| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113 |
- #include "arg.h"
- #include "chat.h"
- #include "common.h"
- #include "gguf.h" // for reading GGUF splits
- #include "json-schema-to-grammar.h"
- #include "log.h"
- #include "sampling.h"
- // fix problem with std::min and std::max
- #if defined(_WIN32)
- #define WIN32_LEAN_AND_MEAN
- #ifndef NOMINMAX
- # define NOMINMAX
- #endif
- #include <windows.h>
- #endif
- #define JSON_ASSERT GGML_ASSERT
- #include <nlohmann/json.hpp>
- #include <algorithm>
- #include <climits>
- #include <cstdarg>
- #include <filesystem>
- #include <fstream>
- #include <future>
- #include <list>
- #include <regex>
- #include <set>
- #include <string>
- #include <thread>
- #include <vector>
- #if defined(LLAMA_USE_CURL)
- #include <curl/curl.h>
- #include <curl/easy.h>
- #else
- #include "http.h"
- #endif
- #ifdef __linux__
- #include <linux/limits.h>
- #elif defined(_WIN32)
- # if !defined(PATH_MAX)
- # define PATH_MAX MAX_PATH
- # endif
- #elif defined(_AIX)
- #include <sys/limits.h>
- #else
- #include <sys/syslimits.h>
- #endif
- #define LLAMA_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083
- // isatty
- #if defined(_WIN32)
- #include <io.h>
- #else
- #include <unistd.h>
- #endif
- using json = nlohmann::ordered_json;
- std::initializer_list<enum llama_example> mmproj_examples = {
- LLAMA_EXAMPLE_MTMD,
- LLAMA_EXAMPLE_SERVER,
- };
- static std::string read_file(const std::string & fname) {
- std::ifstream file(fname);
- if (!file) {
- throw std::runtime_error(string_format("error: failed to open file '%s'\n", fname.c_str()));
- }
- std::string content((std::istreambuf_iterator<char>(file)), std::istreambuf_iterator<char>());
- file.close();
- return content;
- }
- static void write_file(const std::string & fname, const std::string & content) {
- const std::string fname_tmp = fname + ".tmp";
- std::ofstream file(fname_tmp);
- if (!file) {
- throw std::runtime_error(string_format("error: failed to open file '%s'\n", fname.c_str()));
- }
- try {
- file << content;
- file.close();
- // Makes write atomic
- if (rename(fname_tmp.c_str(), fname.c_str()) != 0) {
- LOG_ERR("%s: unable to rename file: %s to %s\n", __func__, fname_tmp.c_str(), fname.c_str());
- // If rename fails, try to delete the temporary file
- if (remove(fname_tmp.c_str()) != 0) {
- LOG_ERR("%s: unable to delete temporary file: %s\n", __func__, fname_tmp.c_str());
- }
- }
- } catch (...) {
- // If anything fails, try to delete the temporary file
- if (remove(fname_tmp.c_str()) != 0) {
- LOG_ERR("%s: unable to delete temporary file: %s\n", __func__, fname_tmp.c_str());
- }
- throw std::runtime_error(string_format("error: failed to write file '%s'\n", fname.c_str()));
- }
- }
- static bool is_output_a_tty() {
- #if defined(_WIN32)
- return _isatty(_fileno(stdout));
- #else
- return isatty(1);
- #endif
- }
- common_arg & common_arg::set_examples(std::initializer_list<enum llama_example> examples) {
- this->examples = std::move(examples);
- return *this;
- }
- common_arg & common_arg::set_excludes(std::initializer_list<enum llama_example> excludes) {
- this->excludes = std::move(excludes);
- return *this;
- }
- common_arg & common_arg::set_env(const char * env) {
- help = help + "\n(env: " + env + ")";
- this->env = env;
- return *this;
- }
- common_arg & common_arg::set_sparam() {
- is_sparam = true;
- return *this;
- }
- bool common_arg::in_example(enum llama_example ex) {
- return examples.find(ex) != examples.end();
- }
- bool common_arg::is_exclude(enum llama_example ex) {
- return excludes.find(ex) != excludes.end();
- }
- bool common_arg::get_value_from_env(std::string & output) {
- if (env == nullptr) return false;
- char * value = std::getenv(env);
- if (value) {
- output = value;
- return true;
- }
- return false;
- }
- bool common_arg::has_value_from_env() {
- return env != nullptr && std::getenv(env);
- }
- static std::vector<std::string> break_str_into_lines(std::string input, size_t max_char_per_line) {
- std::vector<std::string> result;
- std::istringstream iss(input);
- std::string line;
- auto add_line = [&](const std::string& l) {
- if (l.length() <= max_char_per_line) {
- result.push_back(l);
- } else {
- std::istringstream line_stream(l);
- std::string word, current_line;
- while (line_stream >> word) {
- if (current_line.length() + !current_line.empty() + word.length() > max_char_per_line) {
- if (!current_line.empty()) result.push_back(current_line);
- current_line = word;
- } else {
- current_line += (!current_line.empty() ? " " : "") + word;
- }
- }
- if (!current_line.empty()) result.push_back(current_line);
- }
- };
- while (std::getline(iss, line)) {
- add_line(line);
- }
- return result;
- }
- std::string common_arg::to_string() {
- // params for printing to console
- const static int n_leading_spaces = 40;
- const static int n_char_per_line_help = 70; // TODO: detect this based on current console
- std::string leading_spaces(n_leading_spaces, ' ');
- std::ostringstream ss;
- for (const auto arg : args) {
- if (arg == args.front()) {
- if (args.size() == 1) {
- ss << arg;
- } else {
- // first arg is usually abbreviation, we need padding to make it more beautiful
- auto tmp = std::string(arg) + ", ";
- auto spaces = std::string(std::max(0, 7 - (int)tmp.size()), ' ');
- ss << tmp << spaces;
- }
- } else {
- ss << arg << (arg != args.back() ? ", " : "");
- }
- }
- if (value_hint) ss << " " << value_hint;
- if (value_hint_2) ss << " " << value_hint_2;
- if (ss.tellp() > n_leading_spaces - 3) {
- // current line is too long, add new line
- ss << "\n" << leading_spaces;
- } else {
- // padding between arg and help, same line
- ss << std::string(leading_spaces.size() - ss.tellp(), ' ');
- }
- const auto help_lines = break_str_into_lines(help, n_char_per_line_help);
- for (const auto & line : help_lines) {
- ss << (&line == &help_lines.front() ? "" : leading_spaces) << line << "\n";
- }
- return ss.str();
- }
- //
- // downloader
- //
- struct common_hf_file_res {
- std::string repo; // repo name with ":tag" removed
- std::string ggufFile;
- std::string mmprojFile;
- };
- static void write_etag(const std::string & path, const std::string & etag) {
- const std::string etag_path = path + ".etag";
- write_file(etag_path, etag);
- LOG_DBG("%s: file etag saved: %s\n", __func__, etag_path.c_str());
- }
- static std::string read_etag(const std::string & path) {
- std::string none;
- const std::string etag_path = path + ".etag";
- if (std::filesystem::exists(etag_path)) {
- std::ifstream etag_in(etag_path);
- if (!etag_in) {
- LOG_ERR("%s: could not open .etag file for reading: %s\n", __func__, etag_path.c_str());
- return none;
- }
- std::string etag;
- std::getline(etag_in, etag);
- return etag;
- }
- // no etag file, but maybe there is an old .json
- // remove this code later
- const std::string metadata_path = path + ".json";
- if (std::filesystem::exists(metadata_path)) {
- std::ifstream metadata_in(metadata_path);
- try {
- nlohmann::json metadata_json;
- metadata_in >> metadata_json;
- LOG_DBG("%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(),
- metadata_json.dump().c_str());
- if (metadata_json.contains("etag") && metadata_json.at("etag").is_string()) {
- std::string etag = metadata_json.at("etag");
- write_etag(path, etag);
- if (!std::filesystem::remove(metadata_path)) {
- LOG_WRN("%s: failed to delete old .json metadata file: %s\n", __func__, metadata_path.c_str());
- }
- return etag;
- }
- } catch (const nlohmann::json::exception & e) {
- LOG_ERR("%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what());
- }
- }
- return none;
- }
- #ifdef LLAMA_USE_CURL
- //
- // CURL utils
- //
- using curl_ptr = std::unique_ptr<CURL, decltype(&curl_easy_cleanup)>;
- // cannot use unique_ptr for curl_slist, because we cannot update without destroying the old one
- struct curl_slist_ptr {
- struct curl_slist * ptr = nullptr;
- ~curl_slist_ptr() {
- if (ptr) {
- curl_slist_free_all(ptr);
- }
- }
- };
- static CURLcode common_curl_perf(CURL * curl) {
- CURLcode res = curl_easy_perform(curl);
- if (res != CURLE_OK) {
- LOG_ERR("%s: curl_easy_perform() failed\n", __func__);
- }
- return res;
- }
- // Send a HEAD request to retrieve the etag and last-modified headers
- struct common_load_model_from_url_headers {
- std::string etag;
- std::string last_modified;
- std::string accept_ranges;
- };
- struct FILE_deleter {
- void operator()(FILE * f) const { fclose(f); }
- };
- static size_t common_header_callback(char * buffer, size_t, size_t n_items, void * userdata) {
- common_load_model_from_url_headers * headers = (common_load_model_from_url_headers *) userdata;
- static std::regex header_regex("([^:]+): (.*)\r\n");
- static std::regex etag_regex("ETag", std::regex_constants::icase);
- static std::regex last_modified_regex("Last-Modified", std::regex_constants::icase);
- static std::regex accept_ranges_regex("Accept-Ranges", std::regex_constants::icase);
- std::string header(buffer, n_items);
- std::smatch match;
- if (std::regex_match(header, match, header_regex)) {
- const std::string & key = match[1];
- const std::string & value = match[2];
- if (std::regex_match(key, match, etag_regex)) {
- headers->etag = value;
- } else if (std::regex_match(key, match, last_modified_regex)) {
- headers->last_modified = value;
- } else if (std::regex_match(key, match, accept_ranges_regex)) {
- headers->accept_ranges = value;
- }
- }
- return n_items;
- }
- static size_t common_write_callback(void * data, size_t size, size_t nmemb, void * fd) {
- return std::fwrite(data, size, nmemb, static_cast<FILE *>(fd));
- }
- // helper function to hide password in URL
- static std::string llama_download_hide_password_in_url(const std::string & url) {
- // Use regex to match and replace the user[:password]@ pattern in URLs
- // Pattern: scheme://[user[:password]@]host[...]
- static const std::regex url_regex(R"(^(?:[A-Za-z][A-Za-z0-9+.-]://)(?:[^/@]+@)?.$)");
- std::smatch match;
- if (std::regex_match(url, match, url_regex)) {
- // match[1] = scheme (e.g., "https://")
- // match[2] = user[:password]@ part
- // match[3] = rest of URL (host and path)
- return match[1].str() + "********@" + match[3].str();
- }
- return url; // No credentials found or malformed URL
- }
- static void common_curl_easy_setopt_head(CURL * curl, const std::string & url) {
- // Set the URL, allow to follow http redirection
- curl_easy_setopt(curl, CURLOPT_URL, url.c_str());
- curl_easy_setopt(curl, CURLOPT_FOLLOWLOCATION, 1L);
- # if defined(_WIN32)
- // CURLSSLOPT_NATIVE_CA tells libcurl to use standard certificate store of
- // operating system. Currently implemented under MS-Windows.
- curl_easy_setopt(curl, CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
- # endif
- curl_easy_setopt(curl, CURLOPT_NOBODY, 1L); // will trigger the HEAD verb
- curl_easy_setopt(curl, CURLOPT_NOPROGRESS, 1L); // hide head request progress
- curl_easy_setopt(curl, CURLOPT_HEADERFUNCTION, common_header_callback);
- }
- static void common_curl_easy_setopt_get(CURL * curl) {
- curl_easy_setopt(curl, CURLOPT_NOBODY, 0L);
- curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, common_write_callback);
- // display download progress
- curl_easy_setopt(curl, CURLOPT_NOPROGRESS, 0L);
- }
- static bool common_pull_file(CURL * curl, const std::string & path_temporary) {
- if (std::filesystem::exists(path_temporary)) {
- const std::string partial_size = std::to_string(std::filesystem::file_size(path_temporary));
- LOG_INF("%s: server supports range requests, resuming download from byte %s\n", __func__, partial_size.c_str());
- const std::string range_str = partial_size + "-";
- curl_easy_setopt(curl, CURLOPT_RANGE, range_str.c_str());
- }
- // Always open file in append mode could be resuming
- std::unique_ptr<FILE, FILE_deleter> outfile(fopen(path_temporary.c_str(), "ab"));
- if (!outfile) {
- LOG_ERR("%s: error opening local file for writing: %s\n", __func__, path_temporary.c_str());
- return false;
- }
- common_curl_easy_setopt_get(curl);
- curl_easy_setopt(curl, CURLOPT_WRITEDATA, outfile.get());
- return common_curl_perf(curl) == CURLE_OK;
- }
- static bool common_download_head(CURL * curl,
- curl_slist_ptr & http_headers,
- const std::string & url,
- const std::string & bearer_token) {
- if (!curl) {
- LOG_ERR("%s: error initializing libcurl\n", __func__);
- return false;
- }
- http_headers.ptr = curl_slist_append(http_headers.ptr, "User-Agent: llama-cpp");
- // Check if hf-token or bearer-token was specified
- if (!bearer_token.empty()) {
- std::string auth_header = "Authorization: Bearer " + bearer_token;
- http_headers.ptr = curl_slist_append(http_headers.ptr, auth_header.c_str());
- }
- curl_easy_setopt(curl, CURLOPT_HTTPHEADER, http_headers.ptr);
- common_curl_easy_setopt_head(curl, url);
- return common_curl_perf(curl) == CURLE_OK;
- }
- // download one single file from remote URL to local path
- static bool common_download_file_single_online(const std::string & url,
- const std::string & path,
- const std::string & bearer_token) {
- static const int max_attempts = 3;
- static const int retry_delay_seconds = 2;
- for (int i = 0; i < max_attempts; ++i) {
- std::string etag;
- // Check if the file already exists locally
- const auto file_exists = std::filesystem::exists(path);
- if (file_exists) {
- etag = read_etag(path);
- } else {
- LOG_INF("%s: no previous model file found %s\n", __func__, path.c_str());
- }
- bool head_request_ok = false;
- bool should_download = !file_exists; // by default, we should download if the file does not exist
- // Initialize libcurl
- curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
- common_load_model_from_url_headers headers;
- curl_easy_setopt(curl.get(), CURLOPT_HEADERDATA, &headers);
- curl_slist_ptr http_headers;
- const bool was_perform_successful = common_download_head(curl.get(), http_headers, url, bearer_token);
- if (!was_perform_successful) {
- head_request_ok = false;
- }
- long http_code = 0;
- curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
- if (http_code == 200) {
- head_request_ok = true;
- } else {
- LOG_WRN("%s: HEAD invalid http status code received: %ld\n", __func__, http_code);
- head_request_ok = false;
- }
- // if head_request_ok is false, we don't have the etag or last-modified headers
- // we leave should_download as-is, which is true if the file does not exist
- bool should_download_from_scratch = false;
- if (head_request_ok) {
- // check if ETag or Last-Modified headers are different
- // if it is, we need to download the file again
- if (!etag.empty() && etag != headers.etag) {
- LOG_WRN("%s: ETag header is different (%s != %s): triggering a new download\n", __func__, etag.c_str(),
- headers.etag.c_str());
- should_download = true;
- should_download_from_scratch = true;
- }
- }
- const bool accept_ranges_supported = !headers.accept_ranges.empty() && headers.accept_ranges != "none";
- if (should_download) {
- if (file_exists &&
- !accept_ranges_supported) { // Resumable downloads not supported, delete and start again.
