common.cpp 112 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995
  1. #include "common.h"
  2. #include "json.hpp"
  3. #include "json-schema-to-grammar.h"
  4. #include "llama.h"
  5. #include <algorithm>
  6. #include <cassert>
  7. #include <cmath>
  8. #include <cstring>
  9. #include <ctime>
  10. #include <fstream>
  11. #include <iterator>
  12. #include <iostream>
  13. #include <regex>
  14. #include <sstream>
  15. #include <string>
  16. #include <unordered_map>
  17. #include <unordered_set>
  18. #include <vector>
  19. #include <cinttypes>
  20. #include <codecvt>
  21. #if defined(__APPLE__) && defined(__MACH__)
  22. #include <sys/types.h>
  23. #include <sys/sysctl.h>
  24. #endif
  25. #if defined(_WIN32)
  26. #define WIN32_LEAN_AND_MEAN
  27. #ifndef NOMINMAX
  28. # define NOMINMAX
  29. #endif
  30. #include <locale>
  31. #include <windows.h>
  32. #include <fcntl.h>
  33. #include <io.h>
  34. #else
  35. #include <sys/ioctl.h>
  36. #include <sys/stat.h>
  37. #include <unistd.h>
  38. #endif
  39. #if defined(LLAMA_USE_CURL)
  40. #include <curl/curl.h>
  41. #include <curl/easy.h>
  42. #include <thread>
  43. #include <future>
  44. #endif
  45. #if defined(_MSC_VER)
  46. #pragma warning(disable: 4244 4267) // possible loss of data
  47. #endif
  48. #if (defined(GGML_USE_CUDA) || defined(GGML_USE_SYCL))
  49. #define GGML_USE_CUDA_SYCL
  50. #endif
  51. #if (defined(GGML_USE_CUDA) || defined(GGML_USE_SYCL)) || defined(GGML_USE_VULKAN)
  52. #define GGML_USE_CUDA_SYCL_VULKAN
  53. #endif
  54. #if defined(LLAMA_USE_CURL)
  55. #ifdef __linux__
  56. #include <linux/limits.h>
  57. #elif defined(_WIN32)
  58. #define PATH_MAX MAX_PATH
  59. #else
  60. #include <sys/syslimits.h>
  61. #endif
  62. #define LLAMA_CURL_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083
  63. #endif // LLAMA_USE_CURL
  64. using json = nlohmann::ordered_json;
  65. int32_t get_num_physical_cores() {
  66. #ifdef __linux__
  67. // enumerate the set of thread siblings, num entries is num cores
  68. std::unordered_set<std::string> siblings;
  69. for (uint32_t cpu=0; cpu < UINT32_MAX; ++cpu) {
  70. std::ifstream thread_siblings("/sys/devices/system/cpu/cpu"
  71. + std::to_string(cpu) + "/topology/thread_siblings");
  72. if (!thread_siblings.is_open()) {
  73. break; // no more cpus
  74. }
  75. std::string line;
  76. if (std::getline(thread_siblings, line)) {
  77. siblings.insert(line);
  78. }
  79. }
  80. if (!siblings.empty()) {
  81. return static_cast<int32_t>(siblings.size());
  82. }
  83. #elif defined(__APPLE__) && defined(__MACH__)
  84. int32_t num_physical_cores;
  85. size_t len = sizeof(num_physical_cores);
  86. int result = sysctlbyname("hw.perflevel0.physicalcpu", &num_physical_cores, &len, NULL, 0);
  87. if (result == 0) {
  88. return num_physical_cores;
  89. }
  90. result = sysctlbyname("hw.physicalcpu", &num_physical_cores, &len, NULL, 0);
  91. if (result == 0) {
  92. return num_physical_cores;
  93. }
  94. #elif defined(_WIN32)
  95. //TODO: Implement
  96. #endif
  97. unsigned int n_threads = std::thread::hardware_concurrency();
  98. return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4;
  99. }
  100. #if defined(__x86_64__) && defined(__linux__) && !defined(__ANDROID__)
  101. #include <pthread.h>
  102. static void cpuid(unsigned leaf, unsigned subleaf,
  103. unsigned *eax, unsigned *ebx, unsigned *ecx, unsigned *edx) {
  104. __asm__("movq\t%%rbx,%%rsi\n\t"
  105. "cpuid\n\t"
  106. "xchgq\t%%rbx,%%rsi"
  107. : "=a"(*eax), "=S"(*ebx), "=c"(*ecx), "=d"(*edx)
  108. : "0"(leaf), "2"(subleaf));
  109. }
  110. static int pin_cpu(int cpu) {
  111. cpu_set_t mask;
  112. CPU_ZERO(&mask);
  113. CPU_SET(cpu, &mask);
  114. return pthread_setaffinity_np(pthread_self(), sizeof(mask), &mask);
  115. }
  116. static bool is_hybrid_cpu(void) {
  117. unsigned eax, ebx, ecx, edx;
  118. cpuid(7, 0, &eax, &ebx, &ecx, &edx);
  119. return !!(edx & (1u << 15));
  120. }
  121. static bool is_running_on_efficiency_core(void) {
  122. unsigned eax, ebx, ecx, edx;
  123. cpuid(0x1a, 0, &eax, &ebx, &ecx, &edx);
  124. int intel_atom = 0x20;
  125. int core_type = (eax & 0xff000000u) >> 24;
  126. return core_type == intel_atom;
  127. }
  128. static int count_math_cpus(int cpu_count) {
  129. int result = 0;
  130. for (int cpu = 0; cpu < cpu_count; ++cpu) {
  131. if (pin_cpu(cpu)) {
  132. return -1;
  133. }
  134. if (is_running_on_efficiency_core()) {
  135. continue; // efficiency cores harm lockstep threading
  136. }
  137. ++cpu; // hyperthreading isn't useful for linear algebra
  138. ++result;
  139. }
  140. return result;
  141. }
  142. #endif // __x86_64__ && __linux__
  143. /**
  144. * Returns number of CPUs on system that are useful for math.
  145. */
  146. int get_math_cpu_count() {
  147. #if defined(__x86_64__) && defined(__linux__) && !defined(__ANDROID__)
  148. int cpu_count = sysconf(_SC_NPROCESSORS_ONLN);
  149. if (cpu_count < 1) {
  150. return get_num_physical_cores();
  151. }
  152. if (is_hybrid_cpu()) {
  153. cpu_set_t affinity;
  154. if (!pthread_getaffinity_np(pthread_self(), sizeof(affinity), &affinity)) {
  155. int result = count_math_cpus(cpu_count);
  156. pthread_setaffinity_np(pthread_self(), sizeof(affinity), &affinity);
  157. if (result > 0) {
  158. return result;
  159. }
  160. }
  161. }
  162. #endif
  163. return get_num_physical_cores();
  164. }
  165. void process_escapes(std::string & input) {
  166. std::size_t input_len = input.length();
  167. std::size_t output_idx = 0;
  168. for (std::size_t input_idx = 0; input_idx < input_len; ++input_idx) {
  169. if (input[input_idx] == '\\' && input_idx + 1 < input_len) {
  170. switch (input[++input_idx]) {
  171. case 'n': input[output_idx++] = '\n'; break;
  172. case 'r': input[output_idx++] = '\r'; break;
  173. case 't': input[output_idx++] = '\t'; break;
  174. case '\'': input[output_idx++] = '\''; break;
  175. case '\"': input[output_idx++] = '\"'; break;
  176. case '\\': input[output_idx++] = '\\'; break;
  177. case 'x':
  178. // Handle \x12, etc
  179. if (input_idx + 2 < input_len) {
  180. const char x[3] = { input[input_idx + 1], input[input_idx + 2], 0 };
  181. char *err_p = nullptr;
  182. const long val = std::strtol(x, &err_p, 16);
  183. if (err_p == x + 2) {
  184. input_idx += 2;
  185. input[output_idx++] = char(val);
  186. break;
  187. }
  188. }
  189. // fall through
  190. default: input[output_idx++] = '\\';
  191. input[output_idx++] = input[input_idx]; break;
  192. }
  193. } else {
  194. input[output_idx++] = input[input_idx];
  195. }
  196. }
  197. input.resize(output_idx);
  198. }
  199. bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
  200. bool result = true;
  201. try {
  202. if (!gpt_params_parse_ex(argc, argv, params)) {
  203. gpt_print_usage(argc, argv, gpt_params());
  204. exit(0);
  205. }
  206. }
  207. catch (const std::invalid_argument & ex) {
  208. fprintf(stderr, "%s\n", ex.what());
  209. gpt_print_usage(argc, argv, gpt_params());
  210. exit(1);
  211. }
  212. return result;
  213. }
  214. bool parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides) {
  215. const char * sep = strchr(data, '=');
  216. if (sep == nullptr || sep - data >= 128) {
  217. fprintf(stderr, "%s: malformed KV override '%s'\n", __func__, data);
  218. return false;
  219. }
  220. llama_model_kv_override kvo;
  221. std::strncpy(kvo.key, data, sep - data);
  222. kvo.key[sep - data] = 0;
  223. sep++;
  224. if (strncmp(sep, "int:", 4) == 0) {
  225. sep += 4;
  226. kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
  227. kvo.val_i64 = std::atol(sep);
  228. } else if (strncmp(sep, "float:", 6) == 0) {
  229. sep += 6;
  230. kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
  231. kvo.val_f64 = std::atof(sep);
  232. } else if (strncmp(sep, "bool:", 5) == 0) {
  233. sep += 5;
  234. kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
  235. if (std::strcmp(sep, "true") == 0) {
  236. kvo.val_bool = true;
  237. } else if (std::strcmp(sep, "false") == 0) {
  238. kvo.val_bool = false;
  239. } else {
  240. fprintf(stderr, "%s: invalid boolean value for KV override '%s'\n", __func__, data);
  241. return false;
  242. }
  243. } else if (strncmp(sep, "str:", 4) == 0) {
  244. sep += 4;
  245. kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR;
  246. if (strlen(sep) > 127) {
  247. fprintf(stderr, "%s: malformed KV override '%s', value cannot exceed 127 chars\n", __func__, data);
  248. return false;
  249. }
  250. strncpy(kvo.val_str, sep, 127);
  251. kvo.val_str[127] = '\0';
  252. } else {
  253. fprintf(stderr, "%s: invalid type for KV override '%s'\n", __func__, data);
  254. return false;
  255. }
  256. overrides.emplace_back(std::move(kvo));
  257. return true;
  258. }
  259. bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_params & params, int & i, bool & invalid_param) {
  260. llama_sampling_params & sparams = params.sparams;
  261. if (arg == "-s" || arg == "--seed") {
  262. if (++i >= argc) {
  263. invalid_param = true;
  264. return true;
  265. }
  266. // This is temporary, in the future the samplign state will be moved fully to llama_sampling_context.
  267. params.seed = std::stoul(argv[i]);
  268. sparams.seed = std::stoul(argv[i]);
  269. return true;
  270. }
  271. if (arg == "-t" || arg == "--threads") {
  272. if (++i >= argc) {
  273. invalid_param = true;
  274. return true;
  275. }
  276. params.n_threads = std::stoi(argv[i]);
  277. if (params.n_threads <= 0) {
  278. params.n_threads = std::thread::hardware_concurrency();
  279. }
  280. return true;
  281. }
  282. if (arg == "-tb" || arg == "--threads-batch") {
  283. if (++i >= argc) {
  284. invalid_param = true;
  285. return true;
  286. }
  287. params.n_threads_batch = std::stoi(argv[i]);
  288. if (params.n_threads_batch <= 0) {
  289. params.n_threads_batch = std::thread::hardware_concurrency();
  290. }
  291. return true;
  292. }
  293. if (arg == "-td" || arg == "--threads-draft") {
  294. if (++i >= argc) {
  295. invalid_param = true;
  296. return true;
  297. }
  298. params.n_threads_draft = std::stoi(argv[i]);
  299. if (params.n_threads_draft <= 0) {
  300. params.n_threads_draft = std::thread::hardware_concurrency();
  301. }
  302. return true;
  303. }
  304. if (arg == "-tbd" || arg == "--threads-batch-draft") {
  305. if (++i >= argc) {
  306. invalid_param = true;
  307. return true;
  308. }
  309. params.n_threads_batch_draft = std::stoi(argv[i]);
  310. if (params.n_threads_batch_draft <= 0) {
  311. params.n_threads_batch_draft = std::thread::hardware_concurrency();
  312. }
  313. return true;
  314. }
  315. if (arg == "-p" || arg == "--prompt") {
  316. if (++i >= argc) {
  317. invalid_param = true;
  318. return true;
  319. }
  320. params.prompt = argv[i];
  321. return true;
  322. }
  323. if (arg == "-e" || arg == "--escape") {
  324. params.escape = true;
  325. return true;
  326. }
  327. if (arg == "--prompt-cache") {
  328. if (++i >= argc) {
  329. invalid_param = true;
  330. return true;
  331. }
  332. params.path_prompt_cache = argv[i];
  333. return true;
  334. }
  335. if (arg == "--prompt-cache-all") {
  336. params.prompt_cache_all = true;
  337. return true;
  338. }
  339. if (arg == "--prompt-cache-ro") {
  340. params.prompt_cache_ro = true;
  341. return true;
  342. }
  343. if (arg == "-bf" || arg == "--binary-file") {
  344. if (++i >= argc) {
  345. invalid_param = true;
  346. return true;
  347. }
  348. std::ifstream file(argv[i], std::ios::binary);
  349. if (!file) {
  350. fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
  351. invalid_param = true;
  352. return true;
  353. }
  354. // store the external file name in params
  355. params.prompt_file = argv[i];
  356. std::ostringstream ss;
  357. ss << file.rdbuf();
  358. params.prompt = ss.str();
  359. fprintf(stderr, "Read %zu bytes from binary file %s\n", params.prompt.size(), argv[i]);
  360. return true;
  361. }
  362. if (arg == "-f" || arg == "--file") {
  363. if (++i >= argc) {
  364. invalid_param = true;
  365. return true;
  366. }
  367. std::ifstream file(argv[i]);
  368. if (!file) {
  369. fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
  370. invalid_param = true;
  371. return true;
  372. }
  373. // store the external file name in params
  374. params.prompt_file = argv[i];
  375. std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt));
  376. if (!params.prompt.empty() && params.prompt.back() == '\n') {
  377. params.prompt.pop_back();
  378. }
  379. return true;
  380. }
  381. if (arg == "-n" || arg == "--n-predict") {
  382. if (++i >= argc) {
  383. invalid_param = true;
  384. return true;
  385. }
