| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739 |
- #include "llama-kv-cache.h"
- #include "llama-impl.h"
- #include "llama-batch.h"
- #include "llama-cparams.h"
- #include "llama-model.h"
- #include "llama-context.h"
- #include <algorithm>
- #include <cassert>
- #include <cmath>
- #include <limits>
- #include <map>
- #include <stdexcept>
- //
- // llama_kv_cache_unified
- //
- uint32_t llama_kv_cache_unified::get_padding(const llama_cparams & cparams) {
- // the FA kernels require padding to avoid extra runtime boundary checks
- return cparams.flash_attn ? 256u : 32u;
- }
- llama_kv_cache_unified::llama_kv_cache_unified(
- const llama_model & model,
- layer_filter_cb && filter,
- ggml_type type_k,
- ggml_type type_v,
- bool v_trans,
- bool offload,
- uint32_t kv_size,
- uint32_t n_seq_max,
- uint32_t n_pad,
- uint32_t n_swa,
- llama_swa_type swa_type) :
- model(model), hparams(model.hparams), v_trans(v_trans),
- n_seq_max(n_seq_max), n_pad(n_pad), n_swa(n_swa), swa_type(swa_type) {
- GGML_ASSERT(kv_size % n_pad == 0);
- // create a context for each buffer type
- std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
- auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
- auto it = ctx_map.find(buft);
- if (it == ctx_map.end()) {
- ggml_init_params params = {
- /*.mem_size =*/ size_t(2u*hparams.n_layer*ggml_tensor_overhead()),
- /*.mem_buffer =*/ NULL,
- /*.no_alloc =*/ true,
- };
- ggml_context * ctx = ggml_init(params);
- if (!ctx) {
- return nullptr;
- }
- ctx_map[buft] = ctx;
- ctxs.emplace_back(ctx);
- return ctx;
- }
- return it->second;
- };
- head = 0;
- cells.resize(kv_size);
- for (uint32_t il = 0; il < hparams.n_layer; il++) {
- if (filter && !filter(il)) {
- LLAMA_LOG_DEBUG("%s: layer %3d: skipped\n", __func__, il);
- continue;
- }
- const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s();
- const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
- const char * dev_name = "CPU";
- ggml_backend_buffer_type_t buft = ggml_backend_cpu_buffer_type();
- if (offload) {
- auto * dev = model.dev_layer(il);
- buft = ggml_backend_dev_buffer_type(dev);
- dev_name = ggml_backend_dev_name(dev);
- }
- LLAMA_LOG_DEBUG("%s: layer %3d: dev = %s\n", __func__, il, dev_name);
- ggml_context * ctx = ctx_for_buft(buft);
- if (!ctx) {
- throw std::runtime_error("failed to create ggml context for kv cache");
- }
- ggml_tensor * k;
- ggml_tensor * v;
- k = ggml_new_tensor_2d(ctx, type_k, n_embd_k_gqa, kv_size);
- v = ggml_new_tensor_2d(ctx, type_v, n_embd_v_gqa, kv_size);
- ggml_format_name(k, "cache_k_l%d", il);
- ggml_format_name(v, "cache_v_l%d", il);
- map_layer_ids[il] = layers.size();
- layers.push_back({ il, k, v });
- }
- // allocate tensors and initialize the buffers to avoid NaNs in the padding
- for (auto it : ctx_map) {
- auto * buft = it.first;
- auto * ctx = it.second;
- ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
- if (!buf) {
- throw std::runtime_error("failed to allocate buffer for kv cache");
- }
- LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
- ggml_backend_buffer_clear(buf, 0);
- bufs.emplace_back(buf);
- }
- {
- const size_t memory_size_k = size_k_bytes();
- const size_t memory_size_v = size_v_bytes();
- LLAMA_LOG_INFO("%s: size = %7.2f MiB (%6u cells, %3d layers, %2u seqs), K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
- (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f), kv_size, (int) layers.size(), n_seq_max,
- ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
- ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
- }
- }
- void llama_kv_cache_unified::clear() {
- cells.reset();
- head = 0;
- for (auto & buf : bufs) {
- ggml_backend_buffer_clear(buf.get(), 0);
- }
- }
- bool llama_kv_cache_unified::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
- uint32_t new_head = cells.size();
- if (p0 < 0) {
- p0 = 0;
- }
- if (p1 < 0) {
- p1 = std::numeric_limits<llama_pos>::max();
- }
- for (uint32_t i = 0; i < cells.size(); ++i) {
- if (!cells.pos_in(i, p0, p1)) {
- continue;
- }
- if (cells.seq_has(i, seq_id) && cells.seq_rm(i, seq_id)) {
- if (new_head == cells.size()) {
- new_head = i;
- }
- }
- }
- // If we freed up a slot, set head to it so searching can start there.
- if (new_head != cells.size() && new_head < head) {
- head = new_head;
- }
- return true;
- }
- void llama_kv_cache_unified::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
- if (seq_id_src == seq_id_dst) {
- return;
- }
- if (p0 < 0) {
- p0 = 0;
- }
- if (p1 < 0) {
- p1 = std::numeric_limits<llama_pos>::max();
- }
- for (uint32_t i = 0; i < cells.size(); ++i) {
- if (!cells.pos_in(i, p0, p1)) {
- continue;
- }
- if (cells.seq_has(i, seq_id_src)) {
- cells.seq_add(i, seq_id_dst);
- }
- }
- }
- void llama_kv_cache_unified::seq_keep(llama_seq_id seq_id) {
- uint32_t new_head = cells.size();
- for (uint32_t i = 0; i < cells.size(); ++i) {
- if (cells.seq_keep(i, seq_id)) {
- if (new_head == cells.size()) {
- new_head = i;
- }
- }
- }
- // If we freed up a slot, set head to it so searching can start there.
- if (new_head != cells.size() && new_head < head) {
- head = new_head;
- }
- }
- void llama_kv_cache_unified::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) {
- if (shift == 0) {
- return;
- }
- uint32_t new_head = cells.size();
- if (p0 < 0) {
- p0 = 0;
- }
- if (p1 < 0) {
- p1 = std::numeric_limits<llama_pos>::max();
- }
- // If there is no range then return early to avoid looping over all cells.
- if (p0 == p1) {
- return;
- }
- for (uint32_t i = 0; i < cells.size(); ++i) {
- if (!cells.pos_in(i, p0, p1)) {
- continue;
- }
- if (cells.seq_has(i, seq_id)) {
- if (cells.pos_add(i, shift)) {
- if (new_head == cells.size()) {
- new_head = i;
- }
- }
- }
- }
- // If we freed up a slot, set head to it so searching can start there.
- // Otherwise we just start the next search from the beginning.
- head = new_head != cells.size() ? new_head : 0;
- }
- void llama_kv_cache_unified::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
- if (d == 1) {
- return;
- }
- if (p0 < 0) {
- p0 = 0;
- }
- if (p1 < 0) {
- p1 = std::numeric_limits<llama_pos>::max();
- }
- // If there is no range then return early to avoid looping over the cache.
- if (p0 == p1) {
- return;
- }
- for (uint32_t i = 0; i < cells.size(); ++i) {
- if (!cells.pos_in(i, p0, p1)) {
- continue;
- }
- if (cells.seq_has(i, seq_id)) {
- cells.pos_div(i, d);
- }
- }
- }
- llama_pos llama_kv_cache_unified::seq_pos_min(llama_seq_id seq_id) const {
- return cells.seq_pos_min(seq_id);
- }
- llama_pos llama_kv_cache_unified::seq_pos_max(llama_seq_id seq_id) const {
- return cells.seq_pos_max(seq_id);
- }
- void llama_kv_cache_unified::restore() {
- for (auto & state : recovery.states) {
- cells.set(state.i, state.cells);
- }
- recovery.clear();
- }
- void llama_kv_cache_unified::commit() {
- if (recovery.states.empty()) {
- LLAMA_LOG_WARN("%s: the recovery information upon a commit was empty - might indicate a bug (ref: %s)\n",
- __func__, "https://github.com/ggml-org/llama.cpp/pull/13194");
- return;
- }
- recovery.clear();
- }
- bool llama_kv_cache_unified::update(llama_context & lctx) {
- bool need_reserve = false;
- auto * sched = lctx.get_sched();
- if (cells.get_has_shift()) {
- if (!get_can_shift()) {
- GGML_ABORT("The current KV cache / model configuration does not support K-shift");
- }
- LLAMA_LOG_DEBUG("%s: applying K-shift\n", __func__);
- // apply K-shift if needed
- if (hparams.rope_type != LLAMA_ROPE_TYPE_NONE) {
- ggml_backend_sched_reset(sched);
- auto * gf = lctx.graph_init();
- auto res = build_graph_shift(lctx.get_cparams(), lctx.get_ctx_compute(), gf);
- ggml_backend_sched_alloc_graph(sched, gf);
- res->set_inputs(nullptr);
- lctx.graph_compute(gf, false);
- need_reserve = true;
- }
- cells.reset_shift();
- }
- if (do_defrag) {
- LLAMA_LOG_DEBUG("%s: defragmenting KV cache\n", __func__);
- if (defrag_prepare(lctx.graph_max_nodes())) {
- ggml_backend_sched_reset(sched);
- auto * gf = lctx.graph_init();
- auto res = build_graph_defrag(lctx.get_cparams(), lctx.get_ctx_compute(), gf);
- ggml_backend_sched_alloc_graph(sched, gf);
- res->set_inputs(nullptr);
- lctx.graph_compute(gf, false);
- need_reserve = true;
- }
- do_defrag = false;
- }
- return need_reserve;
- }
- void llama_kv_cache_unified::defrag_sched(float thold) {
- // - do not defrag small contexts (i.e. < 2048 tokens)
- // - count the padding towards the number of used tokens
- const float fragmentation = n >= 2048 ? std::max(0.0f, 1.0f - (float(cells.get_used() + n_pad)/n)) : 0.0f;
- // queue defragmentation for next llama_kv_cache_update
- if (fragmentation > thold) {
- LLAMA_LOG_DEBUG("%s: fragmentation: %.2f - requesting defrag\n", __func__, fragmentation);
- do_defrag = true;
- }
- }
- void llama_kv_cache_unified::set_full() {
- n = cells.size();
- // when simulating a full KV cache, the specific value of the "head" pointer is not important because it does not
- // affect the shapes of the tensors in the compute graph - it only affects the offsets of the K/V views.
