ggml.c 408 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. #include <limits.h>
  20. // if C99 - static_assert is noop
  21. // ref: https://stackoverflow.com/a/53923785/4039976
  22. #ifndef static_assert
  23. #define static_assert(cond, msg) struct global_scope_noop_trick
  24. #endif
  25. #if defined(_WIN32)
  26. #include <windows.h>
  27. typedef volatile LONG atomic_int;
  28. typedef atomic_int atomic_bool;
  29. static void atomic_store(atomic_int* ptr, LONG val) {
  30. InterlockedExchange(ptr, val);
  31. }
  32. static LONG atomic_load(atomic_int* ptr) {
  33. return InterlockedCompareExchange(ptr, 0, 0);
  34. }
  35. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  36. return InterlockedExchangeAdd(ptr, inc);
  37. }
  38. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  39. return atomic_fetch_add(ptr, -(dec));
  40. }
  41. typedef HANDLE pthread_t;
  42. typedef DWORD thread_ret_t;
  43. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  44. (void) unused;
  45. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  46. if (handle == NULL)
  47. {
  48. return EAGAIN;
  49. }
  50. *out = handle;
  51. return 0;
  52. }
  53. static int pthread_join(pthread_t thread, void* unused) {
  54. (void) unused;
  55. return (int) WaitForSingleObject(thread, INFINITE);
  56. }
  57. static int sched_yield (void) {
  58. Sleep (0);
  59. return 0;
  60. }
  61. #else
  62. #include <pthread.h>
  63. #include <stdatomic.h>
  64. typedef void* thread_ret_t;
  65. #endif
  66. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  67. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  68. #ifndef __FMA__
  69. #define __FMA__
  70. #endif
  71. #ifndef __F16C__
  72. #define __F16C__
  73. #endif
  74. #ifndef __SSE3__
  75. #define __SSE3__
  76. #endif
  77. #endif
  78. #ifdef __HAIKU__
  79. #define static_assert(cond, msg) _Static_assert(cond, msg)
  80. #endif
  81. /*#define GGML_PERF*/
  82. #define GGML_DEBUG 0
  83. #define GGML_GELU_FP16
  84. #define GGML_SILU_FP16
  85. #define GGML_SOFT_MAX_UNROLL 4
  86. #define GGML_VEC_DOT_UNROLL 2
  87. #ifdef GGML_USE_ACCELERATE
  88. // uncomment to use vDSP for soft max computation
  89. // note: not sure if it is actually faster
  90. //#define GGML_SOFT_MAX_ACCELERATE
  91. #endif
  92. #if UINTPTR_MAX == 0xFFFFFFFF
  93. #define GGML_MEM_ALIGN 4
  94. #else
  95. #define GGML_MEM_ALIGN 16
  96. #endif
  97. #if defined(_MSC_VER) || defined(__MINGW32__)
  98. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  99. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  100. #else
  101. inline static void* ggml_aligned_malloc(size_t size) {
  102. void* aligned_memory = NULL;
  103. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  104. if (result != 0) {
  105. // Handle allocation failure
  106. return NULL;
  107. }
  108. return aligned_memory;
  109. }
  110. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  111. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  112. #endif
  113. #define UNUSED(x) (void)(x)
  114. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  115. #define GGML_ASSERT(x) \
  116. do { \
  117. if (!(x)) { \
  118. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  119. abort(); \
  120. } \
  121. } while (0)
  122. #if defined(GGML_USE_ACCELERATE)
  123. #include <Accelerate/Accelerate.h>
  124. #elif defined(GGML_USE_OPENBLAS)
  125. #include <cblas.h>
  126. #elif defined(GGML_USE_CUBLAS)
  127. #include "ggml-cuda.h"
  128. #elif defined(GGML_USE_CLBLAST)
  129. #include "ggml-opencl.h"
  130. #endif
  131. #undef MIN
  132. #undef MAX
  133. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  134. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  135. // floating point type used to accumulate sums
  136. typedef double ggml_float;
  137. // 16-bit float
  138. // on Arm, we use __fp16
  139. // on x86, we use uint16_t
  140. #ifdef __ARM_NEON
  141. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  142. //
  143. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  144. //
  145. #include <arm_neon.h>
  146. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  147. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  148. #define GGML_FP16_TO_FP32(x) ((float) (x))
  149. #define GGML_FP32_TO_FP16(x) (x)
  150. #else
  151. #ifdef __wasm_simd128__
  152. #include <wasm_simd128.h>
  153. #else
  154. #ifdef __POWER9_VECTOR__
  155. #include <altivec.h>
  156. #undef bool
  157. #define bool _Bool
  158. #else
  159. #include <immintrin.h>
  160. #endif
  161. #endif
  162. #ifdef __F16C__
  163. #ifdef _MSC_VER
  164. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  165. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  166. #else
  167. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  168. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  169. #endif
  170. #elif defined(__POWER9_VECTOR__)
  171. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  172. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  173. /* the inline asm below is about 12% faster than the lookup method */
  174. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  175. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  176. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  177. register float f;
  178. register double d;
  179. __asm__(
  180. "mtfprd %0,%2\n"
  181. "xscvhpdp %0,%0\n"
  182. "frsp %1,%0\n" :
  183. /* temp */ "=d"(d),
  184. /* out */ "=f"(f):
  185. /* in */ "r"(h));
  186. return f;
  187. }
  188. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  189. register double d;
  190. register ggml_fp16_t r;
  191. __asm__( /* xscvdphp can work on double or single precision */
  192. "xscvdphp %0,%2\n"
  193. "mffprd %1,%0\n" :
  194. /* temp */ "=d"(d),
  195. /* out */ "=r"(r):
  196. /* in */ "f"(f));
  197. return r;
  198. }
  199. #else
  200. // FP16 <-> FP32
  201. // ref: https://github.com/Maratyszcza/FP16
  202. static inline float fp32_from_bits(uint32_t w) {
  203. union {
  204. uint32_t as_bits;
  205. float as_value;
  206. } fp32;
  207. fp32.as_bits = w;
  208. return fp32.as_value;
  209. }
  210. static inline uint32_t fp32_to_bits(float f) {
  211. union {
  212. float as_value;
  213. uint32_t as_bits;
  214. } fp32;
  215. fp32.as_value = f;
  216. return fp32.as_bits;
  217. }
  218. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  219. const uint32_t w = (uint32_t) h << 16;
  220. const uint32_t sign = w & UINT32_C(0x80000000);
  221. const uint32_t two_w = w + w;
  222. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  223. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  224. const float exp_scale = 0x1.0p-112f;
  225. #else
  226. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  227. #endif
  228. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  229. const uint32_t magic_mask = UINT32_C(126) << 23;
  230. const float magic_bias = 0.5f;
  231. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  232. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  233. const uint32_t result = sign |
  234. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  235. return fp32_from_bits(result);
  236. }
  237. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  238. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  239. const float scale_to_inf = 0x1.0p+112f;
  240. const float scale_to_zero = 0x1.0p-110f;
  241. #else
  242. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  243. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  244. #endif
  245. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  246. const uint32_t w = fp32_to_bits(f);
  247. const uint32_t shl1_w = w + w;
  248. const uint32_t sign = w & UINT32_C(0x80000000);
  249. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  250. if (bias < UINT32_C(0x71000000)) {
  251. bias = UINT32_C(0x71000000);
  252. }
  253. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  254. const uint32_t bits = fp32_to_bits(base);
  255. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  256. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  257. const uint32_t nonsign = exp_bits + mantissa_bits;
  258. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  259. }
  260. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  261. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  262. #endif // __F16C__
  263. #endif // __ARM_NEON
  264. //
  265. // global data
  266. //
  267. // precomputed gelu table for f16 (128 KB)
  268. static ggml_fp16_t table_gelu_f16[1 << 16];
  269. // precomputed silu table for f16 (128 KB)
  270. static ggml_fp16_t table_silu_f16[1 << 16];
  271. // precomputed exp table for f16 (128 KB)
  272. static ggml_fp16_t table_exp_f16[1 << 16];
  273. // precomputed f32 table for f16 (256 KB)
  274. static float table_f32_f16[1 << 16];
  275. #if defined(__ARM_NEON)
  276. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  277. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  278. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  279. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  280. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  281. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  282. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  283. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  284. // precomputed tables for expanding 8bits to 8 bytes (shl 4)
  285. static const uint64_t table_b2b_u[1 << 8] = { B8(00, 10) };
  286. #endif
  287. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  288. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  289. // This is also true for POWER9.
  290. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  291. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  292. uint16_t s;
  293. memcpy(&s, &f, sizeof(uint16_t));
  294. return table_f32_f16[s];
  295. }
  296. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  297. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  298. #endif
  299. // note: do not use these inside ggml.c
  300. // these are meant to be used via the ggml.h API
  301. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  302. return (float) GGML_FP16_TO_FP32(x);
  303. }
  304. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  305. return GGML_FP32_TO_FP16(x);
  306. }
  307. //
  308. // timing
  309. //
  310. #if defined(_MSC_VER) || defined(__MINGW32__)
  311. static int64_t timer_freq;
  312. void ggml_time_init(void) {
  313. LARGE_INTEGER frequency;
  314. QueryPerformanceFrequency(&frequency);
  315. timer_freq = frequency.QuadPart;
  316. }
  317. int64_t ggml_time_ms(void) {
  318. LARGE_INTEGER t;
  319. QueryPerformanceCounter(&t);
  320. return (t.QuadPart * 1000) / timer_freq;
  321. }
  322. int64_t ggml_time_us(void) {
  323. LARGE_INTEGER t;
  324. QueryPerformanceCounter(&t);
  325. return (t.QuadPart * 1000000) / timer_freq;
  326. }
  327. #else
  328. void ggml_time_init(void) {}
  329. int64_t ggml_time_ms(void) {
  330. struct timespec ts;
  331. clock_gettime(CLOCK_MONOTONIC, &ts);
  332. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  333. }
  334. int64_t ggml_time_us(void) {
  335. struct timespec ts;
  336. clock_gettime(CLOCK_MONOTONIC, &ts);
  337. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  338. }
  339. #endif
  340. int64_t ggml_cycles(void) {
  341. return clock();
  342. }
  343. int64_t ggml_cycles_per_ms(void) {
  344. return CLOCKS_PER_SEC/1000;
  345. }
  346. #ifdef GGML_PERF
  347. #define ggml_perf_time_ms() ggml_time_ms()
  348. #define ggml_perf_time_us() ggml_time_us()
  349. #define ggml_perf_cycles() ggml_cycles()
  350. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  351. #else
  352. #define ggml_perf_time_ms() 0
  353. #define ggml_perf_time_us() 0
  354. #define ggml_perf_cycles() 0
  355. #define ggml_perf_cycles_per_ms() 0
  356. #endif
  357. //
  358. // cache line
  359. //
  360. #if defined(__cpp_lib_hardware_interference_size)
  361. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  362. #else
  363. #if defined(__POWER9_VECTOR__)
  364. #define CACHE_LINE_SIZE 128
  365. #else
  366. #define CACHE_LINE_SIZE 64
  367. #endif
  368. #endif
  369. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  370. //
  371. // quantization
  372. //
  373. #if __AVX__ || __AVX2__ || __AVX512F__
  374. // Unpack 16 4-bit fields into 16 bytes
  375. // The output vector contains 16 bytes, each one in [ 0 .. 15 ] interval
  376. static inline __m128i bytes_from_nibbles_16(const uint8_t * rsi)
  377. {
  378. // Load 8 bytes from memory
  379. __m128i tmp = _mm_loadl_epi64( ( const __m128i* )rsi );
  380. // Expand bytes into uint16_t values
  381. __m128i bytes = _mm_cvtepu8_epi16( tmp );
  382. // Unpack values into individual bytes
  383. const __m128i lowMask = _mm_set1_epi8( 0xF );
  384. __m128i high = _mm_andnot_si128( lowMask, bytes );
  385. __m128i low = _mm_and_si128( lowMask, bytes );
  386. high = _mm_slli_epi16( high, 4 );
  387. bytes = _mm_or_si128( low, high );
  388. return bytes;
  389. }
  390. // horizontally add 8 floats
  391. static inline float hsum_float_8(const __m256 x) {
  392. __m128 res = _mm256_extractf128_ps(x, 1);
  393. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  394. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  395. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  396. return _mm_cvtss_f32(res);
  397. }
  398. // horizontally add 8 int32_t
  399. static inline int hsum_i32_8(const __m256i a) {
  400. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  401. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  402. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  403. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  404. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  405. }
  406. // horizontally add 4 int32_t
  407. static inline int hsum_i32_4(const __m128i a) {
  408. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  409. const __m128i sum64 = _mm_add_epi32(hi64, a);
  410. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  411. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  412. }
  413. #if __AVX2__ || __AVX512F__
  414. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  415. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  416. uint32_t x32;
  417. memcpy(&x32, x, sizeof(uint32_t));
  418. const __m256i shuf_mask = _mm256_set_epi64x(
  419. 0x0303030303030303, 0x0202020202020202,
  420. 0x0101010101010101, 0x0000000000000000);
  421. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  422. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  423. bytes = _mm256_or_si256(bytes, bit_mask);
  424. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  425. }
  426. // Unpack 32 4-bit fields into 32 bytes
  427. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  428. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  429. {
  430. // Load 16 bytes from memory
  431. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  432. // Expand bytes into uint16_t values
  433. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  434. // Unpack values into individual bytes
  435. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  436. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  437. __m256i low = _mm256_and_si256( lowMask, bytes );
  438. high = _mm256_slli_epi16( high, 4 );
  439. bytes = _mm256_or_si256( low, high );
  440. return bytes;
  441. }
  442. // add int16_t pairwise and return as float vector
  443. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  444. const __m256i ones = _mm256_set1_epi16(1);
  445. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  446. return _mm256_cvtepi32_ps(summed_pairs);
  447. }
  448. // multiply int8_t, add results pairwise twice and return as float vector
  449. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  450. // Get absolute values of x vectors
  451. const __m256i ax = _mm256_sign_epi8(x, x);
  452. // Sign the values of the y vectors
  453. const __m256i sy = _mm256_sign_epi8(y, x);
  454. #if __AVXVNNI__
  455. const __m256i zero = _mm256_setzero_si256();
  456. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  457. return _mm256_cvtepi32_ps(summed_pairs);
  458. #else
  459. // Perform multiplication and create 16-bit values
  460. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  461. return sum_i16_pairs_float(dot);
  462. #endif
  463. }
  464. static inline __m128i packNibbles( __m256i bytes )
  465. {
  466. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  467. #if __AVX512F__
  468. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  469. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  470. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  471. #else
  472. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  473. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  474. __m256i low = _mm256_and_si256( lowByte, bytes );
  475. high = _mm256_srli_epi16( high, 4 );
  476. bytes = _mm256_or_si256( low, high );
  477. // Compress uint16_t lanes into bytes
  478. __m128i r0 = _mm256_castsi256_si128( bytes );
  479. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  480. return _mm_packus_epi16( r0, r1 );
  481. #endif
  482. }
  483. #else
  484. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  485. {
  486. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  487. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  488. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  489. __m128i low = _mm_and_si128( lowByte, bytes1 );
  490. high = _mm_srli_epi16( high, 4 );
  491. bytes1 = _mm_or_si128( low, high );
  492. high = _mm_andnot_si128( lowByte, bytes2 );
  493. low = _mm_and_si128( lowByte, bytes2 );
  494. high = _mm_srli_epi16( high, 4 );
  495. bytes2 = _mm_or_si128( low, high );
  496. return _mm_packus_epi16( bytes1, bytes2);
  497. }
  498. #endif
  499. #endif // __AVX__ || __AVX2__ || __AVX512F__
  500. #if __ARM_NEON
  501. #if !defined(__aarch64__)
  502. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  503. return
  504. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  505. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  506. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  507. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  508. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  509. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  510. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  511. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  512. }
  513. inline static int16_t vaddvq_s8(int8x16_t v) {
  514. return
  515. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  516. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  517. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  518. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  519. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  520. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  521. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  522. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  523. }
  524. inline static int32_t vaddvq_s16(int16x8_t v) {
  525. return
  526. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  527. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  528. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  529. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  530. }
  531. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  532. return
  533. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  534. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  535. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  536. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  537. }
  538. inline static int32_t vaddvq_s32(int32x4_t v) {
  539. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  540. }
  541. inline static float vaddvq_f32(float32x4_t v) {
  542. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  543. }
  544. float vminvq_f32(float32x4_t v) {
  545. return
  546. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  547. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  548. }
  549. float vmaxvq_f32(float32x4_t v) {
  550. return
  551. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  552. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  553. }
  554. int8x8_t vzip1_s8(int8x8_t a, int8x8_t b) {
  555. return vget_low_s8(vcombine_s8(a, b));
  556. }
  557. int8x8_t vzip2_s8(int8x8_t a, int8x8_t b) {
  558. return vget_high_s8(vcombine_s8(a, b));
  559. }
  560. uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
  561. return vget_low_u8(vcombine_u8(a, b));
  562. }
  563. uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
  564. return vget_high_u8(vcombine_u8(a, b));
  565. }
  566. #endif
  567. #endif
  568. #define QK4_0 32
  569. typedef struct {
  570. float d; // delta
  571. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  572. } block_q4_0;
  573. static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
  574. #define QK4_1 32
  575. typedef struct {
  576. float d; // delta
  577. float m; // min
  578. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  579. } block_q4_1;
  580. static_assert(sizeof(block_q4_1) == 2 * sizeof(float) + QK4_1 / 2, "wrong q4_1 block size/padding");
  581. #define QK4_2 16
  582. typedef struct {
  583. ggml_fp16_t d; // delta
  584. uint8_t qs[QK4_2 / 2]; // nibbles / quants
  585. } block_q4_2;
  586. static_assert(sizeof(block_q4_2) == sizeof(ggml_fp16_t) + QK4_2 / 2, "wrong q4_2 block size/padding");
  587. #define QK5_0 32
  588. typedef struct {
  589. ggml_fp16_t d; // delta
  590. uint8_t qh[4]; // 5-th bit of quants
  591. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  592. } block_q5_0;
  593. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  594. #define QK5_1 32
  595. typedef struct {
  596. ggml_fp16_t d; // delta
  597. ggml_fp16_t m; // min
  598. uint8_t qh[4]; // 5-th bit of quants
  599. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  600. } block_q5_1;
  601. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  602. #define QK8_0 32
  603. typedef struct {
  604. float d; // delta
  605. int8_t qs[QK8_0]; // quants
  606. } block_q8_0;
  607. static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding");
  608. #define QK8_1 32
  609. typedef struct {
  610. float d; // delta
  611. float s0; // d * sum(qs[i]) low
  612. float s1; // d * sum(qs[i]) high
  613. int8_t qs[QK8_1]; // quants
  614. } block_q8_1;
  615. static_assert(sizeof(block_q8_1) == 3*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  616. // reference implementation for deterministic creation of model files
  617. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  618. assert(k % QK4_0 == 0);
  619. const int nb = k / QK4_0;
  620. uint8_t pp[QK4_0/2];
  621. for (int i = 0; i < nb; i++) {
  622. float amax = 0.0f; // absolute max
  623. float max = 0.0f;
  624. for (int l = 0; l < QK4_0; l++) {
  625. const float v = x[i*QK4_0 + l];
  626. if (amax < fabsf(v)) {
  627. amax = fabsf(v);
  628. max = v;
  629. }
  630. }
  631. const float d = max / -8;
  632. const float id = d ? 1.0f/d : 0.0f;
  633. y[i].d = d;
  634. for (int l = 0; l < QK4_0; l += 2) {
  635. const float v0 = x[i*QK4_0 + l + 0]*id;
  636. const float v1 = x[i*QK4_0 + l + 1]*id;
  637. const uint8_t vi0 = MIN(15, (int8_t)roundf(v0) + 8);
  638. const uint8_t vi1 = MIN(15, (int8_t)roundf(v1) + 8);
  639. assert(vi0 < 16);
  640. assert(vi1 < 16);
  641. pp[l/2] = vi0 | (vi1 << 4);
  642. }
  643. memcpy(y[i].qs, pp, sizeof(pp));
  644. }
  645. }
  646. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  647. assert(k % QK4_0 == 0);
  648. const int nb = k / QK4_0;
  649. block_q4_0 * restrict y = vy;
  650. #if defined(__POWER9_VECTOR__)
  651. const vector float v85 = vec_splats(8.5f);
  652. const vector signed int v15 = vec_splats(15);
  653. for (int i = 0; i < nb; i++) {
  654. float max = 0.0f;
  655. float min = 0.0f;
  656. vector float srcv [8];
  657. vector float maxv[8];
  658. vector float minv[8];
  659. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  660. //for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  661. for (int l = 0; l < 4; l++) maxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  662. //for (int l = 0; l < 2; l++) maxv[4*l] = vec_max(maxv[4*l], maxv[4*l+2]);
  663. maxv[0] = vec_max(maxv[0], maxv[2]);
  664. maxv[4] = vec_max(maxv[4], maxv[6]);
  665. //for (int l = 0; l < 1; l++) maxv[8*l] = vec_max(maxv[8*l], maxv[8*l+4]);
  666. maxv[0] = vec_max(maxv[0], maxv[4]);
  667. for (int l = 0; l < 4; l++) minv[2*l] = vec_min(asrcv[2*l], asrcv[2*l+1]);
  668. //for (int l = 0; l < 2; l++) minv[4*l] = vec_min(minv[4*l], minv[4*l+2]);
  669. minv[0] = vec_min(minv[0], minv[2]);
  670. minv[4] = vec_min(minv[4], minv[6]);
  671. //for (int l = 0; l < 1; l++) minv[8*l] = vec_min(minv[8*l], minv[8*l+4]);
  672. minv[0] = vec_min(minv[0], minv[4]);
  673. max = MAX(
  674. MAX(vec_extract(maxv[0], 0), vec_extract(maxv[0], 1)),
  675. MAX(vec_extract(maxv[0], 2), vec_extract(maxv[0], 3)));
  676. min = MIN(
  677. MIN(vec_extract(minv[0], 0), vec_extract(minv[0], 1)),
  678. MIN(vec_extract(minv[0], 2), vec_extract(minv[0], 3)));
  679. const float magnitude = max >= fabsf(min) ? max : min;
  680. const float d = magnitude / -8;
  681. const float id = d ? 1.0/d : 0.0;
  682. y[i].d = d;
  683. const vector float vid = vec_splats(id);
  684. uint8_t * restrict pb = y[i].qs;
  685. for (int l = 0; l < 8; l++) {
  686. const vector float vf = vec_madd(srcv[l], vid, v85);
  687. const vector signed int vi = vec_signed(vf);
  688. const vector signed int vc = vec_min(vi, v15);
  689. pb[2*l + 0] = vec_extract(vc, 0) | (vec_extract(vc, 1) << 4);
  690. pb[2*l + 1] = vec_extract(vc, 2) | (vec_extract(vc, 3) << 4);
  691. }
  692. }
  693. #elif __ARM_NEON
  694. for (int i = 0; i < nb; i++) {
  695. float32x4_t srcv [8];
  696. float32x4_t maxv[8];
  697. float32x4_t minv[8];
  698. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  699. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l+1]);
  700. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l+2]);
  701. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l+4]);
  702. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l+1]);
  703. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l+2]);
  704. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l+4]);
  705. const float max = vmaxvq_f32(maxv[0]);
  706. const float min = vminvq_f32(minv[0]);
  707. const float magnitude = max >= fabsf(min) ? max : min;
  708. const float d = magnitude / -8;
  709. const float id = d ? 1.0f/d : 0.0f;
  710. y[i].d = d;
  711. for (int l = 0; l < 8; l++) {
  712. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  713. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  714. const int32x4_t vi = vcvtq_s32_f32(vf);
  715. const int32x4_t vc = vminq_s32(vi, vdupq_n_s32(15));
  716. y[i].qs[2*l + 0] = vgetq_lane_s32(vc, 0) | (vgetq_lane_s32(vc, 1) << 4);
  717. y[i].qs[2*l + 1] = vgetq_lane_s32(vc, 2) | (vgetq_lane_s32(vc, 3) << 4);
  718. }
  719. }
  720. #elif defined(__AVX2__)
  721. for (int i = 0; i < nb; i++) {
  722. // Load elements into 4 AVX vectors
  723. __m256 v0 = _mm256_loadu_ps( x );
  724. __m256 v1 = _mm256_loadu_ps( x + 8 );
  725. __m256 v2 = _mm256_loadu_ps( x + 16 );
  726. __m256 v3 = _mm256_loadu_ps( x + 24 );
  727. x += 32;
  728. // Compute max for the block
  729. __m256 max = _mm256_max_ps( v0, v1 );
  730. __m256 maxTmp = _mm256_max_ps( v2, v3 );
  731. max = _mm256_max_ps( max, maxTmp );
  732. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( max, 1 ), _mm256_castps256_ps128( max ) );
  733. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  734. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  735. const float maxScalar = _mm_cvtss_f32( max4 );
  736. // Compute min for the block
  737. __m256 min = _mm256_min_ps( v0, v1 );
  738. __m256 minTmp = _mm256_min_ps( v2, v3 );
  739. min = _mm256_min_ps( min, minTmp );
  740. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( min, 1 ), _mm256_castps256_ps128( min ) );
  741. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  742. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  743. const float minScalar = _mm_cvtss_f32( min4 );
  744. // Quantize these floats
  745. const float magnitude = maxScalar >= fabsf(minScalar) ? maxScalar : minScalar;
  746. const float d = magnitude / -8.0f;
  747. y[i].d = d;
  748. const float id = ( magnitude != 0.0f ) ? -8.0f / magnitude : 0.0f;
  749. const __m256 mul = _mm256_set1_ps( id );
  750. // Apply the multiplier
  751. v0 = _mm256_mul_ps( v0, mul );
  752. v1 = _mm256_mul_ps( v1, mul );
  753. v2 = _mm256_mul_ps( v2, mul );
  754. v3 = _mm256_mul_ps( v3, mul );
  755. // Round to nearest integer
  756. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  757. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  758. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  759. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  760. // Convert floats to integers
  761. __m256i i0 = _mm256_cvtps_epi32( v0 );
  762. __m256i i1 = _mm256_cvtps_epi32( v1 );
  763. __m256i i2 = _mm256_cvtps_epi32( v2 );
  764. __m256i i3 = _mm256_cvtps_epi32( v3 );
  765. // Convert int32 to int16
  766. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  767. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  768. // Convert int16 to int8
  769. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  770. // We got our precious signed bytes, but the order is now wrong
  771. // These AVX2 pack instructions process 16-byte pieces independently
  772. // The following instruction is fixing the order
  773. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  774. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  775. // Apply offset and clamp to translate the range from [ -8 .. +8 ] into [ +0 .. +15 ]
  776. const __m256i off = _mm256_set1_epi8( 8 );
  777. i0 = _mm256_add_epi8( i0, off );
  778. const __m256i maxNibble = _mm256_set1_epi8( 15 );
  779. i0 = _mm256_min_epi8( i0, maxNibble );
  780. // Compress the vector into 4 bit/value, and store
  781. __m128i res = packNibbles( i0 );
  782. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  783. }
  784. #elif defined(__AVX__)
  785. for (int i = 0; i < nb; i++) {
  786. // Load elements into 4 AVX vectors
  787. __m256 v0 = _mm256_loadu_ps( x );
  788. __m256 v1 = _mm256_loadu_ps( x + 8 );
  789. __m256 v2 = _mm256_loadu_ps( x + 16 );
  790. __m256 v3 = _mm256_loadu_ps( x + 24 );
  791. x += 32;
  792. // Compute max for the block
  793. __m256 max = _mm256_max_ps( v0, v1 );
  794. __m256 maxTmp = _mm256_max_ps( v2, v3 );
  795. max = _mm256_max_ps( max, maxTmp );
  796. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( max, 1 ), _mm256_castps256_ps128( max ) );
  797. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  798. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  799. const float maxScalar = _mm_cvtss_f32( max4 );
  800. // Compute min for the block
  801. __m256 min = _mm256_min_ps( v0, v1 );
  802. __m256 minTmp = _mm256_min_ps( v2, v3 );
  803. min = _mm256_min_ps( min, minTmp );
  804. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( min, 1 ), _mm256_castps256_ps128( min ) );
  805. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  806. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  807. const float minScalar = _mm_cvtss_f32( min4 );
  808. // Quantize these floats
  809. const float magnitude = maxScalar >= fabsf(minScalar) ? maxScalar : minScalar;
  810. const float d = magnitude / -8.0f;
  811. y[i].d = d;
  812. const float id = ( magnitude != 0.0f ) ? -8.0f / magnitude : 0.0f;
  813. const __m256 mul = _mm256_set1_ps( id );
  814. // Apply the multiplier
  815. v0 = _mm256_mul_ps( v0, mul );
  816. v1 = _mm256_mul_ps( v1, mul );
  817. v2 = _mm256_mul_ps( v2, mul );
  818. v3 = _mm256_mul_ps( v3, mul );
  819. // Round to nearest integer
  820. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  821. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  822. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  823. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  824. // Convert floats to integers
  825. __m256i i0 = _mm256_cvtps_epi32( v0 );
  826. __m256i i1 = _mm256_cvtps_epi32( v1 );
  827. __m256i i2 = _mm256_cvtps_epi32( v2 );
  828. __m256i i3 = _mm256_cvtps_epi32( v3 );
  829. // Since we don't have in AVX some necessary functions,
  830. // we split the registers in half and call AVX2 analogs from SSE
  831. __m128i ni0 = _mm256_castsi256_si128( i0 );
  832. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  833. __m128i ni2 = _mm256_castsi256_si128( i1 );
  834. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  835. __m128i ni4 = _mm256_castsi256_si128( i2 );
  836. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  837. __m128i ni6 = _mm256_castsi256_si128( i3 );
  838. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  839. // Convert int32 to int16
  840. ni0 = _mm_packs_epi32( ni0, ni1 );
  841. ni2 = _mm_packs_epi32( ni2, ni3 );
  842. ni4 = _mm_packs_epi32( ni4, ni5 );
  843. ni6 = _mm_packs_epi32( ni6, ni7 );
  844. // Convert int16 to int8
  845. ni0 = _mm_packs_epi16( ni0, ni2 );
  846. ni4 = _mm_packs_epi16( ni4, ni6 );
  847. // Apply offset and clamp to translate the range from [ -8 .. +8 ] into [ +0 .. +15 ]
  848. const __m128i off = _mm_set1_epi8( 8 );
  849. ni0 = _mm_add_epi8( ni0, off );
  850. ni4 = _mm_add_epi8( ni4, off );
  851. const __m128i maxNibble = _mm_set1_epi8( 15 );
  852. ni0 = _mm_min_epi8( ni0, maxNibble );
  853. ni4 = _mm_min_epi8( ni4, maxNibble );
  854. // Compress the vector into 4 bit/value, and store
  855. __m128i res = packNibbles( ni0, ni4 );
  856. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  857. }
  858. #elif defined(__wasm_simd128__)
  859. for (int i = 0; i < nb; i++) {
  860. float max = 0.0f;
  861. float min = 0.0f;
  862. v128_t srcv [8];
  863. v128_t maxv[8];
  864. v128_t minv[8];
  865. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  866. for (int l = 0; l < 4; l++) maxv[2*l] = wasm_f32x4_max(srcv[2*l], srcv[2*l+1]);
  867. for (int l = 0; l < 2; l++) maxv[4*l] = wasm_f32x4_max(maxv[4*l], maxv[4*l+2]);
  868. for (int l = 0; l < 1; l++) maxv[8*l] = wasm_f32x4_max(maxv[8*l], maxv[8*l+4]);
  869. for (int l = 0; l < 4; l++) minv[2*l] = wasm_f32x4_min(srcv[2*l], srcv[2*l+1]);
  870. for (int l = 0; l < 2; l++) minv[4*l] = wasm_f32x4_min(minv[4*l], minv[4*l+2]);
  871. for (int l = 0; l < 1; l++) minv[8*l] = wasm_f32x4_min(minv[8*l], minv[8*l+4]);
  872. max = MAX(
  873. MAX(wasm_f32x4_extract_lane(maxv[0], 0), wasm_f32x4_extract_lane(maxv[0], 1)),
  874. MAX(wasm_f32x4_extract_lane(maxv[0], 2), wasm_f32x4_extract_lane(maxv[0], 3)));
  875. min = MIN(
  876. MIN(wasm_f32x4_extract_lane(minv[0], 0), wasm_f32x4_extract_lane(minv[0], 1)),
  877. MIN(wasm_f32x4_extract_lane(minv[0], 2), wasm_f32x4_extract_lane(minv[0], 3)));
  878. const float magnitude = max >= fabsf(min) ? max : min;
  879. const float d = magnitude / -8;
  880. const float id = d ? 1.0/d : 0.0;
  881. y[i].d = d;
  882. for (int l = 0; l < 8; l++) {
  883. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  884. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  885. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  886. const v128_t vc = wasm_i32x4_min_u(vi, wasm_i32x4_splat(15));
  887. y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vc, 0) | (wasm_i32x4_extract_lane(vc, 1) << 4);
  888. y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vc, 2) | (wasm_i32x4_extract_lane(vc, 3) << 4);
  889. }
  890. }
  891. #else
  892. // scalar
  893. quantize_row_q4_0_reference(x, y, k);
  894. #endif
  895. }
  896. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  897. assert(k % QK4_1 == 0);
  898. const int nb = k / QK4_1;
  899. block_q4_1 * restrict y = vy;
  900. uint8_t pp[QK4_1/2];
  901. for (int i = 0; i < nb; i++) {
  902. float min = FLT_MAX;
  903. float max = -FLT_MAX;
  904. for (int l = 0; l < QK4_1; l++) {
  905. const float v = x[i*QK4_1 + l];
  906. if (v < min) min = v;
  907. if (v > max) max = v;
  908. }
  909. const float d = (max - min) / ((1 << 4) - 1);
  910. const float id = d ? 1.0f/d : 0.0f;
  911. y[i].d = d;
  912. y[i].m = min;
  913. for (int l = 0; l < QK4_1; l += 2) {
  914. const float v0 = (x[i*QK4_1 + l + 0] - min)*id;
  915. const float v1 = (x[i*QK4_1 + l + 1] - min)*id;
  916. const uint8_t vi0 = roundf(v0);
  917. const uint8_t vi1 = roundf(v1);
  918. assert(vi0 < 16);
  919. assert(vi1 < 16);
  920. pp[l/2] = vi0 | (vi1 << 4);
  921. }
  922. memcpy(y[i].qs, pp, sizeof(pp));
  923. }
  924. }
  925. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  926. assert(k % QK4_1 == 0);
  927. const int nb = k / QK4_1;
  928. block_q4_1 * restrict y = vy;
  929. #if defined(__AVX2__)
  930. for (int i = 0; i < nb; i++) {
  931. // Load elements into 4 AVX vectors
  932. __m256 v0 = _mm256_loadu_ps( x );
  933. __m256 v1 = _mm256_loadu_ps( x + 8 );
  934. __m256 v2 = _mm256_loadu_ps( x + 16 );
  935. __m256 v3 = _mm256_loadu_ps( x + 24 );
  936. x += 32;
  937. // Compute max for the block
  938. __m256 vmax;
  939. vmax = _mm256_max_ps( v0, v1 );
  940. vmax = _mm256_max_ps( vmax, v2 );
  941. vmax = _mm256_max_ps( vmax, v3 );
  942. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  943. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  944. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  945. const float maxScalar = _mm_cvtss_f32( max4 );
  946. // Compute min for the block
  947. __m256 vmin;
  948. vmin = _mm256_min_ps( v0, v1 );
  949. vmin = _mm256_min_ps( vmin, v2 );
  950. vmin = _mm256_min_ps( vmin, v3 );
  951. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  952. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  953. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  954. const float minScalar = _mm_cvtss_f32( min4 );
  955. // Quantize these floats
  956. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  957. const float id = d ? 1.0f/d : 0.0f;
  958. y[i].m = minScalar;
  959. y[i].d = d;
  960. // x = (x-min)*id
  961. const __m256 mul = _mm256_set1_ps( id );
  962. const __m256 off = _mm256_set1_ps( minScalar );
  963. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  964. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  965. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  966. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  967. // Round to nearest integer
  968. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  969. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  970. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  971. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  972. // Convert floats to integers
  973. __m256i i0 = _mm256_cvtps_epi32( v0 );
  974. __m256i i1 = _mm256_cvtps_epi32( v1 );
  975. __m256i i2 = _mm256_cvtps_epi32( v2 );
  976. __m256i i3 = _mm256_cvtps_epi32( v3 );
  977. // Convert int32 to int16
  978. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  979. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  980. // Convert int16 to int8
  981. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  982. // We got our precious signed bytes, but the order is now wrong
  983. // These AVX2 pack instructions process 16-byte pieces independently
  984. // The following instruction is fixing the order
  985. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  986. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  987. // Compress the vector into 4 bit/value, and store
  988. __m128i res = packNibbles( i0 );
  989. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  990. }
  991. #elif __ARM_NEON
  992. for (int i = 0; i < nb; i++) {
  993. float32x4_t srcv[8];
  994. float32x4_t minv[8];
  995. float32x4_t maxv[8];
  996. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*QK4_1 + 4*l);
  997. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]);
  998. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]);
  999. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]);
  1000. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]);
  1001. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]);
  1002. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]);
  1003. const float min = vminvq_f32(minv[0]);
  1004. const float max = vmaxvq_f32(maxv[0]);
  1005. const float d = (max - min) / ((1 << 4) - 1);
  1006. const float id = d ? 1.0f/d : 0.0f;
  1007. y[i].d = d;
  1008. y[i].m = min;
  1009. const float32x4_t minv0 = vdupq_n_f32(min);
  1010. for (int l = 0; l < 8; l++) {
  1011. const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id);
  1012. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(0.5f)); // needed to round to nearest
  1013. const int32x4_t vi = vcvtq_s32_f32(vf);
  1014. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  1015. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  1016. }
  1017. }
  1018. #else
  1019. // scalar
  1020. quantize_row_q4_1_reference(x, vy, k);
  1021. #endif
  1022. }
  1023. // reference implementation for deterministic creation of model files
  1024. static void quantize_row_q4_2_reference(const float * restrict x, block_q4_2 * restrict y, int k) {
  1025. assert(k % QK4_2 == 0);
  1026. const int nb = k / QK4_2;
  1027. for (int i = 0; i < nb; i++) {
  1028. float amax = 0.0f; // absolute max
  1029. float max = 0.0f;
  1030. for (int l = 0; l < QK4_2; l++) {
  1031. const float v = x[i*QK4_2 + l];
  1032. if (amax < fabsf(v)) {
  1033. amax = fabsf(v);
  1034. max = v;
  1035. }
  1036. }
  1037. const float d = max / -8;
  1038. const float id = d ? 1.0f/d : 0.0f;
  1039. y[i].d = GGML_FP32_TO_FP16(d);
  1040. for (int l = 0; l < QK4_2; l += 2) {
  1041. const float v0 = x[i*QK4_2 + l + 0]*id;
  1042. const float v1 = x[i*QK4_2 + l + 1]*id;
  1043. const uint8_t vi0 = MIN(15, (uint8_t)(v0 + 8.5f));
  1044. const uint8_t vi1 = MIN(15, (uint8_t)(v1 + 8.5f));
  1045. assert(vi0 < 16);
  1046. assert(vi1 < 16);
  1047. y[i].qs[l/2] = vi0 | (vi1 << 4);
  1048. }
  1049. }
  1050. }
  1051. static void quantize_row_q4_2(const float * restrict x, void * restrict vy, int k) {
  1052. assert(k % QK4_2 == 0);
  1053. block_q4_2 * restrict y = vy;
  1054. quantize_row_q4_2_reference(x, y, k);
  1055. }
  1056. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  1057. assert(k % QK5_0 == 0);
  1058. const int nb = k / QK5_0;
  1059. for (int i = 0; i < nb; i++) {
  1060. float amax = 0.0f; // absolute max
  1061. float max = 0.0f;
  1062. for (int l = 0; l < QK5_0; l++) {
  1063. const float v = x[i*QK5_0 + l];
  1064. if (amax < fabsf(v)) {
  1065. amax = fabsf(v);
  1066. max = v;
  1067. }
  1068. }
  1069. const float d = max / -16;
  1070. const float id = d ? 1.0f/d : 0.0f;
  1071. y[i].d = GGML_FP32_TO_FP16(d);
  1072. uint32_t qh = 0;
  1073. for (int l = 0; l < QK5_0; l += 2) {
  1074. const float v0 = x[i*QK5_0 + l + 0]*id;
  1075. const float v1 = x[i*QK5_0 + l + 1]*id;
  1076. const uint32_t vi0 = MIN(31, (int) (v0 + 16.5f));
  1077. const uint32_t vi1 = MIN(31, (int) (v1 + 16.5f));
  1078. y[i].qs[l/2] = (vi0 & 0x0F) | ((vi1 & 0x0F) << 4);
  1079. // get the 5-th bit and store it in qh at the right position
  1080. qh |= ((vi0 & 0x10) >> 4) << (l + 0);
  1081. qh |= ((vi1 & 0x10) >> 4) << (l + 1);
  1082. }
  1083. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  1084. }
  1085. }
  1086. static void quantize_row_q5_0(const float * restrict x, void * restrict vy, int k) {
  1087. assert(k % QK5_0 == 0);
  1088. block_q5_0 * restrict y = vy;
  1089. quantize_row_q5_0_reference(x, y, k);
  1090. }
  1091. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  1092. assert(k % QK5_1 == 0);
  1093. const int nb = k / QK5_1;
  1094. for (int i = 0; i < nb; i++) {
  1095. float min = FLT_MAX;
  1096. float max = -FLT_MAX;
  1097. for (int l = 0; l < QK5_1; l++) {
  1098. const float v = x[i*QK5_1 + l];
  1099. if (v < min) min = v;
  1100. if (v > max) max = v;
  1101. }
  1102. const float d = (max - min) / ((1 << 5) - 1);
  1103. const float id = d ? 1.0f/d : 0.0f;
  1104. y[i].d = GGML_FP32_TO_FP16(d);
  1105. y[i].m = GGML_FP32_TO_FP16(min);
  1106. uint32_t qh = 0;
  1107. for (int l = 0; l < QK5_1; l += 2) {
  1108. const float v0 = (x[i*QK5_1 + l + 0] - min)*id;
  1109. const float v1 = (x[i*QK5_1 + l + 1] - min)*id;
  1110. const uint32_t vi0 = (int) (v0 + 0.5f);
  1111. const uint32_t vi1 = (int) (v1 + 0.5f);
  1112. y[i].qs[l/2] = (vi0 & 0x0F) | ((vi1 & 0x0F) << 4);
  1113. // get the 5-th bit and store it in qh at the right position
  1114. qh |= ((vi0 & 0x10) >> 4) << (l + 0);
  1115. qh |= ((vi1 & 0x10) >> 4) << (l + 1);
  1116. }
  1117. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  1118. }
  1119. }
  1120. static void quantize_row_q5_1(const float * restrict x, void * restrict vy, int k) {
  1121. assert(k % QK5_1 == 0);
  1122. block_q5_1 * restrict y = vy;
  1123. quantize_row_q5_1_reference(x, y, k);
  1124. }
  1125. // reference implementation for deterministic creation of model files
  1126. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  1127. assert(k % QK8_0 == 0);
  1128. const int nb = k / QK8_0;
  1129. for (int i = 0; i < nb; i++) {
  1130. float amax = 0.0f; // absolute max
  1131. for (int l = 0; l < QK8_0; l++) {
  1132. const float v = x[i*QK8_0 + l];
  1133. amax = MAX(amax, fabsf(v));
  1134. }
  1135. const float d = amax / ((1 << 7) - 1);
  1136. const float id = d ? 1.0f/d : 0.0f;
  1137. y[i].d = d;
  1138. for (int l = 0; l < QK8_0; ++l) {
  1139. const float v0 = x[i*QK8_0 + l]*id;
  1140. y[i].qs[l] = roundf(v0);
  1141. }
  1142. }
  1143. }
  1144. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  1145. assert(k % QK8_0 == 0);
  1146. block_q8_0 * restrict y = vy;
  1147. quantize_row_q8_0_reference(x, y, k);
  1148. }
  1149. // reference implementation for deterministic creation of model files
  1150. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1151. assert(k % QK8_1 == 0);
  1152. const int nb = k / QK8_1;
  1153. for (int i = 0; i < nb; i++) {
  1154. float amax = 0.0f; // absolute max
  1155. for (int l = 0; l < QK8_1; l++) {
  1156. const float v = x[i*QK8_1 + l];
  1157. amax = MAX(amax, fabsf(v));
  1158. }
  1159. const float d = amax / ((1 << 7) - 1);
  1160. const float id = d ? 1.0f/d : 0.0f;
  1161. y[i].d = d;
  1162. int sum0 = 0;
  1163. int sum1 = 0;
  1164. for (int l = 0; l < QK8_1/2; ++l) {
  1165. const float v0 = x[i*QK8_1 + l]*id;
  1166. const float v1 = x[i*QK8_1 + QK8_1/2 + l]*id;
  1167. y[i].qs[ l] = roundf(v0);
  1168. y[i].qs[QK8_1/2 + l] = roundf(v1);
  1169. sum0 += y[i].qs[ l];
  1170. sum1 += y[i].qs[QK8_1/2 + l];
  1171. }
  1172. y[i].s0 = d * sum0;
  1173. y[i].s1 = d * sum1;
  1174. }
  1175. }
  1176. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1177. assert(k % QK8_1 == 0);
  1178. const int nb = k / QK8_1;
  1179. block_q8_1 * restrict y = vy;
  1180. #if defined(__ARM_NEON)
  1181. for (int i = 0; i < nb; i++) {
  1182. float32x4_t srcv [8];
  1183. float32x4_t asrcv[8];
  1184. float32x4_t amaxv[8];
  1185. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  1186. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  1187. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  1188. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  1189. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  1190. const float amax = vmaxvq_f32(amaxv[0]);
  1191. const float d = amax / ((1 << 7) - 1);
  1192. const float id = d ? 1.0f/d : 0.0f;
  1193. y[i].d = d;
  1194. int32x4_t accv0 = vdupq_n_s32(0);
  1195. int32x4_t accv1 = vdupq_n_s32(0);
  1196. // low half
  1197. for (int l = 0; l < 4; l++) {
  1198. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  1199. const int32x4_t vi = vcvtnq_s32_f32(v);
  1200. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  1201. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  1202. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  1203. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  1204. accv0 = vaddq_s32(accv0, vi);
  1205. }
  1206. // high half
  1207. for (int l = 4; l < 8; l++) {
  1208. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  1209. const int32x4_t vi = vcvtnq_s32_f32(v);
  1210. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  1211. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  1212. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  1213. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  1214. accv1 = vaddq_s32(accv1, vi);
  1215. }
  1216. const int32_t sum0 = vaddvq_s32(accv0);
  1217. const int32_t sum1 = vaddvq_s32(accv1);
  1218. y[i].s0 = d * sum0;
  1219. y[i].s1 = d * sum1;
  1220. }
  1221. #elif defined(__AVX2__) || defined(__AVX__)
  1222. for (int i = 0; i < nb; i++) {
  1223. // Load elements into 4 AVX vectors
  1224. __m256 v0 = _mm256_loadu_ps( x );
  1225. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1226. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1227. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1228. x += 32;
