llama-bench.cpp 78 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032
  1. #include <algorithm>
  2. #include <array>
  3. #include <cassert>
  4. #include <chrono>
  5. #include <cinttypes>
  6. #include <clocale>
  7. #include <cmath>
  8. #include <cstdio>
  9. #include <cstdlib>
  10. #include <cstring>
  11. #include <ctime>
  12. #include <iterator>
  13. #include <map>
  14. #include <numeric>
  15. #include <regex>
  16. #include <sstream>
  17. #include <string>
  18. #include <thread>
  19. #include <vector>
  20. #include "common.h"
  21. #include "ggml.h"
  22. #include "llama.h"
  23. #ifdef _WIN32
  24. # define WIN32_LEAN_AND_MEAN
  25. # ifndef NOMINMAX
  26. # define NOMINMAX
  27. # endif
  28. # include <windows.h>
  29. #endif
  30. // utils
  31. static uint64_t get_time_ns() {
  32. using clock = std::chrono::high_resolution_clock;
  33. return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
  34. }
  35. static bool tensor_buft_override_equal(const llama_model_tensor_buft_override& a, const llama_model_tensor_buft_override& b) {
  36. if (a.pattern != b.pattern) {
  37. // cString comparison that may be null
  38. if (a.pattern == nullptr || b.pattern == nullptr) {
  39. return false;
  40. }
  41. if (strcmp(a.pattern, b.pattern) != 0) {
  42. return false;
  43. }
  44. }
  45. if (a.buft != b.buft) {
  46. return false;
  47. }
  48. return true;
  49. }
  50. static bool vec_tensor_buft_override_equal(const std::vector<llama_model_tensor_buft_override>& a, const std::vector<llama_model_tensor_buft_override>& b) {
  51. if (a.size() != b.size()) {
  52. return false;
  53. }
  54. for (size_t i = 0; i < a.size(); i++) {
  55. if (!tensor_buft_override_equal(a[i], b[i])) {
  56. return false;
  57. }
  58. }
  59. return true;
  60. }
  61. static bool vec_vec_tensor_buft_override_equal(const std::vector<std::vector<llama_model_tensor_buft_override>>& a, const std::vector<std::vector<llama_model_tensor_buft_override>>& b) {
  62. if (a.size() != b.size()) {
  63. return false;
  64. }
  65. for (size_t i = 0; i < a.size(); i++) {
  66. if (!vec_tensor_buft_override_equal(a[i], b[i])) {
  67. return false;
  68. }
  69. }
  70. return true;
  71. }
  72. template <class T> static std::string join(const std::vector<T> & values, const std::string & delim) {
  73. std::ostringstream str;
  74. for (size_t i = 0; i < values.size(); i++) {
  75. str << values[i];
  76. if (i < values.size() - 1) {
  77. str << delim;
  78. }
  79. }
  80. return str.str();
  81. }
  82. template <typename T, typename F> static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) {
  83. std::vector<std::string> str_values;
  84. std::transform(values.begin(), values.end(), std::back_inserter(str_values), f);
  85. return str_values;
  86. }
  87. template <typename T> static T avg(const std::vector<T> & v) {
  88. if (v.empty()) {
  89. return 0;
  90. }
  91. T sum = std::accumulate(v.begin(), v.end(), T(0));
  92. return sum / (T) v.size();
  93. }
  94. template <typename T> static T stdev(const std::vector<T> & v) {
  95. if (v.size() <= 1) {
  96. return 0;
  97. }
  98. T mean = avg(v);
  99. T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0));
  100. T stdev = std::sqrt(sq_sum / (T) (v.size() - 1) - mean * mean * (T) v.size() / (T) (v.size() - 1));
  101. return stdev;
  102. }
  103. static std::string get_cpu_info() {
  104. std::vector<std::string> cpu_list;
  105. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  106. auto * dev = ggml_backend_dev_get(i);
  107. auto dev_type = ggml_backend_dev_type(dev);
  108. if (dev_type == GGML_BACKEND_DEVICE_TYPE_CPU || dev_type == GGML_BACKEND_DEVICE_TYPE_ACCEL) {
  109. cpu_list.push_back(ggml_backend_dev_description(dev));
  110. }
  111. }
  112. return join(cpu_list, ", ");
  113. }
  114. static std::string get_gpu_info() {
  115. std::vector<std::string> gpu_list;
  116. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  117. auto * dev = ggml_backend_dev_get(i);
  118. auto dev_type = ggml_backend_dev_type(dev);
  119. if (dev_type == GGML_BACKEND_DEVICE_TYPE_GPU) {
  120. gpu_list.push_back(ggml_backend_dev_description(dev));
  121. }
  122. }
  123. return join(gpu_list, ", ");
  124. }
  125. // command line params
  126. enum output_formats { NONE, CSV, JSON, JSONL, MARKDOWN, SQL };
  127. static const char * output_format_str(output_formats format) {
  128. switch (format) {
  129. case NONE:
  130. return "none";
  131. case CSV:
  132. return "csv";
  133. case JSON:
  134. return "json";
  135. case JSONL:
  136. return "jsonl";
  137. case MARKDOWN:
  138. return "md";
  139. case SQL:
  140. return "sql";
  141. default:
  142. GGML_ABORT("invalid output format");
  143. }
  144. }
  145. static bool output_format_from_str(const std::string & s, output_formats & format) {
  146. if (s == "none") {
  147. format = NONE;
  148. } else if (s == "csv") {
  149. format = CSV;
  150. } else if (s == "json") {
  151. format = JSON;
  152. } else if (s == "jsonl") {
  153. format = JSONL;
  154. } else if (s == "md") {
  155. format = MARKDOWN;
  156. } else if (s == "sql") {
  157. format = SQL;
  158. } else {
  159. return false;
  160. }
  161. return true;
  162. }
  163. static const char * split_mode_str(llama_split_mode mode) {
  164. switch (mode) {
  165. case LLAMA_SPLIT_MODE_NONE:
  166. return "none";
  167. case LLAMA_SPLIT_MODE_LAYER:
  168. return "layer";
  169. case LLAMA_SPLIT_MODE_ROW:
  170. return "row";
  171. default:
  172. GGML_ABORT("invalid split mode");
  173. }
  174. }
  175. static std::string pair_str(const std::pair<int, int> & p) {
  176. static char buf[32];
  177. snprintf(buf, sizeof(buf), "%d,%d", p.first, p.second);
  178. return buf;
  179. }
  180. static std::vector<int> parse_int_range(const std::string & s) {
  181. // first[-last[(+|*)step]]
  182. std::regex range_regex(R"(^(\d+)(?:-(\d+)(?:([\+|\*])(\d+))?)?(?:,|$))");
  183. std::smatch match;
  184. std::string::const_iterator search_start(s.cbegin());
  185. std::vector<int> result;
  186. while (std::regex_search(search_start, s.cend(), match, range_regex)) {
  187. int first = std::stoi(match[1]);
  188. int last = match[2].matched ? std::stoi(match[2]) : first;
  189. char op = match[3].matched ? match[3].str()[0] : '+';
  190. int step = match[4].matched ? std::stoi(match[4]) : 1;
  191. for (int i = first; i <= last;) {
  192. result.push_back(i);
  193. int prev_i = i;
  194. if (op == '+') {
  195. i += step;
  196. } else if (op == '*') {
  197. i *= step;
  198. } else {
  199. throw std::invalid_argument("invalid range format");
  200. }
  201. if (i <= prev_i) {
  202. throw std::invalid_argument("invalid range");
  203. }
  204. }
  205. search_start = match.suffix().first;
  206. }
  207. if (search_start != s.cend()) {
  208. throw std::invalid_argument("invalid range format");
  209. }
  210. return result;
  211. }
  212. struct cmd_params {
  213. std::vector<std::string> model;
  214. std::vector<int> n_prompt;
  215. std::vector<int> n_gen;
  216. std::vector<std::pair<int, int>> n_pg;
  217. std::vector<int> n_depth;
  218. std::vector<int> n_batch;
  219. std::vector<int> n_ubatch;
  220. std::vector<ggml_type> type_k;
  221. std::vector<ggml_type> type_v;
  222. std::vector<float> defrag_thold;
  223. std::vector<int> n_threads;
  224. std::vector<std::string> cpu_mask;
  225. std::vector<bool> cpu_strict;
  226. std::vector<int> poll;
  227. std::vector<int> n_gpu_layers;
  228. std::vector<std::string> rpc_servers;
  229. std::vector<llama_split_mode> split_mode;
  230. std::vector<int> main_gpu;
  231. std::vector<bool> no_kv_offload;
  232. std::vector<bool> flash_attn;
  233. std::vector<std::vector<float>> tensor_split;
  234. std::vector<std::vector<llama_model_tensor_buft_override>> tensor_buft_overrides;
  235. std::vector<bool> use_mmap;
  236. std::vector<bool> embeddings;
  237. std::vector<bool> no_op_offload;
  238. ggml_numa_strategy numa;
  239. int reps;
  240. ggml_sched_priority prio;
  241. int delay;
  242. bool verbose;
  243. bool progress;
  244. bool no_warmup;
  245. output_formats output_format;
  246. output_formats output_format_stderr;
  247. };
  248. static const cmd_params cmd_params_defaults = {
  249. /* model */ { "models/7B/ggml-model-q4_0.gguf" },
  250. /* n_prompt */ { 512 },
  251. /* n_gen */ { 128 },
  252. /* n_pg */ {},
