ggml-backend.cpp 96 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661
  1. // Note: porting this file to C++ is a work in progress
  2. #ifdef _WIN32
  3. #define WIN32_LEAN_AND_MEAN
  4. #ifndef NOMINMAX
  5. # define NOMINMAX
  6. #endif
  7. #include <windows.h>
  8. #endif
  9. #include "ggml-backend.h"
  10. #include "ggml-backend-impl.h"
  11. #include "ggml-alloc.h"
  12. #include "ggml-impl.h"
  13. #include <assert.h>
  14. #include <limits.h>
  15. #include <stdarg.h>
  16. #include <stdio.h>
  17. #include <stdlib.h>
  18. #include <string.h>
  19. #include <string>
  20. #include <vector>
  21. #ifdef __APPLE__
  22. #include <sys/types.h>
  23. #include <sys/sysctl.h>
  24. #endif
  25. // backend buffer type
  26. const char * ggml_backend_buft_name(ggml_backend_buffer_type_t buft) {
  27. return buft->iface.get_name(buft);
  28. }
  29. ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  30. if (size == 0) {
  31. // return a dummy buffer for zero-sized allocations
  32. return ggml_backend_buffer_init(buft, {}, NULL, 0);
  33. }
  34. return buft->iface.alloc_buffer(buft, size);
  35. }
  36. size_t ggml_backend_buft_get_alignment(ggml_backend_buffer_type_t buft) {
  37. return buft->iface.get_alignment(buft);
  38. }
  39. size_t ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) {
  40. // get_max_size is optional, defaults to SIZE_MAX
  41. if (buft->iface.get_max_size) {
  42. return buft->iface.get_max_size(buft);
  43. }
  44. return SIZE_MAX;
  45. }
  46. size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor) {
  47. // get_alloc_size is optional, defaults to ggml_nbytes
  48. if (buft->iface.get_alloc_size) {
  49. size_t size = buft->iface.get_alloc_size(buft, tensor);
  50. assert(size >= ggml_nbytes(tensor));
  51. return size;
  52. }
  53. return ggml_nbytes(tensor);
  54. }
  55. bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) {
  56. if (buft->iface.is_host) {
  57. return buft->iface.is_host(buft);
  58. }
  59. return false;
  60. }
  61. ggml_backend_dev_t ggml_backend_buft_get_device(ggml_backend_buffer_type_t buft) {
  62. return buft->device;
  63. }
  64. // backend buffer
  65. ggml_backend_buffer_t ggml_backend_buffer_init(
  66. ggml_backend_buffer_type_t buft,
  67. struct ggml_backend_buffer_i iface,
  68. void * context,
  69. size_t size) {
  70. ggml_backend_buffer_t buffer = new ggml_backend_buffer {
  71. /* .interface = */ iface,
  72. /* .buft = */ buft,
  73. /* .context = */ context,
  74. /* .size = */ size,
  75. /* .usage = */ GGML_BACKEND_BUFFER_USAGE_ANY
  76. };
  77. return buffer;
  78. }
  79. const char * ggml_backend_buffer_name(ggml_backend_buffer_t buffer) {
  80. return ggml_backend_buft_name(ggml_backend_buffer_get_type(buffer));
  81. }
  82. void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
  83. if (buffer == NULL) {
  84. return;
  85. }
  86. if (buffer->iface.free_buffer != NULL) {
  87. buffer->iface.free_buffer(buffer);
  88. }
  89. delete buffer;
  90. }
  91. size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) {
  92. return buffer->size;
  93. }
  94. void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
  95. // get_base is optional if the buffer is zero-sized
  96. if (buffer->size == 0) {
  97. return NULL;
  98. }
  99. void * base = buffer->iface.get_base(buffer);
  100. GGML_ASSERT(base != NULL && "backend buffer base cannot be NULL");
  101. return base;
  102. }
  103. void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  104. // init_tensor is optional
  105. if (buffer->iface.init_tensor) {
  106. buffer->iface.init_tensor(buffer, tensor);
  107. }
  108. }
  109. void ggml_backend_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  110. // clear is optional if the buffer is zero-sized
  111. if (buffer->size == 0) {
  112. return;
  113. }
  114. buffer->iface.clear(buffer, value);
  115. }
  116. size_t ggml_backend_buffer_get_alignment(ggml_backend_buffer_t buffer) {
  117. return ggml_backend_buft_get_alignment(ggml_backend_buffer_get_type(buffer));
  118. }
  119. size_t ggml_backend_buffer_get_max_size(ggml_backend_buffer_t buffer) {
  120. return ggml_backend_buft_get_max_size(ggml_backend_buffer_get_type(buffer));
  121. }
  122. size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  123. return ggml_backend_buft_get_alloc_size(ggml_backend_buffer_get_type(buffer), tensor);
  124. }
  125. bool ggml_backend_buffer_is_host(ggml_backend_buffer_t buffer) {
  126. return ggml_backend_buft_is_host(ggml_backend_buffer_get_type(buffer));
  127. }
  128. void ggml_backend_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
  129. buffer->usage = usage;
  130. // FIXME: add a generic callback to the buffer interface
  131. if (ggml_backend_buffer_is_multi_buffer(buffer)) {
  132. ggml_backend_multi_buffer_set_usage(buffer, usage);
  133. }
  134. }
  135. enum ggml_backend_buffer_usage ggml_backend_buffer_get_usage(ggml_backend_buffer_t buffer) {
  136. return buffer->usage;
  137. }
  138. ggml_backend_buffer_type_t ggml_backend_buffer_get_type(ggml_backend_buffer_t buffer) {
  139. return buffer->buft;
  140. }
  141. void ggml_backend_buffer_reset(ggml_backend_buffer_t buffer) {
  142. if (buffer->iface.reset) {
  143. buffer->iface.reset(buffer);
  144. }
  145. }
  146. bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst) {
  147. ggml_backend_buffer_t dst_buf = dst->view_src ? dst->view_src->buffer : dst->buffer;
  148. if (dst_buf->iface.cpy_tensor) {
  149. return dst_buf->iface.cpy_tensor(dst_buf, src, dst);
  150. }
  151. return false;
  152. }
  153. // backend
  154. ggml_guid_t ggml_backend_guid(ggml_backend_t backend) {
  155. if (backend == NULL) {
  156. return NULL;
  157. }
  158. return backend->guid;
  159. }
  160. const char * ggml_backend_name(ggml_backend_t backend) {
  161. if (backend == NULL) {
  162. return "NULL";
  163. }
  164. return backend->iface.get_name(backend);
  165. }
  166. void ggml_backend_free(ggml_backend_t backend) {
  167. if (backend == NULL) {
  168. return;
  169. }
  170. backend->iface.free(backend);
  171. }
  172. ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend) {
  173. return ggml_backend_dev_buffer_type(backend->device);
  174. }
  175. ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size) {
  176. return ggml_backend_buft_alloc_buffer(ggml_backend_get_default_buffer_type(backend), size);
  177. }
  178. size_t ggml_backend_get_alignment(ggml_backend_t backend) {
  179. return ggml_backend_buft_get_alignment(ggml_backend_get_default_buffer_type(backend));
  180. }
  181. size_t ggml_backend_get_max_size(ggml_backend_t backend) {
  182. return ggml_backend_buft_get_max_size(ggml_backend_get_default_buffer_type(backend));
  183. }
  184. void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  185. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  186. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  187. if (backend->iface.set_tensor_async == NULL) {
  188. ggml_backend_tensor_set(tensor, data, offset, size);
  189. } else {
  190. backend->iface.set_tensor_async(backend, tensor, data, offset, size);
  191. }
  192. }
  193. void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  194. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  195. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
  196. if (backend->iface.get_tensor_async == NULL) {
  197. ggml_backend_tensor_get(tensor, data, offset, size);
  198. } else {
  199. backend->iface.get_tensor_async(backend, tensor, data, offset, size);
  200. }
  201. }
  202. void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  203. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  204. if (size == 0) {
  205. return;
  206. }
  207. GGML_ASSERT(buf != NULL && "tensor buffer not set");
  208. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  209. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  210. buf->iface.set_tensor(buf, tensor, data, offset, size);
  211. }
  212. void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  213. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  214. if (size == 0) {
  215. return;
  216. }
  217. GGML_ASSERT(buf != NULL && "tensor buffer not set");
  218. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  219. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
  220. buf->iface.get_tensor(buf, tensor, data, offset, size);
  221. }
  222. GGML_API void ggml_backend_tensor_memset(struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
  223. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  224. if (size == 0) {
  225. return;
  226. }
  227. GGML_ASSERT(buf != NULL && "tensor buffer not set");
  228. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  229. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  230. GGML_ASSERT(buf->iface.memset_tensor != NULL && "memset not implemented by backend buffer");
  231. buf->iface.memset_tensor(buf, tensor, value, offset, size);
  232. }
  233. void ggml_backend_synchronize(ggml_backend_t backend) {
  234. if (backend->iface.synchronize == NULL) {
  235. return;
  236. }
  237. backend->iface.synchronize(backend);
  238. }
  239. ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  240. GGML_ASSERT(backend->iface.graph_plan_create != NULL);
  241. return backend->iface.graph_plan_create(backend, cgraph);
  242. }
  243. void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  244. GGML_ASSERT(backend->iface.graph_plan_free != NULL);
  245. backend->iface.graph_plan_free(backend, plan);
  246. }
  247. enum ggml_status ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  248. GGML_ASSERT(backend->iface.graph_plan_compute != NULL);
  249. return backend->iface.graph_plan_compute(backend, plan);
  250. }
  251. enum ggml_status ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  252. enum ggml_status err = ggml_backend_graph_compute_async(backend, cgraph);
  253. ggml_backend_synchronize(backend);
  254. return err;
  255. }
  256. enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  257. return backend->iface.graph_compute(backend, cgraph);
  258. }
  259. bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  260. return ggml_backend_dev_supports_op(backend->device, op);
  261. }
  262. bool ggml_backend_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
  263. return ggml_backend_dev_supports_buft(backend->device, buft);
  264. }
  265. bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  266. return ggml_backend_dev_offload_op(backend->device, op);
  267. }
  268. ggml_backend_dev_t ggml_backend_get_device(ggml_backend_t backend) {
  269. return backend->device;
  270. }
  271. // backend copy
  272. static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
  273. if (a->type != b->type) {
  274. return false;
  275. }
  276. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  277. if (a->ne[i] != b->ne[i]) {
  278. return false;
  279. }
  280. if (a->nb[i] != b->nb[i]) {
  281. return false;
  282. }
  283. }
  284. return true;
  285. }
  286. void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) {
  287. GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
  288. if (src == dst) {
  289. return;
  290. }
  291. if (ggml_backend_buffer_is_host(src->buffer)) {
  292. ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src));
  293. } else if (ggml_backend_buffer_is_host(dst->buffer)) {
  294. ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
  295. } else if (!ggml_backend_buffer_copy_tensor(src, dst)) {
  296. #ifndef NDEBUG
  297. GGML_LOG_DEBUG("%s: warning: slow copy from %s to %s\n", __func__, ggml_backend_buffer_name(src->buffer), ggml_backend_buffer_name(dst->buffer));
  298. #endif
  299. size_t nbytes = ggml_nbytes(src);
  300. void * data = malloc(nbytes);