  1229. // Compute max(abs(e)) for the block
  1230. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1231. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1232. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1233. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1234. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1235. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1236. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1237. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1238. const float maxScalar = _mm_cvtss_f32( max4 );
  1239. // Quantize these floats
  1240. const float d = maxScalar / 127.f;
  1241. y[i].d = d;
  1242. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1243. const __m256 mul = _mm256_set1_ps( id );
  1244. // Apply the multiplier
  1245. v0 = _mm256_mul_ps( v0, mul );
  1246. v1 = _mm256_mul_ps( v1, mul );
  1247. v2 = _mm256_mul_ps( v2, mul );
  1248. v3 = _mm256_mul_ps( v3, mul );
  1249. // Round to nearest integer
  1250. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1251. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1252. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1253. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1254. // Convert floats to integers
  1255. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1256. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1257. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1258. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1259. #if defined(__AVX2__)
  1260. // Compute the sum of the quants and set y[i].s
  1261. //y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1262. y[i].s0 = d * hsum_i32_8(_mm256_add_epi32(i0, i1));
  1263. y[i].s1 = d * hsum_i32_8(_mm256_add_epi32(i2, i3));
  1264. // Convert int32 to int16
  1265. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1266. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1267. // Convert int16 to int8
  1268. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1269. // We got our precious signed bytes, but the order is now wrong
  1270. // These AVX2 pack instructions process 16-byte pieces independently
  1271. // The following instruction is fixing the order
  1272. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1273. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1274. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1275. #else
  1276. // Since we don't have in AVX some necessary functions,
  1277. // we split the registers in half and call AVX2 analogs from SSE
  1278. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1279. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1280. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1281. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1282. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1283. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1284. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1285. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1286. // Compute the sum of the quants and set y[i].s
  1287. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1288. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1289. y[i].s0 = d * hsum_i32_4(s0);
  1290. y[i].s1 = d * hsum_i32_4(s1);
  1291. // Convert int32 to int16
  1292. ni0 = _mm_packs_epi32( ni0, ni1 );
  1293. ni2 = _mm_packs_epi32( ni2, ni3 );
  1294. ni4 = _mm_packs_epi32( ni4, ni5 );
  1295. ni6 = _mm_packs_epi32( ni6, ni7 );
  1296. // Convert int16 to int8
  1297. ni0 = _mm_packs_epi16( ni0, ni2 );
  1298. ni4 = _mm_packs_epi16( ni4, ni6 );
  1299. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1300. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1301. #endif
  1302. }
  1303. #else
  1304. // scalar
  1305. quantize_row_q8_1_reference(x, y, k);
  1306. #endif
  1307. }
  1308. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  1309. assert(k % QK4_0 == 0);
  1310. const int nb = k / QK4_0;
  1311. const block_q4_0 * restrict x = vx;
  1312. #if defined(__AVX2__)
  1313. for (int i = 0; i < nb; i++) {
  1314. // scale factor
  1315. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1316. const uint8_t * restrict pp = x[i].qs;
  1317. for (int l = 0; l < QK4_0; l += 32) {
  1318. // Load 32x4-bit integers into 32x8-bit integers
  1319. __m256i vx8 = bytes_from_nibbles_32(pp+l/2);
  1320. // Subtract 8 from the integers
  1321. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  1322. // Convert to 16-bit int
  1323. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1324. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1325. // Convert to 32-bit int -> float 32
  1326. const __m256 vf[4] = {
  1327. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1328. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1329. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1330. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1331. };
  1332. // Scale and store
  1333. for (int j = 0; j < 4; j++) {
  1334. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  1335. _mm256_storeu_ps(y + i * QK4_0 + l + j*8, result);
  1336. }
  1337. }
  1338. }
  1339. #elif defined(__ARM_NEON)
  1340. for (int i = 0; i < nb; i++) {
  1341. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1342. const uint8_t * restrict pp = x[i].qs;
  1343. for (int l = 0; l < QK4_0; l += 16) {
  1344. // Load 16x4-bit integers into 8x8-bit integers
  1345. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1346. // Expand 4-bit qs to 8-bit bytes
  1347. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0F));
  1348. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1349. // Convert to signed 8-bit integers
  1350. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  1351. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  1352. // Subtract 8 from each byte
  1353. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  1354. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  1355. // Interleave and combine
  1356. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  1357. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  1358. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  1359. // convert to 2x int16x8_t
  1360. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  1361. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  1362. // convert to 4x float32x4_t
  1363. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  1364. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  1365. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  1366. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  1367. // Multiply by d
  1368. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  1369. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  1370. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  1371. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  1372. // Store
  1373. vst1q_f32(y + i*QK4_0 + l + 0, r0);
  1374. vst1q_f32(y + i*QK4_0 + l + 4, r1);
  1375. vst1q_f32(y + i*QK4_0 + l + 8, r2);
  1376. vst1q_f32(y + i*QK4_0 + l + 12, r3);
  1377. }
  1378. }
  1379. #else
  1380. // scalar
  1381. for (int i = 0; i < nb; i++) {
  1382. const float d = x[i].d;
  1383. const uint8_t * restrict pp = x[i].qs;
  1384. for (int l = 0; l < QK4_0; l += 2) {
  1385. const uint8_t vi = pp[l/2];
  1386. const int8_t vi0 = vi & 0x0F;
  1387. const int8_t vi1 = vi >> 4;
  1388. const float v0 = (vi0 - 8)*d;
  1389. const float v1 = (vi1 - 8)*d;
  1390. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  1391. y[i*QK4_0 + l + 0] = v0;
  1392. y[i*QK4_0 + l + 1] = v1;
  1393. assert(!isnan(y[i*QK4_0 + l + 0]));
  1394. assert(!isnan(y[i*QK4_0 + l + 1]));
  1395. }
  1396. }
  1397. #endif
  1398. }
  1399. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  1400. assert(k % QK4_1 == 0);
  1401. const int nb = k / QK4_1;
  1402. const block_q4_1 * restrict x = vx;
  1403. #if defined(__AVX2__)
  1404. for (int i = 0; i < nb; i++) {
  1405. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1406. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  1407. const uint8_t * restrict pp = x[i].qs;
  1408. for (int l = 0; l < QK4_1; l += 32) {
  1409. // Load 32x4-bit integers into 32x8-bit integers
  1410. __m256i vx8 = bytes_from_nibbles_32(pp+l/2);
  1411. // Convert to 16-bit int
  1412. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1413. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1414. // Convert to 32-bit int -> float 32
  1415. const __m256 vf[4] = {
  1416. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1417. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1418. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1419. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1420. };
  1421. // Scale, add m and store
  1422. for (int j = 0; j < 4; j++) {
  1423. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  1424. _mm256_storeu_ps(y + i * QK4_1 + l + j*8, result);
  1425. }
  1426. }
  1427. }
  1428. #elif defined(__ARM_NEON)
  1429. for (int i = 0; i < nb; i++) {
  1430. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1431. const float32x4_t vm = vdupq_n_f32(x[i].m);
  1432. const uint8_t * restrict pp = x[i].qs;
  1433. for (int l = 0; l < QK4_1; l += 16) {
  1434. // Load 16x4-bit integers into 8x8-bit integers
  1435. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1436. // Expand 4-bit qs to 8-bit bytes
  1437. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0F));
  1438. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1439. // Interleave and combine
  1440. const uint8x8_t vx_0 = vzip1_u8(v0, v1);
  1441. const uint8x8_t vx_1 = vzip2_u8(v0, v1);
  1442. const uint8x16_t vq = vcombine_u8(vx_0, vx_1);
  1443. // convert to 2x uint16x8_t
  1444. const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq));
  1445. const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq));
  1446. // convert to 4x float32x4_t
  1447. const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0)));
  1448. const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0)));
  1449. const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1)));
  1450. const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1)));
  1451. // multiply by d and add m
  1452. const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd);
  1453. const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd);
  1454. const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd);
  1455. const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd);
  1456. // Store
  1457. vst1q_f32(y + i*QK4_1 + l + 0, r0);
  1458. vst1q_f32(y + i*QK4_1 + l + 4, r1);
  1459. vst1q_f32(y + i*QK4_1 + l + 8, r2);
  1460. vst1q_f32(y + i*QK4_1 + l + 12, r3);
  1461. }
  1462. }
  1463. #else
  1464. for (int i = 0; i < nb; i++) {
  1465. const float d = x[i].d;
  1466. const float m = x[i].m;
  1467. const uint8_t * restrict pp = x[i].qs;
  1468. for (int l = 0; l < QK4_1; l += 2) {
  1469. const uint8_t vi = pp[l/2];
  1470. const int8_t vi0 = vi & 0x0F;
  1471. const int8_t vi1 = vi >> 4;
  1472. const float v0 = vi0*d + m;
  1473. const float v1 = vi1*d + m;
  1474. y[i*QK4_1 + l + 0] = v0;
  1475. y[i*QK4_1 + l + 1] = v1;
  1476. assert(!isnan(y[i*QK4_1 + l + 0]));
  1477. assert(!isnan(y[i*QK4_1 + l + 1]));
  1478. }
  1479. }
  1480. #endif
  1481. }
  1482. static void dequantize_row_q4_2(const void * restrict vx, float * restrict y, int k) {
  1483. assert(k % QK4_2 == 0);
  1484. const int nb = k / QK4_2;
  1485. const block_q4_2 * restrict x = vx;
  1486. for (int i = 0; i < nb; i++) {
  1487. const float d = GGML_FP16_TO_FP32(x[i].d);
  1488. const uint8_t * restrict pp = x[i].qs;
  1489. for (int l = 0; l < QK4_2; l += 2) {
  1490. const uint8_t vi = pp[l/2];
  1491. const int8_t vi0 = vi & 0x0F;
  1492. const int8_t vi1 = vi >> 4;
  1493. const float v0 = (vi0 - 8)*d;
  1494. const float v1 = (vi1 - 8)*d;
  1495. y[i*QK4_2 + l + 0] = v0;
  1496. y[i*QK4_2 + l + 1] = v1;
  1497. assert(!isnan(y[i*QK4_2 + l + 0]));
  1498. assert(!isnan(y[i*QK4_2 + l + 1]));
  1499. }
  1500. }
  1501. }
  1502. static void dequantize_row_q5_0(const void * restrict vx, float * restrict y, int k) {
  1503. assert(k % QK5_0 == 0);
  1504. const int nb = k / QK5_0;
  1505. const block_q5_0 * restrict x = vx;
  1506. for (int i = 0; i < nb; i++) {
  1507. const float d = GGML_FP16_TO_FP32(x[i].d);
  1508. const uint8_t * restrict pp = x[i].qs;
  1509. uint32_t qh;
  1510. memcpy(&qh, x[i].qh, sizeof(qh));
  1511. for (int l = 0; l < QK5_0; l += 2) {
  1512. const uint8_t vi = pp[l/2];
  1513. // extract the 5-th bit from qh
  1514. const uint8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4;
  1515. const uint8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4;
  1516. const int8_t vi0 = (vi & 0x0F) | vh0;
  1517. const int8_t vi1 = (vi >> 4) | vh1;
  1518. const float v0 = (vi0 - 16)*d;
  1519. const float v1 = (vi1 - 16)*d;
  1520. y[i*QK5_0 + l + 0] = v0;
  1521. y[i*QK5_0 + l + 1] = v1;
  1522. assert(!isnan(y[i*QK5_0 + l + 0]));
  1523. assert(!isnan(y[i*QK5_0 + l + 1]));
  1524. }
  1525. }
  1526. }
  1527. static void dequantize_row_q5_1(const void * restrict vx, float * restrict y, int k) {
  1528. assert(k % QK5_1 == 0);
  1529. const int nb = k / QK5_1;
  1530. const block_q5_1 * restrict x = vx;
  1531. for (int i = 0; i < nb; i++) {
  1532. const float d = GGML_FP16_TO_FP32(x[i].d);
  1533. const float m = GGML_FP16_TO_FP32(x[i].m);
  1534. const uint8_t * restrict pp = x[i].qs;
  1535. uint32_t qh;
  1536. memcpy(&qh, x[i].qh, sizeof(qh));
  1537. for (int l = 0; l < QK5_1; l += 2) {
  1538. const uint8_t vi = pp[l/2];
  1539. // extract the 5-th bit from qh
  1540. const uint8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4;
  1541. const uint8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4;
  1542. const uint8_t vi0 = (vi & 0x0F) | vh0;
  1543. const uint8_t vi1 = (vi >> 4) | vh1;
  1544. const float v0 = vi0*d + m;
  1545. const float v1 = vi1*d + m;
  1546. y[i*QK5_1 + l + 0] = v0;
  1547. y[i*QK5_1 + l + 1] = v1;
  1548. assert(!isnan(y[i*QK5_1 + l + 0]));
  1549. assert(!isnan(y[i*QK5_1 + l + 1]));
  1550. }
  1551. }
  1552. }
  1553. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1554. assert(k % QK8_0 == 0);
  1555. const int nb = k / QK8_0;
  1556. const block_q8_0 * restrict x = vx;
  1557. for (int i = 0; i < nb; i++) {
  1558. const float d = x[i].d;
  1559. const int8_t * restrict pp = x[i].qs;
  1560. for (int l = 0; l < QK8_0; ++l) {
  1561. y[i*QK8_0 + l] = pp[l]*d;
  1562. }
  1563. }
  1564. }
  1565. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1566. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1567. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1568. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1569. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1570. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1571. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1572. [GGML_TYPE_Q4_0] = {
  1573. .dequantize_row_q = dequantize_row_q4_0,
  1574. .quantize_row_q = quantize_row_q4_0,
  1575. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1576. .quantize_row_q_dot = quantize_row_q8_0,
  1577. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1578. .vec_dot_type = GGML_TYPE_Q8_0,
  1579. },
  1580. [GGML_TYPE_Q4_1] = {
  1581. .dequantize_row_q = dequantize_row_q4_1,
  1582. .quantize_row_q = quantize_row_q4_1,
  1583. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1584. .quantize_row_q_dot = quantize_row_q8_1,
  1585. .vec_dot_q = ggml_vec_dot_q4_1_q8_1,
  1586. .vec_dot_type = GGML_TYPE_Q8_1,
  1587. },
  1588. [GGML_TYPE_Q4_2] = {
  1589. .dequantize_row_q = dequantize_row_q4_2,
  1590. .quantize_row_q = quantize_row_q4_2,
  1591. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_2_reference,
  1592. .quantize_row_q_dot = quantize_row_q8_0,
  1593. .vec_dot_q = ggml_vec_dot_q4_2_q8_0,
  1594. .vec_dot_type = GGML_TYPE_Q8_0,
  1595. },
  1596. [GGML_TYPE_Q5_0] = {
  1597. .dequantize_row_q = dequantize_row_q5_0,
  1598. .quantize_row_q = quantize_row_q5_0,
  1599. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference,
  1600. .quantize_row_q_dot = quantize_row_q8_0,
  1601. .vec_dot_q = ggml_vec_dot_q5_0_q8_0,
  1602. .vec_dot_type = GGML_TYPE_Q8_0,
  1603. },
  1604. [GGML_TYPE_Q5_1] = {
  1605. .dequantize_row_q = dequantize_row_q5_1,
  1606. .quantize_row_q = quantize_row_q5_1,
  1607. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference,
  1608. .quantize_row_q_dot = quantize_row_q8_1,
  1609. .vec_dot_q = ggml_vec_dot_q5_1_q8_1,
  1610. .vec_dot_type = GGML_TYPE_Q8_1,
  1611. },
  1612. [GGML_TYPE_Q8_0] = {
  1613. .dequantize_row_q = dequantize_row_q8_0,
  1614. .quantize_row_q = quantize_row_q8_0,
  1615. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1616. .quantize_row_q_dot = quantize_row_q8_0,
  1617. .vec_dot_q = ggml_vec_dot_q8_0_q8_0,
  1618. .vec_dot_type = GGML_TYPE_Q8_0,
  1619. },
  1620. [GGML_TYPE_Q8_1] = {
  1621. .dequantize_row_q = NULL, // TODO
  1622. .quantize_row_q = quantize_row_q8_1,
  1623. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference,
  1624. .quantize_row_q_dot = quantize_row_q8_1,
  1625. .vec_dot_q = NULL, // TODO
  1626. .vec_dot_type = GGML_TYPE_Q8_1,
  1627. },
  1628. };
  1629. // For internal test use
  1630. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1631. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1632. return quantize_fns[i];
  1633. }
  1634. //
  1635. // simd mappings
  1636. //
  1637. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1638. // we then implement the fundamental computation operations below using only these macros
  1639. // adding support for new architectures requires to define the corresponding SIMD macros
  1640. //
  1641. // GGML_F32_STEP / GGML_F16_STEP
  1642. // number of elements to process in a single step
  1643. //
  1644. // GGML_F32_EPR / GGML_F16_EPR
  1645. // number of elements to fit in a single register
  1646. //
  1647. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1648. #define GGML_SIMD
  1649. // F32 NEON
  1650. #define GGML_F32_STEP 16
  1651. #define GGML_F32_EPR 4
  1652. #define GGML_F32x4 float32x4_t
  1653. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1654. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1655. #define GGML_F32x4_LOAD vld1q_f32
  1656. #define GGML_F32x4_STORE vst1q_f32
  1657. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1658. #define GGML_F32x4_ADD vaddq_f32
  1659. #define GGML_F32x4_MUL vmulq_f32
  1660. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1661. #define GGML_F32x4_REDUCE(res, x) \
  1662. { \
  1663. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1664. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1665. } \
  1666. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1667. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1668. } \
  1669. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1670. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1671. } \
  1672. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1673. }
  1674. #define GGML_F32_VEC GGML_F32x4
  1675. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1676. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1677. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1678. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1679. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1680. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1681. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1682. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1683. // F16 NEON
  1684. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1685. #define GGML_F16_STEP 32
  1686. #define GGML_F16_EPR 8
  1687. #define GGML_F16x8 float16x8_t
  1688. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1689. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1690. #define GGML_F16x8_LOAD vld1q_f16
  1691. #define GGML_F16x8_STORE vst1q_f16
  1692. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1693. #define GGML_F16x8_ADD vaddq_f16
  1694. #define GGML_F16x8_MUL vmulq_f16
  1695. #define GGML_F16x8_REDUCE(res, x) \
  1696. { \
  1697. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1698. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1699. } \
  1700. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1701. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1702. } \
  1703. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1704. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1705. } \
  1706. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1707. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1708. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1709. }
  1710. #define GGML_F16_VEC GGML_F16x8
  1711. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1712. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1713. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1714. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1715. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1716. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1717. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1718. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1719. #else
  1720. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1721. // and take advantage of the vcvt_ functions to convert to/from FP16
  1722. #define GGML_F16_STEP 16
  1723. #define GGML_F16_EPR 4
  1724. #define GGML_F32Cx4 float32x4_t
  1725. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1726. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1727. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1728. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1729. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1730. #define GGML_F32Cx4_ADD vaddq_f32
  1731. #define GGML_F32Cx4_MUL vmulq_f32
  1732. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1733. #define GGML_F16_VEC GGML_F32Cx4
  1734. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1735. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1736. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1737. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1738. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1739. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1740. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1741. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1742. #endif
  1743. #elif defined(__AVX__)
  1744. #define GGML_SIMD
  1745. // F32 AVX
  1746. #define GGML_F32_STEP 32
  1747. #define GGML_F32_EPR 8
  1748. #define GGML_F32x8 __m256
  1749. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1750. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1751. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1752. #define GGML_F32x8_STORE _mm256_storeu_ps
  1753. #if defined(__FMA__)
  1754. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1755. #else
  1756. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1757. #endif
  1758. #define GGML_F32x8_ADD _mm256_add_ps
  1759. #define GGML_F32x8_MUL _mm256_mul_ps
  1760. #define GGML_F32x8_REDUCE(res, x) \
  1761. { \
  1762. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1763. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1764. } \
  1765. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1766. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1767. } \
  1768. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1769. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1770. } \
  1771. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1772. _mm256_extractf128_ps(x[0], 1)); \
  1773. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1774. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1775. }
  1776. // TODO: is this optimal ?
  1777. #define GGML_F32_VEC GGML_F32x8
  1778. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1779. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1780. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1781. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1782. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1783. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1784. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1785. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1786. // F16 AVX
  1787. #define GGML_F16_STEP 32
  1788. #define GGML_F16_EPR 8
  1789. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1790. #define GGML_F32Cx8 __m256
  1791. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1792. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1793. #if defined(__F16C__)
  1794. // the _mm256_cvt intrinsics require F16C
  1795. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1796. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1797. #else
  1798. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1799. float tmp[8];
  1800. for (int i = 0; i < 8; i++)
  1801. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1802. return _mm256_loadu_ps(tmp);
  1803. }
  1804. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1805. float arr[8];
  1806. _mm256_storeu_ps(arr, y);
  1807. for (int i = 0; i < 8; i++)
  1808. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1809. }
  1810. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1811. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1812. #endif
  1813. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1814. #define GGML_F32Cx8_ADD _mm256_add_ps
  1815. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1816. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1817. #define GGML_F16_VEC GGML_F32Cx8
  1818. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1819. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1820. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1821. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1822. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1823. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1824. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1825. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1826. #elif defined(__POWER9_VECTOR__)
  1827. #define GGML_SIMD
  1828. // F32 POWER9
  1829. #define GGML_F32_STEP 32
  1830. #define GGML_F32_EPR 4
  1831. #define GGML_F32x4 vector float
  1832. #define GGML_F32x4_ZERO 0.0f
  1833. #define GGML_F32x4_SET1 vec_splats
  1834. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1835. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1836. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1837. #define GGML_F32x4_ADD vec_add
  1838. #define GGML_F32x4_MUL vec_mul
  1839. #define GGML_F32x4_REDUCE(res, x) \
  1840. { \
  1841. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1842. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1843. } \
  1844. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1845. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1846. } \
  1847. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1848. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1849. } \
  1850. res = vec_extract(x[0], 0) + \
  1851. vec_extract(x[0], 1) + \
  1852. vec_extract(x[0], 2) + \
  1853. vec_extract(x[0], 3); \
  1854. }
  1855. #define GGML_F32_VEC GGML_F32x4
  1856. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1857. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1858. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1859. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1860. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1861. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1862. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1863. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1864. // F16 POWER9
  1865. #define GGML_F16_STEP GGML_F32_STEP
  1866. #define GGML_F16_EPR GGML_F32_EPR
  1867. #define GGML_F16_VEC GGML_F32x4
  1868. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1869. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1870. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1871. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1872. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1873. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1874. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1875. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1876. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1877. #define GGML_F16_VEC_STORE(p, r, i) \
  1878. if (i & 0x1) \
  1879. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1880. r[i - GGML_ENDIAN_BYTE(0)]), \
  1881. 0, p - GGML_F16_EPR)
  1882. #elif defined(__wasm_simd128__)
  1883. #define GGML_SIMD
  1884. // F32 WASM
  1885. #define GGML_F32_STEP 16
  1886. #define GGML_F32_EPR 4
  1887. #define GGML_F32x4 v128_t
  1888. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1889. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1890. #define GGML_F32x4_LOAD wasm_v128_load
  1891. #define GGML_F32x4_STORE wasm_v128_store
  1892. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1893. #define GGML_F32x4_ADD wasm_f32x4_add
  1894. #define GGML_F32x4_MUL wasm_f32x4_mul
  1895. #define GGML_F32x4_REDUCE(res, x) \
  1896. { \
  1897. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1898. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1899. } \
  1900. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1901. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1902. } \
  1903. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1904. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1905. } \
  1906. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1907. wasm_f32x4_extract_lane(x[0], 1) + \
  1908. wasm_f32x4_extract_lane(x[0], 2) + \
  1909. wasm_f32x4_extract_lane(x[0], 3); \
  1910. }
  1911. #define GGML_F32_VEC GGML_F32x4
  1912. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1913. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1914. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1915. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1916. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1917. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1918. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1919. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1920. // F16 WASM
  1921. #define GGML_F16_STEP 16
  1922. #define GGML_F16_EPR 4
  1923. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1924. float tmp[4];
  1925. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1926. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1927. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1928. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1929. return wasm_v128_load(tmp);
  1930. }
  1931. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1932. float tmp[4];
  1933. wasm_v128_store(tmp, x);
  1934. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1935. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1936. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1937. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1938. }
  1939. #define GGML_F16x4 v128_t
  1940. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1941. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1942. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1943. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1944. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1945. #define GGML_F16x4_ADD wasm_f32x4_add
  1946. #define GGML_F16x4_MUL wasm_f32x4_mul
  1947. #define GGML_F16x4_REDUCE(res, x) \
  1948. { \
  1949. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1950. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1951. } \
  1952. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1953. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1954. } \
  1955. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1956. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1957. } \
  1958. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1959. wasm_f32x4_extract_lane(x[0], 1) + \
  1960. wasm_f32x4_extract_lane(x[0], 2) + \
  1961. wasm_f32x4_extract_lane(x[0], 3); \
  1962. }
  1963. #define GGML_F16_VEC GGML_F16x4
  1964. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1965. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1966. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1967. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1968. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1969. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1970. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1971. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1972. #elif defined(__SSE3__)
  1973. #define GGML_SIMD
  1974. // F32 SSE
  1975. #define GGML_F32_STEP 32
  1976. #define GGML_F32_EPR 4
  1977. #define GGML_F32x4 __m128
  1978. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1979. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1980. #define GGML_F32x4_LOAD _mm_loadu_ps
  1981. #define GGML_F32x4_STORE _mm_storeu_ps
  1982. #if defined(__FMA__)
  1983. // TODO: Does this work?
  1984. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1985. #else
  1986. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1987. #endif
  1988. #define GGML_F32x4_ADD _mm_add_ps
  1989. #define GGML_F32x4_MUL _mm_mul_ps
  1990. #define GGML_F32x4_REDUCE(res, x) \
  1991. { \
  1992. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1993. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1994. } \
  1995. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1996. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1997. } \
  1998. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1999. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  2000. } \
  2001. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  2002. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  2003. }
  2004. // TODO: is this optimal ?
  2005. #define GGML_F32_VEC GGML_F32x4
  2006. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  2007. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  2008. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  2009. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  2010. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  2011. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  2012. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  2013. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  2014. // F16 SSE
  2015. #define GGML_F16_STEP 32
  2016. #define GGML_F16_EPR 4
  2017. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  2018. float tmp[4];
  2019. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  2020. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  2021. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  2022. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  2023. return _mm_loadu_ps(tmp);
  2024. }
  2025. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  2026. float arr[4];
  2027. _mm_storeu_ps(arr, y);
  2028. x[0] = GGML_FP32_TO_FP16(arr[0]);
  2029. x[1] = GGML_FP32_TO_FP16(arr[1]);
  2030. x[2] = GGML_FP32_TO_FP16(arr[2]);
  2031. x[3] = GGML_FP32_TO_FP16(arr[3]);
  2032. }
  2033. #define GGML_F32Cx4 __m128
  2034. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  2035. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  2036. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  2037. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  2038. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  2039. #define GGML_F32Cx4_ADD _mm_add_ps
  2040. #define GGML_F32Cx4_MUL _mm_mul_ps
  2041. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  2042. #define GGML_F16_VEC GGML_F32Cx4
  2043. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  2044. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  2045. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  2046. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  2047. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  2048. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  2049. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  2050. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  2051. #endif
  2052. // GGML_F32_ARR / GGML_F16_ARR
  2053. // number of registers to use per step
  2054. #ifdef GGML_SIMD
  2055. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  2056. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  2057. #endif
  2058. //
  2059. // fundamental operations
  2060. //
  2061. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2062. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2063. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2064. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2065. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  2066. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  2067. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  2068. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  2069. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2070. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  2071. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  2072. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  2073. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  2074. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  2075. #ifdef GGML_SIMD
  2076. float sumf = 0.0f;
  2077. const int np = (n & ~(GGML_F32_STEP - 1));
  2078. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  2079. GGML_F32_VEC ax[GGML_F32_ARR];
  2080. GGML_F32_VEC ay[GGML_F32_ARR];
  2081. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2082. for (int j = 0; j < GGML_F32_ARR; j++) {
  2083. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2084. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2085. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  2086. }
  2087. }
  2088. // reduce sum0..sum3 to sum0
  2089. GGML_F32_VEC_REDUCE(sumf, sum);
  2090. // leftovers
  2091. for (int i = np; i < n; ++i) {
  2092. sumf += x[i]*y[i];
  2093. }
  2094. #else
  2095. // scalar
  2096. ggml_float sumf = 0.0;
  2097. for (int i = 0; i < n; ++i) {
  2098. sumf += (ggml_float)(x[i]*y[i]);
  2099. }
  2100. #endif
  2101. *s = sumf;
  2102. }
  2103. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  2104. ggml_float sumf = 0.0;
  2105. #if defined(GGML_SIMD)
  2106. const int np = (n & ~(GGML_F16_STEP - 1));
  2107. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  2108. GGML_F16_VEC ax[GGML_F16_ARR];
  2109. GGML_F16_VEC ay[GGML_F16_ARR];
  2110. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2111. for (int j = 0; j < GGML_F16_ARR; j++) {
  2112. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  2113. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2114. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  2115. }
  2116. }
  2117. // reduce sum0..sum3 to sum0
  2118. GGML_F16_VEC_REDUCE(sumf, sum);
  2119. // leftovers
  2120. for (int i = np; i < n; ++i) {
  2121. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2122. }
  2123. #else
  2124. for (int i = 0; i < n; ++i) {
  2125. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2126. }
  2127. #endif
  2128. *s = sumf;
  2129. }
  2130. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2131. const int nb = n / QK8_0;
  2132. assert(n % QK8_0 == 0);
  2133. assert(nb % 2 == 0);
  2134. const block_q4_0 * restrict x = vx;
  2135. const block_q8_0 * restrict y = vy;
  2136. #if defined(__ARM_NEON)
  2137. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2138. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2139. for (int i = 0; i < nb; i += 2) {
  2140. const block_q4_0 * restrict x0 = &x[i + 0];
  2141. const block_q4_0 * restrict x1 = &x[i + 1];
  2142. const block_q8_0 * restrict y0 = &y[i + 0];
  2143. const block_q8_0 * restrict y1 = &y[i + 1];
  2144. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2145. const int8x16_t s8b = vdupq_n_s8(0x8);
  2146. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2147. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2148. // 4-bit -> 8-bit
  2149. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2150. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2151. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2152. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2153. // sub 8
  2154. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2155. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2156. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2157. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2158. // load y
  2159. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2160. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2161. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2162. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2163. // interleave
  2164. const int8x16_t v1_0ls = vuzp1q_s8(v1_0l, v1_0h);
  2165. const int8x16_t v1_0hs = vuzp2q_s8(v1_0l, v1_0h);
  2166. const int8x16_t v1_1ls = vuzp1q_s8(v1_1l, v1_1h);
  2167. const int8x16_t v1_1hs = vuzp2q_s8(v1_1l, v1_1h);
  2168. #if defined(__ARM_FEATURE_DOTPROD)
  2169. // dot product into int32x4_t
  2170. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls), v0_0hs, v1_0hs);
  2171. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls), v0_1hs, v1_1hs);
  2172. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  2173. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  2174. #else
  2175. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  2176. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  2177. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  2178. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  2179. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  2180. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  2181. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  2182. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  2183. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2184. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2185. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2186. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2187. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  2188. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  2189. #endif
  2190. }
  2191. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2192. #elif defined(__AVX2__)
  2193. // Initialize accumulator with zeros
  2194. __m256 acc = _mm256_setzero_ps();
  2195. // Main loop
  2196. for (int i = 0; i < nb; ++i) {
  2197. /* Compute combined scale for the block */
  2198. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2199. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2200. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2201. const __m256i off = _mm256_set1_epi8( 8 );
  2202. bx = _mm256_sub_epi8( bx, off );
  2203. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2204. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2205. /* Multiply q with scale and accumulate */
  2206. acc = _mm256_fmadd_ps( d, q, acc );
  2207. }
  2208. *s = hsum_float_8(acc);
  2209. #elif defined(__AVX__)
  2210. // Initialize accumulator with zeros
  2211. __m256 acc = _mm256_setzero_ps();
  2212. // Main loop
  2213. for (int i = 0; i < nb; ++i) {
  2214. // Compute combined scale for the block
  2215. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2216. __m128i i32[2];
  2217. for (int j = 0; j < 2; ++j) {
  2218. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  2219. __m128i bx = bytes_from_nibbles_16(x[i].qs + 8*j);
  2220. __m128i by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16*j));
  2221. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2222. const __m128i off = _mm_set1_epi8( 8 );
  2223. bx = _mm_sub_epi8( bx, off );
  2224. // Get absolute values of x vectors
  2225. const __m128i ax = _mm_sign_epi8(bx, bx);
  2226. // Sign the values of the y vectors
  2227. const __m128i sy = _mm_sign_epi8(by, bx);
  2228. // Perform multiplication and create 16-bit values
  2229. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  2230. const __m128i ones = _mm_set1_epi16(1);
  2231. i32[j] = _mm_madd_epi16(ones, dot);
  2232. }
  2233. // Convert int32_t to float
  2234. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  2235. // Apply the scale, and accumulate
  2236. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2237. }
  2238. *s = hsum_float_8(acc);
  2239. #else
  2240. // scalar
  2241. float sumf = 0.0;
  2242. for (int i = 0; i < nb; i++) {
  2243. const float d0 = x[i].d;
  2244. const float d1 = y[i].d;
  2245. const uint8_t * restrict p0 = x[i].qs;
  2246. const int8_t * restrict p1 = y[i].qs;
  2247. int sumi = 0;
  2248. for (int j = 0; j < QK8_0/2; j++) {
  2249. const uint8_t v0 = p0[j];
  2250. const int i0 = (int8_t) (v0 & 0x0F) - 8;
  2251. const int i1 = (int8_t) (v0 >> 4) - 8;
  2252. const int i2 = p1[2*j + 0];
  2253. const int i3 = p1[2*j + 1];
  2254. sumi += i0*i2 + i1*i3;
  2255. }
  2256. sumf += d0*d1*sumi;
  2257. }
  2258. *s = sumf;
  2259. #endif
  2260. }
  2261. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2262. const int nb = n / QK8_1;
  2263. assert(n % QK8_1 == 0);
  2264. assert(nb % 2 == 0);
  2265. const block_q4_1 * restrict x = vx;
  2266. const block_q8_1 * restrict y = vy;
  2267. // TODO: add AVX / WASM SIMD / etc
  2268. #if defined(__ARM_NEON)
  2269. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2270. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2271. float summs = 0;
  2272. for (int i = 0; i < nb; i += 2) {
  2273. const block_q4_1 * restrict x0 = &x[i + 0];
  2274. const block_q4_1 * restrict x1 = &x[i + 1];
  2275. const block_q8_1 * restrict y0 = &y[i + 0];
  2276. const block_q8_1 * restrict y1 = &y[i + 1];
  2277. summs += x0->m * (y0->s0 + y0->s1) + x1->m * (y1->s0 + y1->s1);
  2278. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2279. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2280. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2281. // 4-bit -> 8-bit
  2282. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2283. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2284. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2285. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2286. // interleave
  2287. const int8x16_t v0_0lz = vzip1q_s8(v0_0l, v0_0h);
  2288. const int8x16_t v0_0hz = vzip2q_s8(v0_0l, v0_0h);
  2289. const int8x16_t v0_1lz = vzip1q_s8(v0_1l, v0_1h);
  2290. const int8x16_t v0_1hz = vzip2q_s8(v0_1l, v0_1h);
  2291. // load y
  2292. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2293. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2294. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2295. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2296. #if defined(__ARM_FEATURE_DOTPROD)
  2297. // dot product into int32x4_t
  2298. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l), v0_0hz, v1_0h);
  2299. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l), v0_1hz, v1_1h);
  2300. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  2301. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  2302. #else
  2303. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2304. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2305. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2306. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2307. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2308. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2309. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2310. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2311. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2312. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2313. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2314. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2315. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  2316. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  2317. #endif
  2318. }
  2319. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2320. #elif defined(__AVX2__)
  2321. // Initialize accumulator with zeros
  2322. __m256 acc = _mm256_setzero_ps();
  2323. float summs = 0;
  2324. // Main loop
  2325. for (int i = 0; i < nb; ++i) {
  2326. const float * d0 = &x[i].d;
  2327. const float * d1 = &y[i].d;
  2328. summs += x[i].m * (y[i].s0 + y[i].s1);
  2329. const __m256 d0v = _mm256_broadcast_ss( d0 );
  2330. const __m256 d1v = _mm256_broadcast_ss( d1 );
  2331. // Compute combined scales
  2332. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2333. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2334. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2335. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2336. const __m256 xy = mul_sum_i8_pairs_float(bx, by);
  2337. // Accumulate d0*d1*x*y
  2338. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2339. }
  2340. *s = hsum_float_8(acc) + summs;
  2341. #else
  2342. // scalar
  2343. float sumf = 0.0;
  2344. for (int i = 0; i < nb; i++) {
  2345. const float d0 = x[i].d;
  2346. const float m0 = x[i].m;
  2347. const float d1 = y[i].d;
  2348. const uint8_t * restrict p0 = x[i].qs;
  2349. const int8_t * restrict p1 = y[i].qs;
  2350. // TODO: this is very slow ..