  253. /* n_depth */ { 0 },
  254. /* n_batch */ { 2048 },
  255. /* n_ubatch */ { 512 },
  256. /* type_k */ { GGML_TYPE_F16 },
  257. /* type_v */ { GGML_TYPE_F16 },
  258. /* defrag_thold */ { -1.0f },
  259. /* n_threads */ { cpu_get_num_math() },
  260. /* cpu_mask */ { "0x0" },
  261. /* cpu_strict */ { false },
  262. /* poll */ { 50 },
  263. /* n_gpu_layers */ { 99 },
  264. /* rpc_servers */ { "" },
  265. /* split_mode */ { LLAMA_SPLIT_MODE_LAYER },
  266. /* main_gpu */ { 0 },
  267. /* no_kv_offload */ { false },
  268. /* flash_attn */ { false },
  269. /* tensor_split */ { std::vector<float>(llama_max_devices(), 0.0f) },
  270. /* tensor_buft_overrides*/ { std::vector<llama_model_tensor_buft_override>{ { nullptr, nullptr } } },
  271. /* use_mmap */ { true },
  272. /* embeddings */ { false },
  273. /* no_op_offload */ { false },
  274. /* numa */ GGML_NUMA_STRATEGY_DISABLED,
  275. /* reps */ 5,
  276. /* prio */ GGML_SCHED_PRIO_NORMAL,
  277. /* delay */ 0,
  278. /* verbose */ false,
  279. /* progress */ false,
  280. /* no_warmup */ false,
  281. /* output_format */ MARKDOWN,
  282. /* output_format_stderr */ NONE,
  283. };
  284. static void print_usage(int /* argc */, char ** argv) {
  285. printf("usage: %s [options]\n", argv[0]);
  286. printf("\n");
  287. printf("options:\n");
  288. printf(" -h, --help\n");
  289. printf(" --numa <distribute|isolate|numactl> numa mode (default: disabled)\n");
  290. printf(" -r, --repetitions <n> number of times to repeat each test (default: %d)\n",
  291. cmd_params_defaults.reps);
  292. printf(" --prio <-1|0|1|2|3> process/thread priority (default: %d)\n",
  293. cmd_params_defaults.prio);
  294. printf(" --delay <0...N> (seconds) delay between each test (default: %d)\n",
  295. cmd_params_defaults.delay);
  296. printf(" -o, --output <csv|json|jsonl|md|sql> output format printed to stdout (default: %s)\n",
  297. output_format_str(cmd_params_defaults.output_format));
  298. printf(" -oe, --output-err <csv|json|jsonl|md|sql> output format printed to stderr (default: %s)\n",
  299. output_format_str(cmd_params_defaults.output_format_stderr));
  300. printf(" -v, --verbose verbose output\n");
  301. printf(" --progress print test progress indicators\n");
  302. printf(" --no-warmup skip warmup runs before benchmarking\n");
  303. printf("\n");
  304. printf("test parameters:\n");
  305. printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
  306. printf(" -p, --n-prompt <n> (default: %s)\n",
  307. join(cmd_params_defaults.n_prompt, ",").c_str());
  308. printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
  309. printf(" -pg <pp,tg> (default: %s)\n",
  310. join(transform_to_str(cmd_params_defaults.n_pg, pair_str), ",").c_str());
  311. printf(" -d, --n-depth <n> (default: %s)\n",
  312. join(cmd_params_defaults.n_depth, ",").c_str());
  313. printf(" -b, --batch-size <n> (default: %s)\n",
  314. join(cmd_params_defaults.n_batch, ",").c_str());
  315. printf(" -ub, --ubatch-size <n> (default: %s)\n",
  316. join(cmd_params_defaults.n_ubatch, ",").c_str());
  317. printf(" -ctk, --cache-type-k <t> (default: %s)\n",
  318. join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
  319. printf(" -ctv, --cache-type-v <t> (default: %s)\n",
  320. join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
  321. printf(" -dt, --defrag-thold <f> (default: %s)\n",
  322. join(cmd_params_defaults.defrag_thold, ",").c_str());
  323. printf(" -t, --threads <n> (default: %s)\n",
  324. join(cmd_params_defaults.n_threads, ",").c_str());
  325. printf(" -C, --cpu-mask <hex,hex> (default: %s)\n",
  326. join(cmd_params_defaults.cpu_mask, ",").c_str());
  327. printf(" --cpu-strict <0|1> (default: %s)\n",
  328. join(cmd_params_defaults.cpu_strict, ",").c_str());
  329. printf(" --poll <0...100> (default: %s)\n", join(cmd_params_defaults.poll, ",").c_str());
  330. printf(" -ngl, --n-gpu-layers <n> (default: %s)\n",
  331. join(cmd_params_defaults.n_gpu_layers, ",").c_str());
  332. if (llama_supports_rpc()) {
  333. printf(" -rpc, --rpc <rpc_servers> (default: %s)\n",
  334. join(cmd_params_defaults.rpc_servers, ",").c_str());
  335. }
  336. printf(" -sm, --split-mode <none|layer|row> (default: %s)\n",
  337. join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
  338. printf(" -mg, --main-gpu <i> (default: %s)\n",
  339. join(cmd_params_defaults.main_gpu, ",").c_str());
  340. printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n",
  341. join(cmd_params_defaults.no_kv_offload, ",").c_str());
  342. printf(" -fa, --flash-attn <0|1> (default: %s)\n",
  343. join(cmd_params_defaults.flash_attn, ",").c_str());
  344. printf(" -mmp, --mmap <0|1> (default: %s)\n",
  345. join(cmd_params_defaults.use_mmap, ",").c_str());
  346. printf(" -embd, --embeddings <0|1> (default: %s)\n",
  347. join(cmd_params_defaults.embeddings, ",").c_str());
  348. printf(" -ts, --tensor-split <ts0/ts1/..> (default: 0)\n");
  349. printf(" -ot --override-tensors <tensor name pattern>=<buffer type>;...\n");
  350. printf(" (default: disabled)\n");
  351. printf(" -nopo, --no-op-offload <0|1> (default: 0)\n");
  352. printf("\n");
  353. printf(
  354. "Multiple values can be given for each parameter by separating them with ','\n"
  355. "or by specifying the parameter multiple times. Ranges can be given as\n"
  356. "'first-last' or 'first-last+step' or 'first-last*mult'.\n");
  357. }
  358. static ggml_type ggml_type_from_name(const std::string & s) {
  359. if (s == "f16") {
  360. return GGML_TYPE_F16;
  361. }
  362. if (s == "bf16") {
  363. return GGML_TYPE_BF16;
  364. }
  365. if (s == "q8_0") {
  366. return GGML_TYPE_Q8_0;
  367. }
  368. if (s == "q4_0") {
  369. return GGML_TYPE_Q4_0;
  370. }
  371. if (s == "q4_1") {
  372. return GGML_TYPE_Q4_1;
  373. }
  374. if (s == "q5_0") {
  375. return GGML_TYPE_Q5_0;
  376. }
  377. if (s == "q5_1") {
  378. return GGML_TYPE_Q5_1;
  379. }
  380. if (s == "iq4_nl") {
  381. return GGML_TYPE_IQ4_NL;
  382. }
  383. return GGML_TYPE_COUNT;
  384. }
  385. static cmd_params parse_cmd_params(int argc, char ** argv) {
  386. cmd_params params;
  387. std::string arg;
  388. bool invalid_param = false;
  389. const std::string arg_prefix = "--";
  390. const char split_delim = ',';
  391. params.verbose = cmd_params_defaults.verbose;
  392. params.output_format = cmd_params_defaults.output_format;
  393. params.output_format_stderr = cmd_params_defaults.output_format_stderr;
  394. params.reps = cmd_params_defaults.reps;
  395. params.numa = cmd_params_defaults.numa;
  396. params.prio = cmd_params_defaults.prio;
  397. params.delay = cmd_params_defaults.delay;
  398. params.progress = cmd_params_defaults.progress;
  399. params.no_warmup = cmd_params_defaults.no_warmup;
  400. for (int i = 1; i < argc; i++) {
  401. arg = argv[i];
  402. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  403. std::replace(arg.begin(), arg.end(), '_', '-');
  404. }
  405. try {
  406. if (arg == "-h" || arg == "--help") {
  407. print_usage(argc, argv);
  408. exit(0);
  409. } else if (arg == "-m" || arg == "--model") {
  410. if (++i >= argc) {
  411. invalid_param = true;
  412. break;
  413. }
  414. auto p = string_split<std::string>(argv[i], split_delim);
  415. params.model.insert(params.model.end(), p.begin(), p.end());
  416. } else if (arg == "-p" || arg == "--n-prompt") {
  417. if (++i >= argc) {
  418. invalid_param = true;
  419. break;
  420. }
  421. auto p = parse_int_range(argv[i]);
  422. params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
  423. } else if (arg == "-n" || arg == "--n-gen") {
  424. if (++i >= argc) {
  425. invalid_param = true;
  426. break;
  427. }
  428. auto p = parse_int_range(argv[i]);
  429. params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
  430. } else if (arg == "-pg") {
  431. if (++i >= argc) {
  432. invalid_param = true;
  433. break;
  434. }
  435. auto p = string_split<std::string>(argv[i], ',');
  436. if (p.size() != 2) {
  437. invalid_param = true;
  438. break;
  439. }
  440. params.n_pg.push_back({ std::stoi(p[0]), std::stoi(p[1]) });
  441. } else if (arg == "-d" || arg == "--n-depth") {
  442. if (++i >= argc) {
  443. invalid_param = true;
  444. break;
  445. }
  446. auto p = parse_int_range(argv[i]);
  447. params.n_depth.insert(params.n_depth.end(), p.begin(), p.end());
