save-load-state.cpp 4.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
  1. #include "common.h"
  2. #include "llama.h"
  3. #include <vector>
  4. #include <cstdio>
  5. #include <chrono>
  6. int main(int argc, char ** argv) {
  7. gpt_params params;
  8. params.model = "models/llama-7B/ggml-model.bin";
  9. params.seed = 42;
  10. params.n_threads = 4;
  11. params.repeat_last_n = 64;
  12. params.prompt = "The quick brown fox";
  13. if (gpt_params_parse(argc, argv, params) == false) {
  14. return 1;
  15. }
  16. if (params.n_predict < 0) {
  17. params.n_predict = 16;
  18. }
  19. auto lparams = llama_context_default_params();
  20. lparams.n_ctx = params.n_ctx;
  21. lparams.n_parts = params.n_parts;
  22. lparams.seed = params.seed;
  23. lparams.f16_kv = params.memory_f16;
  24. lparams.use_mmap = params.use_mmap;
  25. lparams.use_mlock = params.use_mlock;
  26. auto n_past = 0;
  27. auto last_n_tokens_data = std::vector<llama_token>(params.repeat_last_n, 0);
  28. // init
  29. auto ctx = llama_init_from_file(params.model.c_str(), lparams);
  30. auto tokens = std::vector<llama_token>(params.n_ctx);
  31. auto n_prompt_tokens = llama_tokenize(ctx, params.prompt.c_str(), tokens.data(), tokens.size(), true);
  32. if (n_prompt_tokens < 1) {
  33. fprintf(stderr, "%s : failed to tokenize prompt\n", __func__);
  34. return 1;
  35. }
  36. // evaluate prompt
  37. llama_eval(ctx, tokens.data(), n_prompt_tokens, n_past, params.n_threads);
  38. last_n_tokens_data.insert(last_n_tokens_data.end(), tokens.data(), tokens.data() + n_prompt_tokens);
  39. n_past += n_prompt_tokens;
  40. const size_t state_size = llama_get_state_size(ctx);
  41. uint8_t * state_mem = new uint8_t[state_size];
  42. // Save state (rng, logits, embedding and kv_cache) to file
  43. {
  44. FILE *fp_write = fopen("dump_state.bin", "wb");
  45. llama_copy_state_data(ctx, state_mem); // could also copy directly to memory mapped file
  46. fwrite(state_mem, 1, state_size, fp_write);
  47. fclose(fp_write);
  48. }
  49. // save state (last tokens)
  50. const auto last_n_tokens_data_saved = std::vector<llama_token>(last_n_tokens_data);
  51. const auto n_past_saved = n_past;
  52. // first run
  53. printf("\n%s", params.prompt.c_str());
  54. for (auto i = 0; i < params.n_predict; i++) {
  55. auto logits = llama_get_logits(ctx);
  56. auto n_vocab = llama_n_vocab(ctx);
  57. std::vector<llama_token_data> candidates;
  58. candidates.reserve(n_vocab);
  59. for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
  60. candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
  61. }
  62. llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
  63. auto next_token = llama_sample_token(ctx, &candidates_p);
  64. auto next_token_str = llama_token_to_str(ctx, next_token);
  65. last_n_tokens_data.push_back(next_token);
  66. printf("%s", next_token_str);
  67. if (llama_eval(ctx, &next_token, 1, n_past, params.n_threads)) {
  68. fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
  69. return 1;
  70. }
  71. n_past += 1;
  72. }
  73. printf("\n\n");
  74. // free old model
  75. llama_free(ctx);
  76. // load new model
  77. auto ctx2 = llama_init_from_file(params.model.c_str(), lparams);
  78. // Load state (rng, logits, embedding and kv_cache) from file
  79. {
  80. FILE *fp_read = fopen("dump_state.bin", "rb");
  81. if (state_size != llama_get_state_size(ctx2)) {
  82. fprintf(stderr, "\n%s : failed to validate state size\n", __func__);
  83. return 1;
  84. }
  85. fread(state_mem, 1, state_size, fp_read);
  86. llama_set_state_data(ctx2, state_mem); // could also read directly from memory mapped file
  87. fclose(fp_read);
  88. }
  89. delete[] state_mem;
  90. // restore state (last tokens)
  91. last_n_tokens_data = last_n_tokens_data_saved;
  92. n_past = n_past_saved;
  93. // second run
  94. for (auto i = 0; i < params.n_predict; i++) {
  95. auto logits = llama_get_logits(ctx2);
  96. auto n_vocab = llama_n_vocab(ctx2);
  97. std::vector<llama_token_data> candidates;
  98. candidates.reserve(n_vocab);
  99. for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
  100. candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
  101. }
  102. llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
  103. auto next_token = llama_sample_token(ctx2, &candidates_p);
  104. auto next_token_str = llama_token_to_str(ctx2, next_token);
  105. last_n_tokens_data.push_back(next_token);
  106. printf("%s", next_token_str);
  107. if (llama_eval(ctx2, &next_token, 1, n_past, params.n_threads)) {
  108. fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
  109. return 1;
  110. }
  111. n_past += 1;
  112. }
  113. printf("\n\n");
  114. return 0;
  115. }