  2351. for (int j = 0; j < QK8_1/2; j++) {
  2352. const uint8_t v0 = p0[j];
  2353. const float f0 = d0*(v0 & 0x0F) + m0;
  2354. const float f1 = d0*(v0 >> 4) + m0;
  2355. const float f2 = d1*p1[2*j + 0];
  2356. const float f3 = d1*p1[2*j + 1];
  2357. sumf += f0*f2 + f1*f3;
  2358. }
  2359. }
  2360. *s = sumf;
  2361. #endif
  2362. }
  2363. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2364. const int nb = n / QK8_0;
  2365. assert(n % QK8_0 == 0);
  2366. assert(nb % 2 == 0);
  2367. assert(QK8_0 == 2*QK4_2);
  2368. const block_q4_2 * restrict x = vx;
  2369. const block_q8_0 * restrict y = vy;
  2370. #if defined(__ARM_NEON)
  2371. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2372. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2373. for (int i = 0; i < nb; i += 2) {
  2374. const block_q4_2 * restrict x0_0 = &x[2*(i + 0) + 0];
  2375. const block_q4_2 * restrict x0_1 = &x[2*(i + 0) + 1];
  2376. const block_q4_2 * restrict x1_0 = &x[2*(i + 1) + 0];
  2377. const block_q4_2 * restrict x1_1 = &x[2*(i + 1) + 1];
  2378. const block_q8_0 * restrict y0 = &y[i + 0];
  2379. const block_q8_0 * restrict y1 = &y[i + 1];
  2380. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2381. const int8x16_t s8b = vdupq_n_s8(0x8);
  2382. const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs));
  2383. const uint8x16_t v0_1 = vcombine_u8(vld1_u8(x1_0->qs), vld1_u8(x1_1->qs));
  2384. // 4-bit -> 8-bit
  2385. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2386. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2387. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2388. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2389. // sub 8
  2390. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2391. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2392. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2393. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2394. // interleave
  2395. const int8x16_t v0_0lz = vzip1q_s8(v0_0ls, v0_0hs);
  2396. const int8x16_t v0_0hz = vzip2q_s8(v0_0ls, v0_0hs);
  2397. const int8x16_t v0_1lz = vzip1q_s8(v0_1ls, v0_1hs);
  2398. const int8x16_t v0_1hz = vzip2q_s8(v0_1ls, v0_1hs);
  2399. // load y
  2400. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2401. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2402. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2403. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2404. #if defined(__ARM_FEATURE_DOTPROD)
  2405. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2406. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l)), GGML_FP16_TO_FP32(x0_0->d)),
  2407. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0hz, v1_0h)), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2408. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2409. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l)), GGML_FP16_TO_FP32(x1_0->d)),
  2410. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1hz, v1_1h)), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2411. #else
  2412. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2413. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2414. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2415. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2416. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2417. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2418. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2419. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2420. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2421. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2422. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2423. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2424. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2425. vmulq_n_f32(vcvtq_f32_s32(pl0), GGML_FP16_TO_FP32(x0_0->d)),
  2426. vmulq_n_f32(vcvtq_f32_s32(ph0), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2427. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2428. vmulq_n_f32(vcvtq_f32_s32(pl1), GGML_FP16_TO_FP32(x1_0->d)),
  2429. vmulq_n_f32(vcvtq_f32_s32(ph1), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2430. #endif
  2431. }
  2432. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2433. #elif defined(__AVX2__)
  2434. // Initialize accumulator with zeros
  2435. __m256 acc = _mm256_setzero_ps();
  2436. // Main loop
  2437. for (int i = 0; i < nb; i++) {
  2438. /* Compute combined scale for the block */
  2439. const __m128 d0 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 0].d));
  2440. const __m128 d1 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 1].d));
  2441. const __m256 d = _mm256_mul_ps(_mm256_set_m128(d1, d0), _mm256_broadcast_ss(&y[i].d));
  2442. __m128i bx0 = bytes_from_nibbles_16(x[2*i + 0].qs);
  2443. __m128i bx1 = bytes_from_nibbles_16(x[2*i + 1].qs);
  2444. __m256i bx = _mm256_set_m128i(bx1, bx0);
  2445. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2446. const __m256i off = _mm256_set1_epi8(8);
  2447. bx = _mm256_sub_epi8(bx, off);
  2448. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2449. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2450. /* Multiply q with scale and accumulate */
  2451. acc = _mm256_fmadd_ps(d, q, acc);
  2452. }
  2453. *s = hsum_float_8(acc);
  2454. #else
  2455. // scalar
  2456. float sumf = 0.0;
  2457. for (int i = 0; i < nb; i++) {
  2458. const uint8_t * restrict x0 = x[2*i + 0].qs;
  2459. const uint8_t * restrict x1 = x[2*i + 1].qs;
  2460. const int8_t * restrict y0 = y[i].qs;
  2461. const float d0 = GGML_FP16_TO_FP32(x[2*i + 0].d);
  2462. const float d1 = GGML_FP16_TO_FP32(x[2*i + 1].d);
  2463. int sumi_0 = 0;
  2464. int sumi_1 = 0;
  2465. for (int j = 0; j < QK8_0/4; j++) {
  2466. const uint8_t v0 = x0[j];
  2467. const uint8_t v1 = x1[j];
  2468. const int i0_0 = (int8_t) (v0 & 0x0F) - 8;
  2469. const int i1_0 = (int8_t) (v0 >> 4) - 8;
  2470. const int i0_1 = (int8_t) (v1 & 0x0F) - 8;
  2471. const int i1_1 = (int8_t) (v1 >> 4) - 8;
  2472. const int i2_0 = y0[2*j + 0];
  2473. const int i3_0 = y0[2*j + 1];
  2474. const int i2_1 = y0[2*(j + QK8_0/4) + 0];
  2475. const int i3_1 = y0[2*(j + QK8_0/4) + 1];
  2476. sumi_0 += i0_0*i2_0 + i1_0*i3_0;
  2477. sumi_1 += i0_1*i2_1 + i1_1*i3_1;
  2478. }
  2479. sumf += (d0 * y[i].d) * sumi_0;
  2480. sumf += (d1 * y[i].d) * sumi_1;
  2481. }
  2482. *s = sumf;
  2483. #endif
  2484. }
  2485. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2486. const int nb = n / QK8_0;
  2487. assert(n % QK8_0 == 0);
  2488. assert(nb % 2 == 0);
  2489. assert(QK8_0 == QK5_0);
  2490. const block_q5_0 * restrict x = vx;
  2491. const block_q8_0 * restrict y = vy;
  2492. #if defined(__ARM_NEON)
  2493. float32x4_t sumv = vdupq_n_f32(0.0f);
  2494. uint64_t tmp[4];
  2495. for (int i = 0; i < nb; ++i) {
  2496. const block_q5_0 * restrict x0 = &x[i];
  2497. const block_q8_0 * restrict y0 = &y[i];
  2498. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2499. const int8x16_t s16b = vdupq_n_s8(0x10);
  2500. // extract the 5th bit
  2501. uint32_t qh;
  2502. memcpy(&qh, x0->qh, sizeof(qh));
  2503. tmp[0] = table_b2b_u[(qh >> 0) & 0xFF];
  2504. tmp[1] = table_b2b_u[(qh >> 8) & 0xFF];
  2505. tmp[2] = table_b2b_u[(qh >> 16) & 0xFF];
  2506. tmp[3] = table_b2b_u[(qh >> 24) ];
  2507. const int8x16_t qhl = vld1q_s8((const int8_t *)(tmp + 0));
  2508. const int8x16_t qhh = vld1q_s8((const int8_t *)(tmp + 2));
  2509. const uint8x16_t v0 = vld1q_u8(x0->qs);
  2510. // 4-bit -> 8-bit
  2511. const int8x16_t v0l = vreinterpretq_s8_u8(vandq_u8 (v0, m4b));
  2512. const int8x16_t v0h = vreinterpretq_s8_u8(vshrq_n_u8(v0, 4));
  2513. // interleave
  2514. const int8x16_t v0lz = vzip1q_s8(v0l, v0h);
  2515. const int8x16_t v0hz = vzip2q_s8(v0l, v0h);
  2516. // add high bit and sub 16
  2517. const int8x16_t v0lf = vsubq_s8(vorrq_s8(v0lz, qhl), s16b);
  2518. const int8x16_t v0hf = vsubq_s8(vorrq_s8(v0hz, qhh), s16b);
  2519. // load y
  2520. const int8x16_t v1l = vld1q_s8(y0->qs);
  2521. const int8x16_t v1h = vld1q_s8(y0->qs + 16);
  2522. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2523. #if defined(__ARM_FEATURE_DOTPROD)
  2524. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(
  2525. vdotq_s32(vdupq_n_s32(0), v0lf, v1l),
  2526. vdotq_s32(vdupq_n_s32(0), v0hf, v1h))), x0d*y0->d);
  2527. #else
  2528. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0lf), vget_low_s8 (v1l));
  2529. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0lf), vget_high_s8(v1l));
  2530. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0hf), vget_low_s8 (v1h));
  2531. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0hf), vget_high_s8(v1h));
  2532. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2533. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2534. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d);
  2535. #endif
  2536. }
  2537. *s = vaddvq_f32(sumv);
  2538. #elif defined(__AVX2__)
  2539. // Initialize accumulator with zeros
  2540. __m256 acc = _mm256_setzero_ps();
  2541. // Main loop
  2542. for (int i = 0; i < nb; i++) {
  2543. /* Compute combined scale for the block */
  2544. const __m256 d = _mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d)), _mm256_broadcast_ss(&y[i].d));
  2545. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2546. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2547. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2548. bx = _mm256_or_si256(bx, bxhi);
  2549. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2550. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2551. /* Multiply q with scale and accumulate */
  2552. acc = _mm256_fmadd_ps(d, q, acc);
  2553. }
  2554. *s = hsum_float_8(acc);
  2555. #else
  2556. // scalar
  2557. float sumf = 0.0;
  2558. for (int i = 0; i < nb; i++) {
  2559. const uint8_t * restrict x0 = x[i].qs;
  2560. const int8_t * restrict y0 = y[i].qs;
  2561. uint32_t qh;
  2562. memcpy(&qh, x[i].qh, sizeof(qh));
  2563. const float d = GGML_FP16_TO_FP32(x[i].d);
  2564. int sxy = 0;
  2565. for (int j = 0; j < QK8_0/2; j++) {
  2566. const uint8_t v0 = x0[j];
  2567. const int x0_0h = ((qh & (1 << (2*j + 0))) >> (2*j + 0)) << 4;
  2568. const int x1_0h = ((qh & (1 << (2*j + 1))) >> (2*j + 1)) << 4;
  2569. const int x0_0 = ((v0 & 0x0F) | x0_0h) - 16;
  2570. const int x1_0 = ((v0 >> 4) | x1_0h) - 16;
  2571. const int y0_0 = y0[2*j + 0];
  2572. const int y1_0 = y0[2*j + 1];
  2573. sxy += x0_0*y0_0 + x1_0*y1_0;
  2574. }
  2575. sumf += (d*sxy)*y[i].d;
  2576. }
  2577. *s = sumf;
  2578. #endif
  2579. }
  2580. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2581. const int nb = n / QK8_1;
  2582. assert(n % QK8_1 == 0);
  2583. assert(nb % 2 == 0);
  2584. assert(QK8_1 == QK5_1);
  2585. const block_q5_1 * restrict x = vx;
  2586. const block_q8_1 * restrict y = vy;
  2587. #if defined(__ARM_NEON)
  2588. float32x4_t sumv = vdupq_n_f32(0.0f);
  2589. float summs = 0.0f;
  2590. uint64_t tmp[4];
  2591. for (int i = 0; i < nb; ++i) {
  2592. const block_q5_1 * restrict x0 = &x[i];
  2593. const block_q8_1 * restrict y0 = &y[i];
  2594. summs += GGML_FP16_TO_FP32(x0->m) * (y0->s0 + y0->s1);
  2595. // extract the 5th bit
  2596. uint32_t qh;
  2597. memcpy(&qh, x0->qh, sizeof(qh));
  2598. tmp[0] = table_b2b_u[(qh >> 0) & 0xFF];
  2599. tmp[1] = table_b2b_u[(qh >> 8) & 0xFF];
  2600. tmp[2] = table_b2b_u[(qh >> 16) & 0xFF];
  2601. tmp[3] = table_b2b_u[(qh >> 24) ];
  2602. const int8x16_t qhl = vld1q_s8((const int8_t *)(tmp + 0));
  2603. const int8x16_t qhh = vld1q_s8((const int8_t *)(tmp + 2));
  2604. const uint8x16_t v0 = vld1q_u8(x0->qs);
  2605. // 4-bit -> 8-bit
  2606. const int8x16_t v0l = vreinterpretq_s8_u8(vandq_u8 (v0, vdupq_n_u8(0x0F)));
  2607. const int8x16_t v0h = vreinterpretq_s8_u8(vshrq_n_u8(v0, 4));
  2608. // interleave
  2609. const int8x16_t v0lz = vzip1q_s8(v0l, v0h);
  2610. const int8x16_t v0hz = vzip2q_s8(v0l, v0h);
  2611. // add
  2612. const int8x16_t v0lf = vorrq_s8(v0lz, qhl);
  2613. const int8x16_t v0hf = vorrq_s8(v0hz, qhh);
  2614. // load y
  2615. const int8x16_t v1l = vld1q_s8(y0->qs);
  2616. const int8x16_t v1h = vld1q_s8(y0->qs + 16);
  2617. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2618. #if defined(__ARM_FEATURE_DOTPROD)
  2619. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(
  2620. vdotq_s32(vdupq_n_s32(0), v0lf, v1l),
  2621. vdotq_s32(vdupq_n_s32(0), v0hf, v1h))), x0d*y0->d);
  2622. #else
  2623. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0lf), vget_low_s8 (v1l));
  2624. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0lf), vget_high_s8(v1l));
  2625. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0hf), vget_low_s8 (v1h));
  2626. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0hf), vget_high_s8(v1h));
  2627. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2628. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2629. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d);
  2630. #endif
  2631. }
  2632. *s = vaddvq_f32(sumv) + summs;
  2633. #elif defined(__AVX2__)
  2634. // Initialize accumulator with zeros
  2635. __m256 acc = _mm256_setzero_ps();
  2636. float summs = 0.0f;
  2637. // Main loop
  2638. for (int i = 0; i < nb; i++) {
  2639. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2640. summs += GGML_FP16_TO_FP32(x[i].m) * (y[i].s0 + y[i].s1);
  2641. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2642. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2643. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2644. bx = _mm256_or_si256(bx, bxhi);
  2645. const __m256 dy = _mm256_broadcast_ss(&y[i].d);
  2646. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2647. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2648. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2649. }
  2650. *s = hsum_float_8(acc) + summs;
  2651. #else
  2652. float sumf = 0.0;
  2653. for (int i = 0; i < nb; i++) {
  2654. const uint8_t * restrict x0 = x[i].qs;
  2655. const int8_t * restrict y0 = y[i].qs;
  2656. uint32_t qh;
  2657. memcpy(&qh, x[i].qh, sizeof(qh));
  2658. const float d = GGML_FP16_TO_FP32(x[i].d);
  2659. const float m = GGML_FP16_TO_FP32(x[i].m);
  2660. int sxy = 0;
  2661. for (int j = 0; j < QK8_1/2; j++) {
  2662. const uint8_t v0 = x0[j];
  2663. const int x0_0h = ((qh & (1 << (2*j + 0))) >> (2*j + 0)) << 4;
  2664. const int x1_0h = ((qh & (1 << (2*j + 1))) >> (2*j + 1)) << 4;
  2665. const int x0_0 = (v0 & 0x0F) | x0_0h;
  2666. const int x1_0 = (v0 >> 4) | x1_0h;
  2667. const int y0_0 = y0[2*j + 0];
  2668. const int y1_0 = y0[2*j + 1];
  2669. sxy += x0_0*y0_0 + x1_0*y1_0;
  2670. }
  2671. sumf += (d*sxy)*y[i].d + m*(y[i].s0 + y[i].s1);
  2672. }
  2673. *s = sumf;
  2674. #endif
  2675. }
  2676. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2677. const int nb = n / QK8_0;
  2678. assert(n % QK8_0 == 0);
  2679. assert(nb % 2 == 0);
  2680. assert(QK8_0 == QK8_0);
  2681. const block_q8_0 * restrict x = vx;
  2682. const block_q8_0 * restrict y = vy;
  2683. #if defined(__ARM_NEON)
  2684. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2685. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2686. for (int i = 0; i < nb; i += 2) {
  2687. const block_q8_0 * restrict x0 = &x[i + 0];
  2688. const block_q8_0 * restrict x1 = &x[i + 1];
  2689. const block_q8_0 * restrict y0 = &y[i + 0];
  2690. const block_q8_0 * restrict y1 = &y[i + 1];
  2691. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2692. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2693. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2694. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2695. // load y
  2696. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2697. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2698. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2699. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2700. #if defined(__ARM_FEATURE_DOTPROD)
  2701. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2702. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2703. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), x0->d*y0->d);
  2704. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2705. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2706. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), x1->d*y1->d);
  2707. #else
  2708. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2709. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2710. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2711. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2712. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2713. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2714. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2715. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2716. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2717. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2718. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2719. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2720. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), x0->d*y0->d);
  2721. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), x1->d*y1->d);
  2722. #endif
  2723. }
  2724. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2725. #elif defined(__AVX2__)
  2726. // Initialize accumulator with zeros
  2727. __m256 acc = _mm256_setzero_ps();
  2728. // Main loop
  2729. for (int i = 0; i < nb; ++i) {
  2730. // Compute combined scale for the block
  2731. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2732. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2733. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2734. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2735. // Multiply q with scale and accumulate
  2736. acc = _mm256_fmadd_ps( d, q, acc );
  2737. }
  2738. *s = hsum_float_8(acc);
  2739. #else
  2740. // scalar
  2741. float sumf = 0.0;
  2742. for (int i = 0; i < nb; i++) {
  2743. const int8_t * restrict x0 = x[i].qs;
  2744. const int8_t * restrict y0 = y[i].qs;
  2745. int sumi = 0;
  2746. for (int j = 0; j < QK8_0; j++) {
  2747. const int v0 = x0[j];
  2748. const int v1 = y0[j];
  2749. sumi += v0*v1;
  2750. }
  2751. sumf += (x[i].d*y[i].d)*sumi;
  2752. }
  2753. *s = sumf;
  2754. #endif
  2755. }
  2756. // compute GGML_VEC_DOT_UNROLL dot products at once
  2757. // xs - x row stride in bytes
  2758. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2759. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2760. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2761. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2762. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2763. }
  2764. #if defined(GGML_SIMD)
  2765. const int np = (n & ~(GGML_F16_STEP - 1));
  2766. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2767. GGML_F16_VEC ax[GGML_F16_ARR];
  2768. GGML_F16_VEC ay[GGML_F16_ARR];
  2769. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2770. for (int j = 0; j < GGML_F16_ARR; j++) {
  2771. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2772. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2773. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2774. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2775. }
  2776. }
  2777. }
  2778. // reduce sum0..sum3 to sum0
  2779. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2780. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2781. }
  2782. // leftovers
  2783. for (int i = np; i < n; ++i) {
  2784. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2785. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2786. }
  2787. }
  2788. #else
  2789. for (int i = 0; i < n; ++i) {
  2790. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2791. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2792. }
  2793. }
  2794. #endif
  2795. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2796. s[i] = sumf[i];
  2797. }
  2798. }
  2799. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2800. #if defined(GGML_SIMD)
  2801. const int np = (n & ~(GGML_F32_STEP - 1));
  2802. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2803. GGML_F32_VEC ax[GGML_F32_ARR];
  2804. GGML_F32_VEC ay[GGML_F32_ARR];
  2805. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2806. for (int j = 0; j < GGML_F32_ARR; j++) {
  2807. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2808. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2809. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2810. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2811. }
  2812. }
  2813. // leftovers
  2814. for (int i = np; i < n; ++i) {
  2815. y[i] += x[i]*v;
  2816. }
  2817. #else
  2818. // scalar
  2819. for (int i = 0; i < n; ++i) {
  2820. y[i] += x[i]*v;
  2821. }
  2822. #endif
  2823. }
  2824. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2825. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2826. #if defined(GGML_SIMD)
  2827. const int np = (n & ~(GGML_F32_STEP - 1));
  2828. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2829. GGML_F32_VEC ay[GGML_F32_ARR];
  2830. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2831. for (int j = 0; j < GGML_F32_ARR; j++) {
  2832. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2833. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2834. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2835. }
  2836. }
  2837. // leftovers
  2838. for (int i = np; i < n; ++i) {
  2839. y[i] *= v;
  2840. }
  2841. #else
  2842. // scalar
  2843. for (int i = 0; i < n; ++i) {
  2844. y[i] *= v;
  2845. }
  2846. #endif
  2847. }
  2848. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2849. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2850. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2851. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2852. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2853. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2854. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2855. static const float GELU_COEF_A = 0.044715f;
  2856. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2857. inline static float ggml_gelu_f32(float x) {
  2858. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2859. }
  2860. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2861. const uint16_t * i16 = (const uint16_t *) x;
  2862. for (int i = 0; i < n; ++i) {
  2863. y[i] = table_gelu_f16[i16[i]];
  2864. }
  2865. }
  2866. #ifdef GGML_GELU_FP16
  2867. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2868. uint16_t t;
  2869. for (int i = 0; i < n; ++i) {
  2870. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2871. memcpy(&t, &fp16, sizeof(uint16_t));
  2872. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2873. }
  2874. }
  2875. #else
  2876. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2877. for (int i = 0; i < n; ++i) {
  2878. y[i] = ggml_gelu_f32(x[i]);
  2879. }
  2880. }
  2881. #endif
  2882. // Sigmoid Linear Unit (SiLU) function
  2883. inline static float ggml_silu_f32(float x) {
  2884. return x/(1.0f + expf(-x));
  2885. }
  2886. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2887. const uint16_t * i16 = (const uint16_t *) x;
  2888. for (int i = 0; i < n; ++i) {
  2889. y[i] = table_silu_f16[i16[i]];
  2890. }
  2891. }
  2892. #ifdef GGML_SILU_FP16
  2893. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2894. uint16_t t;
  2895. for (int i = 0; i < n; ++i) {
  2896. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2897. memcpy(&t, &fp16, sizeof(uint16_t));
  2898. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2899. }
  2900. }
  2901. #else
  2902. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2903. for (int i = 0; i < n; ++i) {
  2904. y[i] = ggml_silu_f32(x[i]);
  2905. }
  2906. }
  2907. #endif
  2908. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2909. #ifndef GGML_USE_ACCELERATE
  2910. ggml_float sum = 0.0;
  2911. for (int i = 0; i < n; ++i) {
  2912. sum += (ggml_float)x[i];
  2913. }
  2914. *s = sum;
  2915. #else
  2916. vDSP_sve(x, 1, s, n);
  2917. #endif
  2918. }
  2919. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  2920. ggml_float sum = 0.0;
  2921. for (int i = 0; i < n; ++i) {
  2922. sum += (ggml_float)x[i];
  2923. }
  2924. *s = sum;
  2925. }
  2926. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2927. #ifndef GGML_USE_ACCELERATE
  2928. float max = -INFINITY;
  2929. for (int i = 0; i < n; ++i) {
  2930. max = MAX(max, x[i]);
  2931. }
  2932. *s = max;
  2933. #else
  2934. vDSP_maxv(x, 1, s, n);
  2935. #endif
  2936. }
  2937. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2938. ggml_vec_norm_f32(n, s, x);
  2939. *s = 1.f/(*s);
  2940. }
  2941. //
  2942. // logging
  2943. //
  2944. #if (GGML_DEBUG >= 1)
  2945. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2946. #else
  2947. #define GGML_PRINT_DEBUG(...)
  2948. #endif
  2949. #if (GGML_DEBUG >= 5)
  2950. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2951. #else
  2952. #define GGML_PRINT_DEBUG_5(...)
  2953. #endif
  2954. #if (GGML_DEBUG >= 10)
  2955. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2956. #else
  2957. #define GGML_PRINT_DEBUG_10(...)
  2958. #endif
  2959. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2960. //
  2961. // data types
  2962. //
  2963. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2964. [GGML_TYPE_F32] = 1,
  2965. [GGML_TYPE_F16] = 1,
  2966. [GGML_TYPE_Q4_0] = QK4_0,
  2967. [GGML_TYPE_Q4_1] = QK4_1,
  2968. [GGML_TYPE_Q4_2] = QK4_2,
  2969. [GGML_TYPE_Q5_0] = QK5_0,
  2970. [GGML_TYPE_Q5_1] = QK5_1,
  2971. [GGML_TYPE_Q8_0] = QK8_0,
  2972. [GGML_TYPE_Q8_1] = QK8_1,
  2973. [GGML_TYPE_I8] = 1,
  2974. [GGML_TYPE_I16] = 1,
  2975. [GGML_TYPE_I32] = 1,
  2976. };
  2977. static_assert(GGML_TYPE_COUNT == 13, "GGML_BLCK_SIZE is outdated");
  2978. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2979. [GGML_TYPE_F32] = sizeof(float),
  2980. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2981. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2982. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2983. [GGML_TYPE_Q4_2] = sizeof(block_q4_2),
  2984. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  2985. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  2986. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2987. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  2988. [GGML_TYPE_I8] = sizeof(int8_t),
  2989. [GGML_TYPE_I16] = sizeof(int16_t),
  2990. [GGML_TYPE_I32] = sizeof(int32_t),
  2991. };
  2992. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_SIZE is outdated");
  2993. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  2994. [GGML_TYPE_F32] = "f32",
  2995. [GGML_TYPE_F16] = "f16",
  2996. [GGML_TYPE_Q4_0] = "q4_0",
  2997. [GGML_TYPE_Q4_1] = "q4_1",
  2998. [GGML_TYPE_Q4_2] = "q4_2",
  2999. [GGML_TYPE_Q5_0] = "q5_0",
  3000. [GGML_TYPE_Q5_1] = "q5_1",
  3001. [GGML_TYPE_Q8_0] = "q8_0",
  3002. [GGML_TYPE_Q8_1] = "q8_1",
  3003. [GGML_TYPE_I8] = "i8",
  3004. [GGML_TYPE_I16] = "i16",
  3005. [GGML_TYPE_I32] = "i32",
  3006. };
  3007. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_NAME is outdated");
  3008. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  3009. [GGML_TYPE_F32] = false,
  3010. [GGML_TYPE_F16] = false,
  3011. [GGML_TYPE_Q4_0] = true,
  3012. [GGML_TYPE_Q4_1] = true,
  3013. [GGML_TYPE_Q4_2] = true,
  3014. [GGML_TYPE_Q5_0] = true,
  3015. [GGML_TYPE_Q5_1] = true,
  3016. [GGML_TYPE_Q8_0] = true,
  3017. [GGML_TYPE_Q8_1] = true,
  3018. [GGML_TYPE_I8] = false,
  3019. [GGML_TYPE_I16] = false,
  3020. [GGML_TYPE_I32] = false,
  3021. };
  3022. static_assert(GGML_TYPE_COUNT == 13, "GGML_IS_QUANTIZED is outdated");
  3023. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  3024. "NONE",
  3025. "DUP",
  3026. "ADD",
  3027. "SUB",
  3028. "MUL",
  3029. "DIV",
  3030. "SQR",
  3031. "SQRT",
  3032. "SUM",
  3033. "MEAN",
  3034. "REPEAT",
  3035. "ABS",
  3036. "SGN",
  3037. "NEG",
  3038. "STEP",
  3039. "RELU",
  3040. "GELU",
  3041. "SILU",
  3042. "NORM",
  3043. "RMS_NORM",
  3044. "MUL_MAT",
  3045. "SCALE",
  3046. "CPY",
  3047. "CONT",
  3048. "RESHAPE",
  3049. "VIEW",
  3050. "PERMUTE",
  3051. "TRANSPOSE",
  3052. "GET_ROWS",
  3053. "DIAG_MASK_INF",
  3054. "SOFT_MAX",
  3055. "ROPE",
  3056. "CONV_1D_1S",
  3057. "CONV_1D_2S",
  3058. "FLASH_ATTN",
  3059. "FLASH_FF",
  3060. "MAP_UNARY",
  3061. "MAP_BINARY",
  3062. };
  3063. static_assert(GGML_OP_COUNT == 39, "GGML_OP_COUNT != 39");
  3064. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  3065. "none",
  3066. "x",
  3067. "x+y",
  3068. "x-y",
  3069. "x*y",
  3070. "x/y",
  3071. "x^2",
  3072. "√x",
  3073. "Σx",
  3074. "Σx/n",
  3075. "repeat(x)",
  3076. "abs(x)",
  3077. "sgn(x)",
  3078. "-x",
  3079. "step(x)",
  3080. "relu(x)",
  3081. "gelu(x)",
  3082. "silu(x)",
  3083. "norm(x)",
  3084. "rms_norm(x)",
  3085. "X*Y",
  3086. "x*v",
  3087. "x-\\>y",
  3088. "cont(x)",
  3089. "reshape(x)",
  3090. "view(x)",
  3091. "permute(x)",
  3092. "transpose(x)",
  3093. "get_rows(x)",
  3094. "diag_mask_inf(x)",
  3095. "soft_max(x)",
  3096. "rope(x)",
  3097. "conv_1d_1s(x)",
  3098. "conv_1d_2s(x)",
  3099. "flash_attn(x)",
  3100. "flash_ff(x)",
  3101. "f(x)",
  3102. "f(x,y)",
  3103. };
  3104. static_assert(GGML_OP_COUNT == 39, "GGML_OP_COUNT != 39");
  3105. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3106. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3107. //
  3108. // ggml context
  3109. //
  3110. struct ggml_context {
  3111. size_t mem_size;
  3112. void * mem_buffer;
  3113. bool mem_buffer_owned;
  3114. bool no_alloc;
  3115. int n_objects;
  3116. struct ggml_object * objects_begin;
  3117. struct ggml_object * objects_end;
  3118. struct ggml_scratch scratch;
  3119. struct ggml_scratch scratch_save;
  3120. };
  3121. struct ggml_context_container {
  3122. bool used;
  3123. struct ggml_context context;
  3124. };
  3125. //
  3126. // compute types
  3127. //
  3128. enum ggml_task_type {
  3129. GGML_TASK_INIT = 0,
  3130. GGML_TASK_COMPUTE,
  3131. GGML_TASK_FINALIZE,
  3132. };
  3133. struct ggml_compute_params {
  3134. enum ggml_task_type type;
  3135. int ith, nth;
  3136. // work buffer for all threads
  3137. size_t wsize;
  3138. void * wdata;
  3139. };
  3140. //
  3141. // ggml state
  3142. //
  3143. struct ggml_state {
  3144. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3145. };
  3146. // global state
  3147. static struct ggml_state g_state;
  3148. static atomic_int g_state_barrier = 0;
  3149. // barrier via spin lock
  3150. inline static void ggml_critical_section_start(void) {
  3151. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3152. while (processing > 0) {
  3153. // wait for other threads to finish
  3154. atomic_fetch_sub(&g_state_barrier, 1);
  3155. sched_yield(); // TODO: reconsider this
  3156. processing = atomic_fetch_add(&g_state_barrier, 1);
  3157. }
  3158. }
  3159. // TODO: make this somehow automatically executed
  3160. // some sort of "sentry" mechanism
  3161. inline static void ggml_critical_section_end(void) {
  3162. atomic_fetch_sub(&g_state_barrier, 1);
  3163. }
  3164. ////////////////////////////////////////////////////////////////////////////////
  3165. void ggml_print_object(const struct ggml_object * obj) {
  3166. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  3167. obj->offs, obj->size, (const void *) obj->next);
  3168. }
  3169. void ggml_print_objects(const struct ggml_context * ctx) {
  3170. struct ggml_object * obj = ctx->objects_begin;
  3171. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3172. while (obj != NULL) {
  3173. ggml_print_object(obj);
  3174. obj = obj->next;
  3175. }
  3176. GGML_PRINT("%s: --- end ---\n", __func__);
  3177. }
  3178. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3179. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3180. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3181. }
  3182. int ggml_nrows(const struct ggml_tensor * tensor) {
  3183. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3184. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3185. }
  3186. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3187. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3188. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  3189. }
  3190. int ggml_blck_size(enum ggml_type type) {
  3191. return GGML_BLCK_SIZE[type];
  3192. }
  3193. size_t ggml_type_size(enum ggml_type type) {
  3194. return GGML_TYPE_SIZE[type];
  3195. }
  3196. float ggml_type_sizef(enum ggml_type type) {
  3197. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  3198. }
  3199. const char * ggml_type_name(enum ggml_type type) {
  3200. return GGML_TYPE_NAME[type];
  3201. }
  3202. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3203. return GGML_TYPE_SIZE[tensor->type];
  3204. }
  3205. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3206. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3207. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3208. }
  3209. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3210. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3211. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3212. }
  3213. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3214. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3215. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3216. }
  3217. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3218. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3219. return
  3220. (t0->ne[0] == t1->ne[0]) &&
  3221. (t0->ne[2] == t1->ne[2]) &&
  3222. (t0->ne[3] == t1->ne[3]);
  3223. }
  3224. bool ggml_is_quantized(enum ggml_type type) {
  3225. return GGML_IS_QUANTIZED[type];
  3226. }
  3227. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3228. return tensor->nb[0] > tensor->nb[1];
  3229. }
  3230. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3231. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3232. return
  3233. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3234. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3235. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3236. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3237. }
  3238. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3239. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3240. return
  3241. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3242. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3243. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3244. }
  3245. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3246. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3247. return
  3248. (t0->ne[0] == t1->ne[0] ) &&
  3249. (t0->ne[1] == t1->ne[1] ) &&
  3250. (t0->ne[2] == t1->ne[2] ) &&
  3251. (t0->ne[3] == t1->ne[3] );
  3252. }
  3253. // check if t1 can be represented as a repeatition of t0
  3254. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3255. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3256. return
  3257. (t1->ne[0]%t0->ne[0] == 0) &&
  3258. (t1->ne[1]%t0->ne[1] == 0) &&
  3259. (t1->ne[2]%t0->ne[2] == 0) &&
  3260. (t1->ne[3]%t0->ne[3] == 0);
  3261. }
  3262. static inline int ggml_up32(int n) {
  3263. return (n + 31) & ~31;
  3264. }
  3265. static inline int ggml_up64(int n) {
  3266. return (n + 63) & ~63;
  3267. }
  3268. static inline int ggml_up(int n, int m) {
  3269. // assert m is a power of 2
  3270. GGML_ASSERT((m & (m - 1)) == 0);
  3271. return (n + m - 1) & ~(m - 1);
  3272. }
  3273. // assert that pointer is aligned to GGML_MEM_ALIGN
  3274. #define ggml_assert_aligned(ptr) \
  3275. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3276. ////////////////////////////////////////////////////////////////////////////////
  3277. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3278. // make this function thread safe
  3279. ggml_critical_section_start();
  3280. static bool is_first_call = true;
  3281. if (is_first_call) {
  3282. // initialize time system (required on Windows)
  3283. ggml_time_init();
  3284. // initialize GELU, SILU and EXP F32 tables
  3285. {
  3286. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3287. ggml_fp16_t ii;
  3288. for (int i = 0; i < (1 << 16); ++i) {
  3289. uint16_t ui = i;
  3290. memcpy(&ii, &ui, sizeof(ii));
  3291. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3292. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3293. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3294. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3295. }
  3296. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3297. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3298. }
  3299. // initialize g_state
  3300. {
  3301. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3302. g_state = (struct ggml_state) {
  3303. /*.contexts =*/ { { 0 } },
  3304. };
  3305. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3306. g_state.contexts[i].used = false;
  3307. }
  3308. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3309. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3310. }
  3311. // initialize cuBLAS
  3312. #if defined(GGML_USE_CUBLAS)
  3313. ggml_init_cublas();
  3314. #elif defined(GGML_USE_CLBLAST)
  3315. ggml_cl_init();
  3316. #endif
  3317. is_first_call = false;
  3318. }
  3319. // find non-used context in g_state
  3320. struct ggml_context * ctx = NULL;
  3321. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3322. if (!g_state.contexts[i].used) {
  3323. g_state.contexts[i].used = true;
  3324. ctx = &g_state.contexts[i].context;
  3325. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3326. break;
  3327. }
  3328. }
  3329. if (ctx == NULL) {
  3330. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3331. ggml_critical_section_end();
  3332. return NULL;
  3333. }
  3334. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3335. *ctx = (struct ggml_context) {
  3336. /*.mem_size =*/ mem_size,
  3337. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3338. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3339. /*.no_alloc =*/ params.no_alloc,
  3340. /*.n_objects =*/ 0,
  3341. /*.objects_begin =*/ NULL,
  3342. /*.objects_end =*/ NULL,
  3343. /*.scratch =*/ { 0, 0, NULL, },
  3344. /*.scratch_save =*/ { 0, 0, NULL, },
  3345. };
  3346. GGML_ASSERT(ctx->mem_buffer != NULL);
  3347. ggml_assert_aligned(ctx->mem_buffer);
  3348. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3349. ggml_critical_section_end();
  3350. return ctx;
  3351. }
  3352. void ggml_free(struct ggml_context * ctx) {
  3353. // make this function thread safe
  3354. ggml_critical_section_start();
  3355. bool found = false;
  3356. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3357. if (&g_state.contexts[i].context == ctx) {
  3358. g_state.contexts[i].used = false;
  3359. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3360. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3361. if (ctx->mem_buffer_owned) {
  3362. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3363. }
  3364. found = true;
  3365. break;
  3366. }
  3367. }
  3368. if (!found) {
  3369. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3370. }
  3371. ggml_critical_section_end();
  3372. }
  3373. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3374. return ctx->objects_end->offs + ctx->objects_end->size;
  3375. }
  3376. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3377. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3378. ctx->scratch = scratch;
  3379. return result;
  3380. }
  3381. ////////////////////////////////////////////////////////////////////////////////
  3382. struct ggml_tensor * ggml_new_tensor_impl(
  3383. struct ggml_context * ctx,
  3384. enum ggml_type type,
  3385. int n_dims,
  3386. const int64_t* ne,
  3387. void* data) {
  3388. // always insert objects at the end of the context's memory pool
  3389. struct ggml_object * obj_cur = ctx->objects_end;
  3390. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3391. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3392. const size_t cur_end = cur_offs + cur_size;
  3393. size_t size_needed = 0;
  3394. if (data == NULL && !ctx->no_alloc) {
  3395. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3396. for (int i = 1; i < n_dims; i++) {
  3397. size_needed *= ne[i];
  3398. }
  3399. // align to GGML_MEM_ALIGN
  3400. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3401. }
  3402. char * const mem_buffer = ctx->mem_buffer;
  3403. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3404. if (ctx->scratch.data == NULL || data != NULL) {
  3405. size_needed += sizeof(struct ggml_tensor);
  3406. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3407. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3408. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3409. assert(false);
  3410. return NULL;
  3411. }
  3412. *obj_new = (struct ggml_object) {
  3413. .offs = cur_end + GGML_OBJECT_SIZE,
  3414. .size = size_needed,
  3415. .next = NULL,
  3416. };
  3417. } else {
  3418. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3419. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  3420. assert(false);
  3421. return NULL;
  3422. }
  3423. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  3424. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3425. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  3426. assert(false);
  3427. return NULL;
  3428. }
  3429. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3430. *obj_new = (struct ggml_object) {
  3431. .offs = cur_end + GGML_OBJECT_SIZE,
  3432. .size = sizeof(struct ggml_tensor),
  3433. .next = NULL,
  3434. };
  3435. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3436. ctx->scratch.offs += size_needed;
  3437. }
  3438. if (obj_cur != NULL) {
  3439. obj_cur->next = obj_new;
  3440. } else {
  3441. // this is the first object in this context
  3442. ctx->objects_begin = obj_new;
  3443. }
  3444. ctx->objects_end = obj_new;
  3445. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3446. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3447. ggml_assert_aligned(result);
  3448. *result = (struct ggml_tensor) {
  3449. /*.type =*/ type,
  3450. /*.n_dims =*/ n_dims,
  3451. /*.ne =*/ { 1, 1, 1, 1 },
  3452. /*.nb =*/ { 0, 0, 0, 0 },
  3453. /*.op =*/ GGML_OP_NONE,
  3454. /*.is_param =*/ false,
  3455. /*.grad =*/ NULL,
  3456. /*.src0 =*/ NULL,
  3457. /*.src1 =*/ NULL,
  3458. /*.opt =*/ { NULL },
  3459. /*.n_tasks =*/ 0,
  3460. /*.perf_runs =*/ 0,
  3461. /*.perf_cycles =*/ 0,
  3462. /*.perf_time_us =*/ 0,
  3463. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3464. /*.pad =*/ { 0 },
  3465. };
  3466. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3467. //ggml_assert_aligned(result->data);
  3468. for (int i = 0; i < n_dims; i++) {
  3469. result->ne[i] = ne[i];
  3470. }
  3471. result->nb[0] = GGML_TYPE_SIZE[type];
  3472. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3473. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3474. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3475. }
  3476. ctx->n_objects++;
  3477. return result;
  3478. }
  3479. struct ggml_tensor * ggml_new_tensor(
  3480. struct ggml_context * ctx,
  3481. enum ggml_type type,
  3482. int n_dims,
  3483. const int64_t * ne) {
  3484. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3485. }
  3486. struct ggml_tensor * ggml_new_tensor_1d(
  3487. struct ggml_context * ctx,
  3488. enum ggml_type type,
  3489. int64_t ne0) {
  3490. return ggml_new_tensor(ctx, type, 1, &ne0);
  3491. }
  3492. struct ggml_tensor * ggml_new_tensor_2d(
  3493. struct ggml_context * ctx,
  3494. enum ggml_type type,
  3495. int64_t ne0,
  3496. int64_t ne1) {
  3497. const int64_t ne[2] = { ne0, ne1 };
  3498. return ggml_new_tensor(ctx, type, 2, ne);
  3499. }
  3500. struct ggml_tensor * ggml_new_tensor_3d(
  3501. struct ggml_context * ctx,
  3502. enum ggml_type type,
  3503. int64_t ne0,
  3504. int64_t ne1,
  3505. int64_t ne2) {
  3506. const int64_t ne[3] = { ne0, ne1, ne2 };
  3507. return ggml_new_tensor(ctx, type, 3, ne);
  3508. }
  3509. struct ggml_tensor * ggml_new_tensor_4d(
  3510. struct ggml_context * ctx,
  3511. enum ggml_type type,
  3512. int64_t ne0,
  3513. int64_t ne1,
  3514. int64_t ne2,
  3515. int64_t ne3) {
  3516. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3517. return ggml_new_tensor(ctx, type, 4, ne);
  3518. }
  3519. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3520. ctx->scratch_save = ctx->scratch;
  3521. ctx->scratch.data = NULL;
  3522. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3523. ctx->scratch = ctx->scratch_save;
  3524. ggml_set_i32(result, value);
  3525. return result;
  3526. }
  3527. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3528. ctx->scratch_save = ctx->scratch;
  3529. ctx->scratch.data = NULL;
  3530. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3531. ctx->scratch = ctx->scratch_save;
  3532. ggml_set_f32(result, value);
  3533. return result;
  3534. }
  3535. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3536. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3537. }
  3538. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3539. memset(tensor->data, 0, ggml_nbytes(tensor));
  3540. return tensor;
  3541. }
  3542. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3543. const int n = ggml_nrows(tensor);
  3544. const int nc = tensor->ne[0];
  3545. const size_t n1 = tensor->nb[1];
  3546. char * const data = tensor->data;
  3547. switch (tensor->type) {
  3548. case GGML_TYPE_I8:
  3549. {
  3550. assert(tensor->nb[0] == sizeof(int8_t));
  3551. for (int i = 0; i < n; i++) {
  3552. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3553. }
  3554. } break;
  3555. case GGML_TYPE_I16:
  3556. {
  3557. assert(tensor->nb[0] == sizeof(int16_t));
  3558. for (int i = 0; i < n; i++) {
  3559. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3560. }
  3561. } break;
  3562. case GGML_TYPE_I32:
  3563. {
  3564. assert(tensor->nb[0] == sizeof(int32_t));
  3565. for (int i = 0; i < n; i++) {
  3566. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3567. }
  3568. } break;
  3569. case GGML_TYPE_F16:
  3570. {
  3571. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3572. for (int i = 0; i < n; i++) {
  3573. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3574. }
  3575. } break;
  3576. case GGML_TYPE_F32:
  3577. {
  3578. assert(tensor->nb[0] == sizeof(float));
  3579. for (int i = 0; i < n; i++) {
  3580. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3581. }
  3582. } break;
  3583. default:
  3584. {
  3585. GGML_ASSERT(false);
  3586. } break;
  3587. }
  3588. return tensor;
  3589. }
  3590. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3591. const int n = ggml_nrows(tensor);
  3592. const int nc = tensor->ne[0];
  3593. const size_t n1 = tensor->nb[1];
  3594. char * const data = tensor->data;
  3595. switch (tensor->type) {
  3596. case GGML_TYPE_I8:
  3597. {
  3598. assert(tensor->nb[0] == sizeof(int8_t));
  3599. for (int i = 0; i < n; i++) {
  3600. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3601. }
  3602. } break;
  3603. case GGML_TYPE_I16:
  3604. {
  3605. assert(tensor->nb[0] == sizeof(int16_t));
  3606. for (int i = 0; i < n; i++) {
  3607. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3608. }
  3609. } break;
  3610. case GGML_TYPE_I32:
  3611. {
  3612. assert(tensor->nb[0] == sizeof(int32_t));
  3613. for (int i = 0; i < n; i++) {
  3614. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3615. }
  3616. } break;
  3617. case GGML_TYPE_F16:
  3618. {
  3619. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3620. for (int i = 0; i < n; i++) {
  3621. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3622. }
  3623. } break;
  3624. case GGML_TYPE_F32:
  3625. {
  3626. assert(tensor->nb[0] == sizeof(float));
  3627. for (int i = 0; i < n; i++) {
  3628. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3629. }
  3630. } break;
  3631. default:
  3632. {
  3633. GGML_ASSERT(false);
  3634. } break;
  3635. }
  3636. return tensor;
  3637. }
  3638. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3639. switch (tensor->type) {
  3640. case GGML_TYPE_I8:
  3641. {
  3642. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3643. return ((int8_t *)(tensor->data))[i];
  3644. } break;
  3645. case GGML_TYPE_I16:
  3646. {
  3647. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3648. return ((int16_t *)(tensor->data))[i];
  3649. } break;
  3650. case GGML_TYPE_I32:
  3651. {
  3652. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3653. return ((int32_t *)(tensor->data))[i];
  3654. } break;
  3655. case GGML_TYPE_F16:
  3656. {
  3657. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3658. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3659. } break;
  3660. case GGML_TYPE_F32:
  3661. {
  3662. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3663. return ((float *)(tensor->data))[i];
  3664. } break;
  3665. default:
  3666. {
  3667. GGML_ASSERT(false);
  3668. } break;
  3669. }
  3670. return 0.0f;
  3671. }
  3672. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3673. switch (tensor->type) {
  3674. case GGML_TYPE_I8:
  3675. {
  3676. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3677. ((int8_t *)(tensor->data))[i] = value;
  3678. } break;
  3679. case GGML_TYPE_I16:
  3680. {
  3681. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3682. ((int16_t *)(tensor->data))[i] = value;
  3683. } break;
  3684. case GGML_TYPE_I32:
  3685. {
  3686. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3687. ((int32_t *)(tensor->data))[i] = value;
  3688. } break;
  3689. case GGML_TYPE_F16:
  3690. {
  3691. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3692. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3693. } break;
  3694. case GGML_TYPE_F32:
  3695. {
  3696. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3697. ((float *)(tensor->data))[i] = value;
  3698. } break;
  3699. default:
  3700. {
  3701. GGML_ASSERT(false);
  3702. } break;
  3703. }
  3704. }
  3705. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3706. switch (tensor->type) {
  3707. case GGML_TYPE_I8:
  3708. {
  3709. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3710. return ((int8_t *)(tensor->data))[i];
  3711. } break;
  3712. case GGML_TYPE_I16:
  3713. {
  3714. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3715. return ((int16_t *)(tensor->data))[i];
  3716. } break;
  3717. case GGML_TYPE_I32:
  3718. {
  3719. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3720. return ((int32_t *)(tensor->data))[i];
  3721. } break;
  3722. case GGML_TYPE_F16:
  3723. {
  3724. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3725. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3726. } break;
  3727. case GGML_TYPE_F32:
  3728. {
  3729. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3730. return ((float *)(tensor->data))[i];
  3731. } break;
  3732. default:
  3733. {
  3734. GGML_ASSERT(false);
  3735. } break;
  3736. }
  3737. return 0.0f;
  3738. }
  3739. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3740. switch (tensor->type) {
  3741. case GGML_TYPE_I8:
  3742. {
  3743. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3744. ((int8_t *)(tensor->data))[i] = value;
  3745. } break;
  3746. case GGML_TYPE_I16:
  3747. {
  3748. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3749. ((int16_t *)(tensor->data))[i] = value;
  3750. } break;
  3751. case GGML_TYPE_I32:
  3752. {
  3753. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3754. ((int32_t *)(tensor->data))[i] = value;
  3755. } break;
  3756. case GGML_TYPE_F16:
  3757. {
  3758. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3759. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3760. } break;
  3761. case GGML_TYPE_F32:
  3762. {
  3763. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3764. ((float *)(tensor->data))[i] = value;
  3765. } break;
  3766. default:
  3767. {
  3768. GGML_ASSERT(false);
  3769. } break;
  3770. }
  3771. }
  3772. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3773. return tensor->data;
  3774. }
  3775. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3776. assert(tensor->type == GGML_TYPE_F32);
  3777. return (float *)(tensor->data);
  3778. }
  3779. struct ggml_tensor * ggml_view_tensor(
  3780. struct ggml_context * ctx,
  3781. const struct ggml_tensor * src) {
  3782. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3783. result->nb[0] = src->nb[0];
  3784. result->nb[1] = src->nb[1];
  3785. result->nb[2] = src->nb[2];
  3786. result->nb[3] = src->nb[3];
  3787. return result;
  3788. }
  3789. ////////////////////////////////////////////////////////////////////////////////
  3790. // ggml_dup
  3791. struct ggml_tensor * ggml_dup_impl(
  3792. struct ggml_context * ctx,
  3793. struct ggml_tensor * a,
  3794. bool inplace) {
  3795. bool is_node = false;
  3796. if (!inplace && (a->grad)) {
  3797. is_node = true;
  3798. }
  3799. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3800. result->op = GGML_OP_DUP;
  3801. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3802. result->src0 = a;
  3803. result->src1 = NULL;
  3804. return result;
  3805. }
  3806. struct ggml_tensor * ggml_dup(
  3807. struct ggml_context * ctx,
  3808. struct ggml_tensor * a) {
  3809. return ggml_dup_impl(ctx, a, false);
  3810. }
  3811. struct ggml_tensor * ggml_dup_inplace(
  3812. struct ggml_context * ctx,
  3813. struct ggml_tensor * a) {
  3814. return ggml_dup_impl(ctx, a, true);
  3815. }
  3816. // ggml_add
  3817. struct ggml_tensor * ggml_add_impl(
  3818. struct ggml_context * ctx,
  3819. struct ggml_tensor * a,
  3820. struct ggml_tensor * b,
  3821. bool inplace) {
  3822. GGML_ASSERT(ggml_are_same_shape(a, b));
  3823. bool is_node = false;
  3824. if (!inplace && (a->grad || b->grad)) {
  3825. is_node = true;
  3826. }
  3827. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3828. result->op = GGML_OP_ADD;
  3829. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3830. result->src0 = a;
  3831. result->src1 = b;
  3832. return result;
  3833. }
  3834. struct ggml_tensor * ggml_add(
  3835. struct ggml_context * ctx,
  3836. struct ggml_tensor * a,
  3837. struct ggml_tensor * b) {
  3838. return ggml_add_impl(ctx, a, b, false);
  3839. }
  3840. struct ggml_tensor * ggml_add_inplace(
  3841. struct ggml_context * ctx,
  3842. struct ggml_tensor * a,
  3843. struct ggml_tensor * b) {
  3844. return ggml_add_impl(ctx, a, b, true);
  3845. }
  3846. // ggml_sub
  3847. struct ggml_tensor * ggml_sub_impl(
  3848. struct ggml_context * ctx,
  3849. struct ggml_tensor * a,
  3850. struct ggml_tensor * b,
  3851. bool inplace) {
  3852. GGML_ASSERT(ggml_are_same_shape(a, b));
  3853. bool is_node = false;
  3854. if (!inplace && (a->grad || b->grad)) {
  3855. is_node = true;
  3856. }
  3857. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3858. result->op = GGML_OP_SUB;
  3859. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3860. result->src0 = a;
  3861. result->src1 = b;
  3862. return result;
  3863. }
  3864. struct ggml_tensor * ggml_sub(
  3865. struct ggml_context * ctx,
  3866. struct ggml_tensor * a,
  3867. struct ggml_tensor * b) {
  3868. return ggml_sub_impl(ctx, a, b, false);
  3869. }
  3870. struct ggml_tensor * ggml_sub_inplace(
  3871. struct ggml_context * ctx,
  3872. struct ggml_tensor * a,
  3873. struct ggml_tensor * b) {
  3874. return ggml_sub_impl(ctx, a, b, true);
  3875. }
  3876. // ggml_mul
  3877. struct ggml_tensor * ggml_mul_impl(
  3878. struct ggml_context * ctx,
  3879. struct ggml_tensor * a,
  3880. struct ggml_tensor * b,
  3881. bool inplace) {
  3882. GGML_ASSERT(ggml_are_same_shape(a, b));
  3883. bool is_node = false;
  3884. if (!inplace && (a->grad || b->grad)) {
  3885. is_node = true;
  3886. }
  3887. if (inplace) {
  3888. GGML_ASSERT(is_node == false);
  3889. }
  3890. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3891. result->op = GGML_OP_MUL;
  3892. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3893. result->src0 = a;
  3894. result->src1 = b;
  3895. return result;
  3896. }
  3897. struct ggml_tensor * ggml_mul(
  3898. struct ggml_context * ctx,
  3899. struct ggml_tensor * a,
  3900. struct ggml_tensor * b) {
  3901. return ggml_mul_impl(ctx, a, b, false);
  3902. }
  3903. struct ggml_tensor * ggml_mul_inplace(
  3904. struct ggml_context * ctx,
  3905. struct ggml_tensor * a,
  3906. struct ggml_tensor * b) {
  3907. return ggml_mul_impl(ctx, a, b, true);
  3908. }
  3909. // ggml_div
  3910. struct ggml_tensor * ggml_div_impl(
  3911. struct ggml_context * ctx,
  3912. struct ggml_tensor * a,
  3913. struct ggml_tensor * b,
  3914. bool inplace) {
  3915. GGML_ASSERT(ggml_are_same_shape(a, b));
  3916. bool is_node = false;
  3917. if (!inplace && (a->grad || b->grad)) {
  3918. is_node = true;
  3919. }
  3920. if (inplace) {
  3921. GGML_ASSERT(is_node == false);
  3922. }
  3923. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3924. result->op = GGML_OP_DIV;
  3925. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3926. result->src0 = a;
  3927. result->src1 = b;
  3928. return result;
  3929. }
  3930. struct ggml_tensor * ggml_div(
  3931. struct ggml_context * ctx,
  3932. struct ggml_tensor * a,
  3933. struct ggml_tensor * b) {
  3934. return ggml_div_impl(ctx, a, b, false);
  3935. }
  3936. struct ggml_tensor * ggml_div_inplace(
  3937. struct ggml_context * ctx,
  3938. struct ggml_tensor * a,
  3939. struct ggml_tensor * b) {
  3940. return ggml_div_impl(ctx, a, b, true);
  3941. }
  3942. // ggml_sqr
  3943. struct ggml_tensor * ggml_sqr_impl(
  3944. struct ggml_context * ctx,
  3945. struct ggml_tensor * a,
  3946. bool inplace) {
  3947. bool is_node = false;
  3948. if (!inplace && (a->grad)) {
  3949. is_node = true;
  3950. }
  3951. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3952. result->op = GGML_OP_SQR;
  3953. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3954. result->src0 = a;
  3955. result->src1 = NULL;
  3956. return result;
  3957. }
  3958. struct ggml_tensor * ggml_sqr(
  3959. struct ggml_context * ctx,
  3960. struct ggml_tensor * a) {
  3961. return ggml_sqr_impl(ctx, a, false);
  3962. }
  3963. struct ggml_tensor * ggml_sqr_inplace(
  3964. struct ggml_context * ctx,
  3965. struct ggml_tensor * a) {
  3966. return ggml_sqr_impl(ctx, a, true);
  3967. }
  3968. // ggml_sqrt
  3969. struct ggml_tensor * ggml_sqrt_impl(
  3970. struct ggml_context * ctx,
  3971. struct ggml_tensor * a,
  3972. bool inplace) {
  3973. bool is_node = false;
  3974. if (!inplace && (a->grad)) {
  3975. is_node = true;
  3976. }
  3977. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3978. result->op = GGML_OP_SQRT;
  3979. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3980. result->src0 = a;
  3981. result->src1 = NULL;
  3982. return result;
  3983. }
  3984. struct ggml_tensor * ggml_sqrt(
  3985. struct ggml_context * ctx,
  3986. struct ggml_tensor * a) {
  3987. return ggml_sqrt_impl(ctx, a, false);
  3988. }
  3989. struct ggml_tensor * ggml_sqrt_inplace(
  3990. struct ggml_context * ctx,
  3991. struct ggml_tensor * a) {
  3992. return ggml_sqrt_impl(ctx, a, true);
  3993. }
  3994. // ggml_sum
  3995. struct ggml_tensor * ggml_sum(
  3996. struct ggml_context * ctx,
  3997. struct ggml_tensor * a) {
  3998. bool is_node = false;
  3999. if (a->grad) {
  4000. is_node = true;
  4001. }
  4002. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4003. result->op = GGML_OP_SUM;
  4004. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4005. result->src0 = a;
  4006. result->src1 = NULL;
  4007. return result;
  4008. }
  4009. // ggml_mean
  4010. struct ggml_tensor * ggml_mean(
  4011. struct ggml_context * ctx,
  4012. struct ggml_tensor * a) {
  4013. bool is_node = false;
  4014. if (a->grad) {
  4015. GGML_ASSERT(false); // TODO: implement
  4016. is_node = true;
  4017. }
  4018. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4019. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4020. result->op = GGML_OP_MEAN;
  4021. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4022. result->src0 = a;
  4023. result->src1 = NULL;
  4024. return result;
  4025. }
  4026. // ggml_repeat
  4027. struct ggml_tensor * ggml_repeat(
  4028. struct ggml_context * ctx,
  4029. struct ggml_tensor * a,
  4030. struct ggml_tensor * b) {
  4031. GGML_ASSERT(ggml_can_repeat(a, b));
  4032. bool is_node = false;
  4033. if (a->grad) {
  4034. is_node = true;
  4035. }
  4036. if (ggml_are_same_shape(a, b) && !is_node) {
  4037. return a;
  4038. }
  4039. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4040. result->op = GGML_OP_REPEAT;
  4041. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4042. result->src0 = a;
  4043. result->src1 = b;
  4044. return result;
  4045. }
  4046. // ggml_abs
  4047. struct ggml_tensor * ggml_abs_impl(
  4048. struct ggml_context * ctx,
  4049. struct ggml_tensor * a,
  4050. bool inplace) {
  4051. bool is_node = false;
  4052. if (!inplace && (a->grad)) {
  4053. is_node = true;
  4054. }
  4055. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4056. result->op = GGML_OP_ABS;
  4057. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4058. result->src0 = a;
  4059. result->src1 = NULL;
  4060. return result;
  4061. }
  4062. struct ggml_tensor * ggml_abs(
  4063. struct ggml_context * ctx,
  4064. struct ggml_tensor * a) {
  4065. return ggml_abs_impl(ctx, a, false);
  4066. }
  4067. struct ggml_tensor * ggml_abs_inplace(
  4068. struct ggml_context * ctx,
  4069. struct ggml_tensor * a) {
  4070. return ggml_abs_impl(ctx, a, true);
  4071. }
  4072. // ggml_sgn
  4073. struct ggml_tensor * ggml_sgn_impl(
  4074. struct ggml_context * ctx,
  4075. struct ggml_tensor * a,
  4076. bool inplace) {
  4077. bool is_node = false;
  4078. if (!inplace && (a->grad)) {
  4079. is_node = true;
  4080. }
  4081. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4082. result->op = GGML_OP_SGN;
  4083. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4084. result->src0 = a;
  4085. result->src1 = NULL;
  4086. return result;
  4087. }
  4088. struct ggml_tensor * ggml_sgn(
  4089. struct ggml_context * ctx,
  4090. struct ggml_tensor * a) {
  4091. return ggml_sgn_impl(ctx, a, false);
  4092. }
  4093. struct ggml_tensor * ggml_sgn_inplace(
  4094. struct ggml_context * ctx,
  4095. struct ggml_tensor * a) {
  4096. return ggml_sgn_impl(ctx, a, true);
  4097. }
  4098. // ggml_neg
  4099. struct ggml_tensor * ggml_neg_impl(
  4100. struct ggml_context * ctx,
  4101. struct ggml_tensor * a,
  4102. bool inplace) {
  4103. bool is_node = false;
  4104. if (!inplace && (a->grad)) {
  4105. is_node = true;
  4106. }
  4107. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4108. result->op = GGML_OP_NEG;
  4109. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4110. result->src0 = a;
  4111. result->src1 = NULL;
  4112. return result;
  4113. }
  4114. struct ggml_tensor * ggml_neg(
  4115. struct ggml_context * ctx,
  4116. struct ggml_tensor * a) {
  4117. return ggml_neg_impl(ctx, a, false);
  4118. }
  4119. struct ggml_tensor * ggml_neg_inplace(
  4120. struct ggml_context * ctx,
  4121. struct ggml_tensor * a) {
  4122. return ggml_neg_impl(ctx, a, true);
  4123. }
  4124. // ggml_step
  4125. struct ggml_tensor * ggml_step_impl(
  4126. struct ggml_context * ctx,
  4127. struct ggml_tensor * a,
  4128. bool inplace) {
  4129. bool is_node = false;
  4130. if (!inplace && (a->grad)) {
  4131. is_node = true;
  4132. }
  4133. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4134. result->op = GGML_OP_STEP;
  4135. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4136. result->src0 = a;
  4137. result->src1 = NULL;
  4138. return result;
  4139. }
  4140. struct ggml_tensor * ggml_step(
  4141. struct ggml_context * ctx,
  4142. struct ggml_tensor * a) {
  4143. return ggml_step_impl(ctx, a, false);
  4144. }
  4145. struct ggml_tensor * ggml_step_inplace(
  4146. struct ggml_context * ctx,
  4147. struct ggml_tensor * a) {
  4148. return ggml_step_impl(ctx, a, true);
  4149. }
  4150. // ggml_relu
  4151. struct ggml_tensor * ggml_relu_impl(
  4152. struct ggml_context * ctx,
  4153. struct ggml_tensor * a,
  4154. bool inplace) {
  4155. bool is_node = false;
  4156. if (!inplace && (a->grad)) {
  4157. is_node = true;
  4158. }
  4159. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4160. result->op = GGML_OP_RELU;
  4161. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4162. result->src0 = a;
  4163. result->src1 = NULL;
  4164. return result;
  4165. }
  4166. struct ggml_tensor * ggml_relu(
  4167. struct ggml_context * ctx,
  4168. struct ggml_tensor * a) {
  4169. return ggml_relu_impl(ctx, a, false);
  4170. }
  4171. struct ggml_tensor * ggml_relu_inplace(
  4172. struct ggml_context * ctx,
  4173. struct ggml_tensor * a) {
  4174. return ggml_relu_impl(ctx, a, true);
  4175. }
  4176. // ggml_gelu
  4177. struct ggml_tensor * ggml_gelu_impl(
  4178. struct ggml_context * ctx,
  4179. struct ggml_tensor * a,
  4180. bool inplace) {
  4181. bool is_node = false;
  4182. if (!inplace && (a->grad)) {
  4183. is_node = true;
  4184. }
  4185. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4186. result->op = GGML_OP_GELU;
  4187. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4188. result->src0 = a;
  4189. result->src1 = NULL;
  4190. return result;
  4191. }
  4192. struct ggml_tensor * ggml_gelu(
  4193. struct ggml_context * ctx,
  4194. struct ggml_tensor * a) {
  4195. return ggml_gelu_impl(ctx, a, false);
  4196. }
  4197. struct ggml_tensor * ggml_gelu_inplace(
  4198. struct ggml_context * ctx,
  4199. struct ggml_tensor * a) {
  4200. return ggml_gelu_impl(ctx, a, true);
  4201. }
  4202. // ggml_silu
  4203. struct ggml_tensor * ggml_silu_impl(
  4204. struct ggml_context * ctx,
  4205. struct ggml_tensor * a,
  4206. bool inplace) {
  4207. bool is_node = false;
  4208. if (!inplace && (a->grad)) {
  4209. is_node = true;
  4210. }
  4211. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4212. result->op = GGML_OP_SILU;
  4213. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4214. result->src0 = a;
  4215. result->src1 = NULL;
  4216. return result;
  4217. }
  4218. struct ggml_tensor * ggml_silu(
  4219. struct ggml_context * ctx,
  4220. struct ggml_tensor * a) {
  4221. return ggml_silu_impl(ctx, a, false);
  4222. }
  4223. struct ggml_tensor * ggml_silu_inplace(
  4224. struct ggml_context * ctx,
  4225. struct ggml_tensor * a) {
  4226. return ggml_silu_impl(ctx, a, true);
  4227. }
  4228. // ggml_norm
  4229. struct ggml_tensor * ggml_norm_impl(
  4230. struct ggml_context * ctx,
  4231. struct ggml_tensor * a,
  4232. bool inplace) {
  4233. bool is_node = false;
  4234. if (!inplace && (a->grad)) {
  4235. GGML_ASSERT(false); // TODO: implement backward
  4236. is_node = true;
  4237. }
  4238. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4239. result->op = GGML_OP_NORM;
  4240. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4241. result->src0 = a;
  4242. result->src1 = NULL; // TODO: maybe store epsilon here?
