llama.h 55 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198
  1. #ifndef LLAMA_H
  2. #define LLAMA_H
  3. #include "ggml.h"
  4. #include "ggml-backend.h"
  5. #include <stddef.h>
  6. #include <stdint.h>
  7. #include <stdio.h>
  8. #include <stdbool.h>
  9. #ifdef LLAMA_SHARED
  10. # if defined(_WIN32) && !defined(__MINGW32__)
  11. # ifdef LLAMA_BUILD
  12. # define LLAMA_API __declspec(dllexport)
  13. # else
  14. # define LLAMA_API __declspec(dllimport)
  15. # endif
  16. # else
  17. # define LLAMA_API __attribute__ ((visibility ("default")))
  18. # endif
  19. #else
  20. # define LLAMA_API
  21. #endif
  22. #ifdef __GNUC__
  23. # define DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  24. #elif defined(_MSC_VER)
  25. # define DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  26. #else
  27. # define DEPRECATED(func, hint) func
  28. #endif
  29. #define LLAMA_DEFAULT_SEED 0xFFFFFFFF
  30. #define LLAMA_MAX_RNG_STATE (64*1024)
  31. #define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
  32. #define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
  33. #define LLAMA_FILE_MAGIC_GGSQ 0x67677371u // 'ggsq'
  34. #define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
  35. #define LLAMA_SESSION_VERSION 6
  36. #define LLAMA_STATE_SEQ_MAGIC LLAMA_FILE_MAGIC_GGSQ
  37. #define LLAMA_STATE_SEQ_VERSION 1
  38. #ifdef __cplusplus
  39. extern "C" {
  40. #endif
  41. //
  42. // C interface
  43. //
  44. // TODO: show sample usage
  45. //
  46. struct llama_model;
  47. struct llama_context;
  48. typedef int32_t llama_pos;
  49. typedef int32_t llama_token;
  50. typedef int32_t llama_seq_id;
  51. enum llama_vocab_type {
  52. LLAMA_VOCAB_TYPE_NONE = 0, // For models without vocab
  53. LLAMA_VOCAB_TYPE_SPM = 1, // LLaMA tokenizer based on byte-level BPE with byte fallback
  54. LLAMA_VOCAB_TYPE_BPE = 2, // GPT-2 tokenizer based on byte-level BPE
  55. LLAMA_VOCAB_TYPE_WPM = 3, // BERT tokenizer based on WordPiece
  56. LLAMA_VOCAB_TYPE_UGM = 4, // T5 tokenizer based on Unigram
  57. };
  58. // pre-tokenization types
  59. enum llama_vocab_pre_type {
  60. LLAMA_VOCAB_PRE_TYPE_DEFAULT = 0,
  61. LLAMA_VOCAB_PRE_TYPE_LLAMA3 = 1,
  62. LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM = 2,
  63. LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER = 3,
  64. LLAMA_VOCAB_PRE_TYPE_FALCON = 4,
  65. LLAMA_VOCAB_PRE_TYPE_MPT = 5,
  66. LLAMA_VOCAB_PRE_TYPE_STARCODER = 6,
  67. LLAMA_VOCAB_PRE_TYPE_GPT2 = 7,
  68. LLAMA_VOCAB_PRE_TYPE_REFACT = 8,
  69. LLAMA_VOCAB_PRE_TYPE_COMMAND_R = 9,
  70. LLAMA_VOCAB_PRE_TYPE_STABLELM2 = 10,
  71. LLAMA_VOCAB_PRE_TYPE_QWEN2 = 11,
  72. LLAMA_VOCAB_PRE_TYPE_OLMO = 12,
  73. LLAMA_VOCAB_PRE_TYPE_DBRX = 13,
  74. LLAMA_VOCAB_PRE_TYPE_SMAUG = 14,
  75. LLAMA_VOCAB_PRE_TYPE_PORO = 15,
  76. LLAMA_VOCAB_PRE_TYPE_CHATGLM3 = 16,
  77. LLAMA_VOCAB_PRE_TYPE_CHATGLM4 = 17,
  78. LLAMA_VOCAB_PRE_TYPE_VIKING = 18,
  79. LLAMA_VOCAB_PRE_TYPE_JAIS = 19,
  80. };
  81. // note: these values should be synchronized with ggml_rope
  82. // TODO: maybe move this enum to ggml.h (ggml_rope_type)
  83. enum llama_rope_type {
  84. LLAMA_ROPE_TYPE_NONE = -1,
  85. LLAMA_ROPE_TYPE_NORM = 0,
  86. LLAMA_ROPE_TYPE_NEOX = 2,
  87. LLAMA_ROPE_TYPE_GLM = 4,
  88. };
  89. enum llama_token_type { //TODO: remove, required until per token attributes are available from GGUF file
  90. LLAMA_TOKEN_TYPE_UNDEFINED = 0,
  91. LLAMA_TOKEN_TYPE_NORMAL = 1,
  92. LLAMA_TOKEN_TYPE_UNKNOWN = 2,
  93. LLAMA_TOKEN_TYPE_CONTROL = 3,
  94. LLAMA_TOKEN_TYPE_USER_DEFINED = 4,
  95. LLAMA_TOKEN_TYPE_UNUSED = 5,
  96. LLAMA_TOKEN_TYPE_BYTE = 6,
  97. };