  448. } else if (arg == "-b" || arg == "--batch-size") {
  449. if (++i >= argc) {
  450. invalid_param = true;
  451. break;
  452. }
  453. auto p = parse_int_range(argv[i]);
  454. params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
  455. } else if (arg == "-ub" || arg == "--ubatch-size") {
  456. if (++i >= argc) {
  457. invalid_param = true;
  458. break;
  459. }
  460. auto p = parse_int_range(argv[i]);
  461. params.n_ubatch.insert(params.n_ubatch.end(), p.begin(), p.end());
  462. } else if (arg == "-ctk" || arg == "--cache-type-k") {
  463. if (++i >= argc) {
  464. invalid_param = true;
  465. break;
  466. }
  467. auto p = string_split<std::string>(argv[i], split_delim);
  468. std::vector<ggml_type> types;
  469. for (const auto & t : p) {
  470. ggml_type gt = ggml_type_from_name(t);
  471. if (gt == GGML_TYPE_COUNT) {
  472. invalid_param = true;
  473. break;
  474. }
  475. types.push_back(gt);
  476. }
  477. if (invalid_param) {
  478. break;
  479. }
  480. params.type_k.insert(params.type_k.end(), types.begin(), types.end());
  481. } else if (arg == "-ctv" || arg == "--cache-type-v") {
  482. if (++i >= argc) {
  483. invalid_param = true;
  484. break;
  485. }
  486. auto p = string_split<std::string>(argv[i], split_delim);
  487. std::vector<ggml_type> types;
  488. for (const auto & t : p) {
  489. ggml_type gt = ggml_type_from_name(t);
  490. if (gt == GGML_TYPE_COUNT) {
  491. invalid_param = true;
  492. break;
  493. }
  494. types.push_back(gt);
  495. }
  496. if (invalid_param) {
  497. break;
  498. }
  499. params.type_v.insert(params.type_v.end(), types.begin(), types.end());
  500. } else if (arg == "-dt" || arg == "--defrag-thold") {
  501. if (++i >= argc) {
  502. invalid_param = true;
  503. break;
  504. }
  505. auto p = string_split<float>(argv[i], split_delim);
  506. params.defrag_thold.insert(params.defrag_thold.end(), p.begin(), p.end());
  507. } else if (arg == "-t" || arg == "--threads") {
  508. if (++i >= argc) {
  509. invalid_param = true;
  510. break;
  511. }
  512. auto p = parse_int_range(argv[i]);
  513. params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
  514. } else if (arg == "-C" || arg == "--cpu-mask") {
  515. if (++i >= argc) {
  516. invalid_param = true;
  517. break;
  518. }
  519. auto p = string_split<std::string>(argv[i], split_delim);
  520. params.cpu_mask.insert(params.cpu_mask.end(), p.begin(), p.end());
  521. } else if (arg == "--cpu-strict") {
  522. if (++i >= argc) {
  523. invalid_param = true;
  524. break;
  525. }
  526. auto p = string_split<bool>(argv[i], split_delim);
  527. params.cpu_strict.insert(params.cpu_strict.end(), p.begin(), p.end());
  528. } else if (arg == "--poll") {
  529. if (++i >= argc) {
  530. invalid_param = true;
  531. break;
  532. }
  533. auto p = parse_int_range(argv[i]);
  534. params.poll.insert(params.poll.end(), p.begin(), p.end());
  535. } else if (arg == "-ngl" || arg == "--n-gpu-layers") {
  536. if (++i >= argc) {
  537. invalid_param = true;
  538. break;
  539. }
  540. auto p = parse_int_range(argv[i]);
  541. params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
  542. } else if (llama_supports_rpc() && (arg == "-rpc" || arg == "--rpc")) {
  543. if (++i >= argc) {
  544. invalid_param = true;
  545. break;
  546. }
  547. params.rpc_servers.push_back(argv[i]);
  548. } else if (arg == "-sm" || arg == "--split-mode") {
  549. if (++i >= argc) {
  550. invalid_param = true;
  551. break;
  552. }
  553. auto p = string_split<std::string>(argv[i], split_delim);
  554. std::vector<llama_split_mode> modes;
  555. for (const auto & m : p) {
  556. llama_split_mode mode;
  557. if (m == "none") {
  558. mode = LLAMA_SPLIT_MODE_NONE;
  559. } else if (m == "layer") {
  560. mode = LLAMA_SPLIT_MODE_LAYER;
  561. } else if (m == "row") {
  562. mode = LLAMA_SPLIT_MODE_ROW;
  563. } else {
  564. invalid_param = true;
  565. break;
  566. }
  567. modes.push_back(mode);
  568. }
  569. if (invalid_param) {
  570. break;
  571. }
  572. params.split_mode.insert(params.split_mode.end(), modes.begin(), modes.end());
  573. } else if (arg == "-mg" || arg == "--main-gpu") {
  574. if (++i >= argc) {
  575. invalid_param = true;
  576. break;
  577. }
  578. params.main_gpu = parse_int_range(argv[i]);
  579. } else if (arg == "-nkvo" || arg == "--no-kv-offload") {
  580. if (++i >= argc) {
  581. invalid_param = true;
  582. break;
  583. }
  584. auto p = string_split<bool>(argv[i], split_delim);
  585. params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end());
  586. } else if (arg == "--numa") {
  587. if (++i >= argc) {
  588. invalid_param = true;
  589. break;
  590. }
  591. std::string value(argv[i]);
  592. if (value == "distribute" || value == "") {
  593. params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE;
  594. } else if (value == "isolate") {
  595. params.numa = GGML_NUMA_STRATEGY_ISOLATE;
  596. } else if (value == "numactl") {
  597. params.numa = GGML_NUMA_STRATEGY_NUMACTL;
  598. } else {
  599. invalid_param = true;
  600. break;
  601. }
  602. } else if (arg == "-fa" || arg == "--flash-attn") {
  603. if (++i >= argc) {
  604. invalid_param = true;
  605. break;
  606. }
  607. auto p = string_split<bool>(argv[i], split_delim);
  608. params.flash_attn.insert(params.flash_attn.end(), p.begin(), p.end());
  609. } else if (arg == "-mmp" || arg == "--mmap") {
  610. if (++i >= argc) {
  611. invalid_param = true;
  612. break;
  613. }
  614. auto p = string_split<bool>(argv[i], split_delim);
  615. params.use_mmap.insert(params.use_mmap.end(), p.begin(), p.end());
  616. } else if (arg == "-embd" || arg == "--embeddings") {
  617. if (++i >= argc) {
  618. invalid_param = true;
  619. break;
  620. }
  621. auto p = string_split<bool>(argv[i], split_delim);
  622. params.embeddings.insert(params.embeddings.end(), p.begin(), p.end());
  623. } else if (arg == "-nopo" || arg == "--no-op-offload") {
  624. if (++i >= argc) {
  625. invalid_param = true;
  626. break;
  627. }
  628. auto p = string_split<bool>(argv[i], split_delim);
  629. params.no_op_offload.insert(params.no_op_offload.end(), p.begin(), p.end());
  630. } else if (arg == "-ts" || arg == "--tensor-split") {
  631. if (++i >= argc) {
  632. invalid_param = true;
  633. break;
  634. }
  635. for (auto ts : string_split<std::string>(argv[i], split_delim)) {
  636. // split string by ; and /
  637. const std::regex regex{ R"([;/]+)" };
  638. std::sregex_token_iterator it{ ts.begin(), ts.end(), regex, -1 };
  639. std::vector<std::string> split_arg{ it, {} };
  640. GGML_ASSERT(split_arg.size() <= llama_max_devices());
  641. std::vector<float> tensor_split(llama_max_devices());
  642. for (size_t i = 0; i < llama_max_devices(); ++i) {
  643. if (i < split_arg.size()) {
  644. tensor_split[i] = std::stof(split_arg[i]);
  645. } else {
  646. tensor_split[i] = 0.0f;
  647. }
  648. }
  649. params.tensor_split.push_back(tensor_split);
  650. }
  651. } else if (arg == "-ot" || arg == "--override-tensor") {
  652. if (++i >= argc) {
  653. invalid_param = true;
  654. break;
  655. }
  656. auto * value = argv[i];
  657. /* static */ std::map<std::string, ggml_backend_buffer_type_t> buft_list;
  658. if (buft_list.empty()) {
  659. // enumerate all the devices and add their buffer types to the list
  660. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  661. auto * dev = ggml_backend_dev_get(i);
  662. auto * buft = ggml_backend_dev_buffer_type(dev);
  663. if (buft) {
  664. buft_list[ggml_backend_buft_name(buft)] = buft;
  665. }
  666. }
  667. }
  668. auto override_group_span_len = std::strcspn(value, ",");
  669. bool last_group = false;
  670. do {
  671. if (override_group_span_len == 0) {
  672. // Adds an empty override-tensors for an empty span
  673. params.tensor_buft_overrides.push_back({{}});
  674. if (value[override_group_span_len] == '\0') {
  675. value = &value[override_group_span_len];
  676. last_group = true;
  677. } else {
  678. value = &value[override_group_span_len + 1];
  679. override_group_span_len = std::strcspn(value, ",");
  680. }
  681. continue;
  682. }
  683. // Stamps null terminators into the argv
  684. // value for this option to avoid the
  685. // memory leak present in the implementation
  686. // over in arg.cpp. Acceptable because we
  687. // only parse these args once in this program.
