| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141 |
- #include <sycl/sycl.hpp>
- #include "wkv6.hpp"
- constexpr int WKV_BLOCK_SIZE = 64; // Matching CUDA_WKV_BLOCK_SIZE
- // Helper function for the main kernel
- static void rwkv_wkv_f32_kernel(
- const int B, const int T, const int C, const int H,
- const float* k, const float* v, const float* r,
- const float* tf, const float* td, const float* s,
- float* dst, const sycl::nd_item<3>& item_ct1, float* shared_mem) {
- const int tid = item_ct1.get_local_id(2);
- const int bid = item_ct1.get_group(2);
- const int head_size = WKV_BLOCK_SIZE;
- const int batch_i = bid / H;
- const int head_i = bid % H;
- const int state_size = C * head_size;
- const int n_seq_tokens = T / B;
- // Set up shared memory pointers
- float* _k = shared_mem;
- float* _r = _k + head_size;
- float* _tf = _r + head_size;
- float* _td = _tf + head_size;
- // Local state array
- float state[WKV_BLOCK_SIZE];
- // Load initial state
- #pragma unroll
- for (int i = 0; i < head_size; i++) {
- state[i] = s[batch_i * state_size + head_i * head_size * head_size + i * head_size + tid];
- }
- // Sync threads before shared memory operations
- item_ct1.barrier(sycl::access::fence_space::local_space);
- // Load time-mixing parameters
- _tf[tid] = tf[head_i * head_size + tid];
- item_ct1.barrier(sycl::access::fence_space::local_space);
- // Main sequence processing loop
- for (int t = batch_i * n_seq_tokens * C + head_i * head_size + tid;
- t < (batch_i + 1) * n_seq_tokens * C + head_i * head_size + tid;
- t += C) {
- item_ct1.barrier(sycl::access::fence_space::local_space);
- // Load current timestep data to shared memory
- _k[tid] = k[t];
- _r[tid] = r[t];
- _td[tid] = td[t];
- item_ct1.barrier(sycl::access::fence_space::local_space);
- const float _v = v[t];
- float y = 0;
- // Process in chunks of 4 for better vectorization
- sycl::float4 k4, r4, tf4, td4, s4;
- #pragma unroll
- for (int j = 0; j < head_size; j += 4) {
- // Load data in vec4 chunks
- k4 = sycl::float4(_k[j], _k[j+1], _k[j+2], _k[j+3]);
- r4 = sycl::float4(_r[j], _r[j+1], _r[j+2], _r[j+3]);
- tf4 = sycl::float4(_tf[j], _tf[j+1], _tf[j+2], _tf[j+3]);
- td4 = sycl::float4(_td[j], _td[j+1], _td[j+2], _td[j+3]);
- s4 = sycl::float4(state[j], state[j+1], state[j+2], state[j+3]);
- // Compute key-value product
- sycl::float4 kv4 = k4 * _v;
- // Accumulate weighted sum
- y += sycl::dot(r4, tf4 * kv4 + s4);
- // Update state
- s4 = s4 * td4 + kv4;
- // Store updated state
- state[j] = s4.x();
- state[j+1] = s4.y();
- state[j+2] = s4.z();
- state[j+3] = s4.w();
- }
- dst[t] = y;
- }
- // Save final state
- #pragma unroll
- for (int i = 0; i < head_size; i++) {
- dst[T * C + batch_i * state_size + head_i * head_size * head_size + i * head_size + tid] = state[i];
- }
- }
- void ggml_sycl_op_rwkv_wkv6(ggml_backend_sycl_context& ctx, const ggml_tensor* src0,
- const ggml_tensor* src1, ggml_tensor* dst) {
- const float* k_d = (const float*)dst->src[0]->data;
- const float* v_d = (const float*)dst->src[1]->data;
- const float* r_d = (const float*)dst->src[2]->data;
- const float* tf_d = (const float*)dst->src[3]->data;
- const float* td_d = (const float*)dst->src[4]->data;
- const float* s_d = (const float*)dst->src[5]->data;
- float* dst_d = (float*)dst->data;
- const int64_t B = dst->src[5]->ne[1];
- const int64_t T = dst->src[0]->ne[3];
- const int64_t C = dst->ne[0];
- const int64_t H = dst->src[0]->ne[2];
- GGML_ASSERT(dst->src[5]->type == GGML_TYPE_F32);
- GGML_ASSERT(C % H == 0);
- GGML_ASSERT(C / H == WKV_BLOCK_SIZE); // The current sycl kernel is designed for RWKV6, HEAD_SIZE == 64
- dpct::queue_ptr stream = ctx.stream();
- // Calculate execution configuration
- const size_t shared_mem_size = WKV_BLOCK_SIZE * 4 * sizeof(float); // For k, r, tf, td
- sycl::range<3> block_dims(1, 1, C / H);
- sycl::range<3> grid_dims(1, 1, B * H);
- // Submit kernel
- stream->submit([&](sycl::handler& cgh) {
- sycl::local_accessor<float, 1> shared_mem_acc(shared_mem_size, cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(grid_dims * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- rwkv_wkv_f32_kernel(
- B, T, C, H, k_d, v_d, r_d, tf_d, td_d, s_d, dst_d,
- item_ct1, shared_mem_acc.get_pointer()
- );
- });
- });
- GGML_UNUSED(src0);
- GGML_UNUSED(src1);
- }
|