  301. ggml_backend_tensor_get(src, data, 0, nbytes);
  302. ggml_backend_tensor_set(dst, data, 0, nbytes);
  303. free(data);
  304. }
  305. }
  306. void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, struct ggml_tensor * src, struct ggml_tensor * dst) {
  307. GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
  308. if (src == dst) {
  309. return;
  310. }
  311. if (backend_dst->iface.cpy_tensor_async != NULL) {
  312. if (backend_dst->iface.cpy_tensor_async(backend_src, backend_dst, src, dst)) {
  313. return;
  314. }
  315. }
  316. // an async copy would normally happen after all the queued operations on both backends are completed
  317. // to simulate the same behavior, we need to synchronize both backends first, and do a blocking copy
  318. ggml_backend_synchronize(backend_src);
  319. ggml_backend_synchronize(backend_dst);
  320. ggml_backend_tensor_copy(src, dst);
  321. }
  322. // events
  323. ggml_backend_event_t ggml_backend_event_new(ggml_backend_dev_t device) {
  324. // null device is allowed for the transition period to the device interface
  325. if (device == NULL || device->iface.event_new == NULL) {
  326. return NULL;
  327. }
  328. return device->iface.event_new(device);
  329. }
  330. void ggml_backend_event_free(ggml_backend_event_t event) {
  331. if (event == NULL) {
  332. return;
  333. }
  334. event->device->iface.event_free(event->device, event);
  335. }
  336. void ggml_backend_event_record(ggml_backend_event_t event, ggml_backend_t backend) {
  337. GGML_ASSERT(backend->iface.event_record != NULL);
  338. backend->iface.event_record(backend, event);
  339. }
  340. void ggml_backend_event_synchronize(ggml_backend_event_t event) {
  341. GGML_ASSERT(event->device->iface.event_synchronize);
  342. event->device->iface.event_synchronize(event->device, event);
  343. }
  344. void ggml_backend_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
  345. GGML_ASSERT(backend->iface.event_wait != NULL);
  346. backend->iface.event_wait(backend, event);
  347. }
  348. // Backend device
  349. const char * ggml_backend_dev_name(ggml_backend_dev_t device) {
  350. return device->iface.get_name(device);
  351. }
  352. const char * ggml_backend_dev_description(ggml_backend_dev_t device) {
  353. return device->iface.get_description(device);
  354. }
  355. void ggml_backend_dev_memory(ggml_backend_dev_t device, size_t * free, size_t * total) {
  356. device->iface.get_memory(device, free, total);
  357. }
  358. enum ggml_backend_dev_type ggml_backend_dev_type(ggml_backend_dev_t device) {
  359. return device->iface.get_type(device);
  360. }
  361. void ggml_backend_dev_get_props(ggml_backend_dev_t device, struct ggml_backend_dev_props * props) {
  362. memset(props, 0, sizeof(*props));
  363. device->iface.get_props(device, props);
  364. }
  365. ggml_backend_reg_t ggml_backend_dev_backend_reg(ggml_backend_dev_t device) {
  366. return device->reg;
  367. }
  368. ggml_backend_t ggml_backend_dev_init(ggml_backend_dev_t device, const char * params) {
  369. return device->iface.init_backend(device, params);
  370. }
  371. ggml_backend_buffer_type_t ggml_backend_dev_buffer_type(ggml_backend_dev_t device) {
  372. return device->iface.get_buffer_type(device);
  373. }
  374. ggml_backend_buffer_type_t ggml_backend_dev_host_buffer_type(ggml_backend_dev_t device) {
  375. if (device->iface.get_host_buffer_type == NULL) {
  376. return NULL;
  377. }
  378. return device->iface.get_host_buffer_type(device);
  379. }
  380. ggml_backend_buffer_t ggml_backend_dev_buffer_from_host_ptr(ggml_backend_dev_t device, void * ptr, size_t size, size_t max_tensor_size) {
  381. return device->iface.buffer_from_host_ptr(device, ptr, size, max_tensor_size);
  382. }
  383. bool ggml_backend_dev_supports_op(ggml_backend_dev_t device, const struct ggml_tensor * op) {
  384. return device->iface.supports_op(device, op);
  385. }
  386. bool ggml_backend_dev_supports_buft(ggml_backend_dev_t device, ggml_backend_buffer_type_t buft) {
  387. return device->iface.supports_buft(device, buft);
  388. }
  389. bool ggml_backend_dev_offload_op(ggml_backend_dev_t device, const struct ggml_tensor * op) {
  390. if (device->iface.offload_op != NULL) {
  391. return device->iface.offload_op(device, op);
  392. }
  393. return false;
  394. }
  395. // Backend (reg)
  396. const char * ggml_backend_reg_name(ggml_backend_reg_t reg) {
  397. return reg->iface.get_name(reg);
  398. }
  399. size_t ggml_backend_reg_dev_count(ggml_backend_reg_t reg) {
  400. return reg->iface.get_device_count(reg);
  401. }
  402. ggml_backend_dev_t ggml_backend_reg_dev_get(ggml_backend_reg_t reg, size_t index) {
  403. return reg->iface.get_device(reg, index);
  404. }
  405. void * ggml_backend_reg_get_proc_address(ggml_backend_reg_t reg, const char * name) {
  406. if (!reg->iface.get_proc_address) {
  407. return NULL;
  408. }
  409. return reg->iface.get_proc_address(reg, name);
  410. }
  411. // Backend registry
  412. #ifdef GGML_USE_CUDA
  413. #include "ggml-cuda.h"
  414. #endif
  415. #ifdef GGML_USE_METAL
  416. #include "ggml-metal.h"
  417. #endif
  418. #ifdef GGML_USE_SYCL
  419. #include "ggml-sycl.h"
  420. #endif
  421. #ifdef GGML_USE_VULKAN
  422. #include "ggml-vulkan.h"
  423. #endif
  424. #ifdef GGML_USE_BLAS
  425. #include "ggml-blas.h"
  426. #endif
  427. #ifdef GGML_USE_RPC
  428. #include "ggml-rpc.h"
  429. #endif
  430. #ifndef __AMX_INT8__
  431. #undef GGML_USE_AMX
  432. #endif
  433. #ifdef GGML_USE_AMX
  434. # include "ggml-amx.h"
  435. #endif
  436. #ifdef GGML_USE_CANN
  437. #include "ggml-cann.h"
  438. #endif
  439. #ifdef GGML_USE_KOMPUTE
  440. #include "ggml-kompute.h"
  441. #endif
  442. #include "ggml-cpu.h"
  443. struct ggml_backend_registry {
  444. std::vector<ggml_backend_reg_t> backends;
  445. std::vector<ggml_backend_dev_t> devices;
  446. ggml_backend_registry() {
  447. #ifdef GGML_USE_CUDA
  448. register_backend(ggml_backend_cuda_reg());
  449. #endif
  450. #ifdef GGML_USE_METAL
  451. register_backend(ggml_backend_metal_reg());
  452. #endif
  453. #ifdef GGML_USE_SYCL
  454. register_backend(ggml_backend_sycl_reg());
  455. #endif
  456. #ifdef GGML_USE_VULKAN
  457. register_backend(ggml_backend_vk_reg());
  458. #endif
  459. #ifdef GGML_USE_CANN
  460. register_backend(ggml_backend_cann_reg());
  461. #endif
  462. #ifdef GGML_USE_BLAS
  463. register_backend(ggml_backend_blas_reg());
  464. #endif
  465. #ifdef GGML_USE_RPC
  466. register_backend(ggml_backend_rpc_reg());
  467. #endif
  468. #ifdef GGML_USE_AMX
  469. register_backend(ggml_backend_amx_reg());
  470. #endif
  471. #ifdef GGML_USE_KOMPUTE
  472. register_backend(ggml_backend_kompute_reg());
  473. #endif
  474. register_backend(ggml_backend_cpu_reg());
  475. }
  476. void register_backend(ggml_backend_reg_t reg) {
  477. #ifndef NDEBUG
  478. GGML_LOG_DEBUG("%s: registered backend %s (%zu devices)\n",
  479. __func__, ggml_backend_reg_name(reg), ggml_backend_reg_dev_count(reg));
  480. #endif
  481. backends.push_back(reg);
  482. for (size_t i = 0; i < ggml_backend_reg_dev_count(reg); i++) {
  483. register_device(ggml_backend_reg_dev_get(reg, i));
  484. }
  485. }
  486. void register_device(ggml_backend_dev_t device) {
  487. #ifndef NDEBUG
  488. GGML_LOG_DEBUG("%s: registered device %s (%s)\n", __func__, ggml_backend_dev_name(device), ggml_backend_dev_description(device));
  489. #endif
  490. devices.push_back(device);
  491. }
  492. };
  493. static ggml_backend_registry & get_reg() {
  494. static ggml_backend_registry reg;
  495. return reg;
  496. }
  497. // Internal API
  498. void ggml_backend_register(ggml_backend_reg_t reg) {
  499. get_reg().register_backend(reg);
  500. }
  501. void ggml_backend_device_register(ggml_backend_dev_t device) {
  502. get_reg().register_device(device);
  503. }
  504. // Backend (reg) enumeration
  505. size_t ggml_backend_reg_count() {
  506. return get_reg().backends.size();
  507. }
  508. ggml_backend_reg_t ggml_backend_reg_get(size_t index) {
  509. GGML_ASSERT(index < ggml_backend_reg_count());
  510. return get_reg().backends[index];
  511. }
  512. ggml_backend_reg_t ggml_backend_reg_by_name(const char * name) {
  513. for (size_t i = 0; i < ggml_backend_reg_count(); i++) {
  514. ggml_backend_reg_t reg = ggml_backend_reg_get(i);
  515. if (strcmp(ggml_backend_reg_name(reg), name) == 0) {
  516. return reg;
  517. }
  518. }
  519. return NULL;
  520. }
  521. // Device enumeration
  522. size_t ggml_backend_dev_count() {
  523. return get_reg().devices.size();
  524. }
  525. ggml_backend_dev_t ggml_backend_dev_get(size_t index) {
  526. GGML_ASSERT(index < ggml_backend_dev_count());
  527. return get_reg().devices[index];
  528. }
  529. ggml_backend_dev_t ggml_backend_dev_by_name(const char * name) {
  530. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  531. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  532. if (strcmp(ggml_backend_dev_name(dev), name) == 0) {
  533. return dev;
  534. }
  535. }
  536. return NULL;
  537. }
  538. ggml_backend_dev_t ggml_backend_dev_by_type(enum ggml_backend_dev_type type) {
  539. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  540. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  541. if (ggml_backend_dev_type(dev) == type) {
  542. return dev;
  543. }
  544. }
  545. return NULL;
  546. }
  547. // Convenience functions
  548. ggml_backend_t ggml_backend_init_by_name(const char * name, const char * params) {
  549. ggml_backend_dev_t dev = ggml_backend_dev_by_name(name);
  550. if (!dev) {
  551. return NULL;
  552. }
  553. return ggml_backend_dev_init(dev, params);
  554. }
  555. ggml_backend_t ggml_backend_init_by_type(enum ggml_backend_dev_type type, const char * params) {
  556. ggml_backend_dev_t dev = ggml_backend_dev_by_type(type);
  557. if (!dev) {
  558. return NULL;
  559. }
  560. return ggml_backend_dev_init(dev, params);
  561. }
  562. ggml_backend_t ggml_backend_init_best(void) {
  563. ggml_backend_dev_t dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_GPU);
  564. if (!dev) {
  565. dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  566. }
  567. if (!dev) {
  568. return NULL;
  569. }
  570. return ggml_backend_dev_init(dev, NULL);
  571. }
  572. // multi-buffer buffer
  573. struct ggml_backend_multi_buffer_context {
  574. ggml_backend_buffer_t * buffers;
  575. size_t n_buffers;
  576. };
  577. static void ggml_backend_multi_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  578. ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context;
  579. for (size_t i = 0; i < ctx->n_buffers; i++) {
  580. ggml_backend_buffer_free(ctx->buffers[i]);
  581. }
  582. free(ctx->buffers);
  583. free(ctx);
  584. }
  585. static void ggml_backend_multi_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  586. ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context;
  587. for (size_t i = 0; i < ctx->n_buffers; i++) {
  588. ggml_backend_buffer_clear(ctx->buffers[i], value);
  589. }
  590. }
  591. static const struct ggml_backend_buffer_i ggml_backend_multi_buffer_i = {
  592. /* .free_buffer = */ ggml_backend_multi_buffer_free_buffer,
  593. /* .get_base = */ NULL,
  594. /* .init_tensor = */ NULL,
  595. /* .memset_tensor = */ NULL,
  596. /* .set_tensor = */ NULL,
  597. /* .get_tensor = */ NULL,
  598. /* .cpy_tensor = */ NULL,
  599. /* .clear = */ ggml_backend_multi_buffer_clear,
  600. /* .reset = */ NULL,
  601. };
  602. ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers) {
  603. ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) malloc(sizeof(struct ggml_backend_multi_buffer_context));
  604. ctx->n_buffers = n_buffers;
  605. ctx->buffers = (ggml_backend_buffer_t *) malloc(n_buffers * sizeof(ggml_backend_buffer_t));
