convert_hf_to_gguf.py 336 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. logger = logging.getLogger("hf-to-gguf")
  27. ###### MODEL DEFINITIONS ######
  28. class SentencePieceTokenTypes(IntEnum):
  29. NORMAL = 1
  30. UNKNOWN = 2
  31. CONTROL = 3
  32. USER_DEFINED = 4
  33. UNUSED = 5
  34. BYTE = 6
  35. class ModelType(IntEnum):
  36. TEXT = 1
  37. MMPROJ = 2
  38. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  39. class ModelBase:
  40. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  41. ModelType.TEXT: {},
  42. ModelType.MMPROJ: {},
  43. }
  44. dir_model: Path
  45. ftype: gguf.LlamaFileType
  46. fname_out: Path
  47. is_big_endian: bool
  48. endianess: gguf.GGUFEndian
  49. use_temp_file: bool
  50. lazy: bool
  51. part_names: list[str]
  52. is_safetensors: bool
  53. hparams: dict[str, Any]
  54. tensor_names: set[str] | None
  55. gguf_writer: gguf.GGUFWriter
  56. model_name: str | None
  57. metadata_override: Path | None
  58. dir_model_card: Path
  59. remote_hf_model_id: str | None
  60. # subclasses should define this!
  61. model_arch: gguf.MODEL_ARCH
  62. # subclasses should initialize this!
  63. block_count: int
  64. tensor_map: gguf.TensorNameMap
  65. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  66. use_temp_file: bool = False, eager: bool = False,
  67. metadata_override: Path | None = None, model_name: str | None = None,
  68. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  69. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None):
  70. if type(self) is ModelBase or \
  71. type(self) is TextModel or \
  72. type(self) is MmprojModel:
  73. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  74. self.dir_model = dir_model
  75. self.ftype = ftype
  76. self.fname_out = fname_out
  77. self.is_big_endian = is_big_endian
  78. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  79. self.use_temp_file = use_temp_file
  80. self.lazy = not eager or (remote_hf_model_id is not None)
  81. self.remote_hf_model_id = remote_hf_model_id
  82. if remote_hf_model_id is not None:
  83. self.is_safetensors = True
  84. def get_remote_tensors() -> Iterator[tuple[str, Tensor]]:
  85. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  86. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  87. self.tensor_names = set(name for name in remote_tensors.keys())
  88. for name, remote_tensor in gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id).items():
  89. yield (name, LazyTorchTensor.from_remote_tensor(remote_tensor))
  90. self.get_tensors = get_remote_tensors
  91. else:
  92. self.part_names = ModelBase.get_model_part_names(self.dir_model, "model", ".safetensors")
  93. self.is_safetensors = len(self.part_names) > 0
  94. if not self.is_safetensors:
  95. self.part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  96. self.hparams = ModelBase.load_hparams(self.dir_model) if hparams is None else hparams
  97. self.tensor_names = None
  98. self.metadata_override = metadata_override
  99. self.model_name = model_name
  100. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  101. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  102. if self.ftype == gguf.LlamaFileType.GUESSED:
  103. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  104. _, first_tensor = next(self.get_tensors())
  105. if first_tensor.dtype == torch.float16:
  106. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  107. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  108. else:
  109. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  110. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  111. # Configure GGUF Writer
  112. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  113. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  114. @classmethod
  115. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  116. stem, suffix = path.stem, path.suffix
  117. new_name = f"{prefix}{stem}{suffix}"
  118. return path.with_name(new_name)
  119. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  120. key = next((k for k in keys if k in self.hparams), None)
  121. if key is not None:
  122. return self.hparams[key]
  123. if optional:
  124. return None
  125. raise KeyError(f"could not find any of: {keys}")
  126. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  127. tensor_names_from_parts: set[str] = set()
  128. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  129. index_name += ".index.json"
  130. index_file = self.dir_model / index_name
  131. if index_file.is_file():
  132. self.tensor_names = set()
  133. logger.info(f"gguf: loading model weight map from '{index_name}'")
  134. with open(index_file, "r", encoding="utf-8") as f:
  135. index: dict[str, Any] = json.load(f)
  136. weight_map = index.get("weight_map")
  137. if weight_map is None or not isinstance(weight_map, dict):
  138. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  139. self.tensor_names.update(weight_map.keys())
  140. else:
  141. self.tensor_names = tensor_names_from_parts
  142. weight_map = {}
  143. for part_name in self.part_names:
  144. logger.info(f"gguf: loading model part '{part_name}'")
  145. ctx: ContextManager[Any]
  146. if self.is_safetensors:
  147. from safetensors import safe_open
  148. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  149. else:
  150. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  151. with ctx as model_part:
  152. tensor_names_from_parts.update(model_part.keys())
  153. for name in model_part.keys():
  154. if self.is_safetensors:
  155. if self.lazy:
  156. data = model_part.get_slice(name)
  157. data = LazyTorchTensor.from_safetensors_slice(data)
  158. else:
  159. data = model_part.get_tensor(name)
  160. else:
  161. data = model_part[name]
  162. if self.lazy:
  163. data = LazyTorchTensor.from_eager(data)
  164. yield name, data
  165. # verify tensor name presence and identify potentially missing files
  166. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  167. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  168. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  169. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  170. if len(extra) == 0 and len(missing_files) > 0:
  171. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  172. f"Missing tensors: {missing}")
  173. else:
  174. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  175. f"Missing tensors: {missing}\n"
  176. f"Extra tensors: {extra}")
  177. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  178. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  179. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  180. name: str = gguf.TENSOR_NAMES[key]
  181. if "{bid}" in name:
  182. assert bid is not None
  183. name = name.format(bid=bid)
  184. return name + suffix
  185. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  186. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  187. return False
  188. key_name: str = gguf.TENSOR_NAMES[key]
  189. if "{bid}" in key_name:
  190. if bid is None:
  191. return False
  192. key_name = key_name.format(bid=bid)
  193. else:
  194. if bid is not None:
  195. return False
  196. return name == (key_name + suffix)
  197. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  198. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  199. if new_name is None:
  200. raise ValueError(f"Can not map tensor {name!r}")
  201. return new_name
  202. def set_gguf_parameters(self):
  203. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  204. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  205. del bid # unused
  206. return [(self.map_tensor_name(name), data_torch)]
  207. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  208. del name, new_name, bid, n_dims # unused
  209. return False
  210. # some models need extra generated tensors (like rope_freqs)
  211. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  212. return ()
  213. def prepare_tensors(self):
  214. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  215. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  216. # we don't need these
  217. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  218. continue
  219. old_dtype = data_torch.dtype
  220. # convert any unsupported data types to float32
  221. if data_torch.dtype not in (torch.float16, torch.float32):
  222. data_torch = data_torch.to(torch.float32)
  223. # use the first number-like part of the tensor name as the block id
  224. bid = None
  225. for part in name.split("."):
  226. if part.isdecimal():
  227. bid = int(part)
  228. break
  229. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  230. # TODO: why do we squeeze here?
  231. # data = data_torch.squeeze().numpy()
  232. data = data_torch.numpy()
  233. # if data ends up empty, it means data_torch was a scalar tensor -> restore
  234. if len(data.shape) == 0:
  235. data = data_torch.numpy()
  236. n_dims = len(data.shape)
  237. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  238. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  239. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  240. data_qtype = gguf.GGMLQuantizationType.F32
  241. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  242. # Some tensor types are always in float32
  243. if data_qtype is False and (
  244. any(
  245. self.match_model_tensor_name(new_name, key, bid)
  246. for key in (
  247. gguf.MODEL_TENSOR.FFN_GATE_INP,
  248. gguf.MODEL_TENSOR.POS_EMBD,
  249. gguf.MODEL_TENSOR.TOKEN_TYPES,
  250. gguf.MODEL_TENSOR.SSM_CONV1D,
  251. gguf.MODEL_TENSOR.SHORTCONV_CONV,
  252. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  253. gguf.MODEL_TENSOR.TIME_MIX_W1,
  254. gguf.MODEL_TENSOR.TIME_MIX_W2,
  255. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  256. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  257. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  258. gguf.MODEL_TENSOR.POSNET_NORM1,
  259. gguf.MODEL_TENSOR.POSNET_NORM2,
  260. gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
  261. gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
  262. gguf.MODEL_TENSOR.ALTUP_CORRECT_COEF,
  263. gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
  264. )
  265. )
  266. or not new_name.endswith(".weight")
  267. ):
  268. data_qtype = gguf.GGMLQuantizationType.F32
  269. if data_qtype is False and any(
  270. self.match_model_tensor_name(new_name, key, bid)
  271. for key in (
  272. gguf.MODEL_TENSOR.TOKEN_EMBD,
  273. gguf.MODEL_TENSOR.PER_LAYER_TOKEN_EMBD,
  274. gguf.MODEL_TENSOR.OUTPUT,
  275. gguf.MODEL_TENSOR.ALTUP_ROUTER,
  276. gguf.MODEL_TENSOR.LAUREL_L,
  277. gguf.MODEL_TENSOR.LAUREL_R,
  278. )
  279. ):
  280. if self.ftype in (
  281. gguf.LlamaFileType.MOSTLY_TQ1_0,
  282. gguf.LlamaFileType.MOSTLY_TQ2_0,
  283. ):
  284. # TODO: use Q4_K and Q6_K
  285. data_qtype = gguf.GGMLQuantizationType.F16
  286. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  287. if isinstance(data_qtype, bool):
  288. if self.ftype == gguf.LlamaFileType.ALL_F32:
  289. data_qtype = gguf.GGMLQuantizationType.F32
  290. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  291. data_qtype = gguf.GGMLQuantizationType.F16
  292. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  293. data_qtype = gguf.GGMLQuantizationType.BF16
  294. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  295. data_qtype = gguf.GGMLQuantizationType.Q8_0
  296. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  297. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  298. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  299. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  300. else:
  301. raise ValueError(f"Unknown file type: {self.ftype.name}")
  302. try:
  303. data = gguf.quants.quantize(data, data_qtype)
  304. except gguf.QuantError as e:
  305. logger.warning("%s, %s", e, "falling back to F16")
  306. data_qtype = gguf.GGMLQuantizationType.F16
  307. data = gguf.quants.quantize(data, data_qtype)
  308. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  309. # reverse shape to make it similar to the internal ggml dimension order
  310. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  311. # n_dims is implicit in the shape
  312. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  313. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  314. def set_type(self):
  315. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  316. def prepare_metadata(self, vocab_only: bool):
  317. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  318. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  319. # If we are using HF model id, set the metadata name to the model id
  320. if self.remote_hf_model_id:
  321. self.metadata.name = self.remote_hf_model_id
  322. # Fallback to model directory name if metadata name is still missing
  323. if self.metadata.name is None:
  324. self.metadata.name = self.dir_model.name
  325. # Generate parameter weight class (useful for leader boards) if not yet determined
  326. if self.metadata.size_label is None and total_params > 0:
  327. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  328. self.set_type()
  329. logger.info("Set meta model")
  330. self.metadata.set_gguf_meta_model(self.gguf_writer)
  331. logger.info("Set model parameters")
  332. self.set_gguf_parameters()
  333. logger.info("Set model quantization version")
  334. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  335. def write_vocab(self):
  336. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  337. def write(self):
  338. self.prepare_tensors()
  339. self.prepare_metadata(vocab_only=False)
  340. self.gguf_writer.write_header_to_file(path=self.fname_out)
  341. self.gguf_writer.write_kv_data_to_file()
  342. self.gguf_writer.write_tensors_to_file(progress=True)
  343. self.gguf_writer.close()
  344. @staticmethod
  345. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  346. part_names: list[str] = []
  347. for filename in os.listdir(dir_model):
  348. if filename.startswith(prefix) and filename.endswith(suffix):
  349. part_names.append(filename)
  350. part_names.sort()
  351. return part_names
  352. @staticmethod
  353. def load_hparams(dir_model: Path):
  354. try:
  355. # for security reason, we don't allow loading remote code by default
  356. # if a model need remote code, we will fallback to config.json
  357. config = AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
  358. except Exception as e:
  359. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  360. logger.warning("Trying to load config.json instead")
  361. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  362. config = json.load(f)
  363. if "llm_config" in config:
  364. # rename for InternVL
  365. config["text_config"] = config["llm_config"]
  366. if "thinker_config" in config:
  367. # rename for Qwen2.5-Omni
  368. config["text_config"] = config["thinker_config"]["text_config"]
  369. return config
  370. @classmethod
  371. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  372. assert names
  373. def func(modelcls: AnyModel) -> AnyModel:
  374. model_type = ModelType.MMPROJ if modelcls.model_arch == gguf.MODEL_ARCH.MMPROJ else ModelType.TEXT
  375. for name in names:
  376. cls._model_classes[model_type][name] = modelcls
  377. return modelcls
  378. return func
  379. @classmethod
  380. def print_registered_models(cls):
  381. for model_type, model_classes in cls._model_classes.items():
  382. logger.error(f"{model_type.name} models:")
  383. for name in sorted(model_classes.keys()):
  384. logger.error(f" - {name}")
  385. @classmethod
  386. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  387. try:
  388. return cls._model_classes[model_type][arch]
  389. except KeyError:
  390. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  391. class TextModel(ModelBase):
  392. model_type = ModelType.TEXT
  393. hf_arch: str
  394. def __init__(self, *args, **kwargs):
  395. super().__init__(*args, **kwargs)
  396. self.hf_arch = get_model_architecture(self.hparams, self.model_type)
  397. if "text_config" in self.hparams:
  398. # move the text_config to the root level
  399. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  400. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  401. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  402. @classmethod
  403. def __init_subclass__(cls):
  404. # can't use an abstract property, because overriding it without type errors
  405. # would require using decorated functions instead of simply defining the property
  406. if "model_arch" not in cls.__dict__:
  407. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  408. def set_vocab(self):
  409. self._set_vocab_gpt2()
  410. def prepare_metadata(self, vocab_only: bool):
  411. super().prepare_metadata(vocab_only=vocab_only)
  412. total_params = self.gguf_writer.get_total_parameter_count()[0]
  413. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  414. output_type: str = self.ftype.name.partition("_")[2]
  415. # Filename Output
  416. if self.fname_out.is_dir():
  417. # Generate default filename based on model specification and available metadata
  418. if not vocab_only:
  419. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  420. else:
  421. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  422. # Use the default filename
  423. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  424. else:
  425. # Output path is a custom defined templated filename
  426. # Note: `not is_dir()` is used because `.is_file()` will not detect
  427. # file template strings as it doesn't actually exist as a file
  428. # Process templated file name with the output ftype, useful with the "auto" ftype
  429. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  430. logger.info("Set model tokenizer")
  431. self.set_vocab()
  432. def set_gguf_parameters(self):
  433. self.gguf_writer.add_block_count(self.block_count)
  434. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions", "max_length"], optional=True)) is not None:
  435. self.gguf_writer.add_context_length(n_ctx)
  436. logger.info(f"gguf: context length = {n_ctx}")
  437. if (n_embd := self.find_hparam(["hidden_size", "n_embd", "dim"], optional=True)) is not None:
  438. self.gguf_writer.add_embedding_length(n_embd)
  439. logger.info(f"gguf: embedding length = {n_embd}")
  440. if (n_ff := self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"], optional=True)) is not None:
  441. self.gguf_writer.add_feed_forward_length(n_ff)
  442. logger.info(f"gguf: feed forward length = {n_ff}")
  443. if (n_head := self.find_hparam(["num_attention_heads", "n_head", "n_heads"], optional=True)) is not None:
  444. self.gguf_writer.add_head_count(n_head)
  445. logger.info(f"gguf: head count = {n_head}")
  446. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  447. self.gguf_writer.add_head_count_kv(n_head_kv)
  448. logger.info(f"gguf: key-value head count = {n_head_kv}")
  449. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  450. self.gguf_writer.add_rope_freq_base(rope_theta)
  451. logger.info(f"gguf: rope theta = {rope_theta}")
  452. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  453. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  454. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  455. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  456. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  457. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  458. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  459. self.gguf_writer.add_expert_count(n_experts)
  460. logger.info(f"gguf: expert count = {n_experts}")
  461. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  462. self.gguf_writer.add_expert_used_count(n_experts_used)
  463. logger.info(f"gguf: experts used count = {n_experts_used}")
  464. if (head_dim := self.hparams.get("head_dim")) is not None:
  465. self.gguf_writer.add_key_length(head_dim)
  466. self.gguf_writer.add_value_length(head_dim)
  467. self.gguf_writer.add_file_type(self.ftype)
  468. logger.info(f"gguf: file type = {self.ftype}")
  469. def write_vocab(self):
  470. if len(self.gguf_writer.tensors) != 1:
  471. raise ValueError('Splitting the vocabulary is not supported')
  472. self.prepare_metadata(vocab_only=True)
  473. self.gguf_writer.write_header_to_file(path=self.fname_out)
  474. self.gguf_writer.write_kv_data_to_file()
  475. self.gguf_writer.close()
  476. def does_token_look_special(self, token: str | bytes) -> bool:
  477. if isinstance(token, (bytes, bytearray)):
  478. token_text = token.decode(encoding="utf-8")
  479. elif isinstance(token, memoryview):
  480. token_text = token.tobytes().decode(encoding="utf-8")
  481. else:
  482. token_text = token
  483. # Some models mark some added tokens which ought to be control tokens as not special.
  484. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  485. seems_special = token_text in (
  486. "<pad>", # deepseek-coder
  487. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  488. )
  489. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  490. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  491. # TODO: should these be marked as UNUSED instead? (maybe not)
  492. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  493. return seems_special
  494. # used for GPT-2 BPE and WordPiece vocabs
  495. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  496. tokens: list[str] = []
  497. toktypes: list[int] = []
  498. from transformers import AutoTokenizer
  499. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  500. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  501. assert max(tokenizer.vocab.values()) < vocab_size
  502. tokpre = self.get_vocab_base_pre(tokenizer)
  503. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  504. added_vocab = tokenizer.get_added_vocab()
  505. added_tokens_decoder = tokenizer.added_tokens_decoder
  506. for i in range(vocab_size):
  507. if i not in reverse_vocab:
  508. tokens.append(f"[PAD{i}]")
  509. toktypes.append(gguf.TokenType.UNUSED)
  510. else:
  511. token: str = reverse_vocab[i]
  512. if token in added_vocab:
  513. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  514. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  515. if not added_tokens_decoder[i].normalized:
  516. previous_token = token
  517. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  518. if previous_token != token:
  519. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  520. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  521. toktypes.append(gguf.TokenType.CONTROL)
  522. else:
  523. # NOTE: this was added for Gemma.
  524. # Encoding and decoding the tokens above isn't sufficient for this case.
  525. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  526. toktypes.append(gguf.TokenType.USER_DEFINED)
  527. else:
  528. toktypes.append(gguf.TokenType.NORMAL)
  529. tokens.append(token)
  530. return tokens, toktypes, tokpre
  531. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  532. # do not modify it manually!
  533. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  534. # Marker: Start get_vocab_base_pre
  535. def get_vocab_base_pre(self, tokenizer) -> str:
  536. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  537. # is specific for the BPE pre-tokenizer used by the model
  538. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  539. # use in llama.cpp to implement the same pre-tokenizer
  540. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  541. chktok = tokenizer.encode(chktxt)
  542. chkhsh = sha256(str(chktok).encode()).hexdigest()
  543. logger.debug(f"chktok: {chktok}")
  544. logger.debug(f"chkhsh: {chkhsh}")
  545. res = None
  546. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  547. # or pull the latest version of the model from Huggingface
  548. # don't edit the hashes manually!
  549. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  550. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  551. res = "llama-bpe"
  552. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  553. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  554. res = "deepseek-llm"
  555. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  556. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  557. res = "deepseek-coder"
  558. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  559. # ref: https://huggingface.co/tiiuae/falcon-7b
  560. res = "falcon"
  561. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  562. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  563. res = "bert-bge"
  564. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  565. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  566. res = "falcon3"
  567. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  568. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  569. res = "bert-bge-large"
  570. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  571. # ref: https://huggingface.co/mosaicml/mpt-7b
  572. res = "mpt"
  573. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  574. # ref: https://huggingface.co/bigcode/starcoder2-3b
  575. res = "starcoder"
  576. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  577. # ref: https://huggingface.co/openai-community/gpt2
  578. res = "gpt-2"
  579. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  580. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  581. res = "stablelm2"
  582. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  583. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  584. res = "refact"
  585. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  586. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  587. res = "command-r"
  588. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  589. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  590. res = "qwen2"
  591. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  592. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  593. res = "olmo"
  594. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  595. # ref: https://huggingface.co/databricks/dbrx-base
  596. res = "dbrx"
  597. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  598. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  599. res = "jina-v1-en"
  600. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  601. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  602. res = "jina-v2-en"
  603. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  604. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  605. res = "jina-v2-es"
  606. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  607. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  608. res = "jina-v2-de"
  609. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  610. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  611. res = "smaug-bpe"
  612. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  613. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  614. res = "poro-chat"
  615. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  616. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  617. res = "jina-v2-code"
  618. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  619. # ref: https://huggingface.co/LumiOpen/Viking-7B
  620. res = "viking"
  621. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  622. # ref: https://huggingface.co/core42/jais-13b
  623. res = "jais"
  624. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  625. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  626. res = "codeshell"
  627. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  628. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  629. res = "tekken"
  630. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  631. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  632. res = "smollm"
  633. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  634. # ref: https://huggingface.co/bigscience/bloom
  635. res = "bloom"
  636. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  637. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  638. res = "gpt3-finnish"
  639. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  640. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  641. res = "exaone"
  642. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  643. # ref: https://huggingface.co/microsoft/phi-2
  644. res = "phi-2"
  645. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  646. # ref: https://huggingface.co/facebook/chameleon-7b
  647. res = "chameleon"
  648. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  649. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  650. res = "roberta-bpe"
  651. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  652. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  653. res = "gigachat"
  654. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  655. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  656. res = "megrez"
  657. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  658. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  659. res = "deepseek-v3"
  660. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  661. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  662. res = "deepseek-r1-qwen"
  663. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  664. # ref: https://huggingface.co/Xenova/gpt-4o
  665. res = "gpt-4o"
  666. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  667. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  668. res = "superbpe"
  669. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  670. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  671. res = "trillion"
  672. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  673. # ref: https://huggingface.co/inclusionAI/Ling-lite
  674. res = "bailingmoe"
  675. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  676. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  677. res = "llama4"
  678. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  679. # ref: https://huggingface.co/mistral-community/pixtral-12b
  680. res = "pixtral"
  681. if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
  682. # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
  683. res = "seed-coder"
  684. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  685. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  686. res = "chatglm-bpe"
  687. if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  688. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  689. res = "chatglm-bpe"
  690. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  691. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  692. res = "glm4"
  693. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  694. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  695. res = "minerva-7b"
  696. if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664":
  697. # ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
  698. res = "hunyuan"
  699. if chkhsh == "b0a6b1c0bd5998ebd9df08611efde34a4ff03faed45ae09c43e6b31ebd4b94cf":
  700. # ref: https://huggingface.co/skt/A.X-4.0
  701. res = "a.x-4.0"
  702. if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6":
  703. # ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base
  704. res = "falcon-h1"
  705. if chkhsh == "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86":
  706. # ref: https://huggingface.co/tiiuae/Falcon-H1-1B-Base
  707. res = "falcon-h1"
  708. if chkhsh == "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896":
  709. # ref: https://huggingface.co/tiiuae/Falcon-H1-7B-Base
  710. res = "falcon-h1"
  711. if chkhsh == "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b":
  712. # ref: https://huggingface.co/tiiuae/Falcon-H1-34B-Base
  713. res = "falcon-h1"
  714. if chkhsh == "f6791d196f87ce6b56a7d234be618e0d58f8cda3549416635b2bebcd22cd95c4":
  715. # ref: https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct
  716. res = "midm-2.0"
  717. if chkhsh == "169bf0296a13c4d9b7672313f749eb36501d931022de052aad6e36f2bf34dd51":
  718. # ref: https://huggingface.co/LiquidAI/LFM2-Tokenizer
  719. res = "lfm2"
  720. if res is None:
  721. logger.warning("\n")
  722. logger.warning("**************************************************************************************")
  723. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  724. logger.warning("** There are 2 possible reasons for this:")
  725. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  726. logger.warning("** - the pre-tokenization config has changed upstream")
  727. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  728. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  729. logger.warning("**")
  730. logger.warning(f"** chkhsh: {chkhsh}")
  731. logger.warning("**************************************************************************************")
  732. logger.warning("\n")
  733. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  734. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  735. logger.debug(f"chkhsh: {chkhsh}")
  736. return res
  737. # Marker: End get_vocab_base_pre
  738. def _set_vocab_none(self) -> None:
  739. self.gguf_writer.add_tokenizer_model("none")
  740. def _set_vocab_gpt2(self) -> None:
  741. tokens, toktypes, tokpre = self.get_vocab_base()
  742. self.gguf_writer.add_tokenizer_model("gpt2")
  743. self.gguf_writer.add_tokenizer_pre(tokpre)
  744. self.gguf_writer.add_token_list(tokens)
  745. self.gguf_writer.add_token_types(toktypes)
  746. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  747. special_vocab.add_to_gguf(self.gguf_writer)
  748. def _set_vocab_qwen(self):
  749. dir_model = self.dir_model
  750. hparams = self.hparams
  751. tokens: list[str] = []
  752. toktypes: list[int] = []
  753. from transformers import AutoTokenizer
  754. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  755. vocab_size = hparams["vocab_size"]
  756. assert max(tokenizer.get_vocab().values()) < vocab_size
  757. tokpre = self.get_vocab_base_pre(tokenizer)
  758. merges = []
  759. vocab = {}
  760. mergeable_ranks = tokenizer.mergeable_ranks
  761. for token, rank in mergeable_ranks.items():