- LOG_WRN("%s: deleting previous downloaded file: %s\n", __func__, path.c_str());
- if (remove(path.c_str()) != 0) {
- LOG_ERR("%s: unable to delete file: %s\n", __func__, path.c_str());
- return false;
- }
- }
- const std::string path_temporary = path + ".downloadInProgress";
- if (should_download_from_scratch) {
- if (std::filesystem::exists(path_temporary)) {
- if (remove(path_temporary.c_str()) != 0) {
- LOG_ERR("%s: unable to delete file: %s\n", __func__, path_temporary.c_str());
- return false;
- }
- }
- if (std::filesystem::exists(path)) {
- if (remove(path.c_str()) != 0) {
- LOG_ERR("%s: unable to delete file: %s\n", __func__, path.c_str());
- return false;
- }
- }
- }
- if (head_request_ok) {
- write_etag(path, headers.etag);
- }
- // start the download
- LOG_INF("%s: trying to download model from %s to %s (server_etag:%s, server_last_modified:%s)...\n",
- __func__, llama_download_hide_password_in_url(url).c_str(), path_temporary.c_str(),
- headers.etag.c_str(), headers.last_modified.c_str());
- const bool was_pull_successful = common_pull_file(curl.get(), path_temporary);
- if (!was_pull_successful) {
- if (i + 1 < max_attempts) {
- const int exponential_backoff_delay = std::pow(retry_delay_seconds, i) * 1000;
- LOG_WRN("%s: retrying after %d milliseconds...\n", __func__, exponential_backoff_delay);
- std::this_thread::sleep_for(std::chrono::milliseconds(exponential_backoff_delay));
- } else {
- LOG_ERR("%s: curl_easy_perform() failed after %d attempts\n", __func__, max_attempts);
- }
- continue;
- }
- long http_code = 0;
- curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
- if (http_code < 200 || http_code >= 400) {
- LOG_ERR("%s: invalid http status code received: %ld\n", __func__, http_code);
- return false;
- }
- if (rename(path_temporary.c_str(), path.c_str()) != 0) {
- LOG_ERR("%s: unable to rename file: %s to %s\n", __func__, path_temporary.c_str(), path.c_str());
- return false;
- }
- } else {
- LOG_INF("%s: using cached file: %s\n", __func__, path.c_str());
- }
- break;
- }
- return true;
- }
- std::pair<long, std::vector<char>> common_remote_get_content(const std::string & url, const common_remote_params & params) {
- curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
- curl_slist_ptr http_headers;
- std::vector<char> res_buffer;
- curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
- curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L);
- curl_easy_setopt(curl.get(), CURLOPT_FOLLOWLOCATION, 1L);
- curl_easy_setopt(curl.get(), CURLOPT_VERBOSE, 1L);
- typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * ptr, size_t size, size_t nmemb, void * data);
- auto write_callback = [](void * ptr, size_t size, size_t nmemb, void * data) -> size_t {
- auto data_vec = static_cast<std::vector<char> *>(data);
- data_vec->insert(data_vec->end(), (char *)ptr, (char *)ptr + size * nmemb);
- return size * nmemb;
- };
- curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
- curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, &res_buffer);
- #if defined(_WIN32)
- curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
- #endif
- if (params.timeout > 0) {
- curl_easy_setopt(curl.get(), CURLOPT_TIMEOUT, params.timeout);
- }
- if (params.max_size > 0) {
- curl_easy_setopt(curl.get(), CURLOPT_MAXFILESIZE, params.max_size);
- }
- http_headers.ptr = curl_slist_append(http_headers.ptr, "User-Agent: llama-cpp");
- for (const auto & header : params.headers) {
- http_headers.ptr = curl_slist_append(http_headers.ptr, header.c_str());
- }
- curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
- CURLcode res = curl_easy_perform(curl.get());
- if (res != CURLE_OK) {
- std::string error_msg = curl_easy_strerror(res);
- throw std::runtime_error("error: cannot make GET request: " + error_msg);
- }
- long res_code;
- curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &res_code);
- return { res_code, std::move(res_buffer) };
- }
- #else
- static void print_progress(size_t current, size_t total) {
- if (!is_output_a_tty()) {
- return;
- }
- if (!total) {
- return;
- }
- size_t width = 50;
- size_t pct = (100 * current) / total;
- size_t pos = (width * current) / total;
- std::cout << "["
- << std::string(pos, '=')
- << (pos < width ? ">" : "")
- << std::string(width - pos, ' ')
- << "] " << std::setw(3) << pct << "% ("
- << current / (1024 * 1024) << " MB / "
- << total / (1024 * 1024) << " MB)\r";
- std::cout.flush();
- }
- static bool common_pull_file(httplib::Client & cli,
- const std::string & resolve_path,
- const std::string & path_tmp,
- bool supports_ranges,
- size_t existing_size,
- size_t & total_size) {
- std::ofstream ofs(path_tmp, std::ios::binary | std::ios::app);
- if (!ofs.is_open()) {
- LOG_ERR("%s: error opening local file for writing: %s\n", __func__, path_tmp.c_str());
- return false;
- }
- httplib::Headers headers;
- if (supports_ranges && existing_size > 0) {
- headers.emplace("Range", "bytes=" + std::to_string(existing_size) + "-");
- }
- std::atomic<size_t> downloaded{existing_size};
- auto res = cli.Get(resolve_path, headers,
- [&](const httplib::Response &response) {
- if (existing_size > 0 && response.status != 206) {
- LOG_WRN("%s: server did not respond with 206 Partial Content for a resume request. Status: %d\n", __func__, response.status);
- return false;
- }
- if (existing_size == 0 && response.status != 200) {
- LOG_WRN("%s: download received non-successful status code: %d\n", __func__, response.status);
- return false;
- }
- if (total_size == 0 && response.has_header("Content-Length")) {
- try {
- size_t content_length = std::stoull(response.get_header_value("Content-Length"));
- total_size = existing_size + content_length;
- } catch (const std::exception &e) {
- LOG_WRN("%s: invalid Content-Length header: %s\n", __func__, e.what());
- }
- }
- return true;
- },
- [&](const char *data, size_t len) {
- ofs.write(data, len);
- if (!ofs) {
- LOG_ERR("%s: error writing to file: %s\n", __func__, path_tmp.c_str());
- return false;
- }
- downloaded += len;
- print_progress(downloaded, total_size);
- return true;
- },
- nullptr
- );
- std::cout << "\n";
- if (!res) {
- LOG_ERR("%s: error during download. Status: %d\n", __func__, res ? res->status : -1);
- return false;
- }
- return true;
- }
- // download one single file from remote URL to local path
- static bool common_download_file_single_online(const std::string & url,
- const std::string & path,
- const std::string & bearer_token) {
- static const int max_attempts = 3;
- static const int retry_delay_seconds = 2;
- auto [cli, parts] = common_http_client(url);
- httplib::Headers default_headers = {{"User-Agent", "llama-cpp"}};
- if (!bearer_token.empty()) {
- default_headers.insert({"Authorization", "Bearer " + bearer_token});
- }
- cli.set_default_headers(default_headers);
- const bool file_exists = std::filesystem::exists(path);
- std::string last_etag;
- if (file_exists) {
- last_etag = read_etag(path);
- } else {
- LOG_INF("%s: no previous model file found %s\n", __func__, path.c_str());
- }
- for (int i = 0; i < max_attempts; ++i) {
- auto head = cli.Head(parts.path);
- bool head_ok = head && head->status >= 200 && head->status < 300;
- if (!head_ok) {
- LOG_WRN("%s: HEAD invalid http status code received: %d\n", __func__, head ? head->status : -1);
- if (file_exists) {
- LOG_INF("%s: Using cached file (HEAD failed): %s\n", __func__, path.c_str());
- return true;
- }
- }
- std::string etag;
- if (head_ok && head->has_header("ETag")) {
- etag = head->get_header_value("ETag");
- }
- size_t total_size = 0;
- if (head_ok && head->has_header("Content-Length")) {
- try {
- total_size = std::stoull(head->get_header_value("Content-Length"));
- } catch (const std::exception& e) {
- LOG_WRN("%s: Invalid Content-Length in HEAD response: %s\n", __func__, e.what());
- }
- }
- bool supports_ranges = false;
- if (head_ok && head->has_header("Accept-Ranges")) {
- supports_ranges = head->get_header_value("Accept-Ranges") != "none";
- }
- bool should_download_from_scratch = false;
- if (!last_etag.empty() && !etag.empty() && last_etag != etag) {
- LOG_WRN("%s: ETag header is different (%s != %s): triggering a new download\n", __func__,
- last_etag.c_str(), etag.c_str());
- should_download_from_scratch = true;
- }
- if (file_exists) {
- if (!should_download_from_scratch) {
- LOG_INF("%s: using cached file: %s\n", __func__, path.c_str());
- return true;
- }
- LOG_WRN("%s: deleting previous downloaded file: %s\n", __func__, path.c_str());
- if (remove(path.c_str()) != 0) {
- LOG_ERR("%s: unable to delete file: %s\n", __func__, path.c_str());
- return false;
- }
- }
- const std::string path_temporary = path + ".downloadInProgress";
- size_t existing_size = 0;
- if (std::filesystem::exists(path_temporary)) {
- if (supports_ranges && !should_download_from_scratch) {
- existing_size = std::filesystem::file_size(path_temporary);
- } else if (remove(path_temporary.c_str()) != 0) {
- LOG_ERR("%s: unable to delete file: %s\n", __func__, path_temporary.c_str());
- return false;
- }
- }
- // start the download
- LOG_INF("%s: trying to download model from %s to %s (etag:%s)...\n",
- __func__, common_http_show_masked_url(parts).c_str(), path_temporary.c_str(), etag.c_str());
- const bool was_pull_successful = common_pull_file(cli, parts.path, path_temporary, supports_ranges, existing_size, total_size);
- if (!was_pull_successful) {
- if (i + 1 < max_attempts) {
- const int exponential_backoff_delay = std::pow(retry_delay_seconds, i) * 1000;
- LOG_WRN("%s: retrying after %d milliseconds...\n", __func__, exponential_backoff_delay);
- std::this_thread::sleep_for(std::chrono::milliseconds(exponential_backoff_delay));
- } else {
- LOG_ERR("%s: download failed after %d attempts\n", __func__, max_attempts);
- }
- continue;
- }
- if (std::rename(path_temporary.c_str(), path.c_str()) != 0) {
- LOG_ERR("%s: unable to rename file: %s to %s\n", __func__, path_temporary.c_str(), path.c_str());
- return false;
- }
- if (!etag.empty()) {
- write_etag(path, etag);
- }
- break;
- }
- return true;
- }
- std::pair<long, std::vector<char>> common_remote_get_content(const std::string & url,
- const common_remote_params & params) {
- auto [cli, parts] = common_http_client(url);
- httplib::Headers headers = {{"User-Agent", "llama-cpp"}};
- for (const auto & header : params.headers) {
- size_t pos = header.find(':');
- if (pos != std::string::npos) {
- headers.emplace(header.substr(0, pos), header.substr(pos + 1));
- } else {
- headers.emplace(header, "");
- }
- }
- if (params.timeout > 0) {
- cli.set_read_timeout(params.timeout, 0);
- cli.set_write_timeout(params.timeout, 0);
- }
- std::vector<char> buf;
- auto res = cli.Get(parts.path, headers,
- [&](const char *data, size_t len) {
- buf.insert(buf.end(), data, data + len);
- return params.max_size == 0 ||
- buf.size() <= static_cast<size_t>(params.max_size);
- },
- nullptr
- );
- if (!res) {
- throw std::runtime_error("error: cannot make GET request");
- }
- return { res->status, std::move(buf) };
- }
- #endif // LLAMA_USE_CURL
- static bool common_download_file_single(const std::string & url,
- const std::string & path,
- const std::string & bearer_token,
- bool offline) {
- if (!offline) {
- return common_download_file_single_online(url, path, bearer_token);
- }
- if (!std::filesystem::exists(path)) {
- LOG_ERR("%s: required file is not available in cache (offline mode): %s\n", __func__, path.c_str());
- return false;
- }
- LOG_INF("%s: using cached file (offline mode): %s\n", __func__, path.c_str());
- return true;
- }
- // download multiple files from remote URLs to local paths
- // the input is a vector of pairs <url, path>
- static bool common_download_file_multiple(const std::vector<std::pair<std::string, std::string>> & urls, const std::string & bearer_token, bool offline) {
- // Prepare download in parallel
- std::vector<std::future<bool>> futures_download;
- for (auto const & item : urls) {
- futures_download.push_back(std::async(std::launch::async, [bearer_token, offline](const std::pair<std::string, std::string> & it) -> bool {
- return common_download_file_single(it.first, it.second, bearer_token, offline);
- }, item));
- }
- // Wait for all downloads to complete
- for (auto & f : futures_download) {
- if (!f.get()) {
- return false;
- }
- }
- return true;
- }
- static bool common_download_model(
- const common_params_model & model,
- const std::string & bearer_token,
- bool offline) {
- // Basic validation of the model.url
- if (model.url.empty()) {
- LOG_ERR("%s: invalid model url\n", __func__);
- return false;
- }
- if (!common_download_file_single(model.url, model.path, bearer_token, offline)) {
- return false;
- }
- // check for additional GGUFs split to download
- int n_split = 0;
- {
- struct gguf_init_params gguf_params = {
- /*.no_alloc = */ true,
- /*.ctx = */ NULL,
- };
- auto * ctx_gguf = gguf_init_from_file(model.path.c_str(), gguf_params);
- if (!ctx_gguf) {
- LOG_ERR("\n%s: failed to load input GGUF from %s\n", __func__, model.path.c_str());
- return false;
- }
- auto key_n_split = gguf_find_key(ctx_gguf, LLM_KV_SPLIT_COUNT);
- if (key_n_split >= 0) {
- n_split = gguf_get_val_u16(ctx_gguf, key_n_split);
- }
- gguf_free(ctx_gguf);
- }
- if (n_split > 1) {
- char split_prefix[PATH_MAX] = {0};
- char split_url_prefix[LLAMA_MAX_URL_LENGTH] = {0};
- // Verify the first split file format
- // and extract split URL and PATH prefixes
- {
- if (!llama_split_prefix(split_prefix, sizeof(split_prefix), model.path.c_str(), 0, n_split)) {
- LOG_ERR("\n%s: unexpected model file name: %s n_split=%d\n", __func__, model.path.c_str(), n_split);
- return false;
- }
- if (!llama_split_prefix(split_url_prefix, sizeof(split_url_prefix), model.url.c_str(), 0, n_split)) {
- LOG_ERR("\n%s: unexpected model url: %s n_split=%d\n", __func__, model.url.c_str(), n_split);
- return false;
- }
- }
- std::vector<std::pair<std::string, std::string>> urls;
- for (int idx = 1; idx < n_split; idx++) {
- char split_path[PATH_MAX] = {0};
- llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split);
- char split_url[LLAMA_MAX_URL_LENGTH] = {0};
- llama_split_path(split_url, sizeof(split_url), split_url_prefix, idx, n_split);
- if (std::string(split_path) == model.path) {
- continue; // skip the already downloaded file
- }
- urls.push_back({split_url, split_path});
- }
- // Download in parallel
- common_download_file_multiple(urls, bearer_token, offline);
- }
- return true;
- }
- /**
- * Allow getting the HF file from the HF repo with tag (like ollama), for example:
- * - bartowski/Llama-3.2-3B-Instruct-GGUF:q4
- * - bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M
- * - bartowski/Llama-3.2-3B-Instruct-GGUF:q5_k_s
- * Tag is optional, default to "latest" (meaning it checks for Q4_K_M first, then Q4, then if not found, return the first GGUF file in repo)
- *
- * Return pair of <repo, file> (with "repo" already having tag removed)
- *
- * Note: we use the Ollama-compatible HF API, but not using the blobId. Instead, we use the special "ggufFile" field which returns the value for "hf_file". This is done to be backward-compatible with existing cache files.
- */
- static struct common_hf_file_res common_get_hf_file(const std::string & hf_repo_with_tag, const std::string & bearer_token, bool offline) {
- auto parts = string_split<std::string>(hf_repo_with_tag, ':');
- std::string tag = parts.size() > 1 ? parts.back() : "latest";
- std::string hf_repo = parts[0];
- if (string_split<std::string>(hf_repo, '/').size() != 2) {
- throw std::invalid_argument("error: invalid HF repo format, expected <user>/<model>[:quant]\n");
- }
- std::string url = get_model_endpoint() + "v2/" + hf_repo + "/manifests/" + tag;
- // headers
- std::vector<std::string> headers;
- headers.push_back("Accept: application/json");
- if (!bearer_token.empty()) {
- headers.push_back("Authorization: Bearer " + bearer_token);
- }
- // Important: the User-Agent must be "llama-cpp" to get the "ggufFile" field in the response
- // User-Agent header is already set in common_remote_get_content, no need to set it here
- // we use "=" to avoid clashing with other component, while still being allowed on windows
- std::string cached_response_fname = "manifest=" + hf_repo + "=" + tag + ".json";
- string_replace_all(cached_response_fname, "/", "_");
- std::string cached_response_path = fs_get_cache_file(cached_response_fname);
- // make the request
- common_remote_params params;
- params.headers = headers;
- long res_code = 0;
- std::string res_str;
- bool use_cache = false;
- if (!offline) {
- try {
- auto res = common_remote_get_content(url, params);
- res_code = res.first;
- res_str = std::string(res.second.data(), res.second.size());
- } catch (const std::exception & e) {
- LOG_WRN("error: failed to get manifest at %s: %s\n", url.c_str(), e.what());
- }
- }
- if (res_code == 0) {
- if (std::filesystem::exists(cached_response_path)) {
- LOG_WRN("trying to read manifest from cache: %s\n", cached_response_path.c_str());
- res_str = read_file(cached_response_path);
- res_code = 200;
- use_cache = true;
- } else {
- throw std::runtime_error(
- offline ? "error: failed to get manifest (offline mode)"
- : "error: failed to get manifest (check your internet connection)");
- }
- }
- std::string ggufFile;
- std::string mmprojFile;
- if (res_code == 200 || res_code == 304) {
- try {
- auto j = json::parse(res_str);
- if (j.contains("ggufFile") && j["ggufFile"].contains("rfilename")) {
- ggufFile = j["ggufFile"]["rfilename"].get<std::string>();
- }
- if (j.contains("mmprojFile") && j["mmprojFile"].contains("rfilename")) {
- mmprojFile = j["mmprojFile"]["rfilename"].get<std::string>();
- }
- } catch (const std::exception & e) {
- throw std::runtime_error(std::string("error parsing manifest JSON: ") + e.what());
- }
- if (!use_cache) {
- // if not using cached response, update the cache file
- write_file(cached_response_path, res_str);
- }
- } else if (res_code == 401) {
- throw std::runtime_error("error: model is private or does not exist; if you are accessing a gated model, please provide a valid HF token");
- } else {
- throw std::runtime_error(string_format("error from HF API, response code: %ld, data: %s", res_code, res_str.c_str()));
- }
- // check response
- if (ggufFile.empty()) {
- throw std::runtime_error("error: model does not have ggufFile");
- }
- return { hf_repo, ggufFile, mmprojFile };
- }
- //
- // Docker registry functions
- //
- static std::string common_docker_get_token(const std::string & repo) {
- std::string url = "https://auth.docker.io/token?service=registry.docker.io&scope=repository:" + repo + ":pull";
- common_remote_params params;
- auto res = common_remote_get_content(url, params);
- if (res.first != 200) {
- throw std::runtime_error("Failed to get Docker registry token, HTTP code: " + std::to_string(res.first));
- }
- std::string response_str(res.second.begin(), res.second.end());
- nlohmann::ordered_json response = nlohmann::ordered_json::parse(response_str);
- if (!response.contains("token")) {
- throw std::runtime_error("Docker registry token response missing 'token' field");
- }
- return response["token"].get<std::string>();
- }
- static std::string common_docker_resolve_model(const std::string & docker) {
- // Parse ai/smollm2:135M-Q4_0
- size_t colon_pos = docker.find(':');
- std::string repo, tag;
- if (colon_pos != std::string::npos) {
- repo = docker.substr(0, colon_pos);
- tag = docker.substr(colon_pos + 1);
- } else {
- repo = docker;
- tag = "latest";
- }
- // ai/ is the default
- size_t slash_pos = docker.find('/');
- if (slash_pos == std::string::npos) {
- repo.insert(0, "ai/");
- }
- LOG_INF("%s: Downloading Docker Model: %s:%s\n", __func__, repo.c_str(), tag.c_str());
- try {
- // --- helper: digest validation ---
- auto validate_oci_digest = [](const std::string & digest) -> std::string {
- // Expected: algo:hex ; start with sha256 (64 hex chars)
- // You can extend this map if supporting other algorithms in future.