  386. params.n_predict = std::stoi(argv[i]);
  387. return true;
  388. }
  389. if (arg == "--top-k") {
  390. if (++i >= argc) {
  391. invalid_param = true;
  392. return true;
  393. }
  394. sparams.top_k = std::stoi(argv[i]);
  395. return true;
  396. }
  397. if (arg == "-c" || arg == "--ctx-size") {
  398. if (++i >= argc) {
  399. invalid_param = true;
  400. return true;
  401. }
  402. params.n_ctx = std::stoi(argv[i]);
  403. return true;
  404. }
  405. if (arg == "--grp-attn-n" || arg == "-gan") {
  406. if (++i >= argc) {
  407. invalid_param = true;
  408. return true;
  409. }
  410. params.grp_attn_n = std::stoi(argv[i]);
  411. return true;
  412. }
  413. if (arg == "--grp-attn-w" || arg == "-gaw") {
  414. if (++i >= argc) {
  415. invalid_param = true;
  416. return true;
  417. }
  418. params.grp_attn_w = std::stoi(argv[i]);
  419. return true;
  420. }
  421. if (arg == "--rope-freq-base") {
  422. if (++i >= argc) {
  423. invalid_param = true;
  424. return true;
  425. }
  426. params.rope_freq_base = std::stof(argv[i]);
  427. return true;
  428. }
  429. if (arg == "--rope-freq-scale") {
  430. if (++i >= argc) {
  431. invalid_param = true;
  432. return true;
  433. }
  434. params.rope_freq_scale = std::stof(argv[i]);
  435. return true;
  436. }
  437. if (arg == "--rope-scaling") {
  438. if (++i >= argc) {
  439. invalid_param = true;
  440. return true;
  441. }
  442. std::string value(argv[i]);
  443. /**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; }
  444. else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; }
  445. else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; }
  446. else { invalid_param = true; }
  447. return true;
  448. }
  449. if (arg == "--rope-scale") {
  450. if (++i >= argc) {
  451. invalid_param = true;
  452. return true;
  453. }
  454. params.rope_freq_scale = 1.0f / std::stof(argv[i]);
  455. return true;
  456. }
  457. if (arg == "--yarn-orig-ctx") {
  458. if (++i >= argc) {
  459. invalid_param = true;
  460. return true;
  461. }
  462. params.yarn_orig_ctx = std::stoi(argv[i]);
  463. return true;
  464. }
  465. if (arg == "--yarn-ext-factor") {
  466. if (++i >= argc) {
  467. invalid_param = true;
  468. return true;
  469. }
  470. params.yarn_ext_factor = std::stof(argv[i]);
  471. return true;
  472. }
  473. if (arg == "--yarn-attn-factor") {
  474. if (++i >= argc) {
  475. invalid_param = true;
  476. return true;
  477. }
  478. params.yarn_attn_factor = std::stof(argv[i]);
  479. return true;
  480. }
  481. if (arg == "--yarn-beta-fast") {
  482. if (++i >= argc) {
  483. invalid_param = true;
  484. return true;
  485. }
  486. params.yarn_beta_fast = std::stof(argv[i]);
  487. return true;
  488. }
  489. if (arg == "--yarn-beta-slow") {
  490. if (++i >= argc) {
  491. invalid_param = true;
  492. return true;
  493. }
  494. params.yarn_beta_slow = std::stof(argv[i]);
  495. return true;
  496. }
  497. if (arg == "--pooling") {
  498. if (++i >= argc) {
  499. invalid_param = true;
  500. return true;
  501. }
  502. std::string value(argv[i]);
  503. /**/ if (value == "none") { params.pooling_type = LLAMA_POOLING_TYPE_NONE; }
  504. else if (value == "mean") { params.pooling_type = LLAMA_POOLING_TYPE_MEAN; }
  505. else if (value == "cls") { params.pooling_type = LLAMA_POOLING_TYPE_CLS; }
  506. else { invalid_param = true; }
  507. return true;
  508. }
  509. if (arg == "--defrag-thold" || arg == "-dt") {
  510. if (++i >= argc) {
  511. invalid_param = true;
  512. return true;
  513. }
  514. params.defrag_thold = std::stof(argv[i]);
  515. return true;
  516. }
  517. if (arg == "--samplers") {
  518. if (++i >= argc) {
  519. invalid_param = true;
  520. return true;
  521. }
  522. const auto sampler_names = string_split(argv[i], ';');
  523. sparams.samplers_sequence = sampler_types_from_names(sampler_names, true);
  524. return true;
  525. }
  526. if (arg == "--sampling-seq") {
  527. if (++i >= argc) {
  528. invalid_param = true;
  529. return true;
  530. }
  531. sparams.samplers_sequence = sampler_types_from_chars(argv[i]);
  532. return true;
  533. }
  534. if (arg == "--top-p") {
  535. if (++i >= argc) {
  536. invalid_param = true;
  537. return true;
  538. }
  539. sparams.top_p = std::stof(argv[i]);
  540. return true;
  541. }
  542. if (arg == "--min-p") {
  543. if (++i >= argc) {
  544. invalid_param = true;
  545. return true;
  546. }
  547. sparams.min_p = std::stof(argv[i]);
  548. return true;
  549. }
  550. if (arg == "--temp") {
  551. if (++i >= argc) {
  552. invalid_param = true;
  553. return true;
  554. }
  555. sparams.temp = std::stof(argv[i]);
  556. sparams.temp = std::max(sparams.temp, 0.0f);
  557. return true;
  558. }
  559. if (arg == "--tfs") {
  560. if (++i >= argc) {
  561. invalid_param = true;
  562. return true;
  563. }
  564. sparams.tfs_z = std::stof(argv[i]);
  565. return true;
  566. }
  567. if (arg == "--typical") {
  568. if (++i >= argc) {
  569. invalid_param = true;
  570. return true;
  571. }
  572. sparams.typical_p = std::stof(argv[i]);
  573. return true;
  574. }
  575. if (arg == "--repeat-last-n") {
  576. if (++i >= argc) {
  577. invalid_param = true;
  578. return true;
  579. }
  580. sparams.penalty_last_n = std::stoi(argv[i]);
  581. sparams.n_prev = std::max(sparams.n_prev, sparams.penalty_last_n);
  582. return true;
  583. }
  584. if (arg == "--repeat-penalty") {
  585. if (++i >= argc) {
  586. invalid_param = true;
  587. return true;
  588. }
  589. sparams.penalty_repeat = std::stof(argv[i]);
  590. return true;
  591. }
  592. if (arg == "--frequency-penalty") {
  593. if (++i >= argc) {
  594. invalid_param = true;
  595. return true;
  596. }
  597. sparams.penalty_freq = std::stof(argv[i]);
  598. return true;
  599. }
  600. if (arg == "--presence-penalty") {
  601. if (++i >= argc) {
  602. invalid_param = true;
  603. return true;
  604. }
  605. sparams.penalty_present = std::stof(argv[i]);
  606. return true;
  607. }
  608. if (arg == "--dynatemp-range") {
  609. if (++i >= argc) {
  610. invalid_param = true;
  611. return true;
  612. }
  613. sparams.dynatemp_range = std::stof(argv[i]);
  614. return true;
  615. }
  616. if (arg == "--dynatemp-exp") {
  617. if (++i >= argc) {
  618. invalid_param = true;
  619. return true;
  620. }
  621. sparams.dynatemp_exponent = std::stof(argv[i]);
  622. return true;
  623. }
  624. if (arg == "--mirostat") {
  625. if (++i >= argc) {
  626. invalid_param = true;
  627. return true;
  628. }
  629. sparams.mirostat = std::stoi(argv[i]);
  630. return true;
  631. }
  632. if (arg == "--mirostat-lr") {
  633. if (++i >= argc) {
  634. invalid_param = true;
  635. return true;
  636. }
  637. sparams.mirostat_eta = std::stof(argv[i]);
  638. return true;
  639. }
  640. if (arg == "--mirostat-ent") {
  641. if (++i >= argc) {
  642. invalid_param = true;
  643. return true;
  644. }
  645. sparams.mirostat_tau = std::stof(argv[i]);
  646. return true;
  647. }
  648. if (arg == "--cfg-negative-prompt") {
  649. if (++i >= argc) {
  650. invalid_param = true;
  651. return true;
  652. }
  653. sparams.cfg_negative_prompt = argv[i];
  654. return true;
  655. }
  656. if (arg == "--cfg-negative-prompt-file") {
  657. if (++i >= argc) {
  658. invalid_param = true;
  659. return true;
  660. }
  661. std::ifstream file(argv[i]);
  662. if (!file) {
  663. fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
  664. invalid_param = true;
  665. return true;
  666. }
  667. std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(sparams.cfg_negative_prompt));
  668. if (!sparams.cfg_negative_prompt.empty() && sparams.cfg_negative_prompt.back() == '\n') {
  669. sparams.cfg_negative_prompt.pop_back();
  670. }
  671. return true;
  672. }
  673. if (arg == "--cfg-scale") {
  674. if (++i >= argc) {
  675. invalid_param = true;
  676. return true;
  677. }
  678. sparams.cfg_scale = std::stof(argv[i]);
  679. return true;
  680. }
  681. if (arg == "-b" || arg == "--batch-size") {
  682. if (++i >= argc) {
  683. invalid_param = true;
  684. return true;
  685. }
  686. params.n_batch = std::stoi(argv[i]);
  687. return true;
  688. }
  689. if (arg == "-ub" || arg == "--ubatch-size") {
  690. if (++i >= argc) {
  691. invalid_param = true;
  692. return true;
  693. }
  694. params.n_ubatch = std::stoi(argv[i]);
  695. return true;
  696. }
  697. if (arg == "--keep") {
  698. if (++i >= argc) {
  699. invalid_param = true;
  700. return true;
  701. }
  702. params.n_keep = std::stoi(argv[i]);
  703. return true;
  704. }
  705. if (arg == "--draft") {
  706. if (++i >= argc) {
  707. invalid_param = true;
  708. return true;
  709. }
  710. params.n_draft = std::stoi(argv[i]);
  711. return true;
  712. }
  713. if (arg == "--chunks") {
  714. if (++i >= argc) {
  715. invalid_param = true;
  716. return true;
  717. }
  718. params.n_chunks = std::stoi(argv[i]);
  719. return true;
  720. }
  721. if (arg == "-np" || arg == "--parallel") {
  722. if (++i >= argc) {
  723. invalid_param = true;
  724. return true;
  725. }
  726. params.n_parallel = std::stoi(argv[i]);
  727. return true;
  728. }
  729. if (arg == "-ns" || arg == "--sequences") {
  730. if (++i >= argc) {
  731. invalid_param = true;
  732. return true;
  733. }
  734. params.n_sequences = std::stoi(argv[i]);
  735. return true;
  736. }
  737. if (arg == "--p-split" || arg == "-ps") {
  738. if (++i >= argc) {
  739. invalid_param = true;
  740. return true;
  741. }
  742. params.p_split = std::stof(argv[i]);
  743. return true;
  744. }
  745. if (arg == "-m" || arg == "--model") {
  746. if (++i >= argc) {
  747. invalid_param = true;
  748. return true;
  749. }
  750. params.model = argv[i];
  751. return true;
  752. }
  753. if (arg == "-md" || arg == "--model-draft") {
  754. if (++i >= argc) {
  755. invalid_param = true;
  756. return true;
  757. }
  758. params.model_draft = argv[i];
  759. return true;
  760. }
  761. if (arg == "-a" || arg == "--alias") {
  762. if (++i >= argc) {
  763. invalid_param = true;
  764. return true;
  765. }
  766. params.model_alias = argv[i];
  767. return true;
  768. }
  769. if (arg == "-mu" || arg == "--model-url") {
  770. if (++i >= argc) {
  771. invalid_param = true;
  772. return true;
  773. }
  774. params.model_url = argv[i];
  775. return true;
  776. }
  777. if (arg == "-hfr" || arg == "--hf-repo") {
  778. if (++i >= argc) {
  779. invalid_param = true;
  780. return true;
  781. }
  782. params.hf_repo = argv[i];
  783. return true;
  784. }
  785. if (arg == "-hff" || arg == "--hf-file") {
  786. if (++i >= argc) {
  787. invalid_param = true;
  788. return true;
  789. }
  790. params.hf_file = argv[i];
  791. return true;
  792. }
  793. if (arg == "--lora") {
  794. if (++i >= argc) {
  795. invalid_param = true;
  796. return true;
  797. }
  798. params.lora_adapter.emplace_back(argv[i], 1.0f);
  799. params.use_mmap = false;
  800. return true;
  801. }
  802. if (arg == "--lora-scaled") {
  803. if (++i >= argc) {
  804. invalid_param = true;
  805. return true;
  806. }
  807. const char* lora_adapter = argv[i];
  808. if (++i >= argc) {
  809. invalid_param = true;
  810. return true;
  811. }
  812. params.lora_adapter.emplace_back(lora_adapter, std::stof(argv[i]));
  813. params.use_mmap = false;
  814. return true;
  815. }
  816. if (arg == "--lora-base") {
  817. if (++i >= argc) {
  818. invalid_param = true;
  819. return true;
  820. }
  821. params.lora_base = argv[i];
  822. return true;
  823. }
  824. if (arg == "--control-vector") {
  825. if (++i >= argc) {
  826. invalid_param = true;
  827. return true;
  828. }
  829. params.control_vectors.push_back({ 1.0f, argv[i], });
  830. return true;
  831. }
  832. if (arg == "--control-vector-scaled") {
  833. if (++i >= argc) {
  834. invalid_param = true;
  835. return true;
  836. }
  837. const char* fname = argv[i];
  838. if (++i >= argc) {
  839. invalid_param = true;
  840. return true;
  841. }
  842. params.control_vectors.push_back({ std::stof(argv[i]), fname, });
  843. return true;
  844. }
  845. if (arg == "--control-vector-layer-range") {
  846. if (++i >= argc) {
  847. invalid_param = true;
  848. return true;
  849. }
  850. params.control_vector_layer_start = std::stoi(argv[i]);
  851. if (++i >= argc) {
  852. invalid_param = true;
  853. return true;
  854. }
  855. params.control_vector_layer_end = std::stoi(argv[i]);
  856. return true;
  857. }
  858. if (arg == "--mmproj") {
  859. if (++i >= argc) {
  860. invalid_param = true;
  861. return true;
  862. }
  863. params.mmproj = argv[i];
  864. return true;
  865. }
  866. if (arg == "--image") {
  867. if (++i >= argc) {
  868. invalid_param = true;
