compute_forward_mean(params, tensor->src0, tensor);
  7862. } break;
  7863. case GGML_OP_REPEAT:
  7864. {
  7865. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  7866. } break;
  7867. case GGML_OP_ABS:
  7868. {
  7869. ggml_compute_forward_abs(params, tensor->src0, tensor);
  7870. } break;
  7871. case GGML_OP_SGN:
  7872. {
  7873. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  7874. } break;
  7875. case GGML_OP_NEG:
  7876. {
  7877. ggml_compute_forward_neg(params, tensor->src0, tensor);
  7878. } break;
  7879. case GGML_OP_STEP:
  7880. {
  7881. ggml_compute_forward_step(params, tensor->src0, tensor);
  7882. } break;
  7883. case GGML_OP_RELU:
  7884. {
  7885. ggml_compute_forward_relu(params, tensor->src0, tensor);
  7886. } break;
  7887. case GGML_OP_GELU:
  7888. {
  7889. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  7890. } break;
  7891. case GGML_OP_SILU:
  7892. {
  7893. ggml_compute_forward_silu(params, tensor->src0, tensor);
  7894. } break;
  7895. case GGML_OP_NORM:
  7896. {
  7897. ggml_compute_forward_norm(params, tensor->src0, tensor);
  7898. } break;
  7899. case GGML_OP_RMS_NORM:
  7900. {
  7901. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  7902. } break;
  7903. case GGML_OP_MUL_MAT:
  7904. {
  7905. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  7906. } break;
  7907. case GGML_OP_SCALE:
  7908. {
  7909. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  7910. } break;
  7911. case GGML_OP_CPY:
  7912. {
  7913. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  7914. } break;
  7915. case GGML_OP_CONT:
  7916. {
  7917. ggml_compute_forward_cont(params, tensor->src0, tensor);
  7918. } break;
  7919. case GGML_OP_RESHAPE:
  7920. {
  7921. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  7922. } break;
  7923. case GGML_OP_VIEW:
  7924. {
  7925. ggml_compute_forward_view(params, tensor->src0);
  7926. } break;
  7927. case GGML_OP_PERMUTE:
  7928. {
  7929. ggml_compute_forward_permute(params, tensor->src0);
  7930. } break;
  7931. case GGML_OP_TRANSPOSE:
  7932. {
  7933. ggml_compute_forward_transpose(params, tensor->src0);
  7934. } break;
  7935. case GGML_OP_GET_ROWS:
  7936. {
  7937. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  7938. } break;
  7939. case GGML_OP_DIAG_MASK_INF:
  7940. {
  7941. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  7942. } break;
  7943. case GGML_OP_SOFT_MAX:
  7944. {
  7945. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  7946. } break;
  7947. case GGML_OP_ROPE:
  7948. {
  7949. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  7950. } break;
  7951. case GGML_OP_CONV_1D_1S:
  7952. {
  7953. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  7954. } break;
  7955. case GGML_OP_CONV_1D_2S:
  7956. {
  7957. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  7958. } break;
  7959. case GGML_OP_FLASH_ATTN:
  7960. {
  7961. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  7962. GGML_ASSERT(t == 0 || t == 1);
  7963. bool masked = t != 0;
  7964. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  7965. } break;
  7966. case GGML_OP_FLASH_FF:
  7967. {
  7968. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  7969. } break;
  7970. case GGML_OP_MAP_UNARY:
  7971. {
  7972. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  7973. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  7974. }
  7975. break;
  7976. case GGML_OP_MAP_BINARY:
  7977. {
  7978. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  7979. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  7980. }
  7981. break;
  7982. case GGML_OP_NONE:
  7983. {
  7984. // nop
  7985. } break;
  7986. case GGML_OP_COUNT:
  7987. {
  7988. GGML_ASSERT(false);
  7989. } break;
  7990. }
  7991. }
  7992. ////////////////////////////////////////////////////////////////////////////////
  7993. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  7994. struct ggml_tensor * src0 = tensor->src0;
  7995. struct ggml_tensor * src1 = tensor->src1;
  7996. switch (tensor->op) {
  7997. case GGML_OP_DUP:
  7998. {
  7999. if (src0->grad) {
  8000. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8001. }
  8002. } break;
  8003. case GGML_OP_ADD:
  8004. {
  8005. if (src0->grad) {
  8006. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8007. }
  8008. if (src1->grad) {
  8009. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  8010. }
  8011. } break;
  8012. case GGML_OP_SUB:
  8013. {
  8014. if (src0->grad) {
  8015. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8016. }
  8017. if (src1->grad) {
  8018. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  8019. }
  8020. } break;
  8021. case GGML_OP_MUL:
  8022. {
  8023. if (src0->grad) {
  8024. src0->grad =
  8025. ggml_add_impl(ctx,
  8026. src0->grad,
  8027. ggml_mul(ctx, src1, tensor->grad),
  8028. inplace);
  8029. }
  8030. if (src1->grad) {
  8031. src1->grad =
  8032. ggml_add_impl(ctx,
  8033. src1->grad,
  8034. ggml_mul(ctx, src0, tensor->grad),
  8035. inplace);
  8036. }
  8037. } break;
  8038. case GGML_OP_DIV:
  8039. {
  8040. if (src0->grad) {
  8041. src0->grad =
  8042. ggml_add_impl(ctx,
  8043. src0->grad,
  8044. ggml_div(ctx, tensor->grad, src1),
  8045. inplace);
  8046. }
  8047. if (src1->grad) {
  8048. src1->grad =
  8049. ggml_sub_impl(ctx,
  8050. src1->grad,
  8051. ggml_mul(ctx,
  8052. tensor->grad,
  8053. ggml_div(ctx, tensor, src1)),
  8054. inplace);
  8055. }
  8056. } break;
  8057. case GGML_OP_SQR:
  8058. {
  8059. if (src0->grad) {
  8060. src0->grad =
  8061. ggml_add_impl(ctx,
  8062. src0->grad,
  8063. ggml_mul(ctx,
  8064. ggml_mul(ctx, src0, tensor->grad),
  8065. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  8066. inplace);
  8067. }
  8068. } break;
  8069. case GGML_OP_SQRT:
  8070. {
  8071. if (src0->grad) {
  8072. src0->grad =
  8073. ggml_add_impl(ctx,
  8074. src0->grad,
  8075. ggml_div(ctx,
  8076. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  8077. tensor),
  8078. inplace);
  8079. }
  8080. } break;
  8081. case GGML_OP_SUM:
  8082. {
  8083. if (src0->grad) {
  8084. src0->grad =
  8085. ggml_add_impl(ctx,
  8086. src0->grad,
  8087. ggml_repeat(ctx, tensor->grad, src0->grad),
  8088. inplace);
  8089. }
  8090. } break;
  8091. case GGML_OP_MEAN:
  8092. {
  8093. GGML_ASSERT(false); // TODO: implement
  8094. } break;
  8095. case GGML_OP_REPEAT:
  8096. {
  8097. if (src0->grad) {
  8098. src0->grad =
  8099. ggml_add_impl(ctx,
  8100. src0->grad,
  8101. ggml_sum(ctx, tensor->grad),
  8102. inplace);
  8103. }
  8104. } break;
  8105. case GGML_OP_ABS:
  8106. {
  8107. if (src0->grad) {
  8108. src0->grad =
  8109. ggml_add_impl(ctx,
  8110. src0->grad,
  8111. ggml_mul(ctx,
  8112. ggml_sgn(ctx, src0),
  8113. tensor->grad),
  8114. inplace);
  8115. }
  8116. } break;
  8117. case GGML_OP_SGN:
  8118. {
  8119. if (src0->grad) {
  8120. // noop
  8121. }
  8122. } break;
  8123. case GGML_OP_NEG:
  8124. {
  8125. if (src0->grad) {
  8126. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  8127. }
  8128. } break;
  8129. case GGML_OP_STEP:
  8130. {
  8131. if (src0->grad) {
  8132. // noop
