constants.py 36 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088
  1. from __future__ import annotations
  2. from enum import Enum, IntEnum, auto
  3. from typing import Any
  4. #
  5. # constants
  6. #
  7. GGUF_MAGIC = 0x46554747 # "GGUF"
  8. GGUF_VERSION = 3
  9. GGUF_DEFAULT_ALIGNMENT = 32
  10. GGML_QUANT_VERSION = 2 # GGML_QNT_VERSION from ggml.h
  11. #
  12. # metadata keys
  13. #
  14. class Keys:
  15. class General:
  16. ARCHITECTURE = "general.architecture"
  17. QUANTIZATION_VERSION = "general.quantization_version"
  18. ALIGNMENT = "general.alignment"
  19. NAME = "general.name"
  20. AUTHOR = "general.author"
  21. VERSION = "general.version"
  22. URL = "general.url"
  23. DESCRIPTION = "general.description"
  24. LICENSE = "general.license"
  25. SOURCE_URL = "general.source.url"
  26. SOURCE_HF_REPO = "general.source.huggingface.repository"
  27. FILE_TYPE = "general.file_type"
  28. class LLM:
  29. VOCAB_SIZE = "{arch}.vocab_size"
  30. CONTEXT_LENGTH = "{arch}.context_length"
  31. EMBEDDING_LENGTH = "{arch}.embedding_length"
  32. BLOCK_COUNT = "{arch}.block_count"
  33. LEADING_DENSE_BLOCK_COUNT = "{arch}.leading_dense_block_count"
  34. FEED_FORWARD_LENGTH = "{arch}.feed_forward_length"
  35. EXPERT_FEED_FORWARD_LENGTH = "{arch}.expert_feed_forward_length"
  36. EXPERT_SHARED_FEED_FORWARD_LENGTH = "{arch}.expert_shared_feed_forward_length"
  37. USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual"
  38. TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout"
  39. EXPERT_COUNT = "{arch}.expert_count"
  40. EXPERT_USED_COUNT = "{arch}.expert_used_count"
  41. EXPERT_SHARED_COUNT = "{arch}.expert_shared_count"
  42. EXPERT_WEIGHTS_SCALE = "{arch}.expert_weights_scale"
  43. POOLING_TYPE = "{arch}.pooling_type"
  44. LOGIT_SCALE = "{arch}.logit_scale"
  45. class Attention:
  46. HEAD_COUNT = "{arch}.attention.head_count"
  47. HEAD_COUNT_KV = "{arch}.attention.head_count_kv"
  48. MAX_ALIBI_BIAS = "{arch}.attention.max_alibi_bias"
  49. CLAMP_KQV = "{arch}.attention.clamp_kqv"
  50. KEY_LENGTH = "{arch}.attention.key_length"
  51. VALUE_LENGTH = "{arch}.attention.value_length"
  52. LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon"
  53. LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon"
  54. CAUSAL = "{arch}.attention.causal"
  55. Q_LORA_RANK = "{arch}.attention.q_lora_rank"
  56. KV_LORA_RANK = "{arch}.attention.kv_lora_rank"
  57. class Rope:
  58. DIMENSION_COUNT = "{arch}.rope.dimension_count"
  59. FREQ_BASE = "{arch}.rope.freq_base"
  60. SCALING_TYPE = "{arch}.rope.scaling.type"
  61. SCALING_FACTOR = "{arch}.rope.scaling.factor"
  62. SCALING_ATTN_FACTOR = "{arch}.rope.scaling.attn_factor"
  63. SCALING_ORIG_CTX_LEN = "{arch}.rope.scaling.original_context_length"
  64. SCALING_FINETUNED = "{arch}.rope.scaling.finetuned"
  65. SCALING_YARN_LOG_MUL = "{arch}.rope.scaling.yarn_log_multiplier"
  66. class SSM:
  67. CONV_KERNEL = "{arch}.ssm.conv_kernel"
  68. INNER_SIZE = "{arch}.ssm.inner_size"
  69. STATE_SIZE = "{arch}.ssm.state_size"
  70. TIME_STEP_RANK = "{arch}.ssm.time_step_rank"
  71. class Tokenizer:
  72. MODEL = "tokenizer.ggml.model"
  73. PRE = "tokenizer.ggml.pre"
  74. LIST = "tokenizer.ggml.tokens"
  75. TOKEN_TYPE = "tokenizer.ggml.token_type"
  76. TOKEN_TYPE_COUNT = "tokenizer.ggml.token_type_count" # for BERT-style token types
  77. SCORES = "tokenizer.ggml.scores"
  78. MERGES = "tokenizer.ggml.merges"
  79. BOS_ID = "tokenizer.ggml.bos_token_id"
  80. EOS_ID = "tokenizer.ggml.eos_token_id"
  81. UNK_ID = "tokenizer.ggml.unknown_token_id"
  82. SEP_ID = "tokenizer.ggml.seperator_token_id"
  83. PAD_ID = "tokenizer.ggml.padding_token_id"
  84. CLS_ID = "tokenizer.ggml.cls_token_id"
  85. MASK_ID = "tokenizer.ggml.mask_token_id"
  86. ADD_BOS = "tokenizer.ggml.add_bos_token"
  87. ADD_EOS = "tokenizer.ggml.add_eos_token"
  88. ADD_PREFIX = "tokenizer.ggml.add_space_prefix"
  89. HF_JSON = "tokenizer.huggingface.json"
  90. RWKV = "tokenizer.rwkv.world"
  91. CHAT_TEMPLATE = "tokenizer.chat_template"
  92. CHAT_TEMPLATE_N = "tokenizer.chat_template.{name}"
  93. CHAT_TEMPLATES = "tokenizer.chat_templates"
  94. # FIM/Infill special tokens constants
  95. PREFIX_ID = "tokenizer.ggml.prefix_token_id"
  96. SUFFIX_ID = "tokenizer.ggml.suffix_token_id"
  97. MIDDLE_ID = "tokenizer.ggml.middle_token_id"
  98. EOT_ID = "tokenizer.ggml.eot_token_id"
  99. #
  100. # recommended mapping of model tensor names for storage in gguf
  101. #
  102. class MODEL_ARCH(IntEnum):
  103. LLAMA = auto()
  104. FALCON = auto()
  105. BAICHUAN = auto()
  106. GROK = auto()