  869. return true;
  870. }
  871. params.image.emplace_back(argv[i]);
  872. return true;
  873. }
  874. if (arg == "-i" || arg == "--interactive") {
  875. params.interactive = true;
  876. return true;
  877. }
  878. if (arg == "--embedding") {
  879. params.embedding = true;
  880. return true;
  881. }
  882. if (arg == "--interactive-first") {
  883. params.interactive_first = true;
  884. return true;
  885. }
  886. if (arg == "-ins" || arg == "--instruct") {
  887. params.instruct = true;
  888. return true;
  889. }
  890. if (arg == "-cnv" || arg == "--conversation") {
  891. params.conversation = true;
  892. return true;
  893. }
  894. if (arg == "-cml" || arg == "--chatml") {
  895. params.chatml = true;
  896. return true;
  897. }
  898. if (arg == "--infill") {
  899. params.infill = true;
  900. return true;
  901. }
  902. if (arg == "-dkvc" || arg == "--dump-kv-cache") {
  903. params.dump_kv_cache = true;
  904. return true;
  905. }
  906. if (arg == "-nkvo" || arg == "--no-kv-offload") {
  907. params.no_kv_offload = true;
  908. return true;
  909. }
  910. if (arg == "-ctk" || arg == "--cache-type-k") {
  911. params.cache_type_k = argv[++i];
  912. return true;
  913. }
  914. if (arg == "-ctv" || arg == "--cache-type-v") {
  915. params.cache_type_v = argv[++i];
  916. return true;
  917. }
  918. if (arg == "--multiline-input") {
  919. params.multiline_input = true;
  920. return true;
  921. }
  922. if (arg == "--simple-io") {
  923. params.simple_io = true;
  924. return true;
  925. }
  926. if (arg == "-cb" || arg == "--cont-batching") {
  927. params.cont_batching = true;
  928. return true;
  929. }
  930. if (arg == "-fa" || arg == "--flash-attn") {
  931. params.flash_attn = true;
  932. return true;
  933. }
  934. if (arg == "--color") {
  935. params.use_color = true;
  936. return true;
  937. }
  938. if (arg == "--mlock") {
  939. params.use_mlock = true;
  940. return true;
  941. }
  942. if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers") {
  943. if (++i >= argc) {
  944. invalid_param = true;
  945. return true;
  946. }
  947. params.n_gpu_layers = std::stoi(argv[i]);
  948. if (!llama_supports_gpu_offload()) {
  949. fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
  950. fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
  951. }
  952. return true;
  953. }
  954. if (arg == "--gpu-layers-draft" || arg == "-ngld" || arg == "--n-gpu-layers-draft") {
  955. if (++i >= argc) {
  956. invalid_param = true;
  957. return true;
  958. }
  959. params.n_gpu_layers_draft = std::stoi(argv[i]);
  960. if (!llama_supports_gpu_offload()) {
  961. fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers-draft option will be ignored\n");
  962. fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
  963. }
  964. return true;
  965. }
  966. if (arg == "--main-gpu" || arg == "-mg") {
  967. if (++i >= argc) {
  968. invalid_param = true;
  969. return true;
  970. }
  971. params.main_gpu = std::stoi(argv[i]);
  972. #ifndef GGML_USE_CUDA_SYCL
  973. fprintf(stderr, "warning: llama.cpp was compiled without CUDA/SYCL. Setting the main GPU has no effect.\n");
  974. #endif // GGML_USE_CUDA_SYCL
  975. return true;
  976. }
  977. if (arg == "--split-mode" || arg == "-sm") {
  978. if (++i >= argc) {
  979. invalid_param = true;
  980. return true;
  981. }
  982. std::string arg_next = argv[i];
  983. if (arg_next == "none") {
  984. params.split_mode = LLAMA_SPLIT_MODE_NONE;
  985. }
  986. else if (arg_next == "layer") {
  987. params.split_mode = LLAMA_SPLIT_MODE_LAYER;
  988. }
  989. else if (arg_next == "row") {
  990. #ifdef GGML_USE_SYCL
  991. fprintf(stderr, "warning: The split mode value:[row] is not supported by llama.cpp with SYCL. It's developing.\nExit!\n");
  992. exit(1);
  993. #endif // GGML_USE_SYCL
  994. params.split_mode = LLAMA_SPLIT_MODE_ROW;
  995. }
  996. else {
  997. invalid_param = true;
  998. return true;
  999. }
  1000. #ifndef GGML_USE_CUDA_SYCL
  1001. fprintf(stderr, "warning: llama.cpp was compiled without CUDA/SYCL. Setting the split mode has no effect.\n");
  1002. #endif // GGML_USE_CUDA_SYCL
  1003. return true;
  1004. }
  1005. if (arg == "--tensor-split" || arg == "-ts") {
  1006. if (++i >= argc) {
  1007. invalid_param = true;
  1008. return true;
  1009. }
  1010. std::string arg_next = argv[i];
  1011. // split string by , and /
  1012. const std::regex regex{ R"([,/]+)" };
  1013. std::sregex_token_iterator it{ arg_next.begin(), arg_next.end(), regex, -1 };
  1014. std::vector<std::string> split_arg{ it, {} };
  1015. if (split_arg.size() >= llama_max_devices()) {
  1016. invalid_param = true;
  1017. return true;
  1018. }
  1019. for (size_t i = 0; i < llama_max_devices(); ++i) {
  1020. if (i < split_arg.size()) {
  1021. params.tensor_split[i] = std::stof(split_arg[i]);
  1022. }
  1023. else {
  1024. params.tensor_split[i] = 0.0f;
  1025. }
  1026. }
  1027. #ifndef GGML_USE_CUDA_SYCL_VULKAN
  1028. fprintf(stderr, "warning: llama.cpp was compiled without CUDA/SYCL/Vulkan. Setting a tensor split has no effect.\n");
  1029. #endif // GGML_USE_CUDA_SYCL_VULKAN
  1030. return true;
  1031. }
  1032. if (arg == "--no-mmap") {
  1033. params.use_mmap = false;
  1034. return true;
  1035. }
  1036. if (arg == "--numa") {
  1037. if (++i >= argc) {
  1038. invalid_param = true;
  1039. return true;
  1040. }
  1041. std::string value(argv[i]);
  1042. /**/ if (value == "distribute" || value == "") { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
  1043. else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
  1044. else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
  1045. else { invalid_param = true; }
  1046. return true;
  1047. }
  1048. if (arg == "--verbose-prompt") {
  1049. params.verbose_prompt = true;
  1050. return true;
  1051. }
  1052. if (arg == "--no-display-prompt") {
  1053. params.display_prompt = false;
  1054. return true;
  1055. }
  1056. if (arg == "-r" || arg == "--reverse-prompt") {
  1057. if (++i >= argc) {
  1058. invalid_param = true;
  1059. return true;
  1060. }
  1061. params.antiprompt.emplace_back(argv[i]);
  1062. return true;
  1063. }
  1064. if (arg == "-ld" || arg == "--logdir") {
  1065. if (++i >= argc) {
  1066. invalid_param = true;
  1067. return true;
  1068. }
  1069. params.logdir = argv[i];
  1070. if (params.logdir.back() != DIRECTORY_SEPARATOR) {
  1071. params.logdir += DIRECTORY_SEPARATOR;
  1072. }
  1073. return true;
  1074. }
  1075. if (arg == "-lcs" || arg == "--lookup-cache-static") {
  1076. if (++i >= argc) {
  1077. invalid_param = true;
  1078. return true;
  1079. }
  1080. params.lookup_cache_static = argv[i];
  1081. return true;
  1082. }
  1083. if (arg == "-lcd" || arg == "--lookup-cache-dynamic") {
  1084. if (++i >= argc) {
  1085. invalid_param = true;
  1086. return true;
  1087. }
  1088. params.lookup_cache_dynamic = argv[i];
  1089. return true;
  1090. }
  1091. if (arg == "--save-all-logits" || arg == "--kl-divergence-base") {
  1092. if (++i >= argc) {
  1093. invalid_param = true;
  1094. return true;
  1095. }
  1096. params.logits_file = argv[i];
  1097. return true;
  1098. }
  1099. if (arg == "--perplexity" || arg == "--all-logits") {
  1100. params.logits_all = true;
  1101. return true;
  1102. }
  1103. if (arg == "--ppl-stride") {
  1104. if (++i >= argc) {
  1105. invalid_param = true;
  1106. return true;
  1107. }
  1108. params.ppl_stride = std::stoi(argv[i]);
  1109. return true;
  1110. }
  1111. if (arg == "-ptc" || arg == "--print-token-count") {
  1112. if (++i >= argc) {
  1113. invalid_param = true;
  1114. return true;
  1115. }
  1116. params.n_print = std::stoi(argv[i]);
  1117. return true;
  1118. }
  1119. if (arg == "--check-tensors") {
  1120. params.check_tensors = true;
  1121. return true;
  1122. }
  1123. if (arg == "--ppl-output-type") {
  1124. if (++i >= argc) {
  1125. invalid_param = true;
  1126. return true;
  1127. }
  1128. params.ppl_output_type = std::stoi(argv[i]);
  1129. return true;
  1130. }
  1131. if (arg == "--hellaswag") {
  1132. params.hellaswag = true;
  1133. return true;
  1134. }
  1135. if (arg == "--hellaswag-tasks") {
  1136. if (++i >= argc) {
  1137. invalid_param = true;
  1138. return true;
  1139. }
  1140. params.hellaswag_tasks = std::stoi(argv[i]);
  1141. return true;
  1142. }
  1143. if (arg == "--winogrande") {
  1144. params.winogrande = true;
  1145. return true;
  1146. }
  1147. if (arg == "--winogrande-tasks") {
  1148. if (++i >= argc) {
  1149. invalid_param = true;
  1150. return true;
  1151. }
  1152. params.winogrande_tasks = std::stoi(argv[i]);
  1153. return true;
  1154. }
  1155. if (arg == "--multiple-choice") {
  1156. params.multiple_choice = true;
  1157. return true;
  1158. }
  1159. if (arg == "--multiple-choice-tasks") {
  1160. if (++i >= argc) {
  1161. invalid_param = true;
  1162. return true;
  1163. }
  1164. params.multiple_choice_tasks = std::stoi(argv[i]);
  1165. return true;
  1166. }
  1167. if (arg == "--kl-divergence") {
  1168. params.kl_divergence = true;
  1169. return true;
  1170. }
  1171. if (arg == "--ignore-eos") {
  1172. params.ignore_eos = true;
  1173. return true;
  1174. }
  1175. if (arg == "--penalize-nl") {
  1176. sparams.penalize_nl = true;
  1177. return true;
  1178. }
  1179. if (arg == "-l" || arg == "--logit-bias") {
  1180. if (++i >= argc) {
  1181. invalid_param = true;
  1182. return true;
  1183. }
  1184. std::stringstream ss(argv[i]);
  1185. llama_token key;
  1186. char sign;
  1187. std::string value_str;
  1188. try {
  1189. if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) {
  1190. sparams.logit_bias[key] = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f);
  1191. }
  1192. else {
  1193. throw std::exception();
  1194. }
  1195. }
  1196. catch (const std::exception&) {
  1197. invalid_param = true;
  1198. return true;
  1199. }
  1200. return true;
  1201. }
  1202. if (arg == "-h" || arg == "--help") {
  1203. gpt_print_usage(argc, argv, gpt_params());
  1204. exit(0);
  1205. }
  1206. if (arg == "--version") {
  1207. fprintf(stderr, "version: %d (%s)\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT);
  1208. fprintf(stderr, "built with %s for %s\n", LLAMA_COMPILER, LLAMA_BUILD_TARGET);
  1209. exit(0);
  1210. }
  1211. if (arg == "--random-prompt") {
  1212. params.random_prompt = true;
  1213. return true;
  1214. }
  1215. if (arg == "--in-prefix-bos") {
  1216. params.input_prefix_bos = true;
  1217. return true;
  1218. }
  1219. if (arg == "--in-prefix") {
  1220. if (++i >= argc) {
  1221. invalid_param = true;
  1222. return true;
  1223. }
  1224. params.input_prefix = argv[i];
  1225. return true;
  1226. }
  1227. if (arg == "--in-suffix") {
  1228. if (++i >= argc) {
  1229. invalid_param = true;
  1230. return true;
  1231. }
  1232. params.input_suffix = argv[i];
  1233. return true;
  1234. }
  1235. if (arg == "--grammar") {
  1236. if (++i >= argc) {
  1237. invalid_param = true;
  1238. return true;
  1239. }
  1240. sparams.grammar = argv[i];
  1241. return true;
  1242. }
  1243. if (arg == "--grammar-file") {
  1244. if (++i >= argc) {
  1245. invalid_param = true;
  1246. return true;
  1247. }
  1248. std::ifstream file(argv[i]);
  1249. if (!file) {
  1250. fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
  1251. invalid_param = true;
  1252. return true;
  1253. }
  1254. std::copy(
  1255. std::istreambuf_iterator<char>(file),
  1256. std::istreambuf_iterator<char>(),
  1257. std::back_inserter(sparams.grammar)
  1258. );
  1259. return true;
  1260. }
  1261. if (arg == "-j" || arg == "--json-schema") {
  1262. if (++i >= argc) {
  1263. invalid_param = true;
  1264. return true;
  1265. }
  1266. sparams.grammar = json_schema_to_grammar(json::parse(argv[i]));
  1267. return true;
  1268. }
  1269. if (arg == "--override-kv") {
  1270. if (++i >= argc) {
  1271. invalid_param = true;
  1272. return true;
  1273. }
  1274. if (!parse_kv_override(argv[i], params.kv_overrides)) {
  1275. fprintf(stderr, "error: Invalid type for KV override: %s\n", argv[i]);
  1276. invalid_param = true;
  1277. return true;
  1278. }
  1279. return true;
  1280. }
  1281. #ifndef LOG_DISABLE_LOGS
  1282. // Parse args for logging parameters
  1283. if (log_param_single_parse(argv[i])) {
  1284. // Do nothing, log_param_single_parse automatically does it's thing
  1285. // and returns if a match was found and parsed.
  1286. return true;
  1287. }
  1288. if (log_param_pair_parse( /*check_but_dont_parse*/ true, argv[i])) {
  1289. // We have a matching known parameter requiring an argument,
  1290. // now we need to check if there is anything after this argv
  1291. // and flag invalid_param or parse it.