  762. vocab[QwenModel.token_bytes_to_string(token)] = rank
  763. if len(token) == 1:
  764. continue
  765. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  766. assert len(merged) == 2
  767. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  768. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  769. added_vocab = tokenizer.special_tokens
  770. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  771. for i in range(vocab_size):
  772. if i not in reverse_vocab:
  773. tokens.append(f"[PAD{i}]")
  774. toktypes.append(gguf.TokenType.UNUSED)
  775. elif reverse_vocab[i] in added_vocab:
  776. tokens.append(reverse_vocab[i])
  777. toktypes.append(gguf.TokenType.CONTROL)
  778. else:
  779. tokens.append(reverse_vocab[i])
  780. toktypes.append(gguf.TokenType.NORMAL)
  781. self.gguf_writer.add_tokenizer_model("gpt2")
  782. self.gguf_writer.add_tokenizer_pre(tokpre)
  783. self.gguf_writer.add_token_list(tokens)
  784. self.gguf_writer.add_token_types(toktypes)
  785. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  786. special_vocab.merges = merges
  787. # only add special tokens when they were not already loaded from config.json
  788. if len(special_vocab.special_token_ids) == 0:
  789. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  790. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  791. # this one is usually not in config.json anyway
  792. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  793. special_vocab.add_to_gguf(self.gguf_writer)
  794. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  795. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  796. self.gguf_writer.add_tokenizer_model("llama")
  797. self.gguf_writer.add_tokenizer_pre("default")
  798. self.gguf_writer.add_token_list(tokens)
  799. self.gguf_writer.add_token_scores(scores)
  800. self.gguf_writer.add_token_types(toktypes)
  801. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  802. special_vocab.add_to_gguf(self.gguf_writer)
  803. def _create_vocab_sentencepiece(self):
  804. from sentencepiece import SentencePieceProcessor
  805. tokenizer_path = self.dir_model / 'tokenizer.model'
  806. if not tokenizer_path.is_file():
  807. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  808. tokenizer = SentencePieceProcessor()
  809. tokenizer.LoadFromFile(str(tokenizer_path))
  810. vocab_size = self.find_hparam([
  811. "vocab_size_per_layer_input", # gemma3n
  812. "vocab_size",
  813. ], optional=True) or tokenizer.vocab_size()
  814. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  815. scores: list[float] = [-10000.0] * vocab_size
  816. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  817. for token_id in range(tokenizer.vocab_size()):
  818. if token_id >= vocab_size:
  819. logger.warning(f'ignore tokens from {token_id}: id is out of range, max={vocab_size - 1}')
  820. break
  821. piece = tokenizer.IdToPiece(token_id)
  822. text = piece.encode("utf-8")
  823. score = tokenizer.GetScore(token_id)
  824. toktype = SentencePieceTokenTypes.NORMAL
  825. if tokenizer.IsUnknown(token_id):
  826. toktype = SentencePieceTokenTypes.UNKNOWN
  827. elif tokenizer.IsControl(token_id):
  828. toktype = SentencePieceTokenTypes.CONTROL
  829. elif tokenizer.IsUnused(token_id):
  830. toktype = SentencePieceTokenTypes.UNUSED
  831. elif tokenizer.IsByte(token_id):
  832. toktype = SentencePieceTokenTypes.BYTE
  833. tokens[token_id] = text
  834. scores[token_id] = score
  835. toktypes[token_id] = toktype
  836. added_tokens_file = self.dir_model / 'added_tokens.json'
  837. if added_tokens_file.is_file():
  838. with open(added_tokens_file, "r", encoding="utf-8") as f:
  839. added_tokens_json = json.load(f)
  840. for key in added_tokens_json:
  841. token_id = added_tokens_json[key]
  842. if token_id >= vocab_size:
  843. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  844. continue
  845. tokens[token_id] = key.encode("utf-8")
  846. scores[token_id] = -1000.0
  847. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  848. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  849. if tokenizer_config_file.is_file():
  850. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  851. tokenizer_config_json = json.load(f)
  852. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  853. for token_id, token_data in added_tokens_decoder.items():
  854. token_id = int(token_id)
  855. token: str = token_data["content"]
  856. if token_id >= vocab_size:
  857. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  858. continue
  859. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  860. if tokens[token_id] != token.encode("utf-8"):
  861. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  862. if token_data.get("special") or self.does_token_look_special(token):
  863. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  864. else:
  865. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  866. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  867. scores[token_id] = -1000.0
  868. tokens[token_id] = token.encode("utf-8")
  869. if vocab_size > len(tokens):
  870. pad_count = vocab_size - len(tokens)
  871. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  872. for i in range(1, pad_count + 1):
  873. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  874. scores.append(-1000.0)
  875. toktypes.append(SentencePieceTokenTypes.UNUSED)
  876. return tokens, scores, toktypes
  877. def _set_vocab_llama_hf(self):
  878. vocab = gguf.LlamaHfVocab(self.dir_model)
  879. tokens = []
  880. scores = []
  881. toktypes = []
  882. for text, score, toktype in vocab.all_tokens():
  883. tokens.append(text)
  884. scores.append(score)
  885. toktypes.append(toktype)
  886. assert len(tokens) == vocab.vocab_size
  887. self.gguf_writer.add_tokenizer_model("llama")
  888. self.gguf_writer.add_tokenizer_pre("default")
  889. self.gguf_writer.add_token_list(tokens)
  890. self.gguf_writer.add_token_scores(scores)
  891. self.gguf_writer.add_token_types(toktypes)
  892. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  893. special_vocab.add_to_gguf(self.gguf_writer)
  894. def _set_vocab_rwkv_world(self):
  895. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  896. vocab_size = self.hparams.get("vocab_size", 65536)
  897. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  898. toktypes: list[int] = [gguf.TokenType.CONTROL]
  899. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  900. lines = f.readlines()
  901. for line in lines:
  902. parts = line.split(' ')
  903. assert len(parts) >= 3
  904. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  905. token = token.encode("utf-8") if isinstance(token, str) else token
  906. assert isinstance(token, bytes)
  907. assert len(token) == token_len
  908. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  909. tokens.append(token_text.encode("utf-8"))
  910. toktypes.append(gguf.TokenType.NORMAL)
  911. remainder = vocab_size - len(tokens)
  912. assert remainder >= 0
  913. for i in range(len(tokens), vocab_size):
  914. tokens.append(f"[PAD{i}]".encode("utf-8"))
  915. toktypes.append(gguf.TokenType.UNUSED)
  916. self.gguf_writer.add_tokenizer_model("rwkv")
  917. self.gguf_writer.add_token_list(tokens)
  918. self.gguf_writer.add_token_types(toktypes)
  919. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  920. special_vocab.chat_template = "rwkv-world"
  921. # hack: Add '\n\n' as the EOT token to make it chat normally
  922. special_vocab._set_special_token("eot", 261)
  923. # hack: Override these as they have already been set (incorrectly)
  924. special_vocab.special_token_ids["bos"] = 0
  925. special_vocab.special_token_ids["eos"] = 0
  926. special_vocab.add_to_gguf(self.gguf_writer)
  927. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  928. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  929. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  930. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  931. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  932. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  933. assert field # tokenizer model
  934. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  935. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  936. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  937. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  938. assert field # token list
  939. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  940. if model_name == "llama-spm":
  941. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  942. assert field # token scores
  943. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  944. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  945. assert field # token types
  946. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  947. if model_name != "llama-spm":
  948. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  949. assert field # token merges
  950. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  951. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  952. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  953. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  954. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  955. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  956. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  957. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  958. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  959. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  960. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  961. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  962. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  963. def _try_set_pooling_type(self) -> None:
  964. # get pooling path
  965. pooling_path = None
  966. module_path = self.dir_model / "modules.json"
  967. if module_path.is_file():
  968. with open(module_path, encoding="utf-8") as f:
  969. modules = json.load(f)
  970. for mod in modules:
  971. if mod["type"] == "sentence_transformers.models.Pooling":
  972. pooling_path = mod["path"]
  973. break
  974. # get pooling type
  975. if pooling_path is not None:
  976. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  977. pooling = json.load(f)
  978. if pooling["pooling_mode_mean_tokens"]:
  979. pooling_type = gguf.PoolingType.MEAN
  980. elif pooling["pooling_mode_cls_token"]:
  981. pooling_type = gguf.PoolingType.CLS
  982. elif pooling["pooling_mode_lasttoken"]:
  983. pooling_type = gguf.PoolingType.LAST
  984. else:
  985. raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
  986. self.gguf_writer.add_pooling_type(pooling_type)
  987. class MmprojModel(ModelBase):
  988. model_type = ModelType.MMPROJ
  989. model_arch = gguf.MODEL_ARCH.MMPROJ
  990. preprocessor_config: dict[str, Any]
  991. global_config: dict[str, Any]
  992. n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth"]
  993. has_vision_encoder: bool = True # by default
  994. has_audio_encoder: bool = False
  995. # for models having multiple encoders, we need to separate their hparams
  996. hparams_vision: dict[str, Any] | None = None
  997. hparams_audio: dict[str, Any] | None = None
  998. def __init__(self, *args, **kwargs):
  999. super().__init__(*args, **kwargs)
  1000. if self.model_arch != gguf.MODEL_ARCH.MMPROJ:
  1001. raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
  1002. # get n_embd of the text model
  1003. if "text_config" not in self.hparams:
  1004. self.hparams["text_config"] = {}
  1005. if "audio_config" not in self.hparams:
  1006. self.hparams["audio_config"] = {}
  1007. text_config = {**self.hparams, **self.hparams["text_config"]}
  1008. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  1009. assert self.n_embd_text > 0, "n_embd not found in hparams"
  1010. # move vision config to the top level, while preserving the original hparams in global_config
  1011. import copy
  1012. self.global_config = copy.deepcopy(self.hparams)
  1013. self.hparams_vision = self.get_vision_config()
  1014. self.hparams_audio = self.get_audio_config()
  1015. if self.hparams_vision is None and self.hparams_audio is None:
  1016. raise ValueError("vision_config / audio_config not found in hparams")
  1017. # for compat with vision-only models
  1018. self.hparams = self.hparams_vision or self.hparams_audio or self.hparams
  1019. # TODO @ngxson : this is a hack to support both vision and audio encoders
  1020. have_multiple_encoders = self.has_audio_encoder and self.has_vision_encoder
  1021. self.block_count = 128 if have_multiple_encoders else self.find_hparam(self.n_block_keys, True)
  1022. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
  1023. # load preprocessor config
  1024. with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
  1025. self.preprocessor_config = json.load(f)
  1026. def get_vision_config(self) -> dict[str, Any] | None:
  1027. return self.global_config.get("vision_config")
  1028. def get_audio_config(self) -> dict[str, Any] | None:
  1029. return self.global_config.get("audio_config")
  1030. def set_type(self):
  1031. self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
  1032. def set_gguf_parameters(self):
  1033. self.gguf_writer.add_file_type(self.ftype)
  1034. if self.has_vision_encoder:
  1035. self.gguf_writer.add_clip_has_vision_encoder(True)
  1036. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  1037. # vision config
  1038. self.gguf_writer.add_vision_image_size(self.find_vparam(["image_size"]))
  1039. self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
  1040. self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
  1041. self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
  1042. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
  1043. self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads"]))
  1044. # preprocessor config
  1045. self.gguf_writer.add_vision_image_mean(self.preprocessor_config["image_mean"])
  1046. self.gguf_writer.add_vision_image_std(self.preprocessor_config["image_std"])
  1047. if self.has_audio_encoder:
  1048. self.gguf_writer.add_clip_has_audio_encoder(True)
  1049. self.gguf_writer.add_audio_projection_dim(self.n_embd_text)
  1050. # audio config
  1051. self.gguf_writer.add_audio_embedding_length(self.find_aparam(["hidden_size"]))
  1052. self.gguf_writer.add_audio_feed_forward_length(self.find_aparam(["intermediate_size"]))
  1053. self.gguf_writer.add_audio_block_count(self.find_aparam(self.n_block_keys))
  1054. self.gguf_writer.add_audio_head_count(self.find_aparam(["num_attention_heads"]))
  1055. if not self.has_vision_encoder and not self.has_audio_encoder:
  1056. raise ValueError("MmprojModel must have either vision or audio encoder")
  1057. def write_vocab(self):
  1058. raise ValueError("MmprojModel does not support vocab writing")
  1059. def find_vparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1060. assert self.hparams_vision is not None
  1061. return self._find_param(self.hparams_vision, keys, optional)
  1062. def find_aparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1063. assert self.hparams_audio is not None
  1064. return self._find_param(self.hparams_audio, keys, optional)
  1065. def _find_param(self, obj: dict[str, Any], keys: Iterable[str], optional: bool = False) -> Any:
  1066. key = next((k for k in keys if k in obj), None)
  1067. if key is not None:
  1068. return obj[key]
  1069. if optional:
  1070. return None
  1071. raise KeyError(f"could not find any of: {keys}")
  1072. @ModelBase.register("GPTNeoXForCausalLM")
  1073. class GPTNeoXModel(TextModel):
  1074. model_arch = gguf.MODEL_ARCH.GPTNEOX
  1075. def set_gguf_parameters(self):
  1076. block_count = self.hparams["num_hidden_layers"]
  1077. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1078. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1079. self.gguf_writer.add_block_count(block_count)
  1080. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1081. self.gguf_writer.add_rope_dimension_count(
  1082. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  1083. )
  1084. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1085. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  1086. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  1087. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1088. del bid # unused
  1089. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1090. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1091. tensors: list[tuple[str, Tensor]] = []
  1092. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  1093. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1094. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1095. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1096. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1097. data_torch = torch.cat(
  1098. (
  1099. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1100. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1101. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1102. ),
  1103. dim=0,
  1104. )
  1105. logger.info("re-format attention.linear_qkv.weight")
  1106. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  1107. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1108. data_torch = torch.cat(
  1109. (
  1110. qkv_bias[:, 0, :].reshape((n_embed,)),
  1111. qkv_bias[:, 1, :].reshape((n_embed,)),
  1112. qkv_bias[:, 2, :].reshape((n_embed,)),
  1113. ),
  1114. dim=0,
  1115. )
  1116. logger.info("re-format attention.linear_qkv.bias")
  1117. tensors.append((self.map_tensor_name(name), data_torch))
  1118. return tensors
  1119. @ModelBase.register("BloomForCausalLM", "BloomModel")
  1120. class BloomModel(TextModel):
  1121. model_arch = gguf.MODEL_ARCH.BLOOM
  1122. def set_gguf_parameters(self):
  1123. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1124. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1125. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  1126. self.gguf_writer.add_embedding_length(n_embed)
  1127. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1128. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1129. self.gguf_writer.add_head_count(n_head)
  1130. self.gguf_writer.add_head_count_kv(n_head)
  1131. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1132. self.gguf_writer.add_file_type(self.ftype)
  1133. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1134. del bid # unused
  1135. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1136. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1137. name = re.sub(r'transformer\.', '', name)
  1138. tensors: list[tuple[str, Tensor]] = []
  1139. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1140. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1141. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1142. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1143. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1144. data_torch = torch.cat(
  1145. (
  1146. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1147. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1148. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1149. ),
  1150. dim=0,
  1151. )
  1152. logger.info("re-format attention.linear_qkv.weight")
  1153. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1154. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1155. data_torch = torch.cat(
  1156. (
  1157. qkv_bias[:, 0, :].reshape((n_embed,)),
  1158. qkv_bias[:, 1, :].reshape((n_embed,)),
  1159. qkv_bias[:, 2, :].reshape((n_embed,)),
  1160. ),
  1161. dim=0,
  1162. )
  1163. logger.info("re-format attention.linear_qkv.bias")
  1164. tensors.append((self.map_tensor_name(name), data_torch))
  1165. return tensors
  1166. @ModelBase.register("MPTForCausalLM")
  1167. class MPTModel(TextModel):
  1168. model_arch = gguf.MODEL_ARCH.MPT
  1169. def set_vocab(self):
  1170. try:
  1171. self._set_vocab_gpt2()
  1172. except Exception:
  1173. # Fallback for SEA-LION model
  1174. self._set_vocab_sentencepiece()
  1175. self.gguf_writer.add_add_bos_token(False)
  1176. self.gguf_writer.add_pad_token_id(3)
  1177. self.gguf_writer.add_eos_token_id(1)
  1178. self.gguf_writer.add_unk_token_id(0)
  1179. def set_gguf_parameters(self):
  1180. block_count = self.hparams["n_layers"]
  1181. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1182. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1183. self.gguf_writer.add_block_count(block_count)
  1184. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1185. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1186. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1187. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1188. self.gguf_writer.add_layer_norm_eps(1e-5)
  1189. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1190. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1191. if self.hparams["attn_config"]["alibi"]:
  1192. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1193. else:
  1194. self.gguf_writer.add_max_alibi_bias(0.0)
  1195. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1196. del bid # unused
  1197. if "scales" in name:
  1198. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1199. new_name = new_name.replace("scales", "act.scales")
  1200. else:
  1201. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1202. return [(new_name, data_torch)]
  1203. @ModelBase.register("OrionForCausalLM")
  1204. class OrionModel(TextModel):
  1205. model_arch = gguf.MODEL_ARCH.ORION
  1206. def set_vocab(self):
  1207. self._set_vocab_sentencepiece()
  1208. def set_gguf_parameters(self):
  1209. block_count = self.hparams["num_hidden_layers"]
  1210. head_count = self.hparams["num_attention_heads"]
  1211. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1212. ctx_length = 0
  1213. if "max_sequence_length" in self.hparams:
  1214. ctx_length = self.hparams["max_sequence_length"]
  1215. elif "max_position_embeddings" in self.hparams:
  1216. ctx_length = self.hparams["max_position_embeddings"]
  1217. elif "model_max_length" in self.hparams:
  1218. ctx_length = self.hparams["model_max_length"]
  1219. else:
  1220. raise ValueError("gguf: can not find ctx length parameter.")
  1221. self.gguf_writer.add_file_type(self.ftype)
  1222. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1223. self.gguf_writer.add_context_length(ctx_length)
  1224. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1225. self.gguf_writer.add_block_count(block_count)
  1226. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1227. self.gguf_writer.add_head_count(head_count)
  1228. self.gguf_writer.add_head_count_kv(head_count_kv)
  1229. # note: config provides rms norm but it is actually layer norm
  1230. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1231. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1232. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1233. class BaichuanModel(TextModel):
  1234. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1235. def set_vocab(self):
  1236. self._set_vocab_sentencepiece()
  1237. def set_gguf_parameters(self):
  1238. block_count = self.hparams["num_hidden_layers"]
  1239. head_count = self.hparams["num_attention_heads"]
  1240. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1241. ctx_length = 0
  1242. if "max_sequence_length" in self.hparams:
  1243. ctx_length = self.hparams["max_sequence_length"]
  1244. elif "max_position_embeddings" in self.hparams:
  1245. ctx_length = self.hparams["max_position_embeddings"]
  1246. elif "model_max_length" in self.hparams:
  1247. ctx_length = self.hparams["model_max_length"]
  1248. else:
  1249. raise ValueError("gguf: can not find ctx length parameter.")
  1250. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1251. self.gguf_writer.add_context_length(ctx_length)
  1252. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1253. self.gguf_writer.add_block_count(block_count)
  1254. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1255. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1256. self.gguf_writer.add_head_count(head_count)
  1257. self.gguf_writer.add_head_count_kv(head_count_kv)
  1258. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1259. self.gguf_writer.add_file_type(self.ftype)
  1260. rope_scaling = self.hparams.get("rope_scaling") or {}
  1261. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1262. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1263. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1264. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1265. head_count = self.hparams["num_attention_heads"]
  1266. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1267. tensors: list[tuple[str, Tensor]] = []
  1268. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1269. logger.info(f"Unpacking and permuting layer {bid}")
  1270. tensors = [
  1271. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1272. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1273. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1274. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1275. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1276. self._reverse_hf_part(data_torch, 2)),
  1277. ]
  1278. else:
  1279. tensors = [(self.map_tensor_name(name), data_torch)]
  1280. return tensors
  1281. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1282. if n_kv_head is not None and n_head != n_kv_head:
  1283. n_head //= n_kv_head
  1284. return (
  1285. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1286. .swapaxes(1, 2)
  1287. .reshape(weights.shape)
  1288. )
  1289. def _reverse_hf_permute_part(
  1290. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1291. ) -> Tensor:
  1292. r = weights.shape[0] // 3
  1293. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1294. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1295. r = weights.shape[0] // 3
  1296. return weights[r * n_part:r * n_part + r, ...]
  1297. @ModelBase.register("XverseForCausalLM")
  1298. class XverseModel(TextModel):
  1299. model_arch = gguf.MODEL_ARCH.XVERSE
  1300. def set_vocab(self):
  1301. assert (self.dir_model / "tokenizer.json").is_file()
  1302. dir_model = self.dir_model
  1303. hparams = self.hparams
  1304. tokens: list[bytes] = []
  1305. toktypes: list[int] = []
  1306. from transformers import AutoTokenizer
  1307. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1308. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1309. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1310. # because vocab_size is the count of items, and indexes start at 0.
  1311. max_vocab_index = max(tokenizer.get_vocab().values())
  1312. if max_vocab_index >= vocab_size:
  1313. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1314. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1315. added_vocab = tokenizer.get_added_vocab()
  1316. for token_id in range(vocab_size):
  1317. token_text = reverse_vocab[token_id].encode('utf-8')
  1318. # replace "\x00" to string with length > 0
  1319. if token_text == b"\x00":
  1320. toktype = gguf.TokenType.BYTE # special
  1321. token_text = f"<{token_text}>".encode('utf-8')
  1322. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1323. toktype = gguf.TokenType.BYTE # special
  1324. elif reverse_vocab[token_id] in added_vocab:
  1325. if tokenizer.added_tokens_decoder[token_id].special:
  1326. toktype = gguf.TokenType.CONTROL
  1327. else:
  1328. toktype = gguf.TokenType.USER_DEFINED
  1329. else:
  1330. toktype = gguf.TokenType.NORMAL
  1331. tokens.append(token_text)
  1332. toktypes.append(toktype)
  1333. self.gguf_writer.add_tokenizer_model("llama")
  1334. self.gguf_writer.add_tokenizer_pre("default")
  1335. self.gguf_writer.add_token_list(tokens)
  1336. self.gguf_writer.add_token_types(toktypes)
  1337. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1338. special_vocab.add_to_gguf(self.gguf_writer)
  1339. def set_gguf_parameters(self):
  1340. block_count = self.hparams["num_hidden_layers"]
  1341. head_count = self.hparams["num_attention_heads"]
  1342. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1343. ctx_length = 0
  1344. if "max_sequence_length" in self.hparams:
  1345. ctx_length = self.hparams["max_sequence_length"]
  1346. elif "max_position_embeddings" in self.hparams:
  1347. ctx_length = self.hparams["max_position_embeddings"]
  1348. elif "model_max_length" in self.hparams:
  1349. ctx_length = self.hparams["model_max_length"]
  1350. else:
  1351. raise ValueError("gguf: can not find ctx length parameter.")
  1352. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1353. self.gguf_writer.add_context_length(ctx_length)
  1354. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1355. self.gguf_writer.add_block_count(block_count)
  1356. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1357. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1358. self.gguf_writer.add_head_count(head_count)
  1359. self.gguf_writer.add_head_count_kv(head_count_kv)
  1360. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1361. self.gguf_writer.add_file_type(self.ftype)
  1362. rope_scaling = self.hparams.get("rope_scaling") or {}
  1363. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1364. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1365. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1366. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1367. del bid # unused
  1368. head_count = self.hparams["num_attention_heads"]
  1369. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1370. # HF models permute some of the tensors, so we need to undo that
  1371. if name.endswith("q_proj.weight"):
  1372. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1373. if name.endswith("k_proj.weight"):
  1374. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1375. return [(self.map_tensor_name(name), data_torch)]
  1376. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1377. if n_kv_head is not None and n_head != n_kv_head:
  1378. n_head //= n_kv_head
  1379. return (
  1380. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1381. .swapaxes(1, 2)
  1382. .reshape(weights.shape)
  1383. )
  1384. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1385. class FalconModel(TextModel):
  1386. model_arch = gguf.MODEL_ARCH.FALCON
  1387. def set_gguf_parameters(self):
  1388. block_count = self.hparams.get("num_hidden_layers")
  1389. if block_count is None:
  1390. block_count = self.hparams["n_layer"] # old name
  1391. n_head = self.hparams.get("num_attention_heads")
  1392. if n_head is None:
  1393. n_head = self.hparams["n_head"] # old name
  1394. n_head_kv = self.hparams.get("num_kv_heads")
  1395. if n_head_kv is None:
  1396. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1397. self.gguf_writer.add_context_length(2048) # not in config.json
  1398. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1399. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1400. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1401. self.gguf_writer.add_block_count(block_count)
  1402. self.gguf_writer.add_head_count(n_head)
  1403. self.gguf_writer.add_head_count_kv(n_head_kv)
  1404. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1405. self.gguf_writer.add_file_type(self.ftype)
  1406. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1407. del bid # unused
  1408. # QKV tensor transform
  1409. # The original query_key_value tensor contains n_head_kv "kv groups",
  1410. # each consisting of n_head/n_head_kv query weights followed by one key
  1411. # and one value weight (shared by all query heads in the kv group).
  1412. # This layout makes it a big pain to work with in GGML.
  1413. # So we rearrange them here,, so that we have n_head query weights
  1414. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1415. # in contiguous fashion.
  1416. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1417. if "query_key_value" in name:
  1418. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1419. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1420. head_dim = self.hparams["hidden_size"] // n_head
  1421. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1422. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1423. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1424. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1425. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1426. return [(self.map_tensor_name(name), data_torch)]
  1427. @ModelBase.register("GPTBigCodeForCausalLM")
  1428. class StarCoderModel(TextModel):
  1429. model_arch = gguf.MODEL_ARCH.STARCODER
  1430. def set_gguf_parameters(self):
  1431. block_count = self.hparams["n_layer"]
  1432. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1433. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1434. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1435. self.gguf_writer.add_block_count(block_count)
  1436. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1437. self.gguf_writer.add_head_count_kv(1)
  1438. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1439. self.gguf_writer.add_file_type(self.ftype)
  1440. @ModelBase.register("GPTRefactForCausalLM")
  1441. class RefactModel(TextModel):
  1442. model_arch = gguf.MODEL_ARCH.REFACT
  1443. def set_vocab(self):
  1444. super().set_vocab()
  1445. # TODO: how to determine special FIM tokens automatically?
  1446. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1447. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1448. special_vocab._set_special_token("prefix", 1)
  1449. special_vocab._set_special_token("suffix", 3)
  1450. special_vocab._set_special_token("middle", 2)
  1451. special_vocab.chat_template = None # do not add it twice
  1452. special_vocab.add_to_gguf(self.gguf_writer)
  1453. def set_gguf_parameters(self):
  1454. hidden_dim = self.hparams["n_embd"]
  1455. inner_dim = 4 * hidden_dim
  1456. hidden_dim = int(2 * inner_dim / 3)
  1457. multiple_of = 256
  1458. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1459. block_count = self.hparams["n_layer"]
  1460. # refact uses Alibi. So this is from config.json which might be used by training.