  98. enum llama_token_attr {
  99. LLAMA_TOKEN_ATTR_UNDEFINED = 0,
  100. LLAMA_TOKEN_ATTR_UNKNOWN = 1 << 0,
  101. LLAMA_TOKEN_ATTR_UNUSED = 1 << 1,
  102. LLAMA_TOKEN_ATTR_NORMAL = 1 << 2,
  103. LLAMA_TOKEN_ATTR_CONTROL = 1 << 3, // SPECIAL?
  104. LLAMA_TOKEN_ATTR_USER_DEFINED = 1 << 4,
  105. LLAMA_TOKEN_ATTR_BYTE = 1 << 5,
  106. LLAMA_TOKEN_ATTR_NORMALIZED = 1 << 6,
  107. LLAMA_TOKEN_ATTR_LSTRIP = 1 << 7,
  108. LLAMA_TOKEN_ATTR_RSTRIP = 1 << 8,
  109. LLAMA_TOKEN_ATTR_SINGLE_WORD = 1 << 9,
  110. };
  111. // model file types
  112. enum llama_ftype {
  113. LLAMA_FTYPE_ALL_F32 = 0,
  114. LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  115. LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  116. LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  117. LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  118. // LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
  119. // LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
  120. LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  121. LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  122. LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  123. LLAMA_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  124. LLAMA_FTYPE_MOSTLY_Q3_K_S = 11, // except 1d tensors
  125. LLAMA_FTYPE_MOSTLY_Q3_K_M = 12, // except 1d tensors
  126. LLAMA_FTYPE_MOSTLY_Q3_K_L = 13, // except 1d tensors
  127. LLAMA_FTYPE_MOSTLY_Q4_K_S = 14, // except 1d tensors
  128. LLAMA_FTYPE_MOSTLY_Q4_K_M = 15, // except 1d tensors
  129. LLAMA_FTYPE_MOSTLY_Q5_K_S = 16, // except 1d tensors
  130. LLAMA_FTYPE_MOSTLY_Q5_K_M = 17, // except 1d tensors
  131. LLAMA_FTYPE_MOSTLY_Q6_K = 18, // except 1d tensors
  132. LLAMA_FTYPE_MOSTLY_IQ2_XXS = 19, // except 1d tensors
  133. LLAMA_FTYPE_MOSTLY_IQ2_XS = 20, // except 1d tensors
  134. LLAMA_FTYPE_MOSTLY_Q2_K_S = 21, // except 1d tensors
  135. LLAMA_FTYPE_MOSTLY_IQ3_XS = 22, // except 1d tensors
  136. LLAMA_FTYPE_MOSTLY_IQ3_XXS = 23, // except 1d tensors
  137. LLAMA_FTYPE_MOSTLY_IQ1_S = 24, // except 1d tensors
  138. LLAMA_FTYPE_MOSTLY_IQ4_NL = 25, // except 1d tensors
  139. LLAMA_FTYPE_MOSTLY_IQ3_S = 26, // except 1d tensors
  140. LLAMA_FTYPE_MOSTLY_IQ3_M = 27, // except 1d tensors
  141. LLAMA_FTYPE_MOSTLY_IQ2_S = 28, // except 1d tensors
  142. LLAMA_FTYPE_MOSTLY_IQ2_M = 29, // except 1d tensors
  143. LLAMA_FTYPE_MOSTLY_IQ4_XS = 30, // except 1d tensors
  144. LLAMA_FTYPE_MOSTLY_IQ1_M = 31, // except 1d tensors
  145. LLAMA_FTYPE_MOSTLY_BF16 = 32, // except 1d tensors
  146. LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
  147. };
  148. enum llama_rope_scaling_type {
  149. LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED = -1,
  150. LLAMA_ROPE_SCALING_TYPE_NONE = 0,
  151. LLAMA_ROPE_SCALING_TYPE_LINEAR = 1,
  152. LLAMA_ROPE_SCALING_TYPE_YARN = 2,
  153. LLAMA_ROPE_SCALING_TYPE_MAX_VALUE = LLAMA_ROPE_SCALING_TYPE_YARN,
  154. };
  155. enum llama_pooling_type {
  156. LLAMA_POOLING_TYPE_UNSPECIFIED = -1,
  157. LLAMA_POOLING_TYPE_NONE = 0,
  158. LLAMA_POOLING_TYPE_MEAN = 1,
  159. LLAMA_POOLING_TYPE_CLS = 2,
  160. LLAMA_POOLING_TYPE_LAST = 3,
  161. };
  162. enum llama_attention_type {
  163. LLAMA_ATTENTION_TYPE_UNSPECIFIED = -1,
  164. LLAMA_ATTENTION_TYPE_CAUSAL = 0,
  165. LLAMA_ATTENTION_TYPE_NON_CAUSAL = 1,
  166. };
  167. enum llama_split_mode {
  168. LLAMA_SPLIT_MODE_NONE = 0, // single GPU
  169. LLAMA_SPLIT_MODE_LAYER = 1, // split layers and KV across GPUs
  170. LLAMA_SPLIT_MODE_ROW = 2, // split rows across GPUs
  171. };
  172. typedef struct llama_token_data {
  173. llama_token id; // token id
  174. float logit; // log-odds of the token
  175. float p; // probability of the token
  176. } llama_token_data;
  177. typedef struct llama_token_data_array {
  178. llama_token_data * data;
  179. size_t size;
  180. bool sorted;
  181. } llama_token_data_array;
  182. typedef bool (*llama_progress_callback)(float progress, void * user_data);
  183. // Input data for llama_decode
  184. // A llama_batch object can contain input about one or many sequences
  185. // The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens
  186. //
  187. // - token : the token ids of the input (used when embd is NULL)
  188. // - embd : token embeddings (i.e. float vector of size n_embd) (used when token is NULL)
  189. // - pos : the positions of the respective token in the sequence
  190. // - seq_id : the sequence to which the respective token belongs
  191. // - logits : if zero, the logits (and/or the embeddings) for the respective token will not be output
  192. //
  193. typedef struct llama_batch {
  194. int32_t n_tokens;
  195. llama_token * token;
  196. float * embd;
  197. llama_pos * pos;
  198. int32_t * n_seq_id;
  199. llama_seq_id ** seq_id;
  200. int8_t * logits; // TODO: rename this to "output"
  201. // NOTE: helpers for smooth API transition - can be deprecated in the future
  202. // for future-proof code, use the above fields instead and ignore everything below
  203. //
  204. // pos[i] = all_pos_0 + i*all_pos_1
  205. //
  206. llama_pos all_pos_0; // used if pos == NULL
  207. llama_pos all_pos_1; // used if pos == NULL
  208. llama_seq_id all_seq_id; // used if seq_id == NULL
  209. } llama_batch;
  210. enum llama_model_kv_override_type {
  211. LLAMA_KV_OVERRIDE_TYPE_INT,
  212. LLAMA_KV_OVERRIDE_TYPE_FLOAT,
  213. LLAMA_KV_OVERRIDE_TYPE_BOOL,
  214. LLAMA_KV_OVERRIDE_TYPE_STR,
  215. };
  216. struct llama_model_kv_override {
  217. enum llama_model_kv_override_type tag;
  218. char key[128];
  219. union {
  220. int64_t val_i64;
  221. double val_f64;
  222. bool val_bool;
  223. char val_str[128];
  224. };
  225. };
  226. struct llama_model_params {
  227. int32_t n_gpu_layers; // number of layers to store in VRAM
  228. enum llama_split_mode split_mode; // how to split the model across multiple GPUs
  229. // main_gpu interpretation depends on split_mode:
  230. // LLAMA_SPLIT_NONE: the GPU that is used for the entire model
  231. // LLAMA_SPLIT_ROW: the GPU that is used for small tensors and intermediate results
  232. // LLAMA_SPLIT_LAYER: ignored
  233. int32_t main_gpu;
  234. // proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
  235. const float * tensor_split;
  236. // comma separated list of RPC servers to use for offloading
  237. const char * rpc_servers;
  238. // Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
  239. // If the provided progress_callback returns true, model loading continues.
