1
0

sampling.cpp 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460
  1. #define LLAMA_API_INTERNAL
  2. #include "sampling.h"
  3. #include <random>
  4. struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_params & params) {
  5. struct llama_sampling_context * result = new llama_sampling_context();
  6. result->params = params;
  7. result->grammar = nullptr;
  8. // if there is a grammar, parse it
  9. if (!params.grammar.empty()) {
  10. result->parsed_grammar = grammar_parser::parse(params.grammar.c_str());
  11. // will be empty (default) if there are parse errors
  12. if (result->parsed_grammar.rules.empty()) {
  13. fprintf(stderr, "%s: failed to parse grammar\n", __func__);
  14. delete result;
  15. return nullptr;
  16. }
  17. // Ensure that there is a "root" node.
  18. if (result->parsed_grammar.symbol_ids.find("root") == result->parsed_grammar.symbol_ids.end()) {
  19. fprintf(stderr, "%s: grammar does not contain a 'root' symbol\n", __func__);
  20. delete result;
  21. return nullptr;
  22. }
  23. std::vector<const llama_grammar_element *> grammar_rules(result->parsed_grammar.c_rules());
  24. struct llama_grammar * grammar = llama_grammar_init(
  25. grammar_rules.data(),
  26. grammar_rules.size(), result->parsed_grammar.symbol_ids.at("root"));
  27. if (grammar == nullptr) {
  28. throw std::runtime_error("Failed to initialize llama_grammar");
  29. }
  30. result->grammar = grammar;
  31. }
  32. result->prev.resize(params.n_prev);
  33. result->n_valid = 0;
  34. llama_sampling_set_rng_seed(result, params.seed);
  35. return result;
  36. }
  37. void llama_sampling_free(struct llama_sampling_context * ctx) {
  38. if (ctx->grammar != NULL) {
  39. llama_grammar_free(ctx->grammar);
  40. }
  41. delete ctx;
  42. }
  43. void llama_sampling_reset(llama_sampling_context * ctx) {
  44. if (ctx->grammar != NULL) {
  45. llama_grammar_free(ctx->grammar);
  46. ctx->grammar = NULL;
  47. }
  48. if (!ctx->parsed_grammar.rules.empty()) {
  49. std::vector<const llama_grammar_element *> grammar_rules(ctx->parsed_grammar.c_rules());
  50. struct llama_grammar * grammar = llama_grammar_init(
  51. grammar_rules.data(),
  52. grammar_rules.size(), ctx->parsed_grammar.symbol_ids.at("root"));
  53. if (grammar == nullptr) {
  54. throw std::runtime_error("Failed to initialize llama_grammar");
  55. }
  56. ctx->grammar = grammar;
  57. }
  58. std::fill(ctx->prev.begin(), ctx->prev.end(), 0);
  59. ctx->cur.clear();
  60. ctx->n_valid = 0;
  61. }
  62. void llama_sampling_set_rng_seed(struct llama_sampling_context * ctx, uint32_t seed) {
  63. if (seed == LLAMA_DEFAULT_SEED) {
  64. seed = std::random_device{}();
  65. }
  66. ctx->rng.seed(seed);
  67. }
  68. void llama_sampling_cp(llama_sampling_context * src, llama_sampling_context * dst) {
  69. if (dst->grammar) {
  70. llama_grammar_free(dst->grammar);
  71. dst->grammar = nullptr;
  72. }
  73. if (src->grammar) {
  74. dst->grammar = llama_grammar_copy(src->grammar);
  75. }
  76. dst->prev = src->prev;
  77. }
  78. llama_token llama_sampling_last(llama_sampling_context * ctx) {
  79. return ctx->prev.back();
  80. }
  81. std::string llama_sampling_prev_str(llama_sampling_context * ctx_sampling, llama_context * ctx_main, int n) {
  82. const int size = ctx_sampling->prev.size();
  83. n = std::min(n, size);
  84. std::string result;
  85. for (int i = size - n; i < size; i++) {
  86. result += llama_token_to_piece(ctx_main, ctx_sampling->prev[i]);
  87. }
  88. return result;
  89. }
  90. std::string llama_sampling_print(const llama_sampling_params & params) {
