ggml.c 588 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428
  1. #define _GNU_SOURCE // Defines CLOCK_MONOTONIC on Linux
  2. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
  3. #include "ggml.h"
  4. #ifdef GGML_USE_K_QUANTS
  5. #include "k_quants.h"
  6. #endif
  7. #if defined(_MSC_VER) || defined(__MINGW32__)
  8. #include <malloc.h> // using malloc.h with MSC/MINGW
  9. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  10. #include <alloca.h>
  11. #endif
  12. #include <assert.h>
  13. #include <errno.h>
  14. #include <time.h>
  15. #include <math.h>
  16. #include <stdlib.h>
  17. #include <string.h>
  18. #include <stdint.h>
  19. #include <inttypes.h>
  20. #include <stdio.h>
  21. #include <float.h>
  22. #include <limits.h>
  23. #include <stdarg.h>
  24. #include <signal.h>
  25. #ifdef GGML_USE_METAL
  26. #include <unistd.h>
  27. #endif
  28. // static_assert should be a #define, but if it's not,
  29. // fall back to the _Static_assert C11 keyword.
  30. // if C99 - static_assert is noop
  31. // ref: https://stackoverflow.com/a/53923785/4039976
  32. #ifndef static_assert
  33. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
  34. #define static_assert(cond, msg) _Static_assert(cond, msg)
  35. #else
  36. #define static_assert(cond, msg) struct global_scope_noop_trick
  37. #endif
  38. #endif
  39. #if defined(_MSC_VER)
  40. // disable "possible loss of data" to avoid hundreds of casts
  41. // we should just be careful :)
  42. #pragma warning(disable: 4244 4267)
  43. #endif
  44. #if defined(_WIN32)
  45. #include <windows.h>
  46. typedef volatile LONG atomic_int;
  47. typedef atomic_int atomic_bool;
  48. static void atomic_store(atomic_int * ptr, LONG val) {
  49. InterlockedExchange(ptr, val);
  50. }
  51. static LONG atomic_load(atomic_int * ptr) {
  52. return InterlockedCompareExchange(ptr, 0, 0);
  53. }
  54. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  55. return InterlockedExchangeAdd(ptr, inc);
  56. }
  57. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  58. return atomic_fetch_add(ptr, -(dec));
  59. }
  60. typedef HANDLE pthread_t;
  61. typedef DWORD thread_ret_t;
  62. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  63. (void) unused;
  64. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  65. if (handle == NULL)
  66. {
  67. return EAGAIN;
  68. }
  69. *out = handle;
  70. return 0;
  71. }
  72. static int pthread_join(pthread_t thread, void * unused) {
  73. (void) unused;
  74. return (int) WaitForSingleObject(thread, INFINITE);
  75. }
  76. static int sched_yield (void) {
  77. Sleep (0);
  78. return 0;
  79. }
  80. #else
  81. #include <pthread.h>
  82. #include <stdatomic.h>
  83. typedef void * thread_ret_t;
  84. #include <sys/types.h>
  85. #include <sys/stat.h>
  86. #include <unistd.h>
  87. #endif
  88. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  89. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  90. #ifndef __FMA__
  91. #define __FMA__
  92. #endif
  93. #ifndef __F16C__
  94. #define __F16C__
  95. #endif
  96. #ifndef __SSE3__
  97. #define __SSE3__
  98. #endif
  99. #endif
  100. /*#define GGML_PERF*/
  101. #define GGML_DEBUG 0
  102. #define GGML_GELU_FP16
  103. #define GGML_GELU_QUICK_FP16
  104. #define GGML_SILU_FP16
  105. #define GGML_SOFT_MAX_UNROLL 4
  106. #define GGML_VEC_DOT_UNROLL 2
  107. //
  108. // logging
  109. //
  110. #if (GGML_DEBUG >= 1)
  111. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  112. #else
  113. #define GGML_PRINT_DEBUG(...)
  114. #endif
  115. #if (GGML_DEBUG >= 5)
  116. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  117. #else
  118. #define GGML_PRINT_DEBUG_5(...)
  119. #endif
  120. #if (GGML_DEBUG >= 10)
  121. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  122. #else
  123. #define GGML_PRINT_DEBUG_10(...)
  124. #endif
  125. #define GGML_PRINT(...) printf(__VA_ARGS__)
  126. #ifdef GGML_USE_ACCELERATE
  127. // uncomment to use vDSP for soft max computation
  128. // note: not sure if it is actually faster
  129. //#define GGML_SOFT_MAX_ACCELERATE
  130. #endif
  131. #if UINTPTR_MAX == 0xFFFFFFFF
  132. #define GGML_MEM_ALIGN 4
  133. #else
  134. #define GGML_MEM_ALIGN 16
  135. #endif
  136. //
  137. // logging
  138. //
  139. #if (GGML_DEBUG >= 1)
  140. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  141. #else
  142. #define GGML_PRINT_DEBUG(...)
  143. #endif
  144. #if (GGML_DEBUG >= 5)
  145. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  146. #else
  147. #define GGML_PRINT_DEBUG_5(...)
  148. #endif
  149. #if (GGML_DEBUG >= 10)
  150. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  151. #else
  152. #define GGML_PRINT_DEBUG_10(...)
  153. #endif
  154. #define GGML_PRINT(...) printf(__VA_ARGS__)
  155. //
  156. // end of logging block
  157. //
  158. #if defined(_MSC_VER) || defined(__MINGW32__)
  159. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  160. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  161. #else
  162. inline static void* ggml_aligned_malloc(size_t size) {
  163. void* aligned_memory = NULL;
  164. #ifdef GGML_USE_METAL
  165. int result = posix_memalign(&aligned_memory, getpagesize(), size);
  166. #else
  167. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  168. #endif
  169. if (result != 0) {
  170. // Handle allocation failure
  171. const char *error_desc = "unknown allocation error";
  172. switch (result) {
  173. case EINVAL:
  174. error_desc = "invalid alignment value";
  175. break;
  176. case ENOMEM:
  177. error_desc = "insufficient memory";
  178. break;
  179. }
  180. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n",
  181. __func__, error_desc, size/(1024.0*1024.0));
  182. return NULL;
  183. }
  184. return aligned_memory;
  185. }
  186. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  187. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  188. #endif
  189. #define UNUSED GGML_UNUSED
  190. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  191. //
  192. // tensor access macros
  193. //
  194. #define GGML_TENSOR_UNARY_OP_LOCALS \
  195. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  196. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  197. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  198. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  199. #define GGML_TENSOR_BINARY_OP_LOCALS \
  200. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  201. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  202. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne); \
  203. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb); \
  204. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  205. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  206. #if defined(GGML_USE_ACCELERATE)
  207. #include <Accelerate/Accelerate.h>
  208. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  209. #include "ggml-opencl.h"
  210. #endif
  211. #elif defined(GGML_USE_OPENBLAS)
  212. #if defined(GGML_BLAS_USE_MKL)
  213. #include <mkl.h>
  214. #else
  215. #include <cblas.h>
  216. #endif
  217. #elif defined(GGML_USE_CUBLAS)
  218. #include "ggml-cuda.h"
  219. #elif defined(GGML_USE_CLBLAST)
  220. #include "ggml-opencl.h"
  221. #endif
  222. #undef MIN
  223. #undef MAX
  224. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  225. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  226. // floating point type used to accumulate sums
  227. typedef double ggml_float;
  228. // 16-bit float
  229. // on Arm, we use __fp16
  230. // on x86, we use uint16_t
  231. #ifdef __ARM_NEON
  232. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  233. //
  234. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  235. //
  236. #include <arm_neon.h>
  237. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  238. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  239. #define GGML_FP16_TO_FP32(x) ((float) (x))
  240. #define GGML_FP32_TO_FP16(x) (x)
  241. #else
  242. #ifdef __wasm_simd128__
  243. #include <wasm_simd128.h>
  244. #else
  245. #ifdef __POWER9_VECTOR__
  246. #include <altivec.h>
  247. #undef bool
  248. #define bool _Bool
  249. #else
  250. #if defined(_MSC_VER) || defined(__MINGW32__)
  251. #include <intrin.h>
  252. #else
  253. #if !defined(__riscv)
  254. #include <immintrin.h>
  255. #endif
  256. #endif
  257. #endif
  258. #endif
  259. #ifdef __F16C__
  260. #ifdef _MSC_VER
  261. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  262. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  263. #else
  264. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  265. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  266. #endif
  267. #elif defined(__POWER9_VECTOR__)
  268. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  269. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  270. /* the inline asm below is about 12% faster than the lookup method */
  271. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  272. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  273. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  274. register float f;
  275. register double d;
  276. __asm__(
  277. "mtfprd %0,%2\n"
  278. "xscvhpdp %0,%0\n"
  279. "frsp %1,%0\n" :
  280. /* temp */ "=d"(d),
  281. /* out */ "=f"(f):
  282. /* in */ "r"(h));
  283. return f;
  284. }
  285. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  286. register double d;
  287. register ggml_fp16_t r;
  288. __asm__( /* xscvdphp can work on double or single precision */
  289. "xscvdphp %0,%2\n"
  290. "mffprd %1,%0\n" :
  291. /* temp */ "=d"(d),
  292. /* out */ "=r"(r):
  293. /* in */ "f"(f));
  294. return r;
  295. }
  296. #else
  297. // FP16 <-> FP32
  298. // ref: https://github.com/Maratyszcza/FP16
  299. static inline float fp32_from_bits(uint32_t w) {
  300. union {
  301. uint32_t as_bits;
  302. float as_value;
  303. } fp32;
  304. fp32.as_bits = w;
  305. return fp32.as_value;
  306. }
  307. static inline uint32_t fp32_to_bits(float f) {
  308. union {
  309. float as_value;
  310. uint32_t as_bits;
  311. } fp32;
  312. fp32.as_value = f;
  313. return fp32.as_bits;
  314. }
  315. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  316. const uint32_t w = (uint32_t) h << 16;
  317. const uint32_t sign = w & UINT32_C(0x80000000);
  318. const uint32_t two_w = w + w;
  319. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  320. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  321. const float exp_scale = 0x1.0p-112f;
  322. #else
  323. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  324. #endif
  325. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  326. const uint32_t magic_mask = UINT32_C(126) << 23;
  327. const float magic_bias = 0.5f;
  328. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  329. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  330. const uint32_t result = sign |
  331. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  332. return fp32_from_bits(result);
  333. }
  334. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  335. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  336. const float scale_to_inf = 0x1.0p+112f;
  337. const float scale_to_zero = 0x1.0p-110f;
  338. #else
  339. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  340. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  341. #endif
  342. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  343. const uint32_t w = fp32_to_bits(f);
  344. const uint32_t shl1_w = w + w;
  345. const uint32_t sign = w & UINT32_C(0x80000000);
  346. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  347. if (bias < UINT32_C(0x71000000)) {
  348. bias = UINT32_C(0x71000000);
  349. }
  350. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  351. const uint32_t bits = fp32_to_bits(base);
  352. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  353. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  354. const uint32_t nonsign = exp_bits + mantissa_bits;
  355. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  356. }
  357. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  358. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  359. #endif // __F16C__
  360. #endif // __ARM_NEON
  361. //
  362. // global data
  363. //
  364. // precomputed gelu table for f16 (128 KB)
  365. static ggml_fp16_t table_gelu_f16[1 << 16];
  366. // precomputed quick gelu table for f16 (128 KB)
  367. static ggml_fp16_t table_gelu_quick_f16[1 << 16];
  368. // precomputed silu table for f16 (128 KB)
  369. static ggml_fp16_t table_silu_f16[1 << 16];
  370. // precomputed exp table for f16 (128 KB)
  371. static ggml_fp16_t table_exp_f16[1 << 16];
  372. // precomputed f32 table for f16 (256 KB)
  373. static float table_f32_f16[1 << 16];
  374. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  375. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  376. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  377. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  378. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  379. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  380. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  381. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  382. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  383. // precomputed tables for expanding 8bits to 8 bytes:
  384. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  385. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  386. #endif
  387. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  388. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  389. // This is also true for POWER9.
  390. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  391. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  392. uint16_t s;
  393. memcpy(&s, &f, sizeof(uint16_t));
  394. return table_f32_f16[s];
  395. }
  396. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  397. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  398. #endif
  399. // note: do not use these inside ggml.c
  400. // these are meant to be used via the ggml.h API
  401. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  402. return (float) GGML_FP16_TO_FP32(x);
  403. }
  404. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  405. return GGML_FP32_TO_FP16(x);
  406. }
  407. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  408. for (int i = 0; i < n; i++) {
  409. y[i] = GGML_FP16_TO_FP32(x[i]);
  410. }
  411. }
  412. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  413. int i = 0;
  414. #if defined(__F16C__)
  415. for (; i + 7 < n; i += 8) {
  416. __m256 x_vec = _mm256_loadu_ps(x + i);
  417. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  418. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  419. }
  420. for(; i + 3 < n; i += 4) {
  421. __m128 x_vec = _mm_loadu_ps(x + i);
  422. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  423. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  424. }
  425. #endif
  426. for (; i < n; i++) {
  427. y[i] = GGML_FP32_TO_FP16(x[i]);
  428. }
  429. }
  430. //
  431. // timing
  432. //
  433. #if defined(_MSC_VER) || defined(__MINGW32__)
  434. static int64_t timer_freq, timer_start;
  435. void ggml_time_init(void) {
  436. LARGE_INTEGER t;
  437. QueryPerformanceFrequency(&t);
  438. timer_freq = t.QuadPart;
  439. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  440. // and the uptime is high enough.
  441. // We subtract the program start time to reduce the likelihood of that happening.
  442. QueryPerformanceCounter(&t);
  443. timer_start = t.QuadPart;
  444. }
  445. int64_t ggml_time_ms(void) {
  446. LARGE_INTEGER t;
  447. QueryPerformanceCounter(&t);
  448. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  449. }
  450. int64_t ggml_time_us(void) {
  451. LARGE_INTEGER t;
  452. QueryPerformanceCounter(&t);
  453. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  454. }
  455. #else
  456. void ggml_time_init(void) {}
  457. int64_t ggml_time_ms(void) {
  458. struct timespec ts;
  459. clock_gettime(CLOCK_MONOTONIC, &ts);
  460. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  461. }
  462. int64_t ggml_time_us(void) {
  463. struct timespec ts;
  464. clock_gettime(CLOCK_MONOTONIC, &ts);
  465. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  466. }
  467. #endif
  468. int64_t ggml_cycles(void) {
  469. return clock();
  470. }
  471. int64_t ggml_cycles_per_ms(void) {
  472. return CLOCKS_PER_SEC/1000;
  473. }
  474. #ifdef GGML_PERF
  475. #define ggml_perf_time_ms() ggml_time_ms()
  476. #define ggml_perf_time_us() ggml_time_us()
  477. #define ggml_perf_cycles() ggml_cycles()
  478. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  479. #else
  480. #define ggml_perf_time_ms() 0
  481. #define ggml_perf_time_us() 0
  482. #define ggml_perf_cycles() 0
  483. #define ggml_perf_cycles_per_ms() 0
  484. #endif
  485. //
  486. // cache line
  487. //
  488. #if defined(__cpp_lib_hardware_interference_size)
  489. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  490. #else
  491. #if defined(__POWER9_VECTOR__)
  492. #define CACHE_LINE_SIZE 128
  493. #else
  494. #define CACHE_LINE_SIZE 64
  495. #endif
  496. #endif
  497. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  498. //
  499. // quantization
  500. //
  501. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  502. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  503. // multiply int8_t, add results pairwise twice
  504. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  505. // Get absolute values of x vectors
  506. const __m128i ax = _mm_sign_epi8(x, x);
  507. // Sign the values of the y vectors
  508. const __m128i sy = _mm_sign_epi8(y, x);
  509. // Perform multiplication and create 16-bit values
  510. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  511. const __m128i ones = _mm_set1_epi16(1);
  512. return _mm_madd_epi16(ones, dot);
  513. }
  514. #if __AVX__ || __AVX2__ || __AVX512F__
  515. // horizontally add 8 floats
  516. static inline float hsum_float_8(const __m256 x) {
  517. __m128 res = _mm256_extractf128_ps(x, 1);
  518. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  519. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  520. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  521. return _mm_cvtss_f32(res);
  522. }
  523. // horizontally add 8 int32_t
  524. static inline int hsum_i32_8(const __m256i a) {
  525. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  526. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  527. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  528. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  529. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  530. }
  531. // horizontally add 4 int32_t
  532. static inline int hsum_i32_4(const __m128i a) {
  533. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  534. const __m128i sum64 = _mm_add_epi32(hi64, a);
  535. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  536. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  537. }
  538. #if defined(__AVX2__) || defined(__AVX512F__)
  539. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  540. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  541. uint32_t x32;
  542. memcpy(&x32, x, sizeof(uint32_t));
  543. const __m256i shuf_mask = _mm256_set_epi64x(
  544. 0x0303030303030303, 0x0202020202020202,
  545. 0x0101010101010101, 0x0000000000000000);
  546. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  547. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  548. bytes = _mm256_or_si256(bytes, bit_mask);
  549. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  550. }
  551. // Unpack 32 4-bit fields into 32 bytes
  552. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  553. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  554. {
  555. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  556. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  557. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  558. return _mm256_and_si256(lowMask, bytes);
  559. }
  560. // add int16_t pairwise and return as float vector
  561. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  562. const __m256i ones = _mm256_set1_epi16(1);
  563. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  564. return _mm256_cvtepi32_ps(summed_pairs);
  565. }
  566. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  567. #if __AVXVNNI__
  568. const __m256i zero = _mm256_setzero_si256();
  569. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  570. return _mm256_cvtepi32_ps(summed_pairs);
  571. #else
  572. // Perform multiplication and create 16-bit values
  573. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  574. return sum_i16_pairs_float(dot);
  575. #endif
  576. }
  577. // multiply int8_t, add results pairwise twice and return as float vector
  578. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  579. #if __AVXVNNIINT8__
  580. const __m256i zero = _mm256_setzero_si256();
  581. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  582. return _mm256_cvtepi32_ps(summed_pairs);
  583. #else
  584. // Get absolute values of x vectors
  585. const __m256i ax = _mm256_sign_epi8(x, x);
  586. // Sign the values of the y vectors
  587. const __m256i sy = _mm256_sign_epi8(y, x);
  588. return mul_sum_us8_pairs_float(ax, sy);
  589. #endif
  590. }
  591. static inline __m128i packNibbles( __m256i bytes )
  592. {
  593. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  594. #if __AVX512F__
  595. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  596. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  597. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  598. #else
  599. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  600. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  601. __m256i low = _mm256_and_si256( lowByte, bytes );
  602. high = _mm256_srli_epi16( high, 4 );
  603. bytes = _mm256_or_si256( low, high );
  604. // Compress uint16_t lanes into bytes
  605. __m128i r0 = _mm256_castsi256_si128( bytes );
  606. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  607. return _mm_packus_epi16( r0, r1 );
  608. #endif
  609. }
  610. #elif defined(__AVX__)
  611. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  612. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  613. uint32_t x32;
  614. memcpy(&x32, x, sizeof(uint32_t));
  615. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  616. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  617. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  618. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  619. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  620. bytesl = _mm_or_si128(bytesl, bit_mask);
  621. bytesh = _mm_or_si128(bytesh, bit_mask);
  622. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  623. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  624. return MM256_SET_M128I(bytesh, bytesl);
  625. }
  626. // Unpack 32 4-bit fields into 32 bytes
  627. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  628. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  629. {
  630. // Load 16 bytes from memory
  631. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  632. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  633. const __m128i lowMask = _mm_set1_epi8(0xF);
  634. tmpl = _mm_and_si128(lowMask, tmpl);
  635. tmph = _mm_and_si128(lowMask, tmph);
  636. return MM256_SET_M128I(tmph, tmpl);
  637. }
  638. // add int16_t pairwise and return as float vector
  639. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  640. const __m128i ones = _mm_set1_epi16(1);
  641. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  642. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  643. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  644. return _mm256_cvtepi32_ps(summed_pairs);
  645. }
  646. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  647. const __m128i axl = _mm256_castsi256_si128(ax);
  648. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  649. const __m128i syl = _mm256_castsi256_si128(sy);
  650. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  651. // Perform multiplication and create 16-bit values
  652. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  653. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  654. return sum_i16_pairs_float(doth, dotl);
  655. }
  656. // multiply int8_t, add results pairwise twice and return as float vector