  1461. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1462. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1463. self.gguf_writer.add_feed_forward_length(ff_dim)
  1464. self.gguf_writer.add_block_count(block_count)
  1465. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1466. self.gguf_writer.add_head_count_kv(1)
  1467. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1468. self.gguf_writer.add_file_type(self.ftype)
  1469. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1470. hidden_dim = self.hparams["n_embd"]
  1471. inner_dim = 4 * hidden_dim
  1472. hidden_dim = int(2 * inner_dim / 3)
  1473. multiple_of = 256
  1474. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1475. n_head = self.hparams["n_head"]
  1476. n_head_kv = 1
  1477. head_dim = self.hparams["n_embd"] // n_head
  1478. tensors: list[tuple[str, Tensor]] = []
  1479. if bid is not None:
  1480. if name == f"transformer.h.{bid}.attn.kv.weight":
  1481. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1482. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1483. elif name == f"transformer.h.{bid}.attn.q.weight":
  1484. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1485. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1486. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1487. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1488. if len(tensors) == 0:
  1489. tensors.append((self.map_tensor_name(name), data_torch))
  1490. return tensors
  1491. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1492. class StableLMModel(TextModel):
  1493. model_arch = gguf.MODEL_ARCH.STABLELM
  1494. def set_vocab(self):
  1495. if (self.dir_model / "tokenizer.json").is_file():
  1496. self._set_vocab_gpt2()
  1497. else:
  1498. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1499. self._set_vocab_qwen()
  1500. def set_gguf_parameters(self):
  1501. hparams = self.hparams
  1502. block_count = hparams["num_hidden_layers"]
  1503. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1504. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1505. self.gguf_writer.add_block_count(block_count)
  1506. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1507. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1508. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1509. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1510. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1511. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1512. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1513. self.gguf_writer.add_file_type(self.ftype)
  1514. _q_norms: list[dict[str, Tensor]] | None = None
  1515. _k_norms: list[dict[str, Tensor]] | None = None
  1516. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1517. n_head = self.hparams["num_attention_heads"]
  1518. n_kv_head = self.hparams["num_key_value_heads"]
  1519. if name.find("q_layernorm.norms") != -1:
  1520. assert bid is not None
  1521. if self._q_norms is None:
  1522. self._q_norms = [{} for _ in range(self.block_count)]
  1523. self._q_norms[bid][name] = data_torch
  1524. if len(self._q_norms[bid]) >= n_head:
  1525. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1526. else:
  1527. return []
  1528. if name.find("k_layernorm.norms") != -1:
  1529. assert bid is not None
  1530. if self._k_norms is None:
  1531. self._k_norms = [{} for _ in range(self.block_count)]
  1532. self._k_norms[bid][name] = data_torch
  1533. if len(self._k_norms[bid]) >= n_kv_head:
  1534. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1535. else:
  1536. return []
  1537. return [(self.map_tensor_name(name), data_torch)]
  1538. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1539. datas: list[Tensor] = []
  1540. # extract the norms in order
  1541. for xid in range(n_head):
  1542. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1543. datas.append(norms[ename])
  1544. del norms[ename]
  1545. data_torch = torch.stack(datas, dim=0)
  1546. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1547. new_name = self.map_tensor_name(merged_name)
  1548. return [(new_name, data_torch)]
  1549. def prepare_tensors(self):
  1550. super().prepare_tensors()
  1551. if self._q_norms is not None or self._k_norms is not None:
  1552. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1553. norms = (
  1554. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1555. ) + (
  1556. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1557. )
  1558. if len(norms) > 0:
  1559. raise ValueError(f"Unprocessed norms: {norms}")
  1560. @ModelBase.register(
  1561. "LLaMAForCausalLM",
  1562. "LlamaForCausalLM",
  1563. "MistralForCausalLM",
  1564. "MixtralForCausalLM",
  1565. "VLlama3ForCausalLM",
  1566. "LlavaForConditionalGeneration",
  1567. "LlamaModel")
  1568. class LlamaModel(TextModel):
  1569. model_arch = gguf.MODEL_ARCH.LLAMA
  1570. undo_permute = True
  1571. def __init__(self, *args, **kwargs):
  1572. super().__init__(*args, **kwargs)
  1573. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  1574. if self.hf_arch == "VLlama3ForCausalLM":
  1575. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  1576. def set_vocab(self):
  1577. try:
  1578. self._set_vocab_sentencepiece()
  1579. except FileNotFoundError:
  1580. try:
  1581. self._set_vocab_llama_hf()
  1582. except (FileNotFoundError, TypeError):
  1583. # Llama 3
  1584. self._set_vocab_gpt2()
  1585. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1586. if self.hparams.get("vocab_size", 32000) == 32016:
  1587. special_vocab = gguf.SpecialVocab(
  1588. self.dir_model, load_merges=False,
  1589. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1590. )
  1591. special_vocab._set_special_token("prefix", 32007)
  1592. special_vocab._set_special_token("suffix", 32008)
  1593. special_vocab._set_special_token("middle", 32009)
  1594. special_vocab._set_special_token("eot", 32010)
  1595. special_vocab.add_to_gguf(self.gguf_writer)
  1596. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1597. if tokenizer_config_file.is_file():
  1598. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1599. tokenizer_config_json = json.load(f)
  1600. if "add_prefix_space" in tokenizer_config_json:
  1601. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1602. # Apply to granite small models only
  1603. if self.hparams.get("vocab_size", 32000) == 49152:
  1604. self.gguf_writer.add_add_bos_token(False)
  1605. def set_gguf_parameters(self):
  1606. super().set_gguf_parameters()
  1607. hparams = self.hparams
  1608. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1609. if (rope_dim := hparams.get("head_dim")) is None:
  1610. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1611. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1612. rope_scaling = self.hparams.get("rope_scaling") or {}
  1613. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1614. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1615. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1616. @staticmethod
  1617. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1618. if n_head_kv is not None and n_head != n_head_kv:
  1619. n_head = n_head_kv
  1620. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1621. .swapaxes(1, 2)
  1622. .reshape(weights.shape))
  1623. _experts: list[dict[str, Tensor]] | None = None
  1624. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1625. n_head = self.hparams["num_attention_heads"]
  1626. n_kv_head = self.hparams.get("num_key_value_heads")
  1627. is_vision_tensor = "vision_tower" in name \
  1628. or "vision_model" in name \
  1629. or "model.connector" in name \
  1630. or "multi_modal_projector" in name
  1631. if is_vision_tensor:
  1632. return [] # skip vision tensors
  1633. elif self.hf_arch == "LlamaModel":
  1634. name = "model." + name
  1635. elif name.startswith("model.text_model"):
  1636. name = name.replace("text_model.", "") # for SmolVLM
  1637. elif name.startswith("language_model."):
  1638. name = name.replace("language_model.", "") # for the rest
  1639. if self.undo_permute:
  1640. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1641. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1642. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1643. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1644. # process the experts separately
  1645. if name.find("block_sparse_moe.experts") != -1:
  1646. n_experts = self.hparams["num_local_experts"]
  1647. assert bid is not None
  1648. if self._experts is None:
  1649. self._experts = [{} for _ in range(self.block_count)]
  1650. self._experts[bid][name] = data_torch
  1651. if len(self._experts[bid]) >= n_experts * 3:
  1652. tensors: list[tuple[str, Tensor]] = []
  1653. # merge the experts into a single 3d tensor
  1654. for wid in ["w1", "w2", "w3"]:
  1655. datas: list[Tensor] = []
  1656. for xid in range(n_experts):
  1657. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1658. datas.append(self._experts[bid][ename])
  1659. del self._experts[bid][ename]
  1660. data_torch = torch.stack(datas, dim=0)
  1661. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1662. new_name = self.map_tensor_name(merged_name)
  1663. tensors.append((new_name, data_torch))
  1664. return tensors
  1665. else:
  1666. return []
  1667. return [(self.map_tensor_name(name), data_torch)]
  1668. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1669. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1670. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1671. base = self.hparams.get("rope_theta", 10000.0)
  1672. if (dim := self.hparams.get("head_dim")) is None:
  1673. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1674. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1675. factor = rope_scaling.get("factor", 8.0)
  1676. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1677. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1678. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1679. low_freq_wavelen = old_context_len / low_freq_factor
  1680. high_freq_wavelen = old_context_len / high_freq_factor
  1681. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  1682. rope_factors = []
  1683. for freq in freqs:
  1684. wavelen = 2 * math.pi / freq
  1685. if wavelen < high_freq_wavelen:
  1686. rope_factors.append(1)
  1687. elif wavelen > low_freq_wavelen:
  1688. rope_factors.append(factor)
  1689. else:
  1690. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1691. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1692. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1693. def prepare_tensors(self):
  1694. super().prepare_tensors()
  1695. if self._experts is not None:
  1696. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1697. experts = [k for d in self._experts for k in d.keys()]
  1698. if len(experts) > 0:
  1699. raise ValueError(f"Unprocessed experts: {experts}")
  1700. @ModelBase.register("ArceeForCausalLM")
  1701. class ArceeModel(LlamaModel):
  1702. model_arch = gguf.MODEL_ARCH.ARCEE
  1703. def set_gguf_parameters(self):
  1704. super().set_gguf_parameters()
  1705. self._try_set_pooling_type()
  1706. rope_scaling = self.hparams.get("rope_scaling") or {}
  1707. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  1708. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  1709. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1710. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  1711. @ModelBase.register(
  1712. "LlavaForConditionalGeneration", # pixtral
  1713. "Mistral3ForConditionalGeneration", # mistral small 3.1
  1714. )
  1715. class LlavaVisionModel(MmprojModel):
  1716. img_break_tok_id = -1
  1717. def __init__(self, *args, **kwargs):
  1718. super().__init__(*args, **kwargs)
  1719. if self.hparams["model_type"] == "pixtral":
  1720. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  1721. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  1722. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  1723. logger.info(f"Image break token id: {self.img_break_tok_id}")
  1724. else:
  1725. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  1726. def get_token_id(self, token: str) -> int:
  1727. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1728. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1729. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  1730. for id_, token_data in added_tokens_decoder.items():
  1731. if token_data["content"] == token:
  1732. return int(id_)
  1733. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  1734. def set_gguf_parameters(self):
  1735. super().set_gguf_parameters()
  1736. hparams = self.hparams
  1737. if hparams["model_type"] == "pixtral":
  1738. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  1739. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  1740. # hidden_act
  1741. if hparams["hidden_act"] == "silu":
  1742. self.gguf_writer.add_vision_use_silu(True)
  1743. elif hparams["hidden_act"] == "gelu":
  1744. self.gguf_writer.add_vision_use_gelu(True)
  1745. else:
  1746. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  1747. # spatial_merge_size
  1748. if "spatial_merge_size" in self.global_config:
  1749. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  1750. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1751. del bid # unused
  1752. n_head = self.hparams["num_attention_heads"]
  1753. n_kv_head = n_head
  1754. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower."):
  1755. # process vision tensors
  1756. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1757. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1758. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1759. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1760. return [(self.map_tensor_name(name), data_torch)]
  1761. if self.img_break_tok_id > 0 and "embed_tokens.weight" in name:
  1762. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  1763. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  1764. img_break_embd = data_torch[self.img_break_tok_id]
  1765. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  1766. return [(self.map_tensor_name(name), img_break_embd)]
  1767. return [] # skip other tensors
  1768. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  1769. class SmolVLMModel(MmprojModel):
  1770. def __init__(self, *args, **kwargs):
  1771. super().__init__(*args, **kwargs)
  1772. if self.hparams["model_type"] == "smolvlm_vision":
  1773. # fix for SmolVLM2, missing some keys in config.json
  1774. # default values are taken from transformers code
  1775. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  1776. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  1777. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  1778. def set_gguf_parameters(self):
  1779. super().set_gguf_parameters()
  1780. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.IDEFICS3)
  1781. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  1782. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  1783. self.gguf_writer.add_vision_use_gelu(True)
  1784. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1785. del bid, new_name, n_dims # unused
  1786. if ".embeddings." in name:
  1787. return gguf.GGMLQuantizationType.F32
  1788. return False
  1789. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1790. del bid # unused
  1791. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  1792. if is_vision_tensor:
  1793. return [(self.map_tensor_name(name), data_torch)]
  1794. return [] # skip other tensors
  1795. @ModelBase.register("Llama4ForConditionalGeneration")
  1796. class Llama4Model(LlamaModel):
  1797. model_arch = gguf.MODEL_ARCH.LLAMA4
  1798. undo_permute = False
  1799. def __init__(self, *args, **kwargs):
  1800. super().__init__(*args, **kwargs)
  1801. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  1802. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  1803. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  1804. def set_vocab(self):
  1805. self._set_vocab_gpt2()
  1806. def set_gguf_parameters(self):
  1807. super().set_gguf_parameters()
  1808. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  1809. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  1810. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1811. if name.startswith("language_model."):
  1812. name = name.replace("language_model.", "")
  1813. # split the gate_up into gate and up
  1814. if "gate_up_proj" in name:
  1815. name_up = name.replace("gate_up_proj", "up_proj.weight")
  1816. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  1817. dim_half = data_torch.shape[-1] // 2
  1818. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  1819. return [
  1820. (self.map_tensor_name(name_gate), gate_proj_weight),
  1821. (self.map_tensor_name(name_up), up_proj_weight)
  1822. ]
  1823. if name.endswith("down_proj"):
  1824. name += ".weight"
  1825. data_torch = data_torch.transpose(-1, -2)
  1826. if "multi_modal_projector" in name or "vision_model" in name:
  1827. return []
  1828. return super().modify_tensors(data_torch, name, bid)
  1829. @ModelBase.register("Llama4ForConditionalGeneration")
  1830. class Llama4VisionModel(MmprojModel):
  1831. def set_gguf_parameters(self):
  1832. super().set_gguf_parameters()
  1833. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LLAMA4)
  1834. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams["norm_eps"])
  1835. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / self.hparams["pixel_shuffle_ratio"]))
  1836. assert self.hparams["hidden_act"] == "gelu"
  1837. self.gguf_writer.add_vision_use_gelu(True)
  1838. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1839. del bid # unused
  1840. if "multi_modal_projector" in name or "vision_model" in name:
  1841. # process vision tensors
  1842. if "positional_embedding_vlm" in name and ".weight" not in name:
  1843. name += ".weight"
  1844. if "multi_modal_projector.linear_1" in name:
  1845. # despite the name with number postfix, this is a single fully connected layer
  1846. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC] + '.weight', data_torch)]
  1847. return [(self.map_tensor_name(name), data_torch)]
  1848. return []
  1849. @ModelBase.register("Mistral3ForConditionalGeneration")
  1850. class Mistral3Model(LlamaModel):
  1851. model_arch = gguf.MODEL_ARCH.LLAMA
  1852. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1853. name = name.replace("language_model.", "")
  1854. if "multi_modal_projector" in name or "vision_tower" in name:
  1855. return []
  1856. return super().modify_tensors(data_torch, name, bid)
  1857. @ModelBase.register("DeciLMForCausalLM")
  1858. class DeciModel(TextModel):
  1859. model_arch = gguf.MODEL_ARCH.DECI
  1860. @staticmethod
  1861. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  1862. # DeciLM-specific code
  1863. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  1864. return DeciModel._find_multiple(intermediate_size, 256)
  1865. @staticmethod
  1866. def _find_multiple(n: int, k: int) -> int:
  1867. # DeciLM-specific code
  1868. if n % k == 0:
  1869. return n
  1870. return n + k - (n % k)
  1871. def __init__(self, *args, **kwargs):
  1872. super().__init__(*args, **kwargs)
  1873. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1874. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  1875. assert self.block_count == len(_block_configs)
  1876. self._num_kv_heads = list()
  1877. self._num_heads = list()
  1878. _ffn_multipliers = list()
  1879. # ***linear attention layer***
  1880. # if n_heads_in_group is None and replace_with_linear is True
  1881. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  1882. # ***attention-free layer***
  1883. # if n_heads_in_group is None and replace_with_linear is False
  1884. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  1885. # ***normal attention-layer***
  1886. # if n_heads_in_group is not None, then
  1887. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  1888. # _num_heads[il] is num_attention_head
  1889. # ***dummy layer*** for nemotron 253B
  1890. # if n_heads_in_group is None and ffn_mult is None
  1891. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
  1892. for il in range(len(_block_configs)):
  1893. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  1894. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  1895. self._num_kv_heads.append(0)
  1896. self._num_heads.append(self.hparams["num_attention_heads"])
  1897. else:
  1898. self._num_kv_heads.append(0)
  1899. self._num_heads.append(0)
  1900. else:
  1901. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  1902. self._num_heads.append(self.hparams["num_attention_heads"])
  1903. if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
  1904. _ffn_multipliers.append(0.0)
  1905. else:
  1906. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  1907. assert self.block_count == len(self._num_kv_heads)
  1908. assert self.block_count == len(self._num_heads)
  1909. assert self.block_count == len(_ffn_multipliers)
  1910. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  1911. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  1912. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  1913. self._ffn_dims: list[int] = [
  1914. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  1915. for multiplier in _ffn_multipliers
  1916. ]
  1917. def set_vocab(self):
  1918. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  1919. # eos_token from '|eot_id|' to '|end_of_text|'
  1920. if self.hparams.get("vocab_size", 128256) == 128256:
  1921. tokens, toktypes, tokpre = self.get_vocab_base()
  1922. self.gguf_writer.add_tokenizer_model("gpt2")
  1923. self.gguf_writer.add_tokenizer_pre(tokpre)
  1924. self.gguf_writer.add_token_list(tokens)
  1925. self.gguf_writer.add_token_types(toktypes)
  1926. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1927. special_vocab.add_to_gguf(self.gguf_writer)
  1928. else:
  1929. # DeciLM-7B
  1930. self._set_vocab_llama_hf()
  1931. def set_gguf_parameters(self):
  1932. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1933. assert self.block_count == len(self._num_kv_heads)
  1934. assert self.block_count == len(self._num_heads)
  1935. assert self.block_count == len(self._ffn_dims)
  1936. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  1937. self.gguf_writer.add_rope_freq_base(rope_theta)
  1938. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1939. self.gguf_writer.add_head_count(self._num_heads)
  1940. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  1941. self.gguf_writer.add_block_count(self.block_count)
  1942. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1943. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1944. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1945. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1946. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1947. self.gguf_writer.add_file_type(self.ftype)
  1948. else: # DeciLM-7B
  1949. super().set_gguf_parameters()
  1950. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  1951. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  1952. assert self.block_count == len(self._num_kv_heads)
  1953. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1954. hparams = self.hparams
  1955. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1956. if (rope_dim := hparams.get("head_dim")) is None:
  1957. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1958. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1959. rope_scaling = self.hparams.get("rope_scaling") or {}
  1960. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1961. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1962. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1963. @staticmethod
  1964. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1965. if n_head_kv is not None and n_head != n_head_kv:
  1966. n_head = n_head_kv
  1967. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1968. .swapaxes(1, 2)
  1969. .reshape(weights.shape))
  1970. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1971. n_head = self.hparams["num_attention_heads"]
  1972. if bid is not None:
  1973. if "num_key_value_heads_per_layer" in self.hparams:
  1974. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  1975. elif "block_configs" in self.hparams:
  1976. n_kv_head = self._num_kv_heads[bid]
  1977. n_head = self._num_heads[bid]
  1978. else:
  1979. n_kv_head = self.hparams.get("num_key_value_heads")
  1980. else:
  1981. n_kv_head = self.hparams.get("num_key_value_heads")
  1982. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1983. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  1984. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1985. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  1986. return [(self.map_tensor_name(name), data_torch)]
  1987. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1988. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1989. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1990. base = self.hparams.get("rope_theta", 10000.0)
  1991. if (dim := self.hparams.get("head_dim")) is None:
  1992. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1993. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1994. factor = rope_scaling.get("factor", 8.0)
  1995. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1996. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1997. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1998. low_freq_wavelen = old_context_len / low_freq_factor
  1999. high_freq_wavelen = old_context_len / high_freq_factor
  2000. assert low_freq_wavelen != high_freq_wavelen
  2001. rope_factors = []
  2002. for freq in freqs:
  2003. wavelen = 2 * math.pi / freq
  2004. if wavelen < high_freq_wavelen:
  2005. rope_factors.append(1)
  2006. elif wavelen > low_freq_wavelen:
  2007. rope_factors.append(factor)
  2008. else:
  2009. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2010. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2011. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2012. def prepare_tensors(self):
  2013. super().prepare_tensors()
  2014. @ModelBase.register("BitnetForCausalLM")
  2015. class BitnetModel(TextModel):
  2016. model_arch = gguf.MODEL_ARCH.BITNET
  2017. def set_vocab(self):
  2018. self._set_vocab_sentencepiece()
  2019. def set_gguf_parameters(self):
  2020. super().set_gguf_parameters()
  2021. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2022. self.gguf_writer.add_rope_scaling_factor(1.0)
  2023. def weight_quant(self, weight: Tensor) -> Tensor:
  2024. dtype = weight.dtype
  2025. weight = weight.float()
  2026. scale = weight.abs().mean().clamp(min=1e-5)
  2027. iscale = 1 / scale
  2028. # TODO: multiply by the scale directly instead of inverting it twice
  2029. # (this is also unnecessarily doubly inverted upstream)
  2030. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  2031. result = (weight * iscale).round().clamp(-1, 1) / iscale
  2032. return result.type(dtype)
  2033. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2034. new_name = self.map_tensor_name(name)
  2035. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  2036. gguf.MODEL_TENSOR.ATTN_Q,
  2037. gguf.MODEL_TENSOR.ATTN_K,
  2038. gguf.MODEL_TENSOR.ATTN_V,
  2039. gguf.MODEL_TENSOR.ATTN_OUT,
  2040. gguf.MODEL_TENSOR.FFN_UP,
  2041. gguf.MODEL_TENSOR.FFN_DOWN,
  2042. gguf.MODEL_TENSOR.FFN_GATE,
  2043. ]):
  2044. # transform weight into 1/0/-1 (in fp32)
  2045. data_torch = self.weight_quant(data_torch)
  2046. yield (new_name, data_torch)
  2047. @ModelBase.register("GrokForCausalLM")
  2048. class GrokModel(TextModel):
  2049. model_arch = gguf.MODEL_ARCH.GROK
  2050. def set_vocab(self):
  2051. self._set_vocab_sentencepiece()
  2052. def __init__(self, *args, **kwargs):
  2053. super().__init__(*args, **kwargs)
  2054. def set_gguf_parameters(self):
  2055. super().set_gguf_parameters()
  2056. _experts: list[dict[str, Tensor]] | None = None
  2057. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2058. # process the experts separately
  2059. if name.find(".moe.") != -1:
  2060. n_experts = self.hparams["num_local_experts"]
  2061. assert bid is not None
  2062. if self._experts is None:
  2063. self._experts = [{} for _ in range(self.block_count)]
  2064. self._experts[bid][name] = data_torch
  2065. if len(self._experts[bid]) >= n_experts * 3:
  2066. tensors: list[tuple[str, Tensor]] = []
  2067. # merge the experts into a single 3d tensor
  2068. for wid in ["linear", "linear_1", "linear_v"]:
  2069. datas: list[Tensor] = []
  2070. for xid in range(n_experts):
  2071. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  2072. datas.append(self._experts[bid][ename])
  2073. del self._experts[bid][ename]
  2074. data_torch = torch.stack(datas, dim=0)
  2075. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  2076. new_name = self.map_tensor_name(merged_name)
  2077. tensors.append((new_name, data_torch))
  2078. return tensors
  2079. else:
  2080. return []
  2081. return [(self.map_tensor_name(name), data_torch)]
  2082. @ModelBase.register("DbrxForCausalLM")
  2083. class DbrxModel(TextModel):
  2084. model_arch = gguf.MODEL_ARCH.DBRX
  2085. def set_gguf_parameters(self):
  2086. ffn_config = self.hparams["ffn_config"]
  2087. attn_config = self.hparams["attn_config"]
  2088. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  2089. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  2090. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2091. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  2092. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  2093. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  2094. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  2095. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  2096. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  2097. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  2098. self.gguf_writer.add_layer_norm_eps(1e-5)
  2099. self.gguf_writer.add_file_type(self.ftype)
  2100. logger.info(f"gguf: file type = {self.ftype}")
  2101. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2102. del bid # unused
  2103. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  2104. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  2105. n_embd = self.hparams["d_model"]
  2106. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  2107. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  2108. # But llama.cpp moe graph works differently
  2109. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  2110. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  2111. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2112. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  2113. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2114. experts = False
  2115. for exp_tensor_name in exp_tensor_names.keys():
  2116. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  2117. experts = True
  2118. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  2119. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  2120. data_torch = data_torch.permute(*permute_tensor)
  2121. break
  2122. # map tensor names
  2123. # In MoE models the ffn tensors are typically most of the model weights,
  2124. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  2125. # Every other model has the weight names ending in .weight,
  2126. # let's assume that is the convention which is not the case for dbrx:
  2127. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  2128. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  2129. return [(new_name, data_torch)]
  2130. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2131. del name, new_name, bid # unused
  2132. return n_dims > 1
  2133. @ModelBase.register("MiniCPMForCausalLM")
  2134. class MiniCPMModel(TextModel):
  2135. model_arch = gguf.MODEL_ARCH.MINICPM
  2136. def set_gguf_parameters(self):
  2137. super().set_gguf_parameters()
  2138. embedding_scale = float(self.hparams["scale_emb"])
  2139. self.gguf_writer.add_embedding_scale(embedding_scale)
  2140. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  2141. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  2142. self.gguf_writer.add_residual_scale(residual_scale)
  2143. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  2144. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  2145. self.gguf_writer.add_logit_scale(logit_scale)
  2146. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  2147. rope_scaling = self.hparams.get("rope_scaling") or {}
  2148. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "longrope":
  2149. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  2150. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  2151. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2152. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2153. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2154. if rope_scaling is not None:
  2155. long_factors = rope_scaling.get('long_factor', None)
  2156. short_factors = rope_scaling.get('short_factor', None)
  2157. if long_factors is None or short_factors is None:
  2158. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2159. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2160. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2161. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2162. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2163. def set_vocab(self):
  2164. self._set_vocab_sentencepiece()
  2165. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2166. del bid # unused
  2167. n_head = self.hparams["num_attention_heads"]
  2168. n_kv_head = self.hparams.get("num_key_value_heads")
  2169. # HF models permute some of the tensors, so we need to undo that
  2170. if name.endswith(("q_proj.weight")):
  2171. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2172. if name.endswith(("k_proj.weight")):
  2173. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2174. return [(self.map_tensor_name(name), data_torch)]
  2175. @ModelBase.register("MiniCPM3ForCausalLM")
  2176. class MiniCPM3Model(TextModel):
  2177. model_arch = gguf.MODEL_ARCH.MINICPM3
  2178. def set_gguf_parameters(self):
  2179. hparams = self.hparams
  2180. self.gguf_writer.add_file_type(self.ftype)
  2181. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2182. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2183. self.gguf_writer.add_block_count(self.block_count)
  2184. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2185. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2186. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2187. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2188. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2189. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2190. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2191. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2192. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2193. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2194. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2195. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2196. if rope_scaling is not None:
  2197. rope_dims = self.hparams["qk_rope_head_dim"]
  2198. long_factors = rope_scaling.get('long_factor', None)
  2199. short_factors = rope_scaling.get('short_factor', None)
  2200. if long_factors is None or short_factors is None:
  2201. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2202. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2203. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2204. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2205. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2206. def set_vocab(self):
  2207. self._set_vocab_sentencepiece()
  2208. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2209. if n_kv_head is not None and n_head != n_kv_head:
  2210. n_head //= n_kv_head
  2211. return (
  2212. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2213. .swapaxes(1, 2)
  2214. .reshape(weights.shape)
  2215. )
  2216. @ModelBase.register("QWenLMHeadModel")
  2217. class QwenModel(TextModel):
  2218. model_arch = gguf.MODEL_ARCH.QWEN
  2219. @staticmethod
  2220. def token_bytes_to_string(b):
  2221. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2222. byte_encoder = bytes_to_unicode()
  2223. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2224. @staticmethod
  2225. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2226. parts = [bytes([b]) for b in token]
  2227. while True:
  2228. min_idx = None
  2229. min_rank = None
  2230. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2231. rank = mergeable_ranks.get(pair[0] + pair[1])
  2232. if rank is not None and (min_rank is None or rank < min_rank):
  2233. min_idx = i
  2234. min_rank = rank
  2235. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2236. break
  2237. assert min_idx is not None
  2238. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2239. return parts
  2240. def set_vocab(self):
  2241. self._set_vocab_qwen()
  2242. def set_gguf_parameters(self):
  2243. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2244. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2245. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2246. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2247. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2248. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2249. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2250. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2251. self.gguf_writer.add_file_type(self.ftype)
  2252. @ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration")
  2253. class Qwen2Model(TextModel):
  2254. model_arch = gguf.MODEL_ARCH.QWEN2
  2255. def set_vocab(self):
  2256. try:
  2257. self._set_vocab_sentencepiece()
  2258. except FileNotFoundError:
  2259. self._set_vocab_gpt2()
  2260. def set_gguf_parameters(self):
  2261. super().set_gguf_parameters()
  2262. self._try_set_pooling_type()
  2263. rope_scaling = self.hparams.get("rope_scaling") or {}
  2264. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2265. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2266. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2267. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2268. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2269. if self.hf_arch == "Qwen2Model":
  2270. name = f"model.{name}" # map to Qwen2ForCausalLM tensors
  2271. if "language_model." in name:
  2272. name = name.replace("language_model.", "") # for InternVL
  2273. if name.startswith("mlp") or name.startswith("multi_modal_projector") \
  2274. or name.startswith("vision_model") or name.startswith("audio_tower"):
  2275. # skip vision and audio tensors
  2276. return []
  2277. yield from super().modify_tensors(data_torch, name, bid)
  2278. @ModelBase.register("Ernie4_5_ForCausalLM")
  2279. class Ernie4_5Model(TextModel):
  2280. model_arch = gguf.MODEL_ARCH.ERNIE4_5
  2281. def set_vocab(self):
  2282. self._set_vocab_sentencepiece()
  2283. def set_gguf_parameters(self):
  2284. super().set_gguf_parameters()
  2285. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2286. num_heads = self.hparams["num_attention_heads"]
  2287. num_kv_heads = self.hparams["num_key_value_heads"]
  2288. head_dim = self.hparams["head_dim"]
  2289. if "ernie." in name:
  2290. name = name.replace("ernie.", "model.")