  91. char result[1024];
  92. snprintf(result, sizeof(result),
  93. "\trepeat_last_n = %d, repeat_penalty = %.3f, frequency_penalty = %.3f, presence_penalty = %.3f\n"
  94. "\ttop_k = %d, tfs_z = %.3f, top_p = %.3f, min_p = %.3f, typical_p = %.3f, temp = %.3f\n"
  95. "\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f",
  96. params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present,
  97. params.top_k, params.tfs_z, params.top_p, params.min_p, params.typical_p, params.temp,
  98. params.mirostat, params.mirostat_eta, params.mirostat_tau);
  99. return std::string(result);
  100. }
  101. std::string llama_sampling_order_print(const llama_sampling_params & params) {
  102. std::string result = "CFG -> Penalties ";
  103. if (params.mirostat == 0) {
  104. for (auto sampler_type : params.samplers_sequence) {
  105. const auto sampler_type_name = llama_sampling_type_to_str(sampler_type);
  106. if (!sampler_type_name.empty()) {
  107. result += "-> " + sampler_type_name + " ";
  108. }
  109. }
  110. } else {
  111. result += "-> mirostat ";
  112. }
  113. return result;
  114. }
  115. std::string llama_sampling_type_to_str(llama_sampler_type sampler_type) {
  116. switch (sampler_type) {
  117. case llama_sampler_type::TOP_K: return "top_k";
  118. case llama_sampler_type::TFS_Z: return "tfs_z";
  119. case llama_sampler_type::TYPICAL_P: return "typical_p";
  120. case llama_sampler_type::TOP_P: return "top_p";
  121. case llama_sampler_type::MIN_P: return "min_p";
  122. case llama_sampler_type::TEMPERATURE: return "temperature";
  123. default : return "";
  124. }
  125. }
  126. std::vector<llama_sampler_type> llama_sampling_types_from_names(const std::vector<std::string> & names, bool allow_alt_names) {
  127. std::unordered_map<std::string, llama_sampler_type> sampler_canonical_name_map {
  128. {"top_k", llama_sampler_type::TOP_K},
  129. {"top_p", llama_sampler_type::TOP_P},
  130. {"typical_p", llama_sampler_type::TYPICAL_P},
  131. {"min_p", llama_sampler_type::MIN_P},
  132. {"tfs_z", llama_sampler_type::TFS_Z},
  133. {"temperature", llama_sampler_type::TEMPERATURE}
  134. };
  135. // since samplers names are written multiple ways
  136. // make it ready for both system names and input names
  137. std::unordered_map<std::string, llama_sampler_type> sampler_alt_name_map {
  138. {"top-k", llama_sampler_type::TOP_K},
  139. {"top-p", llama_sampler_type::TOP_P},
  140. {"nucleus", llama_sampler_type::TOP_P},
  141. {"typical-p", llama_sampler_type::TYPICAL_P},
  142. {"typical", llama_sampler_type::TYPICAL_P},
  143. {"min-p", llama_sampler_type::MIN_P},
  144. {"tfs-z", llama_sampler_type::TFS_Z},
  145. {"tfs", llama_sampler_type::TFS_Z},
  146. {"temp", llama_sampler_type::TEMPERATURE}
  147. };
  148. std::vector<llama_sampler_type> sampler_types;
  149. sampler_types.reserve(names.size());
  150. for (const auto & name : names)
  151. {
  152. auto sampler_item = sampler_canonical_name_map.find(name);
  153. if (sampler_item != sampler_canonical_name_map.end())
  154. {
  155. sampler_types.push_back(sampler_item->second);
  156. }
  157. else
  158. {
  159. if (allow_alt_names)
  160. {
  161. sampler_item = sampler_alt_name_map.find(name);
  162. if (sampler_item != sampler_alt_name_map.end())
  163. {
  164. sampler_types.push_back(sampler_item->second);
  165. }
  166. }
  167. }
  168. }
  169. return sampler_types;
  170. }
  171. std::vector<llama_sampler_type> llama_sampling_types_from_chars(const std::string & names_string) {