  107. GPT2 = auto()
  108. GPTJ = auto()
  109. GPTNEOX = auto()
  110. MPT = auto()
  111. STARCODER = auto()
  112. REFACT = auto()
  113. BERT = auto()
  114. NOMIC_BERT = auto()
  115. JINA_BERT_V2 = auto()
  116. BLOOM = auto()
  117. STABLELM = auto()
  118. QWEN = auto()
  119. QWEN2 = auto()
  120. QWEN2MOE = auto()
  121. PHI2 = auto()
  122. PHI3 = auto()
  123. PLAMO = auto()
  124. CODESHELL = auto()
  125. ORION = auto()
  126. INTERNLM2 = auto()
  127. MINICPM = auto()
  128. GEMMA = auto()
  129. STARCODER2 = auto()
  130. MAMBA = auto()
  131. XVERSE = auto()
  132. COMMAND_R = auto()
  133. DBRX = auto()
  134. OLMO = auto()
  135. ARCTIC = auto()
  136. DEEPSEEK2 = auto()
  137. class MODEL_TENSOR(IntEnum):
  138. TOKEN_EMBD = auto()
  139. TOKEN_EMBD_NORM = auto()
  140. TOKEN_TYPES = auto()
  141. POS_EMBD = auto()
  142. OUTPUT = auto()
  143. OUTPUT_NORM = auto()
  144. ROPE_FREQS = auto()
  145. ROPE_FACTORS_LONG = auto()
  146. ROPE_FACTORS_SHORT = auto()
  147. ATTN_Q = auto()
  148. ATTN_K = auto()
  149. ATTN_V = auto()
  150. ATTN_QKV = auto()
  151. ATTN_OUT = auto()
  152. ATTN_NORM = auto()
  153. ATTN_NORM_2 = auto()
  154. ATTN_OUT_NORM = auto()
  155. ATTN_ROT_EMBD = auto()
  156. FFN_GATE_INP = auto()
  157. FFN_GATE_INP_SHEXP = auto()
  158. FFN_NORM = auto()
  159. FFN_GATE = auto()
  160. FFN_DOWN = auto()
  161. FFN_UP = auto()
  162. FFN_ACT = auto()
  163. FFN_NORM_EXP = auto()
  164. FFN_GATE_EXP = auto()
  165. FFN_DOWN_EXP = auto()
  166. FFN_UP_EXP = auto()
  167. FFN_GATE_SHEXP = auto()
  168. FFN_DOWN_SHEXP = auto()
  169. FFN_UP_SHEXP = auto()
  170. ATTN_Q_NORM = auto()
  171. ATTN_K_NORM = auto()
  172. LAYER_OUT_NORM = auto()
  173. SSM_IN = auto()
  174. SSM_CONV1D = auto()
  175. SSM_X = auto()
  176. SSM_DT = auto()
  177. SSM_A = auto()
  178. SSM_D = auto()
  179. SSM_OUT = auto()
  180. ATTN_Q_A = auto()
  181. ATTN_Q_B = auto()
  182. ATTN_KV_A_MQA = auto()
  183. ATTN_KV_B = auto()
  184. ATTN_Q_A_NORM = auto()
  185. ATTN_KV_A_NORM = auto()
  186. MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
  187. MODEL_ARCH.LLAMA: "llama",
  188. MODEL_ARCH.FALCON: "falcon",
  189. MODEL_ARCH.BAICHUAN: "baichuan",
  190. MODEL_ARCH.GROK: "grok",
  191. MODEL_ARCH.GPT2: "gpt2",
  192. MODEL_ARCH.GPTJ: "gptj",
  193. MODEL_ARCH.GPTNEOX: "gptneox",
  194. MODEL_ARCH.MPT: "mpt",
  195. MODEL_ARCH.STARCODER: "starcoder",
  196. MODEL_ARCH.REFACT: "refact",
  197. MODEL_ARCH.BERT: "bert",
  198. MODEL_ARCH.NOMIC_BERT: "nomic-bert",
  199. MODEL_ARCH.JINA_BERT_V2: "jina-bert-v2",
  200. MODEL_ARCH.BLOOM: "bloom",
  201. MODEL_ARCH.STABLELM: "stablelm",
  202. MODEL_ARCH.QWEN: "qwen",
  203. MODEL_ARCH.QWEN2: "qwen2",
  204. MODEL_ARCH.QWEN2MOE: "qwen2moe",
  205. MODEL_ARCH.PHI2: "phi2",
  206. MODEL_ARCH.PHI3: "phi3",
  207. MODEL_ARCH.PLAMO: "plamo",
  208. MODEL_ARCH.CODESHELL: "codeshell",
  209. MODEL_ARCH.ORION: "orion",
  210. MODEL_ARCH.INTERNLM2: "internlm2",
  211. MODEL_ARCH.MINICPM: "minicpm",
  212. MODEL_ARCH.GEMMA: "gemma",
  213. MODEL_ARCH.STARCODER2: "starcoder2",
  214. MODEL_ARCH.MAMBA: "mamba",
  215. MODEL_ARCH.XVERSE: "xverse",
  216. MODEL_ARCH.COMMAND_R: "command-r",
  217. MODEL_ARCH.DBRX: "dbrx",
  218. MODEL_ARCH.OLMO: "olmo",
  219. MODEL_ARCH.ARCTIC: "arctic",
  220. MODEL_ARCH.DEEPSEEK2: "deepseek2",
  221. }
  222. TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
  223. MODEL_TENSOR.TOKEN_EMBD: "token_embd",
  224. MODEL_TENSOR.TOKEN_EMBD_NORM: "token_embd_norm",
  225. MODEL_TENSOR.TOKEN_TYPES: "token_types",
  226. MODEL_TENSOR.POS_EMBD: "position_embd",
  227. MODEL_TENSOR.OUTPUT_NORM: "output_norm",
  228. MODEL_TENSOR.OUTPUT: "output",
  229. MODEL_TENSOR.ROPE_FREQS: "rope_freqs",
  230. MODEL_TENSOR.ROPE_FACTORS_LONG: "rope_factors_long",
  231. MODEL_TENSOR.ROPE_FACTORS_SHORT: "rope_factors_short",
  232. MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
  233. MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2",
  234. MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
  235. MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q",
  236. MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k",
  237. MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v",
  238. MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
  239. MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
  240. MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm",
  241. MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm",
  242. MODEL_TENSOR.ATTN_OUT_NORM: "blk.{bid}.attn_output_norm",
  243. MODEL_TENSOR.FFN_GATE_INP: "blk.{bid}.ffn_gate_inp",
