ggml-opencl.cpp 386 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062
  1. #define CL_TARGET_OPENCL_VERSION GGML_OPENCL_TARGET_VERSION
  2. #define CL_USE_DEPRECATED_OPENCL_1_2_APIS
  3. // suppress warnings in CL headers for GCC and Clang
  4. #pragma GCC diagnostic ignored "-Woverlength-strings"
  5. #ifdef __clang__
  6. #pragma GCC diagnostic ignored "-Wgnu-anonymous-struct"
  7. #endif
  8. #include "ggml-opencl.h"
  9. #include "ggml-backend.h"
  10. #include "ggml-impl.h"
  11. #include "ggml-backend-impl.h"
  12. #include "ggml.h"
  13. #include <CL/cl.h>
  14. #include <string.h>
  15. #include <cstddef>
  16. #include <cstdint>
  17. #include <atomic>
  18. #include <fstream>
  19. #include <limits>
  20. #include <vector>
  21. #include <string>
  22. #include <cmath>
  23. #include <map>
  24. #include <memory>
  25. #include <charconv>
  26. #include <mutex>
  27. #undef MIN
  28. #undef MAX
  29. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  30. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  31. #define CEIL_DIV(M, N) (((M) + (N)-1) / (N))
  32. #define UNUSED(x) (void)(x)
  33. #define CL_CHECK(err) \
  34. do { \
  35. cl_int err_ = (err); \
  36. if (err_ != CL_SUCCESS) { \
  37. GGML_LOG_ERROR("ggml_opencl: %s error %d at %s:%d\n", \
  38. #err, err_, __FILE__, __LINE__); \
  39. GGML_ASSERT(0); \
  40. } \
  41. } while (0)
  42. //------------------------------------------------------------------------------
  43. // OpenCL
  44. //------------------------------------------------------------------------------
  45. bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor);
  46. enum GPU_FAMILY {
  47. ADRENO,
  48. INTEL,
  49. UNKNOWN,
  50. };
  51. enum ADRENO_GPU_GEN {
  52. ADRENO_UNKNOWN,
  53. A7X,
  54. A8X,
  55. X1E,
  56. };
  57. enum ADRENO_CL_COMPILER_TYPE {
  58. E031,
  59. DX,
  60. };
  61. struct ggml_cl_version {
  62. cl_uint major = 0;
  63. cl_uint minor = 0;
  64. };
  65. struct ggml_cl_compiler_version {
  66. ADRENO_CL_COMPILER_TYPE type;
  67. int major = -1;
  68. int minor = -1;
  69. int patch = -1;
  70. bool same(ADRENO_CL_COMPILER_TYPE t, int x, int y, int z) const {
  71. return major == x && minor == y && patch == z && type == t;
  72. }
  73. bool newer_than(ADRENO_CL_COMPILER_TYPE t, int x, int y, int z) const {
  74. return major*10000 + minor*100 + patch > x*10000 + y*100 + z && type == t;
  75. }
  76. bool newer_than_or_same(ADRENO_CL_COMPILER_TYPE t, int x, int y, int z) const {
  77. return same(t, x, y, z) || newer_than(t, x, y, z);
  78. }
  79. };
  80. static size_t align_to(size_t value, size_t to_alignment) {
  81. GGML_ASSERT(to_alignment && "Invalid alignment (must be non-zero)");
  82. GGML_ASSERT((to_alignment & (to_alignment - 1)) == 0 && "to_alignment must be power-of-two");
  83. return ((value + to_alignment - 1) / to_alignment) * to_alignment;
  84. }
  85. // Parses a version string of form "XX.YY ". On an error returns ggml_cl_version with all zeroes.
  86. static ggml_cl_version parse_cl_version(std::string_view str) {
  87. size_t major_str_begin = 0;
  88. size_t major_str_end = str.find(".", major_str_begin);
  89. if (major_str_end == std::string::npos) {
  90. return {};
  91. }
  92. size_t minor_str_begin = major_str_end + 1;
  93. size_t minor_str_end = str.find(" ", minor_str_begin);
  94. if (minor_str_end == std::string::npos) {
  95. return {};
  96. }
  97. cl_uint version_major;
  98. if (std::from_chars(str.data() + major_str_begin, str.data() + major_str_end, version_major).ec != std::errc{}) {
  99. return {};
  100. }
  101. cl_uint version_minor;
  102. if (std::from_chars(str.data() + minor_str_begin, str.data() + minor_str_end, version_minor).ec != std::errc{}) {
  103. return {};
  104. }
  105. return { version_major, version_minor };
  106. }
  107. // Returns OpenCL platform's version. On an error returns ggml_cl_version with all zeroes.
  108. static ggml_cl_version get_opencl_platform_version(cl_platform_id platform) {
  109. size_t param_size;
  110. CL_CHECK(clGetPlatformInfo(platform, CL_PLATFORM_VERSION, 0, nullptr, &param_size));
  111. std::unique_ptr<char[]> param_storage(new char[param_size]);
  112. CL_CHECK(clGetPlatformInfo(platform, CL_PLATFORM_VERSION, param_size, param_storage.get(), nullptr));
  113. auto param_value = std::string_view(param_storage.get(), param_size);
  114. const std::string version_prefix = "OpenCL "; // Suffix: "XX.YY <platform-specific-info>"
  115. if (param_value.find(version_prefix) != 0) {
  116. return {};
  117. }
  118. param_value.remove_prefix(version_prefix.length());
  119. return parse_cl_version(param_value);
  120. }
  121. // Return a version to use in OpenCL C compilation. On an error returns ggml_cl_version with all zeroes.
  122. static ggml_cl_version get_opencl_c_version(ggml_cl_version platform_version, cl_device_id device) {
  123. size_t param_size;
  124. #if CL_TARGET_OPENCL_VERSION >= 300
  125. if (platform_version.major >= 3) {
  126. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_OPENCL_C_ALL_VERSIONS, 0, nullptr, &param_size));
  127. if (!param_size) {
  128. return {};
  129. }
  130. std::unique_ptr<cl_name_version[]> versions(new cl_name_version[param_size]);
  131. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_OPENCL_C_ALL_VERSIONS, param_size, versions.get(), nullptr));
  132. unsigned versions_count = param_size / sizeof(cl_name_version);
  133. cl_version version_max = 0;
  134. for (unsigned i = 0; i < versions_count; i++) {
  135. version_max = std::max<cl_version>(versions[i].version, version_max);
  136. }
  137. return { CL_VERSION_MAJOR(version_max), CL_VERSION_MINOR(version_max) };
  138. }
  139. #else
  140. GGML_UNUSED(platform_version);
  141. #endif // CL_TARGET_OPENCL_VERSION >= 300
  142. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_OPENCL_C_VERSION, 0, nullptr, &param_size));
  143. if (!param_size) {
  144. return {};
  145. }
  146. std::unique_ptr<char[]> param_storage(new char[param_size]);
  147. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_OPENCL_C_VERSION, param_size, param_storage.get(), nullptr));
  148. auto param_value = std::string_view(param_storage.get(), param_size);
  149. const std::string version_prefix = "OpenCL C "; // Suffix: "XX.YY <platform-specific-info>"
  150. if (param_value.find(version_prefix) != 0) {
  151. return {};
  152. }
  153. param_value.remove_prefix(version_prefix.length());
  154. return parse_cl_version(param_value);
  155. }
  156. static ADRENO_GPU_GEN get_adreno_gpu_gen(const char *device_name) {
  157. if (strstr(device_name, "730") ||
  158. strstr(device_name, "740") ||
  159. strstr(device_name, "750")) {
  160. return ADRENO_GPU_GEN::A7X;
  161. }
  162. if (strstr(device_name, "830")) {
  163. return ADRENO_GPU_GEN::A8X;
  164. }
  165. if (strstr(device_name, "X1")) {
  166. return ADRENO_GPU_GEN::X1E;
  167. }
  168. return ADRENO_GPU_GEN::ADRENO_UNKNOWN;
  169. }
  170. static ggml_cl_compiler_version get_adreno_cl_compiler_version(const char *driver_version) {
  171. std::string driver_ver_str(driver_version);
  172. ADRENO_CL_COMPILER_TYPE type = ADRENO_CL_COMPILER_TYPE::E031;
  173. size_t compiler_ver_pos = driver_ver_str.find("E031");
  174. size_t compiler_ver_len = 13;
  175. size_t compiler_major_offset = 5;
  176. size_t compiler_minor_offset = 8;
  177. size_t compiler_patch_offset = 11;
  178. if (compiler_ver_pos == std::string::npos) {
  179. compiler_ver_pos = driver_ver_str.find("DX");
  180. if (compiler_ver_pos == std::string::npos) {
  181. return {};
  182. }
  183. type = ADRENO_CL_COMPILER_TYPE::DX;
  184. compiler_ver_len = 11;
  185. compiler_major_offset = 3;
  186. }
  187. std::string compiler_ver_str = driver_ver_str.substr(compiler_ver_pos, compiler_ver_len);
  188. int major = std::atoi(compiler_ver_str.substr(compiler_major_offset, 2).c_str());
  189. int minor = std::atoi(compiler_ver_str.substr(compiler_minor_offset, 2).c_str());
  190. int patch = std::atoi(compiler_ver_str.substr(compiler_patch_offset, 2).c_str());
  191. return { type, major, minor, patch };
  192. }
  193. // Profiling
  194. struct ProfilingInfo {
  195. std::string op_name;
  196. std::string kernel_name;
  197. cl_kernel kernel;
  198. cl_event evt;
  199. cl_ulong cmd_queued;
  200. cl_ulong cmd_submit;
  201. cl_ulong cmd_start;
  202. cl_ulong cmd_end;
  203. cl_ulong overhead_start;
  204. cl_ulong overhead_end;
  205. // For the times below, see spec for clGetEventProfilingInfo
  206. // The time kernel spent in cmd queue - SUBMIT - QUEUED
  207. cl_ulong cmd_queued_duration_ns;
  208. // The time kernel spent for submission - START - SUBMIT
  209. cl_ulong cmd_submit_duration_ns;
  210. // Kernel execution time in nanoseconds - END - START
  211. cl_ulong cmd_duration_ns;
  212. // The time for the kernel to complete - COMPLETE - END
  213. cl_ulong cmd_complete_duration_ns;
  214. // Total time to finish the kernel - COMPELTE - QUEUED
  215. cl_ulong cmd_total_duration_ns;
  216. // Global and local work sizes.
  217. size_t global_size[3];
  218. size_t local_size[3];
  219. // Op output size.
  220. size_t output_size[4];
  221. };
  222. static void populateProfilingInfo(
  223. ProfilingInfo& info, cl_event evt, cl_kernel kernel, cl_uint work_dim,
  224. size_t global_size[3], size_t local_size[3],
  225. const ggml_tensor * tensor) {
  226. info.op_name = tensor->name;
  227. info.kernel = kernel;
  228. info.evt = evt;
  229. // 0 means not specified, e.g., 2D workgroup, or NULL for driver to choose
  230. info.local_size[0] = 0;
  231. info.local_size[1] = 0;
  232. info.local_size[2] = 0;
  233. info.global_size[0] = 0;
  234. info.global_size[1] = 0;
  235. info.global_size[2] = 0;
  236. if (local_size) {
  237. for (cl_uint i = 0; i < work_dim; ++i) {
  238. info.local_size[i] = local_size[i];
  239. }
  240. }
  241. for (cl_uint i = 0; i < work_dim; ++i) {
  242. info.global_size[i] = global_size[i];
  243. }
  244. info.output_size[0] = tensor->ne[0];
  245. info.output_size[1] = tensor->ne[1];
  246. info.output_size[2] = tensor->ne[2];
  247. info.output_size[3] = tensor->ne[3];
  248. }
  249. struct ggml_backend_opencl_context;
  250. // backend device context
  251. struct ggml_backend_opencl_device_context {
  252. cl_platform_id platform;
  253. std::string platform_name;
  254. cl_device_id device;
  255. std::string device_name;
  256. cl_device_type device_type;
  257. std::string device_version;
  258. // Initialized by ggml_cl2_init().
  259. ggml_backend_opencl_context * backend_ctx = nullptr;
  260. // Initialized by ggml_backend_opencl_device_get_buffer_type()
  261. ggml_backend_buffer_type buffer_type;
  262. cl_context context = nullptr;
  263. };
  264. // backend context
  265. struct ggml_backend_opencl_context {
  266. int ref_count;
  267. cl_device_id device;
  268. std::string device_name;
  269. std::string driver_version;
  270. GPU_FAMILY gpu_family;
  271. ADRENO_GPU_GEN adreno_gen;
  272. cl_int alignment;
  273. size_t max_alloc_size;
  274. size_t max_workgroup_size;
  275. bool fp16_support;
  276. bool has_vector_subgroup_broadcast;
  277. bool disable_fusion;
  278. ggml_cl_compiler_version adreno_cl_compiler_version;
  279. int adreno_wave_size;
  280. cl_bool non_uniform_workgroups;
  281. cl_context context;
  282. cl_command_queue queue;
  283. cl_program program_add;
  284. cl_program program_add_id;
  285. cl_program program_clamp;
  286. cl_program program_cpy;
  287. cl_program program_cvt;
  288. cl_program program_diag_mask_inf;
  289. cl_program program_gelu;
  290. cl_program program_gemv_noshuffle_general;
  291. cl_program program_gemv_noshuffle;
  292. cl_program program_get_rows;
  293. cl_program program_set_rows;
  294. cl_program program_glu;
  295. cl_program program_im2col_f16;
  296. cl_program program_im2col_f32;
  297. cl_program program_mul_mat_Ab_Bi_8x4;
  298. cl_program program_mul_mv_q4_0_f32;
  299. cl_program program_mul_mv_q4_0_f32_v;
  300. cl_program program_mul_mv_q4_0_f32_8x_flat;
  301. cl_program program_mul_mv_q4_0_f32_1d_8x_flat;
  302. cl_program program_mul_mv_q4_0_f32_1d_16x_flat;
  303. cl_program program_mul_mv_q6_K;
  304. cl_program program_mul_mv_q8_0_f32, program_mul_mv_q8_0_f32_flat;
  305. cl_program program_mul_mv_mxfp4_f32;
  306. cl_program program_mul_mv_mxfp4_f32_flat;
  307. cl_program program_mul_mv_f16_f16;
  308. cl_program program_mul_mv_f16_f32_1row;
  309. cl_program program_mul_mv_f16_f32_l4;
  310. cl_program program_mul_mv_f16_f32;
  311. cl_program program_mul_mv_f32_f32;
  312. cl_program program_mul;
  313. cl_program program_mul_mat_f16_f32_tiled;
  314. cl_program program_div;
  315. cl_program program_sub;
  316. cl_program program_norm;
  317. cl_program program_relu;
  318. cl_program program_rms_norm;
  319. cl_program program_group_norm;
  320. cl_program program_rope;
  321. cl_program program_scale;
  322. cl_program program_silu;
  323. cl_program program_sigmoid;
  324. cl_program program_softmax_f32;
  325. cl_program program_softmax_f16;
  326. cl_program program_softmax_4_f32;
  327. cl_program program_softmax_4_f16;
  328. cl_program program_argsort_f32_i32;
  329. cl_program program_sum_rows_f32;
  330. cl_program program_repeat;
  331. cl_program program_pad;
  332. cl_program program_tanh;
  333. cl_program program_upscale;
  334. cl_program program_concat;
  335. cl_program program_conv_2d_f16;
  336. cl_program program_conv_2d_f32;
  337. cl_program program_conv_2d_f16_f32;
  338. cl_program program_tsembd;
  339. cl_program program_gemv_moe_mxfp4_f32, program_gemm_moe_mxfp4_f32;
  340. cl_program program_mul_mv_id_q4_0_f32_8x_flat;
  341. cl_program program_mul_mv_id_q8_0_f32, program_mul_mv_id_q8_0_f32_flat;
  342. cl_program program_mul_mv_id_mxfp4_f32;
  343. cl_program program_mul_mv_id_mxfp4_f32_flat;
  344. cl_program program_mul_mm_f32_f32_l4_lm;
  345. cl_program program_mul_mm_f16_f32_l4_lm;
  346. cl_program program_mul_mm_q8_0_f32_l4_lm;
  347. cl_kernel kernel_add, kernel_add_row, kernel_add_f16, kernel_add_row_f16;
  348. cl_kernel kernel_mul, kernel_mul_row, kernel_mul_f16, kernel_mul_row_f16;
  349. cl_kernel kernel_div, kernel_div_row, kernel_div_f16, kernel_div_row_f16;
  350. cl_kernel kernel_sub, kernel_sub_row, kernel_sub_f16, kernel_sub_row_f16;
  351. cl_kernel kernel_add_id;
  352. cl_kernel kernel_scale;
  353. cl_kernel kernel_silu, kernel_silu_4;
  354. cl_kernel kernel_gelu, kernel_gelu_4;
  355. cl_kernel kernel_gelu_erf, kernel_gelu_erf_4;
  356. cl_kernel kernel_gelu_quick, kernel_gelu_quick_4;
  357. cl_kernel kernel_relu;
  358. cl_kernel kernel_sigmoid_f32, kernel_sigmoid_f16;
  359. cl_kernel kernel_clamp;
  360. cl_kernel kernel_geglu, kernel_reglu, kernel_swiglu, kernel_swiglu_oai, kernel_geglu_erf, kernel_geglu_quick,
  361. kernel_geglu_f16, kernel_reglu_f16, kernel_swiglu_f16, kernel_geglu_erf_f16, kernel_geglu_quick_f16;
  362. cl_kernel kernel_norm, kernel_norm_mul_add;
  363. cl_kernel kernel_rms_norm, kernel_rms_norm_mul;
  364. cl_kernel kernel_group_norm, kernel_group_norm_mul_add;
  365. cl_kernel kernel_diag_mask_inf, kernel_diag_mask_inf_8;
  366. cl_kernel kernel_soft_max, kernel_soft_max_4;
  367. cl_kernel kernel_soft_max_f16, kernel_soft_max_4_f16;
  368. std::map<std::pair<int, int>, cl_kernel> kernels_flash_attn_f16;
  369. std::map<std::pair<int, int>, cl_kernel> kernels_flash_attn_f16_q1;
  370. std::map<std::pair<int, int>, cl_kernel> kernels_flash_attn_f32;
  371. std::map<std::pair<int, int>, cl_kernel> kernels_flash_attn_f32_q1;
  372. std::map<std::pair<int, int>, cl_kernel> kernels_flash_attn_f32_f16;
  373. std::map<std::pair<int, int>, cl_kernel> kernels_flash_attn_f32_f16_q1;
  374. std::map<std::pair<int, int>, int> kernels_flash_attn_bm;
  375. std::map<std::pair<int, int>, int> kernels_flash_attn_bn;
  376. cl_kernel kernel_get_rows_f32, kernel_get_rows_f16, kernel_get_rows_q4_0;
  377. cl_kernel kernel_set_rows_f32_i64, kernel_set_rows_f32_i32, kernel_set_rows_f16_i64, kernel_set_rows_f16_i32;
  378. cl_kernel kernel_rope_norm_f32, kernel_rope_norm_f16, kernel_rope_neox_f32, kernel_rope_neox_f16;
  379. cl_kernel kernel_rope_multi_f32, kernel_rope_multi_f16, kernel_rope_vision_f32, kernel_rope_vision_f16;
  380. cl_kernel kernel_cpy_f16_f16, kernel_cpy_f16_f32, kernel_cpy_f32_f16, kernel_cpy_f32_f32;
  381. cl_kernel kernel_mul_mat_f32_f32;
  382. cl_kernel kernel_mul_mat_f16_f16;
  383. cl_kernel kernel_mul_mat_f16_f32_1row;
  384. cl_kernel kernel_mul_mat_f16_f32;
  385. cl_kernel kernel_mul_mat_f16_f32_l4;
  386. cl_kernel kernel_mul_mat_f16_f32_tiled;
  387. cl_kernel kernel_mul_mat_q4_0_f32, kernel_mul_mat_q4_0_f32_v;
  388. cl_kernel kernel_convert_block_q4_0, kernel_restore_block_q4_0;
  389. cl_kernel kernel_convert_block_mxfp4, kernel_convert_block_mxfp4_trans, kernel_restore_block_mxfp4, kernel_restore_block_mxfp4_trans;
  390. cl_kernel kernel_convert_block_q8_0, kernel_restore_block_q8_0;
  391. cl_kernel kernel_mul_mat_q4_0_f32_8x_flat;
  392. cl_kernel kernel_convert_block_q4_0_noshuffle;
  393. cl_kernel kernel_mul_mat_q4_0_f32_1d_8x_flat, kernel_mul_mat_q4_0_f32_1d_16x_flat;
  394. cl_kernel kernel_mul_mv_q6_K_f32;
  395. cl_kernel kernel_mul_mv_mxfp4_f32, kernel_mul_mv_mxfp4_f32_flat;
  396. cl_kernel kernel_mul_mv_q8_0_f32, kernel_mul_mv_q8_0_f32_flat;
  397. cl_kernel kernel_im2col_f32, kernel_im2col_f16;
  398. cl_kernel kernel_argsort_f32_i32;
  399. cl_kernel kernel_sum_rows_f32;
  400. cl_kernel kernel_repeat;
  401. cl_kernel kernel_pad;
  402. cl_kernel kernel_tanh_f32_nd;
  403. cl_kernel kernel_tanh_f16_nd;
  404. cl_kernel kernel_upscale;
  405. cl_kernel kernel_upscale_bilinear;
  406. cl_kernel kernel_concat_f32_contiguous;
  407. cl_kernel kernel_concat_f32_non_contiguous;
  408. cl_kernel kernel_conv_2d_f16;
  409. cl_kernel kernel_conv_2d_f32;
  410. cl_kernel kernel_conv_2d_f16_f32;
  411. cl_kernel kernel_timestep_embedding;
  412. cl_kernel kernel_gemv_moe_mxfp4_f32, kernel_gemm_moe_mxfp4_f32;
  413. cl_kernel kernel_mul_mv_id_q4_0_f32_8x_flat;
  414. cl_kernel kernel_mul_mv_id_q8_0_f32, kernel_mul_mv_id_q8_0_f32_flat;
  415. cl_kernel kernel_mul_mv_id_mxfp4_f32;
  416. cl_kernel kernel_mul_mv_id_mxfp4_f32_flat;
  417. cl_kernel kernel_mul_mm_f32_f32_l4_lm;
  418. cl_kernel kernel_mul_mm_f16_f32_l4_lm;
  419. cl_kernel kernel_mul_mm_q8_0_f32_l4_lm;
  420. std::vector<ProfilingInfo> profiling_info;
  421. void write_profiling_info() {
  422. FILE * fperf = fopen("cl_profiling.csv", "w");
  423. if (!fperf) {
  424. GGML_LOG_ERROR("Failed to open cl_profiling.csv\n");
  425. return;
  426. }
  427. // Populate profiling info
  428. for (ProfilingInfo & info : profiling_info) {
  429. cl_ulong cmd_queued;
  430. cl_ulong cmd_submit;
  431. cl_ulong cmd_start;
  432. cl_ulong cmd_end;
  433. cl_ulong cmd_complete;
  434. CL_CHECK(clWaitForEvents(1, &info.evt));
  435. CL_CHECK(clGetEventProfilingInfo(
  436. info.evt, CL_PROFILING_COMMAND_QUEUED, sizeof(cl_ulong), &cmd_queued, NULL));
  437. CL_CHECK(clGetEventProfilingInfo(
  438. info.evt, CL_PROFILING_COMMAND_SUBMIT, sizeof(cl_ulong), &cmd_submit, NULL));
  439. CL_CHECK(clGetEventProfilingInfo(
  440. info.evt, CL_PROFILING_COMMAND_START, sizeof(cl_ulong), &cmd_start, NULL));
  441. CL_CHECK(clGetEventProfilingInfo(
  442. info.evt, CL_PROFILING_COMMAND_END, sizeof(cl_ulong), &cmd_end, NULL));
  443. CL_CHECK(clGetEventProfilingInfo(
  444. info.evt, CL_PROFILING_COMMAND_COMPLETE, sizeof(cl_ulong), &cmd_complete, NULL));
  445. CL_CHECK(clReleaseEvent(info.evt));
  446. char kernel_name[512];
  447. CL_CHECK(clGetKernelInfo(info.kernel, CL_KERNEL_FUNCTION_NAME,
  448. sizeof(kernel_name), kernel_name, NULL));
  449. info.kernel_name = kernel_name;
  450. info.cmd_queued = cmd_queued;
  451. info.cmd_submit = cmd_submit;
  452. info.cmd_start = cmd_start;
  453. info.cmd_end = cmd_end;
  454. info.cmd_queued_duration_ns = cmd_submit - cmd_queued;
  455. info.cmd_submit_duration_ns = cmd_start - cmd_submit;
  456. info.cmd_duration_ns = cmd_end - cmd_start;
  457. info.cmd_complete_duration_ns = cmd_complete - cmd_end;
  458. info.cmd_total_duration_ns = cmd_complete - cmd_queued;
  459. }
  460. // Dump a csv
  461. float total_kernel_time = 0;
  462. fprintf(fperf, "op name, kernel name, queued duration (ms), submit duration(ms), exec duration (ms), complete duration (ms), total duration (ms), global size, local size, output size\n");
  463. for (const ProfilingInfo & info : profiling_info) {
  464. total_kernel_time += info.cmd_duration_ns/1.e6f;
  465. fprintf(fperf, "%s,%s,%f,%f,%f,%f,%f,%zux%zux%zu,%zux%zux%zu,%zux%zux%zux%zu\n",
  466. info.op_name.c_str(), info.kernel_name.c_str(),
  467. info.cmd_queued_duration_ns/1.e6f,
  468. info.cmd_submit_duration_ns/1.e6f,
  469. info.cmd_duration_ns/1.e6f,
  470. info.cmd_complete_duration_ns/1.e6f,
  471. info.cmd_total_duration_ns/1.e6f,
  472. info.global_size[0], info.global_size[1], info.global_size[2],
  473. info.local_size[0], info.local_size[1], info.local_size[2],
  474. info.output_size[0], info.output_size[1], info.output_size[2], info.output_size[3]);
  475. }
  476. fclose(fperf);
  477. GGML_LOG_INFO("ggml_opencl: total kernel time: %f\n", total_kernel_time);
  478. // Dump a simple chrome trace
  479. FILE* ftrace = fopen("cl_trace.json", "w");
  480. if (!ftrace) {
  481. GGML_LOG_ERROR("Failed to open cl_trace.json\n");
  482. return;
  483. }
  484. fprintf(ftrace, "[\n");
  485. for (const ProfilingInfo & info : profiling_info) {
  486. fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"B\", \"ts\": %llu, \"pid\": \"\", \"tid\": \"Host\"},\n",
  487. info.kernel_name.c_str(), info.cmd_queued/1000);
  488. fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"E\", \"ts\": %llu, \"pid\": \"\", \"tid\": \"Host\"},\n",
  489. info.kernel_name.c_str(), info.cmd_submit/1000);
  490. fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"B\", \"ts\": %llu, \"pid\": \"\", \"tid\": \"Device\"},\n",
  491. info.kernel_name.c_str(), info.cmd_start/1000);
  492. fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"E\", \"ts\": %llu, \"pid\": \"\", \"tid\": \"Device\"},\n",
  493. info.kernel_name.c_str(), info.cmd_end/1000);
  494. }
  495. fclose(ftrace);
  496. }
  497. size_t get_kernel_workgroup_size(cl_kernel kernel) const {
  498. size_t workgroup_size = 0;
  499. size_t ret_size = 0;
  500. CL_CHECK(
  501. clGetKernelWorkGroupInfo(kernel, device, CL_KERNEL_WORK_GROUP_SIZE,
  502. sizeof(size_t), &workgroup_size, &ret_size));
  503. GGML_ASSERT(sizeof(size_t) == ret_size);
  504. return workgroup_size;
  505. }
  506. void enqueue_ndrange_kernel(cl_kernel kernel, cl_uint work_dim, size_t *global_work_size, size_t *local_work_size, const ggml_tensor * tensor) {
  507. #ifdef GGML_OPENCL_PROFILING
  508. cl_event evt;
  509. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, work_dim, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  510. profiling_info.emplace_back();
  511. populateProfilingInfo(profiling_info.back(), evt, kernel, work_dim, global_work_size, local_work_size, tensor);
  512. #else
  513. GGML_UNUSED(tensor);
  514. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, work_dim, NULL, global_work_size, local_work_size, 0, NULL, NULL));
  515. #endif
  516. }
  517. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  518. // Transpose kernels
  519. cl_program program_transpose;
  520. cl_kernel kernel_transpose_32;
  521. cl_kernel kernel_transpose_32_16;
  522. cl_kernel kernel_transpose_16;
  523. cl_kernel kernel_transpose_16_4x1;
  524. cl_mem A_s_d_max; // max scale buffer size for transpose
  525. cl_mem A_q_d_max; // max weight buffer size for transpose
  526. cl_mem B_d_max; // max activation buffer size for transpose
  527. // Gemm and Gemv related programs, kernels, etc
  528. cl_program program_CL_gemm;
  529. cl_program program_CL_gemv_general;
  530. cl_program program_CL_gemv_4096_1_11008;
  531. cl_program program_CL_gemv_4096_1_4096;
  532. cl_program program_CL_gemv_11008_1_4096;
  533. cl_program program_CL_gemv_32000_1_4096;
  534. cl_kernel CL_mul_mat_Ab_Bi_8x4;
  535. cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general;
  536. cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008;
  537. cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096;
  538. cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096;
  539. cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096;
  540. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  541. void free() {
  542. ref_count--;
  543. if (ref_count == 0) {
  544. #ifdef GGML_OPENCL_PROFILING
  545. write_profiling_info();
  546. profiling_info.clear();
  547. #endif
  548. }
  549. }
  550. };
  551. // All registered devices with a default device in the front.
  552. static std::vector<ggml_backend_device> g_ggml_backend_opencl_devices;
  553. inline std::string read_file(const std::string &path) {
  554. std::ifstream ifs(path);
  555. if (!ifs) {
  556. return "";
  557. }
  558. std::string text;
  559. ifs.seekg(0, std::ios::end);
  560. text.resize(ifs.tellg());
  561. ifs.seekg(0, std::ios::beg);
  562. ifs.read(&text[0], text.size());
  563. return text;
  564. }
  565. static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer, const std::string &compile_opts) {
  566. cl_program p;
  567. char *program_log;
  568. size_t program_size;
  569. size_t log_size;
  570. int err;
  571. program_size = strlen(program_buffer);
  572. p = clCreateProgramWithSource(ctx, 1, (const char**)&program_buffer, &program_size, &err);
  573. if(err < 0) {
  574. GGML_LOG_ERROR("OpenCL error creating program");
  575. exit(1);
  576. }
  577. err = clBuildProgram(p, 0, NULL, compile_opts.c_str(), NULL, NULL);
  578. if(err < 0) {
  579. clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);
  580. program_log = (char*) malloc(log_size + 1);
  581. program_log[log_size] = '\0';
  582. clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, log_size + 1, program_log, NULL);
  583. GGML_LOG_ERROR("ggml_opencl: kernel compile error:\n\n%s\n", program_log);
  584. free(program_log);
  585. exit(1);
  586. }
  587. return p;
  588. }
  589. static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_version opencl_c_version) {
  590. cl_int err;
  591. // compiler options for general kernels
  592. auto opencl_c_std =
  593. std::string("CL") + std::to_string(opencl_c_version.major) + "." + std::to_string(opencl_c_version.minor);
  594. std::string compile_opts = std::string("-cl-std=") + opencl_c_std +
  595. " -cl-mad-enable -cl-unsafe-math-optimizations"
  596. " -cl-finite-math-only -cl-fast-relaxed-math";
  597. GGML_LOG_INFO("ggml_opencl: loading OpenCL kernels");
  598. // add
  599. {
  600. #ifdef GGML_OPENCL_EMBED_KERNELS
  601. const std::string kernel_src {
  602. #include "add.cl.h"
  603. };
  604. #else
  605. const std::string kernel_src = read_file("add.cl");
  606. #endif
  607. backend_ctx->program_add =
  608. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  609. CL_CHECK((backend_ctx->kernel_add = clCreateKernel(backend_ctx->program_add, "kernel_add", &err), err));
  610. CL_CHECK((backend_ctx->kernel_add_row = clCreateKernel(backend_ctx->program_add, "kernel_add_row", &err), err));
  611. CL_CHECK((backend_ctx->kernel_add_f16 = clCreateKernel(backend_ctx->program_add, "kernel_add_f16", &err), err));
  612. CL_CHECK((backend_ctx->kernel_add_row_f16 = clCreateKernel(backend_ctx->program_add, "kernel_add_row_f16", &err), err));
  613. GGML_LOG_CONT(".");
  614. }
  615. // add_id
  616. {
  617. #ifdef GGML_OPENCL_EMBED_KERNELS
  618. const std::string kernel_src {
  619. #include "add_id.cl.h"
  620. };
  621. #else
  622. const std::string kernel_src = read_file("add_id.cl");
  623. #endif
  624. backend_ctx->program_add_id =
  625. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  626. CL_CHECK((backend_ctx->kernel_add_id = clCreateKernel(backend_ctx->program_add_id, "kernel_add_id", &err), err));
  627. GGML_LOG_CONT(".");
  628. }
  629. // clamp
  630. {
  631. #ifdef GGML_OPENCL_EMBED_KERNELS
  632. const std::string kernel_src {
  633. #include "clamp.cl.h"
  634. };
  635. #else
  636. const std::string kernel_src = read_file("clamp.cl");
  637. #endif
  638. backend_ctx->program_clamp =
  639. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  640. CL_CHECK((backend_ctx->kernel_clamp = clCreateKernel(backend_ctx->program_clamp, "kernel_clamp", &err), err));
  641. GGML_LOG_CONT(".");
  642. }
  643. // cpy
  644. {
  645. #ifdef GGML_OPENCL_EMBED_KERNELS
  646. const std::string kernel_src {
  647. #include "cpy.cl.h"
  648. };
  649. #else
  650. const std::string kernel_src = read_file("cpy.cl");
  651. #endif
  652. backend_ctx->program_cpy =
  653. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  654. CL_CHECK((backend_ctx->kernel_cpy_f16_f16 = clCreateKernel(backend_ctx->program_cpy, "kernel_cpy_f16_f16", &err), err));
  655. CL_CHECK((backend_ctx->kernel_cpy_f16_f32 = clCreateKernel(backend_ctx->program_cpy, "kernel_cpy_f16_f32", &err), err));
  656. CL_CHECK((backend_ctx->kernel_cpy_f32_f16 = clCreateKernel(backend_ctx->program_cpy, "kernel_cpy_f32_f16", &err), err));
  657. CL_CHECK((backend_ctx->kernel_cpy_f32_f32 = clCreateKernel(backend_ctx->program_cpy, "kernel_cpy_f32_f32", &err), err));
  658. GGML_LOG_CONT(".");
  659. }
  660. // cvt
  661. {
  662. #ifdef GGML_OPENCL_EMBED_KERNELS
  663. const std::string kernel_src {
  664. #include "cvt.cl.h"
  665. };
  666. #else
  667. const std::string kernel_src = read_file("cvt.cl");
  668. #endif
  669. backend_ctx->program_cvt =
  670. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  671. CL_CHECK((backend_ctx->kernel_convert_block_q4_0_noshuffle = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_q4_0_noshuffle", &err), err));
  672. CL_CHECK((backend_ctx->kernel_convert_block_q4_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_q4_0", &err), err));
  673. CL_CHECK((backend_ctx->kernel_restore_block_q4_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_q4_0", &err), err));
  674. CL_CHECK((backend_ctx->kernel_convert_block_mxfp4 = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_mxfp4", &err), err));
  675. CL_CHECK((backend_ctx->kernel_convert_block_mxfp4_trans = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_mxfp4_trans", &err), err));
  676. CL_CHECK((backend_ctx->kernel_restore_block_mxfp4_trans = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_mxfp4_trans", &err), err));
  677. CL_CHECK((backend_ctx->kernel_restore_block_mxfp4 = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_mxfp4", &err), err));
  678. CL_CHECK((backend_ctx->kernel_convert_block_q8_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_q8_0", &err), err));
  679. CL_CHECK((backend_ctx->kernel_restore_block_q8_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_q8_0", &err), err));
  680. GGML_LOG_CONT(".");
  681. }
  682. // diag_mask_inf
  683. {
  684. #ifdef GGML_OPENCL_EMBED_KERNELS
  685. const std::string kernel_src {
  686. #include "diag_mask_inf.cl.h"
  687. };
  688. #else
  689. const std::string kernel_src = read_file("diag_mask_inf.cl");
  690. #endif
  691. backend_ctx->program_diag_mask_inf =
  692. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  693. CL_CHECK((backend_ctx->kernel_diag_mask_inf_8 = clCreateKernel(backend_ctx->program_diag_mask_inf, "kernel_diag_mask_inf_8", &err), err));
  694. CL_CHECK((backend_ctx->kernel_diag_mask_inf = clCreateKernel(backend_ctx->program_diag_mask_inf, "kernel_diag_mask_inf", &err), err));
  695. GGML_LOG_CONT(".");
  696. }
  697. // gelu
  698. {
  699. #ifdef GGML_OPENCL_EMBED_KERNELS
  700. const std::string kernel_src {
  701. #include "gelu.cl.h"
  702. };
  703. #else
  704. const std::string kernel_src = read_file("gelu.cl");
  705. #endif
  706. backend_ctx->program_gelu =
  707. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  708. CL_CHECK((backend_ctx->kernel_gelu = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu", &err), err));
  709. CL_CHECK((backend_ctx->kernel_gelu_4 = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_4", &err), err));
  710. CL_CHECK((backend_ctx->kernel_gelu_erf = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_erf", &err), err));
  711. CL_CHECK((backend_ctx->kernel_gelu_erf_4 = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_erf_4", &err), err));
  712. CL_CHECK((backend_ctx->kernel_gelu_quick = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_quick", &err), err));
  713. CL_CHECK((backend_ctx->kernel_gelu_quick_4 = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_quick_4", &err), err));
  714. GGML_LOG_CONT(".");
  715. }
  716. // glu
  717. {
  718. #ifdef GGML_OPENCL_EMBED_KERNELS
  719. const std::string kernel_src {
  720. #include "glu.cl.h"
  721. };
  722. #else
  723. const std::string kernel_src = read_file("glu.cl");
  724. #endif
  725. backend_ctx->program_glu =
  726. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  727. CL_CHECK((backend_ctx->kernel_geglu = clCreateKernel(backend_ctx->program_glu, "kernel_geglu", &err), err));
  728. CL_CHECK((backend_ctx->kernel_reglu = clCreateKernel(backend_ctx->program_glu, "kernel_reglu", &err), err));
  729. CL_CHECK((backend_ctx->kernel_swiglu = clCreateKernel(backend_ctx->program_glu, "kernel_swiglu", &err), err));
  730. CL_CHECK((backend_ctx->kernel_swiglu_oai = clCreateKernel(backend_ctx->program_glu, "kernel_swiglu_oai", &err), err));
  731. CL_CHECK((backend_ctx->kernel_geglu_erf = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_erf", &err), err));
  732. CL_CHECK((backend_ctx->kernel_geglu_quick = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_quick", &err), err));
  733. CL_CHECK((backend_ctx->kernel_geglu_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_f16", &err), err));
  734. CL_CHECK((backend_ctx->kernel_reglu_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_reglu_f16", &err), err));
  735. CL_CHECK((backend_ctx->kernel_swiglu_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_swiglu_f16", &err), err));
  736. CL_CHECK((backend_ctx->kernel_geglu_erf_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_erf_f16", &err), err));
  737. CL_CHECK((backend_ctx->kernel_geglu_quick_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_quick_f16", &err), err));
  738. GGML_LOG_CONT(".");
  739. }
  740. // get_rows
  741. {
  742. #ifdef GGML_OPENCL_EMBED_KERNELS
  743. const std::string kernel_src {
  744. #include "get_rows.cl.h"
  745. };
  746. #else
  747. const std::string kernel_src = read_file("get_rows.cl");
  748. #endif
  749. backend_ctx->program_get_rows =
  750. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  751. CL_CHECK((backend_ctx->kernel_get_rows_f32 = clCreateKernel(backend_ctx->program_get_rows, "kernel_get_rows_f32", &err), err));
  752. CL_CHECK((backend_ctx->kernel_get_rows_f16 = clCreateKernel(backend_ctx->program_get_rows, "kernel_get_rows_f16", &err), err));
  753. CL_CHECK((backend_ctx->kernel_get_rows_q4_0 = clCreateKernel(backend_ctx->program_get_rows, "kernel_get_rows_q4_0", &err), err));
  754. GGML_LOG_CONT(".");
  755. }
  756. // im2col_f32
  757. {
  758. #ifdef GGML_OPENCL_EMBED_KERNELS
  759. const std::string kernel_src {
  760. #include "im2col_f32.cl.h"
  761. };
  762. #else
  763. const std::string kernel_src = read_file("im2col_f32.cl");
  764. #endif
  765. backend_ctx->program_im2col_f32 =
  766. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  767. CL_CHECK((backend_ctx->kernel_im2col_f32 = clCreateKernel(backend_ctx->program_im2col_f32, "kernel_im2col_f32", &err), err));
  768. GGML_LOG_CONT(".");
  769. }
  770. // im2col_f16
  771. {
  772. #ifdef GGML_OPENCL_EMBED_KERNELS
  773. const std::string kernel_src {
  774. #include "im2col_f16.cl.h"
  775. };
  776. #else
  777. const std::string kernel_src = read_file("im2col_f16.cl");
  778. #endif
  779. backend_ctx->program_im2col_f16 =
  780. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  781. CL_CHECK((backend_ctx->kernel_im2col_f16 = clCreateKernel(backend_ctx->program_im2col_f16, "kernel_im2col_f16", &err), err));
  782. GGML_LOG_CONT(".");
  783. }
  784. // mul_mv_q4_0_f32
  785. {
  786. #ifdef GGML_OPENCL_EMBED_KERNELS
  787. const std::string kernel_src {
  788. #include "mul_mv_q4_0_f32.cl.h"
  789. };
  790. #else
  791. const std::string kernel_src = read_file("mul_mv_q4_0_f32.cl");
  792. #endif
  793. backend_ctx->program_mul_mv_q4_0_f32 =
  794. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  795. CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32 = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32, "kernel_mul_mat_q4_0_f32", &err), err));
  796. GGML_LOG_CONT(".");
  797. }
  798. // mul_mv_q4_0_f32_v
  799. {
  800. #ifdef GGML_OPENCL_EMBED_KERNELS
  801. const std::string kernel_src {
  802. #include "mul_mv_q4_0_f32_v.cl.h"
  803. };
  804. #else
  805. const std::string kernel_src = read_file("mul_mv_q4_0_f32_v.cl");
  806. #endif
  807. backend_ctx->program_mul_mv_q4_0_f32_v =
  808. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  809. CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_v = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32_v, "kernel_mul_mat_q4_0_f32_v", &err), err));
  810. GGML_LOG_CONT(".");
  811. }
  812. // mul_mv_q4_0_f32_8x_flat
  813. {
  814. #ifdef GGML_OPENCL_EMBED_KERNELS
  815. const std::string kernel_src {
  816. #include "mul_mv_q4_0_f32_8x_flat.cl.h"
  817. };
  818. #else
  819. const std::string kernel_src = read_file("mul_mv_q4_0_f32_8x_flat.cl");
  820. #endif
  821. backend_ctx->program_mul_mv_q4_0_f32_8x_flat =
  822. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  823. CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32_8x_flat, "kernel_mul_mat_q4_0_f32_8x_flat", &err), err));
  824. GGML_LOG_CONT(".");
  825. }
  826. // mul_mv_q4_0_f32_1d_8x_flat
  827. // This kernel does not compiler on Adreno cl compiler 38.01. Skip it for
  828. // those compiler versions since it is anyway not used for Adreno.
  829. if (backend_ctx->gpu_family != ADRENO ||
  830. backend_ctx->adreno_cl_compiler_version.newer_than_or_same(E031, 38, 11, 0) ||
  831. backend_ctx->adreno_cl_compiler_version.type == DX) {
  832. #ifdef GGML_OPENCL_EMBED_KERNELS
  833. const std::string kernel_src {
  834. #include "mul_mv_q4_0_f32_1d_8x_flat.cl.h"
  835. };
  836. #else
  837. const std::string kernel_src = read_file("mul_mv_q4_0_f32_1d_8x_flat.cl");
  838. #endif
  839. backend_ctx->program_mul_mv_q4_0_f32_1d_8x_flat =
  840. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  841. CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_1d_8x_flat = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32_1d_8x_flat, "kernel_mul_mat_q4_0_f32_1d_8x_flat", &err), err));
  842. GGML_LOG_CONT(".");
  843. }
  844. // mul_mv_q4_0_f32_1d_16x_flat
  845. // This kernel does not compiler on Adreno cl compiler 38.01. Skip it for
  846. // those compiler versions since it is anyway not used for Adreno.