  240. // If it returns false, model loading is immediately aborted.
  241. llama_progress_callback progress_callback;
  242. // context pointer passed to the progress callback
  243. void * progress_callback_user_data;
  244. // override key-value pairs of the model meta data
  245. const struct llama_model_kv_override * kv_overrides;
  246. // Keep the booleans together to avoid misalignment during copy-by-value.
  247. bool vocab_only; // only load the vocabulary, no weights
  248. bool use_mmap; // use mmap if possible
  249. bool use_mlock; // force system to keep model in RAM
  250. bool check_tensors; // validate model tensor data
  251. };
  252. // NOTE: changing the default values of parameters marked as [EXPERIMENTAL] may cause crashes or incorrect results in certain configurations
  253. // https://github.com/ggerganov/llama.cpp/pull/7544
  254. struct llama_context_params {
  255. uint32_t seed; // RNG seed, -1 for random
  256. uint32_t n_ctx; // text context, 0 = from model
  257. uint32_t n_batch; // logical maximum batch size that can be submitted to llama_decode
  258. uint32_t n_ubatch; // physical maximum batch size
  259. uint32_t n_seq_max; // max number of sequences (i.e. distinct states for recurrent models)
  260. uint32_t n_threads; // number of threads to use for generation
  261. uint32_t n_threads_batch; // number of threads to use for batch processing
  262. enum llama_rope_scaling_type rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
  263. enum llama_pooling_type pooling_type; // whether to pool (sum) embedding results by sequence id
  264. enum llama_attention_type attention_type; // attention type to use for embeddings
  265. // ref: https://github.com/ggerganov/llama.cpp/pull/2054
  266. float rope_freq_base; // RoPE base frequency, 0 = from model
  267. float rope_freq_scale; // RoPE frequency scaling factor, 0 = from model
  268. float yarn_ext_factor; // YaRN extrapolation mix factor, negative = from model
  269. float yarn_attn_factor; // YaRN magnitude scaling factor
  270. float yarn_beta_fast; // YaRN low correction dim
  271. float yarn_beta_slow; // YaRN high correction dim
  272. uint32_t yarn_orig_ctx; // YaRN original context size
  273. float defrag_thold; // defragment the KV cache if holes/size > thold, < 0 disabled (default)
  274. ggml_backend_sched_eval_callback cb_eval;
  275. void * cb_eval_user_data;
  276. enum ggml_type type_k; // data type for K cache [EXPERIMENTAL]
  277. enum ggml_type type_v; // data type for V cache [EXPERIMENTAL]
  278. // Keep the booleans together to avoid misalignment during copy-by-value.
  279. bool logits_all; // the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
  280. bool embeddings; // if true, extract embeddings (together with logits)
  281. bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
  282. bool flash_attn; // whether to use flash attention [EXPERIMENTAL]
  283. // Abort callback
  284. // if it returns true, execution of llama_decode() will be aborted
  285. // currently works only with CPU execution
  286. ggml_abort_callback abort_callback;
  287. void * abort_callback_data;
  288. };
  289. // model quantization parameters
  290. typedef struct llama_model_quantize_params {
  291. int32_t nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
  292. enum llama_ftype ftype; // quantize to this llama_ftype
  293. enum ggml_type output_tensor_type; // output tensor type
  294. enum ggml_type token_embedding_type; // itoken embeddings tensor type
  295. bool allow_requantize; // allow quantizing non-f32/f16 tensors
  296. bool quantize_output_tensor; // quantize output.weight
  297. bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
  298. bool pure; // quantize all tensors to the default type
  299. bool keep_split; // quantize to the same number of shards
  300. void * imatrix; // pointer to importance matrix data
  301. void * kv_overrides; // pointer to vector containing overrides
  302. } llama_model_quantize_params;
  303. // grammar types
  304. struct llama_grammar;
  305. // grammar element type
  306. enum llama_gretype {
  307. // end of rule definition
  308. LLAMA_GRETYPE_END = 0,
  309. // start of alternate definition for rule
  310. LLAMA_GRETYPE_ALT = 1,
  311. // non-terminal element: reference to rule
  312. LLAMA_GRETYPE_RULE_REF = 2,
  313. // terminal element: character (code point)
  314. LLAMA_GRETYPE_CHAR = 3,
  315. // inverse char(s) ([^a], [^a-b] [^abc])
  316. LLAMA_GRETYPE_CHAR_NOT = 4,
  317. // modifies a preceding LLAMA_GRETYPE_CHAR or LLAMA_GRETYPE_CHAR_ALT to
  318. // be an inclusive range ([a-z])
  319. LLAMA_GRETYPE_CHAR_RNG_UPPER = 5,
  320. // modifies a preceding LLAMA_GRETYPE_CHAR or
  321. // LLAMA_GRETYPE_CHAR_RNG_UPPER to add an alternate char to match ([ab], [a-zA])
  322. LLAMA_GRETYPE_CHAR_ALT = 6,
  323. // any character (.)