  8133. }
  8134. } break;
  8135. case GGML_OP_RELU:
  8136. {
  8137. if (src0->grad) {
  8138. src0->grad = ggml_sub_impl(ctx,
  8139. src0->grad,
  8140. ggml_mul(ctx,
  8141. ggml_step(ctx, src0),
  8142. tensor->grad),
  8143. inplace);
  8144. }
  8145. } break;
  8146. case GGML_OP_GELU:
  8147. {
  8148. GGML_ASSERT(false); // TODO: not implemented
  8149. } break;
  8150. case GGML_OP_SILU:
  8151. {
  8152. GGML_ASSERT(false); // TODO: not implemented
  8153. } break;
  8154. case GGML_OP_NORM:
  8155. {
  8156. GGML_ASSERT(false); // TODO: not implemented
  8157. } break;
  8158. case GGML_OP_RMS_NORM:
  8159. {
  8160. GGML_ASSERT(false); // TODO: not implemented
  8161. } break;
  8162. case GGML_OP_MUL_MAT:
  8163. {
  8164. if (src0->grad) {
  8165. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  8166. GGML_ASSERT(false);
  8167. }
  8168. if (src1->grad) {
  8169. src1->grad =
  8170. ggml_add_impl(ctx,
  8171. src1->grad,
  8172. ggml_mul_mat(ctx,
  8173. ggml_cont(ctx, ggml_transpose(ctx, src0)),
  8174. tensor->grad),
  8175. inplace);
  8176. }
  8177. } break;
  8178. case GGML_OP_SCALE:
  8179. {
  8180. GGML_ASSERT(false); // TODO: not implemented
  8181. } break;
  8182. case GGML_OP_CPY:
  8183. {
  8184. GGML_ASSERT(false); // TODO: not implemented
  8185. } break;
  8186. case GGML_OP_CONT:
  8187. {
  8188. GGML_ASSERT(false); // TODO: not implemented
  8189. } break;
  8190. case GGML_OP_RESHAPE:
  8191. {
  8192. GGML_ASSERT(false); // TODO: not implemented
  8193. } break;
  8194. case GGML_OP_VIEW:
  8195. {
  8196. GGML_ASSERT(false); // not supported
  8197. } break;
  8198. case GGML_OP_PERMUTE:
  8199. {
  8200. GGML_ASSERT(false); // TODO: not implemented
  8201. } break;
  8202. case GGML_OP_TRANSPOSE:
  8203. {
  8204. GGML_ASSERT(false); // TODO: not implemented
  8205. } break;
  8206. case GGML_OP_GET_ROWS:
  8207. {
  8208. GGML_ASSERT(false); // TODO: not implemented
  8209. } break;
  8210. case GGML_OP_DIAG_MASK_INF:
  8211. {
  8212. GGML_ASSERT(false); // TODO: not implemented
  8213. } break;
  8214. case GGML_OP_SOFT_MAX:
  8215. {
  8216. GGML_ASSERT(false); // TODO: not implemented
  8217. } break;
  8218. case GGML_OP_ROPE:
  8219. {
  8220. GGML_ASSERT(false); // TODO: not implemented
  8221. } break;
  8222. case GGML_OP_CONV_1D_1S:
  8223. {
  8224. GGML_ASSERT(false); // TODO: not implemented
  8225. } break;
  8226. case GGML_OP_CONV_1D_2S:
  8227. {
  8228. GGML_ASSERT(false); // TODO: not implemented
  8229. } break;
  8230. case GGML_OP_FLASH_ATTN:
  8231. {
  8232. GGML_ASSERT(false); // not supported
  8233. } break;
  8234. case GGML_OP_FLASH_FF:
  8235. {
  8236. GGML_ASSERT(false); // not supported
  8237. } break;
  8238. case GGML_OP_MAP_UNARY:
  8239. case GGML_OP_MAP_BINARY:
  8240. {
  8241. GGML_ASSERT(false); // not supported
  8242. } break;
  8243. case GGML_OP_NONE:
  8244. {
  8245. // nop
  8246. } break;
  8247. case GGML_OP_COUNT:
  8248. {
  8249. GGML_ASSERT(false);
  8250. } break;
  8251. }
  8252. }
  8253. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  8254. if (node->grad == NULL) {
  8255. // this usually happens when we generate intermediate nodes from constants in the backward pass
  8256. // it can also happen during forward pass, if the user performs computations with constants
  8257. if (node->op != GGML_OP_NONE) {
  8258. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  8259. }
  8260. }
  8261. // check if already visited
  8262. for (int i = 0; i < cgraph->n_nodes; i++) {
  8263. if (cgraph->nodes[i] == node) {
  8264. return;
  8265. }
  8266. }
  8267. for (int i = 0; i < cgraph->n_leafs; i++) {
  8268. if (cgraph->leafs[i] == node) {
  8269. return;
  8270. }
  8271. }
  8272. if (node->src0) {
  8273. ggml_visit_parents(cgraph, node->src0);
  8274. }
  8275. if (node->src1) {
  8276. ggml_visit_parents(cgraph, node->src1);
  8277. }
  8278. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  8279. if (node->opt[i]) {
  8280. ggml_visit_parents(cgraph, node->opt[i]);
  8281. }
  8282. }
  8283. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  8284. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  8285. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  8286. cgraph->leafs[cgraph->n_leafs] = node;
  8287. cgraph->n_leafs++;
  8288. } else {
  8289. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  8290. cgraph->nodes[cgraph->n_nodes] = node;
  8291. cgraph->grads[cgraph->n_nodes] = node->grad;
  8292. cgraph->n_nodes++;
  8293. }
  8294. }
  8295. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  8296. if (!expand) {
  8297. cgraph->n_nodes = 0;
  8298. cgraph->n_leafs = 0;
  8299. }
  8300. const int n0 = cgraph->n_nodes;
  8301. UNUSED(n0);
  8302. ggml_visit_parents(cgraph, tensor);
  8303. const int n_new = cgraph->n_nodes - n0;
  8304. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  8305. if (n_new > 0) {
  8306. // the last added node should always be starting point
  8307. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  8308. }
  8309. }
  8310. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  8311. ggml_build_forward_impl(cgraph, tensor, true);
  8312. }
  8313. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  8314. struct ggml_cgraph result = {
  8315. /*.n_nodes =*/ 0,
  8316. /*.n_leafs =*/ 0,
  8317. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  8318. /*.work_size =*/ 0,
  8319. /*.work =*/ NULL,
  8320. /*.nodes =*/ { NULL },
  8321. /*.grads =*/ { NULL },
  8322. /*.leafs =*/ { NULL },
  8323. /*.perf_runs =*/ 0,
  8324. /*.perf_cycles =*/ 0,
  8325. /*.perf_time_us =*/ 0,
  8326. };
  8327. ggml_build_forward_impl(&result, tensor, false);
  8328. return result;
  8329. }
  8330. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  8331. struct ggml_cgraph result = *gf;
  8332. GGML_ASSERT(gf->n_nodes > 0);
  8333. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  8334. if (keep) {
  8335. for (int i = 0; i < gf->n_nodes; i++) {
  8336. struct ggml_tensor * node = gf->nodes[i];
  8337. if (node->grad) {
  8338. node->grad = ggml_dup_tensor(ctx, node);
  8339. gf->grads[i] = node->grad;
  8340. }
  8341. }
  8342. }
  8343. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  8344. struct ggml_tensor * node = gf->nodes[i];
  8345. // because we detached the grad nodes from the original graph, we can afford inplace operations
  8346. if (node->grad) {
  8347. ggml_compute_backward(ctx, node, keep);
  8348. }
  8349. }
  8350. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  8351. struct ggml_tensor * node = gf->nodes[i];
  8352. if (node->is_param) {
  8353. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  8354. ggml_build_forward_impl(&result, node->grad, true);
  8355. }
  8356. }
  8357. return result;
  8358. }
  8359. //
  8360. // thread data
  8361. //
  8362. // synchronization is done via busy loops
  8363. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  8364. //
  8365. #ifdef __APPLE__
  8366. //#include <os/lock.h>
  8367. //
  8368. //typedef os_unfair_lock ggml_lock_t;
  8369. //
  8370. //#define ggml_lock_init(x) UNUSED(x)
  8371. //#define ggml_lock_destroy(x) UNUSED(x)
