convert_hf_to_gguf.py 260 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. import math
  18. import numpy as np
  19. import torch
  20. if TYPE_CHECKING:
  21. from torch import Tensor
  22. if 'NO_LOCAL_GGUF' not in os.environ:
  23. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  24. import gguf
  25. logger = logging.getLogger("hf-to-gguf")
  26. ###### MODEL DEFINITIONS ######
  27. class SentencePieceTokenTypes(IntEnum):
  28. NORMAL = 1
  29. UNKNOWN = 2
  30. CONTROL = 3
  31. USER_DEFINED = 4
  32. UNUSED = 5
  33. BYTE = 6
  34. class ModelType(IntEnum):
  35. TEXT = 1
  36. VISION = 2
  37. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  38. class ModelBase:
  39. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  40. ModelType.TEXT: {},
  41. ModelType.VISION: {},
  42. }
  43. dir_model: Path
  44. ftype: gguf.LlamaFileType
  45. fname_out: Path
  46. is_big_endian: bool
  47. endianess: gguf.GGUFEndian
  48. use_temp_file: bool
  49. lazy: bool
  50. part_names: list[str]
  51. is_safetensors: bool
  52. hparams: dict[str, Any]
  53. block_count: int
  54. tensor_map: gguf.TensorNameMap
  55. tensor_names: set[str] | None
  56. gguf_writer: gguf.GGUFWriter
  57. model_name: str | None
  58. metadata_override: Path | None
  59. dir_model_card: Path
  60. remote_hf_model_id: str | None
  61. # subclasses should define this!
  62. model_arch: gguf.MODEL_ARCH
  63. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False,
  64. use_temp_file: bool = False, eager: bool = False,
  65. metadata_override: Path | None = None, model_name: str | None = None,
  66. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  67. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None):
  68. if type(self) is ModelBase or \
  69. type(self) is TextModel or \
  70. type(self) is VisionModel:
  71. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  72. self.dir_model = dir_model
  73. self.ftype = ftype
  74. self.fname_out = fname_out
  75. self.is_big_endian = is_big_endian
  76. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  77. self.use_temp_file = use_temp_file
  78. self.lazy = not eager or (remote_hf_model_id is not None)
  79. self.remote_hf_model_id = remote_hf_model_id
  80. if remote_hf_model_id is not None:
  81. self.is_safetensors = True
  82. def get_remote_tensors() -> Iterator[tuple[str, Tensor]]:
  83. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  84. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  85. self.tensor_names = set(name for name in remote_tensors.keys())
  86. for name, remote_tensor in gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id).items():
  87. yield (name, LazyTorchTensor.from_remote_tensor(remote_tensor))
  88. self.get_tensors = get_remote_tensors
  89. else:
  90. self.part_names = ModelBase.get_model_part_names(self.dir_model, "model", ".safetensors")
  91. self.is_safetensors = len(self.part_names) > 0
  92. if not self.is_safetensors:
  93. self.part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  94. self.hparams = ModelBase.load_hparams(self.dir_model) if hparams is None else hparams
  95. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  96. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  97. self.tensor_names = None
  98. self.metadata_override = metadata_override
  99. self.model_name = model_name
  100. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  101. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  102. if self.ftype == gguf.LlamaFileType.GUESSED:
  103. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  104. _, first_tensor = next(self.get_tensors())
  105. if first_tensor.dtype == torch.float16:
  106. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  107. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  108. else:
  109. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  110. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  111. # Configure GGUF Writer
  112. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  113. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  114. @classmethod
  115. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  116. stem, suffix = path.stem, path.suffix
  117. new_name = f"{prefix}{stem}{suffix}"
  118. return path.with_name(new_name)
  119. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  120. key = next((k for k in keys if k in self.hparams), None)
  121. if key is not None:
  122. return self.hparams[key]
  123. if optional:
  124. return None
  125. raise KeyError(f"could not find any of: {keys}")
  126. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  127. tensor_names_from_parts: set[str] = set()
  128. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  129. index_name += ".index.json"
  130. index_file = self.dir_model / index_name
  131. if index_file.is_file():
  132. self.tensor_names = set()
  133. logger.info(f"gguf: loading model weight map from '{index_name}'")
  134. with open(index_file, "r", encoding="utf-8") as f:
  135. index: dict[str, Any] = json.load(f)
  136. weight_map = index.get("weight_map")
  137. if weight_map is None or not isinstance(weight_map, dict):
  138. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  139. self.tensor_names.update(weight_map.keys())
  140. else:
  141. self.tensor_names = tensor_names_from_parts
  142. weight_map = {}
  143. for part_name in self.part_names:
  144. logger.info(f"gguf: loading model part '{part_name}'")
  145. ctx: ContextManager[Any]
  146. if self.is_safetensors:
  147. from safetensors import safe_open
  148. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  149. else:
  150. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  151. with ctx as model_part:
  152. tensor_names_from_parts.update(model_part.keys())
  153. for name in model_part.keys():
  154. if self.is_safetensors:
  155. if self.lazy:
  156. data = model_part.get_slice(name)
  157. data = LazyTorchTensor.from_safetensors_slice(data)
  158. else:
  159. data = model_part.get_tensor(name)
  160. else:
  161. data = model_part[name]
  162. if self.lazy:
  163. data = LazyTorchTensor.from_eager(data)
  164. yield name, data
  165. # verify tensor name presence and identify potentially missing files
  166. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  167. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  168. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  169. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  170. if len(extra) == 0 and len(missing_files) > 0:
  171. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  172. f"Missing tensors: {missing}")
  173. else:
  174. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  175. f"Missing tensors: {missing}\n"
  176. f"Extra tensors: {extra}")
  177. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  178. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  179. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  180. name: str = gguf.TENSOR_NAMES[key]
  181. if "{bid}" in name:
  182. assert bid is not None
  183. name = name.format(bid=bid)
  184. return name + suffix
  185. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  186. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  187. return False
  188. key_name: str = gguf.TENSOR_NAMES[key]
  189. if "{bid}" in key_name:
  190. if bid is None:
  191. return False
  192. key_name = key_name.format(bid=bid)
  193. else:
  194. if bid is not None:
  195. return False
  196. return name == (key_name + suffix)
  197. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  198. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  199. if new_name is None:
  200. raise ValueError(f"Can not map tensor {name!r}")
  201. return new_name
  202. def set_gguf_parameters(self):
  203. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  204. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  205. del bid # unused
  206. return [(self.map_tensor_name(name), data_torch)]
  207. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  208. del name, new_name, bid, n_dims # unused
  209. return False
  210. # some models need extra generated tensors (like rope_freqs)
  211. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  212. return ()
  213. def prepare_tensors(self):
  214. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  215. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  216. # we don't need these
  217. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  218. continue
  219. old_dtype = data_torch.dtype
  220. # convert any unsupported data types to float32
  221. if data_torch.dtype not in (torch.float16, torch.float32):
  222. data_torch = data_torch.to(torch.float32)
  223. # use the first number-like part of the tensor name as the block id
  224. bid = None
  225. for part in name.split("."):
  226. if part.isdecimal():
  227. bid = int(part)
  228. break
  229. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  230. # TODO: why do we squeeze here?
  231. # data = data_torch.squeeze().numpy()
  232. data = data_torch.numpy()
  233. # if data ends up empty, it means data_torch was a scalar tensor -> restore
  234. if len(data.shape) == 0:
  235. data = data_torch.numpy()
  236. n_dims = len(data.shape)
  237. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  238. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  239. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  240. data_qtype = gguf.GGMLQuantizationType.F32
  241. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  242. # Some tensor types are always in float32
  243. if data_qtype is False and (
  244. any(
  245. self.match_model_tensor_name(new_name, key, bid)
  246. for key in (
  247. gguf.MODEL_TENSOR.FFN_GATE_INP,
  248. gguf.MODEL_TENSOR.POS_EMBD,
  249. gguf.MODEL_TENSOR.TOKEN_TYPES,
  250. gguf.MODEL_TENSOR.SSM_CONV1D,
  251. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  252. gguf.MODEL_TENSOR.TIME_MIX_W1,
  253. gguf.MODEL_TENSOR.TIME_MIX_W2,
  254. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  255. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  256. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  257. gguf.MODEL_TENSOR.POSNET_NORM1,
  258. gguf.MODEL_TENSOR.POSNET_NORM2,
  259. )
  260. )
  261. or not new_name.endswith(".weight")
  262. ):
  263. data_qtype = gguf.GGMLQuantizationType.F32
  264. if data_qtype is False and any(
  265. self.match_model_tensor_name(new_name, key, bid)
  266. for key in (
  267. gguf.MODEL_TENSOR.TOKEN_EMBD,
  268. gguf.MODEL_TENSOR.OUTPUT,
  269. )
  270. ):
  271. if self.ftype in (
  272. gguf.LlamaFileType.MOSTLY_TQ1_0,
  273. gguf.LlamaFileType.MOSTLY_TQ2_0,
  274. ):
  275. # TODO: use Q4_K and Q6_K
  276. data_qtype = gguf.GGMLQuantizationType.F16
  277. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  278. if isinstance(data_qtype, bool):
  279. if self.ftype == gguf.LlamaFileType.ALL_F32:
  280. data_qtype = gguf.GGMLQuantizationType.F32
  281. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  282. data_qtype = gguf.GGMLQuantizationType.F16
  283. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  284. data_qtype = gguf.GGMLQuantizationType.BF16
  285. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  286. data_qtype = gguf.GGMLQuantizationType.Q8_0
  287. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  288. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  289. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  290. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  291. else:
  292. raise ValueError(f"Unknown file type: {self.ftype.name}")
  293. try:
  294. data = gguf.quants.quantize(data, data_qtype)
  295. except gguf.QuantError as e:
  296. logger.warning("%s, %s", e, "falling back to F16")
  297. data_qtype = gguf.GGMLQuantizationType.F16
  298. data = gguf.quants.quantize(data, data_qtype)
  299. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  300. # reverse shape to make it similar to the internal ggml dimension order
  301. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  302. # n_dims is implicit in the shape
  303. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  304. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  305. def set_type(self):
  306. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  307. def prepare_metadata(self, vocab_only: bool):
  308. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  309. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  310. # If we are using HF model id, set the metadata name to the model id
  311. if self.remote_hf_model_id:
  312. self.metadata.name = self.remote_hf_model_id
  313. # Fallback to model directory name if metadata name is still missing
  314. if self.metadata.name is None:
  315. self.metadata.name = self.dir_model.name
  316. # Generate parameter weight class (useful for leader boards) if not yet determined
  317. if self.metadata.size_label is None and total_params > 0:
  318. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  319. self.set_type()
  320. logger.info("Set meta model")
  321. self.metadata.set_gguf_meta_model(self.gguf_writer)
  322. logger.info("Set model parameters")
  323. self.set_gguf_parameters()
  324. logger.info("Set model quantization version")
  325. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  326. def write_vocab(self):
  327. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  328. def write(self):
  329. self.prepare_tensors()
  330. self.prepare_metadata(vocab_only=False)
  331. self.gguf_writer.write_header_to_file(path=self.fname_out)
  332. self.gguf_writer.write_kv_data_to_file()
  333. self.gguf_writer.write_tensors_to_file(progress=True)
  334. self.gguf_writer.close()
  335. @staticmethod
  336. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  337. part_names: list[str] = []
  338. for filename in os.listdir(dir_model):
  339. if filename.startswith(prefix) and filename.endswith(suffix):
  340. part_names.append(filename)
  341. part_names.sort()
  342. return part_names
  343. @staticmethod
  344. def load_hparams(dir_model: Path):
  345. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  346. hparams = json.load(f)
  347. if "text_config" in hparams:
  348. hparams = {**hparams, **hparams["text_config"]}
  349. return hparams
  350. @classmethod
  351. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  352. assert names
  353. def func(modelcls: AnyModel) -> AnyModel:
  354. model_type = ModelType.VISION if modelcls.model_arch == gguf.MODEL_ARCH.CLIP_VISION else ModelType.TEXT
  355. for name in names:
  356. cls._model_classes[model_type][name] = modelcls
  357. return modelcls
  358. return func
  359. @classmethod
  360. def print_registered_models(cls):
  361. for model_type, model_classes in cls._model_classes.items():
  362. logger.error(f"{model_type.name} models:")
  363. for name in sorted(model_classes.keys()):
  364. logger.error(f" - {name}")
  365. @classmethod
  366. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  367. try:
  368. return cls._model_classes[model_type][arch]
  369. except KeyError:
  370. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  371. class TextModel(ModelBase):
  372. @classmethod
  373. def __init_subclass__(cls):
  374. # can't use an abstract property, because overriding it without type errors
  375. # would require using decorated functions instead of simply defining the property
  376. if "model_arch" not in cls.__dict__:
  377. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  378. def set_vocab(self):
  379. self._set_vocab_gpt2()
  380. def prepare_metadata(self, vocab_only: bool):
  381. super().prepare_metadata(vocab_only=vocab_only)
  382. total_params = self.gguf_writer.get_total_parameter_count()[0]
  383. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  384. output_type: str = self.ftype.name.partition("_")[2]
  385. # Filename Output
  386. if self.fname_out.is_dir():
  387. # Generate default filename based on model specification and available metadata
  388. if not vocab_only:
  389. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  390. else:
  391. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  392. # Use the default filename
  393. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  394. else:
  395. # Output path is a custom defined templated filename
  396. # Note: `not is_dir()` is used because `.is_file()` will not detect
  397. # file template strings as it doesn't actually exist as a file
  398. # Process templated file name with the output ftype, useful with the "auto" ftype
  399. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  400. logger.info("Set model tokenizer")
  401. self.set_vocab()
  402. def set_gguf_parameters(self):
  403. self.gguf_writer.add_block_count(self.block_count)
  404. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  405. self.gguf_writer.add_context_length(n_ctx)
  406. logger.info(f"gguf: context length = {n_ctx}")
  407. if (n_embd := self.find_hparam(["hidden_size", "n_embd"], optional=True)) is not None:
  408. self.gguf_writer.add_embedding_length(n_embd)
  409. logger.info(f"gguf: embedding length = {n_embd}")
  410. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  411. self.gguf_writer.add_feed_forward_length(n_ff)
  412. logger.info(f"gguf: feed forward length = {n_ff}")
  413. if (n_head := self.find_hparam(["num_attention_heads", "n_head"], optional=True)) is not None:
  414. self.gguf_writer.add_head_count(n_head)
  415. logger.info(f"gguf: head count = {n_head}")
  416. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  417. self.gguf_writer.add_head_count_kv(n_head_kv)
  418. logger.info(f"gguf: key-value head count = {n_head_kv}")
  419. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  420. self.gguf_writer.add_rope_freq_base(rope_theta)
  421. logger.info(f"gguf: rope theta = {rope_theta}")
  422. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  423. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  424. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  425. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  426. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  427. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  428. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  429. self.gguf_writer.add_expert_count(n_experts)
  430. logger.info(f"gguf: expert count = {n_experts}")
  431. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  432. self.gguf_writer.add_expert_used_count(n_experts_used)
  433. logger.info(f"gguf: experts used count = {n_experts_used}")
  434. if (head_dim := self.hparams.get("head_dim")) is not None:
  435. self.gguf_writer.add_key_length(head_dim)
  436. self.gguf_writer.add_value_length(head_dim)
  437. self.gguf_writer.add_file_type(self.ftype)
  438. logger.info(f"gguf: file type = {self.ftype}")
  439. def write_vocab(self):
  440. if len(self.gguf_writer.tensors) != 1:
  441. raise ValueError('Splitting the vocabulary is not supported')
  442. self.prepare_metadata(vocab_only=True)
  443. self.gguf_writer.write_header_to_file(path=self.fname_out)
  444. self.gguf_writer.write_kv_data_to_file()
  445. self.gguf_writer.close()
  446. def does_token_look_special(self, token: str | bytes) -> bool:
  447. if isinstance(token, (bytes, bytearray)):
  448. token_text = token.decode(encoding="utf-8")
  449. elif isinstance(token, memoryview):
  450. token_text = token.tobytes().decode(encoding="utf-8")
  451. else:
  452. token_text = token
  453. # Some models mark some added tokens which ought to be control tokens as not special.
  454. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  455. seems_special = token_text in (
  456. "<pad>", # deepseek-coder
  457. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  458. )
  459. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  460. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  461. # TODO: should these be marked as UNUSED instead? (maybe not)
  462. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  463. return seems_special
  464. # used for GPT-2 BPE and WordPiece vocabs
  465. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  466. tokens: list[str] = []
  467. toktypes: list[int] = []
  468. from transformers import AutoTokenizer
  469. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  470. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  471. assert max(tokenizer.vocab.values()) < vocab_size
  472. tokpre = self.get_vocab_base_pre(tokenizer)
  473. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  474. added_vocab = tokenizer.get_added_vocab()
  475. added_tokens_decoder = tokenizer.added_tokens_decoder
  476. for i in range(vocab_size):
  477. if i not in reverse_vocab:
  478. tokens.append(f"[PAD{i}]")
  479. toktypes.append(gguf.TokenType.UNUSED)
  480. else:
  481. token: str = reverse_vocab[i]
  482. if token in added_vocab:
  483. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  484. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  485. if not added_tokens_decoder[i].normalized:
  486. previous_token = token
  487. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  488. if previous_token != token:
  489. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  490. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  491. toktypes.append(gguf.TokenType.CONTROL)
  492. else:
  493. # NOTE: this was added for Gemma.
  494. # Encoding and decoding the tokens above isn't sufficient for this case.
  495. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  496. toktypes.append(gguf.TokenType.USER_DEFINED)
  497. else:
  498. toktypes.append(gguf.TokenType.NORMAL)
  499. tokens.append(token)
  500. return tokens, toktypes, tokpre
  501. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  502. # do not modify it manually!
  503. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  504. # Marker: Start get_vocab_base_pre
  505. def get_vocab_base_pre(self, tokenizer) -> str:
  506. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  507. # is specific for the BPE pre-tokenizer used by the model
  508. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  509. # use in llama.cpp to implement the same pre-tokenizer
  510. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  511. chktok = tokenizer.encode(chktxt)
  512. chkhsh = sha256(str(chktok).encode()).hexdigest()
  513. logger.debug(f"chktok: {chktok}")
  514. logger.debug(f"chkhsh: {chkhsh}")
  515. res = None
  516. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  517. # or pull the latest version of the model from Huggingface
  518. # don't edit the hashes manually!