- // we should only guarantee that the head position won't cause out-of-bounds view of the K, V tensors, so
- // setting it to 0 is the simplest way to achieve that
- // ref: https://github.com/ggml-org/llama.cpp/issues/13359
- head = 0;
- }
- llama_sbatch llama_kv_cache_unified::sbatch_init(const llama_batch & batch, bool logits_all) {
- return llama_sbatch(batch, hparams.n_embd, true, logits_all);
- }
- llama_ubatch llama_kv_cache_unified::ubatch_next(llama_sbatch & sbatch, uint32_t n_ubatch, bool embd_pooled) const {
- GGML_UNUSED(embd_pooled);
- return sbatch.split_simple(n_ubatch);
- }
- bool llama_kv_cache_unified::find_slot(const llama_ubatch & ubatch) {
- const uint32_t n_tokens = ubatch.n_tokens;
- // if we have enough unused cells before the current head ->
- // better to start searching from the beginning of the cache, hoping to fill it
- if (head > cells.get_used() + 2*ubatch.n_tokens) {
- head = 0;
- }
- // otherwise, one cell per token.
- if (n_tokens > cells.size()) {
- LLAMA_LOG_ERROR("%s: n_tokens = %d > size = %u\n", __func__, n_tokens, cells.size());
- return false;
- }
- //#define FIND_SLOT_DEBUG 1
- #if FIND_SLOT_DEBUG
- LLAMA_LOG_WARN("begin: n = %5d, used = %5d, head = %5d, n_swa = %5d\n", n, used, head, n_swa);
- // for debugging
- {
- std::string ss;
- if (n_swa > 0) {
- for (uint32_t i = 0; i < size; ++i) {
- if (cells.is_empty(i)) {
- ss += '.';
- } else {
- ss += 'x';
- }
- if (i%256 == 255) {
- ss += '\n';
- }
- }
- }
- LLAMA_LOG_WARN("\n%s\n", ss.c_str());
- }
- #endif
- uint32_t n_tested = 0;
- while (true) {
- if (head + n_tokens > cells.size()) {
- n_tested += cells.size() - head;
- head = 0;
- continue;
- }
- bool found = true;
- for (uint32_t i = 0; i < n_tokens; i++) {
- // TODO: improve to accept cells that are masked by the SWA
- if (!cells.is_empty(head + i)) {
- found = false;
- head += i + 1;
- n_tested += i + 1;
- break;
- }
- }
- if (found) {
- break;
- }
- if (n_tested >= cells.size()) {
- //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
- return false;
- }
- }
- // store the old state of the cells in the recovery stack
- recovery.states.push_back({head, cells.cp(head, n_tokens)});
- for (uint32_t i = 0; i < n_tokens; ++i) {
- cells.pos_set(head + i, ubatch.pos[i]);
- for (int32_t j = 0; j < ubatch.n_seq_id[i]; j++) {
- cells.seq_add(head + i, ubatch.seq_id[i][j]);
- }
- }
- // a heuristic, to avoid attending the full cache if it is not yet utilized
- // after enough generations, the benefit from this heuristic disappears
- // if we start defragmenting the cache, the benefit from this will be more important
- n = std::min(cells.size(), std::max(n_pad, GGML_PAD(cells.used_max_p1(), n_pad)));
- #ifdef FIND_SLOT_DEBUG
- LLAMA_LOG_WARN("end: n = %5d, used = %5d, head = %5d, n_swa = %5d\n", n, used, head, n_swa);
- #endif
- return true;
- }
- bool llama_kv_cache_unified::get_can_shift() const {
- return true;
- }
- uint32_t llama_kv_cache_unified::get_n() const {
- return n;
- }
- uint32_t llama_kv_cache_unified::get_size() const {
- return cells.size();
- }
- ggml_tensor * llama_kv_cache_unified::get_k(ggml_context * ctx, int32_t il) const {
- const int32_t ikv = map_layer_ids.at(il);
- auto * k = layers[ikv].k;
- return ggml_view_3d(ctx, k,
- hparams.n_embd_head_k, hparams.n_head_kv(il), n,
- ggml_row_size(k->type, hparams.n_embd_head_k),
- ggml_row_size(k->type, hparams.n_embd_k_gqa(il)),
- 0);
- }
- ggml_tensor * llama_kv_cache_unified::get_v(ggml_context * ctx, int32_t il) const {
- const int32_t ikv = map_layer_ids.at(il);
- auto * v = layers[ikv].v;
- if (!v_trans) {
- // note: v->nb[1] <= v->nb[2]
- return ggml_view_3d(ctx, v,
- hparams.n_embd_head_v, hparams.n_head_kv(il), n,
- ggml_row_size(v->type, hparams.n_embd_head_v), // v->nb[1]
- ggml_row_size(v->type, hparams.n_embd_v_gqa(il)), // v->nb[2]
- 0);
- }
- // note: v->nb[1] > v->nb[2]
- return ggml_view_3d(ctx, v,
- n, hparams.n_head_kv(il), hparams.n_embd_head_v,
- ggml_row_size(v->type, v->ne[1]*hparams.n_embd_head_v), // v->nb[1]
- ggml_row_size(v->type, v->ne[1]), // v->nb[2]
- 0);
- }
- ggml_tensor * llama_kv_cache_unified::cpy_k(ggml_context * ctx, ggml_tensor * k_cur, int32_t il) const {
- const int32_t ikv = map_layer_ids.at(il);
- auto * k = layers[ikv].k;
- const int64_t n_tokens = k_cur->ne[2];
- ggml_tensor * k_view = ggml_view_1d(ctx, k,
- n_tokens*hparams.n_embd_k_gqa(il),
- ggml_row_size(k->type, hparams.n_embd_k_gqa(il))*head);
- return ggml_cpy(ctx, k_cur, k_view);
- }
- ggml_tensor * llama_kv_cache_unified::cpy_v(ggml_context * ctx, ggml_tensor * v_cur, int32_t il) const {
- const int32_t ikv = map_layer_ids.at(il);
- auto * v = layers[ikv].v;
- const int64_t n_tokens = v_cur->ne[2];
- v_cur = ggml_reshape_2d(ctx, v_cur, hparams.n_embd_v_gqa(il), n_tokens);
- ggml_tensor * v_view = nullptr;
- if (!v_trans) {
- v_view = ggml_view_1d(ctx, v,
- n_tokens*hparams.n_embd_v_gqa(il),
- ggml_row_size(v->type, hparams.n_embd_v_gqa(il))*head);
- } else {
- // note: the V cache is transposed when not using flash attention
- v_view = ggml_view_2d(ctx, v, n_tokens, hparams.n_embd_v_gqa(il),
- (v->ne[1])*ggml_element_size(v),
- ( head)*ggml_element_size(v));
- v_cur = ggml_transpose(ctx, v_cur);
- }
- return ggml_cpy(ctx, v_cur, v_view);
- }
- void llama_kv_cache_unified::prune_swa(llama_seq_id seq_id, llama_pos pmin, llama_pos pmax) {
- // no pruning is needed when the cache does not use SWA
- GGML_ASSERT(swa_type != LLAMA_SWA_TYPE_NONE && "do not prune non-SWA cache");
- int n_attended = 0;
- for (uint32_t i = 0; i < cells.size(); ++i) {
- if (!cells.seq_has(i, seq_id)) {
- continue;
- }
- const llama_pos p0 = cells.pos_get(i);
- if (p0 <= pmin && !is_masked_swa(p0, pmin)) {
- n_attended++;
- }
- if (is_masked_swa(p0, pmax)) {
- cells.seq_rm(i, seq_id);
- }
- }
- if (n_attended < std::min<int>(n_swa, pmin)) {
- LLAMA_LOG_WARN("%s: partial SWA cache detected - possible loss of information, pmin = %d, n_attended = %d, n_swa = %d\n", __func__, pmin, n_attended, n_swa);
- }
- }
- void llama_kv_cache_unified::set_input_kq_mask(ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const {
- const int64_t n_tokens = ubatch->n_tokens;
- const int64_t n_seq_tokens = ubatch->n_seq_tokens;
- const int64_t n_seqs = ubatch->n_seqs;
- GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer));
- float * data = (float *) dst->data;
- const int64_t n_kv = n;
- // Use only the previous KV cells of the correct sequence for each token of the ubatch.
- // It's assumed that if a token in the batch has multiple sequences, they are equivalent.
- // Example with a cache of 10 tokens, 2 tokens populated in cache and 3 tokens in batch:
- // Causal mask:
- // xxx-------
- // xxxx------
- // xxxxx-----
- // Non-causal mask:
- // xxxxx-----
- // xxxxx-----
- // xxxxx-----
- // To visualize the mask, see https://github.com/ggml-org/llama.cpp/pull/12615
- for (int h = 0; h < 1; ++h) {
- for (int s = 0; s < n_seqs; ++s) {
- const llama_seq_id seq_id = ubatch->seq_id[s][0];
- for (int j = 0; j < n_seq_tokens; ++j) {
- const llama_pos p1 = ubatch->pos[s*n_seq_tokens + j];
- for (int i = 0; i < n_kv; ++i) {
- float f = 0.0f;
- bool masked = false;
- if (cells.is_empty(i)) {
- masked = true;
- } else {
- const llama_pos p0 = cells.pos_get(i);
- // mask the token if not the same sequence
- masked = masked || (!cells.seq_has(i, seq_id));
- // mask future tokens
- masked = masked || (causal_attn && p0 > p1);
- // apply SWA if any
- masked = masked || (is_masked_swa(p0, p1));
- if (!masked && hparams.use_alibi) {
- f = -std::abs(p0 - p1);
- }
- }
- if (masked) {
- f = -INFINITY;
- }
- data[h*(n_kv*n_tokens) + s*(n_kv*n_seq_tokens) + j*n_kv + i] = f;
- }
- }
- }
- // mask padded tokens
- if (data) {
- for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
- for (int j = 0; j < n_kv; ++j) {
- data[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY;
- }
- }
- }
- }
- }
- void llama_kv_cache_unified::set_input_k_shift(ggml_tensor * dst) const {
- GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer));
- int32_t * data = (int32_t *) dst->data;
- for (uint32_t i = 0; i < cells.size(); ++i) {
- data[i] = cells.is_empty(i) ? 0 : cells.get_shift(i);
- }
- }
- void llama_kv_cache_unified::set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch * ubatch) const {
- const int64_t n_tokens = ubatch->n_tokens;
- GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer));
- GGML_ASSERT(!ubatch->equal_seqs); // TODO: use ubatch->n_seqs instead of failing
- int32_t * data = (int32_t *) dst->data;
- const int64_t n_kv = n;
- for (int h = 0; h < 1; ++h) {
- for (int j = 0; j < n_tokens; ++j) {
- for (int i = 0; i < n_kv; ++i) {
- // the position when the cells is empty is irrelevant - it will be masked out later in the attention
- const llama_pos p0 = cells.is_empty(i) ? -1 : cells.pos_get(i);
- data[h*(n_kv*n_tokens) + j*n_kv + i] = llama_relative_position_bucket(p0, ubatch->pos[j], hparams.n_rel_attn_bkts, false);
- }
- }
- }
- }
- size_t llama_kv_cache_unified::total_size() const {
- size_t size = 0;
- for (const auto & buf : bufs) {
- size += ggml_backend_buffer_get_size(buf.get());
- }
- return size;
- }
- size_t llama_kv_cache_unified::size_k_bytes() const {
- size_t size_k_bytes = 0;
- for (const auto & layer : layers) {
- size_k_bytes += ggml_nbytes(layer.k);
- }
- return size_k_bytes;
- }
- size_t llama_kv_cache_unified::size_v_bytes() const {
- size_t size_v_bytes = 0;
- for (const auto & layer : layers) {
- size_v_bytes += ggml_nbytes(layer.v);
- }
- return size_v_bytes;
- }
- ggml_tensor * llama_kv_cache_unified::build_rope_shift(
- const llama_cparams & cparams,
- ggml_context * ctx,
- ggml_tensor * cur,
- ggml_tensor * shift,
- ggml_tensor * factors,
- float freq_base,
- float freq_scale) const {
- const auto & n_ctx_orig = cparams.n_ctx_orig_yarn;
- const auto & yarn_ext_factor = cparams.yarn_ext_factor;
- const auto & yarn_beta_fast = cparams.yarn_beta_fast;
- const auto & yarn_beta_slow = cparams.yarn_beta_slow;
- const auto & n_rot = hparams.n_rot;
- const auto & rope_type = hparams.rope_type;
- // See llm_build_deepseek2() for why attn_factor has to be scaled for YaRN RoPE to work correctly.