  4243. return result;
  4244. }
  4245. struct ggml_tensor * ggml_norm(
  4246. struct ggml_context * ctx,
  4247. struct ggml_tensor * a) {
  4248. return ggml_norm_impl(ctx, a, false);
  4249. }
  4250. struct ggml_tensor * ggml_norm_inplace(
  4251. struct ggml_context * ctx,
  4252. struct ggml_tensor * a) {
  4253. return ggml_norm_impl(ctx, a, true);
  4254. }
  4255. struct ggml_tensor * ggml_rms_norm_impl(
  4256. struct ggml_context * ctx,
  4257. struct ggml_tensor * a,
  4258. bool inplace) {
  4259. bool is_node = false;
  4260. if (!inplace && (a->grad)) {
  4261. GGML_ASSERT(false); // TODO: implement backward
  4262. is_node = true;
  4263. }
  4264. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4265. result->op = GGML_OP_RMS_NORM;
  4266. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4267. result->src0 = a;
  4268. result->src1 = NULL; // TODO: maybe store epsilon here?
  4269. return result;
  4270. }
  4271. struct ggml_tensor * ggml_rms_norm(
  4272. struct ggml_context * ctx,
  4273. struct ggml_tensor * a) {
  4274. return ggml_rms_norm_impl(ctx, a, false);
  4275. }
  4276. struct ggml_tensor * ggml_rms_norm_inplace(
  4277. struct ggml_context * ctx,
  4278. struct ggml_tensor * a) {
  4279. return ggml_rms_norm_impl(ctx, a, true);
  4280. }
  4281. // ggml_mul_mat
  4282. struct ggml_tensor * ggml_mul_mat(
  4283. struct ggml_context * ctx,
  4284. struct ggml_tensor * a,
  4285. struct ggml_tensor * b) {
  4286. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4287. GGML_ASSERT(!ggml_is_transposed(a));
  4288. bool is_node = false;
  4289. if (a->grad || b->grad) {
  4290. is_node = true;
  4291. }
  4292. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  4293. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4294. result->op = GGML_OP_MUL_MAT;
  4295. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4296. result->src0 = a;
  4297. result->src1 = b;
  4298. return result;
  4299. }
  4300. // ggml_scale
  4301. struct ggml_tensor * ggml_scale_impl(
  4302. struct ggml_context * ctx,
  4303. struct ggml_tensor * a,
  4304. struct ggml_tensor * b,
  4305. bool inplace) {
  4306. GGML_ASSERT(ggml_is_scalar(b));
  4307. GGML_ASSERT(ggml_is_padded_1d(a));
  4308. bool is_node = false;
  4309. if (!inplace && (a->grad || b->grad)) {
  4310. GGML_ASSERT(false); // TODO: implement backward
  4311. is_node = true;
  4312. }
  4313. // TODO: when implement backward, fix this:
  4314. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4315. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4316. result->op = GGML_OP_SCALE;
  4317. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4318. result->src0 = a;
  4319. result->src1 = b;
  4320. return result;
  4321. }
  4322. struct ggml_tensor * ggml_scale(
  4323. struct ggml_context * ctx,
  4324. struct ggml_tensor * a,
  4325. struct ggml_tensor * b) {
  4326. return ggml_scale_impl(ctx, a, b, false);
  4327. }
  4328. struct ggml_tensor * ggml_scale_inplace(
  4329. struct ggml_context * ctx,
  4330. struct ggml_tensor * a,
  4331. struct ggml_tensor * b) {
  4332. return ggml_scale_impl(ctx, a, b, true);
  4333. }
  4334. // ggml_cpy
  4335. struct ggml_tensor * ggml_cpy_impl(
  4336. struct ggml_context * ctx,
  4337. struct ggml_tensor * a,
  4338. struct ggml_tensor * b,
  4339. bool inplace) {
  4340. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4341. bool is_node = false;
  4342. if (!inplace && (a->grad || b->grad)) {
  4343. GGML_ASSERT(false); // TODO: implement backward
  4344. is_node = true;
  4345. }
  4346. // make a view of the destination
  4347. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4348. result->op = GGML_OP_CPY;
  4349. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4350. result->src0 = a;
  4351. result->src1 = b;
  4352. return result;
  4353. }
  4354. struct ggml_tensor * ggml_cpy(
  4355. struct ggml_context * ctx,
  4356. struct ggml_tensor * a,
  4357. struct ggml_tensor * b) {
  4358. return ggml_cpy_impl(ctx, a, b, false);
  4359. }
  4360. struct ggml_tensor * ggml_cpy_inplace(
  4361. struct ggml_context * ctx,
  4362. struct ggml_tensor * a,
  4363. struct ggml_tensor * b) {
  4364. return ggml_cpy_impl(ctx, a, b, true);
  4365. }
  4366. // ggml_cont
  4367. struct ggml_tensor * ggml_cont_impl(
  4368. struct ggml_context * ctx,
  4369. struct ggml_tensor * a,
  4370. bool inplace) {
  4371. bool is_node = false;
  4372. if (!inplace && a->grad) {
  4373. GGML_ASSERT(false); // TODO: implement backward
  4374. is_node = true;
  4375. }
  4376. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4377. result->op = GGML_OP_CONT;
  4378. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4379. result->src0 = a;
  4380. result->src1 = NULL;
  4381. return result;
  4382. }
  4383. struct ggml_tensor * ggml_cont(
  4384. struct ggml_context * ctx,
  4385. struct ggml_tensor * a) {
  4386. return ggml_cont_impl(ctx, a, false);
  4387. }
  4388. struct ggml_tensor * ggml_cont_inplace(
  4389. struct ggml_context * ctx,
  4390. struct ggml_tensor * a) {
  4391. return ggml_cont_impl(ctx, a, true);
  4392. }
  4393. // ggml_reshape
  4394. struct ggml_tensor * ggml_reshape(
  4395. struct ggml_context * ctx,
  4396. struct ggml_tensor * a,
  4397. struct ggml_tensor * b) {
  4398. GGML_ASSERT(ggml_is_contiguous(a));
  4399. GGML_ASSERT(ggml_is_contiguous(b));
  4400. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4401. bool is_node = false;
  4402. if (a->grad || b->grad) {
  4403. GGML_ASSERT(false); // TODO: implement backward
  4404. is_node = true;
  4405. }
  4406. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4407. result->op = GGML_OP_RESHAPE;
  4408. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4409. result->src0 = a;
  4410. result->src1 = NULL;
  4411. return result;
  4412. }
  4413. struct ggml_tensor * ggml_reshape_2d(
  4414. struct ggml_context * ctx,
  4415. struct ggml_tensor * a,
  4416. int64_t ne0,
  4417. int64_t ne1) {
  4418. GGML_ASSERT(ggml_is_contiguous(a));
  4419. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4420. bool is_node = false;
  4421. if (a->grad) {
  4422. GGML_ASSERT(false); // TODO: implement backward
  4423. is_node = true;
  4424. }
  4425. const int64_t ne[2] = { ne0, ne1 };
  4426. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4427. result->op = GGML_OP_RESHAPE;
  4428. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4429. result->src0 = a;
  4430. result->src1 = NULL;
  4431. return result;
  4432. }
  4433. struct ggml_tensor * ggml_reshape_3d(
  4434. struct ggml_context * ctx,
  4435. struct ggml_tensor * a,
  4436. int64_t ne0,
  4437. int64_t ne1,
  4438. int64_t ne2) {
  4439. GGML_ASSERT(ggml_is_contiguous(a));
  4440. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4441. bool is_node = false;
  4442. if (a->grad) {
  4443. GGML_ASSERT(false); // TODO: implement backward
  4444. is_node = true;
  4445. }
  4446. const int64_t ne[3] = { ne0, ne1, ne2 };
  4447. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4448. result->op = GGML_OP_RESHAPE;
  4449. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4450. result->src0 = a;
  4451. result->src1 = NULL;
  4452. return result;
  4453. }
  4454. // ggml_view_1d
  4455. struct ggml_tensor * ggml_view_1d(
  4456. struct ggml_context * ctx,
  4457. struct ggml_tensor * a,
  4458. int64_t ne0,
  4459. size_t offset) {
  4460. if (a->grad) {
  4461. GGML_ASSERT(false); // gradient propagation is not supported
  4462. }
  4463. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4464. result->op = GGML_OP_VIEW;
  4465. result->grad = NULL;
  4466. result->src0 = a;
  4467. result->src1 = NULL; // TODO: maybe store the offset here?
  4468. return result;
  4469. }
  4470. // ggml_view_2d
  4471. struct ggml_tensor * ggml_view_2d(
  4472. struct ggml_context * ctx,
  4473. struct ggml_tensor * a,
  4474. int64_t ne0,
  4475. int64_t ne1,
  4476. size_t nb1,
  4477. size_t offset) {
  4478. if (a->grad) {
  4479. GGML_ASSERT(false); // gradient propagation is not supported
  4480. }
  4481. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4482. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4483. result->nb[1] = nb1;
  4484. result->nb[2] = result->nb[1]*ne1;
  4485. result->nb[3] = result->nb[2];
  4486. result->op = GGML_OP_VIEW;
  4487. result->grad = NULL;
  4488. result->src0 = a;
  4489. result->src1 = NULL; // TODO: maybe store the offset here?
  4490. return result;
  4491. }
  4492. // ggml_view_3d
  4493. struct ggml_tensor * ggml_view_3d(
  4494. struct ggml_context * ctx,
  4495. struct ggml_tensor * a,
  4496. int64_t ne0,
  4497. int64_t ne1,
  4498. int64_t ne2,
  4499. size_t nb1,
  4500. size_t nb2,
  4501. size_t offset) {
  4502. if (a->grad) {
  4503. GGML_ASSERT(false); // gradient propagation is not supported
  4504. }
  4505. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4506. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4507. result->nb[1] = nb1;
  4508. result->nb[2] = nb2;
  4509. result->nb[3] = result->nb[2]*ne2;
  4510. result->op = GGML_OP_VIEW;
  4511. result->grad = NULL;
  4512. result->src0 = a;
  4513. result->src1 = NULL; // TODO: maybe store the offset here?
  4514. return result;
  4515. }
  4516. // ggml_permute
  4517. struct ggml_tensor * ggml_permute(
  4518. struct ggml_context * ctx,
  4519. struct ggml_tensor * a,
  4520. int axis0,
  4521. int axis1,
  4522. int axis2,
  4523. int axis3) {
  4524. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4525. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4526. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4527. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4528. GGML_ASSERT(axis0 != axis1);
  4529. GGML_ASSERT(axis0 != axis2);
  4530. GGML_ASSERT(axis0 != axis3);
  4531. GGML_ASSERT(axis1 != axis2);
  4532. GGML_ASSERT(axis1 != axis3);
  4533. GGML_ASSERT(axis2 != axis3);
  4534. bool is_node = false;
  4535. if (a->grad) {
  4536. GGML_ASSERT(false); // TODO: implement backward
  4537. is_node = true;
  4538. }
  4539. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4540. int ne[GGML_MAX_DIMS];
  4541. int nb[GGML_MAX_DIMS];
  4542. ne[axis0] = a->ne[0];
  4543. ne[axis1] = a->ne[1];
  4544. ne[axis2] = a->ne[2];
  4545. ne[axis3] = a->ne[3];
  4546. nb[axis0] = a->nb[0];
  4547. nb[axis1] = a->nb[1];
  4548. nb[axis2] = a->nb[2];
  4549. nb[axis3] = a->nb[3];
  4550. result->ne[0] = ne[0];
  4551. result->ne[1] = ne[1];
  4552. result->ne[2] = ne[2];
  4553. result->ne[3] = ne[3];
  4554. result->nb[0] = nb[0];
  4555. result->nb[1] = nb[1];
  4556. result->nb[2] = nb[2];
  4557. result->nb[3] = nb[3];
  4558. result->op = GGML_OP_PERMUTE;
  4559. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4560. result->src0 = a;
  4561. result->src1 = NULL; // TODO: maybe store the permutation here?
  4562. return result;
  4563. }
  4564. // ggml_transpose
  4565. struct ggml_tensor * ggml_transpose(
  4566. struct ggml_context * ctx,
  4567. struct ggml_tensor * a) {
  4568. bool is_node = false;
  4569. if (a->grad) {
  4570. GGML_ASSERT(false); // TODO: implement backward
  4571. is_node = true;
  4572. }
  4573. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4574. result->ne[0] = a->ne[1];
  4575. result->ne[1] = a->ne[0];
  4576. result->nb[0] = a->nb[1];
  4577. result->nb[1] = a->nb[0];
  4578. result->op = GGML_OP_TRANSPOSE;
  4579. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4580. result->src0 = a;
  4581. result->src1 = NULL;
  4582. return result;
  4583. }
  4584. // ggml_get_rows
  4585. struct ggml_tensor * ggml_get_rows(
  4586. struct ggml_context * ctx,
  4587. struct ggml_tensor * a,
  4588. struct ggml_tensor * b) {
  4589. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4590. bool is_node = false;
  4591. if (a->grad || b->grad) {
  4592. GGML_ASSERT(false); // TODO: implement backward
  4593. is_node = true;
  4594. }
  4595. // TODO: implement non F32 return
  4596. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4597. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4598. result->op = GGML_OP_GET_ROWS;
  4599. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4600. result->src0 = a;
  4601. result->src1 = b;
  4602. return result;
  4603. }
  4604. // ggml_diag_mask_inf
  4605. struct ggml_tensor * ggml_diag_mask_inf(
  4606. struct ggml_context * ctx,
  4607. struct ggml_tensor * a,
  4608. int n_past) {
  4609. bool is_node = false;
  4610. if (a->grad) {
  4611. GGML_ASSERT(false); // TODO: implement backward
  4612. is_node = true;
  4613. }
  4614. // TODO: when implement backward, fix this:
  4615. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4616. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4617. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  4618. result->op = GGML_OP_DIAG_MASK_INF;
  4619. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4620. result->src0 = a;
  4621. result->src1 = b;
  4622. return result;
  4623. }
  4624. // ggml_soft_max
  4625. struct ggml_tensor * ggml_soft_max(
  4626. struct ggml_context * ctx,
  4627. struct ggml_tensor * a) {
  4628. bool is_node = false;
  4629. if (a->grad) {
  4630. GGML_ASSERT(false); // TODO: implement backward
  4631. is_node = true;
  4632. }
  4633. // TODO: when implement backward, fix this:
  4634. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4635. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4636. result->op = GGML_OP_SOFT_MAX;
  4637. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4638. result->src0 = a;
  4639. result->src1 = NULL;
  4640. return result;
  4641. }
  4642. // ggml_rope
  4643. struct ggml_tensor * ggml_rope(
  4644. struct ggml_context * ctx,
  4645. struct ggml_tensor * a,
  4646. int n_past,
  4647. int n_dims,
  4648. int mode) {
  4649. GGML_ASSERT(n_past >= 0);
  4650. bool is_node = false;
  4651. if (a->grad) {
  4652. GGML_ASSERT(false); // TODO: implement backward
  4653. is_node = true;
  4654. }
  4655. // TODO: when implement backward, fix this:
  4656. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4657. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4658. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4659. ((int32_t *) b->data)[0] = n_past;
  4660. ((int32_t *) b->data)[1] = n_dims;
  4661. ((int32_t *) b->data)[2] = mode;
  4662. result->op = GGML_OP_ROPE;
  4663. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4664. result->src0 = a;
  4665. result->src1 = b;
  4666. return result;
  4667. }
  4668. // ggml_alibi
  4669. struct ggml_tensor * ggml_alibi(
  4670. struct ggml_context * ctx,
  4671. struct ggml_tensor * a,
  4672. int n_past,
  4673. int n_head) {
  4674. GGML_ASSERT(n_past >= 0);
  4675. bool is_node = false;
  4676. if (a->grad) {
  4677. GGML_ASSERT(false); // TODO: implement backward
  4678. is_node = true;
  4679. }
  4680. // TODO: when implement backward, fix this:
  4681. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4682. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4683. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4684. ((int32_t *) b->data)[0] = n_past;
  4685. ((int32_t *) b->data)[1] = n_head;
  4686. result->op = GGML_OP_ALIBI;
  4687. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4688. result->src0 = a;
  4689. result->src1 = b;
  4690. return result;
  4691. }
  4692. // ggml_conv_1d_1s
  4693. struct ggml_tensor * ggml_conv_1d_1s(
  4694. struct ggml_context * ctx,
  4695. struct ggml_tensor * a,
  4696. struct ggml_tensor * b) {
  4697. GGML_ASSERT(ggml_is_matrix(b));
  4698. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4699. GGML_ASSERT(a->ne[3] == 1);
  4700. bool is_node = false;
  4701. if (a->grad || b->grad) {
  4702. GGML_ASSERT(false); // TODO: implement backward
  4703. is_node = true;
  4704. }
  4705. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  4706. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4707. result->op = GGML_OP_CONV_1D_1S;
  4708. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4709. result->src0 = a;
  4710. result->src1 = b;
  4711. return result;
  4712. }
  4713. // ggml_conv_1d_2s
  4714. struct ggml_tensor * ggml_conv_1d_2s(
  4715. struct ggml_context * ctx,
  4716. struct ggml_tensor * a,
  4717. struct ggml_tensor * b) {
  4718. GGML_ASSERT(ggml_is_matrix(b));
  4719. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4720. GGML_ASSERT(a->ne[3] == 1);
  4721. bool is_node = false;
  4722. if (a->grad || b->grad) {
  4723. GGML_ASSERT(false); // TODO: implement backward
  4724. is_node = true;
  4725. }
  4726. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  4727. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4728. result->op = GGML_OP_CONV_1D_2S;
  4729. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4730. result->src0 = a;
  4731. result->src1 = b;
  4732. return result;
  4733. }
  4734. // ggml_flash_attn
  4735. struct ggml_tensor * ggml_flash_attn(
  4736. struct ggml_context * ctx,
  4737. struct ggml_tensor * q,
  4738. struct ggml_tensor * k,
  4739. struct ggml_tensor * v,
  4740. bool masked) {
  4741. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4742. // TODO: check if vT can be multiplied by (k*qT)
  4743. bool is_node = false;
  4744. if (q->grad || k->grad || v->grad) {
  4745. GGML_ASSERT(false); // TODO: implement backward
  4746. is_node = true;
  4747. }
  4748. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4749. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  4750. result->op = GGML_OP_FLASH_ATTN;
  4751. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4752. result->src0 = q;
  4753. result->src1 = k;
  4754. result->opt[0] = v;
  4755. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  4756. return result;
  4757. }
  4758. // ggml_flash_ff
  4759. struct ggml_tensor * ggml_flash_ff(
  4760. struct ggml_context * ctx,
  4761. struct ggml_tensor * a,
  4762. struct ggml_tensor * b0,
  4763. struct ggml_tensor * b1,
  4764. struct ggml_tensor * c0,
  4765. struct ggml_tensor * c1) {
  4766. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4767. // TODO: more checks
  4768. bool is_node = false;
  4769. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4770. GGML_ASSERT(false); // TODO: implement backward
  4771. is_node = true;
  4772. }
  4773. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4774. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  4775. result->op = GGML_OP_FLASH_FF;
  4776. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4777. result->src0 = a;
  4778. result->src1 = b0;
  4779. result->opt[0] = b1;
  4780. result->opt[1] = c0;
  4781. result->opt[2] = c1;
  4782. return result;
  4783. }
  4784. // ggml_map_unary
  4785. struct ggml_tensor * ggml_map_unary_impl_f32(
  4786. struct ggml_context * ctx,
  4787. struct ggml_tensor * a,
  4788. const ggml_unary_op_f32_t fun,
  4789. bool inplace) {
  4790. bool is_node = false;
  4791. if (!inplace && a->grad) {
  4792. is_node = true;
  4793. }
  4794. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4795. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4796. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4797. result->op = GGML_OP_MAP_UNARY;
  4798. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4799. result->src0 = a;
  4800. result->opt[0] = addr_tensor;
  4801. return result;
  4802. }
  4803. struct ggml_tensor * ggml_map_unary_f32(
  4804. struct ggml_context * ctx,
  4805. struct ggml_tensor * a,
  4806. const ggml_unary_op_f32_t fun) {
  4807. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4808. }
  4809. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4810. struct ggml_context * ctx,
  4811. struct ggml_tensor * a,
  4812. const ggml_unary_op_f32_t fun) {
  4813. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4814. }
  4815. // ggml_map_binary
  4816. struct ggml_tensor * ggml_map_binary_impl_f32(
  4817. struct ggml_context * ctx,
  4818. struct ggml_tensor * a,
  4819. struct ggml_tensor * b,
  4820. const ggml_binary_op_f32_t fun,
  4821. bool inplace) {
  4822. GGML_ASSERT(ggml_are_same_shape(a, b));
  4823. bool is_node = false;
  4824. if (!inplace && (a->grad || b->grad)) {
  4825. is_node = true;
  4826. }
  4827. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4828. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4829. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4830. result->op = GGML_OP_MAP_BINARY;
  4831. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4832. result->src0 = a;
  4833. result->src1 = b;
  4834. result->opt[0] = addr_tensor;
  4835. return result;
  4836. }
  4837. struct ggml_tensor * ggml_map_binary_f32(
  4838. struct ggml_context * ctx,
  4839. struct ggml_tensor * a,
  4840. struct ggml_tensor * b,
  4841. const ggml_binary_op_f32_t fun) {
  4842. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4843. }
  4844. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4845. struct ggml_context * ctx,
  4846. struct ggml_tensor * a,
  4847. struct ggml_tensor * b,
  4848. const ggml_binary_op_f32_t fun) {
  4849. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4850. }
  4851. ////////////////////////////////////////////////////////////////////////////////
  4852. void ggml_set_param(
  4853. struct ggml_context * ctx,
  4854. struct ggml_tensor * tensor) {
  4855. tensor->is_param = true;
  4856. GGML_ASSERT(tensor->grad == NULL);
  4857. tensor->grad = ggml_dup_tensor(ctx, tensor);
  4858. }
  4859. // ggml_compute_forward_dup
  4860. static void ggml_compute_forward_dup_f16(
  4861. const struct ggml_compute_params * params,
  4862. const struct ggml_tensor * src0,
  4863. struct ggml_tensor * dst) {
  4864. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4865. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4866. return;
  4867. }
  4868. const int64_t ne00 = src0->ne[0];
  4869. const int64_t ne01 = src0->ne[1];
  4870. const int64_t ne02 = src0->ne[2];
  4871. const int64_t ne03 = src0->ne[3];
  4872. const int64_t ne0 = dst->ne[0];
  4873. const int64_t ne1 = dst->ne[1];
  4874. const int64_t ne2 = dst->ne[2];
  4875. const int64_t ne3 = dst->ne[3];
  4876. const size_t nb00 = src0->nb[0];
  4877. const size_t nb01 = src0->nb[1];
  4878. const size_t nb02 = src0->nb[2];
  4879. const size_t nb03 = src0->nb[3];
  4880. const size_t nb0 = dst->nb[0];
  4881. const size_t nb1 = dst->nb[1];
  4882. const size_t nb2 = dst->nb[2];
  4883. const size_t nb3 = dst->nb[3];
  4884. const int ith = params->ith; // thread index
  4885. const int nth = params->nth; // number of threads
  4886. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4887. // parallelize by elements
  4888. const int ne = ggml_nelements(dst);
  4889. const int dr = (ne + nth - 1) / nth;
  4890. const int ie0 = dr * ith;
  4891. const int ie1 = MIN(ie0 + dr, ne);
  4892. memcpy(
  4893. ((char *) dst->data + ie0*nb0),
  4894. ((char *) src0->data + ie0*nb00),
  4895. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  4896. return;
  4897. }
  4898. // parallelize by rows
  4899. const int nr = ne01;
  4900. // number of rows per thread
  4901. const int dr = (nr + nth - 1) / nth;
  4902. // row range for this thread
  4903. const int ir0 = dr * ith;
  4904. const int ir1 = MIN(ir0 + dr, nr);
  4905. if (src0->type == dst->type &&
  4906. ne00 == ne0 &&
  4907. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  4908. // copy by rows
  4909. const size_t rs = ne00*nb00;
  4910. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4911. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4912. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4913. memcpy(
  4914. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4915. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4916. rs);
  4917. }
  4918. }
  4919. }
  4920. return;
  4921. }
  4922. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  4923. if (ggml_is_contiguous(dst)) {
  4924. if (nb00 == sizeof(ggml_fp16_t)) {
  4925. if (dst->type == GGML_TYPE_F16) {
  4926. size_t id = 0;
  4927. const size_t rs = ne00 * nb00;
  4928. char * dst_ptr = (char *) dst->data;
  4929. for (int i03 = 0; i03 < ne03; i03++) {
  4930. for (int i02 = 0; i02 < ne02; i02++) {
  4931. id += rs * ir0;
  4932. for (int i01 = ir0; i01 < ir1; i01++) {
  4933. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4934. memcpy(dst_ptr + id, src0_ptr, rs);
  4935. id += rs;
  4936. }
  4937. id += rs * (ne01 - ir1);
  4938. }
  4939. }
  4940. } else if (dst->type == GGML_TYPE_F32) {
  4941. size_t id = 0;
  4942. float * dst_ptr = (float *) dst->data;
  4943. for (int i03 = 0; i03 < ne03; i03++) {
  4944. for (int i02 = 0; i02 < ne02; i02++) {
  4945. id += ne00 * ir0;
  4946. for (int i01 = ir0; i01 < ir1; i01++) {
  4947. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4948. for (int i00 = 0; i00 < ne00; i00++) {
  4949. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  4950. id++;
  4951. }
  4952. }
  4953. id += ne00 * (ne01 - ir1);
  4954. }
  4955. }
  4956. } else if (ggml_is_quantized(dst->type)) {
  4957. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  4958. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  4959. size_t id = 0;
  4960. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  4961. char * dst_ptr = (char *) dst->data;
  4962. for (int i03 = 0; i03 < ne03; i03++) {
  4963. for (int i02 = 0; i02 < ne02; i02++) {
  4964. id += rs * ir0;
  4965. for (int i01 = ir0; i01 < ir1; i01++) {
  4966. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4967. for (int i00 = 0; i00 < ne00; i00++) {
  4968. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  4969. }
  4970. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  4971. id += rs;
  4972. }
  4973. id += rs * (ne01 - ir1);
  4974. }
  4975. }
  4976. } else {
  4977. GGML_ASSERT(false); // TODO: implement
  4978. }
  4979. } else {
  4980. //printf("%s: this is not optimal - fix me\n", __func__);
  4981. if (dst->type == GGML_TYPE_F32) {
  4982. size_t id = 0;
  4983. float * dst_ptr = (float *) dst->data;
  4984. for (int i03 = 0; i03 < ne03; i03++) {
  4985. for (int i02 = 0; i02 < ne02; i02++) {
  4986. id += ne00 * ir0;
  4987. for (int i01 = ir0; i01 < ir1; i01++) {
  4988. for (int i00 = 0; i00 < ne00; i00++) {
  4989. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4990. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  4991. id++;
  4992. }
  4993. }
  4994. id += ne00 * (ne01 - ir1);
  4995. }
  4996. }
  4997. } else if (dst->type == GGML_TYPE_F16) {
  4998. size_t id = 0;
  4999. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5000. for (int i03 = 0; i03 < ne03; i03++) {
  5001. for (int i02 = 0; i02 < ne02; i02++) {
  5002. id += ne00 * ir0;
  5003. for (int i01 = ir0; i01 < ir1; i01++) {
  5004. for (int i00 = 0; i00 < ne00; i00++) {
  5005. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5006. dst_ptr[id] = *src0_ptr;
  5007. id++;
  5008. }
  5009. }
  5010. id += ne00 * (ne01 - ir1);
  5011. }
  5012. }
  5013. } else {
  5014. GGML_ASSERT(false); // TODO: implement
  5015. }
  5016. }
  5017. return;
  5018. }
  5019. // dst counters
  5020. int64_t i10 = 0;
  5021. int64_t i11 = 0;
  5022. int64_t i12 = 0;
  5023. int64_t i13 = 0;
  5024. if (dst->type == GGML_TYPE_F16) {
  5025. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5026. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5027. i10 += ne00 * ir0;
  5028. while (i10 >= ne0) {
  5029. i10 -= ne0;
  5030. if (++i11 == ne1) {
  5031. i11 = 0;
  5032. if (++i12 == ne2) {
  5033. i12 = 0;
  5034. if (++i13 == ne3) {
  5035. i13 = 0;
  5036. }
  5037. }
  5038. }
  5039. }
  5040. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5041. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5042. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5043. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5044. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5045. if (++i10 == ne00) {
  5046. i10 = 0;
  5047. if (++i11 == ne01) {
  5048. i11 = 0;
  5049. if (++i12 == ne02) {
  5050. i12 = 0;
  5051. if (++i13 == ne03) {
  5052. i13 = 0;
  5053. }
  5054. }
  5055. }
  5056. }
  5057. }
  5058. }
  5059. i10 += ne00 * (ne01 - ir1);
  5060. while (i10 >= ne0) {
  5061. i10 -= ne0;
  5062. if (++i11 == ne1) {
  5063. i11 = 0;
  5064. if (++i12 == ne2) {
  5065. i12 = 0;
  5066. if (++i13 == ne3) {
  5067. i13 = 0;
  5068. }
  5069. }
  5070. }
  5071. }
  5072. }
  5073. }
  5074. } else if (dst->type == GGML_TYPE_F32) {
  5075. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5076. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5077. i10 += ne00 * ir0;
  5078. while (i10 >= ne0) {
  5079. i10 -= ne0;
  5080. if (++i11 == ne1) {
  5081. i11 = 0;
  5082. if (++i12 == ne2) {
  5083. i12 = 0;
  5084. if (++i13 == ne3) {
  5085. i13 = 0;
  5086. }
  5087. }
  5088. }
  5089. }
  5090. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5091. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5092. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5093. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5094. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5095. if (++i10 == ne0) {
  5096. i10 = 0;
  5097. if (++i11 == ne1) {
  5098. i11 = 0;
  5099. if (++i12 == ne2) {
  5100. i12 = 0;
  5101. if (++i13 == ne3) {
  5102. i13 = 0;
  5103. }
  5104. }
  5105. }
  5106. }
  5107. }
  5108. }
  5109. i10 += ne00 * (ne01 - ir1);
  5110. while (i10 >= ne0) {
  5111. i10 -= ne0;
  5112. if (++i11 == ne1) {
  5113. i11 = 0;
  5114. if (++i12 == ne2) {
  5115. i12 = 0;
  5116. if (++i13 == ne3) {
  5117. i13 = 0;
  5118. }
  5119. }
  5120. }
  5121. }
  5122. }
  5123. }
  5124. } else {
  5125. GGML_ASSERT(false); // TODO: implement
  5126. }
  5127. }
  5128. static void ggml_compute_forward_dup_f32(
  5129. const struct ggml_compute_params * params,
  5130. const struct ggml_tensor * src0,
  5131. struct ggml_tensor * dst) {
  5132. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5133. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5134. return;
  5135. }
  5136. const int64_t ne00 = src0->ne[0];
  5137. const int64_t ne01 = src0->ne[1];
  5138. const int64_t ne02 = src0->ne[2];
  5139. const int64_t ne03 = src0->ne[3];
  5140. const int64_t ne0 = dst->ne[0];
  5141. const int64_t ne1 = dst->ne[1];
  5142. const int64_t ne2 = dst->ne[2];
  5143. const int64_t ne3 = dst->ne[3];
  5144. const size_t nb00 = src0->nb[0];
  5145. const size_t nb01 = src0->nb[1];
  5146. const size_t nb02 = src0->nb[2];
  5147. const size_t nb03 = src0->nb[3];
  5148. const size_t nb0 = dst->nb[0];
  5149. const size_t nb1 = dst->nb[1];
  5150. const size_t nb2 = dst->nb[2];
  5151. const size_t nb3 = dst->nb[3];
  5152. const int ith = params->ith; // thread index
  5153. const int nth = params->nth; // number of threads
  5154. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5155. // parallelize by elements
  5156. const int ne = ggml_nelements(dst);
  5157. const int dr = (ne + nth - 1) / nth;
  5158. const int ie0 = dr * ith;
  5159. const int ie1 = MIN(ie0 + dr, ne);
  5160. memcpy(
  5161. ((char *) dst->data + ie0*nb0),
  5162. ((char *) src0->data + ie0*nb00),
  5163. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  5164. return;
  5165. }
  5166. // parallelize by rows
  5167. const int nr = ne01;
  5168. // number of rows per thread
  5169. const int dr = (nr + nth - 1) / nth;
  5170. // row range for this thread
  5171. const int ir0 = dr * ith;
  5172. const int ir1 = MIN(ir0 + dr, nr);
  5173. if (src0->type == dst->type &&
  5174. ne00 == ne0 &&
  5175. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5176. // copy by rows
  5177. const size_t rs = ne00*nb00;
  5178. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5179. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5180. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5181. memcpy(
  5182. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5183. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5184. rs);
  5185. }
  5186. }
  5187. }
  5188. return;
  5189. }
  5190. if (ggml_is_contiguous(dst)) {
  5191. // TODO: simplify
  5192. if (nb00 == sizeof(float)) {
  5193. if (dst->type == GGML_TYPE_F32) {
  5194. size_t id = 0;
  5195. const size_t rs = ne00 * nb00;
  5196. char * dst_ptr = (char *) dst->data;
  5197. for (int i03 = 0; i03 < ne03; i03++) {
  5198. for (int i02 = 0; i02 < ne02; i02++) {
  5199. id += rs * ir0;
  5200. for (int i01 = ir0; i01 < ir1; i01++) {
  5201. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5202. memcpy(dst_ptr + id, src0_ptr, rs);
  5203. id += rs;
  5204. }
  5205. id += rs * (ne01 - ir1);
  5206. }
  5207. }
  5208. } else if (dst->type == GGML_TYPE_F16) {
  5209. size_t id = 0;
  5210. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5211. for (int i03 = 0; i03 < ne03; i03++) {
  5212. for (int i02 = 0; i02 < ne02; i02++) {
  5213. id += ne00 * ir0;
  5214. for (int i01 = ir0; i01 < ir1; i01++) {
  5215. for (int i00 = 0; i00 < ne00; i00++) {
  5216. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5217. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5218. id++;
  5219. }
  5220. }
  5221. id += ne00 * (ne01 - ir1);
  5222. }
  5223. }
  5224. } else if (ggml_is_quantized(dst->type)) {
  5225. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5226. size_t id = 0;
  5227. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5228. char * dst_ptr = (char *) dst->data;
  5229. for (int i03 = 0; i03 < ne03; i03++) {
  5230. for (int i02 = 0; i02 < ne02; i02++) {
  5231. id += rs * ir0;
  5232. for (int i01 = ir0; i01 < ir1; i01++) {
  5233. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5234. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5235. id += rs;
  5236. }
  5237. id += rs * (ne01 - ir1);
  5238. }
  5239. }
  5240. } else {
  5241. GGML_ASSERT(false); // TODO: implement
  5242. }
  5243. } else {
  5244. //printf("%s: this is not optimal - fix me\n", __func__);
  5245. if (dst->type == GGML_TYPE_F32) {
  5246. size_t id = 0;
  5247. float * dst_ptr = (float *) dst->data;
  5248. for (int i03 = 0; i03 < ne03; i03++) {
  5249. for (int i02 = 0; i02 < ne02; i02++) {
  5250. id += ne00 * ir0;
  5251. for (int i01 = ir0; i01 < ir1; i01++) {
  5252. for (int i00 = 0; i00 < ne00; i00++) {
  5253. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5254. dst_ptr[id] = *src0_ptr;
  5255. id++;
  5256. }
  5257. }
  5258. id += ne00 * (ne01 - ir1);
  5259. }
  5260. }
  5261. } else if (dst->type == GGML_TYPE_F16) {
  5262. size_t id = 0;
  5263. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5264. for (int i03 = 0; i03 < ne03; i03++) {
  5265. for (int i02 = 0; i02 < ne02; i02++) {
  5266. id += ne00 * ir0;
  5267. for (int i01 = ir0; i01 < ir1; i01++) {
  5268. for (int i00 = 0; i00 < ne00; i00++) {
  5269. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5270. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5271. id++;
  5272. }
  5273. }
  5274. id += ne00 * (ne01 - ir1);
  5275. }
  5276. }
  5277. } else {
  5278. GGML_ASSERT(false); // TODO: implement
  5279. }
  5280. }
  5281. return;
  5282. }
  5283. // dst counters
  5284. int64_t i10 = 0;
  5285. int64_t i11 = 0;
  5286. int64_t i12 = 0;
  5287. int64_t i13 = 0;
  5288. if (dst->type == GGML_TYPE_F32) {
  5289. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5290. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5291. i10 += ne00 * ir0;
  5292. while (i10 >= ne0) {
  5293. i10 -= ne0;
  5294. if (++i11 == ne1) {
  5295. i11 = 0;
  5296. if (++i12 == ne2) {
  5297. i12 = 0;
  5298. if (++i13 == ne3) {
  5299. i13 = 0;
  5300. }
  5301. }
  5302. }
  5303. }
  5304. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5305. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5306. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5307. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5308. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5309. if (++i10 == ne0) {
  5310. i10 = 0;
  5311. if (++i11 == ne1) {
  5312. i11 = 0;
  5313. if (++i12 == ne2) {
  5314. i12 = 0;
  5315. if (++i13 == ne3) {
  5316. i13 = 0;
  5317. }
  5318. }
  5319. }
  5320. }
  5321. }
  5322. }
  5323. i10 += ne00 * (ne01 - ir1);
  5324. while (i10 >= ne0) {
  5325. i10 -= ne0;
  5326. if (++i11 == ne1) {
  5327. i11 = 0;
  5328. if (++i12 == ne2) {
  5329. i12 = 0;
  5330. if (++i13 == ne3) {
  5331. i13 = 0;
  5332. }
  5333. }
  5334. }
  5335. }
  5336. }
  5337. }
  5338. } else if (dst->type == GGML_TYPE_F16) {
  5339. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5340. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5341. i10 += ne00 * ir0;
  5342. while (i10 >= ne0) {
  5343. i10 -= ne0;
  5344. if (++i11 == ne1) {
  5345. i11 = 0;
  5346. if (++i12 == ne2) {
  5347. i12 = 0;
  5348. if (++i13 == ne3) {
  5349. i13 = 0;
  5350. }
  5351. }
  5352. }
  5353. }
  5354. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5355. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5356. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5357. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5358. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5359. if (++i10 == ne0) {
  5360. i10 = 0;
  5361. if (++i11 == ne1) {
  5362. i11 = 0;
  5363. if (++i12 == ne2) {
  5364. i12 = 0;
  5365. if (++i13 == ne3) {
  5366. i13 = 0;
  5367. }
  5368. }
  5369. }
  5370. }
  5371. }
  5372. }
  5373. i10 += ne00 * (ne01 - ir1);
  5374. while (i10 >= ne0) {
  5375. i10 -= ne0;
  5376. if (++i11 == ne1) {
  5377. i11 = 0;
  5378. if (++i12 == ne2) {
  5379. i12 = 0;
  5380. if (++i13 == ne3) {
  5381. i13 = 0;
  5382. }
  5383. }
  5384. }
  5385. }
  5386. }
  5387. }
  5388. } else {
  5389. GGML_ASSERT(false); // TODO: implement
  5390. }
  5391. }
  5392. static void ggml_compute_forward_dup(
  5393. const struct ggml_compute_params * params,
  5394. const struct ggml_tensor * src0,
  5395. struct ggml_tensor * dst) {
  5396. switch (src0->type) {
  5397. case GGML_TYPE_F16:
  5398. {
  5399. ggml_compute_forward_dup_f16(params, src0, dst);
  5400. } break;
  5401. case GGML_TYPE_F32:
  5402. {
  5403. ggml_compute_forward_dup_f32(params, src0, dst);
  5404. } break;
  5405. default:
  5406. {
  5407. GGML_ASSERT(false);
  5408. } break;
  5409. }
  5410. }
  5411. // ggml_compute_forward_add
  5412. static void ggml_compute_forward_add_f32(
  5413. const struct ggml_compute_params * params,
  5414. const struct ggml_tensor * src0,
  5415. const struct ggml_tensor * src1,
  5416. struct ggml_tensor * dst) {
  5417. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5418. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5419. return;
  5420. }
  5421. const int ith = params->ith;
  5422. const int nth = params->nth;
  5423. const int n = ggml_nrows(src0);
  5424. const int nc = src0->ne[0];
  5425. const size_t nb00 = src0->nb[0];
  5426. const size_t nb01 = src0->nb[1];
  5427. const size_t nb10 = src1->nb[0];
  5428. const size_t nb11 = src1->nb[1];
  5429. const size_t nb0 = dst->nb[0];
  5430. const size_t nb1 = dst->nb[1];
  5431. GGML_ASSERT( nb0 == sizeof(float));
  5432. GGML_ASSERT(nb00 == sizeof(float));
  5433. if (nb10 == sizeof(float)) {
  5434. for (int j = ith; j < n; j += nth) {
  5435. #ifdef GGML_USE_ACCELERATE
  5436. vDSP_vadd(
  5437. (float *) ((char *) src0->data + j*nb01), 1,
  5438. (float *) ((char *) src1->data + j*nb11), 1,
  5439. (float *) ((char *) dst->data + j*nb1), 1, nc);
  5440. #else
  5441. ggml_vec_add_f32(nc,
  5442. (float *) ((char *) dst->data + j*nb1),
  5443. (float *) ((char *) src0->data + j*nb01),
  5444. (float *) ((char *) src1->data + j*nb11));
  5445. #endif
  5446. }
  5447. } else {
  5448. // src1 is not contiguous
  5449. for (int j = ith; j < n; j += nth) {
  5450. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  5451. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  5452. for (int i = 0; i < nc; i++) {
  5453. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5454. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  5455. }
  5456. }
  5457. }
  5458. }
  5459. static void ggml_compute_forward_add_f16_f32(
  5460. const struct ggml_compute_params * params,
  5461. const struct ggml_tensor * src0,
  5462. const struct ggml_tensor * src1,
  5463. struct ggml_tensor * dst) {
  5464. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5465. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5466. return;
  5467. }
  5468. const int ith = params->ith;
  5469. const int nth = params->nth;
  5470. const int n = ggml_nrows(src0);
  5471. const int nc = src0->ne[0];
  5472. const size_t nb00 = src0->nb[0];
  5473. const size_t nb01 = src0->nb[1];
  5474. const size_t nb10 = src1->nb[0];
  5475. const size_t nb11 = src1->nb[1];
  5476. const size_t nb0 = dst->nb[0];
  5477. const size_t nb1 = dst->nb[1];
  5478. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5479. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5480. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5481. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5482. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5483. if (nb10 == sizeof(float)) {
  5484. for (int j = ith; j < n; j += nth) {
  5485. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5486. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5487. for (int i = 0; i < nc; i++) {
  5488. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5489. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + *src1_ptr);
  5490. }
  5491. }
  5492. }
  5493. else {
  5494. // src1 is not contiguous
  5495. GGML_ASSERT(false);
  5496. }
  5497. }
  5498. static void ggml_compute_forward_add_f16_f16(
  5499. const struct ggml_compute_params * params,
  5500. const struct ggml_tensor * src0,
  5501. const struct ggml_tensor * src1,
  5502. struct ggml_tensor * dst) {
  5503. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5504. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5505. return;
  5506. }
  5507. const int ith = params->ith;
  5508. const int nth = params->nth;
  5509. const int n = ggml_nrows(src0);
  5510. const int nc = src0->ne[0];
  5511. const size_t nb00 = src0->nb[0];
  5512. const size_t nb01 = src0->nb[1];
  5513. const size_t nb10 = src1->nb[0];
  5514. const size_t nb11 = src1->nb[1];
  5515. const size_t nb0 = dst->nb[0];
  5516. const size_t nb1 = dst->nb[1];
  5517. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5518. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5519. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5520. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5521. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5522. if (nb10 == sizeof(ggml_fp16_t)) {
  5523. for (int j = ith; j < n; j += nth) {
  5524. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5525. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5526. for (int i = 0; i < nc; i++) {
  5527. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + j*nb11 + i*nb10);
  5528. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(*src1_ptr));
  5529. }
  5530. }
  5531. }
  5532. else {
  5533. // src1 is not contiguous
  5534. GGML_ASSERT(false);
  5535. }
  5536. }
  5537. static void ggml_compute_forward_add_q_f32(
  5538. const struct ggml_compute_params * params,
  5539. const struct ggml_tensor * src0,
  5540. const struct ggml_tensor * src1,
  5541. struct ggml_tensor * dst) {
  5542. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5543. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5544. return;
  5545. }
  5546. const int64_t ne00 = src0->ne[0];
  5547. const int64_t ne01 = src0->ne[1];
  5548. const int64_t ne02 = src0->ne[2];
  5549. const int64_t ne03 = src0->ne[3];
  5550. //const int64_t ne10 = src1->ne[0];
  5551. //const int64_t ne11 = src1->ne[1];
  5552. const int64_t ne12 = src1->ne[2];
  5553. const int64_t ne13 = src1->ne[3];
  5554. //const int64_t ne0 = dst->ne[0];
  5555. //const int64_t ne1 = dst->ne[1];
  5556. const int64_t ne2 = dst->ne[2];
  5557. const int64_t ne3 = dst->ne[3];