  2291. # split the qkv weights
  2292. # qkv_proj shape: [(num_heads + 2 * num_kv_heads) * head_dim, hidden_size]
  2293. if "qkv_proj" in name:
  2294. name_q = name.replace("qkv_proj.weight", "q_proj.weight")
  2295. name_k = name.replace("qkv_proj.weight", "k_proj.weight")
  2296. name_v = name.replace("qkv_proj.weight", "v_proj.weight")
  2297. total_q_dim = num_heads * head_dim
  2298. total_k_dim = num_kv_heads * head_dim
  2299. total_v_dim = num_kv_heads * head_dim
  2300. q_proj_weight, k_proj_weight, v_proj_weight = data_torch.split([total_q_dim, total_k_dim, total_v_dim], dim=0)
  2301. return [
  2302. (self.map_tensor_name(name_q), q_proj_weight),
  2303. (self.map_tensor_name(name_k), k_proj_weight),
  2304. (self.map_tensor_name(name_v), v_proj_weight)
  2305. ]
  2306. # split the up_gate_proj into gate and up
  2307. # up_gate_proj shape: [2 * intermediate_size, hidden_size]
  2308. if "up_gate_proj" in name:
  2309. name_up = name.replace("up_gate_proj.weight", "up_proj.weight")
  2310. name_gate = name.replace("up_gate_proj.weight", "gate_proj.weight")
  2311. dim_half = data_torch.shape[0] // 2
  2312. gate_proj_weight, up_proj_weight = data_torch.split(dim_half, dim=0)
  2313. return [
  2314. (self.map_tensor_name(name_gate), gate_proj_weight),
  2315. (self.map_tensor_name(name_up), up_proj_weight)
  2316. ]
  2317. return [(self.map_tensor_name(name), data_torch)]
  2318. @ModelBase.register(
  2319. "Qwen2VLModel",
  2320. "Qwen2VLForConditionalGeneration",
  2321. "Qwen2_5_VLForConditionalGeneration",
  2322. "Qwen2_5OmniModel",
  2323. )
  2324. class Qwen2VLModel(TextModel):
  2325. model_arch = gguf.MODEL_ARCH.QWEN2VL
  2326. def set_gguf_parameters(self):
  2327. super().set_gguf_parameters()
  2328. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  2329. mrope_section += [0] * max(0, 4 - len(mrope_section))
  2330. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  2331. def set_vocab(self):
  2332. try:
  2333. self._set_vocab_sentencepiece()
  2334. except FileNotFoundError:
  2335. self._set_vocab_gpt2()
  2336. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2337. del bid # unused
  2338. if name.startswith("thinker."):
  2339. name = name.replace("thinker.", "")
  2340. if name.startswith("visual") or name.startswith("audio") or \
  2341. name.startswith("talker") or name.startswith("token2wav"):
  2342. # skip multimodal tensors
  2343. return []
  2344. return [(self.map_tensor_name(name), data_torch)]
  2345. @ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  2346. class Qwen2VLVisionModel(MmprojModel):
  2347. def __init__(self, *args, **kwargs):
  2348. super().__init__(*args, **kwargs)
  2349. assert self.hparams_vision is not None
  2350. self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
  2351. # rename config.json values
  2352. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  2353. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  2354. if "embed_dim" in self.hparams_vision: # qwen2vl
  2355. self.hparams_vision["intermediate_size"] = self.hparams_vision.get("hidden_size")
  2356. self.hparams_vision["hidden_size"] = self.hparams_vision.get("embed_dim")
  2357. def set_gguf_parameters(self):
  2358. super().set_gguf_parameters()
  2359. assert self.hparams_vision is not None
  2360. hparams = self.hparams_vision
  2361. model_type = self.global_config['model_type']
  2362. if model_type == 'qwen2_vl':
  2363. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL)
  2364. elif model_type == 'qwen2_5_vl' or model_type == 'qwen2_5_omni':
  2365. if model_type == 'qwen2_5_omni':
  2366. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25O)
  2367. else:
  2368. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
  2369. self.gguf_writer.add_vision_use_silu(True)
  2370. # find n_wa_pattern (window attention pattern)
  2371. fullatt_block_indexes = hparams.get("fullatt_block_indexes")
  2372. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
  2373. n_wa_pattern = fullatt_block_indexes[0] + 1
  2374. # validate n_wa_pattern
  2375. for i in range(1, len(fullatt_block_indexes)):
  2376. if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
  2377. raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
  2378. self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
  2379. else:
  2380. raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
  2381. # default values below are taken from HF tranformers code
  2382. self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
  2383. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2384. del bid, name, n_dims # unused
  2385. if ".patch_embd." in new_name:
  2386. return gguf.GGMLQuantizationType.F16
  2387. if ".position_embd." in new_name:
  2388. return gguf.GGMLQuantizationType.F32
  2389. return False
  2390. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2391. del bid # unused
  2392. if name.startswith("visual."):
  2393. # process visual tensors
  2394. # split QKV tensors if needed
  2395. if ".qkv." in name:
  2396. if data_torch.ndim == 2: # weight
  2397. c3, _ = data_torch.shape
  2398. else: # bias
  2399. c3 = data_torch.shape[0]
  2400. assert c3 % 3 == 0
  2401. c = c3 // 3
  2402. wq = data_torch[:c]
  2403. wk = data_torch[c: c * 2]
  2404. wv = data_torch[c * 2:]
  2405. return [
  2406. (self.map_tensor_name(name.replace("qkv", "q")), wq),
  2407. (self.map_tensor_name(name.replace("qkv", "k")), wk),
  2408. (self.map_tensor_name(name.replace("qkv", "v")), wv),
  2409. ]
  2410. elif 'patch_embed.proj.weight' in name:
  2411. # split Conv3D into Conv2Ds
  2412. c1, c2, kt, kh, kw = data_torch.shape
  2413. del c1, c2, kh, kw # unused
  2414. assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
  2415. return [
  2416. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
  2417. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  2418. ]
  2419. else:
  2420. return [(self.map_tensor_name(name), data_torch)]
  2421. return [] # skip other tensors
  2422. @ModelBase.register("Qwen2_5OmniModel")
  2423. class Qwen25OmniModel(Qwen2VLVisionModel):
  2424. has_vision_encoder = True
  2425. has_audio_encoder = True
  2426. def __init__(self, *args, **kwargs):
  2427. super().__init__(*args, **kwargs)
  2428. assert self.hparams_audio is not None
  2429. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  2430. self.hparams_audio["intermediate_size"] = self.hparams_audio["encoder_ffn_dim"]
  2431. self.hparams_audio["num_attention_heads"] = self.hparams_audio["encoder_attention_heads"]
  2432. def set_gguf_parameters(self):
  2433. super().set_gguf_parameters()
  2434. assert self.hparams_audio is not None
  2435. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["num_mel_bins"])
  2436. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams_audio.get("layer_norm_eps", 1e-5))
  2437. def get_vision_config(self) -> dict[str, Any] | None:
  2438. return self.global_config["thinker_config"].get("vision_config")
  2439. def get_audio_config(self) -> dict[str, Any] | None:
  2440. return self.global_config["thinker_config"].get("audio_config")
  2441. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2442. # SinusoidsPositionEmbedding
  2443. assert self.hparams_audio is not None
  2444. max_timescale = 10000
  2445. length = 1500
  2446. channels = self.hparams_audio["hidden_size"]
  2447. log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
  2448. inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2).float())
  2449. scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
  2450. pos_embd = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1).to(dtype=torch.float32)
  2451. yield ("audio_tower.embed_positions.weight", pos_embd)
  2452. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2453. del bid, new_name, n_dims # unused
  2454. if ".conv" in name and ".weight" in name:
  2455. return gguf.GGMLQuantizationType.F16
  2456. return False
  2457. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2458. if name.startswith("thinker."):
  2459. name = name.replace("thinker.", "")
  2460. if name.startswith("audio_tower"):
  2461. # process audio tensors
  2462. if "conv1.bias" in name or "conv2.bias" in name:
  2463. # transpose conv1 and conv2 bias
  2464. data_torch = data_torch.unsqueeze(-1)
  2465. if "audio_bos_eos_token" in name:
  2466. # this tensor is left unused in transformers code
  2467. # https://github.com/huggingface/transformers/blob/6e3063422c4b1c014aa60c32b9254fd2902f0f28/src/transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py#L1809
  2468. return []
  2469. return [(self.map_tensor_name(name), data_torch)]
  2470. return super().modify_tensors(data_torch, name, bid)
  2471. @ModelBase.register("InternVisionModel")
  2472. class InternVisionModel(MmprojModel):
  2473. def set_gguf_parameters(self):
  2474. super().set_gguf_parameters()
  2475. hparams = self.hparams
  2476. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
  2477. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  2478. # hidden_act
  2479. if hparams["hidden_act"] == "silu":
  2480. self.gguf_writer.add_vision_use_silu(True)
  2481. elif hparams["hidden_act"] == "gelu":
  2482. self.gguf_writer.add_vision_use_gelu(True)
  2483. else:
  2484. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  2485. # downsample_ratio
  2486. downsample_ratio = self.global_config.get("downsample_ratio")
  2487. assert downsample_ratio is not None
  2488. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
  2489. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2490. del bid, name, n_dims # unused
  2491. if ".patch_embd." in new_name:
  2492. return gguf.GGMLQuantizationType.F16
  2493. if ".position_embd." in new_name:
  2494. return gguf.GGMLQuantizationType.F32
  2495. return False
  2496. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2497. del bid # unused
  2498. if name.startswith("vision_model") or name.startswith("mlp"):
  2499. # process visual tensors
  2500. # correct name
  2501. if name.startswith("vision_model"):
  2502. name = "vision_tower." + name
  2503. if (".ls" in name or "position_embedding" in name) and not name.endswith(".weight"):
  2504. name += ".weight"
  2505. # split QKV tensors if needed
  2506. if ".qkv." in name:
  2507. if data_torch.ndim == 2: # weight
  2508. c3, _ = data_torch.shape
  2509. else: # bias
  2510. c3 = data_torch.shape[0]
  2511. assert c3 % 3 == 0
  2512. c = c3 // 3
  2513. wq = data_torch[:c]
  2514. wk = data_torch[c: c * 2]
  2515. wv = data_torch[c * 2:]
  2516. return [
  2517. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
  2518. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
  2519. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
  2520. ]
  2521. return [(self.map_tensor_name(name), data_torch)]
  2522. return [] # skip other tensors
  2523. @ModelBase.register("WavTokenizerDec")
  2524. class WavTokenizerDecModel(TextModel):
  2525. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  2526. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2527. del bid # unused
  2528. if \
  2529. name.endswith("codebook.cluster_size") or \
  2530. name.endswith("codebook.embed_avg") or \
  2531. name.endswith("codebook.inited"):
  2532. logger.debug(f"Skipping {name!r}")
  2533. return []
  2534. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  2535. return [(self.map_tensor_name(name), data_torch)]
  2536. def set_vocab(self):
  2537. self._set_vocab_none()
  2538. def set_gguf_parameters(self):
  2539. super().set_gguf_parameters()
  2540. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  2541. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  2542. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  2543. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  2544. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  2545. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  2546. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  2547. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  2548. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  2549. self.gguf_writer.add_causal_attention(False)
  2550. @ModelBase.register("Qwen2MoeForCausalLM")
  2551. class Qwen2MoeModel(TextModel):
  2552. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  2553. def set_gguf_parameters(self):
  2554. super().set_gguf_parameters()
  2555. if (n_experts := self.hparams.get("num_experts")) is not None:
  2556. self.gguf_writer.add_expert_count(n_experts)
  2557. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2558. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2559. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  2560. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  2561. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  2562. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  2563. # YaRN is not enabled by default
  2564. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  2565. rope_scaling = self.hparams.get("rope_scaling") or {}
  2566. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2567. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2568. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2569. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2570. _experts: list[dict[str, Tensor]] | None = None
  2571. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2572. # process the experts separately
  2573. if name.find("experts") != -1:
  2574. n_experts = self.hparams["num_experts"]
  2575. assert bid is not None
  2576. if self._experts is None:
  2577. self._experts = [{} for _ in range(self.block_count)]
  2578. self._experts[bid][name] = data_torch
  2579. if len(self._experts[bid]) >= n_experts * 3:
  2580. tensors: list[tuple[str, Tensor]] = []
  2581. # merge the experts into a single 3d tensor
  2582. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2583. datas: list[Tensor] = []
  2584. for xid in range(n_experts):
  2585. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2586. datas.append(self._experts[bid][ename])
  2587. del self._experts[bid][ename]
  2588. data_torch = torch.stack(datas, dim=0)
  2589. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2590. new_name = self.map_tensor_name(merged_name)
  2591. tensors.append((new_name, data_torch))
  2592. return tensors
  2593. else:
  2594. return []
  2595. return [(self.map_tensor_name(name), data_torch)]
  2596. def prepare_tensors(self):
  2597. super().prepare_tensors()
  2598. if self._experts is not None:
  2599. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2600. experts = [k for d in self._experts for k in d.keys()]
  2601. if len(experts) > 0:
  2602. raise ValueError(f"Unprocessed experts: {experts}")
  2603. @ModelBase.register("Qwen3ForCausalLM")
  2604. class Qwen3Model(Qwen2Model):
  2605. model_arch = gguf.MODEL_ARCH.QWEN3
  2606. @ModelBase.register("Qwen3MoeForCausalLM")
  2607. class Qwen3MoeModel(Qwen2MoeModel):
  2608. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  2609. @ModelBase.register("GPT2LMHeadModel")
  2610. class GPT2Model(TextModel):
  2611. model_arch = gguf.MODEL_ARCH.GPT2
  2612. def set_gguf_parameters(self):
  2613. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2614. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  2615. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2616. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2617. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2618. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2619. self.gguf_writer.add_file_type(self.ftype)
  2620. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2621. del bid # unused
  2622. tensors: list[tuple[str, Tensor]] = []
  2623. # we don't need these
  2624. if name.endswith((".attn.bias", ".attn.masked_bias")):
  2625. return tensors
  2626. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  2627. data_torch = data_torch.transpose(1, 0)
  2628. new_name = self.map_tensor_name(name)
  2629. tensors.append((new_name, data_torch))
  2630. return tensors
  2631. @ModelBase.register("PhiForCausalLM")
  2632. class Phi2Model(TextModel):
  2633. model_arch = gguf.MODEL_ARCH.PHI2
  2634. def set_gguf_parameters(self):
  2635. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2636. rot_pct = self.find_hparam(["partial_rotary_factor"])
  2637. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2638. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2639. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  2640. self.gguf_writer.add_embedding_length(n_embd)
  2641. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  2642. self.gguf_writer.add_block_count(block_count)
  2643. self.gguf_writer.add_head_count(n_head)
  2644. self.gguf_writer.add_head_count_kv(n_head)
  2645. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  2646. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  2647. self.gguf_writer.add_file_type(self.ftype)
  2648. self.gguf_writer.add_add_bos_token(False)
  2649. @ModelBase.register("Phi3ForCausalLM")
  2650. class Phi3MiniModel(TextModel):
  2651. model_arch = gguf.MODEL_ARCH.PHI3
  2652. def set_vocab(self):
  2653. # Phi-4 model uses GPT2Tokenizer
  2654. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2655. if tokenizer_config_file.is_file():
  2656. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2657. tokenizer_config_json = json.load(f)
  2658. tokenizer_class = tokenizer_config_json['tokenizer_class']
  2659. if tokenizer_class == 'GPT2Tokenizer':
  2660. return self._set_vocab_gpt2()
  2661. from sentencepiece import SentencePieceProcessor
  2662. tokenizer_path = self.dir_model / 'tokenizer.model'
  2663. if not tokenizer_path.is_file():
  2664. raise ValueError(f'Error: Missing {tokenizer_path}')
  2665. tokenizer = SentencePieceProcessor()
  2666. tokenizer.LoadFromFile(str(tokenizer_path))
  2667. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2668. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2669. scores: list[float] = [-10000.0] * vocab_size
  2670. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2671. for token_id in range(tokenizer.vocab_size()):
  2672. piece = tokenizer.IdToPiece(token_id)
  2673. text = piece.encode("utf-8")
  2674. score = tokenizer.GetScore(token_id)
  2675. toktype = SentencePieceTokenTypes.NORMAL
  2676. if tokenizer.IsUnknown(token_id):
  2677. toktype = SentencePieceTokenTypes.UNKNOWN
  2678. elif tokenizer.IsControl(token_id):
  2679. toktype = SentencePieceTokenTypes.CONTROL
  2680. elif tokenizer.IsUnused(token_id):
  2681. toktype = SentencePieceTokenTypes.UNUSED
  2682. elif tokenizer.IsByte(token_id):
  2683. toktype = SentencePieceTokenTypes.BYTE
  2684. tokens[token_id] = text
  2685. scores[token_id] = score
  2686. toktypes[token_id] = toktype
  2687. added_tokens_file = self.dir_model / 'added_tokens.json'
  2688. if added_tokens_file.is_file():
  2689. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2690. added_tokens_json = json.load(f)
  2691. for key in added_tokens_json:
  2692. token_id = added_tokens_json[key]
  2693. if token_id >= vocab_size:
  2694. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2695. continue
  2696. tokens[token_id] = key.encode("utf-8")
  2697. scores[token_id] = -1000.0
  2698. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2699. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2700. if tokenizer_config_file.is_file():
  2701. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2702. tokenizer_config_json = json.load(f)
  2703. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2704. for token_id, foken_data in added_tokens_decoder.items():
  2705. token_id = int(token_id)
  2706. token = foken_data["content"].encode("utf-8")
  2707. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2708. if tokens[token_id] != token:
  2709. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2710. tokens[token_id] = token
  2711. scores[token_id] = -1000.0
  2712. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2713. if foken_data.get("special"):
  2714. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2715. tokenizer_file = self.dir_model / 'tokenizer.json'
  2716. if tokenizer_file.is_file():
  2717. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2718. tokenizer_json = json.load(f)
  2719. added_tokens = tokenizer_json.get("added_tokens", [])
  2720. for foken_data in added_tokens:
  2721. token_id = int(foken_data["id"])
  2722. token = foken_data["content"].encode("utf-8")
  2723. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2724. if tokens[token_id] != token:
  2725. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2726. tokens[token_id] = token
  2727. scores[token_id] = -1000.0
  2728. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2729. if foken_data.get("special"):
  2730. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2731. self.gguf_writer.add_tokenizer_model("llama")
  2732. self.gguf_writer.add_tokenizer_pre("default")
  2733. self.gguf_writer.add_token_list(tokens)
  2734. self.gguf_writer.add_token_scores(scores)
  2735. self.gguf_writer.add_token_types(toktypes)
  2736. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2737. special_vocab.add_to_gguf(self.gguf_writer)
  2738. def set_gguf_parameters(self):
  2739. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2740. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2741. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2742. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  2743. rms_eps = self.find_hparam(["rms_norm_eps"])
  2744. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2745. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2746. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2747. rope_dims = int(rot_pct * n_embd) // n_head
  2748. self.gguf_writer.add_context_length(max_pos_embds)
  2749. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  2750. self.gguf_writer.add_embedding_length(n_embd)
  2751. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  2752. self.gguf_writer.add_block_count(block_count)
  2753. self.gguf_writer.add_head_count(n_head)
  2754. self.gguf_writer.add_head_count_kv(n_head_kv)
  2755. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  2756. self.gguf_writer.add_rope_dimension_count(rope_dims)
  2757. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  2758. self.gguf_writer.add_file_type(self.ftype)
  2759. sliding_window = self.hparams.get("sliding_window")
  2760. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  2761. if sliding_window is None:
  2762. sliding_window = 0
  2763. self.gguf_writer.add_sliding_window(sliding_window)
  2764. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2765. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2766. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2767. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2768. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2769. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2770. rope_dims = int(rot_pct * n_embd) // n_head
  2771. # write rope scaling for long context (128k) model
  2772. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2773. if rope_scaling is None:
  2774. return
  2775. scale = max_pos_embds / orig_max_pos_embds
  2776. rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
  2777. if len(rope_scaling_type) == 0:
  2778. raise KeyError('Missing the required key rope_scaling.type')
  2779. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  2780. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  2781. elif rope_scaling_type == 'yarn':
  2782. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  2783. else:
  2784. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  2785. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  2786. long_factors = rope_scaling.get('long_factor', None)
  2787. short_factors = rope_scaling.get('short_factor', None)
  2788. if long_factors is None or short_factors is None:
  2789. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2790. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2791. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  2792. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2793. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2794. @ModelBase.register("PhiMoEForCausalLM")
  2795. class PhiMoeModel(Phi3MiniModel):
  2796. model_arch = gguf.MODEL_ARCH.PHIMOE
  2797. _experts: list[dict[str, Tensor]] | None = None
  2798. def set_gguf_parameters(self):
  2799. super().set_gguf_parameters()
  2800. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  2801. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  2802. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2803. # process the experts separately
  2804. if name.find("block_sparse_moe.experts") != -1:
  2805. n_experts = self.hparams["num_local_experts"]
  2806. assert bid is not None
  2807. if self._experts is None:
  2808. self._experts = [{} for _ in range(self.block_count)]
  2809. self._experts[bid][name] = data_torch
  2810. if len(self._experts[bid]) >= n_experts * 3:
  2811. tensors: list[tuple[str, Tensor]] = []
  2812. # merge the experts into a single 3d tensor
  2813. for w_name in ["w1", "w2", "w3"]:
  2814. datas: list[Tensor] = []
  2815. for xid in range(n_experts):
  2816. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  2817. datas.append(self._experts[bid][ename])
  2818. del self._experts[bid][ename]
  2819. data_torch = torch.stack(datas, dim=0)
  2820. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  2821. new_name = self.map_tensor_name(merged_name)
  2822. tensors.append((new_name, data_torch))
  2823. return tensors
  2824. else:
  2825. return []
  2826. return [(self.map_tensor_name(name), data_torch)]
  2827. def prepare_tensors(self):
  2828. super().prepare_tensors()
  2829. if self._experts is not None:
  2830. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2831. experts = [k for d in self._experts for k in d.keys()]
  2832. if len(experts) > 0:
  2833. raise ValueError(f"Unprocessed experts: {experts}")
  2834. @ModelBase.register("PlamoForCausalLM")
  2835. class PlamoModel(TextModel):
  2836. model_arch = gguf.MODEL_ARCH.PLAMO
  2837. def set_vocab(self):
  2838. self._set_vocab_sentencepiece()
  2839. def set_gguf_parameters(self):
  2840. hparams = self.hparams
  2841. block_count = hparams["num_hidden_layers"]
  2842. self.gguf_writer.add_context_length(4096) # not in config.json
  2843. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2844. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2845. self.gguf_writer.add_block_count(block_count)
  2846. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2847. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  2848. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2849. self.gguf_writer.add_file_type(self.ftype)
  2850. def shuffle_attn_q_weight(self, data_torch):
  2851. assert data_torch.size() == (5120, 5120)
  2852. data_torch = data_torch.reshape(8, 5, 128, 5120)
  2853. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  2854. data_torch = torch.reshape(data_torch, (5120, 5120))
  2855. return data_torch
  2856. def shuffle_attn_output_weight(self, data_torch):
  2857. assert data_torch.size() == (5120, 5120)
  2858. data_torch = data_torch.reshape(5120, 8, 5, 128)
  2859. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  2860. data_torch = torch.reshape(data_torch, (5120, 5120))
  2861. return data_torch
  2862. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2863. del bid # unused
  2864. new_name = self.map_tensor_name(name)
  2865. # shuffle for broadcasting of gqa in ggml_mul_mat
  2866. if new_name.endswith("attn_q.weight"):
  2867. data_torch = self.shuffle_attn_q_weight(data_torch)
  2868. elif new_name.endswith("attn_output.weight"):
  2869. data_torch = self.shuffle_attn_output_weight(data_torch)
  2870. return [(new_name, data_torch)]
  2871. @ModelBase.register("CodeShellForCausalLM")
  2872. class CodeShellModel(TextModel):
  2873. model_arch = gguf.MODEL_ARCH.CODESHELL
  2874. def set_gguf_parameters(self):
  2875. block_count = self.hparams["n_layer"]
  2876. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  2877. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2878. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2879. self.gguf_writer.add_block_count(block_count)
  2880. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2881. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  2882. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2883. self.gguf_writer.add_file_type(self.ftype)
  2884. self.gguf_writer.add_rope_freq_base(10000.0)
  2885. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2886. self.gguf_writer.add_rope_scaling_factor(1.0)
  2887. _has_tok_embd = False
  2888. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2889. del bid # unused
  2890. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2891. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2892. new_name = self.map_tensor_name(name)
  2893. # assuming token_embd.weight is seen before output.weight
  2894. if not self._has_tok_embd and new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  2895. # even though the tensor file(s) does not contain the word embeddings they are still in the weight map
  2896. if self.tensor_names and "transformer.wte.weight" in self.tensor_names:
  2897. logger.debug(f"{tok_embd_name} not found before {output_name}, assuming they are tied")
  2898. self.tensor_names.remove("transformer.wte.weight")
  2899. elif new_name == tok_embd_name:
  2900. self._has_tok_embd = True
  2901. return [(new_name, data_torch)]
  2902. @ModelBase.register("InternLM2ForCausalLM")
  2903. class InternLM2Model(TextModel):
  2904. model_arch = gguf.MODEL_ARCH.INTERNLM2
  2905. def set_vocab(self):
  2906. # (TODO): Is there a better way?
  2907. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  2908. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  2909. # recognized as an empty string in C++.
  2910. from sentencepiece import SentencePieceProcessor
  2911. from sentencepiece import sentencepiece_model_pb2 as model
  2912. tokenizer_path = self.dir_model / 'tokenizer.model'
  2913. tokens: list[bytes] = []
  2914. scores: list[float] = []
  2915. toktypes: list[int] = []
  2916. if not tokenizer_path.is_file():
  2917. logger.error(f'Error: Missing {tokenizer_path}')
  2918. sys.exit(1)
  2919. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2920. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2921. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2922. tokenizer = SentencePieceProcessor()
  2923. tokenizer.LoadFromFile(str(tokenizer_path))
  2924. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2925. for token_id in range(vocab_size):
  2926. piece = tokenizer.IdToPiece(token_id)
  2927. text = piece.encode("utf-8")
  2928. score = tokenizer.GetScore(token_id)
  2929. if text == b"\x00":
  2930. # (TODO): fixme
  2931. # Hack here and replace the \x00 characters.
  2932. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  2933. text = "🐉".encode("utf-8")
  2934. toktype = SentencePieceTokenTypes.NORMAL
  2935. if tokenizer.IsUnknown(token_id):
  2936. toktype = SentencePieceTokenTypes.UNKNOWN
  2937. elif tokenizer.IsControl(token_id):
  2938. toktype = SentencePieceTokenTypes.CONTROL
  2939. elif tokenizer.IsUnused(token_id):
  2940. toktype = SentencePieceTokenTypes.UNUSED
  2941. elif tokenizer.IsByte(token_id):
  2942. toktype = SentencePieceTokenTypes.BYTE
  2943. # take care of ununsed raw token
  2944. if piece.startswith('[UNUSED'):
  2945. toktype = SentencePieceTokenTypes.UNUSED
  2946. tokens.append(text)
  2947. scores.append(score)
  2948. toktypes.append(toktype)
  2949. added_tokens_file = self.dir_model / 'added_tokens.json'
  2950. if added_tokens_file.is_file():
  2951. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2952. added_tokens_json = json.load(f)
  2953. for key in added_tokens_json:
  2954. tokens.append(key.encode("utf-8"))
  2955. scores.append(-1000.0)
  2956. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  2957. chat_eos_token = '<|im_end|>'
  2958. chat_eos_token_id = None
  2959. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2960. if tokenizer_config_file.is_file():
  2961. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2962. tokenizer_config_json = json.load(f)
  2963. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2964. for token_id, foken_data in added_tokens_decoder.items():
  2965. token_id = int(token_id)
  2966. token = foken_data["content"]
  2967. if token == chat_eos_token:
  2968. chat_eos_token_id = token_id
  2969. token = token.encode("utf-8")
  2970. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2971. if tokens[token_id] != token:
  2972. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2973. tokens[token_id] = token
  2974. scores[token_id] = -1000.0
  2975. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2976. if foken_data.get("special"):
  2977. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2978. tokenizer_file = self.dir_model / 'tokenizer.json'
  2979. if tokenizer_file.is_file():
  2980. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2981. tokenizer_json = json.load(f)
  2982. added_tokens = tokenizer_json.get("added_tokens", [])
  2983. for foken_data in added_tokens:
  2984. token_id = int(foken_data["id"])
  2985. token = foken_data["content"]
  2986. if token == chat_eos_token:
  2987. chat_eos_token_id = token_id
  2988. token = token.encode("utf-8")
  2989. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2990. if tokens[token_id] != token:
  2991. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2992. tokens[token_id] = token
  2993. scores[token_id] = -1000.0
  2994. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2995. if foken_data.get("special"):
  2996. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2997. self.gguf_writer.add_tokenizer_model("llama")
  2998. self.gguf_writer.add_tokenizer_pre("default")
  2999. self.gguf_writer.add_token_list(tokens)
  3000. self.gguf_writer.add_token_scores(scores)
  3001. self.gguf_writer.add_token_types(toktypes)
  3002. self.gguf_writer.add_add_space_prefix(add_prefix)
  3003. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3004. old_eos = special_vocab.special_token_ids["eos"]
  3005. if chat_eos_token_id is not None:
  3006. # For the chat model, we replace the eos with '<|im_end|>'.
  3007. # TODO: this is a hack, should be fixed
  3008. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  3009. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  3010. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  3011. " in chat mode so that the conversation can end normally.")
  3012. special_vocab.add_to_gguf(self.gguf_writer)
  3013. def set_gguf_parameters(self):
  3014. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  3015. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  3016. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  3017. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  3018. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  3019. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  3020. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3021. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  3022. self.gguf_writer.add_file_type(self.ftype)
  3023. rope_scaling = self.hparams.get("rope_scaling") or {}
  3024. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  3025. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3026. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3027. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3028. num_heads = self.hparams["num_attention_heads"]
  3029. num_kv_heads = self.hparams["num_key_value_heads"]
  3030. n_embd = self.hparams["hidden_size"]
  3031. q_per_kv = num_heads // num_kv_heads
  3032. head_dim = n_embd // num_heads
  3033. num_groups = num_heads // q_per_kv
  3034. name = name.replace("language_model.", "") # InternVL
  3035. if name.startswith("mlp") or name.startswith("vision_model"):
  3036. # skip visual tensors
  3037. return []
  3038. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  3039. qkv = data_torch
  3040. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  3041. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  3042. # The model weights of q and k equire additional reshape.