  1292. if (++i >= argc) {
  1293. invalid_param = true;
  1294. return true;
  1295. }
  1296. if (!log_param_pair_parse( /*check_but_dont_parse*/ false, argv[i - 1], argv[i])) {
  1297. invalid_param = true;
  1298. return true;
  1299. }
  1300. return true;
  1301. }
  1302. // End of Parse args for logging parameters
  1303. #endif // LOG_DISABLE_LOGS
  1304. return false;
  1305. }
  1306. void gpt_params_handle_model_default(gpt_params & params) {
  1307. if (!params.hf_repo.empty()) {
  1308. // short-hand to avoid specifying --hf-file -> default it to --model
  1309. if (params.hf_file.empty()) {
  1310. if (params.model.empty()) {
  1311. throw std::invalid_argument("error: --hf-repo requires either --hf-file or --model\n");
  1312. }
  1313. params.hf_file = params.model;
  1314. } else if (params.model.empty()) {
  1315. params.model = "models/" + string_split(params.hf_file, '/').back();
  1316. }
  1317. } else if (!params.model_url.empty()) {
  1318. if (params.model.empty()) {
  1319. auto f = string_split(params.model_url, '#').front();
  1320. f = string_split(f, '?').front();
  1321. f = string_split(f, '/').back();
  1322. params.model = "models/" + f;
  1323. }
  1324. } else if (params.model.empty()) {
  1325. params.model = DEFAULT_MODEL_PATH;
  1326. }
  1327. }
  1328. bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
  1329. bool invalid_param = false;
  1330. std::string arg;
  1331. const std::string arg_prefix = "--";
  1332. llama_sampling_params & sparams = params.sparams;
  1333. for (int i = 1; i < argc; i++) {
  1334. arg = argv[i];
  1335. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  1336. std::replace(arg.begin(), arg.end(), '_', '-');
  1337. }
  1338. if (!gpt_params_find_arg(argc, argv, arg, params, i, invalid_param)) {
  1339. throw std::invalid_argument("error: unknown argument: " + arg);
  1340. }
  1341. }
  1342. if (invalid_param) {
  1343. throw std::invalid_argument("error: invalid parameter for argument: " + arg);
  1344. }
  1345. if (params.prompt_cache_all &&
  1346. (params.interactive || params.interactive_first ||
  1347. params.instruct)) {
  1348. throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n");
  1349. }
  1350. gpt_params_handle_model_default(params);
  1351. if (params.escape) {
  1352. process_escapes(params.prompt);
  1353. process_escapes(params.input_prefix);
  1354. process_escapes(params.input_suffix);
  1355. process_escapes(sparams.cfg_negative_prompt);
  1356. for (auto & antiprompt : params.antiprompt) {
  1357. process_escapes(antiprompt);
  1358. }
  1359. }
  1360. if (!params.kv_overrides.empty()) {
  1361. params.kv_overrides.emplace_back();
  1362. params.kv_overrides.back().key[0] = 0;
  1363. }
  1364. return true;
  1365. }
  1366. void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
  1367. const llama_sampling_params & sparams = params.sparams;
  1368. std::string sampler_type_chars;
  1369. std::string sampler_type_names;
  1370. for (const auto sampler_type : sparams.samplers_sequence) {
  1371. sampler_type_chars += static_cast<char>(sampler_type);
  1372. sampler_type_names += sampler_type_to_name_string(sampler_type) + ";";
  1373. }
  1374. sampler_type_names.pop_back();
  1375. printf("\n");
  1376. printf("usage: %s [options]\n", argv[0]);
  1377. printf("\n");
  1378. printf("options:\n");
  1379. printf(" -h, --help show this help message and exit\n");
  1380. printf(" --version show version and build info\n");
  1381. printf(" -i, --interactive run in interactive mode\n");
  1382. printf(" --interactive-first run in interactive mode and wait for input right away\n");
  1383. printf(" -cnv, --conversation run in conversation mode (does not print special tokens and suffix/prefix)\n");
  1384. printf(" -ins, --instruct run in instruction mode (use with Alpaca models)\n");
  1385. printf(" -cml, --chatml run in chatml mode (use with ChatML-compatible models)\n");
  1386. printf(" --multiline-input allows you to write or paste multiple lines without ending each in '\\'\n");
  1387. printf(" -r PROMPT, --reverse-prompt PROMPT\n");
  1388. printf(" halt generation at PROMPT, return control in interactive mode\n");
  1389. printf(" (can be specified more than once for multiple prompts).\n");
  1390. printf(" --color colorise output to distinguish prompt and user input from generations\n");
  1391. printf(" -s SEED, --seed SEED RNG seed (default: -1, use random seed for < 0)\n");
  1392. printf(" -t N, --threads N number of threads to use during generation (default: %d)\n", params.n_threads);
  1393. printf(" -tb N, --threads-batch N\n");
  1394. printf(" number of threads to use during batch and prompt processing (default: same as --threads)\n");
  1395. printf(" -td N, --threads-draft N");
  1396. printf(" number of threads to use during generation (default: same as --threads)\n");
  1397. printf(" -tbd N, --threads-batch-draft N\n");
  1398. printf(" number of threads to use during batch and prompt processing (default: same as --threads-draft)\n");
  1399. printf(" -p PROMPT, --prompt PROMPT\n");
  1400. printf(" prompt to start generation with (default: empty)\n");
  1401. printf(" -e, --escape process prompt escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\)\n");
  1402. printf(" --prompt-cache FNAME file to cache prompt state for faster startup (default: none)\n");
  1403. printf(" --prompt-cache-all if specified, saves user input and generations to cache as well.\n");
  1404. printf(" not supported with --interactive or other interactive options\n");
  1405. printf(" --prompt-cache-ro if specified, uses the prompt cache but does not update it.\n");
  1406. printf(" --random-prompt start with a randomized prompt.\n");
  1407. printf(" --in-prefix-bos prefix BOS to user inputs, preceding the `--in-prefix` string\n");
  1408. printf(" --in-prefix STRING string to prefix user inputs with (default: empty)\n");
  1409. printf(" --in-suffix STRING string to suffix after user inputs with (default: empty)\n");
  1410. printf(" -f FNAME, --file FNAME\n");
  1411. printf(" prompt file to start generation.\n");
  1412. printf(" -bf FNAME, --binary-file FNAME\n");
  1413. printf(" binary file containing multiple choice tasks.\n");
  1414. printf(" -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict);
  1415. printf(" -c N, --ctx-size N size of the prompt context (default: %d, 0 = loaded from model)\n", params.n_ctx);
  1416. printf(" -b N, --batch-size N logical maximum batch size (default: %d)\n", params.n_batch);
  1417. printf(" -ub N, --ubatch-size N\n");
  1418. printf(" physical maximum batch size (default: %d)\n", params.n_ubatch);
  1419. printf(" --samplers samplers that will be used for generation in the order, separated by \';\'\n");
  1420. printf(" (default: %s)\n", sampler_type_names.c_str());
  1421. printf(" --sampling-seq simplified sequence for samplers that will be used (default: %s)\n", sampler_type_chars.c_str());
  1422. printf(" --top-k N top-k sampling (default: %d, 0 = disabled)\n", sparams.top_k);
  1423. printf(" --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)sparams.top_p);
  1424. printf(" --min-p N min-p sampling (default: %.1f, 0.0 = disabled)\n", (double)sparams.min_p);
  1425. printf(" --tfs N tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)sparams.tfs_z);
  1426. printf(" --typical N locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)\n", (double)sparams.typical_p);
  1427. printf(" --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)\n", sparams.penalty_last_n);
  1428. printf(" --repeat-penalty N penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)\n", (double)sparams.penalty_repeat);
  1429. printf(" --presence-penalty N repeat alpha presence penalty (default: %.1f, 0.0 = disabled)\n", (double)sparams.penalty_present);
  1430. printf(" --frequency-penalty N repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)\n", (double)sparams.penalty_freq);
  1431. printf(" --dynatemp-range N dynamic temperature range (default: %.1f, 0.0 = disabled)\n", (double)sparams.dynatemp_range);
  1432. printf(" --dynatemp-exp N dynamic temperature exponent (default: %.1f)\n", (double)sparams.dynatemp_exponent);
  1433. printf(" --mirostat N use Mirostat sampling.\n");
  1434. printf(" Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.\n");
  1435. printf(" (default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)\n", sparams.mirostat);
  1436. printf(" --mirostat-lr N Mirostat learning rate, parameter eta (default: %.1f)\n", (double)sparams.mirostat_eta);
  1437. printf(" --mirostat-ent N Mirostat target entropy, parameter tau (default: %.1f)\n", (double)sparams.mirostat_tau);
  1438. printf(" -l TOKEN_ID(+/-)BIAS, --logit-bias TOKEN_ID(+/-)BIAS\n");
  1439. printf(" modifies the likelihood of token appearing in the completion,\n");
  1440. printf(" i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n");
  1441. printf(" or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'\n");
  1442. printf(" --grammar GRAMMAR BNF-like grammar to constrain generations (see samples in grammars/ dir)\n");
  1443. printf(" --grammar-file FNAME file to read grammar from\n");
  1444. printf(" -j SCHEMA, --json-schema SCHEMA\n");
  1445. printf(" JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object.\n");
  1446. printf(" For schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead\n");
  1447. printf(" --cfg-negative-prompt PROMPT\n");
  1448. printf(" negative prompt to use for guidance. (default: empty)\n");
  1449. printf(" --cfg-negative-prompt-file FNAME\n");
  1450. printf(" negative prompt file to use for guidance. (default: empty)\n");
  1451. printf(" --cfg-scale N strength of guidance (default: %f, 1.0 = disable)\n", sparams.cfg_scale);
  1452. printf(" --rope-scaling {none,linear,yarn}\n");
  1453. printf(" RoPE frequency scaling method, defaults to linear unless specified by the model\n");
  1454. printf(" --rope-scale N RoPE context scaling factor, expands context by a factor of N\n");
  1455. printf(" --rope-freq-base N RoPE base frequency, used by NTK-aware scaling (default: loaded from model)\n");
  1456. printf(" --rope-freq-scale N RoPE frequency scaling factor, expands context by a factor of 1/N\n");
  1457. printf(" --yarn-orig-ctx N YaRN: original context size of model (default: 0 = model training context size)\n");
  1458. printf(" --yarn-ext-factor N YaRN: extrapolation mix factor (default: 1.0, 0.0 = full interpolation)\n");
  1459. printf(" --yarn-attn-factor N YaRN: scale sqrt(t) or attention magnitude (default: 1.0)\n");
  1460. printf(" --yarn-beta-slow N YaRN: high correction dim or alpha (default: %.1f)\n", params.yarn_beta_slow);
  1461. printf(" --yarn-beta-fast N YaRN: low correction dim or beta (default: %.1f)\n", params.yarn_beta_fast);
  1462. printf(" --pooling {none,mean,cls}\n");
  1463. printf(" pooling type for embeddings, use model default if unspecified\n");
  1464. printf(" -dt N, --defrag-thold N\n");
  1465. printf(" KV cache defragmentation threshold (default: %.1f, < 0 - disabled)\n", params.defrag_thold);
  1466. printf(" --ignore-eos ignore end of stream token and continue generating (implies --logit-bias 2-inf)\n");
  1467. printf(" --penalize-nl penalize newline tokens\n");
  1468. printf(" --temp N temperature (default: %.1f)\n", (double)sparams.temp);
  1469. printf(" --all-logits return logits for all tokens in the batch (default: disabled)\n");
  1470. printf(" --hellaswag compute HellaSwag score over random tasks from datafile supplied with -f\n");
  1471. printf(" --hellaswag-tasks N number of tasks to use when computing the HellaSwag score (default: %zu)\n", params.hellaswag_tasks);
  1472. printf(" --winogrande compute Winogrande score over random tasks from datafile supplied with -f\n");
  1473. printf(" --winogrande-tasks N number of tasks to use when computing the Winogrande score (default: %zu)\n", params.winogrande_tasks);
  1474. printf(" --multiple-choice compute multiple choice score over random tasks from datafile supplied with -f\n");
  1475. printf(" --multiple-choice-tasks N number of tasks to use when computing the multiple choice score (default: %zu)\n", params.winogrande_tasks);
  1476. printf(" --kl-divergence computes KL-divergence to logits provided via --kl-divergence-base\n");
  1477. printf(" --keep N number of tokens to keep from the initial prompt (default: %d, -1 = all)\n", params.n_keep);
  1478. printf(" --draft N number of tokens to draft for speculative decoding (default: %d)\n", params.n_draft);
  1479. printf(" --chunks N max number of chunks to process (default: %d, -1 = all)\n", params.n_chunks);
  1480. printf(" -np N, --parallel N number of parallel sequences to decode (default: %d)\n", params.n_parallel);
  1481. printf(" -ns N, --sequences N number of sequences to decode (default: %d)\n", params.n_sequences);
  1482. printf(" -ps N, --p-split N speculative decoding split probability (default: %.1f)\n", (double)params.p_split);
  1483. printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n");
  1484. printf(" -fa, --flash-attn enable Flash Attention (default: %s)\n", params.flash_attn ? "enabled" : "disabled");
  1485. printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA. see examples/llava/README.md\n");
  1486. printf(" --image IMAGE_FILE path to an image file. use with multimodal models. Specify multiple times for batching\n");
  1487. if (llama_supports_mlock()) {
  1488. printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n");
  1489. }
  1490. if (llama_supports_mmap()) {
  1491. printf(" --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
  1492. }
  1493. printf(" --numa TYPE attempt optimizations that help on some NUMA systems\n");
  1494. printf(" - distribute: spread execution evenly over all nodes\n");
  1495. printf(" - isolate: only spawn threads on CPUs on the node that execution started on\n");
  1496. printf(" - numactl: use the CPU map provided by numactl\n");
  1497. printf(" if run without this previously, it is recommended to drop the system page cache before using this\n");
  1498. printf(" see https://github.com/ggerganov/llama.cpp/issues/1437\n");
  1499. if (llama_supports_gpu_offload()) {
  1500. printf(" -ngl N, --n-gpu-layers N\n");
  1501. printf(" number of layers to store in VRAM\n");
  1502. printf(" -ngld N, --n-gpu-layers-draft N\n");
  1503. printf(" number of layers to store in VRAM for the draft model\n");
  1504. printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n");
  1505. printf(" how to split the model across multiple GPUs, one of:\n");
  1506. printf(" - none: use one GPU only\n");
  1507. printf(" - layer (default): split layers and KV across GPUs\n");
  1508. printf(" - row: split rows across GPUs\n");
  1509. printf(" -ts SPLIT, --tensor-split SPLIT\n");
  1510. printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
  1511. printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
  1512. printf(" or for intermediate results and KV (with split-mode = row) (default: %d)\n", params.main_gpu);
  1513. }
  1514. printf(" --verbose-prompt print a verbose prompt before generation (default: %s)\n", params.verbose_prompt ? "true" : "false");
  1515. printf(" --no-display-prompt don't print prompt at generation (default: %s)\n", !params.display_prompt ? "true" : "false");
  1516. printf(" -gan N, --grp-attn-n N\n");
  1517. printf(" group-attention factor (default: %d)\n", params.grp_attn_n);
  1518. printf(" -gaw N, --grp-attn-w N\n");
  1519. printf(" group-attention width (default: %.1f)\n", (double)params.grp_attn_w);
  1520. printf(" -dkvc, --dump-kv-cache\n");
  1521. printf(" verbose print of the KV cache\n");
  1522. printf(" -nkvo, --no-kv-offload\n");
  1523. printf(" disable KV offload\n");
  1524. printf(" -ctk TYPE, --cache-type-k TYPE\n");
  1525. printf(" KV cache data type for K (default: %s)\n", params.cache_type_k.c_str());
  1526. printf(" -ctv TYPE, --cache-type-v TYPE\n");
  1527. printf(" KV cache data type for V (default: %s)\n", params.cache_type_v.c_str());
  1528. printf(" --simple-io use basic IO for better compatibility in subprocesses and limited consoles\n");
  1529. printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
  1530. printf(" --lora-scaled FNAME S apply LoRA adapter with user defined scaling S (implies --no-mmap)\n");
  1531. printf(" --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
  1532. printf(" --control-vector FNAME\n");
  1533. printf(" add a control vector\n");
  1534. printf(" --control-vector-scaled FNAME S\n");
  1535. printf(" add a control vector with user defined scaling S\n");
  1536. printf(" --control-vector-layer-range START END\n");
  1537. printf(" layer range to apply the control vector(s) to, start and end inclusive\n");
  1538. printf(" -m FNAME, --model FNAME\n");
  1539. printf(" model path (default: models/$filename with filename from --hf-file or --model-url if set, otherwise %s)\n", DEFAULT_MODEL_PATH);
  1540. printf(" -md FNAME, --model-draft FNAME\n");
  1541. printf(" draft model for speculative decoding (default: unused)\n");
  1542. printf(" -mu MODEL_URL, --model-url MODEL_URL\n");
  1543. printf(" model download url (default: unused)\n");
  1544. printf(" -hfr REPO, --hf-repo REPO\n");
  1545. printf(" Hugging Face model repository (default: unused)\n");
  1546. printf(" -hff FILE, --hf-file FILE\n");
  1547. printf(" Hugging Face model file (default: unused)\n");
  1548. printf(" -ld LOGDIR, --logdir LOGDIR\n");
  1549. printf(" path under which to save YAML logs (no logging if unset)\n");
  1550. printf(" -lcs FNAME, --lookup-cache-static FNAME\n");
  1551. printf(" path to static lookup cache to use for lookup decoding (not updated by generation)\n");
  1552. printf(" -lcd FNAME, --lookup-cache-dynamic FNAME\n");
  1553. printf(" path to dynamic lookup cache to use for lookup decoding (updated by generation)\n");
  1554. printf(" --override-kv KEY=TYPE:VALUE\n");
  1555. printf(" advanced option to override model metadata by key. may be specified multiple times.\n");
  1556. printf(" types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
  1557. printf(" -ptc N, --print-token-count N\n");
  1558. printf(" print token count every N tokens (default: %d)\n", params.n_print);
  1559. printf(" --check-tensors check model tensor data for invalid values\n");
  1560. printf("\n");
  1561. #ifndef LOG_DISABLE_LOGS
  1562. log_print_usage();
  1563. #endif // LOG_DISABLE_LOGS
  1564. }
  1565. std::string get_system_info(const gpt_params & params) {
  1566. std::ostringstream os;
  1567. os << "system_info: n_threads = " << params.n_threads;
  1568. if (params.n_threads_batch != -1) {
  1569. os << " (n_threads_batch = " << params.n_threads_batch << ")";
  1570. }
  1571. os << " / " << std::thread::hardware_concurrency() << " | " << llama_print_system_info();
  1572. return os.str();
  1573. }
  1574. std::string gpt_random_prompt(std::mt19937 & rng) {
  1575. const int r = rng() % 10;
  1576. switch (r) {
  1577. case 0: return "So";
  1578. case 1: return "Once upon a time";
  1579. case 2: return "When";
  1580. case 3: return "The";
  1581. case 4: return "After";
  1582. case 5: return "If";
  1583. case 6: return "import";
  1584. case 7: return "He";
  1585. case 8: return "She";
  1586. case 9: return "They";
  1587. }
  1588. GGML_UNREACHABLE();
  1589. }
  1590. // Validate if a filename is safe to use
  1591. // To validate a full path, split the path by the OS-specific path separator, and validate each part with this function
  1592. bool validate_file_name(const std::string & filename) {
  1593. if (!filename.length()) {
  1594. // Empty filename invalid
  1595. return false;
  1596. }
  1597. if (filename.length() > 255) {
  1598. // Limit at common largest possible filename on Linux filesystems
  1599. // to avoid unnecessary further validation
  1600. // (On systems with smaller limits it will be caught by the OS)
  1601. return false;
  1602. }
  1603. std::u32string filename_utf32;
  1604. try {
  1605. std::wstring_convert<std::codecvt_utf8<char32_t>, char32_t> converter;
  1606. filename_utf32 = converter.from_bytes(filename);
  1607. // If the reverse conversion mismatches, it means overlong UTF-8 sequences were used,
  1608. // or invalid encodings were encountered. Reject such attempts
  1609. std::string filename_reencoded = converter.to_bytes(filename_utf32);
  1610. if (filename_reencoded != filename) {
  1611. return false;
  1612. }
  1613. } catch (const std::exception &) {
  1614. return false;
  1615. }
  1616. // Check for forbidden codepoints:
  1617. // - Control characters
  1618. // - Unicode equivalents of illegal characters
  1619. // - UTF-16 surrogate pairs
  1620. // - UTF-8 replacement character
  1621. // - Byte order mark (BOM)
  1622. // - Illegal characters: / \ : * ? " < > |
  1623. for (char32_t c : filename_utf32) {
  1624. if (c <= 0x1F // Control characters (C0)
  1625. || c == 0x7F // Control characters (DEL)
  1626. || (c >= 0x80 && c <= 0x9F) // Control characters (C1)
  1627. || c == 0xFF0E // Fullwidth Full Stop (period equivalent)
  1628. || c == 0x2215 // Division Slash (forward slash equivalent)
  1629. || c == 0x2216 // Set Minus (backslash equivalent)
  1630. || (c >= 0xD800 && c <= 0xDFFF) // UTF-16 surrogate pairs
  1631. || c == 0xFFFD // Replacement Character (UTF-8)
  1632. || c == 0xFEFF // Byte Order Mark (BOM)
  1633. || c == '/' || c == '\\' || c == ':' || c == '*' // Illegal characters
  1634. || c == '?' || c == '"' || c == '<' || c == '>' || c == '|') {
  1635. return false;
  1636. }
  1637. }
  1638. // Reject any leading or trailing ' ', or any trailing '.', these are stripped on Windows and will cause a different filename
  1639. // Unicode and other whitespace is not affected, only 0x20 space
  1640. if (filename.front() == ' ' || filename.back() == ' ' || filename.back() == '.') {
  1641. return false;
  1642. }
  1643. // Reject any ".." (currently stricter than necessary, it should be fine to just check for == ".." instead)
  1644. if (filename.find("..") != std::string::npos) {
  1645. return false;
  1646. }
  1647. // Reject "."
