mul_mat_vec_q6_k.comp 4.9 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879
  1. #version 450
  2. #include "mul_mat_vec_base.comp"
  3. layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in;
  4. shared FLOAT_TYPE tmp[32];
  5. void main() {
  6. const uint row = gl_WorkGroupID.x;
  7. uint a_offset, b_offset, d_offset;
  8. get_offsets(a_offset, b_offset, d_offset);
  9. const uint num_blocks_per_row = p.ncols / QUANT_K;
  10. const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row;
  11. const uint tid = gl_LocalInvocationID.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
  12. const uint ix = gl_LocalInvocationID.x%K_QUANTS_PER_ITERATION; // 0 or 0, 1
  13. const uint step = 16/K_QUANTS_PER_ITERATION; // 16 or 8
  14. const uint v_im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
  15. const uint v_in = tid - step*v_im; // 0...15 or 0...7
  16. #if K_QUANTS_PER_ITERATION == 1
  17. const uint l0 = v_in; // 0...15
  18. const uint is = 0;
  19. #else
  20. const uint l0 = 4 * v_in; // 0, 4, 8, ..., 28
  21. const uint is = v_in / 4;
  22. #endif
  23. const uint ql_offset = 64*v_im + l0;
  24. const uint qh_offset = 32*v_im + l0;
  25. const uint s_offset = 8*v_im + is;
  26. const uint y_offset = 128*v_im + l0;
  27. tmp[16 * ix + tid] = FLOAT_TYPE(0.0); // partial sum for thread in warp
  28. [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
  29. const uint y_idx = i * QUANT_K + y_offset;
  30. const FLOAT_TYPE d = FLOAT_TYPE(data_a[ib0 + i].d);
  31. #if K_QUANTS_PER_ITERATION == 1
  32. FLOAT_TYPE sum = FLOAT_TYPE(data_b[b_offset + y_idx + 0]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 0]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 0] & 0xF) | ((data_a[ib0 + i].qh[qh_offset + 0] & 0x03) << 4)) - 32)
  33. + FLOAT_TYPE(data_b[b_offset + y_idx + 16]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 1]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 16] & 0xF) | ((data_a[ib0 + i].qh[qh_offset + 16] & 0x03) << 4)) - 32)
  34. + FLOAT_TYPE(data_b[b_offset + y_idx + 32]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 2]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 32] & 0xF) | ((data_a[ib0 + i].qh[qh_offset + 0] & 0x0c) << 2)) - 32)
  35. + FLOAT_TYPE(data_b[b_offset + y_idx + 48]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 3]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 48] & 0xF) | ((data_a[ib0 + i].qh[qh_offset + 16] & 0x0c) << 2)) - 32)
  36. + FLOAT_TYPE(data_b[b_offset + y_idx + 64]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 4]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 0] >> 4) | ((data_a[ib0 + i].qh[qh_offset + 0] & 0x30) >> 0)) - 32)
  37. + FLOAT_TYPE(data_b[b_offset + y_idx + 80]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 5]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 16] >> 4) | ((data_a[ib0 + i].qh[qh_offset + 16] & 0x30) >> 0)) - 32)
  38. + FLOAT_TYPE(data_b[b_offset + y_idx + 96]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 6]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 32] >> 4) | ((data_a[ib0 + i].qh[qh_offset + 0] & 0xc0) >> 2)) - 32)
  39. + FLOAT_TYPE(data_b[b_offset + y_idx +112]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 7]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 48] >> 4) | ((data_a[ib0 + i].qh[qh_offset + 16] & 0xc0) >> 2)) - 32);
  40. tmp[16 * ix + tid] += sum;
  41. #else
  42. FLOAT_TYPE sum = FLOAT_TYPE(0.0);
  43. [[unroll]] for (int l = 0; l < 4; ++l) {
  44. sum += FLOAT_TYPE(data_b[b_offset + y_idx + l+ 0]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 0]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + l+ 0] & 0xF) | (((data_a[ib0 + i].qh[qh_offset + l] >> 0) & 3) << 4)) - 32)
  45. + FLOAT_TYPE(data_b[b_offset + y_idx + l+32]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 2]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + l+32] & 0xF) | (((data_a[ib0 + i].qh[qh_offset + l] >> 2) & 3) << 4)) - 32)
  46. + FLOAT_TYPE(data_b[b_offset + y_idx + l+64]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 4]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + l+ 0] >> 4) | (((data_a[ib0 + i].qh[qh_offset + l] >> 4) & 3) << 4)) - 32)
  47. + FLOAT_TYPE(data_b[b_offset + y_idx + l+96]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 6]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + l+32] >> 4) | (((data_a[ib0 + i].qh[qh_offset + l] >> 6) & 3) << 4)) - 32);
  48. }
  49. tmp[16 * ix + tid] += sum;
  50. #endif
  51. }
  52. // sum up partial sums and write back result
  53. barrier();
  54. [[unroll]] for (uint s = 16; s > 0; s >>= 1) {
  55. if (tid < s) {
  56. tmp[tid] += tmp[tid + s];
  57. }
  58. barrier();
  59. }
  60. if (tid == 0) {
  61. data_d[d_offset + row] = D_TYPE(tmp[0]);
  62. }
  63. }