  324. LLAMA_GRETYPE_CHAR_ANY = 7,
  325. };
  326. typedef struct llama_grammar_element {
  327. enum llama_gretype type;
  328. uint32_t value; // Unicode code point or rule ID
  329. } llama_grammar_element;
  330. // performance timing information
  331. struct llama_timings {
  332. double t_start_ms;
  333. double t_end_ms;
  334. double t_load_ms;
  335. double t_sample_ms;
  336. double t_p_eval_ms;
  337. double t_eval_ms;
  338. int32_t n_sample;
  339. int32_t n_p_eval;
  340. int32_t n_eval;
  341. };
  342. // used in chat template
  343. typedef struct llama_chat_message {
  344. const char * role;
  345. const char * content;
  346. } llama_chat_message;
  347. // Helpers for getting default parameters
  348. LLAMA_API struct llama_model_params llama_model_default_params(void);
  349. LLAMA_API struct llama_context_params llama_context_default_params(void);
  350. LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
  351. // Initialize the llama + ggml backend
  352. // If numa is true, use NUMA optimizations
  353. // Call once at the start of the program
  354. LLAMA_API void llama_backend_init(void);
  355. //optional:
  356. LLAMA_API void llama_numa_init(enum ggml_numa_strategy numa);
  357. // Call once at the end of the program - currently only used for MPI
  358. LLAMA_API void llama_backend_free(void);
  359. LLAMA_API struct llama_model * llama_load_model_from_file(
  360. const char * path_model,
  361. struct llama_model_params params);
  362. LLAMA_API void llama_free_model(struct llama_model * model);
  363. LLAMA_API struct llama_context * llama_new_context_with_model(
  364. struct llama_model * model,
  365. struct llama_context_params params);
  366. // Frees all allocated memory
  367. LLAMA_API void llama_free(struct llama_context * ctx);
  368. LLAMA_API int64_t llama_time_us(void);
  369. LLAMA_API size_t llama_max_devices(void);
  370. LLAMA_API bool llama_supports_mmap (void);
  371. LLAMA_API bool llama_supports_mlock (void);
  372. LLAMA_API bool llama_supports_gpu_offload(void);
  373. LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
  374. LLAMA_API uint32_t llama_n_ctx (const struct llama_context * ctx);
  375. LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx);
  376. LLAMA_API uint32_t llama_n_ubatch (const struct llama_context * ctx);
  377. LLAMA_API uint32_t llama_n_seq_max (const struct llama_context * ctx);
  378. LLAMA_API enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx);
  379. LLAMA_API enum llama_vocab_type llama_vocab_type (const struct llama_model * model);
  380. LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model);
  381. LLAMA_API int32_t llama_n_vocab (const struct llama_model * model);
  382. LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
  383. LLAMA_API int32_t llama_n_embd (const struct llama_model * model);
  384. LLAMA_API int32_t llama_n_layer (const struct llama_model * model);
  385. // Get the model's RoPE frequency scaling factor
  386. LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
  387. // Functions to access the model's GGUF metadata scalar values
  388. // - The functions return the length of the string on success, or -1 on failure
  389. // - The output string is always null-terminated and cleared on failure
  390. // - GGUF array values are not supported by these functions
  391. // Get metadata value as a string by key name
  392. LLAMA_API int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size);
  393. // Get the number of metadata key/value pairs
  394. LLAMA_API int32_t llama_model_meta_count(const struct llama_model * model);
  395. // Get metadata key name by index
  396. LLAMA_API int32_t llama_model_meta_key_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  397. // Get metadata value as a string by index
  398. LLAMA_API int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  399. // Get a string describing the model type
  400. LLAMA_API int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
  401. // Returns the total size of all the tensors in the model in bytes
  402. LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
  403. // Returns the total number of parameters in the model
  404. LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);
  405. // Get a llama model tensor
  406. LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name);
  407. // Returns true if the model contains an encoder that requires llama_encode() call
  408. LLAMA_API bool llama_model_has_encoder(const struct llama_model * model);
  409. // For encoder-decoder models, this function returns id of the token that must be provided
  410. // to the decoder to start generating output sequence. For other models, it returns -1.
  411. LLAMA_API llama_token llama_model_decoder_start_token(const struct llama_model * model);
  412. // Returns 0 on success
  413. LLAMA_API uint32_t llama_model_quantize(
  414. const char * fname_inp,
  415. const char * fname_out,
  416. const llama_model_quantize_params * params);
  417. // Apply a LoRA adapter to a loaded model
  418. // path_base_model is the path to a higher quality model to use as a base for
  419. // the layers modified by the adapter. Can be NULL to use the current loaded model.
  420. // The model needs to be reloaded before applying a new adapter, otherwise the adapter
  421. // will be applied on top of the previous one
  422. // Returns 0 on success
  423. LLAMA_API int32_t llama_model_apply_lora_from_file(
  424. const struct llama_model * model,
  425. const char * path_lora,
  426. float scale,
  427. const char * path_base_model,
  428. int32_t n_threads);
  429. // Apply a loaded control vector to a llama_context, or if data is NULL, clear
  430. // the currently loaded vector.
  431. // n_embd should be the size of a single layer's control, and data should point
  432. // to an n_embd x n_layers buffer starting from layer 1.
  433. // il_start and il_end are the layer range the vector should apply to (both inclusive)
  434. // See llama_control_vector_load in common to load a control vector.
  435. LLAMA_API int32_t llama_control_vector_apply(
  436. struct llama_context * lctx,
  437. const float * data,
  438. size_t len,
  439. int32_t n_embd,
  440. int32_t il_start,
  441. int32_t il_end);
  442. //
  443. // KV cache
  444. //
  445. // Information associated with an individual cell in the KV cache view.
  446. struct llama_kv_cache_view_cell {
  447. // The position for this cell. Takes KV cache shifts into account.
  448. // May be negative if the cell is not populated.
  449. llama_pos pos;
  450. };
  451. // An updateable view of the KV cache.
  452. struct llama_kv_cache_view {
  453. // Number of KV cache cells. This will be the same as the context size.
  454. int32_t n_cells;
  455. // Maximum number of sequences that can exist in a cell. It's not an error
  456. // if there are more sequences in a cell than this value, however they will
  457. // not be visible in the view cells_sequences.
  458. int32_t n_seq_max;
  459. // Number of tokens in the cache. For example, if there are two populated
  460. // cells, the first with 1 sequence id in it and the second with 2 sequence
  461. // ids then you'll have 3 tokens.
  462. int32_t token_count;
  463. // Number of populated cache cells.
  464. int32_t used_cells;
  465. // Maximum contiguous empty slots in the cache.
  466. int32_t max_contiguous;
  467. // Index to the start of the max_contiguous slot range. Can be negative
  468. // when cache is full.