  1648. if (filename == ".") {
  1649. return false;
  1650. }
  1651. return true;
  1652. }
  1653. //
  1654. // String utils
  1655. //
  1656. std::vector<std::string> string_split(std::string input, char separator) {
  1657. std::vector<std::string> parts;
  1658. size_t separator_pos = input.find(separator);
  1659. while (separator_pos != std::string::npos) {
  1660. std::string part = input.substr(0, separator_pos);
  1661. parts.emplace_back(part);
  1662. input = input.substr(separator_pos + 1);
  1663. separator_pos = input.find(separator);
  1664. }
  1665. parts.emplace_back(input);
  1666. return parts;
  1667. }
  1668. std::string string_strip(const std::string & str) {
  1669. size_t start = 0;
  1670. size_t end = str.size();
  1671. while (start < end && std::isspace(str[start])) {
  1672. start++;
  1673. }
  1674. while (end > start && std::isspace(str[end - 1])) {
  1675. end--;
  1676. }
  1677. return str.substr(start, end - start);
  1678. }
  1679. std::vector<llama_sampler_type> sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names) {
  1680. std::unordered_map<std::string, llama_sampler_type> sampler_canonical_name_map {
  1681. {"top_k", llama_sampler_type::TOP_K},
  1682. {"top_p", llama_sampler_type::TOP_P},
  1683. {"typical_p", llama_sampler_type::TYPICAL_P},
  1684. {"min_p", llama_sampler_type::MIN_P},
  1685. {"tfs_z", llama_sampler_type::TFS_Z},
  1686. {"temperature", llama_sampler_type::TEMPERATURE}
  1687. };
  1688. // since samplers names are written multiple ways
  1689. // make it ready for both system names and input names
  1690. std::unordered_map<std::string, llama_sampler_type> sampler_alt_name_map {
  1691. {"top-k", llama_sampler_type::TOP_K},
  1692. {"top-p", llama_sampler_type::TOP_P},
  1693. {"nucleus", llama_sampler_type::TOP_P},
  1694. {"typical-p", llama_sampler_type::TYPICAL_P},
  1695. {"typical", llama_sampler_type::TYPICAL_P},
  1696. {"min-p", llama_sampler_type::MIN_P},
  1697. {"tfs-z", llama_sampler_type::TFS_Z},
  1698. {"tfs", llama_sampler_type::TFS_Z},
  1699. {"temp", llama_sampler_type::TEMPERATURE}
  1700. };
  1701. std::vector<llama_sampler_type> sampler_types;
  1702. sampler_types.reserve(names.size());
  1703. for (const auto & name : names)
  1704. {
  1705. auto sampler_item = sampler_canonical_name_map.find(name);
  1706. if (sampler_item != sampler_canonical_name_map.end())
  1707. {
  1708. sampler_types.push_back(sampler_item->second);
  1709. }
  1710. else
  1711. {
  1712. if (allow_alt_names)
  1713. {
  1714. sampler_item = sampler_alt_name_map.find(name);
  1715. if (sampler_item != sampler_alt_name_map.end())
  1716. {
  1717. sampler_types.push_back(sampler_item->second);
  1718. }
  1719. }
  1720. }
  1721. }
  1722. return sampler_types;
  1723. }
  1724. std::vector<llama_sampler_type> sampler_types_from_chars(const std::string & names_string) {
  1725. std::unordered_map<char, llama_sampler_type> sampler_name_map {
  1726. {'k', llama_sampler_type::TOP_K},
  1727. {'p', llama_sampler_type::TOP_P},
  1728. {'y', llama_sampler_type::TYPICAL_P},
  1729. {'m', llama_sampler_type::MIN_P},
  1730. {'f', llama_sampler_type::TFS_Z},
  1731. {'t', llama_sampler_type::TEMPERATURE}
  1732. };
  1733. std::vector<llama_sampler_type> sampler_types;
  1734. sampler_types.reserve(names_string.size());
  1735. for (const auto & c : names_string) {
  1736. const auto sampler_item = sampler_name_map.find(c);
  1737. if (sampler_item != sampler_name_map.end()) {
  1738. sampler_types.push_back(sampler_item->second);
  1739. }
  1740. }
  1741. return sampler_types;
  1742. }
  1743. std::string sampler_type_to_name_string(llama_sampler_type sampler_type) {
  1744. switch (sampler_type) {
  1745. case llama_sampler_type::TOP_K: return "top_k";
  1746. case llama_sampler_type::TFS_Z: return "tfs_z";
  1747. case llama_sampler_type::TYPICAL_P: return "typical_p";
  1748. case llama_sampler_type::TOP_P: return "top_p";
  1749. case llama_sampler_type::MIN_P: return "min_p";
  1750. case llama_sampler_type::TEMPERATURE: return "temperature";
  1751. default : return "";
  1752. }
  1753. }
  1754. //
  1755. // Model utils
  1756. //
  1757. struct llama_model_params llama_model_params_from_gpt_params(const gpt_params & params) {
  1758. auto mparams = llama_model_default_params();
  1759. if (params.n_gpu_layers != -1) {
  1760. mparams.n_gpu_layers = params.n_gpu_layers;
  1761. }
  1762. mparams.main_gpu = params.main_gpu;
  1763. mparams.split_mode = params.split_mode;
  1764. mparams.tensor_split = params.tensor_split;
  1765. mparams.use_mmap = params.use_mmap;
  1766. mparams.use_mlock = params.use_mlock;
  1767. mparams.check_tensors = params.check_tensors;
  1768. if (params.kv_overrides.empty()) {
  1769. mparams.kv_overrides = NULL;
  1770. } else {
  1771. GGML_ASSERT(params.kv_overrides.back().key[0] == 0 && "KV overrides not terminated with empty key");
  1772. mparams.kv_overrides = params.kv_overrides.data();
  1773. }
  1774. return mparams;
  1775. }
  1776. static ggml_type kv_cache_type_from_str(const std::string & s) {
  1777. if (s == "f32") {
  1778. return GGML_TYPE_F32;
  1779. }
  1780. if (s == "f16") {
  1781. return GGML_TYPE_F16;
  1782. }
  1783. if (s == "q8_0") {
  1784. return GGML_TYPE_Q8_0;
  1785. }
  1786. if (s == "q4_0") {
  1787. return GGML_TYPE_Q4_0;
  1788. }
  1789. if (s == "q4_1") {
  1790. return GGML_TYPE_Q4_1;
  1791. }
  1792. if (s == "iq4_nl") {
  1793. return GGML_TYPE_IQ4_NL;
  1794. }
  1795. if (s == "q5_0") {
  1796. return GGML_TYPE_Q5_0;
  1797. }
  1798. if (s == "q5_1") {
  1799. return GGML_TYPE_Q5_1;
  1800. }
  1801. throw std::runtime_error("Invalid cache type: " + s);
  1802. }
  1803. struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params) {
  1804. auto cparams = llama_context_default_params();
  1805. cparams.n_ctx = params.n_ctx;
  1806. cparams.n_seq_max = params.n_parallel;
  1807. cparams.n_batch = params.n_batch;
  1808. cparams.n_ubatch = params.n_ubatch;
  1809. cparams.n_threads = params.n_threads;
  1810. cparams.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
  1811. cparams.seed = params.seed;
  1812. cparams.logits_all = params.logits_all;
  1813. cparams.embeddings = params.embedding;
  1814. cparams.rope_scaling_type = params.rope_scaling_type;
  1815. cparams.rope_freq_base = params.rope_freq_base;
  1816. cparams.rope_freq_scale = params.rope_freq_scale;
  1817. cparams.yarn_ext_factor = params.yarn_ext_factor;
  1818. cparams.yarn_attn_factor = params.yarn_attn_factor;
  1819. cparams.yarn_beta_fast = params.yarn_beta_fast;
  1820. cparams.yarn_beta_slow = params.yarn_beta_slow;
  1821. cparams.yarn_orig_ctx = params.yarn_orig_ctx;
  1822. cparams.pooling_type = params.pooling_type;
  1823. cparams.defrag_thold = params.defrag_thold;
  1824. cparams.cb_eval = params.cb_eval;
  1825. cparams.cb_eval_user_data = params.cb_eval_user_data;
  1826. cparams.offload_kqv = !params.no_kv_offload;
  1827. cparams.flash_attn = params.flash_attn;
  1828. cparams.type_k = kv_cache_type_from_str(params.cache_type_k);
  1829. cparams.type_v = kv_cache_type_from_str(params.cache_type_v);
  1830. return cparams;
  1831. }
  1832. void llama_batch_clear(struct llama_batch & batch) {
  1833. batch.n_tokens = 0;
  1834. }
  1835. void llama_batch_add(
  1836. struct llama_batch & batch,
  1837. llama_token id,
  1838. llama_pos pos,
  1839. const std::vector<llama_seq_id> & seq_ids,
  1840. bool logits) {
  1841. batch.token [batch.n_tokens] = id;
  1842. batch.pos [batch.n_tokens] = pos;
  1843. batch.n_seq_id[batch.n_tokens] = seq_ids.size();
  1844. for (size_t i = 0; i < seq_ids.size(); ++i) {
  1845. batch.seq_id[batch.n_tokens][i] = seq_ids[i];
  1846. }
  1847. batch.logits [batch.n_tokens] = logits;
  1848. batch.n_tokens++;
  1849. }
  1850. #ifdef LLAMA_USE_CURL
  1851. static bool starts_with(const std::string & str, const std::string & prefix) {
  1852. // While we wait for C++20's std::string::starts_with...
  1853. return str.rfind(prefix, 0) == 0;
  1854. }
  1855. static bool llama_download_file(const std::string & url, const std::string & path) {
  1856. // Initialize libcurl
  1857. std::unique_ptr<CURL, decltype(&curl_easy_cleanup)> curl(curl_easy_init(), &curl_easy_cleanup);
  1858. if (!curl) {
  1859. fprintf(stderr, "%s: error initializing libcurl\n", __func__);
  1860. return false;
  1861. }
  1862. bool force_download = false;
  1863. // Set the URL, allow to follow http redirection
  1864. curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
  1865. curl_easy_setopt(curl.get(), CURLOPT_FOLLOWLOCATION, 1L);
  1866. #if defined(_WIN32)
  1867. // CURLSSLOPT_NATIVE_CA tells libcurl to use standard certificate store of
  1868. // operating system. Currently implemented under MS-Windows.
  1869. curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
  1870. #endif
  1871. // Check if the file already exists locally
  1872. struct stat model_file_info;
  1873. auto file_exists = (stat(path.c_str(), &model_file_info) == 0);
  1874. // If the file exists, check its JSON metadata companion file.
  1875. std::string metadata_path = path + ".json";
  1876. nlohmann::json metadata;
  1877. std::string etag;
  1878. std::string last_modified;
  1879. if (file_exists) {
  1880. // Try and read the JSON metadata file (note: stream autoclosed upon exiting this block).