- // See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation.
- const float yarn_attn_factor = model.arch == LLM_ARCH_DEEPSEEK2 ? 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale)) : cparams.yarn_attn_factor;
- ggml_tensor * tmp;
- if (ggml_is_quantized(cur->type)) {
- // dequantize to f32 -> RoPE -> quantize back
- tmp = ggml_cast(ctx, cur, GGML_TYPE_F32);
- tmp = ggml_rope_ext(ctx, tmp,
- shift, factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- yarn_ext_factor, yarn_attn_factor, yarn_beta_fast, yarn_beta_slow);
- tmp = ggml_cpy(ctx, tmp, cur);
- } else {
- // we rotate only the first n_rot dimensions
- tmp = ggml_rope_ext_inplace(ctx, cur,
- shift, factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
- yarn_ext_factor, yarn_attn_factor, yarn_beta_fast, yarn_beta_slow);
- }
- return tmp;
- }
- class llm_graph_input_k_shift : public llm_graph_input_i {
- public:
- llm_graph_input_k_shift(const llama_kv_cache_unified * kv_self) : kv_self(kv_self) {}
- virtual ~llm_graph_input_k_shift() = default;
- void set_input(const llama_ubatch * ubatch) override;
- ggml_tensor * k_shift; // I32 [kv_size]
- const llama_kv_cache_unified * kv_self;
- };
- void llm_graph_input_k_shift::set_input(const llama_ubatch * ubatch) {
- GGML_UNUSED(ubatch);
- if (k_shift) {
- kv_self->set_input_k_shift(k_shift);
- }
- }
- llm_graph_result_ptr llama_kv_cache_unified::build_graph_shift(
- const llama_cparams & cparams,
- ggml_context * ctx,
- ggml_cgraph * gf) const {
- auto res = std::make_unique<llm_graph_result>();
- const auto & n_embd_head_k = hparams.n_embd_head_k;
- //const auto & n_embd_head_v = hparams.n_embd_head_v;
- //GGML_ASSERT(kv_self->size == n_ctx);
- auto inp = std::make_unique<llm_graph_input_k_shift>(this);
- inp->k_shift = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, cparams.n_ctx);
- ggml_set_input(inp->k_shift);
- for (const auto & layer : layers) {
- const uint32_t il = layer.il;
- const int64_t n_head_kv = hparams.n_head_kv(il);
- const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
- const float freq_base_l = model.get_rope_freq_base (cparams, il);
- const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
- ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
- ggml_tensor * k =
- ggml_view_3d(ctx, layer.k,
- n_embd_head_k, n_head_kv, cells.size(),
- ggml_row_size(layer.k->type, n_embd_head_k),
- ggml_row_size(layer.k->type, n_embd_k_gqa),
- 0);
- ggml_tensor * cur = build_rope_shift(cparams, ctx, k, inp->k_shift, rope_factors, freq_base_l, freq_scale_l);
- ggml_build_forward_expand(gf, cur);
- }
- res->add_input(std::move(inp));
- return res;
- }
- llm_graph_result_ptr llama_kv_cache_unified::build_graph_defrag(
- const llama_cparams & cparams,
- ggml_context * ctx,
- ggml_cgraph * gf) const {
- auto res = std::make_unique<llm_graph_result>();
- const auto & ids = defrag_info.ids;
- #if 0
- // CPU defrag
- //
- // TODO: optimizations are possible:
- // - multiple threads
- // - avoid copying to the host memory when already there
- //
- // likely not worth the effort, as we have ggml_graph based defrag
- //
- const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
- const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
- const uint32_t kv_size = size;
- std::vector<uint8_t> buf_k;
- std::vector<uint8_t> buf_v;
- for (uint32_t il = 0; il < n_layer; ++il) {
- const size_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa);
- const size_t k_size = ggml_row_size(k_l[il]->type, n_embd_k_gqa*kv_size);
- const size_t v_size_el = ggml_type_size(v_l[il]->type);
- const size_t v_size = ggml_row_size (v_l[il]->type, n_embd_v_gqa*kv_size);
- buf_k.resize(k_size);
- buf_v.resize(v_size);
- ggml_backend_tensor_get(k_l[il], buf_k.data(), 0, buf_k.size());
- ggml_backend_tensor_get(v_l[il], buf_v.data(), 0, buf_v.size());
- // batch move [i, i+nm) to [id, id+nm)
- // note: cells can move only to a lower index
- for (uint32_t i = 0; i < n_kv; ++i) {
- const uint32_t id = ids[i];
- if (i == id || id == n_kv) {
- continue;
- }
- uint32_t nm = 1;
- while (i + nm < n_kv && ids[i + nm] == id + nm) {
- nm++;
- }
- // move keys
- {
- const int64_t os = i*k_size_row;
- const int64_t od = id*k_size_row;
- memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
- }
- // move values (note: they are transposed)
- {
- const int64_t os = i;
- const int64_t od = id;
- for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
- memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
- }
- }
- i += nm - 1;
- }
- ggml_backend_tensor_set(k_l[il], buf_k.data(), 0, buf_k.size());
- ggml_backend_tensor_set(v_l[il], buf_v.data(), 0, buf_v.size());
- }
- #else
- for (uint32_t i = 0; i < ids.size(); ++i) {
- const uint32_t id = ids[i];
- if (i == id || id == ids.size()) {
- continue;
- }
- uint32_t nm = 1;
- while (i + nm < ids.size() && ids[i + nm] == id + nm) {
- nm++;
- }
- for (const auto & layer : layers) {
- const uint32_t il = layer.il;
- const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
- const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
- ggml_tensor * view_k_src = ggml_view_2d(ctx, layer.k,
- n_embd_k_gqa, nm,
- ggml_row_size(layer.k->type, n_embd_k_gqa),
- ggml_row_size(layer.k->type, n_embd_k_gqa*i));
- ggml_tensor * view_k_dst = ggml_view_2d(ctx, layer.k,
- n_embd_k_gqa, nm,
- ggml_row_size(layer.k->type, n_embd_k_gqa),
- ggml_row_size(layer.k->type, n_embd_k_gqa*id));
- ggml_tensor * view_v_src;
- ggml_tensor * view_v_dst;
- if (cparams.flash_attn) {
- // NOTE: the V cache is not transposed when using flash attention
- view_v_src = ggml_view_2d(ctx, layer.v,
- n_embd_v_gqa, nm,
- ggml_row_size(layer.v->type, n_embd_v_gqa),
- ggml_row_size(layer.v->type, n_embd_v_gqa*i));
- view_v_dst = ggml_view_2d(ctx, layer.v,
- n_embd_v_gqa, nm,
- ggml_row_size(layer.v->type, n_embd_v_gqa),
- ggml_row_size(layer.v->type, n_embd_v_gqa*id));
- } else {
- view_v_src = ggml_view_2d(ctx, layer.v,
- nm, n_embd_v_gqa,
- ggml_row_size(layer.v->type, cells.size()),
- ggml_row_size(layer.v->type, i));
- view_v_dst = ggml_view_2d(ctx, layer.v,
- nm, n_embd_v_gqa,
- ggml_row_size(layer.v->type, cells.size()),
- ggml_row_size(layer.v->type, id));
- }
- ggml_build_forward_expand(gf, ggml_cpy(ctx, view_k_src, view_k_dst));
- ggml_build_forward_expand(gf, ggml_cpy(ctx, view_v_src, view_v_dst));
- }
- i += nm - 1;
- }
- //LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
- #endif
- return res;
- }
- bool llama_kv_cache_unified::defrag_prepare(int32_t n_max_nodes) {
- const uint32_t n_layer = layers.size();
- const uint32_t n_kv = cells.used_max_p1();
- const uint32_t n_used = cells.get_used();
- assert(n_used <= n_kv);
- //const int64_t t_start = ggml_time_us();
- // number of cells moved
- uint32_t n_moves = 0;
- // each move requires 6*n_layer tensors (see graph_build_kv_self_defrag)
- // - source view, destination view, copy operation
- // - x2 for keys and values
- //const uint32_t max_moves = max_nodes()/(6*n_layer);
- // TODO: tmp fix https://github.com/ggerganov/llama.cpp/issues/6685#issuecomment-2057579516
- const uint32_t max_moves = (n_max_nodes - 2*n_layer)/(6*n_layer);
- // determine which KV cells to move where
- //
- // cell i moves to ids[i]
- //
- // if ids[i] == i || ids[i] == n_kv, then cell i is not moved
- //
- auto & ids = defrag_info.ids;
- ids.clear();
- ids.resize(n_kv, n_kv);
- for (uint32_t i0 = 0; i0 < n_used; ++i0) {
- if (!cells.is_empty(i0)) {
- ids[i0] = i0;
- continue;
- }
- // found a hole - fill it with data from the end of the cache
- uint32_t nh = 1;
- // determine the size of the hole
- while (i0 + nh < n_used && cells.is_empty(i0 + nh)) {
- nh++;
- }
- uint32_t nf = 0;
- uint32_t is = n_kv - 1;
- // starting from the end, find nh non-empty cells
- for (; is > i0; --is) {
- if (cells.is_empty(is) || ids[is] != n_kv) {
- continue;
- }
- // non-empty cell which is not yet moved
- nf++;
- if (nf == nh) {
- break;
- }
- }
- // this can only happen if `n_used` is not accurate, which would be a bug
- GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh");
- nf = 0;
- uint32_t i1 = is;
- // are we moving a continuous block of memory?