  469. int32_t max_contiguous_idx;
  470. // Information for an individual cell.
  471. struct llama_kv_cache_view_cell * cells;
  472. // The sequences for each cell. There will be n_seq_max items per cell.
  473. llama_seq_id * cells_sequences;
  474. };
  475. // Create an empty KV cache view. (use only for debugging purposes)
  476. LLAMA_API struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max);
  477. // Free a KV cache view. (use only for debugging purposes)
  478. LLAMA_API void llama_kv_cache_view_free(struct llama_kv_cache_view * view);
  479. // Update the KV cache view structure with the current state of the KV cache. (use only for debugging purposes)
  480. LLAMA_API void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view);
  481. // Returns the number of tokens in the KV cache (slow, use only for debug)
  482. // If a KV cell has multiple sequences assigned to it, it will be counted multiple times
  483. LLAMA_API int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx);
  484. // Returns the number of used KV cells (i.e. have at least one sequence assigned to them)
  485. LLAMA_API int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx);
  486. // Clear the KV cache - both cell info is erased and KV data is zeroed
  487. LLAMA_API void llama_kv_cache_clear(
  488. struct llama_context * ctx);
  489. // Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
  490. // Returns false if a partial sequence cannot be removed. Removing a whole sequence never fails
  491. // seq_id < 0 : match any sequence
  492. // p0 < 0 : [0, p1]
  493. // p1 < 0 : [p0, inf)
  494. LLAMA_API bool llama_kv_cache_seq_rm(
  495. struct llama_context * ctx,
  496. llama_seq_id seq_id,
  497. llama_pos p0,
  498. llama_pos p1);
  499. // Copy all tokens that belong to the specified sequence to another sequence
  500. // Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence
  501. // p0 < 0 : [0, p1]
  502. // p1 < 0 : [p0, inf)
  503. LLAMA_API void llama_kv_cache_seq_cp(
  504. struct llama_context * ctx,
  505. llama_seq_id seq_id_src,
  506. llama_seq_id seq_id_dst,
  507. llama_pos p0,
  508. llama_pos p1);
  509. // Removes all tokens that do not belong to the specified sequence
  510. LLAMA_API void llama_kv_cache_seq_keep(
  511. struct llama_context * ctx,
  512. llama_seq_id seq_id);
  513. // Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
  514. // If the KV cache is RoPEd, the KV data is updated accordingly:
  515. // - lazily on next llama_decode()
  516. // - explicitly with llama_kv_cache_update()
  517. // p0 < 0 : [0, p1]
  518. // p1 < 0 : [p0, inf)
  519. LLAMA_API void llama_kv_cache_seq_add(
  520. struct llama_context * ctx,
  521. llama_seq_id seq_id,
  522. llama_pos p0,
  523. llama_pos p1,
  524. llama_pos delta);
  525. // Integer division of the positions by factor of `d > 1`
  526. // If the KV cache is RoPEd, the KV data is updated accordingly:
  527. // - lazily on next llama_decode()
  528. // - explicitly with llama_kv_cache_update()
  529. // p0 < 0 : [0, p1]
  530. // p1 < 0 : [p0, inf)
  531. LLAMA_API void llama_kv_cache_seq_div(
  532. struct llama_context * ctx,
  533. llama_seq_id seq_id,
  534. llama_pos p0,
  535. llama_pos p1,
  536. int d);
  537. // Returns the largest position present in the KV cache for the specified sequence
  538. LLAMA_API llama_pos llama_kv_cache_seq_pos_max(
  539. struct llama_context * ctx,
  540. llama_seq_id seq_id);
  541. // Defragment the KV cache
  542. // This will be applied:
  543. // - lazily on next llama_decode()
  544. // - explicitly with llama_kv_cache_update()
  545. LLAMA_API void llama_kv_cache_defrag(struct llama_context * ctx);
  546. // Apply the KV cache updates (such as K-shifts, defragmentation, etc.)
  547. LLAMA_API void llama_kv_cache_update(struct llama_context * ctx);
  548. //
  549. // State / sessions
  550. //
  551. // Returns the maximum size in bytes of the state (rng, logits, embedding
  552. // and kv_cache) - will often be smaller after compacting tokens
  553. LLAMA_API size_t llama_state_get_size(const struct llama_context * ctx);
  554. LLAMA_API DEPRECATED(size_t llama_get_state_size(const struct llama_context * ctx),
  555. "use llama_state_get_size instead");
  556. // Copies the state to the specified destination address.
  557. // Destination needs to have allocated enough memory.