  519. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  520. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  521. res = "llama-bpe"
  522. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  523. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  524. res = "deepseek-llm"
  525. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  526. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  527. res = "deepseek-coder"
  528. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  529. # ref: https://huggingface.co/tiiuae/falcon-7b
  530. res = "falcon"
  531. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  532. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  533. res = "falcon3"
  534. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  535. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  536. res = "bert-bge"
  537. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  538. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  539. res = "bert-bge-large"
  540. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  541. # ref: https://huggingface.co/mosaicml/mpt-7b
  542. res = "mpt"
  543. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  544. # ref: https://huggingface.co/bigcode/starcoder2-3b
  545. res = "starcoder"
  546. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  547. # ref: https://huggingface.co/openai-community/gpt2
  548. res = "gpt-2"
  549. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  550. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  551. res = "stablelm2"
  552. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  553. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  554. res = "refact"
  555. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  556. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  557. res = "command-r"
  558. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  559. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  560. res = "qwen2"
  561. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  562. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  563. res = "olmo"
  564. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  565. # ref: https://huggingface.co/databricks/dbrx-base
  566. res = "dbrx"
  567. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  568. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  569. res = "jina-v1-en"
  570. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  571. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  572. res = "jina-v2-en"
  573. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  574. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  575. res = "jina-v2-es"
  576. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  577. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  578. res = "jina-v2-de"
  579. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  580. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  581. res = "smaug-bpe"
  582. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  583. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  584. res = "poro-chat"
  585. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  586. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  587. res = "jina-v2-code"
  588. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b" or chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  589. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  590. res = "chatglm-bpe"
  591. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  592. # ref: https://huggingface.co/LumiOpen/Viking-7B
  593. res = "viking"
  594. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  595. # ref: https://huggingface.co/core42/jais-13b
  596. res = "jais"
  597. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  598. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  599. res = "codeshell"
  600. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  601. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  602. res = "tekken"
  603. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  604. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  605. res = "smollm"
  606. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  607. # ref: https://huggingface.co/bigscience/bloom
  608. res = "bloom"
  609. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  610. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  611. res = "gpt3-finnish"
  612. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  613. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  614. res = "exaone"
  615. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  616. # ref: https://huggingface.co/microsoft/phi-2
  617. res = "phi-2"
  618. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  619. # ref: https://huggingface.co/facebook/chameleon-7b
  620. res = "chameleon"
  621. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  622. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  623. res = "minerva-7b"
  624. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  625. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  626. res = "roberta-bpe"
  627. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  628. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  629. res = "gigachat"
  630. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  631. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  632. res = "megrez"
  633. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  634. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  635. res = "deepseek-v3"
  636. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  637. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  638. res = "deepseek-r1-qwen"
  639. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  640. # ref: https://huggingface.co/Xenova/gpt-4o
  641. res = "gpt-4o"
  642. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  643. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  644. res = "superbpe"
  645. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  646. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  647. res = "trillion"
  648. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  649. # ref: https://huggingface.co/inclusionAI/Ling-lite
  650. res = "bailingmoe"
  651. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  652. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  653. res = "llama4"
  654. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  655. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  656. res = "glm4"
  657. if res is None:
  658. logger.warning("\n")
  659. logger.warning("**************************************************************************************")
  660. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  661. logger.warning("** There are 2 possible reasons for this:")
  662. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  663. logger.warning("** - the pre-tokenization config has changed upstream")
  664. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  665. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  666. logger.warning("**")
  667. logger.warning(f"** chkhsh: {chkhsh}")
  668. logger.warning("**************************************************************************************")
  669. logger.warning("\n")
  670. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  671. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  672. logger.debug(f"chkhsh: {chkhsh}")
  673. return res
  674. # Marker: End get_vocab_base_pre
  675. def _set_vocab_none(self) -> None:
  676. self.gguf_writer.add_tokenizer_model("none")
  677. def _set_vocab_gpt2(self) -> None:
  678. tokens, toktypes, tokpre = self.get_vocab_base()
  679. self.gguf_writer.add_tokenizer_model("gpt2")
  680. self.gguf_writer.add_tokenizer_pre(tokpre)
  681. self.gguf_writer.add_token_list(tokens)
  682. self.gguf_writer.add_token_types(toktypes)
  683. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  684. special_vocab.add_to_gguf(self.gguf_writer)
  685. def _set_vocab_qwen(self):
  686. dir_model = self.dir_model
  687. hparams = self.hparams
  688. tokens: list[str] = []
  689. toktypes: list[int] = []
  690. from transformers import AutoTokenizer
  691. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  692. vocab_size = hparams["vocab_size"]
  693. assert max(tokenizer.get_vocab().values()) < vocab_size
  694. tokpre = self.get_vocab_base_pre(tokenizer)
  695. merges = []
  696. vocab = {}
  697. mergeable_ranks = tokenizer.mergeable_ranks
  698. for token, rank in mergeable_ranks.items():
  699. vocab[QwenModel.token_bytes_to_string(token)] = rank
  700. if len(token) == 1:
  701. continue
  702. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  703. assert len(merged) == 2
  704. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  705. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  706. added_vocab = tokenizer.special_tokens
  707. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  708. for i in range(vocab_size):
  709. if i not in reverse_vocab:
  710. tokens.append(f"[PAD{i}]")
  711. toktypes.append(gguf.TokenType.UNUSED)
  712. elif reverse_vocab[i] in added_vocab:
  713. tokens.append(reverse_vocab[i])
  714. toktypes.append(gguf.TokenType.CONTROL)
  715. else:
  716. tokens.append(reverse_vocab[i])
  717. toktypes.append(gguf.TokenType.NORMAL)
  718. self.gguf_writer.add_tokenizer_model("gpt2")
  719. self.gguf_writer.add_tokenizer_pre(tokpre)
  720. self.gguf_writer.add_token_list(tokens)
  721. self.gguf_writer.add_token_types(toktypes)
  722. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  723. special_vocab.merges = merges
  724. # only add special tokens when they were not already loaded from config.json
  725. if len(special_vocab.special_token_ids) == 0:
  726. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  727. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  728. # this one is usually not in config.json anyway
  729. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  730. special_vocab.add_to_gguf(self.gguf_writer)
  731. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  732. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  733. self.gguf_writer.add_tokenizer_model("llama")
  734. self.gguf_writer.add_tokenizer_pre("default")
  735. self.gguf_writer.add_token_list(tokens)
  736. self.gguf_writer.add_token_scores(scores)
  737. self.gguf_writer.add_token_types(toktypes)
  738. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  739. special_vocab.add_to_gguf(self.gguf_writer)
  740. def _create_vocab_sentencepiece(self):
  741. from sentencepiece import SentencePieceProcessor
  742. tokenizer_path = self.dir_model / 'tokenizer.model'
  743. if not tokenizer_path.is_file():
  744. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  745. tokenizer = SentencePieceProcessor()
  746. tokenizer.LoadFromFile(str(tokenizer_path))
  747. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  748. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  749. scores: list[float] = [-10000.0] * vocab_size
  750. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  751. for token_id in range(tokenizer.vocab_size()):
  752. piece = tokenizer.IdToPiece(token_id)
  753. text = piece.encode("utf-8")
  754. score = tokenizer.GetScore(token_id)
  755. toktype = SentencePieceTokenTypes.NORMAL
  756. if tokenizer.IsUnknown(token_id):
  757. toktype = SentencePieceTokenTypes.UNKNOWN
  758. elif tokenizer.IsControl(token_id):
  759. toktype = SentencePieceTokenTypes.CONTROL
  760. elif tokenizer.IsUnused(token_id):
  761. toktype = SentencePieceTokenTypes.UNUSED
  762. elif tokenizer.IsByte(token_id):
  763. toktype = SentencePieceTokenTypes.BYTE
  764. tokens[token_id] = text
  765. scores[token_id] = score
  766. toktypes[token_id] = toktype
  767. added_tokens_file = self.dir_model / 'added_tokens.json'
  768. if added_tokens_file.is_file():
  769. with open(added_tokens_file, "r", encoding="utf-8") as f:
  770. added_tokens_json = json.load(f)
  771. for key in added_tokens_json:
  772. token_id = added_tokens_json[key]
  773. if token_id >= vocab_size:
  774. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  775. continue
  776. tokens[token_id] = key.encode("utf-8")
  777. scores[token_id] = -1000.0
  778. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  779. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  780. if tokenizer_config_file.is_file():
  781. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  782. tokenizer_config_json = json.load(f)
  783. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  784. for token_id, token_data in added_tokens_decoder.items():
  785. token_id = int(token_id)
  786. token: str = token_data["content"]
  787. if token_id >= vocab_size:
  788. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  789. continue
  790. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  791. if tokens[token_id] != token.encode("utf-8"):
  792. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  793. if token_data.get("special") or self.does_token_look_special(token):
  794. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  795. else:
  796. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  797. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  798. scores[token_id] = -1000.0
  799. tokens[token_id] = token.encode("utf-8")
  800. if vocab_size > len(tokens):
  801. pad_count = vocab_size - len(tokens)
  802. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  803. for i in range(1, pad_count + 1):
  804. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  805. scores.append(-1000.0)
  806. toktypes.append(SentencePieceTokenTypes.UNUSED)
  807. return tokens, scores, toktypes
  808. def _set_vocab_llama_hf(self):
  809. vocab = gguf.LlamaHfVocab(self.dir_model)
  810. tokens = []
  811. scores = []
  812. toktypes = []
  813. for text, score, toktype in vocab.all_tokens():
  814. tokens.append(text)
  815. scores.append(score)
  816. toktypes.append(toktype)
  817. assert len(tokens) == vocab.vocab_size
  818. self.gguf_writer.add_tokenizer_model("llama")
  819. self.gguf_writer.add_tokenizer_pre("default")
  820. self.gguf_writer.add_token_list(tokens)
  821. self.gguf_writer.add_token_scores(scores)
  822. self.gguf_writer.add_token_types(toktypes)
  823. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  824. special_vocab.add_to_gguf(self.gguf_writer)
  825. def _set_vocab_rwkv_world(self):
  826. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  827. vocab_size = self.hparams.get("vocab_size", 65536)
  828. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  829. toktypes: list[int] = [gguf.TokenType.CONTROL]
  830. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  831. lines = f.readlines()
  832. for line in lines:
  833. parts = line.split(' ')
  834. assert len(parts) >= 3
  835. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  836. token = token.encode("utf-8") if isinstance(token, str) else token
  837. assert isinstance(token, bytes)
  838. assert len(token) == token_len
  839. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  840. tokens.append(token_text.encode("utf-8"))
  841. toktypes.append(gguf.TokenType.NORMAL)
  842. remainder = vocab_size - len(tokens)
  843. assert remainder >= 0
  844. for i in range(len(tokens), vocab_size):
  845. tokens.append(f"[PAD{i}]".encode("utf-8"))
  846. toktypes.append(gguf.TokenType.UNUSED)
  847. self.gguf_writer.add_tokenizer_model("rwkv")
  848. self.gguf_writer.add_token_list(tokens)
  849. self.gguf_writer.add_token_types(toktypes)
  850. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  851. special_vocab.chat_template = "rwkv-world"
  852. # hack: Add '\n\n' as the EOT token to make it chat normally
  853. special_vocab._set_special_token("eot", 261)
  854. special_vocab.add_to_gguf(self.gguf_writer)
  855. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  856. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  857. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  858. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  859. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  860. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  861. assert field # tokenizer model
  862. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  863. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  864. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  865. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  866. assert field # token list
  867. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  868. if model_name == "llama-spm":
  869. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  870. assert field # token scores
  871. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  872. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  873. assert field # token types
  874. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  875. if model_name != "llama-spm":
  876. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  877. assert field # token merges
  878. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  879. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  880. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  881. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  882. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  883. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  884. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  885. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  886. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  887. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  888. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  889. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  890. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  891. class VisionModel(ModelBase):
  892. model_arch = gguf.MODEL_ARCH.CLIP_VISION
  893. n_text_embd = 0
  894. def __init__(self, *args, **kwargs):
  895. super().__init__(*args, **kwargs)
  896. if self.model_arch != gguf.MODEL_ARCH.CLIP_VISION:
  897. raise TypeError("VisionModel must be subclassed with model_arch = gguf.MODEL_ARCH.CLIP_VISION")
  898. # small hack to correct the number of layers
  899. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.CLIP_VISION, 128)
  900. self.n_embd_text = self.find_hparam(["hidden_size", "n_embd"])
  901. assert self.n_embd_text > 0, "n_embd not found in hparams"
  902. if "vision_config" not in self.hparams:
  903. raise ValueError("vision_config not found in hparams")
  904. # move vision config to the top level
  905. self.hparams = self.hparams["vision_config"]
  906. def set_type(self):
  907. self.gguf_writer.add_type(gguf.GGUFType.CLIP_VISION)
  908. def set_gguf_parameters(self):
  909. self.gguf_writer.add_file_type(self.ftype)
  910. self.gguf_writer.add_uint32(gguf.Keys.ClipVision.PROJECTION_DIM, self.n_embd_text)
  911. self.gguf_writer.add_bool(gguf.Keys.ClipVision.HAS_VISION_ENCODER, True)
  912. # vision config
  913. self.gguf_writer.add_uint32(gguf.Keys.ClipVision.IMAGE_SIZE, self.find_hparam(["image_size"]))
  914. self.gguf_writer.add_uint32(gguf.Keys.ClipVision.PATCH_SIZE, self.find_hparam(["patch_size"]))
  915. self.gguf_writer.add_uint32(gguf.Keys.ClipVision.EMBEDDING_LENGTH, self.find_hparam(["hidden_size"]))
  916. self.gguf_writer.add_uint32(gguf.Keys.ClipVision.FEED_FORWARD_LENGTH, self.find_hparam(["intermediate_size"]))
  917. self.gguf_writer.add_uint32(gguf.Keys.ClipVision.BLOCK_COUNT, self.find_hparam(["num_hidden_layers"]))
  918. self.gguf_writer.add_uint32(gguf.Keys.ClipVision.Attention.HEAD_COUNT, self.find_hparam(["num_attention_heads"]))
  919. def write_vocab(self):
  920. raise ValueError("VisionModel does not support vocab writing")
  921. @ModelBase.register("GPTNeoXForCausalLM")
  922. class GPTNeoXModel(TextModel):
  923. model_arch = gguf.MODEL_ARCH.GPTNEOX
  924. def set_gguf_parameters(self):
  925. block_count = self.hparams["num_hidden_layers"]
  926. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  927. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  928. self.gguf_writer.add_block_count(block_count)
  929. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  930. self.gguf_writer.add_rope_dimension_count(
  931. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  932. )
  933. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  934. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  935. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  936. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  937. del bid # unused
  938. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  939. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  940. tensors: list[tuple[str, Tensor]] = []
  941. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  942. # Map bloom-style qkv_linear to gpt-style qkv_linear
  943. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  944. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  945. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  946. data_torch = torch.cat(
  947. (
  948. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  949. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  950. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  951. ),
  952. dim=0,
  953. )
  954. logger.info("re-format attention.linear_qkv.weight")
  955. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  956. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  957. data_torch = torch.cat(
  958. (
  959. qkv_bias[:, 0, :].reshape((n_embed,)),
  960. qkv_bias[:, 1, :].reshape((n_embed,)),
  961. qkv_bias[:, 2, :].reshape((n_embed,)),
  962. ),
  963. dim=0,
  964. )
  965. logger.info("re-format attention.linear_qkv.bias")
  966. tensors.append((self.map_tensor_name(name), data_torch))
  967. return tensors
  968. @ModelBase.register("BloomForCausalLM", "BloomModel")
  969. class BloomModel(TextModel):
  970. model_arch = gguf.MODEL_ARCH.BLOOM
  971. def set_gguf_parameters(self):
  972. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  973. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  974. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  975. self.gguf_writer.add_embedding_length(n_embed)
  976. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  977. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  978. self.gguf_writer.add_head_count(n_head)
  979. self.gguf_writer.add_head_count_kv(n_head)
  980. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  981. self.gguf_writer.add_file_type(self.ftype)
  982. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  983. del bid # unused
  984. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  985. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  986. name = re.sub(r'transformer\.', '', name)
  987. tensors: list[tuple[str, Tensor]] = []
  988. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  989. # Map bloom-style qkv_linear to gpt-style qkv_linear
  990. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  991. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  992. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  993. data_torch = torch.cat(
  994. (
  995. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  996. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  997. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  998. ),
  999. dim=0,
  1000. )
  1001. logger.info("re-format attention.linear_qkv.weight")
  1002. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1003. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1004. data_torch = torch.cat(
  1005. (
  1006. qkv_bias[:, 0, :].reshape((n_embed,)),
  1007. qkv_bias[:, 1, :].reshape((n_embed,)),
  1008. qkv_bias[:, 2, :].reshape((n_embed,)),
  1009. ),
  1010. dim=0,
  1011. )
  1012. logger.info("re-format attention.linear_qkv.bias")
  1013. tensors.append((self.map_tensor_name(name), data_torch))
  1014. return tensors
  1015. @ModelBase.register("MPTForCausalLM")
  1016. class MPTModel(TextModel):
  1017. model_arch = gguf.MODEL_ARCH.MPT
  1018. def set_vocab(self):
  1019. try:
  1020. self._set_vocab_gpt2()
  1021. except Exception:
  1022. # Fallback for SEA-LION model
  1023. self._set_vocab_sentencepiece()
  1024. self.gguf_writer.add_add_bos_token(False)
  1025. self.gguf_writer.add_pad_token_id(3)
  1026. self.gguf_writer.add_eos_token_id(1)
  1027. self.gguf_writer.add_unk_token_id(0)
  1028. def set_gguf_parameters(self):
  1029. block_count = self.hparams["n_layers"]
  1030. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1031. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1032. self.gguf_writer.add_block_count(block_count)
  1033. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1034. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1035. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1036. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1037. self.gguf_writer.add_layer_norm_eps(1e-5)
  1038. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1039. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1040. if self.hparams["attn_config"]["alibi"]:
  1041. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1042. else:
  1043. self.gguf_writer.add_max_alibi_bias(0.0)
  1044. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1045. del bid # unused
  1046. if "scales" in name:
  1047. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1048. new_name = new_name.replace("scales", "act.scales")
  1049. else:
  1050. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1051. return [(new_name, data_torch)]
  1052. @ModelBase.register("OrionForCausalLM")
  1053. class OrionModel(TextModel):
  1054. model_arch = gguf.MODEL_ARCH.ORION
  1055. def set_vocab(self):
  1056. self._set_vocab_sentencepiece()
  1057. def set_gguf_parameters(self):
  1058. block_count = self.hparams["num_hidden_layers"]
  1059. head_count = self.hparams["num_attention_heads"]
  1060. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1061. ctx_length = 0
  1062. if "max_sequence_length" in self.hparams:
  1063. ctx_length = self.hparams["max_sequence_length"]
  1064. elif "max_position_embeddings" in self.hparams:
  1065. ctx_length = self.hparams["max_position_embeddings"]
  1066. elif "model_max_length" in self.hparams:
  1067. ctx_length = self.hparams["model_max_length"]
  1068. else:
  1069. raise ValueError("gguf: can not find ctx length parameter.")
  1070. self.gguf_writer.add_file_type(self.ftype)
  1071. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1072. self.gguf_writer.add_context_length(ctx_length)
  1073. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1074. self.gguf_writer.add_block_count(block_count)
  1075. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1076. self.gguf_writer.add_head_count(head_count)
  1077. self.gguf_writer.add_head_count_kv(head_count_kv)
  1078. # note: config provides rms norm but it is actually layer norm
  1079. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1080. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1081. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1082. class BaichuanModel(TextModel):
  1083. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1084. def set_vocab(self):
  1085. self._set_vocab_sentencepiece()
  1086. def set_gguf_parameters(self):
  1087. block_count = self.hparams["num_hidden_layers"]
  1088. head_count = self.hparams["num_attention_heads"]
  1089. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1090. ctx_length = 0
  1091. if "max_sequence_length" in self.hparams:
  1092. ctx_length = self.hparams["max_sequence_length"]
  1093. elif "max_position_embeddings" in self.hparams:
  1094. ctx_length = self.hparams["max_position_embeddings"]
  1095. elif "model_max_length" in self.hparams:
  1096. ctx_length = self.hparams["model_max_length"]
  1097. else:
  1098. raise ValueError("gguf: can not find ctx length parameter.")
  1099. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1100. self.gguf_writer.add_context_length(ctx_length)
  1101. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1102. self.gguf_writer.add_block_count(block_count)
  1103. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1104. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1105. self.gguf_writer.add_head_count(head_count)
  1106. self.gguf_writer.add_head_count_kv(head_count_kv)
  1107. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1108. self.gguf_writer.add_file_type(self.ftype)
  1109. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1110. if self.hparams["rope_scaling"].get("type") == "linear":
  1111. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1112. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1113. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1114. head_count = self.hparams["num_attention_heads"]
  1115. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1116. tensors: list[tuple[str, Tensor]] = []
  1117. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1118. logger.info(f"Unpacking and permuting layer {bid}")
  1119. tensors = [
  1120. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1121. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1122. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1123. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1124. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1125. self._reverse_hf_part(data_torch, 2)),
  1126. ]
  1127. else:
  1128. tensors = [(self.map_tensor_name(name), data_torch)]
  1129. return tensors
  1130. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1131. if n_kv_head is not None and n_head != n_kv_head:
  1132. n_head //= n_kv_head
  1133. return (
  1134. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1135. .swapaxes(1, 2)
  1136. .reshape(weights.shape)
  1137. )
  1138. def _reverse_hf_permute_part(
  1139. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1140. ) -> Tensor:
  1141. r = weights.shape[0] // 3
  1142. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1143. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1144. r = weights.shape[0] // 3
  1145. return weights[r * n_part:r * n_part + r, ...]
  1146. @ModelBase.register("XverseForCausalLM")
  1147. class XverseModel(TextModel):
  1148. model_arch = gguf.MODEL_ARCH.XVERSE
  1149. def set_vocab(self):
  1150. assert (self.dir_model / "tokenizer.json").is_file()
  1151. dir_model = self.dir_model
  1152. hparams = self.hparams
  1153. tokens: list[bytes] = []
  1154. toktypes: list[int] = []
  1155. from transformers import AutoTokenizer
  1156. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1157. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1158. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1159. # because vocab_size is the count of items, and indexes start at 0.
  1160. max_vocab_index = max(tokenizer.get_vocab().values())
  1161. if max_vocab_index >= vocab_size:
  1162. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1163. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1164. added_vocab = tokenizer.get_added_vocab()
  1165. for token_id in range(vocab_size):
  1166. token_text = reverse_vocab[token_id].encode('utf-8')
  1167. # replace "\x00" to string with length > 0
  1168. if token_text == b"\x00":
  1169. toktype = gguf.TokenType.BYTE # special
  1170. token_text = f"<{token_text}>".encode('utf-8')
  1171. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1172. toktype = gguf.TokenType.BYTE # special
  1173. elif reverse_vocab[token_id] in added_vocab:
  1174. if tokenizer.added_tokens_decoder[token_id].special:
  1175. toktype = gguf.TokenType.CONTROL
  1176. else:
  1177. toktype = gguf.TokenType.USER_DEFINED
  1178. else:
  1179. toktype = gguf.TokenType.NORMAL
  1180. tokens.append(token_text)
  1181. toktypes.append(toktype)
  1182. self.gguf_writer.add_tokenizer_model("llama")
  1183. self.gguf_writer.add_tokenizer_pre("default")
  1184. self.gguf_writer.add_token_list(tokens)
  1185. self.gguf_writer.add_token_types(toktypes)
  1186. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1187. special_vocab.add_to_gguf(self.gguf_writer)
  1188. def set_gguf_parameters(self):
  1189. block_count = self.hparams["num_hidden_layers"]
  1190. head_count = self.hparams["num_attention_heads"]
  1191. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1192. ctx_length = 0
  1193. if "max_sequence_length" in self.hparams:
  1194. ctx_length = self.hparams["max_sequence_length"]
  1195. elif "max_position_embeddings" in self.hparams:
  1196. ctx_length = self.hparams["max_position_embeddings"]
  1197. elif "model_max_length" in self.hparams:
  1198. ctx_length = self.hparams["model_max_length"]
  1199. else:
  1200. raise ValueError("gguf: can not find ctx length parameter.")
  1201. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1202. self.gguf_writer.add_context_length(ctx_length)
  1203. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1204. self.gguf_writer.add_block_count(block_count)
  1205. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1206. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1207. self.gguf_writer.add_head_count(head_count)
  1208. self.gguf_writer.add_head_count_kv(head_count_kv)
  1209. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1210. self.gguf_writer.add_file_type(self.ftype)
  1211. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1212. if self.hparams["rope_scaling"].get("type") == "linear":
  1213. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1214. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1215. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1216. del bid # unused
  1217. head_count = self.hparams["num_attention_heads"]
  1218. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1219. # HF models permute some of the tensors, so we need to undo that
  1220. if name.endswith("q_proj.weight"):
  1221. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1222. if name.endswith("k_proj.weight"):
  1223. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1224. return [(self.map_tensor_name(name), data_torch)]
  1225. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1226. if n_kv_head is not None and n_head != n_kv_head:
  1227. n_head //= n_kv_head
  1228. return (
  1229. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1230. .swapaxes(1, 2)
  1231. .reshape(weights.shape)
  1232. )
  1233. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1234. class FalconModel(TextModel):
  1235. model_arch = gguf.MODEL_ARCH.FALCON
  1236. def set_gguf_parameters(self):
  1237. block_count = self.hparams.get("num_hidden_layers")
  1238. if block_count is None:
  1239. block_count = self.hparams["n_layer"] # old name
  1240. n_head = self.hparams.get("num_attention_heads")
  1241. if n_head is None:
  1242. n_head = self.hparams["n_head"] # old name
  1243. n_head_kv = self.hparams.get("num_kv_heads")
  1244. if n_head_kv is None:
  1245. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1246. self.gguf_writer.add_context_length(2048) # not in config.json
  1247. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1248. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1249. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1250. self.gguf_writer.add_block_count(block_count)
  1251. self.gguf_writer.add_head_count(n_head)
  1252. self.gguf_writer.add_head_count_kv(n_head_kv)
  1253. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1254. self.gguf_writer.add_file_type(self.ftype)
  1255. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1256. del bid # unused
  1257. # QKV tensor transform
  1258. # The original query_key_value tensor contains n_head_kv "kv groups",
  1259. # each consisting of n_head/n_head_kv query weights followed by one key
  1260. # and one value weight (shared by all query heads in the kv group).