  8372. //#define ggml_lock_lock os_unfair_lock_lock
  8373. //#define ggml_lock_unlock os_unfair_lock_unlock
  8374. //
  8375. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  8376. typedef int ggml_lock_t;
  8377. #define ggml_lock_init(x) UNUSED(x)
  8378. #define ggml_lock_destroy(x) UNUSED(x)
  8379. #define ggml_lock_lock(x) UNUSED(x)
  8380. #define ggml_lock_unlock(x) UNUSED(x)
  8381. #define GGML_LOCK_INITIALIZER 0
  8382. typedef pthread_t ggml_thread_t;
  8383. #define ggml_thread_create pthread_create
  8384. #define ggml_thread_join pthread_join
  8385. #else
  8386. //typedef pthread_spinlock_t ggml_lock_t;
  8387. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  8388. //#define ggml_lock_destroy pthread_spin_destroy
  8389. //#define ggml_lock_lock pthread_spin_lock
  8390. //#define ggml_lock_unlock pthread_spin_unlock
  8391. typedef int ggml_lock_t;
  8392. #define ggml_lock_init(x) UNUSED(x)
  8393. #define ggml_lock_destroy(x) UNUSED(x)
  8394. #define ggml_lock_lock(x) UNUSED(x)
  8395. #define ggml_lock_unlock(x) UNUSED(x)
  8396. #define GGML_LOCK_INITIALIZER 0
  8397. typedef pthread_t ggml_thread_t;
  8398. #define ggml_thread_create pthread_create
  8399. #define ggml_thread_join pthread_join
  8400. #endif
  8401. struct ggml_compute_state_shared {
  8402. ggml_lock_t spin;
  8403. int n_threads;
  8404. // synchronization primitives
  8405. atomic_int n_ready;
  8406. atomic_bool has_work;
  8407. atomic_bool stop; // stop all threads
  8408. };
  8409. struct ggml_compute_state {
  8410. ggml_thread_t thrd;
  8411. struct ggml_compute_params params;
  8412. struct ggml_tensor * node;
  8413. struct ggml_compute_state_shared * shared;
  8414. };
  8415. static thread_ret_t ggml_graph_compute_thread(void * data) {
  8416. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  8417. const int n_threads = state->shared->n_threads;
  8418. while (true) {
  8419. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  8420. atomic_store(&state->shared->has_work, false);
  8421. } else {
  8422. while (atomic_load(&state->shared->has_work)) {
  8423. if (atomic_load(&state->shared->stop)) {
  8424. return 0;
  8425. }
  8426. ggml_lock_lock (&state->shared->spin);
  8427. ggml_lock_unlock(&state->shared->spin);
  8428. }
  8429. }
  8430. atomic_fetch_sub(&state->shared->n_ready, 1);
  8431. // wait for work
  8432. while (!atomic_load(&state->shared->has_work)) {
  8433. if (atomic_load(&state->shared->stop)) {
  8434. return 0;
  8435. }
  8436. ggml_lock_lock (&state->shared->spin);
  8437. ggml_lock_unlock(&state->shared->spin);
  8438. }
  8439. // check if we should stop
  8440. if (atomic_load(&state->shared->stop)) {
  8441. break;
  8442. }
  8443. if (state->node) {
  8444. if (state->params.ith < state->params.nth) {
  8445. ggml_compute_forward(&state->params, state->node);
  8446. }
  8447. state->node = NULL;
  8448. } else {
  8449. break;
  8450. }
  8451. }
  8452. return 0;
  8453. }
  8454. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  8455. const int n_threads = cgraph->n_threads;
  8456. struct ggml_compute_state_shared state_shared = {
  8457. /*.spin =*/ GGML_LOCK_INITIALIZER,
  8458. /*.n_threads =*/ n_threads,
  8459. /*.n_ready =*/ 0,
  8460. /*.has_work =*/ false,
  8461. /*.stop =*/ false,
  8462. };
  8463. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  8464. // create thread pool
  8465. if (n_threads > 1) {
  8466. ggml_lock_init(&state_shared.spin);
  8467. atomic_store(&state_shared.has_work, true);
  8468. for (int j = 0; j < n_threads - 1; j++) {
  8469. workers[j] = (struct ggml_compute_state) {
  8470. .thrd = 0,
  8471. .params = {
  8472. .type = GGML_TASK_COMPUTE,
  8473. .ith = j + 1,
  8474. .nth = n_threads,
  8475. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8476. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8477. },
  8478. .node = NULL,
  8479. .shared = &state_shared,
  8480. };
  8481. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  8482. GGML_ASSERT(rc == 0);
  8483. UNUSED(rc);
  8484. }
  8485. }
  8486. // initialize tasks + work buffer
  8487. {
  8488. size_t work_size = 0;
  8489. // thread scheduling for the different operations
  8490. for (int i = 0; i < cgraph->n_nodes; i++) {
  8491. struct ggml_tensor * node = cgraph->nodes[i];
  8492. switch (node->op) {
  8493. case GGML_OP_CPY:
  8494. case GGML_OP_DUP:
  8495. {
  8496. node->n_tasks = 1;
  8497. size_t cur = 0;
  8498. if (node->type == GGML_TYPE_Q4_0 || node->type == GGML_TYPE_Q4_1) {
  8499. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0];
  8500. }
  8501. work_size = MAX(work_size, cur);
  8502. } break;
  8503. case GGML_OP_ADD:
  8504. {
  8505. node->n_tasks = n_threads;
  8506. size_t cur = 0;
  8507. if (node->src0->type == GGML_TYPE_Q4_0 || node->src0->type == GGML_TYPE_Q4_1) {
  8508. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  8509. }
  8510. work_size = MAX(work_size, cur);
  8511. } break;
  8512. case GGML_OP_SUB:
  8513. case GGML_OP_MUL:
  8514. case GGML_OP_DIV:
  8515. case GGML_OP_SQR:
  8516. case GGML_OP_SQRT:
  8517. case GGML_OP_SUM:
  8518. case GGML_OP_MEAN:
  8519. case GGML_OP_REPEAT:
  8520. case GGML_OP_ABS:
  8521. case GGML_OP_SGN:
  8522. case GGML_OP_NEG:
  8523. case GGML_OP_STEP:
  8524. case GGML_OP_RELU:
  8525. {
  8526. node->n_tasks = 1;
  8527. } break;
  8528. case GGML_OP_GELU:
  8529. {
  8530. node->n_tasks = n_threads;
  8531. } break;
  8532. case GGML_OP_SILU:
  8533. {
  8534. node->n_tasks = n_threads;
  8535. } break;
  8536. case GGML_OP_NORM:
  8537. case GGML_OP_RMS_NORM:
  8538. {
  8539. node->n_tasks = n_threads;
  8540. } break;
  8541. case GGML_OP_MUL_MAT:
  8542. {
  8543. node->n_tasks = n_threads;
  8544. // TODO: use different scheduling for different matrix sizes
  8545. //const int nr0 = ggml_nrows(node->src0);
  8546. //const int nr1 = ggml_nrows(node->src1);
  8547. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  8548. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  8549. size_t cur = 0;
  8550. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  8551. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8552. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  8553. node->n_tasks = 1; // TODO: this actually is doing nothing
  8554. // the threads are still spinning
  8555. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  8556. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  8557. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  8558. //printf("cur = %zu\n", cur);
  8559. } else {
  8560. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  8561. }
  8562. #else
  8563. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  8564. #endif
  8565. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  8566. cur = 0;
  8567. } else if (quantize_fns[node->src0->type].vec_dot_q && node->src1->type == GGML_TYPE_F32) {
  8568. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8569. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  8570. node->n_tasks = 1;
  8571. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  8572. } else
  8573. #endif
  8574. {