- bool cont = false;
- // should we stop searching for the next move?
- bool stop = false;
- // go back and move the nf cells to the hole
- for (; i1 < n_kv; ++i1) {
- if (cells.is_empty(i1) || ids[i1] != n_kv) {
- if (n_moves == max_moves) {
- stop = true;
- break;
- }
- cont = false;
- continue;
- }
- // this cell goes to (i0 + nf)
- ids[i1] = i0 + nf;
- // move the cell meta data
- cells.mv(i1, i0 + nf);
- head = n_used;
- if (!cont) {
- n_moves++;
- cont = true;
- }
- nf++;
- if (nf == nh) {
- break;
- }
- }
- if (stop || n_moves == max_moves) {
- break;
- }
- //LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh);
- i0 += nh - 1;
- }
- if (n_moves == 0) {
- return false;
- }
- LLAMA_LOG_DEBUG("%s: (tmp log) KV defrag cell moves: %u\n", __func__, n_moves);
- LLAMA_LOG_DEBUG("%s: expected gf nodes: %u\n", __func__, 6*n_moves*n_layer);
- return true;
- }
- bool llama_kv_cache_unified::is_masked_swa(llama_pos p0, llama_pos p1) const {
- assert(p0 >= 0 && p1 >= 0);
- switch (swa_type) {
- case LLAMA_SWA_TYPE_NONE:
- {
- } break;
- case LLAMA_SWA_TYPE_STANDARD:
- {
- if (p1 - p0 >= (int32_t) n_swa) {
- return true;
- }
- } break;
- case LLAMA_SWA_TYPE_CHUNKED:
- {
- const llama_pos pos_chunk_start = (p1 / n_swa) * n_swa;
- if (p0 < pos_chunk_start) {
- return true;
- }
- } break;
- }
- return false;
- }
- void llama_kv_cache_unified::state_write(llama_io_write_i & io, llama_seq_id seq_id) const {
- std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive
- uint32_t cell_count = 0;
- // Count the number of cells with the specified seq_id
- // Find all the ranges of cells with this seq id (or all, when -1)
- uint32_t cell_range_begin = cells.size();
- for (uint32_t i = 0; i < cells.size(); ++i) {
- if (!cells.is_empty(i) && (seq_id == -1 || cells.seq_has(i, seq_id))) {
- ++cell_count;
- if (cell_range_begin == cells.size()) {
- cell_range_begin = i;
- }
- } else {
- if (cell_range_begin != cells.size()) {
- cell_ranges.emplace_back(cell_range_begin, i);
- cell_range_begin = cells.size();
- }
- }
- }
- if (cell_range_begin != cells.size()) {
- cell_ranges.emplace_back(cell_range_begin, cells.size());
- }
- // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count
- uint32_t cell_count_check = 0;
- for (const auto & range : cell_ranges) {
- cell_count_check += range.second - range.first;
- }
- GGML_ASSERT(cell_count == cell_count_check);
- io.write(&cell_count, sizeof(cell_count));
- state_write_meta(io, cell_ranges, seq_id);
- state_write_data(io, cell_ranges);
- }
- void llama_kv_cache_unified::state_read(llama_io_read_i & io, llama_seq_id seq_id) {
- uint32_t cell_count;
- io.read_to(&cell_count, sizeof(cell_count));
- bool res = true;
- res = res && state_read_meta(io, cell_count, seq_id);
- res = res && state_read_data(io, cell_count);
- if (!res) {
- if (seq_id == -1) {
- clear();
- } else {
- seq_rm(seq_id, -1, -1);
- }
- throw std::runtime_error("failed to restore kv cache");
- }
- }
- void llama_kv_cache_unified::state_write_meta(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id) const {
- for (const auto & range : cell_ranges) {
- for (uint32_t i = range.first; i < range.second; ++i) {
- std::vector<llama_seq_id> seq_ids;
- for (llama_seq_id cur = 0; cur < (int) n_seq_max; ++cur) {
- if (cur == seq_id || seq_id == -1) {
- if (cells.seq_has(i, cur)) {
- seq_ids.push_back(cur);
- }
- }
- }
- const llama_pos pos = cells.pos_get(i);
- const uint32_t n_seq_id = seq_ids.size();
- io.write(&pos, sizeof(pos));
- io.write(&n_seq_id, sizeof(n_seq_id));
- for (const auto & seq_id : seq_ids) {
- io.write(&seq_id, sizeof(seq_id));
- }
- }
- }
- }
- void llama_kv_cache_unified::state_write_data(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) const {
- const uint32_t v_trans = this->v_trans ? 1 : 0;
- const uint32_t n_layer = layers.size();
- io.write(&v_trans, sizeof(v_trans));
- io.write(&n_layer, sizeof(n_layer));
- std::vector<uint8_t> tmp_buf;
- // Iterate and write all the keys first, each row is a cell
- // Get whole range at a time
- for (const auto & layer : layers) {
- const uint32_t il = layer.il;
- const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s();
- // Write key type
- const int32_t k_type_i = (int32_t)layer.k->type;
- io.write(&k_type_i, sizeof(k_type_i));
- // Write row size of key
- const uint64_t k_size_row = ggml_row_size(layer.k->type, n_embd_k_gqa);
- io.write(&k_size_row, sizeof(k_size_row));
- // Read each range of cells of k_size length each into tmp_buf and write out
- for (const auto & range : cell_ranges) {
- const size_t range_size = range.second - range.first;
- const size_t buf_size = range_size * k_size_row;
- io.write_tensor(layer.k, range.first * k_size_row, buf_size);
- }
- }
- if (!v_trans) {
- for (const auto & layer : layers) {
- const uint32_t il = layer.il;
- const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
- // Write value type
- const int32_t v_type_i = (int32_t)layer.v->type;
- io.write(&v_type_i, sizeof(v_type_i));
- // Write row size of value
- const uint64_t v_size_row = ggml_row_size(layer.v->type, n_embd_v_gqa);
- io.write(&v_size_row, sizeof(v_size_row));
- // Read each range of cells of v_size length each into tmp_buf and write out
- for (const auto & range : cell_ranges) {
- const size_t range_size = range.second - range.first;
- const size_t buf_size = range_size * v_size_row;
- io.write_tensor(layer.v, range.first * v_size_row, buf_size);
- }
- }
- } else {
- // When v is transposed, we also need the element size and get the element ranges from each row
- const uint32_t kv_size = cells.size();
- for (const auto & layer : layers) {
- const uint32_t il = layer.il;
- const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
- // Write value type
- const int32_t v_type_i = (int32_t)layer.v->type;
- io.write(&v_type_i, sizeof(v_type_i));
- // Write element size
- const uint32_t v_size_el = ggml_type_size(layer.v->type);
- io.write(&v_size_el, sizeof(v_size_el));
- // Write GQA embedding size
- io.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa));
- // For each row, we get the element values of each cell
- for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
- // Read each range of cells of v_size_el length each into tmp_buf and write out
- for (const auto & range : cell_ranges) {
- const size_t range_size = range.second - range.first;
- const size_t src_offset = (range.first + j * kv_size) * v_size_el;
- const size_t buf_size = range_size * v_size_el;
- io.write_tensor(layer.v, src_offset, buf_size);
- }
- }
- }
- }
- }
- bool llama_kv_cache_unified::state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id) {
- if (dest_seq_id != -1) {
- // single sequence
- seq_rm(dest_seq_id, -1, -1);
- llama_sbatch sbatch;
- llama_ubatch batch = sbatch.reserve_ubatch(cell_count, /* has_embd */ false);
- batch.n_tokens = cell_count;
- for (uint32_t i = 0; i < cell_count; ++i) {
- llama_pos pos;
- uint32_t n_seq_id;
- io.read_to(&pos, sizeof(pos));
- io.read_to(&n_seq_id, sizeof(n_seq_id));
- if (n_seq_id != 1) {
- LLAMA_LOG_ERROR("%s: invalid seq_id-agnostic kv cell\n", __func__);
- return false;
- }
- // read the sequence id, but directly discard it - we will use dest_seq_id instead
- {
- llama_seq_id seq_id;
- io.read_to(&seq_id, sizeof(seq_id));
- }
- batch.pos[i] = pos;
- batch.n_seq_id[i] = n_seq_id;
- batch.seq_id[i] = &dest_seq_id;
- }
- if (!find_slot(batch)) {
- LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
- return false;
- }
- commit();
- // DEBUG CHECK: kv.head should be our first cell, kv.head + cell_count - 1 should be our last cell (verify seq_id and pos values)
- // Assume that this is one contiguous block of cells
- GGML_ASSERT(head + cell_count <= cells.size());
- GGML_ASSERT(cells.pos_get(head) == batch.pos[0]);
- GGML_ASSERT(cells.pos_get(head + cell_count - 1) == batch.pos[cell_count - 1]);
- GGML_ASSERT(cells.seq_has(head, dest_seq_id));
- GGML_ASSERT(cells.seq_has(head + cell_count - 1, dest_seq_id));
- } else {
- // whole KV cache restore
- if (cell_count > cells.size()) {
- LLAMA_LOG_ERROR("%s: not enough cells in kv cache\n", __func__);
- return false;
- }
- clear();
- for (uint32_t i = 0; i < cell_count; ++i) {
- llama_pos pos;
- uint32_t n_seq_id;
- io.read_to(&pos, sizeof(pos));
- io.read_to(&n_seq_id, sizeof(n_seq_id));
- cells.pos_set(i, pos);
- for (uint32_t j = 0; j < n_seq_id; ++j) {
- llama_seq_id seq_id;
- io.read_to(&seq_id, sizeof(seq_id));
- if (seq_id < 0 || (uint32_t) seq_id >= n_seq_max) {
- LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, %u)\n", __func__, seq_id, n_seq_max);
- return false;
- }
- cells.seq_add(i, seq_id);
- }
- }
- head = 0;
- }
- return true;
- }
- bool llama_kv_cache_unified::state_read_data(llama_io_read_i & io, uint32_t cell_count) {
- uint32_t v_trans;
- uint32_t n_layer;
- io.read_to(&v_trans, sizeof(v_trans));
- io.read_to(&n_layer, sizeof(n_layer));
- if (n_layer != layers.size()) {
- LLAMA_LOG_ERROR("%s: mismatched layer count (%u instead of %u)\n", __func__, n_layer, (uint32_t) layers.size());
- return false;
- }
- if (cell_count > cells.size()) {
- LLAMA_LOG_ERROR("%s: not enough cells in kv cache to restore state (%u > %u)\n", __func__, cell_count, cells.size());