  606. GGML_ASSERT(ctx->buffers != NULL);
  607. size_t total_size = 0;
  608. for (size_t i = 0; i < n_buffers; i++) {
  609. ctx->buffers[i] = buffers[i];
  610. total_size += ggml_backend_buffer_get_size(buffers[i]);
  611. }
  612. return ggml_backend_buffer_init(buffers[0]->buft, ggml_backend_multi_buffer_i, ctx, total_size);
  613. }
  614. bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer) {
  615. return buffer->iface.free_buffer == ggml_backend_multi_buffer_free_buffer;
  616. }
  617. void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
  618. GGML_ASSERT(ggml_backend_buffer_is_multi_buffer(buffer));
  619. ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context;
  620. for (size_t i = 0; i < ctx->n_buffers; i++) {
  621. ggml_backend_buffer_set_usage(ctx->buffers[i], usage);
  622. }
  623. }
  624. // creates a copy of the tensor with the same memory layout
  625. static struct ggml_tensor * ggml_dup_tensor_layout(struct ggml_context * ctx, const struct ggml_tensor * tensor) {
  626. struct ggml_tensor * dup = ggml_dup_tensor(ctx, tensor);
  627. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  628. dup->nb[i] = tensor->nb[i];
  629. }
  630. return dup;
  631. }
  632. static bool ggml_is_view_op(enum ggml_op op) {
  633. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  634. }
  635. // scheduler
  636. #ifndef GGML_SCHED_MAX_BACKENDS
  637. #define GGML_SCHED_MAX_BACKENDS 16
  638. #endif
  639. #ifndef GGML_SCHED_MAX_SPLIT_INPUTS
  640. #define GGML_SCHED_MAX_SPLIT_INPUTS GGML_MAX_SRC
  641. #endif
  642. #ifndef GGML_SCHED_MAX_COPIES
  643. #define GGML_SCHED_MAX_COPIES 4
  644. #endif
  645. struct ggml_backend_sched_split {
  646. int backend_id;
  647. int i_start;
  648. int i_end;
  649. struct ggml_tensor * inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
  650. int n_inputs;
  651. // graph view of this split
  652. struct ggml_cgraph graph;
  653. };
  654. struct ggml_backend_sched {
  655. bool is_reset; // true if the scheduler has been reset since the last graph split
  656. bool is_alloc;
  657. int n_backends;
  658. ggml_backend_t backends[GGML_SCHED_MAX_BACKENDS];
  659. ggml_backend_buffer_type_t bufts[GGML_SCHED_MAX_BACKENDS];
  660. ggml_gallocr_t galloc;
  661. // hash map of the nodes in the graph
  662. struct ggml_hash_set hash_set;
  663. int * hv_tensor_backend_ids; // [hash_set.size]
  664. struct ggml_tensor ** hv_tensor_copies; // [hash_set.size][n_backends][n_copies]
  665. int * node_backend_ids; // [graph_size]
  666. int * leaf_backend_ids; // [graph_size]
  667. int * prev_node_backend_ids; // [graph_size]
  668. int * prev_leaf_backend_ids; // [graph_size]
  669. // copy of the graph with modified inputs
  670. struct ggml_cgraph graph;
  671. // graph splits
  672. struct ggml_backend_sched_split * splits;
  673. int n_splits;
  674. int splits_capacity;
  675. // pipeline parallelism support
  676. int n_copies;
  677. int cur_copy;
  678. ggml_backend_event_t events[GGML_SCHED_MAX_BACKENDS][GGML_SCHED_MAX_COPIES];
  679. struct ggml_tensor * graph_inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
  680. int n_graph_inputs;
  681. struct ggml_context * ctx;
  682. ggml_backend_sched_eval_callback callback_eval;
  683. void * callback_eval_user_data;
  684. char * context_buffer;
  685. size_t context_buffer_size;
  686. int debug;
  687. };
  688. #define hash_id(tensor) ggml_hash_find_or_insert(&sched->hash_set, tensor)
  689. #define tensor_backend_id(tensor) sched->hv_tensor_backend_ids[hash_id(tensor)]
  690. #define tensor_id_copy(id, backend_id, copy_id) sched->hv_tensor_copies[(id) * sched->n_backends * sched->n_copies + (backend_id) * sched->n_copies + (copy_id)]
  691. #define tensor_copy(tensor, backend_id, copy_id) tensor_id_copy(hash_id(tensor), backend_id, copy_id)
  692. // returns the priority of the backend, lower id is higher priority
  693. static int ggml_backend_sched_backend_id(ggml_backend_sched_t sched, ggml_backend_t backend) {
  694. for (int i = 0; i < sched->n_backends; i++) {
  695. if (sched->backends[i] == backend) {
  696. return i;
  697. }
  698. }
  699. return -1;
  700. }
  701. static int ggml_backend_sched_backend_from_buffer(ggml_backend_sched_t sched, const struct ggml_tensor * tensor, const struct ggml_tensor * op) {
  702. ggml_backend_buffer_t buffer = tensor->buffer;
  703. if (buffer == NULL) {
  704. return -1;
  705. }
  706. // find highest prio backend that supports the buffer type and the op
  707. for (int i = 0; i < sched->n_backends; i++) {
  708. if (ggml_backend_supports_buft(sched->backends[i], buffer->buft) &&
  709. ggml_backend_supports_op(sched->backends[i], op)) {
  710. return i;
  711. }
  712. }
  713. #ifndef NDEBUG
  714. GGML_LOG_DEBUG("%s: warning: no backend supports op %s with a weight with buffer type %s used in tensor %s, the weight will need to be copied\n",
  715. __func__, ggml_op_desc(tensor), ggml_backend_buffer_name(buffer), tensor->name);
  716. #endif
  717. return -1;
  718. }
  719. #if 0
  720. #define GGML_SCHED_MAX_SPLITS_DEBUG 4096
  721. static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_SCHED_MAX_SPLITS_DEBUG*GGML_SCHED_MAX_SPLIT_INPUTS][128]; // debug only
  722. #define SET_CAUSE(node, ...) sprintf(causes[hash_id(node)], __VA_ARGS__)
  723. #define GET_CAUSE(node) causes[hash_id(node)]
  724. #else
  725. #define SET_CAUSE(node, ...)
  726. #define GET_CAUSE(node) ""
  727. #endif
  728. // returns the backend that should be used for the node based on the current locations
  729. static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, struct ggml_tensor * tensor) {
  730. // TODO: use supports_op to check if the backend supports the op
  731. // assign pre-allocated nodes to their backend
  732. int cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor, tensor);
  733. if (cur_backend_id != -1) {
  734. SET_CAUSE(tensor, "1.dst");
  735. return cur_backend_id;
  736. }
  737. // view_src
  738. if (tensor->view_src != NULL) {
  739. cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor->view_src, tensor);
  740. if (cur_backend_id != -1) {
  741. SET_CAUSE(tensor, "1.vsrc");
  742. return cur_backend_id;
  743. }
  744. }
  745. if (tensor->buffer || (tensor->view_src && tensor->view_src->buffer)) {
  746. // since the tensor is pre-allocated, it cannot be moved to another backend
  747. GGML_ABORT("pre-allocated tensor in a backend that cannot run the operation");
  748. }
  749. // graph input
  750. if (tensor->flags & GGML_TENSOR_FLAG_INPUT) {
  751. cur_backend_id = sched->n_backends - 1; // last backend (assumed CPU)
  752. SET_CAUSE(tensor, "1.inp");
  753. return cur_backend_id;
  754. }
  755. // operations with weights are preferably run on the same backend as the weights
  756. for (int i = 0; i < GGML_MAX_SRC; i++) {
  757. const struct ggml_tensor * src = tensor->src[i];
  758. if (src == NULL) {
  759. continue;
  760. }
  761. // skip ROPE since the rope freqs tensor is too small to choose a backend based on it
  762. // not an ideal solution
  763. if (tensor->op != GGML_OP_ROPE && src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
  764. int src_backend_id = ggml_backend_sched_backend_from_buffer(sched, src, tensor);
  765. // check if a backend with higher prio wants to offload the op
  766. if (src_backend_id == sched->n_backends - 1) {
  767. for (int b = 0; b < src_backend_id; b++) {
  768. if (ggml_backend_supports_op(sched->backends[b], tensor) && ggml_backend_offload_op(sched->backends[b], tensor)) {
  769. SET_CAUSE(tensor, "1.off");
  770. return b;
  771. }
  772. }
  773. }
  774. SET_CAUSE(tensor, "1.wgt%d", i);
  775. return src_backend_id;
  776. }
  777. }
  778. return -1;
  779. }
  780. static char * fmt_size(size_t size) {
  781. static char buffer[128];
  782. if (size >= 1024*1024) {
  783. snprintf(buffer, sizeof(buffer), "%zuM", size/1024/1024);
  784. } else {
  785. snprintf(buffer, sizeof(buffer), "%zuK", size/1024);
  786. }
  787. return buffer;
  788. }
  789. static void ggml_backend_sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  790. int cur_split = 0;
  791. for (int i = 0; i < graph->n_nodes; i++) {
  792. if (cur_split < sched->n_splits && i == sched->splits[cur_split].i_start) {
  793. ggml_backend_t split_backend = sched->backends[sched->splits[cur_split].backend_id];
  794. GGML_LOG_DEBUG("\n## SPLIT #%d: %s # %d inputs: ", cur_split, ggml_backend_name(split_backend),
  795. sched->splits[cur_split].n_inputs);
  796. for (int j = 0; j < sched->splits[cur_split].n_inputs; j++) {
  797. GGML_LOG_DEBUG("[%s (%5.5s)] ", sched->splits[cur_split].inputs[j]->name,
  798. fmt_size(ggml_nbytes(sched->splits[cur_split].inputs[j])));
  799. }
  800. GGML_LOG_DEBUG("\n");
  801. cur_split++;
  802. }
  803. struct ggml_tensor * node = graph->nodes[i];
  804. if (ggml_is_view_op(node->op)) {
  805. continue;
  806. }
  807. if (sched->debug > 1) {
  808. ggml_backend_t tensor_backend = ggml_backend_sched_get_tensor_backend(sched, node);
  809. GGML_LOG_DEBUG("node #%3d (%10.10s): %20.20s (%5.5s) [%5.5s %8.8s]:", i, ggml_op_name(node->op), node->name,
  810. fmt_size(ggml_nbytes(node)), tensor_backend ? ggml_backend_name(tensor_backend) : "NULL", GET_CAUSE(node));
  811. for (int j = 0; j < GGML_MAX_SRC; j++) {
  812. struct ggml_tensor * src = node->src[j];
  813. if (src == NULL) {
  814. continue;
  815. }
  816. ggml_backend_t src_backend = ggml_backend_sched_get_tensor_backend(sched, src);
  817. GGML_LOG_DEBUG(" %20.20s (%5.5s) [%5.5s %8.8s]", src->name,
  818. fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL", GET_CAUSE(src));
  819. }
  820. GGML_LOG_DEBUG("\n");
  821. }
  822. }
  823. }
  824. static bool ggml_backend_sched_buffer_supported(ggml_backend_sched_t sched, struct ggml_tensor * t, int backend_id) {
  825. ggml_backend_buffer_t buf = t->view_src ? t->view_src->buffer : t->buffer;
  826. ggml_backend_buffer_type_t buft = NULL;
  827. if (buf) {
  828. // the tensor is already allocated
  829. buft = buf->buft;
  830. } else {
  831. // see if the tensor already has a backend assigned, and use the buffer type of that backend
  832. int tensor_backend_id = tensor_backend_id(t);
  833. if (tensor_backend_id == -1 && t->view_src) {
  834. tensor_backend_id = tensor_backend_id(t->view_src);
  835. }
  836. if (tensor_backend_id != -1) {
  837. buft = sched->bufts[tensor_backend_id];
  838. }
  839. }
  840. return buft != NULL && ggml_backend_supports_buft(sched->backends[backend_id], buft);
  841. }
  842. static void ggml_backend_sched_set_if_supported(ggml_backend_sched_t sched, struct ggml_tensor * node, int cur_backend_id, int * node_backend_id) {
  843. if (ggml_backend_supports_op(sched->backends[cur_backend_id], node)) {
  844. *node_backend_id = cur_backend_id;
  845. SET_CAUSE(node, "2.sup");
  846. }
  847. }
  848. // assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend
  849. static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  850. // reset splits
  851. sched->n_splits = 0;
  852. sched->n_graph_inputs = 0;
  853. sched->is_reset = false;
  854. struct ggml_init_params params = {
  855. /* .mem_size = */ sched->context_buffer_size,
  856. /* .mem_buffer = */ sched->context_buffer,
  857. /* .no_alloc = */ true
  858. };
  859. ggml_free(sched->ctx);
  860. sched->ctx = ggml_init(params);
  861. if (sched->ctx == NULL) {
  862. GGML_ABORT("%s: failed to initialize context\n", __func__);
  863. }
  864. // pass 1: assign backends to ops with pre-allocated inputs
  865. for (int i = 0; i < graph->n_leafs; i++) {
  866. struct ggml_tensor * leaf = graph->leafs[i];
  867. int * leaf_backend_id = &tensor_backend_id(leaf);
  868. // do not overwrite user assignments