  1261. # This layout makes it a big pain to work with in GGML.
  1262. # So we rearrange them here,, so that we have n_head query weights
  1263. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1264. # in contiguous fashion.
  1265. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1266. if "query_key_value" in name:
  1267. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1268. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1269. head_dim = self.hparams["hidden_size"] // n_head
  1270. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1271. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1272. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1273. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1274. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1275. return [(self.map_tensor_name(name), data_torch)]
  1276. @ModelBase.register("GPTBigCodeForCausalLM")
  1277. class StarCoderModel(TextModel):
  1278. model_arch = gguf.MODEL_ARCH.STARCODER
  1279. def set_gguf_parameters(self):
  1280. block_count = self.hparams["n_layer"]
  1281. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1282. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1283. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1284. self.gguf_writer.add_block_count(block_count)
  1285. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1286. self.gguf_writer.add_head_count_kv(1)
  1287. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1288. self.gguf_writer.add_file_type(self.ftype)
  1289. @ModelBase.register("GPTRefactForCausalLM")
  1290. class RefactModel(TextModel):
  1291. model_arch = gguf.MODEL_ARCH.REFACT
  1292. def set_vocab(self):
  1293. super().set_vocab()
  1294. # TODO: how to determine special FIM tokens automatically?
  1295. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1296. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1297. special_vocab._set_special_token("prefix", 1)
  1298. special_vocab._set_special_token("suffix", 3)
  1299. special_vocab._set_special_token("middle", 2)
  1300. special_vocab.chat_template = None # do not add it twice
  1301. special_vocab.add_to_gguf(self.gguf_writer)
  1302. def set_gguf_parameters(self):
  1303. hidden_dim = self.hparams["n_embd"]
  1304. inner_dim = 4 * hidden_dim
  1305. hidden_dim = int(2 * inner_dim / 3)
  1306. multiple_of = 256
  1307. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1308. block_count = self.hparams["n_layer"]
  1309. # refact uses Alibi. So this is from config.json which might be used by training.
  1310. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1311. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1312. self.gguf_writer.add_feed_forward_length(ff_dim)
  1313. self.gguf_writer.add_block_count(block_count)
  1314. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1315. self.gguf_writer.add_head_count_kv(1)
  1316. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1317. self.gguf_writer.add_file_type(self.ftype)
  1318. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1319. hidden_dim = self.hparams["n_embd"]
  1320. inner_dim = 4 * hidden_dim
  1321. hidden_dim = int(2 * inner_dim / 3)
  1322. multiple_of = 256
  1323. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1324. n_head = self.hparams["n_head"]
  1325. n_head_kv = 1
  1326. head_dim = self.hparams["n_embd"] // n_head
  1327. tensors: list[tuple[str, Tensor]] = []
  1328. if bid is not None:
  1329. if name == f"transformer.h.{bid}.attn.kv.weight":
  1330. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1331. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1332. elif name == f"transformer.h.{bid}.attn.q.weight":
  1333. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1334. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1335. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1336. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1337. if len(tensors) == 0:
  1338. tensors.append((self.map_tensor_name(name), data_torch))
  1339. return tensors
  1340. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1341. class StableLMModel(TextModel):
  1342. model_arch = gguf.MODEL_ARCH.STABLELM
  1343. def set_vocab(self):
  1344. if (self.dir_model / "tokenizer.json").is_file():
  1345. self._set_vocab_gpt2()
  1346. else:
  1347. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1348. self._set_vocab_qwen()
  1349. def set_gguf_parameters(self):
  1350. hparams = self.hparams
  1351. block_count = hparams["num_hidden_layers"]
  1352. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1353. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1354. self.gguf_writer.add_block_count(block_count)
  1355. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1356. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1357. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1358. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1359. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1360. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1361. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1362. self.gguf_writer.add_file_type(self.ftype)
  1363. _q_norms: list[dict[str, Tensor]] | None = None
  1364. _k_norms: list[dict[str, Tensor]] | None = None
  1365. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1366. n_head = self.hparams["num_attention_heads"]
  1367. n_kv_head = self.hparams["num_key_value_heads"]
  1368. if name.find("q_layernorm.norms") != -1:
  1369. assert bid is not None
  1370. if self._q_norms is None:
  1371. self._q_norms = [{} for _ in range(self.block_count)]
  1372. self._q_norms[bid][name] = data_torch
  1373. if len(self._q_norms[bid]) >= n_head:
  1374. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1375. else:
  1376. return []
  1377. if name.find("k_layernorm.norms") != -1:
  1378. assert bid is not None
  1379. if self._k_norms is None:
  1380. self._k_norms = [{} for _ in range(self.block_count)]
  1381. self._k_norms[bid][name] = data_torch
  1382. if len(self._k_norms[bid]) >= n_kv_head:
  1383. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1384. else:
  1385. return []
  1386. return [(self.map_tensor_name(name), data_torch)]
  1387. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1388. datas: list[Tensor] = []
  1389. # extract the norms in order
  1390. for xid in range(n_head):
  1391. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1392. datas.append(norms[ename])
  1393. del norms[ename]
  1394. data_torch = torch.stack(datas, dim=0)
  1395. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1396. new_name = self.map_tensor_name(merged_name)
  1397. return [(new_name, data_torch)]
  1398. def prepare_tensors(self):
  1399. super().prepare_tensors()
  1400. if self._q_norms is not None or self._k_norms is not None:
  1401. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1402. norms = (
  1403. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1404. ) + (
  1405. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1406. )
  1407. if len(norms) > 0:
  1408. raise ValueError(f"Unprocessed norms: {norms}")
  1409. @ModelBase.register("LLaMAForCausalLM", "LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  1410. class LlamaModel(TextModel):
  1411. model_arch = gguf.MODEL_ARCH.LLAMA
  1412. undo_permute = True
  1413. def set_vocab(self):
  1414. try:
  1415. self._set_vocab_sentencepiece()
  1416. except FileNotFoundError:
  1417. try:
  1418. self._set_vocab_llama_hf()
  1419. except (FileNotFoundError, TypeError):
  1420. # Llama 3
  1421. self._set_vocab_gpt2()
  1422. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1423. if self.hparams.get("vocab_size", 32000) == 32016:
  1424. special_vocab = gguf.SpecialVocab(
  1425. self.dir_model, load_merges=False,
  1426. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1427. )
  1428. special_vocab._set_special_token("prefix", 32007)
  1429. special_vocab._set_special_token("suffix", 32008)
  1430. special_vocab._set_special_token("middle", 32009)
  1431. special_vocab._set_special_token("eot", 32010)
  1432. special_vocab.add_to_gguf(self.gguf_writer)
  1433. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1434. if tokenizer_config_file.is_file():
  1435. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1436. tokenizer_config_json = json.load(f)
  1437. if "add_prefix_space" in tokenizer_config_json:
  1438. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1439. # Apply to granite small models only
  1440. if self.hparams.get("vocab_size", 32000) == 49152:
  1441. self.gguf_writer.add_add_bos_token(False)
  1442. def set_gguf_parameters(self):
  1443. super().set_gguf_parameters()
  1444. hparams = self.hparams
  1445. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1446. if "head_dim" in hparams:
  1447. rope_dim = hparams["head_dim"]
  1448. else:
  1449. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1450. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1451. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1452. if self.hparams["rope_scaling"].get("type") == "linear":
  1453. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1454. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1455. @staticmethod
  1456. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1457. if n_head_kv is not None and n_head != n_head_kv:
  1458. n_head = n_head_kv
  1459. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1460. .swapaxes(1, 2)
  1461. .reshape(weights.shape))
  1462. _experts: list[dict[str, Tensor]] | None = None
  1463. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1464. n_head = self.hparams["num_attention_heads"]
  1465. n_kv_head = self.hparams.get("num_key_value_heads")
  1466. if self.undo_permute:
  1467. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1468. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1469. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1470. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1471. # process the experts separately
  1472. if name.find("block_sparse_moe.experts") != -1:
  1473. n_experts = self.hparams["num_local_experts"]
  1474. assert bid is not None
  1475. if self._experts is None:
  1476. self._experts = [{} for _ in range(self.block_count)]
  1477. self._experts[bid][name] = data_torch
  1478. if len(self._experts[bid]) >= n_experts * 3:
  1479. tensors: list[tuple[str, Tensor]] = []
  1480. # merge the experts into a single 3d tensor
  1481. for wid in ["w1", "w2", "w3"]:
  1482. datas: list[Tensor] = []
  1483. for xid in range(n_experts):
  1484. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1485. datas.append(self._experts[bid][ename])
  1486. del self._experts[bid][ename]
  1487. data_torch = torch.stack(datas, dim=0)
  1488. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1489. new_name = self.map_tensor_name(merged_name)
  1490. tensors.append((new_name, data_torch))
  1491. return tensors
  1492. else:
  1493. return []
  1494. return [(self.map_tensor_name(name), data_torch)]
  1495. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1496. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1497. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1498. base = self.hparams.get("rope_theta", 10000.0)
  1499. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1500. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1501. factor = rope_scaling.get("factor", 8.0)
  1502. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1503. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1504. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1505. low_freq_wavelen = old_context_len / low_freq_factor
  1506. high_freq_wavelen = old_context_len / high_freq_factor
  1507. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  1508. rope_factors = []
  1509. for freq in freqs:
  1510. wavelen = 2 * math.pi / freq
  1511. if wavelen < high_freq_wavelen:
  1512. rope_factors.append(1)
  1513. elif wavelen > low_freq_wavelen:
  1514. rope_factors.append(factor)
  1515. else:
  1516. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1517. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1518. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1519. def prepare_tensors(self):
  1520. super().prepare_tensors()
  1521. if self._experts is not None:
  1522. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1523. experts = [k for d in self._experts for k in d.keys()]
  1524. if len(experts) > 0:
  1525. raise ValueError(f"Unprocessed experts: {experts}")
  1526. @ModelBase.register("Llama4ForConditionalGeneration")
  1527. class Llama4Model(LlamaModel):
  1528. model_arch = gguf.MODEL_ARCH.LLAMA4
  1529. undo_permute = False
  1530. def __init__(self, *args, **kwargs):
  1531. super().__init__(*args, **kwargs)
  1532. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  1533. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  1534. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  1535. def set_vocab(self):
  1536. self._set_vocab_gpt2()
  1537. self.gguf_writer.add_add_bos_token(True)
  1538. def set_gguf_parameters(self):
  1539. super().set_gguf_parameters()
  1540. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  1541. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  1542. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1543. # split the gate_up into gate and up
  1544. if "gate_up_proj" in name:
  1545. name_up = name.replace("gate_up_proj", "up_proj.weight")
  1546. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  1547. dim_half = data_torch.shape[-1] // 2
  1548. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  1549. return [
  1550. (self.map_tensor_name(name_gate), gate_proj_weight),
  1551. (self.map_tensor_name(name_up), up_proj_weight)
  1552. ]
  1553. if name.endswith("down_proj"):
  1554. name += ".weight"
  1555. data_torch = data_torch.transpose(-1, -2)
  1556. if "multi_modal_projector" in name or "vision_model" in name:
  1557. return []
  1558. return super().modify_tensors(data_torch, name, bid)
  1559. @ModelBase.register("Mistral3ForConditionalGeneration")
  1560. class Mistral3Model(LlamaModel):
  1561. model_arch = gguf.MODEL_ARCH.LLAMA
  1562. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1563. name = name.replace("language_model.", "")
  1564. if "multi_modal_projector" in name or "vision_tower" in name:
  1565. return []
  1566. return super().modify_tensors(data_torch, name, bid)
  1567. @ModelBase.register("DeciLMForCausalLM")
  1568. class DeciModel(TextModel):
  1569. model_arch = gguf.MODEL_ARCH.DECI
  1570. @staticmethod
  1571. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  1572. # DeciLM-specific code
  1573. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  1574. return DeciModel._find_multiple(intermediate_size, 256)
  1575. @staticmethod
  1576. def _find_multiple(n: int, k: int) -> int:
  1577. # DeciLM-specific code
  1578. if n % k == 0:
  1579. return n
  1580. return n + k - (n % k)
  1581. def __init__(self, *args, **kwargs):
  1582. super().__init__(*args, **kwargs)
  1583. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1584. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  1585. assert self.block_count == len(_block_configs)
  1586. self._num_kv_heads = list()
  1587. self._num_heads = list()
  1588. _ffn_multipliers = list()
  1589. # ***linear attention layer***
  1590. # if n_heads_in_group is None and replace_with_linear is True
  1591. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  1592. # ***attention-free layer***
  1593. # if n_heads_in_group is None and replace_with_linear is False
  1594. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  1595. # ***normal attention-layer***
  1596. # if n_heads_in_group is not None, then
  1597. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  1598. # _num_heads[il] is num_attention_head
  1599. for il in range(len(_block_configs)):
  1600. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  1601. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  1602. self._num_kv_heads.append(0)
  1603. self._num_heads.append(self.hparams["num_attention_heads"])
  1604. else:
  1605. self._num_kv_heads.append(0)
  1606. self._num_heads.append(0)
  1607. else:
  1608. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  1609. self._num_heads.append(self.hparams["num_attention_heads"])
  1610. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  1611. assert self.block_count == len(self._num_kv_heads)
  1612. assert self.block_count == len(self._num_heads)
  1613. assert self.block_count == len(_ffn_multipliers)
  1614. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  1615. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  1616. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  1617. self._ffn_dims: list[int] = [
  1618. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  1619. for multiplier in _ffn_multipliers
  1620. ]
  1621. def set_vocab(self):
  1622. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  1623. # eos_token from '|eot_id|' to '|end_of_text|'
  1624. if self.hparams.get("vocab_size", 128256) == 128256:
  1625. tokens, toktypes, tokpre = self.get_vocab_base()
  1626. self.gguf_writer.add_tokenizer_model("gpt2")
  1627. self.gguf_writer.add_tokenizer_pre(tokpre)
  1628. self.gguf_writer.add_token_list(tokens)
  1629. self.gguf_writer.add_token_types(toktypes)
  1630. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1631. special_vocab.add_to_gguf(self.gguf_writer)
  1632. else:
  1633. # DeciLM-7B
  1634. self._set_vocab_llama_hf()
  1635. def set_gguf_parameters(self):
  1636. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1637. assert self.block_count == len(self._num_kv_heads)
  1638. assert self.block_count == len(self._num_heads)
  1639. assert self.block_count == len(self._ffn_dims)
  1640. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  1641. self.gguf_writer.add_rope_freq_base(rope_theta)
  1642. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1643. self.gguf_writer.add_head_count(self._num_heads)
  1644. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  1645. self.gguf_writer.add_block_count(self.block_count)
  1646. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1647. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1648. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1649. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1650. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1651. self.gguf_writer.add_file_type(self.ftype)
  1652. else: # DeciLM-7B
  1653. super().set_gguf_parameters()
  1654. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  1655. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  1656. assert self.block_count == len(self._num_kv_heads)
  1657. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1658. hparams = self.hparams
  1659. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1660. if "head_dim" in hparams:
  1661. rope_dim = hparams["head_dim"]
  1662. else:
  1663. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1664. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1665. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1666. if self.hparams["rope_scaling"].get("type") == "linear":
  1667. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1668. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1669. @staticmethod
  1670. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1671. if n_head_kv is not None and n_head != n_head_kv:
  1672. n_head = n_head_kv
  1673. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1674. .swapaxes(1, 2)
  1675. .reshape(weights.shape))
  1676. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1677. n_head = self.hparams["num_attention_heads"]
  1678. if bid is not None:
  1679. if "num_key_value_heads_per_layer" in self.hparams:
  1680. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  1681. elif "block_configs" in self.hparams:
  1682. n_kv_head = self._num_kv_heads[bid]
  1683. n_head = self._num_heads[bid]
  1684. else:
  1685. n_kv_head = self.hparams.get("num_key_value_heads")
  1686. else:
  1687. n_kv_head = self.hparams.get("num_key_value_heads")
  1688. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1689. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  1690. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1691. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  1692. return [(self.map_tensor_name(name), data_torch)]
  1693. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1694. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1695. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1696. base = self.hparams.get("rope_theta", 10000.0)
  1697. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1698. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1699. factor = rope_scaling.get("factor", 8.0)
  1700. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1701. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1702. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1703. low_freq_wavelen = old_context_len / low_freq_factor
  1704. high_freq_wavelen = old_context_len / high_freq_factor
  1705. assert low_freq_wavelen != high_freq_wavelen
  1706. rope_factors = []
  1707. for freq in freqs:
  1708. wavelen = 2 * math.pi / freq
  1709. if wavelen < high_freq_wavelen:
  1710. rope_factors.append(1)
  1711. elif wavelen > low_freq_wavelen:
  1712. rope_factors.append(factor)
  1713. else:
  1714. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1715. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1716. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1717. def prepare_tensors(self):
  1718. super().prepare_tensors()
  1719. @ModelBase.register("BitnetForCausalLM")
  1720. class BitnetModel(TextModel):
  1721. model_arch = gguf.MODEL_ARCH.BITNET
  1722. def set_vocab(self):
  1723. self._set_vocab_sentencepiece()
  1724. def set_gguf_parameters(self):
  1725. super().set_gguf_parameters()
  1726. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1727. self.gguf_writer.add_rope_scaling_factor(1.0)
  1728. def weight_quant(self, weight: Tensor) -> Tensor:
  1729. dtype = weight.dtype
  1730. weight = weight.float()
  1731. scale = weight.abs().mean().clamp(min=1e-5)
  1732. iscale = 1 / scale
  1733. # TODO: multiply by the scale directly instead of inverting it twice
  1734. # (this is also unnecessarily doubly inverted upstream)
  1735. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  1736. result = (weight * iscale).round().clamp(-1, 1) / iscale
  1737. return result.type(dtype)
  1738. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1739. new_name = self.map_tensor_name(name)
  1740. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  1741. gguf.MODEL_TENSOR.ATTN_Q,
  1742. gguf.MODEL_TENSOR.ATTN_K,
  1743. gguf.MODEL_TENSOR.ATTN_V,
  1744. gguf.MODEL_TENSOR.ATTN_OUT,
  1745. gguf.MODEL_TENSOR.FFN_UP,
  1746. gguf.MODEL_TENSOR.FFN_DOWN,
  1747. gguf.MODEL_TENSOR.FFN_GATE,
  1748. ]):
  1749. # transform weight into 1/0/-1 (in fp32)
  1750. data_torch = self.weight_quant(data_torch)
  1751. yield (new_name, data_torch)
  1752. @ModelBase.register("GrokForCausalLM")
  1753. class GrokModel(TextModel):
  1754. model_arch = gguf.MODEL_ARCH.GROK
  1755. def set_vocab(self):
  1756. self._set_vocab_sentencepiece()
  1757. def __init__(self, *args, **kwargs):
  1758. super().__init__(*args, **kwargs)
  1759. def set_gguf_parameters(self):
  1760. super().set_gguf_parameters()
  1761. _experts: list[dict[str, Tensor]] | None = None
  1762. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1763. # process the experts separately
  1764. if name.find(".moe.") != -1:
  1765. n_experts = self.hparams["num_local_experts"]
  1766. assert bid is not None
  1767. if self._experts is None:
  1768. self._experts = [{} for _ in range(self.block_count)]
  1769. self._experts[bid][name] = data_torch
  1770. if len(self._experts[bid]) >= n_experts * 3:
  1771. tensors: list[tuple[str, Tensor]] = []
  1772. # merge the experts into a single 3d tensor
  1773. for wid in ["linear", "linear_1", "linear_v"]:
  1774. datas: list[Tensor] = []
  1775. for xid in range(n_experts):
  1776. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1777. datas.append(self._experts[bid][ename])
  1778. del self._experts[bid][ename]
  1779. data_torch = torch.stack(datas, dim=0)
  1780. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1781. new_name = self.map_tensor_name(merged_name)
  1782. tensors.append((new_name, data_torch))
  1783. return tensors
  1784. else:
  1785. return []
  1786. return [(self.map_tensor_name(name), data_torch)]
  1787. @ModelBase.register("DbrxForCausalLM")
  1788. class DbrxModel(TextModel):
  1789. model_arch = gguf.MODEL_ARCH.DBRX
  1790. def set_gguf_parameters(self):
  1791. ffn_config = self.hparams["ffn_config"]
  1792. attn_config = self.hparams["attn_config"]
  1793. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1794. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1795. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1796. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1797. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1798. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1799. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1800. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1801. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1802. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1803. self.gguf_writer.add_layer_norm_eps(1e-5)
  1804. self.gguf_writer.add_file_type(self.ftype)
  1805. logger.info(f"gguf: file type = {self.ftype}")
  1806. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1807. del bid # unused
  1808. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1809. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1810. n_embd = self.hparams["d_model"]
  1811. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1812. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1813. # But llama.cpp moe graph works differently
  1814. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1815. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1816. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1817. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1818. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1819. experts = False
  1820. for exp_tensor_name in exp_tensor_names.keys():
  1821. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1822. experts = True
  1823. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1824. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1825. data_torch = data_torch.permute(*permute_tensor)
  1826. break
  1827. # map tensor names
  1828. # In MoE models the ffn tensors are typically most of the model weights,
  1829. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1830. # Every other model has the weight names ending in .weight,
  1831. # let's assume that is the convention which is not the case for dbrx:
  1832. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1833. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1834. return [(new_name, data_torch)]
