run.cpp 37 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136
  1. #if defined(_WIN32)
  2. # include <windows.h>
  3. # include <io.h>
  4. #else
  5. # include <sys/file.h>
  6. # include <sys/ioctl.h>
  7. # include <unistd.h>
  8. #endif
  9. #if defined(LLAMA_USE_CURL)
  10. # include <curl/curl.h>
  11. #endif
  12. #include <signal.h>
  13. #include <climits>
  14. #include <cstdarg>
  15. #include <cstdio>
  16. #include <cstring>
  17. #include <filesystem>
  18. #include <iostream>
  19. #include <list>
  20. #include <sstream>
  21. #include <string>
  22. #include <vector>
  23. #include "common.h"
  24. #include "json.hpp"
  25. #include "linenoise.cpp/linenoise.h"
  26. #include "llama-cpp.h"
  27. #include "chat-template.hpp"
  28. #if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__)) || defined(_WIN32)
  29. [[noreturn]] static void sigint_handler(int) {
  30. printf("\n\033[0m");
  31. exit(0); // not ideal, but it's the only way to guarantee exit in all cases
  32. }
  33. #endif
  34. GGML_ATTRIBUTE_FORMAT(1, 2)
  35. static std::string fmt(const char * fmt, ...) {
  36. va_list ap;
  37. va_list ap2;
  38. va_start(ap, fmt);
  39. va_copy(ap2, ap);
  40. const int size = vsnprintf(NULL, 0, fmt, ap);
  41. GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
  42. std::string buf;
  43. buf.resize(size);
  44. const int size2 = vsnprintf(const_cast<char *>(buf.data()), buf.size() + 1, fmt, ap2);
  45. GGML_ASSERT(size2 == size);
  46. va_end(ap2);
  47. va_end(ap);
  48. return buf;
  49. }
  50. GGML_ATTRIBUTE_FORMAT(1, 2)
  51. static int printe(const char * fmt, ...) {
  52. va_list args;
  53. va_start(args, fmt);
  54. const int ret = vfprintf(stderr, fmt, args);
  55. va_end(args);
  56. return ret;
  57. }
  58. class Opt {
  59. public:
  60. int init(int argc, const char ** argv) {
  61. ctx_params = llama_context_default_params();
  62. model_params = llama_model_default_params();
  63. context_size_default = ctx_params.n_batch;
  64. ngl_default = model_params.n_gpu_layers;
  65. common_params_sampling sampling;
  66. temperature_default = sampling.temp;
  67. if (argc < 2) {
  68. printe("Error: No arguments provided.\n");
  69. print_help();
  70. return 1;
  71. }
  72. // Parse arguments
  73. if (parse(argc, argv)) {
  74. printe("Error: Failed to parse arguments.\n");
  75. print_help();
  76. return 1;
  77. }
  78. // If help is requested, show help and exit
  79. if (help) {
  80. print_help();
  81. return 2;
  82. }
  83. ctx_params.n_batch = context_size >= 0 ? context_size : context_size_default;
  84. ctx_params.n_ctx = ctx_params.n_batch;
  85. model_params.n_gpu_layers = ngl >= 0 ? ngl : ngl_default;
  86. temperature = temperature >= 0 ? temperature : temperature_default;
  87. return 0; // Success
  88. }
  89. llama_context_params ctx_params;
  90. llama_model_params model_params;
  91. std::string model_;
  92. std::string user;
  93. bool use_jinja = false;
  94. int context_size = -1, ngl = -1;
  95. float temperature = -1;
  96. bool verbose = false;
  97. private:
  98. int context_size_default = -1, ngl_default = -1;
  99. float temperature_default = -1;
  100. bool help = false;
  101. bool parse_flag(const char ** argv, int i, const char * short_opt, const char * long_opt) {
  102. return strcmp(argv[i], short_opt) == 0 || strcmp(argv[i], long_opt) == 0;
  103. }
  104. int handle_option_with_value(int argc, const char ** argv, int & i, int & option_value) {
  105. if (i + 1 >= argc) {
  106. return 1;
  107. }
  108. option_value = std::atoi(argv[++i]);
  109. return 0;
  110. }
  111. int handle_option_with_value(int argc, const char ** argv, int & i, float & option_value) {
  112. if (i + 1 >= argc) {
  113. return 1;
  114. }
  115. option_value = std::atof(argv[++i]);
  116. return 0;
  117. }
  118. int parse(int argc, const char ** argv) {
  119. bool options_parsing = true;
  120. for (int i = 1, positional_args_i = 0; i < argc; ++i) {
  121. if (options_parsing && (strcmp(argv[i], "-c") == 0 || strcmp(argv[i], "--context-size") == 0)) {
  122. if (handle_option_with_value(argc, argv, i, context_size) == 1) {
  123. return 1;
  124. }
  125. } else if (options_parsing &&
  126. (strcmp(argv[i], "-n") == 0 || strcmp(argv[i], "-ngl") == 0 || strcmp(argv[i], "--ngl") == 0)) {
  127. if (handle_option_with_value(argc, argv, i, ngl) == 1) {
  128. return 1;
  129. }
  130. } else if (options_parsing && strcmp(argv[i], "--temp") == 0) {
  131. if (handle_option_with_value(argc, argv, i, temperature) == 1) {
  132. return 1;
  133. }