  869. if (*leaf_backend_id == -1) {
  870. *leaf_backend_id = ggml_backend_sched_backend_id_from_cur(sched, leaf);
  871. }
  872. }
  873. for (int i = 0; i < graph->n_nodes; i++) {
  874. struct ggml_tensor * node = graph->nodes[i];
  875. int * node_backend_id = &tensor_backend_id(node);
  876. // do not overwrite user assignments
  877. if (*node_backend_id == -1) {
  878. *node_backend_id = ggml_backend_sched_backend_id_from_cur(sched, node);
  879. #if 0
  880. // src
  881. if (node->op == GGML_OP_NONE) {
  882. continue;
  883. }
  884. for (int j = 0; j < GGML_MAX_SRC; j++) {
  885. struct ggml_tensor * src = node->src[j];
  886. if (src == NULL) {
  887. continue;
  888. }
  889. int * src_backend_id = &tensor_backend_id(src);
  890. if (*src_backend_id == -1) {
  891. *src_backend_id = ggml_backend_sched_backend_id_from_cur(sched, src);
  892. }
  893. }
  894. #endif
  895. }
  896. }
  897. // pass 2: expand current backend assignments
  898. // assign the same backend to adjacent nodes
  899. // expand gpu backends (i.e. non last prio) up and down, ignoring cpu (the lowest priority backend)
  900. // thus, cpu will never be used unless weights are on cpu, or there are no gpu ops between cpu ops
  901. // ops unsupported by the backend being expanded will be left unassigned so that they can be assigned later when the locations of its inputs are known
  902. // expand gpu down
  903. {
  904. int cur_backend_id = -1;
  905. for (int i = 0; i < graph->n_nodes; i++) {
  906. struct ggml_tensor * node = graph->nodes[i];
  907. if (ggml_is_view_op(node->op)) {
  908. continue;
  909. }
  910. int * node_backend_id = &tensor_backend_id(node);
  911. if (*node_backend_id != -1) {
  912. if (*node_backend_id == sched->n_backends - 1) {
  913. // skip cpu (lowest prio backend)
  914. cur_backend_id = -1;
  915. } else {
  916. cur_backend_id = *node_backend_id;
  917. }
  918. } else if (cur_backend_id != -1) {
  919. ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
  920. }
  921. }
  922. }
  923. // expand gpu up
  924. {
  925. int cur_backend_id = -1;
  926. for (int i = graph->n_nodes - 1; i >= 0; i--) {
  927. struct ggml_tensor * node = graph->nodes[i];
  928. if (ggml_is_view_op(node->op)) {
  929. continue;
  930. }
  931. int * node_backend_id = &tensor_backend_id(node);
  932. if (*node_backend_id != -1) {
  933. if (*node_backend_id == sched->n_backends - 1) {
  934. // skip cpu (lowest prio backend)
  935. cur_backend_id = -1;
  936. } else {
  937. cur_backend_id = *node_backend_id;
  938. }
  939. } else if (cur_backend_id != -1) {
  940. ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
  941. }
  942. }
  943. }
  944. // expand rest down
  945. {
  946. int cur_backend_id = -1;
  947. for (int i = 0; i < graph->n_nodes; i++) {
  948. struct ggml_tensor * node = graph->nodes[i];
  949. if (ggml_is_view_op(node->op)) {
  950. continue;
  951. }
  952. int * node_backend_id = &tensor_backend_id(node);
  953. if (*node_backend_id != -1) {
  954. cur_backend_id = *node_backend_id;
  955. } else if (cur_backend_id != -1) {
  956. ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
  957. }
  958. }
  959. }
  960. // expand rest up
  961. {
  962. int cur_backend_id = -1;
  963. for (int i = graph->n_nodes - 1; i >= 0; i--) {
  964. struct ggml_tensor * node = graph->nodes[i];
  965. if (ggml_is_view_op(node->op)) {
  966. continue;
  967. }
  968. int * node_backend_id = &tensor_backend_id(node);
  969. if (*node_backend_id != -1) {
  970. cur_backend_id = *node_backend_id;
  971. } else if (cur_backend_id != -1) {
  972. ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
  973. }
  974. }
  975. }
  976. // pass 3: upgrade nodes to higher prio backends with compatible buffer types
  977. // if the tensor is already in the same buffer type (*) as another higher priority backend, we should move it there
  978. // however, we also need to verify that the sources are in compatible buffer types
  979. // (*) the actual requirement is more relaxed, the buffer type of the backend should be supported by all the users of this tensor further down the graph
  980. // however, this is slow to verify, so we have a more strict requirement that the buffer type is the same
  981. // this is not uncommon since multiple backends can use host memory, with the same buffer type (eg. BLAS and CPU)
  982. // additionally, set remaining unassigned nodes to the backend with the most supported inputs
  983. // only nodes that could not be assigned during expansion due to the backend not supporting the op should be unassigned at this point
  984. for (int i = 0; i < graph->n_nodes; i++) {
  985. struct ggml_tensor * node = graph->nodes[i];
  986. if (ggml_is_view_op(node->op)) {
  987. continue;
  988. }
  989. int * node_backend_id = &tensor_backend_id(node);
  990. if (*node_backend_id == -1) {
  991. // unassigned node: find the backend with the most supported inputs
  992. int n_supported_best = -1;
  993. for (int b = 0; b < sched->n_backends; b++) {
  994. if (ggml_backend_supports_op(sched->backends[b], node)) {
  995. int n_supported = 0;
  996. for (int j = 0; j < GGML_MAX_SRC; j++) {
  997. struct ggml_tensor * src = node->src[j];
  998. if (src == NULL) {
  999. continue;
  1000. }
  1001. if ((tensor_backend_id(src) != -1 || tensor_backend_id(src->view_src) != -1) && ggml_backend_sched_buffer_supported(sched, src, b)) {
  1002. n_supported++;
  1003. }
  1004. }
  1005. if (n_supported > n_supported_best) {
  1006. n_supported_best = n_supported;
  1007. *node_backend_id = b;
  1008. SET_CAUSE(node, "3.best");
  1009. }
  1010. }
  1011. }
  1012. } else {
  1013. // assigned node: upgrade to higher prio backend if possible
  1014. for (int b = 0; b < *node_backend_id; b++) {
  1015. if (sched->bufts[b] == sched->bufts[*node_backend_id] && ggml_backend_supports_op(sched->backends[b], node)) {
  1016. bool supported = true;
  1017. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1018. struct ggml_tensor * src = node->src[j];
  1019. if (src == NULL) {
  1020. continue;
  1021. }
  1022. if (!ggml_backend_sched_buffer_supported(sched, src, b)) {
  1023. supported = false;
  1024. break;
  1025. }
  1026. }
  1027. if (supported) {
  1028. *node_backend_id = b;
  1029. SET_CAUSE(node, "3.upg");
  1030. break;
  1031. }
  1032. }
  1033. }
  1034. }
  1035. }
  1036. // pass 4: assign backends to remaining src from dst and view_src
  1037. for (int i = 0; i < graph->n_nodes; i++) {
  1038. struct ggml_tensor * node = graph->nodes[i];
  1039. int * cur_backend_id = &tensor_backend_id(node);
  1040. if (node->view_src != NULL && *cur_backend_id == -1) {
  1041. *cur_backend_id = tensor_backend_id(node->view_src);
  1042. SET_CAUSE(node, "4.vsrc");
  1043. }
  1044. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1045. struct ggml_tensor * src = node->src[j];
  1046. if (src == NULL) {
  1047. continue;
  1048. }
  1049. int * src_backend_id = &tensor_backend_id(src);
  1050. if (*src_backend_id == -1) {
  1051. if (src->view_src != NULL) {
  1052. // views are always on the same backend as the source
  1053. *src_backend_id = tensor_backend_id(src->view_src);
  1054. SET_CAUSE(src, "4.vsrc");
  1055. } else {
  1056. *src_backend_id = *cur_backend_id;
  1057. SET_CAUSE(src, "4.cur");
  1058. }
  1059. }
  1060. }
  1061. }
  1062. // pass 5: split graph, find tensors that need to be copied
  1063. {
  1064. int i_split = 0;
  1065. struct ggml_backend_sched_split * split = &sched->splits[0];
  1066. // find the backend of the first split, skipping view ops
  1067. int i = 0;
  1068. for (; i < graph->n_nodes; i++) {
  1069. struct ggml_tensor * node = graph->nodes[i];
  1070. if (!ggml_is_view_op(node->op)) {
  1071. split->backend_id = tensor_backend_id(node);
  1072. break;
  1073. }
  1074. }
  1075. split->i_start = 0;
  1076. split->n_inputs = 0;
  1077. int cur_backend_id = split->backend_id;
  1078. for (; i < graph->n_nodes; i++) {
  1079. struct ggml_tensor * node = graph->nodes[i];
  1080. if (ggml_is_view_op(node->op)) {
  1081. continue;
  1082. }
  1083. const int node_backend_id = tensor_backend_id(node);
  1084. assert(node_backend_id != -1); // all nodes should be assigned by now
  1085. // check if we should start a new split based on the sources of the current node
  1086. bool need_new_split = false;
  1087. if (node_backend_id == cur_backend_id && split->n_inputs > 0) {
  1088. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1089. struct ggml_tensor * src = node->src[j];
  1090. if (src == NULL) {
  1091. continue;
  1092. }
  1093. // check if a weight is on a different and incompatible backend
  1094. // by starting a new split, the memory of the previously offloaded weights can be reused
  1095. if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
  1096. int src_backend_id = tensor_backend_id(src);
  1097. if (src_backend_id != cur_backend_id && !ggml_backend_sched_buffer_supported(sched, src, cur_backend_id)) {
  1098. need_new_split = true;
  1099. break;
  1100. }
  1101. }
  1102. // check if the split has too many inputs
  1103. // FIXME: count the number of inputs instead of only checking when full
  1104. if (split->n_inputs == GGML_SCHED_MAX_SPLIT_INPUTS) {
  1105. const size_t id = hash_id(src);
  1106. int src_backend_id = sched->hv_tensor_backend_ids[id];
  1107. bool supported = ggml_backend_sched_buffer_supported(sched, src, cur_backend_id);
  1108. if (src_backend_id != cur_backend_id && tensor_id_copy(id, cur_backend_id, 0) == NULL && !supported) {
  1109. need_new_split = true;
  1110. break;
  1111. }
  1112. }
  1113. }
  1114. }
  1115. if (node_backend_id != cur_backend_id || need_new_split) {
  1116. split->i_end = i;
  1117. i_split++;
  1118. if (i_split >= sched->splits_capacity) {
  1119. sched->splits_capacity *= 2;
  1120. sched->splits = (ggml_backend_sched_split *)
  1121. realloc(sched->splits, sched->splits_capacity * sizeof(struct ggml_backend_sched_split));
  1122. GGML_ASSERT(sched->splits != NULL);
  1123. }
  1124. split = &sched->splits[i_split];
  1125. split->backend_id = node_backend_id;
  1126. split->i_start = i;
  1127. split->n_inputs = 0;
  1128. cur_backend_id = node_backend_id;
  1129. }
  1130. // find inputs that are not on the same backend
  1131. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1132. struct ggml_tensor * src = node->src[j];
  1133. if (src == NULL) {
  1134. continue;
  1135. }
  1136. size_t src_id = hash_id(src);
  1137. const int src_backend_id = sched->hv_tensor_backend_ids[src_id];
  1138. assert(src_backend_id != -1); // all inputs should be assigned by now
  1139. if (src->flags & GGML_TENSOR_FLAG_INPUT && sched->n_copies > 1) {
  1140. if (tensor_id_copy(src_id, src_backend_id, 0) == NULL) {
  1141. ggml_backend_t backend = sched->backends[src_backend_id];
  1142. for (int c = 0; c < sched->n_copies; c++) {
  1143. struct ggml_tensor * tensor_copy;
  1144. if (c == sched->cur_copy) {
  1145. tensor_copy = src; // use the original tensor as the current copy
  1146. } else {
  1147. tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
  1148. ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
  1149. }
  1150. if (sched->n_copies > 1) {
  1151. ggml_set_input(tensor_copy);
  1152. ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
  1153. }
  1154. tensor_id_copy(src_id, src_backend_id, c) = tensor_copy;
  1155. SET_CAUSE(tensor_copy, "4.cpy");
  1156. }
  1157. int n_graph_inputs = sched->n_graph_inputs++;
  1158. GGML_ASSERT(n_graph_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
  1159. sched->graph_inputs[n_graph_inputs] = src;
  1160. }
  1161. }
  1162. if (src_backend_id != cur_backend_id && !ggml_backend_sched_buffer_supported(sched, src, cur_backend_id)) {