  8575. cur = GGML_TYPE_SIZE[GGML_TYPE_Q8_0]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  8576. }
  8577. } else {
  8578. GGML_ASSERT(false);
  8579. }
  8580. work_size = MAX(work_size, cur);
  8581. } break;
  8582. case GGML_OP_SCALE:
  8583. {
  8584. node->n_tasks = n_threads;
  8585. } break;
  8586. case GGML_OP_CONT:
  8587. case GGML_OP_RESHAPE:
  8588. case GGML_OP_VIEW:
  8589. case GGML_OP_PERMUTE:
  8590. case GGML_OP_TRANSPOSE:
  8591. case GGML_OP_GET_ROWS:
  8592. case GGML_OP_DIAG_MASK_INF:
  8593. {
  8594. node->n_tasks = 1;
  8595. } break;
  8596. case GGML_OP_SOFT_MAX:
  8597. {
  8598. node->n_tasks = n_threads;
  8599. } break;
  8600. case GGML_OP_ROPE:
  8601. {
  8602. node->n_tasks = n_threads;
  8603. } break;
  8604. case GGML_OP_CONV_1D_1S:
  8605. case GGML_OP_CONV_1D_2S:
  8606. {
  8607. node->n_tasks = n_threads;
  8608. GGML_ASSERT(node->src0->ne[3] == 1);
  8609. GGML_ASSERT(node->src1->ne[2] == 1);
  8610. GGML_ASSERT(node->src1->ne[3] == 1);
  8611. size_t cur = 0;
  8612. const int nk = node->src0->ne[0];
  8613. if (node->src0->type == GGML_TYPE_F16 &&
  8614. node->src1->type == GGML_TYPE_F32) {
  8615. cur = sizeof(ggml_fp16_t)*(
  8616. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  8617. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  8618. );
  8619. } else if (node->src0->type == GGML_TYPE_F32 &&
  8620. node->src1->type == GGML_TYPE_F32) {
  8621. cur = sizeof(float)*(
  8622. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  8623. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  8624. );
  8625. } else {
  8626. GGML_ASSERT(false);
  8627. }
  8628. work_size = MAX(work_size, cur);
  8629. } break;
  8630. case GGML_OP_FLASH_ATTN:
  8631. {
  8632. node->n_tasks = n_threads;
  8633. size_t cur = 0;
  8634. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  8635. if (node->src1->type == GGML_TYPE_F32) {
  8636. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  8637. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  8638. }
  8639. if (node->src1->type == GGML_TYPE_F16) {
  8640. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  8641. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  8642. }
  8643. work_size = MAX(work_size, cur);
  8644. } break;
  8645. case GGML_OP_FLASH_FF:
  8646. {
  8647. node->n_tasks = n_threads;
  8648. size_t cur = 0;
  8649. if (node->src1->type == GGML_TYPE_F32) {
  8650. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  8651. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  8652. }
  8653. if (node->src1->type == GGML_TYPE_F16) {
  8654. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  8655. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  8656. }
  8657. work_size = MAX(work_size, cur);
  8658. } break;
  8659. case GGML_OP_MAP_UNARY:
  8660. case GGML_OP_MAP_BINARY:
  8661. {
  8662. node->n_tasks = 1;
  8663. } break;
  8664. case GGML_OP_NONE:
  8665. {
  8666. node->n_tasks = 1;
  8667. } break;
  8668. case GGML_OP_COUNT:
  8669. {
  8670. GGML_ASSERT(false);
  8671. } break;
  8672. }
  8673. }
  8674. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  8675. GGML_ASSERT(false); // TODO: better handling
  8676. }
  8677. if (work_size > 0 && cgraph->work == NULL) {
  8678. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  8679. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  8680. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  8681. }
  8682. }
  8683. const int64_t perf_start_cycles = ggml_perf_cycles();
  8684. const int64_t perf_start_time_us = ggml_perf_time_us();
  8685. for (int i = 0; i < cgraph->n_nodes; i++) {
  8686. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  8687. struct ggml_tensor * node = cgraph->nodes[i];
  8688. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  8689. //if (node->grad == NULL && node->perf_runs > 0) {
  8690. // continue;
  8691. //}
  8692. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  8693. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  8694. // INIT
  8695. struct ggml_compute_params params = {
  8696. /*.type =*/ GGML_TASK_INIT,
  8697. /*.ith =*/ 0,
  8698. /*.nth =*/ node->n_tasks,
  8699. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8700. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  8701. };
  8702. ggml_compute_forward(&params, node);
  8703. // COMPUTE
  8704. if (node->n_tasks > 1) {
  8705. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8706. atomic_store(&state_shared.has_work, false);
  8707. }
  8708. while (atomic_load(&state_shared.has_work)) {
  8709. ggml_lock_lock (&state_shared.spin);
  8710. ggml_lock_unlock(&state_shared.spin);
  8711. }
  8712. // launch thread pool
  8713. for (int j = 0; j < n_threads - 1; j++) {
  8714. workers[j].params = (struct ggml_compute_params) {
  8715. .type = GGML_TASK_COMPUTE,
  8716. .ith = j + 1,
  8717. .nth = node->n_tasks,
  8718. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8719. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8720. };
  8721. workers[j].node = node;
  8722. }
  8723. atomic_fetch_sub(&state_shared.n_ready, 1);
  8724. while (atomic_load(&state_shared.n_ready) > 0) {
  8725. ggml_lock_lock (&state_shared.spin);
  8726. ggml_lock_unlock(&state_shared.spin);
  8727. }
  8728. atomic_store(&state_shared.has_work, true);
  8729. }
  8730. params.type = GGML_TASK_COMPUTE;
  8731. ggml_compute_forward(&params, node);
  8732. // wait for thread pool
  8733. if (node->n_tasks > 1) {
  8734. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8735. atomic_store(&state_shared.has_work, false);
  8736. }
  8737. while (atomic_load(&state_shared.has_work)) {
  8738. ggml_lock_lock (&state_shared.spin);
  8739. ggml_lock_unlock(&state_shared.spin);
  8740. }
  8741. atomic_fetch_sub(&state_shared.n_ready, 1);
  8742. while (atomic_load(&state_shared.n_ready) != 0) {
  8743. ggml_lock_lock (&state_shared.spin);
  8744. ggml_lock_unlock(&state_shared.spin);
  8745. }
  8746. }
  8747. // FINALIZE
  8748. if (node->n_tasks > 1) {
  8749. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8750. atomic_store(&state_shared.has_work, false);
  8751. }
  8752. while (atomic_load(&state_shared.has_work)) {
  8753. ggml_lock_lock (&state_shared.spin);
  8754. ggml_lock_unlock(&state_shared.spin);
  8755. }
  8756. // launch thread pool
  8757. for (int j = 0; j < n_threads - 1; j++) {
  8758. workers[j].params = (struct ggml_compute_params) {
  8759. .type = GGML_TASK_FINALIZE,
  8760. .ith = j + 1,
  8761. .nth = node->n_tasks,
  8762. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8763. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8764. };
  8765. workers[j].node = node;
  8766. }
  8767. atomic_fetch_sub(&state_shared.n_ready, 1);
  8768. while (atomic_load(&state_shared.n_ready) > 0) {
  8769. ggml_lock_lock (&state_shared.spin);
  8770. ggml_lock_unlock(&state_shared.spin);
  8771. }
  8772. atomic_store(&state_shared.has_work, true);
  8773. }
  8774. params.type = GGML_TASK_FINALIZE;
  8775. ggml_compute_forward(&params, node);
  8776. // wait for thread pool
  8777. if (node->n_tasks > 1) {
  8778. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8779. atomic_store(&state_shared.has_work, false);