  657. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  658. const __m128i xl = _mm256_castsi256_si128(x);
  659. const __m128i xh = _mm256_extractf128_si256(x, 1);
  660. const __m128i yl = _mm256_castsi256_si128(y);
  661. const __m128i yh = _mm256_extractf128_si256(y, 1);
  662. // Get absolute values of x vectors
  663. const __m128i axl = _mm_sign_epi8(xl, xl);
  664. const __m128i axh = _mm_sign_epi8(xh, xh);
  665. // Sign the values of the y vectors
  666. const __m128i syl = _mm_sign_epi8(yl, xl);
  667. const __m128i syh = _mm_sign_epi8(yh, xh);
  668. // Perform multiplication and create 16-bit values
  669. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  670. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  671. return sum_i16_pairs_float(doth, dotl);
  672. }
  673. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  674. {
  675. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  676. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  677. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  678. __m128i low = _mm_and_si128( lowByte, bytes1 );
  679. high = _mm_srli_epi16( high, 4 );
  680. bytes1 = _mm_or_si128( low, high );
  681. high = _mm_andnot_si128( lowByte, bytes2 );
  682. low = _mm_and_si128( lowByte, bytes2 );
  683. high = _mm_srli_epi16( high, 4 );
  684. bytes2 = _mm_or_si128( low, high );
  685. return _mm_packus_epi16( bytes1, bytes2);
  686. }
  687. #endif
  688. #elif defined(__SSSE3__)
  689. // horizontally add 4x4 floats
  690. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  691. __m128 res_0 =_mm_hadd_ps(a, b);
  692. __m128 res_1 =_mm_hadd_ps(c, d);
  693. __m128 res =_mm_hadd_ps(res_0, res_1);
  694. res =_mm_hadd_ps(res, res);
  695. res =_mm_hadd_ps(res, res);
  696. return _mm_cvtss_f32(res);
  697. }
  698. #endif // __AVX__ || __AVX2__ || __AVX512F__
  699. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  700. #if defined(__ARM_NEON)
  701. #if !defined(__aarch64__)
  702. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  703. return
  704. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  705. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  706. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  707. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  708. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  709. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  710. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  711. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  712. }
  713. inline static int16_t vaddvq_s8(int8x16_t v) {
  714. return
  715. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  716. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  717. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  718. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  719. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  720. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  721. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  722. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  723. }
  724. inline static int32_t vaddvq_s16(int16x8_t v) {
  725. return
  726. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  727. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  728. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  729. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  730. }
  731. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  732. return
  733. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  734. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  735. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  736. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  737. }
  738. inline static int32_t vaddvq_s32(int32x4_t v) {
  739. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  740. }
  741. inline static float vaddvq_f32(float32x4_t v) {
  742. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  743. }
  744. inline static float vminvq_f32(float32x4_t v) {
  745. return
  746. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  747. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  748. }
  749. inline static float vmaxvq_f32(float32x4_t v) {
  750. return
  751. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  752. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  753. }
  754. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  755. int32x4_t res;
  756. res[0] = roundf(vgetq_lane_f32(v, 0));
  757. res[1] = roundf(vgetq_lane_f32(v, 1));
  758. res[2] = roundf(vgetq_lane_f32(v, 2));
  759. res[3] = roundf(vgetq_lane_f32(v, 3));
  760. return res;
  761. }
  762. #endif
  763. #endif
  764. #define QK4_0 32
  765. typedef struct {
  766. ggml_fp16_t d; // delta
  767. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  768. } block_q4_0;
  769. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
  770. #define QK4_1 32
  771. typedef struct {
  772. ggml_fp16_t d; // delta
  773. ggml_fp16_t m; // min
  774. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  775. } block_q4_1;
  776. static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
  777. #define QK5_0 32
  778. typedef struct {
  779. ggml_fp16_t d; // delta
  780. uint8_t qh[4]; // 5-th bit of quants
  781. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  782. } block_q5_0;
  783. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  784. #define QK5_1 32
  785. typedef struct {
  786. ggml_fp16_t d; // delta
  787. ggml_fp16_t m; // min
  788. uint8_t qh[4]; // 5-th bit of quants
  789. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  790. } block_q5_1;
  791. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  792. #define QK8_0 32
  793. typedef struct {
  794. ggml_fp16_t d; // delta
  795. int8_t qs[QK8_0]; // quants
  796. } block_q8_0;
  797. static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
  798. #define QK8_1 32
  799. typedef struct {
  800. float d; // delta
  801. float s; // d * sum(qs[i])
  802. int8_t qs[QK8_1]; // quants
  803. } block_q8_1;
  804. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  805. // reference implementation for deterministic creation of model files
  806. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  807. static const int qk = QK4_0;
  808. assert(k % qk == 0);
  809. const int nb = k / qk;
  810. for (int i = 0; i < nb; i++) {
  811. float amax = 0.0f; // absolute max
  812. float max = 0.0f;
  813. for (int j = 0; j < qk; j++) {
  814. const float v = x[i*qk + j];
  815. if (amax < fabsf(v)) {
  816. amax = fabsf(v);
  817. max = v;
  818. }
  819. }
  820. const float d = max / -8;
  821. const float id = d ? 1.0f/d : 0.0f;
  822. y[i].d = GGML_FP32_TO_FP16(d);
  823. for (int j = 0; j < qk/2; ++j) {
  824. const float x0 = x[i*qk + 0 + j]*id;
  825. const float x1 = x[i*qk + qk/2 + j]*id;
  826. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  827. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  828. y[i].qs[j] = xi0;
  829. y[i].qs[j] |= xi1 << 4;
  830. }
  831. }
  832. }
  833. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  834. quantize_row_q4_0_reference(x, y, k);
  835. }
  836. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  837. const int qk = QK4_1;
  838. assert(k % qk == 0);
  839. const int nb = k / qk;
  840. for (int i = 0; i < nb; i++) {
  841. float min = FLT_MAX;
  842. float max = -FLT_MAX;
  843. for (int j = 0; j < qk; j++) {
  844. const float v = x[i*qk + j];
  845. if (v < min) min = v;
  846. if (v > max) max = v;
  847. }
  848. const float d = (max - min) / ((1 << 4) - 1);
  849. const float id = d ? 1.0f/d : 0.0f;
  850. y[i].d = GGML_FP32_TO_FP16(d);
  851. y[i].m = GGML_FP32_TO_FP16(min);
  852. for (int j = 0; j < qk/2; ++j) {
  853. const float x0 = (x[i*qk + 0 + j] - min)*id;
  854. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  855. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  856. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  857. y[i].qs[j] = xi0;
  858. y[i].qs[j] |= xi1 << 4;
  859. }
  860. }
  861. }
  862. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  863. quantize_row_q4_1_reference(x, y, k);
  864. }
  865. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  866. static const int qk = QK5_0;
  867. assert(k % qk == 0);
  868. const int nb = k / qk;
  869. for (int i = 0; i < nb; i++) {
  870. float amax = 0.0f; // absolute max
  871. float max = 0.0f;
  872. for (int j = 0; j < qk; j++) {
  873. const float v = x[i*qk + j];
  874. if (amax < fabsf(v)) {
  875. amax = fabsf(v);
  876. max = v;
  877. }
  878. }
  879. const float d = max / -16;
  880. const float id = d ? 1.0f/d : 0.0f;
  881. y[i].d = GGML_FP32_TO_FP16(d);
  882. uint32_t qh = 0;
  883. for (int j = 0; j < qk/2; ++j) {
  884. const float x0 = x[i*qk + 0 + j]*id;
  885. const float x1 = x[i*qk + qk/2 + j]*id;
  886. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  887. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  888. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  889. // get the 5-th bit and store it in qh at the right position
  890. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  891. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  892. }
  893. memcpy(&y[i].qh, &qh, sizeof(qh));
  894. }
  895. }
  896. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  897. quantize_row_q5_0_reference(x, y, k);
  898. }
  899. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  900. const int qk = QK5_1;
  901. assert(k % qk == 0);
  902. const int nb = k / qk;
  903. for (int i = 0; i < nb; i++) {
  904. float min = FLT_MAX;
  905. float max = -FLT_MAX;
  906. for (int j = 0; j < qk; j++) {
  907. const float v = x[i*qk + j];
  908. if (v < min) min = v;
  909. if (v > max) max = v;
  910. }
  911. const float d = (max - min) / ((1 << 5) - 1);
  912. const float id = d ? 1.0f/d : 0.0f;
  913. y[i].d = GGML_FP32_TO_FP16(d);
  914. y[i].m = GGML_FP32_TO_FP16(min);
  915. uint32_t qh = 0;
  916. for (int j = 0; j < qk/2; ++j) {
  917. const float x0 = (x[i*qk + 0 + j] - min)*id;
  918. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  919. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  920. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  921. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  922. // get the 5-th bit and store it in qh at the right position
  923. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  924. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  925. }
  926. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  927. }
  928. }
  929. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  930. quantize_row_q5_1_reference(x, y, k);
  931. }
  932. // reference implementation for deterministic creation of model files
  933. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  934. assert(k % QK8_0 == 0);
  935. const int nb = k / QK8_0;
  936. for (int i = 0; i < nb; i++) {
  937. float amax = 0.0f; // absolute max
  938. for (int j = 0; j < QK8_0; j++) {
  939. const float v = x[i*QK8_0 + j];
  940. amax = MAX(amax, fabsf(v));
  941. }
  942. const float d = amax / ((1 << 7) - 1);
  943. const float id = d ? 1.0f/d : 0.0f;
  944. y[i].d = GGML_FP32_TO_FP16(d);
  945. for (int j = 0; j < QK8_0; ++j) {
  946. const float x0 = x[i*QK8_0 + j]*id;
  947. y[i].qs[j] = roundf(x0);
  948. }
  949. }
  950. }
  951. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  952. assert(QK8_0 == 32);
  953. assert(k % QK8_0 == 0);
  954. const int nb = k / QK8_0;
  955. block_q8_0 * restrict y = vy;
  956. #if defined(__ARM_NEON)
  957. for (int i = 0; i < nb; i++) {
  958. float32x4_t srcv [8];
  959. float32x4_t asrcv[8];
  960. float32x4_t amaxv[8];
  961. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  962. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  963. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  964. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  965. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  966. const float amax = vmaxvq_f32(amaxv[0]);
  967. const float d = amax / ((1 << 7) - 1);
  968. const float id = d ? 1.0f/d : 0.0f;
  969. y[i].d = GGML_FP32_TO_FP16(d);
  970. for (int j = 0; j < 8; j++) {
  971. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  972. const int32x4_t vi = vcvtnq_s32_f32(v);
  973. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  974. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  975. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  976. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  977. }
  978. }
  979. #elif defined(__wasm_simd128__)
  980. for (int i = 0; i < nb; i++) {
  981. v128_t srcv [8];
  982. v128_t asrcv[8];
  983. v128_t amaxv[8];
  984. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  985. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  986. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  987. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  988. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  989. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  990. wasm_f32x4_extract_lane(amaxv[0], 1)),
  991. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  992. wasm_f32x4_extract_lane(amaxv[0], 3)));
  993. const float d = amax / ((1 << 7) - 1);
  994. const float id = d ? 1.0f/d : 0.0f;
  995. y[i].d = GGML_FP32_TO_FP16(d);
  996. for (int j = 0; j < 8; j++) {
  997. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  998. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  999. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1000. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1001. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1002. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1003. }
  1004. }
  1005. #elif defined(__AVX2__) || defined(__AVX__)
  1006. for (int i = 0; i < nb; i++) {
  1007. // Load elements into 4 AVX vectors
  1008. __m256 v0 = _mm256_loadu_ps( x );
  1009. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1010. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1011. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1012. x += 32;
  1013. // Compute max(abs(e)) for the block
  1014. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1015. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1016. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1017. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1018. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1019. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1020. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1021. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1022. const float maxScalar = _mm_cvtss_f32( max4 );
  1023. // Quantize these floats
  1024. const float d = maxScalar / 127.f;
  1025. y[i].d = GGML_FP32_TO_FP16(d);
  1026. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1027. const __m256 mul = _mm256_set1_ps( id );
  1028. // Apply the multiplier
  1029. v0 = _mm256_mul_ps( v0, mul );
  1030. v1 = _mm256_mul_ps( v1, mul );
  1031. v2 = _mm256_mul_ps( v2, mul );
  1032. v3 = _mm256_mul_ps( v3, mul );
  1033. // Round to nearest integer
  1034. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1035. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1036. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1037. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1038. // Convert floats to integers
  1039. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1040. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1041. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1042. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1043. #if defined(__AVX2__)
  1044. // Convert int32 to int16
  1045. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1046. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1047. // Convert int16 to int8
  1048. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1049. // We got our precious signed bytes, but the order is now wrong
  1050. // These AVX2 pack instructions process 16-byte pieces independently
  1051. // The following instruction is fixing the order
  1052. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1053. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1054. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1055. #else
  1056. // Since we don't have in AVX some necessary functions,
  1057. // we split the registers in half and call AVX2 analogs from SSE
  1058. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1059. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1060. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1061. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1062. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1063. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1064. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1065. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1066. // Convert int32 to int16
  1067. ni0 = _mm_packs_epi32( ni0, ni1 );
  1068. ni2 = _mm_packs_epi32( ni2, ni3 );
  1069. ni4 = _mm_packs_epi32( ni4, ni5 );
  1070. ni6 = _mm_packs_epi32( ni6, ni7 );
  1071. // Convert int16 to int8
  1072. ni0 = _mm_packs_epi16( ni0, ni2 );
  1073. ni4 = _mm_packs_epi16( ni4, ni6 );
  1074. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1075. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1076. #endif
  1077. }
  1078. #else
  1079. // scalar
  1080. quantize_row_q8_0_reference(x, y, k);
  1081. #endif
  1082. }
  1083. // reference implementation for deterministic creation of model files
  1084. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1085. assert(QK8_1 == 32);
  1086. assert(k % QK8_1 == 0);
  1087. const int nb = k / QK8_1;
  1088. for (int i = 0; i < nb; i++) {
  1089. float amax = 0.0f; // absolute max
  1090. for (int j = 0; j < QK8_1; j++) {
  1091. const float v = x[i*QK8_1 + j];
  1092. amax = MAX(amax, fabsf(v));
  1093. }
  1094. const float d = amax / ((1 << 7) - 1);
  1095. const float id = d ? 1.0f/d : 0.0f;
  1096. y[i].d = d;
  1097. int sum = 0;
  1098. for (int j = 0; j < QK8_1/2; ++j) {
  1099. const float v0 = x[i*QK8_1 + j]*id;
  1100. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  1101. y[i].qs[ j] = roundf(v0);
  1102. y[i].qs[QK8_1/2 + j] = roundf(v1);
  1103. sum += y[i].qs[ j];
  1104. sum += y[i].qs[QK8_1/2 + j];
  1105. }
  1106. y[i].s = sum*d;
  1107. }
  1108. }
  1109. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1110. assert(k % QK8_1 == 0);
  1111. const int nb = k / QK8_1;
  1112. block_q8_1 * restrict y = vy;
  1113. #if defined(__ARM_NEON)
  1114. for (int i = 0; i < nb; i++) {
  1115. float32x4_t srcv [8];
  1116. float32x4_t asrcv[8];
  1117. float32x4_t amaxv[8];
  1118. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1119. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1120. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1121. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1122. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1123. const float amax = vmaxvq_f32(amaxv[0]);
  1124. const float d = amax / ((1 << 7) - 1);
  1125. const float id = d ? 1.0f/d : 0.0f;
  1126. y[i].d = d;
  1127. int32x4_t accv = vdupq_n_s32(0);
  1128. for (int j = 0; j < 8; j++) {
  1129. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1130. const int32x4_t vi = vcvtnq_s32_f32(v);
  1131. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1132. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1133. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1134. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1135. accv = vaddq_s32(accv, vi);
  1136. }
  1137. y[i].s = d * vaddvq_s32(accv);
  1138. }
  1139. #elif defined(__wasm_simd128__)
  1140. for (int i = 0; i < nb; i++) {
  1141. v128_t srcv [8];
  1142. v128_t asrcv[8];
  1143. v128_t amaxv[8];
  1144. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1145. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1146. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1147. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1148. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1149. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1150. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1151. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1152. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1153. const float d = amax / ((1 << 7) - 1);
  1154. const float id = d ? 1.0f/d : 0.0f;
  1155. y[i].d = d;
  1156. v128_t accv = wasm_i32x4_splat(0);
  1157. for (int j = 0; j < 8; j++) {
  1158. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1159. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1160. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1161. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1162. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1163. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1164. accv = wasm_i32x4_add(accv, vi);
  1165. }
  1166. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  1167. wasm_i32x4_extract_lane(accv, 1) +
  1168. wasm_i32x4_extract_lane(accv, 2) +
  1169. wasm_i32x4_extract_lane(accv, 3));
  1170. }
  1171. #elif defined(__AVX2__) || defined(__AVX__)
  1172. for (int i = 0; i < nb; i++) {
  1173. // Load elements into 4 AVX vectors
  1174. __m256 v0 = _mm256_loadu_ps( x );
  1175. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1176. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1177. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1178. x += 32;
  1179. // Compute max(abs(e)) for the block
  1180. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1181. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1182. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1183. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1184. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1185. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1186. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1187. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1188. const float maxScalar = _mm_cvtss_f32( max4 );
  1189. // Quantize these floats
  1190. const float d = maxScalar / 127.f;
  1191. y[i].d = d;
  1192. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1193. const __m256 mul = _mm256_set1_ps( id );
  1194. // Apply the multiplier
  1195. v0 = _mm256_mul_ps( v0, mul );
  1196. v1 = _mm256_mul_ps( v1, mul );
  1197. v2 = _mm256_mul_ps( v2, mul );
  1198. v3 = _mm256_mul_ps( v3, mul );
  1199. // Round to nearest integer
  1200. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1201. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1202. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1203. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1204. // Convert floats to integers
  1205. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1206. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1207. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1208. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1209. #if defined(__AVX2__)
  1210. // Compute the sum of the quants and set y[i].s
  1211. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1212. // Convert int32 to int16
  1213. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1214. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1215. // Convert int16 to int8
  1216. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1217. // We got our precious signed bytes, but the order is now wrong
  1218. // These AVX2 pack instructions process 16-byte pieces independently
  1219. // The following instruction is fixing the order
  1220. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1221. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1222. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1223. #else
  1224. // Since we don't have in AVX some necessary functions,
  1225. // we split the registers in half and call AVX2 analogs from SSE
  1226. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1227. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1228. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1229. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1230. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1231. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1232. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1233. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1234. // Compute the sum of the quants and set y[i].s
  1235. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1236. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1237. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1238. // Convert int32 to int16