- static const std::regex re("^sha256:([a-fA-F0-9]{64})$");
- std::smatch m;
- if (!std::regex_match(digest, m, re)) {
- throw std::runtime_error("Invalid OCI digest format received in manifest: " + digest);
- }
- // normalize hex to lowercase
- std::string normalized = digest;
- std::transform(normalized.begin()+7, normalized.end(), normalized.begin()+7, [](unsigned char c){
- return std::tolower(c);
- });
- return normalized;
- };
- std::string token = common_docker_get_token(repo); // Get authentication token
- // Get manifest
- const std::string url_prefix = "https://registry-1.docker.io/v2/" + repo;
- std::string manifest_url = url_prefix + "/manifests/" + tag;
- common_remote_params manifest_params;
- manifest_params.headers.push_back("Authorization: Bearer " + token);
- manifest_params.headers.push_back(
- "Accept: application/vnd.docker.distribution.manifest.v2+json,application/vnd.oci.image.manifest.v1+json");
- auto manifest_res = common_remote_get_content(manifest_url, manifest_params);
- if (manifest_res.first != 200) {
- throw std::runtime_error("Failed to get Docker manifest, HTTP code: " + std::to_string(manifest_res.first));
- }
- std::string manifest_str(manifest_res.second.begin(), manifest_res.second.end());
- nlohmann::ordered_json manifest = nlohmann::ordered_json::parse(manifest_str);
- std::string gguf_digest; // Find the GGUF layer
- if (manifest.contains("layers")) {
- for (const auto & layer : manifest["layers"]) {
- if (layer.contains("mediaType")) {
- std::string media_type = layer["mediaType"].get<std::string>();
- if (media_type == "application/vnd.docker.ai.gguf.v3" ||
- media_type.find("gguf") != std::string::npos) {
- gguf_digest = layer["digest"].get<std::string>();
- break;
- }
- }
- }
- }
- if (gguf_digest.empty()) {
- throw std::runtime_error("No GGUF layer found in Docker manifest");
- }
- // Validate & normalize digest
- gguf_digest = validate_oci_digest(gguf_digest);
- LOG_DBG("%s: Using validated digest: %s\n", __func__, gguf_digest.c_str());
- // Prepare local filename
- std::string model_filename = repo;
- std::replace(model_filename.begin(), model_filename.end(), '/', '_');
- model_filename += "_" + tag + ".gguf";
- std::string local_path = fs_get_cache_file(model_filename);
- const std::string blob_url = url_prefix + "/blobs/" + gguf_digest;
- if (!common_download_file_single(blob_url, local_path, token, false)) {
- throw std::runtime_error("Failed to download Docker Model");
- }
- LOG_INF("%s: Downloaded Docker Model to: %s\n", __func__, local_path.c_str());
- return local_path;
- } catch (const std::exception & e) {
- LOG_ERR("%s: Docker Model download failed: %s\n", __func__, e.what());
- throw;
- }
- }
- //
- // utils
- //
- // Helper function to parse tensor buffer override strings
- static void parse_tensor_buffer_overrides(const std::string & value, std::vector<llama_model_tensor_buft_override> & overrides) {
- std::map<std::string, ggml_backend_buffer_type_t> buft_list;
- for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
- auto * dev = ggml_backend_dev_get(i);
- auto * buft = ggml_backend_dev_buffer_type(dev);
- if (buft) {
- buft_list[ggml_backend_buft_name(buft)] = buft;
- }
- }
- for (const auto & override : string_split<std::string>(value, ',')) {
- std::string::size_type pos = override.find('=');
- if (pos == std::string::npos) {
- throw std::invalid_argument("invalid value");
- }
- std::string tensor_name = override.substr(0, pos);
- std::string buffer_type = override.substr(pos + 1);
- if (buft_list.find(buffer_type) == buft_list.end()) {
- printf("Available buffer types:\n");
- for (const auto & it : buft_list) {
- printf(" %s\n", ggml_backend_buft_name(it.second));
- }
- throw std::invalid_argument("unknown buffer type");
- }
- // keep strings alive and avoid leaking memory by storing them in a static vector
- static std::list<std::string> buft_overrides;
- buft_overrides.push_back(tensor_name);
- overrides.push_back({buft_overrides.back().c_str(), buft_list.at(buffer_type)});
- }
- }
- struct handle_model_result {
- bool found_mmproj = false;
- common_params_model mmproj;
- };
- static handle_model_result common_params_handle_model(
- struct common_params_model & model,
- const std::string & bearer_token,
- const std::string & model_path_default,
- bool offline) {
- handle_model_result result;
- // handle pre-fill default model path and url based on hf_repo and hf_file
- {
- if (!model.docker_repo.empty()) { // Handle Docker URLs by resolving them to local paths
- model.path = common_docker_resolve_model(model.docker_repo);
- } else if (!model.hf_repo.empty()) {
- // short-hand to avoid specifying --hf-file -> default it to --model
- if (model.hf_file.empty()) {
- if (model.path.empty()) {
- auto auto_detected = common_get_hf_file(model.hf_repo, bearer_token, offline);
- if (auto_detected.repo.empty() || auto_detected.ggufFile.empty()) {
- exit(1); // built without CURL, error message already printed
- }
- model.hf_repo = auto_detected.repo;
- model.hf_file = auto_detected.ggufFile;
- if (!auto_detected.mmprojFile.empty()) {
- result.found_mmproj = true;
- result.mmproj.hf_repo = model.hf_repo;
- result.mmproj.hf_file = auto_detected.mmprojFile;
- }
- } else {
- model.hf_file = model.path;
- }
- }
- std::string model_endpoint = get_model_endpoint();
- model.url = model_endpoint + model.hf_repo + "/resolve/main/" + model.hf_file;
- // make sure model path is present (for caching purposes)
- if (model.path.empty()) {
- // this is to avoid different repo having same file name, or same file name in different subdirs
- std::string filename = model.hf_repo + "_" + model.hf_file;
- // to make sure we don't have any slashes in the filename
- string_replace_all(filename, "/", "_");
- model.path = fs_get_cache_file(filename);
- }
- } else if (!model.url.empty()) {
- if (model.path.empty()) {
- auto f = string_split<std::string>(model.url, '#').front();
- f = string_split<std::string>(f, '?').front();
- model.path = fs_get_cache_file(string_split<std::string>(f, '/').back());
- }
- } else if (model.path.empty()) {
- model.path = model_path_default;
- }
- }
- // then, download it if needed
- if (!model.url.empty()) {
- bool ok = common_download_model(model, bearer_token, offline);
- if (!ok) {
- LOG_ERR("error: failed to download model from %s\n", model.url.c_str());
- exit(1);
- }
- }
- return result;
- }
- const std::vector<ggml_type> kv_cache_types = {
- GGML_TYPE_F32,
- GGML_TYPE_F16,
- GGML_TYPE_BF16,
- GGML_TYPE_Q8_0,
- GGML_TYPE_Q4_0,
- GGML_TYPE_Q4_1,
- GGML_TYPE_IQ4_NL,
- GGML_TYPE_Q5_0,
- GGML_TYPE_Q5_1,
- };
- static ggml_type kv_cache_type_from_str(const std::string & s) {
- for (const auto & type : kv_cache_types) {
- if (ggml_type_name(type) == s) {
- return type;
- }
- }
- throw std::runtime_error("Unsupported cache type: " + s);
- }
- static std::string get_all_kv_cache_types() {
- std::ostringstream msg;
- for (const auto & type : kv_cache_types) {
- msg << ggml_type_name(type) << (&type == &kv_cache_types.back() ? "" : ", ");
- }
- return msg.str();
- }
- //
- // CLI argument parsing functions
- //
- static bool common_params_parse_ex(int argc, char ** argv, common_params_context & ctx_arg) {
- common_params & params = ctx_arg.params;
- std::unordered_map<std::string, common_arg *> arg_to_options;
- for (auto & opt : ctx_arg.options) {
- for (const auto & arg : opt.args) {
- arg_to_options[arg] = &opt;
- }
- }
- // handle environment variables
- for (auto & opt : ctx_arg.options) {
- std::string value;
- if (opt.get_value_from_env(value)) {
- try {
- if (opt.handler_void && (value == "1" || value == "true")) {
- opt.handler_void(params);
- }
- if (opt.handler_int) {
- opt.handler_int(params, std::stoi(value));
- }
- if (opt.handler_string) {
- opt.handler_string(params, value);
- continue;
- }
- } catch (std::exception & e) {
- throw std::invalid_argument(string_format(
- "error while handling environment variable \"%s\": %s\n\n", opt.env, e.what()));
- }
- }
- }
- // handle command line arguments
- auto check_arg = [&](int i) {
- if (i+1 >= argc) {
- throw std::invalid_argument("expected value for argument");
- }
- };
- for (int i = 1; i < argc; i++) {
- const std::string arg_prefix = "--";
- std::string arg = argv[i];
- if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
- std::replace(arg.begin(), arg.end(), '_', '-');
- }
- if (arg_to_options.find(arg) == arg_to_options.end()) {
- throw std::invalid_argument(string_format("error: invalid argument: %s", arg.c_str()));
- }
- auto opt = *arg_to_options[arg];
- if (opt.has_value_from_env()) {
- fprintf(stderr, "warn: %s environment variable is set, but will be overwritten by command line argument %s\n", opt.env, arg.c_str());
- }
- try {
- if (opt.handler_void) {
- opt.handler_void(params);
- continue;
- }
- // arg with single value
- check_arg(i);
- std::string val = argv[++i];
- if (opt.handler_int) {
- opt.handler_int(params, std::stoi(val));
- continue;
- }
- if (opt.handler_string) {
- opt.handler_string(params, val);
- continue;
- }
- // arg with 2 values
- check_arg(i);
- std::string val2 = argv[++i];
- if (opt.handler_str_str) {
- opt.handler_str_str(params, val, val2);
- continue;
- }
- } catch (std::exception & e) {
- throw std::invalid_argument(string_format(
- "error while handling argument \"%s\": %s\n\n"
- "usage:\n%s\n\nto show complete usage, run with -h",
- arg.c_str(), e.what(), arg_to_options[arg]->to_string().c_str()));
- }
- }
- postprocess_cpu_params(params.cpuparams, nullptr);
- postprocess_cpu_params(params.cpuparams_batch, ¶ms.cpuparams);
- postprocess_cpu_params(params.speculative.cpuparams, ¶ms.cpuparams);
- postprocess_cpu_params(params.speculative.cpuparams_batch, ¶ms.cpuparams_batch);
- if (params.prompt_cache_all && (params.interactive || params.interactive_first)) {
- throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n");
- }
- // handle model and download
- {
- auto res = common_params_handle_model(params.model, params.hf_token, DEFAULT_MODEL_PATH, params.offline);
- if (params.no_mmproj) {
- params.mmproj = {};
- } else if (res.found_mmproj && params.mmproj.path.empty() && params.mmproj.url.empty()) {
- // optionally, handle mmproj model when -hf is specified
- params.mmproj = res.mmproj;
- }
- // only download mmproj if the current example is using it
- for (auto & ex : mmproj_examples) {
- if (ctx_arg.ex == ex) {
- common_params_handle_model(params.mmproj, params.hf_token, "", params.offline);
- break;
- }
- }
- common_params_handle_model(params.speculative.model, params.hf_token, "", params.offline);
- common_params_handle_model(params.vocoder.model, params.hf_token, "", params.offline);
- }
- if (params.escape) {
- string_process_escapes(params.prompt);
- string_process_escapes(params.input_prefix);
- string_process_escapes(params.input_suffix);
- for (auto & antiprompt : params.antiprompt) {
- string_process_escapes(antiprompt);
- }
- for (auto & seq_breaker : params.sampling.dry_sequence_breakers) {
- string_process_escapes(seq_breaker);
- }
- for (auto & pair : params.speculative.replacements) {
- string_process_escapes(pair.first);
- string_process_escapes(pair.second);
- }
- }
- if (!params.kv_overrides.empty()) {
- params.kv_overrides.emplace_back();
- params.kv_overrides.back().key[0] = 0;
- }
- if (!params.tensor_buft_overrides.empty()) {
- params.tensor_buft_overrides.push_back({nullptr, nullptr});
- }
- if (!params.speculative.tensor_buft_overrides.empty()) {
- params.speculative.tensor_buft_overrides.push_back({nullptr, nullptr});
- }
- if (!params.chat_template.empty() && !common_chat_verify_template(params.chat_template, params.use_jinja)) {
- throw std::runtime_error(string_format(
- "error: the supplied chat template is not supported: %s%s\n",
- params.chat_template.c_str(),
- params.use_jinja ? "" : "\nnote: llama.cpp was started without --jinja, we only support commonly used templates"
- ));
- }
- return true;
- }
- static void common_params_print_usage(common_params_context & ctx_arg) {
- auto print_options = [](std::vector<common_arg *> & options) {
- for (common_arg * opt : options) {
- printf("%s", opt->to_string().c_str());
- }
- };
- std::vector<common_arg *> common_options;
- std::vector<common_arg *> sparam_options;
- std::vector<common_arg *> specific_options;
- for (auto & opt : ctx_arg.options) {
- // in case multiple LLAMA_EXAMPLE_* are set, we prioritize the LLAMA_EXAMPLE_* matching current example
- if (opt.is_sparam) {
- sparam_options.push_back(&opt);
- } else if (opt.in_example(ctx_arg.ex)) {
- specific_options.push_back(&opt);
- } else {
- common_options.push_back(&opt);
- }
- }
- printf("----- common params -----\n\n");
- print_options(common_options);
- printf("\n\n----- sampling params -----\n\n");
- print_options(sparam_options);
- // TODO: maybe convert enum llama_example to string
- printf("\n\n----- example-specific params -----\n\n");
- print_options(specific_options);
- }
- static void common_params_print_completion(common_params_context & ctx_arg) {
- std::vector<common_arg *> common_options;
- std::vector<common_arg *> sparam_options;
- std::vector<common_arg *> specific_options;
- for (auto & opt : ctx_arg.options) {
- if (opt.is_sparam) {
- sparam_options.push_back(&opt);
- } else if (opt.in_example(ctx_arg.ex)) {
- specific_options.push_back(&opt);
- } else {
- common_options.push_back(&opt);
- }
- }
- printf("_llama_completions() {\n");
- printf(" local cur prev opts\n");
- printf(" COMPREPLY=()\n");
- printf(" cur=\"${COMP_WORDS[COMP_CWORD]}\"\n");
- printf(" prev=\"${COMP_WORDS[COMP_CWORD-1]}\"\n\n");
- printf(" opts=\"");
- auto print_options = [](const std::vector<common_arg *> & options) {
- for (const common_arg * opt : options) {
- for (const char * arg : opt->args) {
- printf("%s ", arg);
- }
- }
- };
- print_options(common_options);
- print_options(sparam_options);
- print_options(specific_options);
- printf("\"\n\n");
- printf(" case \"$prev\" in\n");
- printf(" --model|-m)\n");
- printf(" COMPREPLY=( $(compgen -f -X '!*.gguf' -- \"$cur\") $(compgen -d -- \"$cur\") )\n");
- printf(" return 0\n");
- printf(" ;;\n");
- printf(" --grammar-file)\n");
- printf(" COMPREPLY=( $(compgen -f -X '!*.gbnf' -- \"$cur\") $(compgen -d -- \"$cur\") )\n");
- printf(" return 0\n");
- printf(" ;;\n");
- printf(" --chat-template-file)\n");
- printf(" COMPREPLY=( $(compgen -f -X '!*.jinja' -- \"$cur\") $(compgen -d -- \"$cur\") )\n");
- printf(" return 0\n");
- printf(" ;;\n");
- printf(" *)\n");
- printf(" COMPREPLY=( $(compgen -W \"${opts}\" -- \"$cur\") )\n");
- printf(" return 0\n");
- printf(" ;;\n");
- printf(" esac\n");
- printf("}\n\n");
- std::set<std::string> executables = {
- "llama-batched",
- "llama-batched-bench",
- "llama-bench",
- "llama-cli",
- "llama-convert-llama2c-to-ggml",
- "llama-cvector-generator",
- "llama-embedding",
- "llama-eval-callback",
- "llama-export-lora",
- "llama-gen-docs",
- "llama-gguf",
- "llama-gguf-hash",
- "llama-gguf-split",
- "llama-gritlm",
- "llama-imatrix",
- "llama-infill",
- "llama-mtmd-cli",
- "llama-llava-clip-quantize-cli",
- "llama-lookahead",
- "llama-lookup",
- "llama-lookup-create",
- "llama-lookup-merge",
- "llama-lookup-stats",
- "llama-parallel",
- "llama-passkey",
- "llama-perplexity",
- "llama-q8dot",
- "llama-quantize",
- "llama-qwen2vl-cli",
- "llama-retrieval",
- "llama-run",
- "llama-save-load-state",
- "llama-server",
- "llama-simple",
- "llama-simple-chat",
- "llama-speculative",
- "llama-speculative-simple",
- "llama-tokenize",
- "llama-tts",
- "llama-vdot"
- };
- for (const auto& exe : executables) {
- printf("complete -F _llama_completions %s\n", exe.c_str());
- }
- }
- static std::vector<ggml_backend_dev_t> parse_device_list(const std::string & value) {
- std::vector<ggml_backend_dev_t> devices;
- auto dev_names = string_split<std::string>(value, ',');
- if (dev_names.empty()) {
- throw std::invalid_argument("no devices specified");
- }
- if (dev_names.size() == 1 && dev_names[0] == "none") {
- devices.push_back(nullptr);
- } else {
- for (const auto & device : dev_names) {
- auto * dev = ggml_backend_dev_by_name(device.c_str());
- if (!dev || ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU) {
- throw std::invalid_argument(string_format("invalid device: %s", device.c_str()));
- }
- devices.push_back(dev);
- }
- devices.push_back(nullptr);
- }
- return devices;
- }
- static void add_rpc_devices(const std::string & servers) {
- auto rpc_servers = string_split<std::string>(servers, ',');
- if (rpc_servers.empty()) {
- throw std::invalid_argument("no RPC servers specified");
- }
- ggml_backend_reg_t rpc_reg = ggml_backend_reg_by_name("RPC");
- if (!rpc_reg) {
- throw std::invalid_argument("failed to find RPC backend");
- }
- typedef ggml_backend_reg_t (*ggml_backend_rpc_add_server_t)(const char * endpoint);
- ggml_backend_rpc_add_server_t ggml_backend_rpc_add_server_fn = (ggml_backend_rpc_add_server_t) ggml_backend_reg_get_proc_address(rpc_reg, "ggml_backend_rpc_add_server");
- if (!ggml_backend_rpc_add_server_fn) {
- throw std::invalid_argument("failed to find RPC add server function");
- }
- for (const auto & server : rpc_servers) {
- auto reg = ggml_backend_rpc_add_server_fn(server.c_str());
- ggml_backend_register(reg);
- }
- }
- bool common_params_parse(int argc, char ** argv, common_params & params, llama_example ex, void(*print_usage)(int, char **)) {
- auto ctx_arg = common_params_parser_init(params, ex, print_usage);
- const common_params params_org = ctx_arg.params; // the example can modify the default params
- try {
- if (!common_params_parse_ex(argc, argv, ctx_arg)) {
- ctx_arg.params = params_org;
- return false;
- }
- if (ctx_arg.params.usage) {
- common_params_print_usage(ctx_arg);
- if (ctx_arg.print_usage) {
- ctx_arg.print_usage(argc, argv);
- }
- exit(0);
- }
- if (ctx_arg.params.completion) {
- common_params_print_completion(ctx_arg);
- exit(0);
- }
- params.lr.init();
- } catch (const std::invalid_argument & ex) {
- fprintf(stderr, "%s\n", ex.what());
- ctx_arg.params = params_org;
- return false;
- } catch (std::exception & ex) {
- fprintf(stderr, "%s\n", ex.what());
- exit(1); // for other exceptions, we exit with status code 1
- }
- return true;
- }
- static std::string list_builtin_chat_templates() {
- std::vector<const char *> supported_tmpl;
- int32_t res = llama_chat_builtin_templates(nullptr, 0);
- supported_tmpl.resize(res);
- res = llama_chat_builtin_templates(supported_tmpl.data(), supported_tmpl.size());
- std::ostringstream msg;
- for (auto & tmpl : supported_tmpl) {
- msg << tmpl << (&tmpl == &supported_tmpl.back() ? "" : ", ");
- }
- return msg.str();
- }
- static bool is_truthy(const std::string & value) {
- return value == "on" || value == "enabled" || value == "1";
- }
- static bool is_falsey(const std::string & value) {
- return value == "off" || value == "disabled" || value == "0";
- }
- static bool is_autoy(const std::string & value) {
- return value == "auto" || value == "-1";
- }
- common_params_context common_params_parser_init(common_params & params, llama_example ex, void(*print_usage)(int, char **)) {
- // load dynamic backends
- ggml_backend_load_all();
- common_params_context ctx_arg(params);
- ctx_arg.print_usage = print_usage;
- ctx_arg.ex = ex;
- std::string sampler_type_chars;
- std::string sampler_type_names;
- for (const auto & sampler : params.sampling.samplers) {
- sampler_type_chars += common_sampler_type_to_chr(sampler);
- sampler_type_names += common_sampler_type_to_str(sampler) + ";";
- }
- sampler_type_names.pop_back();
- /**