  244. MODEL_TENSOR.FFN_GATE_INP_SHEXP: "blk.{bid}.ffn_gate_inp_shexp",
  245. MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
  246. MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
  247. MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
  248. MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
  249. MODEL_TENSOR.FFN_GATE_SHEXP: "blk.{bid}.ffn_gate_shexp",
  250. MODEL_TENSOR.FFN_DOWN_SHEXP: "blk.{bid}.ffn_down_shexp",
  251. MODEL_TENSOR.FFN_UP_SHEXP: "blk.{bid}.ffn_up_shexp",
  252. MODEL_TENSOR.FFN_ACT: "blk.{bid}.ffn",
  253. MODEL_TENSOR.FFN_NORM_EXP: "blk.{bid}.ffn_norm_exps",
  254. MODEL_TENSOR.FFN_GATE_EXP: "blk.{bid}.ffn_gate_exps",
  255. MODEL_TENSOR.FFN_DOWN_EXP: "blk.{bid}.ffn_down_exps",
  256. MODEL_TENSOR.FFN_UP_EXP: "blk.{bid}.ffn_up_exps",
  257. MODEL_TENSOR.LAYER_OUT_NORM: "blk.{bid}.layer_output_norm",
  258. MODEL_TENSOR.SSM_IN: "blk.{bid}.ssm_in",
  259. MODEL_TENSOR.SSM_CONV1D: "blk.{bid}.ssm_conv1d",
  260. MODEL_TENSOR.SSM_X: "blk.{bid}.ssm_x",
  261. MODEL_TENSOR.SSM_DT: "blk.{bid}.ssm_dt",
  262. MODEL_TENSOR.SSM_A: "blk.{bid}.ssm_a",
  263. MODEL_TENSOR.SSM_D: "blk.{bid}.ssm_d",
  264. MODEL_TENSOR.SSM_OUT: "blk.{bid}.ssm_out",
  265. MODEL_TENSOR.ATTN_Q_A: "blk.{bid}.attn_q_a",
  266. MODEL_TENSOR.ATTN_Q_B: "blk.{bid}.attn_q_b",
  267. MODEL_TENSOR.ATTN_KV_A_MQA: "blk.{bid}.attn_kv_a_mqa",
  268. MODEL_TENSOR.ATTN_KV_B: "blk.{bid}.attn_kv_b",
  269. MODEL_TENSOR.ATTN_Q_A_NORM: "blk.{bid}.attn_q_a_norm",
  270. MODEL_TENSOR.ATTN_KV_A_NORM: "blk.{bid}.attn_kv_a_norm",
  271. }
  272. MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
  273. MODEL_ARCH.LLAMA: [
  274. MODEL_TENSOR.TOKEN_EMBD,
  275. MODEL_TENSOR.OUTPUT_NORM,
  276. MODEL_TENSOR.OUTPUT,
  277. MODEL_TENSOR.ROPE_FREQS,
  278. MODEL_TENSOR.ATTN_NORM,
  279. MODEL_TENSOR.ATTN_Q,
  280. MODEL_TENSOR.ATTN_K,
  281. MODEL_TENSOR.ATTN_V,
  282. MODEL_TENSOR.ATTN_OUT,
  283. MODEL_TENSOR.ATTN_ROT_EMBD,
  284. MODEL_TENSOR.FFN_GATE_INP,
  285. MODEL_TENSOR.FFN_NORM,
  286. MODEL_TENSOR.FFN_GATE,
  287. MODEL_TENSOR.FFN_DOWN,
  288. MODEL_TENSOR.FFN_UP,
  289. MODEL_TENSOR.FFN_GATE_EXP,
  290. MODEL_TENSOR.FFN_DOWN_EXP,
  291. MODEL_TENSOR.FFN_UP_EXP,
  292. ],
  293. MODEL_ARCH.GROK: [
  294. MODEL_TENSOR.TOKEN_EMBD,
  295. MODEL_TENSOR.OUTPUT_NORM,
  296. MODEL_TENSOR.OUTPUT,
  297. MODEL_TENSOR.ROPE_FREQS,
  298. MODEL_TENSOR.ATTN_NORM,
  299. MODEL_TENSOR.ATTN_Q,
  300. MODEL_TENSOR.ATTN_K,
  301. MODEL_TENSOR.ATTN_V,
  302. MODEL_TENSOR.ATTN_OUT,
  303. MODEL_TENSOR.ATTN_ROT_EMBD,
  304. MODEL_TENSOR.ATTN_OUT_NORM,
  305. MODEL_TENSOR.FFN_GATE_INP,
  306. MODEL_TENSOR.FFN_NORM,
  307. MODEL_TENSOR.FFN_GATE,
  308. MODEL_TENSOR.FFN_DOWN,
  309. MODEL_TENSOR.FFN_UP,
  310. MODEL_TENSOR.FFN_GATE_EXP,
  311. MODEL_TENSOR.FFN_DOWN_EXP,
  312. MODEL_TENSOR.FFN_UP_EXP,
  313. MODEL_TENSOR.LAYER_OUT_NORM,
  314. ],
  315. MODEL_ARCH.GPTNEOX: [
  316. MODEL_TENSOR.TOKEN_EMBD,
  317. MODEL_TENSOR.OUTPUT_NORM,
  318. MODEL_TENSOR.OUTPUT,
  319. MODEL_TENSOR.ATTN_NORM,
  320. MODEL_TENSOR.ATTN_QKV,
  321. MODEL_TENSOR.ATTN_OUT,
  322. MODEL_TENSOR.FFN_NORM,
  323. MODEL_TENSOR.FFN_DOWN,
  324. MODEL_TENSOR.FFN_UP,
  325. ],
  326. MODEL_ARCH.FALCON: [
  327. MODEL_TENSOR.TOKEN_EMBD,
  328. MODEL_TENSOR.OUTPUT_NORM,
  329. MODEL_TENSOR.OUTPUT,
  330. MODEL_TENSOR.ATTN_NORM,
  331. MODEL_TENSOR.ATTN_NORM_2,
  332. MODEL_TENSOR.ATTN_QKV,
  333. MODEL_TENSOR.ATTN_OUT,
  334. MODEL_TENSOR.FFN_DOWN,
  335. MODEL_TENSOR.FFN_UP,
  336. ],
  337. MODEL_ARCH.BAICHUAN: [
  338. MODEL_TENSOR.TOKEN_EMBD,
  339. MODEL_TENSOR.OUTPUT_NORM,
  340. MODEL_TENSOR.OUTPUT,
  341. MODEL_TENSOR.ROPE_FREQS,
  342. MODEL_TENSOR.ATTN_NORM,
  343. MODEL_TENSOR.ATTN_Q,
  344. MODEL_TENSOR.ATTN_K,
  345. MODEL_TENSOR.ATTN_V,
  346. MODEL_TENSOR.ATTN_OUT,
  347. MODEL_TENSOR.ATTN_ROT_EMBD,
  348. MODEL_TENSOR.FFN_NORM,
  349. MODEL_TENSOR.FFN_GATE,
  350. MODEL_TENSOR.FFN_DOWN,
  351. MODEL_TENSOR.FFN_UP,
  352. ],
  353. MODEL_ARCH.STARCODER: [
  354. MODEL_TENSOR.TOKEN_EMBD,
  355. MODEL_TENSOR.POS_EMBD,
  356. MODEL_TENSOR.OUTPUT_NORM,
  357. MODEL_TENSOR.OUTPUT,
  358. MODEL_TENSOR.ATTN_NORM,
  359. MODEL_TENSOR.ATTN_QKV,
  360. MODEL_TENSOR.ATTN_OUT,
  361. MODEL_TENSOR.FFN_NORM,
  362. MODEL_TENSOR.FFN_DOWN,
  363. MODEL_TENSOR.FFN_UP,
  364. ],
  365. MODEL_ARCH.BERT: [
  366. MODEL_TENSOR.TOKEN_EMBD,
  367. MODEL_TENSOR.TOKEN_EMBD_NORM,
  368. MODEL_TENSOR.TOKEN_TYPES,
  369. MODEL_TENSOR.POS_EMBD,
  370. MODEL_TENSOR.OUTPUT_NORM,
  371. MODEL_TENSOR.ATTN_OUT_NORM,
  372. MODEL_TENSOR.ATTN_Q,
  373. MODEL_TENSOR.ATTN_K,
  374. MODEL_TENSOR.ATTN_V,