  1881. std::ifstream metadata_in(metadata_path);
  1882. if (metadata_in.good()) {
  1883. try {
  1884. metadata_in >> metadata;
  1885. fprintf(stderr, "%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(), metadata.dump().c_str());
  1886. if (metadata.contains("url") && metadata["url"].is_string()) {
  1887. auto previous_url = metadata["url"].get<std::string>();
  1888. if (previous_url != url) {
  1889. fprintf(stderr, "%s: Model URL mismatch: %s != %s\n", __func__, url.c_str(), previous_url.c_str());
  1890. return false;
  1891. }
  1892. }
  1893. if (metadata.contains("etag") && metadata["etag"].is_string()) {
  1894. etag = metadata["etag"];
  1895. }
  1896. if (metadata.contains("lastModified") && metadata["lastModified"].is_string()) {
  1897. last_modified = metadata["lastModified"];
  1898. }
  1899. } catch (const nlohmann::json::exception & e) {
  1900. fprintf(stderr, "%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what());
  1901. return false;
  1902. }
  1903. }
  1904. } else {
  1905. fprintf(stderr, "%s: no previous model file found %s\n", __func__, path.c_str());
  1906. }
  1907. // Send a HEAD request to retrieve the etag and last-modified headers
  1908. struct llama_load_model_from_url_headers {
  1909. std::string etag;
  1910. std::string last_modified;
  1911. };
  1912. llama_load_model_from_url_headers headers;
  1913. {
  1914. typedef size_t(*CURLOPT_HEADERFUNCTION_PTR)(char *, size_t, size_t, void *);
  1915. auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t {
  1916. llama_load_model_from_url_headers *headers = (llama_load_model_from_url_headers *) userdata;
  1917. static std::regex header_regex("([^:]+): (.*)\r\n");
  1918. static std::regex etag_regex("ETag", std::regex_constants::icase);
  1919. static std::regex last_modified_regex("Last-Modified", std::regex_constants::icase);
  1920. std::string header(buffer, n_items);
  1921. std::smatch match;
  1922. if (std::regex_match(header, match, header_regex)) {
  1923. const std::string & key = match[1];
  1924. const std::string & value = match[2];
  1925. if (std::regex_match(key, match, etag_regex)) {
  1926. headers->etag = value;
  1927. } else if (std::regex_match(key, match, last_modified_regex)) {
  1928. headers->last_modified = value;
  1929. }
  1930. }
  1931. return n_items;
  1932. };
  1933. curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 1L); // will trigger the HEAD verb
  1934. curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L); // hide head request progress
  1935. curl_easy_setopt(curl.get(), CURLOPT_HEADERFUNCTION, static_cast<CURLOPT_HEADERFUNCTION_PTR>(header_callback));
  1936. curl_easy_setopt(curl.get(), CURLOPT_HEADERDATA, &headers);
  1937. CURLcode res = curl_easy_perform(curl.get());
  1938. if (res != CURLE_OK) {
  1939. fprintf(stderr, "%s: curl_easy_perform() failed: %s\n", __func__, curl_easy_strerror(res));
  1940. return false;
  1941. }
  1942. long http_code = 0;
  1943. curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
  1944. if (http_code != 200) {
  1945. // HEAD not supported, we don't know if the file has changed
  1946. // force trigger downloading
  1947. force_download = true;
  1948. fprintf(stderr, "%s: HEAD invalid http status code received: %ld\n", __func__, http_code);
  1949. }
  1950. }
  1951. bool should_download = !file_exists || force_download;
  1952. if (!should_download) {
  1953. if (!etag.empty() && etag != headers.etag) {
  1954. fprintf(stderr, "%s: ETag header is different (%s != %s): triggering a new download\n", __func__, etag.c_str(), headers.etag.c_str());
  1955. should_download = true;
  1956. } else if (!last_modified.empty() && last_modified != headers.last_modified) {
  1957. fprintf(stderr, "%s: Last-Modified header is different (%s != %s): triggering a new download\n", __func__, last_modified.c_str(), headers.last_modified.c_str());
  1958. should_download = true;
  1959. }
  1960. }
  1961. if (should_download) {
  1962. std::string path_temporary = path + ".downloadInProgress";
  1963. if (file_exists) {
  1964. fprintf(stderr, "%s: deleting previous downloaded file: %s\n", __func__, path.c_str());
  1965. if (remove(path.c_str()) != 0) {
  1966. fprintf(stderr, "%s: unable to delete file: %s\n", __func__, path.c_str());
  1967. return false;
  1968. }
  1969. }
  1970. // Set the output file
  1971. std::unique_ptr<FILE, decltype(&fclose)> outfile(fopen(path_temporary.c_str(), "wb"), fclose);
  1972. if (!outfile) {
  1973. fprintf(stderr, "%s: error opening local file for writing: %s\n", __func__, path.c_str());
  1974. return false;
  1975. }
  1976. typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * data, size_t size, size_t nmemb, void * fd);
  1977. auto write_callback = [](void * data, size_t size, size_t nmemb, void * fd) -> size_t {
  1978. return fwrite(data, size, nmemb, (FILE *)fd);
  1979. };
  1980. curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 0L);
  1981. curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
  1982. curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, outfile.get());
  1983. // display download progress
  1984. curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 0L);
  1985. // helper function to hide password in URL
  1986. auto llama_download_hide_password_in_url = [](const std::string & url) -> std::string {
  1987. std::size_t protocol_pos = url.find("://");
  1988. if (protocol_pos == std::string::npos) {
  1989. return url; // Malformed URL
  1990. }
  1991. std::size_t at_pos = url.find('@', protocol_pos + 3);
  1992. if (at_pos == std::string::npos) {
  1993. return url; // No password in URL
  1994. }
  1995. return url.substr(0, protocol_pos + 3) + "********" + url.substr(at_pos);
  1996. };
  1997. // start the download
  1998. fprintf(stderr, "%s: downloading from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__,
  1999. llama_download_hide_password_in_url(url).c_str(), path.c_str(), headers.etag.c_str(), headers.last_modified.c_str());
  2000. auto res = curl_easy_perform(curl.get());
  2001. if (res != CURLE_OK) {
  2002. fprintf(stderr, "%s: curl_easy_perform() failed: %s\n", __func__, curl_easy_strerror(res));
  2003. return false;
  2004. }
  2005. long http_code = 0;
  2006. curl_easy_getinfo (curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
  2007. if (http_code < 200 || http_code >= 400) {
  2008. fprintf(stderr, "%s: invalid http status code received: %ld\n", __func__, http_code);
  2009. return false;
  2010. }
  2011. // Causes file to be closed explicitly here before we rename it.
  2012. outfile.reset();
  2013. // Write the updated JSON metadata file.
  2014. metadata.update({
  2015. {"url", url},
  2016. {"etag", headers.etag},
  2017. {"lastModified", headers.last_modified}
  2018. });
  2019. std::ofstream(metadata_path) << metadata.dump(4);
  2020. fprintf(stderr, "%s: file metadata saved: %s\n", __func__, metadata_path.c_str());
  2021. if (rename(path_temporary.c_str(), path.c_str()) != 0) {
  2022. fprintf(stderr, "%s: unable to rename file: %s to %s\n", __func__, path_temporary.c_str(), path.c_str());
  2023. return false;
  2024. }
  2025. }
  2026. return true;
  2027. }
  2028. struct llama_model * llama_load_model_from_url(
  2029. const char * model_url,
  2030. const char * path_model,
  2031. const struct llama_model_params & params) {
  2032. // Basic validation of the model_url
  2033. if (!model_url || strlen(model_url) == 0) {
  2034. fprintf(stderr, "%s: invalid model_url\n", __func__);
  2035. return NULL;
  2036. }
  2037. if (!llama_download_file(model_url, path_model)) {
  2038. return NULL;
  2039. }
  2040. // check for additional GGUFs split to download
  2041. int n_split = 0;
  2042. {
  2043. struct gguf_init_params gguf_params = {
  2044. /*.no_alloc = */ true,
  2045. /*.ctx = */ NULL,
  2046. };
  2047. auto * ctx_gguf = gguf_init_from_file(path_model, gguf_params);
  2048. if (!ctx_gguf) {
  2049. fprintf(stderr, "\n%s: failed to load input GGUF from %s\n", __func__, path_model);
  2050. return NULL;
  2051. }
  2052. auto key_n_split = gguf_find_key(ctx_gguf, LLM_KV_SPLIT_COUNT);
  2053. if (key_n_split >= 0) {
  2054. n_split = gguf_get_val_u16(ctx_gguf, key_n_split);
  2055. }
  2056. gguf_free(ctx_gguf);
  2057. }
  2058. if (n_split > 1) {
  2059. char split_prefix[PATH_MAX] = {0};
  2060. char split_url_prefix[LLAMA_CURL_MAX_URL_LENGTH] = {0};
  2061. // Verify the first split file format
  2062. // and extract split URL and PATH prefixes
  2063. {
  2064. if (!llama_split_prefix(split_prefix, sizeof(split_prefix), path_model, 0, n_split)) {
  2065. fprintf(stderr, "\n%s: unexpected model file name: %s"
  2066. " n_split=%d\n", __func__, path_model, n_split);
  2067. return NULL;
  2068. }
  2069. if (!llama_split_prefix(split_url_prefix, sizeof(split_url_prefix), model_url, 0, n_split)) {
  2070. fprintf(stderr, "\n%s: unexpected model url: %s"
  2071. " n_split=%d\n", __func__, model_url, n_split);
  2072. return NULL;
  2073. }
  2074. }
  2075. // Prepare download in parallel
  2076. std::vector<std::future<bool>> futures_download;
  2077. for (int idx = 1; idx < n_split; idx++) {
  2078. futures_download.push_back(std::async(std::launch::async, [&split_prefix, &split_url_prefix, &n_split](int download_idx) -> bool {
  2079. char split_path[PATH_MAX] = {0};
  2080. llama_split_path(split_path, sizeof(split_path), split_prefix, download_idx, n_split);
  2081. char split_url[LLAMA_CURL_MAX_URL_LENGTH] = {0};
  2082. llama_split_path(split_url, sizeof(split_url), split_url_prefix, download_idx, n_split);
  2083. return llama_download_file(split_url, split_path);
  2084. }, idx));
  2085. }
  2086. // Wait for all downloads to complete
  2087. for (auto & f : futures_download) {
  2088. if (!f.get()) {
  2089. return NULL;
  2090. }
  2091. }
  2092. }
  2093. return llama_load_model_from_file(path_model, params);
  2094. }
  2095. struct llama_model * llama_load_model_from_hf(
  2096. const char * repo,
  2097. const char * model,
  2098. const char * path_model,
  2099. const struct llama_model_params & params) {
  2100. // construct hugging face model url:
  2101. //
  2102. // --repo ggml-org/models --file tinyllama-1.1b/ggml-model-f16.gguf
  2103. // https://huggingface.co/ggml-org/models/resolve/main/tinyllama-1.1b/ggml-model-f16.gguf
  2104. //
  2105. // --repo TheBloke/Mixtral-8x7B-v0.1-GGUF --file mixtral-8x7b-v0.1.Q4_K_M.gguf
  2106. // https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GGUF/resolve/main/mixtral-8x7b-v0.1.Q4_K_M.gguf
  2107. //
  2108. std::string model_url = "https://huggingface.co/";
  2109. model_url += repo;
  2110. model_url += "/resolve/main/";
  2111. model_url += model;
  2112. return llama_load_model_from_url(model_url.c_str(), path_model, params);
  2113. }
  2114. #else
  2115. struct llama_model * llama_load_model_from_url(
  2116. const char * /*model_url*/,
  2117. const char * /*path_model*/,
  2118. const struct llama_model_params & /*params*/) {
  2119. fprintf(stderr, "%s: llama.cpp built without libcurl, downloading from an url not supported.\n", __func__);
  2120. return nullptr;
  2121. }
  2122. struct llama_model * llama_load_model_from_hf(
  2123. const char * /*repo*/,
  2124. const char * /*model*/,
  2125. const char * /*path_model*/,
  2126. const struct llama_model_params & /*params*/) {
  2127. fprintf(stderr, "%s: llama.cpp built without libcurl, downloading from Hugging Face not supported.\n", __func__);
  2128. return nullptr;
  2129. }
  2130. #endif // LLAMA_USE_CURL
  2131. std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params) {
  2132. auto mparams = llama_model_params_from_gpt_params(params);
  2133. llama_model * model = nullptr;
  2134. if (!params.hf_repo.empty() && !params.hf_file.empty()) {
  2135. model = llama_load_model_from_hf(params.hf_repo.c_str(), params.hf_file.c_str(), params.model.c_str(), mparams);
  2136. } else if (!params.model_url.empty()) {
  2137. model = llama_load_model_from_url(params.model_url.c_str(), params.model.c_str(), mparams);
  2138. } else {
  2139. model = llama_load_model_from_file(params.model.c_str(), mparams);
  2140. }
  2141. if (model == NULL) {
  2142. fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
  2143. return std::make_tuple(nullptr, nullptr);
  2144. }
  2145. auto cparams = llama_context_params_from_gpt_params(params);
  2146. llama_context * lctx = llama_new_context_with_model(model, cparams);
  2147. if (lctx == NULL) {
  2148. fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str());
  2149. llama_free_model(model);
  2150. return std::make_tuple(nullptr, nullptr);
  2151. }
  2152. if (!params.control_vectors.empty()) {
  2153. if (params.control_vector_layer_start <= 0) params.control_vector_layer_start = 1;
  2154. if (params.control_vector_layer_end <= 0) params.control_vector_layer_end = llama_n_layer(model);
  2155. const auto cvec = llama_control_vector_load(params.control_vectors);
  2156. if (cvec.n_embd == -1) {
  2157. llama_free(lctx);
  2158. llama_free_model(model);
  2159. return std::make_tuple(nullptr, nullptr);
  2160. }
  2161. int err = llama_control_vector_apply(lctx,
  2162. cvec.data.data(),
  2163. cvec.data.size(),
  2164. cvec.n_embd,
  2165. params.control_vector_layer_start,
  2166. params.control_vector_layer_end);
  2167. if (err) {
  2168. llama_free(lctx);
  2169. llama_free_model(model);
  2170. return std::make_tuple(nullptr, nullptr);
  2171. }
  2172. }
  2173. for (unsigned int i = 0; i < params.lora_adapter.size(); ++i) {
  2174. const std::string & lora_adapter = std::get<0>(params.lora_adapter[i]);
  2175. float lora_scale = std::get<1>(params.lora_adapter[i]);
  2176. int err = llama_model_apply_lora_from_file(model,
  2177. lora_adapter.c_str(),
  2178. lora_scale,
  2179. ((i > 0) || params.lora_base.empty())
  2180. ? NULL
  2181. : params.lora_base.c_str(),
  2182. params.n_threads);
  2183. if (err != 0) {
  2184. fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__);
  2185. llama_free(lctx);
  2186. llama_free_model(model);
  2187. return std::make_tuple(nullptr, nullptr);
  2188. }
  2189. }
  2190. if (params.ignore_eos) {
  2191. params.sparams.logit_bias[llama_token_eos(model)] = -INFINITY;
  2192. }
  2193. if (params.warmup) {
  2194. LOG("warming up the model with an empty run\n");
  2195. std::vector<llama_token> tmp = { llama_token_bos(model), llama_token_eos(model), };
  2196. llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch), 0, 0));
  2197. llama_kv_cache_clear(lctx);
  2198. llama_synchronize(lctx);
  2199. llama_reset_timings(lctx);
  2200. }
  2201. return std::make_tuple(model, lctx);
  2202. }
  2203. //
  2204. // Vocab utils
  2205. //
  2206. std::vector<llama_token> llama_tokenize(
  2207. const struct llama_context * ctx,
  2208. const std::string & text,
  2209. bool add_special,
  2210. bool parse_special) {
  2211. return llama_tokenize(llama_get_model(ctx), text, add_special, parse_special);
  2212. }
  2213. std::vector<llama_token> llama_tokenize(
  2214. const struct llama_model * model,
  2215. const std::string & text,
  2216. bool add_special,
  2217. bool parse_special) {
  2218. // upper limit for the number of tokens
  2219. int n_tokens = text.length() + 2 * add_special;
  2220. std::vector<llama_token> result(n_tokens);
  2221. n_tokens = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
  2222. if (n_tokens < 0) {
  2223. result.resize(-n_tokens);
  2224. int check = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
  2225. GGML_ASSERT(check == -n_tokens);
  2226. } else {
  2227. result.resize(n_tokens);
  2228. }
  2229. return result;
  2230. }
  2231. std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) {
  2232. std::vector<char> result(8, 0);
  2233. const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special);
  2234. if (n_tokens < 0) {
  2235. result.resize(-n_tokens);
  2236. int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special);
  2237. GGML_ASSERT(check == -n_tokens);
  2238. } else {
  2239. result.resize(n_tokens);
  2240. }
  2241. return std::string(result.data(), result.size());
  2242. }
  2243. std::string llama_detokenize_spm(llama_context * ctx, const std::vector<llama_token> & tokens) {
  2244. const llama_token bos_id = llama_token_bos(llama_get_model(ctx));
  2245. std::string piece;
  2246. std::string result;
  2247. for (size_t i = 0; i < tokens.size(); ++i) {
  2248. piece = llama_token_to_piece(ctx, tokens[i]);
  2249. // remove the leading space of the first non-BOS token
  2250. if (((tokens[0] == bos_id && i == 1) || (tokens[0] != bos_id && i == 0)) && piece[0] == ' ') {
  2251. piece = piece.substr(1);
  2252. }
  2253. result += piece;
  2254. }
  2255. return result;
  2256. }
  2257. std::string llama_detokenize_bpe(llama_context * ctx, const std::vector<llama_token> & tokens) {
  2258. std::string piece;
  2259. std::string result;
  2260. for (size_t i = 0; i < tokens.size(); ++i) {
  2261. piece = llama_token_to_piece(ctx, tokens[i]);
  2262. result += piece;
  2263. }
  2264. // NOTE: the original tokenizer decodes bytes after collecting the pieces.