- * filter options by example
- * rules:
- * - all examples inherit options from LLAMA_EXAMPLE_COMMON
- * - if LLAMA_EXAMPLE_* is set (other than COMMON), we only show the option in the corresponding example
- * - if both {LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_*,} are set, we will prioritize the LLAMA_EXAMPLE_* matching current example
- */
- auto add_opt = [&](common_arg arg) {
- if ((arg.in_example(ex) || arg.in_example(LLAMA_EXAMPLE_COMMON)) && !arg.is_exclude(ex)) {
- ctx_arg.options.push_back(std::move(arg));
- }
- };
- add_opt(common_arg(
- {"-h", "--help", "--usage"},
- "print usage and exit",
- [](common_params & params) {
- params.usage = true;
- }
- ));
- add_opt(common_arg(
- {"--version"},
- "show version and build info",
- [](common_params &) {
- fprintf(stderr, "version: %d (%s)\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT);
- fprintf(stderr, "built with %s for %s\n", LLAMA_COMPILER, LLAMA_BUILD_TARGET);
- exit(0);
- }
- ));
- add_opt(common_arg(
- {"--completion-bash"},
- "print source-able bash completion script for llama.cpp",
- [](common_params & params) {
- params.completion = true;
- }
- ));
- add_opt(common_arg(
- {"--verbose-prompt"},
- string_format("print a verbose prompt before generation (default: %s)", params.verbose_prompt ? "true" : "false"),
- [](common_params & params) {
- params.verbose_prompt = true;
- }
- ));
- add_opt(common_arg(
- {"--no-display-prompt"},
- string_format("don't print prompt at generation (default: %s)", !params.display_prompt ? "true" : "false"),
- [](common_params & params) {
- params.display_prompt = false;
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN}));
- add_opt(common_arg(
- {"-co", "--color"},
- string_format("colorise output to distinguish prompt and user input from generations (default: %s)", params.use_color ? "true" : "false"),
- [](common_params & params) {
- params.use_color = true;
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP}));
- add_opt(common_arg(
- {"-t", "--threads"}, "N",
- string_format("number of CPU threads to use during generation (default: %d)", params.cpuparams.n_threads),
- [](common_params & params, int value) {
- params.cpuparams.n_threads = value;
- if (params.cpuparams.n_threads <= 0) {
- params.cpuparams.n_threads = std::thread::hardware_concurrency();
- }
- }
- ).set_env("LLAMA_ARG_THREADS"));
- add_opt(common_arg(
- {"-tb", "--threads-batch"}, "N",
- "number of threads to use during batch and prompt processing (default: same as --threads)",
- [](common_params & params, int value) {
- params.cpuparams_batch.n_threads = value;
- if (params.cpuparams_batch.n_threads <= 0) {
- params.cpuparams_batch.n_threads = std::thread::hardware_concurrency();
- }
- }
- ));
- add_opt(common_arg(
- {"-C", "--cpu-mask"}, "M",
- "CPU affinity mask: arbitrarily long hex. Complements cpu-range (default: \"\")",
- [](common_params & params, const std::string & mask) {
- params.cpuparams.mask_valid = true;
- if (!parse_cpu_mask(mask, params.cpuparams.cpumask)) {
- throw std::invalid_argument("invalid cpumask");
- }
- }
- ));
- add_opt(common_arg(
- {"-Cr", "--cpu-range"}, "lo-hi",
- "range of CPUs for affinity. Complements --cpu-mask",
- [](common_params & params, const std::string & range) {
- params.cpuparams.mask_valid = true;
- if (!parse_cpu_range(range, params.cpuparams.cpumask)) {
- throw std::invalid_argument("invalid range");
- }
- }
- ));
- add_opt(common_arg(
- {"--cpu-strict"}, "<0|1>",
- string_format("use strict CPU placement (default: %u)\n", (unsigned) params.cpuparams.strict_cpu),
- [](common_params & params, const std::string & value) {
- params.cpuparams.strict_cpu = std::stoul(value);
- }
- ));
- add_opt(common_arg(
- {"--prio"}, "N",
- string_format("set process/thread priority : low(-1), normal(0), medium(1), high(2), realtime(3) (default: %d)\n", params.cpuparams.priority),
- [](common_params & params, int prio) {
- if (prio < GGML_SCHED_PRIO_LOW || prio > GGML_SCHED_PRIO_REALTIME) {
- throw std::invalid_argument("invalid value");
- }
- params.cpuparams.priority = (enum ggml_sched_priority) prio;
- }
- ));
- add_opt(common_arg(
- {"--poll"}, "<0...100>",
- string_format("use polling level to wait for work (0 - no polling, default: %u)\n", (unsigned) params.cpuparams.poll),
- [](common_params & params, const std::string & value) {
- params.cpuparams.poll = std::stoul(value);
- }
- ));
- add_opt(common_arg(
- {"-Cb", "--cpu-mask-batch"}, "M",
- "CPU affinity mask: arbitrarily long hex. Complements cpu-range-batch (default: same as --cpu-mask)",
- [](common_params & params, const std::string & mask) {
- params.cpuparams_batch.mask_valid = true;
- if (!parse_cpu_mask(mask, params.cpuparams_batch.cpumask)) {
- throw std::invalid_argument("invalid cpumask");
- }
- }
- ));
- add_opt(common_arg(
- {"-Crb", "--cpu-range-batch"}, "lo-hi",
- "ranges of CPUs for affinity. Complements --cpu-mask-batch",
- [](common_params & params, const std::string & range) {
- params.cpuparams_batch.mask_valid = true;
- if (!parse_cpu_range(range, params.cpuparams_batch.cpumask)) {
- throw std::invalid_argument("invalid range");
- }
- }
- ));
- add_opt(common_arg(
- {"--cpu-strict-batch"}, "<0|1>",
- "use strict CPU placement (default: same as --cpu-strict)",
- [](common_params & params, int value) {
- params.cpuparams_batch.strict_cpu = value;
- }
- ));
- add_opt(common_arg(
- {"--prio-batch"}, "N",
- string_format("set process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.cpuparams_batch.priority),
- [](common_params & params, int prio) {
- if (prio < 0 || prio > 3) {
- throw std::invalid_argument("invalid value");
- }
- params.cpuparams_batch.priority = (enum ggml_sched_priority) prio;
- }
- ));
- add_opt(common_arg(
- {"--poll-batch"}, "<0|1>",
- "use polling to wait for work (default: same as --poll)",
- [](common_params & params, int value) {
- params.cpuparams_batch.poll = value;
- }
- ));
- add_opt(common_arg(
- {"-lcs", "--lookup-cache-static"}, "FNAME",
- "path to static lookup cache to use for lookup decoding (not updated by generation)",
- [](common_params & params, const std::string & value) {
- params.lookup_cache_static = value;
- }
- ).set_examples({LLAMA_EXAMPLE_LOOKUP}));
- add_opt(common_arg(
- {"-lcd", "--lookup-cache-dynamic"}, "FNAME",
- "path to dynamic lookup cache to use for lookup decoding (updated by generation)",
- [](common_params & params, const std::string & value) {
- params.lookup_cache_dynamic = value;
- }
- ).set_examples({LLAMA_EXAMPLE_LOOKUP}));
- add_opt(common_arg(
- {"-c", "--ctx-size"}, "N",
- string_format("size of the prompt context (default: %d, 0 = loaded from model)", params.n_ctx),
- [](common_params & params, int value) {
- params.n_ctx = value;
- }
- ).set_env("LLAMA_ARG_CTX_SIZE"));
- add_opt(common_arg(
- {"-n", "--predict", "--n-predict"}, "N",
- string_format(
- ex == LLAMA_EXAMPLE_MAIN
- ? "number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)"
- : "number of tokens to predict (default: %d, -1 = infinity)",
- params.n_predict),
- [](common_params & params, int value) {
- params.n_predict = value;
- }
- ).set_env("LLAMA_ARG_N_PREDICT"));
- add_opt(common_arg(
- {"-b", "--batch-size"}, "N",
- string_format("logical maximum batch size (default: %d)", params.n_batch),
- [](common_params & params, int value) {
- params.n_batch = value;
- }
- ).set_env("LLAMA_ARG_BATCH"));
- add_opt(common_arg(
- {"-ub", "--ubatch-size"}, "N",
- string_format("physical maximum batch size (default: %d)", params.n_ubatch),
- [](common_params & params, int value) {
- params.n_ubatch = value;
- }
- ).set_env("LLAMA_ARG_UBATCH"));
- add_opt(common_arg(
- {"--keep"}, "N",
- string_format("number of tokens to keep from the initial prompt (default: %d, -1 = all)", params.n_keep),
- [](common_params & params, int value) {
- params.n_keep = value;
- }
- ));
- add_opt(common_arg(
- {"--swa-full"},
- string_format("use full-size SWA cache (default: %s)\n"
- "[(more info)](https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055)", params.swa_full ? "true" : "false"),
- [](common_params & params) {
- params.swa_full = true;
- }
- ).set_env("LLAMA_ARG_SWA_FULL"));
- add_opt(common_arg(
- {"--ctx-checkpoints", "--swa-checkpoints"}, "N",
- string_format("max number of context checkpoints to create per slot (default: %d)\n"
- "[(more info)](https://github.com/ggml-org/llama.cpp/pull/15293)", params.n_ctx_checkpoints),
- [](common_params & params, int value) {
- params.n_ctx_checkpoints = value;
- }
- ).set_env("LLAMA_ARG_CTX_CHECKPOINTS").set_examples({LLAMA_EXAMPLE_SERVER}));
- add_opt(common_arg(
- {"--cache-ram", "-cram"}, "N",
- string_format("set the maximum cache size in MiB (default: %d, -1 - no limit, 0 - disable)\n"
- "[(more info)](https://github.com/ggml-org/llama.cpp/pull/16391)", params.cache_ram_mib),
- [](common_params & params, int value) {
- params.cache_ram_mib = value;
- }
- ).set_env("LLAMA_ARG_CACHE_RAM").set_examples({LLAMA_EXAMPLE_SERVER}));
- add_opt(common_arg(
- {"--kv-unified", "-kvu"},
- string_format("use single unified KV buffer for the KV cache of all sequences (default: %s)\n"
- "[(more info)](https://github.com/ggml-org/llama.cpp/pull/14363)", params.kv_unified ? "true" : "false"),
- [](common_params & params) {
- params.kv_unified = true;
- }
- ).set_env("LLAMA_ARG_KV_SPLIT"));
- add_opt(common_arg(
- {"--no-context-shift"},
- string_format("disables context shift on infinite text generation (default: %s)", params.ctx_shift ? "disabled" : "enabled"),
- [](common_params & params) {
- params.ctx_shift = false;
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_PERPLEXITY}).set_env("LLAMA_ARG_NO_CONTEXT_SHIFT"));
- add_opt(common_arg(
- {"--context-shift"},
- string_format("enables context shift on infinite text generation (default: %s)", params.ctx_shift ? "enabled" : "disabled"),
- [](common_params & params) {
- params.ctx_shift = true;
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_PERPLEXITY}).set_env("LLAMA_ARG_CONTEXT_SHIFT"));
- add_opt(common_arg(
- {"--chunks"}, "N",
- string_format("max number of chunks to process (default: %d, -1 = all)", params.n_chunks),
- [](common_params & params, int value) {
- params.n_chunks = value;
- }
- ).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_PERPLEXITY, LLAMA_EXAMPLE_RETRIEVAL}));
- add_opt(common_arg({ "-fa", "--flash-attn" }, "[on|off|auto]",
- string_format("set Flash Attention use ('on', 'off', or 'auto', default: '%s')",
- llama_flash_attn_type_name(params.flash_attn_type)),
- [](common_params & params, const std::string & value) {
- if (is_truthy(value)) {
- params.flash_attn_type = LLAMA_FLASH_ATTN_TYPE_ENABLED;
- } else if (is_falsey(value)) {
- params.flash_attn_type = LLAMA_FLASH_ATTN_TYPE_DISABLED;
- } else if (is_autoy(value)) {
- params.flash_attn_type = LLAMA_FLASH_ATTN_TYPE_AUTO;
- } else {
- throw std::runtime_error(
- string_format("error: unkown value for --flash-attn: '%s'\n", value.c_str()));
- }
- }).set_env("LLAMA_ARG_FLASH_ATTN"));
- add_opt(common_arg(
- {"-p", "--prompt"}, "PROMPT",
- "prompt to start generation with; for system message, use -sys",
- [](common_params & params, const std::string & value) {
- params.prompt = value;
- }
- ).set_excludes({LLAMA_EXAMPLE_SERVER}));
- add_opt(common_arg(
- {"-sys", "--system-prompt"}, "PROMPT",
- "system prompt to use with model (if applicable, depending on chat template)",
- [](common_params & params, const std::string & value) {
- params.system_prompt = value;
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_DIFFUSION}));
- add_opt(common_arg(
- {"--no-perf"},
- string_format("disable internal libllama performance timings (default: %s)", params.no_perf ? "true" : "false"),
- [](common_params & params) {
- params.no_perf = true;
- params.sampling.no_perf = true;
- }
- ).set_env("LLAMA_ARG_NO_PERF"));
- add_opt(common_arg(
- {"-f", "--file"}, "FNAME",
- "a file containing the prompt (default: none)",
- [](common_params & params, const std::string & value) {
- params.prompt = read_file(value);
- // store the external file name in params
- params.prompt_file = value;
- if (!params.prompt.empty() && params.prompt.back() == '\n') {
- params.prompt.pop_back();
- }
- }
- ).set_excludes({LLAMA_EXAMPLE_SERVER}));
- add_opt(common_arg(
- {"-sysf", "--system-prompt-file"}, "FNAME",
- "a file containing the system prompt (default: none)",
- [](common_params & params, const std::string & value) {
- params.system_prompt = read_file(value);
- if (!params.system_prompt.empty() && params.system_prompt.back() == '\n') {
- params.system_prompt.pop_back();
- }
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN}));
- add_opt(common_arg(
- {"--in-file"}, "FNAME",
- "an input file (repeat to specify multiple files)",
- [](common_params & params, const std::string & value) {
- std::ifstream file(value);
- if (!file) {
- throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
- }
- params.in_files.push_back(value);
- }
- ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
- add_opt(common_arg(
- {"-bf", "--binary-file"}, "FNAME",
- "binary file containing the prompt (default: none)",
- [](common_params & params, const std::string & value) {
- std::ifstream file(value, std::ios::binary);
- if (!file) {
- throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
- }
- // store the external file name in params
- params.prompt_file = value;
- std::ostringstream ss;
- ss << file.rdbuf();
- params.prompt = ss.str();
- fprintf(stderr, "Read %zu bytes from binary file %s\n", params.prompt.size(), value.c_str());
- }
- ).set_excludes({LLAMA_EXAMPLE_SERVER}));
- add_opt(common_arg(
- {"-e", "--escape"},
- string_format("process escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\) (default: %s)", params.escape ? "true" : "false"),
- [](common_params & params) {
- params.escape = true;
- }
- ));
- add_opt(common_arg(
- {"--no-escape"},
- "do not process escape sequences",
- [](common_params & params) {
- params.escape = false;
- }
- ));
- add_opt(common_arg(
- {"-ptc", "--print-token-count"}, "N",
- string_format("print token count every N tokens (default: %d)", params.n_print),
- [](common_params & params, int value) {
- params.n_print = value;
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN}));
- add_opt(common_arg(
- {"--prompt-cache"}, "FNAME",
- "file to cache prompt state for faster startup (default: none)",
- [](common_params & params, const std::string & value) {
- params.path_prompt_cache = value;
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN}));
- add_opt(common_arg(
- {"--prompt-cache-all"},
- "if specified, saves user input and generations to cache as well\n",
- [](common_params & params) {
- params.prompt_cache_all = true;
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN}));
- add_opt(common_arg(
- {"--prompt-cache-ro"},
- "if specified, uses the prompt cache but does not update it",
- [](common_params & params) {
- params.prompt_cache_ro = true;
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN}));
- add_opt(common_arg(
- {"-r", "--reverse-prompt"}, "PROMPT",
- "halt generation at PROMPT, return control in interactive mode\n",
- [](common_params & params, const std::string & value) {
- params.antiprompt.emplace_back(value);
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}));
- add_opt(common_arg(
- {"-sp", "--special"},
- string_format("special tokens output enabled (default: %s)", params.special ? "true" : "false"),
- [](common_params & params) {
- params.special = true;
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}));
- add_opt(common_arg(
- {"-cnv", "--conversation"},
- "run in conversation mode:\n"
- "- does not print special tokens and suffix/prefix\n"
- "- interactive mode is also enabled\n"
- "(default: auto enabled if chat template is available)",
- [](common_params & params) {
- params.conversation_mode = COMMON_CONVERSATION_MODE_ENABLED;
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN}));
- add_opt(common_arg(
- {"-no-cnv", "--no-conversation"},
- "force disable conversation mode (default: false)",
- [](common_params & params) {
- params.conversation_mode = COMMON_CONVERSATION_MODE_DISABLED;
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN}));
- add_opt(common_arg(
- {"-st", "--single-turn"},
- "run conversation for a single turn only, then exit when done\n"
- "will not be interactive if first turn is predefined with --prompt\n"
- "(default: false)",
- [](common_params & params) {
- params.single_turn = true;
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN}));
- add_opt(common_arg(
- {"-i", "--interactive"},
- string_format("run in interactive mode (default: %s)", params.interactive ? "true" : "false"),
- [](common_params & params) {
- params.interactive = true;
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN}));
- add_opt(common_arg(
- {"-if", "--interactive-first"},
- string_format("run in interactive mode and wait for input right away (default: %s)", params.interactive_first ? "true" : "false"),
- [](common_params & params) {
- params.interactive_first = true;
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN}));
- add_opt(common_arg(
- {"-mli", "--multiline-input"},
- "allows you to write or paste multiple lines without ending each in '\\'",
- [](common_params & params) {
- params.multiline_input = true;
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN}));
- add_opt(common_arg(
- {"--in-prefix-bos"},
- "prefix BOS to user inputs, preceding the `--in-prefix` string",
- [](common_params & params) {
- params.input_prefix_bos = true;
- params.enable_chat_template = false;
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN}));
- add_opt(common_arg(
- {"--in-prefix"}, "STRING",
- "string to prefix user inputs with (default: empty)",
- [](common_params & params, const std::string & value) {
- params.input_prefix = value;
- params.enable_chat_template = false;
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN}));
- add_opt(common_arg(
- {"--in-suffix"}, "STRING",
- "string to suffix after user inputs with (default: empty)",
- [](common_params & params, const std::string & value) {
- params.input_suffix = value;
- params.enable_chat_template = false;
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN}));
- add_opt(common_arg(
- {"--no-warmup"},
- "skip warming up the model with an empty run",
- [](common_params & params) {
- params.warmup = false;
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_RETRIEVAL, LLAMA_EXAMPLE_PERPLEXITY}));
- add_opt(common_arg(
- {"--spm-infill"},
- string_format(
- "use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this. (default: %s)",
- params.spm_infill ? "enabled" : "disabled"
- ),
- [](common_params & params) {
- params.spm_infill = true;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}));
- add_opt(common_arg(
- {"--samplers"}, "SAMPLERS",
- string_format("samplers that will be used for generation in the order, separated by \';\'\n(default: %s)", sampler_type_names.c_str()),
- [](common_params & params, const std::string & value) {
- const auto sampler_names = string_split<std::string>(value, ';');
- params.sampling.samplers = common_sampler_types_from_names(sampler_names, true);
- }
- ).set_sparam());
- add_opt(common_arg(
- {"-s", "--seed"}, "SEED",
- string_format("RNG seed (default: %d, use random seed for %d)", params.sampling.seed, LLAMA_DEFAULT_SEED),
- [](common_params & params, const std::string & value) {
- params.sampling.seed = std::stoul(value);
- }
- ).set_sparam());
- add_opt(common_arg(