  1835. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  1836. del name, new_name, bid # unused
  1837. return n_dims > 1
  1838. @ModelBase.register("MiniCPMForCausalLM")
  1839. class MiniCPMModel(TextModel):
  1840. model_arch = gguf.MODEL_ARCH.MINICPM
  1841. def set_gguf_parameters(self):
  1842. super().set_gguf_parameters()
  1843. embedding_scale = float(self.hparams["scale_emb"])
  1844. self.gguf_writer.add_embedding_scale(embedding_scale)
  1845. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  1846. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  1847. self.gguf_writer.add_residual_scale(residual_scale)
  1848. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  1849. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  1850. self.gguf_writer.add_logit_scale(logit_scale)
  1851. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  1852. if self.hparams.get("rope_scaling") is not None:
  1853. if self.hparams["rope_scaling"].get("type") == "longrope":
  1854. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  1855. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  1856. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1857. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1858. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1859. if rope_scaling is not None:
  1860. long_factors = rope_scaling.get('long_factor', None)
  1861. short_factors = rope_scaling.get('short_factor', None)
  1862. if long_factors is None or short_factors is None:
  1863. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1864. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1865. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1866. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  1867. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  1868. def set_vocab(self):
  1869. self._set_vocab_sentencepiece()
  1870. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1871. del bid # unused
  1872. n_head = self.hparams["num_attention_heads"]
  1873. n_kv_head = self.hparams.get("num_key_value_heads")
  1874. # HF models permute some of the tensors, so we need to undo that
  1875. if name.endswith(("q_proj.weight")):
  1876. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1877. if name.endswith(("k_proj.weight")):
  1878. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1879. return [(self.map_tensor_name(name), data_torch)]
  1880. @ModelBase.register("MiniCPM3ForCausalLM")
  1881. class MiniCPM3Model(TextModel):
  1882. model_arch = gguf.MODEL_ARCH.MINICPM3
  1883. def set_gguf_parameters(self):
  1884. hparams = self.hparams
  1885. self.gguf_writer.add_file_type(self.ftype)
  1886. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1887. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1888. self.gguf_writer.add_block_count(self.block_count)
  1889. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1890. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1891. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1892. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1893. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1894. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  1895. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  1896. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  1897. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  1898. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  1899. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1900. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1901. if rope_scaling is not None:
  1902. rope_dims = self.hparams["qk_rope_head_dim"]
  1903. long_factors = rope_scaling.get('long_factor', None)
  1904. short_factors = rope_scaling.get('short_factor', None)
  1905. if long_factors is None or short_factors is None:
  1906. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1907. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1908. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1909. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  1910. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  1911. def set_vocab(self):
  1912. self._set_vocab_sentencepiece()
  1913. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1914. if n_kv_head is not None and n_head != n_kv_head:
  1915. n_head //= n_kv_head
  1916. return (
  1917. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1918. .swapaxes(1, 2)
  1919. .reshape(weights.shape)
  1920. )
  1921. @ModelBase.register("QWenLMHeadModel")
  1922. class QwenModel(TextModel):
  1923. model_arch = gguf.MODEL_ARCH.QWEN
  1924. @staticmethod
  1925. def token_bytes_to_string(b):
  1926. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1927. byte_encoder = bytes_to_unicode()
  1928. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1929. @staticmethod
  1930. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1931. parts = [bytes([b]) for b in token]
  1932. while True:
  1933. min_idx = None
  1934. min_rank = None
  1935. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1936. rank = mergeable_ranks.get(pair[0] + pair[1])
  1937. if rank is not None and (min_rank is None or rank < min_rank):
  1938. min_idx = i
  1939. min_rank = rank
  1940. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1941. break
  1942. assert min_idx is not None
  1943. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1944. return parts
  1945. def set_vocab(self):
  1946. self._set_vocab_qwen()
  1947. def set_gguf_parameters(self):
  1948. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1949. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1950. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1951. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1952. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1953. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1954. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1955. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1956. self.gguf_writer.add_file_type(self.ftype)
  1957. @ModelBase.register("Qwen2ForCausalLM")
  1958. class Qwen2Model(TextModel):
  1959. model_arch = gguf.MODEL_ARCH.QWEN2
  1960. def set_vocab(self):
  1961. try:
  1962. self._set_vocab_sentencepiece()
  1963. except FileNotFoundError:
  1964. self._set_vocab_gpt2()
  1965. def set_gguf_parameters(self):
  1966. super().set_gguf_parameters()
  1967. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1968. if self.hparams["rope_scaling"].get("type") == "yarn":
  1969. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  1970. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1971. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  1972. @ModelBase.register("Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  1973. class Qwen2VLModel(TextModel):
  1974. model_arch = gguf.MODEL_ARCH.QWEN2VL
  1975. def set_gguf_parameters(self):
  1976. super().set_gguf_parameters()
  1977. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  1978. mrope_section += [0] * max(0, 4 - len(mrope_section))
  1979. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  1980. def set_vocab(self):
  1981. try:
  1982. self._set_vocab_sentencepiece()
  1983. except FileNotFoundError:
  1984. self._set_vocab_gpt2()
  1985. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  1986. for name, data in super().get_tensors():
  1987. if name.startswith("visual."):
  1988. continue
  1989. yield name, data
  1990. @ModelBase.register("WavTokenizerDec")
  1991. class WavTokenizerDecModel(TextModel):
  1992. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  1993. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1994. del bid # unused
  1995. if \
  1996. name.endswith("codebook.cluster_size") or \
  1997. name.endswith("codebook.embed_avg") or \
  1998. name.endswith("codebook.inited"):
  1999. logger.debug(f"Skipping {name!r}")
  2000. return []
  2001. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  2002. return [(self.map_tensor_name(name), data_torch)]
  2003. def set_vocab(self):
  2004. self._set_vocab_none()
  2005. def set_gguf_parameters(self):
  2006. super().set_gguf_parameters()
  2007. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  2008. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  2009. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  2010. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  2011. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  2012. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  2013. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  2014. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  2015. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  2016. self.gguf_writer.add_causal_attention(False)
  2017. @ModelBase.register("Qwen2MoeForCausalLM")
  2018. class Qwen2MoeModel(TextModel):
  2019. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  2020. def set_gguf_parameters(self):
  2021. super().set_gguf_parameters()
  2022. if (n_experts := self.hparams.get("num_experts")) is not None:
  2023. self.gguf_writer.add_expert_count(n_experts)
  2024. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2025. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2026. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  2027. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  2028. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  2029. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  2030. _experts: list[dict[str, Tensor]] | None = None
  2031. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2032. # process the experts separately
  2033. if name.find("experts") != -1:
  2034. n_experts = self.hparams["num_experts"]
  2035. assert bid is not None
  2036. if self._experts is None:
  2037. self._experts = [{} for _ in range(self.block_count)]
  2038. self._experts[bid][name] = data_torch
  2039. if len(self._experts[bid]) >= n_experts * 3:
  2040. tensors: list[tuple[str, Tensor]] = []
  2041. # merge the experts into a single 3d tensor
  2042. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2043. datas: list[Tensor] = []
  2044. for xid in range(n_experts):
  2045. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2046. datas.append(self._experts[bid][ename])
  2047. del self._experts[bid][ename]
  2048. data_torch = torch.stack(datas, dim=0)
  2049. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2050. new_name = self.map_tensor_name(merged_name)
  2051. tensors.append((new_name, data_torch))
  2052. return tensors
  2053. else:
  2054. return []
  2055. return [(self.map_tensor_name(name), data_torch)]
  2056. def prepare_tensors(self):
  2057. super().prepare_tensors()
  2058. if self._experts is not None:
  2059. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2060. experts = [k for d in self._experts for k in d.keys()]
  2061. if len(experts) > 0:
  2062. raise ValueError(f"Unprocessed experts: {experts}")
  2063. @ModelBase.register("Qwen3ForCausalLM")
  2064. class Qwen3Model(Qwen2Model):
  2065. model_arch = gguf.MODEL_ARCH.QWEN3
  2066. @ModelBase.register("Qwen3MoeForCausalLM")
  2067. class Qwen3MoeModel(Qwen2MoeModel):
  2068. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  2069. @ModelBase.register("GPT2LMHeadModel")
  2070. class GPT2Model(TextModel):
  2071. model_arch = gguf.MODEL_ARCH.GPT2
  2072. def set_gguf_parameters(self):
  2073. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2074. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  2075. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2076. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2077. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2078. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2079. self.gguf_writer.add_file_type(self.ftype)
  2080. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2081. del bid # unused
  2082. tensors: list[tuple[str, Tensor]] = []
  2083. # we don't need these
  2084. if name.endswith((".attn.bias", ".attn.masked_bias")):
  2085. return tensors
  2086. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  2087. data_torch = data_torch.transpose(1, 0)
  2088. new_name = self.map_tensor_name(name)
  2089. tensors.append((new_name, data_torch))
  2090. return tensors
  2091. @ModelBase.register("PhiForCausalLM")
  2092. class Phi2Model(TextModel):
  2093. model_arch = gguf.MODEL_ARCH.PHI2
  2094. def set_gguf_parameters(self):
  2095. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2096. rot_pct = self.find_hparam(["partial_rotary_factor"])
  2097. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2098. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2099. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  2100. self.gguf_writer.add_embedding_length(n_embd)
  2101. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  2102. self.gguf_writer.add_block_count(block_count)
  2103. self.gguf_writer.add_head_count(n_head)
  2104. self.gguf_writer.add_head_count_kv(n_head)
  2105. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  2106. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  2107. self.gguf_writer.add_file_type(self.ftype)
  2108. self.gguf_writer.add_add_bos_token(False)
  2109. @ModelBase.register("Phi3ForCausalLM")
  2110. class Phi3MiniModel(TextModel):
  2111. model_arch = gguf.MODEL_ARCH.PHI3
  2112. def set_vocab(self):
  2113. # Phi-4 model uses GPT2Tokenizer
  2114. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2115. if tokenizer_config_file.is_file():
  2116. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2117. tokenizer_config_json = json.load(f)
  2118. tokenizer_class = tokenizer_config_json['tokenizer_class']
  2119. if tokenizer_class == 'GPT2Tokenizer':
  2120. return self._set_vocab_gpt2()
  2121. from sentencepiece import SentencePieceProcessor
  2122. tokenizer_path = self.dir_model / 'tokenizer.model'
  2123. if not tokenizer_path.is_file():
  2124. raise ValueError(f'Error: Missing {tokenizer_path}')
  2125. tokenizer = SentencePieceProcessor()
  2126. tokenizer.LoadFromFile(str(tokenizer_path))
  2127. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2128. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2129. scores: list[float] = [-10000.0] * vocab_size
  2130. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2131. for token_id in range(tokenizer.vocab_size()):
  2132. piece = tokenizer.IdToPiece(token_id)
  2133. text = piece.encode("utf-8")
  2134. score = tokenizer.GetScore(token_id)
  2135. toktype = SentencePieceTokenTypes.NORMAL
  2136. if tokenizer.IsUnknown(token_id):
  2137. toktype = SentencePieceTokenTypes.UNKNOWN
  2138. elif tokenizer.IsControl(token_id):
  2139. toktype = SentencePieceTokenTypes.CONTROL
  2140. elif tokenizer.IsUnused(token_id):
  2141. toktype = SentencePieceTokenTypes.UNUSED
  2142. elif tokenizer.IsByte(token_id):
  2143. toktype = SentencePieceTokenTypes.BYTE
  2144. tokens[token_id] = text
  2145. scores[token_id] = score
  2146. toktypes[token_id] = toktype
  2147. added_tokens_file = self.dir_model / 'added_tokens.json'
  2148. if added_tokens_file.is_file():
  2149. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2150. added_tokens_json = json.load(f)
  2151. for key in added_tokens_json:
  2152. token_id = added_tokens_json[key]
  2153. if token_id >= vocab_size:
  2154. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2155. continue
  2156. tokens[token_id] = key.encode("utf-8")
  2157. scores[token_id] = -1000.0
  2158. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2159. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2160. if tokenizer_config_file.is_file():
  2161. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2162. tokenizer_config_json = json.load(f)
  2163. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2164. for token_id, foken_data in added_tokens_decoder.items():
  2165. token_id = int(token_id)
  2166. token = foken_data["content"].encode("utf-8")
  2167. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2168. if tokens[token_id] != token:
  2169. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2170. tokens[token_id] = token
  2171. scores[token_id] = -1000.0
  2172. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2173. if foken_data.get("special"):
  2174. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2175. tokenizer_file = self.dir_model / 'tokenizer.json'
  2176. if tokenizer_file.is_file():
  2177. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2178. tokenizer_json = json.load(f)
  2179. added_tokens = tokenizer_json.get("added_tokens", [])
  2180. for foken_data in added_tokens:
  2181. token_id = int(foken_data["id"])
  2182. token = foken_data["content"].encode("utf-8")
  2183. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2184. if tokens[token_id] != token:
  2185. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2186. tokens[token_id] = token
  2187. scores[token_id] = -1000.0
  2188. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2189. if foken_data.get("special"):
  2190. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2191. self.gguf_writer.add_tokenizer_model("llama")
  2192. self.gguf_writer.add_tokenizer_pre("default")
  2193. self.gguf_writer.add_token_list(tokens)
  2194. self.gguf_writer.add_token_scores(scores)
  2195. self.gguf_writer.add_token_types(toktypes)
  2196. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2197. special_vocab.add_to_gguf(self.gguf_writer)
  2198. def set_gguf_parameters(self):
  2199. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2200. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2201. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2202. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  2203. rms_eps = self.find_hparam(["rms_norm_eps"])
  2204. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2205. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2206. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2207. rope_dims = int(rot_pct * n_embd) // n_head
  2208. self.gguf_writer.add_context_length(max_pos_embds)
  2209. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  2210. self.gguf_writer.add_embedding_length(n_embd)
  2211. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  2212. self.gguf_writer.add_block_count(block_count)
  2213. self.gguf_writer.add_head_count(n_head)
  2214. self.gguf_writer.add_head_count_kv(n_head_kv)
  2215. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  2216. self.gguf_writer.add_rope_dimension_count(rope_dims)
  2217. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  2218. self.gguf_writer.add_file_type(self.ftype)
  2219. sliding_window = self.hparams.get("sliding_window")
  2220. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  2221. if sliding_window is None:
  2222. sliding_window = 0
  2223. self.gguf_writer.add_sliding_window(sliding_window)
  2224. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2225. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2226. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2227. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2228. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2229. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2230. rope_dims = int(rot_pct * n_embd) // n_head
  2231. # write rope scaling for long context (128k) model
  2232. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2233. if rope_scaling is None:
  2234. return
  2235. scale = max_pos_embds / orig_max_pos_embds
  2236. rope_scaling_type = rope_scaling.get('type', '').lower()
  2237. if len(rope_scaling_type) == 0:
  2238. raise KeyError('Missing the required key rope_scaling.type')
  2239. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  2240. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  2241. elif rope_scaling_type == 'yarn':
  2242. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  2243. else:
  2244. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  2245. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  2246. long_factors = rope_scaling.get('long_factor', None)
  2247. short_factors = rope_scaling.get('short_factor', None)
  2248. if long_factors is None or short_factors is None:
  2249. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2250. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2251. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  2252. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2253. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2254. @ModelBase.register("PhiMoEForCausalLM")
  2255. class PhiMoeModel(Phi3MiniModel):
  2256. model_arch = gguf.MODEL_ARCH.PHIMOE
  2257. _experts: list[dict[str, Tensor]] | None = None
  2258. def set_gguf_parameters(self):
  2259. super().set_gguf_parameters()
  2260. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  2261. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  2262. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2263. # process the experts separately
  2264. if name.find("block_sparse_moe.experts") != -1:
  2265. n_experts = self.hparams["num_local_experts"]
  2266. assert bid is not None
  2267. if self._experts is None:
  2268. self._experts = [{} for _ in range(self.block_count)]
  2269. self._experts[bid][name] = data_torch
  2270. if len(self._experts[bid]) >= n_experts * 3:
  2271. tensors: list[tuple[str, Tensor]] = []
  2272. # merge the experts into a single 3d tensor
  2273. for w_name in ["w1", "w2", "w3"]:
  2274. datas: list[Tensor] = []
  2275. for xid in range(n_experts):
  2276. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  2277. datas.append(self._experts[bid][ename])
  2278. del self._experts[bid][ename]
  2279. data_torch = torch.stack(datas, dim=0)
  2280. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  2281. new_name = self.map_tensor_name(merged_name)
  2282. tensors.append((new_name, data_torch))
  2283. return tensors
  2284. else:
  2285. return []
  2286. return [(self.map_tensor_name(name), data_torch)]
  2287. def prepare_tensors(self):
  2288. super().prepare_tensors()
  2289. if self._experts is not None:
  2290. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2291. experts = [k for d in self._experts for k in d.keys()]
  2292. if len(experts) > 0:
  2293. raise ValueError(f"Unprocessed experts: {experts}")
  2294. @ModelBase.register("PlamoForCausalLM")
  2295. class PlamoModel(TextModel):
  2296. model_arch = gguf.MODEL_ARCH.PLAMO
  2297. def set_vocab(self):
  2298. self._set_vocab_sentencepiece()
  2299. def set_gguf_parameters(self):
  2300. hparams = self.hparams
  2301. block_count = hparams["num_hidden_layers"]
  2302. self.gguf_writer.add_context_length(4096) # not in config.json
  2303. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2304. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2305. self.gguf_writer.add_block_count(block_count)
  2306. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2307. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  2308. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2309. self.gguf_writer.add_file_type(self.ftype)
  2310. def shuffle_attn_q_weight(self, data_torch):
  2311. assert data_torch.size() == (5120, 5120)
  2312. data_torch = data_torch.reshape(8, 5, 128, 5120)
  2313. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  2314. data_torch = torch.reshape(data_torch, (5120, 5120))
  2315. return data_torch
  2316. def shuffle_attn_output_weight(self, data_torch):
  2317. assert data_torch.size() == (5120, 5120)
  2318. data_torch = data_torch.reshape(5120, 8, 5, 128)
  2319. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  2320. data_torch = torch.reshape(data_torch, (5120, 5120))
  2321. return data_torch
  2322. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2323. del bid # unused
  2324. new_name = self.map_tensor_name(name)
  2325. # shuffle for broadcasting of gqa in ggml_mul_mat
  2326. if new_name.endswith("attn_q.weight"):
  2327. data_torch = self.shuffle_attn_q_weight(data_torch)
  2328. elif new_name.endswith("attn_output.weight"):
  2329. data_torch = self.shuffle_attn_output_weight(data_torch)
  2330. return [(new_name, data_torch)]
  2331. @ModelBase.register("CodeShellForCausalLM")
  2332. class CodeShellModel(TextModel):
  2333. model_arch = gguf.MODEL_ARCH.CODESHELL
  2334. def set_gguf_parameters(self):
  2335. block_count = self.hparams["n_layer"]
  2336. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  2337. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2338. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2339. self.gguf_writer.add_block_count(block_count)
  2340. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2341. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  2342. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2343. self.gguf_writer.add_file_type(self.ftype)
  2344. self.gguf_writer.add_rope_freq_base(10000.0)
  2345. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2346. self.gguf_writer.add_rope_scaling_factor(1.0)
  2347. _has_tok_embd = False
  2348. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2349. del bid # unused
  2350. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2351. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2352. new_name = self.map_tensor_name(name)
  2353. # assuming token_embd.weight is seen before output.weight
  2354. if not self._has_tok_embd and new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  2355. # even though the tensor file(s) does not contain the word embeddings they are still in the weight map
  2356. if self.tensor_names and "transformer.wte.weight" in self.tensor_names:
  2357. logger.debug(f"{tok_embd_name} not found before {output_name}, assuming they are tied")
  2358. self.tensor_names.remove("transformer.wte.weight")
  2359. elif new_name == tok_embd_name:
  2360. self._has_tok_embd = True
  2361. return [(new_name, data_torch)]
  2362. @ModelBase.register("InternLM2ForCausalLM")
  2363. class InternLM2Model(TextModel):
  2364. model_arch = gguf.MODEL_ARCH.INTERNLM2
  2365. def set_vocab(self):
  2366. # (TODO): Is there a better way?
  2367. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  2368. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  2369. # recognized as an empty string in C++.
  2370. from sentencepiece import SentencePieceProcessor
  2371. from sentencepiece import sentencepiece_model_pb2 as model
  2372. tokenizer_path = self.dir_model / 'tokenizer.model'
  2373. tokens: list[bytes] = []
  2374. scores: list[float] = []
  2375. toktypes: list[int] = []
  2376. if not tokenizer_path.is_file():
  2377. logger.error(f'Error: Missing {tokenizer_path}')
  2378. sys.exit(1)
  2379. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2380. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2381. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2382. tokenizer = SentencePieceProcessor()
  2383. tokenizer.LoadFromFile(str(tokenizer_path))
  2384. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2385. for token_id in range(vocab_size):
  2386. piece = tokenizer.IdToPiece(token_id)
  2387. text = piece.encode("utf-8")
  2388. score = tokenizer.GetScore(token_id)
  2389. if text == b"\x00":
  2390. # (TODO): fixme
  2391. # Hack here and replace the \x00 characters.
