batched-bench.cpp 8.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225
  1. #include "arg.h"
  2. #include "common.h"
  3. #include "log.h"
  4. #include "llama.h"
  5. #include <algorithm>
  6. #include <cstdio>
  7. #include <string>
  8. #include <vector>
  9. static void print_usage(int, char ** argv) {
  10. LOG("\nexample usage:\n");
  11. LOG("\n %s -m model.gguf -c 2048 -b 2048 -ub 512 -npp 128,256,512 -ntg 128,256 -npl 1,2,4,8,16,32 [-pps]\n", argv[0]);
  12. LOG("\n");
  13. }
  14. int main(int argc, char ** argv) {
  15. common_params params;
  16. if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_BENCH, print_usage)) {
  17. return 1;
  18. }
  19. common_init();
  20. int is_pp_shared = params.is_pp_shared;
  21. std::vector<int> n_pp = params.n_pp;
  22. std::vector<int> n_tg = params.n_tg;
  23. std::vector<int> n_pl = params.n_pl;
  24. // init LLM
  25. llama_backend_init();
  26. llama_numa_init(params.numa);
  27. // initialize the model
  28. llama_model_params model_params = common_model_params_to_llama(params);
  29. llama_model * model = llama_model_load_from_file(params.model.path.c_str(), model_params);
  30. if (model == NULL) {
  31. fprintf(stderr , "%s: error: unable to load model\n" , __func__);
  32. return 1;
  33. }
  34. llama_context_params ctx_params = common_context_params_to_llama(params);
  35. // ensure enough sequences are available
  36. ctx_params.n_seq_max = n_pl.empty() ? 1 : *std::max_element(n_pl.begin(), n_pl.end());
  37. llama_context * ctx = llama_init_from_model(model, ctx_params);
  38. if (ctx == NULL) {
  39. fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
  40. return 1;
  41. }
  42. const llama_vocab * vocab = llama_model_get_vocab(model);
  43. const int32_t n_vocab = llama_vocab_n_tokens(vocab);
  44. const auto get_token_rand = [n_vocab]() -> llama_token {
  45. return std::rand() % n_vocab;
  46. };
  47. auto * mem = llama_get_memory(ctx);
  48. const int32_t n_kv_max = llama_n_ctx(ctx);
  49. llama_batch batch = llama_batch_init(n_kv_max, 0, 1);
  50. // decode in batches of ctx_params.n_batch tokens
  51. auto decode_helper = [](llama_context * ctx, llama_batch & batch, int32_t n_batch, bool synchronize) {
  52. for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) {
  53. const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
  54. llama_batch batch_view = {
  55. n_tokens,
  56. batch.token + i,
  57. nullptr,
  58. batch.pos + i,
  59. batch.n_seq_id + i,
  60. batch.seq_id + i,
  61. batch.logits + i,
  62. };
  63. const int ret = llama_decode(ctx, batch_view);
  64. if (ret != 0) {
  65. LOG_ERR("failed to decode the batch, n_batch = %d, ret = %d\n", n_batch, ret);
  66. return false;
  67. }
  68. if (synchronize) {
  69. llama_synchronize(ctx);
  70. }
  71. }
  72. return true;
  73. };
  74. // warm up
  75. {
  76. for (int i = 0; i < 16; ++i) {
  77. common_batch_add(batch, get_token_rand(), i, { 0 }, false);
  78. }
  79. if (!decode_helper(ctx, batch, ctx_params.n_batch, true)) {
  80. LOG_ERR("%s: llama_decode() failed\n", __func__);
  81. return 1;
  82. }
  83. }
  84. if (!params.batched_bench_output_jsonl) {
  85. LOG("\n");
  86. LOG("%s: n_kv_max = %d, n_batch = %d, n_ubatch = %d, flash_attn = %d, is_pp_shared = %d, n_gpu_layers = %d, n_threads = %u, n_threads_batch = %u\n", __func__, n_kv_max, params.n_batch, params.n_ubatch, int(params.flash_attn_type), params.is_pp_shared, params.n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch);
  87. LOG("\n");
  88. LOG("|%6s | %6s | %4s | %6s | %8s | %8s | %8s | %8s | %8s | %8s |\n", "PP", "TG", "B", "N_KV", "T_PP s", "S_PP t/s", "T_TG s", "S_TG t/s", "T s", "S t/s");
