llama.cpp 245 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857
  1. #include "llama.h"
  2. #include "ggml.h"
  3. #include "ggml-alloc.h"
  4. #ifdef GGML_USE_CUBLAS
  5. # include "ggml-cuda.h"
  6. #elif defined(GGML_USE_CLBLAST)
  7. # include "ggml-opencl.h"
  8. #endif
  9. #ifdef GGML_USE_METAL
  10. # include "ggml-metal.h"
  11. #endif
  12. #ifdef GGML_USE_MPI
  13. # include "ggml-mpi.h"
  14. #endif
  15. #ifdef GGML_USE_K_QUANTS
  16. # ifndef QK_K
  17. # ifdef GGML_QKK_64
  18. # define QK_K 64
  19. # else
  20. # define QK_K 256
  21. # endif
  22. # endif
  23. #endif
  24. #ifdef __has_include
  25. #if __has_include(<unistd.h>)
  26. #include <unistd.h>
  27. #if defined(_POSIX_MAPPED_FILES)
  28. #include <sys/mman.h>
  29. #endif
  30. #if defined(_POSIX_MEMLOCK_RANGE)
  31. #include <sys/resource.h>
  32. #endif
  33. #endif
  34. #endif
  35. #if defined(_WIN32)
  36. #define WIN32_LEAN_AND_MEAN
  37. #ifndef NOMINMAX
  38. #define NOMINMAX
  39. #endif
  40. #include <windows.h>
  41. #include <io.h>
  42. #include <stdio.h> // for _fseeki64
  43. #endif
  44. #include <algorithm>
  45. #include <array>
  46. #include <cassert>
  47. #include <cinttypes>
  48. #include <climits>
  49. #include <cstdarg>
  50. #include <cstddef>
  51. #include <cstdint>
  52. #include <cstdio>
  53. #include <cstring>
  54. #include <ctime>
  55. #include <fstream>
  56. #include <initializer_list>
  57. #include <map>
  58. #include <memory>
  59. #include <mutex>
  60. #include <numeric>
  61. #include <queue>
  62. #include <random>
  63. #include <regex>
  64. #include <sstream>
  65. #include <thread>
  66. #include <unordered_map>
  67. #if defined(_MSC_VER)
  68. #pragma warning(disable: 4244 4267) // possible loss of data
  69. #endif
  70. #ifdef __GNUC__
  71. #ifdef __MINGW32__
  72. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  73. #else
  74. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  75. #endif
  76. #else
  77. #define LLAMA_ATTRIBUTE_FORMAT(...)
  78. #endif
  79. //
  80. // logging
  81. //
  82. LLAMA_ATTRIBUTE_FORMAT(2, 3)
  83. static void llama_log_internal (llama_log_level level, const char* format, ...);
  84. static void llama_log_callback_default(llama_log_level level, const char * text, void * user_data);
  85. #define LLAMA_LOG_INFO(...) llama_log_internal(LLAMA_LOG_LEVEL_INFO , __VA_ARGS__)
  86. #define LLAMA_LOG_WARN(...) llama_log_internal(LLAMA_LOG_LEVEL_WARN , __VA_ARGS__)
  87. #define LLAMA_LOG_ERROR(...) llama_log_internal(LLAMA_LOG_LEVEL_ERROR, __VA_ARGS__)
  88. //
  89. // helpers
  90. //
  91. static size_t utf8_len(char src) {
  92. const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
  93. uint8_t highbits = static_cast<uint8_t>(src) >> 4;
  94. return lookup[highbits];
  95. }
  96. void replace_all(std::string & s, const std::string & search, const std::string & replace) {
  97. std::string result;
  98. for (size_t pos = 0; ; pos += search.length()) {
  99. auto new_pos = s.find(search, pos);
  100. if (new_pos == std::string::npos) {
  101. result += s.substr(pos, s.size() - pos);
  102. break;
  103. }
  104. result += s.substr(pos, new_pos - pos) + replace;
  105. pos = new_pos;
  106. }
  107. s = std::move(result);
  108. }
  109. #ifdef GGML_USE_CPU_HBM
  110. #include <hbwmalloc.h>
  111. #endif
  112. static void zeros(std::ofstream & file, size_t n) {
  113. char zero = 0;
  114. for (size_t i = 0; i < n; ++i) {
  115. file.write(&zero, 1);
  116. }
  117. }
  118. LLAMA_ATTRIBUTE_FORMAT(1, 2)
  119. static std::string format(const char * fmt, ...) {
  120. va_list ap;
  121. va_list ap2;
  122. va_start(ap, fmt);
  123. va_copy(ap2, ap);
  124. int size = vsnprintf(NULL, 0, fmt, ap);
  125. GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
  126. std::vector<char> buf(size + 1);
  127. int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
  128. GGML_ASSERT(size2 == size);
  129. va_end(ap2);
  130. va_end(ap);
  131. return std::string(buf.data(), size);
  132. }
  133. //
  134. // gguf constants (sync with gguf.py)
  135. //
  136. enum llm_arch {
  137. LLM_ARCH_LLAMA,
  138. LLM_ARCH_FALCON,
  139. LLM_ARCH_BAICHUAN,
  140. LLM_ARCH_GPT2,
  141. LLM_ARCH_GPTJ,
  142. LLM_ARCH_GPTNEOX,
  143. LLM_ARCH_MPT,
  144. LLM_ARCH_UNKNOWN,
  145. };
  146. static std::map<llm_arch, std::string> LLM_ARCH_NAMES = {
  147. { LLM_ARCH_LLAMA, "llama" },
  148. { LLM_ARCH_FALCON, "falcon" },
  149. { LLM_ARCH_GPT2, "gpt2" },
  150. { LLM_ARCH_GPTJ, "gptj" },
  151. { LLM_ARCH_GPTNEOX, "gptneox" },
  152. { LLM_ARCH_MPT, "mpt" },
  153. { LLM_ARCH_BAICHUAN,"baichuan" },
  154. };
  155. enum llm_kv {
  156. LLM_KV_GENERAL_ARCHITECTURE,
  157. LLM_KV_GENERAL_QUANTIZATION_VERSION,
  158. LLM_KV_GENERAL_ALIGNMENT,
  159. LLM_KV_GENERAL_NAME,
  160. LLM_KV_GENERAL_AUTHOR,
  161. LLM_KV_GENERAL_URL,
  162. LLM_KV_GENERAL_DESCRIPTION,
  163. LLM_KV_GENERAL_LICENSE,
  164. LLM_KV_GENERAL_SOURCE_URL,
  165. LLM_KV_GENERAL_SOURCE_HF_REPO,
  166. LLM_KV_CONTEXT_LENGTH,
  167. LLM_KV_EMBEDDING_LENGTH,
  168. LLM_KV_BLOCK_COUNT,
  169. LLM_KV_FEED_FORWARD_LENGTH,
  170. LLM_KV_USE_PARALLEL_RESIDUAL,
  171. LLM_KV_TENSOR_DATA_LAYOUT,
  172. LLM_KV_ATTENTION_HEAD_COUNT,
  173. LLM_KV_ATTENTION_HEAD_COUNT_KV,
  174. LLM_KV_ATTENTION_MAX_ALIBI_BIAS,
  175. LLM_KV_ATTENTION_CLAMP_KQV,
  176. LLM_KV_ATTENTION_LAYERNORM_EPS,
  177. LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,
  178. LLM_KV_ROPE_DIMENSION_COUNT,
  179. LLM_KV_ROPE_FREQ_BASE,
  180. LLM_KV_ROPE_SCALE_LINEAR,
  181. LLM_KV_TOKENIZER_MODEL,
  182. LLM_KV_TOKENIZER_LIST,
  183. LLM_KV_TOKENIZER_TOKEN_TYPE,
  184. LLM_KV_TOKENIZER_SCORES,
  185. LLM_KV_TOKENIZER_MERGES,
  186. LLM_KV_TOKENIZER_BOS_ID,
  187. LLM_KV_TOKENIZER_EOS_ID,
  188. LLM_KV_TOKENIZER_UNK_ID,
  189. LLM_KV_TOKENIZER_SEP_ID,
  190. LLM_KV_TOKENIZER_PAD_ID,
  191. LLM_KV_TOKENIZER_HF_JSON,
  192. LLM_KV_TOKENIZER_RWKV,
  193. };
  194. static std::map<llm_kv, std::string> LLM_KV_NAMES = {
  195. { LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" },
  196. { LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" },
  197. { LLM_KV_GENERAL_ALIGNMENT, "general.alignment" },
  198. { LLM_KV_GENERAL_NAME, "general.name" },
  199. { LLM_KV_GENERAL_AUTHOR, "general.author" },
  200. { LLM_KV_GENERAL_URL, "general.url" },
  201. { LLM_KV_GENERAL_DESCRIPTION, "general.description" },
  202. { LLM_KV_GENERAL_LICENSE, "general.license" },
  203. { LLM_KV_GENERAL_SOURCE_URL, "general.source_url" },
  204. { LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source_hf_repo" },
  205. { LLM_KV_CONTEXT_LENGTH, "%s.context_length" },
  206. { LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" },
  207. { LLM_KV_BLOCK_COUNT, "%s.block_count" },
  208. { LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" },
  209. { LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" },
  210. { LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
  211. { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
  212. { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
  213. { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
  214. { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
  215. { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
  216. { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
  217. { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
  218. { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
  219. { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" },
  220. { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" },
  221. { LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" },
  222. { LLM_KV_TOKENIZER_TOKEN_TYPE, "tokenizer.ggml.token_type" },
  223. { LLM_KV_TOKENIZER_SCORES, "tokenizer.ggml.scores" },
  224. { LLM_KV_TOKENIZER_MERGES, "tokenizer.ggml.merges" },
  225. { LLM_KV_TOKENIZER_BOS_ID, "tokenizer.ggml.bos_token_id" },
  226. { LLM_KV_TOKENIZER_EOS_ID, "tokenizer.ggml.eos_token_id" },
  227. { LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" },
  228. { LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" },
  229. { LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" },
  230. { LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
  231. { LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
  232. };
  233. struct LLM_KV {
  234. LLM_KV(llm_arch arch) : arch(arch) {}
  235. llm_arch arch;
  236. std::string operator()(llm_kv kv) const {
  237. return ::format(LLM_KV_NAMES[kv].c_str(), LLM_ARCH_NAMES[arch].c_str());
  238. }
  239. };
  240. enum llm_tensor {
  241. LLM_TENSOR_TOKEN_EMBD,
  242. LLM_TENSOR_POS_EMBD,
  243. LLM_TENSOR_OUTPUT,
  244. LLM_TENSOR_OUTPUT_NORM,
  245. LLM_TENSOR_ROPE_FREQS,
  246. LLM_TENSOR_ATTN_Q,
  247. LLM_TENSOR_ATTN_K,
  248. LLM_TENSOR_ATTN_V,
  249. LLM_TENSOR_ATTN_QKV,
  250. LLM_TENSOR_ATTN_OUT,
  251. LLM_TENSOR_ATTN_NORM,
  252. LLM_TENSOR_ATTN_NORM_2,
  253. LLM_TENSOR_ATTN_ROT_EMBD,
  254. LLM_TENSOR_FFN_GATE,
  255. LLM_TENSOR_FFN_DOWN,
  256. LLM_TENSOR_FFN_UP,
  257. LLM_TENSOR_FFN_NORM,
  258. };
  259. static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
  260. {
  261. LLM_ARCH_LLAMA,
  262. {
  263. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  264. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  265. { LLM_TENSOR_OUTPUT, "output" },
  266. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  267. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  268. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  269. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  270. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  271. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  272. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  273. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  274. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  275. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  276. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  277. },
  278. },
  279. {
  280. LLM_ARCH_BAICHUAN,
  281. {
  282. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  283. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  284. { LLM_TENSOR_OUTPUT, "output" },
  285. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  286. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  287. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  288. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  289. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  290. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  291. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  292. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  293. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  294. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  295. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  296. },
  297. },
  298. {
  299. LLM_ARCH_FALCON,
  300. {
  301. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  302. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  303. { LLM_TENSOR_OUTPUT, "output" },
  304. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  305. { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
  306. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  307. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  308. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  309. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  310. },
  311. },
  312. {
  313. LLM_ARCH_GPT2,
  314. {
  315. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  316. },
  317. },
  318. {
  319. LLM_ARCH_GPTJ,
  320. {
  321. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  322. },
  323. },
  324. {
  325. LLM_ARCH_GPTNEOX,
  326. {
  327. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  328. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  329. { LLM_TENSOR_OUTPUT, "output" },
  330. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  331. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  332. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  333. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  334. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  335. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  336. },
  337. },
  338. {
  339. LLM_ARCH_MPT,
  340. {
  341. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  342. },
  343. },
  344. {
  345. LLM_ARCH_UNKNOWN,
  346. {
  347. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  348. },
  349. },
  350. };
  351. static llm_arch llm_arch_from_string(const std::string & name) {
  352. for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT
  353. if (kv.second == name) {
  354. return kv.first;
  355. }
  356. }
  357. return LLM_ARCH_UNKNOWN;
  358. }
  359. // helper to handle gguf constants
  360. // usage:
  361. //
  362. // const auto tn = LLM_TN(LLM_ARCH_LLAMA);
  363. //
  364. // std::string name = tn(LLM_TENSOR_OUTPUT); -> "output"
  365. // std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias"
  366. // std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight"
  367. //
  368. struct LLM_TN {
  369. LLM_TN(llm_arch arch) : arch(arch) {}
  370. llm_arch arch;
  371. std::string operator()(llm_tensor tensor) const {
  372. return LLM_TENSOR_NAMES[arch].at(tensor);
  373. }
  374. std::string operator()(llm_tensor tensor, const std::string & suffix) const {
  375. return LLM_TENSOR_NAMES[arch].at(tensor) + "." + suffix;
  376. }
  377. std::string operator()(llm_tensor tensor, int bid) const {
  378. return ::format(LLM_TENSOR_NAMES[arch].at(tensor).c_str(), bid);
  379. }
  380. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const {
  381. return ::format(LLM_TENSOR_NAMES[arch].at(tensor).c_str(), bid) + "." + suffix;
  382. }
  383. };
  384. //
  385. // gguf helpers
  386. //
  387. #define GGUF_GET_KEY(ctx, dst, func, type, req, key) \
  388. { \
  389. const std::string skey(key); \
  390. const int kid = gguf_find_key(ctx, skey.c_str()); \
  391. if (kid >= 0) { \
  392. enum gguf_type ktype = gguf_get_kv_type(ctx, kid); \
  393. if (ktype != (type)) { \
  394. throw std::runtime_error(format("key %s has wrong type: %s", skey.c_str(), gguf_type_name(ktype))); \
  395. } \
  396. (dst) = func(ctx, kid); \
  397. } else if (req) { \
  398. throw std::runtime_error(format("key not found in model: %s", skey.c_str())); \
  399. } \
  400. }
  401. //
  402. // ggml helpers
  403. //
  404. static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
  405. struct ggml_cplan plan = ggml_graph_plan(graph, n_threads);
  406. if (plan.work_size > 0) {
  407. buf.resize(plan.work_size);
  408. plan.work_data = buf.data();
  409. }
  410. ggml_graph_compute(graph, &plan);
  411. }
  412. //
  413. // llama helpers
  414. //
  415. #ifdef GGML_USE_CUBLAS
  416. # define llama_host_malloc(n) ggml_cuda_host_malloc(n)
  417. # define llama_host_free(data) ggml_cuda_host_free(data)
  418. #elif GGML_USE_METAL
  419. # define llama_host_malloc(n) ggml_metal_host_malloc(n)
  420. # define llama_host_free(data) ggml_metal_host_free(data)
  421. #elif GGML_USE_CPU_HBM
  422. # define llama_host_malloc(n) hbw_malloc(n)
  423. # define llama_host_free(data) if (data != NULL) hbw_free(data)
  424. #else
  425. # define llama_host_malloc(n) malloc(n)
  426. # define llama_host_free(data) free(data)
  427. #endif
  428. #if defined(_WIN32)
  429. static std::string llama_format_win_err(DWORD err) {
  430. LPSTR buf;
  431. size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
  432. NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
  433. if (!size) {
  434. return "FormatMessageA failed";
  435. }
  436. std::string ret(buf, size);
  437. LocalFree(buf);
  438. return ret;
  439. }
  440. #endif
  441. struct llama_buffer {
  442. void * data = NULL;
  443. size_t size = 0;
  444. // fallback to malloc / free
  445. // useful in cases where CUDA can try to allocate PINNED memory
  446. bool fallback = false;
  447. void resize(size_t n) {
  448. llama_host_free(data);
  449. data = llama_host_malloc(n);
  450. if (!data) {
  451. fallback = true;
  452. data = malloc(n);
  453. } else {
  454. fallback = false;
  455. }
  456. GGML_ASSERT(data);
  457. size = n;
  458. }
  459. ~llama_buffer() {
  460. if (data) {
  461. if (fallback) { // NOLINT
  462. free(data);
  463. } else {
  464. llama_host_free(data);
  465. }
  466. }
  467. data = NULL;
  468. }
  469. };
  470. struct llama_file {
  471. // use FILE * so we don't have to re-open the file to mmap
  472. FILE * fp;
  473. size_t size;
  474. llama_file(const char * fname, const char * mode) {
  475. fp = std::fopen(fname, mode);
  476. if (fp == NULL) {
  477. throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
  478. }
  479. seek(0, SEEK_END);
  480. size = tell();
  481. seek(0, SEEK_SET);
  482. }
  483. size_t tell() const {
  484. #ifdef _WIN32
  485. __int64 ret = _ftelli64(fp);
  486. #else
  487. long ret = std::ftell(fp);
  488. #endif
  489. GGML_ASSERT(ret != -1); // this really shouldn't fail
  490. return (size_t) ret;
  491. }
  492. void seek(size_t offset, int whence) const {
  493. #ifdef _WIN32
  494. int ret = _fseeki64(fp, (__int64) offset, whence);
  495. #else
  496. int ret = std::fseek(fp, (long) offset, whence);
  497. #endif
  498. GGML_ASSERT(ret == 0); // same
  499. }
  500. void read_raw(void * ptr, size_t len) const {
  501. if (len == 0) {
  502. return;
  503. }
  504. errno = 0;
  505. std::size_t ret = std::fread(ptr, len, 1, fp);
  506. if (ferror(fp)) {
  507. throw std::runtime_error(format("read error: %s", strerror(errno)));
  508. }
  509. if (ret != 1) {
  510. throw std::runtime_error(std::string("unexpectedly reached end of file"));
  511. }
  512. }
  513. uint32_t read_u32() const {
  514. uint32_t ret;
  515. read_raw(&ret, sizeof(ret));
  516. return ret;
  517. }
  518. void write_raw(const void * ptr, size_t len) const {
  519. if (len == 0) {
  520. return;
  521. }
  522. errno = 0;
  523. size_t ret = std::fwrite(ptr, len, 1, fp);
  524. if (ret != 1) {
  525. throw std::runtime_error(format("write error: %s", strerror(errno)));
  526. }
  527. }
  528. void write_u32(std::uint32_t val) const {
  529. write_raw(&val, sizeof(val));
  530. }
  531. ~llama_file() {
  532. if (fp) {
  533. std::fclose(fp);
  534. }
  535. }
  536. };
  537. struct llama_mmap {
  538. void * addr;
  539. size_t size;
  540. llama_mmap(const llama_mmap &) = delete;
  541. #ifdef _POSIX_MAPPED_FILES
  542. static constexpr bool SUPPORTED = true;
  543. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
  544. size = file->size;
  545. int fd = fileno(file->fp);
  546. int flags = MAP_SHARED;
  547. // prefetch/readahead impairs performance on NUMA systems
  548. if (numa) { prefetch = 0; }
  549. #ifdef __linux__
  550. if (prefetch) { flags |= MAP_POPULATE; }
  551. #endif
  552. addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
  553. if (addr == MAP_FAILED) {
  554. throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
  555. }
  556. if (prefetch > 0) {
  557. // Advise the kernel to preload the mapped memory
  558. if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) {
  559. fprintf(stderr, "warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n",
  560. strerror(errno));
  561. }
  562. }
  563. if (numa) {
  564. // advise the kernel not to use readahead
  565. // (because the next page might not belong on the same node)
  566. if (posix_madvise(addr, file->size, POSIX_MADV_RANDOM)) {
  567. fprintf(stderr, "warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n",
  568. strerror(errno));
  569. }
  570. }
  571. }
  572. ~llama_mmap() {
  573. munmap(addr, size);
  574. }
  575. #elif defined(_WIN32)
  576. static constexpr bool SUPPORTED = true;
  577. llama_mmap(struct llama_file * file, bool prefetch = true, bool numa = false) {
  578. (void) numa;
  579. size = file->size;
  580. HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
  581. HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
  582. DWORD error = GetLastError();
  583. if (hMapping == NULL) {
  584. throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
  585. }
  586. addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
  587. error = GetLastError();
  588. CloseHandle(hMapping);
  589. if (addr == NULL) {
  590. throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
  591. }
  592. if (prefetch) {
  593. // PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it
  594. BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
  595. HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
  596. // may fail on pre-Windows 8 systems
  597. pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
  598. if (pPrefetchVirtualMemory) {
  599. // advise the kernel to preload the mapped memory
  600. WIN32_MEMORY_RANGE_ENTRY range;
  601. range.VirtualAddress = addr;
  602. range.NumberOfBytes = (SIZE_T)size;
  603. if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
  604. fprintf(stderr, "warning: PrefetchVirtualMemory failed: %s\n",
  605. llama_format_win_err(GetLastError()).c_str());
  606. }
  607. }
  608. }
  609. }
  610. ~llama_mmap() {
  611. if (!UnmapViewOfFile(addr)) {
  612. fprintf(stderr, "warning: UnmapViewOfFile failed: %s\n",
  613. llama_format_win_err(GetLastError()).c_str());
  614. }
  615. }
  616. #else
  617. static constexpr bool SUPPORTED = false;
  618. llama_mmap(struct llama_file * file, bool prefetch = true, bool numa = false) {
  619. (void) file;
  620. (void) prefetch;
  621. (void) numa;
  622. throw std::runtime_error(std::string("mmap not supported"));
  623. }
  624. #endif
  625. };
  626. // Represents some region of memory being locked using mlock or VirtualLock;
  627. // will automatically unlock on destruction.
  628. struct llama_mlock {
  629. void * addr = NULL;
  630. size_t size = 0;
  631. bool failed_already = false;
  632. llama_mlock() {}
  633. llama_mlock(const llama_mlock &) = delete;
  634. ~llama_mlock() {
  635. if (size) {
  636. raw_unlock(addr, size);
  637. }
  638. }
  639. void init(void * ptr) {
  640. GGML_ASSERT(addr == NULL && size == 0); // NOLINT
  641. addr = ptr;
  642. }
  643. void grow_to(size_t target_size) {
  644. GGML_ASSERT(addr);
  645. if (failed_already) {
  646. return;
  647. }
  648. size_t granularity = lock_granularity();
  649. target_size = (target_size + granularity - 1) & ~(granularity - 1);
  650. if (target_size > size) {
  651. if (raw_lock((uint8_t *) addr + size, target_size - size)) {
  652. size = target_size;
  653. } else {
  654. failed_already = true;
  655. }
  656. }
  657. }
  658. #ifdef _POSIX_MEMLOCK_RANGE
  659. static constexpr bool SUPPORTED = true;
  660. static size_t lock_granularity() {
  661. return (size_t) sysconf(_SC_PAGESIZE);
  662. }
  663. #ifdef __APPLE__
  664. #define MLOCK_SUGGESTION \
  665. "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
  666. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MLOCK (ulimit -l).\n"
  667. #else
  668. #define MLOCK_SUGGESTION \
  669. "Try increasing RLIMIT_MLOCK ('ulimit -l' as root).\n"
  670. #endif
  671. bool raw_lock(const void * addr, size_t size) const {
  672. if (!mlock(addr, size)) {
  673. return true;
  674. }
  675. char* errmsg = std::strerror(errno);
  676. bool suggest = (errno == ENOMEM);
  677. // Check if the resource limit is fine after all
  678. struct rlimit lock_limit;
  679. if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) {
  680. suggest = false;
  681. }
  682. if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
  683. suggest = false;
  684. }
  685. fprintf(stderr, "warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
  686. size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
  687. return false;
  688. }
  689. #undef MLOCK_SUGGESTION
  690. static void raw_unlock(void * addr, size_t size) {
  691. if (munlock(addr, size)) {
  692. fprintf(stderr, "warning: failed to munlock buffer: %s\n", std::strerror(errno));
  693. }
  694. }
  695. #elif defined(_WIN32)
  696. static constexpr bool SUPPORTED = true;
  697. static size_t lock_granularity() {
  698. SYSTEM_INFO si;
  699. GetSystemInfo(&si);
  700. return (size_t) si.dwPageSize;
  701. }
  702. bool raw_lock(void * ptr, size_t len) const {
  703. for (int tries = 1; ; tries++) {
  704. if (VirtualLock(ptr, len)) {
  705. return true;
  706. }
  707. if (tries == 2) {
  708. fprintf(stderr, "warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
  709. len, size, llama_format_win_err(GetLastError()).c_str());
  710. return false;
  711. }
  712. // It failed but this was only the first try; increase the working
  713. // set size and try again.
  714. SIZE_T min_ws_size, max_ws_size;
  715. if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
  716. fprintf(stderr, "warning: GetProcessWorkingSetSize failed: %s\n",
  717. llama_format_win_err(GetLastError()).c_str());
  718. return false;
  719. }
  720. // Per MSDN: "The maximum number of pages that a process can lock
  721. // is equal to the number of pages in its minimum working set minus
  722. // a small overhead."