  5558. const int nb00 = src0->nb[0];
  5559. const int nb01 = src0->nb[1];
  5560. const int nb02 = src0->nb[2];
  5561. const int nb03 = src0->nb[3];
  5562. const int nb10 = src1->nb[0];
  5563. const int nb11 = src1->nb[1];
  5564. const int nb12 = src1->nb[2];
  5565. const int nb13 = src1->nb[3];
  5566. const int nb0 = dst->nb[0];
  5567. const int nb1 = dst->nb[1];
  5568. const int nb2 = dst->nb[2];
  5569. const int nb3 = dst->nb[3];
  5570. const int ith = params->ith;
  5571. const int nth = params->nth;
  5572. GGML_ASSERT(ne02 == ne12);
  5573. GGML_ASSERT(ne03 == ne13);
  5574. GGML_ASSERT(ne2 == ne12);
  5575. GGML_ASSERT(ne3 == ne13);
  5576. const enum ggml_type type = src0->type;
  5577. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5578. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5579. // we don't support permuted src0 or src1
  5580. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5581. GGML_ASSERT(nb10 == sizeof(float));
  5582. // dst cannot be transposed or permuted
  5583. GGML_ASSERT(nb0 <= nb1);
  5584. GGML_ASSERT(nb1 <= nb2);
  5585. GGML_ASSERT(nb2 <= nb3);
  5586. GGML_ASSERT(ggml_is_quantized(src0->type));
  5587. GGML_ASSERT(dst->type == src0->type);
  5588. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5589. // total rows in src0
  5590. const int nr = ne01*ne02*ne03;
  5591. // rows per thread
  5592. const int dr = (nr + nth - 1)/nth;
  5593. // row range for this thread
  5594. const int ir0 = dr*ith;
  5595. const int ir1 = MIN(ir0 + dr, nr);
  5596. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5597. for (int ir = ir0; ir < ir1; ++ir) {
  5598. // src0 indices
  5599. const int i03 = ir/(ne02*ne01);
  5600. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5601. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5602. // src1 and dst are same shape as src0 => same indices
  5603. const int i13 = i03;
  5604. const int i12 = i02;
  5605. const int i11 = i01;
  5606. const int i3 = i03;
  5607. const int i2 = i02;
  5608. const int i1 = i01;
  5609. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5610. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  5611. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  5612. assert(ne00 % 32 == 0);
  5613. // unquantize row from src0 to temp buffer
  5614. dequantize_row_q(src0_row, wdata, ne00);
  5615. // add src1
  5616. ggml_vec_acc_f32(ne00, wdata, src1_row);
  5617. // quantize row to dst
  5618. quantize_row_q(wdata, dst_row, ne00);
  5619. }
  5620. }
  5621. static void ggml_compute_forward_add(
  5622. const struct ggml_compute_params * params,
  5623. const struct ggml_tensor * src0,
  5624. const struct ggml_tensor * src1,
  5625. struct ggml_tensor * dst) {
  5626. switch (src0->type) {
  5627. case GGML_TYPE_F32:
  5628. {
  5629. ggml_compute_forward_add_f32(params, src0, src1, dst);
  5630. } break;
  5631. case GGML_TYPE_F16:
  5632. {
  5633. if (src1->type == GGML_TYPE_F16) {
  5634. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  5635. }
  5636. else if (src1->type == GGML_TYPE_F32) {
  5637. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  5638. }
  5639. else {
  5640. GGML_ASSERT(false);
  5641. }
  5642. } break;
  5643. case GGML_TYPE_Q4_0:
  5644. case GGML_TYPE_Q4_1:
  5645. case GGML_TYPE_Q4_2:
  5646. case GGML_TYPE_Q5_0:
  5647. case GGML_TYPE_Q5_1:
  5648. case GGML_TYPE_Q8_0:
  5649. {
  5650. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  5651. } break;
  5652. default:
  5653. {
  5654. GGML_ASSERT(false);
  5655. } break;
  5656. }
  5657. }
  5658. // ggml_compute_forward_sub
  5659. static void ggml_compute_forward_sub_f32(
  5660. const struct ggml_compute_params * params,
  5661. const struct ggml_tensor * src0,
  5662. const struct ggml_tensor * src1,
  5663. struct ggml_tensor * dst) {
  5664. assert(params->ith == 0);
  5665. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5666. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5667. return;
  5668. }
  5669. const int n = ggml_nrows(src0);
  5670. const int nc = src0->ne[0];
  5671. assert( dst->nb[0] == sizeof(float));
  5672. assert(src0->nb[0] == sizeof(float));
  5673. assert(src1->nb[0] == sizeof(float));
  5674. for (int i = 0; i < n; i++) {
  5675. ggml_vec_sub_f32(nc,
  5676. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5677. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5678. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5679. }
  5680. }
  5681. static void ggml_compute_forward_sub(
  5682. const struct ggml_compute_params * params,
  5683. const struct ggml_tensor * src0,
  5684. const struct ggml_tensor * src1,
  5685. struct ggml_tensor * dst) {
  5686. switch (src0->type) {
  5687. case GGML_TYPE_F32:
  5688. {
  5689. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  5690. } break;
  5691. default:
  5692. {
  5693. GGML_ASSERT(false);
  5694. } break;
  5695. }
  5696. }
  5697. // ggml_compute_forward_mul
  5698. static void ggml_compute_forward_mul_f32(
  5699. const struct ggml_compute_params * params,
  5700. const struct ggml_tensor * src0,
  5701. const struct ggml_tensor * src1,
  5702. struct ggml_tensor * dst) {
  5703. assert(params->ith == 0);
  5704. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5705. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5706. return;
  5707. }
  5708. const int n = ggml_nrows(src0);
  5709. const int nc = src0->ne[0];
  5710. assert( dst->nb[0] == sizeof(float));
  5711. assert(src0->nb[0] == sizeof(float));
  5712. assert(src1->nb[0] == sizeof(float));
  5713. for (int i = 0; i < n; i++) {
  5714. ggml_vec_mul_f32(nc,
  5715. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5716. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5717. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5718. }
  5719. }
  5720. static void ggml_compute_forward_mul(
  5721. const struct ggml_compute_params * params,
  5722. const struct ggml_tensor * src0,
  5723. const struct ggml_tensor * src1,
  5724. struct ggml_tensor * dst) {
  5725. switch (src0->type) {
  5726. case GGML_TYPE_F32:
  5727. {
  5728. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  5729. } break;
  5730. default:
  5731. {
  5732. GGML_ASSERT(false);
  5733. } break;
  5734. }
  5735. }
  5736. // ggml_compute_forward_div
  5737. static void ggml_compute_forward_div_f32(
  5738. const struct ggml_compute_params * params,
  5739. const struct ggml_tensor * src0,
  5740. const struct ggml_tensor * src1,
  5741. struct ggml_tensor * dst) {
  5742. assert(params->ith == 0);
  5743. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5744. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5745. return;
  5746. }
  5747. const int n = ggml_nrows(src0);
  5748. const int nc = src0->ne[0];
  5749. assert( dst->nb[0] == sizeof(float));
  5750. assert(src0->nb[0] == sizeof(float));
  5751. assert(src1->nb[0] == sizeof(float));
  5752. for (int i = 0; i < n; i++) {
  5753. ggml_vec_div_f32(nc,
  5754. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5755. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5756. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5757. }
  5758. }
  5759. static void ggml_compute_forward_div(
  5760. const struct ggml_compute_params * params,
  5761. const struct ggml_tensor * src0,
  5762. const struct ggml_tensor * src1,
  5763. struct ggml_tensor * dst) {
  5764. switch (src0->type) {
  5765. case GGML_TYPE_F32:
  5766. {
  5767. ggml_compute_forward_div_f32(params, src0, src1, dst);
  5768. } break;
  5769. default:
  5770. {
  5771. GGML_ASSERT(false);
  5772. } break;
  5773. }
  5774. }
  5775. // ggml_compute_forward_sqr
  5776. static void ggml_compute_forward_sqr_f32(
  5777. const struct ggml_compute_params * params,
  5778. const struct ggml_tensor * src0,
  5779. struct ggml_tensor * dst) {
  5780. assert(params->ith == 0);
  5781. assert(ggml_are_same_shape(src0, dst));
  5782. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5783. return;
  5784. }
  5785. const int n = ggml_nrows(src0);
  5786. const int nc = src0->ne[0];
  5787. assert( dst->nb[0] == sizeof(float));
  5788. assert(src0->nb[0] == sizeof(float));
  5789. for (int i = 0; i < n; i++) {
  5790. ggml_vec_sqr_f32(nc,
  5791. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5792. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5793. }
  5794. }
  5795. static void ggml_compute_forward_sqr(
  5796. const struct ggml_compute_params * params,
  5797. const struct ggml_tensor * src0,
  5798. struct ggml_tensor * dst) {
  5799. switch (src0->type) {
  5800. case GGML_TYPE_F32:
  5801. {
  5802. ggml_compute_forward_sqr_f32(params, src0, dst);
  5803. } break;
  5804. default:
  5805. {
  5806. GGML_ASSERT(false);
  5807. } break;
  5808. }
  5809. }
  5810. // ggml_compute_forward_sqrt
  5811. static void ggml_compute_forward_sqrt_f32(
  5812. const struct ggml_compute_params * params,
  5813. const struct ggml_tensor * src0,
  5814. struct ggml_tensor * dst) {
  5815. assert(params->ith == 0);
  5816. assert(ggml_are_same_shape(src0, dst));
  5817. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5818. return;
  5819. }
  5820. const int n = ggml_nrows(src0);
  5821. const int nc = src0->ne[0];
  5822. assert( dst->nb[0] == sizeof(float));
  5823. assert(src0->nb[0] == sizeof(float));
  5824. for (int i = 0; i < n; i++) {
  5825. ggml_vec_sqrt_f32(nc,
  5826. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5827. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5828. }
  5829. }
  5830. static void ggml_compute_forward_sqrt(
  5831. const struct ggml_compute_params * params,
  5832. const struct ggml_tensor * src0,
  5833. struct ggml_tensor * dst) {
  5834. switch (src0->type) {
  5835. case GGML_TYPE_F32:
  5836. {
  5837. ggml_compute_forward_sqrt_f32(params, src0, dst);
  5838. } break;
  5839. default:
  5840. {
  5841. GGML_ASSERT(false);
  5842. } break;
  5843. }
  5844. }
  5845. // ggml_compute_forward_sum
  5846. static void ggml_compute_forward_sum_f32(
  5847. const struct ggml_compute_params * params,
  5848. const struct ggml_tensor * src0,
  5849. struct ggml_tensor * dst) {
  5850. assert(params->ith == 0);
  5851. assert(ggml_is_scalar(dst));
  5852. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5853. return;
  5854. }
  5855. assert(ggml_is_scalar(dst));
  5856. assert(src0->nb[0] == sizeof(float));
  5857. const int64_t ne00 = src0->ne[0];
  5858. const int64_t ne01 = src0->ne[1];
  5859. const int64_t ne02 = src0->ne[2];
  5860. const int64_t ne03 = src0->ne[3];
  5861. const size_t nb01 = src0->nb[1];
  5862. const size_t nb02 = src0->nb[2];
  5863. const size_t nb03 = src0->nb[3];
  5864. ggml_float sum = 0;
  5865. ggml_float row_sum = 0;
  5866. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5867. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5868. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5869. ggml_vec_sum_ggf(ne00,
  5870. &row_sum,
  5871. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  5872. sum += row_sum;
  5873. }
  5874. }
  5875. }
  5876. ((float *) dst->data)[0] = sum;
  5877. }
  5878. static void ggml_compute_forward_sum(
  5879. const struct ggml_compute_params * params,
  5880. const struct ggml_tensor * src0,
  5881. struct ggml_tensor * dst) {
  5882. switch (src0->type) {
  5883. case GGML_TYPE_F32:
  5884. {
  5885. ggml_compute_forward_sum_f32(params, src0, dst);
  5886. } break;
  5887. default:
  5888. {
  5889. GGML_ASSERT(false);
  5890. } break;
  5891. }
  5892. }
  5893. // ggml_compute_forward_mean
  5894. static void ggml_compute_forward_mean_f32(
  5895. const struct ggml_compute_params * params,
  5896. const struct ggml_tensor * src0,
  5897. struct ggml_tensor * dst) {
  5898. assert(params->ith == 0);
  5899. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5900. return;
  5901. }
  5902. assert(src0->nb[0] == sizeof(float));
  5903. const int64_t ne00 = src0->ne[0];
  5904. const int64_t ne01 = src0->ne[1];
  5905. const int64_t ne02 = src0->ne[2];
  5906. const int64_t ne03 = src0->ne[3];
  5907. const size_t nb01 = src0->nb[1];
  5908. const size_t nb02 = src0->nb[2];
  5909. const size_t nb03 = src0->nb[3];
  5910. const int64_t ne0 = dst->ne[0];
  5911. const int64_t ne1 = dst->ne[1];
  5912. const int64_t ne2 = dst->ne[2];
  5913. const int64_t ne3 = dst->ne[3];
  5914. assert(ne0 == 1);
  5915. assert(ne1 == ne01);
  5916. assert(ne2 == ne02);
  5917. assert(ne3 == ne03);
  5918. UNUSED(ne0);
  5919. UNUSED(ne1);
  5920. UNUSED(ne2);
  5921. UNUSED(ne3);
  5922. const size_t nb1 = dst->nb[1];
  5923. const size_t nb2 = dst->nb[2];
  5924. const size_t nb3 = dst->nb[3];
  5925. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5926. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5927. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5928. ggml_vec_sum_f32(ne00,
  5929. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5930. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  5931. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  5932. }
  5933. }
  5934. }
  5935. }
  5936. static void ggml_compute_forward_mean(
  5937. const struct ggml_compute_params * params,
  5938. const struct ggml_tensor * src0,
  5939. struct ggml_tensor * dst) {
  5940. switch (src0->type) {
  5941. case GGML_TYPE_F32:
  5942. {
  5943. ggml_compute_forward_mean_f32(params, src0, dst);
  5944. } break;
  5945. default:
  5946. {
  5947. GGML_ASSERT(false);
  5948. } break;
  5949. }
  5950. }
  5951. // ggml_compute_forward_repeat
  5952. static void ggml_compute_forward_repeat_f32(
  5953. const struct ggml_compute_params * params,
  5954. const struct ggml_tensor * src0,
  5955. struct ggml_tensor * dst) {
  5956. assert(params->ith == 0);
  5957. assert(ggml_can_repeat(src0, dst));
  5958. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5959. return;
  5960. }
  5961. // TODO: implement support for rank > 2 tensors
  5962. assert(src0->ne[2] == 1);
  5963. assert(src0->ne[3] == 1);
  5964. assert( dst->ne[2] == 1);
  5965. assert( dst->ne[3] == 1);
  5966. const int nc = dst->ne[0];
  5967. const int nr = dst->ne[1];
  5968. const int nc0 = src0->ne[0];
  5969. const int nr0 = src0->ne[1];
  5970. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  5971. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  5972. // TODO: support for transposed / permuted tensors
  5973. assert( dst->nb[0] == sizeof(float));
  5974. assert(src0->nb[0] == sizeof(float));
  5975. // TODO: maybe this is not optimal?
  5976. for (int i = 0; i < nrr; i++) {
  5977. for (int j = 0; j < ncr; j++) {
  5978. for (int k = 0; k < nr0; k++) {
  5979. ggml_vec_cpy_f32(nc0,
  5980. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  5981. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  5982. }
  5983. }
  5984. }
  5985. }
  5986. static void ggml_compute_forward_repeat(
  5987. const struct ggml_compute_params * params,
  5988. const struct ggml_tensor * src0,
  5989. struct ggml_tensor * dst) {
  5990. switch (src0->type) {
  5991. case GGML_TYPE_F32:
  5992. {
  5993. ggml_compute_forward_repeat_f32(params, src0, dst);
  5994. } break;
  5995. default:
  5996. {
  5997. GGML_ASSERT(false);
  5998. } break;
  5999. }
  6000. }
  6001. // ggml_compute_forward_abs
  6002. static void ggml_compute_forward_abs_f32(
  6003. const struct ggml_compute_params * params,
  6004. const struct ggml_tensor * src0,
  6005. struct ggml_tensor * dst) {
  6006. assert(params->ith == 0);
  6007. assert(ggml_are_same_shape(src0, dst));
  6008. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6009. return;
  6010. }
  6011. const int n = ggml_nrows(src0);
  6012. const int nc = src0->ne[0];
  6013. assert(dst->nb[0] == sizeof(float));
  6014. assert(src0->nb[0] == sizeof(float));
  6015. for (int i = 0; i < n; i++) {
  6016. ggml_vec_abs_f32(nc,
  6017. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6018. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6019. }
  6020. }
  6021. static void ggml_compute_forward_abs(
  6022. const struct ggml_compute_params * params,
  6023. const struct ggml_tensor * src0,
  6024. struct ggml_tensor * dst) {
  6025. switch (src0->type) {
  6026. case GGML_TYPE_F32:
  6027. {
  6028. ggml_compute_forward_abs_f32(params, src0, dst);
  6029. } break;
  6030. default:
  6031. {
  6032. GGML_ASSERT(false);
  6033. } break;
  6034. }
  6035. }
  6036. // ggml_compute_forward_sgn
  6037. static void ggml_compute_forward_sgn_f32(
  6038. const struct ggml_compute_params * params,
  6039. const struct ggml_tensor * src0,
  6040. struct ggml_tensor * dst) {
  6041. assert(params->ith == 0);
  6042. assert(ggml_are_same_shape(src0, dst));
  6043. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6044. return;
  6045. }
  6046. const int n = ggml_nrows(src0);
  6047. const int nc = src0->ne[0];
  6048. assert(dst->nb[0] == sizeof(float));
  6049. assert(src0->nb[0] == sizeof(float));
  6050. for (int i = 0; i < n; i++) {
  6051. ggml_vec_sgn_f32(nc,
  6052. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6053. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6054. }
  6055. }
  6056. static void ggml_compute_forward_sgn(
  6057. const struct ggml_compute_params * params,
  6058. const struct ggml_tensor * src0,
  6059. struct ggml_tensor * dst) {
  6060. switch (src0->type) {
  6061. case GGML_TYPE_F32:
  6062. {
  6063. ggml_compute_forward_sgn_f32(params, src0, dst);
  6064. } break;
  6065. default:
  6066. {
  6067. GGML_ASSERT(false);
  6068. } break;
  6069. }
  6070. }
  6071. // ggml_compute_forward_neg
  6072. static void ggml_compute_forward_neg_f32(
  6073. const struct ggml_compute_params * params,
  6074. const struct ggml_tensor * src0,
  6075. struct ggml_tensor * dst) {
  6076. assert(params->ith == 0);
  6077. assert(ggml_are_same_shape(src0, dst));
  6078. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6079. return;
  6080. }
  6081. const int n = ggml_nrows(src0);
  6082. const int nc = src0->ne[0];
  6083. assert(dst->nb[0] == sizeof(float));
  6084. assert(src0->nb[0] == sizeof(float));
  6085. for (int i = 0; i < n; i++) {
  6086. ggml_vec_neg_f32(nc,
  6087. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6088. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6089. }
  6090. }
  6091. static void ggml_compute_forward_neg(
  6092. const struct ggml_compute_params * params,
  6093. const struct ggml_tensor * src0,
  6094. struct ggml_tensor * dst) {
  6095. switch (src0->type) {
  6096. case GGML_TYPE_F32:
  6097. {
  6098. ggml_compute_forward_neg_f32(params, src0, dst);
  6099. } break;
  6100. default:
  6101. {
  6102. GGML_ASSERT(false);
  6103. } break;
  6104. }
  6105. }
  6106. // ggml_compute_forward_step
  6107. static void ggml_compute_forward_step_f32(
  6108. const struct ggml_compute_params * params,
  6109. const struct ggml_tensor * src0,
  6110. struct ggml_tensor * dst) {
  6111. assert(params->ith == 0);
  6112. assert(ggml_are_same_shape(src0, dst));
  6113. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6114. return;
  6115. }
  6116. const int n = ggml_nrows(src0);
  6117. const int nc = src0->ne[0];
  6118. assert(dst->nb[0] == sizeof(float));
  6119. assert(src0->nb[0] == sizeof(float));
  6120. for (int i = 0; i < n; i++) {
  6121. ggml_vec_step_f32(nc,
  6122. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6123. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6124. }
  6125. }
  6126. static void ggml_compute_forward_step(
  6127. const struct ggml_compute_params * params,
  6128. const struct ggml_tensor * src0,
  6129. struct ggml_tensor * dst) {
  6130. switch (src0->type) {
  6131. case GGML_TYPE_F32:
  6132. {
  6133. ggml_compute_forward_step_f32(params, src0, dst);
  6134. } break;
  6135. default:
  6136. {
  6137. GGML_ASSERT(false);
  6138. } break;
  6139. }
  6140. }
  6141. // ggml_compute_forward_relu
  6142. static void ggml_compute_forward_relu_f32(
  6143. const struct ggml_compute_params * params,
  6144. const struct ggml_tensor * src0,
  6145. struct ggml_tensor * dst) {
  6146. assert(params->ith == 0);
  6147. assert(ggml_are_same_shape(src0, dst));
  6148. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6149. return;
  6150. }
  6151. const int n = ggml_nrows(src0);
  6152. const int nc = src0->ne[0];
  6153. assert(dst->nb[0] == sizeof(float));
  6154. assert(src0->nb[0] == sizeof(float));
  6155. for (int i = 0; i < n; i++) {
  6156. ggml_vec_relu_f32(nc,
  6157. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6158. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6159. }
  6160. }
  6161. static void ggml_compute_forward_relu(
  6162. const struct ggml_compute_params * params,
  6163. const struct ggml_tensor * src0,
  6164. struct ggml_tensor * dst) {
  6165. switch (src0->type) {
  6166. case GGML_TYPE_F32:
  6167. {
  6168. ggml_compute_forward_relu_f32(params, src0, dst);
  6169. } break;
  6170. default:
  6171. {
  6172. GGML_ASSERT(false);
  6173. } break;
  6174. }
  6175. }
  6176. // ggml_compute_forward_gelu
  6177. static void ggml_compute_forward_gelu_f32(
  6178. const struct ggml_compute_params * params,
  6179. const struct ggml_tensor * src0,
  6180. struct ggml_tensor * dst) {
  6181. GGML_ASSERT(ggml_is_contiguous(src0));
  6182. GGML_ASSERT(ggml_is_contiguous(dst));
  6183. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6184. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6185. return;
  6186. }
  6187. const int ith = params->ith;
  6188. const int nth = params->nth;
  6189. const int nc = src0->ne[0];
  6190. const int nr = ggml_nrows(src0);
  6191. // rows per thread
  6192. const int dr = (nr + nth - 1)/nth;
  6193. // row range for this thread
  6194. const int ir0 = dr*ith;
  6195. const int ir1 = MIN(ir0 + dr, nr);
  6196. for (int i1 = ir0; i1 < ir1; i1++) {
  6197. ggml_vec_gelu_f32(nc,
  6198. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  6199. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  6200. #ifndef NDEBUG
  6201. for (int k = 0; k < nc; k++) {
  6202. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  6203. UNUSED(x);
  6204. assert(!isnan(x));
  6205. assert(!isinf(x));
  6206. }
  6207. #endif
  6208. }
  6209. }
  6210. static void ggml_compute_forward_gelu(
  6211. const struct ggml_compute_params * params,
  6212. const struct ggml_tensor * src0,
  6213. struct ggml_tensor * dst) {
  6214. switch (src0->type) {
  6215. case GGML_TYPE_F32:
  6216. {
  6217. ggml_compute_forward_gelu_f32(params, src0, dst);
  6218. } break;
  6219. default:
  6220. {
  6221. GGML_ASSERT(false);
  6222. } break;
  6223. }
  6224. //printf("XXXXXXXX gelu\n");
  6225. }
  6226. // ggml_compute_forward_silu
  6227. static void ggml_compute_forward_silu_f32(
  6228. const struct ggml_compute_params * params,
  6229. const struct ggml_tensor * src0,
  6230. struct ggml_tensor * dst) {
  6231. GGML_ASSERT(ggml_is_contiguous(src0));
  6232. GGML_ASSERT(ggml_is_contiguous(dst));
  6233. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6234. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6235. return;
  6236. }
  6237. const int ith = params->ith;
  6238. const int nth = params->nth;
  6239. const int nc = src0->ne[0];
  6240. const int nr = ggml_nrows(src0);
  6241. // rows per thread
  6242. const int dr = (nr + nth - 1)/nth;
  6243. // row range for this thread
  6244. const int ir0 = dr*ith;
  6245. const int ir1 = MIN(ir0 + dr, nr);
  6246. for (int i1 = ir0; i1 < ir1; i1++) {
  6247. ggml_vec_silu_f32(nc,
  6248. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  6249. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  6250. #ifndef NDEBUG
  6251. for (int k = 0; k < nc; k++) {
  6252. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  6253. UNUSED(x);
  6254. assert(!isnan(x));
  6255. assert(!isinf(x));
  6256. }
  6257. #endif
  6258. }
  6259. }
  6260. static void ggml_compute_forward_silu(
  6261. const struct ggml_compute_params * params,
  6262. const struct ggml_tensor * src0,
  6263. struct ggml_tensor * dst) {
  6264. switch (src0->type) {
  6265. case GGML_TYPE_F32:
  6266. {
  6267. ggml_compute_forward_silu_f32(params, src0, dst);
  6268. } break;
  6269. default:
  6270. {
  6271. GGML_ASSERT(false);
  6272. } break;
  6273. }
  6274. }
  6275. // ggml_compute_forward_norm
  6276. static void ggml_compute_forward_norm_f32(
  6277. const struct ggml_compute_params * params,
  6278. const struct ggml_tensor * src0,
  6279. struct ggml_tensor * dst) {
  6280. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6281. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6282. return;
  6283. }
  6284. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6285. const int ith = params->ith;
  6286. const int nth = params->nth;
  6287. const int64_t ne00 = src0->ne[0];
  6288. const int64_t ne01 = src0->ne[1];
  6289. const int64_t ne02 = src0->ne[2];
  6290. const int64_t ne03 = src0->ne[3];
  6291. const size_t nb01 = src0->nb[1];
  6292. const size_t nb02 = src0->nb[2];
  6293. const size_t nb03 = src0->nb[3];
  6294. const size_t nb1 = dst->nb[1];
  6295. const size_t nb2 = dst->nb[2];
  6296. const size_t nb3 = dst->nb[3];
  6297. const float eps = 1e-5f; // TODO: make this a parameter
  6298. // TODO: optimize
  6299. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6300. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6301. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  6302. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6303. ggml_float sum = 0.0;
  6304. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6305. sum += (ggml_float)x[i00];
  6306. }
  6307. float mean = sum/ne00;
  6308. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  6309. ggml_float sum2 = 0.0;
  6310. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6311. float v = x[i00] - mean;
  6312. y[i00] = v;
  6313. sum2 += (ggml_float)(v*v);
  6314. }
  6315. float variance = sum2/ne00;
  6316. const float scale = 1.0f/sqrtf(variance + eps);
  6317. ggml_vec_scale_f32(ne00, y, scale);
  6318. }
  6319. }
  6320. }
  6321. }
  6322. static void ggml_compute_forward_norm(
  6323. const struct ggml_compute_params * params,
  6324. const struct ggml_tensor * src0,
  6325. struct ggml_tensor * dst) {
  6326. switch (src0->type) {
  6327. case GGML_TYPE_F32:
  6328. {
  6329. ggml_compute_forward_norm_f32(params, src0, dst);
  6330. } break;
  6331. default:
  6332. {
  6333. GGML_ASSERT(false);
  6334. } break;
  6335. }
  6336. }
  6337. static void ggml_compute_forward_rms_norm_f32(
  6338. const struct ggml_compute_params * params,
  6339. const struct ggml_tensor * src0,
  6340. struct ggml_tensor * dst) {
  6341. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6342. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6343. return;
  6344. }
  6345. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6346. const int ith = params->ith;
  6347. const int nth = params->nth;
  6348. const int64_t ne00 = src0->ne[0];
  6349. const int64_t ne01 = src0->ne[1];
  6350. const int64_t ne02 = src0->ne[2];
  6351. const int64_t ne03 = src0->ne[3];
  6352. const size_t nb01 = src0->nb[1];
  6353. const size_t nb02 = src0->nb[2];
  6354. const size_t nb03 = src0->nb[3];
  6355. const size_t nb1 = dst->nb[1];
  6356. const size_t nb2 = dst->nb[2];
  6357. const size_t nb3 = dst->nb[3];
  6358. const float eps = 1e-6f; // TODO: make this a parameter
  6359. // TODO: optimize
  6360. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6361. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6362. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  6363. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6364. ggml_float sum = 0.0;
  6365. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6366. sum += (ggml_float)(x[i00] * x[i00]);
  6367. }
  6368. float mean = sum/ne00;
  6369. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  6370. memcpy(y, x, ne00 * sizeof(float));
  6371. // for (int i00 = 0; i00 < ne00; i00++) {
  6372. // y[i00] = x[i00];
  6373. // }
  6374. const float scale = 1.0f/sqrtf(mean + eps);
  6375. ggml_vec_scale_f32(ne00, y, scale);
  6376. }
  6377. }
  6378. }
  6379. }
  6380. static void ggml_compute_forward_rms_norm(
  6381. const struct ggml_compute_params * params,
  6382. const struct ggml_tensor * src0,
  6383. struct ggml_tensor * dst) {
  6384. switch (src0->type) {
  6385. case GGML_TYPE_F32:
  6386. {
  6387. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  6388. } break;
  6389. default:
  6390. {
  6391. GGML_ASSERT(false);
  6392. } break;
  6393. }
  6394. }
  6395. // ggml_compute_forward_mul_mat
  6396. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  6397. // helper function to determine if it is better to use BLAS or not
  6398. // for large matrices, BLAS is faster
  6399. static bool ggml_compute_forward_mul_mat_use_blas(
  6400. const struct ggml_tensor * src0,
  6401. const struct ggml_tensor * src1,
  6402. struct ggml_tensor * dst) {
  6403. //const int64_t ne00 = src0->ne[0];
  6404. //const int64_t ne01 = src0->ne[1];
  6405. const int64_t ne10 = src1->ne[0];
  6406. const int64_t ne0 = dst->ne[0];
  6407. const int64_t ne1 = dst->ne[1];
  6408. // TODO: find the optimal values for these
  6409. if (
  6410. #if !defined(GGML_USE_CUBLAS)
  6411. ggml_is_contiguous(src0) &&
  6412. ggml_is_contiguous(src1) &&
  6413. #endif
  6414. ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  6415. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  6416. return true;
  6417. }
  6418. return false;
  6419. }
  6420. #endif
  6421. static void ggml_compute_forward_mul_mat_f32(
  6422. const struct ggml_compute_params * params,
  6423. const struct ggml_tensor * src0,
  6424. const struct ggml_tensor * src1,
  6425. struct ggml_tensor * dst) {
  6426. int64_t t0 = ggml_perf_time_us();
  6427. UNUSED(t0);
  6428. const int64_t ne00 = src0->ne[0];
  6429. const int64_t ne01 = src0->ne[1];
  6430. const int64_t ne02 = src0->ne[2];
  6431. const int64_t ne03 = src0->ne[3];
  6432. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  6433. const int64_t ne10 = src1->ne[0];
  6434. #endif
  6435. const int64_t ne11 = src1->ne[1];
  6436. #ifndef NDEBUG
  6437. const int64_t ne12 = src1->ne[2];
  6438. const int64_t ne13 = src1->ne[3];
  6439. const int64_t ne0 = dst->ne[0];
  6440. const int64_t ne1 = dst->ne[1];
  6441. const int64_t ne2 = dst->ne[2];
  6442. const int64_t ne3 = dst->ne[3];
  6443. const int nb00 = src0->nb[0];
  6444. #endif
  6445. const int nb01 = src0->nb[1];
  6446. const int nb02 = src0->nb[2];
  6447. const int nb03 = src0->nb[3];
  6448. #ifndef NDEBUG
  6449. const int nb10 = src1->nb[0];
  6450. #endif
  6451. const int nb11 = src1->nb[1];
  6452. const int nb12 = src1->nb[2];
  6453. const int nb13 = src1->nb[3];
  6454. const int nb0 = dst->nb[0];
  6455. const int nb1 = dst->nb[1];
  6456. const int nb2 = dst->nb[2];
  6457. const int nb3 = dst->nb[3];
  6458. const int ith = params->ith;
  6459. const int nth = params->nth;
  6460. assert(ne02 == ne12);
  6461. assert(ne03 == ne13);
  6462. assert(ne2 == ne12);
  6463. assert(ne3 == ne13);
  6464. // we don't support permuted src0 or src1
  6465. assert(nb00 == sizeof(float));
  6466. assert(nb10 == sizeof(float));
  6467. // dst cannot be transposed or permuted
  6468. assert(nb0 == sizeof(float));
  6469. assert(nb0 <= nb1);
  6470. assert(nb1 <= nb2);
  6471. assert(nb2 <= nb3);
  6472. assert(ne0 == ne01);
  6473. assert(ne1 == ne11);
  6474. assert(ne2 == ne02);
  6475. assert(ne3 == ne03);
  6476. // nb01 >= nb00 - src0 is not transposed
  6477. // compute by src0 rows
  6478. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  6479. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6480. if (params->ith != 0) {
  6481. return;
  6482. }
  6483. if (params->type == GGML_TASK_INIT) {
  6484. return;
  6485. }
  6486. if (params->type == GGML_TASK_FINALIZE) {
  6487. return;
  6488. }
  6489. #if defined(GGML_USE_CUBLAS)
  6490. const float alpha = 1.0f;
  6491. const float beta = 0.0f;
  6492. const int x_ne = ne01 * ne00;
  6493. const int y_ne = ne11 * ne10;
  6494. const int d_ne = ne11 * ne01;
  6495. size_t x_size, y_size, d_size;
  6496. float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
  6497. float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
  6498. float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
  6499. #endif
  6500. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6501. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6502. #if !defined(GGML_USE_CUBLAS)
  6503. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  6504. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6505. #endif
  6506. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6507. #if defined(GGML_USE_CUBLAS)
  6508. // copy data to device
  6509. CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_X, src0, i03, i02, g_cudaStream));
  6510. CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_Y, src1, i03, i02, g_cudaStream));
  6511. // compute
  6512. CUBLAS_CHECK(
  6513. cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6514. ne01, ne11, ne10,
  6515. &alpha, d_X, ne00,
  6516. d_Y, ne10,
  6517. &beta, d_D, ne01));
  6518. // copy data to host
  6519. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
  6520. #elif defined(GGML_USE_CLBLAST)
  6521. // zT = y * xT
  6522. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  6523. ne11, ne01, ne10,
  6524. 1.0f, y, ne10,
  6525. x, ne10,
  6526. 0.0f, d, ne01,
  6527. GGML_TYPE_F32);
  6528. #else
  6529. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6530. ne11, ne01, ne10,
  6531. 1.0f, y, ne10,
  6532. x, ne00,
  6533. 0.0f, d, ne01);
  6534. #endif
  6535. }
  6536. }
  6537. #if defined(GGML_USE_CUBLAS)
  6538. CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
  6539. ggml_cuda_pool_free(d_X, x_size);
  6540. ggml_cuda_pool_free(d_Y, y_size);
  6541. ggml_cuda_pool_free(d_D, d_size);
  6542. #endif
  6543. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  6544. return;
  6545. }
  6546. #endif
  6547. if (params->type == GGML_TASK_INIT) {
  6548. return;
  6549. }
  6550. if (params->type == GGML_TASK_FINALIZE) {
  6551. return;
  6552. }
  6553. // parallelize by src0 rows using ggml_vec_dot_f32
  6554. // total rows in src0
  6555. const int nr = ne01*ne02*ne03;
  6556. // rows per thread
  6557. const int dr = (nr + nth - 1)/nth;
  6558. // row range for this thread
  6559. const int ir0 = dr*ith;
  6560. const int ir1 = MIN(ir0 + dr, nr);
  6561. for (int ir = ir0; ir < ir1; ++ir) {
  6562. // src0 indices
  6563. const int i03 = ir/(ne02*ne01);
  6564. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6565. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6566. for (int64_t ic = 0; ic < ne11; ++ic) {
  6567. // src1 indices
  6568. const int i13 = i03;
  6569. const int i12 = i02;
  6570. const int i11 = ic;
  6571. // dst indices
  6572. const int i0 = i01;
  6573. const int i1 = i11;
  6574. const int i2 = i02;
  6575. const int i3 = i03;
  6576. ggml_vec_dot_f32(ne00,
  6577. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6578. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  6579. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  6580. }
  6581. }
  6582. //int64_t t1 = ggml_perf_time_us();
  6583. //static int64_t acc = 0;
  6584. //acc += t1 - t0;
  6585. //if (t1 - t0 > 10) {
  6586. // printf("\n");
  6587. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6588. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6589. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6590. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  6591. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6592. //}
  6593. }
  6594. static void ggml_compute_forward_mul_mat_f16_f32(
  6595. const struct ggml_compute_params * params,
  6596. const struct ggml_tensor * src0,
  6597. const struct ggml_tensor * src1,
  6598. struct ggml_tensor * dst) {
  6599. int64_t t0 = ggml_perf_time_us();
  6600. UNUSED(t0);
  6601. const int64_t ne00 = src0->ne[0];
  6602. const int64_t ne01 = src0->ne[1];
  6603. const int64_t ne02 = src0->ne[2];
  6604. const int64_t ne03 = src0->ne[3];
  6605. const int64_t ne10 = src1->ne[0];
  6606. const int64_t ne11 = src1->ne[1];
  6607. const int64_t ne12 = src1->ne[2];
  6608. const int64_t ne13 = src1->ne[3];
  6609. const int64_t ne0 = dst->ne[0];
  6610. const int64_t ne1 = dst->ne[1];
  6611. const int64_t ne2 = dst->ne[2];
  6612. const int64_t ne3 = dst->ne[3];
  6613. //const int64_t ne = ne0*ne1*ne2*ne3;
  6614. const int nb00 = src0->nb[0];
  6615. const int nb01 = src0->nb[1];
  6616. const int nb02 = src0->nb[2];
  6617. const int nb03 = src0->nb[3];
  6618. const int nb10 = src1->nb[0];
  6619. const int nb11 = src1->nb[1];
  6620. const int nb12 = src1->nb[2];
  6621. const int nb13 = src1->nb[3];
  6622. const int nb0 = dst->nb[0];
  6623. const int nb1 = dst->nb[1];
  6624. const int nb2 = dst->nb[2];
  6625. const int nb3 = dst->nb[3];
  6626. const int ith = params->ith;
  6627. const int nth = params->nth;
  6628. GGML_ASSERT(ne02 == ne12);
  6629. GGML_ASSERT(ne03 == ne13);
  6630. GGML_ASSERT(ne2 == ne12);
  6631. GGML_ASSERT(ne3 == ne13);
  6632. // TODO: we don't support permuted src0
  6633. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6634. // dst cannot be transposed or permuted
  6635. GGML_ASSERT(nb0 == sizeof(float));
  6636. GGML_ASSERT(nb0 <= nb1);
  6637. GGML_ASSERT(nb1 <= nb2);
  6638. GGML_ASSERT(nb2 <= nb3);
  6639. GGML_ASSERT(ne0 == ne01);
  6640. GGML_ASSERT(ne1 == ne11);
  6641. GGML_ASSERT(ne2 == ne02);
  6642. GGML_ASSERT(ne3 == ne03);
  6643. // nb01 >= nb00 - src0 is not transposed
  6644. // compute by src0 rows
  6645. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  6646. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6647. GGML_ASSERT(nb10 == sizeof(float));
  6648. if (params->ith != 0) {
  6649. return;
  6650. }
  6651. if (params->type == GGML_TASK_INIT) {
  6652. return;
  6653. }
  6654. if (params->type == GGML_TASK_FINALIZE) {
  6655. return;
  6656. }
  6657. #if defined(GGML_USE_CUBLAS)
  6658. const float alpha = 1.0f;
  6659. const float beta = 0.0f;
  6660. const int x_ne = ne01 * ne00;
  6661. const int y_ne = ne11 * ne10;
  6662. const int d_ne = ne11 * ne01;
  6663. size_t x_size, y_size, d_size;
  6664. ggml_fp16_t * d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
  6665. ggml_fp16_t * d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
  6666. float * d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
  6667. #else
  6668. float * const wdata = params->wdata;
  6669. #endif
  6670. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6671. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6672. #if defined(GGML_USE_CUBLAS)
  6673. // copy src0 while converting src1
  6674. CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_X, src0, i03, i02, g_cudaStream));
  6675. // with cuBlAS, instead of converting src0 to fp32, we convert src1 to fp16
  6676. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + (ne11 * ne10) * (i03 * ne02 + i02);
  6677. {
  6678. size_t id = 0;
  6679. for (int64_t i01 = 0; i01 < ne11; ++i01) {
  6680. for (int64_t i00 = 0; i00 < ne10; ++i00) {
  6681. wdata[id++] = GGML_FP32_TO_FP16(*(float *) ((char *) src1->data + i03*nb13 + i02*nb12 + i01*nb11 + i00*nb10));
  6682. }
  6683. }
  6684. }
  6685. #else
  6686. {
  6687. size_t id = 0;
  6688. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6689. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  6690. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  6691. }
  6692. }
  6693. }
  6694. #endif
  6695. #if defined(GGML_USE_CUBLAS)
  6696. const ggml_fp16_t * y = (ggml_fp16_t *) wdata;
  6697. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6698. // copy data to device
  6699. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(ggml_fp16_t) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6700. // compute
  6701. CUBLAS_CHECK(
  6702. cublasGemmEx(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6703. ne01, ne11, ne10,
  6704. &alpha, d_X, CUDA_R_16F, ne00,
  6705. d_Y, CUDA_R_16F, ne10,
  6706. &beta, d_D, CUDA_R_32F, ne01,
  6707. CUBLAS_COMPUTE_32F,
  6708. CUBLAS_GEMM_DEFAULT));
  6709. // copy data to host
  6710. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
  6711. #elif defined(GGML_USE_CLBLAST)
  6712. const float * x = wdata;
  6713. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6714. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6715. // zT = y * xT
  6716. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  6717. ne11, ne01, ne10,
  6718. 1.0f, y, ne10,
  6719. x, ne10,
  6720. 0.0f, d, ne01,
  6721. GGML_TYPE_F32);
  6722. #else
  6723. const float * x = wdata;
  6724. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6725. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6726. // zT = y * xT
  6727. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6728. ne11, ne01, ne10,
  6729. 1.0f, y, ne10,
  6730. x, ne00,
  6731. 0.0f, d, ne01);
  6732. #endif
  6733. }
  6734. }
  6735. #if defined(GGML_USE_CUBLAS)
  6736. CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
  6737. ggml_cuda_pool_free(d_X, x_size);
  6738. ggml_cuda_pool_free(d_Y, y_size);
  6739. ggml_cuda_pool_free(d_D, d_size);
  6740. #endif
  6741. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  6742. return;
  6743. }
  6744. #endif
  6745. if (params->type == GGML_TASK_INIT) {
  6746. ggml_fp16_t * const wdata = params->wdata;
  6747. size_t id = 0;
  6748. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6749. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6750. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6751. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  6752. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  6753. }
  6754. }
  6755. }
  6756. }
  6757. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  6758. return;
  6759. }
  6760. if (params->type == GGML_TASK_FINALIZE) {
  6761. return;
  6762. }
  6763. // fp16 -> half the size, so divide by 2
  6764. // TODO: do not support transposed src1
  6765. assert(nb10/2 == sizeof(ggml_fp16_t));
  6766. // parallelize by src0 rows using ggml_vec_dot_f16
  6767. // total rows in src0
  6768. const int nr = ne01*ne02*ne03;
  6769. // rows per thread
  6770. const int dr = (nr + nth - 1)/nth;
  6771. // row range for this thread
  6772. const int ir0 = dr*ith;
  6773. const int ir1 = MIN(ir0 + dr, nr);
  6774. ggml_fp16_t * wdata = params->wdata;
  6775. for (int ir = ir0; ir < ir1; ++ir) {
  6776. // src0 indices
  6777. const int i03 = ir/(ne02*ne01);
  6778. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6779. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6780. const int i13 = i03;
  6781. const int i12 = i02;
  6782. const int i0 = i01;
  6783. const int i2 = i02;
  6784. const int i3 = i03;
  6785. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6786. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  6787. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  6788. for (int64_t ic = 0; ic < ne11; ++ic) {
  6789. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  6790. }
  6791. }
  6792. //int64_t t1 = ggml_time_us();
  6793. //static int64_t acc = 0;
  6794. //acc += t1 - t0;
  6795. //if (t1 - t0 > 10) {
  6796. // printf("\n");
  6797. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6798. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6799. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6800. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6801. //}
  6802. }
  6803. static void ggml_compute_forward_mul_mat_q_f32(
  6804. const struct ggml_compute_params * params,
  6805. const struct ggml_tensor * src0,
  6806. const struct ggml_tensor * src1,
  6807. struct ggml_tensor * dst) {
  6808. int64_t t0 = ggml_perf_time_us();
  6809. UNUSED(t0);
  6810. const int64_t ne00 = src0->ne[0];