  375. MODEL_TENSOR.ATTN_OUT,
  376. MODEL_TENSOR.FFN_DOWN,
  377. MODEL_TENSOR.FFN_UP,
  378. MODEL_TENSOR.LAYER_OUT_NORM,
  379. ],
  380. MODEL_ARCH.NOMIC_BERT: [
  381. MODEL_TENSOR.TOKEN_EMBD,
  382. MODEL_TENSOR.TOKEN_EMBD_NORM,
  383. MODEL_TENSOR.TOKEN_TYPES,
  384. MODEL_TENSOR.POS_EMBD,
  385. MODEL_TENSOR.OUTPUT_NORM,
  386. MODEL_TENSOR.ATTN_OUT_NORM,
  387. MODEL_TENSOR.ATTN_QKV,
  388. MODEL_TENSOR.ATTN_OUT,
  389. MODEL_TENSOR.FFN_GATE,
  390. MODEL_TENSOR.FFN_DOWN,
  391. MODEL_TENSOR.FFN_UP,
  392. MODEL_TENSOR.LAYER_OUT_NORM,
  393. ],
  394. MODEL_ARCH.JINA_BERT_V2: [
  395. MODEL_TENSOR.TOKEN_EMBD,
  396. MODEL_TENSOR.TOKEN_EMBD_NORM,
  397. MODEL_TENSOR.TOKEN_TYPES,
  398. MODEL_TENSOR.ATTN_NORM_2,
  399. MODEL_TENSOR.ATTN_OUT_NORM,
  400. MODEL_TENSOR.ATTN_Q,
  401. MODEL_TENSOR.ATTN_Q_NORM,
  402. MODEL_TENSOR.ATTN_K,
  403. MODEL_TENSOR.ATTN_K_NORM,
  404. MODEL_TENSOR.ATTN_V,
  405. MODEL_TENSOR.ATTN_OUT,
  406. MODEL_TENSOR.FFN_UP,
  407. MODEL_TENSOR.FFN_GATE,
  408. MODEL_TENSOR.FFN_DOWN,
  409. MODEL_TENSOR.LAYER_OUT_NORM,
  410. ],
  411. MODEL_ARCH.MPT: [
  412. MODEL_TENSOR.TOKEN_EMBD,
  413. MODEL_TENSOR.OUTPUT_NORM,
  414. MODEL_TENSOR.OUTPUT,
  415. MODEL_TENSOR.ATTN_NORM,
  416. MODEL_TENSOR.ATTN_QKV,
  417. MODEL_TENSOR.ATTN_OUT,
  418. MODEL_TENSOR.FFN_NORM,
  419. MODEL_TENSOR.FFN_DOWN,
  420. MODEL_TENSOR.FFN_UP,
  421. MODEL_TENSOR.FFN_ACT,
  422. MODEL_TENSOR.ATTN_Q_NORM,
  423. MODEL_TENSOR.ATTN_K_NORM,
  424. MODEL_TENSOR.POS_EMBD,
  425. ],
  426. MODEL_ARCH.GPTJ: [
  427. MODEL_TENSOR.TOKEN_EMBD,
  428. MODEL_TENSOR.OUTPUT_NORM,
  429. MODEL_TENSOR.OUTPUT,
  430. MODEL_TENSOR.ATTN_NORM,
  431. MODEL_TENSOR.ATTN_Q,
  432. MODEL_TENSOR.ATTN_K,
  433. MODEL_TENSOR.ATTN_V,
  434. MODEL_TENSOR.ATTN_OUT,
  435. MODEL_TENSOR.FFN_DOWN,
  436. MODEL_TENSOR.FFN_UP,
  437. ],
  438. MODEL_ARCH.REFACT: [
  439. MODEL_TENSOR.TOKEN_EMBD,
  440. MODEL_TENSOR.OUTPUT_NORM,
  441. MODEL_TENSOR.OUTPUT,
  442. MODEL_TENSOR.ATTN_NORM,
  443. MODEL_TENSOR.ATTN_Q,
  444. MODEL_TENSOR.ATTN_K,
  445. MODEL_TENSOR.ATTN_V,
  446. MODEL_TENSOR.ATTN_OUT,
  447. MODEL_TENSOR.FFN_NORM,
  448. MODEL_TENSOR.FFN_GATE,
  449. MODEL_TENSOR.FFN_DOWN,
  450. MODEL_TENSOR.FFN_UP,
  451. ],
  452. MODEL_ARCH.BLOOM: [
  453. MODEL_TENSOR.TOKEN_EMBD,
  454. MODEL_TENSOR.TOKEN_EMBD_NORM,
  455. MODEL_TENSOR.OUTPUT_NORM,
  456. MODEL_TENSOR.OUTPUT,
  457. MODEL_TENSOR.ATTN_NORM,
  458. MODEL_TENSOR.ATTN_QKV,
  459. MODEL_TENSOR.ATTN_OUT,
  460. MODEL_TENSOR.FFN_NORM,
  461. MODEL_TENSOR.FFN_DOWN,
  462. MODEL_TENSOR.FFN_UP,
  463. ],
  464. MODEL_ARCH.STABLELM: [
  465. MODEL_TENSOR.TOKEN_EMBD,
  466. MODEL_TENSOR.OUTPUT_NORM,
  467. MODEL_TENSOR.OUTPUT,
  468. MODEL_TENSOR.ROPE_FREQS,
  469. MODEL_TENSOR.ATTN_NORM,
  470. MODEL_TENSOR.ATTN_Q,
  471. MODEL_TENSOR.ATTN_K,
  472. MODEL_TENSOR.ATTN_V,
  473. MODEL_TENSOR.ATTN_OUT,
  474. MODEL_TENSOR.FFN_NORM,
  475. MODEL_TENSOR.FFN_GATE,
  476. MODEL_TENSOR.FFN_DOWN,
  477. MODEL_TENSOR.FFN_UP,
  478. MODEL_TENSOR.ATTN_Q_NORM,
  479. MODEL_TENSOR.ATTN_K_NORM,
  480. ],
  481. MODEL_ARCH.QWEN: [
  482. MODEL_TENSOR.TOKEN_EMBD,
  483. MODEL_TENSOR.OUTPUT_NORM,
  484. MODEL_TENSOR.OUTPUT,
  485. MODEL_TENSOR.ROPE_FREQS,
  486. MODEL_TENSOR.ATTN_NORM,
  487. MODEL_TENSOR.ATTN_QKV,
  488. MODEL_TENSOR.ATTN_OUT,
  489. MODEL_TENSOR.ATTN_ROT_EMBD,
  490. MODEL_TENSOR.FFN_NORM,
  491. MODEL_TENSOR.FFN_GATE,
  492. MODEL_TENSOR.FFN_DOWN,
  493. MODEL_TENSOR.FFN_UP,
  494. ],
  495. MODEL_ARCH.QWEN2: [
  496. MODEL_TENSOR.TOKEN_EMBD,
  497. MODEL_TENSOR.OUTPUT_NORM,
  498. MODEL_TENSOR.OUTPUT,
  499. MODEL_TENSOR.ATTN_NORM,
  500. MODEL_TENSOR.ATTN_Q,
  501. MODEL_TENSOR.ATTN_K,
  502. MODEL_TENSOR.ATTN_V,
  503. MODEL_TENSOR.ATTN_OUT,
  504. MODEL_TENSOR.FFN_NORM,
  505. MODEL_TENSOR.FFN_GATE,
  506. MODEL_TENSOR.FFN_DOWN,
  507. MODEL_TENSOR.FFN_UP,
  508. ],
  509. MODEL_ARCH.QWEN2MOE: [
  510. MODEL_TENSOR.TOKEN_EMBD,
  511. MODEL_TENSOR.OUTPUT_NORM,
  512. MODEL_TENSOR.OUTPUT,
  513. MODEL_TENSOR.ATTN_NORM,
  514. MODEL_TENSOR.ATTN_Q,
  515. MODEL_TENSOR.ATTN_K,
  516. MODEL_TENSOR.ATTN_V,
  517. MODEL_TENSOR.ATTN_OUT,
  518. MODEL_TENSOR.FFN_NORM,
  519. MODEL_TENSOR.FFN_GATE_INP,
  520. MODEL_TENSOR.FFN_GATE_EXP,
  521. MODEL_TENSOR.FFN_DOWN_EXP,
  522. MODEL_TENSOR.FFN_UP_EXP,
  523. MODEL_TENSOR.FFN_GATE_INP_SHEXP,
  524. MODEL_TENSOR.FFN_GATE_SHEXP,
  525. MODEL_TENSOR.FFN_DOWN_SHEXP,
  526. MODEL_TENSOR.FFN_UP_SHEXP,
  527. ],
  528. MODEL_ARCH.PLAMO: [
  529. MODEL_TENSOR.TOKEN_EMBD,
  530. MODEL_TENSOR.OUTPUT_NORM,
  531. MODEL_TENSOR.OUTPUT,
  532. MODEL_TENSOR.ROPE_FREQS,