  2392. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  2393. text = "🐉".encode("utf-8")
  2394. toktype = SentencePieceTokenTypes.NORMAL
  2395. if tokenizer.IsUnknown(token_id):
  2396. toktype = SentencePieceTokenTypes.UNKNOWN
  2397. elif tokenizer.IsControl(token_id):
  2398. toktype = SentencePieceTokenTypes.CONTROL
  2399. elif tokenizer.IsUnused(token_id):
  2400. toktype = SentencePieceTokenTypes.UNUSED
  2401. elif tokenizer.IsByte(token_id):
  2402. toktype = SentencePieceTokenTypes.BYTE
  2403. # take care of ununsed raw token
  2404. if piece.startswith('[UNUSED'):
  2405. toktype = SentencePieceTokenTypes.UNUSED
  2406. tokens.append(text)
  2407. scores.append(score)
  2408. toktypes.append(toktype)
  2409. added_tokens_file = self.dir_model / 'added_tokens.json'
  2410. if added_tokens_file.is_file():
  2411. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2412. added_tokens_json = json.load(f)
  2413. for key in added_tokens_json:
  2414. tokens.append(key.encode("utf-8"))
  2415. scores.append(-1000.0)
  2416. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  2417. chat_eos_token = '<|im_end|>'
  2418. chat_eos_token_id = None
  2419. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2420. if tokenizer_config_file.is_file():
  2421. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2422. tokenizer_config_json = json.load(f)
  2423. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2424. for token_id, foken_data in added_tokens_decoder.items():
  2425. token_id = int(token_id)
  2426. token = foken_data["content"]
  2427. if token == chat_eos_token:
  2428. chat_eos_token_id = token_id
  2429. token = token.encode("utf-8")
  2430. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2431. if tokens[token_id] != token:
  2432. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2433. tokens[token_id] = token
  2434. scores[token_id] = -1000.0
  2435. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2436. if foken_data.get("special"):
  2437. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2438. tokenizer_file = self.dir_model / 'tokenizer.json'
  2439. if tokenizer_file.is_file():
  2440. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2441. tokenizer_json = json.load(f)
  2442. added_tokens = tokenizer_json.get("added_tokens", [])
  2443. for foken_data in added_tokens:
  2444. token_id = int(foken_data["id"])
  2445. token = foken_data["content"]
  2446. if token == chat_eos_token:
  2447. chat_eos_token_id = token_id
  2448. token = token.encode("utf-8")
  2449. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2450. if tokens[token_id] != token:
  2451. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2452. tokens[token_id] = token
  2453. scores[token_id] = -1000.0
  2454. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2455. if foken_data.get("special"):
  2456. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2457. self.gguf_writer.add_tokenizer_model("llama")
  2458. self.gguf_writer.add_tokenizer_pre("default")
  2459. self.gguf_writer.add_token_list(tokens)
  2460. self.gguf_writer.add_token_scores(scores)
  2461. self.gguf_writer.add_token_types(toktypes)
  2462. self.gguf_writer.add_add_space_prefix(add_prefix)
  2463. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2464. old_eos = special_vocab.special_token_ids["eos"]
  2465. if chat_eos_token_id is not None:
  2466. # For the chat model, we replace the eos with '<|im_end|>'.
  2467. # TODO: this is a hack, should be fixed
  2468. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  2469. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  2470. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  2471. " in chat mode so that the conversation can end normally.")
  2472. special_vocab.add_to_gguf(self.gguf_writer)
  2473. def set_gguf_parameters(self):
  2474. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2475. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2476. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2477. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2478. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  2479. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2480. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2481. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  2482. self.gguf_writer.add_file_type(self.ftype)
  2483. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2484. if self.hparams["rope_scaling"].get("type") == "linear":
  2485. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2486. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2487. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2488. num_heads = self.hparams["num_attention_heads"]
  2489. num_kv_heads = self.hparams["num_key_value_heads"]
  2490. n_embd = self.hparams["hidden_size"]
  2491. q_per_kv = num_heads // num_kv_heads
  2492. head_dim = n_embd // num_heads
  2493. num_groups = num_heads // q_per_kv
  2494. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  2495. qkv = data_torch
  2496. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  2497. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  2498. # The model weights of q and k equire additional reshape.
  2499. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  2500. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  2501. v = v.reshape((-1, v.shape[-1]))
  2502. return [
  2503. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  2504. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  2505. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  2506. ]
  2507. else:
  2508. return [(self.map_tensor_name(name), data_torch)]
  2509. @ModelBase.register("InternLM3ForCausalLM")
  2510. class InternLM3Model(TextModel):
  2511. model_arch = gguf.MODEL_ARCH.LLAMA
  2512. def set_vocab(self):
  2513. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  2514. self.gguf_writer.add_tokenizer_model("llama")
  2515. self.gguf_writer.add_tokenizer_pre("default")
  2516. self.gguf_writer.add_token_list(tokens)
  2517. self.gguf_writer.add_token_scores(scores)
  2518. self.gguf_writer.add_token_types(toktypes)
  2519. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2520. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2521. if tokenizer_config_file.is_file():
  2522. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2523. tokenizer_config_json = json.load(f)
  2524. if "add_prefix_space" in tokenizer_config_json:
  2525. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  2526. if "added_tokens_decoder" in tokenizer_config_json:
  2527. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  2528. if token_data.get("special"):
  2529. token_id = int(token_id)
  2530. token = token_data["content"]
  2531. special_vocab._set_special_token(token, token_id)
  2532. # update eos token
  2533. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  2534. special_vocab.special_token_ids["eos"] = token_id
  2535. special_vocab.add_to_gguf(self.gguf_writer)
  2536. def set_gguf_parameters(self):
  2537. super().set_gguf_parameters()
  2538. hparams = self.hparams
  2539. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2540. if "head_dim" in hparams:
  2541. rope_dim = hparams["head_dim"]
  2542. else:
  2543. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2544. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2545. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2546. if self.hparams["rope_scaling"].get("type") == "linear" or self.hparams["rope_scaling"].get("rope_type") == "linear":
  2547. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2548. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2549. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2550. n_head = self.hparams["num_attention_heads"]
  2551. n_kv_head = self.hparams.get("num_key_value_heads")
  2552. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2553. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2554. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2555. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2556. return [(self.map_tensor_name(name), data_torch)]
  2557. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel")
  2558. class BertModel(TextModel):
  2559. model_arch = gguf.MODEL_ARCH.BERT
  2560. def __init__(self, *args, **kwargs):
  2561. super().__init__(*args, **kwargs)
  2562. self.vocab_size = None
  2563. def set_gguf_parameters(self):
  2564. super().set_gguf_parameters()
  2565. self.gguf_writer.add_causal_attention(False)
  2566. # get pooling path
  2567. pooling_path = None
  2568. module_path = self.dir_model / "modules.json"
  2569. if module_path.is_file():
  2570. with open(module_path, encoding="utf-8") as f:
  2571. modules = json.load(f)
  2572. for mod in modules:
  2573. if mod["type"] == "sentence_transformers.models.Pooling":
  2574. pooling_path = mod["path"]
  2575. break
  2576. # get pooling type
  2577. if pooling_path is not None:
  2578. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  2579. pooling = json.load(f)
  2580. if pooling["pooling_mode_mean_tokens"]:
  2581. pooling_type = gguf.PoolingType.MEAN
  2582. elif pooling["pooling_mode_cls_token"]:
  2583. pooling_type = gguf.PoolingType.CLS
  2584. else:
  2585. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  2586. self.gguf_writer.add_pooling_type(pooling_type)
  2587. def set_vocab(self):
  2588. tokens, toktypes, tokpre = self.get_vocab_base()
  2589. self.vocab_size = len(tokens)
  2590. # we need this to validate the size of the token_type embeddings
  2591. # though currently we are passing all zeros to the token_type embeddings
  2592. # "Sequence A" or "Sequence B"
  2593. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2594. # convert to phantom space vocab
  2595. def phantom(tok):
  2596. if tok.startswith("[") and tok.endswith("]"):
  2597. return tok
  2598. if tok.startswith("##"):
  2599. return tok[2:]
  2600. return "\u2581" + tok
  2601. tokens = list(map(phantom, tokens))
  2602. # add vocab to gguf
  2603. self.gguf_writer.add_tokenizer_model("bert")
  2604. self.gguf_writer.add_tokenizer_pre(tokpre)
  2605. self.gguf_writer.add_token_list(tokens)
  2606. self.gguf_writer.add_token_types(toktypes)
  2607. # handle special tokens
  2608. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2609. special_vocab.add_to_gguf(self.gguf_writer)
  2610. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2611. del bid # unused
  2612. if name.startswith("bert."):
  2613. name = name[5:]
  2614. if name.endswith(".gamma"):
  2615. name = name[:-6] + ".weight"
  2616. if name.endswith(".beta"):
  2617. name = name[:-5] + ".bias"
  2618. # we are only using BERT for embeddings so we don't need the pooling layer
  2619. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  2620. return [] # we don't need these
  2621. if name.startswith("cls.predictions"):
  2622. return []
  2623. if name.startswith("cls.seq_relationship"):
  2624. return []
  2625. return [(self.map_tensor_name(name), data_torch)]
  2626. @ModelBase.register("RobertaModel")
  2627. class RobertaModel(BertModel):
  2628. model_arch = gguf.MODEL_ARCH.BERT
  2629. def __init__(self, *args, **kwargs):
  2630. super().__init__(*args, **kwargs)
  2631. # we need the pad_token_id to know how to chop down position_embd matrix
  2632. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2633. self._position_offset = 1 + pad_token_id
  2634. if "max_position_embeddings" in self.hparams:
  2635. self.hparams["max_position_embeddings"] -= self._position_offset
  2636. else:
  2637. self._position_offset = None
  2638. def set_vocab(self):
  2639. """Support BPE tokenizers for roberta models"""
  2640. bpe_tok_path = self.dir_model / "tokenizer.json"
  2641. if bpe_tok_path.exists():
  2642. self._set_vocab_gpt2()
  2643. self.gguf_writer.add_add_bos_token(True)
  2644. self.gguf_writer.add_add_eos_token(True)
  2645. # we need this to validate the size of the token_type embeddings
  2646. # though currently we are passing all zeros to the token_type embeddings
  2647. # "Sequence A" or "Sequence B"
  2648. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2649. else:
  2650. return super().set_vocab()
  2651. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2652. # if name starts with "roberta.", remove the prefix
  2653. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  2654. if name.startswith("roberta."):
  2655. name = name[8:]
  2656. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2657. if name == "embeddings.position_embeddings.weight":
  2658. if self._position_offset is not None:
  2659. data_torch = data_torch[self._position_offset:,:]
  2660. return super().modify_tensors(data_torch, name, bid)
  2661. @ModelBase.register("NomicBertModel")
  2662. class NomicBertModel(BertModel):
  2663. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  2664. def __init__(self, *args, **kwargs):
  2665. super().__init__(*args, **kwargs)
  2666. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  2667. self.hparams["n_ctx"] = 2048
  2668. # SwigLU activation
  2669. assert self.hparams["activation_function"] == "swiglu"
  2670. # this doesn't do anything in the HF version
  2671. assert self.hparams["causal"] is False
  2672. # no bias tensors
  2673. assert self.hparams["qkv_proj_bias"] is False
  2674. assert self.hparams["mlp_fc1_bias"] is False
  2675. assert self.hparams["mlp_fc2_bias"] is False
  2676. # norm at end of layer
  2677. assert self.hparams["prenorm"] is False
  2678. # standard RoPE
  2679. assert self.hparams["rotary_emb_fraction"] == 1.0
  2680. assert self.hparams["rotary_emb_interleaved"] is False
  2681. assert self.hparams["rotary_emb_scale_base"] is None
  2682. def set_gguf_parameters(self):
  2683. super().set_gguf_parameters()
  2684. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2685. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  2686. class XLMRobertaModel(BertModel):
  2687. model_arch = gguf.MODEL_ARCH.BERT
  2688. def __init__(self, *args, **kwargs):
  2689. super().__init__(*args, **kwargs)
  2690. # we need the pad_token_id to know how to chop down position_embd matrix
  2691. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2692. self._position_offset = 1 + pad_token_id
  2693. if "max_position_embeddings" in self.hparams:
  2694. self.hparams["max_position_embeddings"] -= self._position_offset
  2695. else:
  2696. self._position_offset = None
  2697. def set_vocab(self):
  2698. # to avoid TypeError: Descriptors cannot be created directly
  2699. # exception when importing sentencepiece_model_pb2
  2700. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2701. from sentencepiece import SentencePieceProcessor
  2702. from sentencepiece import sentencepiece_model_pb2 as model
  2703. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  2704. if not tokenizer_path.is_file():
  2705. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2706. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2707. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2708. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2709. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2710. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2711. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2712. tokenizer = SentencePieceProcessor()
  2713. tokenizer.LoadFromFile(str(tokenizer_path))
  2714. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2715. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2716. scores: list[float] = [-10000.0] * vocab_size
  2717. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2718. for token_id in range(tokenizer.vocab_size()):
  2719. piece = tokenizer.IdToPiece(token_id)
  2720. text = piece.encode("utf-8")
  2721. score = tokenizer.GetScore(token_id)
  2722. toktype = SentencePieceTokenTypes.NORMAL
  2723. if tokenizer.IsUnknown(token_id):
  2724. toktype = SentencePieceTokenTypes.UNKNOWN
  2725. elif tokenizer.IsControl(token_id):
  2726. toktype = SentencePieceTokenTypes.CONTROL
  2727. elif tokenizer.IsUnused(token_id):
  2728. toktype = SentencePieceTokenTypes.UNUSED
  2729. elif tokenizer.IsByte(token_id):
  2730. toktype = SentencePieceTokenTypes.BYTE
  2731. tokens[token_id] = text
  2732. scores[token_id] = score
  2733. toktypes[token_id] = toktype
  2734. if vocab_size > len(tokens):
  2735. pad_count = vocab_size - len(tokens)
  2736. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2737. for i in range(1, pad_count + 1):
  2738. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2739. scores.append(-1000.0)
  2740. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2741. # realign tokens (see HF tokenizer code)
  2742. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  2743. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  2744. toktypes = [
  2745. SentencePieceTokenTypes.CONTROL,
  2746. SentencePieceTokenTypes.CONTROL,
  2747. SentencePieceTokenTypes.CONTROL,
  2748. SentencePieceTokenTypes.UNKNOWN,
  2749. ] + toktypes[3:-1]
  2750. self.gguf_writer.add_tokenizer_model("t5")
  2751. self.gguf_writer.add_tokenizer_pre("default")
  2752. self.gguf_writer.add_token_list(tokens)
  2753. self.gguf_writer.add_token_scores(scores)
  2754. self.gguf_writer.add_token_types(toktypes)
  2755. self.gguf_writer.add_add_space_prefix(add_prefix)
  2756. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2757. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2758. if precompiled_charsmap:
  2759. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2760. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2761. special_vocab.add_to_gguf(self.gguf_writer)
  2762. self.gguf_writer.add_add_bos_token(True)
  2763. self.gguf_writer.add_add_eos_token(True)
  2764. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2765. # if name starts with "roberta.", remove the prefix
  2766. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  2767. if name.startswith("roberta."):
  2768. name = name[8:]
  2769. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2770. if name == "embeddings.position_embeddings.weight":
  2771. if self._position_offset is not None:
  2772. data_torch = data_torch[self._position_offset:,:]
  2773. return super().modify_tensors(data_torch, name, bid)
  2774. @ModelBase.register("GemmaForCausalLM")
  2775. class GemmaModel(TextModel):
  2776. model_arch = gguf.MODEL_ARCH.GEMMA
  2777. def set_vocab(self):
  2778. self._set_vocab_sentencepiece()
  2779. # TODO: these special tokens should be exported only for the CodeGemma family
  2780. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  2781. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  2782. special_vocab._set_special_token("prefix", 67)
  2783. special_vocab._set_special_token("suffix", 69)
  2784. special_vocab._set_special_token("middle", 68)
  2785. special_vocab._set_special_token("fsep", 70)
  2786. special_vocab._set_special_token("eot", 107)
  2787. special_vocab.chat_template = None # do not add it twice
  2788. special_vocab.add_to_gguf(self.gguf_writer)
  2789. self.gguf_writer.add_add_space_prefix(False)
  2790. def set_gguf_parameters(self):
  2791. hparams = self.hparams
  2792. block_count = hparams["num_hidden_layers"]
  2793. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2794. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2795. self.gguf_writer.add_block_count(block_count)
  2796. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2797. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2798. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2799. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2800. self.gguf_writer.add_key_length(hparams["head_dim"])
  2801. self.gguf_writer.add_value_length(hparams["head_dim"])
  2802. self.gguf_writer.add_file_type(self.ftype)
  2803. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2804. del bid # unused
  2805. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2806. # To prevent errors, skip loading lm_head.weight.
  2807. if name == "lm_head.weight":
  2808. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2809. return []
  2810. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2811. if name.endswith("norm.weight"):
  2812. data_torch = data_torch + 1
  2813. return [(self.map_tensor_name(name), data_torch)]
  2814. @ModelBase.register("Gemma2ForCausalLM")
  2815. class Gemma2Model(TextModel):
  2816. model_arch = gguf.MODEL_ARCH.GEMMA2
  2817. def set_vocab(self):
  2818. self._set_vocab_sentencepiece()
  2819. self.gguf_writer.add_add_space_prefix(False)
  2820. def set_gguf_parameters(self):
  2821. hparams = self.hparams
  2822. block_count = hparams["num_hidden_layers"]
  2823. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2824. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2825. self.gguf_writer.add_block_count(block_count)
  2826. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2827. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2828. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2829. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2830. self.gguf_writer.add_key_length(hparams["head_dim"])
  2831. self.gguf_writer.add_value_length(hparams["head_dim"])
  2832. self.gguf_writer.add_file_type(self.ftype)
  2833. self.gguf_writer.add_attn_logit_softcapping(
  2834. self.hparams["attn_logit_softcapping"]
  2835. )
  2836. self.gguf_writer.add_final_logit_softcapping(
  2837. self.hparams["final_logit_softcapping"]
  2838. )
  2839. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  2840. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2841. del bid # unused
  2842. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2843. # To prevent errors, skip loading lm_head.weight.