  1239. ni0 = _mm_packs_epi32( ni0, ni1 );
  1240. ni2 = _mm_packs_epi32( ni2, ni3 );
  1241. ni4 = _mm_packs_epi32( ni4, ni5 );
  1242. ni6 = _mm_packs_epi32( ni6, ni7 );
  1243. // Convert int16 to int8
  1244. ni0 = _mm_packs_epi16( ni0, ni2 );
  1245. ni4 = _mm_packs_epi16( ni4, ni6 );
  1246. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1247. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1248. #endif
  1249. }
  1250. #else
  1251. // scalar
  1252. quantize_row_q8_1_reference(x, y, k);
  1253. #endif
  1254. }
  1255. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1256. static const int qk = QK4_0;
  1257. assert(k % qk == 0);
  1258. const int nb = k / qk;
  1259. for (int i = 0; i < nb; i++) {
  1260. const float d = GGML_FP16_TO_FP32(x[i].d);
  1261. for (int j = 0; j < qk/2; ++j) {
  1262. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1263. const int x1 = (x[i].qs[j] >> 4) - 8;
  1264. y[i*qk + j + 0 ] = x0*d;
  1265. y[i*qk + j + qk/2] = x1*d;
  1266. }
  1267. }
  1268. }
  1269. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1270. static const int qk = QK4_1;
  1271. assert(k % qk == 0);
  1272. const int nb = k / qk;
  1273. for (int i = 0; i < nb; i++) {
  1274. const float d = GGML_FP16_TO_FP32(x[i].d);
  1275. const float m = GGML_FP16_TO_FP32(x[i].m);
  1276. for (int j = 0; j < qk/2; ++j) {
  1277. const int x0 = (x[i].qs[j] & 0x0F);
  1278. const int x1 = (x[i].qs[j] >> 4);
  1279. y[i*qk + j + 0 ] = x0*d + m;
  1280. y[i*qk + j + qk/2] = x1*d + m;
  1281. }
  1282. }
  1283. }
  1284. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1285. static const int qk = QK5_0;
  1286. assert(k % qk == 0);
  1287. const int nb = k / qk;
  1288. for (int i = 0; i < nb; i++) {
  1289. const float d = GGML_FP16_TO_FP32(x[i].d);
  1290. uint32_t qh;
  1291. memcpy(&qh, x[i].qh, sizeof(qh));
  1292. for (int j = 0; j < qk/2; ++j) {
  1293. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1294. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1295. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1296. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1297. y[i*qk + j + 0 ] = x0*d;
  1298. y[i*qk + j + qk/2] = x1*d;
  1299. }
  1300. }
  1301. }
  1302. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1303. static const int qk = QK5_1;
  1304. assert(k % qk == 0);
  1305. const int nb = k / qk;
  1306. for (int i = 0; i < nb; i++) {
  1307. const float d = GGML_FP16_TO_FP32(x[i].d);
  1308. const float m = GGML_FP16_TO_FP32(x[i].m);
  1309. uint32_t qh;
  1310. memcpy(&qh, x[i].qh, sizeof(qh));
  1311. for (int j = 0; j < qk/2; ++j) {
  1312. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1313. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1314. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1315. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1316. y[i*qk + j + 0 ] = x0*d + m;
  1317. y[i*qk + j + qk/2] = x1*d + m;
  1318. }
  1319. }
  1320. }
  1321. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1322. static const int qk = QK8_0;
  1323. assert(k % qk == 0);
  1324. const int nb = k / qk;
  1325. const block_q8_0 * restrict x = vx;
  1326. for (int i = 0; i < nb; i++) {
  1327. const float d = GGML_FP16_TO_FP32(x[i].d);
  1328. for (int j = 0; j < qk; ++j) {
  1329. y[i*qk + j] = x[i].qs[j]*d;
  1330. }
  1331. }
  1332. }
  1333. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  1334. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  1335. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1336. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1337. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1338. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1339. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1340. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  1341. [GGML_TYPE_F32] = {
  1342. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  1343. .vec_dot_type = GGML_TYPE_F32,
  1344. },
  1345. [GGML_TYPE_F16] = {
  1346. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  1347. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1348. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1349. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  1350. .vec_dot_type = GGML_TYPE_F16,
  1351. },
  1352. [GGML_TYPE_Q4_0] = {
  1353. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  1354. .from_float = quantize_row_q4_0,
  1355. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  1356. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  1357. .vec_dot_type = GGML_TYPE_Q8_0,
  1358. },
  1359. [GGML_TYPE_Q4_1] = {
  1360. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  1361. .from_float = quantize_row_q4_1,
  1362. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  1363. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  1364. .vec_dot_type = GGML_TYPE_Q8_1,
  1365. },
  1366. [GGML_TYPE_Q5_0] = {
  1367. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  1368. .from_float = quantize_row_q5_0,
  1369. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  1370. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  1371. .vec_dot_type = GGML_TYPE_Q8_0,
  1372. },
  1373. [GGML_TYPE_Q5_1] = {
  1374. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  1375. .from_float = quantize_row_q5_1,
  1376. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  1377. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  1378. .vec_dot_type = GGML_TYPE_Q8_1,
  1379. },
  1380. [GGML_TYPE_Q8_0] = {
  1381. .to_float = dequantize_row_q8_0,
  1382. .from_float = quantize_row_q8_0,
  1383. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  1384. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  1385. .vec_dot_type = GGML_TYPE_Q8_0,
  1386. },
  1387. [GGML_TYPE_Q8_1] = {
  1388. .from_float = quantize_row_q8_1,
  1389. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  1390. .vec_dot_type = GGML_TYPE_Q8_1,
  1391. },
  1392. #ifdef GGML_USE_K_QUANTS
  1393. [GGML_TYPE_Q2_K] = {
  1394. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  1395. .from_float = quantize_row_q2_K,
  1396. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  1397. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  1398. .vec_dot_type = GGML_TYPE_Q8_K,
  1399. },
  1400. [GGML_TYPE_Q3_K] = {
  1401. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  1402. .from_float = quantize_row_q3_K,
  1403. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  1404. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  1405. .vec_dot_type = GGML_TYPE_Q8_K,
  1406. },
  1407. [GGML_TYPE_Q4_K] = {
  1408. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  1409. .from_float = quantize_row_q4_K,
  1410. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  1411. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  1412. .vec_dot_type = GGML_TYPE_Q8_K,
  1413. },
  1414. [GGML_TYPE_Q5_K] = {
  1415. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  1416. .from_float = quantize_row_q5_K,
  1417. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  1418. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  1419. .vec_dot_type = GGML_TYPE_Q8_K,
  1420. },
  1421. [GGML_TYPE_Q6_K] = {
  1422. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  1423. .from_float = quantize_row_q6_K,
  1424. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  1425. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  1426. .vec_dot_type = GGML_TYPE_Q8_K,
  1427. },
  1428. [GGML_TYPE_Q8_K] = {
  1429. .from_float = quantize_row_q8_K,
  1430. }
  1431. #endif
  1432. };
  1433. // For internal test use
  1434. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type i) {
  1435. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1436. return type_traits[i];
  1437. }
  1438. //
  1439. // simd mappings
  1440. //
  1441. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1442. // we then implement the fundamental computation operations below using only these macros
  1443. // adding support for new architectures requires to define the corresponding SIMD macros
  1444. //
  1445. // GGML_F32_STEP / GGML_F16_STEP
  1446. // number of elements to process in a single step
  1447. //
  1448. // GGML_F32_EPR / GGML_F16_EPR
  1449. // number of elements to fit in a single register
  1450. //
  1451. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1452. #define GGML_SIMD
  1453. // F32 NEON
  1454. #define GGML_F32_STEP 16
  1455. #define GGML_F32_EPR 4
  1456. #define GGML_F32x4 float32x4_t
  1457. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1458. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1459. #define GGML_F32x4_LOAD vld1q_f32
  1460. #define GGML_F32x4_STORE vst1q_f32
  1461. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1462. #define GGML_F32x4_ADD vaddq_f32
  1463. #define GGML_F32x4_MUL vmulq_f32
  1464. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1465. #define GGML_F32x4_REDUCE(res, x) \
  1466. { \
  1467. int offset = GGML_F32_ARR >> 1; \
  1468. for (int i = 0; i < offset; ++i) { \
  1469. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1470. } \
  1471. offset >>= 1; \
  1472. for (int i = 0; i < offset; ++i) { \
  1473. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1474. } \
  1475. offset >>= 1; \
  1476. for (int i = 0; i < offset; ++i) { \
  1477. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1478. } \
  1479. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1480. }
  1481. #define GGML_F32_VEC GGML_F32x4
  1482. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1483. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1484. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1485. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1486. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1487. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1488. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1489. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1490. // F16 NEON
  1491. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1492. #define GGML_F16_STEP 32
  1493. #define GGML_F16_EPR 8
  1494. #define GGML_F16x8 float16x8_t
  1495. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1496. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1497. #define GGML_F16x8_LOAD vld1q_f16
  1498. #define GGML_F16x8_STORE vst1q_f16
  1499. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1500. #define GGML_F16x8_ADD vaddq_f16
  1501. #define GGML_F16x8_MUL vmulq_f16
  1502. #define GGML_F16x8_REDUCE(res, x) \
  1503. { \
  1504. int offset = GGML_F16_ARR >> 1; \
  1505. for (int i = 0; i < offset; ++i) { \
  1506. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1507. } \
  1508. offset >>= 1; \
  1509. for (int i = 0; i < offset; ++i) { \
  1510. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1511. } \
  1512. offset >>= 1; \
  1513. for (int i = 0; i < offset; ++i) { \
  1514. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1515. } \
  1516. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1517. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1518. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1519. }
  1520. #define GGML_F16_VEC GGML_F16x8
  1521. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1522. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1523. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1524. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1525. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1526. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1527. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1528. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1529. #else
  1530. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1531. // and take advantage of the vcvt_ functions to convert to/from FP16
  1532. #define GGML_F16_STEP 16
  1533. #define GGML_F16_EPR 4
  1534. #define GGML_F32Cx4 float32x4_t
  1535. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1536. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1537. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1538. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1539. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1540. #define GGML_F32Cx4_ADD vaddq_f32
  1541. #define GGML_F32Cx4_MUL vmulq_f32
  1542. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1543. #define GGML_F16_VEC GGML_F32Cx4
  1544. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1545. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1546. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1547. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1548. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1549. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1550. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1551. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1552. #endif
  1553. #elif defined(__AVX__)
  1554. #define GGML_SIMD
  1555. // F32 AVX
  1556. #define GGML_F32_STEP 32
  1557. #define GGML_F32_EPR 8
  1558. #define GGML_F32x8 __m256
  1559. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1560. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1561. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1562. #define GGML_F32x8_STORE _mm256_storeu_ps
  1563. #if defined(__FMA__)
  1564. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1565. #else
  1566. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1567. #endif
  1568. #define GGML_F32x8_ADD _mm256_add_ps
  1569. #define GGML_F32x8_MUL _mm256_mul_ps
  1570. #define GGML_F32x8_REDUCE(res, x) \
  1571. { \
  1572. int offset = GGML_F32_ARR >> 1; \
  1573. for (int i = 0; i < offset; ++i) { \
  1574. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1575. } \
  1576. offset >>= 1; \
  1577. for (int i = 0; i < offset; ++i) { \
  1578. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1579. } \
  1580. offset >>= 1; \
  1581. for (int i = 0; i < offset; ++i) { \
  1582. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1583. } \
  1584. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1585. _mm256_extractf128_ps(x[0], 1)); \
  1586. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1587. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1588. }
  1589. // TODO: is this optimal ?
  1590. #define GGML_F32_VEC GGML_F32x8
  1591. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1592. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1593. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1594. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1595. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1596. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1597. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1598. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1599. // F16 AVX
  1600. #define GGML_F16_STEP 32
  1601. #define GGML_F16_EPR 8
  1602. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1603. #define GGML_F32Cx8 __m256
  1604. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1605. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1606. #if defined(__F16C__)
  1607. // the _mm256_cvt intrinsics require F16C
  1608. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1609. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1610. #else
  1611. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1612. float tmp[8];
  1613. for (int i = 0; i < 8; i++) {
  1614. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1615. }
  1616. return _mm256_loadu_ps(tmp);
  1617. }
  1618. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1619. float arr[8];
  1620. _mm256_storeu_ps(arr, y);
  1621. for (int i = 0; i < 8; i++)
  1622. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1623. }
  1624. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1625. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1626. #endif
  1627. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1628. #define GGML_F32Cx8_ADD _mm256_add_ps
  1629. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1630. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1631. #define GGML_F16_VEC GGML_F32Cx8
  1632. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1633. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1634. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1635. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1636. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1637. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1638. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1639. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1640. #elif defined(__POWER9_VECTOR__)
  1641. #define GGML_SIMD
  1642. // F32 POWER9
  1643. #define GGML_F32_STEP 32
  1644. #define GGML_F32_EPR 4
  1645. #define GGML_F32x4 vector float
  1646. #define GGML_F32x4_ZERO 0.0f
  1647. #define GGML_F32x4_SET1 vec_splats
  1648. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1649. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1650. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1651. #define GGML_F32x4_ADD vec_add
  1652. #define GGML_F32x4_MUL vec_mul
  1653. #define GGML_F32x4_REDUCE(res, x) \
  1654. { \
  1655. int offset = GGML_F32_ARR >> 1; \
  1656. for (int i = 0; i < offset; ++i) { \
  1657. x[i] = vec_add(x[i], x[offset+i]); \
  1658. } \
  1659. offset >>= 1; \
  1660. for (int i = 0; i < offset; ++i) { \
  1661. x[i] = vec_add(x[i], x[offset+i]); \
  1662. } \
  1663. offset >>= 1; \
  1664. for (int i = 0; i < offset; ++i) { \
  1665. x[i] = vec_add(x[i], x[offset+i]); \
  1666. } \
  1667. res = vec_extract(x[0], 0) + \
  1668. vec_extract(x[0], 1) + \
  1669. vec_extract(x[0], 2) + \
  1670. vec_extract(x[0], 3); \
  1671. }
  1672. #define GGML_F32_VEC GGML_F32x4
  1673. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1674. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1675. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1676. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1677. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1678. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1679. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1680. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1681. // F16 POWER9
  1682. #define GGML_F16_STEP GGML_F32_STEP
  1683. #define GGML_F16_EPR GGML_F32_EPR
  1684. #define GGML_F16_VEC GGML_F32x4
  1685. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1686. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1687. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1688. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1689. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1690. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1691. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1692. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1693. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1694. #define GGML_F16_VEC_STORE(p, r, i) \
  1695. if (i & 0x1) \
  1696. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1697. r[i - GGML_ENDIAN_BYTE(0)]), \
  1698. 0, p - GGML_F16_EPR)
  1699. #elif defined(__wasm_simd128__)
  1700. #define GGML_SIMD
  1701. // F32 WASM
  1702. #define GGML_F32_STEP 16
  1703. #define GGML_F32_EPR 4
  1704. #define GGML_F32x4 v128_t
  1705. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1706. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1707. #define GGML_F32x4_LOAD wasm_v128_load
  1708. #define GGML_F32x4_STORE wasm_v128_store
  1709. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1710. #define GGML_F32x4_ADD wasm_f32x4_add
  1711. #define GGML_F32x4_MUL wasm_f32x4_mul
  1712. #define GGML_F32x4_REDUCE(res, x) \
  1713. { \
  1714. int offset = GGML_F32_ARR >> 1; \
  1715. for (int i = 0; i < offset; ++i) { \
  1716. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1717. } \
  1718. offset >>= 1; \
  1719. for (int i = 0; i < offset; ++i) { \
  1720. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1721. } \
  1722. offset >>= 1; \
  1723. for (int i = 0; i < offset; ++i) { \
  1724. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1725. } \
  1726. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1727. wasm_f32x4_extract_lane(x[0], 1) + \
  1728. wasm_f32x4_extract_lane(x[0], 2) + \
  1729. wasm_f32x4_extract_lane(x[0], 3); \
  1730. }
  1731. #define GGML_F32_VEC GGML_F32x4
  1732. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1733. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1734. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1735. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1736. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1737. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1738. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1739. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1740. // F16 WASM
  1741. #define GGML_F16_STEP 16
  1742. #define GGML_F16_EPR 4
  1743. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1744. float tmp[4];
  1745. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1746. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1747. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1748. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1749. return wasm_v128_load(tmp);
  1750. }
  1751. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1752. float tmp[4];
  1753. wasm_v128_store(tmp, x);
  1754. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1755. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1756. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1757. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1758. }
  1759. #define GGML_F16x4 v128_t
  1760. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1761. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1762. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1763. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1764. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1765. #define GGML_F16x4_ADD wasm_f32x4_add
  1766. #define GGML_F16x4_MUL wasm_f32x4_mul
  1767. #define GGML_F16x4_REDUCE(res, x) \
  1768. { \
  1769. int offset = GGML_F16_ARR >> 1; \
  1770. for (int i = 0; i < offset; ++i) { \
  1771. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1772. } \
  1773. offset >>= 1; \
  1774. for (int i = 0; i < offset; ++i) { \
  1775. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1776. } \
  1777. offset >>= 1; \
  1778. for (int i = 0; i < offset; ++i) { \
  1779. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1780. } \
  1781. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1782. wasm_f32x4_extract_lane(x[0], 1) + \
  1783. wasm_f32x4_extract_lane(x[0], 2) + \
  1784. wasm_f32x4_extract_lane(x[0], 3); \
  1785. }
  1786. #define GGML_F16_VEC GGML_F16x4
  1787. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1788. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1789. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1790. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1791. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1792. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1793. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1794. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1795. #elif defined(__SSE3__)
  1796. #define GGML_SIMD
  1797. // F32 SSE
  1798. #define GGML_F32_STEP 32
  1799. #define GGML_F32_EPR 4
  1800. #define GGML_F32x4 __m128
  1801. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1802. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1803. #define GGML_F32x4_LOAD _mm_loadu_ps
  1804. #define GGML_F32x4_STORE _mm_storeu_ps
  1805. #if defined(__FMA__)
  1806. // TODO: Does this work?
  1807. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1808. #else
  1809. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1810. #endif
  1811. #define GGML_F32x4_ADD _mm_add_ps
  1812. #define GGML_F32x4_MUL _mm_mul_ps
  1813. #define GGML_F32x4_REDUCE(res, x) \
  1814. { \
  1815. int offset = GGML_F32_ARR >> 1; \
  1816. for (int i = 0; i < offset; ++i) { \
  1817. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1818. } \
  1819. offset >>= 1; \
  1820. for (int i = 0; i < offset; ++i) { \
  1821. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1822. } \
  1823. offset >>= 1; \
  1824. for (int i = 0; i < offset; ++i) { \
  1825. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1826. } \
  1827. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1828. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1829. }
  1830. // TODO: is this optimal ?