  688. auto * override_group = value;
  689. if (value[override_group_span_len] == '\0') {
  690. value = &value[override_group_span_len];
  691. last_group = true;
  692. } else {
  693. value[override_group_span_len] = '\0';
  694. value = &value[override_group_span_len + 1];
  695. }
  696. std::vector<llama_model_tensor_buft_override> group_tensor_buft_overrides{};
  697. auto override_span_len = std::strcspn(override_group, ";");
  698. while (override_span_len > 0) {
  699. auto * override = override_group;
  700. if (override_group[override_span_len] != '\0') {
  701. override_group[override_span_len] = '\0';
  702. override_group = &override_group[override_span_len + 1];
  703. } else {
  704. override_group = &override_group[override_span_len];
  705. }
  706. auto tensor_name_span_len = std::strcspn(override, "=");
  707. if (tensor_name_span_len >= override_span_len) {
  708. invalid_param = true;
  709. break;
  710. }
  711. override[tensor_name_span_len] = '\0';
  712. auto * tensor_name = override;
  713. auto * buffer_type = &override[tensor_name_span_len + 1];
  714. if (buft_list.find(buffer_type) == buft_list.end()) {
  715. printf("error: unrecognized buffer type '%s'\n", buffer_type);
  716. printf("Available buffer types:\n");
  717. for (const auto & it : buft_list) {
  718. printf(" %s\n", ggml_backend_buft_name(it.second));
  719. }
  720. invalid_param = true;
  721. break;
  722. }
  723. group_tensor_buft_overrides.push_back({tensor_name, buft_list.at(buffer_type)});
  724. override_span_len = std::strcspn(override_group, ";");
  725. }
  726. if (invalid_param) {
  727. break;
  728. }
  729. group_tensor_buft_overrides.push_back({nullptr,nullptr});
  730. params.tensor_buft_overrides.push_back(group_tensor_buft_overrides);
  731. override_group_span_len = std::strcspn(value, ",");
  732. } while (!last_group);
  733. } else if (arg == "-r" || arg == "--repetitions") {
  734. if (++i >= argc) {
  735. invalid_param = true;
  736. break;
  737. }
  738. params.reps = std::stoi(argv[i]);
  739. } else if (arg == "--prio") {
  740. if (++i >= argc) {
  741. invalid_param = true;
  742. break;
  743. }
  744. params.prio = (enum ggml_sched_priority) std::stoi(argv[i]);
  745. } else if (arg == "--delay") {
  746. if (++i >= argc) {
  747. invalid_param = true;
  748. break;
  749. }
  750. params.delay = std::stoi(argv[i]);
  751. } else if (arg == "-o" || arg == "--output") {
  752. if (++i >= argc) {
  753. invalid_param = true;
  754. break;
  755. }
  756. invalid_param = !output_format_from_str(argv[i], params.output_format);
  757. } else if (arg == "-oe" || arg == "--output-err") {
  758. if (++i >= argc) {
  759. invalid_param = true;
  760. break;
  761. }
  762. invalid_param = !output_format_from_str(argv[i], params.output_format_stderr);
  763. } else if (arg == "-v" || arg == "--verbose") {
  764. params.verbose = true;
  765. } else if (arg == "--progress") {
  766. params.progress = true;
  767. } else if (arg == "--no-warmup") {
  768. params.no_warmup = true;
  769. } else {
  770. invalid_param = true;
  771. break;
  772. }
  773. } catch (const std::exception & e) {
  774. fprintf(stderr, "error: %s\n", e.what());
  775. invalid_param = true;
  776. break;
  777. }
  778. }
  779. if (invalid_param) {
  780. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  781. print_usage(argc, argv);
  782. exit(1);
  783. }
  784. // set defaults
  785. if (params.model.empty()) {
  786. params.model = cmd_params_defaults.model;
  787. }
  788. if (params.n_prompt.empty()) {
  789. params.n_prompt = cmd_params_defaults.n_prompt;
  790. }
  791. if (params.n_gen.empty()) {
  792. params.n_gen = cmd_params_defaults.n_gen;
  793. }
  794. if (params.n_pg.empty()) {
  795. params.n_pg = cmd_params_defaults.n_pg;
  796. }
  797. if (params.n_depth.empty()) {
  798. params.n_depth = cmd_params_defaults.n_depth;
  799. }
  800. if (params.n_batch.empty()) {
  801. params.n_batch = cmd_params_defaults.n_batch;
  802. }
  803. if (params.n_ubatch.empty()) {
  804. params.n_ubatch = cmd_params_defaults.n_ubatch;
  805. }
  806. if (params.type_k.empty()) {
  807. params.type_k = cmd_params_defaults.type_k;
  808. }
  809. if (params.type_v.empty()) {
  810. params.type_v = cmd_params_defaults.type_v;
  811. }
  812. if (params.defrag_thold.empty()) {
  813. params.defrag_thold = cmd_params_defaults.defrag_thold;
  814. }
  815. if (params.n_gpu_layers.empty()) {
  816. params.n_gpu_layers = cmd_params_defaults.n_gpu_layers;
  817. }
  818. if (params.rpc_servers.empty()) {
  819. params.rpc_servers = cmd_params_defaults.rpc_servers;
  820. }
  821. if (params.split_mode.empty()) {
  822. params.split_mode = cmd_params_defaults.split_mode;
  823. }
  824. if (params.main_gpu.empty()) {
  825. params.main_gpu = cmd_params_defaults.main_gpu;
  826. }
  827. if (params.no_kv_offload.empty()) {
  828. params.no_kv_offload = cmd_params_defaults.no_kv_offload;
  829. }
  830. if (params.flash_attn.empty()) {
  831. params.flash_attn = cmd_params_defaults.flash_attn;
  832. }
  833. if (params.tensor_split.empty()) {
  834. params.tensor_split = cmd_params_defaults.tensor_split;
  835. }
  836. if (params.tensor_buft_overrides.empty()) {
  837. params.tensor_buft_overrides = cmd_params_defaults.tensor_buft_overrides;
  838. }
  839. if (params.use_mmap.empty()) {
  840. params.use_mmap = cmd_params_defaults.use_mmap;
  841. }
  842. if (params.embeddings.empty()) {
  843. params.embeddings = cmd_params_defaults.embeddings;
  844. }
  845. if (params.no_op_offload.empty()) {
  846. params.no_op_offload = cmd_params_defaults.no_op_offload;
  847. }
  848. if (params.n_threads.empty()) {
  849. params.n_threads = cmd_params_defaults.n_threads;
  850. }
  851. if (params.cpu_mask.empty()) {
  852. params.cpu_mask = cmd_params_defaults.cpu_mask;
  853. }
  854. if (params.cpu_strict.empty()) {
  855. params.cpu_strict = cmd_params_defaults.cpu_strict;
  856. }
  857. if (params.poll.empty()) {
  858. params.poll = cmd_params_defaults.poll;
  859. }
  860. return params;
  861. }
  862. struct cmd_params_instance {
  863. std::string model;
  864. int n_prompt;
  865. int n_gen;
  866. int n_depth;
  867. int n_batch;
  868. int n_ubatch;
  869. ggml_type type_k;
  870. ggml_type type_v;
  871. float defrag_thold;
  872. int n_threads;
  873. std::string cpu_mask;
  874. bool cpu_strict;
  875. int poll;
  876. int n_gpu_layers;
  877. std::string rpc_servers_str;
  878. llama_split_mode split_mode;
  879. int main_gpu;
  880. bool no_kv_offload;
  881. bool flash_attn;
  882. std::vector<float> tensor_split;
  883. std::vector<llama_model_tensor_buft_override> tensor_buft_overrides;
  884. bool use_mmap;
  885. bool embeddings;
  886. bool no_op_offload;
  887. llama_model_params to_llama_mparams() const {
  888. llama_model_params mparams = llama_model_default_params();
  889. mparams.n_gpu_layers = n_gpu_layers;
  890. if (!rpc_servers_str.empty()) {
  891. auto rpc_servers = string_split<std::string>(rpc_servers_str, ',');
  892. // add RPC devices
  893. if (!rpc_servers.empty()) {
  894. ggml_backend_reg_t rpc_reg = ggml_backend_reg_by_name("RPC");
  895. if (!rpc_reg) {
  896. fprintf(stderr, "%s: failed to find RPC backend\n", __func__);
  897. exit(1);
  898. }
  899. typedef ggml_backend_dev_t (*ggml_backend_rpc_add_device_t)(const char * endpoint);
  900. ggml_backend_rpc_add_device_t ggml_backend_rpc_add_device_fn = (ggml_backend_rpc_add_device_t) ggml_backend_reg_get_proc_address(rpc_reg, "ggml_backend_rpc_add_device");
  901. if (!ggml_backend_rpc_add_device_fn) {
  902. fprintf(stderr, "%s: failed to find RPC device add function\n", __func__);
  903. exit(1);
  904. }
  905. static std::vector<ggml_backend_dev_t> devices;
  906. devices.clear();
  907. for (const std::string & server : rpc_servers) {
  908. ggml_backend_dev_t dev = ggml_backend_rpc_add_device_fn(server.c_str());
  909. if (dev) {
  910. devices.push_back(dev);
  911. } else {
  912. fprintf(stderr, "%s: failed to add RPC device for server '%s'\n", __func__, server.c_str());
  913. exit(1);
  914. }
  915. }
  916. devices.push_back(nullptr);
  917. mparams.devices = devices.data();
  918. }
  919. }
  920. mparams.split_mode = split_mode;
  921. mparams.main_gpu = main_gpu;
  922. mparams.tensor_split = tensor_split.data();
  923. mparams.use_mmap = use_mmap;
  924. if (tensor_buft_overrides.empty()) {
  925. mparams.tensor_buft_overrides = nullptr;
  926. } else {
  927. GGML_ASSERT(tensor_buft_overrides.back().pattern == nullptr && "Tensor buffer overrides not terminated with empty pattern");
  928. mparams.tensor_buft_overrides = tensor_buft_overrides.data();
  929. }
  930. return mparams;
  931. }
  932. bool equal_mparams(const cmd_params_instance & other) const {
  933. return model == other.model && n_gpu_layers == other.n_gpu_layers && rpc_servers_str == other.rpc_servers_str &&
  934. split_mode == other.split_mode && main_gpu == other.main_gpu && use_mmap == other.use_mmap &&
  935. tensor_split == other.tensor_split && vec_tensor_buft_override_equal(tensor_buft_overrides, other.tensor_buft_overrides);
  936. }
  937. llama_context_params to_llama_cparams() const {
  938. llama_context_params cparams = llama_context_default_params();
  939. cparams.n_ctx = n_prompt + n_gen + n_depth;
  940. cparams.n_batch = n_batch;
  941. cparams.n_ubatch = n_ubatch;
  942. cparams.type_k = type_k;
  943. cparams.type_v = type_v;
  944. cparams.defrag_thold = defrag_thold;
  945. cparams.offload_kqv = !no_kv_offload;
  946. cparams.flash_attn = flash_attn;
  947. cparams.embeddings = embeddings;
  948. cparams.op_offload = !no_op_offload;
  949. cparams.swa_full = false;
  950. return cparams;
  951. }
  952. };
  953. static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
  954. std::vector<cmd_params_instance> instances;