  723. // Hopefully a megabyte is enough overhead:
  724. size_t increment = len + 1048576;
  725. // The minimum must be <= the maximum, so we need to increase both:
  726. min_ws_size += increment;
  727. max_ws_size += increment;
  728. if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
  729. fprintf(stderr, "warning: SetProcessWorkingSetSize failed: %s\n",
  730. llama_format_win_err(GetLastError()).c_str());
  731. return false;
  732. }
  733. }
  734. }
  735. static void raw_unlock(void * ptr, size_t len) {
  736. if (!VirtualUnlock(ptr, len)) {
  737. fprintf(stderr, "warning: failed to VirtualUnlock buffer: %s\n",
  738. llama_format_win_err(GetLastError()).c_str());
  739. }
  740. }
  741. #else
  742. static constexpr bool SUPPORTED = false;
  743. static size_t lock_granularity() {
  744. return (size_t) 65536;
  745. }
  746. bool raw_lock(const void * addr, size_t len) const {
  747. fprintf(stderr, "warning: mlock not supported on this system\n");
  748. return false;
  749. }
  750. static void raw_unlock(const void * addr, size_t len) {}
  751. #endif
  752. };
  753. typedef void (*offload_func_t)(struct ggml_tensor * tensor);
  754. static void llama_nop(struct ggml_tensor * tensor) { // don't offload by default
  755. (void) tensor;
  756. }
  757. static std::string llama_token_to_str(const struct llama_context * ctx, llama_token token) {
  758. std::vector<char> result(8, 0);
  759. const int n_tokens = llama_token_to_piece(ctx, token, result.data(), result.size());
  760. if (n_tokens < 0) {
  761. result.resize(-n_tokens);
  762. int check = llama_token_to_piece(ctx, token, result.data(), result.size());
  763. GGML_ASSERT(check == -n_tokens);
  764. } else {
  765. result.resize(n_tokens);
  766. }
  767. return std::string(result.data(), result.size());
  768. }
  769. //
  770. // globals
  771. //
  772. struct llama_state {
  773. // We save the log callback globally
  774. llama_log_callback log_callback = llama_log_callback_default;
  775. void * log_callback_user_data = nullptr;
  776. };
  777. static llama_state g_state;
  778. // available llama models
  779. enum e_model {
  780. MODEL_UNKNOWN,
  781. MODEL_3B,
  782. MODEL_7B,
  783. MODEL_13B,
  784. MODEL_30B,
  785. MODEL_34B,
  786. MODEL_40B,
  787. MODEL_65B,
  788. MODEL_70B,
  789. };
  790. static const size_t kB = 1024;
  791. static const size_t MB = kB*kB;
  792. // default hparams (LLaMA 7B)
  793. struct llama_hparams {
  794. uint32_t n_vocab = 32000;
  795. uint32_t n_ctx_train = 2048; // the context size used during training
  796. uint32_t n_ctx = 512; // the context size used during inference
  797. uint32_t n_embd = 4096;
  798. uint32_t n_head = 32;
  799. uint32_t n_head_kv = 32;
  800. uint32_t n_layer = 32;
  801. uint32_t n_rot = 64;
  802. uint32_t n_ff = 11008;
  803. float f_norm_eps = 1e-5;
  804. float f_norm_rms_eps = 1e-5;
  805. float rope_freq_base = 10000.0f;
  806. float rope_freq_scale = 1.0f;
  807. bool operator!=(const llama_hparams & other) const {
  808. return static_cast<bool>(memcmp(this, &other, sizeof(llama_hparams))); // NOLINT
  809. }
  810. uint32_t n_gqa() const {
  811. return n_head/n_head_kv;
  812. }
  813. uint32_t n_embd_head() const {
  814. return n_embd/n_head;
  815. }
  816. uint32_t n_embd_gqa() const {
  817. return n_embd/n_gqa();
  818. }
  819. size_t kv_size() const {
  820. size_t result = 2ull;
  821. result *= (size_t) n_embd_gqa();
  822. result *= (size_t) n_ctx;
  823. result *= (size_t) n_layer;
  824. result *= sizeof(ggml_fp16_t);
  825. return result;
  826. }
  827. };
  828. struct llama_layer {
  829. // normalization
  830. struct ggml_tensor * attn_norm;
  831. struct ggml_tensor * attn_norm_b;
  832. struct ggml_tensor * attn_norm_2;
  833. struct ggml_tensor * attn_norm_2_b;
  834. // attention
  835. struct ggml_tensor * wq;
  836. struct ggml_tensor * wk;
  837. struct ggml_tensor * wv;
  838. struct ggml_tensor * wo;
  839. struct ggml_tensor * wqkv;
  840. // normalization
  841. struct ggml_tensor * ffn_norm;
  842. // ff
  843. struct ggml_tensor * w1; // ffn_gate
  844. struct ggml_tensor * w2; // ffn_down
  845. struct ggml_tensor * w3; // ffn_up
  846. };
  847. struct llama_kv_cache {
  848. struct ggml_tensor * k = NULL;
  849. struct ggml_tensor * v = NULL;
  850. struct ggml_context * ctx = NULL;
  851. llama_buffer buf;
  852. int n; // number of tokens currently in the cache
  853. ~llama_kv_cache() {
  854. if (ctx) {
  855. ggml_free(ctx);
  856. }
  857. #ifdef GGML_USE_CUBLAS
  858. ggml_cuda_free_data(k);
  859. ggml_cuda_free_data(v);
  860. #endif // GGML_USE_CUBLAS
  861. }
  862. };
  863. struct llama_vocab {
  864. using id = int32_t;
  865. using token = std::string;
  866. using ttype = llama_token_type;
  867. struct token_data {
  868. token text;
  869. float score;
  870. ttype type;
  871. };
  872. enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
  873. std::unordered_map<token, id> token_to_id;
  874. std::vector<token_data> id_to_token;
  875. std::map<std::pair<std::string, std::string>, int> bpe_ranks;
  876. // default LLaMA special tokens
  877. id special_bos_id = 1;
  878. id special_eos_id = 2;
  879. id special_unk_id = 0;
  880. id special_sep_id = -1;
  881. id special_pad_id = -1;
  882. id linefeed_id = 13;
  883. int find_bpe_rank(std::string token_left, std::string token_right) const {
  884. replace_all(token_left, " ", "\u0120");
  885. replace_all(token_left, "\n", "\u010A");
  886. replace_all(token_right, " ", "\u0120");
  887. replace_all(token_right, "\n", "\u010A");
  888. auto it = bpe_ranks.find(std::make_pair(token_left, token_right));
  889. if (it == bpe_ranks.end()) {
  890. return -1;
  891. }
  892. return it->second;
  893. }
  894. };
  895. struct llama_model {
  896. e_model type = MODEL_UNKNOWN;
  897. llm_arch arch = LLM_ARCH_UNKNOWN;
  898. llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
  899. std::string name = "n/a";
  900. llama_hparams hparams;
  901. llama_vocab vocab;
  902. struct ggml_tensor * tok_embeddings;
  903. struct ggml_tensor * output_norm;
  904. struct ggml_tensor * output_norm_b;
  905. struct ggml_tensor * output;
  906. std::vector<llama_layer> layers;
  907. int n_gpu_layers;
  908. // context
  909. struct ggml_context * ctx = NULL;
  910. // the model memory buffer
  911. llama_buffer buf;
  912. // model memory mapped file
  913. std::unique_ptr<llama_mmap> mapping;
  914. // objects representing data potentially being locked in memory
  915. llama_mlock mlock_buf;
  916. llama_mlock mlock_mmap;
  917. // for quantize-stats only
  918. std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
  919. int64_t t_load_us = 0;
  920. int64_t t_start_us = 0;
  921. ~llama_model() {
  922. if (ctx) {
  923. ggml_free(ctx);
  924. }
  925. #ifdef GGML_USE_CUBLAS
  926. for (size_t i = 0; i < tensors_by_name.size(); ++i) {
  927. ggml_cuda_free_data(tensors_by_name[i].second);
  928. }
  929. ggml_cuda_free_scratch();
  930. #elif defined(GGML_USE_CLBLAST)
  931. for (size_t i = 0; i < tensors_by_name.size(); ++i) {
  932. ggml_cl_free_data(tensors_by_name[i].second);
  933. }
  934. #endif
  935. }
  936. };
  937. struct llama_context {
  938. llama_context(const llama_model & model) : model(model), t_load_us(model.t_load_us), t_start_us(model.t_start_us) {}
  939. ~llama_context() {
  940. if (model_owner) {
  941. delete &model;
  942. }
  943. #ifdef GGML_USE_METAL
  944. if (ctx_metal) {
  945. ggml_metal_free(ctx_metal);
  946. }
  947. #endif
  948. if (alloc) {
  949. ggml_allocr_free(alloc);
  950. }
  951. }
  952. std::mt19937 rng;
  953. bool has_evaluated_once = false;
  954. int64_t t_sample_us = 0;
  955. int64_t t_eval_us = 0;
  956. int64_t t_p_eval_us = 0;
  957. int32_t n_sample = 0; // number of tokens sampled
  958. int32_t n_eval = 0; // number of eval calls
  959. int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
  960. const llama_model & model;
  961. bool model_owner = false;
  962. int64_t t_load_us;
  963. int64_t t_start_us;
  964. // key + value cache for the self attention
  965. struct llama_kv_cache kv_self;
  966. // decode output (2-dimensional array: [n_tokens][n_vocab])
  967. std::vector<float> logits;
  968. bool logits_all = false;
  969. // input embedding (1-dimensional array: [n_embd])
  970. std::vector<float> embedding;
  971. // reusable buffer for `struct ggml_graph_plan.work_data`
  972. std::vector<uint8_t> work_buffer;
  973. // memory buffers used to evaluate the model
  974. llama_buffer buf_compute;
  975. llama_buffer buf_alloc;
  976. ggml_allocr * alloc = NULL;
  977. #ifdef GGML_USE_METAL
  978. ggml_metal_context * ctx_metal = NULL;
  979. #endif
  980. #ifdef GGML_USE_MPI
  981. ggml_mpi_context * ctx_mpi = NULL;
  982. #endif
  983. };
  984. //
  985. // kv cache helpers
  986. //
  987. static bool llama_kv_cache_init(
  988. const struct llama_hparams & hparams,
  989. struct llama_kv_cache & cache,
  990. ggml_type wtype,
  991. int n_ctx,
  992. int n_gpu_layers) {
  993. const int n_embd = hparams.n_embd_gqa();
  994. const int n_layer = hparams.n_layer;
  995. const int64_t n_mem = n_layer*n_ctx;
  996. const int64_t n_elements = n_embd*n_mem;
  997. cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB);
  998. cache.n = 0;
  999. struct ggml_init_params params;
  1000. params.mem_size = cache.buf.size;
  1001. params.mem_buffer = cache.buf.data;
  1002. params.no_alloc = false;
  1003. cache.ctx = ggml_init(params);
  1004. if (!cache.ctx) {
  1005. LLAMA_LOG_ERROR("%s: failed to allocate memory for kv cache\n", __func__);
  1006. return false;
  1007. }
  1008. cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
  1009. cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
  1010. ggml_set_name(cache.k, "cache_k");
  1011. ggml_set_name(cache.v, "cache_v");
  1012. (void) n_gpu_layers;
  1013. #ifdef GGML_USE_CUBLAS
  1014. if (n_gpu_layers > n_layer + 1) {
  1015. ggml_cuda_assign_buffers_no_scratch(cache.v);
  1016. }
  1017. if (n_gpu_layers > n_layer + 2) {
  1018. ggml_cuda_assign_buffers_no_scratch(cache.k);
  1019. }
  1020. #endif // GGML_USE_CUBLAS
  1021. return true;
  1022. }
  1023. //
  1024. // model loading and saving
  1025. //
  1026. enum llama_fver {
  1027. GGUF_FILE_VERSION_V1 = 1,
  1028. GGUF_FILE_VERSION_V2 = 2,
  1029. };
  1030. static const char * llama_file_version_name(llama_fver version) {
  1031. switch (version) {
  1032. case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)";
  1033. case GGUF_FILE_VERSION_V2: return "GGUF V2 (latest)";
  1034. }
  1035. return "unknown";
  1036. }
  1037. static std::string llama_format_tensor_shape(const std::vector<int64_t> & ne) {
  1038. char buf[256];
  1039. snprintf(buf, sizeof(buf), "%5" PRId64, ne.at(0));
  1040. for (size_t i = 1; i < ne.size(); i++) {
  1041. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, ne.at(i));
  1042. }
  1043. return buf;
  1044. }
  1045. static std::string llama_format_tensor_shape(const struct ggml_tensor * t) {
  1046. char buf[256];
  1047. snprintf(buf, sizeof(buf), "%5" PRId64, t->ne[0]);
  1048. for (int i = 1; i < GGML_MAX_DIMS; i++) {
  1049. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, t->ne[i]);
  1050. }
  1051. return buf;
  1052. }
  1053. struct llama_model_loader {
  1054. int n_kv = 0;
  1055. int n_tensors = 0;
  1056. int n_created = 0;
  1057. int64_t n_elements = 0;
  1058. bool use_mmap = false;
  1059. llama_file file;
  1060. llama_ftype ftype;
  1061. llama_fver fver;
  1062. std::unique_ptr<llama_mmap> mapping;
  1063. struct gguf_context * ctx_gguf = NULL;
  1064. struct ggml_context * ctx_meta = NULL;
  1065. llama_model_loader(const std::string & fname, bool use_mmap) : file(fname.c_str(), "rb") {
  1066. struct gguf_init_params params = {
  1067. /*.no_alloc = */ true,
  1068. /*.ctx = */ &ctx_meta,
  1069. };
  1070. ctx_gguf = gguf_init_from_file(fname.c_str(), params);
  1071. if (!ctx_gguf) {
  1072. throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str()));
  1073. }
  1074. n_kv = gguf_get_n_kv(ctx_gguf);
  1075. n_tensors = gguf_get_n_tensors(ctx_gguf);
  1076. fver = (enum llama_fver ) gguf_get_version(ctx_gguf);
  1077. for (int i = 0; i < n_tensors; i++) {
  1078. const char * name = gguf_get_tensor_name(ctx_gguf, i);
  1079. struct ggml_tensor * t = ggml_get_tensor(ctx_meta, name);
  1080. n_elements += ggml_nelements(t);
  1081. }
  1082. LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
  1083. __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver));
  1084. // determine file type based on the number of tensors for each quantization and print meta data
  1085. // TODO: make optional
  1086. {
  1087. std::map<enum ggml_type, uint32_t> n_type;
  1088. uint32_t n_type_max = 0;
  1089. enum ggml_type type_max = GGML_TYPE_F32;
  1090. for (int i = 0; i < n_tensors; i++) {
  1091. const char * name = gguf_get_tensor_name(ctx_gguf, i);
  1092. struct ggml_tensor * meta = ggml_get_tensor(ctx_meta, name);
  1093. n_type[meta->type]++;
  1094. if (n_type_max < n_type[meta->type]) {
  1095. n_type_max = n_type[meta->type];
  1096. type_max = meta->type;
  1097. }
  1098. LLAMA_LOG_INFO("%s: - tensor %4d: %32s %-8s [ %s ]\n", __func__, i, name, ggml_type_name(meta->type), llama_format_tensor_shape(meta).c_str());
  1099. }
  1100. switch (type_max) {
  1101. case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break;
  1102. case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break;
  1103. case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break;
  1104. case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break;
  1105. case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break;
  1106. case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break;
  1107. case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break;
  1108. case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break;
  1109. case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break;
  1110. case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break;
  1111. case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break;
  1112. case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
  1113. default:
  1114. {
  1115. LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
  1116. ftype = LLAMA_FTYPE_ALL_F32;
  1117. } break;
  1118. }
  1119. // this is a way to mark that we have "guessed" the file type
  1120. ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED);
  1121. {
  1122. const int kid = gguf_find_key(ctx_gguf, "general.file_type");
  1123. if (kid >= 0) {
  1124. ftype = (llama_ftype) gguf_get_val_u32(ctx_gguf, kid);
  1125. }
  1126. }
  1127. for (int i = 0; i < n_kv; i++) {
  1128. const char * name = gguf_get_key(ctx_gguf, i);
  1129. const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
  1130. LLAMA_LOG_INFO("%s: - kv %3d: %42s %-8s\n", __func__, i, name, gguf_type_name(type));
  1131. }
  1132. // print type counts
  1133. for (auto & kv : n_type) {
  1134. if (kv.second == 0) {
  1135. continue;
  1136. }
  1137. LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
  1138. }
  1139. }
  1140. if (!llama_mmap::SUPPORTED) {
  1141. LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__);
  1142. use_mmap = false;
  1143. }
  1144. this->use_mmap = use_mmap;
  1145. }
  1146. ~llama_model_loader() {
  1147. if (ctx_gguf) {
  1148. gguf_free(ctx_gguf);
  1149. }
  1150. if (ctx_meta) {
  1151. ggml_free(ctx_meta);
  1152. }
  1153. }
  1154. std::string get_arch_name() const {
  1155. const auto kv = LLM_KV(LLM_ARCH_UNKNOWN);
  1156. std::string arch_name;
  1157. GGUF_GET_KEY(ctx_gguf, arch_name, gguf_get_val_str, GGUF_TYPE_STRING, false, kv(LLM_KV_GENERAL_ARCHITECTURE));
  1158. return arch_name;
  1159. }
  1160. enum llm_arch get_arch() const {
  1161. const std::string arch_name = get_arch_name();
  1162. return llm_arch_from_string(arch_name);
  1163. }
  1164. const char * get_tensor_name(int i) const {
  1165. return gguf_get_tensor_name(ctx_gguf, i);
  1166. }
  1167. struct ggml_tensor * get_tensor_meta(int i) const {
  1168. return ggml_get_tensor(ctx_meta, get_tensor_name(i));
  1169. }
  1170. void calc_sizes(size_t & ctx_size_p, size_t & mmapped_size_p) const {
  1171. ctx_size_p = 0;
  1172. mmapped_size_p = 0;
  1173. for (int i = 0; i < n_tensors; i++) {
  1174. struct ggml_tensor * meta = get_tensor_meta(i);
  1175. ctx_size_p += sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE;
  1176. (use_mmap ? mmapped_size_p : ctx_size_p) += ggml_nbytes_pad(meta);
  1177. }
  1178. }
  1179. struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, struct ggml_tensor * meta, ggml_backend backend) {
  1180. if (backend != GGML_BACKEND_CPU) {
  1181. ggml_set_no_alloc(ctx, true);
  1182. }
  1183. struct ggml_tensor * tensor = ggml_dup_tensor(ctx, meta);
  1184. tensor->backend = backend; // TODO: ggml_set_backend
  1185. ggml_set_name(tensor, ggml_get_name(meta));
  1186. if (backend != GGML_BACKEND_CPU) {
  1187. ggml_set_no_alloc(ctx, use_mmap);
  1188. }
  1189. n_created++;
  1190. return tensor;
  1191. }
  1192. struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, ggml_backend backend) {
  1193. struct ggml_tensor * cur = ggml_get_tensor(ctx_meta, name.c_str());
  1194. if (cur == NULL) {
  1195. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str()));
  1196. }
  1197. {
  1198. bool is_ok = true;
  1199. for (size_t i = 0; i < ne.size(); ++i) {
  1200. if (ne[i] != cur->ne[i]) {
  1201. is_ok = false;
  1202. break;
  1203. }
  1204. }
  1205. if (!is_ok) {
  1206. throw std::runtime_error(
  1207. format("%s: tensor '%s' has wrong shape; expected %s, got %s",
  1208. __func__, name.c_str(),
  1209. llama_format_tensor_shape(ne).c_str(),
  1210. llama_format_tensor_shape(cur).c_str()));
  1211. }
  1212. }
  1213. return create_tensor_for(ctx, cur, backend);
  1214. }
  1215. void done_getting_tensors() const {
  1216. if (n_created != n_tensors) {
  1217. throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created));
  1218. }
  1219. }
  1220. size_t file_offset(const char * name) const {
  1221. const int idx = gguf_find_tensor(ctx_gguf, name);
  1222. if (idx < 0) {
  1223. throw std::runtime_error(format("%s: tensor '%s' not found in the file", __func__, name));
  1224. }
  1225. return gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, idx);
  1226. }
  1227. void load_data_for(struct ggml_tensor * cur) const {
  1228. const size_t offs = file_offset(ggml_get_name(cur));
  1229. if (use_mmap) {
  1230. cur->data = (uint8_t *) mapping->addr + offs;
  1231. } else {
  1232. file.seek(offs, SEEK_SET);
  1233. file.read_raw(cur->data, ggml_nbytes(cur));
  1234. }
  1235. }
  1236. void load_all_data(struct ggml_context * ctx, llama_progress_callback progress_callback, void * progress_callback_user_data, llama_mlock * lmlock) {
  1237. size_t size_data = 0;
  1238. size_t size_lock = 0;
  1239. size_t size_pref = 0; // prefetch
  1240. for (int i = 0; i < gguf_get_n_tensors(ctx_gguf); i++) {
  1241. struct ggml_tensor * cur = ggml_get_tensor(ctx, gguf_get_tensor_name(ctx_gguf, i));
  1242. size_data += ggml_nbytes(cur);
  1243. if (cur->backend == GGML_BACKEND_CPU) {
  1244. size_pref += ggml_nbytes(cur);
  1245. }
  1246. }
  1247. if (use_mmap) {
  1248. mapping.reset(new llama_mmap(&file, size_pref, ggml_is_numa()));
  1249. if (lmlock) {
  1250. lmlock->init(mapping->addr);
  1251. }
  1252. }
  1253. size_t done_size = 0;
  1254. for (int i = 0; i < gguf_get_n_tensors(ctx_gguf); i++) {
  1255. struct ggml_tensor * cur = ggml_get_tensor(ctx, gguf_get_tensor_name(ctx_gguf, i));
  1256. GGML_ASSERT(cur); // unused tensors should have been caught by load_data already
  1257. if (progress_callback) {
  1258. progress_callback((float) done_size / size_data, progress_callback_user_data);
  1259. }
  1260. // allocate temp buffer if not using mmap
  1261. if (!use_mmap && cur->data == NULL) {
  1262. GGML_ASSERT(cur->backend != GGML_BACKEND_CPU);
  1263. #ifdef GGML_USE_CPU_HBM
  1264. cur->data = (uint8_t*)hbw_malloc(ggml_nbytes(cur));
  1265. #else
  1266. cur->data = (uint8_t*)malloc(ggml_nbytes(cur));
  1267. #endif
  1268. }
  1269. load_data_for(cur);
  1270. switch (cur->backend) {
  1271. case GGML_BACKEND_CPU:
  1272. if (use_mmap && lmlock) {
  1273. size_lock += ggml_nbytes(cur);
  1274. lmlock->grow_to(size_lock);
  1275. }
  1276. break;
  1277. #if defined(GGML_USE_CUBLAS)
  1278. case GGML_BACKEND_GPU:
  1279. case GGML_BACKEND_GPU_SPLIT:
  1280. // old code:
  1281. //ggml_cuda_transform_tensor(lt.data, lt.ggml_tensor);
  1282. // TODO: test if this works !!
  1283. ggml_cuda_transform_tensor(cur->data, cur);
  1284. if (!use_mmap) {
  1285. free(cur->data);
  1286. }
  1287. break;
  1288. #elif defined(GGML_USE_CLBLAST)
  1289. case GGML_BACKEND_GPU:
  1290. ggml_cl_transform_tensor(cur->data, cur);
  1291. if (!use_mmap) {
  1292. free(cur->data);
  1293. }
  1294. break;
  1295. #endif
  1296. default:
  1297. continue;
  1298. }
  1299. done_size += ggml_nbytes(cur);
  1300. }
  1301. }
  1302. };
  1303. //
  1304. // load LLaMA models
  1305. //
  1306. std::string llama_model_ftype_name(enum llama_ftype ftype) {
  1307. if (ftype & LLAMA_FTYPE_GUESSED) {
  1308. return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)";
  1309. }
  1310. switch (ftype) {
  1311. case LLAMA_FTYPE_ALL_F32: return "all F32";
  1312. case LLAMA_FTYPE_MOSTLY_F16: return "mostly F16";
  1313. case LLAMA_FTYPE_MOSTLY_Q4_0: return "mostly Q4_0";
  1314. case LLAMA_FTYPE_MOSTLY_Q4_1: return "mostly Q4_1";
  1315. case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
  1316. return "mostly Q4_1, some F16";
  1317. case LLAMA_FTYPE_MOSTLY_Q5_0: return "mostly Q5_0";
  1318. case LLAMA_FTYPE_MOSTLY_Q5_1: return "mostly Q5_1";
  1319. case LLAMA_FTYPE_MOSTLY_Q8_0: return "mostly Q8_0";
  1320. // K-quants
  1321. case LLAMA_FTYPE_MOSTLY_Q2_K: return "mostly Q2_K";
  1322. case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "mostly Q3_K - Small";
  1323. case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "mostly Q3_K - Medium";
  1324. case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "mostly Q3_K - Large";
  1325. case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "mostly Q4_K - Small";
  1326. case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "mostly Q4_K - Medium";
  1327. case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "mostly Q5_K - Small";
  1328. case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "mostly Q5_K - Medium";
  1329. case LLAMA_FTYPE_MOSTLY_Q6_K: return "mostly Q6_K";
  1330. default: return "unknown, may not work";
  1331. }
  1332. }
  1333. static const char * llama_model_type_name(e_model type) {
  1334. switch (type) {
  1335. case MODEL_3B: return "3B";
  1336. case MODEL_7B: return "7B";
  1337. case MODEL_13B: return "13B";
  1338. case MODEL_30B: return "30B";
  1339. case MODEL_34B: return "34B";
  1340. case MODEL_40B: return "40B";
  1341. case MODEL_65B: return "65B";
  1342. case MODEL_70B: return "70B";
  1343. default: return "?B";
  1344. }
  1345. }
  1346. static void llm_load_arch(llama_model_loader & ml, llama_model & model) {
  1347. model.arch = ml.get_arch();
  1348. if (model.arch == LLM_ARCH_UNKNOWN) {
  1349. throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
  1350. }
  1351. }
  1352. static void llm_load_hparams(
  1353. llama_model_loader & ml,
  1354. llama_model & model,
  1355. int n_ctx,
  1356. float rope_freq_base,
  1357. float rope_freq_scale) {
  1358. struct gguf_context * ctx = ml.ctx_gguf;
  1359. const auto kv = LLM_KV(model.arch);
  1360. auto & hparams = model.hparams;
  1361. // get general kv
  1362. GGUF_GET_KEY(ctx, model.name, gguf_get_val_str, GGUF_TYPE_STRING, false, kv(LLM_KV_GENERAL_NAME));
  1363. // get hparams kv
  1364. GGUF_GET_KEY(ctx, hparams.n_vocab, gguf_get_arr_n, GGUF_TYPE_ARRAY, true, kv(LLM_KV_TOKENIZER_LIST));
  1365. GGUF_GET_KEY(ctx, hparams.n_ctx_train, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_CONTEXT_LENGTH));
  1366. GGUF_GET_KEY(ctx, hparams.n_embd, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_EMBEDDING_LENGTH));
  1367. GGUF_GET_KEY(ctx, hparams.n_ff, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_FEED_FORWARD_LENGTH));
  1368. GGUF_GET_KEY(ctx, hparams.n_head, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_ATTENTION_HEAD_COUNT));
  1369. GGUF_GET_KEY(ctx, hparams.n_layer, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_BLOCK_COUNT));
  1370. // n_head_kv is optional, default to n_head
  1371. hparams.n_head_kv = hparams.n_head;
  1372. GGUF_GET_KEY(ctx, hparams.n_head_kv, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ATTENTION_HEAD_COUNT_KV));
  1373. // TODO: manually setting rope freq base and scale should override this
  1374. // FIXME: partial fix when the param specified is not the default value, but
  1375. // will not work for overriding the model value to the params default
  1376. llama_context_params defaults = llama_context_default_params();
  1377. // rope_freq_base
  1378. {
  1379. float ropebase = 10000.0f;
  1380. GGUF_GET_KEY(ctx, ropebase, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_FREQ_BASE));
  1381. if (ropebase != 10000.0f && rope_freq_base == defaults.rope_freq_base) {
  1382. rope_freq_base = ropebase;
  1383. }
  1384. }
  1385. // rope_freq_scale (inverse of the kv) is optional
  1386. {
  1387. float ropescale = 1.0f;
  1388. GGUF_GET_KEY(ctx, ropescale, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_SCALE_LINEAR));
  1389. if (ropescale != 1.0f && rope_freq_scale == defaults.rope_freq_scale) {
  1390. rope_freq_scale = 1.0f/ropescale;
  1391. }
  1392. }
  1393. // sanity check for n_rot (optional)
  1394. {
  1395. hparams.n_rot = hparams.n_embd / hparams.n_head;
  1396. GGUF_GET_KEY(ctx, hparams.n_rot, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ROPE_DIMENSION_COUNT));
  1397. if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
  1398. if (hparams.n_rot != hparams.n_embd / hparams.n_head) {
  1399. throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd / hparams.n_head));
  1400. }
  1401. }
  1402. // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
  1403. // gpt-j n_rot = rotary_dim
  1404. }
  1405. // arch-specific KVs
  1406. switch (model.arch) {
  1407. case LLM_ARCH_LLAMA:
  1408. {
  1409. GGUF_GET_KEY(ctx, hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS));
  1410. switch (hparams.n_layer) {
  1411. case 26: model.type = e_model::MODEL_3B; break;
  1412. case 32: model.type = e_model::MODEL_7B; break;
  1413. case 40: model.type = e_model::MODEL_13B; break;
  1414. case 48: model.type = e_model::MODEL_34B; break;
  1415. case 60: model.type = e_model::MODEL_30B; break;
  1416. case 80: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_65B : e_model::MODEL_70B; break;
  1417. default: model.type = e_model::MODEL_UNKNOWN;
  1418. }
  1419. } break;
  1420. case LLM_ARCH_FALCON:
  1421. {
  1422. GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS));
  1423. switch (hparams.n_layer) {
  1424. case 32: model.type = e_model::MODEL_7B; break;
  1425. case 60: model.type = e_model::MODEL_40B; break;
  1426. default: model.type = e_model::MODEL_UNKNOWN;
  1427. }
  1428. } break;
  1429. case LLM_ARCH_BAICHUAN:
  1430. {
  1431. GGUF_GET_KEY(ctx, hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS));
  1432. switch (hparams.n_layer) {
  1433. case 32: model.type = e_model::MODEL_7B; break;
  1434. case 40: model.type = e_model::MODEL_13B; break;
  1435. default: model.type = e_model::MODEL_UNKNOWN;
  1436. }
  1437. } break;
  1438. default: (void)0;
  1439. };
  1440. model.ftype = ml.ftype;
  1441. hparams.n_ctx = n_ctx;
  1442. hparams.rope_freq_base = rope_freq_base;
  1443. hparams.rope_freq_scale = rope_freq_scale;
  1444. }
  1445. // TODO: This should probably be in llama.h
  1446. static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool bos);
  1447. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch);
  1448. static void llm_load_vocab(
  1449. llama_model_loader & ml,
  1450. llama_model & model) {
  1451. auto & vocab = model.vocab;
  1452. struct gguf_context * ctx = ml.ctx_gguf;
  1453. const auto kv = LLM_KV(model.arch);
  1454. const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str());
  1455. if (token_idx == -1) {
  1456. throw std::runtime_error("cannot find tokenizer vocab in model file\n");
  1457. }
  1458. const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str());
  1459. if (score_idx == -1) {
  1460. throw std::runtime_error("cannot find tokenizer scores in model file\n");
  1461. }
  1462. const float * scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
  1463. const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str());
  1464. if (toktype_idx == -1) {
  1465. throw std::runtime_error("cannot find token type list in GGUF file\n");
  1466. }
  1467. const int * toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
  1468. // determine vocab type
  1469. {
  1470. std::string tokenizer_name;
  1471. GGUF_GET_KEY(ctx, tokenizer_name, gguf_get_val_str, GGUF_TYPE_STRING, true, kv(LLM_KV_TOKENIZER_MODEL));
  1472. if (tokenizer_name == "llama") {
  1473. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  1474. // default special tokens
  1475. vocab.special_bos_id = 1;
  1476. vocab.special_eos_id = 2;
  1477. vocab.special_unk_id = 0;
  1478. vocab.special_sep_id = -1;
  1479. vocab.special_pad_id = -1;
  1480. } else if (tokenizer_name == "gpt2") {
  1481. vocab.type = LLAMA_VOCAB_TYPE_BPE;
  1482. // read bpe merges and populate bpe ranks
  1483. const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
  1484. if (merges_keyidx == -1) {
  1485. throw std::runtime_error("cannot find tokenizer merges in model file\n");
  1486. }
  1487. const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
  1488. for (int i = 0; i < n_merges; i++) {
  1489. const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
  1490. std::string first;
  1491. std::string second;
  1492. const size_t pos = word.find(' ', 1);
  1493. if (pos != std::string::npos) {
  1494. first = word.substr(0, pos);
  1495. second = word.substr(pos + 1);
  1496. }
  1497. vocab.bpe_ranks.emplace(std::make_pair(first, second), i);
  1498. }
  1499. // default special tokens
  1500. vocab.special_bos_id = 11;
  1501. vocab.special_eos_id = 11;
  1502. vocab.special_unk_id = -1;
  1503. vocab.special_sep_id = -1;
  1504. vocab.special_pad_id = -1;
  1505. } else {
  1506. LLAMA_LOG_WARN("%s: unknown tokenizer: '%s'", __func__, tokenizer_name.c_str());
  1507. LLAMA_LOG_WARN("%s: using default tokenizer: 'llama'", __func__);
  1508. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  1509. }
  1510. }
  1511. const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
  1512. vocab.id_to_token.resize(n_vocab);
  1513. for (uint32_t i = 0; i < n_vocab; i++) {
  1514. std::string word = gguf_get_arr_str(ctx, token_idx, i);
  1515. vocab.token_to_id[word] = i;
  1516. auto & token_data = vocab.id_to_token[i];
  1517. token_data.text = std::move(word);
  1518. token_data.score = scores[i];
  1519. token_data.type = (llama_token_type) toktypes[i];
  1520. }
  1521. // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
  1522. if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
  1523. vocab.linefeed_id = llama_byte_to_token(vocab, '\n');
  1524. } else {
  1525. vocab.linefeed_id = llama_tokenize_internal(vocab, "\n", false)[0];
  1526. }
  1527. // special tokens
  1528. GGUF_GET_KEY(ctx, vocab.special_bos_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_BOS_ID));
  1529. GGUF_GET_KEY(ctx, vocab.special_eos_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_EOS_ID));
  1530. GGUF_GET_KEY(ctx, vocab.special_unk_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_UNK_ID));
  1531. GGUF_GET_KEY(ctx, vocab.special_sep_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_SEP_ID));
  1532. GGUF_GET_KEY(ctx, vocab.special_pad_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_PAD_ID));
  1533. }
  1534. static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
  1535. const auto & hparams = model.hparams;
  1536. const auto & vocab = model.vocab;
  1537. // hparams
  1538. LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver));
  1539. LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch).c_str());
  1540. LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, vocab.type == LLAMA_VOCAB_TYPE_SPM ? "SPM" : "BPE"); // TODO: fix
  1541. LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab);
  1542. LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size());
  1543. LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
  1544. LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, hparams.n_ctx);
  1545. LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
  1546. LLAMA_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head);
  1547. LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv);
  1548. LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
  1549. LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot); // a.k.a. n_embd_head, n_head_dim
  1550. LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa());
  1551. LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
  1552. LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
  1553. LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff);
  1554. LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, hparams.rope_freq_base);