  134. } else if (options_parsing &&
  135. (parse_flag(argv, i, "-v", "--verbose") || parse_flag(argv, i, "-v", "--log-verbose"))) {
  136. verbose = true;
  137. } else if (options_parsing && strcmp(argv[i], "--jinja") == 0) {
  138. use_jinja = true;
  139. } else if (options_parsing && parse_flag(argv, i, "-h", "--help")) {
  140. help = true;
  141. return 0;
  142. } else if (options_parsing && strcmp(argv[i], "--") == 0) {
  143. options_parsing = false;
  144. } else if (positional_args_i == 0) {
  145. if (!argv[i][0] || argv[i][0] == '-') {
  146. return 1;
  147. }
  148. ++positional_args_i;
  149. model_ = argv[i];
  150. } else if (positional_args_i == 1) {
  151. ++positional_args_i;
  152. user = argv[i];
  153. } else {
  154. user += " " + std::string(argv[i]);
  155. }
  156. }
  157. if (model_.empty()){
  158. return 1;
  159. }
  160. return 0;
  161. }
  162. void print_help() const {
  163. printf(
  164. "Description:\n"
  165. " Runs a llm\n"
  166. "\n"
  167. "Usage:\n"
  168. " llama-run [options] model [prompt]\n"
  169. "\n"
  170. "Options:\n"
  171. " -c, --context-size <value>\n"
  172. " Context size (default: %d)\n"
  173. " -n, -ngl, --ngl <value>\n"
  174. " Number of GPU layers (default: %d)\n"
  175. " --temp <value>\n"
  176. " Temperature (default: %.1f)\n"
  177. " -v, --verbose, --log-verbose\n"
  178. " Set verbosity level to infinity (i.e. log all messages, useful for debugging)\n"
  179. " -h, --help\n"
  180. " Show help message\n"
  181. "\n"
  182. "Commands:\n"
  183. " model\n"
  184. " Model is a string with an optional prefix of \n"
  185. " huggingface:// (hf://), ollama://, https:// or file://.\n"
  186. " If no protocol is specified and a file exists in the specified\n"
  187. " path, file:// is assumed, otherwise if a file does not exist in\n"
  188. " the specified path, ollama:// is assumed. Models that are being\n"
  189. " pulled are downloaded with .partial extension while being\n"
  190. " downloaded and then renamed as the file without the .partial\n"
  191. " extension when complete.\n"
  192. "\n"
  193. "Examples:\n"
  194. " llama-run llama3\n"
  195. " llama-run ollama://granite-code\n"
  196. " llama-run ollama://smollm:135m\n"
  197. " llama-run hf://QuantFactory/SmolLM-135M-GGUF/SmolLM-135M.Q2_K.gguf\n"
  198. " llama-run "
  199. "huggingface://bartowski/SmolLM-1.7B-Instruct-v0.2-GGUF/SmolLM-1.7B-Instruct-v0.2-IQ3_M.gguf\n"
  200. " llama-run https://example.com/some-file1.gguf\n"
  201. " llama-run some-file2.gguf\n"
  202. " llama-run file://some-file3.gguf\n"
  203. " llama-run --ngl 999 some-file4.gguf\n"
  204. " llama-run --ngl 999 some-file5.gguf Hello World\n",
  205. context_size_default, ngl_default, temperature_default);
  206. }
  207. };
  208. struct progress_data {
  209. size_t file_size = 0;
  210. std::chrono::steady_clock::time_point start_time = std::chrono::steady_clock::now();
  211. bool printed = false;
  212. };
  213. static int get_terminal_width() {
  214. #if defined(_WIN32)
  215. CONSOLE_SCREEN_BUFFER_INFO csbi;
  216. GetConsoleScreenBufferInfo(GetStdHandle(STD_OUTPUT_HANDLE), &csbi);
  217. return csbi.srWindow.Right - csbi.srWindow.Left + 1;
  218. #else
  219. struct winsize w;
  220. ioctl(STDOUT_FILENO, TIOCGWINSZ, &w);
  221. return w.ws_col;
  222. #endif
  223. }
  224. #ifdef LLAMA_USE_CURL
  225. class File {
  226. public:
  227. FILE * file = nullptr;
  228. FILE * open(const std::string & filename, const char * mode) {
  229. file = fopen(filename.c_str(), mode);
  230. return file;
  231. }
  232. int lock() {
  233. if (file) {
  234. # ifdef _WIN32
  235. fd = _fileno(file);
  236. hFile = (HANDLE) _get_osfhandle(fd);
  237. if (hFile == INVALID_HANDLE_VALUE) {
  238. fd = -1;
  239. return 1;
  240. }
  241. OVERLAPPED overlapped = {};
  242. if (!LockFileEx(hFile, LOCKFILE_EXCLUSIVE_LOCK | LOCKFILE_FAIL_IMMEDIATELY, 0, MAXDWORD, MAXDWORD,
  243. &overlapped)) {
  244. fd = -1;
  245. return 1;
  246. }
  247. # else
  248. fd = fileno(file);
  249. if (flock(fd, LOCK_EX | LOCK_NB) != 0) {
  250. fd = -1;
  251. return 1;
  252. }
  253. # endif
  254. }
  255. return 0;
  256. }
  257. ~File() {
  258. if (fd >= 0) {
  259. # ifdef _WIN32
  260. if (hFile != INVALID_HANDLE_VALUE) {
  261. OVERLAPPED overlapped = {};
  262. UnlockFileEx(hFile, 0, MAXDWORD, MAXDWORD, &overlapped);
  263. }
  264. # else
  265. flock(fd, LOCK_UN);
  266. # endif
  267. }
  268. if (file) {
  269. fclose(file);
  270. }
  271. }
  272. private:
  273. int fd = -1;
  274. # ifdef _WIN32
  275. HANDLE hFile = nullptr;