  172. std::unordered_map<char, llama_sampler_type> sampler_name_map {
  173. {'k', llama_sampler_type::TOP_K},
  174. {'p', llama_sampler_type::TOP_P},
  175. {'y', llama_sampler_type::TYPICAL_P},
  176. {'m', llama_sampler_type::MIN_P},
  177. {'f', llama_sampler_type::TFS_Z},
  178. {'t', llama_sampler_type::TEMPERATURE}
  179. };
  180. std::vector<llama_sampler_type> sampler_types;
  181. sampler_types.reserve(names_string.size());
  182. for (const auto & c : names_string) {
  183. const auto sampler_item = sampler_name_map.find(c);
  184. if (sampler_item != sampler_name_map.end()) {
  185. sampler_types.push_back(sampler_item->second);
  186. }
  187. }
  188. return sampler_types;
  189. }
  190. // no reasons to expose this function in header
  191. static void sampler_queue(
  192. struct llama_context * ctx_main,
  193. const llama_sampling_params & params,
  194. llama_token_data_array & cur_p,
  195. size_t min_keep) {
  196. const float temp = params.temp;
  197. const float dynatemp_range = params.dynatemp_range;
  198. const float dynatemp_exponent = params.dynatemp_exponent;
  199. const int32_t top_k = params.top_k;
  200. const float top_p = params.top_p;
  201. const float min_p = params.min_p;
  202. const float tfs_z = params.tfs_z;
  203. const float typical_p = params.typical_p;
  204. const std::vector<llama_sampler_type> & samplers_sequence = params.samplers_sequence;
  205. for (auto sampler_type : samplers_sequence) {
  206. switch (sampler_type) {
  207. case llama_sampler_type::TOP_K : llama_sample_top_k (ctx_main, &cur_p, top_k, min_keep); break;
  208. case llama_sampler_type::TFS_Z : llama_sample_tail_free(ctx_main, &cur_p, tfs_z, min_keep); break;
  209. case llama_sampler_type::TYPICAL_P: llama_sample_typical (ctx_main, &cur_p, typical_p, min_keep); break;
  210. case llama_sampler_type::TOP_P : llama_sample_top_p (ctx_main, &cur_p, top_p, min_keep); break;
  211. case llama_sampler_type::MIN_P : llama_sample_min_p (ctx_main, &cur_p, min_p, min_keep); break;
  212. case llama_sampler_type::TEMPERATURE:
  213. if (dynatemp_range > 0) {
  214. float dynatemp_min = std::max(0.0f, temp - dynatemp_range);
  215. float dynatemp_max = std::max(0.0f, temp + dynatemp_range);
  216. llama_sample_entropy(ctx_main, &cur_p, dynatemp_min, dynatemp_max, dynatemp_exponent);
  217. } else {
  218. llama_sample_temp(ctx_main, &cur_p, temp);
  219. }
  220. break;
  221. default : break;
  222. }
  223. }
  224. }
  225. static llama_token llama_sampling_sample_impl(
  226. struct llama_sampling_context * ctx_sampling,
  227. struct llama_context * ctx_main,
  228. struct llama_context * ctx_cfg,
  229. const int idx,
  230. bool is_resampling) {
  231. const llama_sampling_params & params = ctx_sampling->params;
  232. const float temp = params.temp;
  233. const int mirostat = params.mirostat;
  234. const float mirostat_tau = params.mirostat_tau;
  235. const float mirostat_eta = params.mirostat_eta;
  236. std::vector<float> original_logits;
  237. auto cur_p = llama_sampling_prepare(ctx_sampling, ctx_main, ctx_cfg, idx, /* apply_grammar= */ is_resampling, &original_logits);
  238. if (ctx_sampling->grammar != NULL && !is_resampling) {
  239. GGML_ASSERT(!original_logits.empty());
  240. }
  241. llama_token id = 0;
  242. if (temp < 0.0) {
  243. // greedy sampling, with probs
  244. llama_sample_softmax(ctx_main, &cur_p);
  245. id = cur_p.data[0].id;
  246. } else if (temp == 0.0) {
  247. // greedy sampling, no probs
  248. id = llama_sample_token_greedy(ctx_main, &cur_p);
  249. } else {
  250. if (mirostat == 1) {
  251. const int mirostat_m = 100;