  1555. LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, hparams.rope_freq_scale);
  1556. LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
  1557. LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
  1558. LLAMA_LOG_INFO("%s: model size = %.2f B\n", __func__, ml.n_elements*1e-9);
  1559. // general kv
  1560. LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, model.name.c_str());
  1561. // special tokens
  1562. if (vocab.special_bos_id != -1) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].text.c_str() ); }
  1563. if (vocab.special_eos_id != -1) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].text.c_str() ); }
  1564. if (vocab.special_unk_id != -1) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].text.c_str() ); }
  1565. if (vocab.special_sep_id != -1) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].text.c_str() ); }
  1566. if (vocab.special_pad_id != -1) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].text.c_str() ); }
  1567. if (vocab.linefeed_id != -1) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, vocab.linefeed_id, vocab.id_to_token[vocab.linefeed_id].text.c_str() ); }
  1568. }
  1569. static void llm_load_tensors(
  1570. llama_model_loader & ml,
  1571. llama_model & model,
  1572. int n_batch,
  1573. int n_gpu_layers,
  1574. int main_gpu,
  1575. const float * tensor_split,
  1576. const bool mul_mat_q,
  1577. bool low_vram,
  1578. ggml_type memory_type,
  1579. bool use_mlock,
  1580. llama_progress_callback progress_callback,
  1581. void * progress_callback_user_data) {
  1582. model.t_start_us = ggml_time_us();
  1583. auto & ctx = model.ctx;
  1584. auto & hparams = model.hparams;
  1585. model.n_gpu_layers = n_gpu_layers;
  1586. size_t ctx_size;
  1587. size_t mmapped_size;
  1588. ml.calc_sizes(ctx_size, mmapped_size);
  1589. LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MB\n", __func__, ctx_size/1024.0/1024.0);
  1590. // create the ggml context
  1591. {
  1592. model.buf.resize(ctx_size);
  1593. if (use_mlock) {
  1594. model.mlock_buf.init (model.buf.data);
  1595. model.mlock_buf.grow_to(model.buf.size);
  1596. }
  1597. struct ggml_init_params params = {
  1598. /*.mem_size =*/ model.buf.size,
  1599. /*.mem_buffer =*/ model.buf.data,
  1600. /*.no_alloc =*/ ml.use_mmap,
  1601. };
  1602. model.ctx = ggml_init(params);
  1603. if (!model.ctx) {
  1604. throw std::runtime_error(format("ggml_init() failed"));
  1605. }
  1606. }
  1607. (void) main_gpu;
  1608. (void) mul_mat_q;
  1609. #if defined(GGML_USE_CUBLAS)
  1610. LLAMA_LOG_INFO("%s: using " GGML_CUDA_NAME " for GPU acceleration\n", __func__);
  1611. ggml_cuda_set_main_device(main_gpu);
  1612. ggml_cuda_set_mul_mat_q(mul_mat_q);
  1613. #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU
  1614. #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU_SPLIT
  1615. #elif defined(GGML_USE_CLBLAST)
  1616. LLAMA_LOG_INFO("%s: using OpenCL for GPU acceleration\n", __func__);
  1617. #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU
  1618. #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU
  1619. #else
  1620. #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_CPU
  1621. #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_CPU
  1622. #endif
  1623. // prepare memory for the weights
  1624. size_t vram_weights = 0;
  1625. {
  1626. const int64_t n_embd = hparams.n_embd;
  1627. const int64_t n_embd_gqa = hparams.n_embd_gqa();
  1628. const int64_t n_layer = hparams.n_layer;
  1629. const int64_t n_vocab = hparams.n_vocab;
  1630. const auto tn = LLM_TN(model.arch);
  1631. switch (model.arch) {
  1632. case LLM_ARCH_LLAMA:
  1633. {
  1634. model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
  1635. // output
  1636. {
  1637. ggml_backend backend_norm;
  1638. ggml_backend backend_output;
  1639. if (n_gpu_layers > int(n_layer)) {
  1640. // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
  1641. // on Windows however this is detrimental unless everything is on the GPU
  1642. #ifndef _WIN32
  1643. backend_norm = low_vram ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  1644. #else
  1645. backend_norm = low_vram || n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  1646. #endif // _WIN32
  1647. backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
  1648. } else {
  1649. backend_norm = GGML_BACKEND_CPU;
  1650. backend_output = GGML_BACKEND_CPU;
  1651. }
  1652. model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
  1653. model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
  1654. if (backend_norm == GGML_BACKEND_GPU) {
  1655. vram_weights += ggml_nbytes(model.output_norm);
  1656. }
  1657. if (backend_output == GGML_BACKEND_GPU_SPLIT) {
  1658. vram_weights += ggml_nbytes(model.output);
  1659. }
  1660. }
  1661. const uint32_t n_ff = hparams.n_ff;
  1662. const int i_gpu_start = n_layer - n_gpu_layers;
  1663. model.layers.resize(n_layer);
  1664. for (uint32_t i = 0; i < n_layer; ++i) {
  1665. const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
  1666. const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
  1667. auto & layer = model.layers[i];
  1668. layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
  1669. layer.wq = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, backend_split);
  1670. layer.wk = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, backend_split);
  1671. layer.wv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, backend_split);
  1672. layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
  1673. layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
  1674. layer.w1 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, backend_split);
  1675. layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split);
  1676. layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
  1677. if (backend == GGML_BACKEND_GPU) {
  1678. vram_weights +=
  1679. ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) +
  1680. ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.ffn_norm) +
  1681. ggml_nbytes(layer.w1) + ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3);
  1682. }
  1683. }
  1684. } break;
  1685. case LLM_ARCH_BAICHUAN:
  1686. {
  1687. model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
  1688. {
  1689. ggml_backend backend_norm;
  1690. ggml_backend backend_output;
  1691. if (n_gpu_layers > int(n_layer)) {
  1692. // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
  1693. // on Windows however this is detrimental unless everything is on the GPU
  1694. #ifndef _WIN32
  1695. backend_norm = low_vram ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  1696. #else
  1697. backend_norm = low_vram || n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  1698. #endif // _WIN32
  1699. backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
  1700. } else {
  1701. backend_norm = GGML_BACKEND_CPU;
  1702. backend_output = GGML_BACKEND_CPU;
  1703. }
  1704. model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
  1705. model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
  1706. if (backend_norm == GGML_BACKEND_GPU) {
  1707. vram_weights += ggml_nbytes(model.output_norm);
  1708. }
  1709. if (backend_output == GGML_BACKEND_GPU_SPLIT) {
  1710. vram_weights += ggml_nbytes(model.output);
  1711. }
  1712. }
  1713. const uint32_t n_ff = hparams.n_ff;
  1714. const int i_gpu_start = n_layer - n_gpu_layers;
  1715. model.layers.resize(n_layer);
  1716. for (uint32_t i = 0; i < n_layer; ++i) {
  1717. const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
  1718. const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
  1719. auto & layer = model.layers[i];
  1720. layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
  1721. layer.wq = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, backend_split);
  1722. layer.wk = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, backend_split);
  1723. layer.wv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, backend_split);
  1724. layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
  1725. layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
  1726. layer.w1 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, backend_split);
  1727. layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split);
  1728. layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
  1729. if (backend == GGML_BACKEND_GPU) {
  1730. vram_weights +=
  1731. ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) +
  1732. ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.ffn_norm) +
  1733. ggml_nbytes(layer.w1) + ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3);
  1734. }
  1735. }
  1736. } break;
  1737. case LLM_ARCH_FALCON:
  1738. {
  1739. // TODO: CPU-only for now
  1740. model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
  1741. // output
  1742. {
  1743. ggml_backend backend_norm;
  1744. ggml_backend backend_output;
  1745. if (n_gpu_layers > int(n_layer)) {
  1746. // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
  1747. // on Windows however this is detrimental unless everything is on the GPU
  1748. #ifndef _WIN32
  1749. backend_norm = low_vram ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  1750. #else
  1751. backend_norm = low_vram || n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  1752. #endif // _WIN32
  1753. backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
  1754. } else {
  1755. backend_norm = GGML_BACKEND_CPU;
  1756. backend_output = GGML_BACKEND_CPU;
  1757. }
  1758. model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
  1759. model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm);
  1760. model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
  1761. if (backend_norm == GGML_BACKEND_GPU) {
  1762. vram_weights += ggml_nbytes(model.output_norm);
  1763. vram_weights += ggml_nbytes(model.output_norm_b);
  1764. }
  1765. if (backend_output == GGML_BACKEND_GPU_SPLIT) {
  1766. vram_weights += ggml_nbytes(model.output);
  1767. }
  1768. }
  1769. const uint32_t n_ff = hparams.n_ff;
  1770. const int i_gpu_start = n_layer - n_gpu_layers;
  1771. model.layers.resize(n_layer);
  1772. for (uint32_t i = 0; i < n_layer; ++i) {
  1773. const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
  1774. const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
  1775. auto & layer = model.layers[i];
  1776. layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
  1777. layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend);
  1778. if (gguf_find_tensor(ml.ctx_gguf, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i).c_str()) >= 0) {
  1779. layer.attn_norm_2 = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, backend);
  1780. layer.attn_norm_2_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, backend);
  1781. if (backend == GGML_BACKEND_GPU) {
  1782. vram_weights += ggml_nbytes(layer.attn_norm_2);
  1783. vram_weights += ggml_nbytes(layer.attn_norm_2_b);
  1784. }
  1785. }
  1786. layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split);
  1787. layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
  1788. layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split);
  1789. layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
  1790. if (backend == GGML_BACKEND_GPU) {
  1791. vram_weights +=
  1792. ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.attn_norm_b) +
  1793. ggml_nbytes(layer.wqkv) + ggml_nbytes(layer.wo) +
  1794. ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3);
  1795. }
  1796. }
  1797. } break;
  1798. default:
  1799. throw std::runtime_error("unknown architecture");
  1800. };
  1801. }
  1802. ml.done_getting_tensors();
  1803. // print memory requirements
  1804. {
  1805. const size_t scale = memory_type == GGML_TYPE_F32 ? 2 : 1;
  1806. // this is the total memory required to run the inference
  1807. size_t mem_required =
  1808. ctx_size +
  1809. mmapped_size - vram_weights; // weights in VRAM not in memory
  1810. // this is the memory required by one llama_state
  1811. const size_t mem_required_state = scale*hparams.kv_size();
  1812. LLAMA_LOG_INFO("%s: mem required = %7.2f MB (+ %7.2f MB per state)\n", __func__,
  1813. mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0);
  1814. (void) n_batch;
  1815. #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  1816. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  1817. LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
  1818. if (n_gpu_layers > (int) hparams.n_layer) {
  1819. LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__);
  1820. }
  1821. size_t vram_kv_cache = 0;
  1822. #ifdef GGML_USE_CUBLAS
  1823. const int max_backend_supported_layers = hparams.n_layer + 3;
  1824. const int max_offloadable_layers = low_vram ? hparams.n_layer + 1 : hparams.n_layer + 3;
  1825. if (n_gpu_layers > (int) hparams.n_layer + 1) {
  1826. if (low_vram) {
  1827. LLAMA_LOG_INFO("%s: cannot offload v cache to GPU due to low VRAM option\n", __func__);
  1828. } else {
  1829. LLAMA_LOG_INFO("%s: offloading v cache to GPU\n", __func__);
  1830. vram_kv_cache += hparams.kv_size() / 2;
  1831. }
  1832. }
  1833. if (n_gpu_layers > (int) hparams.n_layer + 2) {
  1834. if (low_vram) {
  1835. LLAMA_LOG_WARN("%s: cannot offload k cache to GPU due to low VRAM option\n", __func__);
  1836. } else {
  1837. LLAMA_LOG_INFO("%s: offloading k cache to GPU\n", __func__);
  1838. vram_kv_cache += hparams.kv_size() / 2;
  1839. }
  1840. }
  1841. #elif defined(GGML_USE_CLBLAST)
  1842. const int max_backend_supported_layers = hparams.n_layer + 1;
  1843. const int max_offloadable_layers = hparams.n_layer + 1;
  1844. #endif // GGML_USE_CUBLAS
  1845. LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n",
  1846. __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
  1847. LLAMA_LOG_INFO("%s: VRAM used: %zu MB\n",
  1848. __func__, (vram_weights + vram_kv_cache + MB - 1) / MB); // round up
  1849. #else
  1850. (void) n_gpu_layers;
  1851. #endif // defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  1852. }
  1853. // populate `tensors_by_name`
  1854. for (int i = 0; i < ml.n_tensors; ++i) {
  1855. struct ggml_tensor * cur = ggml_get_tensor(ctx, ml.get_tensor_name(i));
  1856. model.tensors_by_name.emplace_back(ggml_get_name(cur), cur);
  1857. }
  1858. (void) tensor_split;
  1859. #if defined(GGML_USE_CUBLAS)
  1860. {
  1861. ggml_cuda_set_tensor_split(tensor_split);
  1862. }
  1863. #endif
  1864. ml.load_all_data(ctx, progress_callback, progress_callback_user_data, use_mlock ? &model.mlock_mmap : NULL);
  1865. if (progress_callback) {
  1866. progress_callback(1.0f, progress_callback_user_data);
  1867. }
  1868. model.mapping = std::move(ml.mapping);
  1869. // loading time will be recalculate after the first eval, so
  1870. // we take page faults deferred by mmap() into consideration
  1871. model.t_load_us = ggml_time_us() - model.t_start_us;
  1872. }
  1873. static bool llama_model_load(
  1874. const std::string & fname,
  1875. llama_model & model,
  1876. int n_ctx,
  1877. int n_batch,
  1878. int n_gpu_layers,
  1879. int main_gpu,
  1880. const float * tensor_split,
  1881. const bool mul_mat_q,
  1882. float rope_freq_base,
  1883. float rope_freq_scale,
  1884. bool low_vram,
  1885. ggml_type memory_type,
  1886. bool use_mmap,
  1887. bool use_mlock,
  1888. bool vocab_only,
  1889. llama_progress_callback progress_callback,
  1890. void *progress_callback_user_data) {
  1891. try {
  1892. std::unique_ptr<llama_model_loader> ml(new llama_model_loader(fname, use_mmap));
  1893. llm_load_arch (*ml, model);
  1894. llm_load_hparams(*ml, model, n_ctx, rope_freq_base, rope_freq_scale);
  1895. llm_load_vocab (*ml, model);
  1896. llm_load_print_meta(*ml, model);
  1897. if (model.hparams.n_vocab != model.vocab.id_to_token.size()) {
  1898. throw std::runtime_error("vocab size mismatch");
  1899. }
  1900. if (vocab_only) {
  1901. LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__);
  1902. return true;
  1903. }
  1904. llm_load_tensors(
  1905. *ml, model, n_batch, n_gpu_layers,
  1906. main_gpu, tensor_split, mul_mat_q, low_vram, memory_type,
  1907. use_mlock, progress_callback, progress_callback_user_data);
  1908. } catch (const std::exception & err) {
  1909. LLAMA_LOG_ERROR("error loading model: %s\n", err.what());
  1910. return false;
  1911. }
  1912. return true;
  1913. }
  1914. static struct ggml_cgraph * llm_build_llama(
  1915. llama_context & lctx,
  1916. const llama_token * tokens,
  1917. const float * embd,
  1918. int n_tokens,
  1919. int n_past) {
  1920. GGML_ASSERT((!tokens && embd) || (tokens && !embd)); // NOLINT
  1921. const int N = n_tokens;
  1922. const auto & model = lctx.model;
  1923. const auto & hparams = model.hparams;
  1924. const auto & kv_self = lctx.kv_self;
  1925. GGML_ASSERT(!!kv_self.ctx);
  1926. const int64_t n_embd = hparams.n_embd;
  1927. const int64_t n_layer = hparams.n_layer;
  1928. const int64_t n_ctx = hparams.n_ctx;
  1929. const int64_t n_head = hparams.n_head;
  1930. const int64_t n_head_kv = hparams.n_head_kv;
  1931. const int64_t n_embd_head = hparams.n_embd_head();
  1932. const int64_t n_embd_gqa = hparams.n_embd_gqa();
  1933. GGML_ASSERT(n_embd_head == hparams.n_rot);
  1934. const float freq_base = hparams.rope_freq_base;
  1935. const float freq_scale = hparams.rope_freq_scale;
  1936. const float norm_rms_eps = hparams.f_norm_rms_eps;
  1937. const int n_gpu_layers = model.n_gpu_layers;
  1938. auto & buf_compute = lctx.buf_compute;
  1939. struct ggml_init_params params = {
  1940. /*.mem_size =*/ buf_compute.size,
  1941. /*.mem_buffer =*/ buf_compute.data,
  1942. /*.no_alloc =*/ false,
  1943. };
  1944. params.no_alloc = true;
  1945. struct ggml_context * ctx0 = ggml_init(params);
  1946. ggml_cgraph * gf = ggml_new_graph(ctx0);
  1947. struct ggml_tensor * cur;
  1948. struct ggml_tensor * inpL;
  1949. if (tokens) {
  1950. struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
  1951. ggml_allocr_alloc(lctx.alloc, inp_tokens);
  1952. if (!ggml_allocr_is_measure(lctx.alloc)) {
  1953. memcpy(inp_tokens->data, tokens, N*ggml_element_size(inp_tokens));
  1954. }
  1955. ggml_set_name(inp_tokens, "inp_tokens");
  1956. inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
  1957. } else {
  1958. #ifdef GGML_USE_MPI
  1959. GGML_ASSERT(false && "not implemented");
  1960. #endif
  1961. inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N);
  1962. ggml_allocr_alloc(lctx.alloc, inpL);
  1963. if (!ggml_allocr_is_measure(lctx.alloc)) {
  1964. memcpy(inpL->data, embd, N * n_embd * ggml_element_size(inpL));
  1965. }
  1966. }
  1967. const int i_gpu_start = n_layer - n_gpu_layers;
  1968. (void) i_gpu_start;
  1969. // offload functions set the tensor output backend to GPU
  1970. // tensors are GPU-accelerated if any input or the output has been offloaded
  1971. //
  1972. // with the low VRAM option VRAM scratch is disabled in llama_load_model_internal
  1973. // in that case ggml_cuda_assign_buffers has no effect
  1974. offload_func_t offload_func_nr = llama_nop; // nr = non-repeating
  1975. offload_func_t offload_func_kq = llama_nop;
  1976. offload_func_t offload_func_v = llama_nop;
  1977. #ifdef GGML_USE_CUBLAS
  1978. if (n_gpu_layers > n_layer) {
  1979. offload_func_nr = ggml_cuda_assign_buffers_no_alloc;
  1980. }
  1981. if (n_gpu_layers > n_layer + 1) {
  1982. offload_func_v = ggml_cuda_assign_buffers_no_alloc;
  1983. }
  1984. if (n_gpu_layers > n_layer + 2) {
  1985. offload_func_kq = ggml_cuda_assign_buffers_no_alloc;
  1986. }
  1987. #endif // GGML_USE_CUBLAS
  1988. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  1989. ggml_allocr_alloc(lctx.alloc, KQ_scale);
  1990. if (!ggml_allocr_is_measure(lctx.alloc)) {
  1991. ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head));
  1992. }
  1993. ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
  1994. for (int il = 0; il < n_layer; ++il) {
  1995. ggml_format_name(inpL, "layer_inp_%d", il);
  1996. offload_func_t offload_func = llama_nop;
  1997. #ifdef GGML_USE_CUBLAS
  1998. if (il >= i_gpu_start) {
  1999. offload_func = ggml_cuda_assign_buffers_no_alloc;
  2000. }
  2001. #endif // GGML_USE_CUBLAS
  2002. struct ggml_tensor * inpSA = inpL;
  2003. // norm
  2004. {
  2005. cur = ggml_rms_norm(ctx0, inpL, norm_rms_eps);
  2006. offload_func(cur);
  2007. ggml_set_name(cur, "rms_norm_0");
  2008. // cur = cur*attn_norm(broadcasted)
  2009. cur = ggml_mul(ctx0, cur, model.layers[il].attn_norm);
  2010. offload_func(cur);
  2011. ggml_set_name(cur, "attention_norm_0");
  2012. }
  2013. // self-attention
  2014. {
  2015. // compute Q and K and RoPE them
  2016. struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  2017. offload_func_kq(tmpk);
  2018. ggml_set_name(tmpk, "tmpk");
  2019. struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  2020. offload_func_kq(tmpq);
  2021. ggml_set_name(tmpq, "tmpq");
  2022. struct ggml_tensor * Kcur = ggml_rope_custom_inplace(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, N), n_past, n_embd_head, 0, 0, freq_base, freq_scale);
  2023. offload_func_kq(Kcur);
  2024. ggml_set_name(Kcur, "Kcur");
  2025. struct ggml_tensor * Qcur = ggml_rope_custom_inplace(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, N), n_past, n_embd_head, 0, 0, freq_base, freq_scale);
  2026. offload_func_kq(Qcur);
  2027. ggml_set_name(Qcur, "Qcur");
  2028. // store key and value to memory
  2029. {
  2030. // compute the transposed [N, n_embd] V matrix
  2031. struct ggml_tensor * tmpv = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  2032. offload_func_v(tmpv);
  2033. ggml_set_name(tmpv, "tmpv");
  2034. struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd_gqa, N));
  2035. offload_func_v(Vcur);
  2036. ggml_set_name(Vcur, "Vcur");
  2037. struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + n_past));
  2038. offload_func_kq(k);
  2039. ggml_set_name(k, "k");
  2040. struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd_gqa,
  2041. ( n_ctx)*ggml_element_size(kv_self.v),
  2042. (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + n_past*ggml_element_size(kv_self.v));
  2043. offload_func_v(v);
  2044. ggml_set_name(v, "v");
  2045. // important: storing RoPE-ed version of K in the KV cache!
  2046. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
  2047. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
  2048. }
  2049. struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  2050. offload_func_kq(Q);
  2051. ggml_set_name(Q, "Q");
  2052. struct ggml_tensor * K =
  2053. ggml_view_3d(ctx0, kv_self.k,
  2054. n_embd_head, n_past + N, n_head_kv,
  2055. ggml_element_size(kv_self.k)*n_embd_gqa,
  2056. ggml_element_size(kv_self.k)*n_embd_head,
  2057. ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
  2058. offload_func_kq(K);
  2059. ggml_set_name(K, "K");
  2060. // K * Q
  2061. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  2062. offload_func_kq(KQ);
  2063. ggml_set_name(KQ, "KQ");
  2064. // KQ_scaled = KQ / sqrt(n_embd_head)
  2065. // KQ_scaled shape [n_past + N, N, n_head, 1]
  2066. struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale);
  2067. offload_func_kq(KQ_scaled);
  2068. ggml_set_name(KQ_scaled, "KQ_scaled");
  2069. // KQ_masked = mask_past(KQ_scaled)
  2070. struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past);
  2071. offload_func_kq(KQ_masked);
  2072. ggml_set_name(KQ_masked, "KQ_masked");
  2073. // KQ = soft_max(KQ_masked)
  2074. struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
  2075. offload_func_v(KQ_soft_max);
  2076. ggml_set_name(KQ_soft_max, "KQ_soft_max");
  2077. // split cached V into n_head heads
  2078. struct ggml_tensor * V =
  2079. ggml_view_3d(ctx0, kv_self.v,
  2080. n_past + N, n_embd_head, n_head_kv,
  2081. ggml_element_size(kv_self.v)*n_ctx,
  2082. ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
  2083. ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
  2084. offload_func_v(V);
  2085. ggml_set_name(V, "V");
  2086. #if 1
  2087. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
  2088. offload_func_v(KQV);
  2089. ggml_set_name(KQV, "KQV");
  2090. #else
  2091. // make V contiguous in memory to speed up the matmul, however we waste time on the copy
  2092. // on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation
  2093. // is there a better way?
  2094. struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_past + N, n_embd_head, n_head));
  2095. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max);
  2096. #endif
  2097. // KQV_merged = KQV.permute(0, 2, 1, 3)
  2098. struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  2099. offload_func_v(KQV_merged);
  2100. ggml_set_name(KQV_merged, "KQV_merged");
  2101. // cur = KQV_merged.contiguous().view(n_embd, N)
  2102. cur = ggml_cpy(ctx0,
  2103. KQV_merged,
  2104. ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
  2105. offload_func_v(cur);
  2106. ggml_set_name(cur, "KQV_merged_contiguous");
  2107. // projection (no bias)
  2108. cur = ggml_mul_mat(ctx0,
  2109. model.layers[il].wo,
  2110. cur);
  2111. offload_func(cur);
  2112. ggml_set_name(cur, "result_wo");
  2113. }
  2114. struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
  2115. offload_func(inpFF);
  2116. ggml_set_name(inpFF, "inpFF");
  2117. // feed-forward network
  2118. {
  2119. // norm
  2120. {
  2121. cur = ggml_rms_norm(ctx0, inpFF, norm_rms_eps);
  2122. offload_func(cur);
  2123. ggml_set_name(cur, "rms_norm_1");
  2124. // cur = cur*ffn_norm(broadcasted)
  2125. cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm);
  2126. offload_func(cur);
  2127. ggml_set_name(cur, "ffn_norm");
  2128. }
  2129. struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
  2130. model.layers[il].w3,
  2131. cur);
  2132. offload_func(tmp);
  2133. ggml_set_name(tmp, "result_w3");
  2134. cur = ggml_mul_mat(ctx0,
  2135. model.layers[il].w1,
  2136. cur);
  2137. offload_func(cur);
  2138. ggml_set_name(cur, "result_w1");
  2139. // SILU activation
  2140. cur = ggml_silu(ctx0, cur);
  2141. offload_func(cur);
  2142. ggml_set_name(cur, "silu");
  2143. cur = ggml_mul(ctx0, cur, tmp);
  2144. offload_func(cur);
  2145. ggml_set_name(cur, "silu_x_result_w3");
  2146. cur = ggml_mul_mat(ctx0,
  2147. model.layers[il].w2,
  2148. cur);
  2149. offload_func(cur);
  2150. ggml_set_name(cur, "result_w2");
  2151. }
  2152. cur = ggml_add(ctx0, cur, inpFF);
  2153. offload_func(cur);
  2154. ggml_set_name(cur, "inpFF_+_result_w2");
  2155. // input for next layer
  2156. inpL = cur;
  2157. }
  2158. cur = inpL;
  2159. // norm
  2160. {
  2161. cur = ggml_rms_norm(ctx0, cur, norm_rms_eps);
  2162. offload_func_nr(cur);
  2163. ggml_set_name(cur, "rms_norm_2");
  2164. // cur = cur*norm(broadcasted)
  2165. cur = ggml_mul(ctx0, cur, model.output_norm);
  2166. // offload_func_nr(cur); // TODO CPU + GPU mirrored backend
  2167. ggml_set_name(cur, "result_norm");
  2168. }
  2169. // lm_head
  2170. cur = ggml_mul_mat(ctx0, model.output, cur);
  2171. ggml_set_name(cur, "result_output");
  2172. ggml_build_forward_expand(gf, cur);
  2173. ggml_free(ctx0);
  2174. return gf;
  2175. }
  2176. static struct ggml_cgraph * llm_build_baichaun(
  2177. llama_context & lctx,
  2178. const llama_token * tokens,
  2179. const float * embd,
  2180. int n_tokens,
  2181. int n_past) {
  2182. GGML_ASSERT((!tokens && embd) || (tokens && !embd)); // NOLINT
  2183. const int N = n_tokens;
  2184. const auto & model = lctx.model;
  2185. const auto & hparams = model.hparams;
  2186. const auto & kv_self = lctx.kv_self;
  2187. GGML_ASSERT(!!kv_self.ctx);
  2188. const int64_t n_embd = hparams.n_embd;
  2189. const int64_t n_layer = hparams.n_layer;
  2190. const int64_t n_ctx = hparams.n_ctx;
  2191. const int64_t n_head = hparams.n_head;
  2192. const int64_t n_head_kv = hparams.n_head_kv;
  2193. const int64_t n_embd_head = hparams.n_embd_head();
  2194. const int64_t n_embd_gqa = hparams.n_embd_gqa();
  2195. GGML_ASSERT(n_embd_head == hparams.n_rot);
  2196. const float freq_base = hparams.rope_freq_base;
  2197. const float freq_scale = hparams.rope_freq_scale;
  2198. const float norm_rms_eps = hparams.f_norm_rms_eps;
  2199. const int n_gpu_layers = model.n_gpu_layers;
  2200. auto & buf_compute = lctx.buf_compute;
  2201. struct ggml_init_params params = {
  2202. /*.mem_size =*/ buf_compute.size,
  2203. /*.mem_buffer =*/ buf_compute.data,
  2204. /*.no_alloc =*/ false,
  2205. };
  2206. params.no_alloc = true;
  2207. struct ggml_context * ctx0 = ggml_init(params);
  2208. ggml_cgraph * gf = ggml_new_graph(ctx0);
  2209. struct ggml_tensor * cur;
  2210. struct ggml_tensor * inpL;
  2211. if (tokens) {
  2212. struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
  2213. ggml_allocr_alloc(lctx.alloc, inp_tokens);
  2214. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2215. memcpy(inp_tokens->data, tokens, N*ggml_element_size(inp_tokens));
  2216. }
  2217. ggml_set_name(inp_tokens, "inp_tokens");
  2218. inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
  2219. } else {
  2220. #ifdef GGML_USE_MPI
  2221. GGML_ASSERT(false && "not implemented");
  2222. #endif
  2223. inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N);
  2224. ggml_allocr_alloc(lctx.alloc, inpL);
  2225. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2226. memcpy(inpL->data, embd, N * n_embd * ggml_element_size(inpL));
  2227. }
  2228. }
  2229. const int i_gpu_start = n_layer - n_gpu_layers;
  2230. (void) i_gpu_start;
  2231. // offload functions set the tensor output backend to GPU
  2232. // tensors are GPU-accelerated if any input or the output has been offloaded
  2233. //
  2234. // with the low VRAM option VRAM scratch is disabled in llama_load_model_internal
  2235. // in that case ggml_cuda_assign_buffers has no effect
  2236. offload_func_t offload_func_nr = llama_nop; // nr = non-repeating
  2237. offload_func_t offload_func_kq = llama_nop;
  2238. offload_func_t offload_func_v = llama_nop;
  2239. #ifdef GGML_USE_CUBLAS
  2240. if (n_gpu_layers > n_layer) {
  2241. offload_func_nr = ggml_cuda_assign_buffers_no_alloc;
  2242. }
  2243. if (n_gpu_layers > n_layer + 1) {
  2244. offload_func_v = ggml_cuda_assign_buffers_no_alloc;
  2245. }
  2246. if (n_gpu_layers > n_layer + 2) {
  2247. offload_func_kq = ggml_cuda_assign_buffers_no_alloc;
  2248. }
  2249. #endif // GGML_USE_CUBLAS
  2250. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  2251. ggml_allocr_alloc(lctx.alloc, KQ_scale);
  2252. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2253. ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head));
  2254. }
  2255. ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
  2256. for (int il = 0; il < n_layer; ++il) {
  2257. ggml_format_name(inpL, "layer_inp_%d", il);
  2258. offload_func_t offload_func = llama_nop;
  2259. #ifdef GGML_USE_CUBLAS
  2260. if (il >= i_gpu_start) {
  2261. offload_func = ggml_cuda_assign_buffers_no_alloc;
  2262. }
  2263. #endif // GGML_USE_CUBLAS
  2264. struct ggml_tensor * inpSA = inpL;
  2265. // norm
  2266. {
  2267. cur = ggml_rms_norm(ctx0, inpL, norm_rms_eps);
  2268. offload_func(cur);
  2269. ggml_set_name(cur, "rms_norm_0");
  2270. // cur = cur*attn_norm(broadcasted)
  2271. cur = ggml_mul(ctx0, cur, model.layers[il].attn_norm);
  2272. offload_func(cur);
  2273. ggml_set_name(cur, "attention_norm_0");
  2274. }
  2275. // self-attention
  2276. {
  2277. // compute Q and K and RoPE them
  2278. struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  2279. offload_func_kq(tmpk);
  2280. ggml_set_name(tmpk, "tmpk");
  2281. struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  2282. offload_func_kq(tmpq);
  2283. ggml_set_name(tmpq, "tmpq");
  2284. struct ggml_tensor * Kcur;
  2285. struct ggml_tensor * Qcur;
  2286. switch (model.type) {
  2287. case MODEL_7B:
  2288. Kcur = ggml_rope_custom_inplace(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, N), n_past, n_embd_head, 0, 0, freq_base, freq_scale);
  2289. Qcur = ggml_rope_custom_inplace(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, N), n_past, n_embd_head, 0, 0, freq_base, freq_scale);
  2290. break;
  2291. case MODEL_13B:
  2292. Kcur = ggml_reshape_3d(ctx0, tmpk, n_embd/n_head, n_head, N);
  2293. Qcur = ggml_reshape_3d(ctx0, tmpq, n_embd/n_head, n_head, N);
  2294. break;
  2295. default:
  2296. GGML_ASSERT(false);
  2297. }
  2298. offload_func_kq(Kcur);
  2299. ggml_set_name(Kcur, "Kcur");
  2300. offload_func_kq(Qcur);
  2301. ggml_set_name(Qcur, "Qcur");
  2302. // store key and value to memory
  2303. {
  2304. // compute the transposed [N, n_embd] V matrix
  2305. struct ggml_tensor * tmpv = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  2306. offload_func_v(tmpv);
  2307. ggml_set_name(tmpv, "tmpv");
  2308. struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd_gqa, N));
  2309. offload_func_v(Vcur);
  2310. ggml_set_name(Vcur, "Vcur");
  2311. struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + n_past));
  2312. offload_func_kq(k);
  2313. ggml_set_name(k, "k");
  2314. struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd_gqa,
  2315. ( n_ctx)*ggml_element_size(kv_self.v),
  2316. (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + n_past*ggml_element_size(kv_self.v));
  2317. offload_func_v(v);
  2318. ggml_set_name(v, "v");
  2319. // important: storing RoPE-ed version of K in the KV cache!