  1163. // create a copy of the input in the split's backend
  1164. if (tensor_id_copy(src_id, cur_backend_id, 0) == NULL) {
  1165. ggml_backend_t backend = sched->backends[cur_backend_id];
  1166. for (int c = 0; c < sched->n_copies; c++) {
  1167. struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
  1168. ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
  1169. if (sched->n_copies > 1) {
  1170. ggml_set_input(tensor_copy);
  1171. ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
  1172. }
  1173. tensor_id_copy(src_id, cur_backend_id, c) = tensor_copy;
  1174. SET_CAUSE(tensor_copy, "4.cpy");
  1175. }
  1176. int n_inputs = split->n_inputs++;
  1177. GGML_ASSERT(n_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
  1178. split->inputs[n_inputs] = src;
  1179. }
  1180. node->src[j] = tensor_id_copy(src_id, cur_backend_id, sched->cur_copy);
  1181. }
  1182. }
  1183. }
  1184. split->i_end = graph->n_nodes;
  1185. sched->n_splits = i_split + 1;
  1186. }
  1187. if (sched->debug) {
  1188. ggml_backend_sched_print_assignments(sched, graph);
  1189. }
  1190. // swap node_backend_ids and leaf _backend_ids with prevs
  1191. {
  1192. int * tmp = sched->node_backend_ids;
  1193. sched->node_backend_ids = sched->prev_node_backend_ids;
  1194. sched->prev_node_backend_ids = tmp;
  1195. tmp = sched->leaf_backend_ids;
  1196. sched->leaf_backend_ids = sched->prev_leaf_backend_ids;
  1197. sched->prev_leaf_backend_ids = tmp;
  1198. }
  1199. int graph_size = std::max(graph->n_nodes, graph->n_leafs) + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2*sched->n_copies;
  1200. if (sched->graph.size < graph_size) {
  1201. sched->graph.size = graph_size;
  1202. sched->graph.nodes = (ggml_tensor **) realloc(sched->graph.nodes, graph_size * sizeof(struct ggml_tensor *));
  1203. sched->graph.leafs = (ggml_tensor **) realloc(sched->graph.leafs, graph_size * sizeof(struct ggml_tensor *));
  1204. GGML_ASSERT(sched->graph.nodes != NULL);
  1205. GGML_ASSERT(sched->graph.leafs != NULL);
  1206. }
  1207. sched->graph.n_nodes = 0;
  1208. sched->graph.n_leafs = 0;
  1209. struct ggml_cgraph * graph_copy = &sched->graph;
  1210. for (int i = 0; i < sched->n_splits; i++) {
  1211. struct ggml_backend_sched_split * split = &sched->splits[i];
  1212. split->graph = ggml_graph_view(graph, split->i_start, split->i_end);
  1213. // add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split
  1214. for (int j = 0; j < split->n_inputs; j++) {
  1215. assert(graph_copy->size > (graph_copy->n_nodes + 1));
  1216. struct ggml_tensor * input = split->inputs[j];
  1217. const size_t input_id = hash_id(input);
  1218. struct ggml_tensor * input_cpy = tensor_id_copy(input_id, split->backend_id, sched->cur_copy);
  1219. // add a dependency to the input source so that it is not freed before the copy is done
  1220. struct ggml_tensor * input_dep = ggml_view_tensor(sched->ctx, input);
  1221. input_dep->src[0] = input;
  1222. sched->node_backend_ids[graph_copy->n_nodes] = sched->hv_tensor_backend_ids[input_id];
  1223. graph_copy->nodes[graph_copy->n_nodes++] = input_dep;
  1224. // add a dependency to the input copy so that it is allocated at the start of the split
  1225. sched->node_backend_ids[graph_copy->n_nodes] = split->backend_id;
  1226. graph_copy->nodes[graph_copy->n_nodes++] = input_cpy;
  1227. }
  1228. for (int j = split->i_start; j < split->i_end; j++) {
  1229. assert(graph_copy->size > graph_copy->n_nodes);
  1230. sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(graph->nodes[j]);
  1231. graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j];
  1232. }
  1233. }
  1234. if (sched->n_copies > 1) {
  1235. // add input copies as leafs so that they are allocated first
  1236. for (int i = 0; i < sched->n_graph_inputs; i++) {
  1237. struct ggml_tensor * input = sched->graph_inputs[i];
  1238. size_t id = hash_id(input);
  1239. int backend_id = tensor_backend_id(input);
  1240. for (int c = 0; c < sched->n_copies; c++) {
  1241. struct ggml_tensor * input_cpy = tensor_id_copy(id, backend_id, c);
  1242. sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
  1243. assert(graph_copy->size > graph_copy->n_leafs);
  1244. graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
  1245. }
  1246. }
  1247. for (int i = 0; i < sched->n_splits; i++) {
  1248. struct ggml_backend_sched_split * split = &sched->splits[i];
  1249. int backend_id = split->backend_id;
  1250. for (int j = 0; j < split->n_inputs; j++) {
  1251. struct ggml_tensor * input = split->inputs[j];
  1252. size_t id = hash_id(input);
  1253. for (int c = 0; c < sched->n_copies; c++) {
  1254. struct ggml_tensor * input_cpy = tensor_id_copy(id, backend_id, c);
  1255. sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
  1256. assert(graph_copy->size > graph_copy->n_leafs);
  1257. graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
  1258. }
  1259. }
  1260. }
  1261. }
  1262. // add leafs from the original graph
  1263. for (int i = 0; i < graph->n_leafs; i++) {
  1264. struct ggml_tensor * leaf = graph->leafs[i];
  1265. sched->leaf_backend_ids[graph_copy->n_leafs] = tensor_backend_id(leaf);
  1266. assert(graph_copy->size > graph_copy->n_leafs);
  1267. graph_copy->leafs[graph_copy->n_leafs++] = leaf;
  1268. }
  1269. }
  1270. static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
  1271. bool backend_ids_changed = false;
  1272. for (int i = 0; i < sched->graph.n_nodes; i++) {
  1273. if (sched->node_backend_ids[i] != sched->prev_node_backend_ids[i] &&
  1274. sched->bufts[sched->node_backend_ids[i]] != sched->bufts[sched->prev_node_backend_ids[i]]) {
  1275. backend_ids_changed = true;
  1276. break;
  1277. }
  1278. }
  1279. if (!backend_ids_changed) {
  1280. for (int i = 0; i < sched->graph.n_leafs; i++) {
  1281. if (sched->leaf_backend_ids[i] != sched->prev_leaf_backend_ids[i] &&
  1282. sched->bufts[sched->leaf_backend_ids[i]] != sched->bufts[sched->prev_leaf_backend_ids[i]]) {
  1283. backend_ids_changed = true;
  1284. break;
  1285. }
  1286. }
  1287. }
  1288. // allocate graph
  1289. if (backend_ids_changed || !ggml_gallocr_alloc_graph(sched->galloc, &sched->graph)) {
  1290. // the re-allocation may cause the split inputs to be moved to a different address
  1291. ggml_backend_sched_synchronize(sched);
  1292. #ifndef NDEBUG
  1293. GGML_LOG_DEBUG("%s: failed to allocate graph, reserving (backend_ids_changed = %d)\n", __func__, backend_ids_changed);
  1294. #endif
  1295. ggml_gallocr_reserve_n(sched->galloc, &sched->graph, sched->node_backend_ids, sched->leaf_backend_ids);
  1296. if (!ggml_gallocr_alloc_graph(sched->galloc, &sched->graph)) {
  1297. GGML_LOG_ERROR("%s: failed to allocate graph\n", __func__);
  1298. return false;
  1299. }
  1300. }
  1301. return true;
  1302. }
  1303. static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t sched) {
  1304. struct ggml_backend_sched_split * splits = sched->splits;
  1305. for (int i = 0; i < sched->n_splits; i++) {
  1306. struct ggml_backend_sched_split * split = &splits[i];
  1307. int split_backend_id = split->backend_id;
  1308. ggml_backend_t split_backend = sched->backends[split_backend_id];
  1309. // copy the input tensors to the split backend
  1310. for (int j = 0; j < split->n_inputs; j++) {
  1311. ggml_backend_t input_backend = ggml_backend_sched_get_tensor_backend(sched, split->inputs[j]);
  1312. struct ggml_tensor * input = split->inputs[j];
  1313. struct ggml_tensor * input_cpy = tensor_copy(input, split_backend_id, sched->cur_copy);
  1314. if (input->flags & GGML_TENSOR_FLAG_INPUT) {
  1315. // inputs from the user must be copied immediately to prevent the user overwriting the data before the copy is done
  1316. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1317. ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]);
  1318. } else {
  1319. ggml_backend_synchronize(split_backend);
  1320. }
  1321. ggml_backend_tensor_copy(input, input_cpy);
  1322. } else {
  1323. // wait for the split backend to finish using the input before overwriting it
  1324. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1325. ggml_backend_event_wait(split_backend, sched->events[split_backend_id][sched->cur_copy]);
  1326. } else {
  1327. ggml_backend_synchronize(split_backend);
  1328. }
  1329. // try async copy, but if not possible, we can still use a sync copy without synchronizing the dst backend, since we handle the synchronization here with multiple copies and events
  1330. // TODO: add public function to facilitate this, since applications do not have direct access to the backend interface
  1331. if (!split_backend->iface.cpy_tensor_async || !split_backend->iface.cpy_tensor_async(input_backend, split_backend, input, input_cpy)) {
  1332. ggml_backend_synchronize(input_backend);
  1333. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1334. ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]);
  1335. } else {
  1336. ggml_backend_synchronize(split_backend);
  1337. }
  1338. ggml_backend_tensor_copy(input, input_cpy);
  1339. }
  1340. }
  1341. }
  1342. if (!sched->callback_eval) {
  1343. enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &split->graph);
  1344. if (ec != GGML_STATUS_SUCCESS) {
  1345. return ec;
  1346. }
  1347. } else {
  1348. // similar to ggml_backend_compare_graph_backend
  1349. for (int j0 = 0; j0 < split->graph.n_nodes; j0++) {
  1350. struct ggml_tensor * t = split->graph.nodes[j0];
  1351. // check if the user needs data from this node
  1352. bool need = sched->callback_eval(t, true, sched->callback_eval_user_data);
  1353. int j1 = j0;
  1354. // determine the range [j0, j1] of nodes that can be computed together
  1355. while (!need && j1 < split->graph.n_nodes - 1) {
  1356. t = split->graph.nodes[++j1];
  1357. need = sched->callback_eval(t, true, sched->callback_eval_user_data);
  1358. }
  1359. struct ggml_cgraph gv = ggml_graph_view(&split->graph, j0, j1 + 1);
  1360. enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &gv);
  1361. if (ec != GGML_STATUS_SUCCESS) {
  1362. return ec;
  1363. }
  1364. // TODO: pass backend to the callback, then the user can decide if they want to synchronize
  1365. ggml_backend_synchronize(split_backend);
  1366. if (need && !sched->callback_eval(t, false, sched->callback_eval_user_data)) {
  1367. break;
  1368. }
  1369. j0 = j1;
  1370. }
  1371. }
  1372. // record the event of this copy
  1373. if (split->n_inputs > 0) {
  1374. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1375. ggml_backend_event_record(sched->events[split_backend_id][sched->cur_copy], split_backend);
  1376. }
  1377. }
  1378. }
  1379. sched->cur_copy = (sched->cur_copy + 1) % sched->n_copies;
  1380. return GGML_STATUS_SUCCESS;
  1381. }
  1382. ggml_backend_sched_t ggml_backend_sched_new(
  1383. ggml_backend_t * backends,
  1384. ggml_backend_buffer_type_t * bufts,
  1385. int n_backends,
  1386. size_t graph_size,
  1387. bool parallel) {
  1388. GGML_ASSERT(n_backends > 0);
  1389. GGML_ASSERT(n_backends <= GGML_SCHED_MAX_BACKENDS);
  1390. GGML_ASSERT(ggml_backend_is_cpu(backends[n_backends - 1])); // last backend must be CPU
  1391. struct ggml_backend_sched * sched = (ggml_backend_sched *) calloc(1, sizeof(struct ggml_backend_sched));
  1392. const char * GGML_SCHED_DEBUG = getenv("GGML_SCHED_DEBUG");
  1393. sched->debug = GGML_SCHED_DEBUG ? atoi(GGML_SCHED_DEBUG) : 0;
  1394. sched->n_backends = n_backends;
  1395. sched->n_copies = parallel ? GGML_SCHED_MAX_COPIES : 1;
  1396. // initialize hash table
  1397. // FIXME: needs to be size*2 to account for leafs (do it in graph_split instead)
  1398. sched->hash_set = ggml_hash_set_new(graph_size);