  2844. if name == "lm_head.weight":
  2845. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2846. return []
  2847. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2848. if name.endswith("norm.weight"):
  2849. data_torch = data_torch + 1
  2850. return [(self.map_tensor_name(name), data_torch)]
  2851. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  2852. class Gemma3Model(TextModel):
  2853. model_arch = gguf.MODEL_ARCH.GEMMA3
  2854. def set_vocab(self):
  2855. self._set_vocab_sentencepiece()
  2856. self.gguf_writer.add_add_space_prefix(False)
  2857. def set_gguf_parameters(self):
  2858. hparams = self.hparams
  2859. block_count = hparams["num_hidden_layers"]
  2860. # some default values are not specified in the hparams
  2861. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  2862. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2863. self.gguf_writer.add_block_count(block_count)
  2864. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2865. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  2866. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  2867. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  2868. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  2869. self.gguf_writer.add_file_type(self.ftype)
  2870. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
  2871. # both attn_logit_softcapping and final_logit_softcapping are removed in Gemma3
  2872. assert hparams.get("attn_logit_softcapping") is None
  2873. assert hparams.get("final_logit_softcapping") is None
  2874. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  2875. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  2876. if hparams.get("rope_scaling") is not None:
  2877. assert hparams["rope_scaling"]["rope_type"] == "linear"
  2878. # important: this rope_scaling is only applied for global layers, and not used by 1B model
  2879. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2880. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  2881. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2882. del bid # unused
  2883. if name.startswith("language_model."):
  2884. name = name.replace("language_model.", "")
  2885. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  2886. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  2887. return [] # skip vision tensors
  2888. # remove OOV (out-of-vocabulary) rows in token_embd
  2889. if "embed_tokens.weight" in name:
  2890. vocab = self._create_vocab_sentencepiece()
  2891. tokens = vocab[0]
  2892. data_torch = data_torch[:len(tokens)]
  2893. # ref code in Gemma3RMSNorm
  2894. # output = output * (1.0 + self.weight.float())
  2895. if name.endswith("norm.weight"):
  2896. data_torch = data_torch + 1
  2897. return [(self.map_tensor_name(name), data_torch)]
  2898. @ModelBase.register("Gemma3ForConditionalGeneration")
  2899. class Gemma3VisionModel(VisionModel):
  2900. def set_gguf_parameters(self):
  2901. super().set_gguf_parameters()
  2902. hparams = self.hparams
  2903. self.gguf_writer.add_string(gguf.Keys.ClipVision.PROJECTOR_TYPE, "gemma3")
  2904. # default values below are taken from HF tranformers code
  2905. self.gguf_writer.add_float32(gguf.Keys.ClipVision.Attention.LAYERNORM_EPS, hparams.get("layer_norm_eps", 1e-6))
  2906. self.gguf_writer.add_array(gguf.Keys.ClipVision.IMAGE_MEAN, [0.5, 0.5, 0.5])
  2907. self.gguf_writer.add_array(gguf.Keys.ClipVision.IMAGE_STD, [0.5, 0.5, 0.5])
  2908. self.gguf_writer.add_bool (gguf.Keys.ClipVision.USE_GELU, True)
  2909. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2910. del bid, new_name, n_dims # unused
  2911. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  2912. if "input_projection" in name:
  2913. return gguf.GGMLQuantizationType.F16
  2914. if ".embeddings." in name:
  2915. return gguf.GGMLQuantizationType.F32
  2916. return False
  2917. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2918. del bid # unused
  2919. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  2920. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  2921. # process vision tensors
  2922. name = name.replace("_weight", ".weight")
  2923. if "fc1" in name:
  2924. name = name.replace("fc1", "fc2")
  2925. else:
  2926. name = name.replace("fc2", "fc1")
  2927. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  2928. # the other norm values are part of SigLIP model, and they are already correct
  2929. # ref code: Gemma3RMSNorm
  2930. if "soft_emb_norm.weight" in name:
  2931. logger.info(f"Correcting norm value for '{name}'")
  2932. data_torch = data_torch + 1
  2933. return [(self.map_tensor_name(name), data_torch)]
  2934. return [] # skip other tensors
  2935. @ModelBase.register("Starcoder2ForCausalLM")
  2936. class StarCoder2Model(TextModel):
  2937. model_arch = gguf.MODEL_ARCH.STARCODER2
  2938. @ModelBase.register("Rwkv6ForCausalLM")
  2939. class Rwkv6Model(TextModel):
  2940. model_arch = gguf.MODEL_ARCH.RWKV6
  2941. def set_vocab(self):
  2942. self._set_vocab_rwkv_world()
  2943. def set_gguf_parameters(self):
  2944. block_count = self.hparams["num_hidden_layers"]
  2945. head_size = self.hparams["head_size"]
  2946. hidden_size = self.hparams["hidden_size"]
  2947. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  2948. rescale_every_n_layers = self.hparams["rescale_every"]
  2949. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  2950. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  2951. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  2952. # RWKV isn't context limited
  2953. self.gguf_writer.add_context_length(1048576)
  2954. self.gguf_writer.add_embedding_length(hidden_size)
  2955. self.gguf_writer.add_block_count(block_count)
  2956. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  2957. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  2958. self.gguf_writer.add_wkv_head_size(head_size)
  2959. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  2960. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  2961. self.gguf_writer.add_feed_forward_length(intermediate_size)
  2962. self.gguf_writer.add_file_type(self.ftype)
  2963. # required by llama.cpp, unused
  2964. self.gguf_writer.add_head_count(0)
  2965. lerp_weights: dict[int, dict[str, Tensor]] = {}
  2966. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2967. new_name = self.map_tensor_name(name)
  2968. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  2969. new_name += ".weight"
  2970. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  2971. data_torch = data_torch.transpose(0, 1)
  2972. if new_name.endswith("time_mix_w2.weight"):
  2973. data_torch = data_torch.permute(0, 2, 1)
  2974. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  2975. data_torch = data_torch.squeeze()
  2976. try:
  2977. rescale_every_n_layers = self.hparams["rescale_every"]
  2978. if rescale_every_n_layers > 0:
  2979. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  2980. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  2981. except KeyError:
  2982. pass
  2983. # concat time_mix_lerp weights to reduce some cpu overhead
  2984. # also reduces the number of tensors in the model
  2985. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  2986. try:
  2987. self.lerp_weights[bid][new_name] = data_torch
  2988. except KeyError:
  2989. self.lerp_weights[bid] = {new_name: data_torch}
  2990. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  2991. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  2992. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  2993. yield (new_name, data)
  2994. return
  2995. yield (new_name, data_torch)
  2996. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  2997. class RWKV6Qwen2Model(Rwkv6Model):
  2998. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  2999. def set_vocab(self):
  3000. try:
  3001. self._set_vocab_sentencepiece()
  3002. except FileNotFoundError:
  3003. self._set_vocab_gpt2()
  3004. def set_gguf_parameters(self):
  3005. block_count = self.hparams["num_hidden_layers"]
  3006. num_attention_heads = self.hparams["num_attention_heads"]
  3007. num_key_value_heads = self.hparams["num_key_value_heads"]
  3008. hidden_size = self.hparams["hidden_size"]
  3009. head_size = hidden_size // num_attention_heads
  3010. rms_norm_eps = self.hparams["rms_norm_eps"]
  3011. intermediate_size = self.hparams["intermediate_size"]
  3012. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  3013. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  3014. # RWKV isn't context limited
  3015. self.gguf_writer.add_context_length(1048576)
  3016. self.gguf_writer.add_embedding_length(hidden_size)
  3017. self.gguf_writer.add_block_count(block_count)
  3018. self.gguf_writer.add_wkv_head_size(head_size)
  3019. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  3020. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  3021. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3022. self.gguf_writer.add_file_type(self.ftype)
  3023. # special parameters for time_mixing in RWKV6QWEN2
  3024. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3025. self.gguf_writer.add_token_shift_count(1)
  3026. # RWKV6QWEN2 use grouped key/value like GQA
  3027. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  3028. # required by llama.cpp, unused
  3029. self.gguf_writer.add_head_count(0)
  3030. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3031. for new_name, data in super().modify_tensors(data_torch, name, bid):
  3032. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  3033. data = data.view(5, -1, data.shape[-1])
  3034. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  3035. # permute them here to avoid code changes
  3036. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  3037. if "w2" in new_name:
  3038. data = data.view(5, -1, data.shape[-1])
  3039. yield (new_name, data)
  3040. continue
  3041. yield (new_name, data)
  3042. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  3043. class Rwkv7Model(TextModel):
  3044. model_arch = gguf.MODEL_ARCH.RWKV7
  3045. def set_vocab(self):
  3046. self._set_vocab_rwkv_world()
  3047. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  3048. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  3049. def set_gguf_parameters(self):
  3050. block_count = self.hparams["num_hidden_layers"]
  3051. try:
  3052. head_size = self.hparams["head_size"]
  3053. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  3054. except KeyError:
  3055. head_size = self.hparams["head_dim"]
  3056. layer_norm_eps = self.hparams["norm_eps"]
  3057. hidden_size = self.hparams["hidden_size"]
  3058. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  3059. # ICLR: In-Context-Learning-Rate
  3060. try:
  3061. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3062. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3063. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  3064. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  3065. except KeyError:
  3066. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3067. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3068. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  3069. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  3070. # RWKV isn't context limited
  3071. self.gguf_writer.add_context_length(1048576)
  3072. self.gguf_writer.add_embedding_length(hidden_size)
  3073. self.gguf_writer.add_block_count(block_count)
  3074. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  3075. self.gguf_writer.add_wkv_head_size(head_size)
  3076. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  3077. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  3078. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  3079. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  3080. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3081. self.gguf_writer.add_file_type(self.ftype)
  3082. # required by llama.cpp, unused
  3083. self.gguf_writer.add_head_count(0)
  3084. lerp_weights: dict[int, dict[str, Tensor]] = {}
  3085. lora_needs_transpose: bool = True
  3086. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3087. # unify tensor names here to make life easier
  3088. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  3089. name = name.replace("self_attn", "attention").replace("attn", "attention")
  3090. name = name.replace("time_mixer.", "")
  3091. # lora layer names in fla-hub's impl
  3092. if "_lora.lora" in name:
  3093. self.lora_needs_transpose = False
  3094. name = name.replace("_lora.lora.0.weight", "1.weight")
  3095. name = name.replace("_lora.lora.2.weight", "2.weight")
  3096. name = name.replace("_lora.lora.2.bias", "0.weight")
  3097. name = name.replace("feed_forward_norm", "ln2")
  3098. name = name.replace("g_norm", "ln_x")
  3099. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  3100. # some models have dummy v0/v1/v2 on first layer while others don't
  3101. # ignore them all since they are not used
  3102. return
  3103. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  3104. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  3105. if bid is not None and "attention.x_" in name:
  3106. if "attention.x_x" in name:
  3107. # already concatenated
  3108. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3109. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  3110. yield (new_name, data)
  3111. else:
  3112. try:
  3113. self.lerp_weights[bid][name] = data_torch
  3114. except KeyError:
  3115. self.lerp_weights[bid] = {name: data_torch}
  3116. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  3117. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3118. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  3119. yield (new_name, data)
  3120. return
  3121. else:
  3122. data_torch = data_torch.squeeze()
  3123. new_name = self.map_tensor_name(name)
  3124. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  3125. new_name += ".weight"
  3126. if self.lora_needs_transpose and any(
  3127. new_name.endswith(t) for t in [
  3128. "time_mix_w1.weight", "time_mix_w2.weight",
  3129. "time_mix_a1.weight", "time_mix_a2.weight",
  3130. "time_mix_v1.weight", "time_mix_v2.weight",
  3131. "time_mix_g1.weight", "time_mix_g2.weight",
  3132. ]
  3133. ):
  3134. data_torch = data_torch.transpose(0, 1)
  3135. if 'r_k' in new_name:
  3136. data_torch = data_torch.flatten()
  3137. if bid == 0 and "time_mix_a" in new_name:
  3138. # dummy v0/v1/v2 on first layer
  3139. # easist way to make llama happy
  3140. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  3141. yield (new_name, data_torch)
  3142. @ModelBase.register("RwkvHybridForCausalLM")
  3143. class ARwkv7Model(Rwkv7Model):
  3144. model_arch = gguf.MODEL_ARCH.ARWKV7
  3145. def set_vocab(self):
  3146. try:
  3147. self._set_vocab_sentencepiece()
  3148. except FileNotFoundError:
  3149. self._set_vocab_gpt2()
  3150. def set_gguf_parameters(self):
  3151. block_count = self.hparams["num_hidden_layers"]
  3152. hidden_size = self.hparams["hidden_size"]
  3153. head_size = self.hparams["head_size"]
  3154. rms_norm_eps = self.hparams["rms_norm_eps"]
  3155. intermediate_size = self.hparams["intermediate_size"]
  3156. wkv_has_gate = self.hparams["wkv_has_gate"]
  3157. assert self.hparams["wkv_version"] == 7
  3158. # ICLR: In-Context-Learning-Rate
  3159. lora_rank_decay = 64
  3160. lora_rank_iclr = 64
  3161. lora_rank_value_residual_mix = 32
  3162. lora_rank_gate = 128 if wkv_has_gate else 0
  3163. # RWKV isn't context limited
  3164. self.gguf_writer.add_context_length(1048576)
  3165. self.gguf_writer.add_embedding_length(hidden_size)
  3166. self.gguf_writer.add_block_count(block_count)
  3167. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3168. self.gguf_writer.add_wkv_head_size(head_size)
  3169. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  3170. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  3171. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  3172. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  3173. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3174. self.gguf_writer.add_file_type(self.ftype)
  3175. self.gguf_writer.add_token_shift_count(1)
  3176. # required by llama.cpp, unused
  3177. self.gguf_writer.add_head_count(0)
  3178. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  3179. class MambaModel(TextModel):
  3180. model_arch = gguf.MODEL_ARCH.MAMBA
  3181. def set_vocab(self):
  3182. vocab_size = self.hparams["vocab_size"]
  3183. # Round vocab size to next multiple of 8
  3184. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  3185. # pad using ceiling division
  3186. # ref: https://stackoverflow.com/a/17511341/22827863
  3187. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  3188. self.hparams["vocab_size"] = vocab_size
  3189. if (self.dir_model / "tokenizer.json").is_file():
  3190. self._set_vocab_gpt2()
  3191. elif (self.dir_model / "tokenizer.model").is_file():
  3192. self._set_vocab_sentencepiece()
  3193. else:
  3194. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  3195. self._set_vocab_builtin("gpt-neox", vocab_size)
  3196. def set_gguf_parameters(self):
  3197. d_model = self.find_hparam(["hidden_size", "d_model"])
  3198. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  3199. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  3200. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  3201. # ceiling division
  3202. # ref: https://stackoverflow.com/a/17511341/22827863
  3203. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  3204. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  3205. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  3206. use_dt_b_c_norm = False
  3207. # For falconmamba we do apply RMS norm on B / DT and C layers
  3208. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  3209. use_dt_b_c_norm = True
  3210. # Fail early for models which don't have a block expansion factor of 2
  3211. assert d_inner == 2 * d_model
  3212. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  3213. self.gguf_writer.add_embedding_length(d_model)
  3214. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  3215. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  3216. self.gguf_writer.add_block_count(self.block_count)
  3217. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  3218. self.gguf_writer.add_ssm_inner_size(d_inner)
  3219. self.gguf_writer.add_ssm_state_size(d_state)
  3220. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  3221. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3222. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  3223. self.gguf_writer.add_file_type(self.ftype)
  3224. _tok_embd = None
  3225. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3226. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  3227. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  3228. new_name = self.map_tensor_name(name)
  3229. if name.endswith(".A_log"):
  3230. logger.debug("A_log --> A ==> " + new_name)
  3231. data_torch = -torch.exp(data_torch)
  3232. # [4 1 8192 1] -> [4 8192 1 1]
  3233. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  3234. data_torch = data_torch.squeeze()
  3235. # assuming token_embd.weight is seen before output.weight
  3236. if self._tok_embd is not None and new_name == output_name:
  3237. if torch.equal(self._tok_embd, data_torch):
  3238. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  3239. return []
  3240. elif new_name == tok_embd_name:
  3241. self._tok_embd = data_torch
  3242. return [(new_name, data_torch)]
  3243. @ModelBase.register("CohereForCausalLM")
  3244. class CommandR2Model(TextModel):
  3245. model_arch = gguf.MODEL_ARCH.COMMAND_R
  3246. def __init__(self, *args, **kwargs):
  3247. super().__init__(*args, **kwargs)
  3248. # max_position_embeddings = 8192 in config.json but model was actually
  3249. # trained on 128k context length
  3250. # aya-23 models don't have model_max_length specified
  3251. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  3252. def set_gguf_parameters(self):
  3253. super().set_gguf_parameters()
  3254. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  3255. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3256. @ModelBase.register("Cohere2ForCausalLM")
  3257. class Cohere2Model(TextModel):
  3258. model_arch = gguf.MODEL_ARCH.COHERE2
  3259. def set_gguf_parameters(self):
  3260. super().set_gguf_parameters()
  3261. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  3262. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  3263. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  3264. rotary_pct = self.hparams["rotary_pct"]
  3265. hidden_size = self.hparams["hidden_size"]
  3266. num_attention_heads = self.hparams["num_attention_heads"]
  3267. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  3268. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3269. @ModelBase.register("OlmoForCausalLM")
  3270. @ModelBase.register("OLMoForCausalLM")
  3271. class OlmoModel(TextModel):
  3272. model_arch = gguf.MODEL_ARCH.OLMO
  3273. def set_gguf_parameters(self):
  3274. super().set_gguf_parameters()
  3275. self.gguf_writer.add_layer_norm_eps(1e-5)
  3276. clip_qkv = self.hparams.get("clip_qkv")
  3277. if clip_qkv is not None:
  3278. self.gguf_writer.add_clamp_kqv(clip_qkv)
  3279. # Same as super class, but permuting q_proj, k_proj
  3280. # Copied from: LlamaModel
  3281. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3282. del bid # unused
  3283. n_head = self.hparams["num_attention_heads"]
  3284. n_kv_head = self.hparams.get("num_key_value_heads")
  3285. if name.endswith("q_proj.weight"):
  3286. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3287. if name.endswith("k_proj.weight"):
  3288. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3289. return [(self.map_tensor_name(name), data_torch)]
  3290. @ModelBase.register("Olmo2ForCausalLM")
  3291. class Olmo2Model(TextModel):
  3292. model_arch = gguf.MODEL_ARCH.OLMO2
  3293. @ModelBase.register("OlmoeForCausalLM")
  3294. class OlmoeModel(TextModel):
  3295. model_arch = gguf.MODEL_ARCH.OLMOE
  3296. def set_gguf_parameters(self):
  3297. super().set_gguf_parameters()
  3298. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  3299. if (n_experts := self.hparams.get("num_experts")) is not None:
  3300. self.gguf_writer.add_expert_count(n_experts)
  3301. _experts: list[dict[str, Tensor]] | None = None
  3302. # Copied from: Qwen2MoeModel
  3303. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3304. # process the experts separately
  3305. if name.find("experts") != -1:
  3306. n_experts = self.hparams["num_experts"]
  3307. assert bid is not None
  3308. if self._experts is None:
  3309. self._experts = [{} for _ in range(self.block_count)]
  3310. self._experts[bid][name] = data_torch
  3311. if len(self._experts[bid]) >= n_experts * 3:
  3312. tensors: list[tuple[str, Tensor]] = []
  3313. # merge the experts into a single 3d tensor
  3314. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3315. datas: list[Tensor] = []
  3316. for xid in range(n_experts):
  3317. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3318. datas.append(self._experts[bid][ename])
  3319. del self._experts[bid][ename]
  3320. data_torch = torch.stack(datas, dim=0)
  3321. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3322. new_name = self.map_tensor_name(merged_name)
  3323. tensors.append((new_name, data_torch))
  3324. return tensors
  3325. else:
  3326. return []
  3327. return [(self.map_tensor_name(name), data_torch)]
  3328. # Copied from: Qwen2MoeModel
  3329. def prepare_tensors(self):
  3330. super().prepare_tensors()
  3331. if self._experts is not None:
  3332. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3333. experts = [k for d in self._experts for k in d.keys()]
  3334. if len(experts) > 0:
  3335. raise ValueError(f"Unprocessed experts: {experts}")
  3336. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  3337. class JinaBertV2Model(BertModel):
  3338. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  3339. def __init__(self, *args, **kwargs):
  3340. super().__init__(*args, **kwargs)
  3341. self.intermediate_size = self.hparams["intermediate_size"]
  3342. def get_tensors(self):
  3343. for name, data in super().get_tensors():
  3344. if 'gated_layer' in name:
  3345. d1 = data[:self.intermediate_size, :]
  3346. name1 = name.replace('gated_layers', 'gated_layers_w')
  3347. name1 = name1.replace('up_gated_layer', 'gated_layers_v')
  3348. d2 = data[self.intermediate_size:, :]
  3349. name2 = name.replace('gated_layers', 'gated_layers_v')
  3350. name2 = name2.replace('up_gated_layer', 'gated_layers_w')
  3351. yield name1, d1
  3352. yield name2, d2
  3353. continue
  3354. yield name, data
  3355. def set_vocab(self):
  3356. tokenizer_class = 'BertTokenizer'
  3357. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  3358. tokenizer_class = json.load(f)['tokenizer_class']
  3359. if tokenizer_class == 'BertTokenizer':
  3360. super().set_vocab()
  3361. elif tokenizer_class == 'RobertaTokenizer':
  3362. self._set_vocab_gpt2()
  3363. self.gguf_writer.add_token_type_count(2)
  3364. else:
  3365. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  3366. self.gguf_writer.add_add_bos_token(True)
  3367. self.gguf_writer.add_add_eos_token(True)
  3368. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3369. # if name starts with "bert.", remove the prefix
  3370. # e.g. https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  3371. if name.startswith("bert."):
  3372. name = name[5:]
  3373. return super().modify_tensors(data_torch, name, bid)
  3374. @ModelBase.register("OpenELMForCausalLM")
  3375. class OpenELMModel(TextModel):
  3376. model_arch = gguf.MODEL_ARCH.OPENELM
  3377. @staticmethod
  3378. def _make_divisible(v: float | int, divisor: int) -> int:
  3379. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  3380. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  3381. # Make sure that round down does not go down by more than 10%.
  3382. if new_v < 0.9 * v:
  3383. new_v += divisor
  3384. return new_v
  3385. def __init__(self, *args, **kwargs):
  3386. super().__init__(*args, **kwargs)
  3387. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  3388. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  3389. self._n_embd: int = self.hparams["model_dim"]
  3390. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  3391. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  3392. self._ffn_dims: list[int] = [
  3393. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  3394. for multiplier in ffn_multipliers
  3395. ]
  3396. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  3397. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  3398. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  3399. def set_vocab(self):
  3400. try:
  3401. self._set_vocab_sentencepiece()
  3402. except FileNotFoundError:
  3403. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  3404. def set_gguf_parameters(self):
  3405. n_embd = self._n_embd
  3406. head_dim = self.hparams["head_dim"]
  3407. rot_pct = 1.0
  3408. assert self.block_count == len(self._num_kv_heads)
  3409. assert self.block_count == len(self._num_query_heads)
  3410. assert self.block_count == len(self._ffn_dims)
  3411. self.gguf_writer.add_block_count(self.block_count)
  3412. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  3413. self.gguf_writer.add_embedding_length(n_embd)
  3414. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  3415. self.gguf_writer.add_head_count(self._num_query_heads)
  3416. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  3417. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  3418. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  3419. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  3420. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  3421. self.gguf_writer.add_key_length(head_dim)
  3422. self.gguf_writer.add_value_length(head_dim)
  3423. self.gguf_writer.add_file_type(self.ftype)
  3424. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  3425. if "n_layers" in keys:
  3426. return self.hparams["num_transformer_layers"]
  3427. return super().find_hparam(keys, optional)
  3428. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3429. # split ff
  3430. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  3431. ff_dim = self._ffn_dims[bid]
  3432. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  3433. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  3434. return
  3435. yield (self.map_tensor_name(name), data_torch)
  3436. @ModelBase.register("ArcticForCausalLM")
  3437. class ArcticModel(TextModel):
  3438. model_arch = gguf.MODEL_ARCH.ARCTIC
  3439. def set_vocab(self):
  3440. # The reason for using a custom implementation here is that the
  3441. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  3442. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  3443. from sentencepiece import SentencePieceProcessor
  3444. tokenizer_path = self.dir_model / 'tokenizer.model'
  3445. if not tokenizer_path.is_file():
  3446. logger.error(f'Error: Missing {tokenizer_path}')
  3447. sys.exit(1)
  3448. # Read the whole vocabulary from the tokenizer.model file
  3449. tokenizer = SentencePieceProcessor()
  3450. tokenizer.LoadFromFile(str(tokenizer_path))
  3451. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3452. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3453. scores: list[float] = [-10000.0] * vocab_size
  3454. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3455. for token_id in range(tokenizer.vocab_size()):
  3456. piece = tokenizer.IdToPiece(token_id)
  3457. text = piece.encode("utf-8")
  3458. score = tokenizer.GetScore(token_id)
  3459. toktype = SentencePieceTokenTypes.NORMAL
  3460. if tokenizer.IsUnknown(token_id):
  3461. toktype = SentencePieceTokenTypes.UNKNOWN
  3462. elif tokenizer.IsControl(token_id):
  3463. toktype = SentencePieceTokenTypes.CONTROL
  3464. elif tokenizer.IsUnused(token_id):
  3465. toktype = SentencePieceTokenTypes.UNUSED
  3466. elif tokenizer.IsByte(token_id):
  3467. toktype = SentencePieceTokenTypes.BYTE
  3468. tokens[token_id] = text
  3469. scores[token_id] = score
  3470. toktypes[token_id] = toktype
  3471. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  3472. # of information about added/redefined tokens and modify them accordingly.