- return false;
- }
- if (this->v_trans != (bool) v_trans) {
- LLAMA_LOG_ERROR("%s: incompatible V transposition\n", __func__);
- return false;
- }
- // For each layer, read the keys for each cell, one row is one cell, read as one contiguous block
- for (const auto & layer : layers) {
- const uint32_t il = layer.il;
- const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s();
- // Read type of key
- int32_t k_type_i_ref;
- io.read_to(&k_type_i_ref, sizeof(k_type_i_ref));
- const int32_t k_type_i = (int32_t) layer.k->type;
- if (k_type_i != k_type_i_ref) {
- LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il);
- return false;
- }
- // Read row size of key
- uint64_t k_size_row_ref;
- io.read_to(&k_size_row_ref, sizeof(k_size_row_ref));
- const size_t k_size_row = ggml_row_size(layer.k->type, n_embd_k_gqa);
- if (k_size_row != k_size_row_ref) {
- LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, (size_t) k_size_row_ref, il);
- return false;
- }
- if (cell_count) {
- // Read and set the keys for the whole cell range
- ggml_backend_tensor_set(layer.k, io.read(cell_count * k_size_row), head * k_size_row, cell_count * k_size_row);
- }
- }
- if (!this->v_trans) {
- for (const auto & layer : layers) {
- const uint32_t il = layer.il;
- const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
- // Read type of value
- int32_t v_type_i_ref;
- io.read_to(&v_type_i_ref, sizeof(v_type_i_ref));
- const int32_t v_type_i = (int32_t)layer.v->type;
- if (v_type_i != v_type_i_ref) {
- LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
- return false;
- }
- // Read row size of value
- uint64_t v_size_row_ref;
- io.read_to(&v_size_row_ref, sizeof(v_size_row_ref));
- const size_t v_size_row = ggml_row_size(layer.v->type, n_embd_v_gqa);
- if (v_size_row != v_size_row_ref) {
- LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, (size_t) v_size_row_ref, il);
- return false;
- }
- if (cell_count) {
- // Read and set the values for the whole cell range
- ggml_backend_tensor_set(layer.v, io.read(cell_count * v_size_row), head * v_size_row, cell_count * v_size_row);
- }
- }
- } else {
- // For each layer, read the values for each cell (transposed)
- for (const auto & layer : layers) {
- const uint32_t il = layer.il;
- const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
- // Read type of value
- int32_t v_type_i_ref;
- io.read_to(&v_type_i_ref, sizeof(v_type_i_ref));
- const int32_t v_type_i = (int32_t)layer.v->type;
- if (v_type_i != v_type_i_ref) {
- LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
- return false;
- }
- // Read element size of value
- uint32_t v_size_el_ref;
- io.read_to(&v_size_el_ref, sizeof(v_size_el_ref));
- const size_t v_size_el = ggml_type_size(layer.v->type);
- if (v_size_el != v_size_el_ref) {
- LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, (size_t) v_size_el_ref, il);
- return false;
- }
- // Read GQA embedding size
- uint32_t n_embd_v_gqa_ref;
- io.read_to(&n_embd_v_gqa_ref, sizeof(n_embd_v_gqa_ref));
- if (n_embd_v_gqa != n_embd_v_gqa_ref) {
- LLAMA_LOG_ERROR("%s: mismatched GQA embedding size (%u != %u, layer %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref, il);
- return false;
- }
- if (cell_count) {
- // For each row in the transposed matrix, read the values for the whole cell range
- for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
- const size_t dst_offset = (head + j * cells.size()) * v_size_el;
- ggml_backend_tensor_set(layer.v, io.read(cell_count * v_size_el), dst_offset, cell_count * v_size_el);
- }
- }
- }
- }
- return true;
- }
- //
- // llama_kv_cache_unified_iswa
- //
- llama_kv_cache_unified_iswa::llama_kv_cache_unified_iswa(
- const llama_model & model,
- ggml_type type_k,
- ggml_type type_v,
- bool v_trans,
- bool offload,
- bool swa_full,
- uint32_t kv_size,
- uint32_t n_seq_max,
- uint32_t n_batch,
- uint32_t n_pad) : hparams(model.hparams) {
- llama_kv_cache_unified::layer_filter_cb filter_base = [&](int32_t il) { return !model.hparams.is_swa(il); };
- llama_kv_cache_unified::layer_filter_cb filter_swa = [&](int32_t il) { return model.hparams.is_swa(il); };
- const uint32_t size_base = kv_size;
- uint32_t size_swa = std::min(size_base, GGML_PAD(hparams.n_swa*n_seq_max + n_batch, n_pad));
- // when using full-size SWA cache, we set the SWA cache size to be equal to the base cache size and disable pruning
- if (swa_full) {
- LLAMA_LOG_WARN("%s: using full-size SWA cache (ref: %s)\n",
- __func__, "https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055");
- size_swa = size_base;
- do_prune = false;
- }
- LLAMA_LOG_INFO("%s: creating non-SWA KV cache, size = %u cells\n", __func__, size_base);
- kv_base = std::make_unique<llama_kv_cache_unified>(
- model, std::move(filter_base), type_k, type_v,
- v_trans, offload, size_base, n_seq_max, n_pad,
- 0, LLAMA_SWA_TYPE_NONE);
- LLAMA_LOG_INFO("%s: creating SWA KV cache, size = %u cells\n", __func__, size_swa);
- kv_swa = std::make_unique<llama_kv_cache_unified>(
- model, std::move(filter_swa), type_k, type_v,
- v_trans, offload, size_swa, n_seq_max, n_pad,
- hparams.n_swa, hparams.swa_type);
- }
- void llama_kv_cache_unified_iswa::clear() {
- kv_base->clear();
- kv_swa ->clear();
- }
- bool llama_kv_cache_unified_iswa::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
- bool res = true;
- res = res & kv_base->seq_rm(seq_id, p0, p1);
- res = res & kv_swa ->seq_rm(seq_id, p0, p1);
- return res;
- }
- void llama_kv_cache_unified_iswa::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
- kv_base->seq_cp(seq_id_src, seq_id_dst, p0, p1);
- kv_swa ->seq_cp(seq_id_src, seq_id_dst, p0, p1);
- }
- void llama_kv_cache_unified_iswa::seq_keep(llama_seq_id seq_id) {
- kv_base->seq_keep(seq_id);
- kv_swa ->seq_keep(seq_id);
- }
- void llama_kv_cache_unified_iswa::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) {
- kv_base->seq_add(seq_id, p0, p1, shift);
- kv_swa ->seq_add(seq_id, p0, p1, shift);
- }
- void llama_kv_cache_unified_iswa::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
- kv_base->seq_div(seq_id, p0, p1, d);
- kv_swa ->seq_div(seq_id, p0, p1, d);
- }
- llama_pos llama_kv_cache_unified_iswa::seq_pos_min(llama_seq_id seq_id) const {
- // the base cache is a superset of the SWA cache, so we can just check the SWA cache
- return kv_swa->seq_pos_min(seq_id);
- }
- llama_pos llama_kv_cache_unified_iswa::seq_pos_max(llama_seq_id seq_id) const {
- return kv_swa->seq_pos_max(seq_id);
- }
- void llama_kv_cache_unified_iswa::restore() {
- kv_base->restore();
- kv_swa ->restore();
- }
- void llama_kv_cache_unified_iswa::commit() {
- kv_base->commit();
- kv_swa ->commit();
- // slide the attention window, forgetting/pruning old tokens that are outside the window
- if (do_prune) {
- for (const auto & [seq_id, entry] : pending.pos) {
- kv_swa->prune_swa(seq_id, entry.pmin, entry.pmax);
- }
- }
- pending.clear();
- }
- bool llama_kv_cache_unified_iswa::update(llama_context & lctx) {
- bool res = true;
- res = res & kv_base->update(lctx);
- res = res & kv_swa ->update(lctx);
- return res;
- }
- void llama_kv_cache_unified_iswa::defrag_sched(float thold) {
- kv_base->defrag_sched(thold);
- kv_swa ->defrag_sched(thold);
- }
- void llama_kv_cache_unified_iswa::set_full() {
- kv_base->set_full();
- kv_swa ->set_full();
- }
- llama_sbatch llama_kv_cache_unified_iswa::sbatch_init(const llama_batch & batch, bool logits_all) {
- pending.clear();
- if (do_prune) {
- for (int i = 0; i < batch.n_tokens; ++i) {
- for (int s = 0; s < batch.n_seq_id[i]; ++s) {
- const llama_seq_id seq_id = batch.seq_id[i][s];
- const llama_pos pos = batch.pos[i];
- if (pending.pos.find(seq_id) == pending.pos.end()) {
- pending.pos[seq_id].pmin = pos;
- pending.pos[seq_id].pmax = pos;
- } else {
- pending.pos[seq_id].pmin = std::min(pending.pos[seq_id].pmin, pos);
- pending.pos[seq_id].pmax = std::max(pending.pos[seq_id].pmax, pos);
- }
- }
- }
- }
- return llama_sbatch(batch, hparams.n_embd, true, logits_all);
- }
- llama_ubatch llama_kv_cache_unified_iswa::ubatch_next(llama_sbatch & sbatch, uint32_t n_ubatch, bool embd_pooled) const {
- GGML_UNUSED(embd_pooled);
- return sbatch.split_simple(n_ubatch);
- }
- bool llama_kv_cache_unified_iswa::find_slot(const llama_ubatch & batch) {
- bool res = true;
- res = res & kv_base->find_slot(batch);
- res = res & kv_swa ->find_slot(batch);
- return res;
- }
- bool llama_kv_cache_unified_iswa::get_can_shift() const {
- return kv_base->get_size() == kv_swa->get_size();
- }
- void llama_kv_cache_unified_iswa::state_write(llama_io_write_i & io, llama_seq_id seq_id) const {
- kv_base->state_write(io, seq_id);
- kv_swa ->state_write(io, seq_id);
- }
- void llama_kv_cache_unified_iswa::state_read(llama_io_read_i & io, llama_seq_id seq_id) {
- kv_base->state_read(io, seq_id);
- kv_swa ->state_read(io, seq_id);
- }
- llama_kv_cache_unified * llama_kv_cache_unified_iswa::get_kv_base() const {
- return kv_base.get();
- }
- llama_kv_cache_unified * llama_kv_cache_unified_iswa::get_kv_swa() const {
- return kv_swa.get();
- }
- //
- // llama_kv_cache_recurrent
- //
- llama_kv_cache_recurrent::llama_kv_cache_recurrent(
- const llama_model & model,
- ggml_type type_k,
- ggml_type type_v,
- bool offload,