  252. llama_sample_temp(ctx_main, &cur_p, temp);
  253. id = llama_sample_token_mirostat(ctx_main, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &ctx_sampling->mirostat_mu);
  254. } else if (mirostat == 2) {
  255. llama_sample_temp(ctx_main, &cur_p, temp);
  256. id = llama_sample_token_mirostat_v2(ctx_main, &cur_p, mirostat_tau, mirostat_eta, &ctx_sampling->mirostat_mu);
  257. } else {
  258. // temperature sampling
  259. size_t min_keep = std::max(1, params.min_keep);
  260. sampler_queue(ctx_main, params, cur_p, min_keep);
  261. id = llama_sample_token_with_rng(ctx_main, &cur_p, ctx_sampling->rng);
  262. //{
  263. // const int n_top = 10;
  264. // LOG("top %d candidates:\n", n_top);
  265. // for (int i = 0; i < n_top; i++) {
  266. // const llama_token id = cur_p.data[i].id;
  267. // (void)id; // To avoid a warning that id is unused when logging is disabled.
  268. // LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx_main, id).c_str(), cur_p.data[i].p);
  269. // }
  270. //}
  271. //LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx_main, id).c_str());
  272. }
  273. }
  274. if (ctx_sampling->grammar != NULL && !is_resampling) {
  275. // Get a pointer to the logits
  276. float * logits = llama_get_logits_ith(ctx_main, idx);
  277. // Create an array with a single token data element for the sampled id
  278. llama_token_data single_token_data = {id, logits[id], 0.0f};
  279. llama_token_data_array single_token_data_array = { &single_token_data, 1, false };
  280. // Apply grammar constraints to the single token
  281. llama_sample_grammar(ctx_main, &single_token_data_array, ctx_sampling->grammar);
  282. // Check if the token is valid according to the grammar by seeing if its logit has been set to -INFINITY
  283. bool is_valid = single_token_data_array.data[0].logit != -INFINITY;
  284. // If the token is not valid according to the grammar, perform resampling
  285. if (!is_valid) {
  286. LOG("Resampling because token %d: '%s' does not meet grammar rules\n", id, llama_token_to_piece(ctx_main, id).c_str());
  287. // Restore logits from the copy
  288. std::copy(original_logits.begin(), original_logits.end(), logits);
  289. return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, /* is_resampling= */ true);
  290. }
  291. }
  292. ctx_sampling->n_valid = temp == 0.0f ? 0 : cur_p.size;
  293. return id;
  294. }
  295. static llama_token_data_array llama_sampling_prepare_impl(
  296. struct llama_sampling_context * ctx_sampling,
  297. struct llama_context * ctx_main,
  298. struct llama_context * ctx_cfg,
  299. const int idx,
  300. bool apply_grammar,
  301. std::vector<float> * original_logits) {
  302. const llama_sampling_params & params = ctx_sampling->params;
  303. const int n_vocab = llama_n_vocab(llama_get_model(ctx_main));
  304. const int32_t penalty_last_n = params.penalty_last_n < 0 ? params.n_prev : params.penalty_last_n;
  305. const float penalty_repeat = params.penalty_repeat;
  306. const float penalty_freq = params.penalty_freq;
  307. const float penalty_present = params.penalty_present;
  308. const bool penalize_nl = params.penalize_nl;
  309. auto & prev = ctx_sampling->prev;
  310. auto & cur = ctx_sampling->cur;
  311. // Get a pointer to the logits
  312. float * logits = llama_get_logits_ith(ctx_main, idx);
  313. if (ctx_sampling->grammar != NULL && !apply_grammar) {
  314. GGML_ASSERT(original_logits != NULL);
  315. // Only make a copy of the original logits if we are not applying grammar checks, not sure if I actually have to do this.