  1831. #define GGML_F32_VEC GGML_F32x4
  1832. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1833. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1834. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1835. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1836. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1837. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1838. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1839. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1840. // F16 SSE
  1841. #define GGML_F16_STEP 32
  1842. #define GGML_F16_EPR 4
  1843. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1844. float tmp[4];
  1845. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1846. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1847. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1848. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1849. return _mm_loadu_ps(tmp);
  1850. }
  1851. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1852. float arr[4];
  1853. _mm_storeu_ps(arr, y);
  1854. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1855. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1856. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1857. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1858. }
  1859. #define GGML_F32Cx4 __m128
  1860. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1861. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1862. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1863. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1864. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1865. #define GGML_F32Cx4_ADD _mm_add_ps
  1866. #define GGML_F32Cx4_MUL _mm_mul_ps
  1867. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1868. #define GGML_F16_VEC GGML_F32Cx4
  1869. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1870. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1871. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1872. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1873. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1874. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1875. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1876. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1877. #endif
  1878. // GGML_F32_ARR / GGML_F16_ARR
  1879. // number of registers to use per step
  1880. #ifdef GGML_SIMD
  1881. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1882. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1883. #endif
  1884. //
  1885. // fundamental operations
  1886. //
  1887. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1888. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1889. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1890. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1891. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1892. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1893. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1894. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1895. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1896. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1897. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1898. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1899. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1900. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1901. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1902. #ifdef GGML_SIMD
  1903. float sumf = 0.0f;
  1904. const int np = (n & ~(GGML_F32_STEP - 1));
  1905. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1906. GGML_F32_VEC ax[GGML_F32_ARR];
  1907. GGML_F32_VEC ay[GGML_F32_ARR];
  1908. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1909. for (int j = 0; j < GGML_F32_ARR; j++) {
  1910. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1911. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1912. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1913. }
  1914. }
  1915. // reduce sum0..sum3 to sum0
  1916. GGML_F32_VEC_REDUCE(sumf, sum);
  1917. // leftovers
  1918. for (int i = np; i < n; ++i) {
  1919. sumf += x[i]*y[i];
  1920. }
  1921. #else
  1922. // scalar
  1923. ggml_float sumf = 0.0;
  1924. for (int i = 0; i < n; ++i) {
  1925. sumf += (ggml_float)(x[i]*y[i]);
  1926. }
  1927. #endif
  1928. *s = sumf;
  1929. }
  1930. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1931. ggml_float sumf = 0.0;
  1932. #if defined(GGML_SIMD)
  1933. const int np = (n & ~(GGML_F16_STEP - 1));
  1934. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1935. GGML_F16_VEC ax[GGML_F16_ARR];
  1936. GGML_F16_VEC ay[GGML_F16_ARR];
  1937. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1938. for (int j = 0; j < GGML_F16_ARR; j++) {
  1939. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1940. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1941. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1942. }
  1943. }
  1944. // reduce sum0..sum3 to sum0
  1945. GGML_F16_VEC_REDUCE(sumf, sum);
  1946. // leftovers
  1947. for (int i = np; i < n; ++i) {
  1948. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1949. }
  1950. #else
  1951. for (int i = 0; i < n; ++i) {
  1952. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1953. }
  1954. #endif
  1955. *s = sumf;
  1956. }
  1957. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1958. const int qk = QK8_0;
  1959. const int nb = n / qk;
  1960. assert(n % qk == 0);
  1961. assert(nb % 2 == 0);
  1962. const block_q4_0 * restrict x = vx;
  1963. const block_q8_0 * restrict y = vy;
  1964. #if defined(__ARM_NEON)
  1965. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1966. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1967. for (int i = 0; i < nb; i += 2) {
  1968. const block_q4_0 * restrict x0 = &x[i + 0];
  1969. const block_q4_0 * restrict x1 = &x[i + 1];
  1970. const block_q8_0 * restrict y0 = &y[i + 0];
  1971. const block_q8_0 * restrict y1 = &y[i + 1];
  1972. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1973. const int8x16_t s8b = vdupq_n_s8(0x8);
  1974. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1975. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1976. // 4-bit -> 8-bit
  1977. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1978. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1979. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1980. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1981. // sub 8
  1982. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1983. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1984. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1985. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1986. // load y
  1987. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1988. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1989. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1990. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1991. #if defined(__ARM_FEATURE_DOTPROD)
  1992. // dot product into int32x4_t
  1993. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  1994. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  1995. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1996. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1997. #else
  1998. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  1999. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  2000. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  2001. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  2002. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  2003. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  2004. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  2005. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  2006. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2007. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2008. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2009. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2010. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2011. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2012. #endif
  2013. }
  2014. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2015. #elif defined(__AVX2__)
  2016. // Initialize accumulator with zeros
  2017. __m256 acc = _mm256_setzero_ps();
  2018. // Main loop
  2019. for (int i = 0; i < nb; ++i) {
  2020. /* Compute combined scale for the block */
  2021. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2022. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2023. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2024. const __m256i off = _mm256_set1_epi8( 8 );
  2025. bx = _mm256_sub_epi8( bx, off );
  2026. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2027. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2028. /* Multiply q with scale and accumulate */
  2029. acc = _mm256_fmadd_ps( d, q, acc );
  2030. }
  2031. *s = hsum_float_8(acc);
  2032. #elif defined(__AVX__)
  2033. // Initialize accumulator with zeros
  2034. __m256 acc = _mm256_setzero_ps();
  2035. // Main loop
  2036. for (int i = 0; i < nb; ++i) {
  2037. // Compute combined scale for the block
  2038. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2039. const __m128i lowMask = _mm_set1_epi8(0xF);
  2040. const __m128i off = _mm_set1_epi8(8);
  2041. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  2042. __m128i bx = _mm_and_si128(lowMask, tmp);
  2043. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  2044. bx = _mm_sub_epi8(bx, off);
  2045. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  2046. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  2047. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2048. bx = _mm_sub_epi8(bx, off);
  2049. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  2050. // Convert int32_t to float
  2051. __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
  2052. // Apply the scale, and accumulate
  2053. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2054. }
  2055. *s = hsum_float_8(acc);
  2056. #elif defined(__SSSE3__)
  2057. // set constants
  2058. const __m128i lowMask = _mm_set1_epi8(0xF);
  2059. const __m128i off = _mm_set1_epi8(8);
  2060. // Initialize accumulator with zeros
  2061. __m128 acc_0 = _mm_setzero_ps();
  2062. __m128 acc_1 = _mm_setzero_ps();
  2063. __m128 acc_2 = _mm_setzero_ps();
  2064. __m128 acc_3 = _mm_setzero_ps();
  2065. // First round without accumulation
  2066. {
  2067. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  2068. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  2069. // Compute combined scale for the block 0 and 1
  2070. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  2071. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  2072. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2073. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  2074. bx_0 = _mm_sub_epi8(bx_0, off);
  2075. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2076. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2077. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  2078. bx_1 = _mm_sub_epi8(bx_1, off);
  2079. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2080. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  2081. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  2082. // Compute combined scale for the block 2 and 3
  2083. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  2084. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  2085. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2086. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  2087. bx_2 = _mm_sub_epi8(bx_2, off);
  2088. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2089. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2090. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  2091. bx_3 = _mm_sub_epi8(bx_3, off);
  2092. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2093. // Convert int32_t to float
  2094. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2095. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2096. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2097. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2098. // Apply the scale
  2099. acc_0 = _mm_mul_ps( d_0_1, p0 );
  2100. acc_1 = _mm_mul_ps( d_0_1, p1 );
  2101. acc_2 = _mm_mul_ps( d_2_3, p2 );
  2102. acc_3 = _mm_mul_ps( d_2_3, p3 );
  2103. }
  2104. // Main loop
  2105. for (int i = 2; i < nb; i+=2) {
  2106. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  2107. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  2108. // Compute combined scale for the block 0 and 1
  2109. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2110. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  2111. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2112. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  2113. bx_0 = _mm_sub_epi8(bx_0, off);
  2114. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2115. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2116. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2117. bx_1 = _mm_sub_epi8(bx_1, off);
  2118. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2119. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  2120. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  2121. // Compute combined scale for the block 2 and 3
  2122. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  2123. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  2124. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2125. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  2126. bx_2 = _mm_sub_epi8(bx_2, off);
  2127. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2128. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2129. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  2130. bx_3 = _mm_sub_epi8(bx_3, off);
  2131. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2132. // Convert int32_t to float
  2133. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2134. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2135. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2136. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2137. // Apply the scale
  2138. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  2139. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  2140. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  2141. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  2142. // Acummulate
  2143. acc_0 = _mm_add_ps(p0_d, acc_0);
  2144. acc_1 = _mm_add_ps(p1_d, acc_1);
  2145. acc_2 = _mm_add_ps(p2_d, acc_2);
  2146. acc_3 = _mm_add_ps(p3_d, acc_3);
  2147. }
  2148. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  2149. #else
  2150. // scalar
  2151. float sumf = 0.0;
  2152. for (int i = 0; i < nb; i++) {
  2153. int sumi = 0;
  2154. for (int j = 0; j < qk/2; ++j) {
  2155. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  2156. const int v1 = (x[i].qs[j] >> 4) - 8;
  2157. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2158. }
  2159. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2160. }
  2161. *s = sumf;
  2162. #endif
  2163. }
  2164. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2165. const int qk = QK8_1;
  2166. const int nb = n / qk;
  2167. assert(n % qk == 0);
  2168. assert(nb % 2 == 0);
  2169. const block_q4_1 * restrict x = vx;
  2170. const block_q8_1 * restrict y = vy;
  2171. // TODO: add WASM SIMD
  2172. #if defined(__ARM_NEON)
  2173. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2174. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2175. float summs = 0;
  2176. for (int i = 0; i < nb; i += 2) {
  2177. const block_q4_1 * restrict x0 = &x[i + 0];
  2178. const block_q4_1 * restrict x1 = &x[i + 1];
  2179. const block_q8_1 * restrict y0 = &y[i + 0];
  2180. const block_q8_1 * restrict y1 = &y[i + 1];
  2181. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  2182. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2183. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2184. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2185. // 4-bit -> 8-bit
  2186. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2187. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2188. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2189. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2190. // load y
  2191. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2192. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2193. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2194. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2195. #if defined(__ARM_FEATURE_DOTPROD)
  2196. // dot product into int32x4_t
  2197. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2198. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2199. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2200. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2201. #else
  2202. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  2203. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  2204. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  2205. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  2206. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  2207. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  2208. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  2209. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  2210. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2211. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2212. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2213. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2214. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2215. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2216. #endif
  2217. }
  2218. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2219. #elif defined(__AVX2__) || defined(__AVX__)
  2220. // Initialize accumulator with zeros
  2221. __m256 acc = _mm256_setzero_ps();
  2222. float summs = 0;
  2223. // Main loop
  2224. for (int i = 0; i < nb; ++i) {
  2225. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  2226. const float d1 = y[i].d;
  2227. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2228. const __m256 d0v = _mm256_set1_ps( d0 );
  2229. const __m256 d1v = _mm256_set1_ps( d1 );
  2230. // Compute combined scales
  2231. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2232. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2233. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2234. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2235. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2236. // Accumulate d0*d1*x*y
  2237. #if defined(__AVX2__)
  2238. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2239. #else
  2240. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2241. #endif
  2242. }
  2243. *s = hsum_float_8(acc) + summs;
  2244. #else
  2245. // scalar
  2246. float sumf = 0.0;
  2247. for (int i = 0; i < nb; i++) {
  2248. int sumi = 0;
  2249. for (int j = 0; j < qk/2; ++j) {
  2250. const int v0 = (x[i].qs[j] & 0x0F);
  2251. const int v1 = (x[i].qs[j] >> 4);
  2252. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2253. }
  2254. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2255. }
  2256. *s = sumf;
  2257. #endif
  2258. }
  2259. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2260. const int qk = QK8_0;
  2261. const int nb = n / qk;
  2262. assert(n % qk == 0);
  2263. assert(nb % 2 == 0);
  2264. assert(qk == QK5_0);
  2265. const block_q5_0 * restrict x = vx;
  2266. const block_q8_0 * restrict y = vy;
  2267. #if defined(__ARM_NEON)
  2268. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2269. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2270. uint32_t qh0;
  2271. uint32_t qh1;
  2272. uint64_t tmp0[4];
  2273. uint64_t tmp1[4];
  2274. for (int i = 0; i < nb; i += 2) {
  2275. const block_q5_0 * restrict x0 = &x[i];
  2276. const block_q5_0 * restrict x1 = &x[i + 1];
  2277. const block_q8_0 * restrict y0 = &y[i];
  2278. const block_q8_0 * restrict y1 = &y[i + 1];
  2279. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2280. // extract the 5th bit via lookup table ((!b) << 4)
  2281. memcpy(&qh0, x0->qh, sizeof(qh0));
  2282. memcpy(&qh1, x1->qh, sizeof(qh1));
  2283. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2284. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2285. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2286. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2287. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2288. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2289. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2290. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2291. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2292. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2293. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2294. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2295. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2296. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2297. // 4-bit -> 8-bit
  2298. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2299. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2300. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2301. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2302. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2303. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2304. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2305. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2306. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2307. // load y
  2308. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2309. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2310. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2311. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2312. #if defined(__ARM_FEATURE_DOTPROD)
  2313. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2314. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2315. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2316. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2317. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2318. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2319. #else
  2320. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2321. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2322. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2323. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2324. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2325. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2326. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2327. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2328. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2329. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2330. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2331. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2332. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2333. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2334. #endif
  2335. }
  2336. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2337. #elif defined(__wasm_simd128__)
  2338. v128_t sumv = wasm_f32x4_splat(0.0f);
  2339. uint32_t qh;
  2340. uint64_t tmp[4];
  2341. // TODO: check if unrolling this is better
  2342. for (int i = 0; i < nb; ++i) {
  2343. const block_q5_0 * restrict x0 = &x[i];
  2344. const block_q8_0 * restrict y0 = &y[i];
  2345. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2346. // extract the 5th bit
  2347. memcpy(&qh, x0->qh, sizeof(qh));
  2348. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2349. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2350. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2351. tmp[3] = table_b2b_1[(qh >> 24) ];
  2352. const v128_t qhl = wasm_v128_load(tmp + 0);
  2353. const v128_t qhh = wasm_v128_load(tmp + 2);
  2354. const v128_t v0 = wasm_v128_load(x0->qs);
  2355. // 4-bit -> 8-bit
  2356. const v128_t v0l = wasm_v128_and (v0, m4b);
  2357. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2358. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2359. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2360. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2361. // load y
  2362. const v128_t v1l = wasm_v128_load(y0->qs);
  2363. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2364. // int8x16 -> int16x8
  2365. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2366. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2367. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2368. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2369. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2370. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2371. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2372. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2373. // dot product
  2374. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2375. wasm_i32x4_add(
  2376. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2377. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2378. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2379. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2380. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2381. }
  2382. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2383. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2384. #elif defined(__AVX2__)
  2385. // Initialize accumulator with zeros
  2386. __m256 acc = _mm256_setzero_ps();
  2387. // Main loop
  2388. for (int i = 0; i < nb; i++) {
  2389. /* Compute combined scale for the block */
  2390. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2391. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2392. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2393. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2394. bx = _mm256_or_si256(bx, bxhi);
  2395. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2396. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2397. /* Multiply q with scale and accumulate */
  2398. acc = _mm256_fmadd_ps(d, q, acc);
  2399. }
  2400. *s = hsum_float_8(acc);
  2401. #elif defined(__AVX__)
  2402. // Initialize accumulator with zeros
  2403. __m256 acc = _mm256_setzero_ps();
  2404. __m128i mask = _mm_set1_epi8((char)0xF0);
  2405. // Main loop
  2406. for (int i = 0; i < nb; i++) {
  2407. /* Compute combined scale for the block */
  2408. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2409. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2410. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2411. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2412. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2413. bxhil = _mm_andnot_si128(bxhil, mask);
  2414. bxhih = _mm_andnot_si128(bxhih, mask);
  2415. __m128i bxl = _mm256_castsi256_si128(bx);
  2416. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2417. bxl = _mm_or_si128(bxl, bxhil);
  2418. bxh = _mm_or_si128(bxh, bxhih);
  2419. bx = MM256_SET_M128I(bxh, bxl);
  2420. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2421. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2422. /* Multiply q with scale and accumulate */
  2423. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2424. }
  2425. *s = hsum_float_8(acc);
  2426. #else
  2427. // scalar
  2428. float sumf = 0.0;
  2429. for (int i = 0; i < nb; i++) {
  2430. uint32_t qh;
  2431. memcpy(&qh, x[i].qh, sizeof(qh));
  2432. int sumi = 0;
  2433. for (int j = 0; j < qk/2; ++j) {
  2434. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2435. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2436. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2437. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2438. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2439. }
  2440. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2441. }