  6811. const int64_t ne01 = src0->ne[1];
  6812. const int64_t ne02 = src0->ne[2];
  6813. const int64_t ne03 = src0->ne[3];
  6814. const int64_t ne10 = src1->ne[0];
  6815. const int64_t ne11 = src1->ne[1];
  6816. const int64_t ne12 = src1->ne[2];
  6817. const int64_t ne13 = src1->ne[3];
  6818. const int64_t ne0 = dst->ne[0];
  6819. const int64_t ne1 = dst->ne[1];
  6820. const int64_t ne2 = dst->ne[2];
  6821. const int64_t ne3 = dst->ne[3];
  6822. const int nb00 = src0->nb[0];
  6823. const int nb01 = src0->nb[1];
  6824. const int nb02 = src0->nb[2];
  6825. const int nb03 = src0->nb[3];
  6826. const int nb10 = src1->nb[0];
  6827. const int nb11 = src1->nb[1];
  6828. const int nb12 = src1->nb[2];
  6829. const int nb13 = src1->nb[3];
  6830. const int nb0 = dst->nb[0];
  6831. const int nb1 = dst->nb[1];
  6832. const int nb2 = dst->nb[2];
  6833. const int nb3 = dst->nb[3];
  6834. const int ith = params->ith;
  6835. const int nth = params->nth;
  6836. GGML_ASSERT(ne02 == ne12);
  6837. GGML_ASSERT(ne03 == ne13);
  6838. GGML_ASSERT(ne2 == ne12);
  6839. GGML_ASSERT(ne3 == ne13);
  6840. const enum ggml_type type = src0->type;
  6841. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  6842. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  6843. enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type;
  6844. // we don't support permuted src0 or src1
  6845. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  6846. GGML_ASSERT(nb10 == sizeof(float));
  6847. // dst cannot be transposed or permuted
  6848. GGML_ASSERT(nb0 == sizeof(float));
  6849. GGML_ASSERT(nb0 <= nb1);
  6850. GGML_ASSERT(nb1 <= nb2);
  6851. GGML_ASSERT(nb2 <= nb3);
  6852. GGML_ASSERT(ne0 == ne01);
  6853. GGML_ASSERT(ne1 == ne11);
  6854. GGML_ASSERT(ne2 == ne02);
  6855. GGML_ASSERT(ne3 == ne03);
  6856. // nb01 >= nb00 - src0 is not transposed
  6857. // compute by src0 rows
  6858. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  6859. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6860. if (params->ith != 0) {
  6861. return;
  6862. }
  6863. if (params->type == GGML_TASK_INIT) {
  6864. return;
  6865. }
  6866. if (params->type == GGML_TASK_FINALIZE) {
  6867. return;
  6868. }
  6869. #if defined(GGML_USE_CUBLAS)
  6870. const float alpha = 1.0f;
  6871. const float beta = 0.0f;
  6872. const int x_ne = ne01 * ne00;
  6873. const int y_ne = ne11 * ne10;
  6874. const int d_ne = ne11 * ne01;
  6875. size_t x_size, y_size, d_size, q_size;
  6876. float * d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
  6877. float * d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
  6878. float * d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
  6879. void * d_Q = ggml_cuda_pool_malloc(GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type], &q_size);
  6880. const dequantize_row_q_cuda_t dequantize_row_q_cuda = ggml_get_dequantize_row_q_cuda(type);
  6881. GGML_ASSERT(dequantize_row_q_cuda != NULL);
  6882. #else
  6883. float * const wdata = params->wdata;
  6884. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6885. #endif
  6886. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6887. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6888. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6889. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6890. #if defined(GGML_USE_CUBLAS)
  6891. // copy and dequantize on device
  6892. CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_Q, src0, i03, i02, g_cudaStream2));
  6893. dequantize_row_q_cuda(d_Q, d_X, x_ne, g_cudaStream2);
  6894. CUDA_CHECK(cudaGetLastError());
  6895. CUDA_CHECK(cudaEventRecord(g_cudaEvent, g_cudaStream2));
  6896. #elif defined(GGML_USE_CLBLAST)
  6897. const void* x = (char *) src0->data + i03*nb03 + i02*nb02;
  6898. #else
  6899. {
  6900. size_t id = 0;
  6901. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6902. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  6903. id += ne00;
  6904. }
  6905. }
  6906. const float * x = wdata;
  6907. #endif
  6908. #if defined(GGML_USE_CUBLAS)
  6909. // copy data to device
  6910. CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_Y, src1, i03, i02, g_cudaStream));
  6911. // wait for dequantization
  6912. CUDA_CHECK(cudaStreamWaitEvent(g_cudaStream, g_cudaEvent, 0));
  6913. // compute
  6914. CUBLAS_CHECK(
  6915. cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6916. ne01, ne11, ne10,
  6917. &alpha, d_X, ne00,
  6918. d_Y, ne10,
  6919. &beta, d_D, ne01));
  6920. // copy data to host
  6921. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
  6922. #elif defined(GGML_USE_CLBLAST)
  6923. // zT = y * xT
  6924. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  6925. ne11, ne01, ne10,
  6926. 1.0f, y, ne10,
  6927. x, ne10,
  6928. 0.0f, d, ne01,
  6929. type);
  6930. #else
  6931. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6932. ne11, ne01, ne10,
  6933. 1.0f, y, ne10,
  6934. x, ne00,
  6935. 0.0f, d, ne01);
  6936. #endif
  6937. }
  6938. }
  6939. #if defined(GGML_USE_CUBLAS)
  6940. CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
  6941. ggml_cuda_pool_free(d_X, x_size);
  6942. ggml_cuda_pool_free(d_Y, y_size);
  6943. ggml_cuda_pool_free(d_D, d_size);
  6944. ggml_cuda_pool_free(d_Q, q_size);
  6945. #endif
  6946. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  6947. return;
  6948. }
  6949. #endif
  6950. if (params->type == GGML_TASK_INIT) {
  6951. char * wdata = params->wdata;
  6952. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  6953. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6954. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6955. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6956. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  6957. wdata += row_size;
  6958. }
  6959. }
  6960. }
  6961. return;
  6962. }
  6963. if (params->type == GGML_TASK_FINALIZE) {
  6964. return;
  6965. }
  6966. // parallelize by src0 rows using ggml_vec_dot_q
  6967. // total rows in src0
  6968. const int nr = ne01*ne02*ne03;
  6969. // rows per thread
  6970. const int dr = (nr + nth - 1)/nth;
  6971. // row range for this thread
  6972. const int ir0 = dr*ith;
  6973. const int ir1 = MIN(ir0 + dr, nr);
  6974. void * wdata = params->wdata;
  6975. const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  6976. for (int ir = ir0; ir < ir1; ++ir) {
  6977. // src0 indices
  6978. const int i03 = ir/(ne02*ne01);
  6979. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6980. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6981. const int i13 = i03;
  6982. const int i12 = i02;
  6983. const int i0 = i01;
  6984. const int i2 = i02;
  6985. const int i3 = i03;
  6986. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6987. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  6988. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  6989. assert(ne00 % 32 == 0);
  6990. for (int64_t ic = 0; ic < ne11; ++ic) {
  6991. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  6992. }
  6993. }
  6994. //int64_t t1 = ggml_time_us();
  6995. //static int64_t acc = 0;
  6996. //acc += t1 - t0;
  6997. //if (t1 - t0 > 10) {
  6998. // printf("\n");
  6999. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  7000. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  7001. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  7002. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  7003. //}
  7004. }
  7005. static void ggml_compute_forward_mul_mat(
  7006. const struct ggml_compute_params * params,
  7007. const struct ggml_tensor * src0,
  7008. const struct ggml_tensor * src1,
  7009. struct ggml_tensor * dst) {
  7010. switch (src0->type) {
  7011. case GGML_TYPE_Q4_0:
  7012. case GGML_TYPE_Q4_1:
  7013. case GGML_TYPE_Q4_2:
  7014. case GGML_TYPE_Q5_0:
  7015. case GGML_TYPE_Q5_1:
  7016. case GGML_TYPE_Q8_0:
  7017. case GGML_TYPE_Q8_1:
  7018. {
  7019. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  7020. } break;
  7021. case GGML_TYPE_F16:
  7022. {
  7023. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  7024. } break;
  7025. case GGML_TYPE_F32:
  7026. {
  7027. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  7028. } break;
  7029. default:
  7030. {
  7031. GGML_ASSERT(false);
  7032. } break;
  7033. }
  7034. }
  7035. // ggml_compute_forward_scale
  7036. static void ggml_compute_forward_scale_f32(
  7037. const struct ggml_compute_params * params,
  7038. const struct ggml_tensor * src0,
  7039. const struct ggml_tensor * src1,
  7040. struct ggml_tensor * dst) {
  7041. GGML_ASSERT(ggml_is_contiguous(src0));
  7042. GGML_ASSERT(ggml_is_contiguous(dst));
  7043. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7044. GGML_ASSERT(ggml_is_scalar(src1));
  7045. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7046. return;
  7047. }
  7048. // scale factor
  7049. const float v = *(float *) src1->data;
  7050. const int ith = params->ith;
  7051. const int nth = params->nth;
  7052. const int nc = src0->ne[0];
  7053. const int nr = ggml_nrows(src0);
  7054. // rows per thread
  7055. const int dr = (nr + nth - 1)/nth;
  7056. // row range for this thread
  7057. const int ir0 = dr*ith;
  7058. const int ir1 = MIN(ir0 + dr, nr);
  7059. for (int i1 = ir0; i1 < ir1; i1++) {
  7060. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  7061. }
  7062. }
  7063. static void ggml_compute_forward_scale(
  7064. const struct ggml_compute_params * params,
  7065. const struct ggml_tensor * src0,
  7066. const struct ggml_tensor * src1,
  7067. struct ggml_tensor * dst) {
  7068. switch (src0->type) {
  7069. case GGML_TYPE_F32:
  7070. {
  7071. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  7072. } break;
  7073. default:
  7074. {
  7075. GGML_ASSERT(false);
  7076. } break;
  7077. }
  7078. }
  7079. // ggml_compute_forward_cpy
  7080. static void ggml_compute_forward_cpy(
  7081. const struct ggml_compute_params * params,
  7082. const struct ggml_tensor * src0,
  7083. struct ggml_tensor * dst) {
  7084. ggml_compute_forward_dup(params, src0, dst);
  7085. }
  7086. // ggml_compute_forward_cont
  7087. static void ggml_compute_forward_cont(
  7088. const struct ggml_compute_params * params,
  7089. const struct ggml_tensor * src0,
  7090. struct ggml_tensor * dst) {
  7091. ggml_compute_forward_dup(params, src0, dst);
  7092. }
  7093. // ggml_compute_forward_reshape
  7094. static void ggml_compute_forward_reshape(
  7095. const struct ggml_compute_params * params,
  7096. const struct ggml_tensor * src0,
  7097. struct ggml_tensor * dst) {
  7098. // NOP
  7099. UNUSED(params);
  7100. UNUSED(src0);
  7101. UNUSED(dst);
  7102. }
  7103. // ggml_compute_forward_view
  7104. static void ggml_compute_forward_view(
  7105. const struct ggml_compute_params * params,
  7106. const struct ggml_tensor * src0) {
  7107. // NOP
  7108. UNUSED(params);
  7109. UNUSED(src0);
  7110. }
  7111. // ggml_compute_forward_permute
  7112. static void ggml_compute_forward_permute(
  7113. const struct ggml_compute_params * params,
  7114. const struct ggml_tensor * src0) {
  7115. // NOP
  7116. UNUSED(params);
  7117. UNUSED(src0);
  7118. }
  7119. // ggml_compute_forward_transpose
  7120. static void ggml_compute_forward_transpose(
  7121. const struct ggml_compute_params * params,
  7122. const struct ggml_tensor * src0) {
  7123. // NOP
  7124. UNUSED(params);
  7125. UNUSED(src0);
  7126. }
  7127. // ggml_compute_forward_get_rows
  7128. static void ggml_compute_forward_get_rows_q(
  7129. const struct ggml_compute_params * params,
  7130. const struct ggml_tensor * src0,
  7131. const struct ggml_tensor * src1,
  7132. struct ggml_tensor * dst) {
  7133. assert(params->ith == 0);
  7134. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7135. return;
  7136. }
  7137. const int nc = src0->ne[0];
  7138. const int nr = ggml_nelements(src1);
  7139. const enum ggml_type type = src0->type;
  7140. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  7141. assert( dst->ne[0] == nc);
  7142. assert( dst->ne[1] == nr);
  7143. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  7144. for (int i = 0; i < nr; ++i) {
  7145. const int r = ((int32_t *) src1->data)[i];
  7146. dequantize_row_q(
  7147. (const void *) ((char *) src0->data + r*src0->nb[1]),
  7148. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  7149. }
  7150. }
  7151. static void ggml_compute_forward_get_rows_f16(
  7152. const struct ggml_compute_params * params,
  7153. const struct ggml_tensor * src0,
  7154. const struct ggml_tensor * src1,
  7155. struct ggml_tensor * dst) {
  7156. assert(params->ith == 0);
  7157. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7158. return;
  7159. }
  7160. const int nc = src0->ne[0];
  7161. const int nr = ggml_nelements(src1);
  7162. assert( dst->ne[0] == nc);
  7163. assert( dst->ne[1] == nr);
  7164. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7165. for (int i = 0; i < nr; ++i) {
  7166. const int r = ((int32_t *) src1->data)[i];
  7167. for (int j = 0; j < nc; ++j) {
  7168. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  7169. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  7170. }
  7171. }
  7172. }
  7173. static void ggml_compute_forward_get_rows_f32(
  7174. const struct ggml_compute_params * params,
  7175. const struct ggml_tensor * src0,
  7176. const struct ggml_tensor * src1,
  7177. struct ggml_tensor * dst) {
  7178. assert(params->ith == 0);
  7179. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7180. return;
  7181. }
  7182. const int nc = src0->ne[0];
  7183. const int nr = ggml_nelements(src1);
  7184. assert( dst->ne[0] == nc);
  7185. assert( dst->ne[1] == nr);
  7186. assert(src0->nb[0] == sizeof(float));
  7187. for (int i = 0; i < nr; ++i) {
  7188. const int r = ((int32_t *) src1->data)[i];
  7189. ggml_vec_cpy_f32(nc,
  7190. (float *) ((char *) dst->data + i*dst->nb[1]),
  7191. (float *) ((char *) src0->data + r*src0->nb[1]));
  7192. }
  7193. }
  7194. static void ggml_compute_forward_get_rows(
  7195. const struct ggml_compute_params * params,
  7196. const struct ggml_tensor * src0,
  7197. const struct ggml_tensor * src1,
  7198. struct ggml_tensor * dst) {
  7199. switch (src0->type) {
  7200. case GGML_TYPE_Q4_0:
  7201. case GGML_TYPE_Q4_1:
  7202. case GGML_TYPE_Q4_2:
  7203. case GGML_TYPE_Q5_0:
  7204. case GGML_TYPE_Q5_1:
  7205. case GGML_TYPE_Q8_0:
  7206. case GGML_TYPE_Q8_1:
  7207. {
  7208. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  7209. } break;
  7210. case GGML_TYPE_F16:
  7211. {
  7212. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  7213. } break;
  7214. case GGML_TYPE_F32:
  7215. {
  7216. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  7217. } break;
  7218. default:
  7219. {
  7220. GGML_ASSERT(false);
  7221. } break;
  7222. }
  7223. //static bool first = true;
  7224. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  7225. //if (first) {
  7226. // first = false;
  7227. //} else {
  7228. // for (int k = 0; k < dst->ne[1]; ++k) {
  7229. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  7230. // for (int i = 0; i < 16; ++i) {
  7231. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  7232. // }
  7233. // printf("\n");
  7234. // }
  7235. // printf("\n");
  7236. // }
  7237. // printf("\n");
  7238. // exit(0);
  7239. //}
  7240. }
  7241. // ggml_compute_forward_diag_mask_inf
  7242. static void ggml_compute_forward_diag_mask_inf_f32(
  7243. const struct ggml_compute_params * params,
  7244. const struct ggml_tensor * src0,
  7245. const struct ggml_tensor * src1,
  7246. struct ggml_tensor * dst) {
  7247. assert(params->ith == 0);
  7248. assert(src1->type == GGML_TYPE_I32);
  7249. assert(ggml_nelements(src1) == 1);
  7250. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7251. return;
  7252. }
  7253. const int n_past = ((int32_t *) src1->data)[0];
  7254. // TODO: handle transposed/permuted matrices
  7255. const int n = ggml_nrows(src0);
  7256. const int nc = src0->ne[0];
  7257. const int nr = src0->ne[1];
  7258. const int nz = n/nr;
  7259. assert( dst->nb[0] == sizeof(float));
  7260. assert(src0->nb[0] == sizeof(float));
  7261. for (int k = 0; k < nz; k++) {
  7262. for (int j = 0; j < nr; j++) {
  7263. for (int i = n_past; i < nc; i++) {
  7264. if (i > n_past + j) {
  7265. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  7266. }
  7267. }
  7268. }
  7269. }
  7270. }
  7271. static void ggml_compute_forward_diag_mask_inf(
  7272. const struct ggml_compute_params * params,
  7273. const struct ggml_tensor * src0,
  7274. const struct ggml_tensor * src1,
  7275. struct ggml_tensor * dst) {
  7276. switch (src0->type) {
  7277. case GGML_TYPE_F32:
  7278. {
  7279. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  7280. } break;
  7281. default:
  7282. {
  7283. GGML_ASSERT(false);
  7284. } break;
  7285. }
  7286. }
  7287. // ggml_compute_forward_soft_max
  7288. static void ggml_compute_forward_soft_max_f32(
  7289. const struct ggml_compute_params * params,
  7290. const struct ggml_tensor * src0,
  7291. struct ggml_tensor * dst) {
  7292. GGML_ASSERT(ggml_is_contiguous(src0));
  7293. GGML_ASSERT(ggml_is_contiguous(dst));
  7294. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7295. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7296. return;
  7297. }
  7298. // TODO: handle transposed/permuted matrices
  7299. const int ith = params->ith;
  7300. const int nth = params->nth;
  7301. const int nc = src0->ne[0];
  7302. const int nr = ggml_nrows(src0);
  7303. // rows per thread
  7304. const int dr = (nr + nth - 1)/nth;
  7305. // row range for this thread
  7306. const int ir0 = dr*ith;
  7307. const int ir1 = MIN(ir0 + dr, nr);
  7308. for (int i1 = ir0; i1 < ir1; i1++) {
  7309. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  7310. #ifndef NDEBUG
  7311. for (int i = 0; i < nc; ++i) {
  7312. //printf("p[%d] = %f\n", i, p[i]);
  7313. assert(!isnan(p[i]));
  7314. }
  7315. #endif
  7316. float max = -INFINITY;
  7317. ggml_vec_max_f32(nc, &max, p);
  7318. ggml_float sum = 0.0;
  7319. uint16_t scvt;
  7320. for (int i = 0; i < nc; i++) {
  7321. //printf("p[%3d] = %8.4f\n", i, p[i]);
  7322. if (p[i] == -INFINITY) {
  7323. p[i] = 0.0f;
  7324. } else {
  7325. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  7326. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  7327. memcpy(&scvt, &s, sizeof(scvt));
  7328. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  7329. sum += (ggml_float)val;
  7330. p[i] = val;
  7331. }
  7332. }
  7333. assert(sum > 0.0);
  7334. sum = 1.0/sum;
  7335. ggml_vec_scale_f32(nc, p, sum);
  7336. #ifndef NDEBUG
  7337. for (int i = 0; i < nc; ++i) {
  7338. assert(!isnan(p[i]));
  7339. assert(!isinf(p[i]));
  7340. }
  7341. #endif
  7342. }
  7343. }
  7344. static void ggml_compute_forward_soft_max(
  7345. const struct ggml_compute_params * params,
  7346. const struct ggml_tensor * src0,
  7347. struct ggml_tensor * dst) {
  7348. switch (src0->type) {
  7349. case GGML_TYPE_F32:
  7350. {
  7351. ggml_compute_forward_soft_max_f32(params, src0, dst);
  7352. } break;
  7353. default:
  7354. {
  7355. GGML_ASSERT(false);
  7356. } break;
  7357. }
  7358. }
  7359. // ggml_compute_forward_alibi
  7360. static void ggml_compute_forward_alibi_f32(
  7361. const struct ggml_compute_params * params,
  7362. const struct ggml_tensor * src0,
  7363. const struct ggml_tensor * src1,
  7364. struct ggml_tensor * dst) {
  7365. assert(params->ith == 0);
  7366. assert(src1->type == GGML_TYPE_I32);
  7367. assert(ggml_nelements(src1) == 2);
  7368. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7369. return;
  7370. }
  7371. const int n_past = ((int32_t *) src1->data)[0];
  7372. const int n_head = ((int32_t *) src1->data)[1];
  7373. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  7374. const int ne1 = src0->ne[1]; // seq_len_without_past
  7375. //const int ne2 = src0->ne[2]; // n_head -> this is k
  7376. //const int ne3 = src0->ne[3]; // 1 -> bsz
  7377. const int n = ggml_nrows(src0);
  7378. const int ne2_ne3 = n/ne1; // ne2*ne3
  7379. const int nb0 = src0->nb[0];
  7380. const int nb1 = src0->nb[1];
  7381. const int nb2 = src0->nb[2];
  7382. //const int nb3 = src0->nb[3];
  7383. assert(nb0 == sizeof(float));
  7384. assert(ne1+n_past == ne0);
  7385. // add alibi to src0 (KQ_scaled)
  7386. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  7387. const float m0 = powf(2.0f, -8.0f / n_heads_log2_floor);
  7388. const float m1 = powf(2.0f, -4.0f / n_heads_log2_floor);
  7389. for (int i = 0; i < ne0; i++) {
  7390. for (int j = 0; j < ne1; j++) {
  7391. for (int k = 0; k < ne2_ne3; k++) {
  7392. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  7393. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  7394. // TODO: k*nb2 or k*nb3
  7395. float m_k;
  7396. if (k < n_heads_log2_floor) {
  7397. m_k = powf(m0, k + 1);
  7398. } else {
  7399. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  7400. }
  7401. pdst[0] = (j+1) * m_k + src[0];
  7402. }
  7403. }
  7404. }
  7405. }
  7406. static void ggml_compute_forward_alibi_f16(
  7407. const struct ggml_compute_params * params,
  7408. const struct ggml_tensor * src0,
  7409. const struct ggml_tensor * src1,
  7410. struct ggml_tensor * dst) {
  7411. assert(params->ith == 0);
  7412. assert(src1->type == GGML_TYPE_I32);
  7413. assert(ggml_nelements(src1) == 2);
  7414. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7415. return;
  7416. }
  7417. const int n_past = ((int32_t *) src1->data)[0];
  7418. const int n_head = ((int32_t *) src1->data)[1];
  7419. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  7420. const int ne1 = src0->ne[1]; // seq_len_without_past
  7421. //const int ne2 = src0->ne[2]; // n_head -> this is k
  7422. //const int ne3 = src0->ne[3]; // 1 -> bsz
  7423. const int n = ggml_nrows(src0);
  7424. const int ne2_ne3 = n/ne1; // ne2*ne3
  7425. const int nb0 = src0->nb[0];
  7426. const int nb1 = src0->nb[1];
  7427. const int nb2 = src0->nb[2];
  7428. //const int nb3 = src0->nb[3];
  7429. assert(nb0 == sizeof(ggml_fp16_t));
  7430. assert(ne1+n_past == ne0);
  7431. // add alibi to src0 (KQ_scaled)
  7432. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  7433. const float m0 = powf(2.0f, -8.0f / n_heads_log2_floor);
  7434. const float m1 = powf(2.0f, -4.0f / n_heads_log2_floor);
  7435. for (int i = 0; i < ne0; i++) {
  7436. for (int j = 0; j < ne1; j++) {
  7437. for (int k = 0; k < ne2_ne3; k++) {
  7438. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  7439. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  7440. // TODO: k*nb2 or k*nb3
  7441. float m_k;
  7442. if (k < n_heads_log2_floor) {
  7443. m_k = powf(m0, k + 1);
  7444. } else {
  7445. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  7446. }
  7447. // we return F32
  7448. pdst[0] = (j+1) * m_k + GGML_FP16_TO_FP32(src[0]);
  7449. }
  7450. }
  7451. }
  7452. }
  7453. static void ggml_compute_forward_alibi(
  7454. const struct ggml_compute_params * params,
  7455. const struct ggml_tensor * src0,
  7456. const struct ggml_tensor * src1,
  7457. struct ggml_tensor * dst) {
  7458. switch (src0->type) {
  7459. case GGML_TYPE_F16:
  7460. {
  7461. ggml_compute_forward_alibi_f16(params, src0, src1, dst);
  7462. } break;
  7463. case GGML_TYPE_F32:
  7464. {
  7465. ggml_compute_forward_alibi_f32(params, src0, src1, dst);
  7466. } break;
  7467. case GGML_TYPE_Q4_0:
  7468. case GGML_TYPE_Q4_1:
  7469. case GGML_TYPE_Q4_2:
  7470. case GGML_TYPE_Q5_0:
  7471. case GGML_TYPE_Q5_1:
  7472. case GGML_TYPE_Q8_0:
  7473. case GGML_TYPE_Q8_1:
  7474. case GGML_TYPE_I8:
  7475. case GGML_TYPE_I16:
  7476. case GGML_TYPE_I32:
  7477. case GGML_TYPE_COUNT:
  7478. {
  7479. GGML_ASSERT(false);
  7480. } break;
  7481. }
  7482. }
  7483. // ggml_compute_forward_rope
  7484. static void ggml_compute_forward_rope_f32(
  7485. const struct ggml_compute_params * params,
  7486. const struct ggml_tensor * src0,
  7487. const struct ggml_tensor * src1,
  7488. struct ggml_tensor * dst) {
  7489. assert(src1->type == GGML_TYPE_I32);
  7490. assert(ggml_nelements(src1) == 3);
  7491. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7492. return;
  7493. }
  7494. const int n_past = ((int32_t *) src1->data)[0];
  7495. const int n_dims = ((int32_t *) src1->data)[1];
  7496. const int mode = ((int32_t *) src1->data)[2];
  7497. //const int64_t ne0 = src0->ne[0];
  7498. const int64_t ne1 = src0->ne[1];
  7499. const int64_t ne2 = src0->ne[2];
  7500. const int64_t ne3 = src0->ne[3];
  7501. const int nb0 = src0->nb[0];
  7502. const int nb1 = src0->nb[1];
  7503. const int nb2 = src0->nb[2];
  7504. const int nb3 = src0->nb[3];
  7505. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7506. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7507. assert(nb0 == sizeof(float));
  7508. const int ith = params->ith;
  7509. const int nth = params->nth;
  7510. const int nr = ggml_nrows(src0);
  7511. // rows per thread
  7512. const int dr = (nr + nth - 1)/nth;
  7513. // row range for this thread
  7514. const int ir0 = dr*ith;
  7515. const int ir1 = MIN(ir0 + dr, nr);
  7516. // row index used to determine which thread to use
  7517. int ir = 0;
  7518. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  7519. const bool is_neox = mode & 2;
  7520. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7521. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  7522. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  7523. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7524. if (ir++ < ir0) continue;
  7525. if (ir > ir1) break;
  7526. float theta = (float)p;
  7527. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  7528. const float cos_theta = cosf(theta);
  7529. const float sin_theta = sinf(theta);
  7530. theta *= theta_scale;
  7531. if (!is_neox) {
  7532. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7533. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7534. const float x0 = src[0];
  7535. const float x1 = src[1];
  7536. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7537. dst_data[1] = x0*sin_theta + x1*cos_theta;
  7538. } else {
  7539. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7540. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7541. const float x0 = src[0];
  7542. const float x1 = src[n_dims/2];
  7543. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7544. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  7545. }
  7546. }
  7547. }
  7548. }
  7549. }
  7550. }
  7551. static void ggml_compute_forward_rope_f16(
  7552. const struct ggml_compute_params * params,
  7553. const struct ggml_tensor * src0,
  7554. const struct ggml_tensor * src1,
  7555. struct ggml_tensor * dst) {
  7556. assert(src1->type == GGML_TYPE_I32);
  7557. assert(ggml_nelements(src1) == 3);
  7558. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7559. return;
  7560. }
  7561. const int n_past = ((int32_t *) src1->data)[0];
  7562. const int n_dims = ((int32_t *) src1->data)[1];
  7563. const int mode = ((int32_t *) src1->data)[2];
  7564. //const int64_t ne0 = src0->ne[0];
  7565. const int64_t ne1 = src0->ne[1];
  7566. const int64_t ne2 = src0->ne[2];
  7567. const int64_t ne3 = src0->ne[3];
  7568. const int nb0 = src0->nb[0];
  7569. const int nb1 = src0->nb[1];
  7570. const int nb2 = src0->nb[2];
  7571. const int nb3 = src0->nb[3];
  7572. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7573. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7574. assert(nb0 == sizeof(ggml_fp16_t));
  7575. const int ith = params->ith;
  7576. const int nth = params->nth;
  7577. const int nr = ggml_nrows(src0);
  7578. // rows per thread
  7579. const int dr = (nr + nth - 1)/nth;
  7580. // row range for this thread
  7581. const int ir0 = dr*ith;
  7582. const int ir1 = MIN(ir0 + dr, nr);
  7583. // row index used to determine which thread to use
  7584. int ir = 0;
  7585. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  7586. const bool is_neox = mode & 2;
  7587. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7588. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  7589. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  7590. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7591. if (ir++ < ir0) continue;
  7592. if (ir > ir1) break;
  7593. float theta = (float)p;
  7594. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  7595. const float cos_theta = cosf(theta);
  7596. const float sin_theta = sinf(theta);
  7597. theta *= theta_scale;
  7598. if (!is_neox) {
  7599. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7600. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7601. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7602. const float x1 = GGML_FP16_TO_FP32(src[1]);
  7603. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7604. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7605. } else {
  7606. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7607. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7608. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7609. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  7610. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7611. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7612. }
  7613. }
  7614. }
  7615. }
  7616. }
  7617. }
  7618. static void ggml_compute_forward_rope(
  7619. const struct ggml_compute_params * params,
  7620. const struct ggml_tensor * src0,
  7621. const struct ggml_tensor * src1,
  7622. struct ggml_tensor * dst) {
  7623. switch (src0->type) {
  7624. case GGML_TYPE_F16:
  7625. {
  7626. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  7627. } break;
  7628. case GGML_TYPE_F32:
  7629. {
  7630. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  7631. } break;
  7632. default:
  7633. {
  7634. GGML_ASSERT(false);
  7635. } break;
  7636. }
  7637. }
  7638. // ggml_compute_forward_conv_1d_1s
  7639. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  7640. const struct ggml_compute_params * params,
  7641. const struct ggml_tensor * src0,
  7642. const struct ggml_tensor * src1,
  7643. struct ggml_tensor * dst) {
  7644. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7645. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7646. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7647. int64_t t0 = ggml_perf_time_us();
  7648. UNUSED(t0);
  7649. const int64_t ne00 = src0->ne[0];
  7650. const int64_t ne01 = src0->ne[1];
  7651. const int64_t ne02 = src0->ne[2];
  7652. //const int64_t ne03 = src0->ne[3];
  7653. const int64_t ne10 = src1->ne[0];
  7654. const int64_t ne11 = src1->ne[1];
  7655. //const int64_t ne12 = src1->ne[2];
  7656. //const int64_t ne13 = src1->ne[3];
  7657. //const int64_t ne0 = dst->ne[0];
  7658. //const int64_t ne1 = dst->ne[1];
  7659. //const int64_t ne2 = dst->ne[2];
  7660. //const int64_t ne3 = dst->ne[3];
  7661. //const int64_t ne = ne0*ne1*ne2*ne3;
  7662. const int nb00 = src0->nb[0];
  7663. const int nb01 = src0->nb[1];
  7664. const int nb02 = src0->nb[2];
  7665. //const int nb03 = src0->nb[3];
  7666. const int nb10 = src1->nb[0];
  7667. const int nb11 = src1->nb[1];
  7668. //const int nb12 = src1->nb[2];
  7669. //const int nb13 = src1->nb[3];
  7670. //const int nb0 = dst->nb[0];
  7671. const int nb1 = dst->nb[1];
  7672. //const int nb2 = dst->nb[2];
  7673. //const int nb3 = dst->nb[3];
  7674. const int ith = params->ith;
  7675. const int nth = params->nth;
  7676. const int nk = ne00;
  7677. const int nh = nk/2;
  7678. const int ew0 = ggml_up32(ne01);
  7679. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7680. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7681. GGML_ASSERT(nb10 == sizeof(float));
  7682. if (params->type == GGML_TASK_INIT) {
  7683. // TODO: fix this memset (wsize is overestimated)
  7684. memset(params->wdata, 0, params->wsize);
  7685. // prepare kernel data (src0)
  7686. {
  7687. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7688. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7689. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7690. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7691. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7692. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7693. dst_data[i00*ew0 + i01] = src[i00];
  7694. }
  7695. }
  7696. }
  7697. }
  7698. // prepare source data (src1)
  7699. {
  7700. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7701. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7702. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7703. ggml_fp16_t * dst_data = wdata;
  7704. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7705. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7706. }
  7707. }
  7708. }
  7709. return;
  7710. }
  7711. if (params->type == GGML_TASK_FINALIZE) {
  7712. return;
  7713. }
  7714. // total rows in dst
  7715. const int nr = ne02;
  7716. // rows per thread
  7717. const int dr = (nr + nth - 1)/nth;
  7718. // row range for this thread
  7719. const int ir0 = dr*ith;
  7720. const int ir1 = MIN(ir0 + dr, nr);
  7721. for (int i1 = ir0; i1 < ir1; i1++) {
  7722. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7723. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7724. dst_data[i0] = 0;
  7725. for (int k = -nh; k <= nh; k++) {
  7726. float v = 0.0f;
  7727. ggml_vec_dot_f16(ew0, &v,
  7728. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7729. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7730. dst_data[i0] += v;
  7731. }
  7732. }
  7733. }
  7734. }
  7735. static void ggml_compute_forward_conv_1d_1s_f32(
  7736. const struct ggml_compute_params * params,
  7737. const struct ggml_tensor * src0,
  7738. const struct ggml_tensor * src1,
  7739. struct ggml_tensor * dst) {
  7740. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7741. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7742. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7743. int64_t t0 = ggml_perf_time_us();
  7744. UNUSED(t0);
  7745. const int64_t ne00 = src0->ne[0];
  7746. const int64_t ne01 = src0->ne[1];
  7747. const int64_t ne02 = src0->ne[2];
  7748. //const int64_t ne03 = src0->ne[3];
  7749. const int64_t ne10 = src1->ne[0];
  7750. const int64_t ne11 = src1->ne[1];
  7751. //const int64_t ne12 = src1->ne[2];
  7752. //const int64_t ne13 = src1->ne[3];
  7753. //const int64_t ne0 = dst->ne[0];
  7754. //const int64_t ne1 = dst->ne[1];
  7755. //const int64_t ne2 = dst->ne[2];
  7756. //const int64_t ne3 = dst->ne[3];
  7757. //const int64_t ne = ne0*ne1*ne2*ne3;
  7758. const int nb00 = src0->nb[0];
  7759. const int nb01 = src0->nb[1];
  7760. const int nb02 = src0->nb[2];
  7761. //const int nb03 = src0->nb[3];
  7762. const int nb10 = src1->nb[0];
  7763. const int nb11 = src1->nb[1];
  7764. //const int nb12 = src1->nb[2];
  7765. //const int nb13 = src1->nb[3];
  7766. //const int nb0 = dst->nb[0];
  7767. const int nb1 = dst->nb[1];
  7768. //const int nb2 = dst->nb[2];
  7769. //const int nb3 = dst->nb[3];
  7770. const int ith = params->ith;
  7771. const int nth = params->nth;
  7772. const int nk = ne00;
  7773. const int nh = nk/2;
  7774. const int ew0 = ggml_up32(ne01);
  7775. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7776. GGML_ASSERT(nb00 == sizeof(float));
  7777. GGML_ASSERT(nb10 == sizeof(float));
  7778. if (params->type == GGML_TASK_INIT) {
  7779. // TODO: fix this memset (wsize is overestimated)
  7780. memset(params->wdata, 0, params->wsize);
  7781. // prepare kernel data (src0)
  7782. {
  7783. float * const wdata = (float *) params->wdata + 0;
  7784. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7785. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7786. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  7787. float * dst_data = wdata + i02*ew0*ne00;
  7788. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7789. dst_data[i00*ew0 + i01] = src[i00];
  7790. }
  7791. }
  7792. }
  7793. }
  7794. // prepare source data (src1)
  7795. {
  7796. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  7797. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7798. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7799. float * dst_data = wdata;
  7800. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7801. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  7802. }
  7803. }
  7804. }
  7805. return;
  7806. }
  7807. if (params->type == GGML_TASK_FINALIZE) {
  7808. return;
  7809. }
  7810. // total rows in dst
  7811. const int nr = ne02;
  7812. // rows per thread
  7813. const int dr = (nr + nth - 1)/nth;
  7814. // row range for this thread
  7815. const int ir0 = dr*ith;
  7816. const int ir1 = MIN(ir0 + dr, nr);
  7817. for (int i1 = ir0; i1 < ir1; i1++) {
  7818. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7819. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7820. dst_data[i0] = 0;
  7821. for (int k = -nh; k <= nh; k++) {
  7822. float v = 0.0f;
  7823. ggml_vec_dot_f32(ew0, &v,
  7824. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7825. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7826. dst_data[i0] += v;
  7827. }
  7828. }
  7829. }
  7830. }
  7831. static void ggml_compute_forward_conv_1d_1s(
  7832. const struct ggml_compute_params * params,
  7833. const struct ggml_tensor * src0,
  7834. const struct ggml_tensor * src1,
  7835. struct ggml_tensor * dst) {
  7836. switch (src0->type) {
  7837. case GGML_TYPE_F16:
  7838. {
  7839. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  7840. } break;
  7841. case GGML_TYPE_F32:
  7842. {
  7843. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  7844. } break;
  7845. default:
  7846. {
  7847. GGML_ASSERT(false);
  7848. } break;
  7849. }
  7850. }
  7851. // ggml_compute_forward_conv_1d_2s
  7852. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  7853. const struct ggml_compute_params * params,
  7854. const struct ggml_tensor * src0,
  7855. const struct ggml_tensor * src1,
  7856. struct ggml_tensor * dst) {
  7857. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7858. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7859. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7860. int64_t t0 = ggml_perf_time_us();
  7861. UNUSED(t0);
  7862. const int64_t ne00 = src0->ne[0];
  7863. const int64_t ne01 = src0->ne[1];
  7864. const int64_t ne02 = src0->ne[2];
  7865. //const int64_t ne03 = src0->ne[3];
  7866. const int64_t ne10 = src1->ne[0];
  7867. const int64_t ne11 = src1->ne[1];
  7868. //const int64_t ne12 = src1->ne[2];
  7869. //const int64_t ne13 = src1->ne[3];
  7870. //const int64_t ne0 = dst->ne[0];
  7871. //const int64_t ne1 = dst->ne[1];
  7872. //const int64_t ne2 = dst->ne[2];
  7873. //const int64_t ne3 = dst->ne[3];
  7874. //const int64_t ne = ne0*ne1*ne2*ne3;
  7875. const int nb00 = src0->nb[0];
  7876. const int nb01 = src0->nb[1];
  7877. const int nb02 = src0->nb[2];
  7878. //const int nb03 = src0->nb[3];
  7879. const int nb10 = src1->nb[0];
  7880. const int nb11 = src1->nb[1];
  7881. //const int nb12 = src1->nb[2];
  7882. //const int nb13 = src1->nb[3];
  7883. //const int nb0 = dst->nb[0];
  7884. const int nb1 = dst->nb[1];
  7885. //const int nb2 = dst->nb[2];
  7886. //const int nb3 = dst->nb[3];
  7887. const int ith = params->ith;
  7888. const int nth = params->nth;
  7889. const int nk = ne00;
  7890. const int nh = nk/2;
  7891. const int ew0 = ggml_up32(ne01);
  7892. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7893. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7894. GGML_ASSERT(nb10 == sizeof(float));
  7895. if (params->type == GGML_TASK_INIT) {
  7896. // TODO: fix this memset (wsize is overestimated)
  7897. memset(params->wdata, 0, params->wsize);
  7898. // prepare kernel data (src0)
  7899. {
  7900. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7901. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7902. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7903. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7904. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7905. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7906. dst_data[i00*ew0 + i01] = src[i00];
  7907. }
  7908. }
  7909. }
  7910. }
  7911. // prepare source data (src1)
  7912. {
  7913. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7914. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7915. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7916. ggml_fp16_t * dst_data = wdata;
  7917. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7918. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7919. }
  7920. }
  7921. }
  7922. return;
  7923. }
  7924. if (params->type == GGML_TASK_FINALIZE) {
  7925. return;
  7926. }
  7927. // total rows in dst
  7928. const int nr = ne02;
  7929. // rows per thread
  7930. const int dr = (nr + nth - 1)/nth;
  7931. // row range for this thread
  7932. const int ir0 = dr*ith;
  7933. const int ir1 = MIN(ir0 + dr, nr);
  7934. for (int i1 = ir0; i1 < ir1; i1++) {
  7935. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7936. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  7937. dst_data[i0/2] = 0;
  7938. for (int k = -nh; k <= nh; k++) {
  7939. float v = 0.0f;
  7940. ggml_vec_dot_f16(ew0, &v,
  7941. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7942. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7943. dst_data[i0/2] += v;
  7944. }
  7945. }
  7946. }
  7947. }
  7948. static void ggml_compute_forward_conv_1d_2s_f32(
  7949. const struct ggml_compute_params * params,
  7950. const struct ggml_tensor * src0,
  7951. const struct ggml_tensor * src1,
  7952. struct ggml_tensor * dst) {
  7953. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7954. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7955. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7956. int64_t t0 = ggml_perf_time_us();
  7957. UNUSED(t0);
  7958. const int64_t ne00 = src0->ne[0];
  7959. const int64_t ne01 = src0->ne[1];
  7960. const int64_t ne02 = src0->ne[2];
  7961. //const int64_t ne03 = src0->ne[3];
  7962. const int64_t ne10 = src1->ne[0];
  7963. const int64_t ne11 = src1->ne[1];
  7964. //const int64_t ne12 = src1->ne[2];
  7965. //const int64_t ne13 = src1->ne[3];
  7966. //const int64_t ne0 = dst->ne[0];
  7967. //const int64_t ne1 = dst->ne[1];
  7968. //const int64_t ne2 = dst->ne[2];
  7969. //const int64_t ne3 = dst->ne[3];
  7970. //const int64_t ne = ne0*ne1*ne2*ne3;
  7971. const int nb00 = src0->nb[0];
  7972. const int nb01 = src0->nb[1];
  7973. const int nb02 = src0->nb[2];
  7974. //const int nb03 = src0->nb[3];
  7975. const int nb10 = src1->nb[0];
  7976. const int nb11 = src1->nb[1];
  7977. //const int nb12 = src1->nb[2];
  7978. //const int nb13 = src1->nb[3];
  7979. //const int nb0 = dst->nb[0];
  7980. const int nb1 = dst->nb[1];
  7981. //const int nb2 = dst->nb[2];
  7982. //const int nb3 = dst->nb[3];
  7983. const int ith = params->ith;
  7984. const int nth = params->nth;
  7985. const int nk = ne00;
  7986. const int nh = nk/2;
  7987. const int ew0 = ggml_up32(ne01);
  7988. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7989. GGML_ASSERT(nb00 == sizeof(float));
  7990. GGML_ASSERT(nb10 == sizeof(float));
  7991. if (params->type == GGML_TASK_INIT) {
  7992. // TODO: fix this memset (wsize is overestimated)
  7993. memset(params->wdata, 0, params->wsize);
  7994. // prepare kernel data (src0)
  7995. {
  7996. float * const wdata = (float *) params->wdata + 0;
  7997. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7998. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7999. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  8000. float * dst_data = wdata + i02*ew0*ne00;
  8001. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8002. dst_data[i00*ew0 + i01] = src[i00];
  8003. }
  8004. }
  8005. }
  8006. }
  8007. // prepare source data (src1)