  2265. return result;
  2266. }
  2267. bool llama_should_add_bos_token(const llama_model * model) {
  2268. const int add_bos = llama_add_bos_token(model);
  2269. return add_bos != -1 ? bool(add_bos) : (llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM);
  2270. }
  2271. //
  2272. // YAML utils
  2273. //
  2274. // returns true if successful, false otherwise
  2275. bool create_directory_with_parents(const std::string & path) {
  2276. #ifdef _WIN32
  2277. std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
  2278. std::wstring wpath = converter.from_bytes(path);
  2279. // if the path already exists, check whether it's a directory
  2280. const DWORD attributes = GetFileAttributesW(wpath.c_str());
  2281. if ((attributes != INVALID_FILE_ATTRIBUTES) && (attributes & FILE_ATTRIBUTE_DIRECTORY)) {
  2282. return true;
  2283. }
  2284. size_t pos_slash = 0;
  2285. // process path from front to back, procedurally creating directories
  2286. while ((pos_slash = path.find('\\', pos_slash)) != std::string::npos) {
  2287. const std::wstring subpath = wpath.substr(0, pos_slash);
  2288. const wchar_t * test = subpath.c_str();
  2289. const bool success = CreateDirectoryW(test, NULL);
  2290. if (!success) {
  2291. const DWORD error = GetLastError();
  2292. // if the path already exists, ensure that it's a directory
  2293. if (error == ERROR_ALREADY_EXISTS) {
  2294. const DWORD attributes = GetFileAttributesW(subpath.c_str());
  2295. if (attributes == INVALID_FILE_ATTRIBUTES || !(attributes & FILE_ATTRIBUTE_DIRECTORY)) {
  2296. return false;
  2297. }
  2298. } else {
  2299. return false;
  2300. }
  2301. }
  2302. pos_slash += 1;
  2303. }
  2304. return true;
  2305. #else
  2306. // if the path already exists, check whether it's a directory
  2307. struct stat info;
  2308. if (stat(path.c_str(), &info) == 0) {
  2309. return S_ISDIR(info.st_mode);
  2310. }
  2311. size_t pos_slash = 1; // skip leading slashes for directory creation
  2312. // process path from front to back, procedurally creating directories
  2313. while ((pos_slash = path.find('/', pos_slash)) != std::string::npos) {
  2314. const std::string subpath = path.substr(0, pos_slash);
  2315. struct stat info;
  2316. // if the path already exists, ensure that it's a directory
  2317. if (stat(subpath.c_str(), &info) == 0) {
  2318. if (!S_ISDIR(info.st_mode)) {
  2319. return false;
  2320. }
  2321. } else {
  2322. // create parent directories
  2323. const int ret = mkdir(subpath.c_str(), 0755);
  2324. if (ret != 0) {
  2325. return false;
  2326. }
  2327. }
  2328. pos_slash += 1;
  2329. }
  2330. return true;
  2331. #endif // _WIN32
  2332. }
  2333. void dump_vector_float_yaml(FILE * stream, const char * prop_name, const std::vector<float> & data) {
  2334. if (data.empty()) {
  2335. fprintf(stream, "%s:\n", prop_name);
  2336. return;
  2337. }
  2338. fprintf(stream, "%s: [", prop_name);
  2339. for (size_t i = 0; i < data.size() - 1; ++i) {
  2340. fprintf(stream, "%e, ", data[i]);
  2341. }
  2342. fprintf(stream, "%e]\n", data.back());
  2343. }
  2344. void dump_vector_int_yaml(FILE * stream, const char * prop_name, const std::vector<int> & data) {
  2345. if (data.empty()) {
  2346. fprintf(stream, "%s:\n", prop_name);
  2347. return;
  2348. }
  2349. fprintf(stream, "%s: [", prop_name);
  2350. for (size_t i = 0; i < data.size() - 1; ++i) {
  2351. fprintf(stream, "%d, ", data[i]);
  2352. }
  2353. fprintf(stream, "%d]\n", data.back());
  2354. }
  2355. void dump_string_yaml_multiline(FILE * stream, const char * prop_name, const char * data) {
  2356. std::string data_str(data == NULL ? "" : data);
  2357. if (data_str.empty()) {
  2358. fprintf(stream, "%s:\n", prop_name);
  2359. return;
  2360. }
  2361. size_t pos_start = 0;
  2362. size_t pos_found = 0;
  2363. if (!data_str.empty() && (std::isspace(data_str[0]) || std::isspace(data_str.back()))) {
  2364. data_str = std::regex_replace(data_str, std::regex("\n"), "\\n");
  2365. data_str = std::regex_replace(data_str, std::regex("\""), "\\\"");
  2366. data_str = std::regex_replace(data_str, std::regex(R"(\\[^n"])"), R"(\$&)");
  2367. data_str = "\"" + data_str + "\"";
  2368. fprintf(stream, "%s: %s\n", prop_name, data_str.c_str());
  2369. return;
  2370. }
  2371. if (data_str.find('\n') == std::string::npos) {
  2372. fprintf(stream, "%s: %s\n", prop_name, data_str.c_str());
  2373. return;
  2374. }
  2375. fprintf(stream, "%s: |\n", prop_name);
  2376. while ((pos_found = data_str.find('\n', pos_start)) != std::string::npos) {
  2377. fprintf(stream, " %s\n", data_str.substr(pos_start, pos_found-pos_start).c_str());
  2378. pos_start = pos_found + 1;
  2379. }
  2380. }
  2381. std::string get_sortable_timestamp() {
  2382. using clock = std::chrono::system_clock;
  2383. const clock::time_point current_time = clock::now();
  2384. const time_t as_time_t = clock::to_time_t(current_time);
  2385. char timestamp_no_ns[100];
  2386. std::strftime(timestamp_no_ns, 100, "%Y_%m_%d-%H_%M_%S", std::localtime(&as_time_t));
  2387. const int64_t ns = std::chrono::duration_cast<std::chrono::nanoseconds>(
  2388. current_time.time_since_epoch() % 1000000000).count();
  2389. char timestamp_ns[11];
  2390. snprintf(timestamp_ns, 11, "%09" PRId64, ns);
  2391. return std::string(timestamp_no_ns) + "." + std::string(timestamp_ns);
  2392. }
  2393. void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const llama_context * lctx,
  2394. const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc) {
  2395. const llama_sampling_params & sparams = params.sparams;
  2396. fprintf(stream, "build_commit: %s\n", LLAMA_COMMIT);
  2397. fprintf(stream, "build_number: %d\n", LLAMA_BUILD_NUMBER);
  2398. fprintf(stream, "cpu_has_arm_fma: %s\n", ggml_cpu_has_arm_fma() ? "true" : "false");
  2399. fprintf(stream, "cpu_has_avx: %s\n", ggml_cpu_has_avx() ? "true" : "false");
  2400. fprintf(stream, "cpu_has_avx_vnni: %s\n", ggml_cpu_has_avx_vnni() ? "true" : "false");
  2401. fprintf(stream, "cpu_has_avx2: %s\n", ggml_cpu_has_avx2() ? "true" : "false");
  2402. fprintf(stream, "cpu_has_avx512: %s\n", ggml_cpu_has_avx512() ? "true" : "false");
  2403. fprintf(stream, "cpu_has_avx512_vbmi: %s\n", ggml_cpu_has_avx512_vbmi() ? "true" : "false");
  2404. fprintf(stream, "cpu_has_avx512_vnni: %s\n", ggml_cpu_has_avx512_vnni() ? "true" : "false");
  2405. fprintf(stream, "cpu_has_cuda: %s\n", ggml_cpu_has_cuda() ? "true" : "false");
  2406. fprintf(stream, "cpu_has_vulkan: %s\n", ggml_cpu_has_vulkan() ? "true" : "false");
  2407. fprintf(stream, "cpu_has_clblast: %s\n", ggml_cpu_has_clblast() ? "true" : "false");
  2408. fprintf(stream, "cpu_has_kompute: %s\n", ggml_cpu_has_kompute() ? "true" : "false");
  2409. fprintf(stream, "cpu_has_fma: %s\n", ggml_cpu_has_fma() ? "true" : "false");
  2410. fprintf(stream, "cpu_has_gpublas: %s\n", ggml_cpu_has_gpublas() ? "true" : "false");
  2411. fprintf(stream, "cpu_has_neon: %s\n", ggml_cpu_has_neon() ? "true" : "false");
  2412. fprintf(stream, "cpu_has_f16c: %s\n", ggml_cpu_has_f16c() ? "true" : "false");
  2413. fprintf(stream, "cpu_has_fp16_va: %s\n", ggml_cpu_has_fp16_va() ? "true" : "false");
  2414. fprintf(stream, "cpu_has_wasm_simd: %s\n", ggml_cpu_has_wasm_simd() ? "true" : "false");
  2415. fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false");
  2416. fprintf(stream, "cpu_has_sse3: %s\n", ggml_cpu_has_sse3() ? "true" : "false");
  2417. fprintf(stream, "cpu_has_vsx: %s\n", ggml_cpu_has_vsx() ? "true" : "false");
  2418. fprintf(stream, "cpu_has_matmul_int8: %s\n", ggml_cpu_has_matmul_int8() ? "true" : "false");
  2419. #ifdef NDEBUG
  2420. fprintf(stream, "debug: false\n");
  2421. #else
  2422. fprintf(stream, "debug: true\n");
  2423. #endif // NDEBUG
  2424. fprintf(stream, "model_desc: %s\n", model_desc);
  2425. fprintf(stream, "n_vocab: %d # output size of the final layer, 32001 for some models\n", llama_n_vocab(llama_get_model(lctx)));
  2426. #ifdef __OPTIMIZE__
  2427. fprintf(stream, "optimize: true\n");
  2428. #else
  2429. fprintf(stream, "optimize: false\n");
  2430. #endif // __OPTIMIZE__
  2431. fprintf(stream, "time: %s\n", timestamp.c_str());
  2432. fprintf(stream, "\n");
  2433. fprintf(stream, "###############\n");
  2434. fprintf(stream, "# User Inputs #\n");
  2435. fprintf(stream, "###############\n");
  2436. fprintf(stream, "\n");
  2437. fprintf(stream, "alias: %s # default: unknown\n", params.model_alias.c_str());
  2438. fprintf(stream, "batch_size: %d # default: 512\n", params.n_batch);
  2439. dump_string_yaml_multiline(stream, "cfg_negative_prompt", sparams.cfg_negative_prompt.c_str());
  2440. fprintf(stream, "cfg_scale: %f # default: 1.0\n", sparams.cfg_scale);
  2441. fprintf(stream, "chunks: %d # default: -1 (unlimited)\n", params.n_chunks);
  2442. fprintf(stream, "color: %s # default: false\n", params.use_color ? "true" : "false");
  2443. fprintf(stream, "ctx_size: %d # default: 512\n", params.n_ctx);
  2444. fprintf(stream, "escape: %s # default: false\n", params.escape ? "true" : "false");
  2445. fprintf(stream, "file: # never logged, see prompt instead. Can still be specified for input.\n");
  2446. fprintf(stream, "frequency_penalty: %f # default: 0.0 \n", sparams.penalty_freq);
  2447. dump_string_yaml_multiline(stream, "grammar", sparams.grammar.c_str());
  2448. fprintf(stream, "grammar-file: # never logged, see grammar instead. Can still be specified for input.\n");
  2449. fprintf(stream, "hellaswag: %s # default: false\n", params.hellaswag ? "true" : "false");
  2450. fprintf(stream, "hellaswag_tasks: %zu # default: 400\n", params.hellaswag_tasks);
  2451. const auto logit_bias_eos = sparams.logit_bias.find(llama_token_eos(llama_get_model(lctx)));
  2452. const bool ignore_eos = logit_bias_eos != sparams.logit_bias.end() && logit_bias_eos->second == -INFINITY;
  2453. fprintf(stream, "ignore_eos: %s # default: false\n", ignore_eos ? "true" : "false");
  2454. dump_string_yaml_multiline(stream, "in_prefix", params.input_prefix.c_str());
  2455. fprintf(stream, "in_prefix_bos: %s # default: false\n", params.input_prefix_bos ? "true" : "false");
  2456. dump_string_yaml_multiline(stream, "in_suffix", params.input_prefix.c_str());
  2457. fprintf(stream, "instruct: %s # default: false\n", params.instruct ? "true" : "false");
  2458. fprintf(stream, "interactive: %s # default: false\n", params.interactive ? "true" : "false");
  2459. fprintf(stream, "interactive_first: %s # default: false\n", params.interactive_first ? "true" : "false");
  2460. fprintf(stream, "keep: %d # default: 0\n", params.n_keep);
  2461. fprintf(stream, "logdir: %s # default: unset (no logging)\n", params.logdir.c_str());
  2462. fprintf(stream, "logit_bias:\n");
  2463. for (std::pair<llama_token, float> lb : sparams.logit_bias) {
  2464. if (ignore_eos && lb.first == logit_bias_eos->first) {
  2465. continue;
  2466. }
  2467. fprintf(stream, " %d: %f", lb.first, lb.second);
  2468. }
  2469. fprintf(stream, "lora:\n");
  2470. for (std::tuple<std::string, float> la : params.lora_adapter) {
  2471. if (std::get<1>(la) != 1.0f) {
  2472. continue;
  2473. }
  2474. fprintf(stream, " - %s\n", std::get<0>(la).c_str());
  2475. }
  2476. fprintf(stream, "lora_scaled:\n");
  2477. for (std::tuple<std::string, float> la : params.lora_adapter) {
  2478. if (std::get<1>(la) == 1.0f) {
  2479. continue;
  2480. }
  2481. fprintf(stream, " - %s: %f\n", std::get<0>(la).c_str(), std::get<1>(la));
  2482. }
  2483. fprintf(stream, "lora_base: %s\n", params.lora_base.c_str());
  2484. fprintf(stream, "main_gpu: %d # default: 0\n", params.main_gpu);
  2485. fprintf(stream, "min_keep: %d # default: 0 (disabled)\n", sparams.min_keep);
  2486. fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", sparams.mirostat);
  2487. fprintf(stream, "mirostat_ent: %f # default: 5.0\n", sparams.mirostat_tau);
  2488. fprintf(stream, "mirostat_lr: %f # default: 0.1\n", sparams.mirostat_eta);
  2489. fprintf(stream, "mlock: %s # default: false\n", params.use_mlock ? "true" : "false");
  2490. fprintf(stream, "model: %s # default: %s\n", params.model.c_str(), DEFAULT_MODEL_PATH);