  558. // Returns the number of bytes copied
  559. LLAMA_API size_t llama_state_get_data(
  560. struct llama_context * ctx,
  561. uint8_t * dst);
  562. LLAMA_API DEPRECATED(size_t llama_copy_state_data(
  563. struct llama_context * ctx,
  564. uint8_t * dst),
  565. "use llama_state_get_data instead");
  566. // Set the state reading from the specified address
  567. // Returns the number of bytes read
  568. LLAMA_API size_t llama_state_set_data(
  569. struct llama_context * ctx,
  570. const uint8_t * src);
  571. LLAMA_API DEPRECATED(size_t llama_set_state_data(
  572. struct llama_context * ctx,
  573. const uint8_t * src),
  574. "use llama_state_set_data instead");
  575. // Save/load session file
  576. LLAMA_API bool llama_state_load_file(
  577. struct llama_context * ctx,
  578. const char * path_session,
  579. llama_token * tokens_out,
  580. size_t n_token_capacity,
  581. size_t * n_token_count_out);
  582. LLAMA_API DEPRECATED(bool llama_load_session_file(
  583. struct llama_context * ctx,
  584. const char * path_session,
  585. llama_token * tokens_out,
  586. size_t n_token_capacity,
  587. size_t * n_token_count_out),
  588. "use llama_state_load_file instead");
  589. LLAMA_API bool llama_state_save_file(
  590. struct llama_context * ctx,
  591. const char * path_session,
  592. const llama_token * tokens,
  593. size_t n_token_count);
  594. LLAMA_API DEPRECATED(bool llama_save_session_file(
  595. struct llama_context * ctx,
  596. const char * path_session,
  597. const llama_token * tokens,
  598. size_t n_token_count),
  599. "use llama_state_save_file instead");
  600. // Get the exact size needed to copy the KV cache of a single sequence
  601. LLAMA_API size_t llama_state_seq_get_size(
  602. struct llama_context * ctx,
  603. llama_seq_id seq_id);
  604. // Copy the KV cache of a single sequence into the specified buffer
  605. LLAMA_API size_t llama_state_seq_get_data(
  606. struct llama_context * ctx,
  607. uint8_t * dst,
  608. llama_seq_id seq_id);
  609. // Copy the sequence data (originally copied with `llama_state_seq_get_data`) into the specified sequence
  610. // Returns:
  611. // - Positive: Ok
  612. // - Zero: Failed to load
  613. LLAMA_API size_t llama_state_seq_set_data(
  614. struct llama_context * ctx,
  615. const uint8_t * src,
  616. llama_seq_id dest_seq_id);
  617. LLAMA_API size_t llama_state_seq_save_file(
  618. struct llama_context * ctx,
  619. const char * filepath,
  620. llama_seq_id seq_id,
  621. const llama_token * tokens,
  622. size_t n_token_count);
  623. LLAMA_API size_t llama_state_seq_load_file(
  624. struct llama_context * ctx,
  625. const char * filepath,
  626. llama_seq_id dest_seq_id,
  627. llama_token * tokens_out,
  628. size_t n_token_capacity,
  629. size_t * n_token_count_out);
  630. //
  631. // Decoding
  632. //
  633. // Return batch for single sequence of tokens starting at pos_0
  634. //
  635. // NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it
  636. //
  637. LLAMA_API struct llama_batch llama_batch_get_one(
  638. llama_token * tokens,
  639. int32_t n_tokens,
  640. llama_pos pos_0,
  641. llama_seq_id seq_id);
  642. // Allocates a batch of tokens on the heap that can hold a maximum of n_tokens
  643. // Each token can be assigned up to n_seq_max sequence ids
  644. // The batch has to be freed with llama_batch_free()
  645. // If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)
  646. // Otherwise, llama_batch.token will be allocated to store n_tokens llama_token
  647. // The rest of the llama_batch members are allocated with size n_tokens
  648. // All members are left uninitialized
  649. LLAMA_API struct llama_batch llama_batch_init(
  650. int32_t n_tokens,
  651. int32_t embd,
  652. int32_t n_seq_max);
  653. // Frees a batch of tokens allocated with llama_batch_init()
  654. LLAMA_API void llama_batch_free(struct llama_batch batch);
  655. // Processes a batch of tokens with the ecoder part of the encoder-decoder model.
  656. // Stores the encoder output internally for later use by the decoder cross-attention layers.
  657. // 0 - success
  658. // < 0 - error
  659. LLAMA_API int32_t llama_encode(
  660. struct llama_context * ctx,
  661. struct llama_batch batch);
  662. // Positive return values does not mean a fatal error, but rather a warning.
  663. // 0 - success
  664. // 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
  665. // < 0 - error
  666. LLAMA_API int32_t llama_decode(
  667. struct llama_context * ctx,
  668. struct llama_batch batch);
  669. // Set the number of threads used for decoding
  670. // n_threads is the number of threads used for generation (single token)
  671. // n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
  672. LLAMA_API void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch);
  673. // Get the number of threads used for generation of a single token.
  674. LLAMA_API uint32_t llama_n_threads(struct llama_context * ctx);
  675. // Get the number of threads used for prompt and batch processing (multiple token).
  676. LLAMA_API uint32_t llama_n_threads_batch(struct llama_context * ctx);
  677. // Set whether the model is in embeddings mode or not
  678. // If true, embeddings will be returned but logits will not
  679. LLAMA_API void llama_set_embeddings(struct llama_context * ctx, bool embeddings);
  680. // Set whether to use causal attention or not
  681. // If set to true, the model will only attend to the past tokens
  682. LLAMA_API void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn);
  683. // Set abort callback
  684. LLAMA_API void llama_set_abort_callback(struct llama_context * ctx, ggml_abort_callback abort_callback, void * abort_callback_data);
  685. // Wait until all computations are finished
  686. // This is automatically done when using one of the functions below to obtain the computation results
  687. // and is not necessary to call it explicitly in most cases
  688. LLAMA_API void llama_synchronize(struct llama_context * ctx);
  689. // Token logits obtained from the last call to llama_decode()
  690. // The logits for which llama_batch.logits[i] != 0 are stored contiguously
  691. // in the order they have appeared in the batch.
  692. // Rows: number of tokens for which llama_batch.logits[i] != 0
  693. // Cols: n_vocab
  694. LLAMA_API float * llama_get_logits(struct llama_context * ctx);
  695. // Logits for the ith token. For positive indices, Equivalent to:
  696. // llama_get_logits(ctx) + ctx->output_ids[i]*n_vocab
  697. // Negative indicies can be used to access logits in reverse order, -1 is the last logit.
  698. // returns NULL for invalid ids.
  699. LLAMA_API float * llama_get_logits_ith(struct llama_context * ctx, int32_t i);
  700. // Get all output token embeddings.
  701. // when pooling_type == LLAMA_POOLING_TYPE_NONE or when using a generative model,
  702. // the embeddings for which llama_batch.logits[i] != 0 are stored contiguously
  703. // in the order they have appeared in the batch.
  704. // shape: [n_outputs*n_embd]
  705. // Otherwise, returns NULL.
  706. LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
  707. // Get the embeddings for the ith token. For positive indices, Equivalent to:
  708. // llama_get_embeddings(ctx) + ctx->output_ids[i]*n_embd
  709. // Negative indicies can be used to access embeddings in reverse order, -1 is the last embedding.
  710. // shape: [n_embd] (1-dimensional)
  711. // returns NULL for invalid ids.
  712. LLAMA_API float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i);
  713. // Get the embeddings for a sequence id
  714. // Returns NULL if pooling_type is LLAMA_POOLING_TYPE_NONE
  715. // shape: [n_embd] (1-dimensional)
  716. LLAMA_API float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id);
  717. //
  718. // Vocab
  719. //
  720. LLAMA_API const char * llama_token_get_text(const struct llama_model * model, llama_token token);
  721. LLAMA_API float llama_token_get_score(const struct llama_model * model, llama_token token);
  722. LLAMA_API enum llama_token_attr llama_token_get_attr(const struct llama_model * model, llama_token token);
  723. // Check if the token is supposed to end generation (end-of-generation, eg. EOS, EOT, etc.)
