| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273 |
- #version 450
- #include "mul_mat_vec_base.comp"
- layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in;
- shared FLOAT_TYPE tmp[32];
- void main() {
- const uint row = gl_WorkGroupID.x;
- uint a_offset, b_offset, d_offset;
- get_offsets(a_offset, b_offset, d_offset);
- const uint num_blocks_per_row = p.ncols / QUANT_K;
- const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row;
- const uint tid = gl_LocalInvocationID.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
- const uint ix = gl_LocalInvocationID.x%K_QUANTS_PER_ITERATION; // 0 or 0, 1
- const uint step = 16/K_QUANTS_PER_ITERATION; // 16 or 8
- const uint v_im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
- const uint v_in = tid - step*v_im; // 0...15 or 0...7
- const uint l0 = K_QUANTS_PER_ITERATION*v_in; // 0...15
- const uint q_offset = 32*v_im + l0;
- const uint s_offset = 8*v_im;
- const uint y_offset = 128*v_im + l0;
- tmp[16 * ix + tid] = FLOAT_TYPE(0.0); // partial sum for thread in warp
- [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
- const uint y_idx = i * QUANT_K + y_offset;
- const FLOAT_TYPE dall = FLOAT_TYPE(data_a[ib0 + i].d.x);
- const FLOAT_TYPE dmin = FLOAT_TYPE(data_a[ib0 + i].d.y);
- FLOAT_TYPE sum1 = FLOAT_TYPE(0.0);
- FLOAT_TYPE sum2 = FLOAT_TYPE(0.0);
- for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
- sum1 += FLOAT_TYPE(data_b[b_offset + y_idx + l + 0]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 0] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l + 0] >> 0) & 3)
- + FLOAT_TYPE(data_b[b_offset + y_idx + l + 16]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 1] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l +16] >> 0) & 3)
- + FLOAT_TYPE(data_b[b_offset + y_idx + l + 32]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 2] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l + 0] >> 2) & 3)
- + FLOAT_TYPE(data_b[b_offset + y_idx + l + 48]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 3] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l +16] >> 2) & 3)
- + FLOAT_TYPE(data_b[b_offset + y_idx + l + 64]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 4] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l + 0] >> 4) & 3)
- + FLOAT_TYPE(data_b[b_offset + y_idx + l + 80]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 5] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l +16] >> 4) & 3)
- + FLOAT_TYPE(data_b[b_offset + y_idx + l + 96]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 6] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l + 0] >> 6) & 3)
- + FLOAT_TYPE(data_b[b_offset + y_idx + l +112]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 7] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l +16] >> 6) & 3);
- sum2 += FLOAT_TYPE(data_b[b_offset + y_idx + l + 0]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 0] >> 4) & 0xF)
- + FLOAT_TYPE(data_b[b_offset + y_idx + l + 16]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 1] >> 4) & 0xF)
- + FLOAT_TYPE(data_b[b_offset + y_idx + l + 32]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 2] >> 4) & 0xF)
- + FLOAT_TYPE(data_b[b_offset + y_idx + l + 48]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 3] >> 4) & 0xF)
- + FLOAT_TYPE(data_b[b_offset + y_idx + l + 64]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 4] >> 4) & 0xF)
- + FLOAT_TYPE(data_b[b_offset + y_idx + l + 80]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 5] >> 4) & 0xF)
- + FLOAT_TYPE(data_b[b_offset + y_idx + l + 96]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 6] >> 4) & 0xF)
- + FLOAT_TYPE(data_b[b_offset + y_idx + l +112]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 7] >> 4) & 0xF);
- }
- tmp[16 * ix + tid] += dall * sum1 - dmin * sum2;
- }
- // sum up partial sums and write back result
- barrier();
- [[unroll]] for (uint s = 16; s > 0; s >>= 1) {
- if (tid < s) {
- tmp[tid] += tmp[tid + s];
- }
- barrier();
- }
- if (tid == 0) {
- data_d[d_offset + row] = D_TYPE(tmp[0]);
- }
- }
|