  955. // this ordering minimizes the number of times that each model needs to be reloaded
  956. // clang-format off
  957. for (const auto & m : params.model)
  958. for (const auto & nl : params.n_gpu_layers)
  959. for (const auto & rpc : params.rpc_servers)
  960. for (const auto & sm : params.split_mode)
  961. for (const auto & mg : params.main_gpu)
  962. for (const auto & ts : params.tensor_split)
  963. for (const auto & ot : params.tensor_buft_overrides)
  964. for (const auto & mmp : params.use_mmap)
  965. for (const auto & embd : params.embeddings)
  966. for (const auto & nopo : params.no_op_offload)
  967. for (const auto & nb : params.n_batch)
  968. for (const auto & nub : params.n_ubatch)
  969. for (const auto & tk : params.type_k)
  970. for (const auto & tv : params.type_v)
  971. for (const auto & defrag_thold : params.defrag_thold)
  972. for (const auto & nkvo : params.no_kv_offload)
  973. for (const auto & fa : params.flash_attn)
  974. for (const auto & nt : params.n_threads)
  975. for (const auto & cm : params.cpu_mask)
  976. for (const auto & cs : params.cpu_strict)
  977. for (const auto & nd : params.n_depth)
  978. for (const auto & pl : params.poll) {
  979. for (const auto & n_prompt : params.n_prompt) {
  980. if (n_prompt == 0) {
  981. continue;
  982. }
  983. cmd_params_instance instance = {
  984. /* .model = */ m,
  985. /* .n_prompt = */ n_prompt,
  986. /* .n_gen = */ 0,
  987. /* .n_depth = */ nd,
  988. /* .n_batch = */ nb,
  989. /* .n_ubatch = */ nub,
  990. /* .type_k = */ tk,
  991. /* .type_v = */ tv,
  992. /* .defrag_thold = */ defrag_thold,
  993. /* .n_threads = */ nt,
  994. /* .cpu_mask = */ cm,
  995. /* .cpu_strict = */ cs,
  996. /* .poll = */ pl,
  997. /* .n_gpu_layers = */ nl,
  998. /* .rpc_servers = */ rpc,
  999. /* .split_mode = */ sm,
  1000. /* .main_gpu = */ mg,
  1001. /* .no_kv_offload= */ nkvo,
  1002. /* .flash_attn = */ fa,
  1003. /* .tensor_split = */ ts,
  1004. /* .tensor_buft_overrides = */ ot,
  1005. /* .use_mmap = */ mmp,
  1006. /* .embeddings = */ embd,
  1007. /* .no_op_offload= */ nopo,
  1008. };
  1009. instances.push_back(instance);
  1010. }
  1011. for (const auto & n_gen : params.n_gen) {
  1012. if (n_gen == 0) {
  1013. continue;
  1014. }
  1015. cmd_params_instance instance = {
  1016. /* .model = */ m,
  1017. /* .n_prompt = */ 0,
  1018. /* .n_gen = */ n_gen,
  1019. /* .n_depth = */ nd,
  1020. /* .n_batch = */ nb,
  1021. /* .n_ubatch = */ nub,
  1022. /* .type_k = */ tk,
  1023. /* .type_v = */ tv,
  1024. /* .defrag_thold = */ defrag_thold,
  1025. /* .n_threads = */ nt,
  1026. /* .cpu_mask = */ cm,
  1027. /* .cpu_strict = */ cs,
  1028. /* .poll = */ pl,
  1029. /* .n_gpu_layers = */ nl,
  1030. /* .rpc_servers = */ rpc,
  1031. /* .split_mode = */ sm,
  1032. /* .main_gpu = */ mg,
  1033. /* .no_kv_offload= */ nkvo,
  1034. /* .flash_attn = */ fa,
  1035. /* .tensor_split = */ ts,
  1036. /* .tensor_buft_overrides = */ ot,
  1037. /* .use_mmap = */ mmp,
  1038. /* .embeddings = */ embd,
  1039. /* .no_op_offload= */ nopo,
  1040. };
  1041. instances.push_back(instance);
  1042. }
  1043. for (const auto & n_pg : params.n_pg) {
  1044. if (n_pg.first == 0 && n_pg.second == 0) {
  1045. continue;
  1046. }
  1047. cmd_params_instance instance = {
  1048. /* .model = */ m,
  1049. /* .n_prompt = */ n_pg.first,
  1050. /* .n_gen = */ n_pg.second,
  1051. /* .n_depth = */ nd,
  1052. /* .n_batch = */ nb,
  1053. /* .n_ubatch = */ nub,
  1054. /* .type_k = */ tk,
  1055. /* .type_v = */ tv,
  1056. /* .defrag_thold = */ defrag_thold,
  1057. /* .n_threads = */ nt,
  1058. /* .cpu_mask = */ cm,
  1059. /* .cpu_strict = */ cs,
  1060. /* .poll = */ pl,
  1061. /* .n_gpu_layers = */ nl,
  1062. /* .rpc_servers = */ rpc,
  1063. /* .split_mode = */ sm,
  1064. /* .main_gpu = */ mg,
  1065. /* .no_kv_offload= */ nkvo,
  1066. /* .flash_attn = */ fa,
  1067. /* .tensor_split = */ ts,
  1068. /* .tensor_buft_overrides = */ ot,
  1069. /* .use_mmap = */ mmp,
  1070. /* .embeddings = */ embd,
  1071. /* .no_op_offload= */ nopo,
  1072. };
  1073. instances.push_back(instance);
  1074. }
  1075. }
  1076. // clang-format on
  1077. return instances;
  1078. }
  1079. struct test {
  1080. static const std::string build_commit;
  1081. static const int build_number;
  1082. const std::string cpu_info;
  1083. const std::string gpu_info;
  1084. std::string model_filename;
  1085. std::string model_type;
  1086. uint64_t model_size;
  1087. uint64_t model_n_params;
  1088. int n_batch;
  1089. int n_ubatch;
  1090. int n_threads;
  1091. std::string cpu_mask;
  1092. bool cpu_strict;
  1093. int poll;
  1094. ggml_type type_k;
  1095. ggml_type type_v;
  1096. float defrag_thold;
  1097. int n_gpu_layers;
  1098. llama_split_mode split_mode;
  1099. int main_gpu;
  1100. bool no_kv_offload;
  1101. bool flash_attn;
  1102. std::vector<float> tensor_split;
  1103. std::vector<llama_model_tensor_buft_override> tensor_buft_overrides;
  1104. bool use_mmap;
  1105. bool embeddings;
  1106. bool no_op_offload;
  1107. int n_prompt;
  1108. int n_gen;
  1109. int n_depth;
  1110. std::string test_time;
  1111. std::vector<uint64_t> samples_ns;
  1112. test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) :
  1113. cpu_info(get_cpu_info()),
  1114. gpu_info(get_gpu_info()) {
  1115. model_filename = inst.model;
  1116. char buf[128];
  1117. llama_model_desc(lmodel, buf, sizeof(buf));
  1118. model_type = buf;
  1119. model_size = llama_model_size(lmodel);
  1120. model_n_params = llama_model_n_params(lmodel);
  1121. n_batch = inst.n_batch;
  1122. n_ubatch = inst.n_ubatch;
  1123. n_threads = inst.n_threads;
  1124. cpu_mask = inst.cpu_mask;
  1125. cpu_strict = inst.cpu_strict;
  1126. poll = inst.poll;
  1127. type_k = inst.type_k;
  1128. type_v = inst.type_v;
  1129. defrag_thold = inst.defrag_thold;
  1130. n_gpu_layers = inst.n_gpu_layers;
  1131. split_mode = inst.split_mode;
  1132. main_gpu = inst.main_gpu;
  1133. no_kv_offload = inst.no_kv_offload;
  1134. flash_attn = inst.flash_attn;
  1135. tensor_split = inst.tensor_split;
  1136. tensor_buft_overrides = inst.tensor_buft_overrides;
  1137. use_mmap = inst.use_mmap;
  1138. embeddings = inst.embeddings;
  1139. no_op_offload = inst.no_op_offload;
  1140. n_prompt = inst.n_prompt;
  1141. n_gen = inst.n_gen;
  1142. n_depth = inst.n_depth;
  1143. // RFC 3339 date-time format
  1144. time_t t = time(NULL);
  1145. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  1146. test_time = buf;
  1147. (void) ctx;
  1148. }
  1149. uint64_t avg_ns() const { return ::avg(samples_ns); }
  1150. uint64_t stdev_ns() const { return ::stdev(samples_ns); }
  1151. std::vector<double> get_ts() const {
  1152. int n_tokens = n_prompt + n_gen;
  1153. std::vector<double> ts;
  1154. std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts),
  1155. [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
  1156. return ts;
  1157. }
  1158. double avg_ts() const { return ::avg(get_ts()); }
  1159. double stdev_ts() const { return ::stdev(get_ts()); }
  1160. static std::string get_backend() {
  1161. std::vector<std::string> backends;
  1162. for (size_t i = 0; i < ggml_backend_reg_count(); i++) {
  1163. auto * reg = ggml_backend_reg_get(i);
  1164. std::string name = ggml_backend_reg_name(reg);
  1165. if (name != "CPU") {
  1166. backends.push_back(ggml_backend_reg_name(reg));
  1167. }
  1168. }
  1169. return backends.empty() ? "CPU" : join(backends, ",");
  1170. }
  1171. static const std::vector<std::string> & get_fields() {
  1172. static const std::vector<std::string> fields = {
  1173. "build_commit", "build_number", "cpu_info", "gpu_info", "backends", "model_filename",
  1174. "model_type", "model_size", "model_n_params", "n_batch", "n_ubatch", "n_threads",
  1175. "cpu_mask", "cpu_strict", "poll", "type_k", "type_v", "n_gpu_layers",
  1176. "split_mode", "main_gpu", "no_kv_offload", "flash_attn", "tensor_split", "tensor_buft_overrides",
  1177. "defrag_thold",
  1178. "use_mmap", "embeddings", "no_op_offload", "n_prompt", "n_gen", "n_depth", "test_time",
  1179. "avg_ns", "stddev_ns", "avg_ts", "stddev_ts",
  1180. };
  1181. return fields;
  1182. }
  1183. enum field_type { STRING, BOOL, INT, FLOAT };
  1184. static field_type get_field_type(const std::string & field) {
  1185. if (field == "build_number" || field == "n_batch" || field == "n_ubatch" || field == "n_threads" ||
  1186. field == "poll" || field == "model_size" || field == "model_n_params" || field == "n_gpu_layers" ||
  1187. field == "main_gpu" || field == "n_prompt" || field == "n_gen" || field == "n_depth" ||
  1188. field == "avg_ns" || field == "stddev_ns" || field == "no_op_offload") {
  1189. return INT;
  1190. }
  1191. if (field == "f16_kv" || field == "no_kv_offload" || field == "cpu_strict" || field == "flash_attn" ||
  1192. field == "use_mmap" || field == "embeddings") {
  1193. return BOOL;
  1194. }
  1195. if (field == "avg_ts" || field == "stddev_ts" || field == "defrag_thold") {
  1196. return FLOAT;
  1197. }
  1198. return STRING;
  1199. }
  1200. std::vector<std::string> get_values() const {
  1201. std::string tensor_split_str;
  1202. std::string tensor_buft_overrides_str;
  1203. int max_nonzero = 0;
  1204. for (size_t i = 0; i < llama_max_devices(); i++) {
  1205. if (tensor_split[i] > 0) {
  1206. max_nonzero = i;
  1207. }
  1208. }
  1209. for (int i = 0; i <= max_nonzero; i++) {
  1210. char buf[32];
  1211. snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]);
  1212. tensor_split_str += buf;
  1213. if (i < max_nonzero) {
  1214. tensor_split_str += "/";
  1215. }
  1216. }
  1217. if (tensor_buft_overrides.size() == 1) {
  1218. // Last element of tensor_buft_overrides is always a null pattern
  1219. // so if it is only one element long, it must be a null pattern.