  2320. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
  2321. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
  2322. }
  2323. struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  2324. offload_func_kq(Q);
  2325. ggml_set_name(Q, "Q");
  2326. struct ggml_tensor * K =
  2327. ggml_view_3d(ctx0, kv_self.k,
  2328. n_embd_head, n_past + N, n_head_kv,
  2329. ggml_element_size(kv_self.k)*n_embd_gqa,
  2330. ggml_element_size(kv_self.k)*n_embd_head,
  2331. ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
  2332. offload_func_kq(K);
  2333. ggml_set_name(K, "K");
  2334. // K * Q
  2335. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  2336. offload_func_kq(KQ);
  2337. ggml_set_name(KQ, "KQ");
  2338. // KQ_scaled = KQ / sqrt(n_embd_head)
  2339. // KQ_scaled shape [n_past + N, N, n_head, 1]
  2340. struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale);
  2341. offload_func_kq(KQ_scaled);
  2342. ggml_set_name(KQ_scaled, "KQ_scaled");
  2343. struct ggml_tensor * KQ_masked;
  2344. struct ggml_tensor * KQ_scaled_alibi;
  2345. switch (model.type) {
  2346. case MODEL_7B:
  2347. KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past);
  2348. break;
  2349. case MODEL_13B:
  2350. KQ_scaled_alibi =ggml_alibi(ctx0, KQ_scaled, n_past, n_head, 8);
  2351. ggml_set_name(KQ_scaled_alibi, "KQ_scaled_alibi");
  2352. KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled_alibi, n_past);
  2353. break;
  2354. default:
  2355. GGML_ASSERT(false);
  2356. }
  2357. // KQ_masked = mask_past(KQ_scaled)
  2358. // struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past);
  2359. // struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled_alibi, n_past);
  2360. // offload_func_kq(KQ_masked);
  2361. // ggml_set_name(KQ_masked, "KQ_masked");
  2362. // KQ = soft_max(KQ_masked)
  2363. struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
  2364. offload_func_v(KQ_soft_max);
  2365. ggml_set_name(KQ_soft_max, "KQ_soft_max");
  2366. // split cached V into n_head heads
  2367. struct ggml_tensor * V =
  2368. ggml_view_3d(ctx0, kv_self.v,
  2369. n_past + N, n_embd_head, n_head_kv,
  2370. ggml_element_size(kv_self.v)*n_ctx,
  2371. ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
  2372. ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
  2373. offload_func_v(V);
  2374. ggml_set_name(V, "V");
  2375. #if 1
  2376. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
  2377. offload_func_v(KQV);
  2378. ggml_set_name(KQV, "KQV");
  2379. #else
  2380. // make V contiguous in memory to speed up the matmul, however we waste time on the copy
  2381. // on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation
  2382. // is there a better way?
  2383. struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_past + N, n_embd_head, n_head));
  2384. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max);
  2385. #endif
  2386. // KQV_merged = KQV.permute(0, 2, 1, 3)
  2387. struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  2388. offload_func_v(KQV_merged);
  2389. ggml_set_name(KQV_merged, "KQV_merged");
  2390. // cur = KQV_merged.contiguous().view(n_embd, N)
  2391. cur = ggml_cpy(ctx0,
  2392. KQV_merged,
  2393. ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
  2394. offload_func_v(cur);
  2395. ggml_set_name(cur, "KQV_merged_contiguous");
  2396. // projection (no bias)
  2397. cur = ggml_mul_mat(ctx0,
  2398. model.layers[il].wo,
  2399. cur);
  2400. offload_func(cur);
  2401. ggml_set_name(cur, "result_wo");
  2402. }
  2403. struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
  2404. offload_func(inpFF);
  2405. ggml_set_name(inpFF, "inpFF");
  2406. // feed-forward network
  2407. {
  2408. // norm
  2409. {
  2410. cur = ggml_rms_norm(ctx0, inpFF, norm_rms_eps);
  2411. offload_func(cur);
  2412. ggml_set_name(cur, "rms_norm_1");
  2413. // cur = cur*ffn_norm(broadcasted)
  2414. cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm);
  2415. offload_func(cur);
  2416. ggml_set_name(cur, "ffn_norm");
  2417. }
  2418. struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
  2419. model.layers[il].w3,
  2420. cur);
  2421. offload_func(tmp);
  2422. ggml_set_name(tmp, "result_w3");
  2423. cur = ggml_mul_mat(ctx0,
  2424. model.layers[il].w1,
  2425. cur);
  2426. offload_func(cur);
  2427. ggml_set_name(cur, "result_w1");
  2428. // SILU activation
  2429. cur = ggml_silu(ctx0, cur);
  2430. offload_func(cur);
  2431. ggml_set_name(cur, "silu");
  2432. cur = ggml_mul(ctx0, cur, tmp);
  2433. offload_func(cur);
  2434. ggml_set_name(cur, "silu_x_result_w3");
  2435. cur = ggml_mul_mat(ctx0,
  2436. model.layers[il].w2,
  2437. cur);
  2438. offload_func(cur);
  2439. ggml_set_name(cur, "result_w2");
  2440. }
  2441. cur = ggml_add(ctx0, cur, inpFF);
  2442. offload_func(cur);
  2443. ggml_set_name(cur, "inpFF_+_result_w2");
  2444. // input for next layer
  2445. inpL = cur;
  2446. }
  2447. cur = inpL;
  2448. // norm
  2449. {
  2450. cur = ggml_rms_norm(ctx0, cur, norm_rms_eps);
  2451. offload_func_nr(cur);
  2452. ggml_set_name(cur, "rms_norm_2");
  2453. // cur = cur*norm(broadcasted)
  2454. cur = ggml_mul(ctx0, cur, model.output_norm);
  2455. // offload_func_nr(cur); // TODO CPU + GPU mirrored backend
  2456. ggml_set_name(cur, "result_norm");
  2457. }
  2458. // lm_head
  2459. cur = ggml_mul_mat(ctx0, model.output, cur);
  2460. ggml_set_name(cur, "result_output");
  2461. ggml_build_forward_expand(gf, cur);
  2462. ggml_free(ctx0);
  2463. return gf;
  2464. }
  2465. static struct ggml_cgraph * llm_build_falcon(
  2466. llama_context & lctx,
  2467. const llama_token * tokens,
  2468. const float * embd,
  2469. int n_tokens,
  2470. int n_past) {
  2471. GGML_ASSERT((!tokens && embd) || (tokens && !embd)); // NOLINT
  2472. const int N = n_tokens;
  2473. const auto & model = lctx.model;
  2474. const auto & hparams = model.hparams;
  2475. const auto & kv_self = lctx.kv_self;
  2476. GGML_ASSERT(!!kv_self.ctx);
  2477. const int64_t n_embd = hparams.n_embd;
  2478. const int64_t n_layer = hparams.n_layer;
  2479. const int64_t n_ctx = hparams.n_ctx;
  2480. const int64_t n_head = hparams.n_head;
  2481. const int64_t n_head_kv = hparams.n_head_kv;
  2482. const int64_t n_embd_head = hparams.n_embd_head();
  2483. const int64_t n_embd_gqa = hparams.n_embd_gqa();
  2484. GGML_ASSERT(n_embd_head == hparams.n_rot);
  2485. const float freq_base = hparams.rope_freq_base;
  2486. const float freq_scale = hparams.rope_freq_scale;
  2487. const float norm_eps = hparams.f_norm_eps;
  2488. const int n_gpu_layers = model.n_gpu_layers;
  2489. auto & buf_compute = lctx.buf_compute;
  2490. struct ggml_init_params params = {
  2491. /*.mem_size =*/ buf_compute.size,
  2492. /*.mem_buffer =*/ buf_compute.data,
  2493. /*.no_alloc =*/ false,
  2494. };
  2495. params.no_alloc = true;
  2496. struct ggml_context * ctx0 = ggml_init(params);
  2497. ggml_cgraph * gf = ggml_new_graph(ctx0);
  2498. struct ggml_tensor * cur;
  2499. struct ggml_tensor * inpL;
  2500. if (tokens) {
  2501. struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
  2502. ggml_allocr_alloc(lctx.alloc, inp_tokens);
  2503. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2504. memcpy(inp_tokens->data, tokens, N*ggml_element_size(inp_tokens));
  2505. }
  2506. ggml_set_name(inp_tokens, "inp_tokens");
  2507. inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
  2508. } else {
  2509. #ifdef GGML_USE_MPI
  2510. GGML_ASSERT(false && "not implemented");
  2511. #endif
  2512. inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N);
  2513. ggml_allocr_alloc(lctx.alloc, inpL);
  2514. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2515. memcpy(inpL->data, embd, N * n_embd * ggml_element_size(inpL));
  2516. }
  2517. }
  2518. const int i_gpu_start = n_layer - n_gpu_layers;
  2519. (void) i_gpu_start;
  2520. // offload functions set the tensor output backend to GPU
  2521. // tensors are GPU-accelerated if any input or the output has been offloaded
  2522. //
  2523. // with the low VRAM option VRAM scratch is disabled in llama_load_model_internal
  2524. // in that case ggml_cuda_assign_buffers has no effect
  2525. offload_func_t offload_func_nr = llama_nop; // nr = non-repeating
  2526. offload_func_t offload_func_kq = llama_nop;
  2527. offload_func_t offload_func_v = llama_nop;
  2528. #ifdef GGML_USE_CUBLAS
  2529. if (n_gpu_layers > n_layer) {
  2530. offload_func_nr = ggml_cuda_assign_buffers_no_alloc;
  2531. }
  2532. if (n_gpu_layers > n_layer + 1) {
  2533. offload_func_v = ggml_cuda_assign_buffers_no_alloc;
  2534. }
  2535. if (n_gpu_layers > n_layer + 2) {
  2536. offload_func_kq = ggml_cuda_assign_buffers_no_alloc;
  2537. }
  2538. #endif // GGML_USE_CUBLAS
  2539. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  2540. ggml_allocr_alloc(lctx.alloc, KQ_scale);
  2541. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2542. ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head));
  2543. }
  2544. ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
  2545. for (int il = 0; il < n_layer; ++il) {
  2546. struct ggml_tensor * attn_norm;
  2547. offload_func_t offload_func = llama_nop;
  2548. #ifdef GGML_USE_CUBLAS
  2549. if (il >= i_gpu_start) {
  2550. offload_func = ggml_cuda_assign_buffers_no_alloc;
  2551. }
  2552. #endif // GGML_USE_CUBLAS
  2553. // self-attention
  2554. // TODO: refactor into common function (shared with LLaMA)
  2555. {
  2556. attn_norm = ggml_norm(ctx0, inpL, norm_eps);
  2557. offload_func(attn_norm);
  2558. attn_norm = ggml_add(ctx0,
  2559. ggml_mul(ctx0, attn_norm, model.layers[il].attn_norm),
  2560. model.layers[il].attn_norm_b);
  2561. offload_func(attn_norm->src[0]);
  2562. offload_func(attn_norm);
  2563. if (model.layers[il].attn_norm_2) { // Falcon-40B
  2564. cur = ggml_norm(ctx0, inpL, norm_eps);
  2565. offload_func(cur);
  2566. cur = ggml_add(ctx0,
  2567. ggml_mul(ctx0, cur, model.layers[il].attn_norm_2),
  2568. model.layers[il].attn_norm_2_b);
  2569. offload_func(cur->src[0]);
  2570. offload_func(cur);
  2571. } else { // Falcon 7B
  2572. cur = attn_norm;
  2573. }
  2574. // compute QKV
  2575. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  2576. offload_func_kq(cur);
  2577. // Note that the strides for Kcur, Vcur are set up so that the
  2578. // resulting views are misaligned with the tensor's storage
  2579. // (by applying the K/V offset we shift the tensor's original
  2580. // view to stick out behind the viewed QKV tensor's allocated
  2581. // memory, so to say). This is ok because no actual accesses
  2582. // happen to that out-of-range memory, but it can require some
  2583. // trickery when trying to accurately dump these views for
  2584. // debugging.
  2585. const size_t wsize = ggml_type_size(cur->type);
  2586. // TODO: these 2 ggml_conts are technically not needed, but we add them until CUDA support for
  2587. // non-contiguous views is added for the rope operator
  2588. struct ggml_tensor * tmpq = ggml_cont(ctx0, ggml_view_3d(
  2589. ctx0, cur, n_embd_head, n_head, N,
  2590. wsize * n_embd_head,
  2591. wsize * n_embd_head * (n_head + 2 * n_head_kv),
  2592. 0));
  2593. offload_func_kq(tmpq);
  2594. struct ggml_tensor * tmpk = ggml_cont(ctx0, ggml_view_3d(
  2595. ctx0, cur, n_embd_head, n_head_kv, N,
  2596. wsize * n_embd_head,
  2597. wsize * n_embd_head * (n_head + 2 * n_head_kv),
  2598. wsize * n_embd_head * n_head));
  2599. offload_func_kq(tmpk);
  2600. struct ggml_tensor * tmpv = ggml_view_3d(
  2601. ctx0, cur, n_embd_head, n_head_kv, N,
  2602. wsize * n_embd_head,
  2603. wsize * n_embd_head * (n_head + 2 * n_head_kv),
  2604. wsize * n_embd_head * (n_head + n_head_kv));
  2605. offload_func_v(tmpv);
  2606. // using mode = 2 for neox mode
  2607. struct ggml_tensor * Qcur = ggml_rope_custom_inplace(ctx0, tmpq, n_past, n_embd_head, 2, 0, freq_base, freq_scale);
  2608. offload_func_kq(Qcur);
  2609. struct ggml_tensor * Kcur = ggml_rope_custom_inplace(ctx0, tmpk, n_past, n_embd_head, 2, 0, freq_base, freq_scale);
  2610. offload_func_kq(Kcur);
  2611. {
  2612. struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_cont(ctx0, tmpv), n_embd_gqa, N));
  2613. offload_func_v(Vcur);
  2614. offload_func_v(Vcur->src[0]->src[0]);
  2615. ggml_set_name(Vcur, "Vcur");
  2616. struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + n_past));
  2617. offload_func_kq(k);
  2618. ggml_set_name(k, "k");
  2619. struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd_gqa,
  2620. ( n_ctx)*ggml_element_size(kv_self.v),
  2621. (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + n_past*ggml_element_size(kv_self.v));
  2622. offload_func_v(v);
  2623. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
  2624. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
  2625. }
  2626. struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  2627. offload_func_kq(Q);
  2628. ggml_set_name(Q, "Q");
  2629. struct ggml_tensor * K =
  2630. ggml_view_3d(ctx0, kv_self.k,
  2631. n_embd_head, n_past + N, n_head_kv,
  2632. ggml_element_size(kv_self.k)*n_embd_gqa,
  2633. ggml_element_size(kv_self.k)*n_embd_head,
  2634. ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
  2635. offload_func_kq(K);
  2636. ggml_set_name(K, "K");
  2637. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  2638. offload_func_kq(KQ);
  2639. ggml_set_name(KQ, "KQ");
  2640. struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale);
  2641. offload_func_kq(KQ_scaled);
  2642. ggml_set_name(KQ_scaled, "KQ_scaled");
  2643. struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past);
  2644. offload_func_kq(KQ_masked);
  2645. ggml_set_name(KQ_masked, "KQ_masked");
  2646. struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
  2647. offload_func_v(KQ_soft_max);
  2648. ggml_set_name(KQ_soft_max, "KQ_soft_max");
  2649. struct ggml_tensor * V =
  2650. ggml_view_3d(ctx0, kv_self.v,
  2651. n_past + N, n_embd_head, n_head_kv,
  2652. ggml_element_size(kv_self.v)*n_ctx,
  2653. ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
  2654. ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
  2655. offload_func_v(V);
  2656. ggml_set_name(V, "V");
  2657. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
  2658. offload_func_v(KQV);
  2659. ggml_set_name(KQV, "KQV");
  2660. struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  2661. offload_func_v(KQV_merged);
  2662. ggml_set_name(KQV_merged, "KQV_merged");
  2663. cur = ggml_cpy(ctx0, KQV_merged, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
  2664. offload_func_v(cur);
  2665. ggml_set_name(cur, "KQV_merged_contiguous");
  2666. cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
  2667. offload_func(cur);
  2668. ggml_set_name(cur, "result_wo");
  2669. }
  2670. struct ggml_tensor * attn_out = cur;
  2671. // feed forward
  2672. {
  2673. struct ggml_tensor * inpFF = attn_norm;
  2674. cur = ggml_mul_mat(ctx0, model.layers[il].w3, inpFF);
  2675. offload_func(cur);
  2676. cur = ggml_gelu(ctx0, cur);
  2677. offload_func(cur);
  2678. cur = ggml_mul_mat(ctx0, model.layers[il].w2, cur);
  2679. offload_func(cur);
  2680. }
  2681. cur = ggml_add(ctx0, cur, attn_out);
  2682. offload_func(cur);
  2683. cur = ggml_add(ctx0, cur, inpL);
  2684. offload_func(cur);
  2685. // input for next layer
  2686. inpL = cur;
  2687. }
  2688. cur = inpL;
  2689. // norm
  2690. {
  2691. cur = ggml_norm(ctx0, cur, norm_eps);
  2692. offload_func_nr(cur);
  2693. cur = ggml_add(ctx0,
  2694. ggml_mul(ctx0, cur, model.output_norm),
  2695. model.output_norm_b);
  2696. ggml_set_name(cur, "result_norm");
  2697. }
  2698. cur = ggml_mul_mat(ctx0, model.output, cur);
  2699. ggml_set_name(cur, "result_output");
  2700. ggml_build_forward_expand(gf, cur);
  2701. ggml_free(ctx0);
  2702. return gf;
  2703. }
  2704. static struct ggml_cgraph * llama_build_graph(
  2705. llama_context & lctx,
  2706. const llama_token * tokens,
  2707. const float * embd,
  2708. int n_tokens,
  2709. int n_past) {
  2710. const auto & model = lctx.model;
  2711. struct ggml_cgraph * result = NULL;
  2712. switch (model.arch) {
  2713. case LLM_ARCH_LLAMA:
  2714. {
  2715. result = llm_build_llama(lctx, tokens, embd, n_tokens, n_past);
  2716. } break;
  2717. case LLM_ARCH_BAICHUAN:
  2718. {
  2719. result = llm_build_baichaun(lctx, tokens, embd, n_tokens, n_past);
  2720. } break;
  2721. case LLM_ARCH_FALCON:
  2722. {
  2723. result = llm_build_falcon(lctx, tokens, embd, n_tokens, n_past);
  2724. } break;
  2725. default:
  2726. GGML_ASSERT(false);
  2727. };
  2728. return result;
  2729. }
  2730. // evaluate the transformer
  2731. //
  2732. // - lctx: llama context
  2733. // - tokens: new batch of tokens to process
  2734. // - embd embeddings input
  2735. // - n_tokens number of tokens
  2736. // - n_past: the context size so far
  2737. // - n_threads: number of threads to use
  2738. //
  2739. static bool llama_eval_internal(
  2740. llama_context & lctx,
  2741. const llama_token * tokens,
  2742. const float * embd,
  2743. int n_tokens,
  2744. int n_past,
  2745. int n_threads,
  2746. const char * cgraph_fname) {
  2747. GGML_ASSERT((!tokens && embd) || (tokens && !embd)); // NOLINT
  2748. GGML_ASSERT(n_tokens > 0);
  2749. GGML_ASSERT(n_past >= 0);
  2750. // TODO: keep the values of n_batch and n_ctx
  2751. // GGML_ASSERT(n_tokens <= n_batch);
  2752. // GGML_ASSERT(n_past + n_tokens <= n_ctx);
  2753. const int64_t t_start_us = ggml_time_us();
  2754. #ifdef GGML_USE_MPI
  2755. ggml_mpi_eval_init(lctx.ctx_mpi, &n_tokens, &n_past, &n_threads);
  2756. #endif
  2757. GGML_ASSERT(n_threads > 0);
  2758. const int N = n_tokens;
  2759. const auto & model = lctx.model;
  2760. const auto & hparams = model.hparams;
  2761. const auto & kv_self = lctx.kv_self;
  2762. GGML_ASSERT(!!kv_self.ctx);
  2763. const int64_t n_embd = hparams.n_embd;
  2764. const int64_t n_vocab = hparams.n_vocab;
  2765. ggml_allocr_reset(lctx.alloc);
  2766. ggml_cgraph * gf = llama_build_graph(lctx, tokens, embd, n_tokens, n_past);
  2767. ggml_allocr_alloc_graph(lctx.alloc, gf);
  2768. #ifdef GGML_USE_CUBLAS
  2769. for (int i = 0; i < gf->n_leafs; i++) {
  2770. ggml_tensor * node = gf->leafs[i];
  2771. if (node->backend == GGML_BACKEND_GPU && node->extra == NULL) {
  2772. ggml_cuda_assign_scratch_offset(node, (char*)node->data - (char *) lctx.buf_alloc.data);
  2773. }
  2774. }
  2775. for (int i = 0; i < gf->n_nodes; i++) {
  2776. ggml_tensor * node = gf->nodes[i];
  2777. if (node->backend == GGML_BACKEND_GPU && node->extra == NULL) {
  2778. ggml_cuda_assign_scratch_offset(node, (char*)node->data - (char *) lctx.buf_alloc.data);
  2779. }
  2780. }
  2781. #endif
  2782. // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
  2783. // for big prompts, if BLAS is enabled, it is better to use only one thread
  2784. // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
  2785. // TODO: this is mostly important for Apple Silicon where CBLAS is still performing very well
  2786. // we still need some threads to process all non-mul_mat ops, but not too much to avoid interfering
  2787. // with the BLAS calls. need a better solution
  2788. if (N >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas()) {
  2789. n_threads = std::min(4, n_threads);
  2790. }
  2791. struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
  2792. struct ggml_tensor * embeddings = gf->nodes[gf->n_nodes - 2];
  2793. GGML_ASSERT(strcmp(res->name, "result_output") == 0);
  2794. GGML_ASSERT(strcmp(embeddings->name, "result_norm") == 0);
  2795. #if GGML_USE_MPI
  2796. const int64_t n_layer = hparams.n_layer;
  2797. ggml_mpi_graph_compute_pre(lctx.ctx_mpi, gf, n_layer);
  2798. #endif
  2799. #ifdef GGML_USE_METAL
  2800. if (lctx.ctx_metal) {
  2801. ggml_metal_set_n_cb (lctx.ctx_metal, n_threads);
  2802. ggml_metal_graph_compute(lctx.ctx_metal, gf);
  2803. ggml_metal_get_tensor (lctx.ctx_metal, res);
  2804. if (!lctx.embedding.empty()) {
  2805. ggml_metal_get_tensor(lctx.ctx_metal, embeddings);
  2806. }
  2807. } else {
  2808. ggml_graph_compute_helper(lctx.work_buffer, gf, n_threads);
  2809. }
  2810. #else
  2811. ggml_graph_compute_helper(lctx.work_buffer, gf, n_threads);
  2812. #endif
  2813. #if GGML_USE_MPI
  2814. ggml_mpi_graph_compute_post(lctx.ctx_mpi, gf, n_layer);
  2815. #endif
  2816. // update kv token count
  2817. lctx.kv_self.n = n_past + N;
  2818. if (cgraph_fname) {
  2819. ggml_graph_export(gf, cgraph_fname);
  2820. }
  2821. #ifdef GGML_PERF
  2822. // print timing information per ggml operation (for debugging purposes)
  2823. // requires GGML_PERF to be defined
  2824. ggml_graph_print(gf);
  2825. #endif
  2826. // plot the computation graph in dot format (for debugging purposes)
  2827. //if (n_past%100 == 0) {
  2828. // ggml_graph_dump_dot(gf, NULL, "llama.dot");
  2829. //}
  2830. // extract logits
  2831. {
  2832. auto & logits_out = lctx.logits;
  2833. if (lctx.logits_all) {
  2834. logits_out.resize(n_vocab * N);
  2835. memcpy(logits_out.data(), (float *) ggml_get_data(res), sizeof(float)*n_vocab*N);
  2836. } else {
  2837. // return result for just the last token
  2838. logits_out.resize(n_vocab);
  2839. memcpy(logits_out.data(), (float *) ggml_get_data(res) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
  2840. }
  2841. }
  2842. // extract embeddings
  2843. if (!lctx.embedding.empty()) {
  2844. auto & embedding_out = lctx.embedding;
  2845. embedding_out.resize(n_embd);
  2846. memcpy(embedding_out.data(), (float *) ggml_get_data(embeddings) + (n_embd*(N - 1)), sizeof(float)*n_embd);
  2847. }
  2848. // measure the performance only for the single-token evals
  2849. if (N == 1) {
  2850. lctx.t_eval_us += ggml_time_us() - t_start_us;
  2851. lctx.n_eval++;
  2852. }
  2853. else if (N > 1) {
  2854. lctx.t_p_eval_us += ggml_time_us() - t_start_us;
  2855. lctx.n_p_eval += N;
  2856. }
  2857. return true;
  2858. }
  2859. //
  2860. // tokenizer
  2861. //
  2862. static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) {
  2863. return vocab.type;
  2864. }
  2865. static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) {
  2866. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL;
  2867. }
  2868. static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) {
  2869. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_UNKNOWN;
  2870. }
  2871. static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) {
  2872. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_CONTROL;
  2873. }
  2874. static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
  2875. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_BYTE;
  2876. }
  2877. static uint8_t llama_token_to_byte(const llama_vocab & vocab, llama_token id) {
  2878. GGML_ASSERT(llama_is_byte_token(vocab, id));
  2879. const auto& token_data = vocab.id_to_token.at(id);
  2880. auto buf = token_data.text.substr(3, 2);
  2881. return strtol(buf.c_str(), NULL, 16);
  2882. }
  2883. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) {
  2884. char buf[7];
  2885. int result = snprintf(buf, sizeof(buf), "<0x%02X>", ch);
  2886. GGML_ASSERT(0 <= result && result < 7);
  2887. return vocab.token_to_id.at(buf);
  2888. }
  2889. static void llama_escape_whitespace(std::string & text) {
  2890. replace_all(text, " ", "\xe2\x96\x81");
  2891. }
  2892. static void llama_unescape_whitespace(std::string & word) {
  2893. replace_all(word, "\xe2\x96\x81", " ");
  2894. }
  2895. struct llm_symbol {
  2896. using index = int;
  2897. index prev;
  2898. index next;
  2899. const char * text;
  2900. size_t n;
  2901. };
  2902. static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");
  2903. // SPM tokenizer
  2904. // original implementation:
  2905. // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
  2906. struct llm_bigram_spm {
  2907. struct comparator {
  2908. bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
  2909. return (l.score < r.score) || (l.score == r.score && l.left > r.left);
  2910. }
  2911. };
  2912. using queue_storage = std::vector<llm_bigram_spm>;
  2913. using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
  2914. llm_symbol::index left;
  2915. llm_symbol::index right;
  2916. float score;
  2917. size_t size;
  2918. };
  2919. struct llm_tokenizer_spm {
  2920. llm_tokenizer_spm(const llama_vocab & vocab): vocab(vocab) {}
  2921. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  2922. // split string into utf8 chars
  2923. int index = 0;
  2924. size_t offs = 0;
  2925. while (offs < text.size()) {
  2926. llm_symbol sym;
  2927. size_t len = utf8_len(text[offs]);
  2928. sym.text = text.c_str() + offs;
  2929. sym.n = std::min(len, text.size() - offs);
  2930. offs += sym.n;
  2931. sym.prev = index - 1;
  2932. sym.next = offs == text.size() ? -1 : index + 1;
  2933. index++;
  2934. symbols.emplace_back(sym);
  2935. }
  2936. // seed the work queue with all possible 2-character tokens.