  533. MODEL_TENSOR.ATTN_NORM,
  534. MODEL_TENSOR.ATTN_Q,
  535. MODEL_TENSOR.ATTN_K,
  536. MODEL_TENSOR.ATTN_V,
  537. MODEL_TENSOR.ATTN_OUT,
  538. MODEL_TENSOR.ATTN_ROT_EMBD,
  539. MODEL_TENSOR.FFN_GATE,
  540. MODEL_TENSOR.FFN_DOWN,
  541. MODEL_TENSOR.FFN_UP,
  542. ],
  543. MODEL_ARCH.GPT2: [
  544. MODEL_TENSOR.TOKEN_EMBD,
  545. MODEL_TENSOR.POS_EMBD,
  546. MODEL_TENSOR.OUTPUT_NORM,
  547. MODEL_TENSOR.OUTPUT,
  548. MODEL_TENSOR.ATTN_NORM,
  549. MODEL_TENSOR.ATTN_QKV,
  550. MODEL_TENSOR.ATTN_OUT,
  551. MODEL_TENSOR.FFN_NORM,
  552. MODEL_TENSOR.FFN_DOWN,
  553. MODEL_TENSOR.FFN_UP,
  554. ],
  555. MODEL_ARCH.PHI2: [
  556. MODEL_TENSOR.TOKEN_EMBD,
  557. MODEL_TENSOR.OUTPUT_NORM,
  558. MODEL_TENSOR.OUTPUT,
  559. MODEL_TENSOR.ATTN_NORM,
  560. MODEL_TENSOR.ATTN_QKV,
  561. MODEL_TENSOR.ATTN_Q,
  562. MODEL_TENSOR.ATTN_K,
  563. MODEL_TENSOR.ATTN_V,
  564. MODEL_TENSOR.ATTN_OUT,
  565. MODEL_TENSOR.FFN_NORM,
  566. MODEL_TENSOR.FFN_DOWN,
  567. MODEL_TENSOR.FFN_UP,
  568. ],
  569. MODEL_ARCH.PHI3: [
  570. MODEL_TENSOR.TOKEN_EMBD,
  571. MODEL_TENSOR.OUTPUT_NORM,
  572. MODEL_TENSOR.OUTPUT,
  573. MODEL_TENSOR.ATTN_NORM,
  574. MODEL_TENSOR.ATTN_QKV,
  575. MODEL_TENSOR.ATTN_Q,
  576. MODEL_TENSOR.ATTN_K,
  577. MODEL_TENSOR.ATTN_V,
  578. MODEL_TENSOR.ATTN_OUT,
  579. MODEL_TENSOR.FFN_NORM,
  580. MODEL_TENSOR.FFN_DOWN,
  581. MODEL_TENSOR.FFN_UP,
  582. ],
  583. MODEL_ARCH.CODESHELL: [
  584. MODEL_TENSOR.TOKEN_EMBD,
  585. MODEL_TENSOR.POS_EMBD,
  586. MODEL_TENSOR.OUTPUT_NORM,
  587. MODEL_TENSOR.OUTPUT,
  588. MODEL_TENSOR.ATTN_NORM,
  589. MODEL_TENSOR.ATTN_QKV,
  590. MODEL_TENSOR.ATTN_OUT,
  591. MODEL_TENSOR.ATTN_ROT_EMBD,
  592. MODEL_TENSOR.FFN_NORM,
  593. MODEL_TENSOR.FFN_DOWN,
  594. MODEL_TENSOR.FFN_UP,
  595. ],
  596. MODEL_ARCH.ORION: [
  597. MODEL_TENSOR.TOKEN_EMBD,
  598. MODEL_TENSOR.OUTPUT_NORM,
  599. MODEL_TENSOR.OUTPUT,
  600. MODEL_TENSOR.ROPE_FREQS,
  601. MODEL_TENSOR.ATTN_NORM,
  602. MODEL_TENSOR.ATTN_Q,
  603. MODEL_TENSOR.ATTN_K,
  604. MODEL_TENSOR.ATTN_V,
  605. MODEL_TENSOR.ATTN_OUT,
  606. MODEL_TENSOR.ATTN_ROT_EMBD,
  607. MODEL_TENSOR.FFN_NORM,
  608. MODEL_TENSOR.FFN_GATE,
  609. MODEL_TENSOR.FFN_DOWN,
  610. MODEL_TENSOR.FFN_UP,
  611. ],
  612. MODEL_ARCH.INTERNLM2: [
  613. MODEL_TENSOR.TOKEN_EMBD,
  614. MODEL_TENSOR.OUTPUT_NORM,
  615. MODEL_TENSOR.OUTPUT,
  616. MODEL_TENSOR.ATTN_NORM,
  617. MODEL_TENSOR.ATTN_Q,
  618. MODEL_TENSOR.ATTN_K,
  619. MODEL_TENSOR.ATTN_V,
  620. MODEL_TENSOR.ATTN_OUT,
  621. MODEL_TENSOR.ATTN_ROT_EMBD,
  622. MODEL_TENSOR.FFN_NORM,
  623. MODEL_TENSOR.FFN_GATE,
  624. MODEL_TENSOR.FFN_DOWN,
  625. MODEL_TENSOR.FFN_UP,
  626. ],
  627. MODEL_ARCH.MINICPM: [
  628. MODEL_TENSOR.TOKEN_EMBD,
  629. MODEL_TENSOR.OUTPUT,
  630. MODEL_TENSOR.OUTPUT_NORM,
  631. MODEL_TENSOR.ROPE_FREQS,
  632. MODEL_TENSOR.ATTN_NORM,
  633. MODEL_TENSOR.ATTN_Q,
  634. MODEL_TENSOR.ATTN_K,
  635. MODEL_TENSOR.ATTN_V,
  636. MODEL_TENSOR.ATTN_OUT,
  637. MODEL_TENSOR.ATTN_ROT_EMBD,
  638. MODEL_TENSOR.FFN_GATE_INP,
  639. MODEL_TENSOR.FFN_NORM,
  640. MODEL_TENSOR.FFN_GATE,
  641. MODEL_TENSOR.FFN_DOWN,
  642. MODEL_TENSOR.FFN_UP,
  643. MODEL_TENSOR.FFN_GATE_EXP,
  644. MODEL_TENSOR.FFN_DOWN_EXP,
  645. MODEL_TENSOR.FFN_UP_EXP,
  646. ],
  647. MODEL_ARCH.GEMMA: [
  648. MODEL_TENSOR.TOKEN_EMBD,
  649. MODEL_TENSOR.OUTPUT_NORM,
  650. MODEL_TENSOR.ATTN_NORM,
  651. MODEL_TENSOR.ATTN_Q,
  652. MODEL_TENSOR.ATTN_K,
  653. MODEL_TENSOR.ATTN_V,
  654. MODEL_TENSOR.ATTN_OUT,
  655. MODEL_TENSOR.FFN_GATE,
  656. MODEL_TENSOR.FFN_DOWN,
  657. MODEL_TENSOR.FFN_UP,
  658. MODEL_TENSOR.FFN_NORM,
  659. ],
  660. MODEL_ARCH.STARCODER2: [
  661. MODEL_TENSOR.TOKEN_EMBD,
  662. MODEL_TENSOR.OUTPUT_NORM,
  663. MODEL_TENSOR.OUTPUT,
  664. MODEL_TENSOR.ROPE_FREQS,
  665. MODEL_TENSOR.ATTN_NORM,
  666. MODEL_TENSOR.ATTN_Q,
  667. MODEL_TENSOR.ATTN_K,
  668. MODEL_TENSOR.ATTN_V,
  669. MODEL_TENSOR.ATTN_OUT,
  670. MODEL_TENSOR.ATTN_ROT_EMBD,
  671. MODEL_TENSOR.FFN_NORM,
  672. MODEL_TENSOR.FFN_DOWN,
  673. MODEL_TENSOR.FFN_UP,
  674. ],
  675. MODEL_ARCH.MAMBA: [
  676. MODEL_TENSOR.TOKEN_EMBD,
  677. MODEL_TENSOR.OUTPUT_NORM,
  678. MODEL_TENSOR.OUTPUT,
  679. MODEL_TENSOR.ATTN_NORM,
  680. MODEL_TENSOR.SSM_IN,
  681. MODEL_TENSOR.SSM_CONV1D,
  682. MODEL_TENSOR.SSM_X,
  683. MODEL_TENSOR.SSM_DT,
  684. MODEL_TENSOR.SSM_A,
  685. MODEL_TENSOR.SSM_D,
  686. MODEL_TENSOR.SSM_OUT,
  687. ],
  688. MODEL_ARCH.XVERSE: [
  689. MODEL_TENSOR.TOKEN_EMBD,
  690. MODEL_TENSOR.OUTPUT_NORM,
  691. MODEL_TENSOR.OUTPUT,
  692. MODEL_TENSOR.ROPE_FREQS,
  693. MODEL_TENSOR.ATTN_NORM,
  694. MODEL_TENSOR.ATTN_Q,