  847. if (backend_ctx->gpu_family != ADRENO ||
  848. backend_ctx->adreno_cl_compiler_version.newer_than_or_same(E031, 38, 11, 0) ||
  849. backend_ctx->adreno_cl_compiler_version.type == DX) {
  850. #ifdef GGML_OPENCL_EMBED_KERNELS
  851. const std::string kernel_src {
  852. #include "mul_mv_q4_0_f32_1d_16x_flat.cl.h"
  853. };
  854. #else
  855. const std::string kernel_src = read_file("mul_mv_q4_0_f32_1d_16x_flat.cl");
  856. #endif
  857. backend_ctx->program_mul_mv_q4_0_f32_1d_16x_flat =
  858. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  859. CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_1d_16x_flat = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32_1d_16x_flat, "kernel_mul_mat_q4_0_f32_1d_16x_flat", &err), err));
  860. GGML_LOG_CONT(".");
  861. }
  862. // mul_mv_q6_k
  863. {
  864. #ifdef GGML_OPENCL_EMBED_KERNELS
  865. const std::string kernel_src {
  866. #include "mul_mv_q6_k.cl.h"
  867. };
  868. #else
  869. const std::string kernel_src = read_file("mul_mv_q6_k.cl");
  870. #endif
  871. backend_ctx->program_mul_mv_q6_K =
  872. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  873. CL_CHECK((backend_ctx->kernel_mul_mv_q6_K_f32 = clCreateKernel(backend_ctx->program_mul_mv_q6_K, "kernel_mul_mv_q6_K_f32", &err), err));
  874. GGML_LOG_CONT(".");
  875. }
  876. // mul_mv_q8_0_f32
  877. {
  878. #ifdef GGML_OPENCL_EMBED_KERNELS
  879. const std::string kernel_src {
  880. #include "mul_mv_q8_0_f32.cl.h"
  881. };
  882. #else
  883. const std::string kernel_src = read_file("mul_mv_q8_0_f32.cl");
  884. #endif
  885. backend_ctx->program_mul_mv_q8_0_f32 =
  886. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  887. CL_CHECK((backend_ctx->kernel_mul_mv_q8_0_f32 = clCreateKernel(backend_ctx->program_mul_mv_q8_0_f32, "kernel_mul_mv_q8_0_f32", &err), err));
  888. GGML_LOG_CONT(".");
  889. }
  890. // mul_mv_q8_0_f32_flat
  891. {
  892. #ifdef GGML_OPENCL_EMBED_KERNELS
  893. const std::string kernel_src {
  894. #include "mul_mv_q8_0_f32_flat.cl.h"
  895. };
  896. #else
  897. const std::string kernel_src = read_file("mul_mv_q8_0_f32_flat.cl");
  898. #endif
  899. backend_ctx->program_mul_mv_q8_0_f32_flat =
  900. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  901. CL_CHECK((backend_ctx->kernel_mul_mv_q8_0_f32_flat = clCreateKernel(backend_ctx->program_mul_mv_q8_0_f32_flat, "kernel_mul_mv_q8_0_f32_flat", &err), err));
  902. GGML_LOG_CONT(".");
  903. }
  904. // mul_mv_mxfp4_f32
  905. {
  906. #ifdef GGML_OPENCL_EMBED_KERNELS
  907. const std::string kernel_src {
  908. #include "mul_mv_mxfp4_f32.cl.h"
  909. };
  910. #else
  911. const std::string kernel_src = read_file("mul_mv_mxfp4_f32.cl");
  912. #endif
  913. backend_ctx->program_mul_mv_mxfp4_f32 =
  914. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  915. CL_CHECK((backend_ctx->kernel_mul_mv_mxfp4_f32 = clCreateKernel(backend_ctx->program_mul_mv_mxfp4_f32, "kernel_mul_mv_mxfp4_f32", &err), err));
  916. GGML_LOG_CONT(".");
  917. }
  918. // mul_mv_mxfp4_f32_flat
  919. {
  920. #ifdef GGML_OPENCL_EMBED_KERNELS
  921. const std::string kernel_src {
  922. #include "mul_mv_mxfp4_f32_flat.cl.h"
  923. };
  924. #else
  925. const std::string kernel_src = read_file("mul_mv_mxfp4_f32_flat.cl");
  926. #endif
  927. backend_ctx->program_mul_mv_mxfp4_f32_flat =
  928. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  929. CL_CHECK((backend_ctx->kernel_mul_mv_mxfp4_f32_flat = clCreateKernel(backend_ctx->program_mul_mv_mxfp4_f32_flat, "kernel_mul_mv_mxfp4_f32_flat", &err), err));
  930. GGML_LOG_CONT(".");
  931. }
  932. // mul_mv_f16_f16
  933. {
  934. #ifdef GGML_OPENCL_EMBED_KERNELS
  935. const std::string kernel_src {
  936. #include "mul_mv_f16_f16.cl.h"
  937. };
  938. #else
  939. const std::string kernel_src = read_file("mul_mv_f16_f16.cl");
  940. #endif
  941. backend_ctx->program_mul_mv_f16_f16 =
  942. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  943. CL_CHECK((backend_ctx->kernel_mul_mat_f16_f16 = clCreateKernel(backend_ctx->program_mul_mv_f16_f16, "kernel_mul_mat_f16_f16", &err), err));
  944. GGML_LOG_CONT(".");
  945. }
  946. // mul_mv_f16_f32_1row
  947. {
  948. #ifdef GGML_OPENCL_EMBED_KERNELS
  949. const std::string kernel_src {
  950. #include "mul_mv_f16_f32_1row.cl.h"
  951. };
  952. #else
  953. const std::string kernel_src = read_file("mul_mv_f16_f32_1row.cl");
  954. #endif
  955. backend_ctx->program_mul_mv_f16_f32_1row =
  956. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  957. CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32_1row = clCreateKernel(backend_ctx->program_mul_mv_f16_f32_1row, "kernel_mul_mat_f16_f32_1row", &err), err));
  958. GGML_LOG_CONT(".");
  959. }
  960. // mul_mv_f16_f32_l4
  961. {
  962. #ifdef GGML_OPENCL_EMBED_KERNELS
  963. const std::string kernel_src {
  964. #include "mul_mv_f16_f32_l4.cl.h"
  965. };
  966. #else
  967. const std::string kernel_src = read_file("mul_mv_f16_f32_l4.cl");
  968. #endif
  969. backend_ctx->program_mul_mv_f16_f32_l4 =
  970. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  971. CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32_l4 = clCreateKernel(backend_ctx->program_mul_mv_f16_f32_l4, "kernel_mul_mat_f16_f32_l4", &err), err));
  972. GGML_LOG_CONT(".");
  973. }
  974. // mul_mv_f16_f32
  975. {
  976. #ifdef GGML_OPENCL_EMBED_KERNELS
  977. const std::string kernel_src {
  978. #include "mul_mv_f16_f32.cl.h"
  979. };
  980. #else
  981. const std::string kernel_src = read_file("mul_mv_f16_f32.cl");
  982. #endif
  983. backend_ctx->program_mul_mv_f16_f32 =
  984. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  985. CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32 = clCreateKernel(backend_ctx->program_mul_mv_f16_f32, "kernel_mul_mat_f16_f32", &err), err));
  986. GGML_LOG_CONT(".");
  987. }
  988. // mul_mv_f32_f32
  989. {
  990. #ifdef GGML_OPENCL_EMBED_KERNELS
  991. const std::string kernel_src {
  992. #include "mul_mv_f32_f32.cl.h"
  993. };
  994. #else
  995. const std::string kernel_src = read_file("mul_mv_f32_f32.cl");
  996. #endif
  997. backend_ctx->program_mul_mv_f32_f32 =
  998. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  999. CL_CHECK((backend_ctx->kernel_mul_mat_f32_f32 = clCreateKernel(backend_ctx->program_mul_mv_f32_f32, "kernel_mul_mat_f32_f32", &err), err));
  1000. GGML_LOG_CONT(".");
  1001. }
  1002. // mul_mat_f16_f32_tiled
  1003. {
  1004. #ifdef GGML_OPENCL_EMBED_KERNELS
  1005. const std::string kernel_src {
  1006. #include "mul_mat_f16_f32.cl.h"
  1007. };
  1008. #else
  1009. const std::string kernel_src = read_file("mul_mat_f16_f32.cl");
  1010. #endif
  1011. backend_ctx->program_mul_mat_f16_f32_tiled =
  1012. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1013. CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32_tiled = clCreateKernel(backend_ctx->program_mul_mat_f16_f32_tiled, "mul_mat_f16_f32", &err), err));
  1014. GGML_LOG_CONT(".");
  1015. }
  1016. // mul_mm_f32_f32_l4_lm
  1017. {
  1018. #ifdef GGML_OPENCL_EMBED_KERNELS
  1019. const std::string kernel_src {
  1020. #include "mul_mm_f32_f32_l4_lm.cl.h"
  1021. };
  1022. #else
  1023. const std::string kernel_src = read_file("mul_mm_f32_f32_l4_lm.cl");
  1024. #endif
  1025. backend_ctx->program_mul_mm_f32_f32_l4_lm =
  1026. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1027. CL_CHECK((backend_ctx->kernel_mul_mm_f32_f32_l4_lm = clCreateKernel(backend_ctx->program_mul_mm_f32_f32_l4_lm, "kernel_mul_mm_f32_f32_l4_lm", &err), err));
  1028. GGML_LOG_CONT(".");
  1029. }
  1030. // mul_mm_f16_f32_l4_lm
  1031. {
  1032. #ifdef GGML_OPENCL_EMBED_KERNELS
  1033. const std::string kernel_src {
  1034. #include "mul_mm_f16_f32_l4_lm.cl.h"
  1035. };
  1036. #else
  1037. const std::string kernel_src = read_file("mul_mm_f16_f32_l4_lm.cl");
  1038. #endif
  1039. backend_ctx->program_mul_mm_f16_f32_l4_lm =
  1040. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1041. CL_CHECK((backend_ctx->kernel_mul_mm_f16_f32_l4_lm = clCreateKernel(backend_ctx->program_mul_mm_f16_f32_l4_lm, "kernel_mul_mm_f16_f32_l4_lm", &err), err));
  1042. GGML_LOG_CONT(".");
  1043. }
  1044. // mul_mm_q8_0_f32_l4_lm
  1045. {
  1046. #ifdef GGML_OPENCL_EMBED_KERNELS
  1047. const std::string kernel_src {
  1048. #include "mul_mm_q8_0_f32_l4_lm.cl.h"
  1049. };
  1050. #else
  1051. const std::string kernel_src = read_file("mul_mm_q8_0_f32_l4_lm.cl");
  1052. #endif
  1053. backend_ctx->program_mul_mm_q8_0_f32_l4_lm =
  1054. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1055. CL_CHECK((backend_ctx->kernel_mul_mm_q8_0_f32_l4_lm = clCreateKernel(backend_ctx->program_mul_mm_q8_0_f32_l4_lm, "kernel_mul_mm_q8_0_f32_l4_lm", &err), err));
  1056. GGML_LOG_CONT(".");
  1057. }
  1058. // mul
  1059. {
  1060. #ifdef GGML_OPENCL_EMBED_KERNELS
  1061. const std::string kernel_src {
  1062. #include "mul.cl.h"
  1063. };
  1064. #else
  1065. const std::string kernel_src = read_file("mul.cl");
  1066. #endif
  1067. backend_ctx->program_mul =
  1068. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1069. CL_CHECK((backend_ctx->kernel_mul = clCreateKernel(backend_ctx->program_mul, "kernel_mul", &err), err));
  1070. CL_CHECK((backend_ctx->kernel_mul_row = clCreateKernel(backend_ctx->program_mul, "kernel_mul_row", &err), err));
  1071. CL_CHECK((backend_ctx->kernel_mul_f16 = clCreateKernel(backend_ctx->program_mul, "kernel_mul_f16", &err), err));
  1072. CL_CHECK((backend_ctx->kernel_mul_row_f16 = clCreateKernel(backend_ctx->program_mul, "kernel_mul_row_f16", &err), err));
  1073. GGML_LOG_CONT(".");
  1074. }
  1075. // norm
  1076. {
  1077. #ifdef GGML_OPENCL_EMBED_KERNELS
  1078. const std::string kernel_src {
  1079. #include "norm.cl.h"
  1080. };
  1081. #else
  1082. const std::string kernel_src = read_file("norm.cl");
  1083. #endif
  1084. backend_ctx->program_norm =
  1085. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1086. CL_CHECK((backend_ctx->kernel_norm = clCreateKernel(backend_ctx->program_norm, "kernel_norm", &err), err));
  1087. CL_CHECK((backend_ctx->kernel_norm_mul_add = clCreateKernel(backend_ctx->program_norm, "kernel_norm_mul_add", &err), err));
  1088. GGML_LOG_CONT(".");
  1089. }
  1090. // relu
  1091. {
  1092. #ifdef GGML_OPENCL_EMBED_KERNELS
  1093. const std::string kernel_src {
  1094. #include "relu.cl.h"
  1095. };
  1096. #else
  1097. const std::string kernel_src = read_file("relu.cl");
  1098. #endif
  1099. backend_ctx->program_relu =
  1100. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1101. CL_CHECK((backend_ctx->kernel_relu = clCreateKernel(backend_ctx->program_relu, "kernel_relu", &err), err));
  1102. GGML_LOG_CONT(".");
  1103. }
  1104. // rms_norm
  1105. {
  1106. #ifdef GGML_OPENCL_EMBED_KERNELS
  1107. const std::string kernel_src {
  1108. #include "rms_norm.cl.h"
  1109. };
  1110. #else
  1111. const std::string kernel_src = read_file("rms_norm.cl");
  1112. #endif
  1113. backend_ctx->program_rms_norm =
  1114. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1115. CL_CHECK((backend_ctx->kernel_rms_norm = clCreateKernel(backend_ctx->program_rms_norm, "kernel_rms_norm", &err), err));
  1116. CL_CHECK((backend_ctx->kernel_rms_norm_mul = clCreateKernel(backend_ctx->program_rms_norm, "kernel_rms_norm_mul", &err), err));
  1117. GGML_LOG_CONT(".");
  1118. }
  1119. // rope
  1120. {
  1121. #ifdef GGML_OPENCL_EMBED_KERNELS
  1122. const std::string kernel_src {
  1123. #include "rope.cl.h"
  1124. };
  1125. #else
  1126. const std::string kernel_src = read_file("rope.cl");
  1127. #endif
  1128. backend_ctx->program_rope =
  1129. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1130. CL_CHECK((backend_ctx->kernel_rope_norm_f32 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_norm_f32", &err), err));
  1131. CL_CHECK((backend_ctx->kernel_rope_norm_f16 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_norm_f16", &err), err));
  1132. CL_CHECK((backend_ctx->kernel_rope_neox_f32 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_neox_f32", &err), err));
  1133. CL_CHECK((backend_ctx->kernel_rope_neox_f16 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_neox_f16", &err), err));
  1134. CL_CHECK((backend_ctx->kernel_rope_multi_f32 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_multi_f32", &err), err));
  1135. CL_CHECK((backend_ctx->kernel_rope_multi_f16 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_multi_f16", &err), err));
  1136. CL_CHECK((backend_ctx->kernel_rope_vision_f32 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_vision_f32", &err), err));
  1137. CL_CHECK((backend_ctx->kernel_rope_vision_f16 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_vision_f16", &err), err));
  1138. GGML_LOG_CONT(".");
  1139. }
  1140. // scale
  1141. {
  1142. #ifdef GGML_OPENCL_EMBED_KERNELS
  1143. const std::string kernel_src {
  1144. #include "scale.cl.h"
  1145. };
  1146. #else
  1147. const std::string kernel_src = read_file("scale.cl");
  1148. #endif
  1149. backend_ctx->program_scale =
  1150. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1151. CL_CHECK((backend_ctx->kernel_scale = clCreateKernel(backend_ctx->program_scale, "kernel_scale", &err), err));
  1152. GGML_LOG_CONT(".");
  1153. }
  1154. // silu
  1155. {
  1156. #ifdef GGML_OPENCL_EMBED_KERNELS
  1157. const std::string kernel_src {
  1158. #include "silu.cl.h"
  1159. };
  1160. #else
  1161. const std::string kernel_src = read_file("silu.cl");
  1162. #endif
  1163. backend_ctx->program_silu =
  1164. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1165. CL_CHECK((backend_ctx->kernel_silu = clCreateKernel(backend_ctx->program_silu, "kernel_silu", &err), err));
  1166. CL_CHECK((backend_ctx->kernel_silu_4 = clCreateKernel(backend_ctx->program_silu, "kernel_silu_4", &err), err));
  1167. GGML_LOG_CONT(".");
  1168. }
  1169. // softmax_f32
  1170. {
  1171. #ifdef GGML_OPENCL_EMBED_KERNELS
  1172. const std::string kernel_src {
  1173. #include "softmax_f32.cl.h"
  1174. };
  1175. #else
  1176. const std::string kernel_src = read_file("softmax_f32.cl");
  1177. #endif
  1178. backend_ctx->program_softmax_f32 =
  1179. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1180. CL_CHECK((backend_ctx->kernel_soft_max = clCreateKernel(backend_ctx->program_softmax_f32, "kernel_soft_max", &err), err));
  1181. GGML_LOG_CONT(".");
  1182. }
  1183. // softmax_f16
  1184. {
  1185. #ifdef GGML_OPENCL_EMBED_KERNELS
  1186. const std::string kernel_src {
  1187. #include "softmax_f16.cl.h"
  1188. };
  1189. #else
  1190. const std::string kernel_src = read_file("softmax_f16.cl");
  1191. #endif
  1192. backend_ctx->program_softmax_f16 =
  1193. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1194. CL_CHECK((backend_ctx->kernel_soft_max_f16 = clCreateKernel(backend_ctx->program_softmax_f16, "kernel_soft_max_f16", &err), err));
  1195. GGML_LOG_CONT(".");
  1196. }
  1197. // softmax_4_f32
  1198. {
  1199. #ifdef GGML_OPENCL_EMBED_KERNELS
  1200. const std::string kernel_src {
  1201. #include "softmax_4_f32.cl.h"
  1202. };
  1203. #else
  1204. const std::string kernel_src = read_file("softmax_4_f32.cl");
  1205. #endif
  1206. backend_ctx->program_softmax_4_f32 =
  1207. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1208. CL_CHECK((backend_ctx->kernel_soft_max_4 = clCreateKernel(backend_ctx->program_softmax_4_f32, "kernel_soft_max_4", &err), err));
  1209. GGML_LOG_CONT(".");
  1210. }
  1211. // softmax_4_f16
  1212. {
  1213. #ifdef GGML_OPENCL_EMBED_KERNELS
  1214. const std::string kernel_src {
  1215. #include "softmax_4_f16.cl.h"
  1216. };
  1217. #else
  1218. const std::string kernel_src = read_file("softmax_4_f16.cl");
  1219. #endif
  1220. backend_ctx->program_softmax_4_f16 =
  1221. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1222. CL_CHECK((backend_ctx->kernel_soft_max_4_f16 = clCreateKernel(backend_ctx->program_softmax_4_f16, "kernel_soft_max_4_f16", &err), err));
  1223. GGML_LOG_CONT(".");
  1224. }
  1225. // flash_attn
  1226. {
  1227. #ifdef GGML_OPENCL_EMBED_KERNELS
  1228. const std::string kernel_src_f16 {
  1229. #include "flash_attn_f16.cl.h"
  1230. };
  1231. const std::string kernel_src_f32 {
  1232. #include "flash_attn_f32.cl.h"
  1233. };
  1234. const std::string kernel_src_f32_f16 {
  1235. #include "flash_attn_f32_f16.cl.h"
  1236. };
  1237. #else
  1238. const std::string kernel_src_f16 = read_file("flash_attn_f16.cl");
  1239. const std::string kernel_src_f32 = read_file("flash_attn_f32.cl");
  1240. const std::string kernel_src_f32_f16 = read_file("flash_attn_f32_f16.cl");
  1241. #endif
  1242. if (!kernel_src_f16.empty() && !kernel_src_f32.empty() && !kernel_src_f32_f16.empty()) {
  1243. const struct { int dk; int dv; int bm; int bn; } fa_dims[] = {
  1244. { 40, 40, 32, 32}, { 64, 64, 64, 64}, { 80, 80, 64, 32}, { 96, 96, 64, 32},
  1245. {112, 112, 32, 32}, {128, 128, 32, 32}, {192, 128, 16, 16},
  1246. {192, 192, 16, 16}, {256, 256, 16, 16},
  1247. };
  1248. for (size_t i = 0; i < sizeof(fa_dims)/sizeof(fa_dims[0]); ++i) {
  1249. const int dk = fa_dims[i].dk;
  1250. const int dv = fa_dims[i].dv;
  1251. const int bm = fa_dims[i].bm;
  1252. const int bn = fa_dims[i].bn;
  1253. std::string OPTS = compile_opts +
  1254. " -D DK=" + std::to_string(dk) +
  1255. " -D DV=" + std::to_string(dv) +
  1256. " -D BLOCK_M=" + std::to_string(bm) +
  1257. " -D BLOCK_N=" + std::to_string(bn);
  1258. cl_program prog_f16 = build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src_f16.c_str(), OPTS);
  1259. cl_kernel k_f16, k_f16_q1;
  1260. CL_CHECK((k_f16 = clCreateKernel(prog_f16, "flash_attn_f16", &err), err));
  1261. CL_CHECK((k_f16_q1 = clCreateKernel(prog_f16, "flash_attn_f16_q1", &err), err));
  1262. backend_ctx->kernels_flash_attn_f16[{dk, dv}] = k_f16;
  1263. backend_ctx->kernels_flash_attn_f16_q1[{dk, dv}] = k_f16_q1;
  1264. CL_CHECK(clReleaseProgram(prog_f16));
  1265. cl_program prog_f32 = build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src_f32.c_str(), OPTS);
  1266. cl_kernel k_f32, k_f32_q1;
  1267. CL_CHECK((k_f32 = clCreateKernel(prog_f32, "flash_attn_f32", &err), err));
  1268. CL_CHECK((k_f32_q1 = clCreateKernel(prog_f32, "flash_attn_f32_q1", &err), err));
  1269. backend_ctx->kernels_flash_attn_f32[{dk, dv}] = k_f32;
  1270. backend_ctx->kernels_flash_attn_f32_q1[{dk, dv}] = k_f32_q1;
  1271. CL_CHECK(clReleaseProgram(prog_f32));
  1272. cl_program prog_f32_f16 = build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src_f32_f16.c_str(), OPTS);
  1273. cl_kernel k_f32_f16, k_f32_f16_q1;
  1274. CL_CHECK((k_f32_f16 = clCreateKernel(prog_f32_f16, "flash_attn_f32_f16", &err), err));
  1275. CL_CHECK((k_f32_f16_q1 = clCreateKernel(prog_f32_f16, "flash_attn_f32_f16_q1", &err), err));
  1276. backend_ctx->kernels_flash_attn_f32_f16[{dk, dv}] = k_f32_f16;
  1277. backend_ctx->kernels_flash_attn_f32_f16_q1[{dk, dv}] = k_f32_f16_q1;
  1278. CL_CHECK(clReleaseProgram(prog_f32_f16));
  1279. backend_ctx->kernels_flash_attn_bm[{dk, dv}] = bm;
  1280. backend_ctx->kernels_flash_attn_bn[{dk, dv}] = bn;
  1281. }
  1282. GGML_LOG_CONT(".");
  1283. }
  1284. }
  1285. // argsort
  1286. {
  1287. #ifdef GGML_OPENCL_EMBED_KERNELS
  1288. const std::string kernel_src {
  1289. #include "argsort.cl.h"
  1290. };
  1291. #else
  1292. const std::string kernel_src = read_file("argsort.cl");
  1293. #endif
  1294. backend_ctx->program_argsort_f32_i32 =
  1295. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1296. CL_CHECK((backend_ctx->kernel_argsort_f32_i32 = clCreateKernel(backend_ctx->program_argsort_f32_i32, "kernel_argsort_f32_i32", &err), err));
  1297. GGML_LOG_CONT(".");
  1298. }
  1299. // div
  1300. {
  1301. #ifdef GGML_OPENCL_EMBED_KERNELS
  1302. const std::string kernel_src {
  1303. #include "div.cl.h"
  1304. };
  1305. #else
  1306. const std::string kernel_src = read_file("div.cl");
  1307. #endif
  1308. std::string compile_opts = std::string("-cl-std=") + opencl_c_std +
  1309. " -cl-mad-enable -cl-finite-math-only ";
  1310. backend_ctx->program_div =
  1311. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1312. CL_CHECK((backend_ctx->kernel_div = clCreateKernel(backend_ctx->program_div, "kernel_div", &err), err));
  1313. CL_CHECK((backend_ctx->kernel_div_row = clCreateKernel(backend_ctx->program_div, "kernel_div_row", &err), err));
  1314. CL_CHECK((backend_ctx->kernel_div_f16 = clCreateKernel(backend_ctx->program_div, "kernel_div_f16", &err), err));
  1315. CL_CHECK((backend_ctx->kernel_div_row_f16 = clCreateKernel(backend_ctx->program_div, "kernel_div_row_f16", &err), err));
  1316. GGML_LOG_CONT(".");
  1317. }
  1318. // sub
  1319. {
  1320. #ifdef GGML_OPENCL_EMBED_KERNELS
  1321. const std::string kernel_src {
  1322. #include "sub.cl.h"
  1323. };
  1324. #else
  1325. const std::string kernel_src = read_file("sub.cl");
  1326. #endif
  1327. backend_ctx->program_sub =
  1328. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1329. CL_CHECK((backend_ctx->kernel_sub = clCreateKernel(backend_ctx->program_sub, "kernel_sub", &err), err));
  1330. CL_CHECK((backend_ctx->kernel_sub_row = clCreateKernel(backend_ctx->program_sub, "kernel_sub_row", &err), err));
  1331. CL_CHECK((backend_ctx->kernel_sub_f16 = clCreateKernel(backend_ctx->program_sub, "kernel_sub_f16", &err), err));
  1332. CL_CHECK((backend_ctx->kernel_sub_row_f16 = clCreateKernel(backend_ctx->program_sub, "kernel_sub_row_f16", &err), err));
  1333. GGML_LOG_CONT(".");
  1334. }
  1335. // sum_rows
  1336. {
  1337. #ifdef GGML_OPENCL_EMBED_KERNELS
  1338. const std::string kernel_src {
  1339. #include "sum_rows.cl.h"
  1340. };
  1341. #else
  1342. const std::string kernel_src = read_file("sum_rows.cl");
  1343. #endif
  1344. backend_ctx->program_sum_rows_f32 =
  1345. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1346. CL_CHECK((backend_ctx->kernel_sum_rows_f32 = clCreateKernel(backend_ctx->program_sum_rows_f32, "kernel_sum_rows_f32", &err), err));
  1347. GGML_LOG_CONT(".");
  1348. }
  1349. // sigmoid
  1350. {
  1351. #ifdef GGML_OPENCL_EMBED_KERNELS
  1352. const std::string kernel_src {
  1353. #include "sigmoid.cl.h"
  1354. };
  1355. #else
  1356. const std::string kernel_src = read_file("sigmoid.cl");
  1357. #endif
  1358. backend_ctx->program_sigmoid =
  1359. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1360. CL_CHECK((backend_ctx->kernel_sigmoid_f32 = clCreateKernel(backend_ctx->program_sigmoid, "kernel_sigmoid_f32", &err), err));
  1361. CL_CHECK((backend_ctx->kernel_sigmoid_f16 = clCreateKernel(backend_ctx->program_sigmoid, "kernel_sigmoid_f16", &err), err));
  1362. GGML_LOG_CONT(".");
  1363. }
  1364. // group_norm
  1365. {
  1366. #ifdef GGML_OPENCL_EMBED_KERNELS
  1367. const std::string kernel_src {
  1368. #include "group_norm.cl.h"
  1369. };
  1370. #else
  1371. const std::string kernel_src = read_file("group_norm.cl");
  1372. #endif
  1373. backend_ctx->program_group_norm =
  1374. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1375. CL_CHECK((backend_ctx->kernel_group_norm = clCreateKernel(backend_ctx->program_group_norm, "kernel_group_norm", &err), err));
  1376. CL_CHECK((backend_ctx->kernel_group_norm_mul_add = clCreateKernel(backend_ctx->program_group_norm, "kernel_group_norm_mul_add", &err), err));
  1377. GGML_LOG_CONT(".");
  1378. }
  1379. // repeat
  1380. {
  1381. #ifdef GGML_OPENCL_EMBED_KERNELS
  1382. const std::string kernel_src {
  1383. #include "repeat.cl.h"
  1384. };
  1385. #else
  1386. const std::string kernel_src = read_file("repeat.cl");
  1387. #endif
  1388. if (!kernel_src.empty()) {
  1389. backend_ctx->program_repeat =
  1390. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1391. CL_CHECK((backend_ctx->kernel_repeat = clCreateKernel(backend_ctx->program_repeat, "kernel_repeat", &err), err));
  1392. GGML_LOG_CONT(".");
  1393. } else {
  1394. GGML_LOG_WARN("ggml_opencl: repeat kernel source not found or empty. Repeat operations will not be available.\n");
  1395. backend_ctx->program_repeat = nullptr;
  1396. backend_ctx->kernel_repeat = nullptr;
  1397. }
  1398. }
  1399. // pad
  1400. {
  1401. #ifdef GGML_OPENCL_EMBED_KERNELS
  1402. const std::string kernel_src {
  1403. #include "pad.cl.h"
  1404. };
  1405. #else
  1406. const std::string kernel_src = read_file("pad.cl");
  1407. #endif
  1408. if (!kernel_src.empty()) {
  1409. backend_ctx->program_pad =
  1410. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1411. CL_CHECK((backend_ctx->kernel_pad = clCreateKernel(backend_ctx->program_pad, "kernel_pad", &err), err));
  1412. GGML_LOG_CONT(".");
  1413. } else {
  1414. GGML_LOG_WARN("ggml_opencl: pad kernel source not found or empty. Pad operations will not be available.\n");
  1415. backend_ctx->program_pad = nullptr;
  1416. backend_ctx->kernel_pad = nullptr;
  1417. }
  1418. }
  1419. // tanh
  1420. {
  1421. #ifdef GGML_OPENCL_EMBED_KERNELS
  1422. const std::string kernel_src {
  1423. #include "tanh.cl.h"
  1424. };
  1425. #else
  1426. const std::string kernel_src = read_file("tanh.cl");
  1427. #endif
  1428. if (!kernel_src.empty()) {
  1429. backend_ctx->program_tanh =
  1430. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1431. CL_CHECK((backend_ctx->kernel_tanh_f32_nd = clCreateKernel(backend_ctx->program_tanh, "kernel_tanh_f32_nd", &err), err));
  1432. CL_CHECK((backend_ctx->kernel_tanh_f16_nd = clCreateKernel(backend_ctx->program_tanh, "kernel_tanh_f16_nd", &err), err));
  1433. GGML_LOG_CONT(".");
  1434. } else {
  1435. GGML_LOG_WARN("ggml_opencl: tanh kernel source not found or empty. Tanh operation will not be available.\n");
  1436. backend_ctx->program_tanh = nullptr;
  1437. backend_ctx->kernel_tanh_f32_nd = nullptr;
  1438. backend_ctx->kernel_tanh_f16_nd = nullptr;
  1439. }
  1440. }
  1441. // upscale
  1442. {
  1443. #ifdef GGML_OPENCL_EMBED_KERNELS
  1444. const std::string kernel_src {
  1445. #include "upscale.cl.h"
  1446. };
  1447. #else
  1448. const std::string kernel_src = read_file("upscale.cl");
  1449. #endif
  1450. if (!kernel_src.empty()) {
  1451. backend_ctx->program_upscale =
  1452. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1453. CL_CHECK((backend_ctx->kernel_upscale = clCreateKernel(backend_ctx->program_upscale, "kernel_upscale", &err), err));
  1454. if (backend_ctx->program_upscale) {
  1455. cl_int err_bilinear;
  1456. backend_ctx->kernel_upscale_bilinear = clCreateKernel(backend_ctx->program_upscale, "kernel_upscale_bilinear", &err_bilinear);
  1457. if (err_bilinear != CL_SUCCESS) {
  1458. GGML_LOG_WARN("ggml_opencl: kernel_upscale_bilinear not found in upscale.cl. Bilinear upscale will not be available. Error: %d\n", err_bilinear);
  1459. backend_ctx->kernel_upscale_bilinear = nullptr;
  1460. }
  1461. } else {
  1462. backend_ctx->kernel_upscale_bilinear = nullptr;
  1463. }
  1464. GGML_LOG_CONT(".");
  1465. } else {
  1466. GGML_LOG_WARN("ggml_opencl: upscale kernel source not found or empty. Upscale operations will not be available.\n");
  1467. backend_ctx->program_upscale = nullptr;
  1468. backend_ctx->kernel_upscale = nullptr;
  1469. backend_ctx->kernel_upscale_bilinear = nullptr;
  1470. }
  1471. }
  1472. // concat
  1473. {
  1474. #ifdef GGML_OPENCL_EMBED_KERNELS
  1475. const std::string kernel_src {
  1476. #include "concat.cl.h"
  1477. };
  1478. #else
  1479. const std::string kernel_src = read_file("concat.cl");
  1480. #endif
  1481. if (!kernel_src.empty()) {
  1482. backend_ctx->program_concat =
  1483. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1484. CL_CHECK((backend_ctx->kernel_concat_f32_contiguous = clCreateKernel(backend_ctx->program_concat, "kernel_concat_f32_contiguous", &err), err));
  1485. CL_CHECK((backend_ctx->kernel_concat_f32_non_contiguous = clCreateKernel(backend_ctx->program_concat, "kernel_concat_f32_non_contiguous", &err), err));
  1486. GGML_LOG_CONT(".");
  1487. } else {
  1488. GGML_LOG_WARN("ggml_opencl: concat kernel source not found or empty. Concat operations will not be available.\n");
  1489. backend_ctx->program_concat = nullptr;
  1490. backend_ctx->kernel_concat_f32_contiguous = nullptr;
  1491. backend_ctx->kernel_concat_f32_non_contiguous = nullptr;
  1492. }
  1493. }
  1494. // timestep_embedding
  1495. {
  1496. #ifdef GGML_OPENCL_EMBED_KERNELS
  1497. const std::string kernel_src {
  1498. #include "tsembd.cl.h"
  1499. };
  1500. #else
  1501. const std::string kernel_src = read_file("tsembd.cl");
  1502. #endif
  1503. if (!kernel_src.empty()) {
  1504. backend_ctx->program_tsembd =
  1505. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1506. CL_CHECK((backend_ctx->kernel_timestep_embedding = clCreateKernel(backend_ctx->program_tsembd, "kernel_timestep_embedding", &err), err));
  1507. GGML_LOG_CONT(".");
  1508. } else {
  1509. GGML_LOG_WARN("ggml_opencl: timestep_embedding kernel source not found or empty. This op will not be available.\n");
  1510. backend_ctx->program_tsembd = nullptr;
  1511. backend_ctx->kernel_timestep_embedding = nullptr;
  1512. }
  1513. }
  1514. // set_rows
  1515. {
  1516. #ifdef GGML_OPENCL_EMBED_KERNELS
  1517. const std::string kernel_src {
  1518. #include "set_rows.cl.h"
  1519. };
  1520. #else
  1521. const std::string kernel_src = read_file("set_rows.cl");
  1522. #endif
  1523. backend_ctx->program_set_rows =
  1524. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1525. CL_CHECK((backend_ctx->kernel_set_rows_f32_i64 = clCreateKernel(backend_ctx->program_set_rows, "kernel_set_rows_f32_i64", &err), err));
  1526. CL_CHECK((backend_ctx->kernel_set_rows_f32_i32 = clCreateKernel(backend_ctx->program_set_rows, "kernel_set_rows_f32_i32", &err), err));
  1527. CL_CHECK((backend_ctx->kernel_set_rows_f16_i64 = clCreateKernel(backend_ctx->program_set_rows, "kernel_set_rows_f16_i64", &err), err));
  1528. CL_CHECK((backend_ctx->kernel_set_rows_f16_i32 = clCreateKernel(backend_ctx->program_set_rows, "kernel_set_rows_f16_i32", &err), err));
  1529. GGML_LOG_CONT(".");
  1530. }
  1531. // conv2d
  1532. {
  1533. #ifdef GGML_OPENCL_EMBED_KERNELS
  1534. const std::string kernel_src {
  1535. #include "conv2d.cl.h"
  1536. };
  1537. const std::string kernel_src_f16_f32 {
  1538. #include "conv2d_f16_f32.cl.h"
  1539. };
  1540. #else
  1541. const std::string kernel_src = read_file("conv2d.cl");
  1542. const std::string kernel_src_f16_f32 = read_file("conv2d_f16_f32.cl");
  1543. #endif
  1544. if (!kernel_src.empty()) {
  1545. backend_ctx->program_conv_2d_f16 =
  1546. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), (std::string(compile_opts) + " -DUSE_FP16=1").c_str());
  1547. CL_CHECK((backend_ctx->kernel_conv_2d_f16 = clCreateKernel(backend_ctx->program_conv_2d_f16, "kernel_conv_2d", &err), err));
  1548. GGML_LOG_CONT(".");
  1549. backend_ctx->program_conv_2d_f32 =
  1550. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1551. CL_CHECK((backend_ctx->kernel_conv_2d_f32 = clCreateKernel(backend_ctx->program_conv_2d_f32, "kernel_conv_2d", &err), err));
  1552. GGML_LOG_CONT(".");
  1553. } else {
  1554. GGML_LOG_WARN("ggml_opencl: conv2d kernel source not found or empty. This op will not be available.\n");
  1555. backend_ctx->program_conv_2d_f16 = nullptr;
  1556. backend_ctx->kernel_conv_2d_f16 = nullptr;
  1557. backend_ctx->program_conv_2d_f32 = nullptr;
  1558. backend_ctx->kernel_conv_2d_f32 = nullptr;
  1559. }
  1560. if (!kernel_src_f16_f32.empty()) {
  1561. backend_ctx->program_conv_2d_f16_f32 =
  1562. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src_f16_f32.c_str(), compile_opts);
  1563. CL_CHECK((backend_ctx->kernel_conv_2d_f16_f32 = clCreateKernel(backend_ctx->program_conv_2d_f16_f32, "kernel_conv_2d", &err), err));
  1564. GGML_LOG_CONT(".");
  1565. } else {
  1566. GGML_LOG_WARN("ggml_opencl: conv2d_f16_f32 kernel source not found or empty. This op will not be available.\n");
  1567. backend_ctx->program_conv_2d_f16_f32 = nullptr;
  1568. backend_ctx->kernel_conv_2d_f16_f32 = nullptr;
  1569. }
  1570. }
  1571. // mul_mv_id_q4_0_f32_8x_flat
  1572. {
  1573. #ifdef GGML_OPENCL_EMBED_KERNELS
  1574. const std::string kernel_src {
  1575. #include "mul_mv_id_q4_0_f32_8x_flat.cl.h"
  1576. };
  1577. #else
  1578. const std::string kernel_src = read_file("mul_mv_id_q4_0_f32_8x_flat.cl");
  1579. #endif
  1580. backend_ctx->program_mul_mv_id_q4_0_f32_8x_flat =
  1581. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1582. CL_CHECK((backend_ctx->kernel_mul_mv_id_q4_0_f32_8x_flat = clCreateKernel(backend_ctx->program_mul_mv_id_q4_0_f32_8x_flat, "kernel_mul_mv_id_q4_0_f32_8x_flat", &err), err));
  1583. GGML_LOG_CONT(".");
  1584. }
  1585. // mul_mv_id_q8_0_f32
  1586. {
  1587. #ifdef GGML_OPENCL_EMBED_KERNELS
  1588. const std::string kernel_src {
  1589. #include "mul_mv_id_q8_0_f32.cl.h"
  1590. };
  1591. #else
  1592. const std::string kernel_src = read_file("mul_mv_id_q8_0_f32.cl");
  1593. #endif
  1594. backend_ctx->program_mul_mv_id_q8_0_f32 =
  1595. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1596. CL_CHECK((backend_ctx->kernel_mul_mv_id_q8_0_f32 = clCreateKernel(backend_ctx->program_mul_mv_id_q8_0_f32, "kernel_mul_mv_id_q8_0_f32", &err), err));
  1597. GGML_LOG_CONT(".");
  1598. }
  1599. // mul_mv_id_q8_0_f32_flat
  1600. {
  1601. #ifdef GGML_OPENCL_EMBED_KERNELS
  1602. const std::string kernel_src {
  1603. #include "mul_mv_id_q8_0_f32_flat.cl.h"
  1604. };
  1605. #else
  1606. const std::string kernel_src = read_file("mul_mv_id_q8_0_f32_flat.cl");
  1607. #endif
  1608. backend_ctx->program_mul_mv_id_q8_0_f32_flat =
  1609. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1610. CL_CHECK((backend_ctx->kernel_mul_mv_id_q8_0_f32_flat = clCreateKernel(backend_ctx->program_mul_mv_id_q8_0_f32_flat, "kernel_mul_mv_id_q8_0_f32_flat", &err), err));
  1611. GGML_LOG_CONT(".");
  1612. }
  1613. // mul_mv_id_mxfp4_f32
  1614. {
  1615. #ifdef GGML_OPENCL_EMBED_KERNELS
  1616. const std::string kernel_src {
  1617. #include "mul_mv_id_mxfp4_f32.cl.h"
  1618. };
  1619. #else
  1620. const std::string kernel_src = read_file("mul_mv_id_mxfp4_f32.cl");
  1621. #endif
  1622. backend_ctx->program_mul_mv_id_mxfp4_f32 =
  1623. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1624. CL_CHECK((backend_ctx->kernel_mul_mv_id_mxfp4_f32 = clCreateKernel(backend_ctx->program_mul_mv_id_mxfp4_f32, "kernel_mul_mv_id_mxfp4_f32", &err), err));
  1625. GGML_LOG_CONT(".");
  1626. }
  1627. // mul_mv_id_mxfp4_f32_flat
  1628. {
  1629. #ifdef GGML_OPENCL_EMBED_KERNELS
  1630. const std::string kernel_src {
  1631. #include "mul_mv_id_mxfp4_f32_flat.cl.h"
  1632. };
  1633. #else
  1634. const std::string kernel_src = read_file("mul_mv_id_mxfp4_f32_flat.cl");
  1635. #endif
  1636. backend_ctx->program_mul_mv_id_mxfp4_f32_flat =
  1637. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1638. CL_CHECK((backend_ctx->kernel_mul_mv_id_mxfp4_f32_flat = clCreateKernel(backend_ctx->program_mul_mv_id_mxfp4_f32_flat, "kernel_mul_mv_id_mxfp4_f32_flat", &err), err));
  1639. GGML_LOG_CONT(".");
  1640. }
  1641. // Adreno kernels
  1642. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  1643. // transpose
  1644. {
  1645. #ifdef GGML_OPENCL_EMBED_KERNELS
  1646. const std::string kernel_src {
  1647. #include "transpose.cl.h"
  1648. };
  1649. #else
  1650. const std::string kernel_src = read_file("transpose.cl");
  1651. #endif
  1652. backend_ctx->program_transpose =
  1653. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1654. CL_CHECK((backend_ctx->kernel_transpose_32_16 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_32_16", &err), err));
  1655. CL_CHECK((backend_ctx->kernel_transpose_32 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_32", &err), err));
  1656. CL_CHECK((backend_ctx->kernel_transpose_16 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_16", &err), err));
  1657. CL_CHECK((backend_ctx->kernel_transpose_16_4x1 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_16_4x1", &err), err));
  1658. GGML_LOG_CONT(".");
  1659. }
  1660. // gemv_noshuffle_general
  1661. {
  1662. std::string CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
  1663. " -cl-mad-enable "
  1664. " -DSIMDGROUP_WIDTH=" +
  1665. std::to_string(backend_ctx->adreno_wave_size);
  1666. if (backend_ctx->has_vector_subgroup_broadcast) {
  1667. CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
  1668. }
  1669. #ifdef GGML_OPENCL_EMBED_KERNELS
  1670. const std::string kernel_src_CL_gemv_general {
  1671. #include "gemv_noshuffle_general.cl.h"
  1672. };
  1673. #else
  1674. const std::string kernel_src_CL_gemv_general = read_file("gemv_noshuffle_general.cl");
  1675. #endif
  1676. backend_ctx->program_CL_gemv_general = build_program_from_source(
  1677. backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv_general.c_str(), CL_gemv_compile_opts);
  1678. CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general = clCreateKernel(backend_ctx->program_CL_gemv_general, "kernel_gemv_noshuffle", &err), err));
  1679. GGML_LOG_CONT(".");
  1680. }
  1681. // gemv_noshuffle
  1682. {
  1683. // Gemv 2048, 16384
  1684. std::string CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
  1685. " -cl-mad-enable "
  1686. " -DLINE_STRIDE_A=2048 "
  1687. " -DBLOCK_STRIDE_A=16384 "
  1688. " -DSIMDGROUP_WIDTH=" +
  1689. std::to_string(backend_ctx->adreno_wave_size);
  1690. if (backend_ctx->has_vector_subgroup_broadcast) {
  1691. CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
  1692. }
  1693. #ifdef GGML_OPENCL_EMBED_KERNELS
  1694. const std::string kernel_src_CL_gemv {
  1695. #include "gemv_noshuffle.cl.h"
  1696. };
  1697. #else
  1698. const std::string kernel_src_CL_gemv = read_file("gemv_noshuffle.cl");
  1699. #endif
  1700. backend_ctx->program_CL_gemv_4096_1_4096 = build_program_from_source(
  1701. backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
  1702. CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_4096_1_4096, "kernel_gemv_noshuffle", &err), err));
  1703. GGML_LOG_CONT(".");
  1704. // Gemv 2048, 16384
  1705. CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
  1706. " -cl-mad-enable "
  1707. " -DLINE_STRIDE_A=2048 "
  1708. " -DBLOCK_STRIDE_A=16384 "
  1709. " -DSIMDGROUP_WIDTH=" +
  1710. std::to_string(backend_ctx->adreno_wave_size);
  1711. if (backend_ctx->has_vector_subgroup_broadcast) {
  1712. CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
  1713. }
  1714. backend_ctx->program_CL_gemv_4096_1_11008 = build_program_from_source(
  1715. backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
  1716. CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008 = clCreateKernel(backend_ctx->program_CL_gemv_4096_1_11008, "kernel_gemv_noshuffle", &err), err));
  1717. GGML_LOG_CONT(".");
  1718. // Gemv 5504, 44032
  1719. CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
  1720. " -cl-mad-enable "
  1721. " -DLINE_STRIDE_A=5504 "
  1722. " -DBLOCK_STRIDE_A=44032 "
  1723. " -DSIMDGROUP_WIDTH=" +
  1724. std::to_string(backend_ctx->adreno_wave_size);
  1725. if (backend_ctx->has_vector_subgroup_broadcast) {
  1726. CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
  1727. }
  1728. backend_ctx->program_CL_gemv_11008_1_4096 = build_program_from_source(
  1729. backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
  1730. CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_11008_1_4096, "kernel_gemv_noshuffle", &err), err));
  1731. GGML_LOG_CONT(".");
  1732. // Gemv 16000, 128000
  1733. CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
  1734. " -cl-mad-enable "
  1735. " -DLINE_STRIDE_A=16000 "
  1736. " -DBLOCK_STRIDE_A=128000 "
  1737. " -DSIMDGROUP_WIDTH=" +
  1738. std::to_string(backend_ctx->adreno_wave_size);
  1739. if (backend_ctx->has_vector_subgroup_broadcast) {
  1740. CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
  1741. }
  1742. backend_ctx->program_CL_gemv_32000_1_4096 = build_program_from_source(
  1743. backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
  1744. CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_32000_1_4096, "kernel_gemv_noshuffle", &err), err));
  1745. GGML_LOG_CONT(".");
  1746. }
  1747. // mul_mat_Ab_Bi_8x4
  1748. {
  1749. #ifdef GGML_OPENCL_EMBED_KERNELS
  1750. const std::string kernel_src_CL_gemm {
  1751. #include "mul_mat_Ab_Bi_8x4.cl.h"
  1752. };
  1753. #else
  1754. const std::string kernel_src_CL_gemm = read_file("mul_mat_Ab_Bi_8x4.cl");
  1755. #endif
  1756. backend_ctx->program_CL_gemm = build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src_CL_gemm.c_str(), compile_opts);
  1757. CL_CHECK((backend_ctx->CL_mul_mat_Ab_Bi_8x4 = clCreateKernel(backend_ctx->program_CL_gemm, "kernel_mul_mat_Ab_Bi_8x4", &err), err));
  1758. GGML_LOG_CONT(".");
  1759. }
  1760. std::string CL_moe_compile_opts = std::string("-cl-std=") + opencl_c_std +
  1761. " -cl-mad-enable "
  1762. " -cl-fast-relaxed-math";
  1763. // gemv_moe_mxfp4_f32
  1764. {
  1765. #ifdef GGML_OPENCL_EMBED_KERNELS
  1766. const std::string kernel_src {
  1767. #include "gemv_moe_mxfp4_f32.cl.h"
  1768. };
  1769. #else
  1770. const std::string kernel_src = read_file("gemv_moe_mxfp4_f32.cl");
  1771. #endif
  1772. backend_ctx->program_gemv_moe_mxfp4_f32 =
  1773. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), CL_moe_compile_opts);
  1774. CL_CHECK((backend_ctx->kernel_gemv_moe_mxfp4_f32 = clCreateKernel(backend_ctx->program_gemv_moe_mxfp4_f32, "kernel_gemv_moe_mxfp4_f32", &err), err));
  1775. GGML_LOG_CONT(".");
  1776. }
  1777. // gemm_moe_mxfp4_f32
  1778. {
  1779. #ifdef GGML_OPENCL_EMBED_KERNELS
  1780. const std::string kernel_src {
  1781. #include "gemm_moe_mxfp4_f32.cl.h"
  1782. };
  1783. #else
  1784. const std::string kernel_src = read_file("gemm_moe_mxfp4_f32.cl");
  1785. #endif
  1786. backend_ctx->program_gemm_moe_mxfp4_f32 =
  1787. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), CL_moe_compile_opts);
  1788. CL_CHECK((backend_ctx->kernel_gemm_moe_mxfp4_f32 = clCreateKernel(backend_ctx->program_gemm_moe_mxfp4_f32, "kernel_gemm_moe_mxfp4_f32", &err), err));
  1789. GGML_LOG_CONT(".");
  1790. }
  1791. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  1792. GGML_LOG_CONT("\n");
  1793. }
  1794. // XXX static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev) {
  1795. // XXX static bool initialized = false;
  1796. // XXX static ggml_backend_opencl_context *backend_ctx = nullptr;
  1797. static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev);
  1798. namespace /* anonymous */ {
  1799. extern struct ggml_backend_device_i ggml_backend_opencl_device_i;
  1800. }
  1801. // Look for available and suitable devices.