  276. # endif
  277. };
  278. class HttpClient {
  279. public:
  280. int init(const std::string & url, const std::vector<std::string> & headers, const std::string & output_file,
  281. const bool progress, std::string * response_str = nullptr) {
  282. if (std::filesystem::exists(output_file)) {
  283. return 0;
  284. }
  285. std::string output_file_partial;
  286. curl = curl_easy_init();
  287. if (!curl) {
  288. return 1;
  289. }
  290. progress_data data;
  291. File out;
  292. if (!output_file.empty()) {
  293. output_file_partial = output_file + ".partial";
  294. if (!out.open(output_file_partial, "ab")) {
  295. printe("Failed to open file\n");
  296. return 1;
  297. }
  298. if (out.lock()) {
  299. printe("Failed to exclusively lock file\n");
  300. return 1;
  301. }
  302. }
  303. set_write_options(response_str, out);
  304. data.file_size = set_resume_point(output_file_partial);
  305. set_progress_options(progress, data);
  306. set_headers(headers);
  307. CURLcode res = perform(url);
  308. if (res != CURLE_OK){
  309. printe("Fetching resource '%s' failed: %s\n", url.c_str(), curl_easy_strerror(res));
  310. return 1;
  311. }
  312. if (!output_file.empty()) {
  313. std::filesystem::rename(output_file_partial, output_file);
  314. }
  315. return 0;
  316. }
  317. ~HttpClient() {
  318. if (chunk) {
  319. curl_slist_free_all(chunk);
  320. }
  321. if (curl) {
  322. curl_easy_cleanup(curl);
  323. }
  324. }
  325. private:
  326. CURL * curl = nullptr;
  327. struct curl_slist * chunk = nullptr;
  328. void set_write_options(std::string * response_str, const File & out) {
  329. if (response_str) {
  330. curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, capture_data);
  331. curl_easy_setopt(curl, CURLOPT_WRITEDATA, response_str);
  332. } else {
  333. curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, write_data);
  334. curl_easy_setopt(curl, CURLOPT_WRITEDATA, out.file);
  335. }
  336. }
  337. size_t set_resume_point(const std::string & output_file) {
  338. size_t file_size = 0;
  339. if (std::filesystem::exists(output_file)) {
  340. file_size = std::filesystem::file_size(output_file);
  341. curl_easy_setopt(curl, CURLOPT_RESUME_FROM_LARGE, static_cast<curl_off_t>(file_size));
  342. }
  343. return file_size;
  344. }
  345. void set_progress_options(bool progress, progress_data & data) {
  346. if (progress) {
  347. curl_easy_setopt(curl, CURLOPT_NOPROGRESS, 0L);
  348. curl_easy_setopt(curl, CURLOPT_XFERINFODATA, &data);
  349. curl_easy_setopt(curl, CURLOPT_XFERINFOFUNCTION, update_progress);
  350. }
  351. }
  352. void set_headers(const std::vector<std::string> & headers) {
  353. if (!headers.empty()) {
  354. if (chunk) {
  355. curl_slist_free_all(chunk);
  356. chunk = 0;
  357. }
  358. for (const auto & header : headers) {
  359. chunk = curl_slist_append(chunk, header.c_str());
  360. }
  361. curl_easy_setopt(curl, CURLOPT_HTTPHEADER, chunk);
  362. }
  363. }
  364. CURLcode perform(const std::string & url) {
  365. curl_easy_setopt(curl, CURLOPT_URL, url.c_str());
  366. curl_easy_setopt(curl, CURLOPT_FOLLOWLOCATION, 1L);
  367. curl_easy_setopt(curl, CURLOPT_DEFAULT_PROTOCOL, "https");
  368. curl_easy_setopt(curl, CURLOPT_FAILONERROR, 1L);
  369. return curl_easy_perform(curl);
  370. }
  371. static std::string human_readable_time(double seconds) {
  372. int hrs = static_cast<int>(seconds) / 3600;
  373. int mins = (static_cast<int>(seconds) % 3600) / 60;
  374. int secs = static_cast<int>(seconds) % 60;
  375. if (hrs > 0) {
  376. return fmt("%dh %02dm %02ds", hrs, mins, secs);
  377. } else if (mins > 0) {
  378. return fmt("%dm %02ds", mins, secs);
  379. } else {
  380. return fmt("%ds", secs);
  381. }
  382. }
  383. static std::string human_readable_size(curl_off_t size) {
  384. static const char * suffix[] = { "B", "KB", "MB", "GB", "TB" };
  385. char length = sizeof(suffix) / sizeof(suffix[0]);
  386. int i = 0;
  387. double dbl_size = size;
  388. if (size > 1024) {
  389. for (i = 0; (size / 1024) > 0 && i < length - 1; i++, size /= 1024) {
  390. dbl_size = size / 1024.0;
  391. }
  392. }
  393. return fmt("%.2f %s", dbl_size, suffix[i]);
  394. }
  395. static int update_progress(void * ptr, curl_off_t total_to_download, curl_off_t now_downloaded, curl_off_t,
  396. curl_off_t) {
  397. progress_data * data = static_cast<progress_data *>(ptr);
  398. if (total_to_download <= 0) {
  399. return 0;
  400. }
  401. total_to_download += data->file_size;
  402. const curl_off_t now_downloaded_plus_file_size = now_downloaded + data->file_size;