  2937. for (size_t i = 1; i < symbols.size(); ++i) {
  2938. try_add_bigram(i - 1, i);
  2939. }
  2940. // keep substituting the highest frequency pairs for as long as we can.
  2941. while (!work_queue.empty()) {
  2942. auto bigram = work_queue.top();
  2943. work_queue.pop();
  2944. auto & left_sym = symbols[bigram.left];
  2945. auto & right_sym = symbols[bigram.right];
  2946. // if one of the symbols already got merged, skip it.
  2947. if (left_sym.n == 0 || right_sym.n == 0 ||
  2948. left_sym.n + right_sym.n != bigram.size) {
  2949. continue;
  2950. }
  2951. // merge the right sym into the left one
  2952. left_sym.n += right_sym.n;
  2953. right_sym.n = 0;
  2954. //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
  2955. // remove the right sym from the chain
  2956. left_sym.next = right_sym.next;
  2957. if (right_sym.next >= 0) {
  2958. symbols[right_sym.next].prev = bigram.left;
  2959. }
  2960. // find more substitutions
  2961. try_add_bigram(left_sym.prev, bigram.left);
  2962. try_add_bigram(bigram.left, left_sym.next);
  2963. }
  2964. for (int i = 0; i != -1; i = symbols[i].next) {
  2965. auto & symbol = symbols[i];
  2966. resegment(symbol, output);
  2967. }
  2968. }
  2969. private:
  2970. void resegment(llm_symbol & symbol, std::vector<llama_vocab::id> & output) {
  2971. auto text = std::string(symbol.text, symbol.n);
  2972. auto token = vocab.token_to_id.find(text);
  2973. // Do we need to support is_unused?
  2974. if (token != vocab.token_to_id.end()) {
  2975. output.push_back((*token).second);
  2976. return;
  2977. }
  2978. const auto p = rev_merge.find(text);
  2979. if (p == rev_merge.end()) {
  2980. // output any symbols that did not form tokens as bytes.
  2981. for (int j = 0; j < (int)symbol.n; ++j) {
  2982. llama_vocab::id token_id = llama_byte_to_token(vocab, symbol.text[j]);
  2983. output.push_back(token_id);
  2984. }
  2985. return;
  2986. }
  2987. resegment(symbols[p->second.first], output);
  2988. resegment(symbols[p->second.second], output);
  2989. }
  2990. void try_add_bigram(int left, int right) {
  2991. if (left == -1 || right == -1) {
  2992. return;
  2993. }
  2994. const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
  2995. auto token = vocab.token_to_id.find(text);
  2996. if (token == vocab.token_to_id.end()) {
  2997. return;
  2998. }
  2999. if (static_cast<size_t>((*token).second) >= vocab.id_to_token.size()) {
  3000. return;
  3001. }
  3002. const auto & tok_data = vocab.id_to_token[(*token).second];
  3003. llm_bigram_spm bigram;
  3004. bigram.left = left;
  3005. bigram.right = right;
  3006. bigram.score = tok_data.score;
  3007. bigram.size = text.size();
  3008. work_queue.push(bigram);
  3009. // Do we need to support is_unused?
  3010. rev_merge[text] = std::make_pair(left, right);
  3011. }
  3012. const llama_vocab & vocab;
  3013. std::vector<llm_symbol> symbols;
  3014. llm_bigram_spm::queue work_queue;
  3015. std::map<std::string, std::pair<int, int>> rev_merge;
  3016. };
  3017. // BPE tokenizer
  3018. // adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License]
  3019. // tried to simplify unicode stuff, so most likely does not work 100% correctly!
  3020. // TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused
  3021. struct llm_bigram_bpe {
  3022. struct comparator {
  3023. bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const {
  3024. return l.rank > r.rank || (l.rank == r.rank && l.left > r.left);
  3025. }
  3026. };
  3027. using queue_storage = std::vector<llm_bigram_bpe>;
  3028. using queue = std::priority_queue<llm_bigram_bpe, queue_storage, comparator>;
  3029. llm_symbol::index left;
  3030. llm_symbol::index right;
  3031. std::string text;
  3032. int rank;
  3033. size_t size;
  3034. };
  3035. struct llm_tokenizer_bpe {
  3036. llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) {}
  3037. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  3038. int final_prev_index = -1;
  3039. auto word_collection = bpe_gpt2_preprocess(text);
  3040. symbols_final.clear();
  3041. for (auto & word : word_collection) {
  3042. work_queue = llm_bigram_bpe::queue();
  3043. symbols.clear();
  3044. int index = 0;
  3045. size_t offset = 0;
  3046. while (offset < word.size()) {
  3047. llm_symbol sym;
  3048. size_t char_len = std::min(word.size() - offset, (size_t) ::utf8_len(word[offset]));
  3049. sym.text = word.c_str() + offset;
  3050. sym.n = 1;
  3051. sym.n = char_len;
  3052. offset += sym.n;
  3053. sym.prev = index - 1;
  3054. sym.next = offset == word.size() ? -1 : index + 1;
  3055. index++;
  3056. symbols.emplace_back(sym);
  3057. }
  3058. for (size_t i = 1; i < symbols.size(); ++i) {
  3059. add_new_bigram(i - 1, i);
  3060. }
  3061. // build token(s)
  3062. while (!work_queue.empty()) {
  3063. auto bigram = work_queue.top();
  3064. work_queue.pop();
  3065. auto & left_symbol = symbols[bigram.left];
  3066. auto & right_symbol = symbols[bigram.right];
  3067. if (left_symbol.n == 0 || right_symbol.n == 0) {
  3068. continue;
  3069. }
  3070. std::string left_token = std::string(left_symbol.text, left_symbol.n);
  3071. std::string right_token = std::string(right_symbol.text, right_symbol.n);
  3072. if (left_token + right_token != bigram.text) {
  3073. continue; // Skip this bigram if it's outdated
  3074. }
  3075. // merge the right sym into the left one
  3076. left_symbol.n += right_symbol.n;
  3077. right_symbol.n = 0;
  3078. // remove the right sym from the chain
  3079. left_symbol.next = right_symbol.next;
  3080. if (right_symbol.next >= 0) {
  3081. symbols[right_symbol.next].prev = bigram.left;
  3082. }
  3083. add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol
  3084. add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol
  3085. }
  3086. // add the fnished tokens to the final list keeping correct order for next and prev
  3087. for (auto & sym : symbols) {
  3088. if (sym.n > 0) {
  3089. sym.prev = final_prev_index;
  3090. sym.next = -1;
  3091. if (final_prev_index != -1) {
  3092. symbols_final[final_prev_index].next = symbols_final.size();
  3093. }
  3094. symbols_final.emplace_back(sym);
  3095. final_prev_index = symbols_final.size() - 1;
  3096. }
  3097. }
  3098. }
  3099. symbols = symbols_final;
  3100. if (!symbols.empty()) {
  3101. for (int i = 0; i != -1; i = symbols[i].next) {
  3102. auto & symbol = symbols[i];
  3103. if (symbol.n == 0) {
  3104. continue;
  3105. }
  3106. const std::string str = std::string(symbol.text, symbol.n);
  3107. const auto token = vocab.token_to_id.find(str);
  3108. if (token == vocab.token_to_id.end()) {
  3109. for (auto j = str.begin(); j != str.end(); ++j) {
  3110. std::string byte_str(1, *j);
  3111. auto token_multibyte = vocab.token_to_id.find(byte_str);
  3112. if (token_multibyte == vocab.token_to_id.end()) {
  3113. try {
  3114. llama_token token_byte = llama_byte_to_token(vocab, *j);
  3115. output.push_back(token_byte);
  3116. } catch (const std::out_of_range & err) {
  3117. fprintf(stderr,"ERROR: byte not found in vocab: '%s'\n", byte_str.c_str());
  3118. }
  3119. } else {
  3120. output.push_back((*token_multibyte).second);
  3121. }
  3122. }
  3123. } else {
  3124. output.push_back((*token).second);
  3125. }
  3126. }
  3127. }
  3128. }
  3129. private:
  3130. void add_new_bigram(int left, int right) {
  3131. if (left == -1 || right == -1) {
  3132. return;
  3133. }
  3134. std::string left_token = std::string(symbols[left].text, symbols[left].n);
  3135. std::string right_token = std::string(symbols[right].text, symbols[right].n);
  3136. int rank_found = -1;
  3137. rank_found = vocab.find_bpe_rank(left_token, right_token);
  3138. if (rank_found < 0) {
  3139. return;
  3140. }
  3141. llm_bigram_bpe bigram;
  3142. bigram.left = left;
  3143. bigram.right = right;
  3144. bigram.text = left_token + right_token;
  3145. bigram.size = left_token.size() + right_token.size();
  3146. bigram.rank = rank_found;
  3147. work_queue.push(bigram);
  3148. }
  3149. // probably not 100% correct
  3150. static std::vector<std::string> bpe_gpt2_preprocess(const std::string & text) {
  3151. std::vector<std::string> words;
  3152. // ref: https://github.com/openai/gpt-2/blob/a74da5d99abaaba920de8131d64da2862a8f213b/src/encoder.py#L53
  3153. const std::string pattern = R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)";
  3154. const std::regex re(pattern);
  3155. auto words_begin = std::sregex_iterator(text.begin(), text.end(), re);
  3156. auto words_end = std::sregex_iterator();
  3157. auto n_words = std::distance(words_begin, words_end);
  3158. words.reserve(n_words);
  3159. for (auto it = words_begin; it != words_end; ++it) {
  3160. words.push_back(it->str());
  3161. }
  3162. return words;
  3163. }
  3164. const llama_vocab & vocab;
  3165. std::vector<llm_symbol> symbols;
  3166. std::vector<llm_symbol> symbols_final;
  3167. llm_bigram_bpe::queue work_queue;
  3168. };
  3169. static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool bos) {
  3170. std::vector<llama_vocab::id> output;
  3171. // OG tokenizer behavior:
  3172. //
  3173. // tokenizer.encode('', add_bos=True) returns [1]
  3174. // tokenizer.encode('', add_bos=False) returns []
  3175. if (bos && vocab.special_bos_id != -1) {
  3176. output.push_back(vocab.special_bos_id);
  3177. }
  3178. if (raw_text.empty()) {
  3179. return output;
  3180. }
  3181. switch (vocab.type) {
  3182. case LLAMA_VOCAB_TYPE_SPM:
  3183. {
  3184. // without adding this leading whitespace, we do not get the same results as the original tokenizer
  3185. raw_text = " " + raw_text;
  3186. llm_tokenizer_spm tokenizer(vocab);
  3187. llama_escape_whitespace(raw_text);
  3188. tokenizer.tokenize(raw_text, output);
  3189. } break;
  3190. case LLAMA_VOCAB_TYPE_BPE:
  3191. {
  3192. llm_tokenizer_bpe tokenizer(vocab);
  3193. tokenizer.tokenize(raw_text, output);
  3194. } break;
  3195. };
  3196. return output;
  3197. }
  3198. //
  3199. // grammar - internal
  3200. //
  3201. struct llama_partial_utf8 {
  3202. uint32_t value; // bit value so far (unshifted)
  3203. int n_remain; // num bytes remaining; -1 indicates invalid sequence
  3204. };
  3205. struct llama_grammar {
  3206. const std::vector<std::vector<llama_grammar_element>> rules;
  3207. std::vector<std::vector<const llama_grammar_element *>> stacks;
  3208. // buffer for partially generated UTF-8 sequence from accepted tokens
  3209. llama_partial_utf8 partial_utf8;
  3210. };
  3211. struct llama_grammar_candidate {
  3212. size_t index;
  3213. const uint32_t * code_points;
  3214. llama_partial_utf8 partial_utf8;
  3215. };
  3216. // Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as
  3217. // pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`.
  3218. std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
  3219. const char * src,
  3220. llama_partial_utf8 partial_start) {
  3221. static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 };
  3222. const char * pos = src;
  3223. std::vector<uint32_t> code_points;
  3224. uint32_t value = partial_start.value;
  3225. int n_remain = partial_start.n_remain;
  3226. // continue previous decode, if applicable
  3227. while (*pos != 0 && n_remain > 0) {
  3228. uint8_t next_byte = static_cast<uint8_t>(*pos);
  3229. if ((next_byte >> 6) != 2) {
  3230. // invalid sequence, abort
  3231. code_points.push_back(0);
  3232. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, -1 });
  3233. }
  3234. value = (value << 6) + (next_byte & 0x3F);
  3235. ++pos;
  3236. --n_remain;
  3237. }
  3238. if (partial_start.n_remain > 0 && n_remain == 0) {
  3239. code_points.push_back(value);
  3240. }
  3241. // decode any subsequent utf-8 sequences, which may end in an incomplete one
  3242. while (*pos != 0) {
  3243. uint8_t first_byte = static_cast<uint8_t>(*pos);
  3244. uint8_t highbits = first_byte >> 4;
  3245. n_remain = lookup[highbits] - 1;
  3246. if (n_remain < 0) {
  3247. // invalid sequence, abort
  3248. code_points.clear();
  3249. code_points.push_back(0);
  3250. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, n_remain });
  3251. }
  3252. uint8_t mask = (1 << (7 - n_remain)) - 1;
  3253. value = first_byte & mask;
  3254. ++pos;
  3255. while (*pos != 0 && n_remain > 0) {
  3256. value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
  3257. ++pos;
  3258. --n_remain;
  3259. }
  3260. if (n_remain == 0) {
  3261. code_points.push_back(value);
  3262. }
  3263. }
  3264. code_points.push_back(0);
  3265. return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain });
  3266. }
  3267. // returns true iff pos points to the end of one of the definitions of a rule
  3268. static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) {
  3269. switch (pos->type) {
  3270. case LLAMA_GRETYPE_END: return true; // NOLINT
  3271. case LLAMA_GRETYPE_ALT: return true; // NOLINT
  3272. default: return false;
  3273. }
  3274. }
  3275. // returns true iff chr satisfies the char range at pos (regular or inverse range)
  3276. // asserts that pos is pointing to a char range element
  3277. static std::pair<bool, const llama_grammar_element *> llama_grammar_match_char(
  3278. const llama_grammar_element * pos,
  3279. const uint32_t chr) {
  3280. bool found = false;
  3281. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  3282. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); // NOLINT
  3283. do {
  3284. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  3285. // inclusive range, e.g. [a-z]
  3286. found = found || (pos->value <= chr && chr <= pos[1].value);
  3287. pos += 2;
  3288. } else {
  3289. // exact char match, e.g. [a] or "a"
  3290. found = found || pos->value == chr;
  3291. pos += 1;
  3292. }
  3293. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  3294. return std::make_pair(found == is_positive_char, pos);
  3295. }
  3296. // returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char
  3297. // range at pos (regular or inverse range)
  3298. // asserts that pos is pointing to a char range element
  3299. static bool llama_grammar_match_partial_char(
  3300. const llama_grammar_element * pos,
  3301. const llama_partial_utf8 partial_utf8) {
  3302. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  3303. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT);
  3304. uint32_t partial_value = partial_utf8.value;
  3305. int n_remain = partial_utf8.n_remain;
  3306. // invalid sequence or 7-bit char split across 2 bytes (overlong)
  3307. if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) {
  3308. return false;
  3309. }
  3310. // range of possible code points this partial UTF-8 sequence could complete to
  3311. uint32_t low = partial_value << (n_remain * 6);
  3312. uint32_t high = low | ((1 << (n_remain * 6)) - 1);
  3313. if (low == 0) {
  3314. if (n_remain == 2) {
  3315. low = 1 << 11;
  3316. } else if (n_remain == 3) {
  3317. low = 1 << 16;
  3318. }
  3319. }
  3320. do {
  3321. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  3322. // inclusive range, e.g. [a-z]
  3323. if (pos->value <= high && low <= pos[1].value) {
  3324. return is_positive_char;
  3325. }
  3326. pos += 2;
  3327. } else {
  3328. // exact char match, e.g. [a] or "a"
  3329. if (low <= pos->value && pos->value <= high) {
  3330. return is_positive_char;
  3331. }
  3332. pos += 1;
  3333. }
  3334. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  3335. return !is_positive_char;
  3336. }
  3337. // transforms a grammar pushdown stack into N possible stacks, all ending
  3338. // at a character range (terminal element)
  3339. static void llama_grammar_advance_stack(
  3340. const std::vector<std::vector<llama_grammar_element>> & rules,
  3341. const std::vector<const llama_grammar_element *> & stack,
  3342. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  3343. if (stack.empty()) {
  3344. new_stacks.emplace_back(stack);
  3345. return;
  3346. }
  3347. const llama_grammar_element * pos = stack.back();
  3348. switch (pos->type) {
  3349. case LLAMA_GRETYPE_RULE_REF: {
  3350. const size_t rule_id = static_cast<size_t>(pos->value);
  3351. const llama_grammar_element * subpos = rules[rule_id].data();
  3352. do {
  3353. // init new stack without the top (pos)
  3354. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  3355. if (!llama_grammar_is_end_of_sequence(pos + 1)) {
  3356. // if this rule ref is followed by another element, add that to stack
  3357. new_stack.push_back(pos + 1);
  3358. }
  3359. if (!llama_grammar_is_end_of_sequence(subpos)) {
  3360. // if alternate is nonempty, add to stack
  3361. new_stack.push_back(subpos);
  3362. }
  3363. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  3364. while (!llama_grammar_is_end_of_sequence(subpos)) {
  3365. // scan to end of alternate def
  3366. subpos++;
  3367. }
  3368. if (subpos->type == LLAMA_GRETYPE_ALT) {
  3369. // there's another alternate def of this rule to process
  3370. subpos++;
  3371. } else {
  3372. break;
  3373. }
  3374. } while (true);
  3375. break;
  3376. }
  3377. case LLAMA_GRETYPE_CHAR:
  3378. case LLAMA_GRETYPE_CHAR_NOT:
  3379. new_stacks.emplace_back(stack);
  3380. break;
  3381. default:
  3382. // end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range
  3383. // (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on
  3384. // those
  3385. GGML_ASSERT(false);
  3386. }
  3387. }
  3388. // takes a set of possible pushdown stacks on a grammar, which are required to
  3389. // be positioned at a character range (see `llama_grammar_advance_stack`), and
  3390. // produces the N possible stacks if the given char is accepted at those
  3391. // positions
  3392. static std::vector<std::vector<const llama_grammar_element *>> llama_grammar_accept(
  3393. const std::vector<std::vector<llama_grammar_element>> & rules,
  3394. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  3395. const uint32_t chr) {
  3396. std::vector<std::vector<const llama_grammar_element *>> new_stacks;
  3397. for (const auto & stack : stacks) {
  3398. if (stack.empty()) {
  3399. continue;
  3400. }
  3401. auto match = llama_grammar_match_char(stack.back(), chr);
  3402. if (match.first) {
  3403. const llama_grammar_element * pos = match.second;
  3404. // update top of stack to next element, if any
  3405. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  3406. if (!llama_grammar_is_end_of_sequence(pos)) {
  3407. new_stack.push_back(pos);
  3408. }
  3409. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  3410. }
  3411. }
  3412. return new_stacks;
  3413. }
  3414. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  3415. const std::vector<std::vector<llama_grammar_element>> & rules,
  3416. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  3417. const std::vector<llama_grammar_candidate> & candidates);
  3418. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
  3419. const std::vector<std::vector<llama_grammar_element>> & rules,
  3420. const std::vector<const llama_grammar_element *> & stack,
  3421. const std::vector<llama_grammar_candidate> & candidates) {
  3422. std::vector<llama_grammar_candidate> rejects;
  3423. if (stack.empty()) {
  3424. for (auto tok : candidates) {
  3425. if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) {
  3426. rejects.push_back(tok);
  3427. }
  3428. }
  3429. return rejects;
  3430. }
  3431. const llama_grammar_element * stack_pos = stack.back();
  3432. std::vector<llama_grammar_candidate> next_candidates;
  3433. for (auto tok : candidates) {
  3434. if (*tok.code_points == 0) {
  3435. // reached end of full codepoints in token, reject iff it ended in a partial sequence
  3436. // that cannot satisfy this position in grammar
  3437. if (tok.partial_utf8.n_remain != 0 &&
  3438. !llama_grammar_match_partial_char(stack_pos, tok.partial_utf8)) {
  3439. rejects.push_back(tok);
  3440. }
  3441. } else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) {
  3442. next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 });
  3443. } else {
  3444. rejects.push_back(tok);
  3445. }
  3446. }
  3447. const auto * stack_pos_after = llama_grammar_match_char(stack_pos, 0).second;
  3448. // update top of stack to next element, if any
  3449. std::vector<const llama_grammar_element *> stack_after(stack.begin(), stack.end() - 1);
  3450. if (!llama_grammar_is_end_of_sequence(stack_pos_after)) {
  3451. stack_after.push_back(stack_pos_after);
  3452. }
  3453. std::vector<std::vector<const llama_grammar_element *>> next_stacks;
  3454. llama_grammar_advance_stack(rules, stack_after, next_stacks);
  3455. auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
  3456. for (auto tok : next_rejects) {
  3457. rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 });
  3458. }
  3459. return rejects;
  3460. }
  3461. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  3462. const std::vector<std::vector<llama_grammar_element>> & rules,
  3463. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  3464. const std::vector<llama_grammar_candidate> & candidates) {
  3465. GGML_ASSERT(!stacks.empty()); // REVIEW
  3466. if (candidates.empty()) {
  3467. return std::vector<llama_grammar_candidate>();
  3468. }
  3469. auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates);
  3470. for (size_t i = 1, size = stacks.size(); i < size; ++i) {
  3471. rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects);
  3472. }
  3473. return rejects;
  3474. }
  3475. //
  3476. // grammar - external
  3477. //
  3478. struct llama_grammar * llama_grammar_init(
  3479. const llama_grammar_element ** rules,
  3480. size_t n_rules,
  3481. size_t start_rule_index) {
  3482. const llama_grammar_element * pos;
  3483. // copy rule definitions into vectors
  3484. std::vector<std::vector<llama_grammar_element>> vec_rules(n_rules);
  3485. for (size_t i = 0; i < n_rules; i++) {
  3486. for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) {
  3487. vec_rules[i].push_back(*pos);
  3488. }
  3489. vec_rules[i].push_back({LLAMA_GRETYPE_END, 0});
  3490. }
  3491. // loop over alternates of start rule to build initial stacks
  3492. std::vector<std::vector<const llama_grammar_element *>> stacks;
  3493. pos = rules[start_rule_index];
  3494. do {
  3495. std::vector<const llama_grammar_element *> stack;
  3496. if (!llama_grammar_is_end_of_sequence(pos)) {
  3497. // if alternate is nonempty, add to stack
  3498. stack.push_back(pos);
  3499. }
  3500. llama_grammar_advance_stack(vec_rules, stack, stacks);
  3501. while (!llama_grammar_is_end_of_sequence(pos)) {
  3502. // scan to end of alternate def
  3503. pos++;
  3504. }
  3505. if (pos->type == LLAMA_GRETYPE_ALT) {
  3506. // there's another alternate def of this rule to process
  3507. pos++;
  3508. } else {
  3509. break;
  3510. }
  3511. } while (true);
  3512. return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} };
  3513. }
  3514. void llama_grammar_free(struct llama_grammar * grammar) {
  3515. delete grammar;
  3516. }
  3517. struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) {
  3518. llama_grammar * result = new llama_grammar{ grammar->rules, grammar->stacks, grammar->partial_utf8 };
  3519. // redirect elements in stacks to point to new rules
  3520. for (size_t is = 0; is < result->stacks.size(); is++) {
  3521. for (size_t ie = 0; ie < result->stacks[is].size(); ie++) {
  3522. for (size_t ir0 = 0; ir0 < grammar->rules.size(); ir0++) {
  3523. for (size_t ir1 = 0; ir1 < grammar->rules[ir0].size(); ir1++) {
  3524. if (grammar->stacks[is][ie] == &grammar->rules[ir0][ir1]) {
  3525. result->stacks[is][ie] = &result->rules[ir0][ir1];
  3526. }
  3527. }
  3528. }
  3529. }
  3530. }
  3531. return result;
  3532. }
  3533. //
  3534. // sampling
  3535. //
  3536. void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
  3537. GGML_ASSERT(candidates->size > 0);
  3538. const int64_t t_start_sample_us = ggml_time_us();
  3539. // Sort the logits in descending order
  3540. if (!candidates->sorted) {
  3541. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  3542. return a.logit > b.logit;
  3543. });
  3544. candidates->sorted = true;
  3545. }
  3546. float max_l = candidates->data[0].logit;
  3547. float cum_sum = 0.0f;
  3548. for (size_t i = 0; i < candidates->size; ++i) {
  3549. float p = expf(candidates->data[i].logit - max_l);
  3550. candidates->data[i].p = p;
  3551. cum_sum += p;
  3552. }
  3553. for (size_t i = 0; i < candidates->size; ++i) {
  3554. candidates->data[i].p /= cum_sum;
  3555. }
  3556. if (ctx) {
  3557. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  3558. }
  3559. }
  3560. void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep) {
  3561. const int64_t t_start_sample_us = ggml_time_us();
  3562. k = std::max(k, (int) min_keep);
  3563. k = std::min(k, (int) candidates->size);
  3564. // Sort scores in descending order
  3565. if (!candidates->sorted) {
  3566. auto comp = [](const llama_token_data & a, const llama_token_data & b) {
  3567. return a.logit > b.logit;
  3568. };
  3569. if (k == (int) candidates->size) {
  3570. std::sort(candidates->data, candidates->data + candidates->size, comp);
  3571. } else {
  3572. std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
  3573. }
  3574. candidates->sorted = true;
  3575. }
  3576. candidates->size = k;
  3577. if (ctx) {
  3578. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  3579. }
  3580. }
  3581. void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  3582. if (p >= 1.0f) {
  3583. return;
  3584. }
  3585. llama_sample_softmax(ctx, candidates);
  3586. const int64_t t_start_sample_us = ggml_time_us();
  3587. // Compute the cumulative probabilities
  3588. float cum_sum = 0.0f;
  3589. size_t last_idx = candidates->size;
  3590. for (size_t i = 0; i < candidates->size; ++i) {
  3591. cum_sum += candidates->data[i].p;
  3592. // Check if the running sum is at least p or if we have kept at least min_keep tokens
  3593. // we set the last index to i+1 to indicate that the current iterate should be included in the set
  3594. if (cum_sum >= p && i + 1 >= min_keep) {
  3595. last_idx = i + 1;
  3596. break;
  3597. }
  3598. }
  3599. // Resize the output vector to keep only the top-p tokens
  3600. candidates->size = last_idx;
  3601. if (ctx) {
  3602. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  3603. }
  3604. }
  3605. void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
  3606. if (z >= 1.0f || candidates->size <= 2) {
  3607. return;
  3608. }
  3609. llama_sample_softmax(nullptr, candidates);
  3610. const int64_t t_start_sample_us = ggml_time_us();
  3611. // Compute the first and second derivatives
  3612. std::vector<float> first_derivatives(candidates->size - 1);
  3613. std::vector<float> second_derivatives(candidates->size - 2);
  3614. for (size_t i = 0; i < first_derivatives.size(); ++i) {
  3615. first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
  3616. }
  3617. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  3618. second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
  3619. }
  3620. // Calculate absolute value of second derivatives
  3621. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  3622. second_derivatives[i] = std::abs(second_derivatives[i]);
  3623. }
  3624. // Normalize the second derivatives
  3625. {
  3626. const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
  3627. if (second_derivatives_sum > 1e-6f) {
  3628. for (float & value : second_derivatives) {
  3629. value /= second_derivatives_sum;
  3630. }
  3631. } else {
  3632. for (float & value : second_derivatives) {
  3633. value = 1.0f / second_derivatives.size();
  3634. }
  3635. }
  3636. }
  3637. float cum_sum = 0.0f;
  3638. size_t last_idx = candidates->size;
  3639. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  3640. cum_sum += second_derivatives[i];
  3641. // Check if the running sum is greater than z or if we have kept at least min_keep tokens
  3642. if (cum_sum > z && i >= min_keep) {
  3643. last_idx = i;
  3644. break;
  3645. }
  3646. }
  3647. // Resize the output vector to keep only the tokens above the tail location
  3648. candidates->size = last_idx;
  3649. if (ctx) {
  3650. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  3651. }
  3652. }
  3653. void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  3654. // Reference implementation:
  3655. // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
  3656. if (p >= 1.0f) {
  3657. return;
  3658. }
  3659. // Compute the softmax of logits and calculate entropy
  3660. llama_sample_softmax(nullptr, candidates);
  3661. const int64_t t_start_sample_us = ggml_time_us();
  3662. float entropy = 0.0f;
  3663. for (size_t i = 0; i < candidates->size; ++i) {
  3664. entropy += -candidates->data[i].p * logf(candidates->data[i].p);
  3665. }
  3666. // Compute the absolute difference between negative log probability and entropy for each candidate
  3667. std::vector<float> shifted_scores;
  3668. for (size_t i = 0; i < candidates->size; ++i) {
  3669. float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
  3670. shifted_scores.push_back(shifted_score);
  3671. }
  3672. // Sort tokens based on the shifted_scores and their corresponding indices
  3673. std::vector<size_t> indices(candidates->size);