  3043. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  3044. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  3045. v = v.reshape((-1, v.shape[-1]))
  3046. return [
  3047. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  3048. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  3049. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  3050. ]
  3051. else:
  3052. return [(self.map_tensor_name(name), data_torch)]
  3053. @ModelBase.register("InternLM3ForCausalLM")
  3054. class InternLM3Model(TextModel):
  3055. model_arch = gguf.MODEL_ARCH.LLAMA
  3056. def set_vocab(self):
  3057. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  3058. self.gguf_writer.add_tokenizer_model("llama")
  3059. self.gguf_writer.add_tokenizer_pre("default")
  3060. self.gguf_writer.add_token_list(tokens)
  3061. self.gguf_writer.add_token_scores(scores)
  3062. self.gguf_writer.add_token_types(toktypes)
  3063. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3064. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3065. if tokenizer_config_file.is_file():
  3066. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3067. tokenizer_config_json = json.load(f)
  3068. if "add_prefix_space" in tokenizer_config_json:
  3069. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  3070. if "added_tokens_decoder" in tokenizer_config_json:
  3071. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  3072. if token_data.get("special"):
  3073. token_id = int(token_id)
  3074. token = token_data["content"]
  3075. special_vocab._set_special_token(token, token_id)
  3076. # update eos token
  3077. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  3078. special_vocab.special_token_ids["eos"] = token_id
  3079. special_vocab.add_to_gguf(self.gguf_writer)
  3080. def set_gguf_parameters(self):
  3081. super().set_gguf_parameters()
  3082. hparams = self.hparams
  3083. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3084. if (rope_dim := hparams.get("head_dim")) is None:
  3085. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  3086. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3087. rope_scaling = self.hparams.get("rope_scaling") or {}
  3088. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  3089. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3090. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3091. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3092. n_head = self.hparams["num_attention_heads"]
  3093. n_kv_head = self.hparams.get("num_key_value_heads")
  3094. name = name.replace("language_model.", "") # InternVL
  3095. if name.startswith("mlp") or name.startswith("vision_model"):
  3096. # skip visual tensors
  3097. return []
  3098. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3099. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3100. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3101. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3102. return [(self.map_tensor_name(name), data_torch)]
  3103. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel", "BertForSequenceClassification")
  3104. class BertModel(TextModel):
  3105. model_arch = gguf.MODEL_ARCH.BERT
  3106. def __init__(self, *args, **kwargs):
  3107. super().__init__(*args, **kwargs)
  3108. self.vocab_size = None
  3109. if cls_out_labels := self.hparams.get("id2label"):
  3110. if len(cls_out_labels) == 2 and cls_out_labels[0] == "LABEL_0":
  3111. # Remove dummy labels added by AutoConfig
  3112. cls_out_labels = None
  3113. self.cls_out_labels = cls_out_labels
  3114. def set_gguf_parameters(self):
  3115. super().set_gguf_parameters()
  3116. self.gguf_writer.add_causal_attention(False)
  3117. self._try_set_pooling_type()
  3118. if self.cls_out_labels:
  3119. self.gguf_writer.add_classifier_output_labels([v for k, v in sorted(self.cls_out_labels.items())])
  3120. def set_vocab(self):
  3121. tokens, toktypes, tokpre = self.get_vocab_base()
  3122. self.vocab_size = len(tokens)
  3123. # we need this to validate the size of the token_type embeddings
  3124. # though currently we are passing all zeros to the token_type embeddings
  3125. # "Sequence A" or "Sequence B"
  3126. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3127. # convert to phantom space vocab
  3128. def phantom(tok):
  3129. if tok.startswith("[") and tok.endswith("]"):
  3130. return tok
  3131. if tok.startswith("##"):
  3132. return tok[2:]
  3133. return "\u2581" + tok
  3134. tokens = list(map(phantom, tokens))
  3135. # add vocab to gguf
  3136. self.gguf_writer.add_tokenizer_model("bert")
  3137. self.gguf_writer.add_tokenizer_pre(tokpre)
  3138. self.gguf_writer.add_token_list(tokens)
  3139. self.gguf_writer.add_token_types(toktypes)
  3140. # handle special tokens
  3141. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3142. special_vocab.add_to_gguf(self.gguf_writer)
  3143. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3144. del bid # unused
  3145. if name.startswith("bert."):
  3146. name = name[5:]
  3147. if name.endswith(".gamma"):
  3148. name = name[:-6] + ".weight"
  3149. if name.endswith(".beta"):
  3150. name = name[:-5] + ".bias"
  3151. # we are only using BERT for embeddings so we don't need the pooling layer
  3152. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  3153. return [] # we don't need these
  3154. if name.startswith("cls.predictions"):
  3155. return []
  3156. if name.startswith("cls.seq_relationship"):
  3157. return []
  3158. if self.cls_out_labels:
  3159. # For BertForSequenceClassification (direct projection layer)
  3160. if name == "classifier.weight":
  3161. name = "classifier.out_proj.weight"
  3162. if name == "classifier.bias":
  3163. name = "classifier.out_proj.bias"
  3164. return [(self.map_tensor_name(name), data_torch)]
  3165. def _xlmroberta_tokenizer_init(self) -> None:
  3166. # we need the pad_token_id to know how to chop down position_embd matrix
  3167. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  3168. self._position_offset = 1 + pad_token_id
  3169. if "max_position_embeddings" in self.hparams:
  3170. self.hparams["max_position_embeddings"] -= self._position_offset
  3171. else:
  3172. self._position_offset = None
  3173. def _xlmroberta_set_vocab(self) -> None:
  3174. # to avoid TypeError: Descriptors cannot be created directly
  3175. # exception when importing sentencepiece_model_pb2
  3176. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3177. from sentencepiece import SentencePieceProcessor
  3178. from sentencepiece import sentencepiece_model_pb2 as model
  3179. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  3180. tokenizer_json = {}
  3181. tokenizer_config_json = {}
  3182. if not tokenizer_path.is_file():
  3183. tokenizer_path = self.dir_model / 'tokenizer.json'
  3184. tokenizer_config_path = self.dir_model / 'tokenizer_config.json'
  3185. if not tokenizer_path.is_file():
  3186. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3187. from base64 import b64decode
  3188. from transformers import AutoTokenizer
  3189. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  3190. with open(tokenizer_path, "r", encoding="utf-8") as fp:
  3191. tokenizer_json = json.load(fp)
  3192. if tokenizer_config_path.is_file():
  3193. with open(tokenizer_config_path, "r", encoding="utf-8") as fp:
  3194. tokenizer_config_json = json.load(fp)
  3195. add_prefix = tokenizer.add_prefix_space
  3196. remove_whitespaces = tokenizer.clean_up_tokenization_spaces
  3197. precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])
  3198. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size)
  3199. else:
  3200. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3201. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3202. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3203. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3204. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3205. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3206. tokenizer = SentencePieceProcessor()
  3207. tokenizer.LoadFromFile(str(tokenizer_path))
  3208. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size())
  3209. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3210. scores: list[float] = [-10000.0] * vocab_size
  3211. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3212. if isinstance(tokenizer, SentencePieceProcessor):
  3213. for token_id in range(tokenizer.vocab_size()):
  3214. piece = tokenizer.IdToPiece(token_id)
  3215. text = piece.encode("utf-8")
  3216. score = tokenizer.GetScore(token_id)
  3217. toktype = SentencePieceTokenTypes.NORMAL
  3218. if tokenizer.IsUnknown(token_id):
  3219. toktype = SentencePieceTokenTypes.UNKNOWN
  3220. elif tokenizer.IsControl(token_id):
  3221. toktype = SentencePieceTokenTypes.CONTROL
  3222. elif tokenizer.IsUnused(token_id):
  3223. toktype = SentencePieceTokenTypes.UNUSED
  3224. elif tokenizer.IsByte(token_id):
  3225. toktype = SentencePieceTokenTypes.BYTE
  3226. tokens[token_id] = text
  3227. scores[token_id] = score
  3228. toktypes[token_id] = toktype
  3229. else:
  3230. added_vocab = tokenizer.get_added_vocab()
  3231. unk_token = tokenizer_config_json.get("unk_token")
  3232. unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))
  3233. for token_id in range(tokenizer.vocab_size):
  3234. piece = tokenizer._convert_id_to_token(token_id)
  3235. if (piece := tokenizer._convert_id_to_token(token_id)) is not None:
  3236. text = piece.encode("utf-8")
  3237. score = tokenizer_json["model"]["vocab"][token_id][1]
  3238. toktype = SentencePieceTokenTypes.NORMAL
  3239. if token_id == unk_token_id:
  3240. toktype = SentencePieceTokenTypes.UNKNOWN
  3241. elif token_id in tokenizer.all_special_ids:
  3242. toktype = SentencePieceTokenTypes.CONTROL
  3243. elif token_id in added_vocab.values():
  3244. toktype = SentencePieceTokenTypes.USER_DEFINED
  3245. # No reliable way to detect this, but jina doesn't have any
  3246. # elif tokenizer.IsByte(token_id):
  3247. # toktype = SentencePieceTokenTypes.BYTE
  3248. tokens[token_id] = text
  3249. scores[token_id] = score
  3250. toktypes[token_id] = toktype
  3251. if isinstance(tokenizer, SentencePieceProcessor):
  3252. # realign tokens (see HF tokenizer code)
  3253. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  3254. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  3255. toktypes = [
  3256. SentencePieceTokenTypes.CONTROL,
  3257. SentencePieceTokenTypes.CONTROL,
  3258. SentencePieceTokenTypes.CONTROL,
  3259. SentencePieceTokenTypes.UNKNOWN,
  3260. ] + toktypes[3:-1]
  3261. if self.model_arch == gguf.MODEL_ARCH.NOMIC_BERT_MOE:
  3262. # Add mask token missing from sentencepiece.bpe.model
  3263. tokens[250001] = b'<mask>'
  3264. scores[250001] = 0.0
  3265. toktypes[250001] = SentencePieceTokenTypes.CONTROL
  3266. self.gguf_writer.add_tokenizer_model("t5")
  3267. self.gguf_writer.add_tokenizer_pre("default")
  3268. self.gguf_writer.add_token_list(tokens)
  3269. self.gguf_writer.add_token_scores(scores)
  3270. self.gguf_writer.add_token_types(toktypes)
  3271. self.gguf_writer.add_add_space_prefix(add_prefix)
  3272. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3273. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3274. if precompiled_charsmap:
  3275. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3276. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3277. special_vocab.add_to_gguf(self.gguf_writer)
  3278. @ModelBase.register("DistilBertModel", "DistilBertForMaskedLM", "DistilBertForSequenceClassification")
  3279. class DistilBertModel(BertModel):
  3280. model_arch = gguf.MODEL_ARCH.BERT
  3281. def set_gguf_parameters(self):
  3282. self.gguf_writer.add_layer_norm_eps(1e-12)
  3283. logger.info("gguf: layer norm epsilon = 1e-12")
  3284. super().set_gguf_parameters()
  3285. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3286. if name.startswith("distilbert."):
  3287. name = name[11:]
  3288. # These layers act as MLM head, so we don't need them
  3289. if name.startswith("vocab_"):
  3290. return []
  3291. return super().modify_tensors(data_torch, name, bid)
  3292. @ModelBase.register("RobertaModel", "RobertaForSequenceClassification")
  3293. class RobertaModel(BertModel):
  3294. model_arch = gguf.MODEL_ARCH.BERT
  3295. def __init__(self, *args, **kwargs):
  3296. super().__init__(*args, **kwargs)
  3297. # we need the pad_token_id to know how to chop down position_embd matrix
  3298. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  3299. self._position_offset = 1 + pad_token_id
  3300. if "max_position_embeddings" in self.hparams:
  3301. self.hparams["max_position_embeddings"] -= self._position_offset
  3302. else:
  3303. self._position_offset = None
  3304. def set_vocab(self):
  3305. """Support BPE tokenizers for roberta models"""
  3306. bpe_tok_path = self.dir_model / "tokenizer.json"
  3307. if bpe_tok_path.exists():
  3308. self._set_vocab_gpt2()
  3309. # we need this to validate the size of the token_type embeddings
  3310. # though currently we are passing all zeros to the token_type embeddings
  3311. # "Sequence A" or "Sequence B"
  3312. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3313. else:
  3314. return super().set_vocab()
  3315. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3316. # if name starts with "roberta.", remove the prefix
  3317. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  3318. if name.startswith("roberta."):
  3319. name = name[8:]
  3320. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  3321. if name == "embeddings.position_embeddings.weight":
  3322. if self._position_offset is not None:
  3323. data_torch = data_torch[self._position_offset:,:]
  3324. return super().modify_tensors(data_torch, name, bid)
  3325. @ModelBase.register("NomicBertModel")
  3326. class NomicBertModel(BertModel):
  3327. model_arch = gguf.MODEL_ARCH.BERT
  3328. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  3329. hparams = kwargs.pop("hparams", None)
  3330. if hparams is None:
  3331. hparams = ModelBase.load_hparams(dir_model)
  3332. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  3333. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  3334. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  3335. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  3336. if self._tokenizer_is_xlmroberta:
  3337. self._xlmroberta_tokenizer_init()
  3338. npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
  3339. if npos == 8192 and mtp == 2048:
  3340. self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
  3341. elif npos == 2048 and mtp == 2048:
  3342. self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
  3343. else:
  3344. raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
  3345. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  3346. # this doesn't do anything in the HF version
  3347. assert self.hparams["causal"] is False
  3348. # no bias tensors unless MoE
  3349. assert self.hparams["qkv_proj_bias"] == self.is_moe
  3350. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  3351. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  3352. # norm at end of layer
  3353. assert self.hparams["prenorm"] is False
  3354. # standard RoPE
  3355. assert self.hparams["rotary_emb_fraction"] == 1.0
  3356. assert self.hparams["rotary_emb_interleaved"] is False
  3357. assert self.hparams["rotary_emb_scale_base"] is None
  3358. def set_vocab(self) -> None:
  3359. if self._tokenizer_is_xlmroberta:
  3360. return self._xlmroberta_set_vocab()
  3361. return super().set_vocab()
  3362. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  3363. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  3364. if "mlp.experts.bias" in name:
  3365. return [] # Explicitly return an empty list.
  3366. if "mlp.experts.mlp.w1" in name:
  3367. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  3368. name += ".weight"
  3369. if "mlp.experts.mlp.w2" in name:
  3370. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  3371. data_torch = data_torch.transpose(1, 2)
  3372. name += ".weight"
  3373. return [(self.map_tensor_name(name), data_torch)]
  3374. def set_gguf_parameters(self):
  3375. super().set_gguf_parameters()
  3376. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  3377. if self.is_moe:
  3378. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  3379. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  3380. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  3381. def _is_tokenizer_xlmroberta(self) -> bool:
  3382. with open(self.dir_model / "tokenizer.json") as f:
  3383. tokenizer_json = json.load(f)
  3384. toktyp = tokenizer_json["model"]["type"]
  3385. if toktyp == "Unigram":
  3386. return True
  3387. if toktyp == "WordPiece":
  3388. return False
  3389. raise ValueError(f"unknown tokenizer: {toktyp}")
  3390. @ModelBase.register("NeoBERT", "NeoBERTLMHead", "NeoBERTForSequenceClassification")
  3391. class NeoBert(BertModel):
  3392. model_arch = gguf.MODEL_ARCH.NEO_BERT
  3393. def set_gguf_parameters(self):
  3394. super().set_gguf_parameters()
  3395. # NeoBERT uses 2/3 of the intermediate size as feed forward length
  3396. self.gguf_writer.add_feed_forward_length(int(2 * self.hparams["intermediate_size"] / 3))
  3397. self.gguf_writer.add_rope_freq_base(10000.0) # default value for NeoBERT
  3398. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3399. f_rms_eps = self.hparams.get("norm_eps", 1e-6) # default value for NeoBERT
  3400. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  3401. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  3402. self.gguf_writer.add_pooling_type(gguf.PoolingType.CLS) # https://huggingface.co/chandar-lab/NeoBERT#how-to-use
  3403. def modify_tensors(self, data_torch, name, bid):
  3404. if name.startswith("decoder."):
  3405. return []
  3406. if name.startswith("model."):
  3407. name = name[6:]
  3408. return super().modify_tensors(data_torch, name, bid)
  3409. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  3410. class XLMRobertaModel(BertModel):
  3411. model_arch = gguf.MODEL_ARCH.BERT
  3412. def __init__(self, *args, **kwargs):
  3413. super().__init__(*args, **kwargs)
  3414. self._xlmroberta_tokenizer_init()
  3415. def set_vocab(self):
  3416. self._xlmroberta_set_vocab()
  3417. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3418. # if name starts with "roberta.", remove the prefix
  3419. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  3420. if name.startswith("roberta."):
  3421. name = name[8:]
  3422. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  3423. if name == "embeddings.position_embeddings.weight":
  3424. if self._position_offset is not None:
  3425. data_torch = data_torch[self._position_offset:,:]
  3426. return super().modify_tensors(data_torch, name, bid)
  3427. @ModelBase.register("GemmaForCausalLM")
  3428. class GemmaModel(TextModel):
  3429. model_arch = gguf.MODEL_ARCH.GEMMA
  3430. def set_vocab(self):
  3431. self._set_vocab_sentencepiece()
  3432. # TODO: these special tokens should be exported only for the CodeGemma family
  3433. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  3434. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  3435. special_vocab._set_special_token("prefix", 67)
  3436. special_vocab._set_special_token("suffix", 69)
  3437. special_vocab._set_special_token("middle", 68)
  3438. special_vocab._set_special_token("fsep", 70)
  3439. special_vocab._set_special_token("eot", 107)
  3440. special_vocab.chat_template = None # do not add it twice
  3441. special_vocab.add_to_gguf(self.gguf_writer)
  3442. self.gguf_writer.add_add_space_prefix(False)
  3443. def set_gguf_parameters(self):
  3444. hparams = self.hparams
  3445. block_count = hparams["num_hidden_layers"]
  3446. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  3447. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3448. self.gguf_writer.add_block_count(block_count)
  3449. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3450. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3451. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  3452. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3453. self.gguf_writer.add_key_length(hparams["head_dim"])
  3454. self.gguf_writer.add_value_length(hparams["head_dim"])
  3455. self.gguf_writer.add_file_type(self.ftype)
  3456. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3457. del bid # unused
  3458. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  3459. # To prevent errors, skip loading lm_head.weight.
  3460. if name == "lm_head.weight":
  3461. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  3462. return []
  3463. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  3464. if name.endswith("norm.weight"):
  3465. data_torch = data_torch + 1
  3466. return [(self.map_tensor_name(name), data_torch)]
  3467. @ModelBase.register("Gemma2ForCausalLM")
  3468. class Gemma2Model(TextModel):
  3469. model_arch = gguf.MODEL_ARCH.GEMMA2
  3470. def set_vocab(self):
  3471. self._set_vocab_sentencepiece()
  3472. self.gguf_writer.add_add_space_prefix(False)
  3473. def set_gguf_parameters(self):
  3474. hparams = self.hparams
  3475. block_count = hparams["num_hidden_layers"]
  3476. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  3477. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3478. self.gguf_writer.add_block_count(block_count)
  3479. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3480. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3481. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  3482. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3483. self.gguf_writer.add_key_length(hparams["head_dim"])
  3484. self.gguf_writer.add_value_length(hparams["head_dim"])
  3485. self.gguf_writer.add_file_type(self.ftype)
  3486. self.gguf_writer.add_attn_logit_softcapping(
  3487. self.hparams["attn_logit_softcapping"]
  3488. )
  3489. self.gguf_writer.add_final_logit_softcapping(
  3490. self.hparams["final_logit_softcapping"]
  3491. )
  3492. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  3493. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3494. del bid # unused
  3495. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  3496. # To prevent errors, skip loading lm_head.weight.
  3497. if name == "lm_head.weight":
  3498. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  3499. return []
  3500. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  3501. if name.endswith("norm.weight"):
  3502. data_torch = data_torch + 1
  3503. return [(self.map_tensor_name(name), data_torch)]
  3504. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  3505. class Gemma3Model(TextModel):
  3506. model_arch = gguf.MODEL_ARCH.GEMMA3
  3507. norm_shift = 1.0 # Gemma3RMSNorm adds 1.0 to the norm value
  3508. def set_vocab(self):
  3509. self._set_vocab_sentencepiece()
  3510. self.gguf_writer.add_add_space_prefix(False)
  3511. def set_gguf_parameters(self):
  3512. hparams = self.hparams
  3513. block_count = hparams["num_hidden_layers"]
  3514. # some default values are not specified in the hparams
  3515. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  3516. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3517. self.gguf_writer.add_block_count(block_count)
  3518. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3519. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  3520. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  3521. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  3522. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  3523. self.gguf_writer.add_file_type(self.ftype)
  3524. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
  3525. # attn_logit_softcapping is removed in Gemma3
  3526. assert hparams.get("attn_logit_softcapping") is None
  3527. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  3528. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  3529. if hparams.get("rope_scaling") is not None:
  3530. assert hparams["rope_scaling"]["rope_type"] == "linear"
  3531. # important: this rope_scaling is only applied for global layers, and not used by 1B model
  3532. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3533. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  3534. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3535. del bid # unused
  3536. if "language_model." in name:
  3537. name = name.replace("language_model.", "")
  3538. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  3539. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  3540. return [] # skip vision tensors
  3541. # remove OOV (out-of-vocabulary) rows in token_embd
  3542. if "embed_tokens.weight" in name:
  3543. vocab = self._create_vocab_sentencepiece()
  3544. tokens = vocab[0]
  3545. data_torch = data_torch[:len(tokens)]
  3546. # ref code in Gemma3RMSNorm
  3547. # output = output * (1.0 + self.weight.float())
  3548. # note: this is not the case on gemma3n
  3549. if name.endswith("norm.weight"):
  3550. data_torch = data_torch + self.norm_shift
  3551. return [(self.map_tensor_name(name), data_torch)]
  3552. @ModelBase.register("Gemma3ForConditionalGeneration")
  3553. class Gemma3VisionModel(MmprojModel):
  3554. def set_gguf_parameters(self):
  3555. super().set_gguf_parameters()
  3556. hparams = self.hparams
  3557. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GEMMA3)
  3558. # default values below are taken from HF tranformers code
  3559. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  3560. self.gguf_writer.add_vision_use_gelu(True)
  3561. # calculate proj_scale_factor (used by tinygemma3 test model)
  3562. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  3563. n_per_side = int(image_seq_length ** 0.5)
  3564. image_size = self.hparams["image_size"]
  3565. patch_size = self.hparams["patch_size"]
  3566. proj_scale_factor = (image_size // patch_size) // n_per_side
  3567. if proj_scale_factor > 0 and proj_scale_factor != 4:
  3568. # we only need to write this if it's not the default value
  3569. # in this case, we are converting a test model
  3570. self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
  3571. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3572. del bid, new_name, n_dims # unused
  3573. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  3574. if "input_projection" in name:
  3575. return gguf.GGMLQuantizationType.F16
  3576. if ".embeddings." in name:
  3577. return gguf.GGMLQuantizationType.F32
  3578. return False
  3579. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3580. del bid # unused
  3581. if "vision_model.head." in name:
  3582. return [] # skip redundant tensors for tinygemma3
  3583. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  3584. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  3585. # process vision tensors
  3586. name = name.replace("_weight", ".weight")
  3587. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  3588. # the other norm values are part of SigLIP model, and they are already correct
  3589. # ref code: Gemma3RMSNorm
  3590. if "soft_emb_norm.weight" in name:
  3591. logger.info(f"Correcting norm value for '{name}'")
  3592. data_torch = data_torch + 1
  3593. return [(self.map_tensor_name(name), data_torch)]
  3594. return [] # skip other tensors
  3595. @ModelBase.register("Gemma3nForConditionalGeneration")
  3596. class Gemma3NModel(Gemma3Model):
  3597. model_arch = gguf.MODEL_ARCH.GEMMA3N
  3598. norm_shift = 0.0 # same value with Gemma3p5RMSNorm scale_shift on python code
  3599. _altup_proj: list[Tensor] = []
  3600. _altup_unembd: list[Tensor] = []
  3601. def __init__(self, *args, **kwargs):
  3602. super().__init__(*args, **kwargs)
  3603. assert self.hparams["altup_num_inputs"] == 4, "Current conversion only supports 4 altup inputs"
  3604. self._altup_proj = [
  3605. torch.Tensor(), # to be replaced
  3606. torch.Tensor(), # to be replaced
  3607. torch.Tensor(), # to be replaced
  3608. ]
  3609. self._altup_unembd = [
  3610. torch.Tensor(), # to be replaced
  3611. torch.Tensor(), # to be replaced
  3612. torch.Tensor(), # to be replaced
  3613. ]
  3614. def set_vocab(self):
  3615. super().set_vocab()
  3616. def set_gguf_parameters(self):
  3617. super().set_gguf_parameters()
  3618. self.gguf_writer.add_altup_active_idx(self.hparams["altup_active_idx"])
  3619. self.gguf_writer.add_altup_num_inputs(self.hparams["altup_num_inputs"])
  3620. self.gguf_writer.add_embedding_length_per_layer_input(self.hparams["hidden_size_per_layer_input"])
  3621. self.gguf_writer.add_shared_kv_layers(self.hparams["num_kv_shared_layers"])
  3622. activation_sparsity_scale = []
  3623. for s in self.hparams["activation_sparsity_pattern"]:
  3624. normal_dist = torch.distributions.normal.Normal(0, 1)
  3625. std_multiplier = normal_dist.icdf(torch.tensor(s, dtype=torch.float32))
  3626. activation_sparsity_scale.append(std_multiplier.item())
  3627. self.gguf_writer.add_activation_sparsity_scale(activation_sparsity_scale)
  3628. sliding_window_pattern = []
  3629. for t in self.hparams["layer_types"]:
  3630. sliding_window_pattern.append(t == "sliding_attention")
  3631. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  3632. def _stack_matrices(self, matrices: list[Tensor]) -> Tensor | None:
  3633. has_all = all(m.numel() > 0 for m in matrices)
  3634. if not has_all:
  3635. return None
  3636. else:
  3637. return torch.stack(matrices, dim=0)
  3638. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3639. if name.endswith("_scale"):
  3640. name = name + ".weight"
  3641. # TODO: implement self.prediction_coefs.weight.clamp_(...)
  3642. if "language_model." not in name:
  3643. return [] # skip non-language model tensors
  3644. if "altup_unembed_projections" in name:
  3645. data_torch = data_torch.to(device="cpu")
  3646. if ".0." in name:
  3647. self._altup_unembd[0] = data_torch
  3648. elif ".1." in name:
  3649. self._altup_unembd[1] = data_torch
  3650. elif ".2." in name:
  3651. self._altup_unembd[2] = data_torch
  3652. else:
  3653. raise ValueError(f"Unknown name: {name}")
  3654. out = self._stack_matrices(self._altup_unembd)
  3655. if out is not None:
  3656. return [(self.map_tensor_name("model.altup_unembed_projections.weight"), out)]
  3657. else:
  3658. return []
  3659. if "altup_projections" in name:
  3660. data_torch = data_torch.to(device="cpu")
  3661. if ".0." in name:
  3662. self._altup_proj[0] = data_torch
  3663. elif ".1." in name:
  3664. self._altup_proj[1] = data_torch
  3665. elif ".2." in name:
  3666. self._altup_proj[2] = data_torch
  3667. else:
  3668. raise ValueError(f"Unknown name: {name}")
  3669. out = self._stack_matrices(self._altup_proj)
  3670. if out is not None:
  3671. return [(self.map_tensor_name("model.altup_projections.weight"), out)]
  3672. else:
  3673. return []
  3674. return super().modify_tensors(data_torch, name, bid)
  3675. @ModelBase.register("Starcoder2ForCausalLM")
  3676. class StarCoder2Model(TextModel):
  3677. model_arch = gguf.MODEL_ARCH.STARCODER2
  3678. @ModelBase.register("Rwkv6ForCausalLM")
  3679. class Rwkv6Model(TextModel):
  3680. model_arch = gguf.MODEL_ARCH.RWKV6
  3681. def set_vocab(self):
  3682. self._set_vocab_rwkv_world()
  3683. def set_gguf_parameters(self):
  3684. block_count = self.hparams["num_hidden_layers"]
  3685. head_size = self.hparams["head_size"]
  3686. hidden_size = self.hparams["hidden_size"]
  3687. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  3688. rescale_every_n_layers = self.hparams["rescale_every"]
  3689. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  3690. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  3691. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  3692. # RWKV isn't context limited
  3693. self.gguf_writer.add_context_length(1048576)
  3694. self.gguf_writer.add_embedding_length(hidden_size)
  3695. self.gguf_writer.add_block_count(block_count)
  3696. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  3697. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  3698. self.gguf_writer.add_wkv_head_size(head_size)
  3699. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  3700. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  3701. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3702. self.gguf_writer.add_file_type(self.ftype)
  3703. # required by llama.cpp, unused
  3704. self.gguf_writer.add_head_count(0)
  3705. lerp_weights: dict[int, dict[str, Tensor]] = {}
  3706. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3707. new_name = self.map_tensor_name(name)
  3708. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  3709. new_name += ".weight"
  3710. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  3711. data_torch = data_torch.transpose(0, 1)
  3712. if new_name.endswith("time_mix_w2.weight"):
  3713. data_torch = data_torch.permute(0, 2, 1)
  3714. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  3715. data_torch = data_torch.squeeze()
  3716. try:
  3717. rescale_every_n_layers = self.hparams["rescale_every"]
  3718. if rescale_every_n_layers > 0:
  3719. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  3720. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  3721. except KeyError:
  3722. pass
  3723. # concat time_mix_lerp weights to reduce some cpu overhead
  3724. # also reduces the number of tensors in the model
  3725. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  3726. try:
  3727. self.lerp_weights[bid][new_name] = data_torch
  3728. except KeyError:
  3729. self.lerp_weights[bid] = {new_name: data_torch}
  3730. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  3731. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3732. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  3733. yield (new_name, data)
  3734. return
  3735. yield (new_name, data_torch)
  3736. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  3737. class RWKV6Qwen2Model(Rwkv6Model):
  3738. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  3739. def set_vocab(self):
  3740. try:
  3741. self._set_vocab_sentencepiece()
  3742. except FileNotFoundError:
  3743. self._set_vocab_gpt2()
  3744. def set_gguf_parameters(self):
  3745. block_count = self.hparams["num_hidden_layers"]
  3746. num_attention_heads = self.hparams["num_attention_heads"]
  3747. num_key_value_heads = self.hparams["num_key_value_heads"]
  3748. hidden_size = self.hparams["hidden_size"]
  3749. head_size = hidden_size // num_attention_heads
  3750. rms_norm_eps = self.hparams["rms_norm_eps"]
  3751. intermediate_size = self.hparams["intermediate_size"]
  3752. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  3753. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  3754. # RWKV isn't context limited
  3755. self.gguf_writer.add_context_length(1048576)
  3756. self.gguf_writer.add_embedding_length(hidden_size)
  3757. self.gguf_writer.add_block_count(block_count)
  3758. self.gguf_writer.add_wkv_head_size(head_size)
  3759. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  3760. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  3761. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3762. self.gguf_writer.add_file_type(self.ftype)
  3763. # special parameters for time_mixing in RWKV6QWEN2
  3764. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3765. self.gguf_writer.add_token_shift_count(1)
  3766. # RWKV6QWEN2 use grouped key/value like GQA
  3767. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  3768. # required by llama.cpp, unused
  3769. self.gguf_writer.add_head_count(0)
  3770. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3771. for new_name, data in super().modify_tensors(data_torch, name, bid):
  3772. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  3773. data = data.view(5, -1, data.shape[-1])
  3774. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  3775. # permute them here to avoid code changes
  3776. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  3777. if "w2" in new_name:
  3778. data = data.view(5, -1, data.shape[-1])
  3779. yield (new_name, data)
  3780. continue
  3781. yield (new_name, data)
  3782. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  3783. class Rwkv7Model(TextModel):
  3784. model_arch = gguf.MODEL_ARCH.RWKV7
  3785. def set_vocab(self):
  3786. self._set_vocab_rwkv_world()
  3787. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  3788. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  3789. def set_gguf_parameters(self):
  3790. block_count = self.hparams["num_hidden_layers"]
  3791. try:
  3792. head_size = self.hparams["head_size"]
  3793. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  3794. except KeyError:
  3795. head_size = self.hparams["head_dim"]
  3796. layer_norm_eps = self.hparams["norm_eps"]
  3797. hidden_size = self.hparams["hidden_size"]
  3798. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  3799. # ICLR: In-Context-Learning-Rate
  3800. try:
  3801. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3802. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3803. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  3804. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  3805. except KeyError:
  3806. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3807. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3808. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  3809. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  3810. # RWKV isn't context limited
  3811. self.gguf_writer.add_context_length(1048576)
  3812. self.gguf_writer.add_embedding_length(hidden_size)
  3813. self.gguf_writer.add_block_count(block_count)
  3814. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  3815. self.gguf_writer.add_wkv_head_size(head_size)
  3816. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  3817. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  3818. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  3819. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  3820. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3821. self.gguf_writer.add_file_type(self.ftype)
  3822. # required by llama.cpp, unused
  3823. self.gguf_writer.add_head_count(0)
  3824. lerp_weights: dict[int, dict[str, Tensor]] = {}
  3825. lora_needs_transpose: bool = True
  3826. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3827. # unify tensor names here to make life easier
  3828. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  3829. name = name.replace("self_attn", "attention").replace("attn", "attention")
  3830. name = name.replace("time_mixer.", "")
  3831. # lora layer names in fla-hub's impl
  3832. if "_lora.lora" in name:
  3833. self.lora_needs_transpose = False
  3834. name = name.replace("_lora.lora.0.weight", "1.weight")
  3835. name = name.replace("_lora.lora.2.weight", "2.weight")
  3836. name = name.replace("_lora.lora.2.bias", "0.weight")
  3837. name = name.replace("feed_forward_norm", "ln2")
  3838. name = name.replace("g_norm", "ln_x")
  3839. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  3840. # some models have dummy v0/v1/v2 on first layer while others don't
  3841. # ignore them all since they are not used
  3842. return
  3843. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  3844. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  3845. if bid is not None and "attention.x_" in name:
  3846. if "attention.x_x" in name:
  3847. # already concatenated
  3848. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3849. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  3850. yield (new_name, data)
  3851. else:
  3852. try:
  3853. self.lerp_weights[bid][name] = data_torch
  3854. except KeyError:
  3855. self.lerp_weights[bid] = {name: data_torch}
  3856. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  3857. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3858. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  3859. yield (new_name, data)
  3860. return
  3861. else:
  3862. data_torch = data_torch.squeeze()
  3863. new_name = self.map_tensor_name(name)
  3864. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  3865. new_name += ".weight"
  3866. if self.lora_needs_transpose and any(
  3867. new_name.endswith(t) for t in [
  3868. "time_mix_w1.weight", "time_mix_w2.weight",
  3869. "time_mix_a1.weight", "time_mix_a2.weight",
  3870. "time_mix_v1.weight", "time_mix_v2.weight",
  3871. "time_mix_g1.weight", "time_mix_g2.weight",
  3872. ]
  3873. ):
  3874. data_torch = data_torch.transpose(0, 1)
  3875. if 'r_k' in new_name:
  3876. data_torch = data_torch.flatten()
  3877. if bid == 0 and "time_mix_a" in new_name:
  3878. # dummy v0/v1/v2 on first layer
  3879. # easist way to make llama happy
  3880. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  3881. yield (new_name, data_torch)
  3882. @ModelBase.register("RwkvHybridForCausalLM")
  3883. class ARwkv7Model(Rwkv7Model):
  3884. model_arch = gguf.MODEL_ARCH.ARWKV7
  3885. def set_vocab(self):
  3886. try:
  3887. self._set_vocab_sentencepiece()
  3888. except FileNotFoundError:
  3889. self._set_vocab_gpt2()
  3890. def set_gguf_parameters(self):
  3891. block_count = self.hparams["num_hidden_layers"]
  3892. hidden_size = self.hparams["hidden_size"]
  3893. head_size = self.hparams["head_size"]
  3894. rms_norm_eps = self.hparams["rms_norm_eps"]
  3895. intermediate_size = self.hparams["intermediate_size"]
  3896. wkv_has_gate = self.hparams["wkv_has_gate"]
  3897. assert self.hparams["wkv_version"] == 7
  3898. # ICLR: In-Context-Learning-Rate
  3899. lora_rank_decay = 64
  3900. lora_rank_iclr = 64
  3901. lora_rank_value_residual_mix = 32
  3902. lora_rank_gate = 128 if wkv_has_gate else 0
  3903. # RWKV isn't context limited
  3904. self.gguf_writer.add_context_length(1048576)
  3905. self.gguf_writer.add_embedding_length(hidden_size)
  3906. self.gguf_writer.add_block_count(block_count)
  3907. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3908. self.gguf_writer.add_wkv_head_size(head_size)
  3909. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  3910. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  3911. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  3912. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  3913. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3914. self.gguf_writer.add_file_type(self.ftype)
  3915. self.gguf_writer.add_token_shift_count(1)
  3916. # required by llama.cpp, unused
  3917. self.gguf_writer.add_head_count(0)
  3918. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  3919. class MambaModel(TextModel):
  3920. model_arch = gguf.MODEL_ARCH.MAMBA
  3921. def __init__(self, dir_model: Path, *args, **kwargs):
  3922. # Avoid using AutoConfig for hparams
  3923. hparams = kwargs.pop("hparams", None)
  3924. if hparams is None:
  3925. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  3926. hparams = json.load(f)
  3927. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  3928. def set_vocab(self):
  3929. vocab_size = self.hparams["vocab_size"]
  3930. # Round vocab size to next multiple of 8
  3931. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  3932. # pad using ceiling division
  3933. # ref: https://stackoverflow.com/a/17511341/22827863
  3934. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  3935. self.hparams["vocab_size"] = vocab_size
  3936. if (self.dir_model / "tokenizer.json").is_file():
  3937. self._set_vocab_gpt2()
  3938. elif (self.dir_model / "tokenizer.model").is_file():
  3939. self._set_vocab_sentencepiece()
  3940. else:
  3941. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  3942. self._set_vocab_builtin("gpt-neox", vocab_size)
  3943. def set_gguf_parameters(self):
  3944. d_model = self.find_hparam(["hidden_size", "d_model"])
  3945. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  3946. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  3947. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  3948. # ceiling division
  3949. # ref: https://stackoverflow.com/a/17511341/22827863
  3950. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  3951. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  3952. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  3953. use_dt_b_c_norm = False
  3954. # For falconmamba we do apply RMS norm on B / DT and C layers
  3955. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  3956. use_dt_b_c_norm = True
  3957. # Fail early for models which don't have a block expansion factor of 2
  3958. assert d_inner == 2 * d_model
  3959. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  3960. self.gguf_writer.add_embedding_length(d_model)
  3961. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  3962. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  3963. self.gguf_writer.add_block_count(self.block_count)
  3964. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  3965. self.gguf_writer.add_ssm_inner_size(d_inner)
  3966. self.gguf_writer.add_ssm_state_size(d_state)
  3967. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  3968. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3969. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  3970. self.gguf_writer.add_file_type(self.ftype)
  3971. _tok_embd = None
  3972. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3973. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  3974. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  3975. new_name = self.map_tensor_name(name)
  3976. if name.endswith(".A_log"):
  3977. logger.debug("A_log --> A ==> " + new_name)
  3978. data_torch = -torch.exp(data_torch)
  3979. # [4 1 8192 1] -> [4 8192 1 1]
  3980. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  3981. data_torch = data_torch.squeeze()
  3982. # assuming token_embd.weight is seen before output.weight
  3983. if self._tok_embd is not None and new_name == output_name:
  3984. if torch.equal(self._tok_embd, data_torch):
  3985. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  3986. return []
  3987. elif new_name == tok_embd_name:
  3988. self._tok_embd = data_torch
  3989. return [(new_name, data_torch)]
  3990. @ModelBase.register("Mamba2ForCausalLM")
  3991. class Mamba2Model(TextModel):
  3992. model_arch = gguf.MODEL_ARCH.MAMBA2
  3993. def __init__(self, dir_model: Path, *args, **kwargs):
  3994. # Avoid using AutoConfig for hparams
  3995. # It wrongly assumes all Mamba2 models are Mamba-Codestral-7B-v0.1
  3996. hparams = kwargs.pop("hparams", None)
  3997. if hparams is None:
  3998. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  3999. hparams = json.load(f)
  4000. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  4001. self.d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
  4002. self.d_inner = self.find_hparam(["mamba_d_ssm", "intermediate_size", "d_inner"], optional=True) or 2 * self.d_model
  4003. self.n_group = self.find_hparam(["n_groups"], optional=True) or 1
  4004. def set_vocab(self):
  4005. vocab_size = self.hparams["vocab_size"]
  4006. # Round vocab size to next multiple of 16
  4007. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 16)
  4008. # pad using ceiling division
  4009. # ref: https://stackoverflow.com/a/17511341/22827863
  4010. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  4011. self.hparams["vocab_size"] = vocab_size
  4012. if (self.dir_model / "tokenizer.model").is_file():
  4013. self._set_vocab_sentencepiece()
  4014. elif (self.dir_model / "tokenizer.model.v3").is_file():
  4015. # mamba-codestral
  4016. raise NotImplementedError(f"Please rename {self.dir_model / 'tokenizer.model.v3'} to {self.dir_model / 'tokenizer.model'}")
  4017. elif (self.dir_model / "tokenizer.json").is_file():
  4018. self._set_vocab_gpt2()
  4019. else:
  4020. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  4021. self._set_vocab_builtin("gpt-neox", vocab_size)
  4022. def set_gguf_parameters(self):
  4023. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  4024. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 128
  4025. head_dim = self.find_hparam(["mamba_d_head", "head_dim"], optional=True) or 64
  4026. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  4027. # Fail early for models which don't have a block expansion factor of 2
  4028. # TODO: does this really matter?