  403. const curl_off_t percentage = calculate_percentage(now_downloaded_plus_file_size, total_to_download);
  404. std::string progress_prefix = generate_progress_prefix(percentage);
  405. const double speed = calculate_speed(now_downloaded, data->start_time);
  406. const double tim = (total_to_download - now_downloaded) / speed;
  407. std::string progress_suffix =
  408. generate_progress_suffix(now_downloaded_plus_file_size, total_to_download, speed, tim);
  409. int progress_bar_width = calculate_progress_bar_width(progress_prefix, progress_suffix);
  410. std::string progress_bar;
  411. generate_progress_bar(progress_bar_width, percentage, progress_bar);
  412. print_progress(progress_prefix, progress_bar, progress_suffix);
  413. data->printed = true;
  414. return 0;
  415. }
  416. static curl_off_t calculate_percentage(curl_off_t now_downloaded_plus_file_size, curl_off_t total_to_download) {
  417. return (now_downloaded_plus_file_size * 100) / total_to_download;
  418. }
  419. static std::string generate_progress_prefix(curl_off_t percentage) { return fmt("%3ld%% |", static_cast<long int>(percentage)); }
  420. static double calculate_speed(curl_off_t now_downloaded, const std::chrono::steady_clock::time_point & start_time) {
  421. const auto now = std::chrono::steady_clock::now();
  422. const std::chrono::duration<double> elapsed_seconds = now - start_time;
  423. return now_downloaded / elapsed_seconds.count();
  424. }
  425. static std::string generate_progress_suffix(curl_off_t now_downloaded_plus_file_size, curl_off_t total_to_download,
  426. double speed, double estimated_time) {
  427. const int width = 10;
  428. return fmt("%*s/%*s%*s/s%*s", width, human_readable_size(now_downloaded_plus_file_size).c_str(), width,
  429. human_readable_size(total_to_download).c_str(), width, human_readable_size(speed).c_str(), width,
  430. human_readable_time(estimated_time).c_str());
  431. }
  432. static int calculate_progress_bar_width(const std::string & progress_prefix, const std::string & progress_suffix) {
  433. int progress_bar_width = get_terminal_width() - progress_prefix.size() - progress_suffix.size() - 3;
  434. if (progress_bar_width < 1) {
  435. progress_bar_width = 1;
  436. }
  437. return progress_bar_width;
  438. }
  439. static std::string generate_progress_bar(int progress_bar_width, curl_off_t percentage,
  440. std::string & progress_bar) {
  441. const curl_off_t pos = (percentage * progress_bar_width) / 100;
  442. for (int i = 0; i < progress_bar_width; ++i) {
  443. progress_bar.append((i < pos) ? "█" : " ");
  444. }
  445. return progress_bar;
  446. }
  447. static void print_progress(const std::string & progress_prefix, const std::string & progress_bar,
  448. const std::string & progress_suffix) {
  449. printe("\r%*s\r%s%s| %s", get_terminal_width(), " ", progress_prefix.c_str(), progress_bar.c_str(),
  450. progress_suffix.c_str());
  451. }
  452. // Function to write data to a file
  453. static size_t write_data(void * ptr, size_t size, size_t nmemb, void * stream) {
  454. FILE * out = static_cast<FILE *>(stream);
  455. return fwrite(ptr, size, nmemb, out);
  456. }
  457. // Function to capture data into a string
  458. static size_t capture_data(void * ptr, size_t size, size_t nmemb, void * stream) {
  459. std::string * str = static_cast<std::string *>(stream);
  460. str->append(static_cast<char *>(ptr), size * nmemb);
  461. return size * nmemb;
  462. }
  463. };
  464. #endif
  465. class LlamaData {
  466. public:
  467. llama_model_ptr model;
  468. llama_sampler_ptr sampler;
  469. llama_context_ptr context;
  470. std::vector<llama_chat_message> messages;
  471. std::list<std::string> msg_strs;
  472. std::vector<char> fmtted;
  473. int init(Opt & opt) {
  474. model = initialize_model(opt);
  475. if (!model) {
  476. return 1;
  477. }
  478. context = initialize_context(model, opt);
  479. if (!context) {
  480. return 1;
  481. }
  482. sampler = initialize_sampler(opt);
  483. return 0;
  484. }
  485. private:
  486. #ifdef LLAMA_USE_CURL
  487. int download(const std::string & url, const std::string & output_file, const bool progress,
  488. const std::vector<std::string> & headers = {}, std::string * response_str = nullptr) {
  489. HttpClient http;
  490. if (http.init(url, headers, output_file, progress, response_str)) {
  491. return 1;
  492. }
  493. return 0;
  494. }
  495. #else
  496. int download(const std::string &, const std::string &, const bool, const std::vector<std::string> & = {},