  2442. *s = sumf;
  2443. #endif
  2444. }
  2445. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2446. const int qk = QK8_1;
  2447. const int nb = n / qk;
  2448. assert(n % qk == 0);
  2449. assert(nb % 2 == 0);
  2450. assert(qk == QK5_1);
  2451. const block_q5_1 * restrict x = vx;
  2452. const block_q8_1 * restrict y = vy;
  2453. #if defined(__ARM_NEON)
  2454. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2455. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2456. float summs0 = 0.0f;
  2457. float summs1 = 0.0f;
  2458. uint32_t qh0;
  2459. uint32_t qh1;
  2460. uint64_t tmp0[4];
  2461. uint64_t tmp1[4];
  2462. for (int i = 0; i < nb; i += 2) {
  2463. const block_q5_1 * restrict x0 = &x[i];
  2464. const block_q5_1 * restrict x1 = &x[i + 1];
  2465. const block_q8_1 * restrict y0 = &y[i];
  2466. const block_q8_1 * restrict y1 = &y[i + 1];
  2467. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2468. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2469. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2470. // extract the 5th bit via lookup table ((b) << 4)
  2471. memcpy(&qh0, x0->qh, sizeof(qh0));
  2472. memcpy(&qh1, x1->qh, sizeof(qh1));
  2473. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2474. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2475. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2476. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2477. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2478. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2479. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2480. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2481. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2482. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2483. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2484. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2485. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2486. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2487. // 4-bit -> 8-bit
  2488. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2489. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2490. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2491. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2492. // add high bit
  2493. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2494. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2495. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2496. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2497. // load y
  2498. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2499. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2500. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2501. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2502. #if defined(__ARM_FEATURE_DOTPROD)
  2503. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2504. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2505. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2506. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2507. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2508. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2509. #else
  2510. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2511. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2512. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2513. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2514. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2515. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2516. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2517. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2518. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2519. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2520. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2521. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2522. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2523. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2524. #endif
  2525. }
  2526. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2527. #elif defined(__wasm_simd128__)
  2528. v128_t sumv = wasm_f32x4_splat(0.0f);
  2529. float summs = 0.0f;
  2530. uint32_t qh;
  2531. uint64_t tmp[4];
  2532. // TODO: check if unrolling this is better
  2533. for (int i = 0; i < nb; ++i) {
  2534. const block_q5_1 * restrict x0 = &x[i];
  2535. const block_q8_1 * restrict y0 = &y[i];
  2536. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2537. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2538. // extract the 5th bit
  2539. memcpy(&qh, x0->qh, sizeof(qh));
  2540. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2541. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2542. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2543. tmp[3] = table_b2b_0[(qh >> 24) ];
  2544. const v128_t qhl = wasm_v128_load(tmp + 0);
  2545. const v128_t qhh = wasm_v128_load(tmp + 2);
  2546. const v128_t v0 = wasm_v128_load(x0->qs);
  2547. // 4-bit -> 8-bit
  2548. const v128_t v0l = wasm_v128_and (v0, m4b);
  2549. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2550. // add high bit
  2551. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2552. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2553. // load y
  2554. const v128_t v1l = wasm_v128_load(y0->qs);
  2555. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2556. // int8x16 -> int16x8
  2557. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2558. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2559. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2560. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2561. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2562. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2563. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2564. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2565. // dot product
  2566. sumv = wasm_f32x4_add(sumv,
  2567. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2568. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2569. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2570. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2571. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2572. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  2573. }
  2574. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2575. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2576. #elif defined(__AVX2__)
  2577. // Initialize accumulator with zeros
  2578. __m256 acc = _mm256_setzero_ps();
  2579. float summs = 0.0f;
  2580. // Main loop
  2581. for (int i = 0; i < nb; i++) {
  2582. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2583. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2584. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2585. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2586. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2587. bx = _mm256_or_si256(bx, bxhi);
  2588. const __m256 dy = _mm256_set1_ps(y[i].d);
  2589. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2590. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2591. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2592. }
  2593. *s = hsum_float_8(acc) + summs;
  2594. #elif defined(__AVX__)
  2595. // Initialize accumulator with zeros
  2596. __m256 acc = _mm256_setzero_ps();
  2597. __m128i mask = _mm_set1_epi8(0x10);
  2598. float summs = 0.0f;
  2599. // Main loop
  2600. for (int i = 0; i < nb; i++) {
  2601. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2602. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2603. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2604. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2605. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2606. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2607. bxhil = _mm_and_si128(bxhil, mask);
  2608. bxhih = _mm_and_si128(bxhih, mask);
  2609. __m128i bxl = _mm256_castsi256_si128(bx);
  2610. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2611. bxl = _mm_or_si128(bxl, bxhil);
  2612. bxh = _mm_or_si128(bxh, bxhih);
  2613. bx = MM256_SET_M128I(bxh, bxl);
  2614. const __m256 dy = _mm256_set1_ps(y[i].d);
  2615. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2616. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2617. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2618. }
  2619. *s = hsum_float_8(acc) + summs;
  2620. #else
  2621. // scalar
  2622. float sumf = 0.0;
  2623. for (int i = 0; i < nb; i++) {
  2624. uint32_t qh;
  2625. memcpy(&qh, x[i].qh, sizeof(qh));
  2626. int sumi = 0;
  2627. for (int j = 0; j < qk/2; ++j) {
  2628. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2629. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2630. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2631. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2632. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2633. }
  2634. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2635. }
  2636. *s = sumf;
  2637. #endif
  2638. }
  2639. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2640. const int qk = QK8_0;
  2641. const int nb = n / qk;
  2642. assert(n % qk == 0);
  2643. assert(nb % 2 == 0);
  2644. const block_q8_0 * restrict x = vx;
  2645. const block_q8_0 * restrict y = vy;
  2646. #if defined(__ARM_NEON)
  2647. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2648. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2649. for (int i = 0; i < nb; i += 2) {
  2650. const block_q8_0 * restrict x0 = &x[i + 0];
  2651. const block_q8_0 * restrict x1 = &x[i + 1];
  2652. const block_q8_0 * restrict y0 = &y[i + 0];
  2653. const block_q8_0 * restrict y1 = &y[i + 1];
  2654. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2655. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2656. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2657. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2658. // load y
  2659. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2660. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2661. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2662. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2663. #if defined(__ARM_FEATURE_DOTPROD)
  2664. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2665. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2666. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2667. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2668. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2669. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2670. #else
  2671. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2672. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2673. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2674. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2675. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2676. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2677. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2678. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2679. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2680. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2681. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2682. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2683. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2684. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2685. #endif
  2686. }
  2687. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2688. #elif defined(__AVX2__) || defined(__AVX__)
  2689. // Initialize accumulator with zeros
  2690. __m256 acc = _mm256_setzero_ps();
  2691. // Main loop
  2692. for (int i = 0; i < nb; ++i) {
  2693. // Compute combined scale for the block
  2694. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2695. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2696. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2697. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2698. // Multiply q with scale and accumulate
  2699. #if defined(__AVX2__)
  2700. acc = _mm256_fmadd_ps( d, q, acc );
  2701. #else
  2702. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2703. #endif
  2704. }
  2705. *s = hsum_float_8(acc);
  2706. #else
  2707. // scalar
  2708. float sumf = 0.0;
  2709. for (int i = 0; i < nb; i++) {
  2710. int sumi = 0;
  2711. for (int j = 0; j < qk; j++) {
  2712. sumi += x[i].qs[j]*y[i].qs[j];
  2713. }
  2714. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2715. }
  2716. *s = sumf;
  2717. #endif
  2718. }
  2719. // compute GGML_VEC_DOT_UNROLL dot products at once
  2720. // xs - x row stride in bytes
  2721. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2722. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2723. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2724. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2725. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2726. }
  2727. #if defined(GGML_SIMD)
  2728. const int np = (n & ~(GGML_F16_STEP - 1));
  2729. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2730. GGML_F16_VEC ax[GGML_F16_ARR];
  2731. GGML_F16_VEC ay[GGML_F16_ARR];
  2732. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2733. for (int j = 0; j < GGML_F16_ARR; j++) {
  2734. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2735. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2736. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2737. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2738. }
  2739. }
  2740. }
  2741. // reduce sum0..sum3 to sum0
  2742. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2743. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2744. }
  2745. // leftovers
  2746. for (int i = np; i < n; ++i) {
  2747. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2748. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2749. }
  2750. }
  2751. #else
  2752. for (int i = 0; i < n; ++i) {
  2753. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2754. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2755. }
  2756. }
  2757. #endif
  2758. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2759. s[i] = sumf[i];
  2760. }
  2761. }
  2762. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2763. #if defined(GGML_SIMD)
  2764. const int np = (n & ~(GGML_F32_STEP - 1));
  2765. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2766. GGML_F32_VEC ax[GGML_F32_ARR];
  2767. GGML_F32_VEC ay[GGML_F32_ARR];
  2768. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2769. for (int j = 0; j < GGML_F32_ARR; j++) {
  2770. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2771. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2772. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2773. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2774. }
  2775. }
  2776. // leftovers
  2777. for (int i = np; i < n; ++i) {
  2778. y[i] += x[i]*v;
  2779. }
  2780. #else
  2781. // scalar
  2782. for (int i = 0; i < n; ++i) {
  2783. y[i] += x[i]*v;
  2784. }
  2785. #endif
  2786. }
  2787. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2788. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2789. #if defined(GGML_SIMD)
  2790. const int np = (n & ~(GGML_F32_STEP - 1));
  2791. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2792. GGML_F32_VEC ay[GGML_F32_ARR];
  2793. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2794. for (int j = 0; j < GGML_F32_ARR; j++) {
  2795. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2796. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2797. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2798. }
  2799. }
  2800. // leftovers
  2801. for (int i = np; i < n; ++i) {
  2802. y[i] *= v;
  2803. }
  2804. #else
  2805. // scalar
  2806. for (int i = 0; i < n; ++i) {
  2807. y[i] *= v;
  2808. }
  2809. #endif
  2810. }
  2811. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2812. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2813. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2814. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  2815. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2816. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2817. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2818. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  2819. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  2820. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2821. static const float GELU_COEF_A = 0.044715f;
  2822. static const float GELU_QUICK_COEF = -1.702f;
  2823. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2824. inline static float ggml_gelu_f32(float x) {
  2825. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2826. }
  2827. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2828. const uint16_t * i16 = (const uint16_t *) x;
  2829. for (int i = 0; i < n; ++i) {
  2830. y[i] = table_gelu_f16[i16[i]];
  2831. }
  2832. }
  2833. #ifdef GGML_GELU_FP16
  2834. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2835. uint16_t t;
  2836. for (int i = 0; i < n; ++i) {
  2837. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2838. memcpy(&t, &fp16, sizeof(uint16_t));
  2839. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2840. }
  2841. }
  2842. #else
  2843. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2844. for (int i = 0; i < n; ++i) {
  2845. y[i] = ggml_gelu_f32(x[i]);
  2846. }
  2847. }
  2848. #endif
  2849. inline static float ggml_gelu_quick_f32(float x) {
  2850. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  2851. }
  2852. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2853. // const uint16_t * i16 = (const uint16_t *) x;
  2854. // for (int i = 0; i < n; ++i) {
  2855. // y[i] = table_gelu_quick_f16[i16[i]];
  2856. // }
  2857. //}
  2858. #ifdef GGML_GELU_QUICK_FP16
  2859. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2860. uint16_t t;
  2861. for (int i = 0; i < n; ++i) {
  2862. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2863. memcpy(&t, &fp16, sizeof(uint16_t));
  2864. y[i] = GGML_FP16_TO_FP32(table_gelu_quick_f16[t]);
  2865. }
  2866. }
  2867. #else
  2868. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2869. for (int i = 0; i < n; ++i) {
  2870. y[i] = ggml_gelu_quick_f32(x[i]);
  2871. }
  2872. }
  2873. #endif
  2874. // Sigmoid Linear Unit (SiLU) function
  2875. inline static float ggml_silu_f32(float x) {
  2876. return x/(1.0f + expf(-x));
  2877. }
  2878. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2879. // const uint16_t * i16 = (const uint16_t *) x;
  2880. // for (int i = 0; i < n; ++i) {
  2881. // y[i] = table_silu_f16[i16[i]];
  2882. // }
  2883. //}
  2884. #ifdef GGML_SILU_FP16
  2885. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2886. uint16_t t;
  2887. for (int i = 0; i < n; ++i) {
  2888. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2889. memcpy(&t, &fp16, sizeof(uint16_t));
  2890. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2891. }
  2892. }
  2893. #else
  2894. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2895. for (int i = 0; i < n; ++i) {
  2896. y[i] = ggml_silu_f32(x[i]);
  2897. }
  2898. }
  2899. #endif
  2900. inline static float ggml_silu_backward_f32(float x, float dy) {
  2901. const float s = 1.0f/(1.0f + expf(-x));
  2902. return dy*s*(1.0f + x*(1.0f - s));
  2903. }
  2904. #ifdef GGML_SILU_FP16
  2905. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2906. for (int i = 0; i < n; ++i) {
  2907. // we did not use x[i] to compute forward silu but its f16 equivalent
  2908. // take derivative at f16 of x[i]:
  2909. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2910. float usedx = GGML_FP16_TO_FP32(fp16);
  2911. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  2912. }
  2913. }
  2914. #else
  2915. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2916. for (int i = 0; i < n; ++i) {
  2917. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2918. }
  2919. }
  2920. #endif
  2921. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2922. #ifndef GGML_USE_ACCELERATE
  2923. ggml_float sum = 0.0;
  2924. for (int i = 0; i < n; ++i) {
  2925. sum += (ggml_float)x[i];
  2926. }
  2927. *s = sum;
  2928. #else
  2929. vDSP_sve(x, 1, s, n);
  2930. #endif
  2931. }
  2932. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  2933. ggml_float sum = 0.0;
  2934. for (int i = 0; i < n; ++i) {
  2935. sum += (ggml_float)x[i];
  2936. }
  2937. *s = sum;
  2938. }
  2939. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2940. #ifndef GGML_USE_ACCELERATE
  2941. float max = -INFINITY;
  2942. for (int i = 0; i < n; ++i) {
  2943. max = MAX(max, x[i]);
  2944. }
  2945. *s = max;
  2946. #else
  2947. vDSP_maxv(x, 1, s, n);
  2948. #endif
  2949. }
  2950. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2951. ggml_vec_norm_f32(n, s, x);
  2952. *s = 1.f/(*s);
  2953. }
  2954. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  2955. float max = -INFINITY;
  2956. int idx = 0;
  2957. for (int i = 0; i < n; ++i) {
  2958. max = MAX(max, x[i]);
  2959. if (max == x[i]) { idx = i; }
  2960. }
  2961. *s = idx;
  2962. }
  2963. //
  2964. // data types
  2965. //
  2966. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2967. [GGML_TYPE_F32] = 1,
  2968. [GGML_TYPE_F16] = 1,
  2969. [GGML_TYPE_Q4_0] = QK4_0,
  2970. [GGML_TYPE_Q4_1] = QK4_1,
  2971. [GGML_TYPE_Q5_0] = QK5_0,
  2972. [GGML_TYPE_Q5_1] = QK5_1,
  2973. [GGML_TYPE_Q8_0] = QK8_0,
  2974. [GGML_TYPE_Q8_1] = QK8_1,
  2975. #ifdef GGML_USE_K_QUANTS
  2976. [GGML_TYPE_Q2_K] = QK_K,
  2977. [GGML_TYPE_Q3_K] = QK_K,
  2978. [GGML_TYPE_Q4_K] = QK_K,
  2979. [GGML_TYPE_Q5_K] = QK_K,
  2980. [GGML_TYPE_Q6_K] = QK_K,
  2981. [GGML_TYPE_Q8_K] = QK_K,
  2982. #endif
  2983. [GGML_TYPE_I8] = 1,
  2984. [GGML_TYPE_I16] = 1,
  2985. [GGML_TYPE_I32] = 1,
  2986. };
  2987. static_assert(GGML_TYPE_COUNT == 19, "GGML_BLCK_SIZE is outdated");
  2988. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2989. [GGML_TYPE_F32] = sizeof(float),
  2990. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2991. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2992. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2993. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  2994. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  2995. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2996. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  2997. #ifdef GGML_USE_K_QUANTS
  2998. [GGML_TYPE_Q2_K] = sizeof(block_q2_K),
  2999. [GGML_TYPE_Q3_K] = sizeof(block_q3_K),
  3000. [GGML_TYPE_Q4_K] = sizeof(block_q4_K),
  3001. [GGML_TYPE_Q5_K] = sizeof(block_q5_K),
  3002. [GGML_TYPE_Q6_K] = sizeof(block_q6_K),
  3003. [GGML_TYPE_Q8_K] = sizeof(block_q8_K),
  3004. #endif
  3005. [GGML_TYPE_I8] = sizeof(int8_t),
  3006. [GGML_TYPE_I16] = sizeof(int16_t),
  3007. [GGML_TYPE_I32] = sizeof(int32_t),
  3008. };
  3009. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_SIZE is outdated");
  3010. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  3011. [GGML_TYPE_F32] = "f32",
  3012. [GGML_TYPE_F16] = "f16",
  3013. [GGML_TYPE_Q4_0] = "q4_0",
  3014. [GGML_TYPE_Q4_1] = "q4_1",
  3015. [GGML_TYPE_Q5_0] = "q5_0",
  3016. [GGML_TYPE_Q5_1] = "q5_1",
  3017. [GGML_TYPE_Q8_0] = "q8_0",
  3018. [GGML_TYPE_Q8_1] = "q8_1",
  3019. [GGML_TYPE_Q2_K] = "q2_K",
  3020. [GGML_TYPE_Q3_K] = "q3_K",
  3021. [GGML_TYPE_Q4_K] = "q4_K",
  3022. [GGML_TYPE_Q5_K] = "q5_K",
  3023. [GGML_TYPE_Q6_K] = "q6_K",
  3024. [GGML_TYPE_Q8_K] = "q8_K",
  3025. [GGML_TYPE_I8] = "i8",
  3026. [GGML_TYPE_I16] = "i16",
  3027. [GGML_TYPE_I32] = "i32",
  3028. };
  3029. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_NAME is outdated");
  3030. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  3031. [GGML_TYPE_F32] = false,
  3032. [GGML_TYPE_F16] = false,
  3033. [GGML_TYPE_Q4_0] = true,
  3034. [GGML_TYPE_Q4_1] = true,
  3035. [GGML_TYPE_Q5_0] = true,
  3036. [GGML_TYPE_Q5_1] = true,
  3037. [GGML_TYPE_Q8_0] = true,
  3038. [GGML_TYPE_Q8_1] = true,
  3039. [GGML_TYPE_Q2_K] = true,
  3040. [GGML_TYPE_Q3_K] = true,
  3041. [GGML_TYPE_Q4_K] = true,
  3042. [GGML_TYPE_Q5_K] = true,
  3043. [GGML_TYPE_Q6_K] = true,
  3044. [GGML_TYPE_Q8_K] = true,
  3045. [GGML_TYPE_I8] = false,
  3046. [GGML_TYPE_I16] = false,
  3047. [GGML_TYPE_I32] = false,
  3048. };
  3049. static_assert(GGML_TYPE_COUNT == 19, "GGML_IS_QUANTIZED is outdated");
  3050. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  3051. "NONE",
  3052. "DUP",
  3053. "ADD",
  3054. "ADD1",
  3055. "ACC",
  3056. "SUB",
  3057. "MUL",
  3058. "DIV",
  3059. "SQR",
  3060. "SQRT",
  3061. "LOG",
  3062. "SUM",
  3063. "SUM_ROWS",
  3064. "MEAN",
  3065. "ARGMAX",
  3066. "REPEAT",
  3067. "REPEAT_BACK",
  3068. "ABS",
  3069. "SGN",
  3070. "NEG",
  3071. "STEP",
  3072. "TANH",
  3073. "ELU",
  3074. "RELU",
  3075. "GELU",
  3076. "GELU_QUICK",
  3077. "SILU",
  3078. "SILU_BACK",
  3079. "NORM",
  3080. "RMS_NORM",
  3081. "RMS_NORM_BACK",
  3082. "MUL_MAT",
  3083. "OUT_PROD",
  3084. "SCALE",
  3085. "SET",
  3086. "CPY",
  3087. "CONT",
  3088. "RESHAPE",
  3089. "VIEW",
  3090. "PERMUTE",
  3091. "TRANSPOSE",
  3092. "GET_ROWS",
  3093. "GET_ROWS_BACK",
  3094. "DIAG",
  3095. "DIAG_MASK_INF",
  3096. "DIAG_MASK_ZERO",
  3097. "SOFT_MAX",
  3098. "SOFT_MAX_BACK",
  3099. "ROPE",
  3100. "ROPE_BACK",
  3101. "ALIBI",
  3102. "CLAMP",
  3103. "CONV_1D",
  3104. "CONV_2D",
  3105. "POOL_1D",
  3106. "POOL_2D",
  3107. "FLASH_ATTN",
  3108. "FLASH_FF",
  3109. "FLASH_ATTN_BACK",
  3110. "WIN_PART",
  3111. "WIN_UNPART",
  3112. "MAP_UNARY",
  3113. "MAP_BINARY",
  3114. "MAP_CUSTOM1",
  3115. "MAP_CUSTOM2",
  3116. "MAP_CUSTOM3",
  3117. "CROSS_ENTROPY_LOSS",
  3118. "CROSS_ENTROPY_LOSS_BACK",
  3119. };
  3120. static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68");
  3121. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  3122. "none",
  3123. "x",
  3124. "x+y",
  3125. "x+y",
  3126. "view(x,nb,offset)+=y->x",
  3127. "x-y",
  3128. "x*y",
  3129. "x/y",
  3130. "x^2",
  3131. "√x",
  3132. "log(x)",
  3133. "Σx",
  3134. "Σx_k",
  3135. "Σx/n",
  3136. "argmax(x)",
  3137. "repeat(x)",
  3138. "repeat_back(x)",
  3139. "abs(x)",
  3140. "sgn(x)",
  3141. "-x",
  3142. "step(x)",
  3143. "tanh(x)",
  3144. "elu(x)",
  3145. "relu(x)",
  3146. "gelu(x)",
  3147. "gelu_quick(x)",
  3148. "silu(x)",
  3149. "silu_back(x)",
  3150. "norm(x)",
  3151. "rms_norm(x)",
  3152. "rms_norm_back(x)",
  3153. "X*Y",
  3154. "X*Y",
  3155. "x*v",
  3156. "y-\\>view(x)",
  3157. "x-\\>y",
  3158. "cont(x)",
  3159. "reshape(x)",
  3160. "view(x)",
  3161. "permute(x)",
  3162. "transpose(x)",
  3163. "get_rows(x)",
  3164. "get_rows_back(x)",
  3165. "diag(x)",
  3166. "diag_mask_inf(x)",
  3167. "diag_mask_zero(x)",
  3168. "soft_max(x)",
  3169. "soft_max_back(x)",
  3170. "rope(x)",
  3171. "rope_back(x)",
  3172. "alibi(x)",
  3173. "clamp(x)",
  3174. "conv_1d(x)",
  3175. "conv_2d(x)",
  3176. "pool_1d(x)",
  3177. "pool_2d(x)",
  3178. "flash_attn(x)",
  3179. "flash_ff(x)",
  3180. "flash_attn_back(x)",
  3181. "win_part(x)",
  3182. "win_unpart(x)",
  3183. "f(x)",
  3184. "f(x,y)",
  3185. "custom(x)",
  3186. "custom(x,y)",
  3187. "custom(x,y,z)",
  3188. "cross_entropy_loss(x,y)",
  3189. "cross_entropy_loss_back(x,y)",
  3190. };
  3191. static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68");
  3192. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  3193. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3194. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3195. // WARN:
  3196. // Mis-confguration can lead to problem that's hard to reason about:
  3197. // * At best it crash or talks nosense.
  3198. // * At worst it talks slightly difference but hard to perceive.
  3199. //
  3200. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  3201. // Take care about compile options (e.g., GGML_USE_xxx).