  3473. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3474. if tokenizer_config_file.is_file():
  3475. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3476. tokenizer_config_json = json.load(f)
  3477. if "added_tokens_decoder" in tokenizer_config_json:
  3478. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  3479. for token_id, token_json in added_tokens_decoder.items():
  3480. token_id = int(token_id)
  3481. if token_id >= vocab_size:
  3482. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3483. continue
  3484. token_content = token_json["content"]
  3485. token_type = SentencePieceTokenTypes.USER_DEFINED
  3486. token_score = -10000.0
  3487. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  3488. # Set the score to 0.0 as in the original tokenizer.model
  3489. if ("special" in token_json) and token_json["special"]:
  3490. if token_content == tokenizer_config_json["unk_token"]:
  3491. token_type = SentencePieceTokenTypes.UNKNOWN
  3492. else:
  3493. token_type = SentencePieceTokenTypes.CONTROL
  3494. token_score = 0.0
  3495. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  3496. tokens[token_id] = token_content.encode("utf-8")
  3497. toktypes[token_id] = token_type
  3498. scores[token_id] = token_score
  3499. self.gguf_writer.add_tokenizer_model("llama")
  3500. self.gguf_writer.add_tokenizer_pre("default")
  3501. self.gguf_writer.add_token_list(tokens)
  3502. self.gguf_writer.add_token_scores(scores)
  3503. self.gguf_writer.add_token_types(toktypes)
  3504. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3505. special_vocab.add_to_gguf(self.gguf_writer)
  3506. def set_gguf_parameters(self):
  3507. super().set_gguf_parameters()
  3508. hparams = self.hparams
  3509. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3510. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  3511. _experts: list[dict[str, Tensor]] | None = None
  3512. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3513. n_head = self.hparams["num_attention_heads"]
  3514. n_kv_head = self.hparams.get("num_key_value_heads")
  3515. if name.endswith("q_proj.weight"):
  3516. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3517. if name.endswith("k_proj.weight"):
  3518. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3519. # process the experts separately
  3520. if name.find("block_sparse_moe.experts") != -1:
  3521. n_experts = self.hparams["num_local_experts"]
  3522. assert bid is not None
  3523. if self._experts is None:
  3524. self._experts = [{} for _ in range(self.block_count)]
  3525. self._experts[bid][name] = data_torch
  3526. if len(self._experts[bid]) >= n_experts * 3:
  3527. tensors: list[tuple[str, Tensor]] = []
  3528. # merge the experts into a single 3d tensor
  3529. for wid in ["w1", "w2", "w3"]:
  3530. datas: list[Tensor] = []
  3531. for xid in range(n_experts):
  3532. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  3533. datas.append(self._experts[bid][ename])
  3534. del self._experts[bid][ename]
  3535. data_torch = torch.stack(datas, dim=0)
  3536. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  3537. new_name = self.map_tensor_name(merged_name)
  3538. tensors.append((new_name, data_torch))
  3539. return tensors
  3540. else:
  3541. return []
  3542. return [(self.map_tensor_name(name), data_torch)]
  3543. def prepare_tensors(self):
  3544. super().prepare_tensors()
  3545. if self._experts is not None:
  3546. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3547. experts = [k for d in self._experts for k in d.keys()]
  3548. if len(experts) > 0:
  3549. raise ValueError(f"Unprocessed experts: {experts}")
  3550. @ModelBase.register("DeepseekForCausalLM")
  3551. class DeepseekModel(TextModel):
  3552. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  3553. def set_vocab(self):
  3554. try:
  3555. self._set_vocab_sentencepiece()
  3556. except FileNotFoundError:
  3557. self._set_vocab_gpt2()
  3558. def set_gguf_parameters(self):
  3559. super().set_gguf_parameters()
  3560. hparams = self.hparams
  3561. if "head_dim" in hparams:
  3562. rope_dim = hparams["head_dim"]
  3563. else:
  3564. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  3565. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3566. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3567. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  3568. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3569. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  3570. self.gguf_writer.add_expert_weights_scale(1.0)
  3571. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  3572. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  3573. _experts: list[dict[str, Tensor]] | None = None
  3574. @staticmethod
  3575. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  3576. if n_head_kv is not None and n_head != n_head_kv:
  3577. n_head = n_head_kv
  3578. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  3579. .swapaxes(1, 2)
  3580. .reshape(weights.shape))
  3581. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3582. n_head = self.hparams["num_attention_heads"]
  3583. n_kv_head = self.hparams.get("num_key_value_heads")
  3584. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3585. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  3586. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3587. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  3588. # process the experts separately
  3589. if name.find("mlp.experts") != -1:
  3590. n_experts = self.hparams["n_routed_experts"]
  3591. assert bid is not None
  3592. if self._experts is None:
  3593. self._experts = [{} for _ in range(self.block_count)]
  3594. self._experts[bid][name] = data_torch
  3595. if len(self._experts[bid]) >= n_experts * 3:
  3596. tensors: list[tuple[str, Tensor]] = []
  3597. # merge the experts into a single 3d tensor
  3598. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3599. datas: list[Tensor] = []
  3600. for xid in range(n_experts):
  3601. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3602. datas.append(self._experts[bid][ename])
  3603. del self._experts[bid][ename]
  3604. data_torch = torch.stack(datas, dim=0)
  3605. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3606. new_name = self.map_tensor_name(merged_name)
  3607. tensors.append((new_name, data_torch))
  3608. return tensors
  3609. else:
  3610. return []
  3611. return [(self.map_tensor_name(name), data_torch)]
  3612. def prepare_tensors(self):
  3613. super().prepare_tensors()
  3614. if self._experts is not None:
  3615. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3616. experts = [k for d in self._experts for k in d.keys()]
  3617. if len(experts) > 0:
  3618. raise ValueError(f"Unprocessed experts: {experts}")
  3619. @ModelBase.register("DeepseekV2ForCausalLM")
  3620. @ModelBase.register("DeepseekV3ForCausalLM")
  3621. class DeepseekV2Model(TextModel):
  3622. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  3623. def set_vocab(self):
  3624. self._set_vocab_gpt2()
  3625. def set_gguf_parameters(self):
  3626. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  3627. self.hparams["num_key_value_heads"] = 1
  3628. super().set_gguf_parameters()
  3629. hparams = self.hparams
  3630. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  3631. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3632. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  3633. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  3634. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  3635. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  3636. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  3637. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  3638. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  3639. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  3640. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  3641. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  3642. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  3643. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  3644. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  3645. if hparams["scoring_func"] == "sigmoid":
  3646. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  3647. elif hparams["scoring_func"] == "softmax":
  3648. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  3649. else:
  3650. raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
  3651. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  3652. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  3653. if self.hparams["rope_scaling"].get("type") == "yarn":
  3654. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  3655. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  3656. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  3657. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
  3658. _experts: list[dict[str, Tensor]] | None = None
  3659. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3660. # rename e_score_correction_bias tensors
  3661. if name.endswith("e_score_correction_bias"):
  3662. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  3663. # skip Multi-Token Prediction (MTP) layers
  3664. block_count = self.hparams["num_hidden_layers"]
  3665. match = re.match(r"model.layers.(\d+)", name)
  3666. if match and int(match.group(1)) >= block_count:
  3667. return []
  3668. # process the experts separately
  3669. if name.find("mlp.experts") != -1:
  3670. n_experts = self.hparams["n_routed_experts"]
  3671. assert bid is not None
  3672. if self._experts is None:
  3673. self._experts = [{} for _ in range(self.block_count)]
  3674. self._experts[bid][name] = data_torch
  3675. if len(self._experts[bid]) >= n_experts * 3:
  3676. tensors: list[tuple[str, Tensor]] = []
  3677. # merge the experts into a single 3d tensor
  3678. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3679. datas: list[Tensor] = []
  3680. for xid in range(n_experts):
  3681. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3682. datas.append(self._experts[bid][ename])
  3683. del self._experts[bid][ename]
  3684. data_torch = torch.stack(datas, dim=0)
  3685. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3686. new_name = self.map_tensor_name(merged_name)
  3687. tensors.append((new_name, data_torch))
  3688. return tensors
  3689. else:
  3690. return []
  3691. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  3692. if name.endswith("kv_b_proj.weight"):
  3693. name_kb = name.replace("kv_b_proj", "k_b_proj")
  3694. name_vb = name.replace("kv_b_proj", "v_b_proj")
  3695. n_head_kv = self.hparams["num_key_value_heads"]
  3696. v_head_dim = self.hparams["v_head_dim"]
  3697. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  3698. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  3699. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  3700. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  3701. k_b = k_b.transpose(1, 2)
  3702. return [
  3703. (self.map_tensor_name(name_kb), k_b),
  3704. (self.map_tensor_name(name_vb), v_b)
  3705. ]
  3706. return [(self.map_tensor_name(name), data_torch)]
  3707. def prepare_tensors(self):
  3708. super().prepare_tensors()
  3709. if self._experts is not None:
  3710. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3711. experts = [k for d in self._experts for k in d.keys()]
  3712. if len(experts) > 0:
  3713. raise ValueError(f"Unprocessed experts: {experts}")
  3714. @ModelBase.register("PLMForCausalLM")
  3715. class PLMModel(TextModel):
  3716. model_arch = gguf.MODEL_ARCH.PLM
  3717. def set_vocab(self):
  3718. self._set_vocab_gpt2()
  3719. def set_gguf_parameters(self):
  3720. super().set_gguf_parameters()
  3721. hparams = self.hparams
  3722. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3723. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  3724. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  3725. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  3726. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  3727. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3728. return [(self.map_tensor_name(name), data_torch)]
  3729. def prepare_tensors(self):
  3730. super().prepare_tensors()
  3731. @ModelBase.register("T5WithLMHeadModel")
  3732. @ModelBase.register("T5ForConditionalGeneration")
  3733. @ModelBase.register("MT5ForConditionalGeneration")
  3734. @ModelBase.register("UMT5ForConditionalGeneration")
  3735. class T5Model(TextModel):
  3736. model_arch = gguf.MODEL_ARCH.T5
  3737. def __init__(self, *args, **kwargs):
  3738. super().__init__(*args, **kwargs)
  3739. self.shared_token_embeddings_found = False
  3740. def set_vocab(self):
  3741. # to avoid TypeError: Descriptors cannot be created directly
  3742. # exception when importing sentencepiece_model_pb2
  3743. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3744. from sentencepiece import SentencePieceProcessor
  3745. from sentencepiece import sentencepiece_model_pb2 as model
  3746. tokenizer_path = self.dir_model / 'tokenizer.model'
  3747. # many older models use spiece.model tokenizer model filename
  3748. if not tokenizer_path.is_file():
  3749. tokenizer_path = self.dir_model / 'spiece.model'
  3750. if not tokenizer_path.is_file():
  3751. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3752. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3753. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3754. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  3755. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  3756. # assure the tokenizer model file name is correct
  3757. assert tokenizer_path.name == 'tokenizer.model'
  3758. return self._set_vocab_sentencepiece()
  3759. else:
  3760. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3761. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3762. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3763. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3764. tokenizer = SentencePieceProcessor()
  3765. tokenizer.LoadFromFile(str(tokenizer_path))
  3766. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3767. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3768. scores: list[float] = [-10000.0] * vocab_size
  3769. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3770. for token_id in range(tokenizer.vocab_size()):
  3771. piece = tokenizer.IdToPiece(token_id)
  3772. text = piece.encode("utf-8")
  3773. score = tokenizer.GetScore(token_id)
  3774. toktype = SentencePieceTokenTypes.NORMAL
  3775. if tokenizer.IsUnknown(token_id):
  3776. toktype = SentencePieceTokenTypes.UNKNOWN
  3777. elif tokenizer.IsControl(token_id):
  3778. toktype = SentencePieceTokenTypes.CONTROL
  3779. elif tokenizer.IsUnused(token_id):
  3780. toktype = SentencePieceTokenTypes.UNUSED
  3781. elif tokenizer.IsByte(token_id):
  3782. toktype = SentencePieceTokenTypes.BYTE
  3783. tokens[token_id] = text
  3784. scores[token_id] = score
  3785. toktypes[token_id] = toktype
  3786. added_tokens_file = self.dir_model / 'added_tokens.json'
  3787. if added_tokens_file.is_file():
  3788. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3789. added_tokens_json = json.load(f)
  3790. for key in added_tokens_json:
  3791. token_id = added_tokens_json[key]
  3792. if token_id >= vocab_size:
  3793. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3794. continue
  3795. tokens[token_id] = key.encode("utf-8")
  3796. scores[token_id] = -1000.0
  3797. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3798. if vocab_size > len(tokens):
  3799. pad_count = vocab_size - len(tokens)
  3800. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3801. for i in range(1, pad_count + 1):
  3802. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3803. scores.append(-1000.0)
  3804. toktypes.append(SentencePieceTokenTypes.UNUSED)
  3805. self.gguf_writer.add_tokenizer_model("t5")
  3806. self.gguf_writer.add_tokenizer_pre("default")
  3807. self.gguf_writer.add_token_list(tokens)
  3808. self.gguf_writer.add_token_scores(scores)
  3809. self.gguf_writer.add_token_types(toktypes)
  3810. self.gguf_writer.add_add_space_prefix(add_prefix)
  3811. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3812. if precompiled_charsmap:
  3813. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3814. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3815. special_vocab.add_to_gguf(self.gguf_writer)
  3816. self.gguf_writer.add_add_bos_token(False)
  3817. self.gguf_writer.add_add_eos_token(True)
  3818. def set_gguf_parameters(self):
  3819. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  3820. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  3821. n_ctx = 512
  3822. self.gguf_writer.add_context_length(n_ctx)
  3823. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  3824. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  3825. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3826. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  3827. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  3828. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  3829. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3830. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  3831. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  3832. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  3833. self.gguf_writer.add_file_type(self.ftype)
  3834. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3835. del bid # unused
  3836. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  3837. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  3838. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  3839. # and decoder and ignore the remaining ones.
  3840. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  3841. if not self.shared_token_embeddings_found:
  3842. name = "shared.weight"
  3843. self.shared_token_embeddings_found = True
  3844. else:
  3845. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  3846. return []
  3847. return [(self.map_tensor_name(name), data_torch)]
  3848. @ModelBase.register("T5EncoderModel")
  3849. class T5EncoderModel(TextModel):
  3850. model_arch = gguf.MODEL_ARCH.T5ENCODER
  3851. def __init__(self, *args, **kwargs):
  3852. super().__init__(*args, **kwargs)
  3853. self.shared_token_embeddings_found = False
  3854. def set_vocab(self):
  3855. # to avoid TypeError: Descriptors cannot be created directly
  3856. # exception when importing sentencepiece_model_pb2
  3857. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3858. from sentencepiece import SentencePieceProcessor
  3859. from sentencepiece import sentencepiece_model_pb2 as model
  3860. tokenizer_path = self.dir_model / 'tokenizer.model'
  3861. # many older models use spiece.model tokenizer model filename
  3862. if not tokenizer_path.is_file():
  3863. tokenizer_path = self.dir_model / 'spiece.model'
  3864. if not tokenizer_path.is_file():
  3865. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3866. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3867. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3868. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  3869. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  3870. # assure the tokenizer model file name is correct
  3871. assert tokenizer_path.name == 'tokenizer.model'
  3872. return self._set_vocab_sentencepiece()
  3873. else:
  3874. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3875. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3876. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3877. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3878. tokenizer = SentencePieceProcessor()
  3879. tokenizer.LoadFromFile(str(tokenizer_path))
  3880. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3881. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3882. scores: list[float] = [-10000.0] * vocab_size
  3883. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3884. for token_id in range(tokenizer.vocab_size()):
  3885. piece = tokenizer.IdToPiece(token_id)
  3886. text = piece.encode("utf-8")
  3887. score = tokenizer.GetScore(token_id)
  3888. toktype = SentencePieceTokenTypes.NORMAL
  3889. if tokenizer.IsUnknown(token_id):
  3890. toktype = SentencePieceTokenTypes.UNKNOWN
  3891. elif tokenizer.IsControl(token_id):
  3892. toktype = SentencePieceTokenTypes.CONTROL
  3893. elif tokenizer.IsUnused(token_id):
  3894. toktype = SentencePieceTokenTypes.UNUSED
  3895. elif tokenizer.IsByte(token_id):
  3896. toktype = SentencePieceTokenTypes.BYTE
  3897. tokens[token_id] = text
  3898. scores[token_id] = score
  3899. toktypes[token_id] = toktype
  3900. added_tokens_file = self.dir_model / 'added_tokens.json'
  3901. if added_tokens_file.is_file():
  3902. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3903. added_tokens_json = json.load(f)
  3904. for key in added_tokens_json:
  3905. token_id = added_tokens_json[key]
  3906. if token_id >= vocab_size:
  3907. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3908. continue
  3909. tokens[token_id] = key.encode("utf-8")
  3910. scores[token_id] = -1000.0
  3911. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3912. if vocab_size > len(tokens):
  3913. pad_count = vocab_size - len(tokens)
  3914. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3915. for i in range(1, pad_count + 1):
  3916. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3917. scores.append(-1000.0)
  3918. toktypes.append(SentencePieceTokenTypes.UNUSED)
  3919. self.gguf_writer.add_tokenizer_model("t5")
  3920. self.gguf_writer.add_tokenizer_pre("default")
  3921. self.gguf_writer.add_token_list(tokens)
  3922. self.gguf_writer.add_token_scores(scores)
  3923. self.gguf_writer.add_token_types(toktypes)
  3924. self.gguf_writer.add_add_space_prefix(add_prefix)
  3925. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3926. if precompiled_charsmap:
  3927. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3928. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3929. special_vocab.add_to_gguf(self.gguf_writer)
  3930. self.gguf_writer.add_add_bos_token(False)
  3931. self.gguf_writer.add_add_eos_token(True)
  3932. def set_gguf_parameters(self):
  3933. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  3934. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  3935. n_ctx = 512
  3936. self.gguf_writer.add_context_length(n_ctx)
  3937. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  3938. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  3939. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3940. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  3941. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  3942. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  3943. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3944. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  3945. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  3946. self.gguf_writer.add_file_type(self.ftype)
  3947. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3948. del bid # unused
  3949. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  3950. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  3951. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  3952. # and decoder and ignore the remaining ones.
  3953. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  3954. if not self.shared_token_embeddings_found:
  3955. name = "shared.weight"
  3956. self.shared_token_embeddings_found = True
  3957. else:
  3958. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  3959. return []
  3960. return [(self.map_tensor_name(name), data_torch)]
  3961. @ModelBase.register("JAISLMHeadModel")
  3962. class JaisModel(TextModel):
  3963. model_arch = gguf.MODEL_ARCH.JAIS
  3964. def __init__(self, *args, **kwargs):
  3965. super().__init__(*args, **kwargs)
  3966. # SwigLU activation
  3967. assert self.hparams["activation_function"] == "swiglu"
  3968. # ALiBi position embedding
  3969. assert self.hparams["position_embedding_type"] == "alibi"
  3970. # Embeddings scale
  3971. self.embeddings_scale = 1.0
  3972. if 'mup_embeddings_scale' in self.hparams:
  3973. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  3974. elif 'embeddings_scale' in self.hparams:
  3975. self.embeddings_scale = self.hparams['embeddings_scale']
  3976. else:
  3977. assert False
  3978. self.width_scale = 1.0
  3979. if 'mup_output_alpha' in self.hparams:
  3980. assert 'mup_width_scale' in self.hparams
  3981. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  3982. elif 'width_scale' in self.hparams:
  3983. self.width_scale = self.hparams['width_scale']
  3984. else:
  3985. assert False
  3986. self.max_alibi_bias = 8.0
  3987. def set_vocab(self):
  3988. self._set_vocab_gpt2()
  3989. def set_gguf_parameters(self):
  3990. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  3991. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  3992. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3993. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  3994. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3995. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3996. self.gguf_writer.add_file_type(self.ftype)
  3997. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3998. del bid # unused
  3999. tensors: list[tuple[str, Tensor]] = []
  4000. # we don't need these
  4001. if name.endswith((".attn.bias")):
  4002. return tensors
  4003. if name.endswith(("relative_pe.slopes")):
  4004. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  4005. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  4006. # but Jais's PyTorch model simply precalculates the slope values and places them
  4007. # in relative_pes.slopes
  4008. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  4009. first_val = float(data_torch[0].item())
  4010. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  4011. return tensors
  4012. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  4013. data_torch = data_torch.transpose(1, 0)
  4014. new_name = self.map_tensor_name(name)
  4015. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  4016. tensors.append((new_name, data_torch * self.embeddings_scale))
  4017. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  4018. tensors.append((new_name, data_torch * self.width_scale))
  4019. else:
  4020. tensors.append((new_name, data_torch))
  4021. return tensors
  4022. def prepare_tensors(self):
  4023. super().prepare_tensors()
  4024. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  4025. @ModelBase.register("Glm4ForCausalLM")
  4026. class Glm4Model(TextModel):
  4027. model_arch = gguf.MODEL_ARCH.GLM4
  4028. def set_vocab(self):
  4029. self._set_vocab_gpt2()
  4030. def set_gguf_parameters(self):
  4031. super().set_gguf_parameters()
  4032. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  4033. if self.hparams["rope_scaling"].get("type") == "yarn":
  4034. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  4035. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  4036. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  4037. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  4038. class ChatGLMModel(TextModel):
  4039. model_arch = gguf.MODEL_ARCH.CHATGLM
  4040. def set_vocab_chatglm3(self):
  4041. dir_model = self.dir_model
  4042. hparams = self.hparams
  4043. tokens: list[bytes] = []
  4044. toktypes: list[int] = []
  4045. scores: list[float] = []
  4046. from transformers import AutoTokenizer
  4047. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  4048. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  4049. assert max(tokenizer.get_vocab().values()) < vocab_size
  4050. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  4051. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  4052. for token_id in range(vocab_size):
  4053. piece = tokenizer._convert_id_to_token(token_id)
  4054. if token_id == 0:
  4055. piece = "<unk>"
  4056. elif token_id == 1:
  4057. piece = "<bos>"
  4058. elif token_id == 2:
  4059. piece = "<eos>"
  4060. text = piece.encode("utf-8")
  4061. score = 0.0
  4062. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  4063. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  4064. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  4065. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  4066. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  4067. if piece in special_tokens:
  4068. toktype = SentencePieceTokenTypes.CONTROL
  4069. elif len(piece) == 0:
  4070. text = f"[PAD{token_id}]".encode("utf-8")
  4071. toktype = SentencePieceTokenTypes.UNUSED
  4072. else:
  4073. toktype = SentencePieceTokenTypes.USER_DEFINED
  4074. tokens.append(text)
  4075. scores.append(score)
  4076. toktypes.append(toktype)
  4077. continue
  4078. toktype = SentencePieceTokenTypes.NORMAL
  4079. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  4080. toktype = SentencePieceTokenTypes.UNKNOWN
  4081. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  4082. toktype = SentencePieceTokenTypes.CONTROL
  4083. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  4084. toktype = SentencePieceTokenTypes.UNUSED
  4085. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  4086. toktype = SentencePieceTokenTypes.BYTE
  4087. tokens.append(text)
  4088. scores.append(score)
  4089. toktypes.append(toktype)
  4090. self.gguf_writer.add_tokenizer_model("llama")
  4091. # glm3 needs prefix and suffix formatted as:
  4092. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  4093. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  4094. self.gguf_writer.add_token_list(tokens)
  4095. self.gguf_writer.add_token_scores(scores)
  4096. self.gguf_writer.add_token_types(toktypes)
  4097. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4098. special_vocab.add_to_gguf(self.gguf_writer)
  4099. @staticmethod
  4100. def token_bytes_to_string(b):
  4101. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  4102. byte_encoder = bytes_to_unicode()
  4103. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  4104. @staticmethod
  4105. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  4106. parts = [bytes([b]) for b in token]
  4107. while True:
  4108. min_idx = None
  4109. min_rank = None
  4110. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  4111. rank = mergeable_ranks.get(pair[0] + pair[1])
  4112. if rank is not None and (min_rank is None or rank < min_rank):
  4113. min_idx = i
  4114. min_rank = rank
  4115. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  4116. break
  4117. assert min_idx is not None
  4118. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  4119. return parts
  4120. def set_vocab(self):
  4121. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  4122. self.set_vocab_chatglm3()
  4123. return
  4124. dir_model = self.dir_model
  4125. hparams = self.hparams
  4126. tokens: list[str] = []
  4127. toktypes: list[int] = []
  4128. from transformers import AutoTokenizer
  4129. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  4130. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  4131. assert max(tokenizer.get_vocab().values()) < vocab_size
  4132. tokens, toktypes, tokpre = self.get_vocab_base()
  4133. self.gguf_writer.add_tokenizer_model("gpt2")
  4134. self.gguf_writer.add_tokenizer_pre(tokpre)
  4135. self.gguf_writer.add_token_list(tokens)
  4136. self.gguf_writer.add_token_types(toktypes)
  4137. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  4138. # only add special tokens when they were not already loaded from config.json
  4139. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  4140. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  4141. # this one is usually not in config.json anyway
  4142. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  4143. special_vocab.add_to_gguf(self.gguf_writer)
  4144. def set_gguf_parameters(self):
  4145. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  4146. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  4147. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  4148. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  4149. self.gguf_writer.add_embedding_length(n_embed)
  4150. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  4151. self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
  4152. self.gguf_writer.add_head_count(n_head)
  4153. self.gguf_writer.add_head_count_kv(n_head_kv)
  4154. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  4155. self.gguf_writer.add_file_type(self.ftype)
  4156. if "attention_dim" in self.hparams:
  4157. rope_dim = self.hparams["attention_dim"]
  4158. else:
  4159. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  4160. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  4161. self.gguf_writer.add_add_bos_token(False)
  4162. rope_freq = 10000
  4163. if "rope_ratio" in self.hparams:
  4164. rope_freq = rope_freq * self.hparams["rope_ratio"]
  4165. self.gguf_writer.add_rope_freq_base(rope_freq)
  4166. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4167. del bid # unused
  4168. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  4169. return []
  4170. name = name.removeprefix("transformer.")