  4029. # skip the assertion for FalconH1 Model
  4030. if self.model_arch != gguf.MODEL_ARCH.FALCON_H1:
  4031. assert self.d_inner == 2 * self.d_model
  4032. assert self.d_inner % head_dim == 0
  4033. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  4034. self.gguf_writer.add_embedding_length(self.d_model)
  4035. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  4036. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  4037. self.gguf_writer.add_block_count(self.block_count)
  4038. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4039. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  4040. self.gguf_writer.add_ssm_state_size(d_state)
  4041. self.gguf_writer.add_ssm_time_step_rank(self.d_inner // head_dim)
  4042. self.gguf_writer.add_ssm_group_count(self.n_group)
  4043. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4044. self.gguf_writer.add_file_type(self.ftype)
  4045. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4046. if name.startswith("model.backbone") or name.startswith("model.lm_head"):
  4047. # map Mamba-Codestral-7B-v0.1 tensor names to the names used by Mamba-2
  4048. name = name.removeprefix("model.")
  4049. if name.endswith(".dt_bias"):
  4050. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  4051. new_name = self.map_tensor_name(name)
  4052. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4053. data_torch = data_torch.squeeze()
  4054. elif any(self.match_model_tensor_name(new_name, t, bid, suffix="") for t in [
  4055. gguf.MODEL_TENSOR.SSM_A,
  4056. gguf.MODEL_TENSOR.SSM_D,
  4057. ]):
  4058. # unsqueeze A to use similar shape semantics as Mamba-1
  4059. # (D is also unsqueezed, but for more straightforward broadcast internally)
  4060. data_torch = data_torch.reshape((*data_torch.shape, 1))
  4061. elif self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_NORM, bid):
  4062. data_torch = data_torch.reshape((self.n_group, self.d_inner // self.n_group))
  4063. if name.endswith(".A_log"):
  4064. logger.debug("A_log --> A ==> " + new_name)
  4065. data_torch = -torch.exp(data_torch)
  4066. yield (new_name, data_torch)
  4067. @ModelBase.register("JambaForCausalLM")
  4068. class JambaModel(TextModel):
  4069. model_arch = gguf.MODEL_ARCH.JAMBA
  4070. def get_vocab_base_pre(self, tokenizer) -> str:
  4071. del tokenizer # unused
  4072. return "gpt-2"
  4073. def set_vocab(self):
  4074. if (self.dir_model / "tokenizer.model").is_file():
  4075. # Using Jamba's tokenizer.json causes errors on model load
  4076. # (something about "byte not found in vocab"),
  4077. # but there's a working tokenizer.model
  4078. self._set_vocab_sentencepiece()
  4079. else:
  4080. # Some Jamba models only have a tokenizer.json, which works.
  4081. self._set_vocab_gpt2()
  4082. def set_gguf_parameters(self):
  4083. d_model = self.find_hparam(["hidden_size", "mamba_d_model"])
  4084. d_conv = self.find_hparam(["mamba_d_conv"], optional=True) or 4
  4085. d_inner = self.hparams["mamba_expand"] * d_model
  4086. d_state = self.find_hparam(["mamba_d_state"], optional=True) or 16
  4087. # ceiling division
  4088. # ref: https://stackoverflow.com/a/17511341/22827863
  4089. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  4090. dt_rank = self.find_hparam(["mamba_dt_rank"], optional=True) or -(d_model // -16)
  4091. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-6
  4092. n_kv_head = self.hparams["num_key_value_heads"]
  4093. attn_offset = self.hparams["attn_layer_offset"]
  4094. attn_period = self.hparams["attn_layer_period"]
  4095. n_kv_vec = [0 for _ in range(attn_offset)] + [
  4096. n_kv_head if (i - attn_offset) % attn_period == 0 else 0 for i in range(attn_offset, self.block_count)
  4097. ]
  4098. self.gguf_writer.add_block_count(self.block_count)
  4099. self.gguf_writer.add_context_length(self.find_hparam(["max_position_embeddings", "n_ctx"]))
  4100. self.gguf_writer.add_embedding_length(d_model)
  4101. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  4102. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  4103. self.gguf_writer.add_head_count_kv(n_kv_vec)
  4104. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4105. self.gguf_writer.add_ssm_inner_size(d_inner)
  4106. self.gguf_writer.add_ssm_state_size(d_state)
  4107. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  4108. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4109. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  4110. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  4111. self.gguf_writer.add_file_type(self.ftype)
  4112. _experts: list[dict[str, Tensor]] | None = None
  4113. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4114. # Mini-Jamba
  4115. name = name.replace(".moe.", ".feed_forward.")
  4116. if bid is not None:
  4117. moe_offset = self.hparams["expert_layer_offset"]
  4118. moe_period = self.hparams["expert_layer_period"]
  4119. if not (bid >= moe_offset and (bid - moe_offset) % moe_period == 0):
  4120. name = name.replace(".experts.0.", ".")
  4121. # process the experts separately
  4122. if ".feed_forward.experts." in name:
  4123. n_experts = self.hparams["num_experts"]
  4124. assert bid is not None
  4125. if self._experts is None:
  4126. self._experts = [{} for _ in range(self.block_count)]
  4127. self._experts[bid][name] = data_torch
  4128. if len(self._experts[bid]) >= n_experts * 3:
  4129. # merge the experts into a single 3d tensor
  4130. for wid in ["down_proj", "gate_proj", "up_proj"]:
  4131. datas: list[Tensor] = []
  4132. for xid in range(n_experts):
  4133. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{wid}.weight"
  4134. datas.append(self._experts[bid][ename])
  4135. del self._experts[bid][ename]
  4136. data_torch = torch.stack(datas, dim=0)
  4137. # using the same merged name as qwen2moe
  4138. merged_name = f"model.layers.{bid}.mlp.experts.{wid}.weight"
  4139. new_name = self.map_tensor_name(merged_name)
  4140. yield new_name, data_torch
  4141. return
  4142. new_name = self.map_tensor_name(name)
  4143. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4144. data_torch = data_torch.squeeze()
  4145. if name.endswith(".A_log"):
  4146. logger.debug("A_log --> A ==> " + new_name)
  4147. data_torch = -torch.exp(data_torch)
  4148. yield (new_name, data_torch)
  4149. def prepare_tensors(self):
  4150. super().prepare_tensors()
  4151. if self._experts is not None:
  4152. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4153. experts = [k for d in self._experts for k in d.keys()]
  4154. if len(experts) > 0:
  4155. raise ValueError(f"Unprocessed experts: {experts}")
  4156. @ModelBase.register("CohereForCausalLM")
  4157. class CommandR2Model(TextModel):
  4158. model_arch = gguf.MODEL_ARCH.COMMAND_R
  4159. def __init__(self, *args, **kwargs):
  4160. super().__init__(*args, **kwargs)
  4161. # max_position_embeddings = 8192 in config.json but model was actually
  4162. # trained on 128k context length
  4163. # aya-23 models don't have model_max_length specified
  4164. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  4165. def set_gguf_parameters(self):
  4166. super().set_gguf_parameters()
  4167. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  4168. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4169. @ModelBase.register("Cohere2ForCausalLM")
  4170. class Cohere2Model(TextModel):
  4171. model_arch = gguf.MODEL_ARCH.COHERE2
  4172. def set_gguf_parameters(self):
  4173. super().set_gguf_parameters()
  4174. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  4175. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4176. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  4177. rotary_pct = self.hparams["rotary_pct"]
  4178. hidden_size = self.hparams["hidden_size"]
  4179. num_attention_heads = self.hparams["num_attention_heads"]
  4180. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  4181. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4182. @ModelBase.register("OlmoForCausalLM")
  4183. @ModelBase.register("OLMoForCausalLM")
  4184. class OlmoModel(TextModel):
  4185. model_arch = gguf.MODEL_ARCH.OLMO
  4186. def set_gguf_parameters(self):
  4187. super().set_gguf_parameters()
  4188. self.gguf_writer.add_layer_norm_eps(1e-5)
  4189. clip_qkv = self.hparams.get("clip_qkv")
  4190. if clip_qkv is not None:
  4191. self.gguf_writer.add_clamp_kqv(clip_qkv)
  4192. # Same as super class, but permuting q_proj, k_proj
  4193. # Copied from: LlamaModel
  4194. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4195. del bid # unused
  4196. n_head = self.hparams["num_attention_heads"]
  4197. n_kv_head = self.hparams.get("num_key_value_heads")
  4198. if name.endswith("q_proj.weight"):
  4199. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4200. if name.endswith("k_proj.weight"):
  4201. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4202. return [(self.map_tensor_name(name), data_torch)]
  4203. @ModelBase.register("Olmo2ForCausalLM")
  4204. class Olmo2Model(TextModel):
  4205. model_arch = gguf.MODEL_ARCH.OLMO2
  4206. @ModelBase.register("OlmoeForCausalLM")
  4207. class OlmoeModel(TextModel):
  4208. model_arch = gguf.MODEL_ARCH.OLMOE
  4209. def set_gguf_parameters(self):
  4210. super().set_gguf_parameters()
  4211. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  4212. if (n_experts := self.hparams.get("num_experts")) is not None:
  4213. self.gguf_writer.add_expert_count(n_experts)
  4214. _experts: list[dict[str, Tensor]] | None = None
  4215. # Copied from: Qwen2MoeModel
  4216. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4217. # process the experts separately
  4218. if name.find("experts") != -1:
  4219. n_experts = self.hparams["num_experts"]
  4220. assert bid is not None
  4221. if self._experts is None:
  4222. self._experts = [{} for _ in range(self.block_count)]
  4223. self._experts[bid][name] = data_torch
  4224. if len(self._experts[bid]) >= n_experts * 3:
  4225. tensors: list[tuple[str, Tensor]] = []
  4226. # merge the experts into a single 3d tensor
  4227. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4228. datas: list[Tensor] = []
  4229. for xid in range(n_experts):
  4230. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4231. datas.append(self._experts[bid][ename])
  4232. del self._experts[bid][ename]
  4233. data_torch = torch.stack(datas, dim=0)
  4234. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4235. new_name = self.map_tensor_name(merged_name)
  4236. tensors.append((new_name, data_torch))
  4237. return tensors
  4238. else:
  4239. return []
  4240. return [(self.map_tensor_name(name), data_torch)]
  4241. # Copied from: Qwen2MoeModel
  4242. def prepare_tensors(self):
  4243. super().prepare_tensors()
  4244. if self._experts is not None:
  4245. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4246. experts = [k for d in self._experts for k in d.keys()]
  4247. if len(experts) > 0:
  4248. raise ValueError(f"Unprocessed experts: {experts}")
  4249. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  4250. class JinaBertV2Model(BertModel):
  4251. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  4252. def set_vocab(self):
  4253. tokenizer_class = 'BertTokenizer'
  4254. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  4255. tokenizer_class = json.load(f)['tokenizer_class']
  4256. if tokenizer_class == 'BertTokenizer':
  4257. super().set_vocab()
  4258. elif tokenizer_class == 'RobertaTokenizer':
  4259. self._set_vocab_gpt2()
  4260. self.gguf_writer.add_token_type_count(2)
  4261. else:
  4262. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  4263. @ModelBase.register("OpenELMForCausalLM")
  4264. class OpenELMModel(TextModel):
  4265. model_arch = gguf.MODEL_ARCH.OPENELM
  4266. @staticmethod
  4267. def _make_divisible(v: float | int, divisor: int) -> int:
  4268. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  4269. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  4270. # Make sure that round down does not go down by more than 10%.
  4271. if new_v < 0.9 * v:
  4272. new_v += divisor
  4273. return new_v
  4274. def __init__(self, *args, **kwargs):
  4275. super().__init__(*args, **kwargs)
  4276. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  4277. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  4278. self._n_embd: int = self.hparams["model_dim"]
  4279. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  4280. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  4281. self._ffn_dims: list[int] = [
  4282. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  4283. for multiplier in ffn_multipliers
  4284. ]
  4285. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  4286. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  4287. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  4288. def set_vocab(self):
  4289. try:
  4290. self._set_vocab_sentencepiece()
  4291. except FileNotFoundError:
  4292. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  4293. def set_gguf_parameters(self):
  4294. n_embd = self._n_embd
  4295. head_dim = self.hparams["head_dim"]
  4296. rot_pct = 1.0
  4297. assert self.block_count == len(self._num_kv_heads)
  4298. assert self.block_count == len(self._num_query_heads)
  4299. assert self.block_count == len(self._ffn_dims)
  4300. self.gguf_writer.add_block_count(self.block_count)
  4301. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  4302. self.gguf_writer.add_embedding_length(n_embd)
  4303. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  4304. self.gguf_writer.add_head_count(self._num_query_heads)
  4305. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  4306. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  4307. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  4308. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  4309. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  4310. self.gguf_writer.add_key_length(head_dim)
  4311. self.gguf_writer.add_value_length(head_dim)
  4312. self.gguf_writer.add_file_type(self.ftype)
  4313. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  4314. if "n_layers" in keys:
  4315. return self.hparams["num_transformer_layers"]
  4316. return super().find_hparam(keys, optional)
  4317. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4318. # split ff
  4319. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  4320. ff_dim = self._ffn_dims[bid]
  4321. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  4322. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  4323. return
  4324. yield (self.map_tensor_name(name), data_torch)
  4325. @ModelBase.register("ArcticForCausalLM")
  4326. class ArcticModel(TextModel):
  4327. model_arch = gguf.MODEL_ARCH.ARCTIC
  4328. def set_vocab(self):
  4329. # The reason for using a custom implementation here is that the
  4330. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  4331. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  4332. from sentencepiece import SentencePieceProcessor
  4333. tokenizer_path = self.dir_model / 'tokenizer.model'
  4334. if not tokenizer_path.is_file():
  4335. logger.error(f'Error: Missing {tokenizer_path}')
  4336. sys.exit(1)
  4337. # Read the whole vocabulary from the tokenizer.model file
  4338. tokenizer = SentencePieceProcessor()
  4339. tokenizer.LoadFromFile(str(tokenizer_path))
  4340. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4341. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4342. scores: list[float] = [-10000.0] * vocab_size
  4343. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4344. for token_id in range(tokenizer.vocab_size()):
  4345. piece = tokenizer.IdToPiece(token_id)
  4346. text = piece.encode("utf-8")
  4347. score = tokenizer.GetScore(token_id)
  4348. toktype = SentencePieceTokenTypes.NORMAL
  4349. if tokenizer.IsUnknown(token_id):
  4350. toktype = SentencePieceTokenTypes.UNKNOWN
  4351. elif tokenizer.IsControl(token_id):
  4352. toktype = SentencePieceTokenTypes.CONTROL
  4353. elif tokenizer.IsUnused(token_id):
  4354. toktype = SentencePieceTokenTypes.UNUSED
  4355. elif tokenizer.IsByte(token_id):
  4356. toktype = SentencePieceTokenTypes.BYTE
  4357. tokens[token_id] = text
  4358. scores[token_id] = score
  4359. toktypes[token_id] = toktype
  4360. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  4361. # of information about added/redefined tokens and modify them accordingly.
  4362. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4363. if tokenizer_config_file.is_file():
  4364. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4365. tokenizer_config_json = json.load(f)
  4366. if "added_tokens_decoder" in tokenizer_config_json:
  4367. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  4368. for token_id, token_json in added_tokens_decoder.items():
  4369. token_id = int(token_id)
  4370. if token_id >= vocab_size:
  4371. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  4372. continue
  4373. token_content = token_json["content"]
  4374. token_type = SentencePieceTokenTypes.USER_DEFINED
  4375. token_score = -10000.0
  4376. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  4377. # Set the score to 0.0 as in the original tokenizer.model
  4378. if ("special" in token_json) and token_json["special"]:
  4379. if token_content == tokenizer_config_json["unk_token"]:
  4380. token_type = SentencePieceTokenTypes.UNKNOWN
  4381. else:
  4382. token_type = SentencePieceTokenTypes.CONTROL
  4383. token_score = 0.0
  4384. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  4385. tokens[token_id] = token_content.encode("utf-8")
  4386. toktypes[token_id] = token_type
  4387. scores[token_id] = token_score
  4388. self.gguf_writer.add_tokenizer_model("llama")
  4389. self.gguf_writer.add_tokenizer_pre("default")
  4390. self.gguf_writer.add_token_list(tokens)
  4391. self.gguf_writer.add_token_scores(scores)
  4392. self.gguf_writer.add_token_types(toktypes)
  4393. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4394. special_vocab.add_to_gguf(self.gguf_writer)
  4395. def set_gguf_parameters(self):
  4396. super().set_gguf_parameters()
  4397. hparams = self.hparams
  4398. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4399. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  4400. _experts: list[dict[str, Tensor]] | None = None
  4401. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4402. n_head = self.hparams["num_attention_heads"]
  4403. n_kv_head = self.hparams.get("num_key_value_heads")
  4404. if name.endswith("q_proj.weight"):
  4405. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4406. if name.endswith("k_proj.weight"):
  4407. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4408. # process the experts separately
  4409. if name.find("block_sparse_moe.experts") != -1:
  4410. n_experts = self.hparams["num_local_experts"]
  4411. assert bid is not None
  4412. if self._experts is None:
  4413. self._experts = [{} for _ in range(self.block_count)]
  4414. self._experts[bid][name] = data_torch
  4415. if len(self._experts[bid]) >= n_experts * 3:
  4416. tensors: list[tuple[str, Tensor]] = []
  4417. # merge the experts into a single 3d tensor
  4418. for wid in ["w1", "w2", "w3"]:
  4419. datas: list[Tensor] = []
  4420. for xid in range(n_experts):
  4421. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  4422. datas.append(self._experts[bid][ename])
  4423. del self._experts[bid][ename]
  4424. data_torch = torch.stack(datas, dim=0)
  4425. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  4426. new_name = self.map_tensor_name(merged_name)
  4427. tensors.append((new_name, data_torch))
  4428. return tensors
  4429. else:
  4430. return []
  4431. return [(self.map_tensor_name(name), data_torch)]
  4432. def prepare_tensors(self):
  4433. super().prepare_tensors()
  4434. if self._experts is not None:
  4435. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4436. experts = [k for d in self._experts for k in d.keys()]
  4437. if len(experts) > 0:
  4438. raise ValueError(f"Unprocessed experts: {experts}")
  4439. @ModelBase.register("DeepseekForCausalLM")
  4440. class DeepseekModel(TextModel):
  4441. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  4442. def set_vocab(self):
  4443. try:
  4444. self._set_vocab_sentencepiece()
  4445. except FileNotFoundError:
  4446. self._set_vocab_gpt2()
  4447. def set_gguf_parameters(self):
  4448. super().set_gguf_parameters()
  4449. hparams = self.hparams
  4450. if (rope_dim := hparams.get("head_dim")) is None:
  4451. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  4452. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4453. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4454. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  4455. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4456. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  4457. self.gguf_writer.add_expert_weights_scale(1.0)
  4458. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  4459. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  4460. _experts: list[dict[str, Tensor]] | None = None
  4461. @staticmethod
  4462. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  4463. if n_head_kv is not None and n_head != n_head_kv:
  4464. n_head = n_head_kv
  4465. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  4466. .swapaxes(1, 2)
  4467. .reshape(weights.shape))
  4468. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4469. n_head = self.hparams["num_attention_heads"]
  4470. n_kv_head = self.hparams.get("num_key_value_heads")
  4471. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4472. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  4473. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4474. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  4475. # process the experts separately
  4476. if name.find("mlp.experts") != -1:
  4477. n_experts = self.hparams["n_routed_experts"]
  4478. assert bid is not None
  4479. if self._experts is None:
  4480. self._experts = [{} for _ in range(self.block_count)]
  4481. self._experts[bid][name] = data_torch
  4482. if len(self._experts[bid]) >= n_experts * 3:
  4483. tensors: list[tuple[str, Tensor]] = []
  4484. # merge the experts into a single 3d tensor
  4485. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4486. datas: list[Tensor] = []
  4487. for xid in range(n_experts):
  4488. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4489. datas.append(self._experts[bid][ename])
  4490. del self._experts[bid][ename]
  4491. data_torch = torch.stack(datas, dim=0)
  4492. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4493. new_name = self.map_tensor_name(merged_name)
  4494. tensors.append((new_name, data_torch))
  4495. return tensors
  4496. else:
  4497. return []
  4498. return [(self.map_tensor_name(name), data_torch)]
  4499. def prepare_tensors(self):
  4500. super().prepare_tensors()
  4501. if self._experts is not None:
  4502. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4503. experts = [k for d in self._experts for k in d.keys()]
  4504. if len(experts) > 0:
  4505. raise ValueError(f"Unprocessed experts: {experts}")
  4506. @ModelBase.register("DeepseekV2ForCausalLM")
  4507. @ModelBase.register("DeepseekV3ForCausalLM")
  4508. class DeepseekV2Model(TextModel):
  4509. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  4510. def set_vocab(self):
  4511. self._set_vocab_gpt2()
  4512. def set_gguf_parameters(self):
  4513. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  4514. self.hparams["num_key_value_heads"] = 1
  4515. super().set_gguf_parameters()
  4516. hparams = self.hparams
  4517. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  4518. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4519. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  4520. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  4521. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  4522. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  4523. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  4524. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  4525. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  4526. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  4527. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  4528. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  4529. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  4530. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  4531. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  4532. if hparams["scoring_func"] == "sigmoid":
  4533. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  4534. elif hparams["scoring_func"] == "softmax":
  4535. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  4536. else:
  4537. raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
  4538. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  4539. rope_scaling = self.hparams.get("rope_scaling") or {}
  4540. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  4541. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  4542. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4543. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  4544. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_scaling["mscale_all_dim"])
  4545. _experts: list[dict[str, Tensor]] | None = None
  4546. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4547. # rename e_score_correction_bias tensors
  4548. if name.endswith("e_score_correction_bias"):
  4549. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  4550. # skip Multi-Token Prediction (MTP) layers
  4551. block_count = self.hparams["num_hidden_layers"]
  4552. match = re.match(r"model.layers.(\d+)", name)
  4553. if match and int(match.group(1)) >= block_count:
  4554. return []
  4555. # process the experts separately
  4556. if name.find("mlp.experts") != -1:
  4557. n_experts = self.hparams["n_routed_experts"]
  4558. assert bid is not None
  4559. if self._experts is None:
  4560. self._experts = [{} for _ in range(self.block_count)]
  4561. self._experts[bid][name] = data_torch
  4562. if len(self._experts[bid]) >= n_experts * 3:
  4563. tensors: list[tuple[str, Tensor]] = []
  4564. # merge the experts into a single 3d tensor
  4565. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4566. datas: list[Tensor] = []
  4567. for xid in range(n_experts):
  4568. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4569. datas.append(self._experts[bid][ename])
  4570. del self._experts[bid][ename]
  4571. data_torch = torch.stack(datas, dim=0)
  4572. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4573. new_name = self.map_tensor_name(merged_name)
  4574. tensors.append((new_name, data_torch))
  4575. return tensors
  4576. else:
  4577. return []
  4578. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  4579. if name.endswith("kv_b_proj.weight"):
  4580. name_kb = name.replace("kv_b_proj", "k_b_proj")
  4581. name_vb = name.replace("kv_b_proj", "v_b_proj")
  4582. n_head_kv = self.hparams["num_key_value_heads"]
  4583. v_head_dim = self.hparams["v_head_dim"]
  4584. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  4585. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  4586. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  4587. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  4588. k_b = k_b.transpose(1, 2)
  4589. return [
  4590. (self.map_tensor_name(name_kb), k_b),
  4591. (self.map_tensor_name(name_vb), v_b)
  4592. ]
  4593. return [(self.map_tensor_name(name), data_torch)]
  4594. def prepare_tensors(self):
  4595. super().prepare_tensors()
  4596. if self._experts is not None:
  4597. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4598. experts = [k for d in self._experts for k in d.keys()]
  4599. if len(experts) > 0:
  4600. raise ValueError(f"Unprocessed experts: {experts}")
  4601. @ModelBase.register("Dots1ForCausalLM")
  4602. class Dots1Model(Qwen2MoeModel):
  4603. model_arch = gguf.MODEL_ARCH.DOTS1
  4604. def __init__(self, *args, **kwargs):
  4605. super().__init__(*args, **kwargs)
  4606. self.hparams["num_experts"] = self.hparams["n_routed_experts"]
  4607. def set_gguf_parameters(self):
  4608. super().set_gguf_parameters()
  4609. self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
  4610. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  4611. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  4612. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  4613. if self.hparams["scoring_func"] == "noaux_tc":
  4614. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  4615. else:
  4616. raise ValueError(f"Unsupported scoring_func value: {self.hparams['scoring_func']}")
  4617. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  4618. if name.endswith("e_score_correction_bias"):
  4619. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  4620. if "shared_experts" in name:
  4621. return [(self.map_tensor_name(name), data_torch)]
  4622. return super().modify_tensors(data_torch, name, bid)
  4623. @ModelBase.register("PLMForCausalLM")
  4624. class PLMModel(TextModel):
  4625. model_arch = gguf.MODEL_ARCH.PLM
  4626. def set_vocab(self):
  4627. self._set_vocab_gpt2()
  4628. def set_gguf_parameters(self):
  4629. super().set_gguf_parameters()
  4630. hparams = self.hparams
  4631. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4632. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  4633. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  4634. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  4635. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  4636. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4637. return [(self.map_tensor_name(name), data_torch)]
  4638. def prepare_tensors(self):
  4639. super().prepare_tensors()
  4640. @ModelBase.register("T5WithLMHeadModel")
  4641. @ModelBase.register("T5ForConditionalGeneration")
  4642. @ModelBase.register("MT5ForConditionalGeneration")
  4643. @ModelBase.register("UMT5ForConditionalGeneration")
  4644. class T5Model(TextModel):
  4645. model_arch = gguf.MODEL_ARCH.T5
  4646. def __init__(self, *args, **kwargs):
  4647. super().__init__(*args, **kwargs)
  4648. self.shared_token_embeddings_found = False
  4649. def set_vocab(self):
  4650. # to avoid TypeError: Descriptors cannot be created directly
  4651. # exception when importing sentencepiece_model_pb2
  4652. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  4653. from sentencepiece import SentencePieceProcessor
  4654. from sentencepiece import sentencepiece_model_pb2 as model
  4655. tokenizer_path = self.dir_model / 'tokenizer.model'
  4656. # many older models use spiece.model tokenizer model filename
  4657. if not tokenizer_path.is_file():
  4658. tokenizer_path = self.dir_model / 'spiece.model'
  4659. if not tokenizer_path.is_file():
  4660. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  4661. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4662. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4663. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  4664. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  4665. # assure the tokenizer model file name is correct
  4666. assert tokenizer_path.name == 'tokenizer.model'
  4667. return self._set_vocab_sentencepiece()
  4668. else:
  4669. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  4670. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4671. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4672. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  4673. tokenizer = SentencePieceProcessor()
  4674. tokenizer.LoadFromFile(str(tokenizer_path))
  4675. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4676. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4677. scores: list[float] = [-10000.0] * vocab_size
  4678. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4679. for token_id in range(tokenizer.vocab_size()):
  4680. piece = tokenizer.IdToPiece(token_id)
  4681. text = piece.encode("utf-8")
  4682. score = tokenizer.GetScore(token_id)
  4683. toktype = SentencePieceTokenTypes.NORMAL
  4684. if tokenizer.IsUnknown(token_id):
  4685. toktype = SentencePieceTokenTypes.UNKNOWN
  4686. elif tokenizer.IsControl(token_id):
  4687. toktype = SentencePieceTokenTypes.CONTROL
  4688. elif tokenizer.IsUnused(token_id):
  4689. toktype = SentencePieceTokenTypes.UNUSED
  4690. elif tokenizer.IsByte(token_id):
  4691. toktype = SentencePieceTokenTypes.BYTE
  4692. tokens[token_id] = text
  4693. scores[token_id] = score
  4694. toktypes[token_id] = toktype
  4695. added_tokens_file = self.dir_model / 'added_tokens.json'
  4696. if added_tokens_file.is_file():
  4697. with open(added_tokens_file, "r", encoding="utf-8") as f:
  4698. added_tokens_json = json.load(f)
  4699. for key in added_tokens_json:
  4700. token_id = added_tokens_json[key]
  4701. if token_id >= vocab_size:
  4702. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  4703. continue
  4704. tokens[token_id] = key.encode("utf-8")
  4705. scores[token_id] = -1000.0
  4706. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4707. if vocab_size > len(tokens):
  4708. pad_count = vocab_size - len(tokens)
  4709. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  4710. for i in range(1, pad_count + 1):
  4711. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  4712. scores.append(-1000.0)
  4713. toktypes.append(SentencePieceTokenTypes.UNUSED)
  4714. self.gguf_writer.add_tokenizer_model("t5")
  4715. self.gguf_writer.add_tokenizer_pre("default")
  4716. self.gguf_writer.add_token_list(tokens)
  4717. self.gguf_writer.add_token_scores(scores)
  4718. self.gguf_writer.add_token_types(toktypes)
  4719. self.gguf_writer.add_add_space_prefix(add_prefix)
  4720. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  4721. if precompiled_charsmap:
  4722. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  4723. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4724. special_vocab.add_to_gguf(self.gguf_writer)
  4725. def set_gguf_parameters(self):
  4726. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  4727. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  4728. n_ctx = 512
  4729. self.gguf_writer.add_context_length(n_ctx)
  4730. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  4731. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  4732. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  4733. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  4734. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  4735. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  4736. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4737. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  4738. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  4739. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  4740. self.gguf_writer.add_file_type(self.ftype)
  4741. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4742. del bid # unused
  4743. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  4744. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  4745. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  4746. # and decoder and ignore the remaining ones.