  724. LLAMA_API bool llama_token_is_eog(const struct llama_model * model, llama_token token);
  725. // Identify if Token Id is a control token or a render-able token
  726. LLAMA_API bool llama_token_is_control(const struct llama_model * model, llama_token token);
  727. // Special tokens
  728. LLAMA_API llama_token llama_token_bos(const struct llama_model * model); // beginning-of-sentence
  729. LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence
  730. LLAMA_API llama_token llama_token_cls(const struct llama_model * model); // classification
  731. LLAMA_API llama_token llama_token_sep(const struct llama_model * model); // sentence separator
  732. LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line
  733. LLAMA_API llama_token llama_token_pad(const struct llama_model * model); // padding
  734. // Returns -1 if unknown, 1 for true or 0 for false.
  735. LLAMA_API int32_t llama_add_bos_token(const struct llama_model * model);
  736. // Returns -1 if unknown, 1 for true or 0 for false.
  737. LLAMA_API int32_t llama_add_eos_token(const struct llama_model * model);
  738. // Codellama infill tokens
  739. LLAMA_API llama_token llama_token_prefix(const struct llama_model * model); // Beginning of infill prefix
  740. LLAMA_API llama_token llama_token_middle(const struct llama_model * model); // Beginning of infill middle
  741. LLAMA_API llama_token llama_token_suffix(const struct llama_model * model); // Beginning of infill suffix
  742. LLAMA_API llama_token llama_token_eot (const struct llama_model * model); // End of infill middle
  743. //
  744. // Tokenization
  745. //
  746. /// @details Convert the provided text into tokens.
  747. /// @param tokens The tokens pointer must be large enough to hold the resulting tokens.
  748. /// @return Returns the number of tokens on success, no more than n_tokens_max
  749. /// @return Returns a negative number on failure - the number of tokens that would have been returned
  750. /// @param add_special Allow to add BOS and EOS tokens if model is configured to do so.
  751. /// @param parse_special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated
  752. /// as plaintext. Does not insert a leading space.
  753. LLAMA_API int32_t llama_tokenize(
  754. const struct llama_model * model,
  755. const char * text,
  756. int32_t text_len,
  757. llama_token * tokens,
  758. int32_t n_tokens_max,
  759. bool add_special,
  760. bool parse_special);
  761. // Token Id -> Piece.
  762. // Uses the vocabulary in the provided context.
  763. // Does not write null terminator to the buffer.
  764. // User can skip up to 'lstrip' leading spaces before copying (useful when encoding/decoding multiple tokens with 'add_space_prefix')
  765. // @param special If true, special tokens are rendered in the output.
  766. LLAMA_API int32_t llama_token_to_piece(
  767. const struct llama_model * model,
  768. llama_token token,
  769. char * buf,
  770. int32_t length,
  771. int32_t lstrip,
  772. bool special);
  773. /// @details Convert the provided tokens into text (inverse of llama_tokenize()).
  774. /// @param text The char pointer must be large enough to hold the resulting text.
  775. /// @return Returns the number of chars/bytes on success, no more than text_len_max.
  776. /// @return Returns a negative number on failure - the number of chars/bytes that would have been returned.
  777. /// @param remove_special Allow to remove BOS and EOS tokens if model is configured to do so.
  778. /// @param unparse_special If true, special tokens are rendered in the output.
  779. LLAMA_API int32_t llama_detokenize(
  780. const struct llama_model * model,
  781. const llama_token * tokens,
  782. int32_t n_tokens,
  783. char * text,
  784. int32_t text_len_max,
  785. bool remove_special,
  786. bool unparse_special);
  787. /// Apply chat template. Inspired by hf apply_chat_template() on python.
  788. /// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model"
  789. /// NOTE: This function does not use a jinja parser. It only support a pre-defined list of template. See more: https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template
  790. /// @param tmpl A Jinja template to use for this chat. If this is nullptr, the model’s default chat template will be used instead.
  791. /// @param chat Pointer to a list of multiple llama_chat_message
  792. /// @param n_msg Number of llama_chat_message in this chat
  793. /// @param add_ass Whether to end the prompt with the token(s) that indicate the start of an assistant message.
  794. /// @param buf A buffer to hold the output formatted prompt. The recommended alloc size is 2 * (total number of characters of all messages)
  795. /// @param length The size of the allocated buffer
  796. /// @return The total number of bytes of the formatted prompt. If is it larger than the size of buffer, you may need to re-alloc it and then re-apply the template.
  797. LLAMA_API int32_t llama_chat_apply_template(
  798. const struct llama_model * model,
  799. const char * tmpl,
  800. const struct llama_chat_message * chat,
  801. size_t n_msg,
  802. bool add_ass,
  803. char * buf,
  804. int32_t length);
  805. //
  806. // Grammar
  807. //
  808. /// Initialize a llama_grammar.
  809. ///
  810. /// @param rules The rule elements of the grammar to initialize.
  811. /// @param n_rules The number of rules.
  812. /// @param start_rule_index The index of the root rule (the starting point of the grammar).
  813. /// @return The initialized llama_grammar or nullptr if initialization failed.
  814. LLAMA_API struct llama_grammar * llama_grammar_init(
  815. const llama_grammar_element ** rules,
  816. size_t n_rules,
  817. size_t start_rule_index);
  818. LLAMA_API void llama_grammar_free(struct llama_grammar * grammar);
  819. LLAMA_API struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar);
  820. //
  821. // Sampling functions
  822. //
  823. // Sets the current rng seed.
  824. LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed);
  825. /// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
  826. /// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
  827. LLAMA_API void llama_sample_repetition_penalties(
  828. struct llama_context * ctx,
  829. llama_token_data_array * candidates,
  830. const llama_token * last_tokens,
  831. size_t penalty_last_n,
  832. float penalty_repeat,
  833. float penalty_freq,
  834. float penalty_present);
  835. /// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
  836. /// @param logits Logits extracted from the original generation context.