  8008. {
  8009. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  8010. for (int64_t i11 = 0; i11 < ne11; i11++) {
  8011. const float * const src = (float *)((char *) src1->data + i11*nb11);
  8012. float * dst_data = wdata;
  8013. for (int64_t i10 = 0; i10 < ne10; i10++) {
  8014. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  8015. }
  8016. }
  8017. }
  8018. return;
  8019. }
  8020. if (params->type == GGML_TASK_FINALIZE) {
  8021. return;
  8022. }
  8023. // total rows in dst
  8024. const int nr = ne02;
  8025. // rows per thread
  8026. const int dr = (nr + nth - 1)/nth;
  8027. // row range for this thread
  8028. const int ir0 = dr*ith;
  8029. const int ir1 = MIN(ir0 + dr, nr);
  8030. for (int i1 = ir0; i1 < ir1; i1++) {
  8031. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  8032. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  8033. dst_data[i0/2] = 0;
  8034. for (int k = -nh; k <= nh; k++) {
  8035. float v = 0.0f;
  8036. ggml_vec_dot_f32(ew0, &v,
  8037. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  8038. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  8039. dst_data[i0/2] += v;
  8040. }
  8041. }
  8042. }
  8043. }
  8044. static void ggml_compute_forward_conv_1d_2s(
  8045. const struct ggml_compute_params * params,
  8046. const struct ggml_tensor * src0,
  8047. const struct ggml_tensor * src1,
  8048. struct ggml_tensor * dst) {
  8049. switch (src0->type) {
  8050. case GGML_TYPE_F16:
  8051. {
  8052. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  8053. } break;
  8054. case GGML_TYPE_F32:
  8055. {
  8056. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  8057. } break;
  8058. default:
  8059. {
  8060. GGML_ASSERT(false);
  8061. } break;
  8062. }
  8063. }
  8064. // ggml_compute_forward_flash_attn
  8065. static void ggml_compute_forward_flash_attn_f32(
  8066. const struct ggml_compute_params * params,
  8067. const struct ggml_tensor * q,
  8068. const struct ggml_tensor * k,
  8069. const struct ggml_tensor * v,
  8070. const bool masked,
  8071. struct ggml_tensor * dst) {
  8072. int64_t t0 = ggml_perf_time_us();
  8073. UNUSED(t0);
  8074. const int64_t neq0 = q->ne[0];
  8075. const int64_t neq1 = q->ne[1];
  8076. const int64_t neq2 = q->ne[2];
  8077. const int64_t neq3 = q->ne[3];
  8078. const int64_t nek0 = k->ne[0];
  8079. const int64_t nek1 = k->ne[1];
  8080. //const int64_t nek2 = k->ne[2];
  8081. //const int64_t nek3 = k->ne[3];
  8082. //const int64_t nev0 = v->ne[0];
  8083. const int64_t nev1 = v->ne[1];
  8084. //const int64_t nev2 = v->ne[2];
  8085. //const int64_t nev3 = v->ne[3];
  8086. const int64_t ne0 = dst->ne[0];
  8087. const int64_t ne1 = dst->ne[1];
  8088. //const int64_t ne2 = dst->ne[2];
  8089. //const int64_t ne3 = dst->ne[3];
  8090. const int nbk0 = k->nb[0];
  8091. const int nbk1 = k->nb[1];
  8092. const int nbk2 = k->nb[2];
  8093. const int nbk3 = k->nb[3];
  8094. const int nbq0 = q->nb[0];
  8095. const int nbq1 = q->nb[1];
  8096. const int nbq2 = q->nb[2];
  8097. const int nbq3 = q->nb[3];
  8098. const int nbv0 = v->nb[0];
  8099. const int nbv1 = v->nb[1];
  8100. const int nbv2 = v->nb[2];
  8101. const int nbv3 = v->nb[3];
  8102. const int nb0 = dst->nb[0];
  8103. const int nb1 = dst->nb[1];
  8104. const int nb2 = dst->nb[2];
  8105. const int nb3 = dst->nb[3];
  8106. const int ith = params->ith;
  8107. const int nth = params->nth;
  8108. const int64_t D = neq0;
  8109. const int64_t N = neq1;
  8110. const int64_t P = nek1 - N;
  8111. const int64_t M = P + N;
  8112. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  8113. GGML_ASSERT(ne0 == D);
  8114. GGML_ASSERT(ne1 == N);
  8115. GGML_ASSERT(P >= 0);
  8116. GGML_ASSERT(nbq0 == sizeof(float));
  8117. GGML_ASSERT(nbk0 == sizeof(float));
  8118. GGML_ASSERT(nbv0 == sizeof(float));
  8119. GGML_ASSERT(neq0 == D);
  8120. GGML_ASSERT(nek0 == D);
  8121. GGML_ASSERT(nev1 == D);
  8122. GGML_ASSERT(neq1 == N);
  8123. GGML_ASSERT(nek1 == N + P);
  8124. GGML_ASSERT(nev1 == D);
  8125. // dst cannot be transposed or permuted
  8126. GGML_ASSERT(nb0 == sizeof(float));
  8127. GGML_ASSERT(nb0 <= nb1);
  8128. GGML_ASSERT(nb1 <= nb2);
  8129. GGML_ASSERT(nb2 <= nb3);
  8130. if (params->type == GGML_TASK_INIT) {
  8131. return;
  8132. }
  8133. if (params->type == GGML_TASK_FINALIZE) {
  8134. return;
  8135. }
  8136. // parallelize by q rows using ggml_vec_dot_f32
  8137. // total rows in q
  8138. const int nr = neq1*neq2*neq3;
  8139. // rows per thread
  8140. const int dr = (nr + nth - 1)/nth;
  8141. // row range for this thread
  8142. const int ir0 = dr*ith;
  8143. const int ir1 = MIN(ir0 + dr, nr);
  8144. const float scale = 1.0f/sqrtf(D);
  8145. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  8146. for (int ir = ir0; ir < ir1; ++ir) {
  8147. // q indices
  8148. const int iq3 = ir/(neq2*neq1);
  8149. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  8150. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  8151. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  8152. for (int i = M; i < Mup; ++i) {
  8153. S[i] = -INFINITY;
  8154. }
  8155. for (int64_t ic = 0; ic < nek1; ++ic) {
  8156. // k indices
  8157. const int ik3 = iq3;
  8158. const int ik2 = iq2;
  8159. const int ik1 = ic;
  8160. // S indices
  8161. const int i1 = ik1;
  8162. ggml_vec_dot_f32(neq0,
  8163. S + i1,
  8164. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  8165. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  8166. }
  8167. // scale
  8168. ggml_vec_scale_f32(nek1, S, scale);
  8169. if (masked) {
  8170. for (int64_t i = P; i < M; i++) {
  8171. if (i > P + iq1) {
  8172. S[i] = -INFINITY;
  8173. }
  8174. }
  8175. }
  8176. // softmax
  8177. {
  8178. float max = -INFINITY;
  8179. ggml_vec_max_f32(M, &max, S);
  8180. ggml_float sum = 0.0;
  8181. {
  8182. #ifdef GGML_SOFT_MAX_ACCELERATE
  8183. max = -max;
  8184. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  8185. vvexpf(S, S, &Mup);
  8186. ggml_vec_sum_f32(Mup, &sum, S);
  8187. #else
  8188. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  8189. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  8190. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  8191. float * SS = S + i;
  8192. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  8193. if (SS[j] == -INFINITY) {
  8194. SS[j] = 0.0f;
  8195. } else {
  8196. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  8197. memcpy(&scvt[j], &s, sizeof(uint16_t));
  8198. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  8199. sump[j] += (ggml_float)val;
  8200. SS[j] = val;
  8201. }
  8202. }
  8203. }
  8204. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  8205. sum += sump[i];
  8206. }
  8207. #endif
  8208. }
  8209. assert(sum > 0.0);
  8210. sum = 1.0/sum;
  8211. ggml_vec_scale_f32(M, S, sum);
  8212. #ifndef NDEBUG
  8213. for (int i = 0; i < M; ++i) {
  8214. assert(!isnan(S[i]));
  8215. assert(!isinf(S[i]));
  8216. }
  8217. #endif
  8218. }
  8219. for (int64_t ic = 0; ic < nev1; ++ic) {
  8220. // dst indices
  8221. const int i1 = iq1;
  8222. const int i2 = iq2;
  8223. const int i3 = iq3;
  8224. ggml_vec_dot_f32(nek1,
  8225. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8226. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  8227. S);
  8228. }
  8229. }
  8230. }
  8231. static void ggml_compute_forward_flash_attn_f16(
  8232. const struct ggml_compute_params * params,
  8233. const struct ggml_tensor * q,
  8234. const struct ggml_tensor * k,
  8235. const struct ggml_tensor * v,
  8236. const bool masked,
  8237. struct ggml_tensor * dst) {
  8238. int64_t t0 = ggml_perf_time_us();
  8239. UNUSED(t0);
  8240. const int64_t neq0 = q->ne[0];
  8241. const int64_t neq1 = q->ne[1];
  8242. const int64_t neq2 = q->ne[2];
  8243. const int64_t neq3 = q->ne[3];
  8244. const int64_t nek0 = k->ne[0];
  8245. const int64_t nek1 = k->ne[1];
  8246. //const int64_t nek2 = k->ne[2];
  8247. //const int64_t nek3 = k->ne[3];
  8248. //const int64_t nev0 = v->ne[0];
  8249. const int64_t nev1 = v->ne[1];
  8250. //const int64_t nev2 = v->ne[2];
  8251. //const int64_t nev3 = v->ne[3];
  8252. const int64_t ne0 = dst->ne[0];
  8253. const int64_t ne1 = dst->ne[1];
  8254. //const int64_t ne2 = dst->ne[2];
  8255. //const int64_t ne3 = dst->ne[3];
  8256. const int nbk0 = k->nb[0];
  8257. const int nbk1 = k->nb[1];
  8258. const int nbk2 = k->nb[2];
  8259. const int nbk3 = k->nb[3];
  8260. const int nbq0 = q->nb[0];
  8261. const int nbq1 = q->nb[1];
  8262. const int nbq2 = q->nb[2];
  8263. const int nbq3 = q->nb[3];
  8264. const int nbv0 = v->nb[0];
  8265. const int nbv1 = v->nb[1];
  8266. const int nbv2 = v->nb[2];
  8267. const int nbv3 = v->nb[3];
  8268. const int nb0 = dst->nb[0];
  8269. const int nb1 = dst->nb[1];
  8270. const int nb2 = dst->nb[2];
  8271. const int nb3 = dst->nb[3];
  8272. const int ith = params->ith;
  8273. const int nth = params->nth;
  8274. const int64_t D = neq0;
  8275. const int64_t N = neq1;
  8276. const int64_t P = nek1 - N;
  8277. const int64_t M = P + N;
  8278. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  8279. GGML_ASSERT(ne0 == D);
  8280. GGML_ASSERT(ne1 == N);
  8281. GGML_ASSERT(P >= 0);
  8282. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  8283. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  8284. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  8285. GGML_ASSERT(neq0 == D);
  8286. GGML_ASSERT(nek0 == D);
  8287. GGML_ASSERT(nev1 == D);
  8288. GGML_ASSERT(neq1 == N);
  8289. GGML_ASSERT(nek1 == N + P);
  8290. GGML_ASSERT(nev1 == D);
  8291. // dst cannot be transposed or permuted
  8292. GGML_ASSERT(nb0 == sizeof(float));
  8293. GGML_ASSERT(nb0 <= nb1);
  8294. GGML_ASSERT(nb1 <= nb2);
  8295. GGML_ASSERT(nb2 <= nb3);
  8296. if (params->type == GGML_TASK_INIT) {
  8297. return;
  8298. }
  8299. if (params->type == GGML_TASK_FINALIZE) {
  8300. return;
  8301. }
  8302. // parallelize by q rows using ggml_vec_dot_f32
  8303. // total rows in q
  8304. const int nr = neq1*neq2*neq3;
  8305. // rows per thread
  8306. const int dr = (nr + nth - 1)/nth;
  8307. // row range for this thread
  8308. const int ir0 = dr*ith;
  8309. const int ir1 = MIN(ir0 + dr, nr);
  8310. const float scale = 1.0f/sqrtf(D);
  8311. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  8312. for (int ir = ir0; ir < ir1; ++ir) {
  8313. // q indices
  8314. const int iq3 = ir/(neq2*neq1);
  8315. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  8316. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  8317. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  8318. for (int i = M; i < Mup; ++i) {
  8319. S[i] = -INFINITY;
  8320. }
  8321. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  8322. for (int64_t ic = 0; ic < nek1; ++ic) {
  8323. // k indices
  8324. const int ik3 = iq3;
  8325. const int ik2 = iq2;
  8326. const int ik1 = ic;
  8327. // S indices
  8328. const int i1 = ik1;
  8329. ggml_vec_dot_f16(neq0,
  8330. S + i1,
  8331. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  8332. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  8333. }
  8334. } else {
  8335. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  8336. // k indices
  8337. const int ik3 = iq3;
  8338. const int ik2 = iq2;
  8339. const int ik1 = ic;
  8340. // S indices
  8341. const int i1 = ik1;
  8342. ggml_vec_dot_f16_unroll(neq0, nbk1,
  8343. S + i1,
  8344. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  8345. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  8346. }
  8347. }
  8348. // scale
  8349. ggml_vec_scale_f32(nek1, S, scale);
  8350. if (masked) {
  8351. for (int64_t i = P; i < M; i++) {
  8352. if (i > P + iq1) {
  8353. S[i] = -INFINITY;
  8354. }
  8355. }
  8356. }
  8357. // softmax
  8358. {
  8359. float max = -INFINITY;
  8360. ggml_vec_max_f32(M, &max, S);
  8361. ggml_float sum = 0.0;
  8362. {
  8363. #ifdef GGML_SOFT_MAX_ACCELERATE
  8364. max = -max;
  8365. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  8366. vvexpf(S, S, &Mup);
  8367. ggml_vec_sum_f32(Mup, &sum, S);
  8368. #else
  8369. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  8370. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  8371. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  8372. float * SS = S + i;
  8373. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  8374. if (SS[j] == -INFINITY) {
  8375. SS[j] = 0.0f;
  8376. } else {
  8377. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  8378. memcpy(&scvt[j], &s, sizeof(uint16_t));
  8379. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  8380. sump[j] += (ggml_float)val;
  8381. SS[j] = val;
  8382. }
  8383. }
  8384. }
  8385. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  8386. sum += sump[i];
  8387. }
  8388. #endif
  8389. }
  8390. assert(sum > 0.0);
  8391. sum = 1.0/sum;
  8392. ggml_vec_scale_f32(M, S, sum);
  8393. #ifndef NDEBUG
  8394. for (int i = 0; i < M; ++i) {
  8395. assert(!isnan(S[i]));
  8396. assert(!isinf(S[i]));
  8397. }
  8398. #endif
  8399. }
  8400. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  8401. for (int64_t i = 0; i < M; i++) {
  8402. S16[i] = GGML_FP32_TO_FP16(S[i]);
  8403. }
  8404. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  8405. for (int64_t ic = 0; ic < nev1; ++ic) {
  8406. // dst indices
  8407. const int i1 = iq1;
  8408. const int i2 = iq2;
  8409. const int i3 = iq3;
  8410. ggml_vec_dot_f16(nek1,
  8411. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8412. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  8413. S16);
  8414. }
  8415. } else {
  8416. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  8417. // dst indices
  8418. const int i1 = iq1;
  8419. const int i2 = iq2;
  8420. const int i3 = iq3;
  8421. ggml_vec_dot_f16_unroll(nek1, nbv1,
  8422. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8423. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  8424. S16);
  8425. }
  8426. }
  8427. }
  8428. }
  8429. static void ggml_compute_forward_flash_attn(
  8430. const struct ggml_compute_params * params,
  8431. const struct ggml_tensor * q,
  8432. const struct ggml_tensor * k,
  8433. const struct ggml_tensor * v,
  8434. const bool masked,
  8435. struct ggml_tensor * dst) {
  8436. switch (q->type) {
  8437. case GGML_TYPE_F16:
  8438. {
  8439. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  8440. } break;
  8441. case GGML_TYPE_F32:
  8442. {
  8443. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  8444. } break;
  8445. default:
  8446. {
  8447. GGML_ASSERT(false);
  8448. } break;
  8449. }
  8450. }
  8451. // ggml_compute_forward_flash_ff
  8452. static void ggml_compute_forward_flash_ff_f16(
  8453. const struct ggml_compute_params * params,
  8454. const struct ggml_tensor * a, // F16
  8455. const struct ggml_tensor * b0, // F16 fc_w
  8456. const struct ggml_tensor * b1, // F32 fc_b
  8457. const struct ggml_tensor * c0, // F16 proj_w
  8458. const struct ggml_tensor * c1, // F32 proj_b
  8459. struct ggml_tensor * dst) {
  8460. int64_t t0 = ggml_perf_time_us();
  8461. UNUSED(t0);
  8462. const int64_t nea0 = a->ne[0];
  8463. const int64_t nea1 = a->ne[1];
  8464. const int64_t nea2 = a->ne[2];
  8465. const int64_t nea3 = a->ne[3];
  8466. const int64_t neb00 = b0->ne[0];
  8467. const int64_t neb01 = b0->ne[1];
  8468. //const int64_t neb02 = b0->ne[2];
  8469. //const int64_t neb03 = b0->ne[3];
  8470. const int64_t neb10 = b1->ne[0];
  8471. const int64_t neb11 = b1->ne[1];
  8472. //const int64_t neb12 = b1->ne[2];
  8473. //const int64_t neb13 = b1->ne[3];
  8474. const int64_t nec00 = c0->ne[0];
  8475. const int64_t nec01 = c0->ne[1];
  8476. //const int64_t nec02 = c0->ne[2];
  8477. //const int64_t nec03 = c0->ne[3];
  8478. const int64_t nec10 = c1->ne[0];
  8479. const int64_t nec11 = c1->ne[1];
  8480. //const int64_t nec12 = c1->ne[2];
  8481. //const int64_t nec13 = c1->ne[3];
  8482. const int64_t ne0 = dst->ne[0];
  8483. const int64_t ne1 = dst->ne[1];
  8484. const int64_t ne2 = dst->ne[2];
  8485. //const int64_t ne3 = dst->ne[3];
  8486. const int nba0 = a->nb[0];
  8487. const int nba1 = a->nb[1];
  8488. const int nba2 = a->nb[2];
  8489. const int nba3 = a->nb[3];
  8490. const int nbb00 = b0->nb[0];
  8491. const int nbb01 = b0->nb[1];
  8492. const int nbb02 = b0->nb[2];
  8493. const int nbb03 = b0->nb[3];
  8494. const int nbb10 = b1->nb[0];
  8495. //const int nbb11 = b1->nb[1];
  8496. //const int nbb12 = b1->nb[2];
  8497. //const int nbb13 = b1->nb[3];
  8498. const int nbc00 = c0->nb[0];
  8499. const int nbc01 = c0->nb[1];
  8500. const int nbc02 = c0->nb[2];
  8501. const int nbc03 = c0->nb[3];
  8502. const int nbc10 = c1->nb[0];
  8503. //const int nbc11 = c1->nb[1];
  8504. //const int nbc12 = c1->nb[2];
  8505. //const int nbc13 = c1->nb[3];
  8506. const int nb0 = dst->nb[0];
  8507. const int nb1 = dst->nb[1];
  8508. const int nb2 = dst->nb[2];
  8509. const int nb3 = dst->nb[3];
  8510. const int ith = params->ith;
  8511. const int nth = params->nth;
  8512. const int64_t D = nea0;
  8513. //const int64_t N = nea1;
  8514. const int64_t M = neb01;
  8515. GGML_ASSERT(ne0 == nea0);
  8516. GGML_ASSERT(ne1 == nea1);
  8517. GGML_ASSERT(ne2 == nea2);
  8518. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  8519. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  8520. GGML_ASSERT(nbb10 == sizeof(float));
  8521. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  8522. GGML_ASSERT(nbc10 == sizeof(float));
  8523. GGML_ASSERT(neb00 == D);
  8524. GGML_ASSERT(neb01 == M);
  8525. GGML_ASSERT(neb10 == M);
  8526. GGML_ASSERT(neb11 == 1);
  8527. GGML_ASSERT(nec00 == M);
  8528. GGML_ASSERT(nec01 == D);
  8529. GGML_ASSERT(nec10 == D);
  8530. GGML_ASSERT(nec11 == 1);
  8531. // dst cannot be transposed or permuted
  8532. GGML_ASSERT(nb0 == sizeof(float));
  8533. GGML_ASSERT(nb0 <= nb1);
  8534. GGML_ASSERT(nb1 <= nb2);
  8535. GGML_ASSERT(nb2 <= nb3);
  8536. if (params->type == GGML_TASK_INIT) {
  8537. return;
  8538. }
  8539. if (params->type == GGML_TASK_FINALIZE) {
  8540. return;
  8541. }
  8542. // parallelize by a rows using ggml_vec_dot_f32
  8543. // total rows in a
  8544. const int nr = nea1*nea2*nea3;
  8545. // rows per thread
  8546. const int dr = (nr + nth - 1)/nth;
  8547. // row range for this thread
  8548. const int ir0 = dr*ith;
  8549. const int ir1 = MIN(ir0 + dr, nr);
  8550. for (int ir = ir0; ir < ir1; ++ir) {
  8551. // a indices
  8552. const int ia3 = ir/(nea2*nea1);
  8553. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  8554. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  8555. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  8556. for (int64_t ic = 0; ic < neb01; ++ic) {
  8557. // b0 indices
  8558. const int ib03 = ia3;
  8559. const int ib02 = ia2;
  8560. const int ib01 = ic;
  8561. // S indices
  8562. const int i1 = ib01;
  8563. ggml_vec_dot_f16(nea0,
  8564. S + i1,
  8565. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  8566. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  8567. }
  8568. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  8569. //ggml_vec_gelu_f32(neb01, S, S);
  8570. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  8571. for (int64_t i = 0; i < M; i++) {
  8572. S16[i] = GGML_FP32_TO_FP16(S[i]);
  8573. }
  8574. ggml_vec_gelu_f16(neb01, S16, S16);
  8575. {
  8576. // dst indices
  8577. const int i1 = ia1;
  8578. const int i2 = ia2;
  8579. const int i3 = ia3;
  8580. for (int64_t ic = 0; ic < nec01; ++ic) {
  8581. ggml_vec_dot_f16(neb01,
  8582. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8583. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  8584. S16);
  8585. }
  8586. ggml_vec_add_f32(nec01,
  8587. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8588. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8589. (float *) c1->data);
  8590. }
  8591. }
  8592. }
  8593. static void ggml_compute_forward_flash_ff(
  8594. const struct ggml_compute_params * params,
  8595. const struct ggml_tensor * a,
  8596. const struct ggml_tensor * b0,
  8597. const struct ggml_tensor * b1,
  8598. const struct ggml_tensor * c0,
  8599. const struct ggml_tensor * c1,
  8600. struct ggml_tensor * dst) {
  8601. switch (b0->type) {
  8602. case GGML_TYPE_F16:
  8603. {
  8604. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  8605. } break;
  8606. case GGML_TYPE_F32:
  8607. {
  8608. GGML_ASSERT(false); // TODO
  8609. } break;
  8610. default:
  8611. {
  8612. GGML_ASSERT(false);
  8613. } break;
  8614. }
  8615. }
  8616. // ggml_compute_forward_map_unary
  8617. static void ggml_compute_forward_map_unary_f32(
  8618. const struct ggml_compute_params * params,
  8619. const struct ggml_tensor * src0,
  8620. struct ggml_tensor * dst,
  8621. const ggml_unary_op_f32_t fun) {
  8622. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8623. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8624. return;
  8625. }
  8626. const int n = ggml_nrows(src0);
  8627. const int nc = src0->ne[0];
  8628. assert( dst->nb[0] == sizeof(float));
  8629. assert(src0->nb[0] == sizeof(float));
  8630. for (int i = 0; i < n; i++) {
  8631. fun(nc,
  8632. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8633. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8634. }
  8635. }
  8636. static void ggml_compute_forward_map_unary(
  8637. const struct ggml_compute_params * params,
  8638. const struct ggml_tensor * src0,
  8639. struct ggml_tensor * dst,
  8640. const ggml_unary_op_f32_t fun) {
  8641. switch (src0->type) {
  8642. case GGML_TYPE_F32:
  8643. {
  8644. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  8645. } break;
  8646. default:
  8647. {
  8648. GGML_ASSERT(false);
  8649. } break;
  8650. }
  8651. }
  8652. // ggml_compute_forward_map_binary
  8653. static void ggml_compute_forward_map_binary_f32(
  8654. const struct ggml_compute_params * params,
  8655. const struct ggml_tensor * src0,
  8656. const struct ggml_tensor * src1,
  8657. struct ggml_tensor * dst,
  8658. const ggml_binary_op_f32_t fun) {
  8659. assert(params->ith == 0);
  8660. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8661. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8662. return;
  8663. }
  8664. const int n = ggml_nrows(src0);
  8665. const int nc = src0->ne[0];
  8666. assert( dst->nb[0] == sizeof(float));
  8667. assert(src0->nb[0] == sizeof(float));
  8668. assert(src1->nb[0] == sizeof(float));
  8669. for (int i = 0; i < n; i++) {
  8670. fun(nc,
  8671. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8672. (float *) ((char *) src0->data + i*(src0->nb[1])),
  8673. (float *) ((char *) src1->data + i*(src1->nb[1])));
  8674. }
  8675. }
  8676. static void ggml_compute_forward_map_binary(
  8677. const struct ggml_compute_params * params,
  8678. const struct ggml_tensor * src0,
  8679. const struct ggml_tensor * src1,
  8680. struct ggml_tensor * dst,
  8681. const ggml_binary_op_f32_t fun) {
  8682. switch (src0->type) {
  8683. case GGML_TYPE_F32:
  8684. {
  8685. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  8686. } break;
  8687. default:
  8688. {
  8689. GGML_ASSERT(false);
  8690. } break;
  8691. }
  8692. }
  8693. /////////////////////////////////
  8694. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  8695. GGML_ASSERT(params);
  8696. switch (tensor->op) {
  8697. case GGML_OP_DUP:
  8698. {
  8699. ggml_compute_forward_dup(params, tensor->src0, tensor);
  8700. } break;
  8701. case GGML_OP_ADD:
  8702. {
  8703. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  8704. } break;
  8705. case GGML_OP_SUB:
  8706. {
  8707. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  8708. } break;
  8709. case GGML_OP_MUL:
  8710. {
  8711. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  8712. } break;
  8713. case GGML_OP_DIV:
  8714. {
  8715. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  8716. } break;
  8717. case GGML_OP_SQR:
  8718. {
  8719. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  8720. } break;
  8721. case GGML_OP_SQRT:
  8722. {
  8723. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  8724. } break;
  8725. case GGML_OP_SUM:
  8726. {
  8727. ggml_compute_forward_sum(params, tensor->src0, tensor);
  8728. } break;
  8729. case GGML_OP_MEAN:
  8730. {
  8731. ggml_compute_forward_mean(params, tensor->src0, tensor);
  8732. } break;
  8733. case GGML_OP_REPEAT:
  8734. {
  8735. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  8736. } break;
  8737. case GGML_OP_ABS:
  8738. {
  8739. ggml_compute_forward_abs(params, tensor->src0, tensor);
  8740. } break;
  8741. case GGML_OP_SGN:
  8742. {
  8743. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  8744. } break;
  8745. case GGML_OP_NEG:
  8746. {
  8747. ggml_compute_forward_neg(params, tensor->src0, tensor);
  8748. } break;
  8749. case GGML_OP_STEP:
  8750. {
  8751. ggml_compute_forward_step(params, tensor->src0, tensor);
  8752. } break;
  8753. case GGML_OP_RELU:
  8754. {
  8755. ggml_compute_forward_relu(params, tensor->src0, tensor);
  8756. } break;
  8757. case GGML_OP_GELU:
  8758. {
  8759. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  8760. } break;
  8761. case GGML_OP_SILU:
  8762. {
  8763. ggml_compute_forward_silu(params, tensor->src0, tensor);
  8764. } break;
  8765. case GGML_OP_NORM:
  8766. {
  8767. ggml_compute_forward_norm(params, tensor->src0, tensor);
  8768. } break;
  8769. case GGML_OP_RMS_NORM:
  8770. {
  8771. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  8772. } break;
  8773. case GGML_OP_MUL_MAT:
  8774. {
  8775. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  8776. } break;
  8777. case GGML_OP_SCALE:
  8778. {
  8779. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  8780. } break;
  8781. case GGML_OP_CPY:
  8782. {
  8783. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  8784. } break;
  8785. case GGML_OP_CONT:
  8786. {
  8787. ggml_compute_forward_cont(params, tensor->src0, tensor);
  8788. } break;
  8789. case GGML_OP_RESHAPE:
  8790. {
  8791. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  8792. } break;
  8793. case GGML_OP_VIEW:
  8794. {
  8795. ggml_compute_forward_view(params, tensor->src0);
  8796. } break;
  8797. case GGML_OP_PERMUTE:
  8798. {
  8799. ggml_compute_forward_permute(params, tensor->src0);
  8800. } break;
  8801. case GGML_OP_TRANSPOSE:
  8802. {
  8803. ggml_compute_forward_transpose(params, tensor->src0);
  8804. } break;
  8805. case GGML_OP_GET_ROWS:
  8806. {
  8807. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  8808. } break;
  8809. case GGML_OP_DIAG_MASK_INF:
  8810. {
  8811. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  8812. } break;
  8813. case GGML_OP_SOFT_MAX:
  8814. {
  8815. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  8816. } break;
  8817. case GGML_OP_ROPE:
  8818. {
  8819. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  8820. } break;
  8821. case GGML_OP_ALIBI:
  8822. {
  8823. ggml_compute_forward_alibi(params, tensor->src0, tensor->src1, tensor);
  8824. } break;
  8825. case GGML_OP_CONV_1D_1S:
  8826. {
  8827. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  8828. } break;
  8829. case GGML_OP_CONV_1D_2S:
  8830. {
  8831. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  8832. } break;
  8833. case GGML_OP_FLASH_ATTN:
  8834. {
  8835. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  8836. GGML_ASSERT(t == 0 || t == 1);
  8837. bool masked = t != 0;
  8838. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  8839. } break;
  8840. case GGML_OP_FLASH_FF:
  8841. {
  8842. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  8843. } break;
  8844. case GGML_OP_MAP_UNARY:
  8845. {
  8846. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  8847. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  8848. }
  8849. break;
  8850. case GGML_OP_MAP_BINARY:
  8851. {
  8852. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  8853. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  8854. }
  8855. break;
  8856. case GGML_OP_NONE:
  8857. {
  8858. // nop
  8859. } break;
  8860. case GGML_OP_COUNT:
  8861. {
  8862. GGML_ASSERT(false);
  8863. } break;
  8864. }
  8865. }
  8866. ////////////////////////////////////////////////////////////////////////////////
  8867. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  8868. struct ggml_tensor * src0 = tensor->src0;
  8869. struct ggml_tensor * src1 = tensor->src1;
  8870. switch (tensor->op) {
  8871. case GGML_OP_DUP:
  8872. {
  8873. if (src0->grad) {
  8874. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8875. }
  8876. } break;
  8877. case GGML_OP_ADD:
  8878. {
  8879. if (src0->grad) {
  8880. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8881. }
  8882. if (src1->grad) {
  8883. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  8884. }
  8885. } break;
  8886. case GGML_OP_SUB:
  8887. {
  8888. if (src0->grad) {
  8889. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8890. }
  8891. if (src1->grad) {
  8892. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  8893. }
  8894. } break;
  8895. case GGML_OP_MUL:
  8896. {
  8897. if (src0->grad) {
  8898. src0->grad =
  8899. ggml_add_impl(ctx,
  8900. src0->grad,
  8901. ggml_mul(ctx, src1, tensor->grad),
  8902. inplace);
  8903. }
  8904. if (src1->grad) {
  8905. src1->grad =
  8906. ggml_add_impl(ctx,
  8907. src1->grad,
  8908. ggml_mul(ctx, src0, tensor->grad),
  8909. inplace);
  8910. }
  8911. } break;
  8912. case GGML_OP_DIV:
  8913. {
  8914. if (src0->grad) {
  8915. src0->grad =
  8916. ggml_add_impl(ctx,
  8917. src0->grad,
  8918. ggml_div(ctx, tensor->grad, src1),
  8919. inplace);
  8920. }
  8921. if (src1->grad) {
  8922. src1->grad =
  8923. ggml_sub_impl(ctx,
  8924. src1->grad,
  8925. ggml_mul(ctx,
  8926. tensor->grad,
  8927. ggml_div(ctx, tensor, src1)),
  8928. inplace);
  8929. }
  8930. } break;
  8931. case GGML_OP_SQR:
  8932. {
  8933. if (src0->grad) {
  8934. src0->grad =
  8935. ggml_add_impl(ctx,
  8936. src0->grad,
  8937. ggml_mul(ctx,
  8938. ggml_mul(ctx, src0, tensor->grad),
  8939. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  8940. inplace);
  8941. }
  8942. } break;
  8943. case GGML_OP_SQRT:
  8944. {
  8945. if (src0->grad) {
  8946. src0->grad =
  8947. ggml_add_impl(ctx,
  8948. src0->grad,
  8949. ggml_div(ctx,
  8950. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  8951. tensor),
  8952. inplace);
  8953. }
  8954. } break;
  8955. case GGML_OP_SUM:
  8956. {
  8957. if (src0->grad) {
  8958. src0->grad =
  8959. ggml_add_impl(ctx,
  8960. src0->grad,
  8961. ggml_repeat(ctx, tensor->grad, src0->grad),
  8962. inplace);
  8963. }
  8964. } break;
  8965. case GGML_OP_MEAN:
  8966. {
  8967. GGML_ASSERT(false); // TODO: implement
  8968. } break;
  8969. case GGML_OP_REPEAT:
  8970. {
  8971. if (src0->grad) {
  8972. src0->grad =
  8973. ggml_add_impl(ctx,
  8974. src0->grad,
  8975. ggml_sum(ctx, tensor->grad),
  8976. inplace);
  8977. }
  8978. } break;
  8979. case GGML_OP_ABS:
  8980. {
  8981. if (src0->grad) {
  8982. src0->grad =
  8983. ggml_add_impl(ctx,
  8984. src0->grad,
  8985. ggml_mul(ctx,
  8986. ggml_sgn(ctx, src0),
  8987. tensor->grad),
  8988. inplace);
  8989. }
  8990. } break;
  8991. case GGML_OP_SGN:
  8992. {
  8993. if (src0->grad) {
  8994. // noop
  8995. }
  8996. } break;
  8997. case GGML_OP_NEG:
  8998. {
  8999. if (src0->grad) {
  9000. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  9001. }
  9002. } break;
  9003. case GGML_OP_STEP:
  9004. {
  9005. if (src0->grad) {
  9006. // noop
  9007. }
  9008. } break;
  9009. case GGML_OP_RELU:
  9010. {
  9011. if (src0->grad) {
  9012. src0->grad = ggml_sub_impl(ctx,
  9013. src0->grad,
  9014. ggml_mul(ctx,
  9015. ggml_step(ctx, src0),
  9016. tensor->grad),
  9017. inplace);
  9018. }
  9019. } break;
  9020. case GGML_OP_GELU:
  9021. {
  9022. GGML_ASSERT(false); // TODO: not implemented
  9023. } break;
  9024. case GGML_OP_ALIBI:
  9025. {
  9026. GGML_ASSERT(false); // TODO: not implemented
  9027. } break;
  9028. case GGML_OP_SILU:
  9029. {
  9030. GGML_ASSERT(false); // TODO: not implemented
  9031. } break;
  9032. case GGML_OP_NORM:
  9033. {
  9034. GGML_ASSERT(false); // TODO: not implemented
  9035. } break;
  9036. case GGML_OP_RMS_NORM:
  9037. {
  9038. GGML_ASSERT(false); // TODO: not implemented
  9039. } break;
  9040. case GGML_OP_MUL_MAT:
  9041. {
  9042. if (src0->grad) {
  9043. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  9044. GGML_ASSERT(false);
  9045. }
  9046. if (src1->grad) {
  9047. src1->grad =
  9048. ggml_add_impl(ctx,
  9049. src1->grad,
  9050. ggml_mul_mat(ctx,
  9051. ggml_cont(ctx, ggml_transpose(ctx, src0)),
  9052. tensor->grad),
  9053. inplace);
  9054. }
  9055. } break;
  9056. case GGML_OP_SCALE:
  9057. {
  9058. GGML_ASSERT(false); // TODO: not implemented
  9059. } break;
  9060. case GGML_OP_CPY:
  9061. {
  9062. GGML_ASSERT(false); // TODO: not implemented
  9063. } break;
  9064. case GGML_OP_CONT:
  9065. {
  9066. GGML_ASSERT(false); // TODO: not implemented
  9067. } break;
  9068. case GGML_OP_RESHAPE:
  9069. {
  9070. GGML_ASSERT(false); // TODO: not implemented
  9071. } break;
  9072. case GGML_OP_VIEW:
  9073. {
  9074. GGML_ASSERT(false); // not supported
  9075. } break;
  9076. case GGML_OP_PERMUTE:
  9077. {
  9078. GGML_ASSERT(false); // TODO: not implemented
  9079. } break;
  9080. case GGML_OP_TRANSPOSE:
  9081. {
  9082. GGML_ASSERT(false); // TODO: not implemented
  9083. } break;
  9084. case GGML_OP_GET_ROWS:
  9085. {
  9086. GGML_ASSERT(false); // TODO: not implemented
  9087. } break;
  9088. case GGML_OP_DIAG_MASK_INF:
  9089. {
  9090. GGML_ASSERT(false); // TODO: not implemented
  9091. } break;
  9092. case GGML_OP_SOFT_MAX:
  9093. {
  9094. GGML_ASSERT(false); // TODO: not implemented
  9095. } break;
  9096. case GGML_OP_ROPE:
  9097. {
  9098. GGML_ASSERT(false); // TODO: not implemented
  9099. } break;
  9100. case GGML_OP_CONV_1D_1S:
  9101. {
  9102. GGML_ASSERT(false); // TODO: not implemented
  9103. } break;
  9104. case GGML_OP_CONV_1D_2S:
  9105. {
  9106. GGML_ASSERT(false); // TODO: not implemented
  9107. } break;
  9108. case GGML_OP_FLASH_ATTN:
  9109. {
  9110. GGML_ASSERT(false); // not supported
  9111. } break;
  9112. case GGML_OP_FLASH_FF:
  9113. {
  9114. GGML_ASSERT(false); // not supported
  9115. } break;
  9116. case GGML_OP_MAP_UNARY:
  9117. case GGML_OP_MAP_BINARY:
  9118. {
  9119. GGML_ASSERT(false); // not supported
  9120. } break;
  9121. case GGML_OP_NONE:
  9122. {
  9123. // nop
  9124. } break;
  9125. case GGML_OP_COUNT:
  9126. {
  9127. GGML_ASSERT(false);
  9128. } break;
  9129. }
  9130. }
  9131. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  9132. if (node->grad == NULL) {
  9133. // this usually happens when we generate intermediate nodes from constants in the backward pass
  9134. // it can also happen during forward pass, if the user performs computations with constants
  9135. if (node->op != GGML_OP_NONE) {
  9136. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  9137. }
  9138. }
  9139. // check if already visited
  9140. for (int i = 0; i < cgraph->n_nodes; i++) {
  9141. if (cgraph->nodes[i] == node) {
  9142. return;
  9143. }
  9144. }
  9145. for (int i = 0; i < cgraph->n_leafs; i++) {
  9146. if (cgraph->leafs[i] == node) {
  9147. return;
  9148. }
  9149. }
  9150. if (node->src0) {
  9151. ggml_visit_parents(cgraph, node->src0);
  9152. }
  9153. if (node->src1) {
  9154. ggml_visit_parents(cgraph, node->src1);
  9155. }
  9156. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  9157. if (node->opt[i]) {
  9158. ggml_visit_parents(cgraph, node->opt[i]);
  9159. }
  9160. }
  9161. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  9162. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  9163. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  9164. cgraph->leafs[cgraph->n_leafs] = node;
  9165. cgraph->n_leafs++;
  9166. } else {
  9167. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  9168. cgraph->nodes[cgraph->n_nodes] = node;
  9169. cgraph->grads[cgraph->n_nodes] = node->grad;
  9170. cgraph->n_nodes++;
  9171. }
  9172. }
  9173. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  9174. if (!expand) {
  9175. cgraph->n_nodes = 0;
  9176. cgraph->n_leafs = 0;
  9177. }
  9178. const int n0 = cgraph->n_nodes;
  9179. UNUSED(n0);
  9180. ggml_visit_parents(cgraph, tensor);
  9181. const int n_new = cgraph->n_nodes - n0;
  9182. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  9183. if (n_new > 0) {
  9184. // the last added node should always be starting point
  9185. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  9186. }
  9187. }
  9188. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  9189. ggml_build_forward_impl(cgraph, tensor, true);
  9190. }
  9191. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  9192. struct ggml_cgraph result = {
  9193. /*.n_nodes =*/ 0,
  9194. /*.n_leafs =*/ 0,
  9195. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  9196. /*.work_size =*/ 0,
  9197. /*.work =*/ NULL,
  9198. /*.nodes =*/ { NULL },
  9199. /*.grads =*/ { NULL },
  9200. /*.leafs =*/ { NULL },
  9201. /*.perf_runs =*/ 0,
  9202. /*.perf_cycles =*/ 0,
  9203. /*.perf_time_us =*/ 0,
  9204. };
  9205. ggml_build_forward_impl(&result, tensor, false);
  9206. return result;
  9207. }
  9208. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  9209. struct ggml_cgraph result = *gf;
  9210. GGML_ASSERT(gf->n_nodes > 0);
  9211. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  9212. if (keep) {
  9213. for (int i = 0; i < gf->n_nodes; i++) {
  9214. struct ggml_tensor * node = gf->nodes[i];
  9215. if (node->grad) {
  9216. node->grad = ggml_dup_tensor(ctx, node);
  9217. gf->grads[i] = node->grad;
  9218. }
  9219. }
  9220. }
  9221. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  9222. struct ggml_tensor * node = gf->nodes[i];
  9223. // because we detached the grad nodes from the original graph, we can afford inplace operations
  9224. if (node->grad) {
  9225. ggml_compute_backward(ctx, node, keep);
  9226. }
  9227. }
  9228. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  9229. struct ggml_tensor * node = gf->nodes[i];
  9230. if (node->is_param) {
  9231. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  9232. ggml_build_forward_impl(&result, node->grad, true);
  9233. }
  9234. }
  9235. return result;
  9236. }
  9237. //
  9238. // thread data
  9239. //
  9240. // synchronization is done via busy loops
  9241. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  9242. //
  9243. #ifdef __APPLE__
  9244. //#include <os/lock.h>
  9245. //
  9246. //typedef os_unfair_lock ggml_lock_t;
  9247. //
  9248. //#define ggml_lock_init(x) UNUSED(x)
  9249. //#define ggml_lock_destroy(x) UNUSED(x)
  9250. //#define ggml_lock_lock os_unfair_lock_lock
  9251. //#define ggml_lock_unlock os_unfair_lock_unlock
  9252. //
  9253. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  9254. typedef int ggml_lock_t;
  9255. #define ggml_lock_init(x) UNUSED(x)
  9256. #define ggml_lock_destroy(x) UNUSED(x)
  9257. #define ggml_lock_lock(x) UNUSED(x)
  9258. #define ggml_lock_unlock(x) UNUSED(x)
  9259. #define GGML_LOCK_INITIALIZER 0
  9260. typedef pthread_t ggml_thread_t;
  9261. #define ggml_thread_create pthread_create
  9262. #define ggml_thread_join pthread_join
  9263. #else
  9264. //typedef pthread_spinlock_t ggml_lock_t;
  9265. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  9266. //#define ggml_lock_destroy pthread_spin_destroy
  9267. //#define ggml_lock_lock pthread_spin_lock
  9268. //#define ggml_lock_unlock pthread_spin_unlock
  9269. typedef int ggml_lock_t;
  9270. #define ggml_lock_init(x) UNUSED(x)
  9271. #define ggml_lock_destroy(x) UNUSED(x)
  9272. #define ggml_lock_lock(x) UNUSED(x)
  9273. #define ggml_lock_unlock(x) UNUSED(x)
  9274. #define GGML_LOCK_INITIALIZER 0
  9275. typedef pthread_t ggml_thread_t;
  9276. #define ggml_thread_create pthread_create
  9277. #define ggml_thread_join pthread_join
  9278. #endif
  9279. struct ggml_compute_state_shared {
  9280. ggml_lock_t spin;
  9281. int n_threads;
  9282. // synchronization primitives
  9283. atomic_int n_ready;
  9284. atomic_bool has_work;
  9285. atomic_bool stop; // stop all threads
  9286. };
  9287. struct ggml_compute_state {
  9288. ggml_thread_t thrd;
  9289. struct ggml_compute_params params;
  9290. struct ggml_tensor * node;
  9291. struct ggml_compute_state_shared * shared;
  9292. };
  9293. static thread_ret_t ggml_graph_compute_thread(void * data) {
  9294. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  9295. const int n_threads = state->shared->n_threads;
  9296. while (true) {
  9297. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  9298. atomic_store(&state->shared->has_work, false);
  9299. } else {
  9300. while (atomic_load(&state->shared->has_work)) {
  9301. if (atomic_load(&state->shared->stop)) {
  9302. return 0;
  9303. }
  9304. ggml_lock_lock (&state->shared->spin);
  9305. ggml_lock_unlock(&state->shared->spin);
  9306. }
  9307. }
  9308. atomic_fetch_sub(&state->shared->n_ready, 1);
  9309. // wait for work
  9310. while (!atomic_load(&state->shared->has_work)) {
  9311. if (atomic_load(&state->shared->stop)) {
  9312. return 0;
  9313. }
  9314. ggml_lock_lock (&state->shared->spin);
  9315. ggml_lock_unlock(&state->shared->spin);
  9316. }
  9317. // check if we should stop
  9318. if (atomic_load(&state->shared->stop)) {
  9319. break;
  9320. }
  9321. if (state->node) {
  9322. if (state->params.ith < state->params.nth) {
  9323. ggml_compute_forward(&state->params, state->node);
  9324. }
  9325. state->node = NULL;
  9326. } else {
  9327. break;
  9328. }
  9329. }
  9330. return 0;
  9331. }
  9332. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  9333. const int n_threads = cgraph->n_threads;
  9334. struct ggml_compute_state_shared state_shared = {
  9335. /*.spin =*/ GGML_LOCK_INITIALIZER,
  9336. /*.n_threads =*/ n_threads,
  9337. /*.n_ready =*/ 0,
  9338. /*.has_work =*/ false,
  9339. /*.stop =*/ false,
  9340. };
  9341. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  9342. // create thread pool
  9343. if (n_threads > 1) {
  9344. ggml_lock_init(&state_shared.spin);
  9345. atomic_store(&state_shared.has_work, true);
  9346. for (int j = 0; j < n_threads - 1; j++) {
  9347. workers[j] = (struct ggml_compute_state) {
  9348. .thrd = 0,
  9349. .params = {
  9350. .type = GGML_TASK_COMPUTE,
  9351. .ith = j + 1,
  9352. .nth = n_threads,
  9353. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9354. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9355. },
  9356. .node = NULL,
  9357. .shared = &state_shared,
  9358. };
  9359. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  9360. GGML_ASSERT(rc == 0);
  9361. UNUSED(rc);
  9362. }
  9363. }
  9364. // initialize tasks + work buffer
  9365. {
  9366. size_t work_size = 0;
  9367. // thread scheduling for the different operations
  9368. for (int i = 0; i < cgraph->n_nodes; i++) {
  9369. struct ggml_tensor * node = cgraph->nodes[i];
  9370. switch (node->op) {
  9371. case GGML_OP_CPY:
  9372. case GGML_OP_DUP:
  9373. {
  9374. node->n_tasks = n_threads;
  9375. size_t cur = 0;
  9376. if (ggml_is_quantized(node->type)) {
  9377. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  9378. }
  9379. work_size = MAX(work_size, cur);
  9380. } break;
  9381. case GGML_OP_ADD:
  9382. {
  9383. node->n_tasks = n_threads;
  9384. size_t cur = 0;
  9385. if (ggml_is_quantized(node->src0->type)) {
  9386. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  9387. }
  9388. work_size = MAX(work_size, cur);
  9389. } break;
  9390. case GGML_OP_SUB:
  9391. case GGML_OP_MUL:
  9392. case GGML_OP_DIV:
  9393. case GGML_OP_SQR:
  9394. case GGML_OP_SQRT:
  9395. case GGML_OP_SUM:
  9396. case GGML_OP_MEAN:
  9397. case GGML_OP_REPEAT:
  9398. case GGML_OP_ABS:
  9399. case GGML_OP_SGN:
  9400. case GGML_OP_NEG:
  9401. case GGML_OP_STEP:
  9402. case GGML_OP_RELU:
  9403. {
  9404. node->n_tasks = 1;
  9405. } break;
  9406. case GGML_OP_GELU:
  9407. {
  9408. node->n_tasks = n_threads;
  9409. } break;
  9410. case GGML_OP_SILU:
  9411. {
  9412. node->n_tasks = n_threads;
  9413. } break;
  9414. case GGML_OP_NORM:
  9415. case GGML_OP_RMS_NORM:
  9416. {
  9417. node->n_tasks = n_threads;
  9418. } break;
  9419. case GGML_OP_MUL_MAT:
  9420. {
  9421. node->n_tasks = n_threads;
  9422. // TODO: use different scheduling for different matrix sizes
  9423. //const int nr0 = ggml_nrows(node->src0);
  9424. //const int nr1 = ggml_nrows(node->src1);
  9425. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  9426. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  9427. size_t cur = 0;
  9428. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  9429. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  9430. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  9431. node->n_tasks = 1; // TODO: this actually is doing nothing
  9432. // the threads are still spinning
  9433. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*MAX(ggml_nelements(node->src1), ggml_nelements(node->src0));
  9434. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  9435. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  9436. //printf("cur = %zu\n", cur);
  9437. } else {
  9438. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  9439. }
  9440. #else
  9441. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  9442. #endif
  9443. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  9444. cur = 0;
  9445. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  9446. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  9447. node->n_tasks = 1;
  9448. }
  9449. #endif
  9450. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  9451. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  9452. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  9453. node->n_tasks = 1;
  9454. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  9455. } else
  9456. #endif
  9457. {
  9458. const enum ggml_type type_q = quantize_fns[node->src0->type].vec_dot_type;
  9459. cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q];
  9460. }
  9461. } else {
  9462. GGML_ASSERT(false);
  9463. }
  9464. work_size = MAX(work_size, cur);
  9465. } break;
  9466. case GGML_OP_SCALE:
  9467. {
  9468. node->n_tasks = n_threads;
  9469. } break;
  9470. case GGML_OP_CONT:
  9471. case GGML_OP_RESHAPE:
  9472. case GGML_OP_VIEW:
  9473. case GGML_OP_PERMUTE:
  9474. case GGML_OP_TRANSPOSE:
  9475. case GGML_OP_GET_ROWS:
  9476. case GGML_OP_DIAG_MASK_INF:
  9477. {
  9478. node->n_tasks = 1;
  9479. } break;
  9480. case GGML_OP_SOFT_MAX:
  9481. {
  9482. node->n_tasks = n_threads;
  9483. } break;
  9484. case GGML_OP_ROPE:
  9485. {
  9486. node->n_tasks = n_threads;
  9487. } break;
  9488. case GGML_OP_ALIBI:
  9489. {
  9490. node->n_tasks = 1; //TODO
  9491. } break;
  9492. case GGML_OP_CONV_1D_1S:
  9493. case GGML_OP_CONV_1D_2S:
  9494. {
  9495. node->n_tasks = n_threads;
  9496. GGML_ASSERT(node->src0->ne[3] == 1);
  9497. GGML_ASSERT(node->src1->ne[2] == 1);
  9498. GGML_ASSERT(node->src1->ne[3] == 1);
  9499. size_t cur = 0;
  9500. const int nk = node->src0->ne[0];
  9501. if (node->src0->type == GGML_TYPE_F16 &&
  9502. node->src1->type == GGML_TYPE_F32) {
  9503. cur = sizeof(ggml_fp16_t)*(
  9504. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  9505. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  9506. );
  9507. } else if (node->src0->type == GGML_TYPE_F32 &&
  9508. node->src1->type == GGML_TYPE_F32) {
  9509. cur = sizeof(float)*(
  9510. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  9511. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  9512. );
  9513. } else {
  9514. GGML_ASSERT(false);
  9515. }
  9516. work_size = MAX(work_size, cur);
  9517. } break;
  9518. case GGML_OP_FLASH_ATTN:
  9519. {
  9520. node->n_tasks = n_threads;
  9521. size_t cur = 0;
  9522. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  9523. if (node->src1->type == GGML_TYPE_F32) {
  9524. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  9525. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  9526. }
  9527. if (node->src1->type == GGML_TYPE_F16) {
  9528. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  9529. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  9530. }
  9531. work_size = MAX(work_size, cur);
  9532. } break;
  9533. case GGML_OP_FLASH_FF:
  9534. {
  9535. node->n_tasks = n_threads;
  9536. size_t cur = 0;
  9537. if (node->src1->type == GGML_TYPE_F32) {
  9538. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  9539. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  9540. }
  9541. if (node->src1->type == GGML_TYPE_F16) {
  9542. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  9543. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  9544. }
  9545. work_size = MAX(work_size, cur);
  9546. } break;
  9547. case GGML_OP_MAP_UNARY:
  9548. case GGML_OP_MAP_BINARY:
  9549. {
  9550. node->n_tasks = 1;
  9551. } break;
  9552. case GGML_OP_NONE:
  9553. {
  9554. node->n_tasks = 1;
  9555. } break;
  9556. case GGML_OP_COUNT:
  9557. {
  9558. GGML_ASSERT(false);
  9559. } break;
  9560. }
  9561. }
  9562. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  9563. GGML_ASSERT(false); // TODO: better handling
  9564. }
  9565. if (work_size > 0 && cgraph->work == NULL) {
  9566. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  9567. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  9568. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  9569. }
  9570. }
  9571. const int64_t perf_start_cycles = ggml_perf_cycles();
  9572. const int64_t perf_start_time_us = ggml_perf_time_us();
  9573. for (int i = 0; i < cgraph->n_nodes; i++) {
  9574. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  9575. struct ggml_tensor * node = cgraph->nodes[i];
  9576. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  9577. //if (node->grad == NULL && node->perf_runs > 0) {
  9578. // continue;
  9579. //}
  9580. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  9581. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  9582. // INIT
  9583. struct ggml_compute_params params = {
  9584. /*.type =*/ GGML_TASK_INIT,
  9585. /*.ith =*/ 0,
  9586. /*.nth =*/ node->n_tasks,
  9587. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9588. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  9589. };
  9590. ggml_compute_forward(&params, node);
  9591. // COMPUTE
  9592. if (node->n_tasks > 1) {
  9593. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9594. atomic_store(&state_shared.has_work, false);
  9595. }
  9596. while (atomic_load(&state_shared.has_work)) {
  9597. ggml_lock_lock (&state_shared.spin);
  9598. ggml_lock_unlock(&state_shared.spin);
  9599. }
  9600. // launch thread pool
  9601. for (int j = 0; j < n_threads - 1; j++) {
  9602. workers[j].params = (struct ggml_compute_params) {
  9603. .type = GGML_TASK_COMPUTE,
  9604. .ith = j + 1,
  9605. .nth = node->n_tasks,
  9606. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9607. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9608. };
  9609. workers[j].node = node;
  9610. }
  9611. atomic_fetch_sub(&state_shared.n_ready, 1);
  9612. while (atomic_load(&state_shared.n_ready) > 0) {
  9613. ggml_lock_lock (&state_shared.spin);
  9614. ggml_lock_unlock(&state_shared.spin);
  9615. }
  9616. atomic_store(&state_shared.has_work, true);
  9617. }
  9618. params.type = GGML_TASK_COMPUTE;
  9619. ggml_compute_forward(&params, node);
  9620. // wait for thread pool
  9621. if (node->n_tasks > 1) {
  9622. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9623. atomic_store(&state_shared.has_work, false);
  9624. }
  9625. while (atomic_load(&state_shared.has_work)) {
  9626. ggml_lock_lock (&state_shared.spin);
  9627. ggml_lock_unlock(&state_shared.spin);
  9628. }
  9629. atomic_fetch_sub(&state_shared.n_ready, 1);
  9630. while (atomic_load(&state_shared.n_ready) != 0) {
  9631. ggml_lock_lock (&state_shared.spin);
  9632. ggml_lock_unlock(&state_shared.spin);
  9633. }
  9634. }
  9635. // FINALIZE
  9636. if (node->n_tasks > 1) {
  9637. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9638. atomic_store(&state_shared.has_work, false);
  9639. }
  9640. while (atomic_load(&state_shared.has_work)) {
  9641. ggml_lock_lock (&state_shared.spin);
  9642. ggml_lock_unlock(&state_shared.spin);
  9643. }
  9644. // launch thread pool
  9645. for (int j = 0; j < n_threads - 1; j++) {
  9646. workers[j].params = (struct ggml_compute_params) {
  9647. .type = GGML_TASK_FINALIZE,
  9648. .ith = j + 1,
  9649. .nth = node->n_tasks,
  9650. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9651. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9652. };
  9653. workers[j].node = node;
  9654. }
  9655. atomic_fetch_sub(&state_shared.n_ready, 1);
  9656. while (atomic_load(&state_shared.n_ready) > 0) {
  9657. ggml_lock_lock (&state_shared.spin);
  9658. ggml_lock_unlock(&state_shared.spin);
  9659. }
  9660. atomic_store(&state_shared.has_work, true);
  9661. }
  9662. params.type = GGML_TASK_FINALIZE;
  9663. ggml_compute_forward(&params, node);
  9664. // wait for thread pool
  9665. if (node->n_tasks > 1) {
  9666. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9667. atomic_store(&state_shared.has_work, false);
  9668. }
  9669. while (atomic_load(&state_shared.has_work)) {
  9670. ggml_lock_lock (&state_shared.spin);
  9671. ggml_lock_unlock(&state_shared.spin);
  9672. }
  9673. atomic_fetch_sub(&state_shared.n_ready, 1);
  9674. while (atomic_load(&state_shared.n_ready) != 0) {
  9675. ggml_lock_lock (&state_shared.spin);
  9676. ggml_lock_unlock(&state_shared.spin);
  9677. }
  9678. }
  9679. // performance stats (node)
  9680. {
  9681. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  9682. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  9683. node->perf_runs++;
  9684. node->perf_cycles += perf_cycles_cur;
  9685. node->perf_time_us += perf_time_us_cur;
  9686. }
  9687. }
  9688. // join thread pool
  9689. if (n_threads > 1) {
  9690. atomic_store(&state_shared.stop, true);
  9691. atomic_store(&state_shared.has_work, true);
  9692. for (int j = 0; j < n_threads - 1; j++) {
  9693. int rc = ggml_thread_join(workers[j].thrd, NULL);
  9694. GGML_ASSERT(rc == 0);
  9695. UNUSED(rc);
  9696. }
  9697. ggml_lock_destroy(&state_shared.spin);
  9698. }
  9699. // performance stats (graph)
  9700. {
  9701. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  9702. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  9703. cgraph->perf_runs++;
  9704. cgraph->perf_cycles += perf_cycles_cur;
  9705. cgraph->perf_time_us += perf_time_us_cur;
  9706. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  9707. __func__, cgraph->perf_runs,
  9708. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  9709. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  9710. (double) perf_time_us_cur / 1000.0,
  9711. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  9712. }
  9713. }
  9714. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  9715. for (int i = 0; i < cgraph->n_nodes; i++) {
  9716. struct ggml_tensor * grad = cgraph->grads[i];
  9717. if (grad) {
  9718. ggml_set_zero(grad);
  9719. }
  9720. }
  9721. }
  9722. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  9723. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  9724. GGML_PRINT("=== GRAPH ===\n");
  9725. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  9726. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  9727. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  9728. for (int i = 0; i < cgraph->n_nodes; i++) {
  9729. struct ggml_tensor * node = cgraph->nodes[i];
  9730. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  9731. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  9732. i,
  9733. node->ne[0], node->ne[1], node->ne[2],
  9734. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  9735. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  9736. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  9737. (double) node->perf_time_us / 1000.0,
  9738. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  9739. }
  9740. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  9741. for (int i = 0; i < cgraph->n_leafs; i++) {
  9742. struct ggml_tensor * node = cgraph->leafs[i];
  9743. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  9744. i,
  9745. node->ne[0], node->ne[1],
  9746. GGML_OP_LABEL[node->op]);
  9747. }
  9748. for (int i = 0; i < GGML_OP_COUNT; i++) {
  9749. if (perf_total_per_op_us[i] == 0) {
  9750. continue;
  9751. }
  9752. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  9753. }
  9754. GGML_PRINT("========================================\n");
  9755. }
  9756. // check if node is part of the graph
  9757. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9758. if (cgraph == NULL) {
  9759. return true;
  9760. }
  9761. for (int i = 0; i < cgraph->n_nodes; i++) {
  9762. if (cgraph->nodes[i] == node) {
  9763. return true;
  9764. }
  9765. }
  9766. return false;
  9767. }
  9768. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9769. for (int i = 0; i < cgraph->n_nodes; i++) {
  9770. struct ggml_tensor * parent = cgraph->nodes[i];
  9771. if (parent->grad == node) {
  9772. return parent;
  9773. }
  9774. }
  9775. return NULL;
  9776. }
  9777. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  9778. char color[16];
  9779. FILE * fp = fopen(filename, "w");
  9780. GGML_ASSERT(fp);
  9781. fprintf(fp, "digraph G {\n");
  9782. fprintf(fp, " newrank = true;\n");
  9783. fprintf(fp, " rankdir = LR;\n");
  9784. for (int i = 0; i < gb->n_nodes; i++) {
  9785. struct ggml_tensor * node = gb->nodes[i];
  9786. if (ggml_graph_get_parent(gb, node) != NULL) {
  9787. continue;
  9788. }
  9789. if (node->is_param) {
  9790. snprintf(color, sizeof(color), "yellow");
  9791. } else if (node->grad) {
  9792. if (ggml_graph_find(gf, node)) {
  9793. snprintf(color, sizeof(color), "green");
  9794. } else {
  9795. snprintf(color, sizeof(color), "lightblue");
  9796. }
  9797. } else {
  9798. snprintf(color, sizeof(color), "white");
  9799. }
  9800. fprintf(fp, " \"%p\" [ \
  9801. style = filled; fillcolor = %s; shape = record; \
  9802. label=\"%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  9803. (void *) node, color,
  9804. i, node->ne[0], node->ne[1],
  9805. GGML_OP_SYMBOL[node->op]);
  9806. if (node->grad) {
  9807. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  9808. } else {
  9809. fprintf(fp, "\"; ]\n");
  9810. }
  9811. }
  9812. for (int i = 0; i < gb->n_leafs; i++) {
  9813. struct ggml_tensor * node = gb->leafs[i];
  9814. snprintf(color, sizeof(color), "pink");
  9815. if (ggml_nelements(node) == 1) {
  9816. fprintf(fp, " \"%p\" [ \
  9817. style = filled; fillcolor = %s; shape = record; \
  9818. label=\"<x>%.1e\"; ]\n",
  9819. (void *) node, color, (double)ggml_get_f32_1d(node, 0));
  9820. } else {
  9821. fprintf(fp, " \"%p\" [ \
  9822. style = filled; fillcolor = %s; shape = record; \
  9823. label=\"<x>CONST %d [%" PRId64 ", %" PRId64 "]\"; ]\n",
  9824. (void *) node, color,
  9825. i, node->ne[0], node->ne[1]);
  9826. }
  9827. }
  9828. for (int i = 0; i < gb->n_nodes; i++) {
  9829. struct ggml_tensor * node = gb->nodes[i];
  9830. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  9831. if (node->src0) {
  9832. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  9833. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  9834. parent0 ? (void *) parent0 : (void *) node->src0,
  9835. parent0 ? "g" : "x",
  9836. parent ? (void *) parent : (void *) node,
  9837. parent ? "g" : "x",
  9838. parent ? "empty" : "vee",
  9839. parent ? "dashed" : "solid");
  9840. }
  9841. if (node->src1) {
  9842. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  9843. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  9844. parent1 ? (void *) parent1 : (void *) node->src1,
  9845. parent1 ? "g" : "x",
  9846. parent ? (void *) parent : (void *) node,
  9847. parent ? "g" : "x",
  9848. parent ? "empty" : "vee",
  9849. parent ? "dashed" : "solid");
  9850. }
  9851. }
  9852. for (int i = 0; i < gb->n_leafs; i++) {
  9853. struct ggml_tensor * node = gb->leafs[i];
  9854. if (node->src0) {
  9855. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  9856. (void *) node->src0, "x",
  9857. (void *) node, "x");
  9858. }
  9859. if (node->src1) {
  9860. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  9861. (void *) node->src1, "x",
  9862. (void *) node, "x");
  9863. }
  9864. }
  9865. fprintf(fp, "}\n");
  9866. fclose(fp);
  9867. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  9868. }
  9869. ////////////////////////////////////////////////////////////////////////////////
  9870. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  9871. int i = 0;
  9872. for (int p = 0; p < np; ++p) {
  9873. const int64_t ne = ggml_nelements(ps[p]) ;
  9874. // TODO: add function to set tensor from array
  9875. for (int64_t j = 0; j < ne; ++j) {
  9876. ggml_set_f32_1d(ps[p], j, x[i++]);
  9877. }
  9878. }
  9879. }
  9880. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  9881. int i = 0;
  9882. for (int p = 0; p < np; ++p) {
  9883. const int64_t ne = ggml_nelements(ps[p]) ;
  9884. // TODO: add function to get all elements at once
  9885. for (int64_t j = 0; j < ne; ++j) {
  9886. x[i++] = ggml_get_f32_1d(ps[p], j);
  9887. }
  9888. }
  9889. }
  9890. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  9891. int i = 0;
  9892. for (int p = 0; p < np; ++p) {
  9893. const int64_t ne = ggml_nelements(ps[p]) ;
  9894. // TODO: add function to get all elements at once
  9895. for (int64_t j = 0; j < ne; ++j) {
  9896. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  9897. }
  9898. }
  9899. }
  9900. //
  9901. // ADAM
  9902. //
  9903. // ref: https://arxiv.org/pdf/1412.6980.pdf
  9904. //
  9905. static enum ggml_opt_result ggml_opt_adam(
  9906. struct ggml_context * ctx,
  9907. struct ggml_opt_params params,
  9908. struct ggml_tensor * f,
  9909. struct ggml_cgraph * gf,
  9910. struct ggml_cgraph * gb) {
  9911. GGML_ASSERT(ggml_is_scalar(f));
  9912. gf->n_threads = params.n_threads;
  9913. gb->n_threads = params.n_threads;
  9914. // these will store the parameters we want to optimize
  9915. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  9916. int np = 0;
  9917. int nx = 0;
  9918. for (int i = 0; i < gf->n_nodes; ++i) {
  9919. if (gf->nodes[i]->is_param) {
  9920. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  9921. GGML_ASSERT(np < GGML_MAX_PARAMS);
  9922. ps[np++] = gf->nodes[i];
  9923. nx += ggml_nelements(gf->nodes[i]);
  9924. }
  9925. }
  9926. // constants
  9927. const float alpha = params.adam.alpha;
  9928. const float beta1 = params.adam.beta1;
  9929. const float beta2 = params.adam.beta2;
  9930. const float eps = params.adam.eps;
  9931. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  9932. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  9933. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  9934. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  9935. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  9936. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  9937. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  9938. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  9939. // initialize
  9940. ggml_vec_set_f32(nx, m, 0.0f);
  9941. ggml_vec_set_f32(nx, v, 0.0f);
  9942. // update view
  9943. ggml_opt_get_params(np, ps, x);
  9944. // compute the function value
  9945. ggml_graph_reset (gf);
  9946. ggml_set_f32 (f->grad, 1.0f);
  9947. ggml_graph_compute(ctx, gb);
  9948. float fx_prev = ggml_get_f32_1d(f, 0);
  9949. if (pf) {
  9950. pf[0] = fx_prev;
  9951. }
  9952. int n_no_improvement = 0;
  9953. float fx_best = fx_prev;
  9954. // run the optimizer
  9955. for (int t = 0; t < params.adam.n_iter; ++t) {
  9956. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  9957. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  9958. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  9959. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  9960. for (int i = 0; i < np; ++i) {
  9961. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  9962. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  9963. }
  9964. const int64_t t_start_wall = ggml_time_us();
  9965. const int64_t t_start_cpu = ggml_cycles();
  9966. UNUSED(t_start_wall);
  9967. UNUSED(t_start_cpu);
  9968. {
  9969. // update the gradient
  9970. ggml_opt_get_grad(np, ps, g1);
  9971. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  9972. ggml_vec_scale_f32(nx, m, beta1);
  9973. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  9974. // g2 = g1^2
  9975. ggml_vec_sqr_f32 (nx, g2, g1);
  9976. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  9977. ggml_vec_scale_f32(nx, v, beta2);
  9978. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  9979. // m^hat = m_t / (1 - beta1^t)
  9980. // v^hat = v_t / (1 - beta2^t)
  9981. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  9982. ggml_vec_cpy_f32 (nx, mh, m);
  9983. ggml_vec_cpy_f32 (nx, vh, v);
  9984. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  9985. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  9986. ggml_vec_sqrt_f32 (nx, vh, vh);
  9987. ggml_vec_acc1_f32 (nx, vh, eps);
  9988. ggml_vec_div_f32 (nx, mh, mh, vh);
  9989. ggml_vec_sub_f32 (nx, x, x, mh);
  9990. // update the parameters
  9991. ggml_opt_set_params(np, ps, x);
  9992. }
  9993. ggml_graph_reset (gf);
  9994. ggml_set_f32 (f->grad, 1.0f);
  9995. ggml_graph_compute(ctx, gb);
  9996. const float fx = ggml_get_f32_1d(f, 0);
  9997. // check convergence
  9998. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  9999. GGML_PRINT_DEBUG("converged\n");
  10000. return GGML_OPT_OK;
  10001. }
  10002. // delta-based convergence test
  10003. if (pf != NULL) {
  10004. // need at least params.past iterations to start checking for convergence
  10005. if (params.past <= t) {
  10006. const float rate = (pf[t%params.past] - fx)/fx;
  10007. if (fabsf(rate) < params.delta) {
  10008. return GGML_OPT_OK;
  10009. }
  10010. }
  10011. pf[t%params.past] = fx;
  10012. }
  10013. // check for improvement
  10014. if (params.max_no_improvement > 0) {
  10015. if (fx_best > fx) {
  10016. fx_best = fx;
  10017. n_no_improvement = 0;
  10018. } else {
  10019. ++n_no_improvement;
  10020. if (n_no_improvement >= params.max_no_improvement) {
  10021. return GGML_OPT_OK;
  10022. }
  10023. }
  10024. }
  10025. fx_prev = fx;
  10026. {
  10027. const int64_t t_end_cpu = ggml_cycles();
  10028. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  10029. UNUSED(t_end_cpu);
  10030. const int64_t t_end_wall = ggml_time_us();
  10031. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  10032. UNUSED(t_end_wall);
  10033. }
  10034. }
  10035. return GGML_OPT_DID_NOT_CONVERGE;
  10036. }
  10037. //
  10038. // L-BFGS
  10039. //
  10040. // the L-BFGS implementation below is based on the following implementation:
  10041. //
  10042. // https://github.com/chokkan/liblbfgs
  10043. //
  10044. struct ggml_lbfgs_iteration_data {
  10045. float alpha;
  10046. float ys;
  10047. float * s;
  10048. float * y;
  10049. };
  10050. static enum ggml_opt_result linesearch_backtracking(
  10051. struct ggml_context * ctx,
  10052. const struct ggml_opt_params * params,
  10053. int nx,
  10054. float * x,
  10055. float * fx,
  10056. float * g,
  10057. float * d,
  10058. float * step,
  10059. const float * xp,
  10060. struct ggml_tensor * f,
  10061. struct ggml_cgraph * gf,
  10062. struct ggml_cgraph * gb,
  10063. const int np,
  10064. struct ggml_tensor * ps[]) {
  10065. int count = 0;
  10066. float width = 0.0f;
  10067. float dg = 0.0f;
  10068. float finit = 0.0f;
  10069. float dginit = 0.0f;
  10070. float dgtest = 0.0f;
  10071. const float dec = 0.5f;
  10072. const float inc = 2.1f;
  10073. if (*step <= 0.f) {
  10074. return GGML_LINESEARCH_INVALID_PARAMETERS;
  10075. }
  10076. // compute the initial gradient in the search direction
  10077. ggml_vec_dot_f32(nx, &dginit, g, d);
  10078. // make sure that d points to a descent direction
  10079. if (0 < dginit) {
  10080. return GGML_LINESEARCH_FAIL;
  10081. }
  10082. // initialize local variables
  10083. finit = *fx;
  10084. dgtest = params->lbfgs.ftol*dginit;
  10085. while (true) {
  10086. ggml_vec_cpy_f32(nx, x, xp);
  10087. ggml_vec_mad_f32(nx, x, d, *step);
  10088. // evaluate the function and gradient values
  10089. {
  10090. ggml_opt_set_params(np, ps, x);
  10091. ggml_graph_reset (gf);
  10092. ggml_set_f32 (f->grad, 1.0f);
  10093. ggml_graph_compute(ctx, gb);
  10094. ggml_opt_get_grad(np, ps, g);
  10095. *fx = ggml_get_f32_1d(f, 0);
  10096. }
  10097. ++count;
  10098. if (*fx > finit + (*step)*dgtest) {
  10099. width = dec;
  10100. } else {
  10101. // Armijo condition is satisfied
  10102. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  10103. return count;
  10104. }
  10105. ggml_vec_dot_f32(nx, &dg, g, d);
  10106. // check the Wolfe condition
  10107. if (dg < params->lbfgs.wolfe * dginit) {
  10108. width = inc;
  10109. } else {
  10110. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  10111. // regular Wolfe conditions
  10112. return count;
  10113. }
  10114. if(dg > -params->lbfgs.wolfe*dginit) {
  10115. width = dec;
  10116. } else {
  10117. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  10118. return count;
  10119. }
  10120. return count;
  10121. }
  10122. }
  10123. if (*step < params->lbfgs.min_step) {
  10124. return GGML_LINESEARCH_MINIMUM_STEP;
  10125. }
  10126. if (*step > params->lbfgs.max_step) {
  10127. return GGML_LINESEARCH_MAXIMUM_STEP;
  10128. }
  10129. if (params->lbfgs.max_linesearch <= count) {
  10130. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  10131. }
  10132. (*step) *= width;
  10133. }
  10134. return GGML_LINESEARCH_FAIL;
  10135. }
  10136. static enum ggml_opt_result ggml_opt_lbfgs(
  10137. struct ggml_context * ctx,
  10138. struct ggml_opt_params params,
  10139. struct ggml_tensor * f,
  10140. struct ggml_cgraph * gf,
  10141. struct ggml_cgraph * gb) {
  10142. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  10143. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  10144. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  10145. return GGML_OPT_INVALID_WOLFE;
  10146. }
  10147. }
  10148. gf->n_threads = params.n_threads;
  10149. gb->n_threads = params.n_threads;
  10150. const int m = params.lbfgs.m;
  10151. // these will store the parameters we want to optimize
  10152. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  10153. int np = 0;
  10154. int nx = 0;
  10155. for (int i = 0; i < gf->n_nodes; ++i) {
  10156. if (gf->nodes[i]->is_param) {
  10157. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  10158. GGML_ASSERT(np < GGML_MAX_PARAMS);
  10159. ps[np++] = gf->nodes[i];
  10160. nx += ggml_nelements(gf->nodes[i]);
  10161. }
  10162. }
  10163. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  10164. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  10165. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  10166. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  10167. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  10168. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  10169. float fx = 0.0f; // cost function value
  10170. float xnorm = 0.0f; // ||x||
  10171. float gnorm = 0.0f; // ||g||
  10172. float step = 0.0f;
  10173. // initialize x from the graph nodes
  10174. ggml_opt_get_params(np, ps, x);
  10175. // the L-BFGS memory
  10176. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  10177. for (int i = 0; i < m; ++i) {
  10178. lm[i].alpha = 0.0f;
  10179. lm[i].ys = 0.0f;
  10180. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  10181. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  10182. }
  10183. // evaluate the function value and its gradient
  10184. {
  10185. ggml_opt_set_params(np, ps, x);
  10186. ggml_graph_reset (gf);
  10187. ggml_set_f32 (f->grad, 1.0f);
  10188. ggml_graph_compute(ctx, gb);
  10189. ggml_opt_get_grad(np, ps, g);
  10190. fx = ggml_get_f32_1d(f, 0);
  10191. }
  10192. if (pf) {
  10193. pf[0] = fx;
  10194. }
  10195. float fx_best = fx;
  10196. // search direction = -gradient
  10197. ggml_vec_neg_f32(nx, d, g);
  10198. // ||x||, ||g||
  10199. ggml_vec_norm_f32(nx, &xnorm, x);
  10200. ggml_vec_norm_f32(nx, &gnorm, g);
  10201. if (xnorm < 1.0f) {
  10202. xnorm = 1.0f;
  10203. }
  10204. // already optimized
  10205. if (gnorm/xnorm <= params.lbfgs.eps) {
  10206. return GGML_OPT_OK;
  10207. }
  10208. // initial step
  10209. ggml_vec_norm_inv_f32(nx, &step, d);
  10210. int j = 0;
  10211. int k = 1;
  10212. int ls = 0;
  10213. int end = 0;
  10214. int bound = 0;
  10215. int n_no_improvement = 0;
  10216. float ys = 0.0f;
  10217. float yy = 0.0f;
  10218. float beta = 0.0f;
  10219. while (true) {
  10220. // store the current position and gradient vectors
  10221. ggml_vec_cpy_f32(nx, xp, x);
  10222. ggml_vec_cpy_f32(nx, gp, g);
  10223. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  10224. if (ls < 0) {
  10225. // linesearch failed - go back to the previous point and return
  10226. ggml_vec_cpy_f32(nx, x, xp);
  10227. ggml_vec_cpy_f32(nx, g, gp);
  10228. return ls;
  10229. }
  10230. ggml_vec_norm_f32(nx, &xnorm, x);
  10231. ggml_vec_norm_f32(nx, &gnorm, g);
  10232. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  10233. if (xnorm < 1.0f) {
  10234. xnorm = 1.0f;
  10235. }
  10236. if (gnorm/xnorm <= params.lbfgs.eps) {
  10237. // converged
  10238. return GGML_OPT_OK;
  10239. }
  10240. // delta-based convergence test
  10241. if (pf != NULL) {
  10242. // need at least params.past iterations to start checking for convergence
  10243. if (params.past <= k) {
  10244. const float rate = (pf[k%params.past] - fx)/fx;
  10245. if (fabsf(rate) < params.delta) {
  10246. return GGML_OPT_OK;
  10247. }
  10248. }
  10249. pf[k%params.past] = fx;
  10250. }
  10251. // check for improvement
  10252. if (params.max_no_improvement > 0) {
  10253. if (fx < fx_best) {
  10254. fx_best = fx;
  10255. n_no_improvement = 0;
  10256. } else {
  10257. n_no_improvement++;
  10258. if (n_no_improvement >= params.max_no_improvement) {
  10259. return GGML_OPT_OK;
  10260. }
  10261. }
  10262. }
  10263. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  10264. // reached the maximum number of iterations
  10265. return GGML_OPT_DID_NOT_CONVERGE;
  10266. }
  10267. // update vectors s and y:
  10268. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  10269. // y_{k+1} = g_{k+1} - g_{k}.
  10270. //
  10271. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  10272. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  10273. // compute scalars ys and yy:
  10274. // ys = y^t \cdot s -> 1 / \rho.
  10275. // yy = y^t \cdot y.
  10276. //
  10277. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  10278. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  10279. lm[end].ys = ys;
  10280. // find new search direction
  10281. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  10282. bound = (m <= k) ? m : k;
  10283. k++;
  10284. end = (end + 1)%m;
  10285. // initialize search direction with -g
  10286. ggml_vec_neg_f32(nx, d, g);
  10287. j = end;
  10288. for (int i = 0; i < bound; ++i) {
  10289. j = (j + m - 1) % m;
  10290. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  10291. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  10292. lm[j].alpha /= lm[j].ys;
  10293. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  10294. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  10295. }
  10296. ggml_vec_scale_f32(nx, d, ys/yy);
  10297. for (int i = 0; i < bound; ++i) {
  10298. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  10299. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  10300. beta /= lm[j].ys;
  10301. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  10302. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  10303. j = (j + 1)%m;
  10304. }
  10305. step = 1.0;
  10306. }
  10307. return GGML_OPT_DID_NOT_CONVERGE;
  10308. }
  10309. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  10310. struct ggml_opt_params result;
  10311. switch (type) {
  10312. case GGML_OPT_ADAM:
  10313. {
  10314. result = (struct ggml_opt_params) {
  10315. .type = GGML_OPT_ADAM,
  10316. .n_threads = 1,
  10317. .past = 0,
  10318. .delta = 1e-5f,
  10319. .max_no_improvement = 100,
  10320. .print_forward_graph = true,
  10321. .print_backward_graph = true,
  10322. .adam = {
  10323. .n_iter = 10000,
  10324. .alpha = 0.001f,
  10325. .beta1 = 0.9f,
  10326. .beta2 = 0.999f,
  10327. .eps = 1e-8f,
  10328. .eps_f = 1e-5f,
  10329. .eps_g = 1e-3f,
  10330. },
  10331. };
  10332. } break;
  10333. case GGML_OPT_LBFGS:
  10334. {
  10335. result = (struct ggml_opt_params) {
  10336. .type = GGML_OPT_LBFGS,
  10337. .n_threads = 1,
  10338. .past = 0,
  10339. .delta = 1e-5f,
  10340. .max_no_improvement = 0,
  10341. .print_forward_graph = true,
  10342. .print_backward_graph = true,
  10343. .lbfgs = {
  10344. .m = 6,
  10345. .n_iter = 100,
  10346. .max_linesearch = 20,
  10347. .eps = 1e-5f,
  10348. .ftol = 1e-4f,
  10349. .wolfe = 0.9f,
  10350. .min_step = 1e-20f,
  10351. .max_step = 1e+20f,
  10352. .linesearch = GGML_LINESEARCH_DEFAULT,
  10353. },
  10354. };
  10355. } break;
  10356. }
  10357. return result;
  10358. }
  10359. enum ggml_opt_result ggml_opt(
  10360. struct ggml_context * ctx,
  10361. struct ggml_opt_params params,
  10362. struct ggml_tensor * f) {
  10363. bool free_ctx = false;
  10364. if (ctx == NULL) {
  10365. struct ggml_init_params params_ctx = {
  10366. .mem_size = 16*1024*1024,
  10367. .mem_buffer = NULL,
  10368. .no_alloc = false,
  10369. };
  10370. ctx = ggml_init(params_ctx);
  10371. if (ctx == NULL) {
  10372. return GGML_OPT_NO_CONTEXT;
  10373. }
  10374. free_ctx = true;
  10375. }
  10376. enum ggml_opt_result result = GGML_OPT_OK;
  10377. // build forward + backward compute graphs
  10378. struct ggml_cgraph gf = ggml_build_forward (f);
  10379. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  10380. switch (params.type) {
  10381. case GGML_OPT_ADAM:
  10382. {
  10383. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  10384. } break;
  10385. case GGML_OPT_LBFGS:
  10386. {
  10387. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  10388. } break;
  10389. }
  10390. if (params.print_forward_graph) {
  10391. ggml_graph_print (&gf);
  10392. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  10393. }
  10394. if (params.print_backward_graph) {
  10395. ggml_graph_print (&gb);
  10396. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  10397. }
  10398. if (free_ctx) {
  10399. ggml_free(ctx);
  10400. }
  10401. return result;
  10402. }
  10403. ////////////////////////////////////////////////////////////////////////////////
  10404. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  10405. assert(k % QK4_0 == 0);
  10406. const int nb = k / QK4_0;
  10407. for (int j = 0; j < n; j += k) {
  10408. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK4_0;
  10409. quantize_row_q4_0_reference(src + j, y, k);
  10410. for (int i = 0; i < nb; i++) {
  10411. for (int l = 0; l < QK4_0; l += 2) {
  10412. const uint8_t vi0 = y[i].qs[l/2] & 0x0F;
  10413. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10414. hist[vi0]++;
  10415. hist[vi1]++;
  10416. }
  10417. }
  10418. }
  10419. return (n/QK4_0*sizeof(block_q4_0));
  10420. }
  10421. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  10422. assert(k % QK4_1 == 0);
  10423. const int nb = k / QK4_1;
  10424. for (int j = 0; j < n; j += k) {
  10425. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK4_1;
  10426. quantize_row_q4_1_reference(src + j, y, k);
  10427. for (int i = 0; i < nb; i++) {
  10428. for (int l = 0; l < QK4_1; l += 2) {
  10429. const uint8_t vi0 = y[i].qs[l/2] & 0x0F;
  10430. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10431. hist[vi0]++;
  10432. hist[vi1]++;
  10433. }
  10434. }
  10435. }
  10436. return (n/QK4_1*sizeof(block_q4_1));
  10437. }
  10438. size_t ggml_quantize_q4_2(const float * src, void * dst, int n, int k, int64_t * hist) {
  10439. assert(k % QK4_2 == 0);
  10440. const int nb = k / QK4_2;
  10441. for (int j = 0; j < n; j += k) {
  10442. block_q4_2 * restrict y = (block_q4_2 *)dst + j/QK4_2;
  10443. quantize_row_q4_2_reference(src + j, y, k);
  10444. for (int i = 0; i < nb; i++) {
  10445. for (int l = 0; l < QK4_2; l += 2) {
  10446. const uint8_t vi0 = y[i].qs[l/2] & 0x0F;
  10447. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10448. hist[vi0]++;
  10449. hist[vi1]++;
  10450. }
  10451. }
  10452. }
  10453. return (n/QK4_2*sizeof(block_q4_2));
  10454. }
  10455. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  10456. assert(k % QK5_0 == 0);
  10457. const int nb = k / QK5_0;
  10458. for (int j = 0; j < n; j += k) {
  10459. block_q5_0 * restrict y = (block_q5_0 *)dst + j/QK5_0;
  10460. quantize_row_q5_0_reference(src + j, y, k);
  10461. for (int i = 0; i < nb; i++) {
  10462. uint32_t qh;
  10463. memcpy(&qh, &y[i].qh, sizeof(qh));
  10464. for (int l = 0; l < QK5_0; l += 2) {
  10465. const uint8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4;
  10466. const uint8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4;
  10467. // cast to 16 bins
  10468. const uint8_t vi0 = ((y[i].qs[l/2] & 0x0F) | vh0) / 2;
  10469. const uint8_t vi1 = ((y[i].qs[l/2] >> 4) | vh1) / 2;
  10470. hist[vi0]++;
  10471. hist[vi1]++;
  10472. }
  10473. }
  10474. }
  10475. return (n/QK5_0*sizeof(block_q5_0));
  10476. }
  10477. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  10478. assert(k % QK5_1 == 0);
  10479. const int nb = k / QK5_1;
  10480. for (int j = 0; j < n; j += k) {
  10481. block_q5_1 * restrict y = (block_q5_1 *)dst + j/QK5_1;
  10482. quantize_row_q5_1_reference(src + j, y, k);
  10483. for (int i = 0; i < nb; i++) {
  10484. uint32_t qh;
  10485. memcpy(&qh, &y[i].qh, sizeof(qh));
  10486. for (int l = 0; l < QK5_1; l += 2) {
  10487. const uint8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4;
  10488. const uint8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4;
  10489. // cast to 16 bins
  10490. const uint8_t vi0 = ((y[i].qs[l/2] & 0x0F) | vh0) / 2;
  10491. const uint8_t vi1 = ((y[i].qs[l/2] >> 4) | vh1) / 2;
  10492. hist[vi0]++;
  10493. hist[vi1]++;
  10494. }
  10495. }
  10496. }
  10497. return (n/QK5_1*sizeof(block_q5_1));
  10498. }
  10499. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  10500. assert(k % QK8_0 == 0);
  10501. const int nb = k / QK8_0;
  10502. for (int j = 0; j < n; j += k) {
  10503. block_q8_0 * restrict y = (block_q8_0 *)dst + j/QK8_0;
  10504. quantize_row_q8_0_reference(src + j, y, k);
  10505. for (int i = 0; i < nb; i++) {
  10506. for (int l = 0; l < QK8_0; ++l) {
  10507. const int8_t vi = y[i].qs[l];
  10508. hist[vi/16 + 8]++;
  10509. }
  10510. }
  10511. }
  10512. return (n/QK8_0*sizeof(block_q8_0));
  10513. }
  10514. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  10515. size_t result = 0;
  10516. switch (type) {
  10517. case GGML_TYPE_Q4_0:
  10518. {
  10519. GGML_ASSERT(start % QK4_0 == 0);
  10520. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  10521. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  10522. } break;
  10523. case GGML_TYPE_Q4_1:
  10524. {
  10525. GGML_ASSERT(start % QK4_1 == 0);
  10526. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  10527. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  10528. } break;
  10529. case GGML_TYPE_Q4_2:
  10530. {
  10531. GGML_ASSERT(start % QK4_2 == 0);
  10532. block_q4_2 * block = (block_q4_2*)dst + start / QK4_2;
  10533. result = ggml_quantize_q4_2(src + start, block, n, n, hist);
  10534. } break;
  10535. case GGML_TYPE_Q5_0:
  10536. {
  10537. GGML_ASSERT(start % QK5_0 == 0);
  10538. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  10539. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  10540. } break;
  10541. case GGML_TYPE_Q5_1:
  10542. {
  10543. GGML_ASSERT(start % QK5_1 == 0);
  10544. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  10545. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  10546. } break;
  10547. case GGML_TYPE_Q8_0:
  10548. {
  10549. GGML_ASSERT(start % QK8_0 == 0);
  10550. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  10551. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  10552. } break;
  10553. default:
  10554. assert(false);
  10555. }
  10556. return result;
  10557. }
  10558. ////////////////////////////////////////////////////////////////////////////////
  10559. int ggml_cpu_has_avx(void) {
  10560. #if defined(__AVX__)
  10561. return 1;
  10562. #else
  10563. return 0;
  10564. #endif
  10565. }
  10566. int ggml_cpu_has_avx2(void) {
  10567. #if defined(__AVX2__)
  10568. return 1;
  10569. #else
  10570. return 0;
  10571. #endif
  10572. }
  10573. int ggml_cpu_has_avx512(void) {
  10574. #if defined(__AVX512F__)
  10575. return 1;
  10576. #else
  10577. return 0;
  10578. #endif
  10579. }
  10580. int ggml_cpu_has_avx512_vbmi(void) {
  10581. #if defined(__AVX512VBMI__)
  10582. return 1;
  10583. #else
  10584. return 0;
  10585. #endif
  10586. }
  10587. int ggml_cpu_has_avx512_vnni(void) {
  10588. #if defined(__AVX512VNNI__)
  10589. return 1;
  10590. #else
  10591. return 0;
  10592. #endif
  10593. }
  10594. int ggml_cpu_has_fma(void) {
  10595. #if defined(__FMA__)
  10596. return 1;
  10597. #else
  10598. return 0;
  10599. #endif
  10600. }
  10601. int ggml_cpu_has_neon(void) {
  10602. #if defined(__ARM_NEON)
  10603. return 1;
  10604. #else
  10605. return 0;
  10606. #endif
  10607. }
  10608. int ggml_cpu_has_arm_fma(void) {
  10609. #if defined(__ARM_FEATURE_FMA)
  10610. return 1;
  10611. #else
  10612. return 0;
  10613. #endif
  10614. }
  10615. int ggml_cpu_has_f16c(void) {
  10616. #if defined(__F16C__)
  10617. return 1;
  10618. #else
  10619. return 0;
  10620. #endif
  10621. }
  10622. int ggml_cpu_has_fp16_va(void) {
  10623. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  10624. return 1;
  10625. #else
  10626. return 0;
  10627. #endif
  10628. }
  10629. int ggml_cpu_has_wasm_simd(void) {
  10630. #if defined(__wasm_simd128__)
  10631. return 1;
  10632. #else
  10633. return 0;
  10634. #endif
  10635. }
  10636. int ggml_cpu_has_blas(void) {
  10637. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  10638. return 1;
  10639. #else
  10640. return 0;
  10641. #endif
  10642. }
  10643. int ggml_cpu_has_cublas(void) {
  10644. #if defined(GGML_USE_CUBLAS)
  10645. return 1;
  10646. #else
  10647. return 0;
  10648. #endif
  10649. }
  10650. int ggml_cpu_has_clblast(void) {
  10651. #if defined(GGML_USE_CLBLAST)
  10652. return 1;
  10653. #else
  10654. return 0;
  10655. #endif
  10656. }
  10657. int ggml_cpu_has_gpublas(void) {
  10658. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  10659. }
  10660. int ggml_cpu_has_sse3(void) {
  10661. #if defined(__SSE3__)
  10662. return 1;
  10663. #else
  10664. return 0;
  10665. #endif
  10666. }
  10667. int ggml_cpu_has_vsx(void) {
  10668. #if defined(__POWER9_VECTOR__)
  10669. return 1;
  10670. #else
  10671. return 0;
  10672. #endif
  10673. }
  10674. ////////////////////////////////////////////////////////////////////////////////