  3674. std::iota(indices.begin(), indices.end(), 0);
  3675. std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
  3676. return shifted_scores[a] < shifted_scores[b];
  3677. });
  3678. // Compute the cumulative probabilities
  3679. float cum_sum = 0.0f;
  3680. size_t last_idx = indices.size();
  3681. for (size_t i = 0; i < indices.size(); ++i) {
  3682. size_t idx = indices[i];
  3683. cum_sum += candidates->data[idx].p;
  3684. // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
  3685. if (cum_sum > p && i >= min_keep - 1) {
  3686. last_idx = i + 1;
  3687. break;
  3688. }
  3689. }
  3690. // Resize the output vector to keep only the locally typical tokens
  3691. std::vector<llama_token_data> new_candidates;
  3692. for (size_t i = 0; i < last_idx; ++i) {
  3693. size_t idx = indices[i];
  3694. new_candidates.push_back(candidates->data[idx]);
  3695. }
  3696. // Replace the data in candidates with the new_candidates data
  3697. std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
  3698. candidates->size = new_candidates.size();
  3699. if (ctx) {
  3700. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  3701. }
  3702. }
  3703. void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
  3704. const int64_t t_start_sample_us = ggml_time_us();
  3705. for (size_t i = 0; i < candidates_p->size; ++i) {
  3706. candidates_p->data[i].logit /= temp;
  3707. }
  3708. if (ctx) {
  3709. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  3710. }
  3711. }
  3712. void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty) {
  3713. if (last_tokens_size == 0 || penalty == 1.0f) {
  3714. return;
  3715. }
  3716. const int64_t t_start_sample_us = ggml_time_us();
  3717. for (size_t i = 0; i < candidates->size; ++i) {
  3718. const auto * token_iter = std::find(last_tokens, last_tokens + last_tokens_size, candidates->data[i].id);
  3719. if (token_iter == last_tokens + last_tokens_size) {
  3720. continue;
  3721. }
  3722. // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
  3723. // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
  3724. if (candidates->data[i].logit <= 0) {
  3725. candidates->data[i].logit *= penalty;
  3726. } else {
  3727. candidates->data[i].logit /= penalty;
  3728. }
  3729. }
  3730. candidates->sorted = false;
  3731. if (ctx) {
  3732. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  3733. }
  3734. }
  3735. void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens_p, size_t last_tokens_size, float alpha_frequency, float alpha_presence) {
  3736. if (last_tokens_size == 0 || (alpha_frequency == 0.0f && alpha_presence == 0.0f)) {
  3737. return;
  3738. }
  3739. const int64_t t_start_sample_us = ggml_time_us();
  3740. // Create a frequency map to count occurrences of each token in last_tokens
  3741. std::unordered_map<llama_token, int> token_count;
  3742. for (size_t i = 0; i < last_tokens_size; ++i) {
  3743. token_count[last_tokens_p[i]]++;
  3744. }
  3745. // Apply frequency and presence penalties to the candidates
  3746. for (size_t i = 0; i < candidates->size; ++i) {
  3747. auto token_iter = token_count.find(candidates->data[i].id);
  3748. if (token_iter == token_count.end()) {
  3749. continue;
  3750. }
  3751. int count = token_iter->second;
  3752. candidates->data[i].logit -= float(count) * alpha_frequency + float(count > 0) * alpha_presence;
  3753. }
  3754. candidates->sorted = false;
  3755. if (ctx) {
  3756. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  3757. }
  3758. }
  3759. void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) {
  3760. GGML_ASSERT(ctx);
  3761. const int64_t t_start_sample_us = ggml_time_us();
  3762. bool allow_eos = false;
  3763. for (const auto & stack : grammar->stacks) {
  3764. if (stack.empty()) {
  3765. allow_eos = true;
  3766. break;
  3767. }
  3768. }
  3769. const llama_token eos = llama_token_eos(ctx);
  3770. std::vector<std::pair<std::vector<uint32_t>, llama_partial_utf8>> candidates_decoded;
  3771. std::vector<llama_grammar_candidate> candidates_grammar;
  3772. for (size_t i = 0; i < candidates->size; ++i) {
  3773. const llama_token id = candidates->data[i].id;
  3774. const std::string piece = llama_token_to_str(ctx, id);
  3775. if (id == eos) {
  3776. if (!allow_eos) {
  3777. candidates->data[i].logit = -INFINITY;
  3778. }
  3779. } else if (piece.empty() || piece[0] == 0) {
  3780. candidates->data[i].logit = -INFINITY;
  3781. } else {
  3782. candidates_decoded.push_back(decode_utf8(piece.c_str(), grammar->partial_utf8));
  3783. candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second });
  3784. }
  3785. }
  3786. const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar);
  3787. for (const auto & reject : rejects) {
  3788. candidates->data[reject.index].logit = -INFINITY;
  3789. }
  3790. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  3791. }
  3792. static void llama_log_softmax(float * array, size_t size) {
  3793. float max_l = *std::max_element(array, array + size);
  3794. float sum = 0.f;
  3795. for (size_t i = 0; i < size; ++i) {
  3796. float p = expf(array[i] - max_l);
  3797. sum += p;
  3798. array[i] = p;
  3799. }
  3800. for (size_t i = 0; i < size; ++i) {
  3801. array[i] = logf(array[i] / sum);
  3802. }
  3803. }
  3804. void llama_sample_classifier_free_guidance(
  3805. struct llama_context * ctx,
  3806. llama_token_data_array * candidates,
  3807. struct llama_context * guidance_ctx,
  3808. float scale) {
  3809. int64_t t_start_sample_us = ggml_time_us();
  3810. GGML_ASSERT(ctx);
  3811. auto n_vocab = llama_n_vocab(ctx);
  3812. GGML_ASSERT(n_vocab == (int)candidates->size);
  3813. GGML_ASSERT(!candidates->sorted);
  3814. std::vector<float> logits_base;
  3815. logits_base.reserve(candidates->size);
  3816. for (size_t i = 0; i < candidates->size; ++i) {
  3817. logits_base.push_back(candidates->data[i].logit);
  3818. }
  3819. llama_log_softmax(logits_base.data(), candidates->size);
  3820. float* logits_guidance = llama_get_logits(guidance_ctx);
  3821. llama_log_softmax(logits_guidance, n_vocab);
  3822. for (int i = 0; i < n_vocab; ++i) {
  3823. float logit_guidance = logits_guidance[i];
  3824. float logit_base = logits_base[i];
  3825. candidates->data[i].logit = scale * (logit_base - logit_guidance) + logit_guidance;
  3826. }
  3827. if (ctx) {
  3828. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  3829. }
  3830. }
  3831. llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu) {
  3832. GGML_ASSERT(ctx);
  3833. auto N = float(llama_n_vocab(ctx));
  3834. int64_t t_start_sample_us;
  3835. t_start_sample_us = ggml_time_us();
  3836. llama_sample_softmax(nullptr, candidates);
  3837. // Estimate s_hat using the most probable m tokens
  3838. float s_hat = 0.0;
  3839. float sum_ti_bi = 0.0;
  3840. float sum_ti_sq = 0.0;
  3841. for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
  3842. float t_i = logf(float(i + 2) / float(i + 1));
  3843. float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
  3844. sum_ti_bi += t_i * b_i;
  3845. sum_ti_sq += t_i * t_i;
  3846. }
  3847. s_hat = sum_ti_bi / sum_ti_sq;
  3848. // Compute k from the estimated s_hat and target surprise value
  3849. float epsilon_hat = s_hat - 1;
  3850. float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
  3851. // Sample the next word X using top-k sampling
  3852. llama_sample_top_k(nullptr, candidates, int(k), 1);
  3853. if (ctx) {
  3854. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  3855. }
  3856. llama_token X = llama_sample_token(ctx, candidates);
  3857. t_start_sample_us = ggml_time_us();
  3858. // Compute error as the difference between observed surprise and target surprise value
  3859. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  3860. return candidate.id == X;
  3861. }));
  3862. float observed_surprise = -log2f(candidates->data[X_idx].p);
  3863. float e = observed_surprise - tau;
  3864. // Update mu using the learning rate and error
  3865. *mu = *mu - eta * e;
  3866. if (ctx) {
  3867. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  3868. }
  3869. return X;
  3870. }
  3871. llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
  3872. int64_t t_start_sample_us;
  3873. t_start_sample_us = ggml_time_us();
  3874. llama_sample_softmax(ctx, candidates);
  3875. // Truncate the words with surprise values greater than mu
  3876. candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  3877. return -log2f(candidate.p) > *mu;
  3878. }));
  3879. if (candidates->size == 0) {
  3880. candidates->size = 1;
  3881. }
  3882. if (ctx) {
  3883. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  3884. }
  3885. // Normalize the probabilities of the remaining words
  3886. llama_sample_softmax(ctx, candidates);
  3887. // Sample the next word X from the remaining words
  3888. llama_token X = llama_sample_token(ctx, candidates);
  3889. t_start_sample_us = ggml_time_us();
  3890. // Compute error as the difference between observed surprise and target surprise value
  3891. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  3892. return candidate.id == X;
  3893. }));
  3894. float observed_surprise = -log2f(candidates->data[X_idx].p);
  3895. float e = observed_surprise - tau;
  3896. // Update mu using the learning rate and error
  3897. *mu = *mu - eta * e;
  3898. if (ctx) {
  3899. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  3900. }
  3901. return X;
  3902. }
  3903. llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
  3904. const int64_t t_start_sample_us = ggml_time_us();
  3905. // Find max element
  3906. auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  3907. return a.logit < b.logit;
  3908. });
  3909. llama_token result = max_iter->id;
  3910. if (ctx) {
  3911. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  3912. ctx->n_sample++;
  3913. }
  3914. return result;
  3915. }
  3916. llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
  3917. GGML_ASSERT(ctx);
  3918. const int64_t t_start_sample_us = ggml_time_us();
  3919. llama_sample_softmax(nullptr, candidates);
  3920. std::vector<float> probs;
  3921. probs.reserve(candidates->size);
  3922. for (size_t i = 0; i < candidates->size; ++i) {
  3923. probs.push_back(candidates->data[i].p);
  3924. }
  3925. std::discrete_distribution<> dist(probs.begin(), probs.end());
  3926. auto & rng = ctx->rng;
  3927. int idx = dist(rng);
  3928. llama_token result = candidates->data[idx].id;
  3929. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  3930. ctx->n_sample++;
  3931. return result;
  3932. }
  3933. void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token) {
  3934. const int64_t t_start_sample_us = ggml_time_us();
  3935. if (token == llama_token_eos(ctx)) {
  3936. for (const auto & stack : grammar->stacks) {
  3937. if (stack.empty()) {
  3938. return;
  3939. }
  3940. }
  3941. GGML_ASSERT(false);
  3942. }
  3943. const std::string piece = llama_token_to_str(ctx, token);
  3944. // Note terminating 0 in decoded string
  3945. const auto decoded = decode_utf8(piece.c_str(), grammar->partial_utf8);
  3946. const auto & code_points = decoded.first;
  3947. for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
  3948. grammar->stacks = llama_grammar_accept(grammar->rules, grammar->stacks, *it);
  3949. }
  3950. grammar->partial_utf8 = decoded.second;
  3951. GGML_ASSERT(!grammar->stacks.empty());
  3952. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  3953. }
  3954. //
  3955. // Beam search
  3956. //
  3957. struct llama_beam {
  3958. std::vector<llama_token> tokens;
  3959. float p; // Cumulative beam probability (renormalized relative to all beams)
  3960. bool eob; // Initialize end-of-beam to false. Callback sets this to true.
  3961. // Sort beams by probability. In case of ties, prefer beams at eob.
  3962. bool operator<(const llama_beam & rhs) const {
  3963. return std::make_pair(p, eob) < std::make_pair(rhs.p, rhs.eob);
  3964. }
  3965. // Shift off first n tokens and discard them.
  3966. void shift_tokens(const size_t n) {
  3967. if (n) {
  3968. std::copy(tokens.begin() + n, tokens.end(), tokens.begin());
  3969. tokens.resize(tokens.size() - n);
  3970. }
  3971. }
  3972. llama_beam_view view() const { return {tokens.data(), tokens.size(), p, eob}; }
  3973. };
  3974. // A struct for calculating logit-related info.
  3975. struct llama_logit_info {
  3976. const float * const logits;
  3977. const int n_vocab;
  3978. const float max_l;
  3979. const float normalizer;
  3980. struct sum_exp {
  3981. float max_l;
  3982. float operator()(float sum, float l) const { return sum + std::exp(l - max_l); }
  3983. };
  3984. llama_logit_info(llama_context * ctx)
  3985. : logits(llama_get_logits(ctx))
  3986. , n_vocab(llama_n_vocab(ctx))
  3987. , max_l(*std::max_element(logits, logits + n_vocab))
  3988. , normalizer(1.0f / std::accumulate(logits, logits + n_vocab, 0.0f, sum_exp{max_l}))
  3989. { }
  3990. llama_token_data get_token_data(const llama_token token_id) const {
  3991. constexpr auto p = std::numeric_limits<float>::quiet_NaN(); // never used
  3992. return {token_id, logits[token_id], p};
  3993. }
  3994. // Return top k token_data by logit.
  3995. std::vector<llama_token_data> top_k(size_t k) {
  3996. std::vector<llama_token_data> min_heap; // min-heap by logit
  3997. const llama_token k_min = std::min(static_cast<llama_token>(k), n_vocab);
  3998. min_heap.reserve(k_min);
  3999. for (llama_token token_id = 0 ; token_id < k_min ; ++token_id) {
  4000. min_heap.push_back(get_token_data(token_id));
  4001. }
  4002. auto comp = [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; };
  4003. std::make_heap(min_heap.begin(), min_heap.end(), comp);
  4004. for (llama_token token_id = k_min ; token_id < n_vocab ; ++token_id) {
  4005. if (min_heap.front().logit < logits[token_id]) {
  4006. std::pop_heap(min_heap.begin(), min_heap.end(), comp);
  4007. min_heap.back().id = token_id;
  4008. min_heap.back().logit = logits[token_id];
  4009. std::push_heap(min_heap.begin(), min_heap.end(), comp);
  4010. }
  4011. }
  4012. return min_heap;
  4013. }
  4014. float probability_from_logit(float logit) const {
  4015. return normalizer * std::exp(logit - max_l);
  4016. }
  4017. };
  4018. struct llama_beam_search_data {
  4019. llama_context * ctx;
  4020. size_t n_beams;
  4021. int n_past;
  4022. int n_predict;
  4023. int n_threads;
  4024. std::vector<llama_beam> beams;
  4025. std::vector<llama_beam> next_beams;
  4026. // Re-calculated on each loop iteration
  4027. size_t common_prefix_length;
  4028. // Used to communicate to/from callback on beams state.
  4029. std::vector<llama_beam_view> beam_views;
  4030. llama_beam_search_data(llama_context * ctx, size_t n_beams, int n_past, int n_predict, int n_threads)
  4031. : ctx(ctx)
  4032. , n_beams(n_beams)
  4033. , n_past(n_past)
  4034. , n_predict(n_predict)
  4035. , n_threads(n_threads)
  4036. , beam_views(n_beams) {
  4037. beams.reserve(n_beams);
  4038. next_beams.reserve(n_beams);
  4039. }
  4040. // Collapse beams to a single beam given by index.
  4041. void collapse_beams(const size_t beam_idx) {
  4042. if (0u < beam_idx) {
  4043. std::swap(beams[0], beams[beam_idx]);
  4044. }
  4045. beams.resize(1);
  4046. }
  4047. // Min-heaps are used to efficiently collect the top-k elements (k=n_beams).
  4048. // The repetative patterns below reflect the 2 stages of heaps:
  4049. // * Gather elements until the vector is full, then call std::make_heap() on it.
  4050. // * If the heap is full and a new element is found that should be included, pop the
  4051. // least element to the back(), replace it with the new, then push it into the heap.
  4052. void fill_next_beams_by_top_probabilities(llama_beam & beam) {
  4053. // Min-heaps use a greater-than comparator.
  4054. const auto comp = [](const llama_beam & a, const llama_beam & b) { return a.p > b.p; };
  4055. if (beam.eob) {
  4056. // beam is at end-of-sentence, so just copy it to next_beams if its probability is high enough.
  4057. if (next_beams.size() < n_beams) {
  4058. next_beams.push_back(std::move(beam));
  4059. if (next_beams.size() == n_beams) {
  4060. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  4061. }
  4062. } else if (next_beams.front().p < beam.p) {
  4063. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  4064. next_beams.back() = std::move(beam);
  4065. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  4066. }
  4067. } else {
  4068. // beam is not at end-of-sentence, so branch with next top_k tokens.
  4069. if (!beam.tokens.empty()) {
  4070. llama_eval(ctx, beam.tokens.data(), beam.tokens.size(), n_past, n_threads);
  4071. }
  4072. llama_logit_info logit_info(ctx);
  4073. std::vector<llama_token_data> next_tokens = logit_info.top_k(n_beams);
  4074. size_t i=0;
  4075. if (next_beams.size() < n_beams) {
  4076. for (; next_beams.size() < n_beams ; ++i) {
  4077. llama_beam next_beam = beam;
  4078. next_beam.tokens.push_back(next_tokens[i].id);
  4079. next_beam.p *= logit_info.probability_from_logit(next_tokens[i].logit);
  4080. next_beams.push_back(std::move(next_beam));
  4081. }
  4082. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  4083. } else {
  4084. for (; next_beams.front().p == 0.0f ; ++i) {
  4085. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  4086. next_beams.back() = beam;
  4087. next_beams.back().tokens.push_back(next_tokens[i].id);
  4088. next_beams.back().p *= logit_info.probability_from_logit(next_tokens[i].logit);
  4089. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  4090. }
  4091. }
  4092. for (; i < n_beams ; ++i) {
  4093. const float next_p = beam.p * logit_info.probability_from_logit(next_tokens[i].logit);
  4094. if (next_beams.front().p < next_p) {
  4095. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  4096. next_beams.back() = beam;
  4097. next_beams.back().tokens.push_back(next_tokens[i].id);
  4098. next_beams.back().p = next_p;
  4099. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  4100. }
  4101. }
  4102. }
  4103. }
  4104. // Find common_prefix_length based on beams.
  4105. // Requires beams is not empty.
  4106. size_t find_common_prefix_length() {
  4107. size_t common_prefix_length = beams[0].tokens.size();
  4108. for (size_t i = 1 ; i < beams.size() ; ++i) {
  4109. common_prefix_length = std::min(common_prefix_length, beams[i].tokens.size());
  4110. for (size_t j = 0 ; j < common_prefix_length ; ++j) {
  4111. if (beams[0].tokens[j] != beams[i].tokens[j]) {
  4112. common_prefix_length = j;
  4113. break;
  4114. }
  4115. }
  4116. }
  4117. return common_prefix_length;
  4118. }
  4119. // Construct beams_state to send back to caller via the callback function.
  4120. // Side effect: set common_prefix_length = find_common_prefix_length();
  4121. llama_beams_state get_beams_state(const bool last_call) {
  4122. for (size_t i = 0 ; i < beams.size() ; ++i) {
  4123. beam_views[i] = beams[i].view();
  4124. }
  4125. common_prefix_length = find_common_prefix_length();
  4126. return {beam_views.data(), beams.size(), common_prefix_length, last_call};
  4127. }
  4128. // Loop:
  4129. // * while i < n_predict, AND
  4130. // * any of the beams have not yet reached end-of-beam (eob), AND
  4131. // * the highest probability beam(s) (plural in case of ties) are not at end-of-sentence
  4132. // (since all other beam probabilities can only decrease)
  4133. void loop(const llama_beam_search_callback_fn_t callback, void * const callback_data) {
  4134. beams.push_back({{}, 1.0f, false}); // Start with one empty beam w/ probability = 1.0 and !eob.
  4135. const auto not_eob = [](const llama_beam & beam) { return !beam.eob; };
  4136. for (int i = 0 ; i < n_predict && std::any_of(beams.begin(),beams.end(),not_eob) &&
  4137. !beams[top_beam_index()].eob ; ++i) {
  4138. callback(callback_data, get_beams_state(false)); // Sets common_prefix_length
  4139. update_beams_from_beam_views(); // Update values (p,eob) that callback may have changed.
  4140. if (common_prefix_length) {
  4141. llama_eval(ctx, beams[0].tokens.data(), common_prefix_length, n_past, n_threads);
  4142. n_past += common_prefix_length;
  4143. }
  4144. // Zero-out next_beam probabilities to place them last in following min-heap.
  4145. std::for_each(next_beams.begin(), next_beams.end(), [](llama_beam & beam) { beam.p = 0.0f; });
  4146. for (llama_beam & beam : beams) {
  4147. beam.shift_tokens(common_prefix_length);
  4148. fill_next_beams_by_top_probabilities(beam);
  4149. }
  4150. // next_beams become the beams of next/final iteration. Swap them to re-use memory.
  4151. beams.swap(next_beams);
  4152. renormalize_beam_probabilities(beams);
  4153. }
  4154. collapse_beams(top_beam_index());
  4155. callback(callback_data, get_beams_state(true));
  4156. }
  4157. // As beams grow, the cumulative probabilities decrease.
  4158. // Renormalize them to avoid floating point underflow.
  4159. static void renormalize_beam_probabilities(std::vector<llama_beam> & beams) {
  4160. const auto sum_p = [](float sum, llama_beam & beam) { return sum + beam.p; };
  4161. const float inv_sum = 1.0f / std::accumulate(beams.begin(), beams.end(), 0.0f, sum_p);
  4162. std::for_each(beams.begin(), beams.end(), [=](llama_beam & beam) { beam.p *= inv_sum; });
  4163. }
  4164. // Assumes beams is non-empty. Uses llama_beam::operator<() for ordering.
  4165. size_t top_beam_index() {
  4166. return std::max_element(beams.begin(), beams.end()) - beams.begin();
  4167. }
  4168. // Copy (p,eob) for each beam which may have been changed by the callback.
  4169. void update_beams_from_beam_views() {
  4170. for (size_t i = 0 ; i < beams.size() ; ++i) {
  4171. beams[i].p = beam_views[i].p;
  4172. beams[i].eob = beam_views[i].eob;
  4173. }
  4174. }
  4175. };
  4176. void llama_beam_search(llama_context * ctx,
  4177. llama_beam_search_callback_fn_t callback, void * callback_data,
  4178. size_t n_beams, int n_past, int n_predict, int n_threads) {
  4179. assert(ctx);
  4180. const int64_t t_start_sample_us = ggml_time_us();
  4181. llama_beam_search_data beam_search_data(ctx, n_beams, n_past, n_predict, n_threads);
  4182. beam_search_data.loop(callback, callback_data);
  4183. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  4184. ctx->n_sample++;
  4185. }
  4186. //
  4187. // quantization
  4188. //
  4189. static void llama_convert_tensor_internal(struct ggml_tensor * tensor, std::vector<float> & output, const size_t nelements, const int nthread) {
  4190. if (output.size() < nelements) {
  4191. output.resize(nelements);
  4192. }
  4193. float * f32_output = (float *) output.data();
  4194. ggml_type_traits_t qtype;
  4195. if (ggml_is_quantized(tensor->type)) {
  4196. qtype = ggml_internal_get_type_traits(tensor->type);
  4197. if (qtype.to_float == NULL) {
  4198. throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
  4199. }
  4200. } else if (tensor->type != GGML_TYPE_F16) {
  4201. throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
  4202. }
  4203. if (nthread < 2) {
  4204. if (tensor->type == GGML_TYPE_F16) {
  4205. ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
  4206. } else if (ggml_is_quantized(tensor->type)) {
  4207. qtype.to_float(tensor->data, f32_output, nelements);
  4208. } else {
  4209. GGML_ASSERT(false); // unreachable
  4210. }
  4211. return;
  4212. }
  4213. auto block_size = tensor->type == GGML_TYPE_F16 ? 1 : (size_t)ggml_blck_size(tensor->type);
  4214. auto block_size_bytes = ggml_type_size(tensor->type);
  4215. GGML_ASSERT(nelements % block_size == 0);
  4216. auto nblocks = nelements / block_size;
  4217. auto blocks_per_thread = nblocks / nthread;
  4218. auto spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
  4219. std::vector<std::thread> workers;
  4220. for (auto tnum = 0, in_buff_offs = 0, out_buff_offs = 0; tnum < nthread; tnum++) {
  4221. auto thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
  4222. auto thr_elems = thr_blocks * block_size; // number of elements for this thread
  4223. auto thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
  4224. auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
  4225. if (typ == GGML_TYPE_F16) {
  4226. ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
  4227. } else {
  4228. qtype.to_float(inbuf, outbuf, nels);
  4229. }
  4230. };
  4231. workers.push_back(std::thread(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems));
  4232. in_buff_offs += thr_block_bytes;
  4233. out_buff_offs += thr_elems;
  4234. }
  4235. for (auto & worker : workers) {
  4236. worker.join();
  4237. }
  4238. }
  4239. static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
  4240. ggml_type quantized_type;
  4241. llama_ftype ftype = params->ftype;
  4242. switch (params->ftype) {
  4243. case LLAMA_FTYPE_MOSTLY_Q4_0: quantized_type = GGML_TYPE_Q4_0; break;
  4244. case LLAMA_FTYPE_MOSTLY_Q4_1: quantized_type = GGML_TYPE_Q4_1; break;
  4245. case LLAMA_FTYPE_MOSTLY_Q5_0: quantized_type = GGML_TYPE_Q5_0; break;
  4246. case LLAMA_FTYPE_MOSTLY_Q5_1: quantized_type = GGML_TYPE_Q5_1; break;
  4247. case LLAMA_FTYPE_MOSTLY_Q8_0: quantized_type = GGML_TYPE_Q8_0; break;
  4248. case LLAMA_FTYPE_MOSTLY_F16: quantized_type = GGML_TYPE_F16; break;
  4249. case LLAMA_FTYPE_ALL_F32: quantized_type = GGML_TYPE_F32; break;
  4250. #ifdef GGML_USE_K_QUANTS
  4251. // K-quants
  4252. case LLAMA_FTYPE_MOSTLY_Q2_K: quantized_type = GGML_TYPE_Q2_K; break;
  4253. case LLAMA_FTYPE_MOSTLY_Q3_K_S:
  4254. case LLAMA_FTYPE_MOSTLY_Q3_K_M:
  4255. case LLAMA_FTYPE_MOSTLY_Q3_K_L: quantized_type = GGML_TYPE_Q3_K; break;
  4256. case LLAMA_FTYPE_MOSTLY_Q4_K_S:
  4257. case LLAMA_FTYPE_MOSTLY_Q4_K_M: quantized_type = GGML_TYPE_Q4_K; break;
  4258. case LLAMA_FTYPE_MOSTLY_Q5_K_S:
  4259. case LLAMA_FTYPE_MOSTLY_Q5_K_M: quantized_type = GGML_TYPE_Q5_K; break;
  4260. case LLAMA_FTYPE_MOSTLY_Q6_K: quantized_type = GGML_TYPE_Q6_K; break;
  4261. #endif
  4262. default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
  4263. }
  4264. int nthread = params->nthread;
  4265. if (nthread <= 0) {
  4266. nthread = std::thread::hardware_concurrency();
  4267. }
  4268. std::unique_ptr<llama_model_loader> ml(new llama_model_loader(fname_inp, /*use_mmap*/ false));
  4269. llama_model model;
  4270. llm_load_arch(*ml, model);
  4271. llm_load_hparams(*ml, model, 0, 0, 0);
  4272. if (params->only_copy) {
  4273. ftype = model.ftype;
  4274. }
  4275. const size_t align = GGUF_DEFAULT_ALIGNMENT;
  4276. struct gguf_context * ctx_out = gguf_init_empty();
  4277. // copy the KV pairs from the input file
  4278. gguf_set_kv (ctx_out, ml->ctx_gguf);
  4279. gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
  4280. gguf_set_val_u32(ctx_out, "general.file_type", ftype);
  4281. #ifdef GGML_USE_K_QUANTS
  4282. int n_attention_wv = 0;
  4283. int n_feed_forward_w2 = 0;
  4284. for (int i = 0; i < ml->n_tensors; ++i) {
  4285. struct ggml_tensor * meta = ml->get_tensor_meta(i);
  4286. const std::string name = ggml_get_name(meta);
  4287. // TODO: avoid hardcoded tensor names - use the TN_* constants
  4288. if (name.find("attn_v.weight") != std::string::npos) {
  4289. ++n_attention_wv;
  4290. }
  4291. else if (name.find("ffn_down.weight") != std::string::npos) {
  4292. ++n_feed_forward_w2;
  4293. }
  4294. }
  4295. if (n_attention_wv != n_feed_forward_w2 || (uint32_t)n_attention_wv != model.hparams.n_layer) {
  4296. LLAMA_LOG_WARN("%s ============ Strange model: n_attention_wv = %d, n_feed_forward_w2 = %d, hparams.n_layer = %d\n",
  4297. __func__, n_attention_wv, n_feed_forward_w2, model.hparams.n_layer);
  4298. }
  4299. int i_attention_wv = 0;
  4300. int i_feed_forward_w2 = 0;
  4301. #endif
  4302. size_t total_size_org = 0;
  4303. size_t total_size_new = 0;
  4304. std::vector<int64_t> hist_all(1 << 4, 0);
  4305. std::vector<std::thread> workers;
  4306. std::mutex mutex;
  4307. #ifdef GGML_USE_K_QUANTS
  4308. auto use_more_bits = [] (int i_layer, int num_layers) -> bool {
  4309. return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
  4310. };
  4311. #endif
  4312. int idx = 0;
  4313. std::vector<uint8_t> read_data;
  4314. std::vector<uint8_t> work;
  4315. // populate the original tensors so we get an initial meta data
  4316. for (int i = 0; i < ml->n_tensors; ++i) {
  4317. struct ggml_tensor * meta = ml->get_tensor_meta(i);
  4318. gguf_add_tensor(ctx_out, meta);
  4319. }
  4320. std::ofstream fout(fname_out, std::ios::binary);
  4321. const size_t meta_size = gguf_get_meta_size(ctx_out);
  4322. LLAMA_LOG_INFO("%s: meta size = %zu bytes\n", __func__, meta_size);
  4323. // placeholder for the meta data
  4324. ::zeros(fout, meta_size);
  4325. for (int i = 0; i < ml->n_tensors; ++i) {
  4326. struct ggml_tensor * tensor = ml->get_tensor_meta(i);
  4327. const std::string name = ggml_get_name(tensor);
  4328. read_data.resize(ggml_nbytes(tensor));
  4329. tensor->data = read_data.data();
  4330. ml->load_data_for(tensor);
  4331. LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ",
  4332. ++idx, ml->n_tensors,
  4333. ggml_get_name(tensor),
  4334. llama_format_tensor_shape(tensor).c_str(),
  4335. ggml_type_name(tensor->type));
  4336. // This used to be a regex, but <regex> has an extreme cost to compile times.