  8780. }
  8781. while (atomic_load(&state_shared.has_work)) {
  8782. ggml_lock_lock (&state_shared.spin);
  8783. ggml_lock_unlock(&state_shared.spin);
  8784. }
  8785. atomic_fetch_sub(&state_shared.n_ready, 1);
  8786. while (atomic_load(&state_shared.n_ready) != 0) {
  8787. ggml_lock_lock (&state_shared.spin);
  8788. ggml_lock_unlock(&state_shared.spin);
  8789. }
  8790. }
  8791. // performance stats (node)
  8792. {
  8793. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  8794. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  8795. node->perf_runs++;
  8796. node->perf_cycles += perf_cycles_cur;
  8797. node->perf_time_us += perf_time_us_cur;
  8798. }
  8799. }
  8800. // join thread pool
  8801. if (n_threads > 1) {
  8802. atomic_store(&state_shared.stop, true);
  8803. atomic_store(&state_shared.has_work, true);
  8804. for (int j = 0; j < n_threads - 1; j++) {
  8805. int rc = ggml_thread_join(workers[j].thrd, NULL);
  8806. GGML_ASSERT(rc == 0);
  8807. UNUSED(rc);
  8808. }
  8809. ggml_lock_destroy(&state_shared.spin);
  8810. }
  8811. // performance stats (graph)
  8812. {
  8813. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  8814. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  8815. cgraph->perf_runs++;
  8816. cgraph->perf_cycles += perf_cycles_cur;
  8817. cgraph->perf_time_us += perf_time_us_cur;
  8818. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  8819. __func__, cgraph->perf_runs,
  8820. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  8821. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  8822. (double) perf_time_us_cur / 1000.0,
  8823. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  8824. }
  8825. }
  8826. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  8827. for (int i = 0; i < cgraph->n_nodes; i++) {
  8828. struct ggml_tensor * grad = cgraph->grads[i];
  8829. if (grad) {
  8830. ggml_set_zero(grad);
  8831. }
  8832. }
  8833. }
  8834. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  8835. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  8836. GGML_PRINT("=== GRAPH ===\n");
  8837. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  8838. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  8839. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  8840. for (int i = 0; i < cgraph->n_nodes; i++) {
  8841. struct ggml_tensor * node = cgraph->nodes[i];
  8842. perf_total_per_op_us[node->op] += node->perf_time_us;
  8843. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 ", %" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  8844. i,
  8845. node->ne[0], node->ne[1], node->ne[2],
  8846. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  8847. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  8848. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  8849. (double) node->perf_time_us / 1000.0,
  8850. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  8851. }
  8852. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  8853. for (int i = 0; i < cgraph->n_leafs; i++) {
  8854. struct ggml_tensor * node = cgraph->leafs[i];
  8855. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 "] %8s\n",
  8856. i,
  8857. node->ne[0], node->ne[1],
  8858. GGML_OP_LABEL[node->op]);
  8859. }
  8860. for (int i = 0; i < GGML_OP_COUNT; i++) {
  8861. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  8862. }
  8863. GGML_PRINT("========================================\n");
  8864. }
  8865. // check if node is part of the graph
  8866. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  8867. if (cgraph == NULL) {
  8868. return true;
  8869. }
  8870. for (int i = 0; i < cgraph->n_nodes; i++) {
  8871. if (cgraph->nodes[i] == node) {
  8872. return true;
  8873. }
  8874. }
  8875. return false;
  8876. }
  8877. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  8878. for (int i = 0; i < cgraph->n_nodes; i++) {
  8879. struct ggml_tensor * parent = cgraph->nodes[i];
  8880. if (parent->grad == node) {
  8881. return parent;
  8882. }
  8883. }
  8884. return NULL;
  8885. }
  8886. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  8887. char color[16];
  8888. FILE * fp = fopen(filename, "w");
  8889. GGML_ASSERT(fp);
  8890. fprintf(fp, "digraph G {\n");
  8891. fprintf(fp, " newrank = true;\n");
  8892. fprintf(fp, " rankdir = LR;\n");
  8893. for (int i = 0; i < gb->n_nodes; i++) {
  8894. struct ggml_tensor * node = gb->nodes[i];
  8895. if (ggml_graph_get_parent(gb, node) != NULL) {
  8896. continue;
  8897. }
  8898. if (node->is_param) {
  8899. snprintf(color, sizeof(color), "yellow");
  8900. } else if (node->grad) {
  8901. if (ggml_graph_find(gf, node)) {
  8902. snprintf(color, sizeof(color), "green");
  8903. } else {
  8904. snprintf(color, sizeof(color), "lightblue");
  8905. }
  8906. } else {
  8907. snprintf(color, sizeof(color), "white");
  8908. }
  8909. fprintf(fp, " \"%p\" [ \
  8910. style = filled; fillcolor = %s; shape = record; \
  8911. label=\"%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  8912. (void *) node, color,
  8913. i, node->ne[0], node->ne[1],
  8914. GGML_OP_SYMBOL[node->op]);
  8915. if (node->grad) {
  8916. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  8917. } else {
  8918. fprintf(fp, "\"; ]\n");
  8919. }
  8920. }
  8921. for (int i = 0; i < gb->n_leafs; i++) {
  8922. struct ggml_tensor * node = gb->leafs[i];
  8923. snprintf(color, sizeof(color), "pink");
  8924. if (ggml_nelements(node) == 1) {
  8925. fprintf(fp, " \"%p\" [ \
  8926. style = filled; fillcolor = %s; shape = record; \
  8927. label=\"<x>%.1e\"; ]\n",
  8928. (void *) node, color, (double)ggml_get_f32_1d(node, 0));
  8929. } else {
  8930. fprintf(fp, " \"%p\" [ \
  8931. style = filled; fillcolor = %s; shape = record; \
  8932. label=\"<x>CONST %d [%" PRId64 ", %" PRId64 "]\"; ]\n",
  8933. (void *) node, color,
  8934. i, node->ne[0], node->ne[1]);
  8935. }
  8936. }
  8937. for (int i = 0; i < gb->n_nodes; i++) {
  8938. struct ggml_tensor * node = gb->nodes[i];
  8939. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  8940. if (node->src0) {
  8941. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  8942. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  8943. parent0 ? (void *) parent0 : (void *) node->src0,
  8944. parent0 ? "g" : "x",
  8945. parent ? (void *) parent : (void *) node,
  8946. parent ? "g" : "x",
  8947. parent ? "empty" : "vee",
  8948. parent ? "dashed" : "solid");
  8949. }
  8950. if (node->src1) {
  8951. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  8952. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  8953. parent1 ? (void *) parent1 : (void *) node->src1,
  8954. parent1 ? "g" : "x",
  8955. parent ? (void *) parent : (void *) node,
  8956. parent ? "g" : "x",
  8957. parent ? "empty" : "vee",
  8958. parent ? "dashed" : "solid");
  8959. }
  8960. }
  8961. for (int i = 0; i < gb->n_leafs; i++) {
  8962. struct ggml_tensor * node = gb->leafs[i];
  8963. if (node->src0) {
  8964. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  8965. (void *) node->src0, "x",
  8966. (void *) node, "x");
  8967. }
  8968. if (node->src1) {
