| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325 |
- #include "common.h"
- #include "llama.h"
- #include "ggml.h"
- #ifdef GGML_USE_CUDA
- #include "ggml-cuda.h"
- #endif
- #ifdef GGML_USE_METAL
- #include "ggml-metal.h"
- #endif
- #include <cstdio>
- #include <ctime>
- #include <string>
- #include <tuple>
- #include <vector>
- #include <algorithm>
- #include <iostream>
- #include <fstream>
- #define DEBUG_POS 5
- static void print_debug_tensor(struct ggml_tensor * t, bool with_data = true) {
- printf("%s: %s (%s): [%d, %d]\n", __func__, t->name, ggml_type_name(t->type), (int) t->ne[0], (int) t->ne[1]);
- if (!with_data) return;
- printf("%s: %s[0] = [", __func__, t->name);
- for (size_t i = 0; i <= DEBUG_POS; i++) {
- printf(" %f,", ggml_get_f32_nd(t, i, 0, 0, 0));
- }
- printf(" ... ]\n");
- }
- namespace PCA {
- // input params for PCA computations
- struct pca_params {
- int n_threads = 1;
- int n_batch = 20; // number of iterations do to in one batch. larger the batch, more memory is used
- int n_iterations = 1000;
- float tolerance = 1e-7;
- // for debugging
- int i_layer = 0;
- int n_layers = 0;
- };
- // result from each iteration
- struct pca_result {
- struct ggml_tensor * calculated_square = NULL;
- std::vector<struct ggml_tensor *> eigenvectors;
- std::vector<float> distances;
- };
- struct pca_model {
- ggml_backend_t backend = NULL;
- ggml_backend_buffer_t buffer;
- struct ggml_context * ctx; // context to compute graph on target device
- struct ggml_context * ctx_host; // host context to store results
- // tensors on target device
- struct ggml_tensor * dev_input;
- struct ggml_tensor * dev_square;
- struct ggml_tensor * dev_eigenvector;
- pca_model(struct ggml_tensor * t_input) {
- #ifdef GGML_USE_CUDA
- fprintf(stderr, "%s: using CUDA backend\n", __func__);
- backend = ggml_backend_cuda_init(0); // init device 0
- if (!backend) {
- fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__);
- }
- #endif
- // TODO: enable Metal support when support for GGML_OP_SQRT is added
- // #ifdef GGML_USE_METAL
- // fprintf(stderr, "%s: using Metal backend\n", __func__);
- // backend = ggml_backend_metal_init();
- // if (!backend) {
- // fprintf(stderr, "%s: ggml_backend_metal_init() failed\n", __func__);
- // }
- // #endif
- // if there aren't GPU Backends fallback to CPU backend
- if (!backend) {
- backend = ggml_backend_cpu_init();
- }
- const int num_tensors = 4;
- struct ggml_init_params params {
- /*.mem_size =*/ ggml_tensor_overhead() * num_tensors,
- /*.mem_buffer =*/ NULL,
- /*.no_alloc =*/ true,
- };
- ctx = ggml_init(params);
- auto n_samples = t_input->ne[0];
- auto n_embd = t_input->ne[1];
- dev_input = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_samples, n_embd);
- dev_square = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
- dev_eigenvector = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
- ggml_set_name(dev_input, "dev_input");
- ggml_set_name(dev_square, "dev_square");
- ggml_set_name(dev_eigenvector, "dev_eigenvector");
- buffer = ggml_backend_alloc_ctx_tensors(ctx, backend);
- ggml_backend_tensor_set(dev_input, t_input->data, 0, ggml_nbytes(t_input));
- // initialize eigenvector to random normalized vector
- {
- std::vector<float> random_vec(ggml_nelements(dev_eigenvector), 0.0);
- std::default_random_engine generator(static_cast<unsigned int>(std::time(0)));
- std::uniform_real_distribution<float> distribution(0.0, 1.0);
- float sum_sqr = 0.0; // for normalizing random_vec