  497. std::string * = nullptr) {
  498. printe("%s: llama.cpp built without libcurl, downloading from an url not supported.\n", __func__);
  499. return 1;
  500. }
  501. #endif
  502. // Helper function to handle model tag extraction and URL construction
  503. std::pair<std::string, std::string> extract_model_and_tag(std::string & model, const std::string & base_url) {
  504. std::string model_tag = "latest";
  505. const size_t colon_pos = model.find(':');
  506. if (colon_pos != std::string::npos) {
  507. model_tag = model.substr(colon_pos + 1);
  508. model = model.substr(0, colon_pos);
  509. }
  510. std::string url = base_url + model + "/manifests/" + model_tag;
  511. return { model, url };
  512. }
  513. // Helper function to download and parse the manifest
  514. int download_and_parse_manifest(const std::string & url, const std::vector<std::string> & headers,
  515. nlohmann::json & manifest) {
  516. std::string manifest_str;
  517. int ret = download(url, "", false, headers, &manifest_str);
  518. if (ret) {
  519. return ret;
  520. }
  521. manifest = nlohmann::json::parse(manifest_str);
  522. return 0;
  523. }
  524. int huggingface_dl(std::string & model, const std::string & bn) {
  525. // Find the second occurrence of '/' after protocol string
  526. size_t pos = model.find('/');
  527. pos = model.find('/', pos + 1);
  528. std::string hfr, hff;
  529. std::vector<std::string> headers = { "User-Agent: llama-cpp", "Accept: application/json" };
  530. std::string url;
  531. if (pos == std::string::npos) {
  532. auto [model_name, manifest_url] = extract_model_and_tag(model, "https://huggingface.co/v2/");
  533. hfr = model_name;
  534. nlohmann::json manifest;
  535. int ret = download_and_parse_manifest(manifest_url, headers, manifest);
  536. if (ret) {
  537. return ret;
  538. }
  539. hff = manifest["ggufFile"]["rfilename"];
  540. } else {
  541. hfr = model.substr(0, pos);
  542. hff = model.substr(pos + 1);
  543. }
  544. url = "https://huggingface.co/" + hfr + "/resolve/main/" + hff;
  545. return download(url, bn, true, headers);
  546. }
  547. int ollama_dl(std::string & model, const std::string & bn) {
  548. const std::vector<std::string> headers = { "Accept: application/vnd.docker.distribution.manifest.v2+json" };
  549. if (model.find('/') == std::string::npos) {
  550. model = "library/" + model;
  551. }
  552. auto [model_name, manifest_url] = extract_model_and_tag(model, "https://registry.ollama.ai/v2/");
  553. nlohmann::json manifest;
  554. int ret = download_and_parse_manifest(manifest_url, {}, manifest);
  555. if (ret) {
  556. return ret;
  557. }
  558. std::string layer;
  559. for (const auto & l : manifest["layers"]) {
  560. if (l["mediaType"] == "application/vnd.ollama.image.model") {
  561. layer = l["digest"];
  562. break;
  563. }
  564. }
  565. std::string blob_url = "https://registry.ollama.ai/v2/" + model_name + "/blobs/" + layer;
  566. return download(blob_url, bn, true, headers);
  567. }
  568. int github_dl(const std::string & model, const std::string & bn) {
  569. std::string repository = model;
  570. std::string branch = "main";
  571. size_t at_pos = model.find('@');
  572. if (at_pos != std::string::npos) {
  573. repository = model.substr(0, at_pos);
  574. branch = model.substr(at_pos + 1);
  575. }
  576. std::vector<std::string> repo_parts;
  577. size_t start = 0;
  578. for (size_t end = 0; (end = repository.find('/', start)) != std::string::npos; start = end + 1) {
  579. repo_parts.push_back(repository.substr(start, end - start));
  580. }
  581. repo_parts.push_back(repository.substr(start));
  582. if (repo_parts.size() < 3) {
  583. printe("Invalid GitHub repository format\n");
  584. return 1;
  585. }
  586. const std::string org = repo_parts[0];
  587. const std::string project = repo_parts[1];
  588. std::string project_path = repo_parts[2];
  589. for (size_t i = 3; i < repo_parts.size(); ++i) {
  590. project_path += "/" + repo_parts[i];
  591. }
  592. const std::string url =
  593. "https://raw.githubusercontent.com/" + org + "/" + project + "/" + branch + "/" + project_path;
  594. return download(url, bn, true);
  595. }
  596. std::string basename(const std::string & path) {
  597. const size_t pos = path.find_last_of("/\\");
  598. if (pos == std::string::npos) {
  599. return path;
  600. }
  601. return path.substr(pos + 1);
  602. }
  603. int rm_until_substring(std::string & model_, const std::string & substring) {
  604. const std::string::size_type pos = model_.find(substring);
  605. if (pos == std::string::npos) {