  4747. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  4748. if not self.shared_token_embeddings_found:
  4749. name = "shared.weight"
  4750. self.shared_token_embeddings_found = True
  4751. else:
  4752. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  4753. return []
  4754. return [(self.map_tensor_name(name), data_torch)]
  4755. @ModelBase.register("T5EncoderModel")
  4756. class T5EncoderModel(TextModel):
  4757. model_arch = gguf.MODEL_ARCH.T5ENCODER
  4758. def __init__(self, *args, **kwargs):
  4759. super().__init__(*args, **kwargs)
  4760. self.shared_token_embeddings_found = False
  4761. def set_vocab(self):
  4762. # to avoid TypeError: Descriptors cannot be created directly
  4763. # exception when importing sentencepiece_model_pb2
  4764. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  4765. from sentencepiece import SentencePieceProcessor
  4766. from sentencepiece import sentencepiece_model_pb2 as model
  4767. tokenizer_path = self.dir_model / 'tokenizer.model'
  4768. # many older models use spiece.model tokenizer model filename
  4769. if not tokenizer_path.is_file():
  4770. tokenizer_path = self.dir_model / 'spiece.model'
  4771. if not tokenizer_path.is_file():
  4772. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  4773. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4774. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4775. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  4776. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  4777. # assure the tokenizer model file name is correct
  4778. assert tokenizer_path.name == 'tokenizer.model'
  4779. return self._set_vocab_sentencepiece()
  4780. else:
  4781. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  4782. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4783. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4784. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  4785. tokenizer = SentencePieceProcessor()
  4786. tokenizer.LoadFromFile(str(tokenizer_path))
  4787. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4788. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4789. scores: list[float] = [-10000.0] * vocab_size
  4790. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4791. for token_id in range(tokenizer.vocab_size()):
  4792. piece = tokenizer.IdToPiece(token_id)
  4793. text = piece.encode("utf-8")
  4794. score = tokenizer.GetScore(token_id)
  4795. toktype = SentencePieceTokenTypes.NORMAL
  4796. if tokenizer.IsUnknown(token_id):
  4797. toktype = SentencePieceTokenTypes.UNKNOWN
  4798. elif tokenizer.IsControl(token_id):
  4799. toktype = SentencePieceTokenTypes.CONTROL
  4800. elif tokenizer.IsUnused(token_id):
  4801. toktype = SentencePieceTokenTypes.UNUSED
  4802. elif tokenizer.IsByte(token_id):
  4803. toktype = SentencePieceTokenTypes.BYTE
  4804. tokens[token_id] = text
  4805. scores[token_id] = score
  4806. toktypes[token_id] = toktype
  4807. added_tokens_file = self.dir_model / 'added_tokens.json'
  4808. if added_tokens_file.is_file():
  4809. with open(added_tokens_file, "r", encoding="utf-8") as f:
  4810. added_tokens_json = json.load(f)
  4811. for key in added_tokens_json:
  4812. token_id = added_tokens_json[key]
  4813. if token_id >= vocab_size:
  4814. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  4815. continue
  4816. tokens[token_id] = key.encode("utf-8")
  4817. scores[token_id] = -1000.0
  4818. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4819. if vocab_size > len(tokens):
  4820. pad_count = vocab_size - len(tokens)
  4821. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  4822. for i in range(1, pad_count + 1):
  4823. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  4824. scores.append(-1000.0)
  4825. toktypes.append(SentencePieceTokenTypes.UNUSED)
  4826. self.gguf_writer.add_tokenizer_model("t5")
  4827. self.gguf_writer.add_tokenizer_pre("default")
  4828. self.gguf_writer.add_token_list(tokens)
  4829. self.gguf_writer.add_token_scores(scores)
  4830. self.gguf_writer.add_token_types(toktypes)
  4831. self.gguf_writer.add_add_space_prefix(add_prefix)
  4832. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  4833. if precompiled_charsmap:
  4834. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  4835. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4836. special_vocab.add_to_gguf(self.gguf_writer)
  4837. def set_gguf_parameters(self):
  4838. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  4839. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  4840. n_ctx = 512
  4841. self.gguf_writer.add_context_length(n_ctx)
  4842. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  4843. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  4844. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  4845. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  4846. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  4847. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  4848. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4849. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  4850. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  4851. self.gguf_writer.add_file_type(self.ftype)
  4852. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4853. del bid # unused
  4854. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  4855. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  4856. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  4857. # and decoder and ignore the remaining ones.
  4858. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  4859. if not self.shared_token_embeddings_found:
  4860. name = "shared.weight"
  4861. self.shared_token_embeddings_found = True
  4862. else:
  4863. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  4864. return []
  4865. return [(self.map_tensor_name(name), data_torch)]
  4866. @ModelBase.register("JAISLMHeadModel")
  4867. class JaisModel(TextModel):
  4868. model_arch = gguf.MODEL_ARCH.JAIS
  4869. def __init__(self, *args, **kwargs):
  4870. super().__init__(*args, **kwargs)
  4871. # SwigLU activation
  4872. assert self.hparams["activation_function"] == "swiglu"
  4873. # ALiBi position embedding
  4874. assert self.hparams["position_embedding_type"] == "alibi"
  4875. # Embeddings scale
  4876. self.embeddings_scale = 1.0
  4877. if 'mup_embeddings_scale' in self.hparams:
  4878. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  4879. elif 'embeddings_scale' in self.hparams:
  4880. self.embeddings_scale = self.hparams['embeddings_scale']
  4881. else:
  4882. assert False
  4883. self.width_scale = 1.0
  4884. if 'mup_output_alpha' in self.hparams:
  4885. assert 'mup_width_scale' in self.hparams
  4886. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  4887. elif 'width_scale' in self.hparams:
  4888. self.width_scale = self.hparams['width_scale']
  4889. else:
  4890. assert False
  4891. self.max_alibi_bias = 8.0
  4892. def set_vocab(self):
  4893. self._set_vocab_gpt2()
  4894. def set_gguf_parameters(self):
  4895. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  4896. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  4897. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  4898. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  4899. self.gguf_writer.add_head_count(self.hparams["n_head"])
  4900. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4901. self.gguf_writer.add_file_type(self.ftype)
  4902. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4903. del bid # unused
  4904. tensors: list[tuple[str, Tensor]] = []
  4905. # we don't need these
  4906. if name.endswith((".attn.bias")):
  4907. return tensors
  4908. if name.endswith(("relative_pe.slopes")):
  4909. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  4910. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  4911. # but Jais's PyTorch model simply precalculates the slope values and places them
  4912. # in relative_pes.slopes
  4913. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  4914. first_val = float(data_torch[0].item())
  4915. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  4916. return tensors
  4917. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  4918. data_torch = data_torch.transpose(1, 0)
  4919. new_name = self.map_tensor_name(name)
  4920. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  4921. tensors.append((new_name, data_torch * self.embeddings_scale))
  4922. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  4923. tensors.append((new_name, data_torch * self.width_scale))
  4924. else:
  4925. tensors.append((new_name, data_torch))
  4926. return tensors
  4927. def prepare_tensors(self):
  4928. super().prepare_tensors()
  4929. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  4930. @ModelBase.register("Glm4ForCausalLM")
  4931. class Glm4Model(TextModel):
  4932. model_arch = gguf.MODEL_ARCH.GLM4
  4933. def set_vocab(self):
  4934. from transformers import AutoTokenizer
  4935. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  4936. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  4937. tokens, toktypes, tokpre = self.get_vocab_base()
  4938. self.gguf_writer.add_tokenizer_model("gpt2")
  4939. self.gguf_writer.add_tokenizer_pre(tokpre)
  4940. self.gguf_writer.add_token_list(tokens)
  4941. self.gguf_writer.add_token_types(toktypes)
  4942. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  4943. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  4944. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  4945. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  4946. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  4947. special_vocab.add_to_gguf(self.gguf_writer)
  4948. def set_gguf_parameters(self):
  4949. super().set_gguf_parameters()
  4950. rope_dim = self.hparams["head_dim"]
  4951. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  4952. rope_scaling = self.hparams.get("rope_scaling") or {}
  4953. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  4954. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  4955. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4956. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  4957. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  4958. class ChatGLMModel(TextModel):
  4959. model_arch = gguf.MODEL_ARCH.CHATGLM
  4960. def set_vocab_chatglm3(self):
  4961. dir_model = self.dir_model
  4962. hparams = self.hparams
  4963. tokens: list[bytes] = []
  4964. toktypes: list[int] = []
  4965. scores: list[float] = []
  4966. from transformers import AutoTokenizer
  4967. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  4968. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  4969. assert max(tokenizer.get_vocab().values()) < vocab_size
  4970. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  4971. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  4972. for token_id in range(vocab_size):
  4973. piece = tokenizer._convert_id_to_token(token_id)
  4974. if token_id == 0:
  4975. piece = "<unk>"
  4976. elif token_id == 1:
  4977. piece = "<bos>"
  4978. elif token_id == 2:
  4979. piece = "<eos>"
  4980. text = piece.encode("utf-8")
  4981. score = 0.0
  4982. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  4983. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  4984. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  4985. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  4986. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  4987. if piece in special_tokens:
  4988. toktype = SentencePieceTokenTypes.CONTROL
  4989. elif len(piece) == 0:
  4990. text = f"[PAD{token_id}]".encode("utf-8")
  4991. toktype = SentencePieceTokenTypes.UNUSED
  4992. else:
  4993. toktype = SentencePieceTokenTypes.USER_DEFINED
  4994. tokens.append(text)
  4995. scores.append(score)
  4996. toktypes.append(toktype)
  4997. continue
  4998. toktype = SentencePieceTokenTypes.NORMAL
  4999. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  5000. toktype = SentencePieceTokenTypes.UNKNOWN
  5001. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  5002. toktype = SentencePieceTokenTypes.CONTROL
  5003. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  5004. toktype = SentencePieceTokenTypes.UNUSED
  5005. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  5006. toktype = SentencePieceTokenTypes.BYTE
  5007. tokens.append(text)
  5008. scores.append(score)
  5009. toktypes.append(toktype)
  5010. self.gguf_writer.add_tokenizer_model("llama")
  5011. # glm3 needs prefix and suffix formatted as:
  5012. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  5013. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  5014. self.gguf_writer.add_token_list(tokens)
  5015. self.gguf_writer.add_token_scores(scores)
  5016. self.gguf_writer.add_token_types(toktypes)
  5017. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5018. special_vocab.add_to_gguf(self.gguf_writer)
  5019. @staticmethod
  5020. def token_bytes_to_string(b):
  5021. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  5022. byte_encoder = bytes_to_unicode()
  5023. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  5024. @staticmethod
  5025. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  5026. parts = [bytes([b]) for b in token]
  5027. while True:
  5028. min_idx = None
  5029. min_rank = None
  5030. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  5031. rank = mergeable_ranks.get(pair[0] + pair[1])
  5032. if rank is not None and (min_rank is None or rank < min_rank):
  5033. min_idx = i
  5034. min_rank = rank
  5035. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  5036. break
  5037. assert min_idx is not None
  5038. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  5039. return parts
  5040. def set_vocab(self):
  5041. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  5042. self.set_vocab_chatglm3()
  5043. return
  5044. dir_model = self.dir_model
  5045. hparams = self.hparams
  5046. tokens: list[str] = []
  5047. toktypes: list[int] = []
  5048. from transformers import AutoTokenizer
  5049. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  5050. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  5051. assert max(tokenizer.get_vocab().values()) < vocab_size
  5052. tokens, toktypes, tokpre = self.get_vocab_base()
  5053. self.gguf_writer.add_tokenizer_model("gpt2")
  5054. self.gguf_writer.add_tokenizer_pre(tokpre)
  5055. self.gguf_writer.add_token_list(tokens)
  5056. self.gguf_writer.add_token_types(toktypes)
  5057. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5058. # only add special tokens when they were not already loaded from config.json
  5059. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  5060. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  5061. # this one is usually not in config.json anyway
  5062. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  5063. special_vocab.add_to_gguf(self.gguf_writer)
  5064. def set_gguf_parameters(self):
  5065. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  5066. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  5067. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  5068. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  5069. self.gguf_writer.add_embedding_length(n_embed)
  5070. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  5071. self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
  5072. self.gguf_writer.add_head_count(n_head)
  5073. self.gguf_writer.add_head_count_kv(n_head_kv)
  5074. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  5075. self.gguf_writer.add_file_type(self.ftype)
  5076. if "attention_dim" in self.hparams:
  5077. rope_dim = self.hparams["attention_dim"]
  5078. else:
  5079. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5080. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  5081. self.gguf_writer.add_add_bos_token(False)
  5082. rope_freq = 10000
  5083. if "rope_ratio" in self.hparams:
  5084. rope_freq = rope_freq * self.hparams["rope_ratio"]
  5085. self.gguf_writer.add_rope_freq_base(rope_freq)
  5086. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5087. del bid # unused
  5088. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  5089. return []
  5090. name = name.removeprefix("transformer.")
  5091. return [(self.map_tensor_name(name), data_torch)]
  5092. @ModelBase.register("NemotronForCausalLM")
  5093. class NemotronModel(TextModel):
  5094. model_arch = gguf.MODEL_ARCH.NEMOTRON
  5095. def set_vocab(self):
  5096. self._set_vocab_sentencepiece()
  5097. self.gguf_writer.add_pad_token_id(0)
  5098. self.gguf_writer.add_unk_token_id(1)
  5099. def set_gguf_parameters(self):
  5100. super().set_gguf_parameters()
  5101. hparams = self.hparams
  5102. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5103. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  5104. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  5105. # * Partial RoPE
  5106. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  5107. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  5108. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  5109. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  5110. # * RopeScaling for Nemotron
  5111. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  5112. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5113. else:
  5114. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  5115. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  5116. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5117. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  5118. # model.layers.{l}.input_layernorm.weight
  5119. # model.layers.{l}.post_attention_layernorm.weight
  5120. # model.norm.weight
  5121. if name.endswith("norm.weight"):
  5122. data_torch = data_torch + 1
  5123. return [(self.map_tensor_name(name), data_torch)]
  5124. @ModelBase.register("ExaoneForCausalLM")
  5125. class ExaoneModel(TextModel):
  5126. model_arch = gguf.MODEL_ARCH.EXAONE
  5127. def set_gguf_parameters(self):
  5128. hparams = self.hparams
  5129. assert (hparams["activation_function"] == "silu")
  5130. max_position_embeddings = hparams["max_position_embeddings"]
  5131. embed_dim = hparams["hidden_size"]
  5132. num_heads = hparams["num_attention_heads"]
  5133. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  5134. layer_norm_eps = hparams["layer_norm_epsilon"]
  5135. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  5136. num_layers = hparams["num_layers"]
  5137. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  5138. # attention_dropout_rate = hparams["attention_dropout"]
  5139. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  5140. # embed_dropout_rate = hparams["embed_dropout"]
  5141. self.gguf_writer.add_embedding_length(embed_dim)
  5142. self.gguf_writer.add_head_count(num_heads)
  5143. self.gguf_writer.add_head_count_kv(num_kv_heads)
  5144. self.gguf_writer.add_context_length(max_position_embeddings)
  5145. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  5146. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5147. self.gguf_writer.add_block_count(num_layers)
  5148. self.gguf_writer.add_file_type(self.ftype)
  5149. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  5150. self.gguf_writer.add_rope_freq_base(rope_theta)
  5151. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  5152. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  5153. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  5154. rope_scaling = self.hparams.get("rope_scaling") or {}
  5155. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  5156. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  5157. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5158. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  5159. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  5160. if rope_scaling.get("rope_type", '').lower() == "llama3":
  5161. base = self.hparams.get("rope_theta", 10000.0)
  5162. if (dim := self.hparams.get("head_dim")) is None:
  5163. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5164. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  5165. factor = rope_scaling.get("factor", 8.0)
  5166. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  5167. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  5168. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  5169. low_freq_wavelen = old_context_len / low_freq_factor
  5170. high_freq_wavelen = old_context_len / high_freq_factor
  5171. assert low_freq_wavelen != high_freq_wavelen
  5172. rope_factors = []
  5173. for freq in freqs:
  5174. wavelen = 2 * math.pi / freq
  5175. if wavelen < high_freq_wavelen:
  5176. rope_factors.append(1)
  5177. elif wavelen > low_freq_wavelen:
  5178. rope_factors.append(factor)
  5179. else:
  5180. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  5181. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  5182. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  5183. @ModelBase.register("GraniteForCausalLM")
  5184. class GraniteModel(LlamaModel):
  5185. """Conversion for IBM's GraniteForCausalLM"""
  5186. model_arch = gguf.MODEL_ARCH.GRANITE
  5187. def set_gguf_parameters(self):
  5188. """Granite uses standard llama parameters with the following differences:
  5189. - No head_dim support
  5190. - New multiplier params:
  5191. - attention_scale
  5192. - embedding_scale
  5193. - residual_scale
  5194. - logits_scaling
  5195. """
  5196. if head_dim := self.hparams.pop("head_dim", None):
  5197. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  5198. super().set_gguf_parameters()
  5199. # NOTE: Convert _multiplier params to _scale params for naming
  5200. # consistency
  5201. if attention_scale := self.hparams.get("attention_multiplier"):
  5202. self.gguf_writer.add_attention_scale(attention_scale)
  5203. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  5204. if embedding_scale := self.hparams.get("embedding_multiplier"):
  5205. self.gguf_writer.add_embedding_scale(embedding_scale)
  5206. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  5207. if residual_scale := self.hparams.get("residual_multiplier"):
  5208. self.gguf_writer.add_residual_scale(residual_scale)
  5209. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  5210. if logits_scale := self.hparams.get("logits_scaling"):
  5211. self.gguf_writer.add_logit_scale(logits_scale)
  5212. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  5213. @ModelBase.register("GraniteMoeForCausalLM", "GraniteMoeSharedForCausalLM")
  5214. class GraniteMoeModel(GraniteModel):
  5215. """Conversion for IBM's GraniteMoeForCausalLM"""
  5216. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  5217. def set_gguf_parameters(self):
  5218. """GraniteMoeShared uses GraniteMoe parameters plus the following:
  5219. - shared_intermediate_size
  5220. """
  5221. super().set_gguf_parameters()
  5222. if shared_feed_forward_length := self.hparams.get("shared_intermediate_size"):
  5223. self.gguf_writer.add_expert_shared_feed_forward_length(shared_feed_forward_length)
  5224. logger.info("gguf: (granitemoeshared) shared_feed_forward_length = %s", shared_feed_forward_length)
  5225. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5226. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  5227. is used. This essentially merges w1 and w3 into a single tensor with 2x
  5228. the hidden size that is then split during forward. To keep compatibility
  5229. with existing mixtral support, we pull them apart here.
  5230. """
  5231. if name.endswith("block_sparse_moe.input_linear.weight"):
  5232. ffn_dim = self.hparams["intermediate_size"]
  5233. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  5234. gate, up = data_torch.split(ffn_dim, dim=-2)
  5235. return [
  5236. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  5237. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  5238. ]
  5239. has_experts = bool(self.hparams.get('num_local_experts'))
  5240. if name.endswith("shared_mlp.input_linear.weight"):
  5241. ffn_dim = self.hparams["shared_intermediate_size"]
  5242. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * shared_intermediate_size"
  5243. gate, up = data_torch.split(ffn_dim, dim=-2)
  5244. if has_experts:
  5245. return [
  5246. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), gate),
  5247. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), up),
  5248. ]
  5249. return [
  5250. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), gate),
  5251. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), up),
  5252. ]
  5253. if not has_experts and name.endswith("shared_mlp.output_linear.weight"):
  5254. return [
  5255. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, bid), data_torch)
  5256. ]
  5257. return super().modify_tensors(data_torch, name, bid)
  5258. @ModelBase.register("GraniteMoeHybridForCausalLM", "BambaForCausalLM")
  5259. class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
  5260. """GraniteHybrid is a hybrid SSM + Attention model that uses Mamba2 SSM
  5261. layers and optionally uses MoE w/ a shared expert"""
  5262. model_arch = gguf.MODEL_ARCH.GRANITE_HYBRID
  5263. undo_permute = True
  5264. def __init__(self, *args, **kwargs):
  5265. # Hybrid mamba models use a prefix for the mamba-specific params.