  3202. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  3203. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  3204. static void ggml_setup_op_has_task_pass(void) {
  3205. { // INIT
  3206. bool * p = GGML_OP_HAS_INIT;
  3207. p[GGML_OP_ACC ] = true;
  3208. p[GGML_OP_MUL_MAT ] = true;
  3209. p[GGML_OP_OUT_PROD ] = true;
  3210. p[GGML_OP_SET ] = true;
  3211. p[GGML_OP_GET_ROWS_BACK ] = true;
  3212. p[GGML_OP_DIAG_MASK_INF ] = true;
  3213. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  3214. p[GGML_OP_CONV_1D ] = true;
  3215. p[GGML_OP_CONV_2D ] = true;
  3216. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  3217. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3218. }
  3219. { // FINALIZE
  3220. bool * p = GGML_OP_HAS_FINALIZE;
  3221. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3222. }
  3223. }
  3224. //
  3225. // ggml context
  3226. //
  3227. struct ggml_context {
  3228. size_t mem_size;
  3229. void * mem_buffer;
  3230. bool mem_buffer_owned;
  3231. bool no_alloc;
  3232. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  3233. int n_objects;
  3234. struct ggml_object * objects_begin;
  3235. struct ggml_object * objects_end;
  3236. struct ggml_scratch scratch;
  3237. struct ggml_scratch scratch_save;
  3238. };
  3239. struct ggml_context_container {
  3240. bool used;
  3241. struct ggml_context context;
  3242. };
  3243. //
  3244. // NUMA support
  3245. //
  3246. #define GGML_NUMA_MAX_NODES 8
  3247. #define GGML_NUMA_MAX_CPUS 512
  3248. struct ggml_numa_node {
  3249. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  3250. uint32_t n_cpus;
  3251. };
  3252. struct ggml_numa_nodes {
  3253. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  3254. uint32_t n_nodes;
  3255. uint32_t total_cpus; // hardware threads on system
  3256. };
  3257. //
  3258. // ggml state
  3259. //
  3260. struct ggml_state {
  3261. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3262. struct ggml_numa_nodes numa;
  3263. };
  3264. // global state
  3265. static struct ggml_state g_state;
  3266. static atomic_int g_state_barrier = 0;
  3267. // barrier via spin lock
  3268. inline static void ggml_critical_section_start(void) {
  3269. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3270. while (processing > 0) {
  3271. // wait for other threads to finish
  3272. atomic_fetch_sub(&g_state_barrier, 1);
  3273. sched_yield(); // TODO: reconsider this
  3274. processing = atomic_fetch_add(&g_state_barrier, 1);
  3275. }
  3276. }
  3277. // TODO: make this somehow automatically executed
  3278. // some sort of "sentry" mechanism
  3279. inline static void ggml_critical_section_end(void) {
  3280. atomic_fetch_sub(&g_state_barrier, 1);
  3281. }
  3282. void ggml_numa_init(void) {
  3283. if (g_state.numa.n_nodes > 0) {
  3284. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  3285. return;
  3286. }
  3287. #ifdef __linux__
  3288. struct stat st;
  3289. char path[256];
  3290. int rv;
  3291. // enumerate nodes
  3292. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  3293. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  3294. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3295. if (stat(path, &st) != 0) { break; }
  3296. ++g_state.numa.n_nodes;
  3297. }
  3298. // enumerate CPUs
  3299. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  3300. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  3301. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3302. if (stat(path, &st) != 0) { break; }
  3303. ++g_state.numa.total_cpus;
  3304. }
  3305. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  3306. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  3307. g_state.numa.n_nodes = 0;
  3308. return;
  3309. }
  3310. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  3311. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  3312. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  3313. node->n_cpus = 0;
  3314. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  3315. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  3316. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3317. if (stat(path, &st) == 0) {
  3318. node->cpus[node->n_cpus++] = c;
  3319. GGML_PRINT_DEBUG(" %u", c);
  3320. }
  3321. }
  3322. GGML_PRINT_DEBUG("\n");
  3323. }
  3324. if (ggml_is_numa()) {
  3325. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  3326. if (fptr != NULL) {
  3327. char buf[42];
  3328. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  3329. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  3330. }
  3331. fclose(fptr);
  3332. }
  3333. }
  3334. #else
  3335. // TODO
  3336. #endif
  3337. }
  3338. bool ggml_is_numa(void) {
  3339. return g_state.numa.n_nodes > 1;
  3340. }
  3341. ////////////////////////////////////////////////////////////////////////////////
  3342. void ggml_print_object(const struct ggml_object * obj) {
  3343. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  3344. obj->offs, obj->size, (const void *) obj->next);
  3345. }
  3346. void ggml_print_objects(const struct ggml_context * ctx) {
  3347. struct ggml_object * obj = ctx->objects_begin;
  3348. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3349. while (obj != NULL) {
  3350. ggml_print_object(obj);
  3351. obj = obj->next;
  3352. }
  3353. GGML_PRINT("%s: --- end ---\n", __func__);
  3354. }
  3355. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3356. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3357. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3358. }
  3359. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  3360. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3361. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3362. }
  3363. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3364. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3365. // this should handle cases where the tensor is not contiguous in memory
  3366. // probaby just:
  3367. //
  3368. // return tensor->ne[3]*tensor->nb[3]
  3369. //
  3370. // is enough, but just in case, adding the second part
  3371. return MAX(tensor->ne[3]*tensor->nb[3], (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type]);
  3372. }
  3373. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  3374. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3375. return (nrows_split*tensor->ne[0]*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  3376. }
  3377. int ggml_blck_size(enum ggml_type type) {
  3378. return GGML_BLCK_SIZE[type];
  3379. }
  3380. size_t ggml_type_size(enum ggml_type type) {
  3381. return GGML_TYPE_SIZE[type];
  3382. }
  3383. float ggml_type_sizef(enum ggml_type type) {
  3384. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  3385. }
  3386. const char * ggml_type_name(enum ggml_type type) {
  3387. return GGML_TYPE_NAME[type];
  3388. }
  3389. const char * ggml_op_name(enum ggml_op op) {
  3390. return GGML_OP_NAME[op];
  3391. }
  3392. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3393. return GGML_TYPE_SIZE[tensor->type];
  3394. }
  3395. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3396. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3397. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3398. }
  3399. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3400. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3401. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3402. }
  3403. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3404. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3405. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3406. }
  3407. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3408. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3409. return (t0->ne[0] == t1->ne[0]) &&
  3410. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  3411. (t1->ne[3]%t0->ne[3] == 0);
  3412. }
  3413. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3414. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3415. return
  3416. (t0->ne[1] == t1->ne[1]) &&
  3417. (t0->ne[2] == t1->ne[2]) &&
  3418. (t0->ne[3] == t1->ne[3]);
  3419. }
  3420. bool ggml_is_quantized(enum ggml_type type) {
  3421. return GGML_IS_QUANTIZED[type];
  3422. }
  3423. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3424. enum ggml_type wtype = GGML_TYPE_COUNT;
  3425. switch (ftype) {
  3426. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3427. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3428. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3429. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3430. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3431. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3432. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3433. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  3434. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  3435. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  3436. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  3437. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  3438. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3439. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3440. }
  3441. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3442. return wtype;
  3443. }
  3444. size_t ggml_tensor_overhead(void) {
  3445. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE + 16;
  3446. }
  3447. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3448. return tensor->nb[0] > tensor->nb[1];
  3449. }
  3450. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3451. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3452. return
  3453. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3454. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3455. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3456. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3457. }
  3458. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  3459. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3460. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  3461. }
  3462. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3463. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3464. return
  3465. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3466. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3467. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3468. }
  3469. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3470. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3471. return
  3472. (t0->ne[0] == t1->ne[0] ) &&
  3473. (t0->ne[1] == t1->ne[1] ) &&
  3474. (t0->ne[2] == t1->ne[2] ) &&
  3475. (t0->ne[3] == t1->ne[3] );
  3476. }
  3477. // check if t1 can be represented as a repeatition of t0
  3478. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3479. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3480. return
  3481. (t1->ne[0]%t0->ne[0] == 0) &&
  3482. (t1->ne[1]%t0->ne[1] == 0) &&
  3483. (t1->ne[2]%t0->ne[2] == 0) &&
  3484. (t1->ne[3]%t0->ne[3] == 0);
  3485. }
  3486. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3487. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3488. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3489. }
  3490. static inline int ggml_up32(int n) {
  3491. return (n + 31) & ~31;
  3492. }
  3493. //static inline int ggml_up64(int n) {
  3494. // return (n + 63) & ~63;
  3495. //}
  3496. static inline int ggml_up(int n, int m) {
  3497. // assert m is a power of 2
  3498. GGML_ASSERT((m & (m - 1)) == 0);
  3499. return (n + m - 1) & ~(m - 1);
  3500. }
  3501. // assert that pointer is aligned to GGML_MEM_ALIGN
  3502. #define ggml_assert_aligned(ptr) \
  3503. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3504. ////////////////////////////////////////////////////////////////////////////////
  3505. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3506. // make this function thread safe
  3507. ggml_critical_section_start();
  3508. static bool is_first_call = true;
  3509. if (is_first_call) {
  3510. // initialize time system (required on Windows)
  3511. ggml_time_init();
  3512. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  3513. {
  3514. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3515. ggml_fp16_t ii;
  3516. for (int i = 0; i < (1 << 16); ++i) {
  3517. uint16_t ui = i;
  3518. memcpy(&ii, &ui, sizeof(ii));
  3519. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3520. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3521. table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  3522. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3523. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3524. }
  3525. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3526. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3527. }
  3528. // initialize g_state
  3529. {
  3530. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3531. g_state = (struct ggml_state) {
  3532. /*.contexts =*/ { { 0 } },
  3533. /*.numa =*/ {
  3534. .n_nodes = 0,
  3535. .total_cpus = 0,
  3536. },
  3537. };
  3538. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3539. g_state.contexts[i].used = false;
  3540. }
  3541. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3542. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3543. }
  3544. #if defined(GGML_USE_CUBLAS)
  3545. ggml_init_cublas();
  3546. #elif defined(GGML_USE_CLBLAST)
  3547. ggml_cl_init();
  3548. #endif
  3549. ggml_setup_op_has_task_pass();
  3550. is_first_call = false;
  3551. }
  3552. // find non-used context in g_state
  3553. struct ggml_context * ctx = NULL;
  3554. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3555. if (!g_state.contexts[i].used) {
  3556. g_state.contexts[i].used = true;
  3557. ctx = &g_state.contexts[i].context;
  3558. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3559. break;
  3560. }
  3561. }
  3562. if (ctx == NULL) {
  3563. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3564. ggml_critical_section_end();
  3565. return NULL;
  3566. }
  3567. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3568. *ctx = (struct ggml_context) {
  3569. /*.mem_size =*/ mem_size,
  3570. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3571. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3572. /*.no_alloc =*/ params.no_alloc,
  3573. /*.no_alloc_save =*/ params.no_alloc,
  3574. /*.n_objects =*/ 0,
  3575. /*.objects_begin =*/ NULL,
  3576. /*.objects_end =*/ NULL,
  3577. /*.scratch =*/ { 0, 0, NULL, },
  3578. /*.scratch_save =*/ { 0, 0, NULL, },
  3579. };
  3580. GGML_ASSERT(ctx->mem_buffer != NULL);
  3581. ggml_assert_aligned(ctx->mem_buffer);
  3582. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3583. ggml_critical_section_end();
  3584. return ctx;
  3585. }
  3586. void ggml_free(struct ggml_context * ctx) {
  3587. // make this function thread safe
  3588. ggml_critical_section_start();
  3589. bool found = false;
  3590. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3591. if (&g_state.contexts[i].context == ctx) {
  3592. g_state.contexts[i].used = false;
  3593. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  3594. __func__, i, ggml_used_mem(ctx));
  3595. if (ctx->mem_buffer_owned) {
  3596. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3597. }
  3598. found = true;
  3599. break;
  3600. }
  3601. }
  3602. if (!found) {
  3603. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3604. }
  3605. ggml_critical_section_end();
  3606. }
  3607. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3608. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3609. }
  3610. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3611. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3612. ctx->scratch = scratch;
  3613. return result;
  3614. }
  3615. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3616. ctx->no_alloc = no_alloc;
  3617. }
  3618. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  3619. return ctx->mem_buffer;
  3620. }
  3621. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  3622. return ctx->mem_size;
  3623. }
  3624. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  3625. size_t max_size = 0;
  3626. struct ggml_object * obj = ctx->objects_begin;
  3627. while (obj != NULL) {
  3628. struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
  3629. const size_t size = ggml_nbytes(tensor);
  3630. if (max_size < size) {
  3631. max_size = size;
  3632. }
  3633. obj = obj->next;
  3634. }
  3635. return max_size;
  3636. }
  3637. // IMPORTANT:
  3638. // when creating "opt" tensors, always save and load the scratch buffer
  3639. // this is an error prone process, but it is necessary to support inplace
  3640. // operators when using scratch buffers
  3641. // TODO: implement a better way
  3642. void ggml_scratch_save(struct ggml_context * ctx) {
  3643. // this is needed to allow opt tensors to store their data
  3644. // TODO: again, need to find a better way
  3645. ctx->no_alloc_save = ctx->no_alloc;
  3646. ctx->no_alloc = false;
  3647. ctx->scratch_save = ctx->scratch;
  3648. ctx->scratch.data = NULL;
  3649. }
  3650. void ggml_scratch_load(struct ggml_context * ctx) {
  3651. ctx->no_alloc = ctx->no_alloc_save;
  3652. ctx->scratch = ctx->scratch_save;
  3653. }
  3654. ////////////////////////////////////////////////////////////////////////////////
  3655. struct ggml_tensor * ggml_new_tensor_impl(
  3656. struct ggml_context * ctx,
  3657. enum ggml_type type,
  3658. int n_dims,
  3659. const int64_t* ne,
  3660. void* data) {
  3661. // always insert objects at the end of the context's memory pool
  3662. struct ggml_object * obj_cur = ctx->objects_end;
  3663. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3664. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3665. const size_t cur_end = cur_offs + cur_size;
  3666. size_t size_needed = 0;
  3667. if (data == NULL && !ctx->no_alloc) {
  3668. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3669. for (int i = 1; i < n_dims; i++) {
  3670. size_needed *= ne[i];
  3671. }
  3672. // align to GGML_MEM_ALIGN
  3673. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3674. }
  3675. char * const mem_buffer = ctx->mem_buffer;
  3676. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3677. if (ctx->scratch.data == NULL || data != NULL) {
  3678. size_needed += GGML_TENSOR_SIZE;
  3679. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3680. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3681. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3682. assert(false);
  3683. return NULL;
  3684. }
  3685. *obj_new = (struct ggml_object) {
  3686. .offs = cur_end + GGML_OBJECT_SIZE,
  3687. .size = size_needed,
  3688. .next = NULL,
  3689. };
  3690. } else {
  3691. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3692. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3693. __func__, ctx->scratch.offs + size_needed, ctx->scratch.size);
  3694. assert(false);
  3695. return NULL;
  3696. }
  3697. if (cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE > ctx->mem_size) {
  3698. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3699. __func__, cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE, ctx->mem_size);
  3700. assert(false);
  3701. return NULL;
  3702. }
  3703. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3704. *obj_new = (struct ggml_object) {
  3705. .offs = cur_end + GGML_OBJECT_SIZE,
  3706. .size = GGML_TENSOR_SIZE,
  3707. .next = NULL,
  3708. };
  3709. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3710. ctx->scratch.offs += size_needed;
  3711. }
  3712. if (obj_cur != NULL) {
  3713. obj_cur->next = obj_new;
  3714. } else {
  3715. // this is the first object in this context
  3716. ctx->objects_begin = obj_new;
  3717. }
  3718. ctx->objects_end = obj_new;
  3719. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3720. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3721. ggml_assert_aligned(result);
  3722. *result = (struct ggml_tensor) {
  3723. /*.type =*/ type,
  3724. /*.backend =*/ GGML_BACKEND_CPU,
  3725. /*.n_dims =*/ n_dims,
  3726. /*.ne =*/ { 1, 1, 1, 1 },
  3727. /*.nb =*/ { 0, 0, 0, 0 },
  3728. /*.op =*/ GGML_OP_NONE,
  3729. /*.op_params =*/ {0},
  3730. /*.is_param =*/ false,
  3731. /*.grad =*/ NULL,
  3732. /*.src =*/ { NULL },
  3733. /*.perf_runs =*/ 0,
  3734. /*.perf_cycles =*/ 0,
  3735. /*.perf_time_us =*/ 0,
  3736. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3737. /*.name =*/ { 0 },
  3738. /*.extra =*/ NULL,
  3739. /*.padding =*/ { 0 },
  3740. };
  3741. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3742. //ggml_assert_aligned(result->data);
  3743. for (int i = 0; i < n_dims; i++) {
  3744. result->ne[i] = ne[i];
  3745. }
  3746. result->nb[0] = GGML_TYPE_SIZE[type];
  3747. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3748. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3749. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3750. }
  3751. ctx->n_objects++;
  3752. return result;
  3753. }
  3754. struct ggml_tensor * ggml_new_tensor(
  3755. struct ggml_context * ctx,
  3756. enum ggml_type type,
  3757. int n_dims,
  3758. const int64_t * ne) {
  3759. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3760. }
  3761. struct ggml_tensor * ggml_new_tensor_1d(
  3762. struct ggml_context * ctx,
  3763. enum ggml_type type,
  3764. int64_t ne0) {
  3765. return ggml_new_tensor(ctx, type, 1, &ne0);
  3766. }
  3767. struct ggml_tensor * ggml_new_tensor_2d(
  3768. struct ggml_context * ctx,
  3769. enum ggml_type type,
  3770. int64_t ne0,
  3771. int64_t ne1) {
  3772. const int64_t ne[2] = { ne0, ne1 };
  3773. return ggml_new_tensor(ctx, type, 2, ne);
  3774. }
  3775. struct ggml_tensor * ggml_new_tensor_3d(
  3776. struct ggml_context * ctx,
  3777. enum ggml_type type,
  3778. int64_t ne0,
  3779. int64_t ne1,
  3780. int64_t ne2) {
  3781. const int64_t ne[3] = { ne0, ne1, ne2 };
  3782. return ggml_new_tensor(ctx, type, 3, ne);
  3783. }
  3784. struct ggml_tensor * ggml_new_tensor_4d(
  3785. struct ggml_context * ctx,
  3786. enum ggml_type type,
  3787. int64_t ne0,
  3788. int64_t ne1,
  3789. int64_t ne2,
  3790. int64_t ne3) {
  3791. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3792. return ggml_new_tensor(ctx, type, 4, ne);
  3793. }
  3794. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3795. ggml_scratch_save(ctx);
  3796. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3797. ggml_scratch_load(ctx);
  3798. ggml_set_i32(result, value);
  3799. return result;
  3800. }
  3801. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3802. ggml_scratch_save(ctx);
  3803. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3804. ggml_scratch_load(ctx);
  3805. ggml_set_f32(result, value);
  3806. return result;
  3807. }
  3808. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3809. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3810. }
  3811. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3812. memset(tensor->data, 0, ggml_nbytes(tensor));
  3813. return tensor;
  3814. }
  3815. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3816. const int n = ggml_nrows(tensor);
  3817. const int nc = tensor->ne[0];
  3818. const size_t n1 = tensor->nb[1];
  3819. char * const data = tensor->data;
  3820. switch (tensor->type) {
  3821. case GGML_TYPE_I8:
  3822. {
  3823. assert(tensor->nb[0] == sizeof(int8_t));
  3824. for (int i = 0; i < n; i++) {
  3825. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3826. }
  3827. } break;
  3828. case GGML_TYPE_I16:
  3829. {
  3830. assert(tensor->nb[0] == sizeof(int16_t));
  3831. for (int i = 0; i < n; i++) {
  3832. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3833. }
  3834. } break;
  3835. case GGML_TYPE_I32:
  3836. {
  3837. assert(tensor->nb[0] == sizeof(int32_t));
  3838. for (int i = 0; i < n; i++) {
  3839. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3840. }
  3841. } break;
  3842. case GGML_TYPE_F16:
  3843. {
  3844. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3845. for (int i = 0; i < n; i++) {
  3846. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3847. }
  3848. } break;
  3849. case GGML_TYPE_F32:
  3850. {
  3851. assert(tensor->nb[0] == sizeof(float));
  3852. for (int i = 0; i < n; i++) {
  3853. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3854. }
  3855. } break;
  3856. default:
  3857. {
  3858. GGML_ASSERT(false);
  3859. } break;
  3860. }
  3861. return tensor;
  3862. }
  3863. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3864. const int n = ggml_nrows(tensor);
  3865. const int nc = tensor->ne[0];
  3866. const size_t n1 = tensor->nb[1];
  3867. char * const data = tensor->data;
  3868. switch (tensor->type) {
  3869. case GGML_TYPE_I8:
  3870. {
  3871. assert(tensor->nb[0] == sizeof(int8_t));
  3872. for (int i = 0; i < n; i++) {
  3873. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3874. }
  3875. } break;
  3876. case GGML_TYPE_I16:
  3877. {
  3878. assert(tensor->nb[0] == sizeof(int16_t));
  3879. for (int i = 0; i < n; i++) {
  3880. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3881. }
  3882. } break;
  3883. case GGML_TYPE_I32:
  3884. {
  3885. assert(tensor->nb[0] == sizeof(int32_t));
  3886. for (int i = 0; i < n; i++) {
  3887. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3888. }
  3889. } break;
  3890. case GGML_TYPE_F16:
  3891. {
  3892. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3893. for (int i = 0; i < n; i++) {
  3894. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3895. }
  3896. } break;
  3897. case GGML_TYPE_F32:
  3898. {
  3899. assert(tensor->nb[0] == sizeof(float));
  3900. for (int i = 0; i < n; i++) {
  3901. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3902. }
  3903. } break;
  3904. default:
  3905. {
  3906. GGML_ASSERT(false);
  3907. } break;
  3908. }
  3909. return tensor;
  3910. }
  3911. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3912. switch (tensor->type) {
  3913. case GGML_TYPE_I8:
  3914. {
  3915. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3916. return ((int8_t *)(tensor->data))[i];
  3917. } break;
  3918. case GGML_TYPE_I16:
  3919. {
  3920. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3921. return ((int16_t *)(tensor->data))[i];
  3922. } break;
  3923. case GGML_TYPE_I32:
  3924. {
  3925. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3926. return ((int32_t *)(tensor->data))[i];
  3927. } break;
  3928. case GGML_TYPE_F16:
  3929. {
  3930. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3931. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3932. } break;
  3933. case GGML_TYPE_F32:
  3934. {
  3935. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3936. return ((float *)(tensor->data))[i];
  3937. } break;
  3938. default:
  3939. {
  3940. GGML_ASSERT(false);
  3941. } break;
  3942. }
  3943. return 0.0f;
  3944. }
  3945. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3946. switch (tensor->type) {
  3947. case GGML_TYPE_I8:
  3948. {
  3949. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3950. ((int8_t *)(tensor->data))[i] = value;
  3951. } break;