- uint32_t kv_size,
- uint32_t n_seq_max) : hparams(model.hparams), n_seq_max(n_seq_max) {
- const int32_t n_layer = hparams.n_layer;
- LLAMA_LOG_INFO("%s: kv_size = %u, n_seq_max = %u, type_k = '%s', type_v = '%s', n_layer = %d\n",
- __func__, kv_size, n_seq_max, ggml_type_name(type_k), ggml_type_name(type_v), n_layer);
- head = 0;
- size = kv_size;
- used = 0;
- cells.clear();
- cells.resize(kv_size);
- // create a context for each buffer type
- std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
- auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
- auto it = ctx_map.find(buft);
- if (it == ctx_map.end()) {
- ggml_init_params params = {
- /*.mem_size =*/ size_t(2u*n_layer*ggml_tensor_overhead()),
- /*.mem_buffer =*/ NULL,
- /*.no_alloc =*/ true,
- };
- ggml_context * ctx = ggml_init(params);
- if (!ctx) {
- return nullptr;
- }
- ctx_map[buft] = ctx;
- ctxs.emplace_back(ctx);
- return ctx;
- }
- return it->second;
- };
- k_l.reserve(n_layer);
- v_l.reserve(n_layer);
- for (int i = 0; i < n_layer; i++) {
- const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i) + hparams.n_embd_k_s();
- const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i) + hparams.n_embd_v_s();
- const char * dev_name = "CPU";
- ggml_backend_buffer_type_t buft = ggml_backend_cpu_buffer_type();
- if (offload) {
- auto * dev = model.dev_layer(i);
- buft = ggml_backend_dev_buffer_type(dev);
- dev_name = ggml_backend_dev_name(dev);
- }
- LLAMA_LOG_DEBUG("%s, layer %3d: dev = %s\n", __func__, i, dev_name);
- ggml_context * ctx = ctx_for_buft(buft);
- if (!ctx) {
- throw std::runtime_error("failed to create ggml context for kv cache");
- }
- ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
- ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
- ggml_format_name(k, "cache_k_l%d", i);
- ggml_format_name(v, "cache_v_l%d", i);
- k_l.push_back(k);
- v_l.push_back(v);
- }
- // allocate tensors and initialize the buffers to avoid NaNs in the padding
- for (auto it : ctx_map) {
- auto * buft = it.first;
- auto * ctx = it.second;
- ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
- if (!buf) {
- throw std::runtime_error("failed to allocate buffer for kv cache");
- }
- ggml_backend_buffer_clear(buf, 0);
- LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
- bufs.emplace_back(buf);
- }
- {
- const size_t memory_size_k = size_k_bytes();
- const size_t memory_size_v = size_v_bytes();
- LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
- (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
- ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
- ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
- }
- }
- void llama_kv_cache_recurrent::clear() {
- for (int32_t i = 0; i < (int32_t) size; ++i) {
- cells[i].pos = -1;
- cells[i].seq_id.clear();
- cells[i].src = -1;
- cells[i].tail = -1;
- }
- head = 0;
- used = 0;
- for (auto & buf : bufs) {
- ggml_backend_buffer_clear(buf.get(), 0);
- }
- }
- bool llama_kv_cache_recurrent::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
- uint32_t new_head = size;
- if (p0 < 0) {
- p0 = 0;
- }
- if (p1 < 0) {
- p1 = std::numeric_limits<llama_pos>::max();
- }
- // models like Mamba or RWKV can't have a state partially erased
- if (seq_id >= (int64_t) size) {
- // could be fatal
- return false;
- }
- if (0 <= seq_id) {
- int32_t & tail_id = cells[seq_id].tail;
- if (tail_id >= 0) {
- const kv_cell & cell = cells[tail_id];
- // partial intersection is invalid
- if ((0 < p0 && p0 <= cell.pos) || (0 < p1 && p1 <= cell.pos)) {
- return false;
- }
- // invalidate tails which will be cleared
- if (p0 <= cell.pos && cell.pos < p1) {
- tail_id = -1;
- }
- }
- } else {
- // seq_id is negative, then the range should include everything or nothing
- if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) {
- return false;
- }
- }
- for (uint32_t i = 0; i < size; ++i) {
- if (cells[i].pos >= p0 && cells[i].pos < p1) {
- if (seq_id < 0) {
- cells[i].seq_id.clear();
- } else if (cells[i].has_seq_id(seq_id)) {
- cells[i].seq_id.erase(seq_id);
- } else {
- continue;
- }
- if (cells[i].is_empty()) {
- // keep count of the number of used cells
- if (cells[i].pos >= 0) {
- used--;
- }
- cells[i].pos = -1;
- cells[i].src = -1;
- if (new_head == size) {
- new_head = i;
- }
- }
- }
- }
- // If we freed up a slot, set head to it so searching can start there.
- if (new_head != size && new_head < head) {
- head = new_head;
- }
- return true;
- }
- void llama_kv_cache_recurrent::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
- if (seq_id_src == seq_id_dst) {
- return;
- }
- if (p0 < 0) {
- p0 = 0;
- }
- if (p1 < 0) {
- p1 = std::numeric_limits<llama_pos>::max();
- }
- if ((uint32_t) seq_id_dst < size && (uint32_t) seq_id_src < size) {
- kv_cell & tail_src = cells[seq_id_src];
- kv_cell & tail_dst = cells[seq_id_dst];
- if (tail_dst.tail >= 0) {
- // clear destination seq_id if it wasn't empty
- kv_cell & cell_dst = cells[tail_dst.tail];
- cell_dst.seq_id.erase(seq_id_dst);
- tail_dst.tail = -1;
- if (cell_dst.seq_id.empty()) {
- cell_dst.pos = -1;
- cell_dst.src = -1;
- used -= 1;
- }
- }
- if (tail_src.tail >= 0) {
- kv_cell & cell_src = cells[tail_src.tail];
- cell_src.seq_id.insert(seq_id_dst);
- tail_dst.tail = tail_src.tail;
- }
- }
- }
- void llama_kv_cache_recurrent::seq_keep(llama_seq_id seq_id) {
- uint32_t new_head = size;
- for (uint32_t i = 0; i < size; ++i) {
- if ((llama_seq_id) i != seq_id) {
- cells[i].tail = -1;
- }
- if (!cells[i].has_seq_id(seq_id)) {
- if (cells[i].pos >= 0) {
- used--;
- }
- cells[i].pos = -1;
- cells[i].src = -1;
- cells[i].seq_id.clear();
- if (new_head == size){
- new_head = i;
- }
- } else {
- cells[i].seq_id.clear();
- cells[i].seq_id.insert(seq_id);
- }
- }
- // If we freed up a slot, set head to it so searching can start there.
- if (new_head != size && new_head < head) {
- head = new_head;
- }
- }
- void llama_kv_cache_recurrent::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) {
- if (shift == 0) {
- return;
- }
- if (p0 < 0) {
- p0 = 0;
- }
- if (p1 < 0) {
- p1 = std::numeric_limits<llama_pos>::max();
- }
- // If there is no range then return early to avoid looping over the
- if (p0 == p1) {
- return;
- }
- // for Mamba-like or RWKV models, only the pos needs to be shifted
- if (0 <= seq_id && seq_id < (int64_t) size) {
- const int32_t tail_id = cells[seq_id].tail;
- if (tail_id >= 0) {
- kv_cell & cell = cells[tail_id];
- if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
- cell.pos += shift;
- }
- }
- }
- }
- void llama_kv_cache_recurrent::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
- if (d == 1) {
- return;
- }
- if (p0 < 0) {
- p0 = 0;
- }
- if (p1 < 0) {
- p1 = std::numeric_limits<llama_pos>::max();
- }
- // If there is no range then return early to avoid looping over the cache.
- if (p0 == p1) {
- return;
- }
- // for Mamba-like or RWKV models, only the pos needs to be changed
- if (0 <= seq_id && seq_id < (int64_t) size) {
- const int32_t tail_id = cells[seq_id].tail;
- if (tail_id >= 0) {
- kv_cell & cell = cells[tail_id];
- if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
- cell.pos /= d;
- }
- }
- }
- }
- llama_pos llama_kv_cache_recurrent::seq_pos_min(llama_seq_id seq_id) const {
- llama_pos result = std::numeric_limits<llama_pos>::max();
- for (uint32_t i = 0; i < size; ++i) {
- if (cells[i].has_seq_id(seq_id)) {
- result = std::min(result, cells[i].pos);
- }
- }
- if (result == std::numeric_limits<llama_pos>::max()) {
- result = -1;
- }
- return result;
- }
- llama_pos llama_kv_cache_recurrent::seq_pos_max(llama_seq_id seq_id) const {
- llama_pos result = -1;
- for (uint32_t i = 0; i < size; ++i) {
- if (cells[i].has_seq_id(seq_id)) {
- result = std::max(result, cells[i].pos);
- }
- }
- return result;
- }
- void llama_kv_cache_recurrent::restore() {
- if (pending.ranges.empty()) {
- return;
- }
- seq_rm(-1, -1, -1);
- }
- void llama_kv_cache_recurrent::commit() {
- pending.ranges.clear();
- }
- bool llama_kv_cache_recurrent::update(llama_context & ctx) {
- GGML_UNUSED(ctx);
- return false;
- }
- void llama_kv_cache_recurrent::defrag_sched(float thold) {
- GGML_UNUSED(thold);
- // noop
- }
- void llama_kv_cache_recurrent::set_full() {
- n = size;
- head = 0;
- }
- llama_sbatch llama_kv_cache_recurrent::sbatch_init(
- const llama_batch & batch,
- bool logits_all) {
- return llama_sbatch(batch, hparams.n_embd, false, logits_all);
- }
- llama_ubatch llama_kv_cache_recurrent::ubatch_next(llama_sbatch & sbatch, uint32_t n_ubatch, bool embd_pooled) const {
- if (embd_pooled) {
- // Pooled embeddings cannot be split across ubatches (yet)
- return sbatch.split_seq(n_ubatch);
- }
- return sbatch.split_equal(n_ubatch);
- }
- bool llama_kv_cache_recurrent::find_slot(
- const llama_ubatch & ubatch) {
- const uint32_t n_tokens = ubatch.n_tokens;
- const uint32_t n_seqs = ubatch.n_seqs;
- const uint32_t n_seq_tokens = ubatch.n_seq_tokens;
- // if we have enough unused cells before the current head ->
- // better to start searching from the beginning of the cache, hoping to fill it
- if (head > used + 2*n_tokens) {
- head = 0;
- }
- // For recurrent state architectures (like Mamba or RWKV),
- // each cache cell can store the state for a whole sequence.