  695. MODEL_TENSOR.ATTN_K,
  696. MODEL_TENSOR.ATTN_V,
  697. MODEL_TENSOR.ATTN_OUT,
  698. MODEL_TENSOR.ATTN_ROT_EMBD,
  699. MODEL_TENSOR.FFN_NORM,
  700. MODEL_TENSOR.FFN_GATE,
  701. MODEL_TENSOR.FFN_DOWN,
  702. MODEL_TENSOR.FFN_UP,
  703. ],
  704. MODEL_ARCH.COMMAND_R: [
  705. MODEL_TENSOR.TOKEN_EMBD,
  706. MODEL_TENSOR.OUTPUT_NORM,
  707. MODEL_TENSOR.ATTN_NORM,
  708. MODEL_TENSOR.ATTN_Q,
  709. MODEL_TENSOR.ATTN_K,
  710. MODEL_TENSOR.ATTN_V,
  711. MODEL_TENSOR.ATTN_OUT,
  712. MODEL_TENSOR.FFN_GATE,
  713. MODEL_TENSOR.FFN_DOWN,
  714. MODEL_TENSOR.FFN_UP,
  715. MODEL_TENSOR.ATTN_K_NORM,
  716. MODEL_TENSOR.ATTN_Q_NORM,
  717. ],
  718. MODEL_ARCH.DBRX: [
  719. MODEL_TENSOR.TOKEN_EMBD,
  720. MODEL_TENSOR.OUTPUT_NORM,
  721. MODEL_TENSOR.OUTPUT,
  722. MODEL_TENSOR.ATTN_NORM,
  723. MODEL_TENSOR.ATTN_QKV,
  724. MODEL_TENSOR.ATTN_OUT,
  725. MODEL_TENSOR.ATTN_OUT_NORM,
  726. MODEL_TENSOR.FFN_GATE_INP,
  727. MODEL_TENSOR.FFN_GATE_EXP,
  728. MODEL_TENSOR.FFN_DOWN_EXP,
  729. MODEL_TENSOR.FFN_UP_EXP,
  730. ],
  731. MODEL_ARCH.OLMO: [
  732. MODEL_TENSOR.TOKEN_EMBD,
  733. MODEL_TENSOR.OUTPUT,
  734. MODEL_TENSOR.ATTN_Q,
  735. MODEL_TENSOR.ATTN_K,
  736. MODEL_TENSOR.ATTN_V,
  737. MODEL_TENSOR.ATTN_OUT,
  738. MODEL_TENSOR.FFN_GATE,
  739. MODEL_TENSOR.FFN_DOWN,
  740. MODEL_TENSOR.FFN_UP,
  741. ],
  742. MODEL_ARCH.ARCTIC: [
  743. MODEL_TENSOR.TOKEN_EMBD,
  744. MODEL_TENSOR.OUTPUT_NORM,
  745. MODEL_TENSOR.OUTPUT,
  746. MODEL_TENSOR.ROPE_FREQS,
  747. MODEL_TENSOR.ATTN_NORM,
  748. MODEL_TENSOR.ATTN_Q,
  749. MODEL_TENSOR.ATTN_K,
  750. MODEL_TENSOR.ATTN_V,
  751. MODEL_TENSOR.ATTN_OUT,
  752. MODEL_TENSOR.ATTN_ROT_EMBD,
  753. MODEL_TENSOR.FFN_GATE_INP,
  754. MODEL_TENSOR.FFN_NORM,
  755. MODEL_TENSOR.FFN_GATE,
  756. MODEL_TENSOR.FFN_DOWN,
  757. MODEL_TENSOR.FFN_UP,
  758. MODEL_TENSOR.FFN_NORM_EXP,
  759. MODEL_TENSOR.FFN_GATE_EXP,
  760. MODEL_TENSOR.FFN_DOWN_EXP,
  761. MODEL_TENSOR.FFN_UP_EXP,
  762. ],
  763. MODEL_ARCH.DEEPSEEK2: [
  764. MODEL_TENSOR.TOKEN_EMBD,
  765. MODEL_TENSOR.OUTPUT_NORM,
  766. MODEL_TENSOR.OUTPUT,
  767. MODEL_TENSOR.ROPE_FREQS,
  768. MODEL_TENSOR.ATTN_NORM,
  769. MODEL_TENSOR.ATTN_Q,
  770. MODEL_TENSOR.ATTN_Q_A,
  771. MODEL_TENSOR.ATTN_Q_B,
  772. MODEL_TENSOR.ATTN_KV_A_MQA,
  773. MODEL_TENSOR.ATTN_KV_B,
  774. MODEL_TENSOR.ATTN_Q_A_NORM,
  775. MODEL_TENSOR.ATTN_KV_A_NORM,
  776. MODEL_TENSOR.ATTN_OUT,
  777. MODEL_TENSOR.ATTN_ROT_EMBD,
  778. MODEL_TENSOR.FFN_GATE_INP,
  779. MODEL_TENSOR.FFN_NORM,
  780. MODEL_TENSOR.FFN_GATE,
  781. MODEL_TENSOR.FFN_DOWN,
  782. MODEL_TENSOR.FFN_UP,
  783. MODEL_TENSOR.FFN_GATE_EXP,
  784. MODEL_TENSOR.FFN_DOWN_EXP,
  785. MODEL_TENSOR.FFN_UP_EXP,
  786. MODEL_TENSOR.FFN_GATE_SHEXP,
  787. MODEL_TENSOR.FFN_DOWN_SHEXP,
  788. MODEL_TENSOR.FFN_UP_SHEXP,
  789. ],
  790. # TODO
  791. }
  792. # tensors that will not be serialized
  793. MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
  794. MODEL_ARCH.LLAMA: [
  795. MODEL_TENSOR.ROPE_FREQS,
  796. MODEL_TENSOR.ATTN_ROT_EMBD,
  797. ],
  798. MODEL_ARCH.BAICHUAN: [
  799. MODEL_TENSOR.ROPE_FREQS,
  800. MODEL_TENSOR.ATTN_ROT_EMBD,
  801. ],
  802. MODEL_ARCH.QWEN: [
  803. MODEL_TENSOR.ROPE_FREQS,
  804. MODEL_TENSOR.ATTN_ROT_EMBD,
  805. ],
  806. MODEL_ARCH.CODESHELL: [
  807. MODEL_TENSOR.ROPE_FREQS,
  808. MODEL_TENSOR.ATTN_ROT_EMBD,
  809. ],
  810. MODEL_ARCH.ORION: [
  811. MODEL_TENSOR.ROPE_FREQS,
  812. MODEL_TENSOR.ATTN_ROT_EMBD,
  813. ],
  814. MODEL_ARCH.STARCODER2: [
  815. MODEL_TENSOR.ROPE_FREQS,
  816. MODEL_TENSOR.ATTN_ROT_EMBD,
  817. ],
  818. MODEL_ARCH.XVERSE: [
  819. MODEL_TENSOR.ROPE_FREQS,
  820. MODEL_TENSOR.ATTN_ROT_EMBD,
  821. ],
  822. MODEL_ARCH.DEEPSEEK2: [
  823. MODEL_TENSOR.ROPE_FREQS,
  824. MODEL_TENSOR.ATTN_ROT_EMBD,
  825. ],
  826. }
  827. #
  828. # types
  829. #
  830. class TokenType(IntEnum):
  831. NORMAL = 1
  832. UNKNOWN = 2
  833. CONTROL = 3
  834. USER_DEFINED = 4
  835. UNUSED = 5
  836. BYTE = 6
  837. class RopeScalingType(Enum):
  838. NONE = 'none'
  839. LINEAR = 'linear'
  840. YARN = 'yarn'
  841. class PoolingType(IntEnum):
  842. NONE = 0
  843. MEAN = 1
  844. CLS = 2
  845. class GGMLQuantizationType(IntEnum):
  846. F32 = 0
  847. F16 = 1
  848. Q4_0 = 2
  849. Q4_1 = 3
  850. Q5_0 = 6
  851. Q5_1 = 7
  852. Q8_0 = 8
  853. Q8_1 = 9
  854. Q2_K = 10
  855. Q3_K = 11
  856. Q4_K = 12
  857. Q5_K = 13
  858. Q6_K = 14
  859. Q8_K = 15
  860. IQ2_XXS = 16
  861. IQ2_XS = 17
  862. IQ3_XXS = 18
  863. IQ1_S = 19
  864. IQ4_NL = 20
  865. IQ3_S = 21
  866. IQ2_S = 22
  867. IQ4_XS = 23
  868. I8 = 24
  869. I16 = 25