  5266. # TODO: Extend this if the prefix(es) need to be configurable
  5267. self.hparam_prefixes = ["mamba"]
  5268. super().__init__(*args, **kwargs)
  5269. # Lists of which layers use ssm vs attention
  5270. self._attn_layers = self.get_attn_layers()
  5271. self._ssm_layers = [
  5272. i for i in range(self.block_count)
  5273. if i not in self._attn_layers
  5274. ]
  5275. # n_group and d_inner are used during reshape_tensors for mamba2
  5276. self.d_model = self.find_hparam(["hidden_size", "d_model"])
  5277. self.n_group = self.find_hparam(["n_groups"])
  5278. self.d_inner = self.find_hparam(["expand"]) * self.d_model
  5279. def get_attn_layers(self):
  5280. # Explicit list of layer type names
  5281. if layer_types := self.hparams.get("layer_types"):
  5282. return [
  5283. i for i, typ in enumerate(layer_types)
  5284. if typ == "attention"
  5285. ]
  5286. # Layer types indicated by index or period
  5287. attn_layers = self.hparams.get("attn_layer_indices", [])
  5288. if not attn_layers:
  5289. attn_period = self.hparams.get("attn_layer_period")
  5290. assert attn_period, "Didn't find attn_layer_indices or attn_layer_period"
  5291. attn_offset = self.hparams.get("attn_layer_offset")
  5292. assert attn_offset is not None, "No attention layer offset set with attn_layer_period"
  5293. attn_layers = [
  5294. i for i in range(self.block_count)
  5295. if i % attn_period == attn_offset
  5296. ]
  5297. return attn_layers
  5298. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  5299. prefixed = []
  5300. for pfx in self.hparam_prefixes:
  5301. prefixed.extend(
  5302. "_".join([pfx, k])
  5303. for k in keys
  5304. )
  5305. keys = list(keys) + prefixed
  5306. return Mamba2Model.find_hparam(self, keys, *args, **kwargs)
  5307. def modify_tensors(
  5308. self, data_torch: Tensor, name: str, bid: int | None
  5309. ) -> Iterable[tuple[str, Tensor]]:
  5310. if (
  5311. name.endswith("block_sparse_moe.input_linear.weight")
  5312. or "shared_mlp" in name
  5313. ):
  5314. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  5315. # Determine whether this is a mamba layer or an attention layer
  5316. if bid in self._ssm_layers:
  5317. return Mamba2Model.modify_tensors(self, data_torch, name, bid)
  5318. elif bid in self._attn_layers:
  5319. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  5320. return [(self.map_tensor_name(name), data_torch)]
  5321. def set_gguf_parameters(self):
  5322. """This method merges params from both parents and some that are
  5323. specific to this model. The result is some duplication of how the params
  5324. get set. The following warnings are expected during conversion:
  5325. WARNING:Duplicated key name 'granitehybrid.attention.head_count_kv'
  5326. WARNING:Duplicated key name 'granitehybrid.context_length'
  5327. """
  5328. GraniteMoeModel.set_gguf_parameters(self)
  5329. ## Mamba mixer params ##
  5330. self.gguf_writer.add_ssm_conv_kernel(self.find_hparam(["conv_kernel", "d_conv"]))
  5331. self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state"]))
  5332. self.gguf_writer.add_ssm_group_count(self.n_group)
  5333. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  5334. # NOTE: The mamba_dt_rank is _not_ the right field for how this is used
  5335. # in llama.cpp
  5336. self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["n_heads"]))
  5337. ## Attention params ##
  5338. head_count_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  5339. head_count_kv_vec = [
  5340. head_count_kv if i in self._attn_layers else 0 for i in range(self.block_count)
  5341. ]
  5342. if rope_dim := self.hparams.get("attn_rotary_emb"):
  5343. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5344. self.gguf_writer.add_head_count_kv(head_count_kv_vec)
  5345. ## If Bamba, use rope, otherwise don't
  5346. use_rope = "BambaForCausalLM" in self.hparams["architectures"]
  5347. self.gguf_writer.add_rope_scaling_finetuned(use_rope)
  5348. if not use_rope:
  5349. self.gguf_writer.add_context_length(2**20)
  5350. ## Validation ##
  5351. d_head = self.find_hparam(["d_head"], optional=True) or 64
  5352. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  5353. assert self.d_inner % d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {d_head}"
  5354. def set_vocab(self):
  5355. self.hparams["pad_vocab_size_multiple"] = 8
  5356. Mamba2Model.set_vocab(self)
  5357. @ModelBase.register("BailingMoeForCausalLM")
  5358. class BailingMoeModel(TextModel):
  5359. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  5360. def set_vocab(self):
  5361. self._set_vocab_gpt2()
  5362. def set_gguf_parameters(self):
  5363. super().set_gguf_parameters()
  5364. hparams = self.hparams
  5365. if (rope_dim := hparams.get("head_dim")) is None:
  5366. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  5367. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5368. rope_scaling = self.hparams.get("rope_scaling") or {}
  5369. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5370. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5371. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5372. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5373. else:
  5374. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5375. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5376. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5377. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5378. self.gguf_writer.add_expert_weights_scale(1.0)
  5379. self.gguf_writer.add_expert_count(hparams["num_experts"])
  5380. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  5381. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  5382. _experts: list[dict[str, Tensor]] | None = None
  5383. @staticmethod
  5384. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  5385. if n_head_kv is not None and n_head != n_head_kv:
  5386. n_head = n_head_kv
  5387. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  5388. .swapaxes(1, 2)
  5389. .reshape(weights.shape))
  5390. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5391. n_head = self.hparams["num_attention_heads"]
  5392. n_kv_head = self.hparams.get("num_key_value_heads")
  5393. n_embd = self.hparams["hidden_size"]
  5394. if (head_dim := self.hparams.get("head_dim")) is None:
  5395. head_dim = n_embd // n_head
  5396. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  5397. if name.endswith("attention.dense.weight"):
  5398. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  5399. elif name.endswith("query_key_value.weight"):
  5400. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  5401. return [
  5402. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  5403. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  5404. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  5405. ]
  5406. elif name.find("mlp.experts") != -1:
  5407. n_experts = self.hparams["num_experts"]
  5408. assert bid is not None
  5409. tensors: list[tuple[str, Tensor]] = []
  5410. if self._experts is None:
  5411. self._experts = [{} for _ in range(self.block_count)]
  5412. self._experts[bid][name] = data_torch
  5413. if len(self._experts[bid]) >= n_experts * 3:
  5414. # merge the experts into a single 3d tensor
  5415. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5416. datas: list[Tensor] = []
  5417. for xid in range(n_experts):
  5418. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5419. datas.append(self._experts[bid][ename])
  5420. del self._experts[bid][ename]
  5421. data_torch = torch.stack(datas, dim=0)
  5422. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5423. new_name = self.map_tensor_name(merged_name)
  5424. tensors.append((new_name, data_torch))
  5425. return tensors
  5426. new_name = self.map_tensor_name(name)
  5427. if new_name == output_name and self.hparams.get("norm_head"):
  5428. data_torch = data_torch.float()
  5429. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  5430. return [(new_name, data_torch)]
  5431. def prepare_tensors(self):
  5432. super().prepare_tensors()
  5433. if self._experts is not None:
  5434. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5435. experts = [k for d in self._experts for k in d.keys()]
  5436. if len(experts) > 0:
  5437. raise ValueError(f"Unprocessed experts: {experts}")
  5438. @ModelBase.register("ChameleonForConditionalGeneration")
  5439. @ModelBase.register("ChameleonForCausalLM") # obsolete
  5440. class ChameleonModel(TextModel):
  5441. model_arch = gguf.MODEL_ARCH.CHAMELEON
  5442. def set_gguf_parameters(self):
  5443. super().set_gguf_parameters()
  5444. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  5445. def set_vocab(self):
  5446. self._set_vocab_gpt2()
  5447. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5448. # ignore image tokenizer for now
  5449. # TODO: remove this once image support is implemented for Chameleon
  5450. if name.startswith("model.vqmodel"):
  5451. return []
  5452. n_head = self.hparams["num_attention_heads"]
  5453. n_kv_head = self.hparams.get("num_key_value_heads")
  5454. hidden_dim = self.hparams.get("hidden_size")
  5455. if name.endswith(("q_proj.weight", "q_proj.bias")):
  5456. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5457. if name.endswith(("k_proj.weight", "k_proj.bias")):
  5458. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5459. if name.endswith(("q_norm.weight", "q_norm.bias")):
  5460. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  5461. if name.endswith(("k_norm.weight", "k_norm.bias")):
  5462. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  5463. return [(self.map_tensor_name(name), data_torch)]
  5464. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  5465. @staticmethod
  5466. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  5467. head_dim = hidden_dim // n_heads
  5468. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  5469. data_torch = data_torch.repeat_interleave(n_heads, 0)
  5470. return data_torch
  5471. @ModelBase.register("UltravoxModel")
  5472. class UltravoxModel(TextModel):
  5473. model_arch = gguf.MODEL_ARCH.LLAMA # dummy
  5474. def __init__(self, *args, **kwargs):
  5475. super().__init__(*args, **kwargs)
  5476. raise NotImplementedError("Ultravox does not have text decoder. Instead, it uses Llama or other models for text. If you want to get the audio encoder, please use --mmproj argument")
  5477. @ModelBase.register("Qwen2AudioForConditionalGeneration")
  5478. class WhisperEncoderModel(MmprojModel):
  5479. has_vision_encoder = False # no vision encoder
  5480. has_audio_encoder = True
  5481. def __init__(self, *args, **kwargs):
  5482. super().__init__(*args, **kwargs)
  5483. self.hparams["hidden_size"] = self.hparams["d_model"]
  5484. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  5485. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  5486. def set_gguf_parameters(self):
  5487. super().set_gguf_parameters()
  5488. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2A)
  5489. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  5490. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  5491. def tensor_force_quant(self, name, new_name, bid, n_dims):
  5492. del bid, new_name, n_dims # unused
  5493. if ".conv" in name and ".weight" in name:
  5494. return gguf.GGMLQuantizationType.F16
  5495. return False
  5496. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5497. del bid # unused
  5498. if name.startswith("language_model."):
  5499. # skip language model tensors
  5500. return []
  5501. # prevent clash naming with vision tensors
  5502. if name.startswith("multi_modal_projector"):
  5503. name = "audio." + name
  5504. if "conv1.bias" in name or "conv2.bias" in name:
  5505. # transpose conv1 and conv2 bias
  5506. data_torch = data_torch.unsqueeze(-1)
  5507. return [(self.map_tensor_name(name), data_torch)]
  5508. @ModelBase.register("UltravoxModel")
  5509. class UltravoxWhisperEncoderModel(WhisperEncoderModel):
  5510. has_vision_encoder = False # no vision encoder
  5511. has_audio_encoder = True
  5512. def set_gguf_parameters(self):
  5513. super().set_gguf_parameters()
  5514. self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
  5515. @ModelBase.register("FalconH1ForCausalLM")
  5516. class FalconH1Model(Mamba2Model):
  5517. model_arch = gguf.MODEL_ARCH.FALCON_H1
  5518. def __init__(self, *args, **kwargs):
  5519. # Set the hparam prefixes for Falcon Mamba2
  5520. self.hparam_prefixes = ["mamba"]
  5521. # Initialize the base Mamba2Model
  5522. super().__init__(*args, **kwargs)
  5523. # Use Llama conversion for attention
  5524. self._transformer_model_class = LlamaModel
  5525. # n_group and d_inner are used during reshape_tensors for mamba2
  5526. self.n_group = self.find_hparam(["n_groups"])
  5527. self.d_inner = self.find_hparam(["mamba_d_ssm"])
  5528. self.d_head = self.find_hparam(["d_head"])
  5529. # Initialize any Falcon Mamba2 specific attributes
  5530. self.has_attention = True # Falcon Mamba2 has attention components
  5531. # Load Falcon-H1 multipliers from hyperparameters
  5532. self.attention_in_multiplier = self.find_hparam(["attention_in_multiplier"], optional=True)
  5533. self.attention_out_multiplier = self.find_hparam(["attention_out_multiplier"], optional=True)
  5534. self.ssm_in_multiplier = self.find_hparam(["ssm_in_multiplier"], optional=True)
  5535. self.ssm_out_multiplier = self.find_hparam(["ssm_out_multiplier"], optional=True)
  5536. self.mlp_multipliers = self.find_hparam(["mlp_multipliers"], optional=True)
  5537. self.ssm_multipliers = self.find_hparam(["ssm_multipliers"], optional=True)
  5538. self.intermediate_size = self.find_hparam(["intermediate_size"])
  5539. self.key_multiplier = self.find_hparam(["key_multiplier"], optional=True)
  5540. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  5541. prefixed = []
  5542. for pfx in self.hparam_prefixes:
  5543. prefixed.extend(
  5544. "_".join([pfx, k])
  5545. for k in keys
  5546. )
  5547. keys = list(keys) + prefixed
  5548. return super().find_hparam(keys, *args, **kwargs)
  5549. def set_vocab(self):
  5550. self._set_vocab_gpt2()
  5551. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5552. tensors = list(super().modify_tensors(data_torch, name, bid))
  5553. tensor = tensors[0][1]
  5554. if "down_proj" in name:
  5555. tensor = tensor * self.mlp_multipliers[1]
  5556. elif "gate_proj" in name:
  5557. tensor = tensor * self.mlp_multipliers[0]
  5558. elif "k_proj" in name:
  5559. tensor = tensor * self.key_multiplier * self.attention_in_multiplier
  5560. elif "q_proj" in name:
  5561. tensor = tensor * self.attention_in_multiplier
  5562. elif "v_proj" in name:
  5563. tensor = tensor * self.attention_in_multiplier
  5564. elif "o_proj" in name:
  5565. tensor = tensor * self.attention_out_multiplier
  5566. elif "out_proj" in name:
  5567. tensor = tensor * self.ssm_out_multiplier
  5568. elif "in_proj" in name:
  5569. tensor = tensor * self.ssm_in_multiplier
  5570. zxbcdt_multipliers = self.hparams["ssm_multipliers"]
  5571. intermediate_size = self.hparams["mamba_d_ssm"]
  5572. groups_time_state_size = self.hparams["mamba_n_groups"] * self.hparams["mamba_d_state"]
  5573. tensor[:intermediate_size, :] *= zxbcdt_multipliers[0]
  5574. tensor[intermediate_size:2 * intermediate_size, :] *= zxbcdt_multipliers[1]
  5575. tensor[2 * intermediate_size:2 * intermediate_size + groups_time_state_size, :] *= zxbcdt_multipliers[2]
  5576. tensor[2 * intermediate_size + groups_time_state_size:2 * intermediate_size + 2 * groups_time_state_size, :] *= zxbcdt_multipliers[3]
  5577. tensor[2 * intermediate_size + 2 * groups_time_state_size:, :] *= zxbcdt_multipliers[4]
  5578. elif "lm_head" in name:
  5579. tensor = tensor * self.hparams["lm_head_multiplier"]
  5580. elif "embed_tokens" in name:
  5581. tensor = tensor * self.hparams["embedding_multiplier"]
  5582. elif "mamba.norm" in name:
  5583. tensor = tensor.reshape(self.n_group, self.d_inner // self.n_group)
  5584. tensors = [(tensors[0][0], tensor)]
  5585. return tensors
  5586. def set_gguf_parameters(self):
  5587. super().set_gguf_parameters()
  5588. ## General Params ##
  5589. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  5590. # Override some Mamba2 defaults
  5591. self.gguf_writer.add_block_count(self.block_count)
  5592. self.gguf_writer.add_context_length(self.hparams.get("max_position_embeddings", 0))
  5593. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  5594. ## Attention params ##
  5595. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) # Override value 0 from Mamba2
  5596. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  5597. self.gguf_writer.add_key_length(self.hparams["head_dim"])
  5598. self.gguf_writer.add_value_length(self.hparams["head_dim"])
  5599. ## Validation ##
  5600. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  5601. assert self.d_inner % self.d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {self.d_head}"
  5602. # Add any other Falcon Mamba2 specific configuration
  5603. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  5604. @ModelBase.register("HunYuanMoEV1ForCausalLM")
  5605. class HunYuanMoEModel(TextModel):
  5606. model_arch = gguf.MODEL_ARCH.HUNYUAN_MOE
  5607. def __init__(self, *args, **kwargs):
  5608. super().__init__(*args, **kwargs)
  5609. # For handling tied embeddings
  5610. self._tok_embd = None
  5611. def set_vocab(self):
  5612. from transformers import AutoTokenizer
  5613. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  5614. # 1. Get the pre-tokenizer identifier hash
  5615. tokpre = self.get_vocab_base_pre(tokenizer)
  5616. # 2. Reverse-engineer the merges list from mergeable_ranks
  5617. merges = []
  5618. vocab = {}
  5619. mergeable_ranks = tokenizer.mergeable_ranks
  5620. for token, rank in mergeable_ranks.items():
  5621. vocab[QwenModel.token_bytes_to_string(token)] = rank
  5622. if len(token) == 1:
  5623. continue
  5624. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  5625. if len(merged) == 2: # todo this is an assert in Qwen, why?
  5626. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  5627. # 3. Generate the tokens and toktypes lists
  5628. vocab_size = self.hparams["vocab_size"]
  5629. assert tokenizer.vocab_size == vocab_size
  5630. special_tokens = tokenizer.special_tokens
  5631. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  5632. tokens: list[str] = []
  5633. toktypes: list[int] = []
  5634. for i in range(vocab_size):
  5635. if i not in reverse_vocab:
  5636. tokens.append(f"[PAD{i}]")
  5637. toktypes.append(gguf.TokenType.UNUSED)
  5638. else:
  5639. token = reverse_vocab[i]
  5640. tokens.append(token)
  5641. if i in special_tokens.values():
  5642. toktypes.append(gguf.TokenType.CONTROL)
  5643. else:
  5644. toktypes.append(gguf.TokenType.NORMAL)
  5645. # 4. Write all vocab-related fields to the GGUF writer
  5646. self.gguf_writer.add_tokenizer_model("gpt2")
  5647. self.gguf_writer.add_tokenizer_pre(tokpre)
  5648. self.gguf_writer.add_token_list(tokens)
  5649. self.gguf_writer.add_token_types(toktypes)
  5650. self.gguf_writer.add_token_merges(merges)
  5651. # 5. Add special tokens and chat templates
  5652. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  5653. special_vocab.add_to_gguf(self.gguf_writer)
  5654. # FIX for BOS token: Overwrite incorrect id read from config.json
  5655. self.gguf_writer.add_bos_token_id(127959) # <|bos|>
  5656. def set_gguf_parameters(self):
  5657. super().set_gguf_parameters()
  5658. hparams = self.hparams
  5659. self.gguf_writer.add_expert_count(hparams["num_experts"])
  5660. self.gguf_writer.add_expert_shared_feed_forward_length(hparams["intermediate_size"])
  5661. moe_intermediate_size = hparams["moe_intermediate_size"]
  5662. assert all(n == moe_intermediate_size[0] for n in moe_intermediate_size)
  5663. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size[0])
  5664. moe_topk = hparams["moe_topk"]
  5665. assert all(topk == moe_topk[0] for topk in moe_topk)
  5666. self.gguf_writer.add_expert_used_count(moe_topk[0])
  5667. moe_shared_expert = hparams["num_shared_expert"]
  5668. assert all(n == moe_shared_expert[0] for n in moe_shared_expert)
  5669. self.gguf_writer.add_expert_shared_count(moe_shared_expert[0])
  5670. # Rope
  5671. rope_scaling = hparams.get("rope_scaling", {})
  5672. if rope_scaling.get("type") == "dynamic":
  5673. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  5674. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  5675. alpha = rope_scaling.get("alpha", 1000)
  5676. base = hparams.get("rope_theta", 10000.0)
  5677. dim = (hparams["hidden_size"] // hparams["num_attention_heads"]) # 128
  5678. scaled_base = base * (alpha ** (dim / (dim - 2))) # 10000 * (1000 ** (128 / 126)) = 11158839.9251
  5679. self.gguf_writer.add_rope_freq_base(scaled_base)
  5680. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5681. self.gguf_writer.add_rope_scaling_factor(1)
  5682. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  5683. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  5684. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  5685. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  5686. assert alpha == 1000 and base == 10000.0 and dim == 128 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  5687. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  5688. _experts: list[dict[str, Tensor]] | None = None
  5689. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5690. if name == "model.embed_tokens.weight":
  5691. self._tok_embd = data_torch.clone()
  5692. if name == "lm_head.weight":
  5693. if self.hparams.get("tie_word_embeddings", False):
  5694. logger.info("Skipping tied output layer 'lm_head.weight'")
  5695. return []
  5696. if name.find("mlp.experts") != -1:
  5697. n_experts = self.hparams["num_experts"]
  5698. assert bid is not None
  5699. if self._experts is None:
  5700. self._experts = [{} for _ in range(self.block_count)]
  5701. self._experts[bid][name] = data_torch
  5702. if len(self._experts[bid]) >= n_experts * 3:
  5703. # merge the experts into a single 3d tensor
  5704. tensors: list[tuple[str, Tensor]] = []
  5705. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5706. datas: list[Tensor] = []
  5707. for xid in range(n_experts):
  5708. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5709. datas.append(self._experts[bid][ename])
  5710. del self._experts[bid][ename]
  5711. data_torch = torch.stack(datas, dim=0)
  5712. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5713. new_name = self.map_tensor_name(merged_name)
  5714. tensors.append((new_name, data_torch))
  5715. return tensors
  5716. else:
  5717. return []
  5718. return [(self.map_tensor_name(name), data_torch)]
  5719. def prepare_tensors(self):
  5720. super().prepare_tensors()
  5721. if self._experts is not None:
  5722. experts = [k for d in self._experts for k in d.keys()]
  5723. if len(experts) > 0:
  5724. raise ValueError(f"Unprocessed experts: {experts}")
  5725. @ModelBase.register("SmolLM3ForCausalLM")
  5726. class SmolLM3Model(LlamaModel):
  5727. model_arch = gguf.MODEL_ARCH.SMOLLM3
  5728. def set_vocab(self):
  5729. super().set_vocab()
  5730. # remove unsupported array slicing in chat template
  5731. # ref: https://huggingface.co/ggml-org/SmolLM3-3B-GGUF/discussions/1
  5732. from transformers import AutoTokenizer
  5733. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  5734. if tokenizer.chat_template is not None:
  5735. chat_template = tokenizer.chat_template.replace("[:]", "")
  5736. self.gguf_writer.add_chat_template(chat_template)
  5737. @ModelBase.register("Lfm2ForCausalLM")
  5738. @ModelBase.register("LFM2ForCausalLM")
  5739. class LFM2Model(TextModel):
  5740. model_arch = gguf.MODEL_ARCH.LFM2
  5741. def _add_feed_forward_length(self):
  5742. ff_dim = self.hparams["block_ff_dim"]
  5743. auto_adjust_ff_dim = self.hparams["block_auto_adjust_ff_dim"]
  5744. ff_dim = self.hparams["block_ff_dim"]
  5745. ffn_dim_multiplier = self.hparams["block_ffn_dim_multiplier"]
  5746. multiple_of = self.hparams["block_multiple_of"]
  5747. if auto_adjust_ff_dim:
  5748. ff_dim = int(2 * ff_dim / 3)
  5749. # custom dim factor multiplier
  5750. if ffn_dim_multiplier is not None:
  5751. ff_dim = int(ffn_dim_multiplier * ff_dim)
  5752. ff_dim = multiple_of * ((ff_dim + multiple_of - 1) // multiple_of)
  5753. self.gguf_writer.add_feed_forward_length(ff_dim)
  5754. def set_gguf_parameters(self):
  5755. # set num_key_value_heads only for attention layers
  5756. self.hparams["num_key_value_heads"] = [
  5757. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  5758. for layer_type in self.hparams["layer_types"]
  5759. ]
  5760. super().set_gguf_parameters()
  5761. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  5762. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  5763. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["norm_eps"])
  5764. self._add_feed_forward_length()
  5765. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5766. # conv op requires 2d tensor
  5767. if 'conv.conv' in name:
  5768. data_torch = data_torch.squeeze(1)
  5769. return [(self.map_tensor_name(name), data_torch)]
  5770. ###### CONVERSION LOGIC ######
  5771. # tree of lazy tensors
  5772. class LazyTorchTensor(gguf.LazyBase):
  5773. _tensor_type = torch.Tensor
  5774. # to keep the type-checker happy
  5775. dtype: torch.dtype
  5776. shape: torch.Size
  5777. # only used when converting a torch.Tensor to a np.ndarray
  5778. _dtype_map: dict[torch.dtype, type] = {
  5779. torch.float16: np.float16,
  5780. torch.float32: np.float32,
  5781. }
  5782. # used for safetensors slices
  5783. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  5784. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  5785. _dtype_str_map: dict[str, torch.dtype] = {
  5786. "F64": torch.float64,
  5787. "F32": torch.float32,
  5788. "BF16": torch.bfloat16,
  5789. "F16": torch.float16,
  5790. # "U64": torch.uint64,
  5791. "I64": torch.int64,
  5792. # "U32": torch.uint32,
  5793. "I32": torch.int32,
  5794. # "U16": torch.uint16,
  5795. "I16": torch.int16,
  5796. "U8": torch.uint8,
  5797. "I8": torch.int8,
  5798. "BOOL": torch.bool,
  5799. "F8_E4M3": torch.float8_e4m3fn,
  5800. "F8_E5M2": torch.float8_e5m2,
  5801. }
  5802. def numpy(self) -> gguf.LazyNumpyTensor:
  5803. dtype = self._dtype_map[self.dtype]
  5804. return gguf.LazyNumpyTensor(
  5805. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  5806. args=(self,),
  5807. func=(lambda s: s.numpy())
  5808. )
  5809. @classmethod
  5810. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  5811. return torch.empty(size=shape, dtype=dtype, device="meta")
  5812. @classmethod
  5813. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  5814. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  5815. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  5816. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  5817. return cast(torch.Tensor, lazy)
  5818. @classmethod
  5819. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  5820. dtype = cls._dtype_str_map[remote_tensor.dtype]
  5821. shape = remote_tensor.shape
  5822. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  5823. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.frombuffer(r.data(), dtype=dtype).reshape(shape))
  5824. return cast(torch.Tensor, lazy)
  5825. @classmethod
  5826. def __torch_function__(cls, func, types, args=(), kwargs=None):
  5827. del types # unused
  5828. if kwargs is None:
  5829. kwargs = {}
  5830. if func is torch.Tensor.numpy:
  5831. return args[0].numpy()
  5832. return cls._wrap_fn(func)(*args, **kwargs)
  5833. def parse_args() -> argparse.Namespace:
  5834. parser = argparse.ArgumentParser(
  5835. description="Convert a huggingface model to a GGML compatible file")
  5836. parser.add_argument(
  5837. "--vocab-only", action="store_true",
  5838. help="extract only the vocab",
  5839. )
  5840. parser.add_argument(
  5841. "--outfile", type=Path,
  5842. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  5843. )
  5844. parser.add_argument(
  5845. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  5846. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  5847. )
  5848. parser.add_argument(
  5849. "--bigendian", action="store_true",
  5850. help="model is executed on big endian machine",
  5851. )
  5852. parser.add_argument(
  5853. "model", type=str,
  5854. help="directory containing model file or huggingface repository ID (if --remote)",
  5855. nargs="?",
  5856. )
  5857. parser.add_argument(
  5858. "--use-temp-file", action="store_true",
  5859. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  5860. )
  5861. parser.add_argument(
  5862. "--no-lazy", action="store_true",
  5863. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  5864. )
  5865. parser.add_argument(
  5866. "--model-name", type=str, default=None,
  5867. help="name of the model",
  5868. )
  5869. parser.add_argument(
  5870. "--verbose", action="store_true",
  5871. help="increase output verbosity",
  5872. )
  5873. parser.add_argument(
  5874. "--split-max-tensors", type=int, default=0,
  5875. help="max tensors in each split",
  5876. )
  5877. parser.add_argument(
  5878. "--split-max-size", type=str, default="0",
  5879. help="max size per split N(M|G)",
  5880. )
  5881. parser.add_argument(
  5882. "--dry-run", action="store_true",
  5883. help="only print out a split plan and exit, without writing any new files",
  5884. )
  5885. parser.add_argument(
  5886. "--no-tensor-first-split", action="store_true",
  5887. help="do not add tensors to the first split (disabled by default)"
  5888. )
  5889. parser.add_argument(
  5890. "--metadata", type=Path,
  5891. help="Specify the path for an authorship metadata override file"
  5892. )
  5893. parser.add_argument(
  5894. "--print-supported-models", action="store_true",
  5895. help="Print the supported models"
  5896. )
  5897. parser.add_argument(
  5898. "--remote", action="store_true",
  5899. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  5900. )
  5901. parser.add_argument(
  5902. "--mmproj", action="store_true",
  5903. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  5904. )
  5905. args = parser.parse_args()
  5906. if not args.print_supported_models and args.model is None:
  5907. parser.error("the following arguments are required: model")
  5908. return args
  5909. def split_str_to_n_bytes(split_str: str) -> int:
  5910. if split_str.endswith("K"):
  5911. n = int(split_str[:-1]) * 1000
  5912. elif split_str.endswith("M"):
  5913. n = int(split_str[:-1]) * 1000 * 1000
  5914. elif split_str.endswith("G"):
  5915. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  5916. elif split_str.isnumeric():
  5917. n = int(split_str)
  5918. else:
  5919. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  5920. if n < 0:
  5921. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  5922. return n
  5923. def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
  5924. # TODO @ngxson : this won't work correctly if the model has both audio & vision encoders
  5925. # maybe we should fallback to text model's arch in that case, since not many models have both
  5926. text_config = hparams.get("text_config", {})
  5927. vision_config = hparams.get("vision_config", {})
  5928. arch = None
  5929. if (arches := hparams.get("architectures")) is not None and len(arches) > 0:
  5930. arch = arches[0]
  5931. elif "ssm_cfg" in hparams:
  5932. # For non-hf Mamba and Mamba2 models
  5933. arch = hparams["ssm_cfg"].get("layer", "Mamba") + "ForCausalLM"
  5934. # if "architectures" is found in the sub-config, use that instead
  5935. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  5936. arch = text_config["architectures"][0]
  5937. elif model_type == ModelType.MMPROJ and vision_config.get("architectures") is not None:
  5938. arch = vision_config["architectures"][0]
  5939. if arch is None:
  5940. raise ValueError("Failed to detect model architecture")
  5941. return arch
  5942. def main() -> None:
  5943. args = parse_args()
  5944. if args.print_supported_models:
  5945. logger.error("Supported models:")
  5946. ModelBase.print_registered_models()
  5947. sys.exit(0)
  5948. if args.verbose:
  5949. logging.basicConfig(level=logging.DEBUG)
  5950. else:
  5951. logging.basicConfig(level=logging.INFO)
  5952. if args.remote:
  5953. hf_repo_id = args.model
  5954. from huggingface_hub import snapshot_download
  5955. local_dir = snapshot_download(
  5956. repo_id=hf_repo_id,
  5957. allow_patterns=["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"])
  5958. dir_model = Path(local_dir)
  5959. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  5960. else:
  5961. hf_repo_id = None
  5962. dir_model = Path(args.model)
  5963. if not dir_model.is_dir():
  5964. logger.error(f'Error: {dir_model} is not a directory')
  5965. sys.exit(1)
  5966. ftype_map: dict[str, gguf.LlamaFileType] = {
  5967. "f32": gguf.LlamaFileType.ALL_F32,
  5968. "f16": gguf.LlamaFileType.MOSTLY_F16,
  5969. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  5970. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  5971. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  5972. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  5973. "auto": gguf.LlamaFileType.GUESSED,
  5974. }
  5975. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  5976. if args.use_temp_file and is_split:
  5977. logger.error("Error: Cannot use temp file when splitting")
  5978. sys.exit(1)
  5979. if args.outfile is not None:
  5980. fname_out = args.outfile
  5981. elif hf_repo_id:
  5982. # if remote, use the model ID as the output file name
  5983. fname_out = Path("./" + hf_repo_id.replace("/", "-") + "-{ftype}.gguf")
  5984. else:
  5985. fname_out = dir_model
  5986. logger.info(f"Loading model: {dir_model.name}")
  5987. if args.mmproj:
  5988. if "mmproj" not in fname_out.name:
  5989. fname_out = ModelBase.add_prefix_to_filename(fname_out, "mmproj-")
  5990. with torch.inference_mode():
  5991. output_type = ftype_map[args.outtype]
  5992. model_type = ModelType.MMPROJ if args.mmproj else ModelType.TEXT
  5993. hparams = ModelBase.load_hparams(dir_model)
  5994. model_architecture = get_model_architecture(hparams, model_type)
  5995. logger.info(f"Model architecture: {model_architecture}")
  5996. try:
  5997. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  5998. except NotImplementedError:
  5999. logger.error(f"Model {model_architecture} is not supported")
  6000. sys.exit(1)
  6001. model_instance = model_class(dir_model, output_type, fname_out,
  6002. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  6003. eager=args.no_lazy,
  6004. metadata_override=args.metadata, model_name=args.model_name,
  6005. split_max_tensors=args.split_max_tensors,
  6006. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  6007. small_first_shard=args.no_tensor_first_split,
  6008. remote_hf_model_id=hf_repo_id)
  6009. if args.vocab_only:
  6010. logger.info("Exporting model vocab...")
  6011. model_instance.write_vocab()
  6012. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  6013. else:
  6014. logger.info("Exporting model...")
  6015. model_instance.write()
  6016. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  6017. logger.info(f"Model successfully exported to {out_path}")
  6018. if __name__ == '__main__':
  6019. main()