  8969. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  8970. (void *) node->src1, "x",
  8971. (void *) node, "x");
  8972. }
  8973. }
  8974. fprintf(fp, "}\n");
  8975. fclose(fp);
  8976. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  8977. }
  8978. ////////////////////////////////////////////////////////////////////////////////
  8979. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  8980. int i = 0;
  8981. for (int p = 0; p < np; ++p) {
  8982. const int64_t ne = ggml_nelements(ps[p]) ;
  8983. // TODO: add function to set tensor from array
  8984. for (int64_t j = 0; j < ne; ++j) {
  8985. ggml_set_f32_1d(ps[p], j, x[i++]);
  8986. }
  8987. }
  8988. }
  8989. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  8990. int i = 0;
  8991. for (int p = 0; p < np; ++p) {
  8992. const int64_t ne = ggml_nelements(ps[p]) ;
  8993. // TODO: add function to get all elements at once
  8994. for (int64_t j = 0; j < ne; ++j) {
  8995. x[i++] = ggml_get_f32_1d(ps[p], j);
  8996. }
  8997. }
  8998. }
  8999. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  9000. int i = 0;
  9001. for (int p = 0; p < np; ++p) {
  9002. const int64_t ne = ggml_nelements(ps[p]) ;
  9003. // TODO: add function to get all elements at once
  9004. for (int64_t j = 0; j < ne; ++j) {
  9005. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  9006. }
  9007. }
  9008. }
  9009. //
  9010. // ADAM
  9011. //
  9012. // ref: https://arxiv.org/pdf/1412.6980.pdf
  9013. //
  9014. static enum ggml_opt_result ggml_opt_adam(
  9015. struct ggml_context * ctx,
  9016. struct ggml_opt_params params,
  9017. struct ggml_tensor * f,
  9018. struct ggml_cgraph * gf,
  9019. struct ggml_cgraph * gb) {
  9020. GGML_ASSERT(ggml_is_scalar(f));
  9021. gf->n_threads = params.n_threads;
  9022. gb->n_threads = params.n_threads;
  9023. // these will store the parameters we want to optimize
  9024. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  9025. int np = 0;
  9026. int nx = 0;
  9027. for (int i = 0; i < gf->n_nodes; ++i) {
  9028. if (gf->nodes[i]->is_param) {
  9029. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  9030. GGML_ASSERT(np < GGML_MAX_PARAMS);
  9031. ps[np++] = gf->nodes[i];
  9032. nx += ggml_nelements(gf->nodes[i]);
  9033. }
  9034. }
  9035. // constants
  9036. const float alpha = params.adam.alpha;
  9037. const float beta1 = params.adam.beta1;
  9038. const float beta2 = params.adam.beta2;
  9039. const float eps = params.adam.eps;
  9040. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  9041. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  9042. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  9043. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  9044. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  9045. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  9046. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  9047. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  9048. // initialize
  9049. ggml_vec_set_f32(nx, m, 0.0f);
  9050. ggml_vec_set_f32(nx, v, 0.0f);
  9051. // update view
  9052. ggml_opt_get_params(np, ps, x);
  9053. // compute the function value
  9054. ggml_graph_reset (gf);
  9055. ggml_set_f32 (f->grad, 1.0f);
  9056. ggml_graph_compute(ctx, gb);
  9057. float fx_prev = ggml_get_f32_1d(f, 0);
  9058. if (pf) {
  9059. pf[0] = fx_prev;
  9060. }
  9061. int n_no_improvement = 0;
  9062. float fx_best = fx_prev;
  9063. // run the optimizer
  9064. for (int t = 0; t < params.adam.n_iter; ++t) {
  9065. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  9066. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  9067. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  9068. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  9069. for (int i = 0; i < np; ++i) {
  9070. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  9071. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  9072. }
  9073. const int64_t t_start_wall = ggml_time_us();
  9074. const int64_t t_start_cpu = ggml_cycles();
  9075. UNUSED(t_start_wall);
  9076. UNUSED(t_start_cpu);
  9077. {
  9078. // update the gradient
  9079. ggml_opt_get_grad(np, ps, g1);
  9080. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  9081. ggml_vec_scale_f32(nx, m, beta1);
  9082. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  9083. // g2 = g1^2
  9084. ggml_vec_sqr_f32 (nx, g2, g1);
  9085. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  9086. ggml_vec_scale_f32(nx, v, beta2);
  9087. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  9088. // m^hat = m_t / (1 - beta1^t)
  9089. // v^hat = v_t / (1 - beta2^t)
  9090. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  9091. ggml_vec_cpy_f32 (nx, mh, m);
  9092. ggml_vec_cpy_f32 (nx, vh, v);
  9093. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  9094. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  9095. ggml_vec_sqrt_f32 (nx, vh, vh);
  9096. ggml_vec_acc1_f32 (nx, vh, eps);
  9097. ggml_vec_div_f32 (nx, mh, mh, vh);
  9098. ggml_vec_sub_f32 (nx, x, x, mh);
  9099. // update the parameters
  9100. ggml_opt_set_params(np, ps, x);
  9101. }
  9102. ggml_graph_reset (gf);
  9103. ggml_set_f32 (f->grad, 1.0f);
  9104. ggml_graph_compute(ctx, gb);
  9105. const float fx = ggml_get_f32_1d(f, 0);
  9106. // check convergence
  9107. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  9108. GGML_PRINT_DEBUG("converged\n");
  9109. return GGML_OPT_OK;
  9110. }
  9111. // delta-based convergence test
  9112. if (pf != NULL) {
  9113. // need at least params.past iterations to start checking for convergence
  9114. if (params.past <= t) {
  9115. const float rate = (pf[t%params.past] - fx)/fx;
  9116. if (fabsf(rate) < params.delta) {
  9117. return GGML_OPT_OK;
  9118. }
  9119. }
  9120. pf[t%params.past] = fx;
  9121. }
  9122. // check for improvement
  9123. if (params.max_no_improvement > 0) {
  9124. if (fx_best > fx) {
  9125. fx_best = fx;
  9126. n_no_improvement = 0;
  9127. } else {
  9128. ++n_no_improvement;
  9129. if (n_no_improvement >= params.max_no_improvement) {
  9130. return GGML_OPT_OK;
  9131. }
  9132. }
  9133. }
  9134. fx_prev = fx;
  9135. {
  9136. const int64_t t_end_cpu = ggml_cycles();
  9137. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  9138. UNUSED(t_end_cpu);
  9139. const int64_t t_end_wall = ggml_time_us();
  9140. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  9141. UNUSED(t_end_wall);
  9142. }
  9143. }
  9144. return GGML_OPT_DID_NOT_CONVERGE;
  9145. }
  9146. //
  9147. // L-BFGS
  9148. //
  9149. // the L-BFGS implementation below is based on the following implementation:
  9150. //
  9151. // https://github.com/chokkan/liblbfgs
  9152. //
  9153. struct ggml_lbfgs_iteration_data {
  9154. float alpha;
  9155. float ys;
  9156. float * s;
  9157. float * y;
  9158. };
  9159. static enum ggml_opt_result linesearch_backtracking(
  9160. struct ggml_context * ctx,
  9161. const struct ggml_opt_params * params,
  9162. int nx,
  9163. float * x,
  9164. float * fx,
  9165. float * g,
  9166. float * d,
  9167. float * step,
  9168. const float * xp,
  9169. struct ggml_tensor * f,
  9170. struct ggml_cgraph * gf,
