wkv6.cpp 4.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141
  1. #include <sycl/sycl.hpp>
  2. #include "wkv6.hpp"
  3. constexpr int WKV_BLOCK_SIZE = 64; // Matching CUDA_WKV_BLOCK_SIZE
  4. // Helper function for the main kernel
  5. static void rwkv_wkv_f32_kernel(
  6. const int B, const int T, const int C, const int H,
  7. const float* k, const float* v, const float* r,
  8. const float* tf, const float* td, const float* s,
  9. float* dst, const sycl::nd_item<3>& item_ct1, float* shared_mem) {
  10. const int tid = item_ct1.get_local_id(2);
  11. const int bid = item_ct1.get_group(2);
  12. const int head_size = WKV_BLOCK_SIZE;
  13. const int batch_i = bid / H;
  14. const int head_i = bid % H;
  15. const int state_size = C * head_size;
  16. const int n_seq_tokens = T / B;
  17. // Set up shared memory pointers
  18. float* _k = shared_mem;
  19. float* _r = _k + head_size;
  20. float* _tf = _r + head_size;
  21. float* _td = _tf + head_size;
  22. // Local state array
  23. float state[WKV_BLOCK_SIZE];
  24. // Load initial state
  25. #pragma unroll
  26. for (int i = 0; i < head_size; i++) {
  27. state[i] = s[batch_i * state_size + head_i * head_size * head_size + i * head_size + tid];
  28. }
  29. // Sync threads before shared memory operations
  30. item_ct1.barrier(sycl::access::fence_space::local_space);
  31. // Load time-mixing parameters
  32. _tf[tid] = tf[head_i * head_size + tid];
  33. item_ct1.barrier(sycl::access::fence_space::local_space);
  34. // Main sequence processing loop
  35. for (int t = batch_i * n_seq_tokens * C + head_i * head_size + tid;
  36. t < (batch_i + 1) * n_seq_tokens * C + head_i * head_size + tid;
  37. t += C) {
  38. item_ct1.barrier(sycl::access::fence_space::local_space);
  39. // Load current timestep data to shared memory
  40. _k[tid] = k[t];
  41. _r[tid] = r[t];
  42. _td[tid] = td[t];
  43. item_ct1.barrier(sycl::access::fence_space::local_space);
  44. const float _v = v[t];
  45. float y = 0;
  46. // Process in chunks of 4 for better vectorization
  47. sycl::float4 k4, r4, tf4, td4, s4;
  48. #pragma unroll
  49. for (int j = 0; j < head_size; j += 4) {
  50. // Load data in vec4 chunks
  51. k4 = sycl::float4(_k[j], _k[j+1], _k[j+2], _k[j+3]);
  52. r4 = sycl::float4(_r[j], _r[j+1], _r[j+2], _r[j+3]);
  53. tf4 = sycl::float4(_tf[j], _tf[j+1], _tf[j+2], _tf[j+3]);
  54. td4 = sycl::float4(_td[j], _td[j+1], _td[j+2], _td[j+3]);
  55. s4 = sycl::float4(state[j], state[j+1], state[j+2], state[j+3]);
  56. // Compute key-value product
  57. sycl::float4 kv4 = k4 * _v;
  58. // Accumulate weighted sum
  59. y += sycl::dot(r4, tf4 * kv4 + s4);
  60. // Update state
  61. s4 = s4 * td4 + kv4;
  62. // Store updated state
  63. state[j] = s4.x();
  64. state[j+1] = s4.y();
  65. state[j+2] = s4.z();
  66. state[j+3] = s4.w();
  67. }
  68. dst[t] = y;
  69. }
  70. // Save final state
  71. #pragma unroll
  72. for (int i = 0; i < head_size; i++) {
  73. dst[T * C + batch_i * state_size + head_i * head_size * head_size + i * head_size + tid] = state[i];
  74. }
  75. }
  76. void ggml_sycl_op_rwkv_wkv6(ggml_backend_sycl_context& ctx, const ggml_tensor* src0,
  77. const ggml_tensor* src1, ggml_tensor* dst) {
  78. const float* k_d = (const float*)dst->src[0]->data;
  79. const float* v_d = (const float*)dst->src[1]->data;
  80. const float* r_d = (const float*)dst->src[2]->data;
  81. const float* tf_d = (const float*)dst->src[3]->data;
  82. const float* td_d = (const float*)dst->src[4]->data;
  83. const float* s_d = (const float*)dst->src[5]->data;
  84. float* dst_d = (float*)dst->data;
  85. const int64_t B = dst->src[5]->ne[1];
  86. const int64_t T = dst->src[0]->ne[3];
  87. const int64_t C = dst->ne[0];
  88. const int64_t H = dst->src[0]->ne[2];
  89. GGML_ASSERT(dst->src[5]->type == GGML_TYPE_F32);
  90. GGML_ASSERT(C % H == 0);
  91. GGML_ASSERT(C / H == WKV_BLOCK_SIZE); // The current sycl kernel is designed for RWKV6, HEAD_SIZE == 64
  92. dpct::queue_ptr stream = ctx.stream();
  93. // Calculate execution configuration
  94. const size_t shared_mem_size = WKV_BLOCK_SIZE * 4 * sizeof(float); // For k, r, tf, td
  95. sycl::range<3> block_dims(1, 1, C / H);
  96. sycl::range<3> grid_dims(1, 1, B * H);
  97. // Submit kernel
  98. stream->submit([&](sycl::handler& cgh) {
  99. sycl::local_accessor<float, 1> shared_mem_acc(shared_mem_size, cgh);
  100. cgh.parallel_for(
  101. sycl::nd_range<3>(grid_dims * block_dims, block_dims),
  102. [=](sycl::nd_item<3> item_ct1) {
  103. rwkv_wkv_f32_kernel(
  104. B, T, C, H, k_d, v_d, r_d, tf_d, td_d, s_d, dst_d,
  105. item_ct1, shared_mem_acc.get_pointer()
  106. );
  107. });
  108. });
  109. GGML_UNUSED(src0);
  110. GGML_UNUSED(src1);
  111. }