- {"--sampling-seq", "--sampler-seq"}, "SEQUENCE",
- string_format("simplified sequence for samplers that will be used (default: %s)", sampler_type_chars.c_str()),
- [](common_params & params, const std::string & value) {
- params.sampling.samplers = common_sampler_types_from_chars(value);
- }
- ).set_sparam());
- add_opt(common_arg(
- {"--ignore-eos"},
- "ignore end of stream token and continue generating (implies --logit-bias EOS-inf)",
- [](common_params & params) {
- params.sampling.ignore_eos = true;
- }
- ).set_sparam());
- add_opt(common_arg(
- {"--temp"}, "N",
- string_format("temperature (default: %.1f)", (double)params.sampling.temp),
- [](common_params & params, const std::string & value) {
- params.sampling.temp = std::stof(value);
- params.sampling.temp = std::max(params.sampling.temp, 0.0f);
- }
- ).set_sparam());
- add_opt(common_arg(
- {"--top-k"}, "N",
- string_format("top-k sampling (default: %d, 0 = disabled)", params.sampling.top_k),
- [](common_params & params, int value) {
- params.sampling.top_k = value;
- }
- ).set_sparam());
- add_opt(common_arg(
- {"--top-p"}, "N",
- string_format("top-p sampling (default: %.1f, 1.0 = disabled)", (double)params.sampling.top_p),
- [](common_params & params, const std::string & value) {
- params.sampling.top_p = std::stof(value);
- }
- ).set_sparam());
- add_opt(common_arg(
- {"--min-p"}, "N",
- string_format("min-p sampling (default: %.1f, 0.0 = disabled)", (double)params.sampling.min_p),
- [](common_params & params, const std::string & value) {
- params.sampling.min_p = std::stof(value);
- }
- ).set_sparam());
- add_opt(common_arg(
- {"--top-nsigma"}, "N",
- string_format("top-n-sigma sampling (default: %.1f, -1.0 = disabled)", params.sampling.top_n_sigma),
- [](common_params & params, const std::string & value) {
- params.sampling.top_n_sigma = std::stof(value);
- }
- ).set_sparam());
- add_opt(common_arg(
- {"--xtc-probability"}, "N",
- string_format("xtc probability (default: %.1f, 0.0 = disabled)", (double)params.sampling.xtc_probability),
- [](common_params & params, const std::string & value) {
- params.sampling.xtc_probability = std::stof(value);
- }
- ).set_sparam());
- add_opt(common_arg(
- {"--xtc-threshold"}, "N",
- string_format("xtc threshold (default: %.1f, 1.0 = disabled)", (double)params.sampling.xtc_threshold),
- [](common_params & params, const std::string & value) {
- params.sampling.xtc_threshold = std::stof(value);
- }
- ).set_sparam());
- add_opt(common_arg(
- {"--typical"}, "N",
- string_format("locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)", (double)params.sampling.typ_p),
- [](common_params & params, const std::string & value) {
- params.sampling.typ_p = std::stof(value);
- }
- ).set_sparam());
- add_opt(common_arg(
- {"--repeat-last-n"}, "N",
- string_format("last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)", params.sampling.penalty_last_n),
- [](common_params & params, int value) {
- if (value < -1) {
- throw std::runtime_error(string_format("error: invalid repeat-last-n = %d\n", value));
- }
- params.sampling.penalty_last_n = value;
- params.sampling.n_prev = std::max(params.sampling.n_prev, params.sampling.penalty_last_n);
- }
- ).set_sparam());
- add_opt(common_arg(
- {"--repeat-penalty"}, "N",
- string_format("penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)", (double)params.sampling.penalty_repeat),
- [](common_params & params, const std::string & value) {
- params.sampling.penalty_repeat = std::stof(value);
- }
- ).set_sparam());
- add_opt(common_arg(
- {"--presence-penalty"}, "N",
- string_format("repeat alpha presence penalty (default: %.1f, 0.0 = disabled)", (double)params.sampling.penalty_present),
- [](common_params & params, const std::string & value) {
- params.sampling.penalty_present = std::stof(value);
- }
- ).set_sparam());
- add_opt(common_arg(
- {"--frequency-penalty"}, "N",
- string_format("repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)", (double)params.sampling.penalty_freq),
- [](common_params & params, const std::string & value) {
- params.sampling.penalty_freq = std::stof(value);
- }
- ).set_sparam());
- add_opt(common_arg(
- {"--dry-multiplier"}, "N",
- string_format("set DRY sampling multiplier (default: %.1f, 0.0 = disabled)", (double)params.sampling.dry_multiplier),
- [](common_params & params, const std::string & value) {
- params.sampling.dry_multiplier = std::stof(value);
- }
- ).set_sparam());
- add_opt(common_arg(
- {"--dry-base"}, "N",
- string_format("set DRY sampling base value (default: %.2f)", (double)params.sampling.dry_base),
- [](common_params & params, const std::string & value) {
- float potential_base = std::stof(value);
- if (potential_base >= 1.0f)
- {
- params.sampling.dry_base = potential_base;
- }
- }
- ).set_sparam());
- add_opt(common_arg(
- {"--dry-allowed-length"}, "N",
- string_format("set allowed length for DRY sampling (default: %d)", params.sampling.dry_allowed_length),
- [](common_params & params, int value) {
- params.sampling.dry_allowed_length = value;
- }
- ).set_sparam());
- add_opt(common_arg(
- {"--dry-penalty-last-n"}, "N",
- string_format("set DRY penalty for the last n tokens (default: %d, 0 = disable, -1 = context size)", params.sampling.dry_penalty_last_n),
- [](common_params & params, int value) {
- if (value < -1) {
- throw std::runtime_error(string_format("error: invalid dry-penalty-last-n = %d\n", value));
- }
- params.sampling.dry_penalty_last_n = value;
- }
- ).set_sparam());
- add_opt(common_arg(
- {"--dry-sequence-breaker"}, "STRING",
- string_format("add sequence breaker for DRY sampling, clearing out default breakers (%s) in the process; use \"none\" to not use any sequence breakers\n",
- params.sampling.dry_sequence_breakers.empty() ? "none" :
- std::accumulate(std::next(params.sampling.dry_sequence_breakers.begin()),
- params.sampling.dry_sequence_breakers.end(),
- std::string("'") + (params.sampling.dry_sequence_breakers[0] == "\n" ? "\\n" : params.sampling.dry_sequence_breakers[0]) + "'",
- [](const std::string& a, const std::string& b) {
- std::string formatted_b = (b == "\n") ? "\\n" : b;
- return a + ", '" + formatted_b + "'";
- }).c_str()),
- [](common_params & params, const std::string & value) {
- static bool defaults_cleared = false;
- if (!defaults_cleared) {
- params.sampling.dry_sequence_breakers.clear();
- defaults_cleared = true;
- }
- if (value == "none") {
- params.sampling.dry_sequence_breakers.clear();
- } else {
- params.sampling.dry_sequence_breakers.emplace_back(value);
- }
- }
- ).set_sparam());
- add_opt(common_arg(
- {"--dynatemp-range"}, "N",
- string_format("dynamic temperature range (default: %.1f, 0.0 = disabled)", (double)params.sampling.dynatemp_range),
- [](common_params & params, const std::string & value) {
- params.sampling.dynatemp_range = std::stof(value);
- }
- ).set_sparam());
- add_opt(common_arg(
- {"--dynatemp-exp"}, "N",
- string_format("dynamic temperature exponent (default: %.1f)", (double)params.sampling.dynatemp_exponent),
- [](common_params & params, const std::string & value) {
- params.sampling.dynatemp_exponent = std::stof(value);
- }
- ).set_sparam());
- add_opt(common_arg(
- {"--mirostat"}, "N",
- string_format("use Mirostat sampling.\nTop K, Nucleus and Locally Typical samplers are ignored if used.\n"
- "(default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)", params.sampling.mirostat),
- [](common_params & params, int value) {
- params.sampling.mirostat = value;
- }
- ).set_sparam());
- add_opt(common_arg(
- {"--mirostat-lr"}, "N",
- string_format("Mirostat learning rate, parameter eta (default: %.1f)", (double)params.sampling.mirostat_eta),
- [](common_params & params, const std::string & value) {
- params.sampling.mirostat_eta = std::stof(value);
- }
- ).set_sparam());
- add_opt(common_arg(
- {"--mirostat-ent"}, "N",
- string_format("Mirostat target entropy, parameter tau (default: %.1f)", (double)params.sampling.mirostat_tau),
- [](common_params & params, const std::string & value) {
- params.sampling.mirostat_tau = std::stof(value);
- }
- ).set_sparam());
- add_opt(common_arg(
- {"-l", "--logit-bias"}, "TOKEN_ID(+/-)BIAS",
- "modifies the likelihood of token appearing in the completion,\n"
- "i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n"
- "or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'",
- [](common_params & params, const std::string & value) {
- std::stringstream ss(value);
- llama_token key;
- char sign;
- std::string value_str;
- try {
- if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) {
- const float bias = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f);
- params.sampling.logit_bias.push_back({key, bias});
- } else {
- throw std::invalid_argument("invalid input format");
- }
- } catch (const std::exception&) {
- throw std::invalid_argument("invalid input format");
- }
- }
- ).set_sparam());
- add_opt(common_arg(
- {"--grammar"}, "GRAMMAR",
- string_format("BNF-like grammar to constrain generations (see samples in grammars/ dir) (default: '%s')", params.sampling.grammar.c_str()),
- [](common_params & params, const std::string & value) {
- params.sampling.grammar = value;
- }
- ).set_sparam());
- add_opt(common_arg(
- {"--grammar-file"}, "FNAME",
- "file to read grammar from",
- [](common_params & params, const std::string & value) {
- params.sampling.grammar = read_file(value);
- }
- ).set_sparam());
- add_opt(common_arg(
- {"-j", "--json-schema"}, "SCHEMA",
- "JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object\nFor schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead",
- [](common_params & params, const std::string & value) {
- params.sampling.grammar = json_schema_to_grammar(json::parse(value));
- }
- ).set_sparam());
- add_opt(common_arg(
- {"-jf", "--json-schema-file"}, "FILE",
- "File containing a JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object\nFor schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead",
- [](common_params & params, const std::string & value) {
- std::ifstream file(value);
- if (!file) {
- throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
- }
- std::string schema;
- std::copy(
- std::istreambuf_iterator<char>(file),
- std::istreambuf_iterator<char>(),
- std::back_inserter(schema)
- );
- params.sampling.grammar = json_schema_to_grammar(json::parse(schema));
- }
- ).set_sparam());
- add_opt(common_arg(
- {"--pooling"}, "{none,mean,cls,last,rank}",
- "pooling type for embeddings, use model default if unspecified",
- [](common_params & params, const std::string & value) {
- /**/ if (value == "none") { params.pooling_type = LLAMA_POOLING_TYPE_NONE; }
- else if (value == "mean") { params.pooling_type = LLAMA_POOLING_TYPE_MEAN; }
- else if (value == "cls") { params.pooling_type = LLAMA_POOLING_TYPE_CLS; }
- else if (value == "last") { params.pooling_type = LLAMA_POOLING_TYPE_LAST; }
- else if (value == "rank") { params.pooling_type = LLAMA_POOLING_TYPE_RANK; }
- else { throw std::invalid_argument("invalid value"); }
- }
- ).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_RETRIEVAL, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_POOLING"));
- add_opt(common_arg(
- {"--attention"}, "{causal,non-causal}",
- "attention type for embeddings, use model default if unspecified",
- [](common_params & params, const std::string & value) {
- /**/ if (value == "causal") { params.attention_type = LLAMA_ATTENTION_TYPE_CAUSAL; }
- else if (value == "non-causal") { params.attention_type = LLAMA_ATTENTION_TYPE_NON_CAUSAL; }
- else { throw std::invalid_argument("invalid value"); }
- }
- ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
- add_opt(common_arg(
- {"--rope-scaling"}, "{none,linear,yarn}",
- "RoPE frequency scaling method, defaults to linear unless specified by the model",
- [](common_params & params, const std::string & value) {
- /**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; }
- else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; }
- else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; }
- else { throw std::invalid_argument("invalid value"); }
- }
- ).set_env("LLAMA_ARG_ROPE_SCALING_TYPE"));
- add_opt(common_arg(
- {"--rope-scale"}, "N",
- "RoPE context scaling factor, expands context by a factor of N",
- [](common_params & params, const std::string & value) {
- params.rope_freq_scale = 1.0f / std::stof(value);
- }
- ).set_env("LLAMA_ARG_ROPE_SCALE"));
- add_opt(common_arg(
- {"--rope-freq-base"}, "N",
- "RoPE base frequency, used by NTK-aware scaling (default: loaded from model)",
- [](common_params & params, const std::string & value) {
- params.rope_freq_base = std::stof(value);
- }
- ).set_env("LLAMA_ARG_ROPE_FREQ_BASE"));
- add_opt(common_arg(
- {"--rope-freq-scale"}, "N",
- "RoPE frequency scaling factor, expands context by a factor of 1/N",
- [](common_params & params, const std::string & value) {
- params.rope_freq_scale = std::stof(value);
- }
- ).set_env("LLAMA_ARG_ROPE_FREQ_SCALE"));
- add_opt(common_arg(
- {"--yarn-orig-ctx"}, "N",
- string_format("YaRN: original context size of model (default: %d = model training context size)", params.yarn_orig_ctx),
- [](common_params & params, int value) {
- params.yarn_orig_ctx = value;
- }
- ).set_env("LLAMA_ARG_YARN_ORIG_CTX"));
- add_opt(common_arg(
- {"--yarn-ext-factor"}, "N",
- string_format("YaRN: extrapolation mix factor (default: %.1f, 0.0 = full interpolation)", (double)params.yarn_ext_factor),
- [](common_params & params, const std::string & value) {
- params.yarn_ext_factor = std::stof(value);
- }
- ).set_env("LLAMA_ARG_YARN_EXT_FACTOR"));
- add_opt(common_arg(
- {"--yarn-attn-factor"}, "N",
- string_format("YaRN: scale sqrt(t) or attention magnitude (default: %.1f)", (double)params.yarn_attn_factor),
- [](common_params & params, const std::string & value) {
- params.yarn_attn_factor = std::stof(value);
- }
- ).set_env("LLAMA_ARG_YARN_ATTN_FACTOR"));
- add_opt(common_arg(
- {"--yarn-beta-slow"}, "N",
- string_format("YaRN: high correction dim or alpha (default: %.1f)", (double)params.yarn_beta_slow),
- [](common_params & params, const std::string & value) {
- params.yarn_beta_slow = std::stof(value);
- }
- ).set_env("LLAMA_ARG_YARN_BETA_SLOW"));
- add_opt(common_arg(
- {"--yarn-beta-fast"}, "N",
- string_format("YaRN: low correction dim or beta (default: %.1f)", (double)params.yarn_beta_fast),
- [](common_params & params, const std::string & value) {
- params.yarn_beta_fast = std::stof(value);
- }
- ).set_env("LLAMA_ARG_YARN_BETA_FAST"));
- add_opt(common_arg(
- {"-gan", "--grp-attn-n"}, "N",
- string_format("group-attention factor (default: %d)", params.grp_attn_n),
- [](common_params & params, int value) {
- params.grp_attn_n = value;
- }
- ).set_env("LLAMA_ARG_GRP_ATTN_N").set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_PASSKEY}));
- add_opt(common_arg(
- {"-gaw", "--grp-attn-w"}, "N",
- string_format("group-attention width (default: %d)", params.grp_attn_w),
- [](common_params & params, int value) {
- params.grp_attn_w = value;
- }
- ).set_env("LLAMA_ARG_GRP_ATTN_W").set_examples({LLAMA_EXAMPLE_MAIN}));
- add_opt(common_arg(
- {"-nkvo", "--no-kv-offload"},
- "disable KV offload",
- [](common_params & params) {
- params.no_kv_offload = true;
- }
- ).set_env("LLAMA_ARG_NO_KV_OFFLOAD"));
- add_opt(common_arg(
- {"-nr", "--no-repack"},
- "disable weight repacking",
- [](common_params & params) {
- params.no_extra_bufts = true;
- }
- ).set_env("LLAMA_ARG_NO_REPACK"));
- add_opt(common_arg(
- {"--no-host"},
- "bypass host buffer allowing extra buffers to be used",
- [](common_params & params) {
- params.no_host = true;
- }
- ).set_env("LLAMA_ARG_NO_HOST"));
- add_opt(common_arg(
- {"-ctk", "--cache-type-k"}, "TYPE",
- string_format(
- "KV cache data type for K\n"
- "allowed values: %s\n"
- "(default: %s)",
- get_all_kv_cache_types().c_str(),
- ggml_type_name(params.cache_type_k)
- ),
- [](common_params & params, const std::string & value) {
- params.cache_type_k = kv_cache_type_from_str(value);
- }
- ).set_env("LLAMA_ARG_CACHE_TYPE_K"));
- add_opt(common_arg(
- {"-ctv", "--cache-type-v"}, "TYPE",
- string_format(
- "KV cache data type for V\n"
- "allowed values: %s\n"
- "(default: %s)",
- get_all_kv_cache_types().c_str(),
- ggml_type_name(params.cache_type_v)
- ),
- [](common_params & params, const std::string & value) {
- params.cache_type_v = kv_cache_type_from_str(value);
- }
- ).set_env("LLAMA_ARG_CACHE_TYPE_V"));
- add_opt(common_arg(
- {"--hellaswag"},
- "compute HellaSwag score over random tasks from datafile supplied with -f",
- [](common_params & params) {
- params.hellaswag = true;
- }
- ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
- add_opt(common_arg(
- {"--hellaswag-tasks"}, "N",
- string_format("number of tasks to use when computing the HellaSwag score (default: %zu)", params.hellaswag_tasks),
- [](common_params & params, int value) {
- params.hellaswag_tasks = value;
- }
- ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
- add_opt(common_arg(
- {"--winogrande"},
- "compute Winogrande score over random tasks from datafile supplied with -f",
- [](common_params & params) {
- params.winogrande = true;
- }
- ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
- add_opt(common_arg(
- {"--winogrande-tasks"}, "N",
- string_format("number of tasks to use when computing the Winogrande score (default: %zu)", params.winogrande_tasks),
- [](common_params & params, int value) {
- params.winogrande_tasks = value;
- }
- ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
- add_opt(common_arg(
- {"--multiple-choice"},
- "compute multiple choice score over random tasks from datafile supplied with -f",
- [](common_params & params) {
- params.multiple_choice = true;
- }
- ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
- add_opt(common_arg(
- {"--multiple-choice-tasks"}, "N",
- string_format("number of tasks to use when computing the multiple choice score (default: %zu)", params.multiple_choice_tasks),
- [](common_params & params, int value) {
- params.multiple_choice_tasks = value;
- }
- ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
- add_opt(common_arg(
- {"--kl-divergence"},
- "computes KL-divergence to logits provided via --kl-divergence-base",
- [](common_params & params) {
- params.kl_divergence = true;
- }
- ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
- add_opt(common_arg(
- {"--save-all-logits", "--kl-divergence-base"}, "FNAME",
- "set logits file",
- [](common_params & params, const std::string & value) {
- params.logits_file = value;
- }
- ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
- add_opt(common_arg(
- {"--ppl-stride"}, "N",
- string_format("stride for perplexity calculation (default: %d)", params.ppl_stride),
- [](common_params & params, int value) {
- params.ppl_stride = value;
- }
- ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
- add_opt(common_arg(
- {"--ppl-output-type"}, "<0|1>",
- string_format("output type for perplexity calculation (default: %d)", params.ppl_output_type),
- [](common_params & params, int value) {
- params.ppl_output_type = value;
- }
- ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
- add_opt(common_arg(
- {"-dt", "--defrag-thold"}, "N",
- string_format("KV cache defragmentation threshold (DEPRECATED)"),
- [](common_params & params, const std::string & value) {
- GGML_UNUSED(params);
- GGML_UNUSED(value);
- LOG_WRN("DEPRECATED: --defrag-thold is deprecated and no longer necessary to specify\n");
- }
- ).set_env("LLAMA_ARG_DEFRAG_THOLD"));
- add_opt(common_arg(
- {"-np", "--parallel"}, "N",