  1399. sched->hv_tensor_backend_ids = (int *) malloc(sched->hash_set.size * sizeof(sched->hv_tensor_backend_ids[0]));
  1400. sched->hv_tensor_copies = (ggml_tensor **) malloc(sched->hash_set.size * sched->n_backends * sched->n_copies * sizeof(struct ggml_tensor *));
  1401. const size_t ggml_sched_max_splits = graph_size; // at most there is one split for each node in the graph
  1402. const size_t nodes_size = graph_size + ggml_sched_max_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2;
  1403. sched->node_backend_ids = (int *) calloc(nodes_size, sizeof(sched->node_backend_ids[0]));
  1404. sched->leaf_backend_ids = (int *) calloc(nodes_size, sizeof(sched->leaf_backend_ids[0]));
  1405. sched->prev_node_backend_ids = (int *) calloc(nodes_size, sizeof(sched->prev_node_backend_ids[0]));
  1406. sched->prev_leaf_backend_ids = (int *) calloc(nodes_size, sizeof(sched->prev_leaf_backend_ids[0]));
  1407. sched->context_buffer_size = ggml_sched_max_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2*sizeof(struct ggml_tensor) + ggml_graph_overhead_custom(graph_size, false);
  1408. sched->context_buffer = (char *) malloc(sched->context_buffer_size);
  1409. const int initial_splits_capacity = 16;
  1410. sched->splits = (ggml_backend_sched_split *) calloc(initial_splits_capacity, sizeof(sched->splits[0]));
  1411. sched->splits_capacity = initial_splits_capacity;
  1412. for (int b = 0; b < n_backends; b++) {
  1413. sched->backends[b] = backends[b];
  1414. sched->bufts[b] = bufts ? bufts[b] : ggml_backend_get_default_buffer_type(backends[b]);
  1415. GGML_ASSERT(ggml_backend_supports_buft(backends[b], sched->bufts[b]));
  1416. if (sched->n_copies > 1) {
  1417. for (int c = 0; c < sched->n_copies; c++) {
  1418. sched->events[b][c] = ggml_backend_event_new(backends[b]->device);
  1419. }
  1420. }
  1421. }
  1422. sched->galloc = ggml_gallocr_new_n(sched->bufts, n_backends);
  1423. ggml_backend_sched_reset(sched);
  1424. return sched;
  1425. }
  1426. void ggml_backend_sched_free(ggml_backend_sched_t sched) {
  1427. if (sched == NULL) {
  1428. return;
  1429. }
  1430. for (int b = 0; b < sched->n_backends; b++) {
  1431. for (int c = 0; c < sched->n_copies; c++) {
  1432. ggml_backend_event_free(sched->events[b][c]);
  1433. }
  1434. }
  1435. ggml_gallocr_free(sched->galloc);
  1436. ggml_free(sched->ctx);
  1437. ggml_hash_set_free(&sched->hash_set);
  1438. free(sched->splits);
  1439. free(sched->hv_tensor_backend_ids);
  1440. free(sched->hv_tensor_copies);
  1441. free(sched->node_backend_ids);
  1442. free(sched->leaf_backend_ids);
  1443. free(sched->prev_node_backend_ids);
  1444. free(sched->prev_leaf_backend_ids);
  1445. free(sched->context_buffer);
  1446. free(sched->graph.nodes);
  1447. free(sched->graph.leafs);
  1448. free(sched);
  1449. }
  1450. void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
  1451. // reset state for the next run
  1452. if (!sched->is_reset) {
  1453. ggml_hash_set_reset(&sched->hash_set);
  1454. memset(sched->hv_tensor_backend_ids, -1, sched->hash_set.size * sizeof(sched->hv_tensor_backend_ids[0]));
  1455. memset(sched->hv_tensor_copies, 0, sched->hash_set.size * sched->n_backends * sched->n_copies * sizeof(struct ggml_tensor *));
  1456. sched->is_reset = true;
  1457. }
  1458. sched->is_alloc = false;
  1459. }
  1460. bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
  1461. GGML_ASSERT((int)sched->hash_set.size >= measure_graph->n_nodes + measure_graph->n_leafs);
  1462. ggml_backend_sched_split_graph(sched, measure_graph);
  1463. if (!ggml_gallocr_reserve_n(sched->galloc, &sched->graph, sched->node_backend_ids, sched->leaf_backend_ids)) {
  1464. return false;
  1465. }
  1466. ggml_backend_sched_reset(sched);
  1467. ggml_backend_sched_synchronize(sched);
  1468. return true;
  1469. }
  1470. bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1471. GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes + graph->n_leafs);
  1472. ggml_backend_sched_split_graph(sched, graph);
  1473. if (!ggml_backend_sched_alloc_splits(sched)) {
  1474. return false;
  1475. }
  1476. sched->is_alloc = true;
  1477. return true;
  1478. }
  1479. enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1480. enum ggml_status err = ggml_backend_sched_graph_compute_async(sched, graph);
  1481. ggml_backend_sched_synchronize(sched);
  1482. return err;
  1483. }
  1484. enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1485. if (!sched->is_reset && !sched->is_alloc) {
  1486. ggml_backend_sched_reset(sched);
  1487. }
  1488. if (!sched->is_alloc) {
  1489. if (!ggml_backend_sched_alloc_graph(sched, graph)) {
  1490. return GGML_STATUS_ALLOC_FAILED;
  1491. }
  1492. }
  1493. return ggml_backend_sched_compute_splits(sched);
  1494. }
  1495. void ggml_backend_sched_synchronize(ggml_backend_sched_t sched) {
  1496. for (int i = 0; i < sched->n_backends; i++) {
  1497. ggml_backend_synchronize(sched->backends[i]);
  1498. }
  1499. }
  1500. void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data) {
  1501. sched->callback_eval = callback;
  1502. sched->callback_eval_user_data = user_data;
  1503. }
  1504. int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched) {
  1505. return sched->n_splits;
  1506. }
  1507. int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched) {
  1508. return sched->n_copies;
  1509. }
  1510. int ggml_backend_sched_get_n_backends(ggml_backend_sched_t sched) {
  1511. return sched->n_backends;
  1512. }
  1513. ggml_backend_t ggml_backend_sched_get_backend(ggml_backend_sched_t sched, int i) {
  1514. GGML_ASSERT(i >= 0 && i < sched->n_backends);
  1515. return sched->backends[i];
  1516. }
  1517. size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) {
  1518. int backend_index = ggml_backend_sched_backend_id(sched, backend);
  1519. GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
  1520. return ggml_gallocr_get_buffer_size(sched->galloc, backend_index);
  1521. }
  1522. void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
  1523. int backend_index = ggml_backend_sched_backend_id(sched, backend);
  1524. GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
  1525. tensor_backend_id(node) = backend_index;
  1526. SET_CAUSE(node, "usr");
  1527. sched->is_reset = false;
  1528. }
  1529. ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node) {
  1530. int backend_index = tensor_backend_id(node);
  1531. if (backend_index == -1) {
  1532. return NULL;
  1533. }
  1534. return sched->backends[backend_index];
  1535. }
  1536. // utils
  1537. void ggml_backend_view_init(struct ggml_tensor * tensor) {
  1538. GGML_ASSERT(tensor->buffer == NULL);
  1539. GGML_ASSERT(tensor->view_src != NULL);
  1540. GGML_ASSERT(tensor->view_src->buffer != NULL);
  1541. GGML_ASSERT(tensor->view_src->data != NULL);
  1542. tensor->buffer = tensor->view_src->buffer;
  1543. tensor->data = (char *)tensor->view_src->data + tensor->view_offs;
  1544. ggml_backend_buffer_init_tensor(tensor->buffer, tensor);
  1545. }
  1546. void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr) {
  1547. GGML_ASSERT(tensor->buffer == NULL);
  1548. GGML_ASSERT(tensor->data == NULL);
  1549. GGML_ASSERT(tensor->view_src == NULL);
  1550. GGML_ASSERT(addr >= ggml_backend_buffer_get_base(buffer));
  1551. GGML_ASSERT((char *)addr + ggml_backend_buffer_get_alloc_size(buffer, tensor) <=
  1552. (char *)ggml_backend_buffer_get_base(buffer) + ggml_backend_buffer_get_size(buffer));
  1553. tensor->buffer = buffer;
  1554. tensor->data = addr;
  1555. ggml_backend_buffer_init_tensor(buffer, tensor);
  1556. }
  1557. static struct ggml_tensor * graph_copy_dup_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies,
  1558. struct ggml_context * ctx_allocated, struct ggml_context * ctx_unallocated, struct ggml_tensor * src) {
  1559. GGML_ASSERT(src != NULL);
  1560. GGML_ASSERT(src->data && "graph must be allocated");
  1561. size_t id = ggml_hash_insert(&hash_set, src);
  1562. if (id == GGML_HASHSET_ALREADY_EXISTS) {
  1563. return node_copies[ggml_hash_find(&hash_set, src)];
  1564. }
  1565. struct ggml_tensor * dst = ggml_dup_tensor_layout(src->data && !src->view_src ? ctx_allocated : ctx_unallocated, src);
  1566. if (src->view_src != NULL) {
  1567. dst->view_src = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, src->view_src);
  1568. dst->view_offs = src->view_offs;
  1569. }
  1570. dst->op = src->op;
  1571. memcpy(dst->op_params, src->op_params, sizeof(dst->op_params));
  1572. ggml_set_name(dst, src->name);
  1573. // copy src
  1574. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1575. struct ggml_tensor * s = src->src[i];
  1576. if (s == NULL) {
  1577. continue;
  1578. }
  1579. dst->src[i] = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, s);
  1580. }
  1581. node_copies[id] = dst;
  1582. return dst;
  1583. }
  1584. static void graph_copy_init_tensor(struct ggml_hash_set * hash_set, struct ggml_tensor ** node_copies, bool * node_init, struct ggml_tensor * src) {
  1585. size_t id = ggml_hash_find(hash_set, src);
  1586. if (node_init[id]) {
  1587. return;
  1588. }
  1589. node_init[id] = true;
  1590. struct ggml_tensor * dst = node_copies[id];
  1591. if (dst->view_src != NULL) {
  1592. graph_copy_init_tensor(hash_set, node_copies, node_init, src->view_src);
  1593. ggml_backend_view_init(dst);
  1594. }
  1595. else {
  1596. ggml_backend_tensor_copy(src, dst);
  1597. }
  1598. // init src
  1599. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1600. struct ggml_tensor * s = src->src[i];
  1601. if (s == NULL) {
  1602. continue;
  1603. }
  1604. graph_copy_init_tensor(hash_set, node_copies, node_init, s);
  1605. }
  1606. }
  1607. struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) {
  1608. struct ggml_hash_set hash_set = ggml_hash_set_new(graph->visited_hash_set.size);
  1609. struct ggml_tensor ** node_copies = (ggml_tensor **) calloc(hash_set.size, sizeof(node_copies[0])); // NOLINT
  1610. bool * node_init = (bool *) calloc(hash_set.size, sizeof(node_init[0]));
  1611. struct ggml_init_params params = {
  1612. /* .mem_size = */ ggml_tensor_overhead()*hash_set.size + ggml_graph_overhead_custom(graph->size, false),
  1613. /* .mem_buffer = */ NULL,
  1614. /* .no_alloc = */ true
  1615. };
  1616. struct ggml_context * ctx_allocated = ggml_init(params);
  1617. struct ggml_context * ctx_unallocated = ggml_init(params);
  1618. if (ctx_allocated == NULL || ctx_unallocated == NULL) {
  1619. GGML_LOG_ERROR("%s: failed to allocate context for graph copy\n", __func__);
  1620. ggml_hash_set_free(&hash_set);
  1621. free(node_copies);
  1622. free(node_init);
  1623. ggml_free(ctx_allocated);
  1624. ggml_free(ctx_unallocated);
  1625. return {
  1626. /* .buffer = */ NULL,
  1627. /* .ctx_allocated = */ NULL,
  1628. /* .ctx_unallocated = */ NULL,
  1629. /* .graph = */ NULL,
  1630. };
  1631. }
  1632. // dup nodes
  1633. for (int i = 0; i < graph->n_nodes; i++) {
  1634. struct ggml_tensor * node = graph->nodes[i];
  1635. graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, node);
  1636. }
  1637. // allocate nodes
  1638. ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx_allocated, backend);
  1639. if (buffer == NULL) {
  1640. GGML_LOG_ERROR("%s: failed to allocate buffer for graph copy\n", __func__);
  1641. ggml_hash_set_free(&hash_set);
  1642. free(node_copies);
  1643. free(node_init);
  1644. ggml_free(ctx_allocated);
  1645. ggml_free(ctx_unallocated);
  1646. return {
  1647. /* .buffer = */ NULL,
  1648. /* .ctx_allocated = */ NULL,
  1649. /* .ctx_unallocated = */ NULL,
  1650. /* .graph = */ NULL,
  1651. };
  1652. }
  1653. //printf("copy buffer size: %zu MB\n", ggml_backend_buffer_get_size(buffer) / 1024 / 1024);
  1654. // copy data and init views