  89. LOG("|%6s-|-%6s-|-%4s-|-%6s-|-%8s-|-%8s-|-%8s-|-%8s-|-%8s-|-%8s-|\n", "------", "------", "----", "------", "--------", "--------", "--------", "--------", "--------", "--------");
  90. }
  91. for ( int i_pp = 0; i_pp < (int) n_pp.size(); ++i_pp) {
  92. for ( int i_tg = 0; i_tg < (int) n_tg.size(); ++i_tg) {
  93. for (int i_pl = 0; i_pl < (int) n_pl.size(); ++i_pl) {
  94. const int pp = n_pp[i_pp];
  95. const int tg = n_tg[i_tg];
  96. const int pl = n_pl[i_pl];
  97. const int n_ctx_req = is_pp_shared ? (params.kv_unified ? pp : pl*pp) + pl*tg : pl*(pp + tg);
  98. if (n_ctx_req > n_kv_max) {
  99. continue;
  100. }
  101. common_batch_clear(batch);
  102. for (int j = 0; j < (is_pp_shared ? 1 : pl); ++j) {
  103. for (int i = 0; i < pp; ++i) {
  104. common_batch_add(batch, get_token_rand(), i, { j }, i == pp - 1);
  105. }
  106. }
  107. llama_memory_clear(mem, false);
  108. const auto t_pp_start = ggml_time_us();
  109. if (!decode_helper(ctx, batch, ctx_params.n_batch, false)) {
  110. LOG_ERR("%s: llama_decode() failed\n", __func__);
  111. return 1;
  112. }
  113. llama_synchronize(ctx);
  114. const auto t_pp_end = ggml_time_us();
  115. if (is_pp_shared) {
  116. for (int32_t i = 1; i < pl; ++i) {
  117. llama_memory_seq_cp(mem, 0, i, -1, -1);
  118. }
  119. if (!params.kv_unified) {
  120. // run one dummy token to apply the memory copy
  121. common_batch_clear(batch);
  122. common_batch_add(batch, get_token_rand(), pp + 0, { 0 }, true);
  123. if (!decode_helper(ctx, batch, ctx_params.n_batch, true)) {
  124. LOG_ERR("%s: llama_decode() failed\n", __func__);
  125. return 1;
  126. }
  127. llama_memory_seq_rm(mem, 0, pp, -1);
  128. }
  129. }
  130. const auto t_tg_start = ggml_time_us();
  131. for (int i = 0; i < tg; ++i) {
  132. common_batch_clear(batch);
  133. for (int j = 0; j < pl; ++j) {
  134. common_batch_add(batch, get_token_rand(), pp + i, { j }, true);
  135. }
  136. if (!decode_helper(ctx, batch, ctx_params.n_batch, true)) {
  137. LOG_ERR("%s: llama_decode() failed\n", __func__);
  138. return 1;
  139. }
  140. }
  141. const auto t_tg_end = ggml_time_us();
  142. const int32_t n_kv = n_ctx_req;
  143. const float t_pp = (t_pp_end - t_pp_start) / 1000000.0f;
  144. const float t_tg = (t_tg_end - t_tg_start) / 1000000.0f;
  145. const float t = t_pp + t_tg;
  146. const float speed_pp = is_pp_shared ? pp / t_pp : pl*pp / t_pp;
  147. const float speed_tg = pl*tg / t_tg;
  148. const float speed = ((is_pp_shared ? pp : pl*pp) + pl*tg) / t;
  149. if(params.batched_bench_output_jsonl) {
  150. LOG(
  151. "{\"n_kv_max\": %d, \"n_batch\": %d, \"n_ubatch\": %d, \"flash_attn\": %d, \"is_pp_shared\": %d, \"n_gpu_layers\": %d, \"n_threads\": %u, \"n_threads_batch\": %u, "
  152. "\"pp\": %d, \"tg\": %d, \"pl\": %d, \"n_kv\": %d, \"t_pp\": %f, \"speed_pp\": %f, \"t_tg\": %f, \"speed_tg\": %f, \"t\": %f, \"speed\": %f}\n",
  153. n_kv_max, params.n_batch, params.n_ubatch, int(params.flash_attn_type), params.is_pp_shared, params.n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch,
  154. pp, tg, pl, n_kv, t_pp, speed_pp, t_tg, speed_tg, t, speed
  155. );
  156. } else {
  157. LOG("|%6d | %6d | %4d | %6d | %8.3f | %8.2f | %8.3f | %8.2f | %8.3f | %8.2f |\n", pp, tg, pl, n_kv, t_pp, speed_pp, t_tg, speed_tg, t, speed);
  158. }
  159. }
  160. }
  161. }
  162. LOG("\n");
  163. llama_perf_context_print(ctx);
  164. llama_batch_free(batch);
  165. llama_free(ctx);
  166. llama_model_free(model);
  167. llama_backend_free();
  168. return 0;
  169. }