- // A slot should be always be contiguous.
- // can only process batches with an equal number of new tokens in each sequence
- GGML_ASSERT(ubatch.equal_seqs);
- int32_t min = size - 1;
- int32_t max = 0;
- // everything should fit if all seq_ids are smaller than the max
- for (uint32_t s = 0; s < n_seqs; ++s) {
- const uint32_t n_seq_id = ubatch.n_seq_id[s];
- for (uint32_t j = 0; j < n_seq_id; ++j) {
- const llama_seq_id seq_id = ubatch.seq_id[s][j];
- if (seq_id < 0 || (uint32_t) seq_id >= size) {
- // too big seq_id
- // TODO: would it be possible to resize the cache instead?
- LLAMA_LOG_ERROR("%s: seq_id=%d >= n_seq_max=%u Try using a bigger --parallel value\n", __func__, seq_id, n_seq_max);
- return false;
- }
- if (j > 0) {
- kv_cell & seq = cells[seq_id];
- if (seq.tail >= 0) {
- kv_cell & cell = cells[seq.tail];
- // clear cells from seq_ids that become shared
- // (should not normally happen, but let's handle it anyway)
- cell.seq_id.erase(seq_id);
- seq.tail = -1;
- if (cell.seq_id.empty()) {
- cell.pos = -1;
- cell.src = -1;
- used -= 1;
- }
- }
- }
- }
- }
- #ifndef NDEBUG
- {
- std::vector<int32_t> tails_verif;
- tails_verif.assign(size, -1);
- for (uint32_t i = 0; i < size; ++i) {
- kv_cell & cell = cells[i];
- for (llama_seq_id seq_id : cell.seq_id) {
- if (tails_verif[seq_id] != -1) {
- LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n", __func__, seq_id, i, tails_verif[seq_id]);
- }
- tails_verif[seq_id] = i;
- }
- }
- for (uint32_t i = 0; i < size; ++i) {
- if (tails_verif[i] != cells[i].tail) {
- LLAMA_LOG_ERROR("%s: wrong tail for seq_id %d, (%d instead of %d)\n", __func__, i, cells[i].tail, tails_verif[i]);
- }
- }
- }
- #endif
- // find next empty cell
- uint32_t next_empty_cell = head;
- for (uint32_t i = 0; i < size; ++i) {
- if (next_empty_cell >= size) { next_empty_cell -= size; }
- kv_cell & cell = cells[next_empty_cell];
- if (cell.is_empty()) { break; }
- next_empty_cell += 1;
- }
- // find usable cell range
- for (uint32_t s = 0; s < n_seqs; ++s) {
- const llama_seq_id seq_id = ubatch.seq_id[s][0];
- kv_cell & seq_meta = cells[seq_id];
- bool has_cell = false;
- if (seq_meta.tail >= 0) {
- kv_cell & cell = cells[seq_meta.tail];
- GGML_ASSERT(cell.has_seq_id(seq_id));
- // does this seq_id "own" the cell?
- if (cell.seq_id.size() == 1) { has_cell = true; }
- }
- if (!has_cell) {
- kv_cell & empty_cell = cells[next_empty_cell];
- GGML_ASSERT(empty_cell.is_empty());
- // copy old tail into the empty cell
- if (seq_meta.tail >= 0) {
- kv_cell & orig_cell = cells[seq_meta.tail];
- empty_cell.pos = orig_cell.pos;
- empty_cell.src = orig_cell.src;
- orig_cell.seq_id.erase(seq_id);
- empty_cell.seq_id.insert(seq_id); // will be overwritten
- }
- seq_meta.tail = next_empty_cell;
- // find next empty cell
- if (s + 1 < n_seqs) {
- next_empty_cell += 1;
- for (uint32_t i = 0; i < size; ++i) {
- if (next_empty_cell >= size) { next_empty_cell -= size; }
- kv_cell & cell = cells[next_empty_cell];
- if (cell.is_empty()) { break; }
- next_empty_cell += 1;
- }
- }
- }
- if (min > seq_meta.tail) { min = seq_meta.tail; }
- if (max < seq_meta.tail) { max = seq_meta.tail; }
- }
- // gather and re-order
- for (uint32_t s = 0; s < n_seqs; ++s) {
- int32_t dst_id = s + min;
- int32_t src_id = cells[ubatch.seq_id[s][0]].tail;
- if (dst_id != src_id) {
- kv_cell & dst_cell = cells[dst_id];
- kv_cell & src_cell = cells[src_id];
- std::swap(dst_cell.pos, src_cell.pos);
- std::swap(dst_cell.src, src_cell.src);
- std::swap(dst_cell.seq_id, src_cell.seq_id);
- // swap tails (assuming they NEVER overlap)
- for (const llama_seq_id seq_id : src_cell.seq_id) {
- cells[seq_id].tail = src_id;
- }
- for (const llama_seq_id seq_id : dst_cell.seq_id) {
- cells[seq_id].tail = dst_id;
- }
- }
- }
- // update the pos of the used seqs
- for (uint32_t s = 0; s < n_seqs; ++s) {
- const llama_pos last_pos = ubatch.pos[n_seq_tokens * s + n_seq_tokens - 1];
- int32_t cell_id = s + min;
- kv_cell & cell = cells[cell_id];
- if (cell.pos >= 0 && last_pos != cell.pos + (llama_pos) n_seq_tokens) {
- // What should happen when the pos backtracks or skips a value?
- // Clearing the state mid-batch would require special-casing which isn't done.
- LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d with %u new tokens\n",
- __func__, last_pos, cell.pos, ubatch.seq_id[s][0], n_seq_tokens);
- }
- cell.pos = last_pos;
- cell.seq_id.clear();
- for (int32_t j = 0; j < ubatch.n_seq_id[s]; ++j) {
- const llama_seq_id seq_id = ubatch.seq_id[s][j];
- cell.seq_id.insert(seq_id);
- cells[seq_id].tail = cell_id;
- }
- }
- // allow getting the range of used cells, from head to head + n
- head = min;
- n = max - min + 1;
- used = std::count_if(cells.begin(), cells.end(),
- [](const kv_cell & cell){ return !cell.is_empty(); });
- // sanity check
- return n >= n_seqs;
- }
- bool llama_kv_cache_recurrent::get_can_shift() const {
- return false;
- }
- int32_t llama_kv_cache_recurrent::s_copy(int i) const {
- const uint32_t cell_id = i + head;
- //////////////////////////////////////////////
- // TODO: this should not mutate the KV cache !
- kv_cell & cell = const_cast<kv_cell &>(cells[cell_id]);
- // prevent out-of-bound sources
- if (cell.src < 0 || (uint32_t) cell.src >= size) {
- cell.src = cell_id;
- }
- int32_t res = cell.src;
- // TODO: do not mutate the KV cache
- // ensure copy only happens once
- if (cell.src != (int32_t) cell_id) {
- cell.src = cell_id;
- }
- return res;
- }
- float llama_kv_cache_recurrent::s_mask(int i) const {
- const uint32_t cell_id = i + head;
- //////////////////////////////////////////////
- // TODO: this should not mutate the KV cache !