  4171. return [(self.map_tensor_name(name), data_torch)]
  4172. @ModelBase.register("NemotronForCausalLM")
  4173. class NemotronModel(TextModel):
  4174. model_arch = gguf.MODEL_ARCH.NEMOTRON
  4175. def set_vocab(self):
  4176. self._set_vocab_sentencepiece()
  4177. self.gguf_writer.add_pad_token_id(0)
  4178. self.gguf_writer.add_unk_token_id(1)
  4179. def set_gguf_parameters(self):
  4180. super().set_gguf_parameters()
  4181. hparams = self.hparams
  4182. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4183. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  4184. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  4185. # * Partial RoPE
  4186. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  4187. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  4188. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  4189. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  4190. # * RopeScaling for Nemotron
  4191. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  4192. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4193. else:
  4194. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4195. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  4196. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4197. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  4198. # model.layers.{l}.input_layernorm.weight
  4199. # model.layers.{l}.post_attention_layernorm.weight
  4200. # model.norm.weight
  4201. if name.endswith("norm.weight"):
  4202. data_torch = data_torch + 1
  4203. return [(self.map_tensor_name(name), data_torch)]
  4204. @ModelBase.register("ExaoneForCausalLM")
  4205. class ExaoneModel(TextModel):
  4206. model_arch = gguf.MODEL_ARCH.EXAONE
  4207. def set_gguf_parameters(self):
  4208. hparams = self.hparams
  4209. assert (hparams["activation_function"] == "silu")
  4210. max_position_embeddings = hparams["max_position_embeddings"]
  4211. embed_dim = hparams["hidden_size"]
  4212. num_heads = hparams["num_attention_heads"]
  4213. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  4214. layer_norm_eps = hparams["layer_norm_epsilon"]
  4215. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  4216. num_layers = hparams["num_layers"]
  4217. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  4218. # attention_dropout_rate = hparams["attention_dropout"]
  4219. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  4220. # embed_dropout_rate = hparams["embed_dropout"]
  4221. self.gguf_writer.add_embedding_length(embed_dim)
  4222. self.gguf_writer.add_head_count(num_heads)
  4223. self.gguf_writer.add_head_count_kv(num_kv_heads)
  4224. self.gguf_writer.add_context_length(max_position_embeddings)
  4225. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  4226. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4227. self.gguf_writer.add_block_count(num_layers)
  4228. self.gguf_writer.add_file_type(self.ftype)
  4229. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  4230. self.gguf_writer.add_rope_freq_base(rope_theta)
  4231. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  4232. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  4233. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  4234. if hparams.get("rope_scaling") is not None and "factor" in hparams["rope_scaling"]:
  4235. if hparams["rope_scaling"].get("type") == "linear":
  4236. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4237. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  4238. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4239. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  4240. if rope_scaling.get("rope_type", '').lower() == "llama3":
  4241. base = self.hparams.get("rope_theta", 10000.0)
  4242. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  4243. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  4244. factor = rope_scaling.get("factor", 8.0)
  4245. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  4246. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  4247. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  4248. low_freq_wavelen = old_context_len / low_freq_factor
  4249. high_freq_wavelen = old_context_len / high_freq_factor
  4250. assert low_freq_wavelen != high_freq_wavelen
  4251. rope_factors = []
  4252. for freq in freqs:
  4253. wavelen = 2 * math.pi / freq
  4254. if wavelen < high_freq_wavelen:
  4255. rope_factors.append(1)
  4256. elif wavelen > low_freq_wavelen:
  4257. rope_factors.append(factor)
  4258. else:
  4259. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  4260. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  4261. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  4262. @ModelBase.register("GraniteForCausalLM")
  4263. class GraniteModel(LlamaModel):
  4264. """Conversion for IBM's GraniteForCausalLM"""
  4265. model_arch = gguf.MODEL_ARCH.GRANITE
  4266. def set_gguf_parameters(self):
  4267. """Granite uses standard llama parameters with the following differences:
  4268. - No head_dim support
  4269. - New multiplier params:
  4270. - attention_scale
  4271. - embedding_scale
  4272. - residual_scale
  4273. - logits_scaling
  4274. """
  4275. if head_dim := self.hparams.pop("head_dim", None):
  4276. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  4277. super().set_gguf_parameters()
  4278. # NOTE: Convert _multiplier params to _scale params for naming
  4279. # consistency
  4280. if attention_scale := self.hparams.get("attention_multiplier"):
  4281. self.gguf_writer.add_attention_scale(attention_scale)
  4282. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  4283. if embedding_scale := self.hparams.get("embedding_multiplier"):
  4284. self.gguf_writer.add_embedding_scale(embedding_scale)
  4285. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  4286. if residual_scale := self.hparams.get("residual_multiplier"):
  4287. self.gguf_writer.add_residual_scale(residual_scale)
  4288. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  4289. if logits_scale := self.hparams.get("logits_scaling"):
  4290. self.gguf_writer.add_logit_scale(logits_scale)
  4291. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  4292. @ModelBase.register("GraniteMoeForCausalLM")
  4293. class GraniteMoeModel(GraniteModel):
  4294. """Conversion for IBM's GraniteMoeForCausalLM"""
  4295. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  4296. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4297. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  4298. is used. This essentially merges w1 and w3 into a single tensor with 2x
  4299. the hidden size that is then split during forward. To keep compatibility
  4300. with existing mixtral support, we pull them apart here.
  4301. """
  4302. if name.endswith("block_sparse_moe.input_linear.weight"):
  4303. ffn_dim = self.hparams["intermediate_size"]
  4304. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  4305. gate, up = data_torch[..., :ffn_dim, :], data_torch[..., ffn_dim:, :]
  4306. return [
  4307. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  4308. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  4309. ]
  4310. return super().modify_tensors(data_torch, name, bid)
  4311. @ModelBase.register("BailingMoeForCausalLM")
  4312. class BailingMoeModel(TextModel):
  4313. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  4314. def set_vocab(self):
  4315. self._set_vocab_gpt2()
  4316. def set_gguf_parameters(self):
  4317. super().set_gguf_parameters()
  4318. hparams = self.hparams
  4319. rope_dim = hparams.get("head_dim") or hparams["hidden_size"] // hparams["num_attention_heads"]
  4320. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4321. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4322. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  4323. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4324. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  4325. self.gguf_writer.add_expert_weights_scale(1.0)
  4326. self.gguf_writer.add_expert_count(hparams["num_experts"])
  4327. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  4328. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  4329. _experts: list[dict[str, Tensor]] | None = None
  4330. @staticmethod
  4331. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  4332. if n_head_kv is not None and n_head != n_head_kv:
  4333. n_head = n_head_kv
  4334. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  4335. .swapaxes(1, 2)
  4336. .reshape(weights.shape))
  4337. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4338. n_head = self.hparams["num_attention_heads"]
  4339. n_kv_head = self.hparams.get("num_key_value_heads")
  4340. n_embd = self.hparams["hidden_size"]
  4341. head_dim = self.hparams.get("head_dim") or n_embd // n_head
  4342. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  4343. if name.endswith("attention.dense.weight"):
  4344. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  4345. elif name.endswith("query_key_value.weight"):
  4346. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  4347. return [
  4348. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  4349. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  4350. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  4351. ]
  4352. elif name.find("mlp.experts") != -1:
  4353. n_experts = self.hparams["num_experts"]
  4354. assert bid is not None
  4355. tensors: list[tuple[str, Tensor]] = []
  4356. if self._experts is None:
  4357. self._experts = [{} for _ in range(self.block_count)]
  4358. self._experts[bid][name] = data_torch
  4359. if len(self._experts[bid]) >= n_experts * 3:
  4360. # merge the experts into a single 3d tensor
  4361. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4362. datas: list[Tensor] = []
  4363. for xid in range(n_experts):
  4364. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4365. datas.append(self._experts[bid][ename])
  4366. del self._experts[bid][ename]
  4367. data_torch = torch.stack(datas, dim=0)
  4368. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4369. new_name = self.map_tensor_name(merged_name)
  4370. tensors.append((new_name, data_torch))
  4371. return tensors
  4372. new_name = self.map_tensor_name(name)
  4373. if new_name == output_name and self.hparams.get("norm_head"):
  4374. data_torch = data_torch.float()
  4375. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  4376. return [(new_name, data_torch)]
  4377. def prepare_tensors(self):
  4378. super().prepare_tensors()
  4379. if self._experts is not None:
  4380. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4381. experts = [k for d in self._experts for k in d.keys()]
  4382. if len(experts) > 0:
  4383. raise ValueError(f"Unprocessed experts: {experts}")
  4384. @ModelBase.register("ChameleonForConditionalGeneration")
  4385. @ModelBase.register("ChameleonForCausalLM") # obsolete
  4386. class ChameleonModel(TextModel):
  4387. model_arch = gguf.MODEL_ARCH.CHAMELEON
  4388. def set_gguf_parameters(self):
  4389. super().set_gguf_parameters()
  4390. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  4391. def set_vocab(self):
  4392. self._set_vocab_gpt2()
  4393. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4394. # ignore image tokenizer for now
  4395. # TODO: remove this once image support is implemented for Chameleon
  4396. if name.startswith("model.vqmodel"):
  4397. return []
  4398. n_head = self.hparams["num_attention_heads"]
  4399. n_kv_head = self.hparams.get("num_key_value_heads")
  4400. hidden_dim = self.hparams.get("hidden_size")
  4401. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4402. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4403. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4404. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4405. if name.endswith(("q_norm.weight", "q_norm.bias")):
  4406. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  4407. if name.endswith(("k_norm.weight", "k_norm.bias")):
  4408. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  4409. return [(self.map_tensor_name(name), data_torch)]
  4410. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  4411. @staticmethod
  4412. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  4413. head_dim = hidden_dim // n_heads
  4414. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  4415. data_torch = data_torch.repeat_interleave(n_heads, 0)
  4416. return data_torch
  4417. ###### CONVERSION LOGIC ######
  4418. # tree of lazy tensors
  4419. class LazyTorchTensor(gguf.LazyBase):
  4420. _tensor_type = torch.Tensor
  4421. # to keep the type-checker happy
  4422. dtype: torch.dtype
  4423. shape: torch.Size
  4424. # only used when converting a torch.Tensor to a np.ndarray
  4425. _dtype_map: dict[torch.dtype, type] = {
  4426. torch.float16: np.float16,
  4427. torch.float32: np.float32,
  4428. }
  4429. # used for safetensors slices
  4430. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  4431. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  4432. _dtype_str_map: dict[str, torch.dtype] = {
  4433. "F64": torch.float64,
  4434. "F32": torch.float32,
  4435. "BF16": torch.bfloat16,
  4436. "F16": torch.float16,
  4437. # "U64": torch.uint64,
  4438. "I64": torch.int64,
  4439. # "U32": torch.uint32,
  4440. "I32": torch.int32,
  4441. # "U16": torch.uint16,
  4442. "I16": torch.int16,
  4443. "U8": torch.uint8,
  4444. "I8": torch.int8,
  4445. "BOOL": torch.bool,
  4446. "F8_E4M3": torch.float8_e4m3fn,
  4447. "F8_E5M2": torch.float8_e5m2,
  4448. }
  4449. def numpy(self) -> gguf.LazyNumpyTensor:
  4450. dtype = self._dtype_map[self.dtype]
  4451. return gguf.LazyNumpyTensor(
  4452. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  4453. args=(self,),
  4454. func=(lambda s: s.numpy())
  4455. )
  4456. @classmethod
  4457. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  4458. return torch.empty(size=shape, dtype=dtype, device="meta")
  4459. @classmethod
  4460. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  4461. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  4462. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  4463. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  4464. return cast(torch.Tensor, lazy)
  4465. @classmethod
  4466. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  4467. dtype = cls._dtype_str_map[remote_tensor.dtype]
  4468. shape = remote_tensor.shape
  4469. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  4470. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.frombuffer(r.data(), dtype=dtype).reshape(shape))
  4471. return cast(torch.Tensor, lazy)
  4472. @classmethod
  4473. def __torch_function__(cls, func, types, args=(), kwargs=None):
  4474. del types # unused
  4475. if kwargs is None:
  4476. kwargs = {}
  4477. if func is torch.Tensor.numpy:
  4478. return args[0].numpy()
  4479. return cls._wrap_fn(func)(*args, **kwargs)
  4480. def parse_args() -> argparse.Namespace:
  4481. parser = argparse.ArgumentParser(
  4482. description="Convert a huggingface model to a GGML compatible file")
  4483. parser.add_argument(
  4484. "--vocab-only", action="store_true",
  4485. help="extract only the vocab",
  4486. )
  4487. parser.add_argument(
  4488. "--outfile", type=Path,
  4489. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  4490. )
  4491. parser.add_argument(
  4492. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  4493. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  4494. )
  4495. parser.add_argument(
  4496. "--bigendian", action="store_true",
  4497. help="model is executed on big endian machine",
  4498. )
  4499. parser.add_argument(
  4500. "model", type=Path,
  4501. help="directory containing model file",
  4502. nargs="?",
  4503. )
  4504. parser.add_argument(
  4505. "--use-temp-file", action="store_true",
  4506. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  4507. )
  4508. parser.add_argument(
  4509. "--no-lazy", action="store_true",
  4510. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  4511. )
  4512. parser.add_argument(
  4513. "--model-name", type=str, default=None,
  4514. help="name of the model",
  4515. )
  4516. parser.add_argument(
  4517. "--verbose", action="store_true",
  4518. help="increase output verbosity",
  4519. )
  4520. parser.add_argument(
  4521. "--split-max-tensors", type=int, default=0,
  4522. help="max tensors in each split",
  4523. )
  4524. parser.add_argument(
  4525. "--split-max-size", type=str, default="0",
  4526. help="max size per split N(M|G)",
  4527. )
  4528. parser.add_argument(
  4529. "--dry-run", action="store_true",
  4530. help="only print out a split plan and exit, without writing any new files",
  4531. )
  4532. parser.add_argument(
  4533. "--no-tensor-first-split", action="store_true",
  4534. help="do not add tensors to the first split (disabled by default)"
  4535. )
  4536. parser.add_argument(
  4537. "--metadata", type=Path,
  4538. help="Specify the path for an authorship metadata override file"
  4539. )
  4540. parser.add_argument(
  4541. "--print-supported-models", action="store_true",
  4542. help="Print the supported models"
  4543. )
  4544. parser.add_argument(
  4545. "--remote", action="store_true",
  4546. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  4547. )
  4548. parser.add_argument(
  4549. "--mmproj", action="store_true",
  4550. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  4551. )
  4552. args = parser.parse_args()
  4553. if not args.print_supported_models and args.model is None:
  4554. parser.error("the following arguments are required: model")
  4555. return args
  4556. def split_str_to_n_bytes(split_str: str) -> int:
  4557. if split_str.endswith("K"):
  4558. n = int(split_str[:-1]) * 1000
  4559. elif split_str.endswith("M"):
  4560. n = int(split_str[:-1]) * 1000 * 1000
  4561. elif split_str.endswith("G"):
  4562. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  4563. elif split_str.isnumeric():
  4564. n = int(split_str)
  4565. else:
  4566. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  4567. if n < 0:
  4568. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  4569. return n
  4570. def main() -> None:
  4571. args = parse_args()
  4572. if args.print_supported_models:
  4573. logger.error("Supported models:")
  4574. ModelBase.print_registered_models()
  4575. sys.exit(0)
  4576. if args.verbose:
  4577. logging.basicConfig(level=logging.DEBUG)
  4578. else:
  4579. logging.basicConfig(level=logging.INFO)
  4580. dir_model = args.model
  4581. if args.remote:
  4582. from huggingface_hub import snapshot_download
  4583. local_dir = snapshot_download(
  4584. repo_id=str(dir_model),
  4585. allow_patterns=["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"])
  4586. dir_model = Path(local_dir)
  4587. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  4588. if not dir_model.is_dir():
  4589. logger.error(f'Error: {args.model} is not a directory')
  4590. sys.exit(1)
  4591. ftype_map: dict[str, gguf.LlamaFileType] = {
  4592. "f32": gguf.LlamaFileType.ALL_F32,
  4593. "f16": gguf.LlamaFileType.MOSTLY_F16,
  4594. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  4595. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  4596. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  4597. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  4598. "auto": gguf.LlamaFileType.GUESSED,
  4599. }
  4600. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  4601. if args.use_temp_file and is_split:
  4602. logger.error("Error: Cannot use temp file when splitting")
  4603. sys.exit(1)
  4604. if args.outfile is not None:
  4605. fname_out = args.outfile
  4606. elif args.remote:
  4607. # if remote, use the model ID as the output file name
  4608. fname_out = Path("./" + str(args.model).replace("/", "-") + "-{ftype}.gguf")
  4609. else:
  4610. fname_out = dir_model
  4611. logger.info(f"Loading model: {dir_model.name}")
  4612. hparams = ModelBase.load_hparams(dir_model)
  4613. if args.mmproj:
  4614. if "mmproj" not in fname_out.name:
  4615. fname_out = ModelBase.add_prefix_to_filename(fname_out, "mmproj-")
  4616. with torch.inference_mode():
  4617. output_type = ftype_map[args.outtype]
  4618. model_architecture = hparams["architectures"][0]
  4619. model_type = ModelType.VISION if args.mmproj else ModelType.TEXT
  4620. try:
  4621. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  4622. except NotImplementedError:
  4623. logger.error(f"Model {model_architecture} is not supported")
  4624. sys.exit(1)
  4625. model_instance = model_class(dir_model, output_type, fname_out,
  4626. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  4627. eager=args.no_lazy,
  4628. metadata_override=args.metadata, model_name=args.model_name,
  4629. split_max_tensors=args.split_max_tensors,
  4630. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  4631. small_first_shard=args.no_tensor_first_split,
  4632. remote_hf_model_id=str(args.model) if args.remote else None)
  4633. if args.vocab_only:
  4634. logger.info("Exporting model vocab...")
  4635. model_instance.write_vocab()
  4636. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  4637. else:
  4638. logger.info("Exporting model...")
  4639. model_instance.write()
  4640. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  4641. logger.info(f"Model successfully exported to {out_path}")
  4642. if __name__ == '__main__':
  4643. main()