  3952. case GGML_TYPE_I16:
  3953. {
  3954. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3955. ((int16_t *)(tensor->data))[i] = value;
  3956. } break;
  3957. case GGML_TYPE_I32:
  3958. {
  3959. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3960. ((int32_t *)(tensor->data))[i] = value;
  3961. } break;
  3962. case GGML_TYPE_F16:
  3963. {
  3964. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3965. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3966. } break;
  3967. case GGML_TYPE_F32:
  3968. {
  3969. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3970. ((float *)(tensor->data))[i] = value;
  3971. } break;
  3972. default:
  3973. {
  3974. GGML_ASSERT(false);
  3975. } break;
  3976. }
  3977. }
  3978. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3979. switch (tensor->type) {
  3980. case GGML_TYPE_I8:
  3981. {
  3982. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3983. return ((int8_t *)(tensor->data))[i];
  3984. } break;
  3985. case GGML_TYPE_I16:
  3986. {
  3987. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3988. return ((int16_t *)(tensor->data))[i];
  3989. } break;
  3990. case GGML_TYPE_I32:
  3991. {
  3992. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3993. return ((int32_t *)(tensor->data))[i];
  3994. } break;
  3995. case GGML_TYPE_F16:
  3996. {
  3997. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3998. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3999. } break;
  4000. case GGML_TYPE_F32:
  4001. {
  4002. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4003. return ((float *)(tensor->data))[i];
  4004. } break;
  4005. default:
  4006. {
  4007. GGML_ASSERT(false);
  4008. } break;
  4009. }
  4010. return 0.0f;
  4011. }
  4012. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  4013. switch (tensor->type) {
  4014. case GGML_TYPE_I8:
  4015. {
  4016. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4017. ((int8_t *)(tensor->data))[i] = value;
  4018. } break;
  4019. case GGML_TYPE_I16:
  4020. {
  4021. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4022. ((int16_t *)(tensor->data))[i] = value;
  4023. } break;
  4024. case GGML_TYPE_I32:
  4025. {
  4026. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4027. ((int32_t *)(tensor->data))[i] = value;
  4028. } break;
  4029. case GGML_TYPE_F16:
  4030. {
  4031. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4032. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  4033. } break;
  4034. case GGML_TYPE_F32:
  4035. {
  4036. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4037. ((float *)(tensor->data))[i] = value;
  4038. } break;
  4039. default:
  4040. {
  4041. GGML_ASSERT(false);
  4042. } break;
  4043. }
  4044. }
  4045. void * ggml_get_data(const struct ggml_tensor * tensor) {
  4046. return tensor->data;
  4047. }
  4048. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  4049. assert(tensor->type == GGML_TYPE_F32);
  4050. return (float *)(tensor->data);
  4051. }
  4052. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  4053. return tensor->name;
  4054. }
  4055. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  4056. strncpy(tensor->name, name, sizeof(tensor->name));
  4057. tensor->name[sizeof(tensor->name) - 1] = '\0';
  4058. return tensor;
  4059. }
  4060. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  4061. va_list args;
  4062. va_start(args, fmt);
  4063. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  4064. va_end(args);
  4065. return tensor;
  4066. }
  4067. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  4068. assert(params_size <= GGML_MAX_OP_PARAMS);
  4069. memcpy(tensor->op_params, params, params_size);
  4070. }
  4071. struct ggml_tensor * ggml_view_tensor(
  4072. struct ggml_context * ctx,
  4073. const struct ggml_tensor * src) {
  4074. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  4075. ggml_format_name(result, "%s (view)", src->name);
  4076. result->nb[0] = src->nb[0];
  4077. result->nb[1] = src->nb[1];
  4078. result->nb[2] = src->nb[2];
  4079. result->nb[3] = src->nb[3];
  4080. return result;
  4081. }
  4082. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  4083. struct ggml_object * obj = ctx->objects_begin;
  4084. char * const mem_buffer = ctx->mem_buffer;
  4085. while (obj != NULL) {
  4086. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  4087. if (strcmp(cur->name, name) == 0) {
  4088. return cur;
  4089. }
  4090. obj = obj->next;
  4091. }
  4092. return NULL;
  4093. }
  4094. ////////////////////////////////////////////////////////////////////////////////
  4095. // ggml_dup
  4096. struct ggml_tensor * ggml_dup_impl(
  4097. struct ggml_context * ctx,
  4098. struct ggml_tensor * a,
  4099. bool inplace) {
  4100. bool is_node = false;
  4101. if (!inplace && (a->grad)) {
  4102. is_node = true;
  4103. }
  4104. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4105. result->op = GGML_OP_DUP;
  4106. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4107. result->src[0] = a;
  4108. return result;
  4109. }
  4110. struct ggml_tensor * ggml_dup(
  4111. struct ggml_context * ctx,
  4112. struct ggml_tensor * a) {
  4113. return ggml_dup_impl(ctx, a, false);
  4114. }
  4115. struct ggml_tensor * ggml_dup_inplace(
  4116. struct ggml_context * ctx,
  4117. struct ggml_tensor * a) {
  4118. return ggml_dup_impl(ctx, a, true);
  4119. }
  4120. // ggml_add
  4121. struct ggml_tensor * ggml_add_impl(
  4122. struct ggml_context * ctx,
  4123. struct ggml_tensor * a,
  4124. struct ggml_tensor * b,
  4125. bool inplace) {
  4126. // TODO: support less-strict constraint
  4127. // GGML_ASSERT(ggml_can_repeat(b, a));
  4128. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4129. bool is_node = false;
  4130. if (!inplace && (a->grad || b->grad)) {
  4131. // TODO: support backward pass for broadcasting
  4132. GGML_ASSERT(ggml_are_same_shape(a, b));
  4133. is_node = true;
  4134. }
  4135. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4136. result->op = GGML_OP_ADD;
  4137. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4138. result->src[0] = a;
  4139. result->src[1] = b;
  4140. return result;
  4141. }
  4142. struct ggml_tensor * ggml_add(
  4143. struct ggml_context * ctx,
  4144. struct ggml_tensor * a,
  4145. struct ggml_tensor * b) {
  4146. return ggml_add_impl(ctx, a, b, false);
  4147. }
  4148. struct ggml_tensor * ggml_add_inplace(
  4149. struct ggml_context * ctx,
  4150. struct ggml_tensor * a,
  4151. struct ggml_tensor * b) {
  4152. return ggml_add_impl(ctx, a, b, true);
  4153. }
  4154. // ggml_add1
  4155. struct ggml_tensor * ggml_add1_impl(
  4156. struct ggml_context * ctx,
  4157. struct ggml_tensor * a,
  4158. struct ggml_tensor * b,
  4159. bool inplace) {
  4160. GGML_ASSERT(ggml_is_scalar(b));
  4161. GGML_ASSERT(ggml_is_padded_1d(a));
  4162. bool is_node = false;
  4163. if (a->grad || b->grad) {
  4164. is_node = true;
  4165. }
  4166. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4167. result->op = GGML_OP_ADD1;
  4168. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4169. result->src[0] = a;
  4170. result->src[1] = b;
  4171. return result;
  4172. }
  4173. struct ggml_tensor * ggml_add1(
  4174. struct ggml_context * ctx,
  4175. struct ggml_tensor * a,
  4176. struct ggml_tensor * b) {
  4177. return ggml_add1_impl(ctx, a, b, false);
  4178. }
  4179. struct ggml_tensor * ggml_add1_inplace(
  4180. struct ggml_context * ctx,
  4181. struct ggml_tensor * a,
  4182. struct ggml_tensor * b) {
  4183. return ggml_add1_impl(ctx, a, b, true);
  4184. }
  4185. // ggml_acc
  4186. struct ggml_tensor * ggml_acc_impl(
  4187. struct ggml_context * ctx,
  4188. struct ggml_tensor * a,
  4189. struct ggml_tensor * b,
  4190. size_t nb1,
  4191. size_t nb2,
  4192. size_t nb3,
  4193. size_t offset,
  4194. bool inplace) {
  4195. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  4196. GGML_ASSERT(ggml_is_contiguous(a));
  4197. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4198. GGML_ASSERT(b->type == GGML_TYPE_F32);
  4199. bool is_node = false;
  4200. if (!inplace && (a->grad || b->grad)) {
  4201. is_node = true;
  4202. }
  4203. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4204. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4205. ggml_set_op_params(result, params, sizeof(params));
  4206. result->op = GGML_OP_ACC;
  4207. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4208. result->src[0] = a;
  4209. result->src[1] = b;
  4210. return result;
  4211. }
  4212. struct ggml_tensor * ggml_acc(
  4213. struct ggml_context * ctx,
  4214. struct ggml_tensor * a,
  4215. struct ggml_tensor * b,
  4216. size_t nb1,
  4217. size_t nb2,
  4218. size_t nb3,
  4219. size_t offset) {
  4220. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4221. }
  4222. struct ggml_tensor * ggml_acc_inplace(
  4223. struct ggml_context * ctx,
  4224. struct ggml_tensor * a,
  4225. struct ggml_tensor * b,
  4226. size_t nb1,
  4227. size_t nb2,
  4228. size_t nb3,
  4229. size_t offset) {
  4230. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4231. }
  4232. // ggml_sub
  4233. struct ggml_tensor * ggml_sub_impl(
  4234. struct ggml_context * ctx,
  4235. struct ggml_tensor * a,
  4236. struct ggml_tensor * b,
  4237. bool inplace) {
  4238. GGML_ASSERT(ggml_are_same_shape(a, b));
  4239. bool is_node = false;
  4240. if (!inplace && (a->grad || b->grad)) {
  4241. is_node = true;
  4242. }
  4243. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4244. result->op = GGML_OP_SUB;
  4245. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4246. result->src[0] = a;
  4247. result->src[1] = b;
  4248. return result;
  4249. }
  4250. struct ggml_tensor * ggml_sub(
  4251. struct ggml_context * ctx,
  4252. struct ggml_tensor * a,
  4253. struct ggml_tensor * b) {
  4254. return ggml_sub_impl(ctx, a, b, false);
  4255. }
  4256. struct ggml_tensor * ggml_sub_inplace(
  4257. struct ggml_context * ctx,
  4258. struct ggml_tensor * a,
  4259. struct ggml_tensor * b) {
  4260. return ggml_sub_impl(ctx, a, b, true);
  4261. }
  4262. // ggml_mul
  4263. struct ggml_tensor * ggml_mul_impl(
  4264. struct ggml_context * ctx,
  4265. struct ggml_tensor * a,
  4266. struct ggml_tensor * b,
  4267. bool inplace) {
  4268. // TODO: support less-strict constraint
  4269. // GGML_ASSERT(ggml_can_repeat(b, a));
  4270. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4271. bool is_node = false;
  4272. if (!inplace && (a->grad || b->grad)) {
  4273. // TODO: support backward pass for broadcasting
  4274. GGML_ASSERT(ggml_are_same_shape(a, b));
  4275. is_node = true;
  4276. }
  4277. if (inplace) {
  4278. GGML_ASSERT(is_node == false);
  4279. }
  4280. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4281. result->op = GGML_OP_MUL;
  4282. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4283. result->src[0] = a;
  4284. result->src[1] = b;
  4285. return result;
  4286. }
  4287. struct ggml_tensor * ggml_mul(
  4288. struct ggml_context * ctx,
  4289. struct ggml_tensor * a,
  4290. struct ggml_tensor * b) {
  4291. return ggml_mul_impl(ctx, a, b, false);
  4292. }
  4293. struct ggml_tensor * ggml_mul_inplace(
  4294. struct ggml_context * ctx,
  4295. struct ggml_tensor * a,
  4296. struct ggml_tensor * b) {
  4297. return ggml_mul_impl(ctx, a, b, true);
  4298. }
  4299. // ggml_div
  4300. struct ggml_tensor * ggml_div_impl(
  4301. struct ggml_context * ctx,
  4302. struct ggml_tensor * a,
  4303. struct ggml_tensor * b,
  4304. bool inplace) {
  4305. GGML_ASSERT(ggml_are_same_shape(a, b));
  4306. bool is_node = false;
  4307. if (!inplace && (a->grad || b->grad)) {
  4308. is_node = true;
  4309. }
  4310. if (inplace) {
  4311. GGML_ASSERT(is_node == false);
  4312. }
  4313. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4314. result->op = GGML_OP_DIV;
  4315. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4316. result->src[0] = a;
  4317. result->src[1] = b;
  4318. return result;
  4319. }
  4320. struct ggml_tensor * ggml_div(
  4321. struct ggml_context * ctx,
  4322. struct ggml_tensor * a,
  4323. struct ggml_tensor * b) {
  4324. return ggml_div_impl(ctx, a, b, false);
  4325. }
  4326. struct ggml_tensor * ggml_div_inplace(
  4327. struct ggml_context * ctx,
  4328. struct ggml_tensor * a,
  4329. struct ggml_tensor * b) {
  4330. return ggml_div_impl(ctx, a, b, true);
  4331. }
  4332. // ggml_sqr
  4333. struct ggml_tensor * ggml_sqr_impl(
  4334. struct ggml_context * ctx,
  4335. struct ggml_tensor * a,
  4336. bool inplace) {
  4337. bool is_node = false;
  4338. if (!inplace && (a->grad)) {
  4339. is_node = true;
  4340. }
  4341. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4342. result->op = GGML_OP_SQR;
  4343. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4344. result->src[0] = a;
  4345. return result;
  4346. }
  4347. struct ggml_tensor * ggml_sqr(
  4348. struct ggml_context * ctx,
  4349. struct ggml_tensor * a) {
  4350. return ggml_sqr_impl(ctx, a, false);
  4351. }
  4352. struct ggml_tensor * ggml_sqr_inplace(
  4353. struct ggml_context * ctx,
  4354. struct ggml_tensor * a) {
  4355. return ggml_sqr_impl(ctx, a, true);
  4356. }
  4357. // ggml_sqrt
  4358. struct ggml_tensor * ggml_sqrt_impl(
  4359. struct ggml_context * ctx,
  4360. struct ggml_tensor * a,
  4361. bool inplace) {
  4362. bool is_node = false;
  4363. if (!inplace && (a->grad)) {
  4364. is_node = true;
  4365. }
  4366. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4367. result->op = GGML_OP_SQRT;
  4368. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4369. result->src[0] = a;
  4370. return result;
  4371. }
  4372. struct ggml_tensor * ggml_sqrt(
  4373. struct ggml_context * ctx,
  4374. struct ggml_tensor * a) {
  4375. return ggml_sqrt_impl(ctx, a, false);
  4376. }
  4377. struct ggml_tensor * ggml_sqrt_inplace(
  4378. struct ggml_context * ctx,
  4379. struct ggml_tensor * a) {
  4380. return ggml_sqrt_impl(ctx, a, true);
  4381. }
  4382. // ggml_log
  4383. struct ggml_tensor * ggml_log_impl(
  4384. struct ggml_context * ctx,
  4385. struct ggml_tensor * a,
  4386. bool inplace) {
  4387. bool is_node = false;
  4388. if (!inplace && (a->grad)) {
  4389. is_node = true;
  4390. }
  4391. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4392. result->op = GGML_OP_LOG;
  4393. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4394. result->src[0] = a;
  4395. return result;
  4396. }
  4397. struct ggml_tensor * ggml_log(
  4398. struct ggml_context * ctx,
  4399. struct ggml_tensor * a) {
  4400. return ggml_log_impl(ctx, a, false);
  4401. }
  4402. struct ggml_tensor * ggml_log_inplace(
  4403. struct ggml_context * ctx,
  4404. struct ggml_tensor * a) {
  4405. return ggml_log_impl(ctx, a, true);
  4406. }
  4407. // ggml_sum
  4408. struct ggml_tensor * ggml_sum(
  4409. struct ggml_context * ctx,
  4410. struct ggml_tensor * a) {
  4411. bool is_node = false;
  4412. if (a->grad) {
  4413. is_node = true;
  4414. }
  4415. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4416. result->op = GGML_OP_SUM;
  4417. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4418. result->src[0] = a;
  4419. return result;
  4420. }
  4421. // ggml_sum_rows
  4422. struct ggml_tensor * ggml_sum_rows(
  4423. struct ggml_context * ctx,
  4424. struct ggml_tensor * a) {
  4425. bool is_node = false;
  4426. if (a->grad) {
  4427. is_node = true;
  4428. }
  4429. int64_t ne[4] = {1,1,1,1};
  4430. for (int i=1; i<a->n_dims; ++i) {
  4431. ne[i] = a->ne[i];
  4432. }
  4433. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  4434. result->op = GGML_OP_SUM_ROWS;
  4435. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4436. result->src[0] = a;
  4437. return result;
  4438. }
  4439. // ggml_mean
  4440. struct ggml_tensor * ggml_mean(
  4441. struct ggml_context * ctx,
  4442. struct ggml_tensor * a) {
  4443. bool is_node = false;
  4444. if (a->grad) {
  4445. GGML_ASSERT(false); // TODO: implement
  4446. is_node = true;
  4447. }
  4448. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4449. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4450. result->op = GGML_OP_MEAN;
  4451. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4452. result->src[0] = a;
  4453. return result;
  4454. }
  4455. // ggml_argmax
  4456. struct ggml_tensor * ggml_argmax(
  4457. struct ggml_context * ctx,
  4458. struct ggml_tensor * a) {
  4459. GGML_ASSERT(ggml_is_matrix(a));
  4460. bool is_node = false;
  4461. if (a->grad) {
  4462. GGML_ASSERT(false);
  4463. is_node = true;
  4464. }
  4465. int64_t ne[GGML_MAX_DIMS] = { a->ne[1], 1, 1, 1 };
  4466. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, a->n_dims, ne);
  4467. result->op = GGML_OP_ARGMAX;
  4468. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4469. result->src[0] = a;
  4470. return result;
  4471. }
  4472. // ggml_repeat
  4473. struct ggml_tensor * ggml_repeat(
  4474. struct ggml_context * ctx,
  4475. struct ggml_tensor * a,
  4476. struct ggml_tensor * b) {
  4477. GGML_ASSERT(ggml_can_repeat(a, b));
  4478. bool is_node = false;
  4479. if (a->grad) {
  4480. is_node = true;
  4481. }
  4482. if (ggml_are_same_shape(a, b) && !is_node) {
  4483. return a;
  4484. }
  4485. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4486. result->op = GGML_OP_REPEAT;
  4487. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4488. result->src[0] = a;
  4489. result->src[1] = b;
  4490. return result;
  4491. }
  4492. // ggml_repeat_back
  4493. struct ggml_tensor * ggml_repeat_back(
  4494. struct ggml_context * ctx,
  4495. struct ggml_tensor * a,
  4496. struct ggml_tensor * b) {
  4497. GGML_ASSERT(ggml_can_repeat(b, a));
  4498. bool is_node = false;
  4499. if (a->grad) {
  4500. is_node = true;
  4501. }
  4502. if (ggml_are_same_shape(a, b) && !is_node) {
  4503. return a;
  4504. }
  4505. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4506. result->op = GGML_OP_REPEAT_BACK;
  4507. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4508. result->src[0] = a;
  4509. result->src[1] = b;
  4510. return result;
  4511. }
  4512. // ggml_abs
  4513. struct ggml_tensor * ggml_abs_impl(
  4514. struct ggml_context * ctx,
  4515. struct ggml_tensor * a,
  4516. bool inplace) {
  4517. bool is_node = false;
  4518. if (!inplace && (a->grad)) {
  4519. is_node = true;
  4520. }
  4521. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4522. result->op = GGML_OP_ABS;
  4523. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4524. result->src[0] = a;
  4525. return result;
  4526. }
  4527. struct ggml_tensor * ggml_abs(
  4528. struct ggml_context * ctx,
  4529. struct ggml_tensor * a) {
  4530. return ggml_abs_impl(ctx, a, false);
  4531. }
  4532. struct ggml_tensor * ggml_abs_inplace(
  4533. struct ggml_context * ctx,
  4534. struct ggml_tensor * a) {
  4535. return ggml_abs_impl(ctx, a, true);
  4536. }
  4537. // ggml_sgn
  4538. struct ggml_tensor * ggml_sgn_impl(
  4539. struct ggml_context * ctx,
  4540. struct ggml_tensor * a,
  4541. bool inplace) {
  4542. bool is_node = false;
  4543. if (!inplace && (a->grad)) {
  4544. is_node = true;
  4545. }
  4546. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4547. result->op = GGML_OP_SGN;
  4548. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4549. result->src[0] = a;
  4550. return result;
  4551. }
  4552. struct ggml_tensor * ggml_sgn(
  4553. struct ggml_context * ctx,
  4554. struct ggml_tensor * a) {
  4555. return ggml_sgn_impl(ctx, a, false);
  4556. }
  4557. struct ggml_tensor * ggml_sgn_inplace(
  4558. struct ggml_context * ctx,
  4559. struct ggml_tensor * a) {
  4560. return ggml_sgn_impl(ctx, a, true);
  4561. }
  4562. // ggml_neg
  4563. struct ggml_tensor * ggml_neg_impl(
  4564. struct ggml_context * ctx,
  4565. struct ggml_tensor * a,
  4566. bool inplace) {
  4567. bool is_node = false;
  4568. if (!inplace && (a->grad)) {
  4569. is_node = true;
  4570. }
  4571. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4572. result->op = GGML_OP_NEG;
  4573. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4574. result->src[0] = a;
  4575. return result;
  4576. }
  4577. struct ggml_tensor * ggml_neg(
  4578. struct ggml_context * ctx,
  4579. struct ggml_tensor * a) {
  4580. return ggml_neg_impl(ctx, a, false);
  4581. }
  4582. struct ggml_tensor * ggml_neg_inplace(
  4583. struct ggml_context * ctx,
  4584. struct ggml_tensor * a) {
  4585. return ggml_neg_impl(ctx, a, true);
  4586. }
  4587. // ggml_step
  4588. struct ggml_tensor * ggml_step_impl(
  4589. struct ggml_context * ctx,
  4590. struct ggml_tensor * a,
  4591. bool inplace) {
  4592. bool is_node = false;
  4593. if (!inplace && (a->grad)) {
  4594. is_node = true;
  4595. }
  4596. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4597. result->op = GGML_OP_STEP;
  4598. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4599. result->src[0] = a;
  4600. return result;
  4601. }
  4602. struct ggml_tensor * ggml_step(
  4603. struct ggml_context * ctx,
  4604. struct ggml_tensor * a) {
  4605. return ggml_step_impl(ctx, a, false);
  4606. }
  4607. struct ggml_tensor * ggml_step_inplace(
  4608. struct ggml_context * ctx,
  4609. struct ggml_tensor * a) {
  4610. return ggml_step_impl(ctx, a, true);
  4611. }
  4612. // ggml_tanh
  4613. struct ggml_tensor * ggml_tanh_impl(
  4614. struct ggml_context * ctx,
  4615. struct ggml_tensor * a,
  4616. bool inplace) {
  4617. bool is_node = false;
  4618. if (!inplace && (a->grad)) {
  4619. is_node = true;
  4620. }
  4621. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4622. result->op = GGML_OP_TANH;
  4623. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4624. result->src[0] = a;
  4625. return result;
  4626. }
  4627. struct ggml_tensor * ggml_tanh(
  4628. struct ggml_context * ctx,
  4629. struct ggml_tensor * a) {
  4630. return ggml_tanh_impl(ctx, a, false);
  4631. }
  4632. struct ggml_tensor * ggml_tanh_inplace(
  4633. struct ggml_context * ctx,
  4634. struct ggml_tensor * a) {
  4635. return ggml_tanh_impl(ctx, a, true);
  4636. }
  4637. // ggml_elu
  4638. struct ggml_tensor * ggml_elu_impl(
  4639. struct ggml_context * ctx,
  4640. struct ggml_tensor * a,
  4641. bool inplace) {
  4642. bool is_node = false;
  4643. if (!inplace && (a->grad)) {
  4644. is_node = true;
  4645. }
  4646. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4647. result->op = GGML_OP_ELU;
  4648. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4649. result->src[0] = a;
  4650. return result;
  4651. }
  4652. struct ggml_tensor * ggml_elu(
  4653. struct ggml_context * ctx,
  4654. struct ggml_tensor * a) {
  4655. return ggml_elu_impl(ctx, a, false);
  4656. }
  4657. struct ggml_tensor * ggml_elu_inplace(
  4658. struct ggml_context * ctx,
  4659. struct ggml_tensor * a) {
  4660. return ggml_elu_impl(ctx, a, true);
  4661. }
  4662. // ggml_relu
  4663. struct ggml_tensor * ggml_relu_impl(
  4664. struct ggml_context * ctx,
  4665. struct ggml_tensor * a,
  4666. bool inplace) {
  4667. bool is_node = false;
  4668. if (!inplace && (a->grad)) {
  4669. is_node = true;
  4670. }
  4671. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4672. result->op = GGML_OP_RELU;
  4673. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4674. result->src[0] = a;
  4675. return result;
  4676. }
  4677. struct ggml_tensor * ggml_relu(
  4678. struct ggml_context * ctx,
  4679. struct ggml_tensor * a) {
  4680. return ggml_relu_impl(ctx, a, false);
  4681. }
  4682. struct ggml_tensor * ggml_relu_inplace(
  4683. struct ggml_context * ctx,
  4684. struct ggml_tensor * a) {
  4685. return ggml_relu_impl(ctx, a, true);
  4686. }
  4687. // ggml_gelu
  4688. struct ggml_tensor * ggml_gelu_impl(
  4689. struct ggml_context * ctx,
  4690. struct ggml_tensor * a,
  4691. bool inplace) {
  4692. bool is_node = false;
  4693. if (!inplace && (a->grad)) {
  4694. is_node = true;
  4695. }
  4696. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4697. result->op = GGML_OP_GELU;
  4698. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4699. result->src[0] = a;
  4700. return result;
  4701. }
  4702. struct ggml_tensor * ggml_gelu(
  4703. struct ggml_context * ctx,
  4704. struct ggml_tensor * a) {
  4705. return ggml_gelu_impl(ctx, a, false);
  4706. }
  4707. struct ggml_tensor * ggml_gelu_inplace(
  4708. struct ggml_context * ctx,
  4709. struct ggml_tensor * a) {
  4710. return ggml_gelu_impl(ctx, a, true);
  4711. }
  4712. // ggml_gelu_quick
  4713. struct ggml_tensor * ggml_gelu_quick_impl(
  4714. struct ggml_context * ctx,
  4715. struct ggml_tensor * a,
  4716. bool inplace) {
  4717. bool is_node = false;
  4718. if (!inplace && (a->grad)) {
  4719. is_node = true;
  4720. }
  4721. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4722. result->op = GGML_OP_GELU_QUICK;
  4723. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4724. result->src[0] = a;
  4725. return result;
  4726. }
  4727. struct ggml_tensor * ggml_gelu_quick(
  4728. struct ggml_context * ctx,
  4729. struct ggml_tensor * a) {
  4730. return ggml_gelu_quick_impl(ctx, a, false);
  4731. }
  4732. struct ggml_tensor * ggml_gelu_quick_inplace(
  4733. struct ggml_context * ctx,
  4734. struct ggml_tensor * a) {
  4735. return ggml_gelu_quick_impl(ctx, a, true);
  4736. }
  4737. // ggml_silu
  4738. struct ggml_tensor * ggml_silu_impl(
  4739. struct ggml_context * ctx,
  4740. struct ggml_tensor * a,
  4741. bool inplace) {
  4742. bool is_node = false;
  4743. if (!inplace && (a->grad)) {
  4744. is_node = true;
  4745. }
  4746. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4747. result->op = GGML_OP_SILU;
  4748. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4749. result->src[0] = a;
  4750. return result;
  4751. }
  4752. struct ggml_tensor * ggml_silu(
  4753. struct ggml_context * ctx,
  4754. struct ggml_tensor * a) {
  4755. return ggml_silu_impl(ctx, a, false);
  4756. }
  4757. struct ggml_tensor * ggml_silu_inplace(
  4758. struct ggml_context * ctx,
  4759. struct ggml_tensor * a) {
  4760. return ggml_silu_impl(ctx, a, true);
  4761. }
  4762. // ggml_silu_back
  4763. struct ggml_tensor * ggml_silu_back(
  4764. struct ggml_context * ctx,
  4765. struct ggml_tensor * a,
  4766. struct ggml_tensor * b) {
  4767. bool is_node = false;
  4768. if (a->grad || b->grad) {
  4769. // TODO: implement backward
  4770. is_node = true;
  4771. }
  4772. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4773. result->op = GGML_OP_SILU_BACK;
  4774. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4775. result->src[0] = a;
  4776. result->src[1] = b;
  4777. return result;
  4778. }
  4779. // ggml_norm
  4780. struct ggml_tensor * ggml_norm_impl(
  4781. struct ggml_context * ctx,
  4782. struct ggml_tensor * a,
  4783. bool inplace) {
  4784. bool is_node = false;
  4785. if (!inplace && (a->grad)) {
  4786. GGML_ASSERT(false); // TODO: implement backward
  4787. is_node = true;
  4788. }
  4789. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4790. // TODO: maybe store epsilon here?