  606. return 1;
  607. }
  608. model_ = model_.substr(pos + substring.size()); // Skip past the substring
  609. return 0;
  610. }
  611. int resolve_model(std::string & model_) {
  612. int ret = 0;
  613. if (string_starts_with(model_, "file://") || std::filesystem::exists(model_)) {
  614. rm_until_substring(model_, "://");
  615. return ret;
  616. }
  617. const std::string bn = basename(model_);
  618. if (string_starts_with(model_, "hf://") || string_starts_with(model_, "huggingface://")) {
  619. rm_until_substring(model_, "://");
  620. ret = huggingface_dl(model_, bn);
  621. } else if (string_starts_with(model_, "hf.co/")) {
  622. rm_until_substring(model_, "hf.co/");
  623. ret = huggingface_dl(model_, bn);
  624. } else if (string_starts_with(model_, "https://") || string_starts_with(model_, "http://")) {
  625. ret = download(model_, bn, true);
  626. } else if (string_starts_with(model_, "github:") || string_starts_with(model_, "github://")) {
  627. rm_until_substring(model_, "github://");
  628. rm_until_substring(model_, "github:");
  629. ret = github_dl(model_, bn);
  630. } else { // ollama:// or nothing
  631. rm_until_substring(model_, "://");
  632. ret = ollama_dl(model_, bn);
  633. }
  634. model_ = bn;
  635. return ret;
  636. }
  637. // Initializes the model and returns a unique pointer to it
  638. llama_model_ptr initialize_model(Opt & opt) {
  639. ggml_backend_load_all();
  640. resolve_model(opt.model_);
  641. printe(
  642. "\r%*s"
  643. "\rLoading model",
  644. get_terminal_width(), " ");
  645. llama_model_ptr model(llama_model_load_from_file(opt.model_.c_str(), opt.model_params));
  646. if (!model) {
  647. printe("%s: error: unable to load model from file: %s\n", __func__, opt.model_.c_str());
  648. }
  649. printe("\r%*s\r", static_cast<int>(sizeof("Loading model")), " ");
  650. return model;
  651. }
  652. // Initializes the context with the specified parameters
  653. llama_context_ptr initialize_context(const llama_model_ptr & model, const Opt & opt) {
  654. llama_context_ptr context(llama_init_from_model(model.get(), opt.ctx_params));
  655. if (!context) {
  656. printe("%s: error: failed to create the llama_context\n", __func__);
  657. }
  658. return context;
  659. }
  660. // Initializes and configures the sampler
  661. llama_sampler_ptr initialize_sampler(const Opt & opt) {
  662. llama_sampler_ptr sampler(llama_sampler_chain_init(llama_sampler_chain_default_params()));
  663. llama_sampler_chain_add(sampler.get(), llama_sampler_init_min_p(0.05f, 1));
  664. llama_sampler_chain_add(sampler.get(), llama_sampler_init_temp(opt.temperature));
  665. llama_sampler_chain_add(sampler.get(), llama_sampler_init_dist(LLAMA_DEFAULT_SEED));
  666. return sampler;
  667. }
  668. };
  669. // Add a message to `messages` and store its content in `msg_strs`
  670. static void add_message(const char * role, const std::string & text, LlamaData & llama_data) {
  671. llama_data.msg_strs.push_back(std::move(text));
  672. llama_data.messages.push_back({ role, llama_data.msg_strs.back().c_str() });
  673. }
  674. // Function to apply the chat template and resize `formatted` if needed
  675. static int apply_chat_template(const common_chat_template & tmpl, LlamaData & llama_data, const bool append, bool use_jinja) {
  676. if (use_jinja) {
  677. json messages = json::array();
  678. for (const auto & msg : llama_data.messages) {
  679. messages.push_back({
  680. {"role", msg.role},
  681. {"content", msg.content},
  682. });
  683. }
  684. try {
  685. auto result = tmpl.apply(messages, /* tools= */ json(), append);
  686. llama_data.fmtted.resize(result.size() + 1);
  687. memcpy(llama_data.fmtted.data(), result.c_str(), result.size() + 1);
  688. return result.size();
  689. } catch (const std::exception & e) {
  690. printe("failed to render the chat template: %s\n", e.what());
  691. return -1;
  692. }
  693. }
  694. int result = llama_chat_apply_template(
  695. tmpl.source().c_str(), llama_data.messages.data(), llama_data.messages.size(), append,
  696. append ? llama_data.fmtted.data() : nullptr, append ? llama_data.fmtted.size() : 0);
  697. if (append && result > static_cast<int>(llama_data.fmtted.size())) {
  698. llama_data.fmtted.resize(result);
  699. result = llama_chat_apply_template(tmpl.source().c_str(), llama_data.messages.data(),
  700. llama_data.messages.size(), append, llama_data.fmtted.data(),
  701. llama_data.fmtted.size());
  702. }
  703. return result;
  704. }
  705. // Function to tokenize the prompt
