mul_mat_vec_q2_k.comp 4.3 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273
  1. #version 450
  2. #include "mul_mat_vec_base.comp"
  3. layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in;
  4. shared FLOAT_TYPE tmp[32];
  5. void main() {
  6. const uint row = gl_WorkGroupID.x;
  7. uint a_offset, b_offset, d_offset;
  8. get_offsets(a_offset, b_offset, d_offset);
  9. const uint num_blocks_per_row = p.ncols / QUANT_K;
  10. const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row;
  11. const uint tid = gl_LocalInvocationID.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
  12. const uint ix = gl_LocalInvocationID.x%K_QUANTS_PER_ITERATION; // 0 or 0, 1
  13. const uint step = 16/K_QUANTS_PER_ITERATION; // 16 or 8
  14. const uint v_im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
  15. const uint v_in = tid - step*v_im; // 0...15 or 0...7
  16. const uint l0 = K_QUANTS_PER_ITERATION*v_in; // 0...15
  17. const uint q_offset = 32*v_im + l0;
  18. const uint s_offset = 8*v_im;
  19. const uint y_offset = 128*v_im + l0;
  20. tmp[16 * ix + tid] = FLOAT_TYPE(0.0); // partial sum for thread in warp
  21. [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
  22. const uint y_idx = i * QUANT_K + y_offset;
  23. const FLOAT_TYPE dall = FLOAT_TYPE(data_a[ib0 + i].d.x);
  24. const FLOAT_TYPE dmin = FLOAT_TYPE(data_a[ib0 + i].d.y);
  25. FLOAT_TYPE sum1 = FLOAT_TYPE(0.0);
  26. FLOAT_TYPE sum2 = FLOAT_TYPE(0.0);
  27. for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
  28. sum1 += FLOAT_TYPE(data_b[b_offset + y_idx + l + 0]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 0] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l + 0] >> 0) & 3)
  29. + FLOAT_TYPE(data_b[b_offset + y_idx + l + 16]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 1] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l +16] >> 0) & 3)
  30. + FLOAT_TYPE(data_b[b_offset + y_idx + l + 32]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 2] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l + 0] >> 2) & 3)
  31. + FLOAT_TYPE(data_b[b_offset + y_idx + l + 48]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 3] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l +16] >> 2) & 3)
  32. + FLOAT_TYPE(data_b[b_offset + y_idx + l + 64]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 4] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l + 0] >> 4) & 3)
  33. + FLOAT_TYPE(data_b[b_offset + y_idx + l + 80]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 5] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l +16] >> 4) & 3)
  34. + FLOAT_TYPE(data_b[b_offset + y_idx + l + 96]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 6] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l + 0] >> 6) & 3)
  35. + FLOAT_TYPE(data_b[b_offset + y_idx + l +112]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 7] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l +16] >> 6) & 3);
  36. sum2 += FLOAT_TYPE(data_b[b_offset + y_idx + l + 0]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 0] >> 4) & 0xF)
  37. + FLOAT_TYPE(data_b[b_offset + y_idx + l + 16]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 1] >> 4) & 0xF)
  38. + FLOAT_TYPE(data_b[b_offset + y_idx + l + 32]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 2] >> 4) & 0xF)
  39. + FLOAT_TYPE(data_b[b_offset + y_idx + l + 48]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 3] >> 4) & 0xF)
  40. + FLOAT_TYPE(data_b[b_offset + y_idx + l + 64]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 4] >> 4) & 0xF)
  41. + FLOAT_TYPE(data_b[b_offset + y_idx + l + 80]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 5] >> 4) & 0xF)
  42. + FLOAT_TYPE(data_b[b_offset + y_idx + l + 96]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 6] >> 4) & 0xF)
  43. + FLOAT_TYPE(data_b[b_offset + y_idx + l +112]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 7] >> 4) & 0xF);
  44. }
  45. tmp[16 * ix + tid] += dall * sum1 - dmin * sum2;
  46. }
  47. // sum up partial sums and write back result
  48. barrier();
  49. [[unroll]] for (uint s = 16; s > 0; s >>= 1) {
  50. if (tid < s) {
  51. tmp[tid] += tmp[tid + s];
  52. }
  53. barrier();
  54. }
  55. if (tid == 0) {
  56. data_d[d_offset + row] = D_TYPE(tmp[0]);
  57. }
  58. }