  1802. static std::vector<ggml_backend_device> ggml_opencl_probe_devices(ggml_backend_reg * reg) {
  1803. std::vector<ggml_backend_device> found_devices;
  1804. #ifdef GGML_OPENCL_PROFILING
  1805. GGML_LOG_INFO("ggml_opencl: OpenCL profiling enabled\n");
  1806. #endif
  1807. struct cl_device;
  1808. struct cl_platform {
  1809. cl_platform_id id;
  1810. unsigned number;
  1811. char name[128];
  1812. char vendor[128];
  1813. struct cl_device * devices;
  1814. unsigned n_devices;
  1815. struct cl_device * default_device;
  1816. };
  1817. struct cl_device {
  1818. struct cl_platform * platform;
  1819. cl_device_id id;
  1820. unsigned number;
  1821. cl_device_type type;
  1822. char name[128];
  1823. char version[128];
  1824. };
  1825. enum { NPLAT = 16, NDEV = 16 };
  1826. struct cl_platform platforms[NPLAT];
  1827. unsigned n_platforms = 0;
  1828. struct cl_device devices[NDEV];
  1829. unsigned n_devices = 0;
  1830. struct cl_device * default_device = NULL;
  1831. unsigned default_platform_number = 0;
  1832. cl_platform_id platform_ids[NPLAT];
  1833. if (clGetPlatformIDs(NPLAT, platform_ids, &n_platforms) != CL_SUCCESS) {
  1834. GGML_LOG_ERROR("ggml_opencl: plaform IDs not available.\n");
  1835. return found_devices;
  1836. }
  1837. for (unsigned i = 0; i < n_platforms; i++) {
  1838. struct cl_platform * p = &platforms[i];
  1839. p->number = i;
  1840. p->id = platform_ids[i];
  1841. CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_NAME, sizeof(p->name), &p->name, NULL));
  1842. CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_VENDOR, sizeof(p->vendor), &p->vendor, NULL));
  1843. cl_device_id device_ids[NDEV];
  1844. cl_int clGetDeviceIDsError = clGetDeviceIDs(p->id, CL_DEVICE_TYPE_ALL, NDEV, device_ids, &p->n_devices);
  1845. if (clGetDeviceIDsError == CL_DEVICE_NOT_FOUND) {
  1846. p->n_devices = 0;
  1847. } else {
  1848. CL_CHECK(clGetDeviceIDsError);
  1849. }
  1850. p->devices = p->n_devices > 0 ? &devices[n_devices] : NULL;
  1851. p->default_device = NULL;
  1852. for (unsigned j = 0; j < p->n_devices; j++) {
  1853. struct cl_device * d = &devices[n_devices];
  1854. d->number = n_devices++;
  1855. d->id = device_ids[j];
  1856. d->platform = p;
  1857. CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_NAME, sizeof(d->name), &d->name, NULL));
  1858. CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_TYPE, sizeof(d->type), &d->type, NULL));
  1859. CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_VERSION, sizeof(d->version), &d->version, NULL));
  1860. if (p->default_device == NULL && d->type == CL_DEVICE_TYPE_GPU) {
  1861. p->default_device = d;
  1862. }
  1863. }
  1864. if (default_device == NULL && p->default_device != NULL) {
  1865. default_device = p->default_device;
  1866. default_platform_number = i;
  1867. }
  1868. }
  1869. if (n_devices == 0) {
  1870. GGML_LOG_ERROR("ggml_opencl: could find any OpenCL devices.\n");
  1871. return found_devices;
  1872. }
  1873. char * user_platform_string = getenv("GGML_OPENCL_PLATFORM");
  1874. char * user_device_string = getenv("GGML_OPENCL_DEVICE");
  1875. int user_platform_number = -1;
  1876. int user_device_number = -1;
  1877. cl_device * candidate_devices = nullptr;
  1878. unsigned n_candidate_devices = 0;
  1879. unsigned n;
  1880. if (user_platform_string != NULL && sscanf(user_platform_string, " %u", &n) == 1 && n < n_platforms) {
  1881. user_platform_number = (int)n;
  1882. }
  1883. if (user_device_string != NULL && sscanf(user_device_string, " %u", &n) == 1 && n < n_devices) {
  1884. user_device_number = (int)n;
  1885. }
  1886. if (user_platform_number != -1 && user_device_number != -1) {
  1887. cl_platform* platform = &platforms[user_platform_number];
  1888. if ((unsigned)user_device_number >= platform->n_devices) {
  1889. GGML_LOG_ERROR("ggml_opencl: invalid device number %d\n", user_device_number);
  1890. exit(1);
  1891. }
  1892. default_device = &platform->devices[user_device_number];
  1893. candidate_devices = platform->devices;
  1894. n_candidate_devices = platform->n_devices;
  1895. } else {
  1896. // Choose a platform by matching a substring.
  1897. if (user_platform_number == -1 && user_platform_string != NULL && user_platform_string[0] != 0) {
  1898. for (unsigned i = 0; i < n_platforms; i++) {
  1899. struct cl_platform * p = &platforms[i];
  1900. if (strstr(p->name, user_platform_string) != NULL ||
  1901. strstr(p->vendor, user_platform_string) != NULL) {
  1902. user_platform_number = (int)i;
  1903. break;
  1904. }
  1905. }
  1906. if (user_platform_number == -1) {
  1907. GGML_LOG_ERROR("ggml_opencl: no platform matching '%s' was found.\n", user_platform_string);
  1908. exit(1);
  1909. }
  1910. }
  1911. int platform_idx = user_platform_number != -1 ? user_platform_number : default_platform_number;
  1912. struct cl_platform * p = &platforms[platform_idx];
  1913. candidate_devices = p->devices;
  1914. n_candidate_devices = p->n_devices;
  1915. default_device = p->default_device;
  1916. if (n_candidate_devices == 0) {
  1917. GGML_LOG_ERROR("ggml_opencl: selected platform '%s' does not have any devices.\n", p->name);
  1918. exit(1);
  1919. }
  1920. if (user_device_number == -1 && user_device_string != NULL && user_device_string[0] != 0) {
  1921. for (unsigned i = 0; i < n_candidate_devices; i++) {
  1922. struct cl_device * d = &candidate_devices[i];
  1923. if (strstr(d->name, user_device_string) != NULL) {
  1924. user_device_number = d->number;
  1925. break;
  1926. }
  1927. }
  1928. if (user_device_number == -1) {
  1929. GGML_LOG_ERROR("ggml_opencl: no device matching '%s' was found.\n", user_device_string);
  1930. exit(1);
  1931. }
  1932. }
  1933. if (user_device_number != -1) {
  1934. candidate_devices = &devices[user_device_number];
  1935. n_candidate_devices = 1;
  1936. default_device = &candidate_devices[0];
  1937. }
  1938. GGML_ASSERT(n_candidate_devices > 0);
  1939. if (default_device == NULL) {
  1940. default_device = &candidate_devices[0];
  1941. }
  1942. }
  1943. GGML_ASSERT(n_candidate_devices != 0 && candidate_devices);
  1944. // Put the default device in front.
  1945. for (unsigned i = 1; i < n_candidate_devices; i++) {
  1946. if (&candidate_devices[i] == default_device) {
  1947. std::swap(candidate_devices[0], candidate_devices[i]);
  1948. default_device = &candidate_devices[0];
  1949. break;
  1950. }
  1951. }
  1952. GGML_LOG_INFO("ggml_opencl: selected platform: '%s'\n", default_device->platform->name);
  1953. std::vector<cl_device_id> device_ids;
  1954. for (auto dev = candidate_devices, dev_end = candidate_devices + n_candidate_devices; dev != dev_end; dev++) {
  1955. device_ids.push_back(dev->id);
  1956. }
  1957. cl_int err;
  1958. cl_context shared_context;
  1959. cl_context_properties properties[] = { (intptr_t) CL_CONTEXT_PLATFORM, (intptr_t) default_device->platform->id, 0 };
  1960. CL_CHECK(
  1961. (shared_context = clCreateContext(properties, device_ids.size(), device_ids.data(), NULL, NULL, &err), err));
  1962. for (auto dev = candidate_devices, dev_end = candidate_devices + n_candidate_devices; dev != dev_end; dev++) {
  1963. GGML_LOG_INFO("\nggml_opencl: device: '%s (%s)'\n", dev->name, dev->version);
  1964. auto dev_ctx = std::unique_ptr<ggml_backend_opencl_device_context>(new ggml_backend_opencl_device_context{
  1965. /*.platform =*/dev->platform->id,
  1966. /*.platform_nane =*/dev->platform->name,
  1967. /*.device =*/dev->id,
  1968. /*.device_name =*/dev->name,
  1969. /*.device_type =*/dev->type,
  1970. /*.device_version =*/dev->version,
  1971. /*.backend_ctx =*/nullptr,
  1972. /*.buffer_type =*/{},
  1973. /*.context =*/shared_context,
  1974. });
  1975. found_devices.push_back(ggml_backend_device{
  1976. /* .iface = */ ggml_backend_opencl_device_i,
  1977. /* .reg = */ reg,
  1978. /* .context = */ dev_ctx.get(),
  1979. });
  1980. if (!ggml_cl2_init(&found_devices.back())) {
  1981. found_devices.pop_back();
  1982. GGML_LOG_INFO("ggml_opencl: drop unsupported device.\n");
  1983. continue;
  1984. }
  1985. dev_ctx.release();
  1986. }
  1987. if (found_devices.size()) {
  1988. auto * dev_ctx = static_cast<ggml_backend_opencl_device_context *>(found_devices.front().context);
  1989. GGML_LOG_INFO("ggml_opencl: default device: '%s (%s)'\n", dev_ctx->device_name.c_str(),
  1990. dev_ctx->device_version.c_str());
  1991. if (dev_ctx->device_type != CL_DEVICE_TYPE_GPU) {
  1992. GGML_LOG_WARN("ggml_opencl: warning, the default device is not a GPU: '%s'.\n",
  1993. dev_ctx->device_name.c_str());
  1994. }
  1995. }
  1996. return found_devices;
  1997. }
  1998. // Initialize device if it is supported (returns nullptr if it is not).
  1999. static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev) {
  2000. GGML_ASSERT(dev);
  2001. GGML_ASSERT(dev->context);
  2002. ggml_backend_opencl_device_context * dev_ctx = (ggml_backend_opencl_device_context *) dev->context;
  2003. GGML_ASSERT(dev_ctx->platform);
  2004. GGML_ASSERT(dev_ctx->device);
  2005. if (dev_ctx->backend_ctx) {
  2006. return dev_ctx->backend_ctx;
  2007. }
  2008. auto backend_ctx = std::make_unique<ggml_backend_opencl_context>();
  2009. backend_ctx->device = dev_ctx->device;
  2010. backend_ctx->gpu_family = GPU_FAMILY::UNKNOWN;
  2011. // ref_count get increased in ggml_backend_opencl_device_init
  2012. // This function is also used to retrieve backend context, so we don't want
  2013. // to increase ref_count for each call. We only want to increase ref_count
  2014. // when the associated device is initialized
  2015. backend_ctx->ref_count = 0;
  2016. if (strstr(dev_ctx->device_name.c_str(), "Adreno") ||
  2017. strstr(dev_ctx->device_name.c_str(), "Qualcomm") ||
  2018. strstr(dev_ctx->device_version.c_str(), "Adreno")) {
  2019. backend_ctx->gpu_family = GPU_FAMILY::ADRENO;
  2020. // Usually device version contains the detailed device name
  2021. backend_ctx->adreno_gen = get_adreno_gpu_gen(dev_ctx->device_version.c_str());
  2022. if (backend_ctx->adreno_gen == ADRENO_GPU_GEN::ADRENO_UNKNOWN) {
  2023. backend_ctx->adreno_gen = get_adreno_gpu_gen(dev_ctx->device_name.c_str());
  2024. }
  2025. // Use wave size of 64 for all Adreno GPUs.
  2026. backend_ctx->adreno_wave_size = 64;
  2027. } else if (strstr(dev_ctx->device_name.c_str(), "Intel")) {
  2028. backend_ctx->gpu_family = GPU_FAMILY::INTEL;
  2029. } else {
  2030. GGML_LOG_ERROR("Unsupported GPU: %s\n", dev_ctx->device_name.c_str());
  2031. backend_ctx->gpu_family = GPU_FAMILY::UNKNOWN;
  2032. return nullptr;
  2033. }
  2034. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  2035. if (backend_ctx->gpu_family != GPU_FAMILY::ADRENO) {
  2036. GGML_LOG_ERROR("ggml_opencl: Adreno-specific kernels should not be enabled for non-Adreno GPUs; "
  2037. "run on an Adreno GPU or recompile with CMake option `-DGGML_OPENCL_USE_ADRENO_KERNELS=OFF`\n");
  2038. return nullptr;
  2039. }
  2040. #endif
  2041. // Populate backend device name
  2042. backend_ctx->device_name = dev_ctx->device_name;
  2043. // A local ref of cl_device_id for convenience
  2044. cl_device_id device = backend_ctx->device;
  2045. ggml_cl_version platform_version = get_opencl_platform_version(dev_ctx->platform);
  2046. // Check device OpenCL version, OpenCL 2.0 or above is required
  2047. ggml_cl_version opencl_c_version = get_opencl_c_version(platform_version, device);
  2048. if (opencl_c_version.major < 2) {
  2049. GGML_LOG_ERROR("ggml_opencl: OpenCL 2.0 or above is required\n");
  2050. return nullptr;
  2051. }
  2052. // Check driver version
  2053. size_t driver_version_str_size;
  2054. clGetDeviceInfo(device, CL_DRIVER_VERSION, 0, NULL, &driver_version_str_size);
  2055. char *driver_version = (char *)alloca(driver_version_str_size + 1);
  2056. clGetDeviceInfo(device, CL_DRIVER_VERSION, driver_version_str_size, driver_version, NULL);
  2057. driver_version[driver_version_str_size] = '\0';
  2058. GGML_LOG_INFO("ggml_opencl: OpenCL driver: %s\n", driver_version);
  2059. backend_ctx->driver_version = driver_version;
  2060. backend_ctx->adreno_cl_compiler_version = get_adreno_cl_compiler_version(driver_version);
  2061. backend_ctx->has_vector_subgroup_broadcast =
  2062. (backend_ctx->adreno_cl_compiler_version.type == E031 && backend_ctx->adreno_cl_compiler_version.major >= 47) ||
  2063. (backend_ctx->adreno_cl_compiler_version.type == DX && backend_ctx->adreno_cl_compiler_version.major >= 17);
  2064. GGML_LOG_INFO("ggml_opencl: vector subgroup broadcast support: %s\n",
  2065. backend_ctx->has_vector_subgroup_broadcast ? "true" : "false");
  2066. size_t ext_str_size;
  2067. clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, 0, NULL, &ext_str_size);
  2068. char *ext_buffer = (char *)alloca(ext_str_size + 1);
  2069. clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, ext_str_size, ext_buffer, NULL);
  2070. ext_buffer[ext_str_size] = '\0'; // ensure it is null terminated
  2071. // Check if ext_buffer contains cl_khr_fp16
  2072. backend_ctx->fp16_support = strstr(ext_buffer, "cl_khr_fp16") != NULL;
  2073. GGML_LOG_INFO("ggml_opencl: device FP16 support: %s\n", backend_ctx->fp16_support ? "true" : "false");
  2074. // fp16 is required
  2075. if (!backend_ctx->fp16_support) {
  2076. GGML_LOG_ERROR("ggml_opencl: device does not support FP16\n");
  2077. return nullptr;
  2078. }
  2079. // If OpenCL 3.0 is supported, then check for cl_khr_subgroups, which becomes
  2080. // optional in OpenCL 3.0 (cl_khr_subgroup is mandatory in OpenCL 2.x)
  2081. if (opencl_c_version.major == 3 && strstr(ext_buffer, "cl_khr_subgroups") == NULL &&
  2082. strstr(ext_buffer, "cl_intel_subgroups") == NULL) {
  2083. GGML_LOG_ERROR("ggml_opencl: device does not support subgroups (cl_khr_subgroups or cl_intel_subgroups) "
  2084. "(note that subgroups is an optional feature in OpenCL 3.0)\n");
  2085. return nullptr;
  2086. }
  2087. cl_uint base_align_in_bits;
  2088. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_MEM_BASE_ADDR_ALIGN, sizeof(cl_uint), &base_align_in_bits, NULL));
  2089. GGML_ASSERT(base_align_in_bits % 8u == 0);
  2090. backend_ctx->alignment = base_align_in_bits / 8u;
  2091. GGML_LOG_INFO("ggml_opencl: mem base addr align: %u\n", backend_ctx->alignment);
  2092. clGetDeviceInfo(device, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof(size_t), &backend_ctx->max_alloc_size, NULL);
  2093. GGML_LOG_INFO("ggml_opencl: max mem alloc size: %zu MB\n", backend_ctx->max_alloc_size/1024/1024);
  2094. clGetDeviceInfo(device, CL_DEVICE_MAX_WORK_GROUP_SIZE, sizeof(size_t), &backend_ctx->max_workgroup_size, NULL);
  2095. GGML_LOG_INFO("ggml_opencl: device max workgroup size: %lu\n", backend_ctx->max_workgroup_size);
  2096. // Check SVM.
  2097. cl_device_svm_capabilities svm_caps;
  2098. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_SVM_CAPABILITIES, sizeof(cl_device_svm_capabilities), &svm_caps, 0));
  2099. GGML_LOG_INFO("ggml_opencl: SVM coarse grain buffer support: %s\n",
  2100. svm_caps & CL_DEVICE_SVM_COARSE_GRAIN_BUFFER ? "true" : "false");
  2101. GGML_LOG_INFO("ggml_opencl: SVM fine grain buffer support: %s\n",
  2102. svm_caps & CL_DEVICE_SVM_FINE_GRAIN_BUFFER ? "true" : "false");
  2103. GGML_LOG_INFO("ggml_opencl: SVM fine grain system support: %s\n",
  2104. svm_caps & CL_DEVICE_SVM_FINE_GRAIN_SYSTEM ? "true" : "false");
  2105. GGML_LOG_INFO("ggml_opencl: SVM atomics support: %s\n",
  2106. svm_caps & CL_DEVICE_SVM_ATOMICS ? "true" : "false");
  2107. if (opencl_c_version.major >= 3) {
  2108. // Assume it is not available for 3.0, since it is optional in 3.0.
  2109. // If compiling against 3.0, then we can query.
  2110. backend_ctx->non_uniform_workgroups = false;
  2111. #if CL_TARGET_OPENCL_VERSION >= 300
  2112. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_NON_UNIFORM_WORK_GROUP_SUPPORT, sizeof(cl_bool),
  2113. &backend_ctx->non_uniform_workgroups, 0));
  2114. #endif
  2115. } else {
  2116. GGML_ASSERT(opencl_c_version.major == 2);
  2117. // Non-uniform workgroup sizes is mandatory feature in v2.x.
  2118. backend_ctx->non_uniform_workgroups = true;
  2119. }
  2120. // Print out configurations
  2121. #ifdef GGML_OPENCL_SOA_Q
  2122. GGML_LOG_INFO("ggml_opencl: flattening quantized weights representation as struct of arrays (GGML_OPENCL_SOA_Q)\n");
  2123. #endif // GGML_OPENCL_SOA_Q
  2124. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  2125. GGML_LOG_INFO("ggml_opencl: using kernels optimized for Adreno (GGML_OPENCL_USE_ADRENO_KERNELS)\n");
  2126. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  2127. cl_int err;
  2128. // A local ref of cl_context for convenience
  2129. cl_context context = backend_ctx->context = dev_ctx->context;
  2130. //CL_CHECK((queue = clCreateCommandQueue(context, device, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err),
  2131. // (err != CL_INVALID_QUEUE_PROPERTIES && err != CL_INVALID_VALUE ? err :
  2132. // (queue = clCreateCommandQueue(context, device, 0, &err), err)
  2133. //)));
  2134. cl_command_queue_properties command_queue_props = 0;
  2135. #ifdef GGML_OPENCL_PROFILING
  2136. command_queue_props |= CL_QUEUE_PROFILING_ENABLE;
  2137. #endif
  2138. CL_CHECK((backend_ctx->queue = clCreateCommandQueue(context, device, command_queue_props, &err), err));
  2139. // Load kernels
  2140. load_cl_kernels(backend_ctx.get(), opencl_c_version);
  2141. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  2142. // Allocate intermediate buffers and images
  2143. size_t required_A_q_d_bytes = 311164928;
  2144. size_t required_A_s_d_bytes = 38895616;
  2145. size_t required_B_d_bytes = 45088768;
  2146. // Ensure buffer sizes do not exceed the maximum allocation size
  2147. size_t max_A_q_d_bytes = MIN(required_A_q_d_bytes, backend_ctx->max_alloc_size);
  2148. size_t max_A_s_d_bytes = MIN(required_A_s_d_bytes, backend_ctx->max_alloc_size);
  2149. size_t max_B_d_bytes = MIN(required_B_d_bytes, backend_ctx->max_alloc_size);
  2150. if (required_A_q_d_bytes > backend_ctx->max_alloc_size) {
  2151. GGML_LOG_WARN("ggml_opencl: A_q_d buffer size reduced from %zu to %zu due to device limitations.\n",
  2152. required_A_q_d_bytes, max_A_q_d_bytes);
  2153. }
  2154. if (required_A_s_d_bytes > backend_ctx->max_alloc_size) {
  2155. GGML_LOG_WARN("ggml_opencl: A_s_d buffer size reduced from %zu to %zu due to device limitations.\n",
  2156. required_A_s_d_bytes, max_A_s_d_bytes);
  2157. }
  2158. if (required_B_d_bytes > backend_ctx->max_alloc_size) {
  2159. GGML_LOG_WARN("ggml_opencl: B_d buffer size reduced from %zu to %zu due to device limitations.\n",
  2160. required_B_d_bytes, max_B_d_bytes);
  2161. }
  2162. CL_CHECK((backend_ctx->A_q_d_max = clCreateBuffer(context, 0, max_A_q_d_bytes, NULL, &err), err));
  2163. CL_CHECK((backend_ctx->A_s_d_max = clCreateBuffer(context, 0, max_A_s_d_bytes, NULL, &err), err));
  2164. CL_CHECK((backend_ctx->B_d_max = clCreateBuffer(context, 0, max_B_d_bytes, NULL, &err), err));
  2165. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  2166. backend_ctx->disable_fusion = getenv("GGML_OPENCL_DISABLE_FUSION") != nullptr;
  2167. dev_ctx->backend_ctx = backend_ctx.release();
  2168. return dev_ctx->backend_ctx;
  2169. }
  2170. static void ggml_cl2_free(ggml_backend_t backend) {
  2171. ggml_backend_opencl_context * ctx = (ggml_backend_opencl_context *) backend->context;
  2172. ctx->free();
  2173. // The CL context is shared by all backends, release it if all backends have been released
  2174. bool should_release_opencl = true;
  2175. for (auto device : g_ggml_backend_opencl_devices) {
  2176. ggml_backend_opencl_device_context * ctx_dev = (ggml_backend_opencl_device_context *) device.context;
  2177. if (ctx_dev->backend_ctx->ref_count > 0) {
  2178. should_release_opencl = false;
  2179. }
  2180. }
  2181. if (should_release_opencl) {
  2182. CL_CHECK(clReleaseContext(ctx->context));
  2183. }
  2184. }
  2185. //------------------------------------------------------------------------------
  2186. // Tensor extra management
  2187. //------------------------------------------------------------------------------
  2188. struct ggml_tensor_extra_cl {
  2189. // The buffer object that holds the data.
  2190. cl_mem data_device;
  2191. // The offset into the buffer object. This is primarily for scratch buffer
  2192. // and view operation.
  2193. // NB: this offset no longer includes view offset (view_offs). Whenever this
  2194. // offset is used, view_offs should be considered.
  2195. cl_ulong offset;
  2196. // The actual size of the cl_mem object. This is needed when returning the
  2197. // block to the pool.
  2198. size_t actual_size;
  2199. void reset() {
  2200. data_device = nullptr;
  2201. offset = 0;
  2202. actual_size = 0;
  2203. }
  2204. };
  2205. // Additional tensor extra structs for quantized tensors.
  2206. // These tensors are loaded from files and should not be allocated in scratch --
  2207. // they should always be allocated from the pool. Hence, they do not have an
  2208. // `offset`, which indicate their locations in the scratch buffer.
  2209. struct ggml_tensor_extra_cl_q4_0 {
  2210. // Quantized values.
  2211. cl_mem q = nullptr;
  2212. // Quantized values in image1d_buffer_t.
  2213. cl_mem q_img = nullptr;
  2214. // Scales.
  2215. cl_mem d = nullptr;
  2216. // Scales in image1d_buffer_t.
  2217. cl_mem d_img = nullptr;
  2218. // Size of quantized values.
  2219. size_t size_q = 0;
  2220. // Size of scales.
  2221. size_t size_d = 0;
  2222. ~ggml_tensor_extra_cl_q4_0() {
  2223. reset();
  2224. }
  2225. void reset() {
  2226. // q and d are subbuffers into the bigger buffer allocated in ggml_backend_buffer.
  2227. // They must be properly released so that the original buffer can be
  2228. // properly released to avoid memory leak.
  2229. if (q != nullptr) {
  2230. CL_CHECK(clReleaseMemObject(q));
  2231. q = nullptr;
  2232. }
  2233. if (d != nullptr) {
  2234. CL_CHECK(clReleaseMemObject(d));
  2235. d = nullptr;
  2236. }
  2237. // Currently, q_img and d_img are only initialized when SMALL_ALLOC is
  2238. // enabled. They point to the images in ggml_backend_opencl_buffer_context.
  2239. // So, there is no need to release them here.
  2240. // TODO: initialize them for non SMALL_PATH path, or remove them.
  2241. q_img = nullptr;
  2242. d_img = nullptr;
  2243. size_q = 0;
  2244. size_d = 0;
  2245. }
  2246. };
  2247. struct ggml_tensor_extra_cl_mxfp4 {
  2248. // Quantized values.
  2249. cl_mem q = nullptr;
  2250. // Quantized values in image1d_buffer_t.
  2251. cl_mem q_img = nullptr;
  2252. // Scales in E8M0.
  2253. cl_mem e = nullptr;
  2254. // Scales in image1d_buffer_t.
  2255. cl_mem e_img = nullptr;
  2256. // Size of quantized values.
  2257. size_t size_q = 0;
  2258. // Size of scales.
  2259. size_t size_e = 0;
  2260. ~ggml_tensor_extra_cl_mxfp4() {
  2261. reset();
  2262. }
  2263. void reset() {
  2264. // q and d are subbuffers into the bigger buffer allocated in ggml_backend_buffer.
  2265. // They must be properly released so that the original buffer can be
  2266. // properly released to avoid memory leak.
  2267. if (q != nullptr) {
  2268. CL_CHECK(clReleaseMemObject(q));
  2269. q = nullptr;
  2270. }
  2271. if (e != nullptr) {
  2272. CL_CHECK(clReleaseMemObject(e));
  2273. e = nullptr;
  2274. }
  2275. if (q != nullptr) {
  2276. CL_CHECK(clReleaseMemObject(q_img));
  2277. q = nullptr;
  2278. }
  2279. // Currently, q_img and d_img are not used. They can be image1d_buffer_t
  2280. // that wraps around q and d to utilize image access path.
  2281. q_img = nullptr;
  2282. e_img = nullptr;
  2283. size_q = 0;
  2284. size_e = 0;
  2285. }
  2286. };
  2287. struct ggml_tensor_extra_cl_q8_0 {
  2288. cl_mem q = nullptr;
  2289. cl_mem q_img = nullptr;
  2290. cl_mem d = nullptr;
  2291. cl_mem d_img = nullptr;
  2292. size_t size_q = 0;
  2293. size_t size_d = 0;
  2294. ~ggml_tensor_extra_cl_q8_0() {
  2295. reset();
  2296. }
  2297. void reset() {
  2298. // q and d are subbuffers into the bigger buffer allocated in ggml_backend_buffer.
  2299. // They must be properly released so that the original buffer can be
  2300. // properly released to avoid memory leak.
  2301. if (q != nullptr) {
  2302. CL_CHECK(clReleaseMemObject(q));
  2303. q = nullptr;
  2304. }
  2305. if (d != nullptr) {
  2306. CL_CHECK(clReleaseMemObject(d));
  2307. d = nullptr;
  2308. }
  2309. // Currently, q_img and d_img are not used. They can be image1d_buffer_t
  2310. // that wraps around q and d to utilize image access path.
  2311. q_img = nullptr;
  2312. d_img = nullptr;
  2313. size_q = 0;
  2314. size_d = 0;
  2315. }
  2316. };
  2317. //------------------------------------------------------------------------------
  2318. // Backend API
  2319. //------------------------------------------------------------------------------
  2320. //
  2321. // backend
  2322. //
  2323. static const char * ggml_backend_opencl_name(ggml_backend_t backend) {
  2324. return "OpenCL";
  2325. UNUSED(backend);
  2326. }
  2327. static void ggml_backend_opencl_free(ggml_backend_t backend) {
  2328. ggml_cl2_free(backend);
  2329. }
  2330. static void ggml_backend_opencl_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  2331. GGML_UNUSED(backend);
  2332. GGML_UNUSED(tensor);
  2333. GGML_UNUSED(data);
  2334. GGML_UNUSED(offset);
  2335. GGML_UNUSED(size);
  2336. }
  2337. static void ggml_backend_opencl_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  2338. GGML_UNUSED(backend);
  2339. GGML_UNUSED(tensor);
  2340. GGML_UNUSED(data);
  2341. GGML_UNUSED(offset);
  2342. GGML_UNUSED(size);
  2343. }
  2344. static bool ggml_backend_opencl_cpy_tensor_async(ggml_backend_t backend, const ggml_tensor * src, ggml_tensor * dst) {
  2345. GGML_UNUSED(backend);
  2346. GGML_UNUSED(src);
  2347. GGML_UNUSED(dst);
  2348. return false;
  2349. }
  2350. static void ggml_backend_opencl_synchronize(ggml_backend_t backend) {
  2351. auto * backend_ctx = static_cast<ggml_backend_opencl_context *>(backend->context);
  2352. cl_event evt;
  2353. CL_CHECK(clEnqueueBarrierWithWaitList(backend_ctx->queue, 0, nullptr, &evt));
  2354. CL_CHECK(clWaitForEvents(1, &evt));
  2355. CL_CHECK(clReleaseEvent(evt));
  2356. }
  2357. // Syncronizes the 'backend_ctx's device with others so that commands
  2358. // enqueued to it won't start until commands in the other devices have
  2359. // completed.
  2360. static void sync_with_other_backends(ggml_backend_opencl_context * backend_ctx) {
  2361. if (g_ggml_backend_opencl_devices.size() < 2)
  2362. return; // No other devices to synchronize with.
  2363. std::vector<cl_event> events;
  2364. events.reserve(g_ggml_backend_opencl_devices.size());
  2365. for (ggml_backend_device & backend_dev : g_ggml_backend_opencl_devices) {
  2366. auto * other_backend_ctx = ggml_cl2_init(&backend_dev);
  2367. if (backend_ctx != other_backend_ctx) {
  2368. cl_event ev;
  2369. CL_CHECK(clEnqueueMarkerWithWaitList(other_backend_ctx->queue, 0, nullptr, &ev));
  2370. CL_CHECK(clFlush(other_backend_ctx->queue));
  2371. events.push_back(ev);
  2372. }
  2373. }
  2374. CL_CHECK(clEnqueueBarrierWithWaitList(backend_ctx->queue, events.size(), events.data(), nullptr));
  2375. for (auto ev : events) {
  2376. CL_CHECK(clReleaseEvent(ev));
  2377. }
  2378. }
  2379. static void sync_with_other_backends(ggml_backend_t backend) {
  2380. auto * backend_ctx = static_cast<ggml_backend_opencl_context *>(backend->context);
  2381. sync_with_other_backends(backend_ctx);
  2382. }
  2383. static bool ggml_opencl_can_fuse(const struct ggml_cgraph * cgraph, int node_idx, std::initializer_list<enum ggml_op> ops) {
  2384. if (!ggml_can_fuse(cgraph, node_idx, ops)) {
  2385. return false;
  2386. }
  2387. if (ops.size() == 2 && ops.begin()[0] == GGML_OP_RMS_NORM && ops.begin()[1] == GGML_OP_MUL) {
  2388. const ggml_tensor *rms_norm = cgraph->nodes[node_idx];
  2389. const ggml_tensor *mul = cgraph->nodes[node_idx+1];
  2390. GGML_ASSERT(rms_norm->src[0]->type == GGML_TYPE_F32);
  2391. GGML_ASSERT(rms_norm->type == GGML_TYPE_F32);
  2392. // rms_norm only supports f32
  2393. if (mul->src[0]->type != GGML_TYPE_F32 ||
  2394. mul->src[1]->type != GGML_TYPE_F32 ||
  2395. mul->type != GGML_TYPE_F32) {
  2396. return false;
  2397. }
  2398. // if rms_norm is the B operand, then we don't handle broadcast
  2399. if (rms_norm == mul->src[1] &&
  2400. !ggml_are_same_shape(mul->src[0], rms_norm)) {
  2401. return false;
  2402. }
  2403. // rms_norm assumes contiguous rows
  2404. if (!ggml_is_contiguous_rows(mul->src[0]) || !ggml_is_contiguous_rows(mul->src[1])) {
  2405. return false;
  2406. }
  2407. } else if (ops.size() == 3 && ops.begin()[0] == GGML_OP_NORM && ops.begin()[1] == GGML_OP_MUL && ops.begin()[2] == GGML_OP_ADD) {
  2408. const ggml_tensor *norm = cgraph->nodes[node_idx];
  2409. const ggml_tensor *mul = cgraph->nodes[node_idx+1];
  2410. const ggml_tensor *add = cgraph->nodes[node_idx+2];
  2411. const ggml_tensor *w = mul->src[0] == norm ? mul->src[1] : mul->src[0];
  2412. const ggml_tensor *b = add->src[0] == mul ? add->src[1] : add->src[0];
  2413. // norm fusion only supports F32
  2414. if (norm->src[0]->type != GGML_TYPE_F32 || w->type != GGML_TYPE_F32 || b->type != GGML_TYPE_F32) {
  2415. return false;
  2416. }
  2417. if (norm->src[0]->ne[0] % 4 != 0) {
  2418. return false;
  2419. }
  2420. if (!ggml_is_contiguous(norm->src[0]) || !ggml_is_contiguous(w) || !ggml_is_contiguous(b)) {
  2421. return false;
  2422. }
  2423. } else if (ops.size() == 3 && ops.begin()[0] == GGML_OP_GROUP_NORM && ops.begin()[1] == GGML_OP_MUL && ops.begin()[2] == GGML_OP_ADD) {
  2424. const ggml_tensor *gn = cgraph->nodes[node_idx];
  2425. const ggml_tensor *mul = cgraph->nodes[node_idx+1];
  2426. const ggml_tensor *add = cgraph->nodes[node_idx+2];
  2427. const ggml_tensor *w = mul->src[0] == gn ? mul->src[1] : mul->src[0];
  2428. const ggml_tensor *b = add->src[0] == mul ? add->src[1] : add->src[0];
  2429. if (gn->src[0]->type != GGML_TYPE_F32 || w->type != GGML_TYPE_F32 || b->type != GGML_TYPE_F32) {
  2430. return false;
  2431. }
  2432. if (!ggml_is_contiguous(gn->src[0]) || !ggml_is_contiguous(w) || !ggml_is_contiguous(b)) {
  2433. return false;
  2434. }
  2435. }
  2436. return true;
  2437. }
  2438. static void ggml_opencl_op_rms_norm_fused(ggml_backend_t backend, ggml_tensor * rms_norm_tensor, ggml_tensor * mul_tensor);
  2439. static void ggml_opencl_op_norm_fused(ggml_backend_t backend, ggml_tensor * norm_tensor, ggml_tensor * mul_tensor, ggml_tensor * add_tensor);
  2440. static void ggml_opencl_op_group_norm_fused(ggml_backend_t backend, ggml_tensor * gn_tensor, ggml_tensor * mul_tensor, ggml_tensor * add_tensor);
  2441. static ggml_status ggml_backend_opencl_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
  2442. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  2443. for (int i = 0; i < cgraph->n_nodes; i++) {
  2444. ggml_tensor * node = cgraph->nodes[i];
  2445. // NOTE: this may oversynchronize by synchronizing with
  2446. // backends/devices which don't compute 'cgraph's
  2447. // dependencies.