  837. /// @param logits_guidance Logits extracted from a separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
  838. /// @param scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
  839. LLAMA_API void llama_sample_apply_guidance(
  840. struct llama_context * ctx,
  841. float * logits,
  842. float * logits_guidance,
  843. float scale);
  844. /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
  845. LLAMA_API void llama_sample_softmax(
  846. struct llama_context * ctx,
  847. llama_token_data_array * candidates);
  848. /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  849. LLAMA_API void llama_sample_top_k(
  850. struct llama_context * ctx,
  851. llama_token_data_array * candidates,
  852. int32_t k,
  853. size_t min_keep);
  854. /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  855. LLAMA_API void llama_sample_top_p(
  856. struct llama_context * ctx,
  857. llama_token_data_array * candidates,
  858. float p,
  859. size_t min_keep);
  860. /// @details Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
  861. LLAMA_API void llama_sample_min_p(
  862. struct llama_context * ctx,
  863. llama_token_data_array * candidates,
  864. float p,
  865. size_t min_keep);
  866. /// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
  867. LLAMA_API void llama_sample_tail_free(
  868. struct llama_context * ctx,
  869. llama_token_data_array * candidates,
  870. float z,
  871. size_t min_keep);
  872. /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
  873. LLAMA_API void llama_sample_typical(
  874. struct llama_context * ctx,
  875. llama_token_data_array * candidates,
  876. float p,
  877. size_t min_keep);
  878. /// @details Dynamic temperature implementation described in the paper https://arxiv.org/abs/2309.02772.
  879. LLAMA_API void llama_sample_entropy(
  880. struct llama_context * ctx,
  881. llama_token_data_array * candidates_p,
  882. float min_temp,
  883. float max_temp,
  884. float exponent_val);
  885. LLAMA_API void llama_sample_temp(
  886. struct llama_context * ctx,
  887. llama_token_data_array * candidates,
  888. float temp);
  889. /// @details Apply constraints from grammar
  890. LLAMA_API void llama_sample_grammar(
  891. struct llama_context * ctx,
  892. llama_token_data_array * candidates,
  893. const struct llama_grammar * grammar);
  894. /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  895. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  896. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  897. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  898. /// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
  899. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  900. LLAMA_API llama_token llama_sample_token_mirostat(
  901. struct llama_context * ctx,
  902. llama_token_data_array * candidates,
  903. float tau,
  904. float eta,
  905. int32_t m,
  906. float * mu);
  907. /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  908. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  909. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  910. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  911. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  912. LLAMA_API llama_token llama_sample_token_mirostat_v2(
  913. struct llama_context * ctx,
  914. llama_token_data_array * candidates,
  915. float tau,
  916. float eta,
  917. float * mu);
  918. /// @details Selects the token with the highest probability.
  919. /// Does not compute the token probabilities. Use llama_sample_softmax() instead.
  920. LLAMA_API llama_token llama_sample_token_greedy(
  921. struct llama_context * ctx,
  922. llama_token_data_array * candidates);
  923. /// @details Randomly selects a token from the candidates based on their probabilities using the RNG of ctx.
  924. LLAMA_API llama_token llama_sample_token(
  925. struct llama_context * ctx,
  926. llama_token_data_array * candidates);
  927. /// @details Accepts the sampled token into the grammar
  928. LLAMA_API void llama_grammar_accept_token(
  929. struct llama_context * ctx,
  930. struct llama_grammar * grammar,
  931. llama_token token);
  932. //
  933. // Model split
  934. //
  935. /// @details Build a split GGUF final path for this chunk.
  936. /// llama_split_path(split_path, sizeof(split_path), "/models/ggml-model-q4_0", 2, 4) => split_path = "/models/ggml-model-q4_0-00002-of-00004.gguf"
  937. // Returns the split_path length.
  938. LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count);
  939. /// @details Extract the path prefix from the split_path if and only if the split_no and split_count match.
  940. /// llama_split_prefix(split_prefix, 64, "/models/ggml-model-q4_0-00002-of-00004.gguf", 2, 4) => split_prefix = "/models/ggml-model-q4_0"
  941. // Returns the split_prefix length.
  942. LLAMA_API int llama_split_prefix(char * split_prefix, size_t maxlen, const char * split_path, int split_no, int split_count);
  943. // Performance information
  944. LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
  945. LLAMA_API void llama_print_timings(struct llama_context * ctx);
  946. LLAMA_API void llama_reset_timings(struct llama_context * ctx);
  947. // Print system information
  948. LLAMA_API const char * llama_print_system_info(void);
  949. // Set callback for all future logging events.
  950. // If this is not called, or NULL is supplied, everything is output on stderr.
  951. LLAMA_API void llama_log_set(ggml_log_callback log_callback, void * user_data);
  952. LLAMA_API void llama_dump_timing_info_yaml(FILE * stream, const struct llama_context * ctx);
  953. #ifdef __cplusplus
  954. }
  955. #endif
  956. // Internal API to be implemented by llama.cpp and used by tests/benchmarks only
  957. #ifdef LLAMA_API_INTERNAL
  958. #include <random>
  959. #include <string>
  960. #include <vector>
  961. struct ggml_tensor;
  962. struct llama_partial_utf8 {
  963. uint32_t value; // bit value so far (unshifted)
  964. int n_remain; // num bytes remaining; -1 indicates invalid sequence
  965. };
  966. struct llama_grammar {
  967. const std::vector<std::vector<llama_grammar_element>> rules;
  968. std::vector<std::vector<const llama_grammar_element *>> stacks;
  969. // buffer for partially generated UTF-8 sequence from accepted tokens
  970. llama_partial_utf8 partial_utf8;
  971. };
  972. struct llama_grammar_candidate {
  973. size_t index;
  974. const uint32_t * code_points;
  975. llama_partial_utf8 partial_utf8;
  976. };
  977. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  978. struct llama_context * ctx
  979. );
  980. void llama_grammar_accept(
  981. const std::vector<std::vector<llama_grammar_element>> & rules,
  982. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  983. const uint32_t chr,
  984. std::vector<std::vector<const llama_grammar_element *>> & new_stacks);
  985. std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
  986. const std::string & src,
  987. llama_partial_utf8 partial_start);
  988. // Randomly selects a token from the candidates based on their probabilities using given std::mt19937.
  989. // This is a temporary workaround in order to fix race conditions when sampling with multiple sequences.
  990. llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng);
  991. #endif // LLAMA_API_INTERNAL
  992. #endif // LLAMA_H