  9171. struct ggml_cgraph * gb,
  9172. const int np,
  9173. struct ggml_tensor * ps[]) {
  9174. int count = 0;
  9175. float width = 0.0f;
  9176. float dg = 0.0f;
  9177. float finit = 0.0f;
  9178. float dginit = 0.0f;
  9179. float dgtest = 0.0f;
  9180. const float dec = 0.5f;
  9181. const float inc = 2.1f;
  9182. if (*step <= 0.f) {
  9183. return GGML_LINESEARCH_INVALID_PARAMETERS;
  9184. }
  9185. // compute the initial gradient in the search direction
  9186. ggml_vec_dot_f32(nx, &dginit, g, d);
  9187. // make sure that d points to a descent direction
  9188. if (0 < dginit) {
  9189. return GGML_LINESEARCH_FAIL;
  9190. }
  9191. // initialize local variables
  9192. finit = *fx;
  9193. dgtest = params->lbfgs.ftol*dginit;
  9194. while (true) {
  9195. ggml_vec_cpy_f32(nx, x, xp);
  9196. ggml_vec_mad_f32(nx, x, d, *step);
  9197. // evaluate the function and gradient values
  9198. {
  9199. ggml_opt_set_params(np, ps, x);
  9200. ggml_graph_reset (gf);
  9201. ggml_set_f32 (f->grad, 1.0f);
  9202. ggml_graph_compute(ctx, gb);
  9203. ggml_opt_get_grad(np, ps, g);
  9204. *fx = ggml_get_f32_1d(f, 0);
  9205. }
  9206. ++count;
  9207. if (*fx > finit + (*step)*dgtest) {
  9208. width = dec;
  9209. } else {
  9210. // Armijo condition is satisfied
  9211. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  9212. return count;
  9213. }
  9214. ggml_vec_dot_f32(nx, &dg, g, d);
  9215. // check the Wolfe condition
  9216. if (dg < params->lbfgs.wolfe * dginit) {
  9217. width = inc;
  9218. } else {
  9219. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  9220. // regular Wolfe conditions
  9221. return count;
  9222. }
  9223. if(dg > -params->lbfgs.wolfe*dginit) {
  9224. width = dec;
  9225. } else {
  9226. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  9227. return count;
  9228. }
  9229. return count;
  9230. }
  9231. }
  9232. if (*step < params->lbfgs.min_step) {
  9233. return GGML_LINESEARCH_MINIMUM_STEP;
  9234. }
  9235. if (*step > params->lbfgs.max_step) {
  9236. return GGML_LINESEARCH_MAXIMUM_STEP;
  9237. }
  9238. if (params->lbfgs.max_linesearch <= count) {
  9239. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  9240. }
  9241. (*step) *= width;
  9242. }
  9243. return GGML_LINESEARCH_FAIL;
  9244. }
  9245. static enum ggml_opt_result ggml_opt_lbfgs(
  9246. struct ggml_context * ctx,
  9247. struct ggml_opt_params params,
  9248. struct ggml_tensor * f,
  9249. struct ggml_cgraph * gf,
  9250. struct ggml_cgraph * gb) {
  9251. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  9252. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  9253. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  9254. return GGML_OPT_INVALID_WOLFE;
  9255. }
  9256. }
  9257. gf->n_threads = params.n_threads;
  9258. gb->n_threads = params.n_threads;
  9259. const int m = params.lbfgs.m;
  9260. // these will store the parameters we want to optimize
  9261. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  9262. int np = 0;
  9263. int nx = 0;
  9264. for (int i = 0; i < gf->n_nodes; ++i) {
  9265. if (gf->nodes[i]->is_param) {
  9266. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  9267. GGML_ASSERT(np < GGML_MAX_PARAMS);
  9268. ps[np++] = gf->nodes[i];
  9269. nx += ggml_nelements(gf->nodes[i]);
  9270. }
  9271. }
  9272. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  9273. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  9274. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  9275. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  9276. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  9277. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  9278. float fx = 0.0f; // cost function value
  9279. float xnorm = 0.0f; // ||x||
  9280. float gnorm = 0.0f; // ||g||
  9281. float step = 0.0f;
  9282. // initialize x from the graph nodes
  9283. ggml_opt_get_params(np, ps, x);
  9284. // the L-BFGS memory
  9285. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  9286. for (int i = 0; i < m; ++i) {
  9287. lm[i].alpha = 0.0f;
  9288. lm[i].ys = 0.0f;
  9289. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  9290. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  9291. }
  9292. // evaluate the function value and its gradient
  9293. {
  9294. ggml_opt_set_params(np, ps, x);
  9295. ggml_graph_reset (gf);
  9296. ggml_set_f32 (f->grad, 1.0f);
  9297. ggml_graph_compute(ctx, gb);
  9298. ggml_opt_get_grad(np, ps, g);
  9299. fx = ggml_get_f32_1d(f, 0);
  9300. }
  9301. if (pf) {
  9302. pf[0] = fx;
  9303. }
  9304. float fx_best = fx;
  9305. // search direction = -gradient
  9306. ggml_vec_neg_f32(nx, d, g);
  9307. // ||x||, ||g||
  9308. ggml_vec_norm_f32(nx, &xnorm, x);
  9309. ggml_vec_norm_f32(nx, &gnorm, g);
  9310. if (xnorm < 1.0f) {
  9311. xnorm = 1.0f;
  9312. }
  9313. // already optimized
  9314. if (gnorm/xnorm <= params.lbfgs.eps) {
  9315. return GGML_OPT_OK;
  9316. }
  9317. // initial step
  9318. ggml_vec_norm_inv_f32(nx, &step, d);
  9319. int j = 0;
  9320. int k = 1;
  9321. int ls = 0;
  9322. int end = 0;
  9323. int bound = 0;
  9324. int n_no_improvement = 0;
  9325. float ys = 0.0f;
  9326. float yy = 0.0f;
  9327. float beta = 0.0f;
  9328. while (true) {
  9329. // store the current position and gradient vectors
  9330. ggml_vec_cpy_f32(nx, xp, x);
  9331. ggml_vec_cpy_f32(nx, gp, g);
  9332. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  9333. if (ls < 0) {
  9334. // linesearch failed - go back to the previous point and return
  9335. ggml_vec_cpy_f32(nx, x, xp);
  9336. ggml_vec_cpy_f32(nx, g, gp);
  9337. return ls;
  9338. }
  9339. ggml_vec_norm_f32(nx, &xnorm, x);
  9340. ggml_vec_norm_f32(nx, &gnorm, g);
  9341. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  9342. if (xnorm < 1.0f) {
  9343. xnorm = 1.0f;
  9344. }
  9345. if (gnorm/xnorm <= params.lbfgs.eps) {
  9346. // converged
  9347. return GGML_OPT_OK;
  9348. }
  9349. // delta-based convergence test
  9350. if (pf != NULL) {
  9351. // need at least params.past iterations to start checking for convergence
  9352. if (params.past <= k) {
  9353. const float rate = (pf[k%params.past] - fx)/fx;
  9354. if (fabsf(rate) < params.delta) {
  9355. return GGML_OPT_OK;
  9356. }
  9357. }
  9358. pf[k%params.past] = fx;
  9359. }
  9360. // check for improvement
  9361. if (params.max_no_improvement > 0) {
  9362. if (fx < fx_best) {
  9363. fx_best = fx;
  9364. n_no_improvement = 0;
  9365. } else {
  9366. n_no_improvement++;
  9367. if (n_no_improvement >= params.max_no_improvement) {
  9368. return GGML_OPT_OK;
  9369. }
  9370. }
  9371. }
  9372. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  9373. // reached the maximum number of iterations
  9374. return GGML_OPT_DID_NOT_CONVERGE;
  9375. }
  9376. // update vectors s and y:
  9377. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  9378. // y_{k+1} = g_{k+1} - g_{k}.
  9379. //
  9380. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  9381. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  9382. // compute scalars ys and yy:
  9383. // ys = y^t \cdot s -> 1 / \rho.
  9384. // yy = y^t \cdot y.