  2448. sync_with_other_backends(backend);
  2449. if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
  2450. continue;
  2451. }
  2452. if (!backend_ctx->disable_fusion && ggml_opencl_can_fuse(cgraph, i, { GGML_OP_NORM, GGML_OP_MUL, GGML_OP_ADD })) {
  2453. ggml_opencl_op_norm_fused(backend, node, cgraph->nodes[i+1], cgraph->nodes[i+2]);
  2454. i += 2;
  2455. continue;
  2456. }
  2457. if (!backend_ctx->disable_fusion && ggml_opencl_can_fuse(cgraph, i, { GGML_OP_GROUP_NORM, GGML_OP_MUL, GGML_OP_ADD })) {
  2458. ggml_opencl_op_group_norm_fused(backend, node, cgraph->nodes[i+1], cgraph->nodes[i+2]);
  2459. i += 2;
  2460. continue;
  2461. }
  2462. if (!backend_ctx->disable_fusion && ggml_opencl_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL })) {
  2463. ggml_opencl_op_rms_norm_fused(backend, node, cgraph->nodes[i+1]);
  2464. i++;
  2465. continue;
  2466. }
  2467. bool ok = ggml_cl_compute_forward(backend, node);
  2468. if (!ok) {
  2469. GGML_LOG_ERROR("%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
  2470. }
  2471. GGML_ASSERT(ok);
  2472. }
  2473. return GGML_STATUS_SUCCESS;
  2474. }
  2475. static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
  2476. ggml_backend_opencl_device_context * dev_ctx = (ggml_backend_opencl_device_context *)dev->context;
  2477. ggml_backend_opencl_context * backend_ctx = dev_ctx->backend_ctx;
  2478. switch (op->op) {
  2479. case GGML_OP_NONE:
  2480. return true;
  2481. case GGML_OP_GET_ROWS:
  2482. switch (op->src[0]->type) {
  2483. case GGML_TYPE_F32:
  2484. case GGML_TYPE_F16:
  2485. return true;
  2486. case GGML_TYPE_Q4_0:
  2487. #ifdef GGML_OPENCL_SOA_Q
  2488. // We do not support flattened Q4_0 (and possibly other Q's)
  2489. return false;
  2490. #else // GGML_OPENCL_SOA_Q
  2491. return true;
  2492. #endif // GGML_OPENCL_SOA_Q
  2493. default:
  2494. return false;
  2495. }
  2496. case GGML_OP_SET_ROWS:
  2497. {
  2498. // TODO: add support
  2499. // ref: https://github.com/ggml-org/llama.cpp/pull/14274
  2500. #pragma message("TODO: implement BF16, Q4_0, Q4_1, Q5_0, Q5_1, Q8_0, IQ4_NL support (https://github.com/ggml-org/llama.cpp/pull/14661)")
  2501. if (op->src[0]->type != GGML_TYPE_F32) {
  2502. return false;
  2503. }
  2504. switch (op->type) {
  2505. case GGML_TYPE_F16:
  2506. case GGML_TYPE_F32:
  2507. return (op->src[1]->type == GGML_TYPE_I64 || op->src[1]->type == GGML_TYPE_I32);
  2508. default:
  2509. return false;
  2510. }
  2511. }
  2512. case GGML_OP_CPY:
  2513. case GGML_OP_DUP:
  2514. case GGML_OP_CONT:
  2515. switch (op->src[0]->type) {
  2516. case GGML_TYPE_F32:
  2517. switch (op->type) {
  2518. case GGML_TYPE_F16:
  2519. case GGML_TYPE_F32:
  2520. return true;
  2521. default:
  2522. return false;
  2523. }
  2524. case GGML_TYPE_F16:
  2525. switch (op->type) {
  2526. case GGML_TYPE_F16:
  2527. case GGML_TYPE_F32:
  2528. return true;
  2529. default:
  2530. return false;
  2531. }
  2532. default:
  2533. return false;
  2534. }
  2535. case GGML_OP_SCALE:
  2536. return op->src[0]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]);
  2537. case GGML_OP_ADD:
  2538. if (op->type == GGML_TYPE_F16) {
  2539. const bool src0_ok = op->src[0]->type == GGML_TYPE_F16 || op->src[0]->type == GGML_TYPE_F32;
  2540. const bool src1_ok = op->src[1]->type == GGML_TYPE_F16 || op->src[1]->type == GGML_TYPE_F32;
  2541. if (src0_ok && src1_ok) {
  2542. return true;
  2543. }
  2544. }
  2545. case GGML_OP_MUL:
  2546. case GGML_OP_DIV:
  2547. case GGML_OP_SUB:
  2548. return (op->src[0]->type == op->src[1]->type) &&
  2549. (op->src[0]->type == op->type) &&
  2550. (op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16);
  2551. case GGML_OP_ADD_ID:
  2552. return op->src[0]->type == GGML_TYPE_F32;
  2553. case GGML_OP_UNARY:
  2554. switch (ggml_get_unary_op(op)) {
  2555. case GGML_UNARY_OP_GELU:
  2556. case GGML_UNARY_OP_SILU:
  2557. case GGML_UNARY_OP_RELU:
  2558. case GGML_UNARY_OP_GELU_ERF:
  2559. case GGML_UNARY_OP_GELU_QUICK:
  2560. return ggml_is_contiguous(op->src[0]) && op->src[0]->type == GGML_TYPE_F32;
  2561. case GGML_UNARY_OP_SIGMOID:
  2562. return ggml_is_contiguous(op->src[0]);
  2563. case GGML_UNARY_OP_TANH:
  2564. return (op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32) ||
  2565. (op->src[0]->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F16);
  2566. default:
  2567. return false;
  2568. }
  2569. case GGML_OP_GLU:
  2570. switch (ggml_get_glu_op(op)) {
  2571. case GGML_GLU_OP_GEGLU:
  2572. case GGML_GLU_OP_REGLU:
  2573. case GGML_GLU_OP_SWIGLU:
  2574. case GGML_GLU_OP_SWIGLU_OAI:
  2575. case GGML_GLU_OP_GEGLU_ERF:
  2576. case GGML_GLU_OP_GEGLU_QUICK:
  2577. return ggml_is_contiguous_1(op->src[0]) && (op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16);
  2578. default:
  2579. return false;
  2580. }
  2581. case GGML_OP_CLAMP:
  2582. return op->src[0]->type == GGML_TYPE_F32;
  2583. case GGML_OP_SOFT_MAX:
  2584. case GGML_OP_NORM:
  2585. return true;
  2586. case GGML_OP_RMS_NORM:
  2587. return op->ne[0] % 4 == 0 && ggml_is_contiguous_rows(op->src[0]);
  2588. case GGML_OP_REPEAT:
  2589. return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32; // Assuming F32 for now, can be expanded
  2590. case GGML_OP_PAD:
  2591. return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
  2592. case GGML_OP_UPSCALE:
  2593. return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
  2594. case GGML_OP_CONV_2D:
  2595. return (op->src[0]->type == GGML_TYPE_F16 && op->src[1]->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F16) ||
  2596. (op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32) ||
  2597. (op->src[0]->type == GGML_TYPE_F16 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32);
  2598. case GGML_OP_CONCAT:
  2599. return op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
  2600. case GGML_OP_TIMESTEP_EMBEDDING:
  2601. return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
  2602. case GGML_OP_GROUP_NORM:
  2603. return ggml_is_contiguous(op->src[0]);
  2604. case GGML_OP_MUL_MAT:
  2605. if (op->src[0]->type == GGML_TYPE_F16) {
  2606. return true;
  2607. } else if (op->src[0]->type == GGML_TYPE_F32) {
  2608. return op->src[1]->type == GGML_TYPE_F32;
  2609. } else if (op->src[0]->type == GGML_TYPE_Q4_0 || op->src[0]->type == GGML_TYPE_MXFP4 ||
  2610. op->src[0]->type == GGML_TYPE_Q6_K) {
  2611. return op->src[1]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]);
  2612. } else if (op->src[0]->type == GGML_TYPE_Q8_0) {
  2613. return op->src[1]->type == GGML_TYPE_F32;
  2614. }
  2615. return false;
  2616. case GGML_OP_MUL_MAT_ID:
  2617. if (op->src[0]->type == GGML_TYPE_Q4_0 ||
  2618. op->src[0]->type == GGML_TYPE_Q8_0 ||
  2619. op->src[0]->type == GGML_TYPE_MXFP4) {
  2620. if (op->src[1]->type == GGML_TYPE_F32) {
  2621. return ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]);
  2622. }
  2623. }
  2624. return false;
  2625. case GGML_OP_RESHAPE:
  2626. case GGML_OP_VIEW:
  2627. case GGML_OP_PERMUTE:
  2628. case GGML_OP_TRANSPOSE:
  2629. return true;
  2630. case GGML_OP_DIAG_MASK_INF:
  2631. return op->ne[3] == 1;
  2632. case GGML_OP_ROPE: {
  2633. const int mode = ((const int32_t *) op->op_params)[2];
  2634. const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
  2635. const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
  2636. if (is_mrope && !is_vision) {
  2637. if (op->src[0]->type == GGML_TYPE_F32 ||
  2638. op->src[0]->type == GGML_TYPE_F16) {
  2639. return true;
  2640. }
  2641. return false;
  2642. }
  2643. if (is_vision) {
  2644. if (op->src[0]->type == GGML_TYPE_F32 ||
  2645. op->src[0]->type == GGML_TYPE_F16) {
  2646. return true;
  2647. }
  2648. return false;
  2649. }
  2650. return true;
  2651. }
  2652. case GGML_OP_IM2COL:
  2653. return true;
  2654. case GGML_OP_ARGSORT: {
  2655. cl_kernel kernel = backend_ctx->kernel_argsort_f32_i32;
  2656. int max_workgroup_size = backend_ctx->get_kernel_workgroup_size(kernel);
  2657. int cols = 1;
  2658. while (cols < op->ne[0]) {
  2659. cols *= 2;
  2660. }
  2661. return cols <= max_workgroup_size && op->src[0]->type == GGML_TYPE_F32;
  2662. }
  2663. case GGML_OP_SUM_ROWS:
  2664. return op->src[0]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]);
  2665. case GGML_OP_FLASH_ATTN_EXT:
  2666. {
  2667. const ggml_tensor * q = op->src[0];
  2668. const ggml_tensor * k = op->src[1];
  2669. const ggml_tensor * v = op->src[2];
  2670. const int dk = q->ne[0];
  2671. const int dv = v->ne[0];
  2672. const struct { int dk; int dv; } supported_dims[] = {
  2673. { 40, 40}, { 64, 64}, { 80, 80}, { 96, 96},
  2674. {112, 112}, {128, 128}, {192, 128},
  2675. {192, 192}, {256, 256},
  2676. };
  2677. bool dims_supported = false;
  2678. for (size_t i = 0; i < sizeof(supported_dims)/sizeof(supported_dims[0]); ++i) {
  2679. if (supported_dims[i].dk == dk && supported_dims[i].dv == dv) {
  2680. dims_supported = true;
  2681. break;
  2682. }
  2683. }
  2684. if (!dims_supported) {
  2685. return false;
  2686. }
  2687. const bool is_f32_f32 = q->type == GGML_TYPE_F32 && k->type == GGML_TYPE_F32 &&
  2688. v->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
  2689. const bool is_f16_f16 = q->type == GGML_TYPE_F16 && k->type == GGML_TYPE_F16 &&
  2690. v->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F16;
  2691. const bool is_f32_f16 = q->type == GGML_TYPE_F32 && k->type == GGML_TYPE_F16 &&
  2692. v->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F32;
  2693. return is_f32_f32 || is_f16_f16 || is_f32_f16;
  2694. }
  2695. default:
  2696. return false;
  2697. }
  2698. }
  2699. // Forward declaration - implementation appears later in the file.
  2700. static const char * ggml_backend_opencl_buffer_type_get_name(ggml_backend_buffer_type_t buffer_type);
  2701. static ggml_guid_t ggml_backend_opencl_guid() {
  2702. static ggml_guid guid = { 0xde, 0xe0, 0x70, 0xa2, 0x73, 0x4e, 0x4d, 0xbc, 0xb0, 0xc7, 0x4f, 0xd4, 0x6d, 0x4e, 0x90, 0xfe };
  2703. return &guid;
  2704. }
  2705. static ggml_backend_i ggml_backend_opencl_i = {
  2706. /* .get_name = */ ggml_backend_opencl_name,
  2707. /* .free = */ ggml_backend_opencl_free,
  2708. /* .set_tensor_async = */ NULL, /* ggml_backend_opencl_set_tensor_async */
  2709. /* .get_tensor_async = */ NULL, /* ggml_backend_opencl_get_tensor_async */
  2710. /* .cpy_tensor_async = */ NULL, /* ggml_backend_opencl_cpy_tensor_async */
  2711. /* .synchronize = */ ggml_backend_opencl_synchronize,
  2712. /* .graph_plan_create = */ NULL,
  2713. /* .graph_plan_free = */ NULL,
  2714. /* .graph_plan_update = */ NULL,
  2715. /* .graph_plan_compute = */ NULL,
  2716. /* .graph_compute = */ ggml_backend_opencl_graph_compute,
  2717. /* .event_record = */ NULL,
  2718. /* .event_wait = */ NULL,
  2719. /* .graph_optimize = */ NULL,
  2720. };
  2721. ggml_backend_t ggml_backend_opencl_init(void) {
  2722. ggml_backend_dev_t dev = ggml_backend_reg_dev_get(ggml_backend_opencl_reg(), 0);
  2723. ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(dev);
  2724. ggml_backend_t backend = new ggml_backend {
  2725. /* .guid = */ ggml_backend_opencl_guid(),
  2726. /* .iface = */ ggml_backend_opencl_i,
  2727. /* .device = */ dev,
  2728. /* .context = */ backend_ctx
  2729. };
  2730. return backend;
  2731. }
  2732. bool ggml_backend_is_opencl(ggml_backend_t backend) {
  2733. return backend && backend->iface.get_name == ggml_backend_opencl_name;
  2734. }
  2735. //
  2736. // buffer
  2737. //
  2738. struct ggml_backend_opencl_buffer_context {
  2739. // A buffer context can hold multiple cl_mem objects. This is for flattening
  2740. // quantized weights and should be used with GGML_OPENCL_SMALL_ALLOC where
  2741. // each tensor is allocated a separate buffer. When flattening is enabled
  2742. // with small allocation, each tensor is backed by two cl_mem objects (for
  2743. // quants and scales) packed into a backend_opencl_buffer.
  2744. ggml_backend_opencl_buffer_context(cl_mem buf)
  2745. : name("OpenCL") {
  2746. buffer.push_back(buf);
  2747. }
  2748. ~ggml_backend_opencl_buffer_context() {
  2749. for (cl_mem buf : buffer) {
  2750. CL_CHECK(clReleaseMemObject(buf));
  2751. }
  2752. for (cl_mem im : img) {
  2753. CL_CHECK(clReleaseMemObject(im));
  2754. }
  2755. // Delete all extras to trigger their destructors
  2756. for (ggml_tensor_extra_cl * e : temp_tensor_extras) {
  2757. delete e;
  2758. }
  2759. for (ggml_tensor_extra_cl * e : temp_tensor_extras_in_use) {
  2760. delete e;
  2761. }
  2762. for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0) {
  2763. delete e;
  2764. }
  2765. for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0_in_use) {
  2766. delete e;
  2767. }
  2768. for (ggml_tensor_extra_cl_mxfp4 * e : temp_tensor_extras_mxfp4) {
  2769. delete e;
  2770. }
  2771. for (ggml_tensor_extra_cl_mxfp4 * e : temp_tensor_extras_mxfp4_in_use) {
  2772. delete e;
  2773. }
  2774. for (ggml_tensor_extra_cl_q8_0 * e : temp_tensor_extras_q8_0) {
  2775. delete e;
  2776. }
  2777. for (ggml_tensor_extra_cl_q8_0 * e : temp_tensor_extras_q8_0_in_use) {
  2778. delete e;
  2779. }
  2780. }
  2781. ggml_tensor_extra_cl * ggml_opencl_alloc_temp_tensor_extra() {
  2782. ggml_tensor_extra_cl * extra;
  2783. if (temp_tensor_extras.empty()) {
  2784. extra = new ggml_tensor_extra_cl();
  2785. } else {
  2786. extra = temp_tensor_extras.back();
  2787. temp_tensor_extras.pop_back();
  2788. }
  2789. temp_tensor_extras_in_use.push_back(extra);
  2790. extra->reset();
  2791. return extra;
  2792. }
  2793. ggml_tensor_extra_cl_q4_0 * ggml_opencl_alloc_temp_tensor_extra_q4_0() {
  2794. ggml_tensor_extra_cl_q4_0 * extra;
  2795. if (temp_tensor_extras_q4_0.empty()) {
  2796. extra = new ggml_tensor_extra_cl_q4_0();
  2797. } else {
  2798. extra = temp_tensor_extras_q4_0.back();
  2799. temp_tensor_extras_q4_0.pop_back();
  2800. }
  2801. temp_tensor_extras_q4_0_in_use.push_back(extra);
  2802. extra->reset();
  2803. return extra;
  2804. }
  2805. ggml_tensor_extra_cl_mxfp4 * ggml_opencl_alloc_temp_tensor_extra_mxfp4() {
  2806. ggml_tensor_extra_cl_mxfp4 * extra;
  2807. if (temp_tensor_extras_mxfp4.empty()) {
  2808. extra = new ggml_tensor_extra_cl_mxfp4();
  2809. } else {
  2810. extra = temp_tensor_extras_mxfp4.back();
  2811. temp_tensor_extras_mxfp4.pop_back();
  2812. }
  2813. temp_tensor_extras_mxfp4_in_use.push_back(extra);
  2814. extra->reset();
  2815. return extra;
  2816. }
  2817. ggml_tensor_extra_cl_q8_0 * ggml_opencl_alloc_temp_tensor_extra_q8_0() {
  2818. ggml_tensor_extra_cl_q8_0 * extra;
  2819. if (temp_tensor_extras_q8_0.empty()) {
  2820. extra = new ggml_tensor_extra_cl_q8_0();
  2821. } else {
  2822. extra = temp_tensor_extras_q8_0.back();
  2823. temp_tensor_extras_q8_0.pop_back();
  2824. }
  2825. temp_tensor_extras_q8_0_in_use.push_back(extra);
  2826. extra->reset();
  2827. return extra;
  2828. }
  2829. void reset() {
  2830. for (ggml_tensor_extra_cl * e : temp_tensor_extras_in_use) {
  2831. temp_tensor_extras.push_back(e);
  2832. }
  2833. temp_tensor_extras_in_use.clear();
  2834. for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0_in_use) {
  2835. temp_tensor_extras_q4_0.push_back(e);
  2836. }
  2837. temp_tensor_extras_q4_0_in_use.clear();
  2838. for (ggml_tensor_extra_cl_mxfp4 * e : temp_tensor_extras_mxfp4_in_use) {
  2839. temp_tensor_extras_mxfp4.push_back(e);
  2840. }
  2841. temp_tensor_extras_mxfp4_in_use.clear();
  2842. for (ggml_tensor_extra_cl_q8_0 * e : temp_tensor_extras_q8_0_in_use) {
  2843. temp_tensor_extras_q8_0.push_back(e);
  2844. }
  2845. temp_tensor_extras_q8_0_in_use.clear();
  2846. }
  2847. // Pools for extras. Available extras are in `temp_tensor_extras`. Extras
  2848. // being used are in `temp_tensor_extras_in_use`. At the first run, new
  2849. // extras get created and put in `in_use`. When the buffer is reset via
  2850. // the `reset` callback, all extras in `in_use` get moved to available extras
  2851. // for reuse.
  2852. std::vector<ggml_tensor_extra_cl *> temp_tensor_extras;
  2853. std::vector<ggml_tensor_extra_cl *> temp_tensor_extras_in_use;
  2854. std::vector<ggml_tensor_extra_cl_q4_0 *> temp_tensor_extras_q4_0;
  2855. std::vector<ggml_tensor_extra_cl_q4_0 *> temp_tensor_extras_q4_0_in_use;
  2856. std::vector<ggml_tensor_extra_cl_mxfp4 *> temp_tensor_extras_mxfp4;
  2857. std::vector<ggml_tensor_extra_cl_mxfp4 *> temp_tensor_extras_mxfp4_in_use;
  2858. std::vector<ggml_tensor_extra_cl_q8_0 *> temp_tensor_extras_q8_0;
  2859. std::vector<ggml_tensor_extra_cl_q8_0 *> temp_tensor_extras_q8_0_in_use;
  2860. // The buffer_context is initially created by ggml_backend_buft_alloc_buffer
  2861. // before any tensor is initialized (at the beginning of alloc_tensor_range).
  2862. // Hence, there is alway a buffer object in this vector. When each tensor is
  2863. // being initialized, this original buffer object will be released if both
  2864. // flattening and small allocation are enabled, and additional buffer
  2865. // objects will be created in init_tensor to represent flattened quantized
  2866. // weights.
  2867. std::vector<cl_mem> buffer;
  2868. // These are image1d_buffer_t objects that wrap around the quants and scales.
  2869. // For Q4_0 quantization, there should be two of them - one for quants and
  2870. // one for scales. They should be populated only when flattening and small
  2871. // allocation are enabled.
  2872. std::vector<cl_mem> img;
  2873. std::string name;
  2874. };
  2875. static void ggml_backend_opencl_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  2876. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  2877. delete ctx;
  2878. }
  2879. static void * ggml_backend_opencl_buffer_get_base(ggml_backend_buffer_t buffer) {
  2880. ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(buffer->buft->device);
  2881. return (void *) (uintptr_t) backend_ctx->alignment;
  2882. }
  2883. static enum ggml_status ggml_backend_opencl_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
  2884. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  2885. ggml_cl2_init(buffer->buft->device);
  2886. if (tensor->view_src != nullptr) {
  2887. GGML_ASSERT(tensor->view_src->buffer->buft == buffer->buft);
  2888. ggml_tensor_extra_cl * view_extra = (ggml_tensor_extra_cl *) tensor->view_src->extra;
  2889. GGML_ASSERT(view_extra && "view_extra is nullptr?");
  2890. // Reuse extra of the parent tensor. The offset of this view tensor
  2891. // becomes `extra->offset + view_offs` and needs to be calculated when
  2892. // it is used. This changes is needed because of the change to
  2893. // ggml_alloc.c in https://github.com/ggerganov/llama.cpp/pull/7640.
  2894. // `buffer` passed in here will always be `tensor->buffer`. It is OK
  2895. // to allocate extras from the same buffer context for ordinary
  2896. // intermediate tensors. But for views into kv cache tensors, doing so
  2897. // would mess up the extras used by kv cache.
  2898. // Before #7640, `buffer` is for intermediate tensors, which is always
  2899. // different from that of kv cache tensors.
  2900. //
  2901. // NB: now extra->offset no longer accounts for view_offs.
  2902. // NB: this should not apply to weight tensors (for end-to-end runs, but
  2903. // may apply for test-backend-ops).
  2904. // FIXME: if any unexpected results are seen, double check the offset -
  2905. // there could be other places that need fix.
  2906. tensor->extra = view_extra;
  2907. } else {
  2908. {
  2909. size_t offset = (char *) tensor->data - (char *) ggml_backend_opencl_buffer_get_base(buffer);
  2910. ggml_tensor_extra_cl * extra = ctx->ggml_opencl_alloc_temp_tensor_extra();
  2911. extra->offset = offset;
  2912. extra->data_device = ctx->buffer[0];
  2913. extra->actual_size = ggml_nbytes(tensor);
  2914. tensor->extra = extra;
  2915. }
  2916. }
  2917. return GGML_STATUS_SUCCESS;
  2918. }
  2919. // The optimized gemm and gemv kernels are used for large matrices without batch.
  2920. // tensor is the quantized weights matrix.
  2921. inline bool use_adreno_kernels(const ggml_backend_opencl_context *backend_ctx, const ggml_tensor *tensor) {
  2922. int64_t threshold_ne0 = 512;
  2923. int64_t threshold_ne1 = 512;
  2924. if (!backend_ctx->adreno_cl_compiler_version.newer_than_or_same(E031, 38, 11, 0) &&
  2925. backend_ctx->adreno_cl_compiler_version.type != DX) {
  2926. threshold_ne0 = 128;
  2927. threshold_ne1 = 128;
  2928. }
  2929. return tensor->ne[0] >= threshold_ne0 && tensor->ne[1] >= threshold_ne1 &&
  2930. tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2931. }
  2932. inline bool use_adreno_moe_kernels(const ggml_backend_opencl_context *backend_ctx, const ggml_tensor *tensor) {
  2933. GGML_UNUSED(backend_ctx);
  2934. int ne01 = tensor->ne[1];
  2935. return ((strstr(tensor->name, "ffn") != NULL) || (strstr(tensor->name, "as") != NULL)) && (ne01 % 64 == 0);
  2936. }
  2937. static void ggml_backend_opencl_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  2938. ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer->buft->device);
  2939. cl_context context = backend_ctx->context;
  2940. cl_command_queue queue = backend_ctx->queue;
  2941. #ifdef GGML_OPENCL_SOA_Q
  2942. // We separate the quantized bits and scale from block_q4_0 by using an
  2943. // additional kernel, where each thread handles a block. We first read the
  2944. // original weights into a temporary buffer, then create two separate
  2945. // buffers for quantized bits and scales, which are then populated by the
  2946. // conversion kernel.
  2947. if (tensor->type == GGML_TYPE_Q4_0) {
  2948. // Tensors should have been preallocated, therefore they should
  2949. // already have ggml_tensor_extra_cl as extra.
  2950. ggml_tensor_extra_cl * extra_orig = (ggml_tensor_extra_cl *)tensor->extra;
  2951. GGML_ASSERT(extra_orig && "Tesnors in OpenCL backend should have been allocated and initialized");
  2952. // Allocate the new extra and create aliases from the original.
  2953. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  2954. ggml_tensor_extra_cl_q4_0 * extra = ctx->ggml_opencl_alloc_temp_tensor_extra_q4_0();
  2955. size_t size_d = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*sizeof(ggml_fp16_t);
  2956. size_t size_q = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*ggml_blck_size(tensor->type)/2;
  2957. GGML_ASSERT(size_d + size_q == ggml_nbytes(tensor) && "Incorrect tensor size");
  2958. cl_int err;
  2959. cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
  2960. ggml_nbytes(tensor), NULL, &err);
  2961. CL_CHECK(err);
  2962. CL_CHECK(clEnqueueWriteBuffer(
  2963. queue, data_device, CL_TRUE, 0,
  2964. ggml_nbytes(tensor), data, 0, NULL, NULL));
  2965. // We consider the specified offset arg as always, although For weights
  2966. // the offset arg should be 0 (we do not assert this).
  2967. //GGML_ASSERT(offset == 0);
  2968. // We create subbuffers from the original tensor buffer for scales and
  2969. // quants - i.e., scales and quants are aliases into the buffer obejct
  2970. // that backs the original tensor. This is a cleaner way to adapt to the
  2971. // new memory management.
  2972. // In the old code, we allocate new buffers for scales and quants
  2973. // respectively, which could still be done but would result in double
  2974. // allocation; properly deallocating the preallocated buffer that backs
  2975. // the tensors is tricky and would leak the backend specific information
  2976. // into the general backend code.
  2977. // Does this create misaligned subbuffers (alignment is 1024) in certain
  2978. // cases ?
  2979. cl_buffer_region region;
  2980. // The original tensor memory is divided into scales and quants, i.e.,
  2981. // we first store scales, then quants.
  2982. // Create subbuffer for scales.
  2983. region.origin = align_to(extra_orig->offset + tensor->view_offs + offset, backend_ctx->alignment);
  2984. region.size = size_d;
  2985. extra->d = clCreateSubBuffer(
  2986. extra_orig->data_device, CL_MEM_READ_WRITE,
  2987. CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
  2988. CL_CHECK(err);
  2989. auto previous_origin = region.origin;
  2990. // Create subbuffer for quants.
  2991. region.origin = align_to(previous_origin + size_d, backend_ctx->alignment);
  2992. region.size = size_q;
  2993. extra->q = clCreateSubBuffer(
  2994. extra_orig->data_device, CL_MEM_READ_WRITE,
  2995. CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
  2996. CL_CHECK(err);
  2997. //cl_kernel kernel = backend_ctx->kernel_convert_block_q4_0;
  2998. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  2999. cl_kernel kernel = backend_ctx->kernel_convert_block_q4_0;
  3000. // The optimized kernels need weights in natural order, so unshuffle.
  3001. if (use_adreno_kernels(backend_ctx, tensor)) {
  3002. kernel = backend_ctx->kernel_convert_block_q4_0_noshuffle;
  3003. }
  3004. #else
  3005. cl_kernel kernel = backend_ctx->kernel_convert_block_q4_0;
  3006. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  3007. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &data_device));
  3008. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->q));
  3009. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra->d));
  3010. size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
  3011. size_t local_work_size[] = {64, 1, 1};
  3012. cl_event evt;
  3013. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  3014. CL_CHECK(clWaitForEvents(1, &evt));
  3015. CL_CHECK(clReleaseMemObject(data_device));
  3016. tensor->extra = extra;
  3017. // transpose the weights and scales
  3018. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  3019. // Only do transpose for large, non batched matrix
  3020. // TODO: use preallocated images instead of sub-buffer then image
  3021. if (use_adreno_kernels(backend_ctx, tensor)) {
  3022. // <----------------------------------------------------------------------------------> //
  3023. // start transpose
  3024. // <----------------------------------------------------------------------------------> //
  3025. int M = tensor->ne[1]; // ne01
  3026. int K = tensor->ne[0]; // ne00
  3027. //For matrix-vector multiplication kernel, we assume K is a multiple of 32
  3028. GGML_ASSERT(K % 32 == 0);
  3029. //For transpose kernels, we assume K is a multiple of 4 (satisfied by prior assert), and M is a multiple of 4
  3030. GGML_ASSERT(M % 4 == 0);
  3031. // transpose is out of place, so we need to allocate transposed buffers
  3032. // <----------------------------------------------------------------------------------> //
  3033. // use sub_buffer of max buffer size instead
  3034. size_t q_size_bytes = K * M / 8 * sizeof(float);
  3035. cl_buffer_region region;
  3036. region.origin = 0;
  3037. region.size = q_size_bytes;
  3038. cl_mem qT_d = clCreateSubBuffer(
  3039. backend_ctx->A_q_d_max,
  3040. 0,
  3041. CL_BUFFER_CREATE_TYPE_REGION,
  3042. &region,
  3043. &err);
  3044. // cl_mem qT_d = clCreateBuffer(context, CL_MEM_READ_WRITE, q_size_bytes, NULL, &err);
  3045. CL_CHECK(err);
  3046. bool K_tile_trans = true;
  3047. if ((K / 32) % 4 != 0){
  3048. K_tile_trans =false;
  3049. }
  3050. size_t d_size_bytes = M * (K / 32) * 2;
  3051. region.origin = 0;
  3052. region.size = d_size_bytes;
  3053. cl_mem dT_d = clCreateSubBuffer(
  3054. backend_ctx->A_s_d_max,
  3055. 0,
  3056. CL_BUFFER_CREATE_TYPE_REGION,
  3057. &region,
  3058. &err);
  3059. // cl_mem dT_d = clCreateBuffer(context, CL_MEM_READ_WRITE, d_size_bytes, NULL, &err);
  3060. CL_CHECK(err);
  3061. // <----------------------------------------------------------------------------------> //
  3062. // create images from the buffers
  3063. // <----------------------------------------------------------------------------------> //
  3064. cl_mem q_d_image1D;
  3065. cl_mem d_d_image1D;
  3066. cl_mem qT_d_image1D;
  3067. cl_mem dT_d_image1D;
  3068. cl_image_format img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
  3069. cl_image_desc img_desc_1d;
  3070. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  3071. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  3072. img_desc_1d.image_width = M * K / 4 / 4;
  3073. img_desc_1d.buffer = extra->q;
  3074. q_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
  3075. CL_CHECK(err);
  3076. img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
  3077. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  3078. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  3079. img_desc_1d.image_width = M * K / 4 / 4;
  3080. img_desc_1d.buffer = qT_d;
  3081. qT_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
  3082. CL_CHECK(err);
  3083. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  3084. if (K_tile_trans) {
  3085. img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
  3086. img_desc_1d.image_width = M * K / 32 / 4;
  3087. } else {
  3088. img_fmt_1d = { CL_R, CL_HALF_FLOAT };
  3089. img_desc_1d.image_width = M * K / 32;
  3090. }
  3091. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  3092. img_desc_1d.buffer = extra->d;
  3093. d_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
  3094. CL_CHECK(err);
  3095. img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
  3096. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  3097. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  3098. img_desc_1d.image_width = M * K / 32 / 4;
  3099. img_desc_1d.buffer = dT_d;
  3100. dT_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
  3101. CL_CHECK(err);
  3102. // <----------------------------------------------------------------------------------> //
  3103. // set up and call the transpose kernels
  3104. // <----------------------------------------------------------------------------------> //
  3105. // weights
  3106. int height_q = M / 4;
  3107. int width_q = K / 4 / 4;
  3108. kernel = backend_ctx->kernel_transpose_16;
  3109. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &q_d_image1D));
  3110. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &qT_d_image1D));
  3111. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_q));
  3112. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_q));
  3113. size_t local_size_q[3] = {4, 16, 1};
  3114. size_t global_size_q[3] = {static_cast<size_t>(width_q), static_cast<size_t>(height_q), 1};
  3115. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_size_q, local_size_q, 0, NULL, &evt));
  3116. CL_CHECK(clWaitForEvents(1, &evt));
  3117. // scales
  3118. int height_s = M / 4;
  3119. int width_s = K / 32 / 4;
  3120. kernel = backend_ctx->kernel_transpose_16;
  3121. if (!K_tile_trans) {
  3122. kernel = backend_ctx->kernel_transpose_16_4x1;
  3123. width_s = K / 32;
  3124. }
  3125. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_d_image1D));
  3126. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &dT_d_image1D));
  3127. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_s));
  3128. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_s));
  3129. size_t local_size_s[3] = {4, 16, 1};
  3130. size_t global_size_s[3] = {static_cast<size_t>(width_s), static_cast<size_t>(height_s), 1};
  3131. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_size_s, local_size_s, 0, NULL, &evt));
  3132. CL_CHECK(clWaitForEvents(1, &evt));
  3133. // <----------------------------------------------------------------------------------> //
  3134. // copy transposed buffer contents to original buffers
  3135. // <----------------------------------------------------------------------------------> //
  3136. // weights
  3137. CL_CHECK(clEnqueueCopyBuffer(queue, qT_d, extra->q, 0, 0, q_size_bytes, 0, NULL, &evt));
  3138. CL_CHECK(clWaitForEvents(1, &evt));
  3139. // scales
  3140. CL_CHECK(clEnqueueCopyBuffer(queue, dT_d, extra->d, 0, 0, d_size_bytes, 0, NULL, &evt));
  3141. CL_CHECK(clWaitForEvents(1, &evt));
  3142. // <----------------------------------------------------------------------------------> //
  3143. // deallocate transpose buffers
  3144. // <----------------------------------------------------------------------------------> //
  3145. CL_CHECK(clReleaseMemObject(qT_d));
  3146. CL_CHECK(clReleaseMemObject(dT_d));
  3147. // deallocate temporary images
  3148. CL_CHECK(clReleaseMemObject(q_d_image1D));
  3149. CL_CHECK(clReleaseMemObject(d_d_image1D));
  3150. CL_CHECK(clReleaseMemObject(qT_d_image1D));
  3151. CL_CHECK(clReleaseMemObject(dT_d_image1D));
  3152. // <----------------------------------------------------------------------------------> //
  3153. // end transpose
  3154. // <----------------------------------------------------------------------------------> //
  3155. }
  3156. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  3157. return;
  3158. }
  3159. if (tensor->type == GGML_TYPE_MXFP4) {
  3160. ggml_tensor_extra_cl * extra_orig = (ggml_tensor_extra_cl *)tensor->extra;
  3161. GGML_ASSERT(extra_orig && "Tesnors in OpenCL backend should have been allocated and initialized");
  3162. // Allocate the new extra and create aliases from the original.
  3163. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  3164. ggml_tensor_extra_cl_mxfp4 * extra = ctx->ggml_opencl_alloc_temp_tensor_extra_mxfp4();
  3165. size_t size_e = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*sizeof(char);
  3166. size_t size_q = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*ggml_blck_size(tensor->type)/2;
  3167. GGML_ASSERT(size_e + size_q == ggml_nbytes(tensor) && "Incorrect tensor size");
  3168. cl_int err;
  3169. cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
  3170. ggml_nbytes(tensor), NULL, &err);
  3171. CL_CHECK(err);
  3172. CL_CHECK(clEnqueueWriteBuffer(
  3173. queue, data_device, CL_TRUE, 0,
  3174. ggml_nbytes(tensor), data, 0, NULL, NULL));
  3175. // The original tensor memory is divided into scales and quants, i.e.,
  3176. // we first store scales, then quants.
  3177. cl_buffer_region region;
  3178. // Create subbuffer for scales.
  3179. region.origin = align_to(extra_orig->offset + tensor->view_offs + offset, backend_ctx->alignment);
  3180. region.size = size_e;
  3181. extra->e = clCreateSubBuffer(
  3182. extra_orig->data_device, CL_MEM_READ_WRITE,
  3183. CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
  3184. CL_CHECK(err);
  3185. auto previous_origin = region.origin;
  3186. // Create subbuffer for quants.
  3187. region.origin = align_to(previous_origin + size_e, backend_ctx->alignment);
  3188. region.size = size_q;
  3189. extra->q = clCreateSubBuffer(
  3190. extra_orig->data_device, CL_MEM_READ_WRITE,
  3191. CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
  3192. CL_CHECK(err);
  3193. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  3194. if (use_adreno_moe_kernels(backend_ctx, tensor)) {
  3195. cl_kernel kernel = backend_ctx->kernel_convert_block_mxfp4_trans;
  3196. int ne00 = tensor->ne[0];
  3197. int ne01 = tensor->ne[1];
  3198. int ne02 = tensor->ne[2];
  3199. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &data_device));
  3200. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->q));
  3201. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra->e));
  3202. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &ne00));
  3203. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne01));
  3204. size_t global_work_size[3] = {static_cast<size_t>(((ne01 + 63) / 64) * 64), static_cast<size_t>(ne00 / 32), static_cast<size_t>(ne02)};
  3205. size_t local_work_size[3] = {64, 2, 1};
  3206. cl_event evt;
  3207. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  3208. CL_CHECK(clWaitForEvents(1, &evt));
  3209. CL_CHECK(clReleaseMemObject(data_device));
  3210. tensor->extra = extra;
  3211. return;
  3212. }
  3213. #endif
  3214. cl_kernel kernel = backend_ctx->kernel_convert_block_mxfp4;
  3215. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &data_device));
  3216. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->q));
  3217. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra->e));
  3218. size_t global_work_size[3] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
  3219. size_t local_work_size[3] = {64, 1, 1};
  3220. cl_event evt;
  3221. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  3222. CL_CHECK(clWaitForEvents(1, &evt));
  3223. CL_CHECK(clReleaseMemObject(data_device));
  3224. // Create image for Q
  3225. cl_image_format img_format_q = {CL_RG, CL_UNSIGNED_INT32};
  3226. cl_image_desc img_desc_q = {
  3227. CL_MEM_OBJECT_IMAGE1D_BUFFER,
  3228. static_cast<size_t>(ggml_nelements(tensor)/32*2),
  3229. 0, 0, 0, 0, 0, 0, 0,
  3230. { extra->q }
  3231. };
  3232. extra->q_img = clCreateImage(context, CL_MEM_READ_ONLY, &img_format_q, &img_desc_q, NULL, &err);
  3233. tensor->extra = extra;
  3234. return;
  3235. }
  3236. if (tensor->type == GGML_TYPE_Q8_0) {
  3237. ggml_tensor_extra_cl * extra_orig = (ggml_tensor_extra_cl *)tensor->extra;
  3238. GGML_ASSERT(extra_orig && "Tesnors in OpenCL backend should have been allocated and initialized");
  3239. // Allocate the new extra and create aliases from the original.
  3240. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  3241. ggml_tensor_extra_cl_q8_0 * extra = ctx->ggml_opencl_alloc_temp_tensor_extra_q8_0();
  3242. size_t size_d = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*sizeof(ggml_fp16_t);
  3243. size_t size_q = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*(ggml_blck_size(tensor->type)*sizeof(char));
  3244. GGML_ASSERT(size_d + size_q == ggml_nbytes(tensor) && "Incorrect tensor size");
  3245. cl_int err;
  3246. cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
  3247. ggml_nbytes(tensor), NULL, &err);
  3248. CL_CHECK(err);
  3249. CL_CHECK(clEnqueueWriteBuffer(
  3250. queue, data_device, CL_TRUE, 0,
  3251. ggml_nbytes(tensor), data, 0, NULL, NULL));
  3252. // The original tensor memory is divided into scales and quants, i.e.,
  3253. // we first store scales, then quants.
  3254. cl_buffer_region region;
  3255. // Create subbuffer for scales.
  3256. region.origin = align_to(extra_orig->offset + tensor->view_offs + offset, backend_ctx->alignment);
  3257. region.size = size_d;
  3258. extra->d = clCreateSubBuffer(
  3259. extra_orig->data_device, CL_MEM_READ_WRITE,
  3260. CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
  3261. CL_CHECK(err);
  3262. auto previous_origin = region.origin;
  3263. // Create subbuffer for quants.
  3264. region.origin = align_to(previous_origin + size_d, backend_ctx->alignment);
  3265. region.size = size_q;
  3266. extra->q = clCreateSubBuffer(
  3267. extra_orig->data_device, CL_MEM_READ_WRITE,
  3268. CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
  3269. CL_CHECK(err);
  3270. cl_kernel kernel = backend_ctx->kernel_convert_block_q8_0;
  3271. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &data_device));
  3272. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->q));
  3273. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra->d));
  3274. size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
  3275. size_t local_work_size[] = {64, 1, 1};
  3276. cl_event evt;
  3277. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  3278. CL_CHECK(clWaitForEvents(1, &evt));
  3279. CL_CHECK(clReleaseMemObject(data_device));
  3280. tensor->extra = extra;
  3281. return;
  3282. }
  3283. #endif // GGML_OPENCL_SOA_Q
  3284. ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
  3285. GGML_ASSERT(extra);
  3286. CL_CHECK(clEnqueueWriteBuffer(
  3287. queue, extra->data_device, CL_TRUE, extra->offset + offset,
  3288. size, data, 0, NULL, NULL));
  3289. GGML_UNUSED(buffer);
  3290. }
  3291. static void ggml_backend_opencl_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  3292. GGML_ASSERT(tensor->extra);
  3293. ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer->buft->device);
  3294. cl_context context = backend_ctx->context;
  3295. cl_command_queue queue = backend_ctx->queue;
  3296. // Make sure all previously submitted commands in other devices are finished.
  3297. sync_with_other_backends(backend_ctx);
  3298. #ifdef GGML_OPENCL_SOA_Q
  3299. // In end-to-end runs, get_tensor is usually used to get back the logits,
  3300. // where we can simply do clEnqueueReadBuffer since they are f32.
  3301. // However, in test-backend-ops, the GPU graph is copied to the CPU backend,
  3302. // which requires reading back quantized weight tensors.
  3303. // To properly support this, we need to restore block_q4_0 struct arrays
  3304. // from the flattened buffers.
  3305. if (tensor->type == GGML_TYPE_Q4_0) {
  3306. ggml_tensor_extra_cl_q4_0 * extra = (ggml_tensor_extra_cl_q4_0 *)tensor->extra;
  3307. cl_int err;
  3308. cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
  3309. ggml_nbytes(tensor), NULL, &err);
  3310. CL_CHECK(err);
  3311. cl_kernel kernel = backend_ctx->kernel_restore_block_q4_0;
  3312. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra->q));
  3313. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->d));
  3314. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &data_device));
  3315. size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
  3316. size_t local_work_size[] = {1, 1, 1};
  3317. cl_event evt;
  3318. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL,
  3319. global_work_size, local_work_size, 0, NULL, &evt));
  3320. CL_CHECK(clWaitForEvents(1, &evt));
  3321. CL_CHECK(clEnqueueReadBuffer(
  3322. queue, data_device, CL_TRUE, offset,
  3323. size, data, 0, NULL, NULL));
  3324. CL_CHECK(clReleaseMemObject(data_device));
  3325. return;
  3326. } else if (tensor->type == GGML_TYPE_MXFP4) {
  3327. ggml_tensor_extra_cl_mxfp4 * extra = (ggml_tensor_extra_cl_mxfp4 *)tensor->extra;
  3328. cl_int err;
  3329. cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
  3330. ggml_nbytes(tensor), NULL, &err);
  3331. CL_CHECK(err);
  3332. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  3333. if (use_adreno_moe_kernels(backend_ctx, tensor)) {
  3334. cl_kernel kernel = backend_ctx->kernel_restore_block_mxfp4_trans;
  3335. int ne00 = tensor->ne[0];
  3336. int ne01 = tensor->ne[1];
  3337. int ne02 = tensor->ne[2];
  3338. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra->q));
  3339. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->e));
  3340. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &data_device));
  3341. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_int), &ne00));
  3342. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_int), &ne01));
  3343. size_t global_work_size[3] = {static_cast<size_t>(((ne01 + 63) / 64) * 64), static_cast<size_t>(ne00 / 32), static_cast<size_t>(ne02)};
  3344. size_t local_work_size[3] = {64, 2, 1};
  3345. cl_event evt;
  3346. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL,
  3347. global_work_size, local_work_size, 0, NULL, &evt));
  3348. CL_CHECK(clWaitForEvents(1, &evt));
  3349. CL_CHECK(clEnqueueReadBuffer(
  3350. queue, data_device, CL_TRUE, offset,
  3351. size, data, 0, NULL, NULL));
  3352. CL_CHECK(clReleaseMemObject(data_device));
  3353. return;
  3354. }
  3355. #endif
  3356. cl_kernel kernel = backend_ctx->kernel_restore_block_mxfp4;
  3357. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra->q));
  3358. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->e));
  3359. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &data_device));
  3360. size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
  3361. size_t local_work_size[] = {1, 1, 1};
  3362. cl_event evt;
  3363. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL,
  3364. global_work_size, local_work_size, 0, NULL, &evt));
  3365. CL_CHECK(clWaitForEvents(1, &evt));
  3366. CL_CHECK(clEnqueueReadBuffer(
  3367. queue, data_device, CL_TRUE, offset,
  3368. size, data, 0, NULL, NULL));
  3369. CL_CHECK(clReleaseMemObject(data_device));
  3370. return;
  3371. }
  3372. if (tensor->type == GGML_TYPE_Q8_0) {
  3373. ggml_tensor_extra_cl_q8_0 * extra = (ggml_tensor_extra_cl_q8_0 *)tensor->extra;
  3374. cl_int err;
  3375. cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
  3376. ggml_nbytes(tensor), NULL, &err);
  3377. CL_CHECK(err);
  3378. cl_kernel kernel = backend_ctx->kernel_restore_block_q8_0;
  3379. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra->q));
  3380. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->d));
  3381. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &data_device));
  3382. size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
  3383. size_t local_work_size[] = {1, 1, 1};
  3384. cl_event evt;
  3385. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL,
  3386. global_work_size, local_work_size, 0, NULL, &evt));
  3387. CL_CHECK(clWaitForEvents(1, &evt));
  3388. CL_CHECK(clEnqueueReadBuffer(
  3389. queue, data_device, CL_TRUE, offset,
  3390. size, data, 0, NULL, NULL));
  3391. CL_CHECK(clReleaseMemObject(data_device));
  3392. return;
  3393. }
  3394. #endif // GGML_OPENCL_SOA_Q
  3395. ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
  3396. CL_CHECK(clEnqueueReadBuffer(
  3397. queue, extra->data_device, CL_TRUE, extra->offset + tensor->view_offs + offset,
  3398. size, data, 0, NULL, NULL));
  3399. GGML_UNUSED(buffer);
  3400. }
  3401. static void ggml_backend_opencl_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  3402. ggml_backend_dev_t dev = buffer->buft->device;
  3403. ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(dev);
  3404. cl_command_queue queue = backend_ctx->queue;
  3405. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  3406. for (cl_mem buf : ctx->buffer) {
  3407. CL_CHECK(clEnqueueFillBuffer(queue, buf, &value, sizeof(value), 0, buffer->size, 0, NULL, NULL));
  3408. }
  3409. CL_CHECK(clFinish(queue));
  3410. }
  3411. static void ggml_backend_opencl_buffer_reset(ggml_backend_buffer_t buffer) {
  3412. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  3413. ctx->reset();
  3414. }
  3415. static ggml_backend_buffer_i ggml_backend_opencl_buffer_interface = {
  3416. /* .free_buffer = */ ggml_backend_opencl_buffer_free_buffer,
  3417. /* .get_base = */ ggml_backend_opencl_buffer_get_base,
  3418. /* .init_tensor = */ ggml_backend_opencl_buffer_init_tensor,
  3419. /* .memset_tensor = */ NULL,
  3420. /* .set_tensor = */ ggml_backend_opencl_buffer_set_tensor,
  3421. /* .get_tensor = */ ggml_backend_opencl_buffer_get_tensor,
  3422. /* .cpy_tensor = */ NULL,
  3423. /* .clear = */ ggml_backend_opencl_buffer_clear,
  3424. /* .reset = */ ggml_backend_opencl_buffer_reset,
  3425. };
  3426. //
  3427. // buffer type
  3428. //
  3429. static const char * ggml_backend_opencl_buffer_type_get_name(ggml_backend_buffer_type_t buffer_type) {
  3430. return "OpenCL";
  3431. GGML_UNUSED(buffer_type);
  3432. }
  3433. static ggml_backend_buffer_t ggml_backend_opencl_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buffer_type, size_t size) {
  3434. ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer_type->device);
  3435. // clCreateBuffer returns -61 for size 0
  3436. size = std::max(size, (size_t)1);
  3437. cl_int err;
  3438. cl_mem mem = clCreateBuffer(backend_ctx->context, CL_MEM_READ_WRITE, size, NULL, &err);
  3439. if (err != CL_SUCCESS) {
  3440. GGML_LOG_INFO("%s: failed to allocate %.2f MiB\n", __func__, size / 1024.0 / 1024.0);
  3441. return nullptr;
  3442. }
  3443. ggml_backend_opencl_buffer_context * ctx = new ggml_backend_opencl_buffer_context(mem);
  3444. return ggml_backend_buffer_init(buffer_type, ggml_backend_opencl_buffer_interface, ctx, size);
  3445. }
  3446. static size_t ggml_backend_opencl_buffer_type_get_alignment(ggml_backend_buffer_type_t buffer_type) {
  3447. ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(buffer_type->device);
  3448. return backend_ctx->alignment;
  3449. }
  3450. static size_t ggml_backend_opencl_buffer_type_get_max_size(ggml_backend_buffer_type_t buffer_type) {
  3451. static size_t max_size = -1;
  3452. if (max_size == (size_t)-1) {
  3453. ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(buffer_type->device);
  3454. max_size = backend_ctx->max_alloc_size;
  3455. }
  3456. return max_size;
  3457. }
  3458. static bool ggml_backend_opencl_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
  3459. return ggml_backend_is_opencl(backend);
  3460. UNUSED(buft);
  3461. }
  3462. static ggml_backend_buffer_type_i ggml_backend_opencl_buffer_type_interface = {
  3463. /* .get_name = */ ggml_backend_opencl_buffer_type_get_name,
  3464. /* .alloc_buffer = */ ggml_backend_opencl_buffer_type_alloc_buffer,
  3465. /* .get_alignment = */ ggml_backend_opencl_buffer_type_get_alignment,
  3466. /* .get_max_size = */ ggml_backend_opencl_buffer_type_get_max_size,
  3467. /* .get_alloc_size = */ NULL,
  3468. /* .is_host = */ NULL,
  3469. };
  3470. //
  3471. // backend device
  3472. //
  3473. static const char * ggml_backend_opencl_device_get_name(ggml_backend_dev_t dev) {
  3474. return "GPUOpenCL";
  3475. GGML_UNUSED(dev);
  3476. }
  3477. static const char * ggml_backend_opencl_device_get_description(ggml_backend_dev_t dev) {
  3478. ggml_backend_opencl_device_context *dev_ctx = (ggml_backend_opencl_device_context *) dev->context;
  3479. return dev_ctx->device_name.c_str();
  3480. }
  3481. static void ggml_backend_opencl_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
  3482. *free = 1;
  3483. *total = 1;
  3484. GGML_UNUSED(dev);
  3485. }
  3486. static enum ggml_backend_dev_type ggml_backend_opencl_device_get_type(ggml_backend_dev_t dev) {
  3487. return GGML_BACKEND_DEVICE_TYPE_GPU;
  3488. GGML_UNUSED(dev);
  3489. }
  3490. static void ggml_backend_opencl_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
  3491. props->name = ggml_backend_opencl_device_get_name(dev);
  3492. props->description = ggml_backend_opencl_device_get_description(dev);
  3493. props->type = ggml_backend_opencl_device_get_type(dev);
  3494. ggml_backend_opencl_device_get_memory(dev, &props->memory_free, &props->memory_total);
  3495. props->caps = ggml_backend_dev_caps {
  3496. /* .async = */ false,
  3497. /* .host_buffer = */ false,
  3498. /* .buffer_from_host_ptr = */ false,
  3499. /* .events = */ false,
  3500. };
  3501. }
  3502. static ggml_backend_t ggml_backend_opencl_device_init(ggml_backend_dev_t dev, const char * params) {
  3503. ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(dev);
  3504. // Getting a new reference to the backend, increase ref_count
  3505. backend_ctx->ref_count++;
  3506. ggml_backend_t backend = new ggml_backend {
  3507. /* .guid = */ ggml_backend_opencl_guid(),
  3508. /* .interface = */ ggml_backend_opencl_i,
  3509. /* .device = */ dev,
  3510. /* .context = */ backend_ctx,
  3511. };
  3512. return backend;
  3513. GGML_UNUSED(params);
  3514. }
  3515. static ggml_backend_buffer_type_t ggml_backend_opencl_device_get_buffer_type(ggml_backend_dev_t dev) {
  3516. auto * dev_ctx = static_cast<ggml_backend_opencl_device_context *>(dev->context);
  3517. dev_ctx->buffer_type = ggml_backend_buffer_type{
  3518. /* .iface = */ ggml_backend_opencl_buffer_type_interface,
  3519. /* .device = */ dev,
  3520. /* .context = */ nullptr,
  3521. };
  3522. return &dev_ctx->buffer_type;
  3523. }
  3524. static ggml_backend_buffer_t ggml_backend_opencl_device_buffer_from_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
  3525. GGML_UNUSED(dev);
  3526. GGML_UNUSED(ptr);
  3527. GGML_UNUSED(size);
  3528. GGML_UNUSED(max_tensor_size);
  3529. return nullptr;
  3530. }
  3531. static bool ggml_backend_opencl_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
  3532. return ggml_opencl_supports_op(dev, op);
  3533. }
  3534. static bool ggml_backend_opencl_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
  3535. // Check 'dev' and 'buffer_type' are not objects belonging to this backend.