  2491. fprintf(stream, "model_draft: %s # default:\n", params.model_draft.c_str());
  2492. fprintf(stream, "multiline_input: %s # default: false\n", params.multiline_input ? "true" : "false");
  2493. fprintf(stream, "n_gpu_layers: %d # default: -1\n", params.n_gpu_layers);
  2494. fprintf(stream, "n_predict: %d # default: -1 (unlimited)\n", params.n_predict);
  2495. fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", sparams.n_probs);
  2496. fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false");
  2497. fprintf(stream, "penalize_nl: %s # default: false\n", sparams.penalize_nl ? "true" : "false");
  2498. fprintf(stream, "ppl_output_type: %d # default: 0\n", params.ppl_output_type);
  2499. fprintf(stream, "ppl_stride: %d # default: 0\n", params.ppl_stride);
  2500. fprintf(stream, "presence_penalty: %f # default: 0.0\n", sparams.penalty_present);
  2501. dump_string_yaml_multiline(stream, "prompt", params.prompt.c_str());
  2502. fprintf(stream, "prompt_cache: %s\n", params.path_prompt_cache.c_str());
  2503. fprintf(stream, "prompt_cache_all: %s # default: false\n", params.prompt_cache_all ? "true" : "false");
  2504. fprintf(stream, "prompt_cache_ro: %s # default: false\n", params.prompt_cache_ro ? "true" : "false");
  2505. dump_vector_int_yaml(stream, "prompt_tokens", prompt_tokens);
  2506. fprintf(stream, "random_prompt: %s # default: false\n", params.random_prompt ? "true" : "false");
  2507. fprintf(stream, "repeat_penalty: %f # default: 1.1\n", sparams.penalty_repeat);
  2508. fprintf(stream, "reverse_prompt:\n");
  2509. for (std::string ap : params.antiprompt) {
  2510. size_t pos = 0;
  2511. while ((pos = ap.find('\n', pos)) != std::string::npos) {
  2512. ap.replace(pos, 1, "\\n");
  2513. pos += 1;
  2514. }
  2515. fprintf(stream, " - %s\n", ap.c_str());
  2516. }
  2517. fprintf(stream, "rope_freq_base: %f # default: 10000.0\n", params.rope_freq_base);
  2518. fprintf(stream, "rope_freq_scale: %f # default: 1.0\n", params.rope_freq_scale);
  2519. fprintf(stream, "seed: %u # default: -1 (random seed)\n", params.seed);
  2520. fprintf(stream, "simple_io: %s # default: false\n", params.simple_io ? "true" : "false");
  2521. fprintf(stream, "cont_batching: %s # default: false\n", params.cont_batching ? "true" : "false");
  2522. fprintf(stream, "flash_attn: %s # default: false\n", params.flash_attn ? "true" : "false");
  2523. fprintf(stream, "temp: %f # default: 0.8\n", sparams.temp);
  2524. const std::vector<float> tensor_split_vector(params.tensor_split, params.tensor_split + llama_max_devices());
  2525. dump_vector_float_yaml(stream, "tensor_split", tensor_split_vector);
  2526. fprintf(stream, "tfs: %f # default: 1.0\n", sparams.tfs_z);
  2527. fprintf(stream, "threads: %d # default: %u\n", params.n_threads, std::thread::hardware_concurrency());
  2528. fprintf(stream, "top_k: %d # default: 40\n", sparams.top_k);
  2529. fprintf(stream, "top_p: %f # default: 0.95\n", sparams.top_p);
  2530. fprintf(stream, "min_p: %f # default: 0.0\n", sparams.min_p);
  2531. fprintf(stream, "typical_p: %f # default: 1.0\n", sparams.typical_p);
  2532. fprintf(stream, "verbose_prompt: %s # default: false\n", params.verbose_prompt ? "true" : "false");
  2533. fprintf(stream, "display_prompt: %s # default: true\n", params.display_prompt ? "true" : "false");
  2534. }
  2535. //
  2536. // KV cache utils
  2537. //
  2538. void dump_kv_cache_view(const llama_kv_cache_view & view, int row_size) {
  2539. static const char slot_chars[] = ".123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+";
  2540. printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d",
  2541. view.n_cells, view.n_seq_max, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx);
  2542. llama_kv_cache_view_cell * c_curr = view.cells;
  2543. llama_seq_id * cs_curr = view.cells_sequences;
  2544. for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) {
  2545. if (i % row_size == 0) {
  2546. printf("\n%5d: ", i);
  2547. }
  2548. int seq_count = 0;
  2549. for (int j = 0; j < view.n_seq_max; j++) {
  2550. if (cs_curr[j] >= 0) { seq_count++; }
  2551. }
  2552. putchar(slot_chars[std::min(sizeof(slot_chars) - 2, size_t(seq_count))]);
  2553. }
  2554. printf("\n=== Done dumping\n");
  2555. }
  2556. void dump_kv_cache_view_seqs(const llama_kv_cache_view & view, int row_size) {
  2557. static const char slot_chars[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
  2558. printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d\n",
  2559. view.n_cells, view.n_seq_max, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx);
  2560. std::unordered_map<llama_seq_id, size_t> seqs;
  2561. llama_kv_cache_view_cell * c_curr = view.cells;
  2562. llama_seq_id * cs_curr = view.cells_sequences;
  2563. for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) {
  2564. for (int j = 0; j < view.n_seq_max; j++) {
  2565. if (cs_curr[j] < 0) { continue; }
  2566. if (seqs.find(cs_curr[j]) == seqs.end()) {
  2567. if (seqs.size() + 1 >= sizeof(slot_chars)) { break; }
  2568. const size_t sz = seqs.size();
  2569. seqs[cs_curr[j]] = sz;
  2570. }
  2571. }
  2572. if (seqs.size() + 1 >= sizeof(slot_chars)) { break; }
  2573. }
  2574. printf("=== Sequence legend: ");
  2575. for (const auto & it : seqs) {
  2576. printf("%zu=%d, ", it.second, it.first);
  2577. }
  2578. printf("'+'=other sequence ids");
  2579. c_curr = view.cells;
  2580. cs_curr = view.cells_sequences;
  2581. for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) {
  2582. if (i % row_size == 0) {
  2583. printf("\n%5d: ", i);
  2584. }
  2585. for (int j = 0; j < view.n_seq_max; j++) {
  2586. if (cs_curr[j] >= 0) {
  2587. const auto & it = seqs.find(cs_curr[j]);
  2588. putchar(it != seqs.end() ? int(slot_chars[it->second]) : '+');
  2589. } else {
  2590. putchar('.');
  2591. }
  2592. }
  2593. putchar(' ');
  2594. }
  2595. printf("\n=== Done dumping\n");
  2596. }
  2597. void llama_embd_normalize(const float * inp, float * out, int n) {
  2598. double sum = 0.0;
  2599. for (int i = 0; i < n; i++) {
  2600. sum += inp[i] * inp[i];
  2601. }
  2602. sum = sqrt(sum);
  2603. const float norm = sum > 0.0 ? 1.0f / sum : 0.0f;
  2604. for (int i = 0; i < n; i++) {
  2605. out[i] = inp[i] * norm;
  2606. }
  2607. }
  2608. float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n){
  2609. double sum = 0.0;
  2610. double sum1 = 0.0;
  2611. double sum2 = 0.0;
  2612. for (int i = 0; i < n; i++) {
  2613. sum += embd1[i] * embd2[i];
  2614. sum1 += embd1[i] * embd1[i];
  2615. sum2 += embd2[i] * embd2[i];
  2616. }
  2617. return sum / (sqrt(sum1) * sqrt(sum2));
  2618. }
  2619. //
  2620. // Control vector utils
  2621. //
  2622. static llama_control_vector_data llama_control_vector_load_one(const llama_control_vector_load_info & load_info) {
  2623. int32_t n_tensors;
  2624. size_t n_bytes = 0;
  2625. uint32_t max_direction_layer = 0;
  2626. llama_control_vector_data result = { -1, {} };
  2627. // calculate size of ctx needed for tensors, ensure tensors are f32, and find max layer
  2628. {
  2629. struct ggml_init_params meta_params = {
  2630. /* .mem_size = */ ggml_tensor_overhead() * 128 + ggml_graph_overhead(),
  2631. /* .mem_buffer = */ nullptr,
  2632. /* .no_alloc = */ true,
  2633. };
  2634. ggml_context * meta_ctx = ggml_init(meta_params);
  2635. struct gguf_init_params meta_gguf_params = {
  2636. /* .no_alloc = */ true,
  2637. /* .ctx = */ &meta_ctx,
  2638. };
  2639. struct gguf_context * meta_ctx_gguf = gguf_init_from_file(load_info.fname.c_str(), meta_gguf_params);
  2640. if (!meta_ctx_gguf) {
  2641. fprintf(stderr, "%s: failed to load control vector from %s\n", __func__, load_info.fname.c_str());
  2642. ggml_free(meta_ctx);
  2643. return result;
  2644. }
  2645. n_tensors = gguf_get_n_tensors(meta_ctx_gguf);
  2646. for (int i = 0; i < n_tensors; i++) {
  2647. std::string name = gguf_get_tensor_name(meta_ctx_gguf, i);
  2648. // split on '.'
  2649. size_t dotpos = name.find('.');
  2650. if (dotpos != std::string::npos && name.substr(0, dotpos) == "direction") {
  2651. try {
  2652. uint32_t layer = std::stoi(name.substr(dotpos + 1));
  2653. if (layer == 0) {
  2654. fprintf(stderr, "%s: direction tensor invalid in %s\n", __func__, load_info.fname.c_str());
  2655. ggml_free(meta_ctx);
  2656. gguf_free(meta_ctx_gguf);
  2657. return result;
  2658. }
  2659. if (layer > max_direction_layer) {
  2660. max_direction_layer = layer;
  2661. }
  2662. } catch (...) {
  2663. fprintf(stderr, "%s: direction tensor invalid in %s\n", __func__, load_info.fname.c_str());
  2664. ggml_free(meta_ctx);
  2665. gguf_free(meta_ctx_gguf);
  2666. return result;
  2667. }
  2668. }
  2669. struct ggml_tensor * tensor_meta = ggml_get_tensor(meta_ctx, name.c_str());
  2670. if (tensor_meta->type != GGML_TYPE_F32 || ggml_n_dims(tensor_meta) != 1) {
  2671. fprintf(stderr, "%s: direction tensor invalid in %s\n", __func__, load_info.fname.c_str());
  2672. ggml_free(meta_ctx);
  2673. gguf_free(meta_ctx_gguf);
  2674. return result;
  2675. }
  2676. if (result.n_embd == -1) {
  2677. result.n_embd = ggml_nelements(tensor_meta);
  2678. } else if (ggml_nelements(tensor_meta) != result.n_embd) {
  2679. fprintf(stderr, "%s: direction tensor sizes mismatched in %s\n", __func__, load_info.fname.c_str());
  2680. ggml_free(meta_ctx);
  2681. gguf_free(meta_ctx_gguf);
  2682. return result;
  2683. }
  2684. n_bytes += ggml_nbytes(tensor_meta);
  2685. }
  2686. ggml_free(meta_ctx);
  2687. gguf_free(meta_ctx_gguf);
  2688. }
  2689. if (n_tensors == 0) {
  2690. fprintf(stderr, "%s: no direction tensors found in %s\n", __func__, load_info.fname.c_str());
  2691. return result;
  2692. }
  2693. // load and scale tensors into final control vector context
  2694. struct ggml_init_params ggml_params = {
  2695. /* .mem_size = */ ggml_tensor_overhead() * n_tensors + n_bytes,
  2696. /* .mem_buffer = */ nullptr,
  2697. /* .no_alloc = */ false,
  2698. };
  2699. struct ggml_context * ctx = ggml_init(ggml_params);
  2700. struct gguf_init_params params = {
  2701. /*.no_alloc = */ false,
  2702. /*.ctx = */ &ctx,
  2703. };
  2704. struct gguf_context * ctx_gguf = gguf_init_from_file(load_info.fname.c_str(), params);
  2705. if (!ctx_gguf) {
  2706. fprintf(stderr, "%s: failed to load control vector from %s\n", __func__, load_info.fname.c_str());
  2707. ggml_free(ctx);
  2708. return result;
  2709. }
  2710. // do not store data for layer 0 (it's not used)
  2711. result.data.resize(result.n_embd * max_direction_layer);
  2712. for (uint32_t il = 1; il <= max_direction_layer; il++) {
  2713. const std::string name = "direction." + std::to_string(il);
  2714. const ggml_tensor * tensor = ggml_get_tensor(ctx, name.c_str());
  2715. float * dst = result.data.data() + result.n_embd * (il - 1);
  2716. if (tensor) {
  2717. const float * src = (const float *) tensor->data;
  2718. for (int j = 0; j < result.n_embd; j++) {
  2719. dst[j] = src[j] * load_info.strength;
  2720. }
  2721. } else {
  2722. for (int j = 0; j < result.n_embd; j++) {
  2723. dst[j] = 0.0f;
  2724. }
  2725. }
  2726. }
  2727. return result;
  2728. }
  2729. llama_control_vector_data llama_control_vector_load(const std::vector<llama_control_vector_load_info> & load_infos) {
  2730. llama_control_vector_data result = { -1, {} };
  2731. for (const auto & info : load_infos) {
  2732. auto cur = llama_control_vector_load_one(info);
  2733. if (cur.n_embd == -1) {
  2734. return result;
  2735. }
  2736. if (result.n_embd != -1 && (result.n_embd != cur.n_embd || result.data.size() != cur.data.size())) {
  2737. fprintf(stderr, "%s: control vector in %s does not match previous vector dimensions\n", __func__, info.fname.c_str());
  2738. return result;
  2739. }
  2740. if (result.n_embd == -1) {
  2741. result = std::move(cur);
  2742. } else {
  2743. for (size_t i = 0; i < cur.data.size(); i++) {
  2744. result.data[i] += cur.data[i];
  2745. }
  2746. }
  2747. }
  2748. if (result.n_embd == -1) {
  2749. fprintf(stderr, "%s: no vectors passed\n", __func__);
  2750. }
  2751. return result;
  2752. }