  1655. for (int i = 0; i < graph->n_nodes; i++) {
  1656. struct ggml_tensor * node = graph->nodes[i];
  1657. graph_copy_init_tensor(&hash_set, node_copies, node_init, node);
  1658. }
  1659. // build graph copy
  1660. struct ggml_cgraph * graph_copy = ggml_new_graph_custom(ctx_allocated, graph->size, false);
  1661. for (int i = 0; i < graph->n_nodes; i++) {
  1662. struct ggml_tensor * node = graph->nodes[i];
  1663. struct ggml_tensor * node_copy = node_copies[ggml_hash_find(&hash_set, node)];
  1664. graph_copy->nodes[i] = node_copy;
  1665. }
  1666. graph_copy->n_nodes = graph->n_nodes;
  1667. ggml_hash_set_free(&hash_set);
  1668. free(node_copies);
  1669. free(node_init);
  1670. return {
  1671. /* .buffer = */ buffer,
  1672. /* .ctx_allocated = */ ctx_allocated,
  1673. /* .ctx_unallocated = */ ctx_unallocated,
  1674. /* .graph = */ graph_copy,
  1675. };
  1676. }
  1677. void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy) {
  1678. ggml_backend_buffer_free(copy.buffer);
  1679. ggml_free(copy.ctx_allocated);
  1680. ggml_free(copy.ctx_unallocated);
  1681. }
  1682. bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data) {
  1683. struct ggml_backend_graph_copy copy = ggml_backend_graph_copy(backend2, graph);
  1684. if (copy.buffer == NULL) {
  1685. return false;
  1686. }
  1687. struct ggml_cgraph * g1 = graph;
  1688. struct ggml_cgraph * g2 = copy.graph;
  1689. assert(g1->n_nodes == g2->n_nodes);
  1690. for (int i = 0; i < g1->n_nodes; i++) {
  1691. //printf("eval %d/%d\n", i, g1->n_nodes);
  1692. struct ggml_tensor * t1 = g1->nodes[i];
  1693. struct ggml_tensor * t2 = g2->nodes[i];
  1694. assert(t1->op == t2->op && ggml_are_same_layout(t1, t2));
  1695. struct ggml_cgraph g1v = ggml_graph_view(g1, i, i + 1);
  1696. struct ggml_cgraph g2v = ggml_graph_view(g2, i, i + 1);
  1697. ggml_backend_graph_compute(backend1, &g1v);
  1698. ggml_backend_graph_compute(backend2, &g2v);
  1699. if (ggml_is_view_op(t1->op)) {
  1700. continue;
  1701. }
  1702. // compare results, calculate rms etc
  1703. if (!callback(i, t1, t2, user_data)) {
  1704. break;
  1705. }
  1706. }
  1707. ggml_backend_graph_copy_free(copy);
  1708. return true;
  1709. }
  1710. #include "ggml-backend.h"
  1711. #include "ggml-backend-impl.h"
  1712. #include "ggml-cpu.h"
  1713. #include "ggml-impl.h"
  1714. #include <cctype>
  1715. #include <string>
  1716. // ggml-backend interface
  1717. // CPU backend - buffer
  1718. static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
  1719. uintptr_t data = (uintptr_t)buffer->context;
  1720. // align the buffer
  1721. if (data % TENSOR_ALIGNMENT != 0) {
  1722. data = GGML_PAD(data, TENSOR_ALIGNMENT);
  1723. }
  1724. return (void *)data;
  1725. }
  1726. static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  1727. ggml_aligned_free(buffer->context, buffer->size);
  1728. }
  1729. static void ggml_backend_cpu_buffer_memset_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
  1730. memset((char *)tensor->data + offset, value, size);
  1731. GGML_UNUSED(buffer);
  1732. }
  1733. static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  1734. memcpy((char *)tensor->data + offset, data, size);
  1735. GGML_UNUSED(buffer);
  1736. }
  1737. static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  1738. memcpy(data, (const char *)tensor->data + offset, size);
  1739. GGML_UNUSED(buffer);
  1740. }
  1741. static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
  1742. if (ggml_backend_buffer_is_host(src->buffer)) {
  1743. memcpy(dst->data, src->data, ggml_nbytes(src));
  1744. return true;
  1745. }
  1746. return false;
  1747. GGML_UNUSED(buffer);
  1748. }
  1749. static void ggml_backend_cpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  1750. memset(buffer->context, value, buffer->size);
  1751. }
  1752. static const struct ggml_backend_buffer_i ggml_backend_cpu_buffer_i = {
  1753. /* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer,
  1754. /* .get_base = */ ggml_backend_cpu_buffer_get_base,
  1755. /* .init_tensor = */ NULL, // no initialization required
  1756. /* .memset_tensor = */ ggml_backend_cpu_buffer_memset_tensor,
  1757. /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
  1758. /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
  1759. /* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
  1760. /* .clear = */ ggml_backend_cpu_buffer_clear,
  1761. /* .reset = */ NULL,
  1762. };
  1763. static const struct ggml_backend_buffer_i ggml_backend_cpu_buffer_from_ptr_i = {
  1764. /* .free_buffer = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed
  1765. /* .get_base = */ ggml_backend_cpu_buffer_get_base,
  1766. /* .init_tensor = */ NULL, // no initialization required
  1767. /* .memset_tensor = */ ggml_backend_cpu_buffer_memset_tensor,
  1768. /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
  1769. /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
  1770. /* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
  1771. /* .clear = */ ggml_backend_cpu_buffer_clear,
  1772. /* .reset = */ NULL,
  1773. };
  1774. // CPU backend - buffer type
  1775. static const char * ggml_backend_cpu_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
  1776. return "CPU";
  1777. GGML_UNUSED(buft);
  1778. }
  1779. static ggml_backend_buffer_t ggml_backend_cpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  1780. void * data = ggml_aligned_malloc(size);
  1781. if (data == NULL) {
  1782. GGML_LOG_ERROR("%s: failed to allocate buffer of size %zu\n", __func__, size);
  1783. return NULL;
  1784. }
  1785. return ggml_backend_buffer_init(buft, ggml_backend_cpu_buffer_i, data, size);
  1786. }
  1787. static size_t ggml_backend_cpu_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
  1788. return TENSOR_ALIGNMENT;
  1789. GGML_UNUSED(buft);
  1790. }
  1791. static bool ggml_backend_cpu_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
  1792. return true;
  1793. GGML_UNUSED(buft);
  1794. }
  1795. ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) {
  1796. static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type = {
  1797. /* .iface = */ {
  1798. /* .get_name = */ ggml_backend_cpu_buffer_type_get_name,
  1799. /* .alloc_buffer = */ ggml_backend_cpu_buffer_type_alloc_buffer,
  1800. /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
  1801. /* .get_max_size = */ NULL, // defaults to SIZE_MAX
  1802. /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
  1803. /* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
  1804. },
  1805. /* .device = */ ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0),
  1806. /* .context = */ NULL,
  1807. };
  1808. return &ggml_backend_cpu_buffer_type;
  1809. }
  1810. static const char * ggml_backend_cpu_buffer_from_ptr_type_get_name(ggml_backend_buffer_type_t buft) {
  1811. return "CPU_Mapped";
  1812. GGML_UNUSED(buft);
  1813. }
  1814. static ggml_backend_buffer_type_t ggml_backend_cpu_buffer_from_ptr_type(void) {
  1815. static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type = {
  1816. /* .iface = */ {
  1817. /* .get_name = */ ggml_backend_cpu_buffer_from_ptr_type_get_name,
  1818. /* .alloc_buffer = */ ggml_backend_cpu_buffer_type_alloc_buffer,
  1819. /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
  1820. /* .get_max_size = */ NULL, // defaults to SIZE_MAX
  1821. /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
  1822. /* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
  1823. },
  1824. /* .device = */ ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0),
  1825. /* .context = */ NULL,
  1826. };
  1827. return &ggml_backend_cpu_buffer_type;
  1828. }
  1829. #ifdef GGML_USE_CPU_HBM
  1830. // buffer type HBM
  1831. #include <hbwmalloc.h>
  1832. static const char * ggml_backend_cpu_hbm_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
  1833. return "CPU_HBM";
  1834. GGML_UNUSED(buft);
  1835. }
  1836. static void ggml_backend_cpu_hbm_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  1837. hbw_free(buffer->context);
  1838. }
  1839. static ggml_backend_buffer_t ggml_backend_cpu_hbm_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  1840. void * ptr;
  1841. int result = hbw_posix_memalign(&ptr, ggml_backend_cpu_buffer_type_get_alignment(buft), size);
  1842. if (result != 0) {
  1843. GGML_LOG_ERROR("failed to allocate HBM buffer of size %zu\n", size);
  1844. return NULL;
  1845. }
  1846. ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
  1847. buffer->buft = buft;
  1848. buffer->iface.free_buffer = ggml_backend_cpu_hbm_buffer_free_buffer;
  1849. return buffer;
  1850. }
  1851. ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void) {
  1852. static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type_hbm = {
  1853. /* .iface = */ {
  1854. /* .get_name = */ ggml_backend_cpu_hbm_buffer_type_get_name,
  1855. /* .alloc_buffer = */ ggml_backend_cpu_hbm_buffer_type_alloc_buffer,
  1856. /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
  1857. /* .get_max_size = */ NULL, // defaults to SIZE_MAX
  1858. /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
  1859. /* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
  1860. },
  1861. /* .context = */ NULL,
  1862. };
  1863. return &ggml_backend_cpu_buffer_type_hbm;
  1864. }
  1865. #endif
  1866. static ggml_backend_buffer_type_t * ggml_backend_cpu_get_extra_bufts(ggml_backend_dev_t device) {
  1867. static ggml_backend_buffer_type_t bufts[] = {
  1868. #ifdef GGML_USE_CPU_HBM
  1869. ggml_backend_cpu_hbm_buffer_type(),
  1870. #endif
  1871. NULL
  1872. };
  1873. return bufts;
  1874. GGML_UNUSED(device);
  1875. }
  1876. // CPU backend - backend (stream)
  1877. struct ggml_backend_cpu_context {
  1878. int n_threads;
  1879. ggml_threadpool_t threadpool;
  1880. uint8_t * work_data;
  1881. size_t work_size;
  1882. ggml_abort_callback abort_callback;
  1883. void * abort_callback_data;
  1884. };
  1885. static const char * ggml_backend_cpu_get_name(ggml_backend_t backend) {
  1886. return "CPU";
  1887. GGML_UNUSED(backend);
  1888. }
  1889. static void ggml_backend_cpu_free(ggml_backend_t backend) {
  1890. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  1891. delete[] cpu_ctx->work_data;
  1892. delete cpu_ctx;
  1893. delete backend;
  1894. }
  1895. struct ggml_backend_plan_cpu {
  1896. struct ggml_cplan cplan;
  1897. struct ggml_cgraph cgraph;
  1898. };
  1899. static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_t backend, const struct ggml_cgraph * cgraph) {
  1900. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  1901. struct ggml_backend_plan_cpu * cpu_plan = new ggml_backend_plan_cpu;
  1902. cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads, cpu_ctx->threadpool);
  1903. cpu_plan->cgraph = *cgraph; // FIXME: deep copy
  1904. if (cpu_plan->cplan.work_size > 0) {
  1905. cpu_plan->cplan.work_data = new uint8_t[cpu_plan->cplan.work_size];
  1906. if (cpu_plan->cplan.work_data == NULL) {
  1907. delete cpu_plan;
  1908. return NULL;
  1909. }
  1910. }
  1911. cpu_plan->cplan.abort_callback = cpu_ctx->abort_callback;
  1912. cpu_plan->cplan.abort_callback_data = cpu_ctx->abort_callback_data;
  1913. return cpu_plan;
  1914. }
  1915. static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  1916. struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
  1917. delete[] cpu_plan->cplan.work_data;
  1918. delete cpu_plan;
  1919. GGML_UNUSED(backend);
  1920. }
  1921. static enum ggml_status ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  1922. struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
  1923. return ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan);
  1924. GGML_UNUSED(backend);
  1925. }