  3536. if (dev->iface.get_name != ggml_backend_opencl_device_get_name ||
  3537. buft->iface.get_name != ggml_backend_opencl_buffer_type_get_name) {
  3538. return false;
  3539. }
  3540. // Check cl_context is the same. clEnqueue* commands may not use
  3541. // buffers from another cl_context.
  3542. ggml_backend_opencl_context * backend_ctx0 = ggml_cl2_init(dev);
  3543. ggml_backend_opencl_context * backend_ctx1 = ggml_cl2_init(buft->device);
  3544. return backend_ctx0->context == backend_ctx1->context;
  3545. }
  3546. namespace /* anonymous */ {
  3547. struct ggml_backend_device_i ggml_backend_opencl_device_i = {
  3548. /* .get_name = */ ggml_backend_opencl_device_get_name,
  3549. /* .get_description = */ ggml_backend_opencl_device_get_description,
  3550. /* .get_memory = */ ggml_backend_opencl_device_get_memory,
  3551. /* .get_type = */ ggml_backend_opencl_device_get_type,
  3552. /* .get_props = */ ggml_backend_opencl_device_get_props,
  3553. /* .init_backend = */ ggml_backend_opencl_device_init,
  3554. /* .get_buffer_type = */ ggml_backend_opencl_device_get_buffer_type,
  3555. /* .get_host_buffer_type = */ NULL,
  3556. /* .buffer_from_host_ptr = */ ggml_backend_opencl_device_buffer_from_ptr,
  3557. /* .supports_op = */ ggml_backend_opencl_device_supports_op,
  3558. /* .supports_buft = */ ggml_backend_opencl_device_supports_buft,
  3559. /* .offload_op = */ NULL,
  3560. /* .event_new = */ NULL,
  3561. /* .event_free = */ NULL,
  3562. /* .event_synchronize = */ NULL,
  3563. };
  3564. }
  3565. // Backend registry
  3566. static const char * ggml_backend_opencl_reg_get_name(ggml_backend_reg_t reg) {
  3567. return "OpenCL";
  3568. GGML_UNUSED(reg);
  3569. }
  3570. static size_t ggml_backend_opencl_reg_device_count(ggml_backend_reg_t reg) {
  3571. return g_ggml_backend_opencl_devices.size();
  3572. GGML_UNUSED(reg);
  3573. }
  3574. static ggml_backend_dev_t ggml_backend_opencl_reg_device_get(ggml_backend_reg_t reg, size_t index) {
  3575. GGML_ASSERT(index < ggml_backend_opencl_reg_device_count(reg));
  3576. return &g_ggml_backend_opencl_devices[index];
  3577. GGML_UNUSED(reg);
  3578. GGML_UNUSED(index);
  3579. }
  3580. static struct ggml_backend_reg_i ggml_backend_opencl_reg_i = {
  3581. /* .get_name = */ ggml_backend_opencl_reg_get_name,
  3582. /* .device_count = */ ggml_backend_opencl_reg_device_count,
  3583. /* .device_get = */ ggml_backend_opencl_reg_device_get,
  3584. /* .get_proc_address = */ NULL,
  3585. };
  3586. ggml_backend_reg_t ggml_backend_opencl_reg(void) {
  3587. static std::mutex mutex;
  3588. static ggml_backend_reg reg;
  3589. static bool initialized = false;
  3590. std::lock_guard<std::mutex> lock(mutex);
  3591. if (initialized) {
  3592. return &reg;
  3593. }
  3594. initialized = true;
  3595. g_ggml_backend_opencl_devices = ggml_opencl_probe_devices(&reg);
  3596. reg = ggml_backend_reg{
  3597. /* .api_version = */ GGML_BACKEND_API_VERSION,
  3598. /* .iface = */ ggml_backend_opencl_reg_i,
  3599. /* .context = */ NULL,
  3600. };
  3601. return &reg;
  3602. }
  3603. GGML_BACKEND_DL_IMPL(ggml_backend_opencl_reg)
  3604. //------------------------------------------------------------------------------
  3605. // Debugging utils
  3606. //------------------------------------------------------------------------------
  3607. #if 0
  3608. #define QK4_0 32
  3609. typedef struct {
  3610. ggml_fp16_t d; // delta
  3611. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  3612. } block_q4_0;
  3613. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2,
  3614. "wrong q4_0 block size/padding");
  3615. #include <math.h>
  3616. #ifdef __cplusplus
  3617. #include "half.hpp"
  3618. #endif
  3619. static void dump_tensor(ggml_backend_t backend, const struct ggml_tensor * tensor) {
  3620. void * buf = malloc(ggml_nbytes(tensor));
  3621. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3622. cl_command_queue queue = backend_ctx->queue;
  3623. #ifdef GGML_OPENCL_SOA_Q
  3624. void * buf_q;
  3625. void * buf_d;
  3626. #endif
  3627. // Make sure everything is done.
  3628. CL_CHECK(clFinish(queue));
  3629. #ifdef GGML_OPENCL_SOA_Q
  3630. if (tensor->type == GGML_TYPE_Q4_0) {
  3631. ggml_tensor_extra_cl_q4_0 * extra = (ggml_tensor_extra_cl_q4_0 *) tensor->extra;
  3632. GGML_ASSERT(extra);
  3633. size_t size_q = ggml_nelements(tensor)/QK4_0 * QK4_0/2;
  3634. size_t size_d = ggml_nelements(tensor)/QK4_0 * sizeof(ggml_fp16_t);
  3635. GGML_ASSERT(size_q + size_d == ggml_nbytes(tensor));
  3636. buf_q = malloc(size_q);
  3637. buf_d = malloc(size_d);
  3638. CL_CHECK(clEnqueueReadBuffer(queue, extra->q, CL_TRUE, 0, size_q, buf_q, 0, NULL, NULL));
  3639. CL_CHECK(clEnqueueReadBuffer(queue, extra->d, CL_TRUE, 0, size_d, buf_d, 0, NULL, NULL));
  3640. CL_CHECK(clFinish(queue));
  3641. } else if (tensor->type == GGML_TYPE_MXFP4) {
  3642. ggml_tensor_extra_cl_mxfp4 * extra = (ggml_tensor_extra_cl_mxfp4 *) tensor->extra;
  3643. GGML_ASSERT(extra);
  3644. size_t size_q = ggml_nelements(tensor)/QK_MXFP4 * QK_MXFP4/2;
  3645. size_t size_e = ggml_nelements(tensor)/QK_MXFP4 * sizeof(char);
  3646. GGML_ASSERT(size_q + size_e == ggml_nbytes(tensor));
  3647. buf_q = malloc(size_q);
  3648. buf_d = malloc(size_e);
  3649. CL_CHECK(clEnqueueReadBuffer(queue, extra->q, CL_TRUE, 0, size_q, buf_q, 0, NULL, NULL));
  3650. CL_CHECK(clEnqueueReadBuffer(queue, extra->d, CL_TRUE, 0, size_e, buf_d, 0, NULL, NULL));
  3651. CL_CHECK(clFinish(queue));
  3652. } else {
  3653. // Read out the tensor from GPU memory.
  3654. ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
  3655. GGML_ASSERT(extra);
  3656. CL_CHECK(clEnqueueReadBuffer(queue, extra->data_device, CL_TRUE,
  3657. extra->offset, ggml_nbytes(tensor), buf, 0, NULL, NULL));
  3658. CL_CHECK(clFinish(queue));
  3659. }
  3660. #else
  3661. // Read out the tensor from GPU memory.
  3662. ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
  3663. GGML_ASSERT(extra);
  3664. CL_CHECK(clEnqueueReadBuffer(queue, extra->data_device, CL_TRUE,
  3665. extra->offset, ggml_nbytes(tensor), buf, 0, NULL, NULL));
  3666. CL_CHECK(clFinish(queue));
  3667. #endif // GGML_OPENCL_SOA_Q
  3668. // Open file and dump.
  3669. char fname[512];
  3670. snprintf(fname, sizeof(fname), "./tensor-dumps/%s.txt", tensor->name);
  3671. FILE * f = fopen(fname, "w");
  3672. if (!f) {
  3673. printf("Failed to open %s\n", fname);
  3674. return;
  3675. }
  3676. if (tensor->type == GGML_TYPE_F32) {
  3677. float * data = (float *) buf;
  3678. for (int i = 0; i < ggml_nelements(tensor); ++i) {
  3679. if (isnan(data[i])) {
  3680. printf("NaN found: %s\n", tensor->name);
  3681. break;
  3682. }
  3683. fprintf(f, "%f\n", data[i]);
  3684. }
  3685. } else if (tensor->type == GGML_TYPE_I32) {
  3686. int * data = (int *) buf;
  3687. for (int i = 0; i < ggml_nelements(tensor); ++i) {
  3688. if (isnan(data[i])) {
  3689. printf("NaN found: %s\n", tensor->name);
  3690. break;
  3691. }
  3692. fprintf(f, "%d\n", data[i]);
  3693. }
  3694. } else if (tensor->type == GGML_TYPE_F16) {
  3695. #ifdef __cplusplus
  3696. half_float::half * data = (half_float::half *) buf;
  3697. for (int i = 0; i < ggml_nelements(tensor); ++i) {
  3698. if (std::isnan(data[i])) {
  3699. printf("NaN found: %s\n", tensor->name);
  3700. break;
  3701. }
  3702. fprintf(f, "%f\n", float(data[i]));
  3703. }
  3704. #endif
  3705. } else if (tensor->type == GGML_TYPE_Q4_0) {
  3706. #ifdef GGML_OPENCL_SOA_Q
  3707. ggml_fp16_t * data_d = (ggml_fp16_t *)buf_d;
  3708. unsigned char * data_q = (unsigned char *)buf_q;
  3709. for (int i = 0; i < ggml_nelements(tensor)/QK4_0; ++i) {
  3710. fprintf(f, "%04x, ", data_d[i]);
  3711. for (int k = 0; k < QK4_0/2; ++k) {
  3712. fprintf(f, "%02x, ", data_q[k]);
  3713. }
  3714. fprintf(f, "\n");
  3715. data_q += QK4_0/2;
  3716. }
  3717. free(buf_d);
  3718. free(buf_q);
  3719. #else
  3720. block_q4_0 * data = (block_q4_0 *) buf;
  3721. for (int i = 0; i < ggml_nelements(tensor)/QK4_0; ++i) {
  3722. fprintf(f, "%04x, ", data[i].d);
  3723. for (int k = 0; k < QK4_0/2; ++k) {
  3724. fprintf(f, "%02x, ", data[i].qs[k]);
  3725. }
  3726. fprintf(f, "\n");
  3727. }
  3728. #endif // GGML_OPENCL_SOA_Q
  3729. }
  3730. free(buf);
  3731. fflush(f);
  3732. fclose(f);
  3733. }
  3734. #else
  3735. #define dump_tensor(tensor)
  3736. #endif
  3737. //------------------------------------------------------------------------------
  3738. // Ops
  3739. //------------------------------------------------------------------------------
  3740. static bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
  3741. const int64_t ne10 = src1->ne[0];
  3742. const int64_t ne0 = dst->ne[0];
  3743. const int64_t ne1 = dst->ne[1];
  3744. // TODO: find the optimal values for these
  3745. return (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
  3746. src1->type == GGML_TYPE_F32 &&
  3747. dst->type == GGML_TYPE_F32 &&
  3748. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32);
  3749. }
  3750. static void ggml_cl_nop(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3751. UNUSED(backend);
  3752. UNUSED(src0);
  3753. UNUSED(src1);
  3754. UNUSED(dst);
  3755. }
  3756. static void ggml_cl_get_rows(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3757. GGML_ASSERT(src0);
  3758. GGML_ASSERT(src0->extra);
  3759. GGML_ASSERT(src1);
  3760. GGML_ASSERT(src1->extra);
  3761. GGML_ASSERT(dst);
  3762. GGML_ASSERT(dst->extra);
  3763. const int ne00 = src0->ne[0];
  3764. const cl_ulong nb01 = src0->nb[1];
  3765. const cl_ulong nb02 = src0->nb[2];
  3766. const cl_ulong nb03 = src0->nb[3];
  3767. const int ne10 = src1->ne[0];
  3768. const cl_ulong nb10 = src1->nb[0];
  3769. const int ne11 = src1->ne[1];
  3770. const int ne12 = src1->ne[2];
  3771. const cl_ulong nb11 = src1->nb[1];
  3772. const cl_ulong nb12 = src1->nb[2];
  3773. const cl_ulong nb1 = dst->nb[1];
  3774. const cl_ulong nb2 = dst->nb[2];
  3775. const cl_ulong nb3 = dst->nb[3];
  3776. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3777. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3778. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  3779. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3780. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3781. cl_ulong offset1 = extra1->offset + src1->view_offs;
  3782. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3783. cl_kernel kernel;
  3784. switch (src0->type) {
  3785. case GGML_TYPE_F32:
  3786. kernel = backend_ctx->kernel_get_rows_f32;
  3787. break;
  3788. case GGML_TYPE_F16:
  3789. kernel = backend_ctx->kernel_get_rows_f16;
  3790. break;
  3791. case GGML_TYPE_Q4_0:
  3792. kernel = backend_ctx->kernel_get_rows_q4_0;
  3793. break;
  3794. default:
  3795. GGML_ASSERT(false && "not implemented");
  3796. }
  3797. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3798. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3799. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  3800. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  3801. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  3802. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  3803. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  3804. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
  3805. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
  3806. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
  3807. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne10));
  3808. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb10));
  3809. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb11));
  3810. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb12));
  3811. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb1));
  3812. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb2));
  3813. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb3));
  3814. size_t global_work_size[] = {(size_t)ne10*64, (size_t)ne11, (size_t)ne12};
  3815. size_t local_work_size[] = {64, 1, 1};
  3816. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  3817. }
  3818. static void ggml_cl_set_rows(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3819. GGML_ASSERT(src0);
  3820. GGML_ASSERT(src0->extra);
  3821. GGML_ASSERT(src1);
  3822. GGML_ASSERT(src1->extra);
  3823. GGML_ASSERT(dst);
  3824. GGML_ASSERT(dst->extra);
  3825. GGML_ASSERT(src1->type == GGML_TYPE_I64 || src1->type == GGML_TYPE_I32);
  3826. // ne0 = ne00
  3827. // ne2 = ne02
  3828. // ne3 = ne03
  3829. const int ne01 = src0->ne[1];
  3830. const int ne02 = src0->ne[2];
  3831. const int ne03 = src0->ne[3];
  3832. const cl_ulong nb01 = src0->nb[1];
  3833. const cl_ulong nb02 = src0->nb[2];
  3834. const cl_ulong nb03 = src0->nb[3];
  3835. const int ne11 = src1->ne[1];
  3836. const int ne12 = src1->ne[2];
  3837. const cl_ulong nb10 = src1->nb[0];
  3838. const cl_ulong nb11 = src1->nb[1];
  3839. const cl_ulong nb12 = src1->nb[2];
  3840. const int ne0 = dst->ne[0];
  3841. const cl_ulong nb1 = dst->nb[1];
  3842. const cl_ulong nb2 = dst->nb[2];
  3843. const cl_ulong nb3 = dst->nb[3];
  3844. const int nblk0 = ne0/ggml_blck_size(dst->type);
  3845. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3846. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3847. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  3848. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3849. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3850. cl_ulong offset1 = extra1->offset + src1->view_offs;
  3851. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3852. cl_kernel kernel;
  3853. switch (dst->type) {
  3854. case GGML_TYPE_F32:
  3855. if (src1->type == GGML_TYPE_I64) {
  3856. kernel = backend_ctx->kernel_set_rows_f32_i64;
  3857. } else {
  3858. kernel = backend_ctx->kernel_set_rows_f32_i32;
  3859. }
  3860. break;
  3861. case GGML_TYPE_F16:
  3862. if (src1->type == GGML_TYPE_I64) {
  3863. kernel = backend_ctx->kernel_set_rows_f16_i64;
  3864. } else {
  3865. kernel = backend_ctx->kernel_set_rows_f16_i32;
  3866. }
  3867. break;
  3868. default:
  3869. GGML_ABORT("not implemented");
  3870. }
  3871. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3872. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3873. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  3874. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  3875. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  3876. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  3877. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne01));
  3878. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
  3879. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
  3880. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
  3881. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne11));
  3882. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne12));
  3883. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb10));
  3884. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb11));
  3885. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb12));
  3886. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &nblk0));
  3887. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb1));
  3888. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb2));
  3889. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb3));
  3890. int nth0 = 64;
  3891. if (backend_ctx->gpu_family == INTEL) {
  3892. nth0 = 32;
  3893. } else if (backend_ctx->gpu_family == ADRENO) {
  3894. nth0 = 64;
  3895. }
  3896. int max_workgroup_size = backend_ctx->get_kernel_workgroup_size(kernel);
  3897. while (nth0 < nblk0 && nth0 < max_workgroup_size) {
  3898. nth0 *= 2;
  3899. }
  3900. int rows_per_workgroup = 1;
  3901. if (nth0 > nblk0) {
  3902. rows_per_workgroup = nth0 / nblk0;
  3903. nth0 = nblk0;
  3904. }
  3905. size_t global_work_size[] = {
  3906. (size_t)(ne01 + rows_per_workgroup - 1)/rows_per_workgroup*nth0,
  3907. (size_t)ne02*rows_per_workgroup,
  3908. (size_t)ne03};
  3909. size_t local_work_size[] = {(size_t)nth0, (size_t)rows_per_workgroup, 1};
  3910. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  3911. }
  3912. static void ggml_cl_add(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3913. GGML_ASSERT(src0);
  3914. GGML_ASSERT(src0->extra);
  3915. GGML_ASSERT(src1);
  3916. GGML_ASSERT(src1->extra);
  3917. GGML_ASSERT(dst);
  3918. GGML_ASSERT(dst->extra);
  3919. const int ne00 = src0->ne[0];
  3920. const int ne01 = src0->ne[1];
  3921. const int ne02 = src0->ne[2];
  3922. const int ne03 = src0->ne[3];
  3923. const cl_ulong nb00 = src0->nb[0];
  3924. const cl_ulong nb01 = src0->nb[1];
  3925. const cl_ulong nb02 = src0->nb[2];
  3926. const cl_ulong nb03 = src0->nb[3];
  3927. const int ne10 = src1->ne[0];
  3928. const int ne11 = src1->ne[1];
  3929. const int ne12 = src1->ne[2];
  3930. const int ne13 = src1->ne[3];
  3931. const cl_ulong nb10 = src1->nb[0];
  3932. const cl_ulong nb11 = src1->nb[1];
  3933. const cl_ulong nb12 = src1->nb[2];
  3934. const cl_ulong nb13 = src1->nb[3];
  3935. const int ne0 = dst->ne[0];
  3936. const int ne1 = dst->ne[1];
  3937. const int ne2 = dst->ne[2];
  3938. const int ne3 = dst->ne[3];
  3939. const cl_ulong nb0 = dst->nb[0];
  3940. const cl_ulong nb1 = dst->nb[1];
  3941. const cl_ulong nb2 = dst->nb[2];
  3942. const cl_ulong nb3 = dst->nb[3];
  3943. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3944. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3945. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  3946. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3947. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3948. cl_ulong offset1 = extra1->offset + src1->view_offs;
  3949. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3950. cl_kernel kernel;
  3951. const bool bcast_row = ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0;
  3952. if (bcast_row) {
  3953. GGML_ASSERT(ggml_is_contiguous(src0));
  3954. GGML_ASSERT(ne11 == 1);
  3955. }
  3956. if (dst->type == GGML_TYPE_F32) {
  3957. GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32);
  3958. if (bcast_row) {
  3959. kernel = backend_ctx->kernel_add_row;
  3960. const int ne = ne00 / 4;
  3961. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3962. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3963. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  3964. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  3965. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  3966. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  3967. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
  3968. } else {
  3969. kernel = backend_ctx->kernel_add;
  3970. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3971. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3972. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  3973. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  3974. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  3975. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  3976. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  3977. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  3978. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  3979. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03));
  3980. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
  3981. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
  3982. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
  3983. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
  3984. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne10));
  3985. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne11));
  3986. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne12));
  3987. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne13));
  3988. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb10));
  3989. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11));
  3990. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12));
  3991. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13));
  3992. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne0));
  3993. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &ne1));
  3994. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &ne2));
  3995. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &ne3));
  3996. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb0));
  3997. CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb1));
  3998. CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb2));
  3999. CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nb3));
  4000. }
  4001. } else if (dst->type == GGML_TYPE_F16) {
  4002. GGML_ASSERT(src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_F32);
  4003. GGML_ASSERT(src1->type == GGML_TYPE_F16 || src1->type == GGML_TYPE_F32);
  4004. const int type_src0 = (src0->type == GGML_TYPE_F32);
  4005. const int type_src1 = (src1->type == GGML_TYPE_F32);
  4006. if (bcast_row) {
  4007. kernel = backend_ctx->kernel_add_row_f16;
  4008. const int ne = ne00 / 4;
  4009. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4010. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4011. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4012. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4013. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4014. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4015. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
  4016. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &type_src0));
  4017. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &type_src1));
  4018. } else {
  4019. kernel = backend_ctx->kernel_add_f16;
  4020. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4021. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4022. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4023. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4024. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4025. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4026. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  4027. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  4028. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  4029. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03));
  4030. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
  4031. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
  4032. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
  4033. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
  4034. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne10));
  4035. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne11));
  4036. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne12));
  4037. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne13));
  4038. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb10));
  4039. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11));
  4040. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12));
  4041. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13));
  4042. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne0));
  4043. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &ne1));
  4044. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &ne2));
  4045. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &ne3));
  4046. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb0));
  4047. CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb1));
  4048. CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb2));
  4049. CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nb3));
  4050. CL_CHECK(clSetKernelArg(kernel, 30, sizeof(int), &type_src0));
  4051. CL_CHECK(clSetKernelArg(kernel, 31, sizeof(int), &type_src1));
  4052. }
  4053. } else {
  4054. GGML_ASSERT(false && "unsupported data types for add");
  4055. }
  4056. if (bcast_row) {
  4057. int n = ggml_nelements(dst)/4;
  4058. size_t global_work_size[] = {(size_t)n, 1, 1};
  4059. size_t local_work_size[] = {64, 1, 1};
  4060. size_t * local_work_size_ptr = local_work_size;
  4061. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  4062. local_work_size_ptr = nullptr;
  4063. }
  4064. backend_ctx->enqueue_ndrange_kernel(kernel, 1, global_work_size, local_work_size_ptr, dst);
  4065. } else {
  4066. unsigned int nth = MIN(64, ne0);
  4067. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  4068. size_t local_work_size[] = {nth, 1, 1};
  4069. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4070. }
  4071. }
  4072. static void ggml_cl_add_id(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4073. GGML_ASSERT(src0);
  4074. GGML_ASSERT(src0->extra);
  4075. GGML_ASSERT(src1);
  4076. GGML_ASSERT(src1->extra);
  4077. GGML_ASSERT(dst);
  4078. GGML_ASSERT(dst->extra);
  4079. const ggml_tensor * src2 = dst->src[2];
  4080. GGML_ASSERT(src2);
  4081. GGML_ASSERT(src2->extra);
  4082. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  4083. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  4084. GGML_ASSERT(src2->type == GGML_TYPE_I32);
  4085. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  4086. GGML_ASSERT(ggml_is_contiguous_rows(src0));
  4087. const int ne00 = src0->ne[0];
  4088. const int ne01 = src0->ne[1];
  4089. const int ne02 = src0->ne[2];
  4090. const cl_ulong nb01 = src0->nb[1];
  4091. const cl_ulong nb02 = src0->nb[2];
  4092. const cl_ulong nb11 = src1->nb[1];
  4093. const cl_ulong nb21 = src2->nb[1];
  4094. const int ne0 = dst->ne[0];
  4095. const int ne1 = dst->ne[1];
  4096. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4097. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4098. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  4099. ggml_tensor_extra_cl * extra2 = (ggml_tensor_extra_cl *)src2->extra;
  4100. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4101. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4102. cl_ulong offset1 = extra1->offset + src1->view_offs;
  4103. cl_ulong offset2 = extra2->offset + src2->view_offs;
  4104. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4105. cl_kernel kernel = backend_ctx->kernel_add_id;
  4106. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4107. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4108. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4109. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4110. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
  4111. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  4112. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  4113. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  4114. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
  4115. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
  4116. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb11));
  4117. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb21));
  4118. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne0));
  4119. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne1));
  4120. int nth = MIN(ne00, (int) backend_ctx->get_kernel_workgroup_size(kernel));
  4121. size_t global_work_size[] = { (size_t)ne01*nth, (size_t)ne02, 1 };
  4122. size_t local_work_size[] = { (size_t)nth, 1, 1 };
  4123. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4124. }
  4125. static void ggml_cl_mul(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4126. GGML_ASSERT(src0);
  4127. GGML_ASSERT(src0->extra);
  4128. GGML_ASSERT(src1);
  4129. GGML_ASSERT(src1->extra);
  4130. GGML_ASSERT(dst);
  4131. GGML_ASSERT(dst->extra);
  4132. GGML_ASSERT(src0->type == src1->type);
  4133. GGML_ASSERT(src0->type == dst->type);
  4134. GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
  4135. const int ne00 = src0->ne[0];
  4136. const int ne01 = src0->ne[1];
  4137. const int ne02 = src0->ne[2];
  4138. const int ne03 = src0->ne[3];
  4139. const cl_ulong nb00 = src0->nb[0];
  4140. const cl_ulong nb01 = src0->nb[1];
  4141. const cl_ulong nb02 = src0->nb[2];
  4142. const cl_ulong nb03 = src0->nb[3];
  4143. const int ne10 = src1->ne[0];
  4144. const int ne11 = src1->ne[1];
  4145. const int ne12 = src1->ne[2];
  4146. const int ne13 = src1->ne[3]; UNUSED(ne13);
  4147. const cl_ulong nb10 = src1->nb[0];
  4148. const cl_ulong nb11 = src1->nb[1];
  4149. const cl_ulong nb12 = src1->nb[2];
  4150. const cl_ulong nb13 = src1->nb[3]; UNUSED(nb13);
  4151. const int ne0 = dst->ne[0];
  4152. const int ne1 = dst->ne[1];
  4153. const int ne2 = dst->ne[2];
  4154. const int ne3 = dst->ne[3];
  4155. const cl_ulong nb0 = dst->nb[0];
  4156. const cl_ulong nb1 = dst->nb[1];
  4157. const cl_ulong nb2 = dst->nb[2];
  4158. const cl_ulong nb3 = dst->nb[3];
  4159. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4160. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4161. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  4162. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4163. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4164. cl_ulong offset1 = extra1->offset + src1->view_offs;
  4165. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4166. bool bcast_row = false;
  4167. cl_kernel kernel;
  4168. if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
  4169. GGML_ASSERT(ggml_is_contiguous(src0));
  4170. // src1 is a row
  4171. GGML_ASSERT(ne11 == 1);
  4172. bcast_row = true;
  4173. int ne = ne00 / 4;
  4174. if (src0->type == GGML_TYPE_F32) {
  4175. kernel = backend_ctx->kernel_mul_row;
  4176. } else {
  4177. kernel = backend_ctx->kernel_mul_row_f16;
  4178. }
  4179. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4180. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4181. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4182. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4183. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4184. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4185. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
  4186. } else {
  4187. if (src0->type == GGML_TYPE_F32) {
  4188. kernel = backend_ctx->kernel_mul;
  4189. } else {
  4190. kernel = backend_ctx->kernel_mul_f16;
  4191. }
  4192. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4193. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4194. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4195. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4196. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4197. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4198. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  4199. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  4200. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  4201. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03));
  4202. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
  4203. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
  4204. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
  4205. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
  4206. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne10));
  4207. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne11));
  4208. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne12));
  4209. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne13));
  4210. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb10));
  4211. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11));
  4212. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12));
  4213. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13));
  4214. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne0));
  4215. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &ne1));
  4216. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &ne2));
  4217. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &ne3));
  4218. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb0));
  4219. CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb1));
  4220. CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb2));
  4221. CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nb3));
  4222. }
  4223. if (bcast_row) {
  4224. int n = ggml_nelements(dst)/4;
  4225. size_t global_work_size[] = {(size_t)n, 1, 1};
  4226. size_t local_work_size[] = {64, 1, 1};
  4227. size_t * local_work_size_ptr = local_work_size;
  4228. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  4229. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  4230. }
  4231. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  4232. } else {
  4233. unsigned int nth = MIN(64, ne0);
  4234. size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03};
  4235. size_t local_work_size[] = {nth, 1, 1};
  4236. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4237. }
  4238. }
  4239. static void ggml_cl_div(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4240. GGML_ASSERT(src0);
  4241. GGML_ASSERT(src0->extra);
  4242. GGML_ASSERT(src1);
  4243. GGML_ASSERT(src1->extra);
  4244. GGML_ASSERT(dst);
  4245. GGML_ASSERT(dst->extra);
  4246. GGML_ASSERT(src0->type == src1->type);
  4247. GGML_ASSERT(src0->type == dst->type);
  4248. GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
  4249. const int ne00 = src0->ne[0];
  4250. const int ne01 = src0->ne[1];
  4251. const int ne02 = src0->ne[2];
  4252. const int ne03 = src0->ne[3];
  4253. const cl_ulong nb00 = src0->nb[0];
  4254. const cl_ulong nb01 = src0->nb[1];
  4255. const cl_ulong nb02 = src0->nb[2];
  4256. const cl_ulong nb03 = src0->nb[3];
  4257. const int ne10 = src1->ne[0];
  4258. const int ne11 = src1->ne[1];
  4259. const int ne12 = src1->ne[2];
  4260. const int ne13 = src1->ne[3];
  4261. const cl_ulong nb10 = src1->nb[0];
  4262. const cl_ulong nb11 = src1->nb[1];
  4263. const cl_ulong nb12 = src1->nb[2];
  4264. const cl_ulong nb13 = src1->nb[3];
  4265. const int ne0 = dst->ne[0];
  4266. const cl_ulong nb0 = dst->nb[0];
  4267. const cl_ulong nb1 = dst->nb[1];
  4268. const cl_ulong nb2 = dst->nb[2];
  4269. const cl_ulong nb3 = dst->nb[3];
  4270. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4271. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4272. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  4273. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4274. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4275. cl_ulong offset1 = extra1->offset + src1->view_offs;
  4276. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4277. bool bcast_row = false;
  4278. cl_kernel kernel;
  4279. if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
  4280. GGML_ASSERT(ggml_is_contiguous(src0));
  4281. // src1 is a row
  4282. GGML_ASSERT(ne11 == 1);
  4283. bcast_row = true;
  4284. int ne = ne00 / 4;
  4285. if (src0->type == GGML_TYPE_F32) {
  4286. kernel = backend_ctx->kernel_div_row;
  4287. } else {
  4288. kernel = backend_ctx->kernel_div_row_f16;
  4289. }
  4290. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4291. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4292. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4293. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4294. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4295. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4296. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
  4297. } else {
  4298. if (src0->type == GGML_TYPE_F32) {
  4299. kernel = backend_ctx->kernel_div;
  4300. } else {
  4301. kernel = backend_ctx->kernel_div_f16;
  4302. }
  4303. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4304. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4305. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4306. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4307. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4308. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4309. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb00));
  4310. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
  4311. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
  4312. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
  4313. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne10));
  4314. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne11));
  4315. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne12));
  4316. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne13));
  4317. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb10));
  4318. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb11));
  4319. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb12));
  4320. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb13));
  4321. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne0));
  4322. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb0));
  4323. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb1));
  4324. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb2));
  4325. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb3));
  4326. }
  4327. if (bcast_row) {
  4328. int n = ggml_nelements(dst)/4;
  4329. size_t global_work_size[] = {(size_t)n, 1, 1};
  4330. size_t local_work_size[] = {64, 1, 1};
  4331. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4332. } else {
  4333. unsigned int nth = MIN(64, ne0);
  4334. size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03};
  4335. size_t local_work_size[] = {nth, 1, 1};
  4336. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4337. }
  4338. }
  4339. static void ggml_cl_sub(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4340. GGML_ASSERT(src0);
  4341. GGML_ASSERT(src0->extra);
  4342. GGML_ASSERT(src1);
  4343. GGML_ASSERT(src1->extra);
  4344. GGML_ASSERT(dst);
  4345. GGML_ASSERT(dst->extra);
  4346. GGML_ASSERT(src0->type == src1->type);
  4347. GGML_ASSERT(src0->type == dst->type);
  4348. GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
  4349. const int ne00 = src0->ne[0];
  4350. const int ne01 = src0->ne[1];
  4351. const int ne02 = src0->ne[2];
  4352. const int ne03 = src0->ne[3];
  4353. const cl_ulong nb00 = src0->nb[0];
  4354. const cl_ulong nb01 = src0->nb[1];
  4355. const cl_ulong nb02 = src0->nb[2];
  4356. const cl_ulong nb03 = src0->nb[3];
  4357. const int ne10 = src1->ne[0];
  4358. const int ne11 = src1->ne[1];
  4359. const int ne12 = src1->ne[2];
  4360. const int ne13 = src1->ne[3];
  4361. const cl_ulong nb10 = src1->nb[0];
  4362. const cl_ulong nb11 = src1->nb[1];
  4363. const cl_ulong nb12 = src1->nb[2];
  4364. const cl_ulong nb13 = src1->nb[3];
  4365. const int ne0 = dst->ne[0];
  4366. const cl_ulong nb0 = dst->nb[0];
  4367. const cl_ulong nb1 = dst->nb[1];
  4368. const cl_ulong nb2 = dst->nb[2];
  4369. const cl_ulong nb3 = dst->nb[3];
  4370. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4371. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4372. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  4373. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4374. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4375. cl_ulong offset1 = extra1->offset + src1->view_offs;
  4376. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4377. bool bcast_row = false;
  4378. cl_kernel kernel;
  4379. if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
  4380. GGML_ASSERT(ggml_is_contiguous(src0));
  4381. // src1 is a row
  4382. GGML_ASSERT(ne11 == 1);
  4383. bcast_row = true;
  4384. int ne = ne00 / 4;
  4385. if (src0->type == GGML_TYPE_F32) {
  4386. kernel = backend_ctx->kernel_sub_row;
  4387. } else {
  4388. kernel = backend_ctx->kernel_sub_row_f16;
  4389. }
  4390. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4391. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4392. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4393. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4394. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4395. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4396. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
  4397. } else {
  4398. if (src0->type == GGML_TYPE_F32) {
  4399. kernel = backend_ctx->kernel_sub;
  4400. } else {
  4401. kernel = backend_ctx->kernel_sub_f16;
  4402. }
  4403. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4404. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4405. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4406. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4407. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4408. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4409. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb00));
  4410. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
  4411. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
  4412. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
  4413. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne10));
  4414. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne11));
  4415. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne12));
  4416. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne13));
  4417. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb10));
  4418. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb11));
  4419. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb12));
  4420. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb13));
  4421. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne0));
  4422. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb0));
  4423. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb1));
  4424. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb2));
  4425. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb3));
  4426. }
  4427. if (bcast_row) {
  4428. int n = ggml_nelements(dst)/4;
  4429. size_t global_work_size[] = {(size_t)n, 1, 1};
  4430. size_t local_work_size[] = {64, 1, 1};
  4431. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4432. } else {
  4433. unsigned int nth = MIN(64, ne0);
  4434. size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03};
  4435. size_t local_work_size[] = {nth, 1, 1};
  4436. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4437. }
  4438. }
  4439. static void ggml_cl_gelu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4440. GGML_ASSERT(src0);
  4441. GGML_ASSERT(src0->extra);
  4442. GGML_ASSERT(dst);
  4443. GGML_ASSERT(dst->extra);
  4444. UNUSED(src1);
  4445. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4446. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4447. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4448. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4449. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4450. cl_kernel kernel;
  4451. int n = ggml_nelements(dst);
  4452. if (n % 4 == 0) {
  4453. kernel = backend_ctx->kernel_gelu_4;
  4454. n /= 4;
  4455. } else {
  4456. kernel = backend_ctx->kernel_gelu;
  4457. }
  4458. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4459. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4460. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4461. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4462. size_t global_work_size[] = {(size_t)n, 1, 1};
  4463. size_t local_work_size[] = {64, 1, 1};
  4464. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4465. }
  4466. static void ggml_cl_gelu_erf(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4467. GGML_ASSERT(src0);
  4468. GGML_ASSERT(src0->extra);
  4469. GGML_ASSERT(dst);
  4470. GGML_ASSERT(dst->extra);
  4471. UNUSED(src1);
  4472. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4473. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4474. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4475. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4476. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4477. cl_kernel kernel;
  4478. int n = ggml_nelements(dst);
  4479. if (n % 4 == 0) {
  4480. kernel = backend_ctx->kernel_gelu_erf_4;
  4481. n /= 4;
  4482. } else {
  4483. kernel = backend_ctx->kernel_gelu_erf;
  4484. }
  4485. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4486. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4487. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4488. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4489. size_t global_work_size[] = {(size_t)n, 1, 1};
  4490. size_t local_work_size[] = {64, 1, 1};
  4491. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4492. }
  4493. static void ggml_cl_gelu_quick(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4494. GGML_ASSERT(src0);
  4495. GGML_ASSERT(src0->extra);
  4496. GGML_ASSERT(dst);
  4497. GGML_ASSERT(dst->extra);
  4498. UNUSED(src1);
  4499. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4500. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4501. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4502. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4503. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4504. cl_kernel kernel;
  4505. int n = ggml_nelements(dst);
  4506. if (n % 4 == 0) {
  4507. kernel = backend_ctx->kernel_gelu_quick_4;
  4508. n /= 4;
  4509. } else {
  4510. kernel = backend_ctx->kernel_gelu_quick;
  4511. }
  4512. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4513. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4514. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4515. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4516. size_t global_work_size[] = {(size_t)n, 1, 1};
  4517. size_t local_work_size[] = {64, 1, 1};
  4518. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4519. }
  4520. static void ggml_cl_silu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4521. GGML_ASSERT(src0);
  4522. GGML_ASSERT(src0->extra);
  4523. GGML_ASSERT(dst);
  4524. GGML_ASSERT(dst->extra);
  4525. UNUSED(src1);
  4526. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4527. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4528. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4529. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4530. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4531. cl_kernel kernel;
  4532. int n = ggml_nelements(dst);
  4533. if (n % 4 == 0) {
  4534. kernel = backend_ctx->kernel_silu_4;
  4535. n /= 4;
  4536. } else {
  4537. kernel = backend_ctx->kernel_silu;
  4538. }
  4539. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4540. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4541. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4542. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4543. size_t global_work_size[] = {(size_t)n, 1, 1};
  4544. size_t local_work_size[] = {64, 1, 1};
  4545. size_t * local_work_size_ptr = local_work_size;
  4546. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  4547. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  4548. }
  4549. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  4550. }
  4551. static void ggml_cl_relu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4552. GGML_ASSERT(src0);
  4553. GGML_ASSERT(src0->extra);
  4554. GGML_ASSERT(dst);
  4555. GGML_ASSERT(dst->extra);
  4556. UNUSED(src1);
  4557. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4558. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4559. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4560. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4561. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4562. cl_kernel kernel = backend_ctx->kernel_relu;
  4563. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4564. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4565. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4566. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4567. const int64_t n = ggml_nelements(dst);
  4568. size_t global_work_size[] = {(size_t)n, 1, 1};
  4569. size_t local_work_size[] = {64, 1, 1};
  4570. size_t * local_work_size_ptr = local_work_size;
  4571. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  4572. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  4573. }
  4574. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  4575. }
  4576. static void ggml_cl_sigmoid(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4577. GGML_ASSERT(src0);
  4578. GGML_ASSERT(src0->extra);
  4579. GGML_ASSERT(dst);
  4580. GGML_ASSERT(dst->extra);
  4581. UNUSED(src1);
  4582. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4583. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4584. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4585. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4586. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4587. cl_kernel kernel;
  4588. if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
  4589. kernel = backend_ctx->kernel_sigmoid_f32;
  4590. } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
  4591. kernel = backend_ctx->kernel_sigmoid_f16;
  4592. } else {
  4593. GGML_ASSERT(false && "Unsupported data types for sigmoid (input and output must be both f32 or f16)");
  4594. }
  4595. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4596. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4597. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4598. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4599. const int64_t n = ggml_nelements(dst);
  4600. size_t global_work_size[] = {(size_t)n, 1, 1};
  4601. size_t local_work_size[] = {64, 1, 1};
  4602. size_t * local_work_size_ptr = local_work_size;
  4603. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  4604. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  4605. }
  4606. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  4607. }
  4608. static void ggml_cl_clamp(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4609. GGML_ASSERT(src0);
  4610. GGML_ASSERT(src0->extra);
  4611. GGML_ASSERT(dst);
  4612. GGML_ASSERT(dst->extra);
  4613. UNUSED(src1);
  4614. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4615. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4616. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4617. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4618. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4619. float min;
  4620. float max;
  4621. memcpy(&min, ((int32_t *) dst->op_params) + 0, sizeof(float));
  4622. memcpy(&max, ((int32_t *) dst->op_params) + 1, sizeof(float));
  4623. cl_kernel kernel = backend_ctx->kernel_clamp;
  4624. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4625. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4626. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4627. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4628. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(float), &min));
  4629. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(float), &max));
  4630. const int64_t n = ggml_nelements(dst);
  4631. size_t global_work_size[] = {(size_t)n, 1, 1};
  4632. size_t local_work_size[] = {64, 1, 1};
  4633. size_t * local_work_size_ptr = local_work_size;
  4634. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  4635. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  4636. }
  4637. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  4638. }
  4639. static void ggml_cl_norm(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4640. GGML_ASSERT(src0);
  4641. GGML_ASSERT(src0->extra);
  4642. GGML_ASSERT(dst);
  4643. GGML_ASSERT(dst->extra);
  4644. UNUSED(src1);
  4645. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4646. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4647. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4648. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4649. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4650. float eps;
  4651. memcpy(&eps, dst->op_params, sizeof(float));
  4652. const int ne00 = src0 ? src0->ne[0] : 0;
  4653. const int ne01 = src0 ? src0->ne[1] : 0;
  4654. const int ne02 = src0 ? src0->ne[2] : 0;
  4655. const int ne03 = src0 ? src0->ne[3] : 0;
  4656. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  4657. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  4658. const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
  4659. const int nth = MIN(64, ne00);
  4660. cl_kernel kernel = backend_ctx->kernel_norm;
  4661. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4662. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4663. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4664. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4665. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  4666. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  4667. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
  4668. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
  4669. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
  4670. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
  4671. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
  4672. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(float), &eps));
  4673. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(float)*nth, NULL));
  4674. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  4675. size_t local_work_size[] = {(size_t)nth, 1, 1};
  4676. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4677. }
  4678. static void ggml_cl_rms_norm(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4679. GGML_ASSERT(src0);
  4680. GGML_ASSERT(src0->extra);
  4681. GGML_ASSERT(dst);
  4682. GGML_ASSERT(dst->extra);
  4683. UNUSED(src1);
  4684. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4685. //ggml_backend_opencl_device_context * dev_ctx =
  4686. // (ggml_backend_opencl_device_context *)backend->device->context;
  4687. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4688. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4689. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4690. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4691. float eps;
  4692. memcpy(&eps, dst->op_params, sizeof(float));
  4693. const int ne00 = src0 ? src0->ne[0] : 0;
  4694. const int ne01 = src0 ? src0->ne[1] : 0;
  4695. const int ne02 = src0 ? src0->ne[2] : 0;
  4696. const int ne03 = src0 ? src0->ne[3] : 0;
  4697. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  4698. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  4699. const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
  4700. GGML_ASSERT(ne00 % 4 == 0);
  4701. const int nth = MIN(64, ne00);
  4702. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  4703. size_t local_work_size[] = {(size_t)nth, 1, 1};
  4704. cl_kernel kernel = backend_ctx->kernel_rms_norm;
  4705. // Note, this kernel declares local memory in kernel args and the size
  4706. // depends on subgroup size.