  706. static int tokenize_prompt(const llama_vocab * vocab, const std::string & prompt,
  707. std::vector<llama_token> & prompt_tokens, const LlamaData & llama_data) {
  708. const bool is_first = llama_get_kv_cache_used_cells(llama_data.context.get()) == 0;
  709. const int n_prompt_tokens = -llama_tokenize(vocab, prompt.c_str(), prompt.size(), NULL, 0, is_first, true);
  710. prompt_tokens.resize(n_prompt_tokens);
  711. if (llama_tokenize(vocab, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), is_first,
  712. true) < 0) {
  713. printe("failed to tokenize the prompt\n");
  714. return -1;
  715. }
  716. return n_prompt_tokens;
  717. }
  718. // Check if we have enough space in the context to evaluate this batch
  719. static int check_context_size(const llama_context_ptr & ctx, const llama_batch & batch) {
  720. const int n_ctx = llama_n_ctx(ctx.get());
  721. const int n_ctx_used = llama_get_kv_cache_used_cells(ctx.get());
  722. if (n_ctx_used + batch.n_tokens > n_ctx) {
  723. printf("\033[0m\n");
  724. printe("context size exceeded\n");
  725. return 1;
  726. }
  727. return 0;
  728. }
  729. // convert the token to a string
  730. static int convert_token_to_string(const llama_vocab * vocab, const llama_token token_id, std::string & piece) {
  731. char buf[256];
  732. int n = llama_token_to_piece(vocab, token_id, buf, sizeof(buf), 0, true);
  733. if (n < 0) {
  734. printe("failed to convert token to piece\n");
  735. return 1;
  736. }
  737. piece = std::string(buf, n);
  738. return 0;
  739. }
  740. static void print_word_and_concatenate_to_response(const std::string & piece, std::string & response) {
  741. printf("%s", piece.c_str());
  742. fflush(stdout);
  743. response += piece;
  744. }
  745. // helper function to evaluate a prompt and generate a response
  746. static int generate(LlamaData & llama_data, const std::string & prompt, std::string & response) {
  747. const llama_vocab * vocab = llama_model_get_vocab(llama_data.model.get());
  748. std::vector<llama_token> tokens;
  749. if (tokenize_prompt(vocab, prompt, tokens, llama_data) < 0) {
  750. return 1;
  751. }
  752. // prepare a batch for the prompt
  753. llama_batch batch = llama_batch_get_one(tokens.data(), tokens.size());
  754. llama_token new_token_id;
  755. while (true) {
  756. check_context_size(llama_data.context, batch);
  757. if (llama_decode(llama_data.context.get(), batch)) {
  758. printe("failed to decode\n");
  759. return 1;
  760. }
  761. // sample the next token, check is it an end of generation?
  762. new_token_id = llama_sampler_sample(llama_data.sampler.get(), llama_data.context.get(), -1);
  763. if (llama_vocab_is_eog(vocab, new_token_id)) {
  764. break;
  765. }
  766. std::string piece;
  767. if (convert_token_to_string(vocab, new_token_id, piece)) {
  768. return 1;
  769. }
  770. print_word_and_concatenate_to_response(piece, response);
  771. // prepare the next batch with the sampled token
  772. batch = llama_batch_get_one(&new_token_id, 1);
  773. }
  774. printf("\033[0m");
  775. return 0;
  776. }
  777. static int read_user_input(std::string & user_input) {
  778. static const char * prompt_prefix = "> ";
  779. #ifdef WIN32
  780. printf(
  781. "\r%*s"
  782. "\r\033[0m%s",
  783. get_terminal_width(), " ", prompt_prefix);
  784. std::getline(std::cin, user_input);
  785. if (std::cin.eof()) {
  786. printf("\n");
  787. return 1;
  788. }
  789. #else
  790. std::unique_ptr<char, decltype(&std::free)> line(const_cast<char *>(linenoise(prompt_prefix)), free);
  791. if (!line) {
  792. return 1;
  793. }
  794. user_input = line.get();
  795. #endif
  796. if (user_input == "/bye") {
  797. return 1;
  798. }
  799. if (user_input.empty()) {
  800. return 2;
  801. }
  802. #ifndef WIN32
  803. linenoiseHistoryAdd(line.get());
  804. #endif
  805. return 0; // Should have data in happy path
  806. }
  807. // Function to generate a response based on the prompt
  808. static int generate_response(LlamaData & llama_data, const std::string & prompt, std::string & response,
  809. const bool stdout_a_terminal) {
  810. // Set response color
  811. if (stdout_a_terminal) {
  812. printf("\033[33m");
  813. }
  814. if (generate(llama_data, prompt, response)) {
  815. printe("failed to generate response\n");
  816. return 1;
  817. }
  818. // End response with color reset and newline
  819. printf("\n%s", stdout_a_terminal ? "\033[0m" : "");
  820. return 0;
  821. }
  822. // Helper function to apply the chat template and handle errors