- string_format("number of parallel sequences to decode (default: %d)", params.n_parallel),
- [](common_params & params, int value) {
- params.n_parallel = value;
- }
- ).set_env("LLAMA_ARG_N_PARALLEL"));
- add_opt(common_arg(
- {"-ns", "--sequences"}, "N",
- string_format("number of sequences to decode (default: %d)", params.n_sequences),
- [](common_params & params, int value) {
- params.n_sequences = value;
- }
- ).set_examples({LLAMA_EXAMPLE_PARALLEL}));
- add_opt(common_arg(
- {"-cb", "--cont-batching"},
- string_format("enable continuous batching (a.k.a dynamic batching) (default: %s)", params.cont_batching ? "enabled" : "disabled"),
- [](common_params & params) {
- params.cont_batching = true;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CONT_BATCHING"));
- add_opt(common_arg(
- {"-nocb", "--no-cont-batching"},
- "disable continuous batching",
- [](common_params & params) {
- params.cont_batching = false;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_CONT_BATCHING"));
- add_opt(common_arg(
- {"--mmproj"}, "FILE",
- "path to a multimodal projector file. see tools/mtmd/README.md\n"
- "note: if -hf is used, this argument can be omitted",
- [](common_params & params, const std::string & value) {
- params.mmproj.path = value;
- }
- ).set_examples(mmproj_examples).set_env("LLAMA_ARG_MMPROJ"));
- add_opt(common_arg(
- {"--mmproj-url"}, "URL",
- "URL to a multimodal projector file. see tools/mtmd/README.md",
- [](common_params & params, const std::string & value) {
- params.mmproj.url = value;
- }
- ).set_examples(mmproj_examples).set_env("LLAMA_ARG_MMPROJ_URL"));
- add_opt(common_arg(
- {"--no-mmproj"},
- "explicitly disable multimodal projector, useful when using -hf",
- [](common_params & params) {
- params.no_mmproj = true;
- }
- ).set_examples(mmproj_examples).set_env("LLAMA_ARG_NO_MMPROJ"));
- add_opt(common_arg(
- {"--no-mmproj-offload"},
- "do not offload multimodal projector to GPU",
- [](common_params & params) {
- params.mmproj_use_gpu = false;
- }
- ).set_examples(mmproj_examples).set_env("LLAMA_ARG_NO_MMPROJ_OFFLOAD"));
- add_opt(common_arg(
- {"--image", "--audio"}, "FILE",
- "path to an image or audio file. use with multimodal models, can be repeated if you have multiple files\n",
- [](common_params & params, const std::string & value) {
- params.image.emplace_back(value);
- }
- ).set_examples({LLAMA_EXAMPLE_MTMD}));
- if (llama_supports_rpc()) {
- add_opt(common_arg(
- {"--rpc"}, "SERVERS",
- "comma separated list of RPC servers",
- [](common_params & params, const std::string & value) {
- add_rpc_devices(value);
- GGML_UNUSED(params);
- }
- ).set_env("LLAMA_ARG_RPC"));
- }
- add_opt(common_arg(
- {"--mlock"},
- "force system to keep model in RAM rather than swapping or compressing",
- [](common_params & params) {
- params.use_mlock = true;
- }
- ).set_env("LLAMA_ARG_MLOCK"));
- add_opt(common_arg(
- {"--no-mmap"},
- "do not memory-map model (slower load but may reduce pageouts if not using mlock)",
- [](common_params & params) {
- params.use_mmap = false;
- }
- ).set_env("LLAMA_ARG_NO_MMAP"));
- add_opt(common_arg(
- {"--numa"}, "TYPE",
- "attempt optimizations that help on some NUMA systems\n"
- "- distribute: spread execution evenly over all nodes\n"
- "- isolate: only spawn threads on CPUs on the node that execution started on\n"
- "- numactl: use the CPU map provided by numactl\n"
- "if run without this previously, it is recommended to drop the system page cache before using this\n"
- "see https://github.com/ggml-org/llama.cpp/issues/1437",
- [](common_params & params, const std::string & value) {
- /**/ if (value == "distribute" || value == "") { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
- else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
- else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
- else { throw std::invalid_argument("invalid value"); }
- }
- ).set_env("LLAMA_ARG_NUMA"));
- add_opt(common_arg(
- {"-dev", "--device"}, "<dev1,dev2,..>",
- "comma-separated list of devices to use for offloading (none = don't offload)\n"
- "use --list-devices to see a list of available devices",
- [](common_params & params, const std::string & value) {
- params.devices = parse_device_list(value);
- }
- ).set_env("LLAMA_ARG_DEVICE"));
- add_opt(common_arg(
- {"--list-devices"},
- "print list of available devices and exit",
- [](common_params &) {
- std::vector<ggml_backend_dev_t> devices;
- for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
- auto * dev = ggml_backend_dev_get(i);
- if (ggml_backend_dev_type(dev) != GGML_BACKEND_DEVICE_TYPE_CPU) {
- devices.push_back(dev);
- }
- }
- printf("Available devices:\n");
- for (auto * dev : devices) {
- size_t free, total;
- ggml_backend_dev_memory(dev, &free, &total);
- printf(" %s: %s (%zu MiB, %zu MiB free)\n", ggml_backend_dev_name(dev), ggml_backend_dev_description(dev), total / 1024 / 1024, free / 1024 / 1024);
- }
- exit(0);
- }
- ));
- add_opt(common_arg(
- {"--override-tensor", "-ot"}, "<tensor name pattern>=<buffer type>,...",
- "override tensor buffer type", [](common_params & params, const std::string & value) {
- parse_tensor_buffer_overrides(value, params.tensor_buft_overrides);
- }
- ));
- add_opt(common_arg(
- {"--override-tensor-draft", "-otd"}, "<tensor name pattern>=<buffer type>,...",
- "override tensor buffer type for draft model", [](common_params & params, const std::string & value) {
- parse_tensor_buffer_overrides(value, params.speculative.tensor_buft_overrides);
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
- add_opt(common_arg(
- {"--cpu-moe", "-cmoe"},
- "keep all Mixture of Experts (MoE) weights in the CPU",
- [](common_params & params) {
- params.tensor_buft_overrides.push_back(llm_ffn_exps_cpu_override());
- }
- ).set_env("LLAMA_ARG_CPU_MOE"));
- add_opt(common_arg(
- {"--n-cpu-moe", "-ncmoe"}, "N",
- "keep the Mixture of Experts (MoE) weights of the first N layers in the CPU",
- [](common_params & params, int value) {
- if (value < 0) {
- throw std::invalid_argument("invalid value");
- }
- for (int i = 0; i < value; ++i) {
- // keep strings alive and avoid leaking memory by storing them in a static vector
- static std::list<std::string> buft_overrides;
- buft_overrides.push_back(llm_ffn_exps_block_regex(i));
- params.tensor_buft_overrides.push_back({buft_overrides.back().c_str(), ggml_backend_cpu_buffer_type()});
- }
- }
- ).set_env("LLAMA_ARG_N_CPU_MOE"));
- add_opt(common_arg(
- {"--cpu-moe-draft", "-cmoed"},
- "keep all Mixture of Experts (MoE) weights in the CPU for the draft model",
- [](common_params & params) {
- params.speculative.tensor_buft_overrides.push_back(llm_ffn_exps_cpu_override());
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CPU_MOE_DRAFT"));
- add_opt(common_arg(
- {"--n-cpu-moe-draft", "-ncmoed"}, "N",
- "keep the Mixture of Experts (MoE) weights of the first N layers in the CPU for the draft model",
- [](common_params & params, int value) {
- if (value < 0) {
- throw std::invalid_argument("invalid value");
- }
- for (int i = 0; i < value; ++i) {
- static std::list<std::string> buft_overrides_draft;
- buft_overrides_draft.push_back(llm_ffn_exps_block_regex(i));
- params.speculative.tensor_buft_overrides.push_back({buft_overrides_draft.back().c_str(), ggml_backend_cpu_buffer_type()});
- }
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_N_CPU_MOE_DRAFT"));
- add_opt(common_arg(
- {"-ngl", "--gpu-layers", "--n-gpu-layers"}, "N",
- string_format("max. number of layers to store in VRAM (default: %d)", params.n_gpu_layers),
- [](common_params & params, int value) {
- params.n_gpu_layers = value;
- if (!llama_supports_gpu_offload()) {
- fprintf(stderr, "warning: no usable GPU found, --gpu-layers option will be ignored\n");
- fprintf(stderr, "warning: one possible reason is that llama.cpp was compiled without GPU support\n");
- fprintf(stderr, "warning: consult docs/build.md for compilation instructions\n");
- }
- }
- ).set_env("LLAMA_ARG_N_GPU_LAYERS"));
- add_opt(common_arg(
- {"-sm", "--split-mode"}, "{none,layer,row}",
- "how to split the model across multiple GPUs, one of:\n"
- "- none: use one GPU only\n"
- "- layer (default): split layers and KV across GPUs\n"
- "- row: split rows across GPUs",
- [](common_params & params, const std::string & value) {
- std::string arg_next = value;
- if (arg_next == "none") {
- params.split_mode = LLAMA_SPLIT_MODE_NONE;
- } else if (arg_next == "layer") {
- params.split_mode = LLAMA_SPLIT_MODE_LAYER;
- } else if (arg_next == "row") {
- params.split_mode = LLAMA_SPLIT_MODE_ROW;
- } else {
- throw std::invalid_argument("invalid value");
- }
- if (!llama_supports_gpu_offload()) {
- fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting the split mode has no effect.\n");
- }
- }
- ).set_env("LLAMA_ARG_SPLIT_MODE"));
- add_opt(common_arg(
- {"-ts", "--tensor-split"}, "N0,N1,N2,...",
- "fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1",
- [](common_params & params, const std::string & value) {
- std::string arg_next = value;
- // split string by , and /
- const std::regex regex{ R"([,/]+)" };
- std::sregex_token_iterator it{ arg_next.begin(), arg_next.end(), regex, -1 };
- std::vector<std::string> split_arg{ it, {} };
- if (split_arg.size() >= llama_max_devices()) {
- throw std::invalid_argument(
- string_format("got %d input configs, but system only has %d devices", (int)split_arg.size(), (int)llama_max_devices())
- );
- }
- for (size_t i = 0; i < llama_max_devices(); ++i) {
- if (i < split_arg.size()) {
- params.tensor_split[i] = std::stof(split_arg[i]);
- } else {
- params.tensor_split[i] = 0.0f;
- }
- }
- if (!llama_supports_gpu_offload()) {
- fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting a tensor split has no effect.\n");
- }
- }
- ).set_env("LLAMA_ARG_TENSOR_SPLIT"));
- add_opt(common_arg(
- {"-mg", "--main-gpu"}, "INDEX",
- string_format("the GPU to use for the model (with split-mode = none), or for intermediate results and KV (with split-mode = row) (default: %d)", params.main_gpu),
- [](common_params & params, int value) {
- params.main_gpu = value;
- if (!llama_supports_gpu_offload()) {
- fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting the main GPU has no effect.\n");
- }
- }
- ).set_env("LLAMA_ARG_MAIN_GPU"));
- add_opt(common_arg(
- {"--check-tensors"},
- string_format("check model tensor data for invalid values (default: %s)", params.check_tensors ? "true" : "false"),
- [](common_params & params) {
- params.check_tensors = true;
- }
- ));
- add_opt(common_arg(
- {"--override-kv"}, "KEY=TYPE:VALUE",
- "advanced option to override model metadata by key. may be specified multiple times.\n"
- "types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false",
- [](common_params & params, const std::string & value) {
- if (!string_parse_kv_override(value.c_str(), params.kv_overrides)) {
- throw std::runtime_error(string_format("error: Invalid type for KV override: %s\n", value.c_str()));
- }
- }
- ));
- add_opt(common_arg(
- {"--no-op-offload"},
- string_format("disable offloading host tensor operations to device (default: %s)", params.no_op_offload ? "true" : "false"),
- [](common_params & params) {
- params.no_op_offload = true;
- }
- ));
- add_opt(common_arg(
- {"--lora"}, "FNAME",
- "path to LoRA adapter (can be repeated to use multiple adapters)",
- [](common_params & params, const std::string & value) {
- params.lora_adapters.push_back({ std::string(value), 1.0, "", "", nullptr });
- }
- // we define this arg on both COMMON and EXPORT_LORA, so when showing help message of export-lora, it will be categorized as "example-specific" arg
- ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}));
- add_opt(common_arg(
- {"--lora-scaled"}, "FNAME", "SCALE",
- "path to LoRA adapter with user defined scaling (can be repeated to use multiple adapters)",
- [](common_params & params, const std::string & fname, const std::string & scale) {
- params.lora_adapters.push_back({ fname, std::stof(scale), "", "", nullptr });
- }
- // we define this arg on both COMMON and EXPORT_LORA, so when showing help message of export-lora, it will be categorized as "example-specific" arg
- ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}));
- add_opt(common_arg(
- {"--control-vector"}, "FNAME",
- "add a control vector\nnote: this argument can be repeated to add multiple control vectors",
- [](common_params & params, const std::string & value) {
- params.control_vectors.push_back({ 1.0f, value, });
- }
- ));
- add_opt(common_arg(
- {"--control-vector-scaled"}, "FNAME", "SCALE",
- "add a control vector with user defined scaling SCALE\n"
- "note: this argument can be repeated to add multiple scaled control vectors",
- [](common_params & params, const std::string & fname, const std::string & scale) {
- params.control_vectors.push_back({ std::stof(scale), fname });
- }
- ));
- add_opt(common_arg(
- {"--control-vector-layer-range"}, "START", "END",
- "layer range to apply the control vector(s) to, start and end inclusive",
- [](common_params & params, const std::string & start, const std::string & end) {
- params.control_vector_layer_start = std::stoi(start);
- params.control_vector_layer_end = std::stoi(end);
- }
- ));
- add_opt(common_arg(
- {"-a", "--alias"}, "STRING",
- "set alias for model name (to be used by REST API)",
- [](common_params & params, const std::string & value) {
- params.model_alias = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ALIAS"));
- add_opt(common_arg(
- {"-m", "--model"}, "FNAME",
- ex == LLAMA_EXAMPLE_EXPORT_LORA
- ? std::string("model path from which to load base model")
- : string_format(
- "model path (default: `models/$filename` with filename from `--hf-file` "
- "or `--model-url` if set, otherwise %s)", DEFAULT_MODEL_PATH
- ),
- [](common_params & params, const std::string & value) {
- params.model.path = value;
- }
- ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}).set_env("LLAMA_ARG_MODEL"));
- add_opt(common_arg(
- {"-mu", "--model-url"}, "MODEL_URL",
- "model download url (default: unused)",
- [](common_params & params, const std::string & value) {
- params.model.url = value;
- }
- ).set_env("LLAMA_ARG_MODEL_URL"));
- add_opt(common_arg(
- { "-dr", "--docker-repo" }, "[<repo>/]<model>[:quant]",
- "Docker Hub model repository. repo is optional, default to ai/. quant is optional, default to :latest.\n"
- "example: gemma3\n"
- "(default: unused)",
- [](common_params & params, const std::string & value) {
- params.model.docker_repo = value;
- }
- ).set_env("LLAMA_ARG_DOCKER_REPO"));
- add_opt(common_arg(
- {"-hf", "-hfr", "--hf-repo"}, "<user>/<model>[:quant]",
- "Hugging Face model repository; quant is optional, case-insensitive, default to Q4_K_M, or falls back to the first file in the repo if Q4_K_M doesn't exist.\n"
- "mmproj is also downloaded automatically if available. to disable, add --no-mmproj\n"
- "example: unsloth/phi-4-GGUF:q4_k_m\n"
- "(default: unused)",
- [](common_params & params, const std::string & value) {
- params.model.hf_repo = value;
- }
- ).set_env("LLAMA_ARG_HF_REPO"));
- add_opt(common_arg(
- {"-hfd", "-hfrd", "--hf-repo-draft"}, "<user>/<model>[:quant]",
- "Same as --hf-repo, but for the draft model (default: unused)",
- [](common_params & params, const std::string & value) {
- params.speculative.model.hf_repo = value;
- }
- ).set_env("LLAMA_ARG_HFD_REPO"));
- add_opt(common_arg(
- {"-hff", "--hf-file"}, "FILE",
- "Hugging Face model file. If specified, it will override the quant in --hf-repo (default: unused)",
- [](common_params & params, const std::string & value) {
- params.model.hf_file = value;
- }
- ).set_env("LLAMA_ARG_HF_FILE"));
- add_opt(common_arg(
- {"-hfv", "-hfrv", "--hf-repo-v"}, "<user>/<model>[:quant]",
- "Hugging Face model repository for the vocoder model (default: unused)",
- [](common_params & params, const std::string & value) {
- params.vocoder.model.hf_repo = value;
- }
- ).set_env("LLAMA_ARG_HF_REPO_V"));
- add_opt(common_arg(
- {"-hffv", "--hf-file-v"}, "FILE",
- "Hugging Face model file for the vocoder model (default: unused)",
- [](common_params & params, const std::string & value) {
- params.vocoder.model.hf_file = value;
- }
- ).set_env("LLAMA_ARG_HF_FILE_V"));
- add_opt(common_arg(
- {"-hft", "--hf-token"}, "TOKEN",
- "Hugging Face access token (default: value from HF_TOKEN environment variable)",
- [](common_params & params, const std::string & value) {
- params.hf_token = value;
- }
- ).set_env("HF_TOKEN"));
- add_opt(common_arg(
- {"--context-file"}, "FNAME",
- "file to load context from (repeat to specify multiple files)",
- [](common_params & params, const std::string & value) {
- std::ifstream file(value, std::ios::binary);
- if (!file) {
- throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
- }
- params.context_files.push_back(value);
- }
- ).set_examples({LLAMA_EXAMPLE_RETRIEVAL}));
- add_opt(common_arg(
- {"--chunk-size"}, "N",
- string_format("minimum length of embedded text chunks (default: %d)", params.chunk_size),
- [](common_params & params, int value) {
- params.chunk_size = value;
- }
- ).set_examples({LLAMA_EXAMPLE_RETRIEVAL}));
- add_opt(common_arg(
- {"--chunk-separator"}, "STRING",
- string_format("separator between chunks (default: '%s')", params.chunk_separator.c_str()),
- [](common_params & params, const std::string & value) {
- params.chunk_separator = value;
- }
- ).set_examples({LLAMA_EXAMPLE_RETRIEVAL}));
- add_opt(common_arg(
- {"--junk"}, "N",
- string_format("number of times to repeat the junk text (default: %d)", params.n_junk),
- [](common_params & params, int value) {
- params.n_junk = value;
- }
- ).set_examples({LLAMA_EXAMPLE_PASSKEY, LLAMA_EXAMPLE_PARALLEL}));
- add_opt(common_arg(
- {"--pos"}, "N",
- string_format("position of the passkey in the junk text (default: %d)", params.i_pos),
- [](common_params & params, int value) {
- params.i_pos = value;
- }
- ).set_examples({LLAMA_EXAMPLE_PASSKEY}));
- add_opt(common_arg(
- {"-o", "--output", "--output-file"}, "FNAME",
- string_format("output file (default: '%s')", params.out_file.c_str()),
- [](common_params & params, const std::string & value) {
- params.out_file = value;
- }
- ).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_CVECTOR_GENERATOR, LLAMA_EXAMPLE_EXPORT_LORA, LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_FINETUNE}));
- add_opt(common_arg(
- {"-ofreq", "--output-frequency"}, "N",
- string_format("output the imatrix every N iterations (default: %d)", params.n_out_freq),
- [](common_params & params, int value) {
- params.n_out_freq = value;
- }
- ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
- add_opt(common_arg(
- {"--output-format"}, "{gguf,dat}",
- string_format("output format for imatrix file (default: %s)", params.imat_dat > 0 ? "dat" : "gguf"),
- [](common_params & params, const std::string & value) {
- /**/ if (value == "gguf") { params.imat_dat = -1; }
- else if (value == "dat") { params.imat_dat = 1; }
- else { throw std::invalid_argument("invalid output format"); }
- }
- ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
- add_opt(common_arg(
- {"--save-frequency"}, "N",
- string_format("save an imatrix copy every N iterations (default: %d)", params.n_save_freq),
- [](common_params & params, int value) {
- params.n_save_freq = value;
- }
- ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
- add_opt(common_arg(
- {"--process-output"},
- string_format("collect data for the output tensor (default: %s)", params.process_output ? "true" : "false"),
- [](common_params & params) {
- params.process_output = true;
- }
- ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