  4707. // Note, this requires OpenCL 2.1 and above
  4708. // For now we use fixed subgroup size to simplify support for OpenCL 2.0.
  4709. size_t sgs;
  4710. //CL_CHECK(clGetKernelSubGroupInfo(kernel, dev_ctx->device,
  4711. // CL_KERNEL_MAX_SUB_GROUP_SIZE_FOR_NDRANGE,
  4712. // sizeof(local_work_size), local_work_size,
  4713. // sizeof(size_t), &sgs, NULL));
  4714. if (backend_ctx->gpu_family == ADRENO) {
  4715. sgs = 64;
  4716. } else if (backend_ctx->gpu_family == INTEL) {
  4717. sgs = 32;
  4718. } else {
  4719. GGML_ASSERT(false && "Unsupported GPU");
  4720. }
  4721. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4722. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4723. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4724. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4725. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  4726. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  4727. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
  4728. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
  4729. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
  4730. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
  4731. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
  4732. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(float), &eps));
  4733. // This is local memory - the size depends on subgroup size.
  4734. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(float)*nth/sgs, NULL));
  4735. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4736. }
  4737. static void ggml_opencl_op_rms_norm_fused(ggml_backend_t backend, ggml_tensor * rms_norm_tensor, ggml_tensor * mul_tensor) {
  4738. GGML_ASSERT(mul_tensor);
  4739. GGML_ASSERT(rms_norm_tensor);
  4740. // src0 is the src of rms_norm, src1 is the other src of mul (one being rms_norm)
  4741. const ggml_tensor * src0 = rms_norm_tensor->src[0];
  4742. const ggml_tensor * src1;
  4743. if (mul_tensor->src[0] == rms_norm_tensor) {
  4744. src1 = mul_tensor->src[1];
  4745. } else if (mul_tensor->src[1] == rms_norm_tensor) {
  4746. src1 = mul_tensor->src[0];
  4747. } else {
  4748. GGML_ASSERT(false && "Invalid args for rms_norm and mul");
  4749. }
  4750. const ggml_tensor * dst = mul_tensor;
  4751. GGML_ASSERT(src0);
  4752. GGML_ASSERT(src0->extra);
  4753. GGML_ASSERT(src1);
  4754. GGML_ASSERT(src1->extra);
  4755. GGML_ASSERT(dst);
  4756. GGML_ASSERT(dst->extra);
  4757. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4758. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  4759. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4760. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4761. cl_ulong offset1 = extra1->offset + src0->view_offs;
  4762. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4763. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4764. float eps;
  4765. memcpy(&eps, rms_norm_tensor->op_params, sizeof(float));
  4766. const int ne00 = src0->ne[0];
  4767. const int ne01 = src0->ne[1];
  4768. const int ne02 = src0->ne[2];
  4769. const int ne03 = src0->ne[3];
  4770. const cl_ulong nb01 = src0->nb[1];
  4771. const cl_ulong nb02 = src0->nb[2];
  4772. const cl_ulong nb03 = src0->nb[3];
  4773. const int ne10 = src1->ne[0];
  4774. const int ne11 = src1->ne[1];
  4775. const int ne12 = src1->ne[2];
  4776. const int ne13 = src1->ne[3];
  4777. const cl_ulong nb11 = src1->nb[1];
  4778. const cl_ulong nb12 = src1->nb[2];
  4779. const cl_ulong nb13 = src1->nb[3];
  4780. const cl_ulong nb1 = dst->nb[1];
  4781. const cl_ulong nb2 = dst->nb[2];
  4782. const cl_ulong nb3 = dst->nb[3];
  4783. GGML_ASSERT(ne00 % 4 == 0);
  4784. size_t sgs;
  4785. if (backend_ctx->gpu_family == ADRENO) {
  4786. sgs = 64;
  4787. } else if (backend_ctx->gpu_family == INTEL) {
  4788. sgs = 32;
  4789. } else {
  4790. GGML_ASSERT(false && "Unsupported GPU");
  4791. }
  4792. cl_kernel kernel = backend_ctx->kernel_rms_norm_mul;
  4793. int nth = sgs;
  4794. int max_workgroup_size = backend_ctx->get_kernel_workgroup_size(kernel);
  4795. while (nth < ne00 && nth < max_workgroup_size) {
  4796. nth *= 2;
  4797. }
  4798. nth = MIN(nth, max_workgroup_size);
  4799. nth = MIN(nth, ne00);
  4800. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  4801. size_t local_work_size[] = {(size_t)nth, 1, 1};
  4802. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4803. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4804. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4805. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4806. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4807. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4808. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  4809. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  4810. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  4811. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03));
  4812. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
  4813. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
  4814. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb03));
  4815. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10));
  4816. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11));
  4817. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12));
  4818. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne13));
  4819. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
  4820. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
  4821. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
  4822. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb1));
  4823. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb2));
  4824. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb3));
  4825. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(float), &eps));
  4826. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(float)*nth/sgs, NULL));
  4827. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4828. }
  4829. static void ggml_opencl_op_norm_fused(ggml_backend_t backend, ggml_tensor * norm_tensor, ggml_tensor * mul_tensor, ggml_tensor * add_tensor) {
  4830. GGML_ASSERT(norm_tensor && mul_tensor && add_tensor);
  4831. const ggml_tensor * src0 = norm_tensor->src[0];
  4832. const ggml_tensor * src1 = mul_tensor->src[0] == norm_tensor ? mul_tensor->src[1] : mul_tensor->src[0];
  4833. const ggml_tensor * src2 = add_tensor->src[0] == mul_tensor ? add_tensor->src[1] : add_tensor->src[0];
  4834. const ggml_tensor * dst = add_tensor;
  4835. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4836. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  4837. ggml_tensor_extra_cl * extra2 = (ggml_tensor_extra_cl *)src2->extra;
  4838. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4839. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4840. cl_ulong offset1 = extra1->offset + src1->view_offs;
  4841. cl_ulong offset2 = extra2->offset + src2->view_offs;
  4842. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4843. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4844. float eps;
  4845. memcpy(&eps, norm_tensor->op_params, sizeof(float));
  4846. const int ne00 = src0->ne[0], ne01 = src0->ne[1], ne02 = src0->ne[2], ne03 = src0->ne[3];
  4847. const cl_ulong nb01 = src0->nb[1], nb02 = src0->nb[2], nb03 = src0->nb[3];
  4848. const int ne10 = src1->ne[0], ne11 = src1->ne[1], ne12 = src1->ne[2], ne13 = src1->ne[3];
  4849. const cl_ulong nb11 = src1->nb[1], nb12 = src1->nb[2], nb13 = src1->nb[3];
  4850. const int ne20 = src2->ne[0], ne21 = src2->ne[1], ne22 = src2->ne[2], ne23 = src2->ne[3];
  4851. const cl_ulong nb21 = src2->nb[1], nb22 = src2->nb[2], nb23 = src2->nb[3];
  4852. const cl_ulong nbd1 = dst->nb[1], nbd2 = dst->nb[2], nbd3 = dst->nb[3];
  4853. size_t sgs;
  4854. if (backend_ctx->gpu_family == ADRENO) sgs = 64;
  4855. else if (backend_ctx->gpu_family == INTEL) sgs = 32;
  4856. else GGML_ASSERT(false && "Unsupported GPU");
  4857. cl_kernel kernel = backend_ctx->kernel_norm_mul_add;
  4858. int nth = sgs;
  4859. int max_workgroup_size = backend_ctx->get_kernel_workgroup_size(kernel);
  4860. while (nth < ne00/4 && nth < max_workgroup_size) nth *= 2;
  4861. nth = MIN(nth, max_workgroup_size);
  4862. nth = MIN(nth, ne00/4);
  4863. size_t gws[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  4864. size_t lws[] = {(size_t)nth, 1, 1};
  4865. size_t num_subgroups = (nth + sgs - 1) / sgs;
  4866. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4867. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4868. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4869. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4870. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
  4871. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  4872. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  4873. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  4874. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  4875. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
  4876. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne02));
  4877. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne03));
  4878. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb01));
  4879. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb02));
  4880. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb03));
  4881. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne10));
  4882. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne11));
  4883. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne12));
  4884. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne13));
  4885. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11));
  4886. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12));
  4887. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13));
  4888. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne20));
  4889. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &ne21));
  4890. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &ne22));
  4891. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &ne23));
  4892. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb21));
  4893. CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb22));
  4894. CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb23));
  4895. CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nbd1));
  4896. CL_CHECK(clSetKernelArg(kernel, 30, sizeof(cl_ulong), &nbd2));
  4897. CL_CHECK(clSetKernelArg(kernel, 31, sizeof(cl_ulong), &nbd3));
  4898. CL_CHECK(clSetKernelArg(kernel, 32, sizeof(float), &eps));
  4899. CL_CHECK(clSetKernelArg(kernel, 33, sizeof(cl_float2) * num_subgroups, NULL));
  4900. backend_ctx->enqueue_ndrange_kernel(kernel, 3, gws, lws, dst);
  4901. }
  4902. static void ggml_opencl_op_group_norm_fused(ggml_backend_t backend, ggml_tensor * gn_tensor, ggml_tensor * mul_tensor, ggml_tensor * add_tensor) {
  4903. GGML_ASSERT(gn_tensor && mul_tensor && add_tensor);
  4904. const ggml_tensor * src0 = gn_tensor->src[0];
  4905. const ggml_tensor * src1 = mul_tensor->src[0] == gn_tensor ? mul_tensor->src[1] : mul_tensor->src[0];
  4906. const ggml_tensor * src2 = add_tensor->src[0] == mul_tensor ? add_tensor->src[1] : add_tensor->src[0];
  4907. const ggml_tensor * dst = add_tensor;
  4908. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4909. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  4910. ggml_tensor_extra_cl * extra2 = (ggml_tensor_extra_cl *)src2->extra;
  4911. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4912. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4913. cl_ulong offset1 = extra1->offset + src1->view_offs;
  4914. cl_ulong offset2 = extra2->offset + src2->view_offs;
  4915. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4916. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4917. int groups;
  4918. float eps;
  4919. memcpy(&groups, gn_tensor->op_params, sizeof(int));
  4920. memcpy(&eps, (char *)gn_tensor->op_params + sizeof(int), sizeof(float));
  4921. cl_kernel kernel = backend_ctx->kernel_group_norm_mul_add;
  4922. int max_workgroup_size = backend_ctx->get_kernel_workgroup_size(kernel);
  4923. int ne = ggml_nelements(src0);
  4924. int group_size = ne / groups;
  4925. size_t lws[] = { (size_t)MIN(max_workgroup_size, group_size) };
  4926. size_t gws[] = { (size_t)groups * lws[0] };
  4927. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4928. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4929. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4930. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4931. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
  4932. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  4933. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  4934. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  4935. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne));
  4936. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &group_size));
  4937. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(float), &eps));
  4938. backend_ctx->enqueue_ndrange_kernel(kernel, 1, gws, lws, dst);
  4939. }
  4940. static void ggml_cl_group_norm(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4941. GGML_ASSERT(src0);
  4942. GGML_ASSERT(src0->extra);
  4943. GGML_ASSERT(dst);
  4944. GGML_ASSERT(dst->extra);
  4945. UNUSED(src1);
  4946. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4947. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4948. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4949. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4950. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4951. int32_t n_groups = ((const int32_t *) dst->op_params)[0];
  4952. int32_t group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + n_groups - 1) / n_groups);
  4953. float eps = ((const float *) dst->op_params)[1];
  4954. const int ne00 = src0->ne[0];
  4955. const int ne01 = src0->ne[1];
  4956. const int ne02 = src0->ne[2];
  4957. const int ne = ne00*ne01*ne02;
  4958. cl_kernel kernel = backend_ctx->kernel_group_norm;
  4959. size_t sgs = 64;
  4960. if (backend_ctx->gpu_family == ADRENO) {
  4961. sgs = 64;
  4962. } else if (backend_ctx->gpu_family == INTEL) {
  4963. sgs = 32;
  4964. } else {
  4965. GGML_ASSERT(false && "Unsupported GPU");
  4966. }
  4967. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4968. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4969. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4970. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4971. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne));
  4972. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &group_size));
  4973. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(float), &eps));
  4974. size_t global_work_size[] = {(size_t)n_groups*sgs, 1, 1};
  4975. size_t local_work_size[] = {(size_t)sgs, 1, 1};
  4976. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4977. }
  4978. static void ggml_cl_tanh(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4979. GGML_ASSERT(src0);
  4980. GGML_ASSERT(src0->extra);
  4981. GGML_ASSERT(dst);
  4982. GGML_ASSERT(dst->extra);
  4983. UNUSED(src1);
  4984. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4985. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4986. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4987. cl_ulong offset0_abs = extra0->offset + src0->view_offs;
  4988. cl_ulong offsetd_abs = extrad->offset + dst->view_offs;
  4989. cl_kernel kernel;
  4990. if (dst->type == GGML_TYPE_F32) {
  4991. kernel = backend_ctx->kernel_tanh_f32_nd;
  4992. } else if (dst->type == GGML_TYPE_F16) {
  4993. kernel = backend_ctx->kernel_tanh_f16_nd;
  4994. } else {
  4995. GGML_ASSERT(false && "Unsupported type for ggml_cl_tanh");
  4996. }
  4997. GGML_ASSERT(kernel != nullptr);
  4998. const int ne00 = src0->ne[0]; const int ne01 = src0->ne[1]; const int ne02 = src0->ne[2]; const int ne03 = src0->ne[3];
  4999. const cl_ulong nb00 = src0->nb[0]; const cl_ulong nb01 = src0->nb[1]; const cl_ulong nb02 = src0->nb[2]; const cl_ulong nb03 = src0->nb[3];
  5000. const int ne10 = dst->ne[0]; const int ne11 = dst->ne[1]; const int ne12 = dst->ne[2]; const int ne13 = dst->ne[3];
  5001. const cl_ulong nb10 = dst->nb[0]; const cl_ulong nb11 = dst->nb[1]; const cl_ulong nb12 = dst->nb[2]; const cl_ulong nb13 = dst->nb[3];
  5002. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  5003. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0_abs));
  5004. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  5005. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd_abs));
  5006. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  5007. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  5008. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
  5009. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
  5010. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb00));
  5011. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
  5012. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong),&nb02));
  5013. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong),&nb03));
  5014. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10));
  5015. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne11));
  5016. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne12));
  5017. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne13));
  5018. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong),&nb10));
  5019. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong),&nb11));
  5020. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong),&nb12));
  5021. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong),&nb13));
  5022. size_t global_work_size[3];
  5023. if (ne10 == 0 || ne11 == 0 || ne12 == 0 || ne13 == 0) { // Handle case of 0 elements
  5024. return;
  5025. }
  5026. global_work_size[0] = (size_t)ne10;
  5027. global_work_size[1] = (size_t)ne11;
  5028. global_work_size[2] = (size_t)ne12;
  5029. size_t lws0 = 16, lws1 = 4, lws2 = 1;
  5030. if (ne10 < 16) lws0 = ne10;
  5031. if (ne11 < 4) lws1 = ne11;
  5032. if (ne12 < 1) lws2 = ne12 > 0 ? ne12 : 1;
  5033. while (lws0 * lws1 * lws2 > 256 && lws0 > 1) lws0 /= 2;
  5034. while (lws0 * lws1 * lws2 > 256 && lws1 > 1) lws1 /= 2;
  5035. while (lws0 * lws1 * lws2 > 256 && lws2 > 1) lws2 /= 2;
  5036. size_t local_work_size[] = {lws0, lws1, lws2};
  5037. size_t* local_work_size_ptr = local_work_size;
  5038. if (!backend_ctx->non_uniform_workgroups) {
  5039. if (global_work_size[0] % local_work_size[0] != 0 ||
  5040. global_work_size[1] % local_work_size[1] != 0 ||
  5041. global_work_size[2] % local_work_size[2] != 0) {
  5042. local_work_size_ptr = NULL;
  5043. }
  5044. }
  5045. if (global_work_size[0] == 0 || global_work_size[1] == 0 || global_work_size[2] == 0) return;
  5046. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  5047. }
  5048. static void ggml_cl_repeat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1_shape_def, ggml_tensor * dst) {
  5049. GGML_ASSERT(src0);
  5050. GGML_ASSERT(src0->extra);
  5051. GGML_ASSERT(dst);
  5052. GGML_ASSERT(dst->extra);
  5053. GGML_ASSERT(dst->type == src0->type);
  5054. UNUSED(src1_shape_def);
  5055. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5056. if (backend_ctx->kernel_repeat == nullptr) {
  5057. GGML_LOG_WARN("%s: repeat kernel not available, skipping OpenCL execution.\n", __func__);
  5058. return;
  5059. }
  5060. ggml_tensor_extra_cl * extra_src0 = (ggml_tensor_extra_cl *)src0->extra;
  5061. ggml_tensor_extra_cl * extra_dst = (ggml_tensor_extra_cl *)dst->extra;
  5062. cl_ulong off_src0 = extra_src0->offset + src0->view_offs;
  5063. cl_ulong off_dst = extra_dst->offset + dst->view_offs;
  5064. const int src0_ne0 = src0->ne[0]; const int src0_ne1 = src0->ne[1]; const int src0_ne2 = src0->ne[2]; const int src0_ne3 = src0->ne[3];
  5065. const cl_ulong src0_nb0 = src0->nb[0]; const cl_ulong src0_nb1 = src0->nb[1]; const cl_ulong src0_nb2 = src0->nb[2]; const cl_ulong src0_nb3 = src0->nb[3];
  5066. const int dst_ne0 = dst->ne[0]; const int dst_ne1 = dst->ne[1]; const int dst_ne2 = dst->ne[2]; const int dst_ne3 = dst->ne[3];
  5067. const cl_ulong dst_nb0 = dst->nb[0]; const cl_ulong dst_nb1 = dst->nb[1]; const cl_ulong dst_nb2 = dst->nb[2]; const cl_ulong dst_nb3 = dst->nb[3];
  5068. cl_kernel kernel = backend_ctx->kernel_repeat;
  5069. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_src0->data_device));
  5070. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra_dst->data_device));
  5071. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_ulong), &off_src0));
  5072. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_dst));
  5073. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &src0_ne0));
  5074. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &src0_ne1));
  5075. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &src0_ne2));
  5076. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &src0_ne3));
  5077. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &src0_nb0));
  5078. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &src0_nb1));
  5079. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &src0_nb2));
  5080. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &src0_nb3));
  5081. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &dst_ne0));
  5082. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &dst_ne1));
  5083. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &dst_ne2));
  5084. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &dst_ne3));
  5085. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &dst_nb0));
  5086. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &dst_nb1));
  5087. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &dst_nb2));
  5088. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &dst_nb3));
  5089. size_t gws0 = dst_ne1 > 0 ? (size_t)dst_ne1 : 1;
  5090. size_t gws1 = dst_ne2 > 0 ? (size_t)dst_ne2 : 1;
  5091. size_t gws2 = dst_ne3 > 0 ? (size_t)dst_ne3 : 1;
  5092. size_t global_work_size[] = { gws0, gws1, gws2 };
  5093. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, NULL, dst);
  5094. }
  5095. static void ggml_cl_pad(ggml_backend_t backend, const ggml_tensor * src0, ggml_tensor * dst) {
  5096. GGML_ASSERT(src0);
  5097. GGML_ASSERT(src0->extra);
  5098. GGML_ASSERT(dst);
  5099. GGML_ASSERT(dst->extra);
  5100. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  5101. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  5102. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5103. if (backend_ctx->kernel_pad == nullptr) {
  5104. GGML_LOG_WARN("%s: pad kernel not available, skipping OpenCL execution.\n", __func__);
  5105. return;
  5106. }
  5107. ggml_tensor_extra_cl * extra_src0 = (ggml_tensor_extra_cl *)src0->extra;
  5108. ggml_tensor_extra_cl * extra_dst = (ggml_tensor_extra_cl *)dst->extra;
  5109. cl_ulong off_src0 = extra_src0->offset + src0->view_offs;
  5110. cl_ulong off_dst = extra_dst->offset + dst->view_offs;
  5111. const int s_ne0 = src0->ne[0];
  5112. const int s_ne1 = src0->ne[1];
  5113. const int s_ne2 = src0->ne[2];
  5114. const int s_ne3 = src0->ne[3];
  5115. const int s_nb0 = src0->nb[0];
  5116. const int s_nb1 = src0->nb[1];
  5117. const int s_nb2 = src0->nb[2];
  5118. const int s_nb3 = src0->nb[3];
  5119. const int d_ne0 = dst->ne[0];
  5120. const int d_ne1 = dst->ne[1];
  5121. const int d_ne2 = dst->ne[2];
  5122. const int d_ne3 = dst->ne[3];
  5123. const int d_nb0 = dst->nb[0];
  5124. const int d_nb1 = dst->nb[1];
  5125. const int d_nb2 = dst->nb[2];
  5126. const int d_nb3 = dst->nb[3];
  5127. const int lp0 = ((const int*)(dst->op_params))[0];
  5128. const int rp0 = ((const int*)(dst->op_params))[1];
  5129. const int lp1 = ((const int*)(dst->op_params))[2];
  5130. const int rp1 = ((const int*)(dst->op_params))[3];
  5131. const int lp2 = ((const int*)(dst->op_params))[4];
  5132. const int rp2 = ((const int*)(dst->op_params))[5];
  5133. const int lp3 = ((const int*)(dst->op_params))[6];
  5134. const int rp3 = ((const int*)(dst->op_params))[7];
  5135. cl_kernel kernel = backend_ctx->kernel_pad;
  5136. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_src0->data_device));
  5137. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &off_src0));
  5138. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra_dst->data_device));
  5139. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_dst));
  5140. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &s_ne0));
  5141. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &s_ne1));
  5142. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &s_ne2));
  5143. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &s_ne3));
  5144. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &s_nb0));
  5145. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &s_nb1));
  5146. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &s_nb2));
  5147. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &s_nb3));
  5148. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &d_ne0));
  5149. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &d_ne1));
  5150. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &d_ne2));
  5151. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &d_ne3));
  5152. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &d_nb0));
  5153. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &d_nb1));
  5154. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &d_nb2));
  5155. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &d_nb3));
  5156. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &lp0));
  5157. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &rp0));
  5158. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &lp1));
  5159. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &rp1));
  5160. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &lp2));
  5161. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &rp2));
  5162. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(int), &lp3));
  5163. CL_CHECK(clSetKernelArg(kernel, 27, sizeof(int), &rp3));
  5164. size_t lws0 = 64;
  5165. size_t gws0 = (( (size_t)d_ne0 + lws0 - 1 ) / lws0) * lws0;
  5166. size_t global_work_size[] = { gws0, (size_t)d_ne1, (size_t)d_ne2*d_ne3 };
  5167. size_t local_work_size[] = { lws0, 1, 1 };
  5168. size_t * local_work_size_ptr = local_work_size;
  5169. if (d_ne0 % lws0 != 0 && !backend_ctx->non_uniform_workgroups) {
  5170. local_work_size_ptr = nullptr;
  5171. }
  5172. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  5173. }
  5174. static void ggml_cl_upscale(ggml_backend_t backend, const ggml_tensor * src0, ggml_tensor * dst) {
  5175. GGML_ASSERT(src0);
  5176. GGML_ASSERT(src0->extra);
  5177. GGML_ASSERT(dst);
  5178. GGML_ASSERT(dst->extra);
  5179. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  5180. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  5181. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5182. const int mode_flags = (ggml_scale_mode) ggml_get_op_params_i32(dst, 0);
  5183. const ggml_scale_mode mode = (ggml_scale_mode) (mode_flags & 0xFF);
  5184. cl_kernel kernel = nullptr;
  5185. if (mode == GGML_SCALE_MODE_NEAREST) {
  5186. kernel = backend_ctx->kernel_upscale;
  5187. if (kernel == nullptr) {
  5188. GGML_LOG_WARN("%s: nearest upscale kernel not available, skipping OpenCL execution.\n", __func__);
  5189. return;
  5190. }
  5191. } else if (mode == GGML_SCALE_MODE_BILINEAR) {
  5192. kernel = backend_ctx->kernel_upscale_bilinear;
  5193. if (kernel == nullptr) {
  5194. GGML_LOG_WARN("%s: bilinear upscale kernel not available, skipping OpenCL execution.\n", __func__);
  5195. return;
  5196. }
  5197. } else {
  5198. GGML_LOG_WARN("%s: unsupported upscale mode %d, skipping OpenCL execution.\n", __func__, mode);
  5199. return;
  5200. }
  5201. ggml_tensor_extra_cl * extra_src0 = (ggml_tensor_extra_cl *)src0->extra;
  5202. ggml_tensor_extra_cl * extra_dst = (ggml_tensor_extra_cl *)dst->extra;
  5203. cl_ulong off_src0 = extra_src0->offset + src0->view_offs;
  5204. cl_ulong off_dst = extra_dst->offset + dst->view_offs;
  5205. const cl_ulong nb00 = src0->nb[0];
  5206. const cl_ulong nb01 = src0->nb[1];
  5207. const cl_ulong nb02 = src0->nb[2];
  5208. const cl_ulong nb03 = src0->nb[3];
  5209. const int ne00 = src0->ne[0];
  5210. const int ne01 = src0->ne[1];
  5211. const int ne02 = src0->ne[2];
  5212. const int ne03 = src0->ne[3];
  5213. const int ne0 = dst->ne[0];
  5214. const int ne1 = dst->ne[1];
  5215. const int ne2 = dst->ne[2];
  5216. const int ne3 = dst->ne[3];
  5217. float sf0 = (float)ne0 / ne00;
  5218. float sf1 = (float)ne1 / ne01;
  5219. float sf2 = (float)ne2 / ne02;
  5220. float sf3 = (float)ne3 / ne03;
  5221. float pixel_offset = 0.5f;
  5222. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_src0->data_device));
  5223. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &off_src0));
  5224. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra_dst->data_device));
  5225. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_dst));
  5226. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_ulong), &nb00));
  5227. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &nb01));
  5228. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb02));
  5229. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb03));
  5230. if (mode == GGML_SCALE_MODE_NEAREST) {
  5231. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne0));
  5232. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne1));
  5233. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne2));
  5234. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne3));
  5235. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(float), &sf0));
  5236. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(float), &sf1));
  5237. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(float), &sf2));
  5238. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(float), &sf3));
  5239. } else if (mode == GGML_SCALE_MODE_BILINEAR) {
  5240. if (mode_flags & GGML_SCALE_FLAG_ALIGN_CORNERS) {
  5241. sf0 = (float)(ne0 - 1) / (ne00 - 1);
  5242. sf1 = (float)(ne1 - 1) / (ne01 - 1);
  5243. pixel_offset = 0.0f;
  5244. }
  5245. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  5246. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
  5247. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne0));
  5248. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne1));
  5249. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne2));
  5250. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne3));
  5251. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(float), &sf0));
  5252. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(float), &sf1));
  5253. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(float), &sf2));
  5254. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(float), &sf3));
  5255. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(float), &pixel_offset));
  5256. }
  5257. size_t dst_total_elements = (size_t)ne0 * ne1 * ne2 * ne3;
  5258. if (dst_total_elements == 0) {
  5259. return;
  5260. }
  5261. size_t global_work_size[] = { dst_total_elements, 1, 1 };
  5262. size_t local_work_size_pref = 256;
  5263. size_t local_work_size[] = { MIN(local_work_size_pref, dst_total_elements), 1, 1};
  5264. size_t * local_work_size_ptr = local_work_size;
  5265. if (dst_total_elements % local_work_size[0] != 0 && !backend_ctx->non_uniform_workgroups) {
  5266. local_work_size_ptr = nullptr;
  5267. }
  5268. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  5269. }
  5270. static void ggml_cl_concat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  5271. GGML_ASSERT(src0);
  5272. GGML_ASSERT(src0->extra);
  5273. GGML_ASSERT(src1);
  5274. GGML_ASSERT(src1->extra);
  5275. GGML_ASSERT(dst);
  5276. GGML_ASSERT(dst->extra);
  5277. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  5278. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5279. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  5280. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5281. cl_command_queue queue = backend_ctx->queue;
  5282. if (backend_ctx->kernel_concat_f32_contiguous == nullptr || backend_ctx->kernel_concat_f32_non_contiguous == nullptr) {
  5283. GGML_LOG_WARN("%s: concat kernels not available, skipping OpenCL execution.\n", __func__);
  5284. return;
  5285. }
  5286. ggml_tensor_extra_cl * extra0_cl = (ggml_tensor_extra_cl *)src0->extra;
  5287. ggml_tensor_extra_cl * extra1_cl = (ggml_tensor_extra_cl *)src1->extra;
  5288. ggml_tensor_extra_cl * extrad_cl = (ggml_tensor_extra_cl *)dst->extra;
  5289. cl_ulong off_src0 = extra0_cl->offset + src0->view_offs;
  5290. cl_ulong off_src1 = extra1_cl->offset + src1->view_offs;
  5291. cl_ulong off_dst = extrad_cl->offset + dst->view_offs;
  5292. const int32_t dim = ((const int32_t *) dst->op_params)[0];
  5293. GGML_ASSERT(dim >= 0 && dim <= 3);
  5294. if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && ggml_is_contiguous(dst)) {
  5295. if (dim == 3) {
  5296. size_t nbytes_src0 = ggml_nbytes(src0);
  5297. size_t nbytes_src1 = ggml_nbytes(src1);
  5298. CL_CHECK(clEnqueueCopyBuffer(queue, extra0_cl->data_device, extrad_cl->data_device,
  5299. off_src0, off_dst, nbytes_src0, 0, NULL, NULL));
  5300. CL_CHECK(clEnqueueCopyBuffer(queue, extra1_cl->data_device, extrad_cl->data_device,
  5301. off_src1, off_dst + nbytes_src0, nbytes_src1, 0, NULL, NULL));
  5302. } else {
  5303. cl_kernel kernel = backend_ctx->kernel_concat_f32_contiguous;
  5304. size_t global_work_size[3];
  5305. for (int i3 = 0; i3 < dst->ne[3]; ++i3) {
  5306. cl_ulong current_off_src0 = off_src0 + (i3 * src0->nb[3]);
  5307. cl_ulong current_off_src1 = off_src1 + (i3 * src1->nb[3]);
  5308. cl_ulong current_off_dst = off_dst + (i3 * dst->nb[3]);
  5309. int d_ne00 = src0->ne[0]; int d_ne01 = src0->ne[1]; int d_ne02 = src0->ne[2];
  5310. int d_ne10 = src1->ne[0]; int d_ne11 = src1->ne[1]; int d_ne12 = src1->ne[2];
  5311. int d_ne0 = dst->ne[0]; int d_ne1 = dst->ne[1]; int d_ne2 = dst->ne[2];
  5312. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_cl->data_device));
  5313. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &current_off_src0));
  5314. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1_cl->data_device));
  5315. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &current_off_src1));
  5316. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad_cl->data_device));
  5317. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &current_off_dst));
  5318. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &d_ne00));
  5319. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &d_ne01));
  5320. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &d_ne02));
  5321. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &d_ne10));
  5322. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &d_ne11));
  5323. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &d_ne12));
  5324. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &d_ne0));
  5325. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &d_ne1));
  5326. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &d_ne2));
  5327. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &dim));
  5328. global_work_size[0] = d_ne0;
  5329. global_work_size[1] = d_ne1;
  5330. global_work_size[2] = d_ne2;
  5331. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, NULL, dst);
  5332. }
  5333. }
  5334. } else {
  5335. cl_kernel kernel = backend_ctx->kernel_concat_f32_non_contiguous;
  5336. cl_long ne00 = src0->ne[0], ne01 = src0->ne[1], ne02 = src0->ne[2], ne03 = src0->ne[3];
  5337. cl_ulong nb00 = src0->nb[0], nb01 = src0->nb[1], nb02 = src0->nb[2], nb03 = src0->nb[3];
  5338. cl_ulong nb10 = src1->nb[0], nb11 = src1->nb[1], nb12 = src1->nb[2], nb13 = src1->nb[3];
  5339. cl_long d_ne0 = dst->ne[0], d_ne1 = dst->ne[1], d_ne2 = dst->ne[2], d_ne3 = dst->ne[3];
  5340. cl_ulong d_nb0 = dst->nb[0], d_nb1 = dst->nb[1], d_nb2 = dst->nb[2], d_nb3 = dst->nb[3];
  5341. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_cl->data_device));
  5342. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &off_src0));
  5343. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1_cl->data_device));
  5344. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_src1));
  5345. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad_cl->data_device));
  5346. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &off_dst));
  5347. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_long), &ne00));
  5348. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_long), &ne01));
  5349. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_long), &ne02));
  5350. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_long), &ne03));
  5351. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
  5352. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
  5353. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
  5354. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
  5355. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb10));
  5356. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb11));
  5357. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb12));
  5358. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb13));
  5359. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_long), &d_ne0));
  5360. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_long), &d_ne1));
  5361. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_long), &d_ne2));
  5362. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_long), &d_ne3));
  5363. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &d_nb0));
  5364. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(cl_ulong), &d_nb1));
  5365. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(cl_ulong), &d_nb2));
  5366. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(cl_ulong), &d_nb3));
  5367. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(int), &dim));
  5368. size_t global_work_size_nc[] = { d_ne1 > 0 ? (size_t)d_ne1 : 1,
  5369. d_ne2 > 0 ? (size_t)d_ne2 : 1,
  5370. d_ne3 > 0 ? (size_t)d_ne3 : 1 };
  5371. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size_nc, NULL, dst);
  5372. }
  5373. }
  5374. static void ggml_cl_timestep_embedding(ggml_backend_t backend, const ggml_tensor * src0, ggml_tensor * dst) {
  5375. GGML_ASSERT(src0);
  5376. GGML_ASSERT(src0->extra);
  5377. GGML_ASSERT(dst);
  5378. GGML_ASSERT(dst->extra);
  5379. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  5380. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  5381. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5382. if (backend_ctx->kernel_timestep_embedding == nullptr) {
  5383. GGML_LOG_WARN("%s: timestep_embedding kernel not available, skipping OpenCL execution.\n", __func__);
  5384. return;
  5385. }
  5386. ggml_tensor_extra_cl * extra_src0 = (ggml_tensor_extra_cl *)src0->extra;
  5387. ggml_tensor_extra_cl * extra_dst = (ggml_tensor_extra_cl *)dst->extra;
  5388. cl_ulong off_src0 = extra_src0->offset + src0->view_offs;
  5389. cl_ulong off_dst = extra_dst->offset + dst->view_offs;
  5390. const int logical_dim = dst->op_params[0];
  5391. const int max_period = dst->op_params[1];
  5392. const int dst_nb1_bytes = dst->nb[1];
  5393. cl_kernel kernel = backend_ctx->kernel_timestep_embedding;
  5394. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_src0->data_device));
  5395. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &off_src0));
  5396. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra_dst->data_device));
  5397. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_dst));
  5398. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &dst_nb1_bytes));
  5399. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &logical_dim));
  5400. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &max_period));
  5401. size_t gws0 = (size_t)(((logical_dim + 1) / 2) + 1);
  5402. size_t gws1 = (size_t)src0->ne[0];
  5403. size_t global_work_size[] = {gws0, gws1, 1};
  5404. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, NULL, dst);
  5405. }
  5406. static void ggml_cl_flash_attn(ggml_backend_t backend, const ggml_tensor * q, const ggml_tensor * k, ggml_tensor * dst) {
  5407. const ggml_tensor * v = dst->src[2];
  5408. const ggml_tensor * mask = dst->src[3];
  5409. const ggml_tensor * sinks = dst->src[4];
  5410. GGML_ASSERT(q->extra);
  5411. GGML_ASSERT(k->extra);
  5412. GGML_ASSERT(v->extra);
  5413. GGML_ASSERT(dst->extra);
  5414. if (mask) {
  5415. GGML_ASSERT(mask->extra);
  5416. }
  5417. if (sinks) {
  5418. GGML_ASSERT(sinks->extra);
  5419. }
  5420. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5421. const int n_q = q->ne[1];
  5422. const int n_kv = k->ne[1];
  5423. const int d_head_q = q->ne[0];
  5424. const int d_head_v = v->ne[0];
  5425. const int n_head = q->ne[2];
  5426. const int n_head_kv = k->ne[2];
  5427. const int n_batch = q->ne[3];
  5428. cl_kernel kernel = NULL;
  5429. const bool is_f16 = q->type == GGML_TYPE_F16;
  5430. const bool is_mixed = q->type == GGML_TYPE_F32 && k->type == GGML_TYPE_F16;
  5431. const std::pair<int, int> dk_dv = {d_head_q, d_head_v};
  5432. if (n_q == 1) {
  5433. if (is_mixed) {
  5434. kernel = backend_ctx->kernels_flash_attn_f32_f16_q1.at(dk_dv);
  5435. } else if (is_f16) {
  5436. kernel = backend_ctx->kernels_flash_attn_f16_q1.at(dk_dv);
  5437. } else {
  5438. kernel = backend_ctx->kernels_flash_attn_f32_q1.at(dk_dv);
  5439. }
  5440. } else {
  5441. if (is_mixed) {
  5442. kernel = backend_ctx->kernels_flash_attn_f32_f16.at(dk_dv);
  5443. } else if (is_f16) {
  5444. kernel = backend_ctx->kernels_flash_attn_f16.at(dk_dv);
  5445. } else {
  5446. kernel = backend_ctx->kernels_flash_attn_f32.at(dk_dv);
  5447. }
  5448. }
  5449. GGML_ASSERT(kernel != NULL);
  5450. ggml_tensor_extra_cl * extra_q = (ggml_tensor_extra_cl *)q->extra;
  5451. ggml_tensor_extra_cl * extra_k = (ggml_tensor_extra_cl *)k->extra;
  5452. ggml_tensor_extra_cl * extra_v = (ggml_tensor_extra_cl *)v->extra;
  5453. ggml_tensor_extra_cl * extra_o = (ggml_tensor_extra_cl *)dst->extra;
  5454. ggml_tensor_extra_cl * extra_mask = mask ? (ggml_tensor_extra_cl *)mask->extra : NULL;
  5455. ggml_tensor_extra_cl * extra_sinks = sinks ? (ggml_tensor_extra_cl *)sinks->extra : NULL;
  5456. cl_ulong offset_q = extra_q->offset + q->view_offs;
  5457. cl_ulong offset_k = extra_k->offset + k->view_offs;
  5458. cl_ulong offset_v = extra_v->offset + v->view_offs;
  5459. cl_ulong offset_o = extra_o->offset + dst->view_offs;
  5460. cl_mem mask_buffer = extra_mask ? extra_mask->data_device : NULL;
  5461. cl_ulong offset_mask = extra_mask ? extra_mask->offset + mask->view_offs : 0;
  5462. cl_mem sinks_buffer = extra_sinks ? extra_sinks->data_device : NULL;
  5463. cl_ulong offset_sinks = extra_sinks ? extra_sinks->offset + sinks->view_offs : 0;
  5464. const cl_ulong q_nb1 = q->nb[1], q_nb2 = q->nb[2], q_nb3 = q->nb[3];
  5465. const cl_ulong k_nb1 = k->nb[1], k_nb2 = k->nb[2], k_nb3 = k->nb[3];
  5466. const cl_ulong v_nb1 = v->nb[1], v_nb2 = v->nb[2], v_nb3 = v->nb[3];
  5467. const cl_ulong o_nb1 = dst->nb[1], o_nb2 = dst->nb[2], o_nb3 = dst->nb[3];
  5468. const cl_ulong mask_nb1 = mask ? mask->nb[1] : 0;
  5469. const cl_ulong mask_nb2 = mask ? mask->nb[2] : 0;
  5470. const cl_ulong mask_nb3 = mask ? mask->nb[3] : 0;
  5471. const int mask_ne2 = mask ? mask->ne[2] : 0;
  5472. const int mask_ne3 = mask ? mask->ne[3] : 0;
  5473. float scale, max_bias, logit_softcap;
  5474. const float * params = (const float *)dst->op_params;
  5475. scale = params[0];
  5476. max_bias = params[1];
  5477. logit_softcap = params[2];
  5478. const int is_causal = (mask == NULL && n_q > 1 && n_q == n_kv);
  5479. const int n_head_log2_val = n_head > 0 ? 1u << (int)floorf(log2f((float)n_head)) : 0;
  5480. const float n_head_log2_f = n_head_log2_val > 0 ? (float)n_head_log2_val : 1.0f;
  5481. const float m0 = powf(2.0f, -(max_bias) / n_head_log2_f);
  5482. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2_f);
  5483. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_q->data_device));
  5484. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset_q));
  5485. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra_k->data_device));
  5486. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset_k));
  5487. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra_v->data_device));
  5488. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset_v));
  5489. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extra_o->data_device));
  5490. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offset_o));
  5491. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(float), &scale));
  5492. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &n_q));
  5493. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &n_kv));
  5494. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &is_causal));
  5495. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &n_head));
  5496. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &q_nb1)); CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &q_nb2)); CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &q_nb3));
  5497. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &k_nb1)); CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &k_nb2)); CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &k_nb3));
  5498. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &v_nb1)); CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &v_nb2)); CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &v_nb3));
  5499. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &o_nb1)); CL_CHECK(clSetKernelArg(kernel, 23, sizeof(cl_ulong), &o_nb2)); CL_CHECK(clSetKernelArg(kernel, 24, sizeof(cl_ulong), &o_nb3));
  5500. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(float), &max_bias));
  5501. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(float), &m0));
  5502. CL_CHECK(clSetKernelArg(kernel, 27, sizeof(float), &m1));
  5503. CL_CHECK(clSetKernelArg(kernel, 28, sizeof(int), &n_head_log2_val));
  5504. CL_CHECK(clSetKernelArg(kernel, 29, sizeof(float), &logit_softcap));
  5505. CL_CHECK(clSetKernelArg(kernel, 30, sizeof(int), &n_head_kv));
  5506. CL_CHECK(clSetKernelArg(kernel, 31, sizeof(cl_mem), &mask_buffer));
  5507. CL_CHECK(clSetKernelArg(kernel, 32, sizeof(cl_ulong), &offset_mask));
  5508. CL_CHECK(clSetKernelArg(kernel, 33, sizeof(cl_ulong), &mask_nb1));
  5509. CL_CHECK(clSetKernelArg(kernel, 34, sizeof(cl_ulong), &mask_nb2));
  5510. CL_CHECK(clSetKernelArg(kernel, 35, sizeof(cl_ulong), &mask_nb3));
  5511. CL_CHECK(clSetKernelArg(kernel, 36, sizeof(int), &mask_ne2));
  5512. CL_CHECK(clSetKernelArg(kernel, 37, sizeof(int), &mask_ne3));
  5513. CL_CHECK(clSetKernelArg(kernel, 38, sizeof(cl_mem), &sinks_buffer));
  5514. CL_CHECK(clSetKernelArg(kernel, 39, sizeof(cl_ulong), &offset_sinks));
  5515. if (n_q == 1) {
  5516. const size_t wg_size = 64;
  5517. size_t local_work_size[] = { wg_size, 1 };
  5518. size_t global_work_size[] = { wg_size, (size_t)(n_head * n_batch) };
  5519. backend_ctx->enqueue_ndrange_kernel(kernel, 2, global_work_size, local_work_size, dst);
  5520. } else {
  5521. const int block_m = backend_ctx->kernels_flash_attn_bm.at(dk_dv);
  5522. const size_t wg_size = block_m;
  5523. size_t local_work_size[] = { wg_size, 1 };
  5524. size_t global_work_size[] = { (size_t)((n_q + block_m - 1) / block_m) * wg_size, (size_t)(n_head * n_batch) };
  5525. backend_ctx->enqueue_ndrange_kernel(kernel, 2, global_work_size, local_work_size, dst);
  5526. }
  5527. }
  5528. static void ggml_cl_mul_mat_f16_f32_tiled(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  5529. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5530. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  5531. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  5532. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  5533. cl_ulong offset0 = extra0->offset + src0->view_offs;
  5534. cl_ulong offset1 = extra1->offset + src1->view_offs;
  5535. cl_ulong offsetd = extrad->offset + dst->view_offs;
  5536. const int M = src0->ne[1];
  5537. const int N = src1->ne[1];
  5538. const int K = src0->ne[0];
  5539. cl_kernel kernel = backend_ctx->kernel_mul_mat_f16_f32_tiled;
  5540. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(int), &M));
  5541. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(int), &N));
  5542. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &K));
  5543. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_mem), &extra0->data_device));
  5544. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_ulong), &offset0));
  5545. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_mem), &extra1->data_device));
  5546. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &offset1));
  5547. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_mem), &extrad->data_device));
  5548. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &offsetd));
  5549. // Tiling parameters. These need to be tuned for optimal performance.