  823. static int apply_chat_template_with_error_handling(const common_chat_template & tmpl, LlamaData & llama_data, const bool append, int & output_length, bool use_jinja) {
  824. const int new_len = apply_chat_template(tmpl, llama_data, append, use_jinja);
  825. if (new_len < 0) {
  826. printe("failed to apply the chat template\n");
  827. return -1;
  828. }
  829. output_length = new_len;
  830. return 0;
  831. }
  832. // Helper function to handle user input
  833. static int handle_user_input(std::string & user_input, const std::string & user) {
  834. if (!user.empty()) {
  835. user_input = user;
  836. return 0; // No need for interactive input
  837. }
  838. return read_user_input(user_input); // Returns true if input ends the loop
  839. }
  840. static bool is_stdin_a_terminal() {
  841. #if defined(_WIN32)
  842. HANDLE hStdin = GetStdHandle(STD_INPUT_HANDLE);
  843. DWORD mode;
  844. return GetConsoleMode(hStdin, &mode);
  845. #else
  846. return isatty(STDIN_FILENO);
  847. #endif
  848. }
  849. static bool is_stdout_a_terminal() {
  850. #if defined(_WIN32)
  851. HANDLE hStdout = GetStdHandle(STD_OUTPUT_HANDLE);
  852. DWORD mode;
  853. return GetConsoleMode(hStdout, &mode);
  854. #else
  855. return isatty(STDOUT_FILENO);
  856. #endif
  857. }
  858. // Function to handle user input
  859. static int get_user_input(std::string & user_input, const std::string & user) {
  860. while (true) {
  861. const int ret = handle_user_input(user_input, user);
  862. if (ret == 1) {
  863. return 1;
  864. }
  865. if (ret == 2) {
  866. continue;
  867. }
  868. break;
  869. }
  870. return 0;
  871. }
  872. // Main chat loop function
  873. static int chat_loop(LlamaData & llama_data, const std::string & user, bool use_jinja) {
  874. int prev_len = 0;
  875. llama_data.fmtted.resize(llama_n_ctx(llama_data.context.get()));
  876. auto chat_templates = common_chat_templates_from_model(llama_data.model.get(), "");
  877. GGML_ASSERT(chat_templates.template_default);
  878. static const bool stdout_a_terminal = is_stdout_a_terminal();
  879. while (true) {
  880. // Get user input
  881. std::string user_input;
  882. if (get_user_input(user_input, user) == 1) {
  883. return 0;
  884. }
  885. add_message("user", user.empty() ? user_input : user, llama_data);
  886. int new_len;
  887. if (apply_chat_template_with_error_handling(*chat_templates.template_default, llama_data, true, new_len, use_jinja) < 0) {
  888. return 1;
  889. }
  890. std::string prompt(llama_data.fmtted.begin() + prev_len, llama_data.fmtted.begin() + new_len);
  891. std::string response;
  892. if (generate_response(llama_data, prompt, response, stdout_a_terminal)) {
  893. return 1;
  894. }
  895. if (!user.empty()) {
  896. break;
  897. }
  898. add_message("assistant", response, llama_data);
  899. if (apply_chat_template_with_error_handling(*chat_templates.template_default, llama_data, false, prev_len, use_jinja) < 0) {
  900. return 1;
  901. }
  902. }
  903. return 0;
  904. }
  905. static void log_callback(const enum ggml_log_level level, const char * text, void * p) {
  906. const Opt * opt = static_cast<Opt *>(p);
  907. if (opt->verbose || level == GGML_LOG_LEVEL_ERROR) {
  908. printe("%s", text);
  909. }
  910. }
  911. static std::string read_pipe_data() {
  912. std::ostringstream result;
  913. result << std::cin.rdbuf(); // Read all data from std::cin
  914. return result.str();
  915. }
  916. static void ctrl_c_handling() {
  917. #if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__))
  918. struct sigaction sigint_action;
  919. sigint_action.sa_handler = sigint_handler;
  920. sigemptyset(&sigint_action.sa_mask);
  921. sigint_action.sa_flags = 0;
  922. sigaction(SIGINT, &sigint_action, NULL);
  923. #elif defined(_WIN32)
  924. auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
  925. return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false;
  926. };
  927. SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
  928. #endif
  929. }
  930. int main(int argc, const char ** argv) {
  931. ctrl_c_handling();
  932. Opt opt;
  933. const int ret = opt.init(argc, argv);
  934. if (ret == 2) {
  935. return 0;
  936. } else if (ret) {
  937. return 1;
  938. }
  939. if (!is_stdin_a_terminal()) {
  940. if (!opt.user.empty()) {
  941. opt.user += "\n\n";
  942. }
  943. opt.user += read_pipe_data();
  944. }
  945. llama_log_set(log_callback, &opt);
  946. LlamaData llama_data;
  947. if (llama_data.init(opt)) {
  948. return 1;
  949. }
  950. if (chat_loop(llama_data, opt.user, opt.use_jinja)) {
  951. return 1;
  952. }
  953. return 0;
  954. }