- for (size_t i = 0; i < random_vec.size(); ++i) {
- float f = distribution(generator);
- sum_sqr += f * f;
- random_vec[i] = f;
- }
- // normalize it
- float random_vec_norm = std::sqrt(sum_sqr);
- for (size_t i = 0; i < random_vec.size(); ++i) {
- random_vec[i] /= random_vec_norm;
- }
- ggml_backend_tensor_set(dev_eigenvector, random_vec.data(), 0, ggml_nbytes(dev_eigenvector));
- }
- }
- ~pca_model() {
- ggml_free(ctx);
- ggml_backend_buffer_free(buffer);
- ggml_backend_free(backend);
- }
- };
- static struct ggml_cgraph * build_graph_piter(
- const struct pca_params & params,
- const pca_model & model,
- bool calc_square = false) {
- GGML_ASSERT(params.n_batch > 0);
- // TODO: buf_size must be able to scale with params.n_batch
- static size_t buf_size = ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead();
- static std::vector<uint8_t> buf(buf_size);
- struct ggml_init_params params0 = {
- /*.mem_size =*/ buf_size,
- /*.mem_buffer =*/ buf.data(),
- /*.no_alloc =*/ true, // the tensors will be allocated later by ggml_allocr_alloc_graph()
- };
- // create a temporally context to build the graph
- struct ggml_context * ctx0 = ggml_init(params0);
- struct ggml_cgraph * gf = ggml_new_graph(ctx0);
- // turn v_diff_original into square matrix if needed
- struct ggml_tensor * tmp_square;
- if (calc_square) {
- tmp_square = ggml_mul_mat(ctx0, model.dev_input, model.dev_input);
- ggml_set_name(tmp_square, "tmp_square");
- }
- struct ggml_tensor * b_tensor;
- struct ggml_tensor * distance;
- struct ggml_tensor * old_eigen = model.dev_eigenvector;
- struct ggml_tensor * input_square = calc_square ? tmp_square : model.dev_square;
- for (int i = 0; i < params.n_batch; ++i) {
- // b_tensor = square * eigenvector^T
- b_tensor = ggml_mul_mat(ctx0, input_square, old_eigen);
- ggml_set_name(b_tensor, "b_tensor");
- // normalize
- b_tensor = ggml_div_inplace(ctx0,
- b_tensor,
- ggml_sqrt_inplace(ctx0, ggml_sum_rows(ctx0, ggml_sqr(ctx0, b_tensor)))
- );
- ggml_format_name(b_tensor, "b_tensor_norm_%d", i);
- // calculate distance(new eigenvector - old eigenvector)
- // we don't use ggml_sub because it may not be implemented on GPU backend
- struct ggml_tensor * new_sub_old = ggml_add(ctx0, old_eigen, ggml_scale(ctx0, b_tensor, -1));
- distance = ggml_sqrt_inplace(ctx0,
- ggml_sum_rows(ctx0, ggml_sqr_inplace(ctx0, new_sub_old)));
- ggml_format_name(distance, "distance_%d", i);
- old_eigen = b_tensor;
- // build operations nodes
- ggml_build_forward_expand(gf, distance);
- }
- // delete the temporally context used to build the graph
- ggml_free(ctx0);
- return gf;
- }
- static ggml_status compute_piter(
- const struct pca_params & params,
- const pca_model & model,
- struct ggml_cgraph * gf,
- ggml_gallocr_t allocr,
- struct pca_result & result) {
- // allocate tensors
- ggml_gallocr_alloc_graph(allocr, gf);
- if (ggml_backend_is_cpu(model.backend)) {
- ggml_backend_cpu_set_n_threads(model.backend, params.n_threads);
- }
- // TODO: enable GPU support when support for GGML_OP_SQRT is added
- //#ifdef GGML_USE_METAL
- // if (ggml_backend_is_metal(model.backend)) {
- // ggml_backend_metal_set_n_cb(model.backend, params.n_threads);
- // }
- //#endif
- ggml_status res = ggml_backend_graph_compute(model.backend, gf);
- if (res == GGML_STATUS_SUCCESS) {
- auto extract_i = [](std::string prefix, std::string str) -> int {
- int i = -1;
- if (str.rfind(prefix, 0) == 0) {
- sscanf(str.c_str(), (prefix + "%d").c_str(), &i);