  5550. // They must match the #defines in the kernel mul_mat_f16_f32.cl.
  5551. //
  5552. // OPWM / OPWN: Output tile size per Work-Group. A work-group computes a tile of size OPWM x OPWN.
  5553. // TPWM / TPWN: Threads per Work-group. This is the work-group size.
  5554. // OPTM / OPTN: Output elements per Thread. Each thread computes OPTM x OPTN elements.
  5555. //
  5556. // The following relationships must hold:
  5557. // OPWM = TPWM * OPTM
  5558. // OPWN = TPWN * OPTN
  5559. //
  5560. const int OPWM = 64;
  5561. const int OPWN = 64;
  5562. const int TPWM = 16;
  5563. const int TPWN = 8;
  5564. size_t local_work_size[2] = { TPWM, TPWN };
  5565. size_t global_work_size[2] = {
  5566. (size_t) ((M + OPWM - 1) / OPWM) * TPWM,
  5567. (size_t) ((N + OPWN - 1) / OPWN) * TPWN,
  5568. };
  5569. backend_ctx->enqueue_ndrange_kernel(kernel, 2, global_work_size, local_work_size, dst);
  5570. }
  5571. static void ggml_cl_conv_2d(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  5572. GGML_TENSOR_BINARY_OP_LOCALS;
  5573. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5574. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  5575. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  5576. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  5577. cl_ulong offset0 = extra0->offset + src0->view_offs;
  5578. cl_ulong offset1 = extra1->offset + src1->view_offs;
  5579. cl_ulong offsetd = extrad->offset + dst->view_offs;
  5580. const cl_uint Cout = ne03; const cl_uint Cin = ne02; const cl_uint N = ne13;
  5581. const cl_uint KW = ne00; const cl_uint KH = ne01; const cl_uint W = ne10; const cl_uint H = ne11; const cl_uint OW = ne0; const cl_uint OH = ne1;
  5582. const cl_uint s0 = dst->op_params[0]; const cl_uint s1 = dst->op_params[1];
  5583. const cl_uint p0 = dst->op_params[2]; const cl_uint p1 = dst->op_params[3];
  5584. const cl_uint d0 = dst->op_params[4]; const cl_uint d1 = dst->op_params[5];
  5585. const cl_uint cl_nb01 = nb01/ggml_type_size(src0->type); const cl_uint cl_nb02 = nb02/ggml_type_size(src0->type); const cl_uint cl_nb03 = nb03/ggml_type_size(src0->type);
  5586. const cl_uint cl_nb11 = nb11/ggml_type_size(src1->type); const cl_uint cl_nb12 = nb12/ggml_type_size(src1->type); const cl_uint cl_nb13 = nb13/ggml_type_size(src1->type);
  5587. const cl_uint cl_nb1 = nb1/ggml_type_size(dst->type); const cl_uint cl_nb2 = nb2/ggml_type_size(dst->type); const cl_uint cl_nb3 = nb3/ggml_type_size(dst->type);
  5588. const int64_t NPQ = (int64_t)N * OW * OH;
  5589. const uint32_t BS_K = 64;
  5590. const uint32_t BS_NPQ = 64;
  5591. const uint32_t BS_CRS = 16;
  5592. const uint32_t VEC_SIZE = 4;
  5593. const uint32_t TS_K = 4;
  5594. const uint32_t TS_NPQ = 8;
  5595. const uint32_t WG_K = BS_K / TS_K;
  5596. const uint32_t WG_NPQ = BS_NPQ / TS_NPQ;
  5597. auto splitWork = [](uint32_t work_size, uint32_t block_size) { return (block_size + work_size - 1) / block_size; };
  5598. const uint32_t NB_K = splitWork(Cout, BS_K);
  5599. const uint32_t NB_NPQ = splitWork(NPQ, BS_NPQ);
  5600. cl_kernel kernel;
  5601. size_t shmem_size;
  5602. if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
  5603. kernel = backend_ctx->kernel_conv_2d_f16;
  5604. shmem_size = (size_t)(BS_K * BS_CRS * sizeof(cl_half) + BS_CRS * (BS_NPQ / VEC_SIZE) * sizeof(cl_half4));
  5605. } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
  5606. kernel = backend_ctx->kernel_conv_2d_f32;
  5607. shmem_size = (size_t)(BS_K * BS_CRS * sizeof(cl_float) + BS_CRS * (BS_NPQ / VEC_SIZE) * sizeof(cl_float4));
  5608. } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
  5609. kernel = backend_ctx->kernel_conv_2d_f16_f32;
  5610. shmem_size = (size_t)(BS_K * BS_CRS * sizeof(cl_half) + BS_CRS * (BS_NPQ / VEC_SIZE) * sizeof(cl_float4));
  5611. } else {
  5612. GGML_ASSERT(false && "Unsupported data type combination for conv2d");
  5613. }
  5614. cl_uint idx = 0;
  5615. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_mem), &extra0->data_device)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_ulong), &offset0));
  5616. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_mem), &extra1->data_device)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_ulong), &offset1));
  5617. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_mem), &extrad->data_device)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_ulong), &offsetd));
  5618. CL_CHECK(clSetKernelArg(kernel, idx++, shmem_size, NULL));
  5619. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &Cout)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &Cin)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &N));
  5620. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &KW)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &KH)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &W)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &H));
  5621. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &OW)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &OH));
  5622. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &s0)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &s1)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &p0)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &p1));
  5623. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &d0)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &d1));
  5624. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb01)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb02)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb03));
  5625. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb11)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb12)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb13));
  5626. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb1)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb2)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb3));
  5627. size_t global_work_size[] = { (size_t)NB_K * WG_K, (size_t)NB_NPQ * WG_NPQ, 1 };
  5628. size_t local_work_size[] = { (size_t)WG_K, (size_t)WG_NPQ, 1 };
  5629. backend_ctx->enqueue_ndrange_kernel(kernel, 2, global_work_size, local_work_size, dst);
  5630. }
  5631. static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  5632. GGML_ASSERT(src0);
  5633. GGML_ASSERT(src0->extra);
  5634. GGML_ASSERT(src1);
  5635. GGML_ASSERT(src1->extra);
  5636. GGML_ASSERT(dst);
  5637. GGML_ASSERT(dst->extra);
  5638. const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
  5639. const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
  5640. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5641. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  5642. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  5643. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  5644. cl_ulong offset0 = extra0->offset + src0->view_offs;
  5645. cl_ulong offset1 = extra1->offset + src1->view_offs;
  5646. cl_ulong offsetd = extrad->offset + dst->view_offs;
  5647. #ifdef GGML_OPENCL_SOA_Q
  5648. ggml_tensor_extra_cl_q4_0 * extra0_q4_0 = (ggml_tensor_extra_cl_q4_0 *)src0->extra;
  5649. ggml_tensor_extra_cl_mxfp4 * extra0_mxfp4 = (ggml_tensor_extra_cl_mxfp4 *)src0->extra;
  5650. ggml_tensor_extra_cl_q8_0 * extra0_q8_0 = (ggml_tensor_extra_cl_q8_0 *)src0->extra;
  5651. #endif
  5652. const int ne00 = src0 ? src0->ne[0] : 0;
  5653. const int ne01 = src0 ? src0->ne[1] : 0;
  5654. const int ne02 = src0 ? src0->ne[2] : 0;
  5655. const int ne03 = src0 ? src0->ne[3] : 0;
  5656. const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
  5657. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  5658. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  5659. const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
  5660. const int ne10 = src1 ? src1->ne[0] : 0;
  5661. const int ne11 = src1 ? src1->ne[1] : 0;
  5662. const int ne12 = src1 ? src1->ne[2] : 0;
  5663. const int ne13 = src1 ? src1->ne[3] : 0;
  5664. const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
  5665. const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
  5666. const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
  5667. const cl_ulong nb13 = src1 ? src1->nb[3] : 0;
  5668. const int ne0 = dst ? dst->ne[0] : 0;
  5669. const int ne1 = dst ? dst->ne[1] : 0;
  5670. int r2 = ne12/ne02;
  5671. int r3 = ne13/ne03;
  5672. GGML_ASSERT(ne00 == ne10);
  5673. int nth0 = 32;
  5674. int nth1 = 1;
  5675. int nrows = 1;
  5676. // The number of values produced by each subgroup
  5677. int ndst = 4;
  5678. cl_kernel kernel;
  5679. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  5680. cl_context context = backend_ctx->context;
  5681. if (ne01 && ne1 && use_adreno_kernels(backend_ctx, src0)) {
  5682. // init CL objects
  5683. // <--------------------------------------------> //
  5684. cl_int status;
  5685. cl_image_format img_fmt_1d;
  5686. cl_image_desc img_desc_1d;
  5687. cl_buffer_region region;
  5688. cl_mem A_image1d = nullptr;
  5689. cl_mem B_image1d = nullptr;
  5690. cl_mem B_sub_buffer = nullptr;
  5691. cl_mem C_d = nullptr;
  5692. // for B transpose
  5693. cl_mem B_d = nullptr;
  5694. cl_mem B_d_input_image = nullptr;
  5695. // <--------------------------------------------> //
  5696. // define matrix dimensions
  5697. // <--------------------------------------------> //
  5698. int M = ne01;
  5699. int N = ne1;
  5700. int K = ne00;
  5701. int padding;
  5702. // <--------------------------------------------> //
  5703. // q4_0 x fp32
  5704. if(src0t == GGML_TYPE_Q4_0 && src1t == GGML_TYPE_F32) {
  5705. // TODO: remove duplicate definitions of image description + format -- move to top
  5706. // create an image for A
  5707. // <--------------------------------------------> //
  5708. if (N == 1) {
  5709. img_fmt_1d = { CL_R, CL_UNSIGNED_INT32};
  5710. } else {
  5711. img_fmt_1d = { CL_R, CL_FLOAT};
  5712. }
  5713. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  5714. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  5715. img_desc_1d.image_width = M * K / 2 / 4; // Divide by 4 for char -> float
  5716. img_desc_1d.buffer = extra0_q4_0->q;
  5717. A_image1d = clCreateImage(
  5718. context,
  5719. CL_MEM_READ_ONLY,
  5720. &img_fmt_1d,
  5721. &img_desc_1d,
  5722. NULL,
  5723. &status);
  5724. CL_CHECK(status);
  5725. // <--------------------------------------------> //
  5726. // create a sub_buffer for B
  5727. // <--------------------------------------------> //
  5728. region.origin = (extra1->offset);
  5729. region.size = K * N * sizeof(float);
  5730. B_sub_buffer = clCreateSubBuffer(
  5731. extra1->data_device,
  5732. 0,
  5733. CL_BUFFER_CREATE_TYPE_REGION,
  5734. &region,
  5735. &status);
  5736. CL_CHECK(status);
  5737. // <--------------------------------------------> //
  5738. // transpose activation for Skyler's gemm
  5739. if (N != 1) {
  5740. //how many extra elements beyond multiple of 8
  5741. int extra_elements = N % 8;
  5742. //how much padding to add
  5743. padding = 0;
  5744. if (extra_elements > 0){
  5745. padding = 8 - extra_elements;
  5746. }
  5747. // Specify the starting offset (in bytes)
  5748. region.origin = 0;
  5749. // Specify the size of the sub-buffer (divide by 2 for FP16)
  5750. region.size = K * (N + padding) * sizeof(float)/2;
  5751. B_d = clCreateSubBuffer(
  5752. backend_ctx->B_d_max,
  5753. 0,
  5754. CL_BUFFER_CREATE_TYPE_REGION,
  5755. &region,
  5756. &status);
  5757. CL_CHECK(status);
  5758. cl_image_format image_format_B_d_input = { CL_RGBA, CL_FLOAT };
  5759. cl_image_desc image_desc_B_d_input = {
  5760. CL_MEM_OBJECT_IMAGE1D_BUFFER,
  5761. static_cast<size_t>(K * N / 4),
  5762. 0, 0, 0, 0, 0, 0, 0, { B_sub_buffer }
  5763. };
  5764. B_d_input_image = clCreateImage(
  5765. context,
  5766. 0,
  5767. &image_format_B_d_input,
  5768. &image_desc_B_d_input,
  5769. NULL,
  5770. &status);
  5771. CL_CHECK(status);
  5772. cl_image_format image_format_B_d_output = { CL_RGBA, CL_HALF_FLOAT }; //(CL_HALF_FLOAT for FP16)
  5773. cl_image_desc image_desc_B_d_output = {
  5774. CL_MEM_OBJECT_IMAGE1D_BUFFER,
  5775. static_cast<size_t>(K * (N + padding)/4),
  5776. 0, 0, 0, 0, 0, 0, 0, { B_d }
  5777. };
  5778. B_image1d = clCreateImage(
  5779. context,
  5780. 0,
  5781. &image_format_B_d_output,
  5782. &image_desc_B_d_output,
  5783. NULL,
  5784. &status);
  5785. CL_CHECK(status);
  5786. int height_B = N/4;
  5787. if (height_B == 0) {
  5788. height_B = 1;
  5789. }
  5790. int width_B = K/4;
  5791. int padded_height_B = (N + padding)/4;
  5792. kernel = backend_ctx->kernel_transpose_32_16;
  5793. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &B_d_input_image));
  5794. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &B_image1d));
  5795. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_B));
  5796. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_B));
  5797. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &padded_height_B));
  5798. size_t local_size_t[2] = { 1, 16 };
  5799. //WGS tuning
  5800. if (ne0 == 4096 && ne1 == 128 && ne10 == 4096) {
  5801. local_size_t[0]=4;
  5802. local_size_t[1]=8;
  5803. } else if (ne0 == 11008 && ne1 == 128 && ne10 == 4096) {
  5804. local_size_t[0]=2;
  5805. local_size_t[1]=8;
  5806. } else if(ne0 == 4096 && ne1 == 128 && ne10 == 11008) {
  5807. local_size_t[0]=1;
  5808. local_size_t[1]=8;
  5809. } else if(ne0 == 32000 && ne1 == 128 && ne10 == 4096) {
  5810. local_size_t[0]=2;
  5811. local_size_t[1]=8;
  5812. }
  5813. size_t global_size_t[2] = {
  5814. static_cast<size_t>(width_B),
  5815. static_cast<size_t>(padded_height_B)
  5816. };
  5817. backend_ctx->enqueue_ndrange_kernel(kernel, 2, global_size_t, local_size_t, dst);
  5818. } else {
  5819. // no need to transpose B in other cases
  5820. // create an image for B from sub_buffer
  5821. // <--------------------------------------------> //
  5822. img_fmt_1d = {CL_RGBA, CL_FLOAT};
  5823. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  5824. img_desc_1d.image_width = K * N / 4;
  5825. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  5826. img_desc_1d.buffer = B_sub_buffer;
  5827. B_image1d = clCreateImage(
  5828. context,
  5829. CL_MEM_READ_ONLY,
  5830. &img_fmt_1d,
  5831. &img_desc_1d,
  5832. NULL,
  5833. &status);
  5834. CL_CHECK(status);
  5835. // <--------------------------------------------> //
  5836. }
  5837. // choose gemm or gemv kernel
  5838. // <--------------------------------------------> //
  5839. if (N == 1) {
  5840. kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general;
  5841. if (M == 4096 && K == 4096) {
  5842. kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096;
  5843. } else if (M == 4096 && K == 11008) {
  5844. kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008;
  5845. } else if (M == 11008 && K == 4096) {
  5846. kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096;
  5847. } else if (M == 32000 && K == 4096) {
  5848. kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096;
  5849. }
  5850. } else {
  5851. kernel = backend_ctx->CL_mul_mat_Ab_Bi_8x4;
  5852. }
  5853. // <--------------------------------------------> //
  5854. // set kernel args
  5855. // <--------------------------------------------> //
  5856. cl_uint k_arg = 0;
  5857. if (N == 1) {
  5858. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &A_image1d));
  5859. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &extra0_q4_0->d));
  5860. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &B_image1d));
  5861. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_ulong), &extra1->offset));
  5862. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &extrad->data_device));
  5863. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_ulong), &extrad->offset));
  5864. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne00));
  5865. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne01));
  5866. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne02));
  5867. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne10));
  5868. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne12));
  5869. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne0));
  5870. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne1));
  5871. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &r2));
  5872. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &r3));
  5873. } else {
  5874. region.origin = extrad->offset; // Specify the starting offset (in bytes)
  5875. region.size = M * N * sizeof(float); // Specify the size of the sub-buffer
  5876. C_d = clCreateSubBuffer(extrad->data_device, CL_MEM_WRITE_ONLY, CL_BUFFER_CREATE_TYPE_REGION, &region, &status);
  5877. CL_CHECK(status);
  5878. int padded_N = ne1 + padding;
  5879. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q)); //A_q_dextra0_q4_0->q
  5880. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d)); //A_s_d
  5881. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &B_image1d)); //B_d
  5882. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_mem), &C_d)); //C_d
  5883. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne01)); //M
  5884. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &padded_N)); //N with padding
  5885. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00)); //K
  5886. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne1)); //N without padding
  5887. }
  5888. // <--------------------------------------------> //
  5889. // choose workgroup size
  5890. // <--------------------------------------------> //
  5891. size_t global_work_size[3] = {
  5892. 64, static_cast<size_t>((M+63)/64), static_cast<size_t>((N+31)/32)};
  5893. size_t local_work_size[3] = {64, 2, 4};
  5894. global_work_size[0] = (size_t)(ceil((float)ne1/8));
  5895. global_work_size[1] = (size_t)(ne01/4);
  5896. global_work_size[2] = (size_t)(1);
  5897. local_work_size[0] = (size_t)(1); //4x32 for FP32
  5898. local_work_size[1] = (size_t)(128);
  5899. local_work_size[2] = (size_t)(1);
  5900. //WGS tuning
  5901. if (ne0 == 4096 && ne1 == 128 && ne10 == 4096) {
  5902. local_work_size[0] = 1;
  5903. local_work_size[1] = 128;
  5904. } else if (ne0 == 11008 && ne1 == 128 && ne10 == 4096) {
  5905. local_work_size[0] = 2;
  5906. local_work_size[1] = 64;
  5907. } else if (ne0 == 4096 && ne1 == 128 && ne10 == 11008) {
  5908. local_work_size[0] = 2;
  5909. local_work_size[1] = 64;
  5910. } else if (ne0 == 32000 && ne1 == 128 && ne10 == 4096) {
  5911. local_work_size[0] = 2;
  5912. local_work_size[1] = 64;
  5913. }
  5914. if (N == 1) {
  5915. size_t wavesize = backend_ctx->adreno_wave_size;
  5916. local_work_size[0] = wavesize; // localsize
  5917. local_work_size[1] = 4; // reduce factor
  5918. local_work_size[2] = 1;
  5919. global_work_size[0] = (((M / 2) + wavesize - 1) / wavesize) * wavesize;
  5920. global_work_size[1] = 4; // reduce factor
  5921. global_work_size[2] = 1;
  5922. }
  5923. // <--------------------------------------------> //
  5924. // enqueue kernel with profiling
  5925. // <--------------------------------------------> //
  5926. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  5927. // <--------------------------------------------> //
  5928. // deallocate sub buffers and images
  5929. // <--------------------------------------------> //
  5930. CL_CHECK(clReleaseMemObject(A_image1d));
  5931. CL_CHECK(clReleaseMemObject(B_sub_buffer));
  5932. CL_CHECK(clReleaseMemObject(B_image1d));
  5933. if (N != 1) {
  5934. CL_CHECK(clReleaseMemObject(B_d));
  5935. CL_CHECK(clReleaseMemObject(B_d_input_image));
  5936. CL_CHECK(clReleaseMemObject(C_d));
  5937. }
  5938. // <--------------------------------------------> //
  5939. return;
  5940. }
  5941. } // if (ne01 && ne1)
  5942. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  5943. // GEMM using local memory
  5944. // Current BK = 16, so ne00 % 16 == 0
  5945. if (ggml_is_contiguous(src0) &&
  5946. ggml_is_contiguous(src1) &&
  5947. src1t == GGML_TYPE_F32 &&
  5948. ne00 % 16 == 0 &&
  5949. ne11 > 1) {
  5950. switch(src0t) {
  5951. case GGML_TYPE_F32: {
  5952. kernel = backend_ctx->kernel_mul_mm_f32_f32_l4_lm;
  5953. nth0 = 128; // calculated as (BM*BN)/(TM*TN)
  5954. int batch_stride_a = ne00*ne01;
  5955. int batch_stride_b = ne10*ne11;
  5956. int batch_stride_d = ne0*ne1;
  5957. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  5958. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  5959. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  5960. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  5961. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  5962. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  5963. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  5964. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  5965. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  5966. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne11));
  5967. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  5968. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne10)); // stride_a
  5969. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10)); // stride_b
  5970. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne01)); // stride_d
  5971. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &batch_stride_a));
  5972. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &batch_stride_b));
  5973. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &batch_stride_d));
  5974. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r2));
  5975. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &r3));
  5976. // 64 is block tile size BM and BN - change here when BM and BN in the kernel are changed.
  5977. size_t global_work_size[] = {(size_t)(CEIL_DIV(ne01, 64)*nth0), (size_t)(CEIL_DIV(ne11, 64)), (size_t)ne12*ne13};
  5978. size_t local_work_size[] = {(size_t)nth0, 1, 1};
  5979. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  5980. return;
  5981. }
  5982. case GGML_TYPE_F16: {
  5983. kernel = backend_ctx->kernel_mul_mm_f16_f32_l4_lm;
  5984. nth0 = 128; // calculated as (BM*BN)/(TM*TN)
  5985. int batch_stride_a = ne00*ne01;
  5986. int batch_stride_b = ne10*ne11;
  5987. int batch_stride_d = ne0*ne1;
  5988. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  5989. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  5990. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  5991. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  5992. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  5993. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  5994. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  5995. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  5996. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  5997. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne11));
  5998. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  5999. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne10)); // stride_a
  6000. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10)); // stride_b
  6001. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne01)); // stride_d
  6002. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &batch_stride_a));
  6003. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &batch_stride_b));
  6004. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &batch_stride_d));
  6005. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r2));
  6006. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &r3));
  6007. // 64 is block tile size BM and BN - change here when BM and BN in the kernel are changed.
  6008. size_t global_work_size[] = {(size_t)(CEIL_DIV(ne01, 64)*nth0), (size_t)(CEIL_DIV(ne11, 64)), (size_t)ne12*ne13};
  6009. size_t local_work_size[] = {(size_t)nth0, 1, 1};
  6010. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  6011. return;
  6012. }
  6013. case GGML_TYPE_Q8_0: {
  6014. if (ne11 < 32) {
  6015. break;
  6016. }
  6017. kernel = backend_ctx->kernel_mul_mm_q8_0_f32_l4_lm;
  6018. nth0 = 128; // calculated as (BM*BN)/(TM*TN)
  6019. int batch_stride_a = ne00*ne01;
  6020. int batch_stride_b = ne10*ne11;
  6021. int batch_stride_d = ne0*ne1;
  6022. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q8_0->q));
  6023. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q8_0->d));
  6024. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6025. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6026. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6027. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6028. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6029. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  6030. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  6031. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne11));
  6032. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  6033. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne10)); // stride_a
  6034. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10)); // stride_b
  6035. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne01)); // stride_d
  6036. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &batch_stride_a));
  6037. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &batch_stride_b));
  6038. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &batch_stride_d));
  6039. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r2));
  6040. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &r3));
  6041. // 64 is block tile size BM and BN - change here when BM and BN in the kernel are changed.
  6042. size_t global_work_size[] = {(size_t)(CEIL_DIV(ne01, 64)*nth0), (size_t)(CEIL_DIV(ne11, 64)), (size_t)ne12*ne13};
  6043. size_t local_work_size[] = {(size_t)nth0, 1, 1};
  6044. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  6045. return;
  6046. }
  6047. default:
  6048. break;
  6049. }
  6050. }
  6051. if (src0t == GGML_TYPE_F16 && src1t == GGML_TYPE_F32 &&
  6052. src0->ne[1] > 32 && // M > 32
  6053. src1->ne[1] > 32 && // N > 32
  6054. src0->ne[0] > 32 && // K > 32
  6055. src0->ne[2] == 1 && src0->ne[3] == 1 &&
  6056. src1->ne[2] == 1 && src1->ne[3] == 1 &&
  6057. ggml_is_contiguous(src0) && ggml_is_contiguous(src1) &&
  6058. backend_ctx->kernel_mul_mat_f16_f32_tiled != NULL) {
  6059. ggml_cl_mul_mat_f16_f32_tiled(backend, src0, src1, dst);
  6060. return;
  6061. }
  6062. if (!ggml_is_transposed(src0) &&
  6063. !ggml_is_transposed(src1) &&
  6064. src1t == GGML_TYPE_F32 &&
  6065. ne00%32 == 0 &&
  6066. ne11 > 2) {
  6067. #ifdef GGML_OPENCL_SOA_Q
  6068. // Set up kernel.
  6069. switch(src0t) {
  6070. case GGML_TYPE_Q4_0:
  6071. // This should have been satisfied.
  6072. GGML_ASSERT(ne11 == ne1);
  6073. GGML_ASSERT(ne01 == ne0);
  6074. if (backend_ctx->gpu_family == INTEL) {
  6075. nth0 = 16;
  6076. nth1 = 1;
  6077. kernel = backend_ctx->kernel_mul_mat_q4_0_f32_1d_16x_flat;
  6078. } else if (backend_ctx->gpu_family == ADRENO) {
  6079. nth0 = 64;
  6080. nth1 = 1;
  6081. kernel = backend_ctx->kernel_mul_mat_q4_0_f32_1d_8x_flat;
  6082. } else {
  6083. GGML_ASSERT(false && "TODO: Unknown GPU");
  6084. }
  6085. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q));
  6086. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d));
  6087. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6088. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6089. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6090. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6091. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6092. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  6093. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  6094. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
  6095. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  6096. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
  6097. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
  6098. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
  6099. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
  6100. break;
  6101. default:
  6102. break;
  6103. }
  6104. // Launch kernel.
  6105. if (src0t == GGML_TYPE_Q4_0) {
  6106. size_t global_work_size[] = {(size_t)(ne01 + 7)/8*nth0, (size_t)ne11*nth1, (size_t)ne12*ne13};
  6107. size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
  6108. if (backend_ctx->gpu_family == INTEL) {
  6109. // Set global size for Intel. It uses 16x output values.
  6110. global_work_size[0] = (size_t)(ne01 + 15)/16*nth0;
  6111. global_work_size[1] = (size_t)ne11*nth1;
  6112. global_work_size[2] = (size_t)ne12*ne13;
  6113. }
  6114. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  6115. return;
  6116. }
  6117. #else // GGML_OPENCL_SOA_Q
  6118. // TODO: add block_q4_0 variant.
  6119. #endif // GGML_OPENCL_SOA_Q
  6120. }
  6121. // use custom matrix x vector kernel
  6122. switch (src0t) {
  6123. case GGML_TYPE_F32:
  6124. //GGML_ASSERT(ne02 == ne12);
  6125. GGML_ASSERT(src1t == GGML_TYPE_F32);
  6126. kernel = backend_ctx->kernel_mul_mat_f32_f32;
  6127. nrows = 4;
  6128. if (backend_ctx->gpu_family == INTEL) {
  6129. nth0 = 32;
  6130. nth1 = 1;
  6131. } else if (backend_ctx->gpu_family == ADRENO) {
  6132. nth0 = 64;
  6133. nth1 = 1;
  6134. } else {
  6135. GGML_ASSERT(false && "TODO: Unknown GPU");
  6136. }
  6137. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6138. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6139. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6140. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6141. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6142. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6143. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6144. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  6145. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  6146. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb00));
  6147. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
  6148. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
  6149. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb03));
  6150. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10));
  6151. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11));
  6152. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12));
  6153. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb10));
  6154. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
  6155. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
  6156. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
  6157. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne0));
  6158. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne1));
  6159. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &r2));
  6160. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r3));
  6161. break;
  6162. case GGML_TYPE_F16:
  6163. //GGML_ASSERT(ne02 == ne12);
  6164. if (backend_ctx->gpu_family == INTEL) {
  6165. nth0 = 32;
  6166. nth1 = 1;
  6167. } else if (backend_ctx->gpu_family == ADRENO) {
  6168. nth0 = 64;
  6169. nth1 = 1;
  6170. } else {
  6171. GGML_ASSERT(false && "TODO: Unknown GPU");
  6172. }
  6173. if (src1t == GGML_TYPE_F32) {
  6174. if (ne11 * ne12 < 4) {
  6175. kernel = backend_ctx->kernel_mul_mat_f16_f32_1row;
  6176. } else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) {
  6177. kernel = backend_ctx->kernel_mul_mat_f16_f32_l4;
  6178. nrows = ne11;
  6179. } else {
  6180. kernel = backend_ctx->kernel_mul_mat_f16_f32;
  6181. nrows = 4;
  6182. }
  6183. } else {
  6184. kernel = backend_ctx->kernel_mul_mat_f16_f16;
  6185. nrows = 4;
  6186. }
  6187. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6188. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6189. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6190. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6191. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6192. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6193. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6194. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  6195. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  6196. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb00));
  6197. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
  6198. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
  6199. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb03));
  6200. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10));
  6201. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11));
  6202. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12));
  6203. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb10));
  6204. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
  6205. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
  6206. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
  6207. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne0));
  6208. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne1));
  6209. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &r2));
  6210. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r3));
  6211. break;
  6212. case GGML_TYPE_Q4_0:
  6213. // This should have been satisfied.
  6214. GGML_ASSERT(ne11 == ne1);
  6215. GGML_ASSERT(ne01 == ne0);
  6216. #ifdef GGML_OPENCL_SOA_Q
  6217. if (backend_ctx->gpu_family == INTEL) {
  6218. nth0 = 16;
  6219. nth1 = 1;
  6220. kernel = backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat;
  6221. ndst = 8;
  6222. } else if (backend_ctx->gpu_family == ADRENO) {
  6223. nth0 = 64;
  6224. nth1 = 1;
  6225. kernel = backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat;
  6226. ndst =8;
  6227. } else {
  6228. GGML_ASSERT(false && "TODO: Unknown GPU");
  6229. }
  6230. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q));
  6231. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d));
  6232. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6233. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6234. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6235. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6236. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6237. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  6238. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  6239. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
  6240. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  6241. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
  6242. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
  6243. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
  6244. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
  6245. #else // GGML_OPENCL_SOA_Q
  6246. if (backend_ctx->gpu_family == INTEL) {
  6247. // Use 1D local size. Each workgroup is a SIMD group. Each SIMD
  6248. // group produces N_DST (4 for Q4_0 kernel) values in the result.
  6249. // The number of workgroups on dim 0 (the leading dimension) is
  6250. // the nearest multiple of 4 that covers ne0 (equals ne01).
  6251. nth0 = 16;
  6252. nth1 = 1;
  6253. kernel = backend_ctx->kernel_mul_mat_q4_0_f32;
  6254. ndst = 4;
  6255. } else if (backend_ctx->gpu_family == ADRENO) {
  6256. nth0 = 64;
  6257. nth1 = 1;
  6258. kernel = backend_ctx->kernel_mul_mat_q4_0_f32_v;
  6259. ndst = 4;
  6260. } else {
  6261. GGML_ASSERT(false && "TODO: Unknown GPU");
  6262. }
  6263. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6264. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6265. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6266. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6267. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6268. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6269. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6270. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  6271. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  6272. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
  6273. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  6274. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
  6275. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
  6276. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
  6277. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
  6278. #endif // GGML_OPENCL_SOA_Q
  6279. break;
  6280. case GGML_TYPE_Q4_1:
  6281. case GGML_TYPE_Q8_0: {
  6282. #ifdef GGML_OPENCL_SOA_Q
  6283. kernel = backend_ctx->kernel_mul_mv_q8_0_f32_flat;
  6284. // nth0 - subgroup size
  6285. // nth1 - number of subgroups per workgroup
  6286. // ndst - number of output values per workgroup = output per subgroup * number of subgroups
  6287. if (backend_ctx->gpu_family == INTEL) {
  6288. nth0 = 16;
  6289. nth1 = 2;
  6290. ndst = nth1*4;
  6291. } else if (backend_ctx->gpu_family == ADRENO) {
  6292. nth0 = 64;
  6293. nth1 = 2;
  6294. ndst = nth1*4;
  6295. } else {
  6296. GGML_ASSERT(false && "TODO: Unknown GPU");
  6297. }
  6298. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q8_0->q));
  6299. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q8_0->d));
  6300. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6301. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6302. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6303. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6304. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6305. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  6306. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
  6307. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
  6308. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
  6309. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne12));
  6310. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb11));
  6311. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb12));
  6312. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb13));
  6313. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne0));
  6314. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne1));
  6315. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r2));
  6316. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &r3));
  6317. #else
  6318. kernel = backend_ctx->kernel_mul_mv_q8_0_f32;
  6319. // nth0 - subgroup size
  6320. // nth1 - number of subgroups per workgroup
  6321. // ndst - number of output values per workgroup = output per subgroup * number of subgroups
  6322. if (backend_ctx->gpu_family == INTEL) {
  6323. nth0 = 16;
  6324. nth1 = 2;
  6325. ndst = nth1*4;
  6326. } else if (backend_ctx->gpu_family == ADRENO) {
  6327. nth0 = 64;
  6328. nth1 = 2;
  6329. ndst = nth1*4;
  6330. } else {
  6331. GGML_ASSERT(false && "TODO: Unknown GPU");
  6332. }
  6333. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6334. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6335. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6336. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6337. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6338. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6339. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6340. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  6341. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
  6342. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
  6343. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
  6344. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne12));
  6345. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb11));
  6346. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb12));
  6347. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb13));
  6348. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne0));
  6349. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne1));
  6350. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r2));
  6351. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &r3));
  6352. #endif // GGML_OPENCL_SOA_Q
  6353. break;
  6354. }
  6355. case GGML_TYPE_Q2_K:
  6356. case GGML_TYPE_Q3_K:
  6357. case GGML_TYPE_Q4_K:
  6358. case GGML_TYPE_Q5_K:
  6359. case GGML_TYPE_Q6_K:
  6360. kernel = backend_ctx->kernel_mul_mv_q6_K_f32;
  6361. if (backend_ctx->gpu_family == INTEL) {
  6362. nth0 = 2;
  6363. nth1 = 16;
  6364. } else if (backend_ctx->gpu_family == ADRENO) {
  6365. nth0 = 2;
  6366. nth1 = 64;
  6367. } else {
  6368. GGML_ASSERT(false && "TODO: Unknown GPU");
  6369. }
  6370. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6371. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6372. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6373. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6374. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6375. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6376. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6377. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  6378. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  6379. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
  6380. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  6381. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
  6382. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
  6383. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
  6384. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
  6385. break;
  6386. case GGML_TYPE_MXFP4: {
  6387. #ifdef GGML_OPENCL_SOA_Q
  6388. kernel = backend_ctx->kernel_mul_mv_mxfp4_f32_flat;
  6389. cl_mem q;
  6390. if (backend_ctx->gpu_family == INTEL) {
  6391. nth0 = 16;
  6392. nth1 = 2;
  6393. ndst = nth1*2;
  6394. q = extra0_mxfp4->q;
  6395. } else if (backend_ctx->gpu_family == ADRENO) {
  6396. nth0 = 64;
  6397. nth1 = 2;
  6398. ndst = nth1*2;
  6399. q = extra0_mxfp4->q_img;
  6400. } else {
  6401. GGML_ASSERT(false && "TODO: Unknown GPU");
  6402. }
  6403. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &q));
  6404. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_mxfp4->e));
  6405. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6406. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6407. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6408. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6409. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6410. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
  6411. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
  6412. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
  6413. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  6414. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb11));
  6415. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb12));
  6416. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb13));
  6417. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne0));
  6418. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne1));
  6419. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &r2));
  6420. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r3));
  6421. #else
  6422. kernel = backend_ctx->kernel_mul_mv_mxfp4_f32;
  6423. if (backend_ctx->gpu_family == INTEL) {
  6424. nth0 = 16;
  6425. nth1 = 2;
  6426. ndst = nth1*2;
  6427. } else if (backend_ctx->gpu_family == ADRENO) {
  6428. nth0 = 64;
  6429. nth1 = 2;
  6430. ndst = nth1*2;
  6431. } else {
  6432. GGML_ASSERT(false && "TODO: Unknown GPU");
  6433. }
  6434. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6435. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6436. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6437. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6438. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6439. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6440. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6441. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
  6442. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
  6443. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
  6444. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  6445. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb11));
  6446. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb12));
  6447. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb13));
  6448. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne0));
  6449. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne1));
  6450. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &r2));
  6451. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r3));
  6452. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(float)*nth0,nullptr));
  6453. #endif
  6454. break;
  6455. }
  6456. default:
  6457. GGML_ASSERT(false && "not implemented");
  6458. }
  6459. if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_MXFP4 ||
  6460. src0t == GGML_TYPE_Q4_1 ||
  6461. src0t == GGML_TYPE_Q8_0 ||
  6462. src0t == GGML_TYPE_Q2_K) {
  6463. // Each SIMD group produces N_DST values in the result. Assuming each
  6464. // workgroup has N_SIMDGROUP SIMD groups, then each workgroup will
  6465. // produce N_DST*N_SIMDGROUP values in the result. Hence, the grid size
  6466. // (number of workgroups) will be a nearest multiple of
  6467. // N_DST*N_SIMDGROUP to cover the size of the dimension. Below, 4 is
  6468. // N_DST*N_SIMDGROUP (see the kernel for Q4_0 matmul).