  1220. GGML_ASSERT(tensor_buft_overrides[0].pattern == nullptr);
  1221. tensor_buft_overrides_str += "none";
  1222. } else {
  1223. for (size_t i = 0; i < tensor_buft_overrides.size()-1; i++) {
  1224. // Last element of tensor_buft_overrides is always a null pattern
  1225. if (tensor_buft_overrides[i].pattern == nullptr) {
  1226. tensor_buft_overrides_str += "none";
  1227. } else {
  1228. tensor_buft_overrides_str += tensor_buft_overrides[i].pattern;
  1229. tensor_buft_overrides_str += "=";
  1230. tensor_buft_overrides_str += ggml_backend_buft_name(tensor_buft_overrides[i].buft);
  1231. }
  1232. if (i + 2 < tensor_buft_overrides.size()) {
  1233. tensor_buft_overrides_str += ";";
  1234. }
  1235. }
  1236. }
  1237. std::vector<std::string> values = { build_commit,
  1238. std::to_string(build_number),
  1239. cpu_info,
  1240. gpu_info,
  1241. get_backend(),
  1242. model_filename,
  1243. model_type,
  1244. std::to_string(model_size),
  1245. std::to_string(model_n_params),
  1246. std::to_string(n_batch),
  1247. std::to_string(n_ubatch),
  1248. std::to_string(n_threads),
  1249. cpu_mask,
  1250. std::to_string(cpu_strict),
  1251. std::to_string(poll),
  1252. ggml_type_name(type_k),
  1253. ggml_type_name(type_v),
  1254. std::to_string(n_gpu_layers),
  1255. split_mode_str(split_mode),
  1256. std::to_string(main_gpu),
  1257. std::to_string(no_kv_offload),
  1258. std::to_string(flash_attn),
  1259. tensor_split_str,
  1260. tensor_buft_overrides_str,
  1261. std::to_string(defrag_thold),
  1262. std::to_string(use_mmap),
  1263. std::to_string(embeddings),
  1264. std::to_string(no_op_offload),
  1265. std::to_string(n_prompt),
  1266. std::to_string(n_gen),
  1267. std::to_string(n_depth),
  1268. test_time,
  1269. std::to_string(avg_ns()),
  1270. std::to_string(stdev_ns()),
  1271. std::to_string(avg_ts()),
  1272. std::to_string(stdev_ts()) };
  1273. return values;
  1274. }
  1275. std::map<std::string, std::string> get_map() const {
  1276. std::map<std::string, std::string> map;
  1277. auto fields = get_fields();
  1278. auto values = get_values();
  1279. std::transform(fields.begin(), fields.end(), values.begin(), std::inserter(map, map.end()),
  1280. std::make_pair<const std::string &, const std::string &>);
  1281. return map;
  1282. }
  1283. };
  1284. const std::string test::build_commit = LLAMA_COMMIT;
  1285. const int test::build_number = LLAMA_BUILD_NUMBER;
  1286. struct printer {
  1287. virtual ~printer() {}
  1288. FILE * fout;
  1289. virtual void print_header(const cmd_params & params) { (void) params; }
  1290. virtual void print_test(const test & t) = 0;
  1291. virtual void print_footer() {}
  1292. };
  1293. struct csv_printer : public printer {
  1294. static std::string escape_csv(const std::string & field) {
  1295. std::string escaped = "\"";
  1296. for (auto c : field) {
  1297. if (c == '"') {
  1298. escaped += "\"";
  1299. }
  1300. escaped += c;
  1301. }
  1302. escaped += "\"";
  1303. return escaped;
  1304. }
  1305. void print_header(const cmd_params & params) override {
  1306. std::vector<std::string> fields = test::get_fields();
  1307. fprintf(fout, "%s\n", join(fields, ",").c_str());
  1308. (void) params;
  1309. }
  1310. void print_test(const test & t) override {
  1311. std::vector<std::string> values = t.get_values();
  1312. std::transform(values.begin(), values.end(), values.begin(), escape_csv);
  1313. fprintf(fout, "%s\n", join(values, ",").c_str());
  1314. }
  1315. };
  1316. static std::string escape_json(const std::string & value) {
  1317. std::string escaped;
  1318. for (auto c : value) {
  1319. if (c == '"') {
  1320. escaped += "\\\"";
  1321. } else if (c == '\\') {
  1322. escaped += "\\\\";
  1323. } else if (c <= 0x1f) {
  1324. char buf[8];
  1325. snprintf(buf, sizeof(buf), "\\u%04x", c);
  1326. escaped += buf;
  1327. } else {
  1328. escaped += c;
  1329. }
  1330. }
  1331. return escaped;
  1332. }
  1333. static std::string format_json_value(const std::string & field, const std::string & value) {
  1334. switch (test::get_field_type(field)) {
  1335. case test::STRING:
  1336. return "\"" + escape_json(value) + "\"";
  1337. case test::BOOL:
  1338. return value == "0" ? "false" : "true";
  1339. default:
  1340. return value;
  1341. }
  1342. }
  1343. struct json_printer : public printer {
  1344. bool first = true;
  1345. void print_header(const cmd_params & params) override {
  1346. fprintf(fout, "[\n");
  1347. (void) params;
  1348. }
  1349. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  1350. assert(fields.size() == values.size());
  1351. for (size_t i = 0; i < fields.size(); i++) {
  1352. fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(),
  1353. format_json_value(fields.at(i), values.at(i)).c_str());
  1354. }
  1355. }
  1356. void print_test(const test & t) override {
  1357. if (first) {
  1358. first = false;
  1359. } else {
  1360. fprintf(fout, ",\n");
  1361. }
  1362. fprintf(fout, " {\n");
  1363. print_fields(test::get_fields(), t.get_values());
  1364. fprintf(fout, " \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str());
  1365. fprintf(fout, " \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str());
  1366. fprintf(fout, " }");
  1367. fflush(fout);
  1368. }
  1369. void print_footer() override { fprintf(fout, "\n]\n"); }
  1370. };
  1371. struct jsonl_printer : public printer {
  1372. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  1373. assert(fields.size() == values.size());
  1374. for (size_t i = 0; i < fields.size(); i++) {
  1375. fprintf(fout, "\"%s\": %s, ", fields.at(i).c_str(), format_json_value(fields.at(i), values.at(i)).c_str());
  1376. }
  1377. }
  1378. void print_test(const test & t) override {
  1379. fprintf(fout, "{");
  1380. print_fields(test::get_fields(), t.get_values());
  1381. fprintf(fout, "\"samples_ns\": [ %s ],", join(t.samples_ns, ", ").c_str());
  1382. fprintf(fout, "\"samples_ts\": [ %s ]", join(t.get_ts(), ", ").c_str());
  1383. fprintf(fout, "}\n");
  1384. fflush(fout);
  1385. }
  1386. };
  1387. struct markdown_printer : public printer {
  1388. std::vector<std::string> fields;
  1389. static int get_field_width(const std::string & field) {
  1390. if (field == "model") {
  1391. return -30;
  1392. }
  1393. if (field == "t/s") {
  1394. return 20;
  1395. }
  1396. if (field == "size" || field == "params") {
  1397. return 10;
  1398. }
  1399. if (field == "n_gpu_layers") {
  1400. return 3;
  1401. }
  1402. if (field == "n_threads") {
  1403. return 7;
  1404. }
  1405. if (field == "n_batch") {
  1406. return 7;
  1407. }
  1408. if (field == "n_ubatch") {
  1409. return 8;
  1410. }
  1411. if (field == "type_k" || field == "type_v") {
  1412. return 6;
  1413. }
  1414. if (field == "split_mode") {
  1415. return 5;
  1416. }
  1417. if (field == "flash_attn") {
  1418. return 2;
  1419. }
  1420. if (field == "use_mmap") {
  1421. return 4;
  1422. }
  1423. if (field == "test") {
  1424. return 15;
  1425. }
  1426. if (field == "no_op_offload") {
  1427. return 4;
  1428. }
  1429. int width = std::max((int) field.length(), 10);
  1430. if (test::get_field_type(field) == test::STRING) {
  1431. return -width;
  1432. }
  1433. return width;
  1434. }
  1435. static std::string get_field_display_name(const std::string & field) {
  1436. if (field == "n_gpu_layers") {
  1437. return "ngl";
  1438. }
  1439. if (field == "split_mode") {
  1440. return "sm";
  1441. }
  1442. if (field == "n_threads") {
  1443. return "threads";
  1444. }
  1445. if (field == "no_kv_offload") {
  1446. return "nkvo";
  1447. }
  1448. if (field == "flash_attn") {
  1449. return "fa";
  1450. }
  1451. if (field == "use_mmap") {
  1452. return "mmap";
  1453. }
  1454. if (field == "embeddings") {
  1455. return "embd";
  1456. }
  1457. if (field == "no_op_offload") {
  1458. return "nopo";
  1459. }
  1460. if (field == "tensor_split") {
  1461. return "ts";
  1462. }
  1463. if (field == "tensor_buft_overrides") {
  1464. return "ot";
  1465. }
  1466. return field;
  1467. }
  1468. void print_header(const cmd_params & params) override {