- add_opt(common_arg(
- {"--no-ppl"},
- string_format("do not compute perplexity (default: %s)", params.compute_ppl ? "true" : "false"),
- [](common_params & params) {
- params.compute_ppl = false;
- }
- ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
- add_opt(common_arg(
- {"--chunk", "--from-chunk"}, "N",
- string_format("start processing the input from chunk N (default: %d)", params.i_chunk),
- [](common_params & params, int value) {
- params.i_chunk = value;
- }
- ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
- add_opt(common_arg(
- {"--show-statistics"},
- string_format("show imatrix statistics and then exit (default: %s)", params.show_statistics ? "true" : "false"),
- [](common_params & params) {
- params.show_statistics = true;
- }
- ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
- add_opt(common_arg(
- {"--parse-special"},
- string_format("parse special tokens (chat, tool, etc) (default: %s)", params.parse_special ? "true" : "false"),
- [](common_params & params) {
- params.parse_special = true;
- }
- ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
- add_opt(common_arg(
- {"-pps"},
- string_format("is the prompt shared across parallel sequences (default: %s)", params.is_pp_shared ? "true" : "false"),
- [](common_params & params) {
- params.is_pp_shared = true;
- }
- ).set_examples({LLAMA_EXAMPLE_BENCH, LLAMA_EXAMPLE_PARALLEL}));
- add_opt(common_arg(
- {"-npp"}, "n0,n1,...",
- "number of prompt tokens",
- [](common_params & params, const std::string & value) {
- auto p = string_split<int>(value, ',');
- params.n_pp.insert(params.n_pp.end(), p.begin(), p.end());
- }
- ).set_examples({LLAMA_EXAMPLE_BENCH}));
- add_opt(common_arg(
- {"-ntg"}, "n0,n1,...",
- "number of text generation tokens",
- [](common_params & params, const std::string & value) {
- auto p = string_split<int>(value, ',');
- params.n_tg.insert(params.n_tg.end(), p.begin(), p.end());
- }
- ).set_examples({LLAMA_EXAMPLE_BENCH}));
- add_opt(common_arg(
- {"-npl"}, "n0,n1,...",
- "number of parallel prompts",
- [](common_params & params, const std::string & value) {
- auto p = string_split<int>(value, ',');
- params.n_pl.insert(params.n_pl.end(), p.begin(), p.end());
- }
- ).set_examples({LLAMA_EXAMPLE_BENCH}));
- add_opt(common_arg(
- {"--embd-normalize"}, "N",
- string_format("normalisation for embeddings (default: %d) (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)", params.embd_normalize),
- [](common_params & params, int value) {
- params.embd_normalize = value;
- }
- ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
- add_opt(common_arg(
- {"--embd-output-format"}, "FORMAT",
- "empty = default, \"array\" = [[],[]...], \"json\" = openai style, \"json+\" = same \"json\" + cosine similarity matrix, \"raw\" = plain whitespace-delimited output (one embedding per line)",
- [](common_params & params, const std::string & value) {
- params.embd_out = value;
- }
- ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
- add_opt(common_arg(
- {"--embd-separator"}, "STRING",
- "separator of embeddings (default \\n) for example \"<#sep#>\"",
- [](common_params & params, const std::string & value) {
- params.embd_sep = value;
- }
- ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
- add_opt(common_arg(
- {"--cls-separator"}, "STRING",
- "separator of classification sequences (default \\t) for example \"<#seq#>\"",
- [](common_params & params, const std::string & value) {
- params.cls_sep = value;
- }
- ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
- add_opt(common_arg(
- {"--host"}, "HOST",
- string_format("ip address to listen, or bind to an UNIX socket if the address ends with .sock (default: %s)", params.hostname.c_str()),
- [](common_params & params, const std::string & value) {
- params.hostname = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_HOST"));
- add_opt(common_arg(
- {"--port"}, "PORT",
- string_format("port to listen (default: %d)", params.port),
- [](common_params & params, int value) {
- params.port = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_PORT"));
- add_opt(common_arg(
- {"--path"}, "PATH",
- string_format("path to serve static files from (default: %s)", params.public_path.c_str()),
- [](common_params & params, const std::string & value) {
- params.public_path = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_STATIC_PATH"));
- add_opt(common_arg(
- {"--api-prefix"}, "PREFIX",
- string_format("prefix path the server serves from, without the trailing slash (default: %s)", params.api_prefix.c_str()),
- [](common_params & params, const std::string & value) {
- params.api_prefix = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_API_PREFIX"));
- add_opt(common_arg(
- {"--no-webui"},
- string_format("Disable the Web UI (default: %s)", params.webui ? "enabled" : "disabled"),
- [](common_params & params) {
- params.webui = false;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_WEBUI"));
- add_opt(common_arg(
- {"--embedding", "--embeddings"},
- string_format("restrict to only support embedding use case; use only with dedicated embedding models (default: %s)", params.embedding ? "enabled" : "disabled"),
- [](common_params & params) {
- params.embedding = true;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_EMBEDDINGS"));
- add_opt(common_arg(
- {"--reranking", "--rerank"},
- string_format("enable reranking endpoint on server (default: %s)", "disabled"),
- [](common_params & params) {
- params.embedding = true;
- params.pooling_type = LLAMA_POOLING_TYPE_RANK;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_RERANKING"));
- add_opt(common_arg(
- {"--api-key"}, "KEY",
- "API key to use for authentication (default: none)",
- [](common_params & params, const std::string & value) {
- params.api_keys.push_back(value);
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_API_KEY"));
- add_opt(common_arg(
- {"--api-key-file"}, "FNAME",
- "path to file containing API keys (default: none)",
- [](common_params & params, const std::string & value) {
- std::ifstream key_file(value);
- if (!key_file) {
- throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
- }
- std::string key;
- while (std::getline(key_file, key)) {
- if (!key.empty()) {
- params.api_keys.push_back(key);
- }
- }
- key_file.close();
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}));
- add_opt(common_arg(
- {"--ssl-key-file"}, "FNAME",
- "path to file a PEM-encoded SSL private key",
- [](common_params & params, const std::string & value) {
- params.ssl_file_key = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_SSL_KEY_FILE"));
- add_opt(common_arg(
- {"--ssl-cert-file"}, "FNAME",
- "path to file a PEM-encoded SSL certificate",
- [](common_params & params, const std::string & value) {
- params.ssl_file_cert = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_SSL_CERT_FILE"));
- add_opt(common_arg(
- {"--chat-template-kwargs"}, "STRING",
- string_format("sets additional params for the json template parser"),
- [](common_params & params, const std::string & value) {
- auto parsed = json::parse(value);
- for (const auto & item : parsed.items()) {
- params.default_template_kwargs[item.key()] = item.value().dump();
- }
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_CHAT_TEMPLATE_KWARGS"));
- add_opt(common_arg(
- {"-to", "--timeout"}, "N",
- string_format("server read/write timeout in seconds (default: %d)", params.timeout_read),
- [](common_params & params, int value) {
- params.timeout_read = value;
- params.timeout_write = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_TIMEOUT"));
- add_opt(common_arg(
- {"--threads-http"}, "N",
- string_format("number of threads used to process HTTP requests (default: %d)", params.n_threads_http),
- [](common_params & params, int value) {
- params.n_threads_http = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_THREADS_HTTP"));
- add_opt(common_arg(
- {"--cache-reuse"}, "N",
- string_format(
- "min chunk size to attempt reusing from the cache via KV shifting (default: %d)\n"
- "[(card)](https://ggml.ai/f0.png)", params.n_cache_reuse
- ),
- [](common_params & params, int value) {
- params.n_cache_reuse = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CACHE_REUSE"));
- add_opt(common_arg(
- {"--metrics"},
- string_format("enable prometheus compatible metrics endpoint (default: %s)", params.endpoint_metrics ? "enabled" : "disabled"),
- [](common_params & params) {
- params.endpoint_metrics = true;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_METRICS"));
- add_opt(common_arg(
- {"--props"},
- string_format("enable changing global properties via POST /props (default: %s)", params.endpoint_props ? "enabled" : "disabled"),
- [](common_params & params) {
- params.endpoint_props = true;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_PROPS"));
- add_opt(common_arg(
- {"--slots"},
- string_format("enable slots monitoring endpoint (default: %s)", params.endpoint_slots ? "enabled" : "disabled"),
- [](common_params & params) {
- params.endpoint_slots = true;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_SLOTS"));
- add_opt(common_arg(
- {"--no-slots"},
- "disables slots monitoring endpoint",
- [](common_params & params) {
- params.endpoint_slots = false;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_ENDPOINT_SLOTS"));
- add_opt(common_arg(
- {"--slot-save-path"}, "PATH",
- "path to save slot kv cache (default: disabled)",
- [](common_params & params, const std::string & value) {
- params.slot_save_path = value;
- // if doesn't end with DIRECTORY_SEPARATOR, add it
- if (!params.slot_save_path.empty() && params.slot_save_path[params.slot_save_path.size() - 1] != DIRECTORY_SEPARATOR) {
- params.slot_save_path += DIRECTORY_SEPARATOR;
- }
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}));
- add_opt(common_arg(
- {"--jinja"},
- "use jinja template for chat (default: disabled)",
- [](common_params & params) {
- params.use_jinja = true;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_MTMD}).set_env("LLAMA_ARG_JINJA"));
- add_opt(common_arg(
- {"--reasoning-format"}, "FORMAT",
- "controls whether thought tags are allowed and/or extracted from the response, and in which format they're returned; one of:\n"
- "- none: leaves thoughts unparsed in `message.content`\n"
- "- deepseek: puts thoughts in `message.reasoning_content`\n"
- "- deepseek-legacy: keeps `<think>` tags in `message.content` while also populating `message.reasoning_content`\n"
- "(default: auto)",
- [](common_params & params, const std::string & value) {
- params.reasoning_format = common_reasoning_format_from_name(value);
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MAIN}).set_env("LLAMA_ARG_THINK"));
- add_opt(common_arg(
- {"--reasoning-budget"}, "N",
- "controls the amount of thinking allowed; currently only one of: -1 for unrestricted thinking budget, or 0 to disable thinking (default: -1)",
- [](common_params & params, int value) {
- if (value != 0 && value != -1) { throw std::invalid_argument("invalid value"); }
- params.reasoning_budget = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MAIN}).set_env("LLAMA_ARG_THINK_BUDGET"));
- add_opt(common_arg(
- {"--chat-template"}, "JINJA_TEMPLATE",
- string_format(
- "set custom jinja chat template (default: template taken from model's metadata)\n"
- "if suffix/prefix are specified, template will be disabled\n"
- "only commonly used templates are accepted (unless --jinja is set before this flag):\n"
- "list of built-in templates:\n%s", list_builtin_chat_templates().c_str()
- ),
- [](common_params & params, const std::string & value) {
- params.chat_template = value;
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MTMD}).set_env("LLAMA_ARG_CHAT_TEMPLATE"));
- add_opt(common_arg(
- {"--chat-template-file"}, "JINJA_TEMPLATE_FILE",
- string_format(
- "set custom jinja chat template file (default: template taken from model's metadata)\n"
- "if suffix/prefix are specified, template will be disabled\n"
- "only commonly used templates are accepted (unless --jinja is set before this flag):\n"
- "list of built-in templates:\n%s", list_builtin_chat_templates().c_str()
- ),
- [](common_params & params, const std::string & value) {
- params.chat_template = read_file(value);
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CHAT_TEMPLATE_FILE"));
- add_opt(common_arg(
- {"--no-prefill-assistant"},
- string_format(
- "whether to prefill the assistant's response if the last message is an assistant message (default: prefill enabled)\n"
- "when this flag is set, if the last message is an assistant message then it will be treated as a full message and not prefilled\n"
- ),
- [](common_params & params) {
- params.prefill_assistant = false;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_PREFILL_ASSISTANT"));
- add_opt(common_arg(
- {"-sps", "--slot-prompt-similarity"}, "SIMILARITY",
- string_format("how much the prompt of a request must match the prompt of a slot in order to use that slot (default: %.2f, 0.0 = disabled)\n", params.slot_prompt_similarity),
- [](common_params & params, const std::string & value) {
- params.slot_prompt_similarity = std::stof(value);
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}));
- add_opt(common_arg(
- {"--lora-init-without-apply"},
- string_format("load LoRA adapters without applying them (apply later via POST /lora-adapters) (default: %s)", params.lora_init_without_apply ? "enabled" : "disabled"),
- [](common_params & params) {
- params.lora_init_without_apply = true;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}));
- add_opt(common_arg(
- {"--simple-io"},
- "use basic IO for better compatibility in subprocesses and limited consoles",
- [](common_params & params) {
- params.simple_io = true;
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN}));
- add_opt(common_arg(
- {"--positive-file"}, "FNAME",
- string_format("positive prompts file, one prompt per line (default: '%s')", params.cvector_positive_file.c_str()),
- [](common_params & params, const std::string & value) {
- params.cvector_positive_file = value;
- }
- ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
- add_opt(common_arg(
- {"--negative-file"}, "FNAME",
- string_format("negative prompts file, one prompt per line (default: '%s')", params.cvector_negative_file.c_str()),
- [](common_params & params, const std::string & value) {
- params.cvector_negative_file = value;
- }
- ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
- add_opt(common_arg(
- {"--pca-batch"}, "N",
- string_format("batch size used for PCA. Larger batch runs faster, but uses more memory (default: %d)", params.n_pca_batch),
- [](common_params & params, int value) {
- params.n_pca_batch = value;
- }
- ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
- add_opt(common_arg(
- {"--pca-iter"}, "N",
- string_format("number of iterations used for PCA (default: %d)", params.n_pca_iterations),
- [](common_params & params, int value) {
- params.n_pca_iterations = value;
- }
- ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
- add_opt(common_arg(
- {"--method"}, "{pca, mean}",
- "dimensionality reduction method to be used (default: pca)",
- [](common_params & params, const std::string & value) {
- /**/ if (value == "pca") { params.cvector_dimre_method = DIMRE_METHOD_PCA; }
- else if (value == "mean") { params.cvector_dimre_method = DIMRE_METHOD_MEAN; }
- else { throw std::invalid_argument("invalid value"); }
- }
- ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
- add_opt(common_arg(
- {"--output-format"}, "{md,jsonl}",
- "output format for batched-bench results (default: md)",
- [](common_params & params, const std::string & value) {
- /**/ if (value == "jsonl") { params.batched_bench_output_jsonl = true; }
- else if (value == "md") { params.batched_bench_output_jsonl = false; }
- else { throw std::invalid_argument("invalid value"); }
- }
- ).set_examples({LLAMA_EXAMPLE_BENCH}));
- add_opt(common_arg(
- {"--log-disable"},
- "Log disable",
- [](common_params &) {
- common_log_pause(common_log_main());
- }
- ));
- add_opt(common_arg(
- {"--log-file"}, "FNAME",
- "Log to file",
- [](common_params &, const std::string & value) {
- common_log_set_file(common_log_main(), value.c_str());
- }
- ));
- add_opt(common_arg(
- {"--log-colors"}, "[on|off|auto]",
- "Set colored logging ('on', 'off', or 'auto', default: 'auto')\n"
- "'auto' enables colors when output is to a terminal",
- [](common_params &, const std::string & value) {
- if (is_truthy(value)) {
- common_log_set_colors(common_log_main(), LOG_COLORS_ENABLED);
- } else if (is_falsey(value)) {
- common_log_set_colors(common_log_main(), LOG_COLORS_DISABLED);
- } else if (is_autoy(value)) {
- common_log_set_colors(common_log_main(), LOG_COLORS_AUTO);
- } else {
- throw std::invalid_argument(
- string_format("error: unkown value for --log-colors: '%s'\n", value.c_str()));
- }
- }
- ).set_env("LLAMA_LOG_COLORS"));
- add_opt(common_arg(
- {"-v", "--verbose", "--log-verbose"},
- "Set verbosity level to infinity (i.e. log all messages, useful for debugging)",
- [](common_params & params) {
- params.verbosity = INT_MAX;
- common_log_set_verbosity_thold(INT_MAX);
- }
- ));
- add_opt(common_arg(
- {"--offline"},
- "Offline mode: forces use of cache, prevents network access",
- [](common_params & params) {
- params.offline = true;
- }
- ).set_env("LLAMA_OFFLINE"));
- add_opt(common_arg(
- {"-lv", "--verbosity", "--log-verbosity"}, "N",
- "Set the verbosity threshold. Messages with a higher verbosity will be ignored.",
- [](common_params & params, int value) {
- params.verbosity = value;
- common_log_set_verbosity_thold(value);
- }
- ).set_env("LLAMA_LOG_VERBOSITY"));
- add_opt(common_arg(
- {"--log-prefix"},
- "Enable prefix in log messages",
- [](common_params &) {
- common_log_set_prefix(common_log_main(), true);
- }
- ).set_env("LLAMA_LOG_PREFIX"));
- add_opt(common_arg(
- {"--log-timestamps"},
- "Enable timestamps in log messages",
- [](common_params &) {
- common_log_set_timestamps(common_log_main(), true);
- }
- ).set_env("LLAMA_LOG_TIMESTAMPS"));
- // speculative parameters
- add_opt(common_arg(
- {"-td", "--threads-draft"}, "N",
- "number of threads to use during generation (default: same as --threads)",
- [](common_params & params, int value) {
- params.speculative.cpuparams.n_threads = value;
- if (params.speculative.cpuparams.n_threads <= 0) {
- params.speculative.cpuparams.n_threads = std::thread::hardware_concurrency();
- }
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
- add_opt(common_arg(
- {"-tbd", "--threads-batch-draft"}, "N",
- "number of threads to use during batch and prompt processing (default: same as --threads-draft)",
- [](common_params & params, int value) {
- params.speculative.cpuparams_batch.n_threads = value;
- if (params.speculative.cpuparams_batch.n_threads <= 0) {
- params.speculative.cpuparams_batch.n_threads = std::thread::hardware_concurrency();
- }
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
- add_opt(common_arg(
- {"-Cd", "--cpu-mask-draft"}, "M",
- "Draft model CPU affinity mask. Complements cpu-range-draft (default: same as --cpu-mask)",
- [](common_params & params, const std::string & mask) {
- params.speculative.cpuparams.mask_valid = true;
- if (!parse_cpu_mask(mask, params.speculative.cpuparams.cpumask)) {
- throw std::invalid_argument("invalid cpumask");
- }
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
- add_opt(common_arg(
- {"-Crd", "--cpu-range-draft"}, "lo-hi",
- "Ranges of CPUs for affinity. Complements --cpu-mask-draft",