  6469. size_t global_work_size[] = {(size_t)(ne01 + ndst-1)/ndst*nth0, (size_t)ne11*nth1, (size_t)ne12*ne13};
  6470. size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
  6471. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  6472. } else if (src0t == GGML_TYPE_Q4_K) {
  6473. GGML_ASSERT(false && "not implemented");
  6474. } else if (src0t == GGML_TYPE_Q3_K) {
  6475. GGML_ASSERT(false && "not implemented");
  6476. } else if (src0t == GGML_TYPE_Q5_K) {
  6477. GGML_ASSERT(false && "not implemented");
  6478. } else if (src0t == GGML_TYPE_Q6_K) {
  6479. size_t global_work_size[] = {(size_t)(ne01+1)/2*nth0, (size_t)ne11*nth1, (size_t)ne12*ne13};
  6480. size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
  6481. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  6482. } else {
  6483. int64_t ny = (ne11 + nrows - 1)/nrows;
  6484. size_t global_work_size[] = {(size_t)ne01*nth0, (size_t)ny*nth1, (size_t)ne12*ne13};
  6485. size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
  6486. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  6487. }
  6488. }
  6489. static void ggml_cl_mul_mat_id(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  6490. GGML_ASSERT(src0);
  6491. GGML_ASSERT(src0->extra);
  6492. GGML_ASSERT(src1);
  6493. GGML_ASSERT(src1->extra);
  6494. GGML_ASSERT(dst);
  6495. GGML_ASSERT(dst->extra);
  6496. const ggml_tensor * src2 = dst->src[2];
  6497. GGML_ASSERT(src2);
  6498. GGML_ASSERT(src2->extra);
  6499. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  6500. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  6501. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  6502. ggml_tensor_extra_cl * extra2 = (ggml_tensor_extra_cl *)src2->extra;
  6503. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  6504. cl_ulong offset0 = extra0->offset + src0->view_offs;
  6505. cl_ulong offset1 = extra1->offset + src1->view_offs;
  6506. cl_ulong offset2 = extra2->offset + src2->view_offs;
  6507. cl_ulong offsetd = extrad->offset + dst->view_offs;
  6508. GGML_UNUSED(offset0);
  6509. #ifdef GGML_OPENCL_SOA_Q
  6510. ggml_tensor_extra_cl_q4_0 * extra0_q4_0 = (ggml_tensor_extra_cl_q4_0 *)src0->extra;
  6511. ggml_tensor_extra_cl_mxfp4 * extra0_mxfp4 = (ggml_tensor_extra_cl_mxfp4 *)src0->extra;
  6512. ggml_tensor_extra_cl_q8_0 * extra0_q8_0 = (ggml_tensor_extra_cl_q8_0 *)src0->extra;
  6513. #endif
  6514. const int ne00 = src0->ne[0];
  6515. const int ne01 = src0->ne[1];
  6516. const int ne02 = src0->ne[2];
  6517. const int ne03 = src0->ne[3];
  6518. const cl_ulong nb00 = src0->nb[0];
  6519. const cl_ulong nb01 = src0->nb[1];
  6520. const cl_ulong nb02 = src0->nb[2];
  6521. const cl_ulong nb03 = src0->nb[3];
  6522. const int ne10 = src1->ne[0];
  6523. const int ne11 = src1->ne[1];
  6524. const int ne12 = src1->ne[2];
  6525. const int ne13 = src1->ne[3];
  6526. const cl_ulong nb11 = src1->nb[1];
  6527. const cl_ulong nb12 = src1->nb[2];
  6528. const cl_ulong nb13 = src1->nb[3];
  6529. const int ne20 = src2->ne[0];
  6530. const int ne21 = src2->ne[1];
  6531. const cl_ulong nb21 = src2->nb[1];
  6532. const cl_ulong nb20 = src2->nb[0];
  6533. const int ne0 = dst->ne[0];
  6534. const int ne1 = dst->ne[1];
  6535. const int r2 = ne12/ne02;
  6536. const int r3 = ne13/ne03;
  6537. const int dst_rows = ne20*ne21; // ne20 = n_used_experts, ne21 = n_rows
  6538. GGML_ASSERT(ne00 == ne10);
  6539. int sgs = 32; // subgroup size
  6540. int nsg = 1; // number of subgroups
  6541. int nrows = 1; // number of row in src1
  6542. int ndst = 4; // number of values produced by each subgroup
  6543. cl_kernel kernel;
  6544. // subgroup mat vec
  6545. switch (src0->type) {
  6546. case GGML_TYPE_Q4_0: {
  6547. kernel = backend_ctx->kernel_mul_mv_id_q4_0_f32_8x_flat;
  6548. if (backend_ctx->gpu_family == INTEL) {
  6549. sgs = 16;
  6550. nsg = 1;
  6551. ndst = 8;
  6552. } else if (backend_ctx->gpu_family == ADRENO) {
  6553. sgs = 64;
  6554. nsg = 1;
  6555. ndst = 8;
  6556. } else {
  6557. GGML_ASSERT(false && "TODO: Unknown GPU");
  6558. }
  6559. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q));
  6560. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d));
  6561. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6562. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6563. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
  6564. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  6565. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  6566. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  6567. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  6568. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
  6569. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne02));
  6570. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb00));
  6571. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
  6572. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10));
  6573. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11));
  6574. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12));
  6575. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb11));
  6576. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb12));
  6577. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne20));
  6578. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &ne21));
  6579. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb21));
  6580. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne0));
  6581. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne1));
  6582. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r2));
  6583. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &r3));
  6584. break;
  6585. }
  6586. case GGML_TYPE_Q8_0: {
  6587. #ifdef GGML_OPENCL_SOA_Q
  6588. kernel = backend_ctx->kernel_mul_mv_id_q8_0_f32_flat;
  6589. if (backend_ctx->gpu_family == INTEL) {
  6590. sgs = 16;
  6591. nsg = 2;
  6592. ndst = 4;
  6593. } else if (backend_ctx->gpu_family == ADRENO) {
  6594. sgs = 64;
  6595. nsg = 2;
  6596. ndst = 4;
  6597. } else {
  6598. GGML_ASSERT(false && "TODO: Unknown GPU");
  6599. }
  6600. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q8_0->q));
  6601. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q8_0->d));
  6602. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6603. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6604. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
  6605. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  6606. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  6607. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  6608. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  6609. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
  6610. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
  6611. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
  6612. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne11));
  6613. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne12));
  6614. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb11));
  6615. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb12));
  6616. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne20));
  6617. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne21));
  6618. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb21));
  6619. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &ne0));
  6620. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne1));
  6621. #else
  6622. kernel = backend_ctx->kernel_mul_mv_id_q8_0_f32;
  6623. if (backend_ctx->gpu_family == INTEL) {
  6624. sgs = 16;
  6625. nsg = 2;
  6626. ndst = 4;
  6627. } else if (backend_ctx->gpu_family == ADRENO) {
  6628. sgs = 64;
  6629. nsg = 2;
  6630. ndst = 4;
  6631. } else {
  6632. GGML_ASSERT(false && "TODO: Unknown GPU");
  6633. }
  6634. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6635. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6636. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6637. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6638. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
  6639. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  6640. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  6641. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  6642. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  6643. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
  6644. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
  6645. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
  6646. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne11));
  6647. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne12));
  6648. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb11));
  6649. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb12));
  6650. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne20));
  6651. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne21));
  6652. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb21));
  6653. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &ne0));
  6654. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne1));
  6655. #endif // GGML_OPENCL_SOA_Q
  6656. break;
  6657. }
  6658. case GGML_TYPE_MXFP4: {
  6659. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  6660. if (use_adreno_moe_kernels(backend_ctx, src0)) {
  6661. cl_int status;
  6662. size_t local_size[3] = {64, 2, 1};
  6663. size_t global_size[3] = {64, 2, 1};
  6664. cl_mem src1_sub_buffer, buf_src1_image, buf_src2;
  6665. int tile_size = 320;
  6666. if (ne12 == 1) { // for gemv
  6667. kernel = backend_ctx->kernel_gemv_moe_mxfp4_f32;
  6668. // create a sub_buffer for src2
  6669. cl_buffer_region region;
  6670. region.origin = offset2;
  6671. region.size = ne20 * ne21 * sizeof(int);
  6672. buf_src2 = clCreateSubBuffer(extra2->data_device, 0, CL_BUFFER_CREATE_TYPE_REGION, &region, &status);
  6673. CL_CHECK(status);
  6674. // set thread grid
  6675. global_size[0] = static_cast<size_t>(ne01);
  6676. global_size[1] = 4;
  6677. global_size[2] = static_cast<size_t>(ne20);
  6678. local_size[1] = 4;
  6679. } else { // for gemm
  6680. kernel = backend_ctx->kernel_gemm_moe_mxfp4_f32;
  6681. // preprocess router table
  6682. int num_tiles_per_expert = (ne01 + tile_size - 1) / tile_size;
  6683. void * host_src2_reorder = malloc(ne20 * ne21 * 4 * num_tiles_per_expert * sizeof(short));
  6684. void * host_src2 = malloc(ne21 * nb21);
  6685. CL_CHECK(clEnqueueReadBuffer(backend_ctx->queue, extra2->data_device, CL_TRUE, offset2, ne21 * nb21, host_src2, 0, NULL, NULL));
  6686. int total_experts = nb21 / nb20;
  6687. int out_idx = 0;
  6688. for (int i_expert = 0; i_expert < ne02; i_expert++) {
  6689. for (int i_tile = 0; i_tile < num_tiles_per_expert; i_tile++) {
  6690. for (int j = 0; j < ne21; j++) {
  6691. for (int i = 0; i < ne20; i++) {
  6692. int expert = ((int *)host_src2)[j * total_experts + i];
  6693. if (i_expert == expert) {
  6694. ((short *)host_src2_reorder)[out_idx] = static_cast<short>(expert);
  6695. ((short *)host_src2_reorder)[out_idx + 1] = static_cast<short>(j * ne11 + (i % ne11));
  6696. ((short *)host_src2_reorder)[out_idx + 2] = static_cast<short>(j * ne20 + i);
  6697. ((short *)host_src2_reorder)[out_idx + 3] = static_cast<short>(i_tile);
  6698. out_idx += 4;
  6699. }
  6700. }
  6701. }
  6702. }
  6703. }
  6704. buf_src2 = clCreateBuffer(backend_ctx->context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, ne20 * ne21 * 4 * num_tiles_per_expert * sizeof(short), host_src2_reorder, &status);
  6705. CL_CHECK(status);
  6706. // set thread grid
  6707. global_size[0] = static_cast<size_t>(tile_size);
  6708. global_size[2] = static_cast<size_t>(ne20 * ne21 * num_tiles_per_expert);
  6709. }
  6710. // create a sub_buffer for src1
  6711. cl_buffer_region region;
  6712. region.origin = offset1;
  6713. region.size = ne10 * ne11 * ne12 * sizeof(float);
  6714. src1_sub_buffer = clCreateSubBuffer(extra1->data_device, 0, CL_BUFFER_CREATE_TYPE_REGION, &region, &status);
  6715. CL_CHECK(status);
  6716. // create image for src1
  6717. cl_image_format image_format_buf_src1 = {CL_RGBA, CL_FLOAT};
  6718. cl_image_desc image_desc_buf_src1 = {CL_MEM_OBJECT_IMAGE1D_BUFFER, static_cast<size_t>(ne10 * ne11 * ne12 / 4), 0,0,0,0,0,0,0, {src1_sub_buffer}};
  6719. buf_src1_image = clCreateImage(backend_ctx->context, CL_MEM_READ_ONLY, &image_format_buf_src1, &image_desc_buf_src1, NULL, &status);
  6720. CL_CHECK(status);
  6721. // Set kernel args
  6722. int arg_idx = 0;
  6723. CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(cl_mem), &extra0_mxfp4->q));
  6724. CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(cl_mem), &extra0_mxfp4->e));
  6725. CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(cl_mem), &buf_src1_image));
  6726. CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(cl_mem), &buf_src2));
  6727. CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(cl_mem), &extrad->data_device));
  6728. CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(cl_ulong), &offsetd));
  6729. CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(int), &ne00));
  6730. CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(int), &ne01));
  6731. if (ne12 == 1) {
  6732. CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(int), &ne11));
  6733. } else {
  6734. CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(int), &tile_size));
  6735. }
  6736. // launch kernel
  6737. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_size, local_size, dst);
  6738. // deallocate sub buffers and images
  6739. CL_CHECK(clReleaseMemObject(src1_sub_buffer));
  6740. CL_CHECK(clReleaseMemObject(buf_src1_image));
  6741. CL_CHECK(clReleaseMemObject(buf_src2));
  6742. return;
  6743. } // else fallback to generic kernel
  6744. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  6745. #ifdef GGML_OPENCL_SOA_Q
  6746. kernel = backend_ctx->kernel_mul_mv_id_mxfp4_f32_flat;
  6747. cl_mem q;
  6748. if (backend_ctx->gpu_family == INTEL) {
  6749. sgs = 16;
  6750. nsg = 2;
  6751. ndst = 2;
  6752. q = extra0_mxfp4->q;
  6753. } else if (backend_ctx->gpu_family == ADRENO) {
  6754. sgs = 64;
  6755. nsg = 1;
  6756. ndst = 4;
  6757. q = extra0_mxfp4->q_img;
  6758. } else {
  6759. GGML_ASSERT(false && "TODO: Unknown GPU");
  6760. }
  6761. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &q));
  6762. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_mxfp4->e));
  6763. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6764. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6765. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
  6766. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  6767. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  6768. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  6769. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  6770. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
  6771. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb02));
  6772. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb03));
  6773. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne11));
  6774. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne12));
  6775. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb11));
  6776. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb12));
  6777. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb13));
  6778. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne20));
  6779. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne21));
  6780. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb21));
  6781. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne0));
  6782. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne1));
  6783. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &r2));
  6784. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r3));
  6785. #else // GGML_OPENCL_SOA_Q
  6786. kernel = backend_ctx->kernel_mul_mv_id_mxfp4_f32;
  6787. if (backend_ctx->gpu_family == INTEL) {
  6788. sgs = 16;
  6789. nsg = 2;
  6790. ndst = 2;
  6791. } else if (backend_ctx->gpu_family == ADRENO) {
  6792. sgs = 64;
  6793. nsg = 2;
  6794. ndst = 2;
  6795. } else {
  6796. GGML_ASSERT(false && "TODO: Unknown GPU");
  6797. }
  6798. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6799. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6800. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6801. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6802. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
  6803. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  6804. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  6805. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  6806. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  6807. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
  6808. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb02));
  6809. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb03));
  6810. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne11));
  6811. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne12));
  6812. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb11));
  6813. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb12));
  6814. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb13));
  6815. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne20));
  6816. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne21));
  6817. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb21));
  6818. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne0));
  6819. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne1));
  6820. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &r2));
  6821. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r3));
  6822. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(float)*sgs,nullptr));
  6823. #endif // GGML_OPENCL_SOA_Q
  6824. break;
  6825. }
  6826. default:
  6827. GGML_ASSERT(false && "not implemented");;
  6828. }
  6829. int _ne1 = 1;
  6830. int ne123 = dst_rows;
  6831. size_t global_work_size[] = {(size_t)(ne01+ndst*nsg-1)/(ndst*nsg)*sgs, (size_t)(_ne1+nrows-1)/nrows*nsg, (size_t)ne123};
  6832. size_t local_work_size[] = {(size_t)sgs, (size_t)nsg, 1};
  6833. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  6834. }
  6835. static void ggml_cl_scale(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  6836. GGML_ASSERT(src0);
  6837. GGML_ASSERT(src0->extra);
  6838. GGML_ASSERT(dst);
  6839. GGML_ASSERT(dst->extra);
  6840. GGML_UNUSED(src1);
  6841. GGML_ASSERT(ggml_is_contiguous(src0));
  6842. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  6843. float scale;
  6844. float bias;
  6845. memcpy(&scale, ((int32_t *) dst->op_params) + 0, sizeof(float));
  6846. memcpy(&bias, ((int32_t *) dst->op_params) + 1, sizeof(float));
  6847. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  6848. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  6849. cl_ulong offset0 = extra0->offset + src0->view_offs;
  6850. cl_ulong offsetd = extrad->offset + dst->view_offs;
  6851. cl_kernel kernel = backend_ctx->kernel_scale;
  6852. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6853. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6854. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  6855. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  6856. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(float), &scale));
  6857. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(float), &bias));
  6858. int n = ggml_nelements(dst)/4;
  6859. size_t global_work_size[] = {(size_t)n, 1, 1};
  6860. size_t local_work_size[] = {64, 1, 1};
  6861. size_t * local_work_size_ptr = local_work_size;
  6862. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  6863. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  6864. }
  6865. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  6866. }
  6867. static void ggml_cl_cpy(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  6868. GGML_ASSERT(src0);
  6869. GGML_ASSERT(src0->extra);
  6870. GGML_ASSERT(src1);
  6871. GGML_ASSERT(src1->extra);
  6872. // GGML_OP_CPY happens between src0 and src1.
  6873. // GGML_OP_DUP and GGML_OP_CONT happen between src0 and dst.
  6874. UNUSED(dst);
  6875. const int ne00 = src0 ? src0->ne[0] : 0;
  6876. const int ne01 = src0 ? src0->ne[1] : 0;
  6877. const int ne02 = src0 ? src0->ne[2] : 0;
  6878. const int ne03 = src0 ? src0->ne[3] : 0;
  6879. const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
  6880. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  6881. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  6882. const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
  6883. const int ne10 = src1 ? src1->ne[0] : 0;
  6884. const int ne11 = src1 ? src1->ne[1] : 0;
  6885. const int ne12 = src1 ? src1->ne[2] : 0;
  6886. const int ne13 = src1 ? src1->ne[3] : 0;
  6887. const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
  6888. const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
  6889. const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
  6890. const cl_ulong nb13 = src1 ? src1->nb[3] : 0;
  6891. const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
  6892. const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
  6893. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  6894. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  6895. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  6896. cl_ulong offset0 = extra0->offset + src0->view_offs;
  6897. cl_ulong offset1 = extra1->offset + src1->view_offs;
  6898. cl_kernel kernel;
  6899. switch (src0t) {
  6900. case GGML_TYPE_F32:
  6901. switch (src1t) {
  6902. case GGML_TYPE_F16:
  6903. kernel = backend_ctx->kernel_cpy_f32_f16;
  6904. break;
  6905. case GGML_TYPE_F32:
  6906. kernel = backend_ctx->kernel_cpy_f32_f32;
  6907. break;
  6908. default:
  6909. GGML_ASSERT(false && "not implemented");
  6910. }
  6911. break;
  6912. case GGML_TYPE_F16:
  6913. switch (src1t) {
  6914. case GGML_TYPE_F16:
  6915. kernel = backend_ctx->kernel_cpy_f16_f16;
  6916. break;
  6917. case GGML_TYPE_F32:
  6918. kernel = backend_ctx->kernel_cpy_f16_f32;
  6919. break;
  6920. default:
  6921. GGML_ASSERT(false && "not implemented");
  6922. }
  6923. break;
  6924. default:
  6925. GGML_ASSERT(false && "not implemented");
  6926. }
  6927. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6928. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6929. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6930. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6931. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  6932. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  6933. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
  6934. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
  6935. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb00));
  6936. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
  6937. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb02));
  6938. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb03));
  6939. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10));
  6940. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne11));
  6941. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne12));
  6942. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne13));
  6943. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb10));
  6944. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
  6945. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
  6946. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
  6947. const int nth = MIN(64, ne00);
  6948. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  6949. size_t local_work_size[] = {(size_t)nth, 1, 1};
  6950. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, src1);
  6951. }
  6952. static void ggml_cl_dup(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  6953. ggml_cl_cpy(backend, src0, dst, nullptr);
  6954. UNUSED(src1);
  6955. }
  6956. static void ggml_cl_diag_mask_inf(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  6957. GGML_ASSERT(src0);
  6958. GGML_ASSERT(src0->extra);
  6959. GGML_ASSERT(dst);
  6960. GGML_ASSERT(dst->extra);
  6961. UNUSED(src1);
  6962. int n_past = ((int32_t *)(dst->op_params))[0];
  6963. const int ne00 = src0 ? src0->ne[0] : 0;
  6964. const int ne01 = src0 ? src0->ne[1] : 0;
  6965. const int ne02 = src0 ? src0->ne[2] : 0;
  6966. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  6967. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  6968. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  6969. cl_ulong offset0 = extra0->offset + src0->view_offs;
  6970. cl_ulong offsetd = extrad->offset + dst->view_offs;
  6971. cl_kernel kernel;
  6972. if (ne00%8 == 0) {
  6973. kernel = backend_ctx->kernel_diag_mask_inf_8;
  6974. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6975. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6976. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  6977. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  6978. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  6979. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  6980. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &n_past));
  6981. size_t global_work_size[] = {(size_t)ne00*ne01*ne02/8, 1, 1};
  6982. size_t local_work_size[] = {64, 1, 1};
  6983. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  6984. } else {
  6985. kernel = backend_ctx->kernel_diag_mask_inf;
  6986. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6987. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6988. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  6989. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  6990. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  6991. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  6992. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &n_past));
  6993. size_t global_work_size[] = {(size_t)ne00, (size_t)ne01, (size_t)ne02};
  6994. size_t local_work_size[] = {64, 1, 1};
  6995. size_t * local_work_size_ptr = local_work_size;
  6996. if (ne00 % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  6997. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  6998. }
  6999. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  7000. }
  7001. }
  7002. static void ggml_cl_soft_max(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  7003. GGML_ASSERT(src0);
  7004. GGML_ASSERT(src0->extra);
  7005. GGML_ASSERT(dst);
  7006. GGML_ASSERT(dst->extra);
  7007. // Softmax can now fuse KQ mask and KQ scale, which used to be two additional
  7008. // ops before softmax. It now also fuses alibi if `max_bias > 0`. For llama,
  7009. // alibi is not used; however, for some other models, it is used.
  7010. // KQ_mask
  7011. if (src1) {
  7012. GGML_ASSERT(src1);
  7013. GGML_ASSERT(src1->extra);
  7014. }
  7015. const ggml_tensor * src2 = dst->src[2];
  7016. if (src2) {
  7017. GGML_ASSERT(src2->extra);
  7018. }
  7019. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  7020. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  7021. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  7022. ggml_tensor_extra_cl * extra1 = src1 ? (ggml_tensor_extra_cl *)src1->extra : nullptr;
  7023. ggml_tensor_extra_cl * extra2 = src2 ? (ggml_tensor_extra_cl *)src2->extra : nullptr;
  7024. cl_ulong offset0 = extra0->offset + src0->view_offs;
  7025. cl_ulong offsetd = extrad->offset + dst->view_offs;
  7026. cl_ulong offset1 = extra1 ? extra1->offset + src1->view_offs : offset0;
  7027. cl_ulong offset2 = extra2 ? extra2->offset + src2->view_offs : offset0;
  7028. const int ne00 = src0->ne[0];
  7029. const int ne01 = src0->ne[1];
  7030. const int ne02 = src0->ne[2];
  7031. const int ne03 = src0->ne[3];
  7032. const cl_long nb01 = src0->nb[1];
  7033. const cl_long nb02 = src0->nb[2];
  7034. const cl_long nb03 = src0->nb[3];
  7035. const int ne12 = src1 ? src1->ne[2] : 0;
  7036. const int ne13 = src1 ? src1->ne[3] : 0;
  7037. const cl_long nb11 = src1 ? src1->nb[1] : 0;
  7038. const cl_long nb12 = src1 ? src1->nb[2] : 0;
  7039. const cl_long nb13 = src1 ? src1->nb[3] : 0;
  7040. const cl_long nb1 = dst->nb[1];
  7041. const cl_long nb2 = dst->nb[2];
  7042. const cl_long nb3 = dst->nb[3];
  7043. float scale, max_bias;
  7044. memcpy(&scale, dst->op_params + 0, sizeof(float));
  7045. memcpy(&max_bias, dst->op_params + 1, sizeof(float));
  7046. const int n_head = src0->ne[2];
  7047. const int n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
  7048. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  7049. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  7050. const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
  7051. // Local size must be wave size. Each workgroup is a wave, working on a row,
  7052. // where a row corresponds to leading dimension.
  7053. int nth = MIN(32, ne00);
  7054. if (backend_ctx->gpu_family == INTEL) {
  7055. // This is the same as the initial value.
  7056. nth = MIN(32, ne00);
  7057. }
  7058. else if (backend_ctx->gpu_family == ADRENO) {
  7059. nth = 64;
  7060. } else {
  7061. GGML_ASSERT(false && "TODO: Unknown GPU");
  7062. }
  7063. cl_kernel kernel;
  7064. if (ne00%4 == 0) {
  7065. if (use_f16) {
  7066. kernel = backend_ctx->kernel_soft_max_4_f16;
  7067. } else {
  7068. kernel = backend_ctx->kernel_soft_max_4;
  7069. }
  7070. } else {
  7071. if (use_f16) {
  7072. kernel = backend_ctx->kernel_soft_max_f16;
  7073. } else {
  7074. kernel = backend_ctx->kernel_soft_max;
  7075. }
  7076. }
  7077. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  7078. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  7079. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), extra1 ? &extra1->data_device : &extra0->data_device));
  7080. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  7081. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), extra2 ? &extra2->data_device : &extra0->data_device));
  7082. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  7083. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  7084. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  7085. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  7086. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
  7087. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb02));
  7088. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb03));
  7089. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne12));
  7090. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne13));
  7091. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb11));
  7092. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb12));
  7093. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb13));
  7094. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb1));
  7095. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb2));
  7096. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb3));
  7097. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(float), &scale));
  7098. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(float), &max_bias));
  7099. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(float), &m0));
  7100. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(float), &m1));
  7101. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &n_head_log2));
  7102. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  7103. size_t local_work_size[] = {(size_t)nth, 1, 1};
  7104. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  7105. }
  7106. static void ggml_cl_rope(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  7107. GGML_ASSERT(src0);
  7108. GGML_ASSERT(src0->extra);
  7109. GGML_ASSERT(src1);
  7110. GGML_ASSERT(src1->extra);
  7111. GGML_ASSERT(dst);
  7112. GGML_ASSERT(dst->extra);
  7113. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  7114. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  7115. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  7116. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  7117. cl_ulong offset0 = extra0->offset + src0->view_offs;
  7118. cl_ulong offset1 = extra1->offset + src1->view_offs;
  7119. cl_ulong offsetd = extrad->offset + dst->view_offs;
  7120. ggml_tensor * src2 = dst->src[2];
  7121. ggml_tensor_extra_cl * extra2 = src2 ? (ggml_tensor_extra_cl *)src2->extra : nullptr;
  7122. cl_ulong offset2 = extra2 ? extra2->offset + src2->view_offs : offset0;
  7123. const int ne00 = src0 ? src0->ne[0] : 0;
  7124. const int ne01 = src0 ? src0->ne[1] : 0;
  7125. const int ne02 = src0 ? src0->ne[2] : 0;
  7126. const int ne03 = src0 ? src0->ne[3] : 0;
  7127. const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
  7128. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  7129. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  7130. const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
  7131. const int ne10 = src1 ? src1->ne[0] : 0;
  7132. const int ne11 = src1 ? src1->ne[1] : 0; UNUSED(ne11);
  7133. const int ne12 = src1 ? src1->ne[2] : 0; UNUSED(ne12);
  7134. const int ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);
  7135. const int ne0 = dst ? dst->ne[0] : 0;
  7136. const int ne1 = dst ? dst->ne[1] : 0;
  7137. const int ne2 = dst ? dst->ne[2] : 0;
  7138. const int ne3 = dst ? dst->ne[3] : 0;
  7139. const cl_ulong nb0 = dst ? dst->nb[0] : 0;
  7140. const cl_ulong nb1 = dst ? dst->nb[1] : 0;
  7141. const cl_ulong nb2 = dst ? dst->nb[2] : 0;
  7142. const cl_ulong nb3 = dst ? dst->nb[3] : 0;
  7143. GGML_ASSERT(ne10 % ne02 == 0);
  7144. GGML_ASSERT(ne10 >= ne02);
  7145. int nth = MIN(64, ne00);
  7146. const int n_past = ((int *) dst->op_params)[0];
  7147. const int n_dims = ((int *) dst->op_params)[1];
  7148. const int mode = ((int *) dst->op_params)[2];
  7149. const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
  7150. float freq_base;
  7151. float freq_scale;
  7152. float ext_factor;
  7153. float attn_factor;
  7154. float beta_fast;
  7155. float beta_slow;
  7156. int32_t sections[4];
  7157. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  7158. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  7159. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  7160. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  7161. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  7162. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  7163. memcpy(&sections, (int32_t *) dst->op_params + 11, sizeof(int32_t)*4);
  7164. const bool is_neox = mode & 2;
  7165. const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
  7166. const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
  7167. if (is_mrope) {
  7168. GGML_ASSERT(sections[0] > 0 || sections[1] > 0 || sections[2] > 0);
  7169. }
  7170. if (is_vision) {
  7171. GGML_ASSERT(n_dims == ne00/2);
  7172. }
  7173. cl_kernel kernel;
  7174. if (is_neox) {
  7175. switch (src0->type) {
  7176. case GGML_TYPE_F32:
  7177. kernel = backend_ctx->kernel_rope_neox_f32;
  7178. break;
  7179. case GGML_TYPE_F16:
  7180. kernel = backend_ctx->kernel_rope_neox_f16;
  7181. break;
  7182. default:
  7183. GGML_ASSERT(false);
  7184. };
  7185. } else if (is_mrope && !is_vision) {
  7186. switch (src0->type) {
  7187. case GGML_TYPE_F32:
  7188. kernel = backend_ctx->kernel_rope_multi_f32;
  7189. break;
  7190. case GGML_TYPE_F16:
  7191. kernel = backend_ctx->kernel_rope_multi_f16;
  7192. break;
  7193. default:
  7194. GGML_ASSERT(false);
  7195. };
  7196. } else if (is_vision) {
  7197. switch (src0->type) {
  7198. case GGML_TYPE_F32:
  7199. kernel = backend_ctx->kernel_rope_vision_f32;
  7200. break;
  7201. case GGML_TYPE_F16:
  7202. kernel = backend_ctx->kernel_rope_vision_f16;
  7203. break;
  7204. default:
  7205. GGML_ASSERT(false);
  7206. }
  7207. } else {
  7208. switch (src0->type) {
  7209. case GGML_TYPE_F32:
  7210. kernel = backend_ctx->kernel_rope_norm_f32;
  7211. break;
  7212. case GGML_TYPE_F16:
  7213. kernel = backend_ctx->kernel_rope_norm_f16;
  7214. break;
  7215. default:
  7216. GGML_ASSERT(false);
  7217. };
  7218. }
  7219. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  7220. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  7221. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  7222. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  7223. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), extra2 ? &extra2->data_device : &extra0->data_device));
  7224. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  7225. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  7226. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  7227. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  7228. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
  7229. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne02));
  7230. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne03));
  7231. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb00));
  7232. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb01));
  7233. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb02));
  7234. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb03));
  7235. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne0));
  7236. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne1));
  7237. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne2));
  7238. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &ne3));
  7239. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb0));
  7240. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb1));
  7241. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb2));
  7242. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(cl_ulong), &nb3));
  7243. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &n_past));
  7244. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &n_dims));
  7245. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(int), &n_ctx_orig));
  7246. CL_CHECK(clSetKernelArg(kernel, 27, sizeof(float), &freq_base));
  7247. CL_CHECK(clSetKernelArg(kernel, 28, sizeof(float), &freq_scale));
  7248. CL_CHECK(clSetKernelArg(kernel, 29, sizeof(float), &ext_factor));
  7249. CL_CHECK(clSetKernelArg(kernel, 30, sizeof(float), &attn_factor));
  7250. CL_CHECK(clSetKernelArg(kernel, 31, sizeof(float), &beta_fast));
  7251. CL_CHECK(clSetKernelArg(kernel, 32, sizeof(float), &beta_slow));
  7252. if (is_mrope || is_vision) {
  7253. CL_CHECK(clSetKernelArg(kernel, 33, sizeof(int32_t)*4, &sections));
  7254. }
  7255. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  7256. size_t local_work_size[] = {(size_t)nth, 1, 1};
  7257. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  7258. }
  7259. static void ggml_cl_im2col(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  7260. GGML_ASSERT(src0);
  7261. GGML_ASSERT(src1);
  7262. GGML_ASSERT(src1->extra);
  7263. GGML_ASSERT(dst);
  7264. GGML_ASSERT(dst->extra);
  7265. // src0 - filter, src1 - input
  7266. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7267. GGML_ASSERT(dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);
  7268. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  7269. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  7270. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  7271. cl_ulong offset1 = extra1->offset + src1->view_offs;
  7272. cl_ulong offsetd = extrad->offset + dst->view_offs;
  7273. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  7274. const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
  7275. const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
  7276. const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
  7277. const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
  7278. const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
  7279. const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1;
  7280. const cl_long IC = src1->ne[is_2D ? 2 : 1];
  7281. const cl_long IH = is_2D ? src1->ne[1] : 1;
  7282. const cl_long IW = src1->ne[0];
  7283. const cl_long KH = is_2D ? src0->ne[1] : 1;
  7284. const cl_long KW = src0->ne[0];
  7285. const cl_long OH = is_2D ? dst->ne[2] : 1;
  7286. const cl_long OW = dst->ne[1];
  7287. // nb is byte offset, src is type float32
  7288. const cl_ulong delta_offset = src1->nb[is_2D ? 2 : 1]/4;
  7289. const cl_long batch = src1->ne[is_2D ? 3 : 2];
  7290. const cl_ulong batch_offset = src1->nb[is_2D ? 3 : 2]/4;
  7291. const cl_long pelements = OW*KW*KH;
  7292. const cl_long CHW = IC*KH*KW;
  7293. cl_kernel kernel;
  7294. if(dst->type == GGML_TYPE_F16) {
  7295. kernel = backend_ctx->kernel_im2col_f16;
  7296. } else {
  7297. kernel = backend_ctx->kernel_im2col_f32;
  7298. }
  7299. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra1->data_device));
  7300. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset1));
  7301. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  7302. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  7303. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_ulong), &batch_offset));
  7304. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &delta_offset));
  7305. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_long), &IW));
  7306. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_long), &IH));
  7307. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_long), &IC));
  7308. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_long), &OW));
  7309. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_long), &OH));
  7310. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_long), &KW));
  7311. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_long), &KH));
  7312. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_long), &pelements));
  7313. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_long), &CHW));
  7314. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &s0));
  7315. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &s1));
  7316. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &p0));
  7317. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &p1));
  7318. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &d0));
  7319. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &d1));
  7320. const int num_blocks = (pelements + 256 - 1) / 256;
  7321. size_t global_work_size[] = {(size_t)num_blocks*256, (size_t)OH, (size_t)batch*IC};
  7322. size_t local_work_size[] = {256, 1, 1};
  7323. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  7324. }
  7325. static void ggml_cl_argsort(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  7326. GGML_ASSERT(src0);
  7327. GGML_ASSERT(src0->extra);
  7328. GGML_ASSERT(dst);
  7329. GGML_ASSERT(dst->extra);
  7330. GGML_UNUSED(src1);
  7331. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7332. GGML_ASSERT( dst->type == GGML_TYPE_I32);
  7333. GGML_ASSERT(ggml_is_contiguous(src0));
  7334. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  7335. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  7336. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  7337. cl_ulong offset0 = extra0->offset + src0->view_offs;
  7338. cl_ulong offsetd = extrad->offset + dst->view_offs;
  7339. const int ne00 = src0->ne[0];
  7340. const int nrows = ggml_nrows(src0);
  7341. int ne00_padded = 1;
  7342. while (ne00_padded < ne00) {
  7343. ne00_padded *= 2;
  7344. }
  7345. int order = (enum ggml_sort_order) dst->op_params[0];
  7346. cl_kernel kernel = backend_ctx->kernel_argsort_f32_i32;
  7347. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  7348. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  7349. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  7350. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  7351. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  7352. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne00_padded));
  7353. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &order));
  7354. CL_CHECK(clSetKernelArg(kernel, 7, ne00_padded*sizeof(int), NULL));
  7355. size_t global_work_size[] = {(size_t)ne00_padded, (size_t)nrows, (size_t)1};
  7356. size_t local_work_size[] = {(size_t)ne00_padded, 1, 1};
  7357. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  7358. }
  7359. static void ggml_cl_sum_rows(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  7360. GGML_ASSERT(src0);
  7361. GGML_ASSERT(src0->extra);
  7362. GGML_ASSERT(dst);
  7363. GGML_ASSERT(dst->extra);
  7364. GGML_UNUSED(src1);
  7365. GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
  7366. GGML_ASSERT(ggml_is_contiguous(src0));
  7367. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  7368. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  7369. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  7370. cl_ulong offset0 = extra0->offset + src0->view_offs;
  7371. cl_ulong offsetd = extrad->offset + dst->view_offs;
  7372. const int ne00 = src0->ne[0];
  7373. const int ne01 = src0->ne[1];
  7374. const int ne02 = src0->ne[2];
  7375. const int ne03 = src0->ne[3];
  7376. const cl_ulong nb01 = src0->nb[1];
  7377. const cl_ulong nb02 = src0->nb[2];
  7378. const cl_ulong nb03 = src0->nb[3];
  7379. const cl_ulong nb1 = dst->nb[1];
  7380. const cl_ulong nb2 = dst->nb[2];
  7381. const cl_ulong nb3 = dst->nb[3];
  7382. cl_kernel kernel = backend_ctx->kernel_sum_rows_f32;
  7383. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  7384. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  7385. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  7386. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  7387. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  7388. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  7389. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
  7390. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
  7391. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
  7392. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
  7393. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
  7394. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb1));
  7395. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb2));
  7396. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb3));
  7397. size_t global_work_size[] = {(size_t)ne01, (size_t)ne02, (size_t)ne03};
  7398. size_t local_work_size[] = {(size_t)64, 1, 1};
  7399. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  7400. }
  7401. static void ggml_cl_glu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  7402. GGML_ASSERT(src0);
  7403. GGML_ASSERT(src0->extra);
  7404. GGML_ASSERT(dst);
  7405. GGML_ASSERT(dst->extra);
  7406. GGML_ASSERT(ggml_is_contiguous_1(src0));
  7407. if (src1) {
  7408. GGML_ASSERT(src1);
  7409. GGML_ASSERT(src1->extra);
  7410. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  7411. }
  7412. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  7413. cl_kernel kernel;
  7414. switch (ggml_get_glu_op(dst)) {
  7415. case GGML_GLU_OP_GEGLU:
  7416. if (dst->type == GGML_TYPE_F32) {
  7417. kernel = backend_ctx->kernel_geglu;
  7418. } else {
  7419. kernel = backend_ctx->kernel_geglu_f16;
  7420. }
  7421. break;
  7422. case GGML_GLU_OP_REGLU:
  7423. if (dst->type == GGML_TYPE_F32) {
  7424. kernel = backend_ctx->kernel_reglu;
  7425. } else {
  7426. kernel = backend_ctx->kernel_reglu_f16;
  7427. }
  7428. break;
  7429. case GGML_GLU_OP_SWIGLU:
  7430. if (dst->type == GGML_TYPE_F32) {
  7431. kernel = backend_ctx->kernel_swiglu;
  7432. } else {
  7433. kernel = backend_ctx->kernel_swiglu_f16;
  7434. }
  7435. break;
  7436. case GGML_GLU_OP_SWIGLU_OAI:
  7437. kernel = backend_ctx->kernel_swiglu_oai;
  7438. break;
  7439. case GGML_GLU_OP_GEGLU_ERF:
  7440. if (dst->type == GGML_TYPE_F32) {
  7441. kernel = backend_ctx->kernel_geglu_erf;
  7442. } else {
  7443. kernel = backend_ctx->kernel_geglu_erf_f16;
  7444. }
  7445. break;
  7446. case GGML_GLU_OP_GEGLU_QUICK:
  7447. if (dst->type == GGML_TYPE_F32) {
  7448. kernel = backend_ctx->kernel_geglu_quick;
  7449. } else {
  7450. kernel = backend_ctx->kernel_geglu_quick_f16;
  7451. }
  7452. break;
  7453. default:
  7454. GGML_ABORT("Unsupported glu op");
  7455. }
  7456. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  7457. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  7458. ggml_tensor_extra_cl * extra1 = src1 ? (ggml_tensor_extra_cl *)src1->extra : nullptr;
  7459. cl_ulong offset0 = extra0->offset + src0->view_offs;
  7460. cl_ulong offsetd = extrad->offset + dst->view_offs;
  7461. cl_ulong offset1 = extra1 ? extra1->offset + src1->view_offs : offset0;
  7462. const int ne0 = dst->ne[0];
  7463. const cl_ulong nb01 = src0->nb[1];
  7464. const cl_ulong nb11 = src1 ? src1->nb[1] : nb01;
  7465. const cl_ulong nb1 = dst->nb[1];
  7466. const int swp = ggml_get_op_params_i32(dst, 1);
  7467. const float alpha = ggml_get_op_params_f32(dst, 2);
  7468. const float limit = ggml_get_op_params_f32(dst, 3);
  7469. const int ne00_off = src1 ? 0 : (swp ? ne0 : 0);
  7470. const int ne10_off = src1 ? 0 : (swp ? 0 : ne0);
  7471. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  7472. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  7473. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), src1 ? &extra1->data_device : &extra0->data_device));
  7474. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  7475. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  7476. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  7477. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb01));
  7478. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb11));
  7479. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne0));
  7480. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb1));
  7481. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne00_off));
  7482. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne10_off));
  7483. if (ggml_get_glu_op(dst) == GGML_GLU_OP_SWIGLU_OAI) {
  7484. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(float), &limit));
  7485. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(float), &alpha));
  7486. }
  7487. const size_t nrows = ggml_nrows(src0);
  7488. size_t nth = 512;
  7489. size_t global_work_size[] = {nrows*nth, 1, 1};
  7490. size_t local_work_size[] = {nth, 1, 1};
  7491. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  7492. }
  7493. //------------------------------------------------------------------------------
  7494. // Op offloading
  7495. //------------------------------------------------------------------------------
  7496. typedef void (*ggml_cl_func_t)(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
  7497. bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor) {
  7498. ggml_cl_func_t func = nullptr;
  7499. ggml_tensor * src0 = tensor->src[0];
  7500. ggml_tensor * src1 = tensor->src[1];
  7501. const bool any_on_device = tensor->extra
  7502. || (src0 != nullptr && src0->extra)
  7503. || (src1 != nullptr && src1->extra);
  7504. switch (tensor->op) {
  7505. case GGML_OP_GET_ROWS:
  7506. if (!any_on_device) {
  7507. return false;
  7508. }
  7509. func = ggml_cl_get_rows;
  7510. break;
  7511. case GGML_OP_SET_ROWS:
  7512. if (!any_on_device) {
  7513. return false;
  7514. }
  7515. func = ggml_cl_set_rows;
  7516. break;
  7517. case GGML_OP_CPY:
  7518. if (!any_on_device) {
  7519. return false;
  7520. }
  7521. func = ggml_cl_cpy;
  7522. break;
  7523. case GGML_OP_DUP:
  7524. case GGML_OP_CONT:
  7525. if (!any_on_device) {
  7526. return false;
  7527. }
  7528. func = ggml_cl_dup;
  7529. break;
  7530. case GGML_OP_ADD:
  7531. if (!any_on_device) {
  7532. return false;
  7533. }
  7534. func = ggml_cl_add;
  7535. break;
  7536. case GGML_OP_ADD_ID:
  7537. if (!any_on_device) {
  7538. return false;
  7539. }
  7540. func = ggml_cl_add_id;
  7541. break;
  7542. case GGML_OP_MUL:
  7543. if (!any_on_device) {
  7544. return false;
  7545. }
  7546. func = ggml_cl_mul;
  7547. break;
  7548. case GGML_OP_DIV:
  7549. if (!any_on_device) {
  7550. return false;
  7551. }
  7552. func = ggml_cl_div;
  7553. break;
  7554. case GGML_OP_SUB:
  7555. if (!any_on_device) {
  7556. return false;
  7557. }
  7558. func = ggml_cl_sub;
  7559. break;
  7560. case GGML_OP_UNARY:
  7561. switch (ggml_get_unary_op(tensor)) {
  7562. case GGML_UNARY_OP_GELU:
  7563. if (!any_on_device) {
  7564. return false;
  7565. }
  7566. func = ggml_cl_gelu;
  7567. break;
  7568. case GGML_UNARY_OP_GELU_ERF:
  7569. if (!any_on_device) {
  7570. return false;
  7571. }
  7572. func = ggml_cl_gelu_erf;
  7573. break;
  7574. case GGML_UNARY_OP_GELU_QUICK:
  7575. if (!any_on_device) {
  7576. return false;
  7577. }
  7578. func = ggml_cl_gelu_quick;
  7579. break;
  7580. case GGML_UNARY_OP_SILU:
  7581. if (!any_on_device) {
  7582. return false;
  7583. }
  7584. func = ggml_cl_silu;
  7585. break;
  7586. case GGML_UNARY_OP_RELU:
  7587. if (!any_on_device) {
  7588. return false;
  7589. }
  7590. func = ggml_cl_relu;
  7591. break;
  7592. case GGML_UNARY_OP_SIGMOID:
  7593. if (!any_on_device) {
  7594. return false;
  7595. }
  7596. func = ggml_cl_sigmoid;
  7597. break;
  7598. case GGML_UNARY_OP_TANH:
  7599. if (!any_on_device) {
  7600. return false;
  7601. }
  7602. func = ggml_cl_tanh;
  7603. break;
  7604. default:
  7605. return false;
  7606. } break;
  7607. case GGML_OP_GLU:
  7608. if (!any_on_device) {
  7609. return false;
  7610. }
  7611. func = ggml_cl_glu;
  7612. break;
  7613. case GGML_OP_CLAMP:
  7614. if (!any_on_device) {
  7615. return false;
  7616. }
  7617. func = ggml_cl_clamp;
  7618. break;
  7619. case GGML_OP_NORM:
  7620. if (!any_on_device) {
  7621. return false;
  7622. }
  7623. func = ggml_cl_norm;
  7624. break;
  7625. case GGML_OP_RMS_NORM:
  7626. if (!any_on_device) {
  7627. return false;
  7628. }
  7629. func = ggml_cl_rms_norm;
  7630. break;
  7631. case GGML_OP_GROUP_NORM:
  7632. if (!any_on_device) {
  7633. return false;
  7634. }
  7635. func = ggml_cl_group_norm;
  7636. break;
  7637. case GGML_OP_REPEAT:
  7638. if (!any_on_device) {
  7639. return false;
  7640. }
  7641. func = ggml_cl_repeat;
  7642. break;
  7643. case GGML_OP_PAD:
  7644. if (!any_on_device) {
  7645. return false;
  7646. }
  7647. ggml_cl_pad(backend, tensor->src[0], tensor);
  7648. return true;
  7649. case GGML_OP_UPSCALE:
  7650. if (!any_on_device) {
  7651. return false;
  7652. }
  7653. ggml_cl_upscale(backend, tensor->src[0], tensor);
  7654. return true;
  7655. case GGML_OP_CONV_2D:
  7656. if (!any_on_device) {
  7657. return false;
  7658. }
  7659. func = ggml_cl_conv_2d;
  7660. break;
  7661. case GGML_OP_CONCAT:
  7662. if (!any_on_device) {
  7663. return false;
  7664. }
  7665. func = ggml_cl_concat;
  7666. break;
  7667. case GGML_OP_TIMESTEP_EMBEDDING:
  7668. if (!any_on_device) {
  7669. return false;
  7670. }
  7671. ggml_cl_timestep_embedding(backend, tensor->src[0], tensor);
  7672. return true;
  7673. case GGML_OP_MUL_MAT:
  7674. if (!any_on_device && !ggml_cl_can_mul_mat(tensor->src[0], tensor->src[1], tensor)) {
  7675. return false;
  7676. }
  7677. func = ggml_cl_mul_mat;
  7678. break;
  7679. case GGML_OP_MUL_MAT_ID:
  7680. if (!any_on_device) {
  7681. return false;
  7682. }
  7683. func = ggml_cl_mul_mat_id;
  7684. break;
  7685. case GGML_OP_SCALE:
  7686. if (!any_on_device) {
  7687. return false;
  7688. }
  7689. func = ggml_cl_scale;
  7690. break;
  7691. case GGML_OP_RESHAPE:
  7692. case GGML_OP_VIEW:
  7693. case GGML_OP_PERMUTE:
  7694. case GGML_OP_TRANSPOSE:
  7695. if (!any_on_device) {
  7696. return false;
  7697. }
  7698. func = ggml_cl_nop;
  7699. break;
  7700. case GGML_OP_DIAG_MASK_INF:
  7701. if (!any_on_device) {
  7702. return false;
  7703. }
  7704. func = ggml_cl_diag_mask_inf;
  7705. break;
  7706. case GGML_OP_SOFT_MAX:
  7707. if (!any_on_device) {
  7708. return false;
  7709. }
  7710. func = ggml_cl_soft_max;
  7711. break;
  7712. case GGML_OP_ROPE:
  7713. if (!any_on_device) {
  7714. return false;
  7715. }
  7716. func = ggml_cl_rope;
  7717. break;
  7718. case GGML_OP_IM2COL:
  7719. if (!any_on_device) {
  7720. return false;
  7721. }
  7722. func = ggml_cl_im2col;
  7723. break;
  7724. case GGML_OP_ARGSORT:
  7725. if (!any_on_device) {
  7726. return false;
  7727. }
  7728. func = ggml_cl_argsort;
  7729. break;
  7730. case GGML_OP_SUM_ROWS:
  7731. if (!any_on_device) {
  7732. return false;
  7733. }
  7734. func = ggml_cl_sum_rows;
  7735. break;
  7736. case GGML_OP_FLASH_ATTN_EXT:
  7737. if (!any_on_device) {
  7738. return false;
  7739. }
  7740. ggml_cl_flash_attn(backend, tensor->src[0], tensor->src[1], tensor);
  7741. return true;
  7742. default:
  7743. return false;
  7744. }
  7745. func(backend, tensor->src[0], tensor->src[1], tensor);
  7746. return true;
  7747. }