- kv_cell & cell = const_cast<kv_cell &>(cells[cell_id]);
- float res = (float) (cell.src >= 0);
- // only clear once
- if (cell.src < 0) {
- cell.src = cell_id;
- }
- return res;
- }
- uint32_t llama_kv_cache_recurrent::cell_max() const {
- for (uint32_t i = size; i > 0; --i) {
- const kv_cell & cell = cells[i - 1];
- if (cell.pos >= 0 && !cell.is_empty()) {
- return i;
- }
- }
- return 0;
- }
- size_t llama_kv_cache_recurrent::total_size() const {
- size_t size = 0;
- for (const auto & buf : bufs) {
- size += ggml_backend_buffer_get_size(buf.get());
- }
- return size;
- }
- size_t llama_kv_cache_recurrent::size_k_bytes() const {
- size_t size_k_bytes = 0;
- for (const auto & k : k_l) {
- size_k_bytes += ggml_nbytes(k);
- }
- return size_k_bytes;
- }
- size_t llama_kv_cache_recurrent::size_v_bytes() const {
- size_t size_v_bytes = 0;
- for (const auto & v : v_l) {
- size_v_bytes += ggml_nbytes(v);
- }
- return size_v_bytes;
- }
- void llama_kv_cache_recurrent::state_write(llama_io_write_i & io, llama_seq_id seq_id) const {
- std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive
- uint32_t cell_count = 0;
- // Count the number of cells with the specified seq_id
- // Find all the ranges of cells with this seq id (or all, when -1)
- uint32_t cell_range_begin = size;
- for (uint32_t i = 0; i < size; ++i) {
- const auto & cell = cells[i];
- if ((seq_id == -1 && !cell.is_empty()) || cell.has_seq_id(seq_id)) {
- ++cell_count;
- if (cell_range_begin == size) {
- cell_range_begin = i;
- }
- } else {
- if (cell_range_begin != size) {
- cell_ranges.emplace_back(cell_range_begin, i);
- cell_range_begin = size;
- }
- }
- }
- if (cell_range_begin != size) {
- cell_ranges.emplace_back(cell_range_begin, size);
- }
- // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count
- uint32_t cell_count_check = 0;
- for (const auto & range : cell_ranges) {
- cell_count_check += range.second - range.first;
- }
- GGML_ASSERT(cell_count == cell_count_check);
- io.write(&cell_count, sizeof(cell_count));
- state_write_meta(io, cell_ranges, seq_id);
- state_write_data(io, cell_ranges);
- }
- void llama_kv_cache_recurrent::state_read(llama_io_read_i & io, llama_seq_id seq_id) {
- uint32_t cell_count;
- io.read_to(&cell_count, sizeof(cell_count));
- bool res = true;
- res = res && state_read_meta(io, cell_count, seq_id);
- res = res && state_read_data(io, cell_count);
- if (!res) {
- if (seq_id == -1) {
- clear();
- } else {
- seq_rm(seq_id, -1, -1);
- }
- throw std::runtime_error("failed to restore kv cache");
- }
- }
- void llama_kv_cache_recurrent::state_write_meta(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id) const {
- for (const auto & range : cell_ranges) {
- for (uint32_t i = range.first; i < range.second; ++i) {
- const auto & cell = cells[i];
- const llama_pos pos = cell.pos;
- const uint32_t n_seq_id = seq_id == -1 ? cell.seq_id.size() : 0;
- io.write(&pos, sizeof(pos));
- io.write(&n_seq_id, sizeof(n_seq_id));
- if (n_seq_id) {
- for (auto seq_id : cell.seq_id) {
- io.write(&seq_id, sizeof(seq_id));
- }
- }
- }
- }
- }
- void llama_kv_cache_recurrent::state_write_data(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) const {
- const uint32_t v_trans = 0;
- const uint32_t n_layer = hparams.n_layer;
- io.write(&v_trans, sizeof(v_trans));
- io.write(&n_layer, sizeof(n_layer));
- std::vector<uint8_t> tmp_buf;
- // Iterate and write all the keys first, each row is a cell
- // Get whole range at a time
- for (uint32_t il = 0; il < n_layer; ++il) {
- const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s();
- // Write key type
- const int32_t k_type_i = (int32_t)k_l[il]->type;
- io.write(&k_type_i, sizeof(k_type_i));
- // Write row size of key
- const uint64_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa);
- io.write(&k_size_row, sizeof(k_size_row));
- // Read each range of cells of k_size length each into tmp_buf and write out
- for (const auto & range : cell_ranges) {
- const size_t range_size = range.second - range.first;
- const size_t buf_size = range_size * k_size_row;
- io.write_tensor(k_l[il], range.first * k_size_row, buf_size);
- }
- }
- if (!v_trans) {
- for (uint32_t il = 0; il < n_layer; ++il) {
- const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
- // Write value type
- const int32_t v_type_i = (int32_t)v_l[il]->type;
- io.write(&v_type_i, sizeof(v_type_i));
- // Write row size of value
- const uint64_t v_size_row = ggml_row_size(v_l[il]->type, n_embd_v_gqa);
- io.write(&v_size_row, sizeof(v_size_row));
- // Read each range of cells of v_size length each into tmp_buf and write out
- for (const auto & range : cell_ranges) {
- const size_t range_size = range.second - range.first;
- const size_t buf_size = range_size * v_size_row;
- io.write_tensor(v_l[il], range.first * v_size_row, buf_size);
- }
- }
- } else {
- // When v is transposed, we also need the element size and get the element ranges from each row
- const uint32_t kv_size = size;
- for (uint32_t il = 0; il < n_layer; ++il) {
- const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
- // Write value type
- const int32_t v_type_i = (int32_t)v_l[il]->type;
- io.write(&v_type_i, sizeof(v_type_i));
- // Write element size
- const uint32_t v_size_el = ggml_type_size(v_l[il]->type);
- io.write(&v_size_el, sizeof(v_size_el));
- // Write GQA embedding size
- io.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa));
- // For each row, we get the element values of each cell
- for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
- // Read each range of cells of v_size_el length each into tmp_buf and write out
- for (const auto & range : cell_ranges) {
- const size_t range_size = range.second - range.first;
- const size_t src_offset = (range.first + j * kv_size) * v_size_el;
- const size_t buf_size = range_size * v_size_el;
- io.write_tensor(v_l[il], src_offset, buf_size);
- }
- }
- }
- }
- }
- bool llama_kv_cache_recurrent::state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id) {
- if (dest_seq_id != -1) {
- // single sequence
- seq_rm(dest_seq_id, -1, -1);
- llama_sbatch sbatch;
- llama_ubatch batch = sbatch.reserve_ubatch(cell_count, /* has_embd */ false);
- batch.n_tokens = cell_count;
- batch.n_seq_tokens = cell_count;
- batch.n_seqs = 1;
- for (uint32_t i = 0; i < cell_count; ++i) {
- llama_pos pos;
- uint32_t n_seq_id;
- io.read_to(&pos, sizeof(pos));
- io.read_to(&n_seq_id, sizeof(n_seq_id));
- if (n_seq_id != 0) {
- LLAMA_LOG_ERROR("%s: invalid seq_id-agnostic kv cell\n", __func__);
- return false;
- }
- batch.pos[i] = pos;
- }
- batch.n_seq_id[0] = 1;
- batch.seq_id[0] = &dest_seq_id;
- if (!find_slot(batch)) {
- LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
- return false;
- }
- commit();
- // DEBUG CHECK: kv.head should be our first cell, kv.head + cell_count - 1 should be our last cell (verify seq_id and pos values)
- // Assume that this is one contiguous block of cells
- GGML_ASSERT(head + cell_count <= size);
- GGML_ASSERT(cells[head].pos == batch.pos[0]);
- GGML_ASSERT(cells[head + cell_count - 1].pos == batch.pos[cell_count - 1]);
- GGML_ASSERT(cells[head].has_seq_id(dest_seq_id));
- GGML_ASSERT(cells[head + cell_count - 1].has_seq_id(dest_seq_id));
- } else {
- // whole KV cache restore
- if (cell_count > size) {
- LLAMA_LOG_ERROR("%s: not enough cells in kv cache\n", __func__);
- return false;
- }
- clear();
- for (uint32_t i = 0; i < cell_count; ++i) {
- kv_cell & cell = cells[i];
- llama_pos pos;
- uint32_t n_seq_id;
- io.read_to(&pos, sizeof(pos));
- io.read_to(&n_seq_id, sizeof(n_seq_id));
- cell.pos = pos;
- for (uint32_t j = 0; j < n_seq_id; ++j) {
- llama_seq_id seq_id;
- io.read_to(&seq_id, sizeof(seq_id));
- // TODO: llama_kv_cache_recurrent should have a notion of max sequences
- //if (seq_id < 0 || (uint32_t) seq_id >= llama_n_seq_max(ctx)) {
- if (seq_id < 0) {
- //LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, %u)\n", __func__, seq_id, llama_n_seq_max(ctx));
- LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, inf)\n", __func__, seq_id);
- return false;
- }
- cell.seq_id.insert(seq_id);
- int32_t & tail = cells[seq_id].tail;
- if (tail != -1) {
- LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n", __func__, seq_id, i, tail);
- return false;
- }
- tail = i;
- }
- }
- head = 0;
- used = cell_count;
- }
- for (uint32_t i = 0; i < cell_count; ++i) {
- uint32_t cell_id = head + i;
- // make sure the recurrent states will keep their restored state
- cells[cell_id].src = cell_id;
- }
- return true;
- }
- bool llama_kv_cache_recurrent::state_read_data(llama_io_read_i & io, uint32_t cell_count) {
- uint32_t v_trans;
- uint32_t n_layer;
- io.read_to(&v_trans, sizeof(v_trans));
- io.read_to(&n_layer, sizeof(n_layer));
- if (n_layer != hparams.n_layer) {
- LLAMA_LOG_ERROR("%s: mismatched layer count (%u instead of %u)\n", __func__, n_layer, hparams.n_layer);
- return false;
- }
- if (cell_count > size) {
- LLAMA_LOG_ERROR("%s: not enough cells in kv cache to restore state (%u > %u)\n", __func__, cell_count, size);
- return false;
- }
- if (false != (bool) v_trans) {
- LLAMA_LOG_ERROR("%s: incompatible V transposition\n", __func__);
- return false;
- }
- // For each layer, read the keys for each cell, one row is one cell, read as one contiguous block
- for (uint32_t il = 0; il < n_layer; ++il) {
- const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s();
- // Read type of key
- int32_t k_type_i_ref;
- io.read_to(&k_type_i_ref, sizeof(k_type_i_ref));
- const int32_t k_type_i = (int32_t) k_l[il]->type;
- if (k_type_i != k_type_i_ref) {
- LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il);
- return false;
- }
- // Read row size of key
- uint64_t k_size_row_ref;
- io.read_to(&k_size_row_ref, sizeof(k_size_row_ref));
- const size_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa);
- if (k_size_row != k_size_row_ref) {
- LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, (size_t) k_size_row_ref, il);
- return false;
- }
- if (cell_count) {
- // Read and set the keys for the whole cell range
- ggml_backend_tensor_set(k_l[il], io.read(cell_count * k_size_row), head * k_size_row, cell_count * k_size_row);
- }
- }
- if (!v_trans) {
- for (uint32_t il = 0; il < n_layer; ++il) {
- const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
- // Read type of value
- int32_t v_type_i_ref;
- io.read_to(&v_type_i_ref, sizeof(v_type_i_ref));
- const int32_t v_type_i = (int32_t)v_l[il]->type;
- if (v_type_i != v_type_i_ref) {
- LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
- return false;
- }
- // Read row size of value
- uint64_t v_size_row_ref;
- io.read_to(&v_size_row_ref, sizeof(v_size_row_ref));
- const size_t v_size_row = ggml_row_size(v_l[il]->type, n_embd_v_gqa);
- if (v_size_row != v_size_row_ref) {
- LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, (size_t) v_size_row_ref, il);
- return false;
- }
- if (cell_count) {
- // Read and set the values for the whole cell range
- ggml_backend_tensor_set(v_l[il], io.read(cell_count * v_size_row), head * v_size_row, cell_count * v_size_row);
- }
- }
- } else {
- // For each layer, read the values for each cell (transposed)
- for (uint32_t il = 0; il < n_layer; ++il) {
- const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
- // Read type of value
- int32_t v_type_i_ref;
- io.read_to(&v_type_i_ref, sizeof(v_type_i_ref));
- const int32_t v_type_i = (int32_t)v_l[il]->type;
- if (v_type_i != v_type_i_ref) {
- LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
- return false;
- }
- // Read element size of value
- uint32_t v_size_el_ref;
- io.read_to(&v_size_el_ref, sizeof(v_size_el_ref));
- const size_t v_size_el = ggml_type_size(v_l[il]->type);
- if (v_size_el != v_size_el_ref) {
- LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, (size_t) v_size_el_ref, il);
- return false;
- }
- // Read GQA embedding size
- uint32_t n_embd_v_gqa_ref;
- io.read_to(&n_embd_v_gqa_ref, sizeof(n_embd_v_gqa_ref));
- if (n_embd_v_gqa != n_embd_v_gqa_ref) {
- LLAMA_LOG_ERROR("%s: mismatched GQA embedding size (%u != %u, layer %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref, il);
- return false;
- }
- if (cell_count) {
- // For each row in the transposed matrix, read the values for the whole cell range
- for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
- const size_t dst_offset = (head + j * size) * v_size_el;
- ggml_backend_tensor_set(v_l[il], io.read(cell_count * v_size_el), dst_offset, cell_count * v_size_el);
- }
- }
- }
- }
- return true;
- }
|