- [](common_params & params, const std::string & range) {
- params.speculative.cpuparams.mask_valid = true;
- if (!parse_cpu_range(range, params.speculative.cpuparams.cpumask)) {
- throw std::invalid_argument("invalid range");
- }
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
- add_opt(common_arg(
- {"--cpu-strict-draft"}, "<0|1>",
- "Use strict CPU placement for draft model (default: same as --cpu-strict)",
- [](common_params & params, int value) {
- params.speculative.cpuparams.strict_cpu = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
- add_opt(common_arg(
- {"--prio-draft"}, "N",
- string_format("set draft process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.speculative.cpuparams.priority),
- [](common_params & params, int prio) {
- if (prio < 0 || prio > 3) {
- throw std::invalid_argument("invalid value");
- }
- params.speculative.cpuparams.priority = (enum ggml_sched_priority) prio;
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
- add_opt(common_arg(
- {"--poll-draft"}, "<0|1>",
- "Use polling to wait for draft model work (default: same as --poll])",
- [](common_params & params, int value) {
- params.speculative.cpuparams.poll = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
- add_opt(common_arg(
- {"-Cbd", "--cpu-mask-batch-draft"}, "M",
- "Draft model CPU affinity mask. Complements cpu-range-draft (default: same as --cpu-mask)",
- [](common_params & params, const std::string & mask) {
- params.speculative.cpuparams_batch.mask_valid = true;
- if (!parse_cpu_mask(mask, params.speculative.cpuparams_batch.cpumask)) {
- throw std::invalid_argument("invalid cpumask");
- }
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
- add_opt(common_arg(
- {"-Crbd", "--cpu-range-batch-draft"}, "lo-hi",
- "Ranges of CPUs for affinity. Complements --cpu-mask-draft-batch)",
- [](common_params & params, const std::string & range) {
- params.speculative.cpuparams_batch.mask_valid = true;
- if (!parse_cpu_range(range, params.speculative.cpuparams_batch.cpumask)) {
- throw std::invalid_argument("invalid cpumask");
- }
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
- add_opt(common_arg(
- {"--cpu-strict-batch-draft"}, "<0|1>",
- "Use strict CPU placement for draft model (default: --cpu-strict-draft)",
- [](common_params & params, int value) {
- params.speculative.cpuparams_batch.strict_cpu = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
- add_opt(common_arg(
- {"--prio-batch-draft"}, "N",
- string_format("set draft process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.speculative.cpuparams_batch.priority),
- [](common_params & params, int prio) {
- if (prio < 0 || prio > 3) {
- throw std::invalid_argument("invalid value");
- }
- params.speculative.cpuparams_batch.priority = (enum ggml_sched_priority) prio;
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
- add_opt(common_arg(
- {"--poll-batch-draft"}, "<0|1>",
- "Use polling to wait for draft model work (default: --poll-draft)",
- [](common_params & params, int value) {
- params.speculative.cpuparams_batch.poll = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
- add_opt(common_arg(
- {"--draft-max", "--draft", "--draft-n"}, "N",
- string_format("number of tokens to draft for speculative decoding (default: %d)", params.speculative.n_max),
- [](common_params & params, int value) {
- params.speculative.n_max = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_DRAFT_MAX"));
- add_opt(common_arg(
- {"--draft-min", "--draft-n-min"}, "N",
- string_format("minimum number of draft tokens to use for speculative decoding (default: %d)", params.speculative.n_min),
- [](common_params & params, int value) {
- params.speculative.n_min = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_DRAFT_MIN"));
- add_opt(common_arg(
- {"--draft-p-split"}, "P",
- string_format("speculative decoding split probability (default: %.1f)", (double)params.speculative.p_split),
- [](common_params & params, const std::string & value) {
- params.speculative.p_split = std::stof(value);
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}).set_env("LLAMA_ARG_DRAFT_P_SPLIT"));
- add_opt(common_arg(
- {"--draft-p-min"}, "P",
- string_format("minimum speculative decoding probability (greedy) (default: %.1f)", (double)params.speculative.p_min),
- [](common_params & params, const std::string & value) {
- params.speculative.p_min = std::stof(value);
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_DRAFT_P_MIN"));
- add_opt(common_arg(
- {"-cd", "--ctx-size-draft"}, "N",
- string_format("size of the prompt context for the draft model (default: %d, 0 = loaded from model)", params.speculative.n_ctx),
- [](common_params & params, int value) {
- params.speculative.n_ctx = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CTX_SIZE_DRAFT"));
- add_opt(common_arg(
- {"-devd", "--device-draft"}, "<dev1,dev2,..>",
- "comma-separated list of devices to use for offloading the draft model (none = don't offload)\n"
- "use --list-devices to see a list of available devices",
- [](common_params & params, const std::string & value) {
- params.speculative.devices = parse_device_list(value);
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
- add_opt(common_arg(
- {"-ngld", "--gpu-layers-draft", "--n-gpu-layers-draft"}, "N",
- "number of layers to store in VRAM for the draft model",
- [](common_params & params, int value) {
- params.speculative.n_gpu_layers = value;
- if (!llama_supports_gpu_offload()) {
- fprintf(stderr, "warning: no usable GPU found, --gpu-layers-draft option will be ignored\n");
- fprintf(stderr, "warning: one possible reason is that llama.cpp was compiled without GPU support\n");
- fprintf(stderr, "warning: consult docs/build.md for compilation instructions\n");
- }
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_N_GPU_LAYERS_DRAFT"));
- add_opt(common_arg(
- {"-md", "--model-draft"}, "FNAME",
- "draft model for speculative decoding (default: unused)",
- [](common_params & params, const std::string & value) {
- params.speculative.model.path = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_MODEL_DRAFT"));
- add_opt(common_arg(
- {"--spec-replace"}, "TARGET", "DRAFT",
- "translate the string in TARGET into DRAFT if the draft model and main model are not compatible",
- [](common_params & params, const std::string & tgt, const std::string & dft) {
- params.speculative.replacements.push_back({ tgt, dft });
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
- add_opt(common_arg(
- {"-ctkd", "--cache-type-k-draft"}, "TYPE",
- string_format(
- "KV cache data type for K for the draft model\n"
- "allowed values: %s\n"
- "(default: %s)",
- get_all_kv_cache_types().c_str(),
- ggml_type_name(params.speculative.cache_type_k)
- ),
- [](common_params & params, const std::string & value) {
- params.speculative.cache_type_k = kv_cache_type_from_str(value);
- }
- ).set_env("LLAMA_ARG_CACHE_TYPE_K_DRAFT"));
- add_opt(common_arg(
- {"-ctvd", "--cache-type-v-draft"}, "TYPE",
- string_format(
- "KV cache data type for V for the draft model\n"
- "allowed values: %s\n"
- "(default: %s)",
- get_all_kv_cache_types().c_str(),
- ggml_type_name(params.speculative.cache_type_v)
- ),
- [](common_params & params, const std::string & value) {
- params.speculative.cache_type_v = kv_cache_type_from_str(value);
- }
- ).set_env("LLAMA_ARG_CACHE_TYPE_V_DRAFT"));
- add_opt(common_arg(
- {"-mv", "--model-vocoder"}, "FNAME",
- "vocoder model for audio generation (default: unused)",
- [](common_params & params, const std::string & value) {
- params.vocoder.model.path = value;
- }
- ).set_examples({LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_SERVER}));
- add_opt(common_arg(
- {"--tts-use-guide-tokens"},
- "Use guide tokens to improve TTS word recall",
- [](common_params & params) {
- params.vocoder.use_guide_tokens = true;
- }
- ).set_examples({LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_SERVER}));
- add_opt(common_arg(
- {"--tts-speaker-file"}, "FNAME",
- "speaker file path for audio generation",
- [](common_params & params, const std::string & value) {
- params.vocoder.speaker_file = value;
- }
- ).set_examples({LLAMA_EXAMPLE_TTS}));
- add_opt(common_arg(
- {"--diffusion-steps"}, "N",
- string_format("number of diffusion steps (default: %d)", params.diffusion.steps),
- [](common_params & params, int value) { params.diffusion.steps = value; }
- ).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
- add_opt(common_arg(
- {"--diffusion-visual"},
- string_format("enable visual diffusion mode (show progressive generation) (default: %s)", params.diffusion.visual_mode ? "true" : "false"),
- [](common_params & params) { params.diffusion.visual_mode = true; }
- ).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
- add_opt(common_arg(
- {"--diffusion-eps"}, "F",
- string_format("epsilon for timesteps (default: %.6f)", (double) params.diffusion.eps),
- [](common_params & params, const std::string & value) { params.diffusion.eps = std::stof(value); }
- ).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
- add_opt(common_arg(
- {"--diffusion-algorithm"}, "N",
- string_format("diffusion algorithm: 0=ORIGIN, 1=ENTROPY_BASED, 2=MARGIN_BASED, 3=RANDOM, 4=LOW_CONFIDENCE (default: %d)", params.diffusion.algorithm),
- [](common_params & params, int value) { params.diffusion.algorithm = value; }
- ).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
- add_opt(common_arg(
- {"--diffusion-alg-temp"}, "F",
- string_format("dream algorithm temperature (default: %.3f)", (double) params.diffusion.alg_temp),
- [](common_params & params, const std::string & value) { params.diffusion.alg_temp = std::stof(value); }
- ).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
- add_opt(common_arg(
- {"--diffusion-block-length"}, "N",
- string_format("llada block length for generation (default: %d)", params.diffusion.block_length),
- [](common_params & params, int value) { params.diffusion.block_length = value; }
- ).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
- add_opt(common_arg(
- {"--diffusion-cfg-scale"}, "F",
- string_format("llada classifier-free guidance scale (default: %.3f)", (double) params.diffusion.cfg_scale),
- [](common_params & params, const std::string & value) { params.diffusion.cfg_scale = std::stof(value); }
- ).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
- add_opt(common_arg(
- {"--diffusion-add-gumbel-noise"}, "F",
- string_format("add gumbel noise to the logits if temp > 0.0 (default: %s)", params.diffusion.add_gumbel_noise ? "true" : "false"),
- [](common_params & params, const std::string & value) { params.diffusion.add_gumbel_noise = std::stof(value); }
- ).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
- add_opt(common_arg(
- { "-lr", "--learning-rate" }, "ALPHA",
- string_format("adamw or sgd optimizer alpha (default: %.2g); note: sgd alpha recommended ~10x (no momentum)", (double) params.lr.lr0),
- [](common_params & params, const std::string & value) { params.lr.lr0 = std::stof(value); }
- ).set_examples({ LLAMA_EXAMPLE_FINETUNE }));
- add_opt(common_arg({ "-lr-min", "--learning-rate-min" }, "ALPHA",
- string_format("(if >0) final learning rate after decay (if -decay-epochs is set, default=%.2g)",
- (double) params.lr.lr_min),
- [](common_params & params, const std::string & value) { params.lr.lr_min = std::stof(value); }
- ).set_examples({ LLAMA_EXAMPLE_FINETUNE }));
- add_opt(common_arg(
- {"-decay-epochs", "--learning-rate-decay-epochs"}, "ALPHA",
- string_format("(if >0) decay learning rate to -lr-min after this many epochs (exponential decay, default=%.2g)", (double) params.lr.decay_epochs),
- [](common_params & params, const std::string & value) { params.lr.decay_epochs = std::stof(value); }
- ).set_examples({ LLAMA_EXAMPLE_FINETUNE }));
- add_opt(common_arg(
- {"-wd", "--weight-decay"}, "WD",
- string_format("adamw or sgd optimizer weight decay (0 is off; recommend very small e.g. 1e-9) (default: %.2g).", (double) params.lr.wd),
- [](common_params & params, const std::string & value) { params.lr.wd = std::stof(value); }
- ).set_examples({ LLAMA_EXAMPLE_FINETUNE }));
- add_opt(common_arg(
- {"-val-split", "--val-split"}, "FRACTION",
- string_format("fraction of data to use as validation set for training (default: %.2g).", (double) params.val_split),
- [](common_params & params, const std::string & value) { params.val_split = std::stof(value); }
- ).set_examples({ LLAMA_EXAMPLE_FINETUNE }));
- add_opt(common_arg(
- {"-epochs", "--epochs"}, "N",
- string_format("optimizer max # of epochs (default: %d)", params.lr.epochs),
- [](common_params & params, int epochs) { params.lr.epochs = epochs; }
- ).set_examples({ LLAMA_EXAMPLE_FINETUNE }));
- add_opt(common_arg(
- {"-opt", "--optimizer"}, "sgd|adamw", "adamw or sgd",
- [](common_params & params, const std::string & name) {
- params.optimizer = common_opt_get_optimizer(name.c_str());
- if (params.optimizer == GGML_OPT_OPTIMIZER_TYPE_COUNT) {
- throw std::invalid_argument("invalid --optimizer, valid options: adamw, sgd");
- }
- }
- ).set_examples({ LLAMA_EXAMPLE_FINETUNE }));
- // presets
- add_opt(common_arg(
- {"--tts-oute-default"},
- string_format("use default OuteTTS models (note: can download weights from the internet)"),
- [](common_params & params) {
- params.model.hf_repo = "OuteAI/OuteTTS-0.2-500M-GGUF";
- params.model.hf_file = "OuteTTS-0.2-500M-Q8_0.gguf";
- params.vocoder.model.hf_repo = "ggml-org/WavTokenizer";
- params.vocoder.model.hf_file = "WavTokenizer-Large-75-F16.gguf";
- }
- ).set_examples({LLAMA_EXAMPLE_TTS}));
- add_opt(common_arg(
- {"--embd-gemma-default"},
- string_format("use default EmbeddingGemma model (note: can download weights from the internet)"),
- [](common_params & params) {
- params.model.hf_repo = "ggml-org/embeddinggemma-300M-qat-q4_0-GGUF";
- params.model.hf_file = "embeddinggemma-300M-qat-Q4_0.gguf";
- params.port = 8011;
- params.n_ubatch = 2048;
- params.n_batch = 2048;
- params.n_parallel = 32;
- params.n_ctx = 2048*params.n_parallel;
- params.verbose_prompt = true;
- params.embedding = true;
- }
- ).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_SERVER}));
- add_opt(common_arg(
- {"--fim-qwen-1.5b-default"},
- string_format("use default Qwen 2.5 Coder 1.5B (note: can download weights from the internet)"),
- [](common_params & params) {
- params.model.hf_repo = "ggml-org/Qwen2.5-Coder-1.5B-Q8_0-GGUF";
- params.model.hf_file = "qwen2.5-coder-1.5b-q8_0.gguf";
- params.port = 8012;
- params.n_ubatch = 1024;
- params.n_batch = 1024;
- params.n_ctx = 0;
- params.n_cache_reuse = 256;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}));
- add_opt(common_arg(
- {"--fim-qwen-3b-default"},
- string_format("use default Qwen 2.5 Coder 3B (note: can download weights from the internet)"),
- [](common_params & params) {
- params.model.hf_repo = "ggml-org/Qwen2.5-Coder-3B-Q8_0-GGUF";
- params.model.hf_file = "qwen2.5-coder-3b-q8_0.gguf";
- params.port = 8012;
- params.n_ubatch = 1024;
- params.n_batch = 1024;
- params.n_ctx = 0;
- params.n_cache_reuse = 256;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}));
- add_opt(common_arg(
- {"--fim-qwen-7b-default"},
- string_format("use default Qwen 2.5 Coder 7B (note: can download weights from the internet)"),
- [](common_params & params) {
- params.model.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF";
- params.model.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
- params.port = 8012;
- params.n_ubatch = 1024;
- params.n_batch = 1024;
- params.n_ctx = 0;
- params.n_cache_reuse = 256;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}));
- add_opt(common_arg(
- {"--fim-qwen-7b-spec"},
- string_format("use Qwen 2.5 Coder 7B + 0.5B draft for speculative decoding (note: can download weights from the internet)"),
- [](common_params & params) {
- params.model.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF";
- params.model.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
- params.speculative.model.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
- params.speculative.model.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
- params.port = 8012;
- params.n_ubatch = 1024;
- params.n_batch = 1024;
- params.n_ctx = 0;
- params.n_cache_reuse = 256;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}));
- add_opt(common_arg(
- {"--fim-qwen-14b-spec"},
- string_format("use Qwen 2.5 Coder 14B + 0.5B draft for speculative decoding (note: can download weights from the internet)"),
- [](common_params & params) {
- params.model.hf_repo = "ggml-org/Qwen2.5-Coder-14B-Q8_0-GGUF";
- params.model.hf_file = "qwen2.5-coder-14b-q8_0.gguf";
- params.speculative.model.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
- params.speculative.model.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
- params.port = 8012;
- params.n_ubatch = 1024;
- params.n_batch = 1024;
- params.n_ctx = 0;
- params.n_cache_reuse = 256;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}));
- add_opt(common_arg(
- {"--fim-qwen-30b-default"},
- string_format("use default Qwen 3 Coder 30B A3B Instruct (note: can download weights from the internet)"),
- [](common_params & params) {
- params.model.hf_repo = "ggml-org/Qwen3-Coder-30B-A3B-Instruct-Q8_0-GGUF";
- params.model.hf_file = "qwen3-coder-30b-a3b-instruct-q8_0.gguf";
- params.port = 8012;
- params.n_ubatch = 1024;
- params.n_batch = 1024;
- params.n_ctx = 0;
- params.n_cache_reuse = 256;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}));
- add_opt(common_arg(
- {"--gpt-oss-20b-default"},
- string_format("use gpt-oss-20b (note: can download weights from the internet)"),
- [](common_params & params) {
- params.model.hf_repo = "ggml-org/gpt-oss-20b-GGUF";
- params.model.hf_file = "gpt-oss-20b-mxfp4.gguf";
- params.port = 8013;
- params.n_ubatch = 2048;
- params.n_batch = 32768;
- params.n_parallel = 2;
- params.n_ctx = 131072*params.n_parallel;
- params.sampling.temp = 1.0f;
- params.sampling.top_p = 1.0f;
- params.sampling.top_k = 0;
- params.sampling.min_p = 0.01f;
- params.use_jinja = true;
- //params.default_template_kwargs["reasoning_effort"] = "\"high\"";
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}));
- add_opt(common_arg(
- {"--gpt-oss-120b-default"},
- string_format("use gpt-oss-120b (note: can download weights from the internet)"),
- [](common_params & params) {
- params.model.hf_repo = "ggml-org/gpt-oss-120b-GGUF";
- params.port = 8013;
- params.n_ubatch = 2048;
- params.n_batch = 32768;
- params.n_parallel = 2;
- params.n_ctx = 131072*params.n_parallel;
- params.sampling.temp = 1.0f;
- params.sampling.top_p = 1.0f;
- params.sampling.top_k = 0;
- params.sampling.min_p = 0.01f;
- params.use_jinja = true;
- //params.default_template_kwargs["reasoning_effort"] = "\"high\"";
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}));
- add_opt(common_arg(
- {"--vision-gemma-4b-default"},
- string_format("use Gemma 3 4B QAT (note: can download weights from the internet)"),
- [](common_params & params) {
- params.model.hf_repo = "ggml-org/gemma-3-4b-it-qat-GGUF";
- params.port = 8014;
- params.n_ctx = 0;
- params.use_jinja = true;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}));
- add_opt(common_arg(
- {"--vision-gemma-12b-default"},
- string_format("use Gemma 3 12B QAT (note: can download weights from the internet)"),
- [](common_params & params) {
- params.model.hf_repo = "ggml-org/gemma-3-12b-it-qat-GGUF";
- params.port = 8014;
- params.n_ctx = 0;
- params.use_jinja = true;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}));
- return ctx_arg;
- }
|