  870. I32 = 26
  871. I64 = 27
  872. F64 = 28
  873. IQ1_M = 29
  874. BF16 = 30
  875. # TODO: add GGMLFileType from ggml_ftype in ggml.h
  876. # from llama_ftype in llama.h
  877. # ALL VALUES SHOULD BE THE SAME HERE AS THEY ARE OVER THERE.
  878. class LlamaFileType(IntEnum):
  879. ALL_F32 = 0
  880. MOSTLY_F16 = 1 # except 1d tensors
  881. MOSTLY_Q4_0 = 2 # except 1d tensors
  882. MOSTLY_Q4_1 = 3 # except 1d tensors
  883. MOSTLY_Q4_1_SOME_F16 = 4 # tok_embeddings.weight and output.weight are F16
  884. # MOSTLY_Q4_2 = 5 # support has been removed
  885. # MOSTLY_Q4_3 = 6 # support has been removed
  886. MOSTLY_Q8_0 = 7 # except 1d tensors
  887. MOSTLY_Q5_0 = 8 # except 1d tensors
  888. MOSTLY_Q5_1 = 9 # except 1d tensors
  889. MOSTLY_Q2_K = 10 # except 1d tensors
  890. MOSTLY_Q3_K_S = 11 # except 1d tensors
  891. MOSTLY_Q3_K_M = 12 # except 1d tensors
  892. MOSTLY_Q3_K_L = 13 # except 1d tensors
  893. MOSTLY_Q4_K_S = 14 # except 1d tensors
  894. MOSTLY_Q4_K_M = 15 # except 1d tensors
  895. MOSTLY_Q5_K_S = 16 # except 1d tensors
  896. MOSTLY_Q5_K_M = 17 # except 1d tensors
  897. MOSTLY_Q6_K = 18 # except 1d tensors
  898. MOSTLY_IQ2_XXS = 19 # except 1d tensors
  899. MOSTLY_IQ2_XS = 20 # except 1d tensors
  900. MOSTLY_Q2_K_S = 21 # except 1d tensors
  901. MOSTLY_IQ3_XS = 22 # except 1d tensors
  902. MOSTLY_IQ3_XXS = 23 # except 1d tensors
  903. MOSTLY_IQ1_S = 24 # except 1d tensors
  904. MOSTLY_IQ4_NL = 25 # except 1d tensors
  905. MOSTLY_IQ3_S = 26 # except 1d tensors
  906. MOSTLY_IQ3_M = 27 # except 1d tensors
  907. MOSTLY_IQ2_S = 28 # except 1d tensors
  908. MOSTLY_IQ2_M = 29 # except 1d tensors
  909. MOSTLY_IQ4_XS = 30 # except 1d tensors
  910. MOSTLY_IQ1_M = 31 # except 1d tensors
  911. MOSTLY_BF16 = 32 # except 1d tensors
  912. GUESSED = 1024 # not specified in the model file
  913. class GGUFEndian(IntEnum):
  914. LITTLE = 0
  915. BIG = 1
  916. class GGUFValueType(IntEnum):
  917. UINT8 = 0
  918. INT8 = 1
  919. UINT16 = 2
  920. INT16 = 3
  921. UINT32 = 4
  922. INT32 = 5
  923. FLOAT32 = 6
  924. BOOL = 7
  925. STRING = 8
  926. ARRAY = 9
  927. UINT64 = 10
  928. INT64 = 11
  929. FLOAT64 = 12
  930. @staticmethod
  931. def get_type(val: Any) -> GGUFValueType:
  932. if isinstance(val, (str, bytes, bytearray)):
  933. return GGUFValueType.STRING
  934. elif isinstance(val, list):
  935. return GGUFValueType.ARRAY
  936. elif isinstance(val, float):
  937. return GGUFValueType.FLOAT32
  938. elif isinstance(val, bool):
  939. return GGUFValueType.BOOL
  940. elif isinstance(val, int):
  941. return GGUFValueType.INT32
  942. # TODO: need help with 64-bit types in Python
  943. else:
  944. raise ValueError(f"Unknown type: {type(val)}")
  945. # Items here are (block size, type size)
  946. QK_K = 256
  947. GGML_QUANT_SIZES: dict[GGMLQuantizationType, tuple[int, int]] = {
  948. GGMLQuantizationType.F32: (1, 4),
  949. GGMLQuantizationType.F16: (1, 2),
  950. GGMLQuantizationType.Q4_0: (32, 2 + 16),
  951. GGMLQuantizationType.Q4_1: (32, 2 + 2 + 16),
  952. GGMLQuantizationType.Q5_0: (32, 2 + 4 + 16),
  953. GGMLQuantizationType.Q5_1: (32, 2 + 2 + 4 + 16),
  954. GGMLQuantizationType.Q8_0: (32, 2 + 32),
  955. GGMLQuantizationType.Q8_1: (32, 4 + 4 + 32),
  956. GGMLQuantizationType.Q2_K: (256, 2 + 2 + QK_K // 16 + QK_K // 4),
  957. GGMLQuantizationType.Q3_K: (256, 2 + QK_K // 4 + QK_K // 8 + 12),
  958. GGMLQuantizationType.Q4_K: (256, 2 + 2 + QK_K // 2 + 12),
  959. GGMLQuantizationType.Q5_K: (256, 2 + 2 + QK_K // 2 + QK_K // 8 + 12),
  960. GGMLQuantizationType.Q6_K: (256, 2 + QK_K // 2 + QK_K // 4 + QK_K // 16),
  961. GGMLQuantizationType.Q8_K: (256, 4 + QK_K + QK_K // 8),
  962. GGMLQuantizationType.IQ2_XXS: (256, 2 + QK_K // 4),
  963. GGMLQuantizationType.IQ2_XS: (256, 2 + QK_K // 4 + QK_K // 32),
  964. GGMLQuantizationType.IQ3_XXS: (256, 2 + QK_K // 4 + QK_K // 8),
  965. GGMLQuantizationType.IQ1_S: (256, 2 + QK_K // 8 + QK_K // 16),
  966. GGMLQuantizationType.IQ4_NL: (32, 2 + 16),
  967. GGMLQuantizationType.IQ3_S: (256, 2 + QK_K // 4 + QK_K // 8 + QK_K // 32 + 4),
  968. GGMLQuantizationType.IQ2_S: (256, 2 + QK_K // 4 + QK_K // 16),
  969. GGMLQuantizationType.IQ4_XS: (256, 2 + 2 + QK_K // 2 + QK_K // 64),
  970. GGMLQuantizationType.I8: (1, 1),
  971. GGMLQuantizationType.I16: (1, 2),
  972. GGMLQuantizationType.I32: (1, 4),
  973. GGMLQuantizationType.I64: (1, 8),
  974. GGMLQuantizationType.F64: (1, 8),
  975. GGMLQuantizationType.IQ1_M: (256, QK_K // 8 + QK_K // 16 + QK_K // 32),
  976. GGMLQuantizationType.BF16: (1, 2),
  977. }
  978. # Aliases for backward compatibility.