- }
- return i;
- };
- result.calculated_square = NULL;
- result.eigenvectors.clear();
- result.distances.clear();
- result.eigenvectors.resize(params.n_batch);
- result.distances.resize(params.n_batch);
- // get output nodes
- for (int i = 0; i < gf->n_nodes; ++i) {
- auto node = gf->nodes[i];
- int iter = -1;
- // find b_tensor (without copying data from device)
- if ((iter = extract_i("b_tensor_norm_", node->name)) > -1) {
- result.eigenvectors[iter] = node;
- }
- // find distances, then copy data from device
- if ((iter = extract_i("distance_", node->name)) > -1) {
- float d;
- ggml_backend_tensor_get(node, &d, 0, sizeof(float));
- result.distances[iter] = d;
- // std::cout << node->name << " = " << d << "\n";
- }
- // find tmp_square if it exists (without copying data from device)
- if (std::string(node->name) == "tmp_square") {
- result.calculated_square = node;
- }
- }
- }
- return res;
- }
- static void power_iteration(
- const struct pca_params & params,
- struct ggml_tensor * input, // shape of input: [n_samples, n_embd]
- struct ggml_tensor * output) {
- //printf("in power iteration\n");
- struct pca_model model(input);
- ggml_gallocr_t allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(model.backend));
- struct pca_result result;
- struct ggml_tensor * last_eigenvector = NULL;
- int n_iters = params.n_iterations / params.n_batch; // more batch, fewer iterations
- for (int iter = 0; iter < n_iters; ++iter) {
- bool calc_square = (iter == 0); // only need to calculate square for first iteration
- struct ggml_cgraph * gf = build_graph_piter(params, model, calc_square);
- // ggml_graph_dump_dot(gf, nullptr, "/tmp/_cgraph.dot");
- compute_piter(params, model, gf, allocr, result);
- for (size_t k = 0; k < result.distances.size(); ++k) {
- last_eigenvector = result.eigenvectors[k];
- if (result.distances[k] < params.tolerance) {
- break; // done
- }
- }
- if (calc_square) {
- // copy and store the square matrix if needed
- GGML_ASSERT(result.calculated_square != NULL);
- ggml_backend_tensor_copy(result.calculated_square, model.dev_square);
- }
- {
- // copy last eigen vector and store as input for next iteration
- GGML_ASSERT(last_eigenvector != NULL);
- ggml_backend_tensor_copy(last_eigenvector, model.dev_eigenvector);
- }
- printf("%s: layer %d/%d, iteration: %d / total: %d (batch = %d) ...\n",
- __func__, params.i_layer+1, params.n_layers, iter+1, n_iters, params.n_batch);
- }
- // get output tensor
- GGML_ASSERT(last_eigenvector);
- ggml_backend_tensor_get(last_eigenvector, output->data, 0, ggml_nbytes(last_eigenvector));
- //print_debug_tensor(output);
- ggml_gallocr_free(allocr);
- // TODO @ngxson : The output vector is randomly inverted
- // Solution: https://github.com/ggerganov/llama.cpp/pull/8069#issuecomment-2185328171
- }
- static void run_pca(
- struct pca_params & params,
- const std::vector<struct ggml_tensor *> & v_input, // shape of v_input[0]: [n_samples, n_embd]
- const std::vector<struct ggml_tensor *> & v_output) {
- printf("%s: Running PCA...\n", __func__);
- for (size_t il = 0; il < v_input.size(); ++il) {
- // prepare output vector
- struct ggml_tensor * ctrl_out = v_output[il];
- ggml_format_name(ctrl_out, "direction.%ld", il+1);
- // run power_iteration
- params.i_layer = il;
- params.n_layers = v_input.size();
- power_iteration(params, v_input[il], ctrl_out);
- printf("%s: Done layer %d / %d\n", __func__, (int) il+1, (int) v_input.size());
- }
- }
- }
|