  1926. static enum ggml_status ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  1927. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  1928. struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads, cpu_ctx->threadpool);
  1929. if (cpu_ctx->work_size < cplan.work_size) {
  1930. delete[] cpu_ctx->work_data;
  1931. cpu_ctx->work_data = new uint8_t[cplan.work_size];
  1932. if (cpu_ctx->work_data == NULL) {
  1933. cpu_ctx->work_size = 0;
  1934. return GGML_STATUS_ALLOC_FAILED;
  1935. }
  1936. cpu_ctx->work_size = cplan.work_size;
  1937. }
  1938. cplan.work_data = (uint8_t *)cpu_ctx->work_data;
  1939. cplan.abort_callback = cpu_ctx->abort_callback;
  1940. cplan.abort_callback_data = cpu_ctx->abort_callback_data;
  1941. return ggml_graph_compute(cgraph, &cplan);
  1942. }
  1943. static const struct ggml_backend_i ggml_backend_cpu_i = {
  1944. /* .get_name = */ ggml_backend_cpu_get_name,
  1945. /* .free = */ ggml_backend_cpu_free,
  1946. /* .set_tensor_async = */ NULL,
  1947. /* .get_tensor_async = */ NULL,
  1948. /* .cpy_tensor_async = */ NULL,
  1949. /* .synchronize = */ NULL,
  1950. /* .graph_plan_create = */ ggml_backend_cpu_graph_plan_create,
  1951. /* .graph_plan_free = */ ggml_backend_cpu_graph_plan_free,
  1952. /* .graph_plan_update = */ NULL,
  1953. /* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute,
  1954. /* .graph_compute = */ ggml_backend_cpu_graph_compute,
  1955. /* .event_record = */ NULL,
  1956. /* .event_wait = */ NULL,
  1957. };
  1958. static ggml_guid_t ggml_backend_cpu_guid(void) {
  1959. static ggml_guid guid = { 0xaa, 0x67, 0xc7, 0x43, 0x96, 0xe6, 0xa3, 0x8a, 0xe3, 0xaf, 0xea, 0x92, 0x36, 0xbc, 0xfc, 0x89 };
  1960. return &guid;
  1961. }
  1962. ggml_backend_t ggml_backend_cpu_init(void) {
  1963. // initialize CPU backend now to avoid slowing the first graph computation
  1964. ggml_cpu_init();
  1965. struct ggml_backend_cpu_context * ctx = new ggml_backend_cpu_context;
  1966. if (ctx == NULL) {
  1967. return NULL;
  1968. }
  1969. ctx->n_threads = GGML_DEFAULT_N_THREADS;
  1970. ctx->threadpool = NULL;
  1971. ctx->work_data = NULL;
  1972. ctx->work_size = 0;
  1973. ctx->abort_callback = NULL;
  1974. ctx->abort_callback_data = NULL;
  1975. ggml_backend_t cpu_backend = new ggml_backend {
  1976. /* .guid = */ ggml_backend_cpu_guid(),
  1977. /* .interface = */ ggml_backend_cpu_i,
  1978. /* .device = */ ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0),
  1979. /* .context = */ ctx,
  1980. };
  1981. if (cpu_backend == NULL) {
  1982. delete ctx;
  1983. return NULL;
  1984. }
  1985. return cpu_backend;
  1986. }
  1987. bool ggml_backend_is_cpu(ggml_backend_t backend) {
  1988. return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cpu_guid());
  1989. }
  1990. void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) {
  1991. GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
  1992. struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
  1993. ctx->n_threads = n_threads;
  1994. }
  1995. void ggml_backend_cpu_set_threadpool(ggml_backend_t backend_cpu, ggml_threadpool_t threadpool) {
  1996. GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
  1997. struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
  1998. if (ctx->threadpool && ctx->threadpool != threadpool) {
  1999. // already had a different threadpool, pause/suspend it before switching
  2000. ggml_threadpool_pause(ctx->threadpool);
  2001. }
  2002. ctx->threadpool = threadpool;
  2003. }
  2004. void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data) {
  2005. GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
  2006. struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
  2007. ctx->abort_callback = abort_callback;
  2008. ctx->abort_callback_data = abort_callback_data;
  2009. }
  2010. ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size) {
  2011. GGML_ASSERT((uintptr_t)ptr % TENSOR_ALIGNMENT == 0 && "buffer pointer must be aligned");
  2012. return ggml_backend_buffer_init(ggml_backend_cpu_buffer_from_ptr_type(), ggml_backend_cpu_buffer_from_ptr_i, ptr, size);
  2013. }
  2014. // CPU backend - device
  2015. struct ggml_backend_cpu_device_context {
  2016. std::string description = "CPU";
  2017. ggml_backend_cpu_device_context() {
  2018. #ifdef __APPLE__
  2019. size_t len = 0;
  2020. if (!sysctlbyname("machdep.cpu.brand_string", NULL, &len, NULL, 0)) {
  2021. description.resize(len);
  2022. sysctlbyname("machdep.cpu.brand_string", &description[0], &len, NULL, 0); // NOLINT
  2023. }
  2024. #elif defined(__linux__)
  2025. FILE * f = fopen("/proc/cpuinfo", "r");
  2026. if (f) {
  2027. char buf[1024];
  2028. while (fgets(buf, sizeof(buf), f)) {
  2029. if (strncmp(buf, "model name", 10) == 0) {
  2030. char * p = strchr(buf, ':');
  2031. if (p) {
  2032. p++;
  2033. while (std::isspace(*p)) {
  2034. p++;
  2035. }
  2036. while (std::isspace(p[strlen(p) - 1])) {
  2037. p[strlen(p) - 1] = '\0';
  2038. }
  2039. description = p;
  2040. break;
  2041. }
  2042. }
  2043. }
  2044. fclose(f);
  2045. }
  2046. #elif defined(_WIN32)
  2047. HKEY hKey;
  2048. if (RegOpenKeyEx(HKEY_LOCAL_MACHINE,
  2049. TEXT("HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0"),
  2050. 0,
  2051. KEY_READ,
  2052. &hKey) == ERROR_SUCCESS) {
  2053. DWORD cpu_brand_size = 0;
  2054. if (RegQueryValueExA(hKey,
  2055. TEXT("ProcessorNameString"),
  2056. NULL,
  2057. NULL,
  2058. NULL,
  2059. &cpu_brand_size) == ERROR_SUCCESS) {
  2060. description.resize(cpu_brand_size);
  2061. if (RegQueryValueExA(hKey,
  2062. TEXT("ProcessorNameString"),
  2063. NULL,
  2064. NULL,
  2065. (LPBYTE)&description[0], // NOLINT
  2066. &cpu_brand_size) == ERROR_SUCCESS) {
  2067. if (description.find('\0') != std::string::npos) {
  2068. description.resize(description.find('\0'));
  2069. }
  2070. }
  2071. }
  2072. RegCloseKey(hKey);
  2073. }
  2074. #endif
  2075. }
  2076. };
  2077. static const char * ggml_backend_cpu_device_get_name(ggml_backend_dev_t dev) {
  2078. return "CPU";
  2079. GGML_UNUSED(dev);
  2080. }
  2081. static const char * ggml_backend_cpu_device_get_description(ggml_backend_dev_t dev) {
  2082. struct ggml_backend_cpu_device_context * ctx = (struct ggml_backend_cpu_device_context *)dev->context;
  2083. return ctx->description.c_str();
  2084. }
  2085. static void ggml_backend_cpu_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
  2086. // TODO
  2087. *free = 0;
  2088. *total = 0;
  2089. GGML_UNUSED(dev);
  2090. }
  2091. static enum ggml_backend_dev_type ggml_backend_cpu_device_get_type(ggml_backend_dev_t dev) {
  2092. return GGML_BACKEND_DEVICE_TYPE_CPU;
  2093. GGML_UNUSED(dev);
  2094. }
  2095. static void ggml_backend_cpu_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
  2096. props->name = ggml_backend_cpu_device_get_name(dev);
  2097. props->description = ggml_backend_cpu_device_get_description(dev);
  2098. props->type = ggml_backend_cpu_device_get_type(dev);
  2099. ggml_backend_cpu_device_get_memory(dev, &props->memory_free, &props->memory_total);
  2100. props->caps = {
  2101. /* .async = */ false,
  2102. /* .host_buffer = */ false,
  2103. /* .buffer_from_host_ptr = */ true,
  2104. /* .events = */ false,
  2105. };
  2106. }
  2107. static ggml_backend_t ggml_backend_cpu_device_init_backend(ggml_backend_dev_t dev, const char * params) {
  2108. return ggml_backend_cpu_init();
  2109. GGML_UNUSED(dev);
  2110. GGML_UNUSED(params);
  2111. }
  2112. static ggml_backend_buffer_type_t ggml_backend_cpu_device_get_buffer_type(ggml_backend_dev_t dev) {
  2113. return ggml_backend_cpu_buffer_type();
  2114. GGML_UNUSED(dev);
  2115. }
  2116. static ggml_backend_buffer_t ggml_backend_cpu_device_buffer_from_host_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
  2117. return ggml_backend_cpu_buffer_from_ptr(ptr, size);
  2118. GGML_UNUSED(dev);
  2119. GGML_UNUSED(max_tensor_size);
  2120. }
  2121. static bool ggml_backend_cpu_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
  2122. switch (op->op) {
  2123. case GGML_OP_CPY:
  2124. return
  2125. op->type != GGML_TYPE_IQ2_XXS &&
  2126. op->type != GGML_TYPE_IQ2_XS &&
  2127. op->type != GGML_TYPE_IQ1_S &&
  2128. op->type != GGML_TYPE_IQ1_M; // missing type_traits.from_float
  2129. case GGML_OP_MUL_MAT:
  2130. return op->src[1]->type == GGML_TYPE_F32;// FIXME || op->src[1]->type == ggml_get_type_traits(op->src[0]->type)->vec_dot_type;
  2131. case GGML_OP_ROPE_BACK:
  2132. return op->src[2] == NULL && (op->op_params[2] & 4) == 0;
  2133. case GGML_OP_IM2COL_BACK:
  2134. return op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32;
  2135. case GGML_OP_OUT_PROD:
  2136. return (op->src[0]->type == GGML_TYPE_F32 || ggml_is_quantized(op->src[0]->type)) && op->src[1]->type == GGML_TYPE_F32;
  2137. default:
  2138. return true;
  2139. }
  2140. GGML_UNUSED(dev);
  2141. }
  2142. static bool ggml_backend_cpu_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
  2143. return ggml_backend_buft_is_host(buft);
  2144. GGML_UNUSED(dev);
  2145. }
  2146. static const struct ggml_backend_device_i ggml_backend_cpu_device_i = {
  2147. /* .get_name = */ ggml_backend_cpu_device_get_name,
  2148. /* .get_description = */ ggml_backend_cpu_device_get_description,
  2149. /* .get_memory = */ ggml_backend_cpu_device_get_memory,
  2150. /* .get_type = */ ggml_backend_cpu_device_get_type,
  2151. /* .get_props = */ ggml_backend_cpu_device_get_props,
  2152. /* .init_backend = */ ggml_backend_cpu_device_init_backend,
  2153. /* .get_buffer_type = */ ggml_backend_cpu_device_get_buffer_type,
  2154. /* .get_host_buffer_type = */ NULL,
  2155. /* .buffer_from_host_ptr = */ ggml_backend_cpu_device_buffer_from_host_ptr,
  2156. /* .supports_op = */ ggml_backend_cpu_device_supports_op,
  2157. /* .supports_buft = */ ggml_backend_cpu_device_supports_buft,
  2158. /* .offload_op = */ NULL,
  2159. /* .event_new = */ NULL,
  2160. /* .event_free = */ NULL,
  2161. /* .event_synchronize = */ NULL,
  2162. };
  2163. // CPU backend - backend (reg)
  2164. static const char * ggml_backend_cpu_reg_get_name(ggml_backend_reg_t reg) {
  2165. return "CPU";
  2166. GGML_UNUSED(reg);
  2167. }
  2168. static size_t ggml_backend_cpu_reg_get_device_count(ggml_backend_reg_t reg) {
  2169. return 1;
  2170. GGML_UNUSED(reg);
  2171. }
  2172. static ggml_backend_dev_t ggml_backend_cpu_reg_get_device(ggml_backend_reg_t reg, size_t index) {
  2173. GGML_ASSERT(index == 0);
  2174. static ggml_backend_cpu_device_context ctx;
  2175. static ggml_backend_device ggml_backend_cpu_device = {
  2176. /* .iface = */ ggml_backend_cpu_device_i,
  2177. /* .reg = */ reg,
  2178. /* .context = */ &ctx,
  2179. };
  2180. return &ggml_backend_cpu_device;
  2181. }
  2182. static void * ggml_backend_cpu_get_proc_address(ggml_backend_reg_t reg, const char * name) {
  2183. if (strcmp(name, "ggml_backend_set_n_threads") == 0) {
  2184. return (void *)ggml_backend_cpu_set_n_threads;
  2185. }
  2186. if (strcmp(name, "ggml_backend_dev_get_extra_bufts") == 0) {
  2187. return (void *)ggml_backend_cpu_get_extra_bufts;
  2188. }
  2189. return NULL;
  2190. GGML_UNUSED(reg);
  2191. }
  2192. static const struct ggml_backend_reg_i ggml_backend_cpu_reg_i = {
  2193. /* .get_name = */ ggml_backend_cpu_reg_get_name,
  2194. /* .get_device_count = */ ggml_backend_cpu_reg_get_device_count,
  2195. /* .get_device = */ ggml_backend_cpu_reg_get_device,
  2196. /* .get_proc_address = */ ggml_backend_cpu_get_proc_address,
  2197. };
  2198. ggml_backend_reg_t ggml_backend_cpu_reg(void) {
  2199. static struct ggml_backend_reg ggml_backend_cpu_reg = {
  2200. /* .iface = */ ggml_backend_cpu_reg_i,
  2201. /* .context = */ NULL,
  2202. };
  2203. return &ggml_backend_cpu_reg;
  2204. }