  979. # general
  980. KEY_GENERAL_ARCHITECTURE = Keys.General.ARCHITECTURE
  981. KEY_GENERAL_QUANTIZATION_VERSION = Keys.General.QUANTIZATION_VERSION
  982. KEY_GENERAL_ALIGNMENT = Keys.General.ALIGNMENT
  983. KEY_GENERAL_NAME = Keys.General.NAME
  984. KEY_GENERAL_AUTHOR = Keys.General.AUTHOR
  985. KEY_GENERAL_URL = Keys.General.URL
  986. KEY_GENERAL_DESCRIPTION = Keys.General.DESCRIPTION
  987. KEY_GENERAL_LICENSE = Keys.General.LICENSE
  988. KEY_GENERAL_SOURCE_URL = Keys.General.SOURCE_URL
  989. KEY_GENERAL_SOURCE_HF_REPO = Keys.General.SOURCE_HF_REPO
  990. KEY_GENERAL_FILE_TYPE = Keys.General.FILE_TYPE
  991. # LLM
  992. KEY_VOCAB_SIZE = Keys.LLM.VOCAB_SIZE
  993. KEY_CONTEXT_LENGTH = Keys.LLM.CONTEXT_LENGTH
  994. KEY_EMBEDDING_LENGTH = Keys.LLM.EMBEDDING_LENGTH
  995. KEY_BLOCK_COUNT = Keys.LLM.BLOCK_COUNT
  996. KEY_FEED_FORWARD_LENGTH = Keys.LLM.FEED_FORWARD_LENGTH
  997. KEY_USE_PARALLEL_RESIDUAL = Keys.LLM.USE_PARALLEL_RESIDUAL
  998. KEY_TENSOR_DATA_LAYOUT = Keys.LLM.TENSOR_DATA_LAYOUT
  999. # attention
  1000. KEY_ATTENTION_HEAD_COUNT = Keys.Attention.HEAD_COUNT
  1001. KEY_ATTENTION_HEAD_COUNT_KV = Keys.Attention.HEAD_COUNT_KV
  1002. KEY_ATTENTION_MAX_ALIBI_BIAS = Keys.Attention.MAX_ALIBI_BIAS
  1003. KEY_ATTENTION_CLAMP_KQV = Keys.Attention.CLAMP_KQV
  1004. KEY_ATTENTION_LAYERNORM_EPS = Keys.Attention.LAYERNORM_EPS
  1005. KEY_ATTENTION_LAYERNORM_RMS_EPS = Keys.Attention.LAYERNORM_RMS_EPS
  1006. # RoPE
  1007. KEY_ROPE_DIMENSION_COUNT = Keys.Rope.DIMENSION_COUNT
  1008. KEY_ROPE_FREQ_BASE = Keys.Rope.FREQ_BASE
  1009. KEY_ROPE_SCALING_TYPE = Keys.Rope.SCALING_TYPE
  1010. KEY_ROPE_SCALING_FACTOR = Keys.Rope.SCALING_FACTOR
  1011. KEY_ROPE_SCALING_ORIG_CTX_LEN = Keys.Rope.SCALING_ORIG_CTX_LEN
  1012. KEY_ROPE_SCALING_FINETUNED = Keys.Rope.SCALING_FINETUNED
  1013. # SSM
  1014. KEY_SSM_CONV_KERNEL = Keys.SSM.CONV_KERNEL
  1015. KEY_SSM_INNER_SIZE = Keys.SSM.INNER_SIZE
  1016. KEY_SSM_STATE_SIZE = Keys.SSM.STATE_SIZE
  1017. KEY_SSM_TIME_STEP_RANK = Keys.SSM.TIME_STEP_RANK
  1018. # tokenization
  1019. KEY_TOKENIZER_MODEL = Keys.Tokenizer.MODEL
  1020. KEY_TOKENIZER_PRE = Keys.Tokenizer.PRE
  1021. KEY_TOKENIZER_LIST = Keys.Tokenizer.LIST
  1022. KEY_TOKENIZER_TOKEN_TYPE = Keys.Tokenizer.TOKEN_TYPE
  1023. KEY_TOKENIZER_SCORES = Keys.Tokenizer.SCORES
  1024. KEY_TOKENIZER_MERGES = Keys.Tokenizer.MERGES
  1025. KEY_TOKENIZER_BOS_ID = Keys.Tokenizer.BOS_ID
  1026. KEY_TOKENIZER_EOS_ID = Keys.Tokenizer.EOS_ID
  1027. KEY_TOKENIZER_UNK_ID = Keys.Tokenizer.UNK_ID
  1028. KEY_TOKENIZER_SEP_ID = Keys.Tokenizer.SEP_ID
  1029. KEY_TOKENIZER_PAD_ID = Keys.Tokenizer.PAD_ID
  1030. KEY_TOKENIZER_CLS_ID = Keys.Tokenizer.CLS_ID
  1031. KEY_TOKENIZER_MASK_ID = Keys.Tokenizer.MASK_ID
  1032. KEY_TOKENIZER_HF_JSON = Keys.Tokenizer.HF_JSON
  1033. KEY_TOKENIZER_RWKV = Keys.Tokenizer.RWKV
  1034. KEY_TOKENIZER_PRIFIX_ID = Keys.Tokenizer.PREFIX_ID
  1035. KEY_TOKENIZER_SUFFIX_ID = Keys.Tokenizer.SUFFIX_ID
  1036. KEY_TOKENIZER_MIDDLE_ID = Keys.Tokenizer.MIDDLE_ID
  1037. KEY_TOKENIZER_EOT_ID = Keys.Tokenizer.EOT_ID