  9385. //
  9386. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  9387. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  9388. lm[end].ys = ys;
  9389. // find new search direction
  9390. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  9391. bound = (m <= k) ? m : k;
  9392. k++;
  9393. end = (end + 1)%m;
  9394. // initialize search direction with -g
  9395. ggml_vec_neg_f32(nx, d, g);
  9396. j = end;
  9397. for (int i = 0; i < bound; ++i) {
  9398. j = (j + m - 1) % m;
  9399. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  9400. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  9401. lm[j].alpha /= lm[j].ys;
  9402. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  9403. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  9404. }
  9405. ggml_vec_scale_f32(nx, d, ys/yy);
  9406. for (int i = 0; i < bound; ++i) {
  9407. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  9408. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  9409. beta /= lm[j].ys;
  9410. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  9411. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  9412. j = (j + 1)%m;
  9413. }
  9414. step = 1.0;
  9415. }
  9416. return GGML_OPT_DID_NOT_CONVERGE;
  9417. }
  9418. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  9419. struct ggml_opt_params result;
  9420. switch (type) {
  9421. case GGML_OPT_ADAM:
  9422. {
  9423. result = (struct ggml_opt_params) {
  9424. .type = GGML_OPT_ADAM,
  9425. .n_threads = 1,
  9426. .past = 0,
  9427. .delta = 1e-5f,
  9428. .max_no_improvement = 100,
  9429. .print_forward_graph = true,
  9430. .print_backward_graph = true,
  9431. .adam = {
  9432. .n_iter = 10000,
  9433. .alpha = 0.001f,
  9434. .beta1 = 0.9f,
  9435. .beta2 = 0.999f,
  9436. .eps = 1e-8f,
  9437. .eps_f = 1e-5f,
  9438. .eps_g = 1e-3f,
  9439. },
  9440. };
  9441. } break;
  9442. case GGML_OPT_LBFGS:
  9443. {
  9444. result = (struct ggml_opt_params) {
  9445. .type = GGML_OPT_LBFGS,
  9446. .n_threads = 1,
  9447. .past = 0,
  9448. .delta = 1e-5f,
  9449. .max_no_improvement = 0,
  9450. .print_forward_graph = true,
  9451. .print_backward_graph = true,
  9452. .lbfgs = {
  9453. .m = 6,
  9454. .n_iter = 100,
  9455. .max_linesearch = 20,
  9456. .eps = 1e-5f,
  9457. .ftol = 1e-4f,
  9458. .wolfe = 0.9f,
  9459. .min_step = 1e-20f,
  9460. .max_step = 1e+20f,
  9461. .linesearch = GGML_LINESEARCH_DEFAULT,
  9462. },
  9463. };
  9464. } break;
  9465. }
  9466. return result;
  9467. }
  9468. enum ggml_opt_result ggml_opt(
  9469. struct ggml_context * ctx,
  9470. struct ggml_opt_params params,
  9471. struct ggml_tensor * f) {
  9472. bool free_ctx = false;
  9473. if (ctx == NULL) {
  9474. struct ggml_init_params params_ctx = {
  9475. .mem_size = 16*1024*1024,
  9476. .mem_buffer = NULL,
  9477. .no_alloc = false,
  9478. };
  9479. ctx = ggml_init(params_ctx);
  9480. if (ctx == NULL) {
  9481. return GGML_OPT_NO_CONTEXT;
  9482. }
  9483. free_ctx = true;
  9484. }
  9485. enum ggml_opt_result result = GGML_OPT_OK;
  9486. // build forward + backward compute graphs
  9487. struct ggml_cgraph gf = ggml_build_forward (f);
  9488. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  9489. switch (params.type) {
  9490. case GGML_OPT_ADAM:
  9491. {
  9492. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  9493. } break;
  9494. case GGML_OPT_LBFGS:
  9495. {
  9496. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  9497. } break;
  9498. }
  9499. if (params.print_forward_graph) {
  9500. ggml_graph_print (&gf);
  9501. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  9502. }
  9503. if (params.print_backward_graph) {
  9504. ggml_graph_print (&gb);
  9505. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  9506. }
  9507. if (free_ctx) {
  9508. ggml_free(ctx);
  9509. }
  9510. return result;
  9511. }
  9512. ////////////////////////////////////////////////////////////////////////////////
  9513. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  9514. assert(k % QK4_0 == 0);
  9515. const int nb = k / QK4_0;
  9516. for (int j = 0; j < n; j += k) {
  9517. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK4_0;
  9518. quantize_row_q4_0_reference(src + j, y, k);
  9519. for (int i = 0; i < nb; i++) {
  9520. for (int l = 0; l < QK4_0; l += 2) {
  9521. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9522. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9523. hist[vi0]++;
  9524. hist[vi1]++;
  9525. }
  9526. }
  9527. }
  9528. return (n/QK4_0*sizeof(block_q4_0));
  9529. }
  9530. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  9531. assert(k % QK4_1 == 0);
  9532. const int nb = k / QK4_1;
  9533. for (int j = 0; j < n; j += k) {
  9534. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK4_1;
  9535. quantize_row_q4_1_reference(src + j, y, k);
  9536. for (int i = 0; i < nb; i++) {
  9537. for (int l = 0; l < QK4_1; l += 2) {
  9538. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9539. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9540. hist[vi0]++;
  9541. hist[vi1]++;
  9542. }
  9543. }
  9544. }
  9545. return (n/QK4_1*sizeof(block_q4_1));
  9546. }
  9547. ////////////////////////////////////////////////////////////////////////////////
  9548. int ggml_cpu_has_avx(void) {
  9549. #if defined(__AVX__)
  9550. return 1;
  9551. #else
  9552. return 0;
  9553. #endif
  9554. }
  9555. int ggml_cpu_has_avx2(void) {
  9556. #if defined(__AVX2__)
  9557. return 1;
  9558. #else
  9559. return 0;
  9560. #endif
  9561. }
  9562. int ggml_cpu_has_avx512(void) {
  9563. #if defined(__AVX512F__)
  9564. return 1;
  9565. #else
  9566. return 0;
  9567. #endif
  9568. }
  9569. int ggml_cpu_has_avx512_vbmi(void) {
  9570. #if defined(__AVX512VBMI__)
  9571. return 1;
  9572. #else
  9573. return 0;
  9574. #endif
  9575. }
  9576. int ggml_cpu_has_avx512_vnni(void) {
  9577. #if defined(__AVX512VNNI__)
  9578. return 1;
  9579. #else
  9580. return 0;
  9581. #endif
  9582. }
  9583. int ggml_cpu_has_fma(void) {
  9584. #if defined(__FMA__)
  9585. return 1;
  9586. #else
  9587. return 0;
  9588. #endif
  9589. }
  9590. int ggml_cpu_has_neon(void) {
  9591. #if defined(__ARM_NEON)
  9592. return 1;
  9593. #else
  9594. return 0;
  9595. #endif
  9596. }
  9597. int ggml_cpu_has_arm_fma(void) {
  9598. #if defined(__ARM_FEATURE_FMA)
  9599. return 1;
  9600. #else
  9601. return 0;
  9602. #endif
  9603. }
  9604. int ggml_cpu_has_f16c(void) {
  9605. #if defined(__F16C__)
  9606. return 1;
  9607. #else
  9608. return 0;
  9609. #endif
  9610. }
  9611. int ggml_cpu_has_fp16_va(void) {
  9612. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  9613. return 1;
  9614. #else
  9615. return 0;
  9616. #endif
  9617. }
  9618. int ggml_cpu_has_wasm_simd(void) {
  9619. #if defined(__wasm_simd128__)
  9620. return 1;
  9621. #else
  9622. return 0;
  9623. #endif
  9624. }
  9625. int ggml_cpu_has_blas(void) {
  9626. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9627. return 1;
  9628. #else
  9629. return 0;
  9630. #endif
  9631. }
  9632. int ggml_cpu_has_sse3(void) {
  9633. #if defined(__SSE3__)
  9634. return 1;
  9635. #else
  9636. return 0;
  9637. #endif
  9638. }
  9639. int ggml_cpu_has_vsx(void) {
  9640. #if defined(__POWER9_VECTOR__)
  9641. return 1;
  9642. #else
  9643. return 0;
  9644. #endif
  9645. }
  9646. ////////////////////////////////////////////////////////////////////////////////