  4337. bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
  4338. // quantize only 2D tensors
  4339. quantize &= (tensor->n_dims == 2);
  4340. quantize &= params->quantize_output_tensor || name != "output.weight";
  4341. quantize &= !params->only_copy;
  4342. enum ggml_type new_type;
  4343. void * new_data;
  4344. size_t new_size;
  4345. if (quantize) {
  4346. new_type = quantized_type;
  4347. #ifdef GGML_USE_K_QUANTS
  4348. // TODO: avoid hardcoded tensor names - use the TN_* constants
  4349. const auto tn = LLM_TN(ml->get_arch());
  4350. if (name == tn(LLM_TENSOR_OUTPUT, "weight")) {
  4351. int nx = tensor->ne[0];
  4352. if (model.arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
  4353. new_type = GGML_TYPE_Q8_0;
  4354. }
  4355. else if (new_type != GGML_TYPE_Q8_0) {
  4356. new_type = GGML_TYPE_Q6_K;
  4357. }
  4358. } else if (name.find("attn_v.weight") != std::string::npos) {
  4359. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  4360. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  4361. new_type = i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  4362. }
  4363. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  4364. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
  4365. use_more_bits(i_attention_wv, n_attention_wv)) new_type = GGML_TYPE_Q6_K;
  4366. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
  4367. else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) &&
  4368. (i_attention_wv < n_attention_wv/8 || i_attention_wv >= 7*n_attention_wv/8)) new_type = GGML_TYPE_Q6_K;
  4369. if (model.type == MODEL_70B) {
  4370. // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
  4371. // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
  4372. // nearly negligible increase in model size by quantizing this tensor with more bits:
  4373. if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
  4374. }
  4375. ++i_attention_wv;
  4376. } else if (name.find("ffn_down.weight") != std::string::npos) {
  4377. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  4378. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  4379. new_type = i_feed_forward_w2 < 2 ? GGML_TYPE_Q5_K
  4380. : model.arch != LLM_ARCH_FALCON || use_more_bits(i_feed_forward_w2, n_feed_forward_w2) ? GGML_TYPE_Q4_K
  4381. : GGML_TYPE_Q3_K;
  4382. }
  4383. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
  4384. new_type = model.arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
  4385. }
  4386. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
  4387. if (model.arch == LLM_ARCH_FALCON) {
  4388. new_type = i_feed_forward_w2 < 2 ? GGML_TYPE_Q6_K :
  4389. use_more_bits(i_feed_forward_w2, n_feed_forward_w2) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  4390. } else {
  4391. if (use_more_bits(i_feed_forward_w2, n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K;
  4392. }
  4393. }
  4394. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_feed_forward_w2, n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K;
  4395. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && model.arch != LLM_ARCH_FALCON && i_feed_forward_w2 < 4) {
  4396. new_type = GGML_TYPE_Q5_K;
  4397. }
  4398. ++i_feed_forward_w2;
  4399. } else if (name.find("attn_output.weight") != std::string::npos) {
  4400. if (model.arch != LLM_ARCH_FALCON) {
  4401. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
  4402. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) new_type = GGML_TYPE_Q4_K;
  4403. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  4404. } else {
  4405. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
  4406. }
  4407. }
  4408. else if (name.find("attn_qkv.weight") != std::string::npos) {
  4409. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
  4410. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
  4411. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
  4412. }
  4413. else if (name.find("ffn_gate.weight") != std::string::npos || name.find("ffn_up.weight") != std::string::npos) {
  4414. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  4415. }
  4416. // This can be used to reduce the size of the Q5_K_S model.
  4417. // The associated PPL increase is fully in line with the size reduction
  4418. //else {
  4419. // if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
  4420. //}
  4421. bool convert_incompatible_tensor = false;
  4422. if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
  4423. new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K) {
  4424. int nx = tensor->ne[0];
  4425. int ny = tensor->ne[1];
  4426. if (nx % QK_K != 0) {
  4427. LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for k-quants\n", __func__, nx, ny, QK_K);
  4428. convert_incompatible_tensor = true;
  4429. }
  4430. }
  4431. if (convert_incompatible_tensor) {
  4432. if (name == tn(LLM_TENSOR_OUTPUT, "weight")) {
  4433. new_type = GGML_TYPE_F16; //fall back to F16 instead of just failing.
  4434. LLAMA_LOG_WARN("F16 will be used for this tensor instead.\n");
  4435. } else if (name == tn(LLM_TENSOR_TOKEN_EMBD, "weight")) {
  4436. new_type = GGML_TYPE_Q4_0; //fall back to Q4_0 instead of just failing.
  4437. LLAMA_LOG_WARN("Q4_0 will be used for this tensor instead.\n");
  4438. } else {
  4439. throw std::runtime_error("Unsupported tensor size encountered\n");
  4440. }
  4441. }
  4442. #endif
  4443. // If we've decided to quantize to the same type the tensor is already
  4444. // in then there's nothing to do.
  4445. quantize = tensor->type != new_type;
  4446. }
  4447. if (!quantize) {
  4448. new_type = tensor->type;
  4449. new_data = tensor->data;
  4450. new_size = ggml_nbytes(tensor);
  4451. LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
  4452. } else {
  4453. const size_t nelements = ggml_nelements(tensor);
  4454. float * f32_data;
  4455. std::vector<float> f32_conv_buf;
  4456. if (tensor->type == GGML_TYPE_F32) {
  4457. f32_data = (float *) tensor->data;
  4458. } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
  4459. throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
  4460. } else {
  4461. llama_convert_tensor_internal(tensor, f32_conv_buf, nelements, nthread);
  4462. f32_data = (float *) f32_conv_buf.data();
  4463. }
  4464. LLAMA_LOG_INFO("quantizing to %s .. ", ggml_type_name(new_type));
  4465. fflush(stdout);
  4466. work.resize(nelements * 4); // upper bound on size
  4467. new_data = work.data();
  4468. std::vector<int64_t> hist_cur(1 << 4, 0);
  4469. static const int chunk_size = 32 * 512;
  4470. const int nchunk = (nelements + chunk_size - 1)/chunk_size;
  4471. const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1;
  4472. if (nthread_use < 2) {
  4473. new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nelements, hist_cur.data());
  4474. } else {
  4475. size_t counter = 0;
  4476. new_size = 0;
  4477. auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, nelements]() {
  4478. std::vector<int64_t> local_hist;
  4479. size_t local_size = 0;
  4480. while (true) {
  4481. std::unique_lock<std::mutex> lock(mutex);
  4482. size_t first = counter; counter += chunk_size;
  4483. if (first >= nelements) {
  4484. if (!local_hist.empty()) {
  4485. for (int j=0; j<int(local_hist.size()); ++j) {
  4486. hist_cur[j] += local_hist[j];
  4487. }
  4488. new_size += local_size;
  4489. }
  4490. break;
  4491. }
  4492. lock.unlock();
  4493. size_t last = std::min(nelements, first + chunk_size);
  4494. if (local_hist.empty()) {
  4495. local_hist.resize(hist_cur.size(), 0);
  4496. }
  4497. local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first, last - first, local_hist.data());
  4498. }
  4499. };
  4500. if ((int) workers.size() < nthread_use - 1) {
  4501. workers.resize(nthread_use - 1);
  4502. }
  4503. for (int it = 0; it < nthread_use - 1; ++it) {
  4504. workers[it] = std::thread(compute);
  4505. }
  4506. compute();
  4507. for (int it = 0; it < nthread_use - 1; ++it) {
  4508. workers[it].join();
  4509. }
  4510. }
  4511. LLAMA_LOG_INFO("size = %8.2f MB -> %8.2f MB | hist: ", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
  4512. int64_t tot_count = 0;
  4513. for (size_t i = 0; i < hist_cur.size(); i++) {
  4514. hist_all[i] += hist_cur[i];
  4515. tot_count += hist_cur[i];
  4516. }
  4517. if (tot_count > 0) {
  4518. for (size_t i = 0; i < hist_cur.size(); i++) {
  4519. LLAMA_LOG_INFO("%5.3f ", hist_cur[i] / float(nelements));
  4520. }
  4521. }
  4522. LLAMA_LOG_INFO("\n");
  4523. }
  4524. total_size_org += ggml_nbytes(tensor);
  4525. total_size_new += new_size;
  4526. // update the gguf meta data as we go
  4527. gguf_set_tensor_type(ctx_out, name.c_str(), new_type);
  4528. gguf_set_tensor_data(ctx_out, name.c_str(), new_data, new_size);
  4529. // write tensor data + padding
  4530. fout.write((const char *) new_data, new_size);
  4531. zeros(fout, GGML_PAD(new_size, align) - new_size);
  4532. }
  4533. // go back to beginning of file and write the updated meta data
  4534. {
  4535. fout.seekp(0);
  4536. std::vector<uint8_t> data(gguf_get_meta_size(ctx_out));
  4537. gguf_get_meta_data(ctx_out, data.data());
  4538. fout.write((const char *) data.data(), data.size());
  4539. }
  4540. fout.close();
  4541. gguf_free(ctx_out);
  4542. LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
  4543. LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
  4544. // print histogram for all tensors
  4545. {
  4546. int64_t sum_all = 0;
  4547. for (size_t i = 0; i < hist_all.size(); i++) {
  4548. sum_all += hist_all[i];
  4549. }
  4550. if (sum_all > 0) {
  4551. LLAMA_LOG_INFO("%s: hist: ", __func__);
  4552. for (size_t i = 0; i < hist_all.size(); i++) {
  4553. LLAMA_LOG_INFO("%5.3f ", hist_all[i] / float(sum_all));
  4554. }
  4555. LLAMA_LOG_INFO("\n");
  4556. }
  4557. }
  4558. }
  4559. // TODO: after the GGUF PR, this likely won't work and needs to be updated
  4560. int llama_apply_lora_from_file_internal(const struct llama_model & model, const char * path_lora, const char * path_base_model, int n_threads) {
  4561. LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
  4562. const int64_t t_start_lora_us = ggml_time_us();
  4563. auto fin = std::ifstream(path_lora, std::ios::binary);
  4564. if (!fin) {
  4565. LLAMA_LOG_ERROR("%s: failed to open '%s'\n", __func__, path_lora);
  4566. return 1;
  4567. }
  4568. // verify magic and version
  4569. {
  4570. uint32_t magic;
  4571. fin.read((char *) &magic, sizeof(magic));
  4572. uint32_t format_version;
  4573. fin.read((char *) &format_version, sizeof(format_version));
  4574. if (format_version != 1) {
  4575. LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ );
  4576. return 1;
  4577. }
  4578. }
  4579. int32_t lora_r;
  4580. int32_t lora_alpha;
  4581. fin.read((char *) &lora_r, sizeof(lora_r));
  4582. fin.read((char *) &lora_alpha, sizeof(lora_alpha));
  4583. float scaling = (float)lora_alpha / (float)lora_r;
  4584. LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
  4585. // create a temporary ggml context to store the lora tensors
  4586. // todo: calculate size from biggest possible tensor
  4587. std::vector<uint8_t> lora_buf(1024ull * 1024ull * 1024ull);
  4588. struct ggml_init_params params;
  4589. params.mem_size = lora_buf.size();
  4590. params.mem_buffer = lora_buf.data();
  4591. params.no_alloc = false;
  4592. ggml_context * lora_ctx = ggml_init(params);
  4593. std::unordered_map<std::string, struct ggml_tensor *> lora_tensors;
  4594. // create a name -> tensor map of the model to accelerate lookups
  4595. std::unordered_map<std::string, struct ggml_tensor*> model_tensors;
  4596. for (const auto & kv : model.tensors_by_name) {
  4597. model_tensors.insert(kv);
  4598. }
  4599. // load base model
  4600. std::unique_ptr<llama_model_loader> ml;
  4601. ggml_context * base_ctx = NULL;
  4602. std::vector<uint8_t> base_buf;
  4603. if (path_base_model) {
  4604. LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
  4605. ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true));
  4606. size_t ctx_size;
  4607. size_t mmapped_size;
  4608. ml->calc_sizes(ctx_size, mmapped_size);
  4609. base_buf.resize(ctx_size);
  4610. ggml_init_params base_params;
  4611. base_params.mem_size = base_buf.size();
  4612. base_params.mem_buffer = base_buf.data();
  4613. base_params.no_alloc = ml->use_mmap;
  4614. base_ctx = ggml_init(base_params);
  4615. // maybe this should in llama_model_loader
  4616. if (ml->use_mmap) {
  4617. ml->mapping.reset(new llama_mmap(&ml->file, /* prefetch */ 0, ggml_is_numa()));
  4618. }
  4619. }
  4620. // read tensors and apply
  4621. bool warned = false;
  4622. int n_tensors = 0;
  4623. std::vector<uint8_t> work_buffer;
  4624. while (true) {
  4625. int32_t n_dims;
  4626. int32_t length;
  4627. int32_t ftype;
  4628. fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
  4629. fin.read(reinterpret_cast<char *>(&length), sizeof(length));
  4630. fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
  4631. if (fin.eof()) {
  4632. break;
  4633. }
  4634. int32_t ne[2] = { 1, 1 };
  4635. for (int i = 0; i < n_dims; ++i) {
  4636. fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
  4637. }
  4638. std::string name;
  4639. {
  4640. char buf[1024];
  4641. fin.read(buf, length);
  4642. name = std::string(buf, length);
  4643. }
  4644. // check for lora suffix and get the type of tensor
  4645. const std::string lora_suffix = ".lora";
  4646. size_t pos = name.rfind(lora_suffix);
  4647. if (pos == std::string::npos) {
  4648. LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
  4649. return 1;
  4650. }
  4651. std::string lora_type = name.substr(pos + lora_suffix.length());
  4652. std::string base_name = name;
  4653. base_name.erase(pos);
  4654. // LLAMA_LOG_INFO("%s: %s => %s (lora type %s) \n", __func__, name.c_str(),base_name.c_str(), lora_type.c_str());
  4655. if (model_tensors.find(base_name) == model_tensors.end()) {
  4656. LLAMA_LOG_ERROR("%s: unknown tensor '%s' in lora adapter\n", __func__, name.data());
  4657. return 1;
  4658. }
  4659. // create ggml tensor
  4660. ggml_type wtype;
  4661. switch (ftype) {
  4662. case 0: wtype = GGML_TYPE_F32; break;
  4663. case 1: wtype = GGML_TYPE_F16; break;
  4664. default:
  4665. {
  4666. LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n",
  4667. __func__, ftype);
  4668. return false;
  4669. }
  4670. }
  4671. ggml_tensor * lora_tensor;
  4672. if (n_dims == 2) {
  4673. lora_tensor = ggml_new_tensor_2d(lora_ctx, wtype, ne[0], ne[1]);
  4674. }
  4675. else {
  4676. LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims);
  4677. return 1;
  4678. }
  4679. ggml_set_name(lora_tensor, "lora_tensor");
  4680. // load tensor data
  4681. size_t offset = fin.tellg();
  4682. size_t tensor_data_size = ggml_nbytes(lora_tensor);
  4683. offset = (offset + 31) & -32;
  4684. fin.seekg(offset);
  4685. fin.read((char*)lora_tensor->data, tensor_data_size);
  4686. lora_tensors[name] = lora_tensor;
  4687. // check if we have both A and B tensors and apply
  4688. if (lora_tensors.find(base_name + ".loraA") != lora_tensors.end() &&
  4689. lora_tensors.find(base_name + ".loraB") != lora_tensors.end()) {
  4690. ggml_tensor * dest_t = model_tensors[base_name];
  4691. offload_func_t offload_func = llama_nop;
  4692. offload_func_t offload_func_force_inplace = llama_nop;
  4693. #ifdef GGML_USE_CUBLAS
  4694. if (dest_t->backend == GGML_BACKEND_GPU || dest_t->backend == GGML_BACKEND_GPU_SPLIT) {
  4695. if (dest_t->type != GGML_TYPE_F16) {
  4696. throw std::runtime_error(format(
  4697. "%s: error: the simultaneous use of LoRAs and GPU acceleration is only supported for f16 models", __func__));
  4698. }
  4699. offload_func = ggml_cuda_assign_buffers;
  4700. offload_func_force_inplace = ggml_cuda_assign_buffers_force_inplace;
  4701. }
  4702. #endif // GGML_USE_CUBLAS
  4703. ggml_tensor * base_t;
  4704. if (ml) {
  4705. struct gguf_context * ctx_gguf = ml->ctx_gguf;
  4706. // load from base model
  4707. if (gguf_find_tensor(ctx_gguf, base_name.c_str()) < 0) {
  4708. // TODO: throw
  4709. LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
  4710. return 1;
  4711. }
  4712. // TODO: not tested!! maybe not working!
  4713. base_t = ml->create_tensor(base_ctx, base_name, { (uint32_t)dest_t->ne[0], (uint32_t)dest_t->ne[1] }, GGML_BACKEND_CPU);
  4714. ml->load_data_for(base_t);
  4715. } else {
  4716. base_t = dest_t;
  4717. }
  4718. if (ggml_is_quantized(base_t->type)) {
  4719. if (!warned) {
  4720. LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, "
  4721. "use a f16 or f32 base model with --lora-base\n", __func__);
  4722. warned = true;
  4723. }
  4724. }
  4725. ggml_tensor * loraA = lora_tensors[base_name + ".loraA"];
  4726. GGML_ASSERT(loraA->type == GGML_TYPE_F32);
  4727. ggml_set_name(loraA, "loraA");
  4728. ggml_tensor * loraB = lora_tensors[base_name + ".loraB"];
  4729. GGML_ASSERT(loraB->type == GGML_TYPE_F32);
  4730. ggml_set_name(loraB, "loraB");
  4731. if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
  4732. LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
  4733. " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
  4734. return 1;
  4735. }
  4736. // w = w + BA*s
  4737. ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
  4738. offload_func(BA);
  4739. ggml_set_name(BA, "BA");
  4740. if (scaling != 1.0f) {
  4741. ggml_tensor * scale_tensor = ggml_new_f32(lora_ctx, scaling);
  4742. ggml_set_name(scale_tensor, "scale_tensor");
  4743. BA = ggml_scale_inplace(lora_ctx, BA, scale_tensor);
  4744. offload_func(BA);
  4745. ggml_set_name(BA, "BA_scaled");
  4746. }
  4747. ggml_tensor * r;
  4748. if (base_t == dest_t) {
  4749. r = ggml_add_inplace(lora_ctx, dest_t, BA);
  4750. offload_func_force_inplace(r);
  4751. ggml_set_name(r, "r_add_inplace");
  4752. }
  4753. else {
  4754. r = ggml_add(lora_ctx, base_t, BA);
  4755. offload_func(r);
  4756. ggml_set_name(r, "r_add");
  4757. r = ggml_cpy(lora_ctx, r, dest_t);
  4758. offload_func(r);
  4759. ggml_set_name(r, "r_cpy");
  4760. }
  4761. struct ggml_cgraph gf = ggml_build_forward(r);
  4762. ggml_graph_compute_helper(work_buffer, &gf, n_threads);
  4763. // we won't need these tensors again, reset the context to save memory
  4764. ggml_free(lora_ctx);
  4765. lora_ctx = ggml_init(params);
  4766. lora_tensors.clear();
  4767. n_tensors++;
  4768. if (n_tensors % 4 == 0) {
  4769. LLAMA_LOG_INFO(".");
  4770. }
  4771. }
  4772. }
  4773. // TODO: this should be in a destructor, it will leak on failure
  4774. ggml_free(lora_ctx);
  4775. if (base_ctx) {
  4776. ggml_free(base_ctx);
  4777. }
  4778. const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
  4779. LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0);
  4780. return 0;
  4781. }
  4782. //
  4783. // interface implementation
  4784. //
  4785. struct llama_context_params llama_context_default_params() {
  4786. struct llama_context_params result = {
  4787. /*.seed =*/ LLAMA_DEFAULT_SEED,
  4788. /*.n_ctx =*/ 512,
  4789. /*.n_batch =*/ 512,
  4790. /*.n_gpu_layers =*/ 0,
  4791. /*.main_gpu =*/ 0,
  4792. /*.tensor_split =*/ nullptr,
  4793. /*.rope_freq_base =*/ 10000.0f,
  4794. /*.rope_freq_scale =*/ 1.0f,
  4795. /*.progress_callback =*/ nullptr,
  4796. /*.progress_callback_user_data =*/ nullptr,
  4797. /*.low_vram =*/ false,
  4798. /*.mul_mat_q =*/ true,
  4799. /*.f16_kv =*/ true,
  4800. /*.logits_all =*/ false,
  4801. /*.vocab_only =*/ false,
  4802. /*.use_mmap =*/ true,
  4803. /*.use_mlock =*/ false,
  4804. /*.embedding =*/ false,
  4805. };
  4806. #ifdef GGML_USE_METAL
  4807. result.n_gpu_layers = 1;
  4808. #endif
  4809. return result;
  4810. }
  4811. struct llama_model_quantize_params llama_model_quantize_default_params() {
  4812. struct llama_model_quantize_params result = {
  4813. /*.nthread =*/ 0,
  4814. /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
  4815. /*.allow_requantize =*/ false,
  4816. /*.quantize_output_tensor =*/ true,
  4817. /*.only_copy =*/ false,
  4818. };
  4819. return result;
  4820. }
  4821. int llama_max_devices(void) {
  4822. return LLAMA_MAX_DEVICES;
  4823. }
  4824. bool llama_mmap_supported(void) {
  4825. return llama_mmap::SUPPORTED;
  4826. }
  4827. bool llama_mlock_supported(void) {
  4828. return llama_mlock::SUPPORTED;
  4829. }
  4830. void llama_backend_init(bool numa) {
  4831. ggml_time_init();
  4832. // needed to initialize f16 tables
  4833. {
  4834. struct ggml_init_params params = { 0, NULL, false };
  4835. struct ggml_context * ctx = ggml_init(params);
  4836. ggml_free(ctx);
  4837. }
  4838. if (numa) {
  4839. ggml_numa_init();
  4840. }
  4841. #ifdef GGML_USE_MPI
  4842. ggml_mpi_backend_init();
  4843. #endif
  4844. }
  4845. void llama_backend_free(void) {
  4846. #ifdef GGML_USE_MPI
  4847. ggml_mpi_backend_free();
  4848. #endif
  4849. }
  4850. int64_t llama_time_us(void) {
  4851. return ggml_time_us();
  4852. }
  4853. struct llama_model * llama_load_model_from_file(
  4854. const char * path_model,
  4855. struct llama_context_params params) {
  4856. ggml_time_init();
  4857. llama_model * model = new llama_model;
  4858. ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
  4859. unsigned cur_percentage = 0;
  4860. if (params.progress_callback == NULL) {
  4861. params.progress_callback_user_data = &cur_percentage;
  4862. params.progress_callback = [](float progress, void * ctx) {
  4863. unsigned * cur_percentage_p = (unsigned *) ctx;
  4864. unsigned percentage = (unsigned) (100 * progress);
  4865. while (percentage > *cur_percentage_p) {
  4866. *cur_percentage_p = percentage;
  4867. LLAMA_LOG_INFO(".");
  4868. if (percentage >= 100) {
  4869. LLAMA_LOG_INFO("\n");
  4870. }
  4871. }
  4872. };
  4873. }
  4874. if (!llama_model_load(path_model, *model, params.n_ctx, params.n_batch, params.n_gpu_layers,
  4875. params.main_gpu, params.tensor_split, params.mul_mat_q, params.rope_freq_base, params.rope_freq_scale,
  4876. params.low_vram, memory_type, params.use_mmap, params.use_mlock, params.vocab_only,
  4877. params.progress_callback, params.progress_callback_user_data)) {
  4878. LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
  4879. delete model;
  4880. return nullptr;
  4881. }
  4882. return model;
  4883. }
  4884. void llama_free_model(struct llama_model * model) {
  4885. delete model;
  4886. }
  4887. struct llama_context * llama_new_context_with_model(
  4888. struct llama_model * model,
  4889. struct llama_context_params params) {
  4890. if (!model) {
  4891. return nullptr;
  4892. }
  4893. llama_context * ctx = new llama_context(*model);
  4894. if (params.seed == LLAMA_DEFAULT_SEED) {
  4895. params.seed = time(NULL);
  4896. }
  4897. ctx->rng = std::mt19937(params.seed);
  4898. ctx->logits_all = params.logits_all;
  4899. ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
  4900. // reserve memory for context buffers
  4901. if (!params.vocab_only) {
  4902. if (!llama_kv_cache_init(ctx->model.hparams, ctx->kv_self, memory_type, ctx->model.hparams.n_ctx, params.n_gpu_layers)) {
  4903. LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__);
  4904. llama_free(ctx);
  4905. return nullptr;
  4906. }
  4907. {
  4908. const size_t memory_size = ggml_nbytes(ctx->kv_self.k) + ggml_nbytes(ctx->kv_self.v);
  4909. LLAMA_LOG_INFO("%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
  4910. }
  4911. const auto & hparams = ctx->model.hparams;
  4912. // resized during inference
  4913. if (params.logits_all) {
  4914. ctx->logits.reserve(hparams.n_ctx*hparams.n_vocab);
  4915. } else {
  4916. ctx->logits.reserve(hparams.n_vocab);
  4917. }
  4918. if (params.embedding){
  4919. ctx->embedding.resize(hparams.n_embd);
  4920. }
  4921. {
  4922. static const size_t tensor_alignment = 32;
  4923. // the compute buffer is used to store the tensor and graph structs, while the allocator buffer is used for the tensor data
  4924. ctx->buf_compute.resize(ggml_tensor_overhead()*GGML_MAX_NODES + ggml_graph_overhead());
  4925. // create measure allocator
  4926. ctx->alloc = ggml_allocr_new_measure(tensor_alignment);
  4927. // build worst-case graph
  4928. int n_tokens = std::min((int)hparams.n_ctx, params.n_batch);
  4929. int n_past = hparams.n_ctx - n_tokens;
  4930. llama_token token = llama_token_bos(ctx); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  4931. ggml_cgraph * gf = llama_build_graph(*ctx, &token, NULL, n_tokens, n_past);
  4932. #ifdef GGML_USE_METAL
  4933. if (params.n_gpu_layers > 0) {
  4934. ctx->ctx_metal = ggml_metal_init(1);
  4935. if (!ctx->ctx_metal) {
  4936. LLAMA_LOG_ERROR("%s: ggml_metal_init() failed\n", __func__);
  4937. llama_free(ctx);
  4938. return NULL;
  4939. }
  4940. ggml_metal_graph_find_concurrency(ctx->ctx_metal, gf, false);
  4941. ggml_allocr_set_parse_seq(ctx->alloc, ggml_metal_get_concur_list(ctx->ctx_metal), ggml_metal_if_optimized(ctx->ctx_metal));
  4942. }
  4943. #endif
  4944. // measure memory requirements for the graph
  4945. size_t alloc_size = ggml_allocr_alloc_graph(ctx->alloc, gf) + tensor_alignment;
  4946. LLAMA_LOG_INFO("%s: compute buffer total size = %7.2f MB\n", __func__, (ctx->buf_compute.size + alloc_size) / 1024.0 / 1024.0);
  4947. // recreate allocator with exact memory requirements
  4948. ggml_allocr_free(ctx->alloc);
  4949. ctx->buf_alloc.resize(alloc_size);
  4950. ctx->alloc = ggml_allocr_new(ctx->buf_alloc.data, ctx->buf_alloc.size, tensor_alignment);
  4951. #ifdef GGML_USE_METAL
  4952. if (ctx->ctx_metal) {
  4953. ggml_allocr_set_parse_seq(ctx->alloc, ggml_metal_get_concur_list(ctx->ctx_metal), ggml_metal_if_optimized(ctx->ctx_metal));
  4954. }
  4955. #endif
  4956. #ifdef GGML_USE_CUBLAS
  4957. if (params.low_vram) {
  4958. LLAMA_LOG_INFO("%s: not allocating a VRAM scratch buffer due to low VRAM option\n", __func__);
  4959. ggml_cuda_set_scratch_size(0); // disable scratch
  4960. } else {
  4961. ggml_cuda_set_scratch_size(alloc_size);
  4962. LLAMA_LOG_INFO("%s: VRAM scratch buffer: %.2f MB\n", __func__, alloc_size / 1024.0 / 1024.0);
  4963. }
  4964. #endif
  4965. }
  4966. #ifdef GGML_USE_METAL
  4967. if (params.n_gpu_layers > 0) {
  4968. // this allocates all Metal resources and memory buffers
  4969. void * data_ptr = NULL;
  4970. size_t data_size = 0;
  4971. if (params.use_mmap) {
  4972. data_ptr = ctx->model.mapping->addr;
  4973. data_size = ctx->model.mapping->size;
  4974. } else {
  4975. data_ptr = ggml_get_mem_buffer(ctx->model.ctx);
  4976. data_size = ggml_get_mem_size (ctx->model.ctx);
  4977. }
  4978. const size_t max_size = ggml_get_max_tensor_size(ctx->model.ctx);
  4979. LLAMA_LOG_INFO("%s: max tensor size = %8.2f MB\n", __func__, max_size/1024.0/1024.0);
  4980. #define LLAMA_METAL_CHECK_BUF(result) \
  4981. if (!(result)) { \
  4982. LLAMA_LOG_ERROR("%s: failed to add buffer\n", __func__); \
  4983. llama_free(ctx); \
  4984. return NULL; \
  4985. }
  4986. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "data", data_ptr, data_size, max_size));
  4987. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "eval", ctx->buf_compute.data, ctx->buf_compute.size, 0));
  4988. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "kv", ctx->kv_self.buf.data, ctx->kv_self.buf.size, 0));
  4989. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "alloc", ctx->buf_alloc.data, ctx->buf_alloc.size, 0));
  4990. #undef LLAMA_METAL_CHECK_BUF
  4991. }
  4992. #endif
  4993. }
  4994. #ifdef GGML_USE_MPI
  4995. ctx->ctx_mpi = ggml_mpi_init();
  4996. if (ggml_mpi_rank(ctx->ctx_mpi) > 0) {
  4997. // Enter a blocking eval loop with dummy input, letting rank=0 drive the process
  4998. const std::vector<llama_token> tmp(ctx->model.hparams.n_ctx, llama_token_bos(ctx));
  4999. while (!llama_eval(ctx, tmp.data(), tmp.size(), 0, 0)) {};
  5000. llama_backend_free();
  5001. exit(1);
  5002. }
  5003. #endif
  5004. return ctx;
  5005. }
  5006. struct llama_context * llama_init_from_file(
  5007. const char * path_model,
  5008. struct llama_context_params params) {
  5009. struct llama_model * model = llama_load_model_from_file(path_model, params);
  5010. if (!model) {
  5011. return nullptr;
  5012. }
  5013. struct llama_context * ctx = llama_new_context_with_model(model, params);
  5014. ctx->model_owner = true;
  5015. return ctx;
  5016. }
  5017. void llama_free(struct llama_context * ctx) {
  5018. delete ctx;
  5019. }
  5020. int llama_n_vocab(const struct llama_context * ctx) {
  5021. return llama_model_n_vocab(&ctx->model);
  5022. }
  5023. int llama_n_ctx(const struct llama_context * ctx) {
  5024. return llama_model_n_ctx(&ctx->model);
  5025. }
  5026. int llama_n_ctx_train(const struct llama_context * ctx) {
  5027. return llama_model_n_ctx_train(&ctx->model);
  5028. }
  5029. int llama_n_embd(const struct llama_context * ctx) {
  5030. return llama_model_n_embd(&ctx->model);
  5031. }
  5032. enum llama_vocab_type llama_vocab_type(const struct llama_context * ctx) {
  5033. return ctx->model.vocab.type;
  5034. }
  5035. int llama_model_n_vocab(const struct llama_model * model) {
  5036. return model->vocab.id_to_token.size();
  5037. }
  5038. int llama_model_n_ctx(const struct llama_model * model) {
  5039. return model->hparams.n_ctx;
  5040. }
  5041. int llama_model_n_ctx_train(const struct llama_model * model) {
  5042. return model->hparams.n_ctx_train;
  5043. }
  5044. int llama_model_n_embd(const struct llama_model * model) {
  5045. return model->hparams.n_embd;
  5046. }
  5047. int llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
  5048. return snprintf(buf, buf_size, "%s %s %s",
  5049. model->name.c_str(),
  5050. llama_model_type_name(model->type),
  5051. llama_model_ftype_name(model->ftype).c_str());
  5052. }
  5053. uint64_t llama_model_size(const struct llama_model * model) {
  5054. uint64_t size = 0;
  5055. for (const auto & it : model->tensors_by_name) {
  5056. size += ggml_nbytes(it.second);
  5057. }
  5058. return size;
  5059. }
  5060. uint64_t llama_model_n_params(const struct llama_model * model) {
  5061. uint64_t nparams = 0;
  5062. for (const auto & it : model->tensors_by_name) {
  5063. nparams += ggml_nelements(it.second);
  5064. }
  5065. return nparams;
  5066. }
  5067. int llama_model_quantize(
  5068. const char * fname_inp,
  5069. const char * fname_out,
  5070. const llama_model_quantize_params * params) {
  5071. try {
  5072. llama_model_quantize_internal(fname_inp, fname_out, params);
  5073. return 0;
  5074. } catch (const std::exception & err) {
  5075. LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
  5076. return 1;
  5077. }
  5078. }
  5079. int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lora, const char * path_base_model, int n_threads) {
  5080. try {
  5081. return llama_apply_lora_from_file_internal(ctx->model, path_lora, path_base_model, n_threads);
  5082. } catch (const std::exception & err) {
  5083. LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
  5084. return 1;
  5085. }
  5086. }
  5087. int llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, const char * path_base_model, int n_threads) {
  5088. try {
  5089. return llama_apply_lora_from_file_internal(*model, path_lora, path_base_model, n_threads);
  5090. } catch (const std::exception & err) {
  5091. LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
  5092. return 1;
  5093. }
  5094. }
  5095. int llama_get_kv_cache_token_count(const struct llama_context * ctx) {
  5096. return ctx->kv_self.n;
  5097. }
  5098. #define LLAMA_MAX_RNG_STATE (64*1024)
  5099. void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) {
  5100. if (seed == LLAMA_DEFAULT_SEED) {
  5101. seed = time(NULL);
  5102. }
  5103. ctx->rng.seed(seed);
  5104. }
  5105. // Returns the *maximum* size of the state
  5106. size_t llama_get_state_size(const struct llama_context * ctx) {
  5107. // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
  5108. // for reference, std::mt19937(1337) serializes to 6701 bytes.