  316. *original_logits = {logits, logits + n_vocab};
  317. }
  318. // apply params.logit_bias map
  319. for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
  320. logits[it->first] += it->second;
  321. }
  322. if (ctx_cfg) {
  323. float * logits_guidance = llama_get_logits_ith(ctx_cfg, idx);
  324. llama_sample_apply_guidance(ctx_main, logits, logits_guidance, params.cfg_scale);
  325. }
  326. cur.resize(n_vocab);
  327. for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
  328. cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f};
  329. }
  330. llama_token_data_array cur_p = { cur.data(), cur.size(), false };
  331. // apply penalties
  332. const auto& penalty_tokens = params.use_penalty_prompt_tokens ? params.penalty_prompt_tokens : prev;
  333. const int penalty_tokens_used_size = std::min((int)penalty_tokens.size(), penalty_last_n);
  334. if (penalty_tokens_used_size) {
  335. const float nl_logit = logits[llama_token_nl(llama_get_model(ctx_main))];
  336. llama_sample_repetition_penalties(ctx_main, &cur_p,
  337. penalty_tokens.data() + penalty_tokens.size() - penalty_tokens_used_size,
  338. penalty_tokens_used_size, penalty_repeat, penalty_freq, penalty_present);
  339. if (!penalize_nl) {
  340. for (size_t idx = 0; idx < cur_p.size; idx++) {
  341. if (cur_p.data[idx].id == llama_token_nl(llama_get_model(ctx_main))) {
  342. cur_p.data[idx].logit = nl_logit;
  343. break;
  344. }
  345. }
  346. }
  347. }
  348. // apply grammar checks before sampling logic
  349. if (apply_grammar && ctx_sampling->grammar != NULL) {
  350. llama_sample_grammar(ctx_main, &cur_p, ctx_sampling->grammar);
  351. }
  352. return cur_p;
  353. }
  354. llama_token llama_sampling_sample(
  355. struct llama_sampling_context * ctx_sampling,
  356. struct llama_context * ctx_main,
  357. struct llama_context * ctx_cfg,
  358. const int idx) {
  359. // Call the implementation function with is_resampling set to false by default
  360. return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, /* is_resampling= */ false);
  361. }
  362. llama_token_data_array llama_sampling_prepare(
  363. struct llama_sampling_context * ctx_sampling,
  364. struct llama_context * ctx_main,
  365. struct llama_context * ctx_cfg,
  366. const int idx,
  367. bool apply_grammar,
  368. std::vector<float> * original_logits) {
  369. return llama_sampling_prepare_impl(ctx_sampling,ctx_main, ctx_cfg, idx, apply_grammar, original_logits);
  370. }
  371. void llama_sampling_accept(
  372. struct llama_sampling_context * ctx_sampling,
  373. struct llama_context * ctx_main,
  374. llama_token id,
  375. bool apply_grammar) {
  376. ctx_sampling->prev.erase(ctx_sampling->prev.begin());
  377. ctx_sampling->prev.push_back(id);
  378. if (ctx_sampling->grammar != NULL && apply_grammar) {
  379. llama_grammar_accept_token(ctx_main, ctx_sampling->grammar, id);
  380. }
  381. }