  1469. // select fields to print
  1470. fields.emplace_back("model");
  1471. fields.emplace_back("size");
  1472. fields.emplace_back("params");
  1473. fields.emplace_back("backend");
  1474. bool is_cpu_backend = test::get_backend().find("CPU") != std::string::npos ||
  1475. test::get_backend().find("BLAS") != std::string::npos;
  1476. if (!is_cpu_backend) {
  1477. fields.emplace_back("n_gpu_layers");
  1478. }
  1479. if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
  1480. fields.emplace_back("n_threads");
  1481. }
  1482. if (params.cpu_mask.size() > 1 || params.cpu_mask != cmd_params_defaults.cpu_mask) {
  1483. fields.emplace_back("cpu_mask");
  1484. }
  1485. if (params.cpu_strict.size() > 1 || params.cpu_strict != cmd_params_defaults.cpu_strict) {
  1486. fields.emplace_back("cpu_strict");
  1487. }
  1488. if (params.poll.size() > 1 || params.poll != cmd_params_defaults.poll) {
  1489. fields.emplace_back("poll");
  1490. }
  1491. if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
  1492. fields.emplace_back("n_batch");
  1493. }
  1494. if (params.n_ubatch.size() > 1 || params.n_ubatch != cmd_params_defaults.n_ubatch) {
  1495. fields.emplace_back("n_ubatch");
  1496. }
  1497. if (params.type_k.size() > 1 || params.type_k != cmd_params_defaults.type_k) {
  1498. fields.emplace_back("type_k");
  1499. }
  1500. if (params.type_v.size() > 1 || params.type_v != cmd_params_defaults.type_v) {
  1501. fields.emplace_back("type_v");
  1502. }
  1503. if (params.defrag_thold.size() > 1 || params.defrag_thold != cmd_params_defaults.defrag_thold) {
  1504. fields.emplace_back("defrag_thold");
  1505. }
  1506. if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
  1507. fields.emplace_back("main_gpu");
  1508. }
  1509. if (params.split_mode.size() > 1 || params.split_mode != cmd_params_defaults.split_mode) {
  1510. fields.emplace_back("split_mode");
  1511. }
  1512. if (params.no_kv_offload.size() > 1 || params.no_kv_offload != cmd_params_defaults.no_kv_offload) {
  1513. fields.emplace_back("no_kv_offload");
  1514. }
  1515. if (params.flash_attn.size() > 1 || params.flash_attn != cmd_params_defaults.flash_attn) {
  1516. fields.emplace_back("flash_attn");
  1517. }
  1518. if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
  1519. fields.emplace_back("tensor_split");
  1520. }
  1521. if (params.tensor_buft_overrides.size() > 1 || !vec_vec_tensor_buft_override_equal(params.tensor_buft_overrides, cmd_params_defaults.tensor_buft_overrides)) {
  1522. fields.emplace_back("tensor_buft_overrides");
  1523. }
  1524. if (params.use_mmap.size() > 1 || params.use_mmap != cmd_params_defaults.use_mmap) {
  1525. fields.emplace_back("use_mmap");
  1526. }
  1527. if (params.embeddings.size() > 1 || params.embeddings != cmd_params_defaults.embeddings) {
  1528. fields.emplace_back("embeddings");
  1529. }
  1530. if (params.no_op_offload.size() > 1 || params.no_op_offload != cmd_params_defaults.no_op_offload) {
  1531. fields.emplace_back("no_op_offload");
  1532. }
  1533. fields.emplace_back("test");
  1534. fields.emplace_back("t/s");
  1535. fprintf(fout, "|");
  1536. for (const auto & field : fields) {
  1537. fprintf(fout, " %*s |", get_field_width(field), get_field_display_name(field).c_str());
  1538. }
  1539. fprintf(fout, "\n");
  1540. fprintf(fout, "|");
  1541. for (const auto & field : fields) {
  1542. int width = get_field_width(field);
  1543. fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-");
  1544. }
  1545. fprintf(fout, "\n");
  1546. }
  1547. void print_test(const test & t) override {
  1548. std::map<std::string, std::string> vmap = t.get_map();
  1549. fprintf(fout, "|");
  1550. for (const auto & field : fields) {
  1551. std::string value;
  1552. char buf[128];
  1553. if (field == "model") {
  1554. value = t.model_type;
  1555. } else if (field == "size") {
  1556. if (t.model_size < 1024 * 1024 * 1024) {
  1557. snprintf(buf, sizeof(buf), "%.2f MiB", t.model_size / 1024.0 / 1024.0);
  1558. } else {
  1559. snprintf(buf, sizeof(buf), "%.2f GiB", t.model_size / 1024.0 / 1024.0 / 1024.0);
  1560. }
  1561. value = buf;
  1562. } else if (field == "params") {
  1563. if (t.model_n_params < 1000 * 1000 * 1000) {
  1564. snprintf(buf, sizeof(buf), "%.2f M", t.model_n_params / 1e6);
  1565. } else {
  1566. snprintf(buf, sizeof(buf), "%.2f B", t.model_n_params / 1e9);
  1567. }
  1568. value = buf;
  1569. } else if (field == "backend") {
  1570. value = test::get_backend();
  1571. } else if (field == "test") {
  1572. if (t.n_prompt > 0 && t.n_gen == 0) {
  1573. snprintf(buf, sizeof(buf), "pp%d", t.n_prompt);
  1574. } else if (t.n_gen > 0 && t.n_prompt == 0) {
  1575. snprintf(buf, sizeof(buf), "tg%d", t.n_gen);
  1576. } else {
  1577. snprintf(buf, sizeof(buf), "pp%d+tg%d", t.n_prompt, t.n_gen);
  1578. }
  1579. if (t.n_depth > 0) {
  1580. int len = strlen(buf);
  1581. snprintf(buf + len, sizeof(buf) - len, " @ d%d", t.n_depth);
  1582. }
  1583. value = buf;
  1584. } else if (field == "t/s") {
  1585. snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
  1586. value = buf;
  1587. } else if (vmap.find(field) != vmap.end()) {
  1588. value = vmap.at(field);
  1589. } else {
  1590. assert(false);
  1591. exit(1);
  1592. }
  1593. int width = get_field_width(field);
  1594. if (field == "t/s") {
  1595. // HACK: the utf-8 character is 2 bytes
  1596. width += 1;
  1597. }
  1598. fprintf(fout, " %*s |", width, value.c_str());
  1599. }
  1600. fprintf(fout, "\n");
  1601. }
  1602. void print_footer() override {
  1603. fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number);
  1604. }
  1605. };
  1606. struct sql_printer : public printer {
  1607. static std::string get_sql_field_type(const std::string & field) {
  1608. switch (test::get_field_type(field)) {
  1609. case test::STRING:
  1610. return "TEXT";
  1611. case test::BOOL:
  1612. case test::INT:
  1613. return "INTEGER";
  1614. case test::FLOAT:
  1615. return "REAL";
  1616. default:
  1617. assert(false);
  1618. exit(1);
  1619. }
  1620. }
  1621. void print_header(const cmd_params & params) override {
  1622. std::vector<std::string> fields = test::get_fields();
  1623. fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n");
  1624. for (size_t i = 0; i < fields.size(); i++) {
  1625. fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(),
  1626. i < fields.size() - 1 ? "," : "");
  1627. }
  1628. fprintf(fout, ");\n");
  1629. fprintf(fout, "\n");
  1630. (void) params;
  1631. }
  1632. void print_test(const test & t) override {
  1633. fprintf(fout, "INSERT INTO test (%s) ", join(test::get_fields(), ", ").c_str());
  1634. fprintf(fout, "VALUES (");
  1635. std::vector<std::string> values = t.get_values();
  1636. for (size_t i = 0; i < values.size(); i++) {
  1637. fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : "");
  1638. }
  1639. fprintf(fout, ");\n");
  1640. }
  1641. };
  1642. static bool test_prompt(llama_context * ctx, int n_prompt, int n_batch, int n_threads) {
  1643. llama_set_n_threads(ctx, n_threads, n_threads);
  1644. const llama_model * model = llama_get_model(ctx);
  1645. const llama_vocab * vocab = llama_model_get_vocab(model);
  1646. const int32_t n_vocab = llama_vocab_n_tokens(vocab);
  1647. std::vector<llama_token> tokens(n_batch);
  1648. int n_processed = 0;
  1649. while (n_processed < n_prompt) {
  1650. int n_tokens = std::min(n_prompt - n_processed, n_batch);
  1651. tokens[0] = n_processed == 0 && llama_vocab_get_add_bos(vocab) ? llama_vocab_bos(vocab) : std::rand() % n_vocab;
  1652. for (int i = 1; i < n_tokens; i++) {
  1653. tokens[i] = std::rand() % n_vocab;
  1654. }
  1655. int res = llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens));
  1656. if (res != 0) {
  1657. fprintf(stderr, "%s: failed to decode prompt batch, res = %d\n", __func__, res);
  1658. return false;
  1659. }
  1660. n_processed += n_tokens;
  1661. }
  1662. llama_synchronize(ctx);
  1663. return true;
  1664. }
  1665. static bool test_gen(llama_context * ctx, int n_gen, int n_threads) {
  1666. llama_set_n_threads(ctx, n_threads, n_threads);