  5109. const size_t s_rng_size = sizeof(size_t);
  5110. const size_t s_rng = LLAMA_MAX_RNG_STATE;
  5111. const size_t s_logits_capacity = sizeof(size_t);
  5112. const size_t s_logits_size = sizeof(size_t);
  5113. const size_t s_logits = ctx->logits.capacity() * sizeof(float);
  5114. const size_t s_embedding_size = sizeof(size_t);
  5115. const size_t s_embedding = ctx->embedding.size() * sizeof(float);
  5116. const size_t s_kv_size = sizeof(size_t);
  5117. const size_t s_kv_ntok = sizeof(int);
  5118. const size_t s_kv = ctx->kv_self.buf.size;
  5119. const size_t s_total = (
  5120. + s_rng_size
  5121. + s_rng
  5122. + s_logits_capacity
  5123. + s_logits_size
  5124. + s_logits
  5125. + s_embedding_size
  5126. + s_embedding
  5127. + s_kv_size
  5128. + s_kv_ntok
  5129. + s_kv
  5130. );
  5131. return s_total;
  5132. }
  5133. // llama_context_data
  5134. struct llama_data_context {
  5135. virtual void write(const void * src, size_t size) = 0;
  5136. virtual size_t get_size_written() = 0;
  5137. virtual ~llama_data_context() = default;
  5138. };
  5139. struct llama_data_buffer_context : llama_data_context {
  5140. uint8_t * ptr;
  5141. size_t size_written = 0;
  5142. llama_data_buffer_context(uint8_t * p) : ptr(p) {}
  5143. void write(const void * src, size_t size) override {
  5144. memcpy(ptr, src, size);
  5145. ptr += size;
  5146. size_written += size;
  5147. }
  5148. size_t get_size_written() override {
  5149. return size_written;
  5150. }
  5151. };
  5152. struct llama_data_file_context : llama_data_context {
  5153. llama_file * file;
  5154. size_t size_written = 0;
  5155. llama_data_file_context(llama_file * f) : file(f) {}
  5156. void write(const void * src, size_t size) override {
  5157. file->write_raw(src, size);
  5158. size_written += size;
  5159. }
  5160. size_t get_size_written() override {
  5161. return size_written;
  5162. }
  5163. };
  5164. /** copy state data into either a buffer or file depending on the passed in context
  5165. *
  5166. * file context:
  5167. * llama_file file("/path", "wb");
  5168. * llama_data_file_context data_ctx(&file);
  5169. * llama_copy_state_data(ctx, &data_ctx);
  5170. *
  5171. * buffer context:
  5172. * std::vector<uint8_t> buf(max_size, 0);
  5173. * llama_data_buffer_context data_ctx(&buf.data());
  5174. * llama_copy_state_data(ctx, &data_ctx);
  5175. *
  5176. */
  5177. void llama_copy_state_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) {
  5178. // copy rng
  5179. {
  5180. std::stringstream rng_ss;
  5181. rng_ss << ctx->rng;
  5182. const size_t rng_size = rng_ss.str().size();
  5183. char rng_buf[LLAMA_MAX_RNG_STATE];
  5184. memset(&rng_buf[0], 0, LLAMA_MAX_RNG_STATE);
  5185. memcpy(&rng_buf[0], rng_ss.str().data(), rng_ss.str().size());
  5186. data_ctx->write(&rng_size, sizeof(rng_size));
  5187. data_ctx->write(&rng_buf[0], LLAMA_MAX_RNG_STATE);
  5188. }
  5189. // copy logits
  5190. {
  5191. const size_t logits_cap = ctx->logits.capacity();
  5192. const size_t logits_size = ctx->logits.size();
  5193. data_ctx->write(&logits_cap, sizeof(logits_cap));
  5194. data_ctx->write(&logits_size, sizeof(logits_size));
  5195. if (logits_size) {
  5196. data_ctx->write(ctx->logits.data(), logits_size * sizeof(float));
  5197. }
  5198. // If there is a gap between the size and the capacity, write padding
  5199. size_t padding_size = (logits_cap - logits_size) * sizeof(float);
  5200. if (padding_size > 0) {
  5201. std::vector<uint8_t> padding(padding_size, 0); // Create a buffer filled with zeros
  5202. data_ctx->write(padding.data(), padding_size);
  5203. }
  5204. }
  5205. // copy embeddings
  5206. {
  5207. const size_t embedding_size = ctx->embedding.size();
  5208. data_ctx->write(&embedding_size, sizeof(embedding_size));
  5209. if (embedding_size) {
  5210. data_ctx->write(ctx->embedding.data(), embedding_size * sizeof(float));
  5211. }
  5212. }
  5213. // copy kv cache
  5214. {
  5215. const auto & kv_self = ctx->kv_self;
  5216. const auto & hparams = ctx->model.hparams;
  5217. const int n_layer = hparams.n_layer;
  5218. const int n_embd = hparams.n_embd_gqa();
  5219. const int n_ctx = hparams.n_ctx;
  5220. const size_t kv_size = kv_self.buf.size;
  5221. const int kv_ntok = llama_get_kv_cache_token_count(ctx);
  5222. data_ctx->write(&kv_size, sizeof(kv_size));
  5223. data_ctx->write(&kv_ntok, sizeof(kv_ntok));
  5224. if (kv_size) {
  5225. const size_t elt_size = ggml_element_size(kv_self.k);
  5226. ggml_context * cpy_ctx = ggml_init({ 4096, NULL, /* no_alloc */ true });
  5227. ggml_cgraph gf{};
  5228. ggml_tensor * kout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer);
  5229. std::vector<uint8_t> kout3d_data(ggml_nbytes(kout3d), 0);
  5230. kout3d->data = kout3d_data.data();
  5231. ggml_tensor * vout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_ntok, n_embd, n_layer);
  5232. std::vector<uint8_t> vout3d_data(ggml_nbytes(vout3d), 0);
  5233. vout3d->data = vout3d_data.data();
  5234. ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k,
  5235. n_embd, kv_ntok, n_layer,
  5236. elt_size*n_embd, elt_size*n_embd*n_ctx, 0);
  5237. ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v,
  5238. kv_ntok, n_embd, n_layer,
  5239. elt_size*n_ctx, elt_size*n_ctx*n_embd, 0);
  5240. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, k3d, kout3d));
  5241. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, v3d, vout3d));
  5242. ggml_graph_compute_helper(ctx->work_buffer, &gf, /*n_threads*/ 1);
  5243. ggml_free(cpy_ctx);
  5244. // our data is now in the kout3d_data and vout3d_data buffers
  5245. // write them to file
  5246. data_ctx->write(kout3d_data.data(), kout3d_data.size());
  5247. data_ctx->write(vout3d_data.data(), vout3d_data.size());
  5248. }
  5249. }
  5250. }
  5251. size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
  5252. llama_data_buffer_context data_ctx(dst);
  5253. llama_copy_state_data_internal(ctx, &data_ctx);
  5254. return data_ctx.get_size_written();
  5255. }
  5256. // Sets the state reading from the specified source address
  5257. size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
  5258. uint8_t * inp = src;
  5259. // set rng
  5260. {
  5261. size_t rng_size;
  5262. char rng_buf[LLAMA_MAX_RNG_STATE];
  5263. memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
  5264. memcpy(&rng_buf[0], inp, LLAMA_MAX_RNG_STATE); inp += LLAMA_MAX_RNG_STATE;
  5265. std::stringstream rng_ss;
  5266. rng_ss.str(std::string(&rng_buf[0], rng_size));
  5267. rng_ss >> ctx->rng;
  5268. GGML_ASSERT(!rng_ss.fail());
  5269. }
  5270. // set logits
  5271. {
  5272. size_t logits_cap;
  5273. size_t logits_size;
  5274. memcpy(&logits_cap, inp, sizeof(logits_cap)); inp += sizeof(logits_cap);
  5275. memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
  5276. GGML_ASSERT(ctx->logits.capacity() == logits_cap);
  5277. if (logits_size) {
  5278. ctx->logits.resize(logits_size);
  5279. memcpy(ctx->logits.data(), inp, logits_size * sizeof(float));
  5280. }
  5281. inp += logits_cap * sizeof(float);
  5282. }
  5283. // set embeddings
  5284. {
  5285. size_t embedding_size;
  5286. memcpy(&embedding_size, inp, sizeof(embedding_size)); inp += sizeof(embedding_size);
  5287. GGML_ASSERT(ctx->embedding.capacity() == embedding_size);
  5288. if (embedding_size) {
  5289. memcpy(ctx->embedding.data(), inp, embedding_size * sizeof(float));
  5290. inp += embedding_size * sizeof(float);
  5291. }
  5292. }
  5293. // set kv cache
  5294. {
  5295. const auto & kv_self = ctx->kv_self;
  5296. const auto & hparams = ctx->model.hparams;
  5297. const int n_layer = hparams.n_layer;
  5298. const int n_embd = hparams.n_embd_gqa();
  5299. const int n_ctx = hparams.n_ctx;
  5300. size_t kv_size;
  5301. int kv_ntok;
  5302. memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
  5303. memcpy(&kv_ntok, inp, sizeof(kv_ntok)); inp += sizeof(kv_ntok);
  5304. if (kv_size) {
  5305. GGML_ASSERT(kv_self.buf.size == kv_size);
  5306. const size_t elt_size = ggml_element_size(kv_self.k);
  5307. ggml_context * cpy_ctx = ggml_init({ 4096, NULL, /* no_alloc */ true });
  5308. ggml_cgraph gf{};
  5309. ggml_tensor * kin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer);
  5310. kin3d->data = (void *) inp;
  5311. inp += ggml_nbytes(kin3d);
  5312. ggml_tensor * vin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_ntok, n_embd, n_layer);
  5313. vin3d->data = (void *) inp;
  5314. inp += ggml_nbytes(vin3d);
  5315. ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k,
  5316. n_embd, kv_ntok, n_layer,
  5317. elt_size*n_embd, elt_size*n_embd*n_ctx, 0);
  5318. ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v,
  5319. kv_ntok, n_embd, n_layer,
  5320. elt_size*n_ctx, elt_size*n_ctx*n_embd, 0);
  5321. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, kin3d, k3d));
  5322. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, vin3d, v3d));
  5323. ggml_graph_compute_helper(ctx->work_buffer, &gf, /*n_threads*/ 1);
  5324. ggml_free(cpy_ctx);
  5325. }
  5326. ctx->kv_self.n = kv_ntok;
  5327. }
  5328. const size_t nread = inp - src;
  5329. const size_t max_size = llama_get_state_size(ctx);
  5330. GGML_ASSERT(nread <= max_size);
  5331. return nread;
  5332. }
  5333. static bool llama_load_session_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  5334. llama_file file(path_session, "rb");
  5335. // sanity checks
  5336. {
  5337. const uint32_t magic = file.read_u32();
  5338. const uint32_t version = file.read_u32();
  5339. if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
  5340. LLAMA_LOG_ERROR("%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
  5341. return false;
  5342. }
  5343. llama_hparams session_hparams;
  5344. file.read_raw(&session_hparams, sizeof(llama_hparams));
  5345. if (session_hparams != ctx->model.hparams) {
  5346. LLAMA_LOG_INFO("%s : model hparams didn't match from session file!\n", __func__);
  5347. return false;
  5348. }
  5349. }
  5350. // load the prompt
  5351. {
  5352. const uint32_t n_token_count = file.read_u32();
  5353. if (n_token_count > n_token_capacity) {
  5354. LLAMA_LOG_ERROR("%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  5355. return false;
  5356. }
  5357. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  5358. *n_token_count_out = n_token_count;
  5359. }
  5360. // restore the context state
  5361. {
  5362. const size_t n_state_size_cur = file.size - file.tell();
  5363. const size_t n_state_size_max = llama_get_state_size(ctx);
  5364. if (n_state_size_cur > n_state_size_max) {
  5365. LLAMA_LOG_ERROR("%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
  5366. return false;
  5367. }
  5368. std::vector<uint8_t> state_data(n_state_size_max);
  5369. file.read_raw(state_data.data(), n_state_size_cur);
  5370. llama_set_state_data(ctx, state_data.data());
  5371. }
  5372. return true;
  5373. }
  5374. bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  5375. try {
  5376. return llama_load_session_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  5377. } catch (const std::exception & err) {
  5378. LLAMA_LOG_ERROR("error loading session file: %s\n", err.what());
  5379. return false;
  5380. }
  5381. }
  5382. bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  5383. llama_file file(path_session, "wb");
  5384. file.write_u32(LLAMA_SESSION_MAGIC);
  5385. file.write_u32(LLAMA_SESSION_VERSION);
  5386. file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
  5387. // save the prompt
  5388. file.write_u32((uint32_t) n_token_count);
  5389. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  5390. // save the context state using stream saving
  5391. llama_data_file_context data_ctx(&file);
  5392. llama_copy_state_data_internal(ctx, &data_ctx);
  5393. return true;
  5394. }
  5395. int llama_eval(
  5396. struct llama_context * ctx,
  5397. const llama_token * tokens,
  5398. int n_tokens,
  5399. int n_past,
  5400. int n_threads) {
  5401. if (!llama_eval_internal(*ctx, tokens, nullptr, n_tokens, n_past, n_threads, nullptr)) {
  5402. LLAMA_LOG_ERROR("%s: failed to eval\n", __func__);
  5403. return 1;
  5404. }
  5405. // get a more accurate load time, upon first eval
  5406. // TODO: fix this
  5407. if (!ctx->has_evaluated_once) {
  5408. ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
  5409. ctx->has_evaluated_once = true;
  5410. }
  5411. return 0;
  5412. }
  5413. int llama_eval_embd(
  5414. struct llama_context * ctx,
  5415. const float * embd,
  5416. int n_tokens,
  5417. int n_past,
  5418. int n_threads) {
  5419. if (!llama_eval_internal(*ctx, nullptr, embd, n_tokens, n_past, n_threads, nullptr)) {
  5420. LLAMA_LOG_ERROR("%s: failed to eval\n", __func__);
  5421. return 1;
  5422. }
  5423. // get a more accurate load time, upon first eval
  5424. // TODO: fix this
  5425. if (!ctx->has_evaluated_once) {
  5426. ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
  5427. ctx->has_evaluated_once = true;
  5428. }
  5429. return 0;
  5430. }
  5431. int llama_eval_export(struct llama_context * ctx, const char * fname) {
  5432. const int n_batch = 1;
  5433. const int n_ctx = 512 - n_batch;
  5434. const std::vector<llama_token> tmp(n_batch, llama_token_bos(ctx));
  5435. if (!llama_eval_internal(*ctx, tmp.data(), nullptr, tmp.size(), n_ctx, 1, fname)) {
  5436. LLAMA_LOG_ERROR("%s: failed to eval\n", __func__);
  5437. return 1;
  5438. }
  5439. return 0;
  5440. }
  5441. float * llama_get_logits(struct llama_context * ctx) {
  5442. return ctx->logits.data();
  5443. }
  5444. float * llama_get_embeddings(struct llama_context * ctx) {
  5445. return ctx->embedding.data();
  5446. }
  5447. const char * llama_token_get_text(const struct llama_context * ctx, llama_token token) {
  5448. return ctx->model.vocab.id_to_token[token].text.c_str();
  5449. }
  5450. float llama_token_get_score(const struct llama_context * ctx, llama_token token) {
  5451. return ctx->model.vocab.id_to_token[token].score;
  5452. }
  5453. llama_token_type llama_token_get_type(const struct llama_context * ctx, llama_token token) {
  5454. return ctx->model.vocab.id_to_token[token].type;
  5455. }
  5456. llama_token llama_token_bos(const struct llama_context * ctx) {
  5457. return ctx->model.vocab.special_bos_id;
  5458. }
  5459. llama_token llama_token_eos(const struct llama_context * ctx) {
  5460. return ctx->model.vocab.special_eos_id;
  5461. }
  5462. llama_token llama_token_nl(const struct llama_context * ctx) {
  5463. return ctx->model.vocab.linefeed_id;
  5464. }
  5465. int llama_tokenize(
  5466. struct llama_context * ctx,
  5467. const char * text,
  5468. llama_token * tokens,
  5469. int n_max_tokens,
  5470. bool add_bos) {
  5471. return llama_tokenize_with_model(&ctx->model, text, tokens, n_max_tokens, add_bos);
  5472. }
  5473. int llama_tokenize_with_model(
  5474. const struct llama_model * model,
  5475. const char * text,
  5476. llama_token * tokens,
  5477. int n_max_tokens,
  5478. bool add_bos) {
  5479. auto res = llama_tokenize_internal(model->vocab, text, add_bos);
  5480. if (n_max_tokens < (int) res.size()) {
  5481. // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
  5482. return -((int) res.size());
  5483. }
  5484. for (size_t i = 0; i < res.size(); i++) {
  5485. tokens[i] = res[i];
  5486. }
  5487. return res.size();
  5488. }
  5489. int llama_token_to_piece(const struct llama_context * ctx, llama_token token, char * buf, int length) {
  5490. return llama_token_to_piece_with_model(&ctx->model, token, buf, length);
  5491. }
  5492. // does not write null-terminator to buf
  5493. int llama_token_to_piece_with_model(const struct llama_model * model, llama_token token, char * buf, int length) {
  5494. if (0 <= token && token < llama_model_n_vocab(model)) {
  5495. if (llama_is_normal_token(model->vocab, token)) {
  5496. std::string result = model->vocab.id_to_token[token].text;
  5497. if (llama_vocab_get_type(model->vocab) == LLAMA_VOCAB_TYPE_SPM) {
  5498. llama_unescape_whitespace(result);
  5499. }
  5500. if (length < (int) result.length()) {
  5501. return -result.length();
  5502. }
  5503. memcpy(buf, result.c_str(), result.length());
  5504. return result.length();
  5505. } else if (llama_is_unknown_token(model->vocab, token)) { // NOLINT
  5506. if (length < 3) {
  5507. return -3;
  5508. }
  5509. buf[0] = '\xe2';
  5510. buf[1] = '\x96';
  5511. buf[2] = '\x85';
  5512. return 3;
  5513. } else if (llama_is_control_token(model->vocab, token)) {
  5514. ;
  5515. } else if (llama_is_byte_token(model->vocab, token)) {
  5516. if (length < 1) {
  5517. return -1;
  5518. }
  5519. buf[0] = llama_token_to_byte(model->vocab, token);
  5520. return 1;
  5521. }
  5522. }
  5523. return 0;
  5524. }
  5525. struct llama_timings llama_get_timings(struct llama_context * ctx) {
  5526. struct llama_timings result = {
  5527. /*.t_start_ms =*/ 1e-3 * ctx->t_start_us,
  5528. /*.t_end_ms =*/ 1.00 * ggml_time_ms(),
  5529. /*.t_load_ms =*/ 1e-3 * ctx->t_load_us,
  5530. /*.t_sample_ms =*/ 1e-3 * ctx->t_sample_us,
  5531. /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us,
  5532. /*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us,
  5533. /*.n_sample =*/ std::max(1, ctx->n_sample),
  5534. /*.n_p_eval =*/ std::max(1, ctx->n_p_eval),
  5535. /*.n_eval =*/ std::max(1, ctx->n_eval),
  5536. };
  5537. return result;
  5538. }
  5539. void llama_print_timings(struct llama_context * ctx) {
  5540. const llama_timings timings = llama_get_timings(ctx);
  5541. LLAMA_LOG_INFO("\n");
  5542. LLAMA_LOG_INFO("%s: load time = %8.2f ms\n", __func__, timings.t_load_ms);
  5543. LLAMA_LOG_INFO("%s: sample time = %8.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  5544. __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
  5545. LLAMA_LOG_INFO("%s: prompt eval time = %8.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
  5546. __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
  5547. LLAMA_LOG_INFO("%s: eval time = %8.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  5548. __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
  5549. LLAMA_LOG_INFO("%s: total time = %8.2f ms\n", __func__, (timings.t_end_ms - timings.t_start_ms));
  5550. }
  5551. void llama_reset_timings(struct llama_context * ctx) {
  5552. ctx->t_start_us = ggml_time_us();
  5553. ctx->t_sample_us = ctx->n_sample = 0;
  5554. ctx->t_eval_us = ctx->n_eval = 0;
  5555. ctx->t_p_eval_us = ctx->n_p_eval = 0;
  5556. }
  5557. const char * llama_print_system_info(void) {
  5558. static std::string s;
  5559. s = "";
  5560. s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
  5561. s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
  5562. s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
  5563. s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
  5564. s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
  5565. s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
  5566. s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
  5567. s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
  5568. s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
  5569. s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
  5570. s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
  5571. s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
  5572. s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
  5573. s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
  5574. s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
  5575. return s.c_str();
  5576. }
  5577. void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) {
  5578. fprintf(stream, "\n");
  5579. fprintf(stream, "###########\n");
  5580. fprintf(stream, "# Timings #\n");
  5581. fprintf(stream, "###########\n");
  5582. fprintf(stream, "\n");
  5583. fprintf(stream, "mst_eval: %.2f # ms / token during generation\n",
  5584. 1.0e-3 * ctx->t_eval_us / ctx->n_eval);
  5585. fprintf(stream, "mst_p_eval: %.2f # ms / token during prompt processing\n",
  5586. 1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval);
  5587. fprintf(stream, "mst_sample: %.2f # ms / token during sampling\n",
  5588. 1.0e-3 * ctx->t_sample_us / ctx->n_sample);
  5589. fprintf(stream, "n_eval: %d # number of tokens generated (excluding the first one)\n", ctx->n_eval);
  5590. fprintf(stream, "n_p_eval: %d # number of tokens processed in batches at the beginning\n", ctx->n_p_eval);
  5591. fprintf(stream, "n_sample: %d # number of sampled tokens\n", ctx->n_sample);
  5592. fprintf(stream, "t_eval_us: %" PRId64 " # total microseconds spent generating tokens\n", ctx->t_eval_us);
  5593. fprintf(stream, "t_load_us: %" PRId64 " # total microseconds spent loading the model\n", ctx->t_load_us);
  5594. fprintf(stream, "t_p_eval_us: %" PRId64 " # total microseconds spent prompt processing\n", ctx->t_p_eval_us);
  5595. fprintf(stream, "t_sample_us: %" PRId64 " # total microseconds spent sampling\n", ctx->t_sample_us);
  5596. fprintf(stream, "ts_eval: %.2f # tokens / second during generation\n",
  5597. 1.0e6 * ctx->n_eval / ctx->t_eval_us);
  5598. fprintf(stream, "ts_p_eval: %.2f # tokens / second during prompt processing\n",
  5599. 1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us);
  5600. fprintf(stream, "ts_sample: %.2f # tokens / second during sampling\n",
  5601. 1.0e6 * ctx->n_sample / ctx->t_sample_us);
  5602. }
  5603. // For internal test use
  5604. const std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx) {
  5605. return ctx->model.tensors_by_name;
  5606. }
  5607. void llama_log_set(llama_log_callback log_callback, void * user_data) {
  5608. g_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
  5609. g_state.log_callback_user_data = user_data;
  5610. }
  5611. static void llama_log_internal_v(llama_log_level level, const char * format, va_list args) {
  5612. va_list args_copy;
  5613. va_copy(args_copy, args);
  5614. char buffer[128];
  5615. int len = vsnprintf(buffer, 128, format, args);
  5616. if (len < 128) {
  5617. g_state.log_callback(level, buffer, g_state.log_callback_user_data);
  5618. } else {
  5619. char* buffer2 = new char[len+1];
  5620. vsnprintf(buffer2, len+1, format, args_copy);
  5621. buffer2[len] = 0;
  5622. g_state.log_callback(level, buffer2, g_state.log_callback_user_data);
  5623. delete[] buffer2;
  5624. }
  5625. va_end(args_copy);
  5626. }
  5627. static void llama_log_internal(llama_log_level level, const char * format, ...) {
  5628. va_list args;
  5629. va_start(args, format);
  5630. llama_log_internal_v(level, format, args);
  5631. va_end(args);
  5632. }
  5633. static void llama_log_callback_default(llama_log_level level, const char * text, void * user_data) {
  5634. (void) level;
  5635. (void) user_data;
  5636. fputs(text, stderr);
  5637. fflush(stderr);
  5638. }