  1667. const llama_model * model = llama_get_model(ctx);
  1668. const llama_vocab * vocab = llama_model_get_vocab(model);
  1669. const int32_t n_vocab = llama_vocab_n_tokens(vocab);
  1670. llama_token token = llama_vocab_get_add_bos(vocab) ? llama_vocab_bos(vocab) : std::rand() % n_vocab;
  1671. for (int i = 0; i < n_gen; i++) {
  1672. int res = llama_decode(ctx, llama_batch_get_one(&token, 1));
  1673. if (res != 0) {
  1674. fprintf(stderr, "%s: failed to decode generation batch, res = %d\n", __func__, res);
  1675. return false;
  1676. }
  1677. llama_synchronize(ctx);
  1678. token = std::rand() % n_vocab;
  1679. }
  1680. return true;
  1681. }
  1682. static void llama_null_log_callback(enum ggml_log_level level, const char * text, void * user_data) {
  1683. (void) level;
  1684. (void) text;
  1685. (void) user_data;
  1686. }
  1687. static std::unique_ptr<printer> create_printer(output_formats format) {
  1688. switch (format) {
  1689. case NONE:
  1690. return nullptr;
  1691. case CSV:
  1692. return std::unique_ptr<printer>(new csv_printer());
  1693. case JSON:
  1694. return std::unique_ptr<printer>(new json_printer());
  1695. case JSONL:
  1696. return std::unique_ptr<printer>(new jsonl_printer());
  1697. case MARKDOWN:
  1698. return std::unique_ptr<printer>(new markdown_printer());
  1699. case SQL:
  1700. return std::unique_ptr<printer>(new sql_printer());
  1701. }
  1702. GGML_ABORT("fatal error");
  1703. }
  1704. int main(int argc, char ** argv) {
  1705. // try to set locale for unicode characters in markdown
  1706. setlocale(LC_CTYPE, ".UTF-8");
  1707. #if !defined(NDEBUG)
  1708. fprintf(stderr, "warning: asserts enabled, performance may be affected\n");
  1709. #endif
  1710. #if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__))
  1711. fprintf(stderr, "warning: debug build, performance may be affected\n");
  1712. #endif
  1713. #if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__)
  1714. fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n");
  1715. #endif
  1716. // initialize backends
  1717. ggml_backend_load_all();
  1718. cmd_params params = parse_cmd_params(argc, argv);
  1719. auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  1720. if (!cpu_dev) {
  1721. fprintf(stderr, "%s: error: CPU backend is not loaded\n", __func__);
  1722. return 1;
  1723. }
  1724. auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev);
  1725. auto * ggml_threadpool_new_fn = (decltype(ggml_threadpool_new) *) ggml_backend_reg_get_proc_address(cpu_reg, "ggml_threadpool_new");
  1726. auto * ggml_threadpool_free_fn = (decltype(ggml_threadpool_free) *) ggml_backend_reg_get_proc_address(cpu_reg, "ggml_threadpool_free");
  1727. // initialize llama.cpp
  1728. if (!params.verbose) {
  1729. llama_log_set(llama_null_log_callback, NULL);
  1730. }
  1731. llama_backend_init();
  1732. llama_numa_init(params.numa);
  1733. set_process_priority(params.prio);
  1734. // initialize printer
  1735. std::unique_ptr<printer> p = create_printer(params.output_format);
  1736. std::unique_ptr<printer> p_err = create_printer(params.output_format_stderr);
  1737. if (p) {
  1738. p->fout = stdout;
  1739. p->print_header(params);
  1740. }
  1741. if (p_err) {
  1742. p_err->fout = stderr;
  1743. p_err->print_header(params);
  1744. }
  1745. std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
  1746. llama_model * lmodel = nullptr;
  1747. const cmd_params_instance * prev_inst = nullptr;
  1748. int params_idx = 0;
  1749. auto params_count = params_instances.size();
  1750. for (const auto & inst : params_instances) {
  1751. params_idx++;
  1752. if (params.progress) {
  1753. fprintf(stderr, "llama-bench: benchmark %d/%zu: starting\n", params_idx, params_count);
  1754. }
  1755. // keep the same model between tests when possible
  1756. if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) {
  1757. if (lmodel) {
  1758. llama_model_free(lmodel);
  1759. }
  1760. lmodel = llama_model_load_from_file(inst.model.c_str(), inst.to_llama_mparams());
  1761. if (lmodel == NULL) {
  1762. fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
  1763. return 1;
  1764. }
  1765. prev_inst = &inst;
  1766. }
  1767. llama_context * ctx = llama_init_from_model(lmodel, inst.to_llama_cparams());
  1768. if (ctx == NULL) {
  1769. fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
  1770. llama_model_free(lmodel);
  1771. return 1;
  1772. }
  1773. test t(inst, lmodel, ctx);
  1774. llama_memory_clear(llama_get_memory(ctx), false);
  1775. // cool off before the test
  1776. if (params.delay) {
  1777. std::this_thread::sleep_for(std::chrono::seconds(params.delay));
  1778. }
  1779. struct ggml_threadpool_params tpp = ggml_threadpool_params_default(t.n_threads);
  1780. if (!parse_cpu_mask(t.cpu_mask, tpp.cpumask)) {
  1781. fprintf(stderr, "%s: failed to parse cpu-mask: %s\n", __func__, t.cpu_mask.c_str());
  1782. exit(1);
  1783. }
  1784. tpp.strict_cpu = t.cpu_strict;
  1785. tpp.poll = t.poll;
  1786. tpp.prio = params.prio;
  1787. struct ggml_threadpool * threadpool = ggml_threadpool_new_fn(&tpp);
  1788. if (!threadpool) {
  1789. fprintf(stderr, "%s: threadpool create failed : n_threads %d\n", __func__, tpp.n_threads);
  1790. exit(1);
  1791. }
  1792. llama_attach_threadpool(ctx, threadpool, NULL);
  1793. // warmup run
  1794. if (!params.no_warmup) {
  1795. if (t.n_prompt > 0) {
  1796. if (params.progress) {
  1797. fprintf(stderr, "llama-bench: benchmark %d/%zu: warmup prompt run\n", params_idx, params_count);
  1798. }
  1799. //test_prompt(ctx, std::min(t.n_batch, std::min(t.n_prompt, 32)), 0, t.n_batch, t.n_threads);
  1800. bool res = test_prompt(ctx, t.n_prompt, t.n_batch, t.n_threads);
  1801. if (!res) {
  1802. fprintf(stderr, "%s: error: failed to run prompt warmup\n", __func__);
  1803. exit(1);
  1804. }
  1805. }
  1806. if (t.n_gen > 0) {
  1807. if (params.progress) {
  1808. fprintf(stderr, "llama-bench: benchmark %d/%zu: warmup generation run\n", params_idx, params_count);
  1809. }
  1810. bool res = test_gen(ctx, 1, t.n_threads);
  1811. if (!res) {
  1812. fprintf(stderr, "%s: error: failed to run gen warmup\n", __func__);
  1813. exit(1);
  1814. }
  1815. }
  1816. }
  1817. for (int i = 0; i < params.reps; i++) {
  1818. llama_memory_clear(llama_get_memory(ctx), false);
  1819. if (t.n_depth > 0) {
  1820. if (params.progress) {
  1821. fprintf(stderr, "llama-bench: benchmark %d/%zu: depth run %d/%d\n", params_idx, params_count,
  1822. i + 1, params.reps);
  1823. }
  1824. bool res = test_prompt(ctx, t.n_depth, t.n_batch, t.n_threads);
  1825. if (!res) {
  1826. fprintf(stderr, "%s: error: failed to run depth\n", __func__);
  1827. exit(1);
  1828. }
  1829. }
  1830. uint64_t t_start = get_time_ns();
  1831. if (t.n_prompt > 0) {
  1832. if (params.progress) {
  1833. fprintf(stderr, "llama-bench: benchmark %d/%zu: prompt run %d/%d\n", params_idx, params_count,
  1834. i + 1, params.reps);
  1835. }
  1836. bool res = test_prompt(ctx, t.n_prompt, t.n_batch, t.n_threads);
  1837. if (!res) {
  1838. fprintf(stderr, "%s: error: failed to run prompt\n", __func__);
  1839. exit(1);
  1840. }
  1841. }
  1842. if (t.n_gen > 0) {
  1843. if (params.progress) {
  1844. fprintf(stderr, "llama-bench: benchmark %d/%zu: generation run %d/%d\n", params_idx, params_count,
  1845. i + 1, params.reps);
  1846. }
  1847. bool res = test_gen(ctx, t.n_gen, t.n_threads);
  1848. if (!res) {
  1849. fprintf(stderr, "%s: error: failed to run gen\n", __func__);
  1850. exit(1);
  1851. }
  1852. }
  1853. uint64_t t_ns = get_time_ns() - t_start;
  1854. t.samples_ns.push_back(t_ns);
  1855. }
  1856. if (p) {
  1857. p->print_test(t);
  1858. fflush(p->fout);
  1859. }
  1860. if (p_err) {
  1861. p_err->print_test(t);
  1862. fflush(p_err->fout);
  1863. }
  1864. llama_perf_context_print(ctx);
  1865. llama_free(ctx);
  1866. ggml_threadpool_free_fn(threadpool);
  1867. }
  1868. llama_model_free(lmodel);
  1869. if (p) {
  1870. p->print_footer();
  1871. }
  1872. if (p_err) {
  1873. p_err->print_footer();
  1874. }
  1875. llama_backend_free();
  1876. return 0;
  1877. }