  4791. result->op = GGML_OP_NORM;
  4792. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4793. result->src[0] = a;
  4794. return result;
  4795. }
  4796. struct ggml_tensor * ggml_norm(
  4797. struct ggml_context * ctx,
  4798. struct ggml_tensor * a) {
  4799. return ggml_norm_impl(ctx, a, false);
  4800. }
  4801. struct ggml_tensor * ggml_norm_inplace(
  4802. struct ggml_context * ctx,
  4803. struct ggml_tensor * a) {
  4804. return ggml_norm_impl(ctx, a, true);
  4805. }
  4806. struct ggml_tensor * ggml_rms_norm_impl(
  4807. struct ggml_context * ctx,
  4808. struct ggml_tensor * a,
  4809. bool inplace) {
  4810. bool is_node = false;
  4811. if (!inplace && (a->grad)) {
  4812. is_node = true;
  4813. }
  4814. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4815. // TODO: maybe store epsilon here?
  4816. result->op = GGML_OP_RMS_NORM;
  4817. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4818. result->src[0] = a;
  4819. return result;
  4820. }
  4821. struct ggml_tensor * ggml_rms_norm(
  4822. struct ggml_context * ctx,
  4823. struct ggml_tensor * a) {
  4824. return ggml_rms_norm_impl(ctx, a, false);
  4825. }
  4826. struct ggml_tensor * ggml_rms_norm_inplace(
  4827. struct ggml_context * ctx,
  4828. struct ggml_tensor * a) {
  4829. return ggml_rms_norm_impl(ctx, a, true);
  4830. }
  4831. struct ggml_tensor * ggml_rms_norm_back(
  4832. struct ggml_context * ctx,
  4833. struct ggml_tensor * a,
  4834. struct ggml_tensor * b) {
  4835. bool is_node = false;
  4836. if (a->grad) {
  4837. // TODO: implement backward
  4838. is_node = true;
  4839. }
  4840. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4841. result->op = GGML_OP_RMS_NORM_BACK;
  4842. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4843. result->src[0] = a;
  4844. result->src[1] = b;
  4845. return result;
  4846. }
  4847. // ggml_mul_mat
  4848. struct ggml_tensor * ggml_mul_mat(
  4849. struct ggml_context * ctx,
  4850. struct ggml_tensor * a,
  4851. struct ggml_tensor * b) {
  4852. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4853. GGML_ASSERT(!ggml_is_transposed(a));
  4854. bool is_node = false;
  4855. if (a->grad || b->grad) {
  4856. is_node = true;
  4857. }
  4858. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  4859. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
  4860. result->op = GGML_OP_MUL_MAT;
  4861. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4862. result->src[0] = a;
  4863. result->src[1] = b;
  4864. return result;
  4865. }
  4866. // ggml_out_prod
  4867. struct ggml_tensor * ggml_out_prod(
  4868. struct ggml_context * ctx,
  4869. struct ggml_tensor * a,
  4870. struct ggml_tensor * b) {
  4871. GGML_ASSERT(ggml_can_out_prod(a, b));
  4872. GGML_ASSERT(!ggml_is_transposed(a));
  4873. bool is_node = false;
  4874. if (a->grad || b->grad) {
  4875. is_node = true;
  4876. }
  4877. const int64_t ne[4] = { a->ne[0], b->ne[0], a->ne[2], b->ne[3] };
  4878. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4879. result->op = GGML_OP_OUT_PROD;
  4880. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4881. result->src[0] = a;
  4882. result->src[1] = b;
  4883. return result;
  4884. }
  4885. // ggml_scale
  4886. struct ggml_tensor * ggml_scale_impl(
  4887. struct ggml_context * ctx,
  4888. struct ggml_tensor * a,
  4889. struct ggml_tensor * b,
  4890. bool inplace) {
  4891. GGML_ASSERT(ggml_is_scalar(b));
  4892. GGML_ASSERT(ggml_is_padded_1d(a));
  4893. bool is_node = false;
  4894. if (a->grad || b->grad) {
  4895. is_node = true;
  4896. }
  4897. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4898. result->op = GGML_OP_SCALE;
  4899. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4900. result->src[0] = a;
  4901. result->src[1] = b;
  4902. return result;
  4903. }
  4904. struct ggml_tensor * ggml_scale(
  4905. struct ggml_context * ctx,
  4906. struct ggml_tensor * a,
  4907. struct ggml_tensor * b) {
  4908. return ggml_scale_impl(ctx, a, b, false);
  4909. }
  4910. struct ggml_tensor * ggml_scale_inplace(
  4911. struct ggml_context * ctx,
  4912. struct ggml_tensor * a,
  4913. struct ggml_tensor * b) {
  4914. return ggml_scale_impl(ctx, a, b, true);
  4915. }
  4916. // ggml_set
  4917. struct ggml_tensor * ggml_set_impl(
  4918. struct ggml_context * ctx,
  4919. struct ggml_tensor * a,
  4920. struct ggml_tensor * b,
  4921. size_t nb1,
  4922. size_t nb2,
  4923. size_t nb3,
  4924. size_t offset,
  4925. bool inplace) {
  4926. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4927. bool is_node = false;
  4928. if (a->grad || b->grad) {
  4929. is_node = true;
  4930. }
  4931. // make a view of the destination
  4932. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4933. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4934. ggml_set_op_params(result, params, sizeof(params));
  4935. result->op = GGML_OP_SET;
  4936. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4937. result->src[0] = a;
  4938. result->src[1] = b;
  4939. return result;
  4940. }
  4941. struct ggml_tensor * ggml_set(
  4942. struct ggml_context * ctx,
  4943. struct ggml_tensor * a,
  4944. struct ggml_tensor * b,
  4945. size_t nb1,
  4946. size_t nb2,
  4947. size_t nb3,
  4948. size_t offset) {
  4949. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4950. }
  4951. struct ggml_tensor * ggml_set_inplace(
  4952. struct ggml_context * ctx,
  4953. struct ggml_tensor * a,
  4954. struct ggml_tensor * b,
  4955. size_t nb1,
  4956. size_t nb2,
  4957. size_t nb3,
  4958. size_t offset) {
  4959. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4960. }
  4961. struct ggml_tensor * ggml_set_1d(
  4962. struct ggml_context * ctx,
  4963. struct ggml_tensor * a,
  4964. struct ggml_tensor * b,
  4965. size_t offset) {
  4966. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4967. }
  4968. struct ggml_tensor * ggml_set_1d_inplace(
  4969. struct ggml_context * ctx,
  4970. struct ggml_tensor * a,
  4971. struct ggml_tensor * b,
  4972. size_t offset) {
  4973. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4974. }
  4975. struct ggml_tensor * ggml_set_2d(
  4976. struct ggml_context * ctx,
  4977. struct ggml_tensor * a,
  4978. struct ggml_tensor * b,
  4979. size_t nb1,
  4980. size_t offset) {
  4981. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4982. }
  4983. struct ggml_tensor * ggml_set_2d_inplace(
  4984. struct ggml_context * ctx,
  4985. struct ggml_tensor * a,
  4986. struct ggml_tensor * b,
  4987. size_t nb1,
  4988. size_t offset) {
  4989. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4990. }
  4991. // ggml_cpy
  4992. struct ggml_tensor * ggml_cpy_impl(
  4993. struct ggml_context * ctx,
  4994. struct ggml_tensor * a,
  4995. struct ggml_tensor * b,
  4996. bool inplace) {
  4997. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4998. bool is_node = false;
  4999. if (!inplace && (a->grad || b->grad)) {
  5000. is_node = true;
  5001. }
  5002. // make a view of the destination
  5003. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  5004. if (strlen(b->name) > 0) {
  5005. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  5006. } else {
  5007. ggml_format_name(result, "%s (copy)", a->name);
  5008. }
  5009. result->op = GGML_OP_CPY;
  5010. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5011. result->src[0] = a;
  5012. result->src[1] = b;
  5013. return result;
  5014. }
  5015. struct ggml_tensor * ggml_cpy(
  5016. struct ggml_context * ctx,
  5017. struct ggml_tensor * a,
  5018. struct ggml_tensor * b) {
  5019. return ggml_cpy_impl(ctx, a, b, false);
  5020. }
  5021. struct ggml_tensor * ggml_cpy_inplace(
  5022. struct ggml_context * ctx,
  5023. struct ggml_tensor * a,
  5024. struct ggml_tensor * b) {
  5025. return ggml_cpy_impl(ctx, a, b, true);
  5026. }
  5027. // ggml_cont
  5028. struct ggml_tensor * ggml_cont_impl(
  5029. struct ggml_context * ctx,
  5030. struct ggml_tensor * a,
  5031. bool inplace) {
  5032. bool is_node = false;
  5033. if (!inplace && a->grad) {
  5034. is_node = true;
  5035. }
  5036. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5037. ggml_format_name(result, "%s (cont)", a->name);
  5038. result->op = GGML_OP_CONT;
  5039. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5040. result->src[0] = a;
  5041. return result;
  5042. }
  5043. struct ggml_tensor * ggml_cont(
  5044. struct ggml_context * ctx,
  5045. struct ggml_tensor * a) {
  5046. return ggml_cont_impl(ctx, a, false);
  5047. }
  5048. struct ggml_tensor * ggml_cont_inplace(
  5049. struct ggml_context * ctx,
  5050. struct ggml_tensor * a) {
  5051. return ggml_cont_impl(ctx, a, true);
  5052. }
  5053. // ggml_reshape
  5054. struct ggml_tensor * ggml_reshape(
  5055. struct ggml_context * ctx,
  5056. struct ggml_tensor * a,
  5057. struct ggml_tensor * b) {
  5058. GGML_ASSERT(ggml_is_contiguous(a));
  5059. GGML_ASSERT(ggml_is_contiguous(b));
  5060. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  5061. bool is_node = false;
  5062. if (a->grad) {
  5063. is_node = true;
  5064. }
  5065. if (b->grad) {
  5066. // gradient propagation is not supported
  5067. //GGML_ASSERT(false);
  5068. }
  5069. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  5070. ggml_format_name(result, "%s (reshaped)", a->name);
  5071. result->op = GGML_OP_RESHAPE;
  5072. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5073. result->src[0] = a;
  5074. return result;
  5075. }
  5076. struct ggml_tensor * ggml_reshape_1d(
  5077. struct ggml_context * ctx,
  5078. struct ggml_tensor * a,
  5079. int64_t ne0) {
  5080. GGML_ASSERT(ggml_is_contiguous(a));
  5081. GGML_ASSERT(ggml_nelements(a) == ne0);
  5082. bool is_node = false;
  5083. if (a->grad) {
  5084. is_node = true;
  5085. }
  5086. const int64_t ne[1] = { ne0 };
  5087. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data);
  5088. ggml_format_name(result, "%s (reshaped)", a->name);
  5089. result->op = GGML_OP_RESHAPE;
  5090. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5091. result->src[0] = a;
  5092. return result;
  5093. }
  5094. struct ggml_tensor * ggml_reshape_2d(
  5095. struct ggml_context * ctx,
  5096. struct ggml_tensor * a,
  5097. int64_t ne0,
  5098. int64_t ne1) {
  5099. GGML_ASSERT(ggml_is_contiguous(a));
  5100. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  5101. bool is_node = false;
  5102. if (a->grad) {
  5103. is_node = true;
  5104. }
  5105. const int64_t ne[2] = { ne0, ne1 };
  5106. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  5107. ggml_format_name(result, "%s (reshaped)", a->name);
  5108. result->op = GGML_OP_RESHAPE;
  5109. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5110. result->src[0] = a;
  5111. return result;
  5112. }
  5113. struct ggml_tensor * ggml_reshape_3d(
  5114. struct ggml_context * ctx,
  5115. struct ggml_tensor * a,
  5116. int64_t ne0,
  5117. int64_t ne1,
  5118. int64_t ne2) {
  5119. GGML_ASSERT(ggml_is_contiguous(a));
  5120. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  5121. bool is_node = false;
  5122. if (a->grad) {
  5123. is_node = true;
  5124. }
  5125. const int64_t ne[3] = { ne0, ne1, ne2 };
  5126. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  5127. ggml_format_name(result, "%s (reshaped)", a->name);
  5128. result->op = GGML_OP_RESHAPE;
  5129. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5130. result->src[0] = a;
  5131. return result;
  5132. }
  5133. struct ggml_tensor * ggml_reshape_4d(
  5134. struct ggml_context * ctx,
  5135. struct ggml_tensor * a,
  5136. int64_t ne0,
  5137. int64_t ne1,
  5138. int64_t ne2,
  5139. int64_t ne3) {
  5140. GGML_ASSERT(ggml_is_contiguous(a));
  5141. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  5142. bool is_node = false;
  5143. if (a->grad) {
  5144. is_node = true;
  5145. }
  5146. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5147. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data);
  5148. ggml_format_name(result, "%s (reshaped)", a->name);
  5149. result->op = GGML_OP_RESHAPE;
  5150. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5151. result->src[0] = a;
  5152. return result;
  5153. }
  5154. // ggml_view_1d
  5155. struct ggml_tensor * ggml_view_1d(
  5156. struct ggml_context * ctx,
  5157. struct ggml_tensor * a,
  5158. int64_t ne0,
  5159. size_t offset) {
  5160. bool is_node = false;
  5161. if (a->grad) {
  5162. is_node = true;
  5163. }
  5164. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  5165. ggml_format_name(result, "%s (view)", a->name);
  5166. ggml_set_op_params(result, &offset, sizeof(offset));
  5167. result->op = GGML_OP_VIEW;
  5168. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5169. result->src[0] = a;
  5170. return result;
  5171. }
  5172. // ggml_view_2d
  5173. struct ggml_tensor * ggml_view_2d(
  5174. struct ggml_context * ctx,
  5175. struct ggml_tensor * a,
  5176. int64_t ne0,
  5177. int64_t ne1,
  5178. size_t nb1,
  5179. size_t offset) {
  5180. bool is_node = false;
  5181. if (a->grad) {
  5182. is_node = true;
  5183. }
  5184. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  5185. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  5186. ggml_format_name(result, "%s (view)", a->name);
  5187. ggml_set_op_params(result, &offset, sizeof(offset));
  5188. result->nb[1] = nb1;
  5189. result->nb[2] = result->nb[1]*ne1;
  5190. result->nb[3] = result->nb[2];
  5191. result->op = GGML_OP_VIEW;
  5192. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5193. result->src[0] = a;
  5194. return result;
  5195. }
  5196. // ggml_view_3d
  5197. struct ggml_tensor * ggml_view_3d(
  5198. struct ggml_context * ctx,
  5199. struct ggml_tensor * a,
  5200. int64_t ne0,
  5201. int64_t ne1,
  5202. int64_t ne2,
  5203. size_t nb1,
  5204. size_t nb2,
  5205. size_t offset) {
  5206. bool is_node = false;
  5207. if (a->grad) {
  5208. is_node = true;
  5209. }
  5210. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  5211. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  5212. ggml_format_name(result, "%s (view)", a->name);
  5213. ggml_set_op_params(result, &offset, sizeof(offset));
  5214. result->nb[1] = nb1;
  5215. result->nb[2] = nb2;
  5216. result->nb[3] = result->nb[2]*ne2;
  5217. result->op = GGML_OP_VIEW;
  5218. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5219. result->src[0] = a;
  5220. return result;
  5221. }
  5222. // ggml_view_4d
  5223. struct ggml_tensor * ggml_view_4d(
  5224. struct ggml_context * ctx,
  5225. struct ggml_tensor * a,
  5226. int64_t ne0,
  5227. int64_t ne1,
  5228. int64_t ne2,
  5229. int64_t ne3,
  5230. size_t nb1,
  5231. size_t nb2,
  5232. size_t nb3,
  5233. size_t offset) {
  5234. bool is_node = false;
  5235. if (a->grad) {
  5236. is_node = true;
  5237. }
  5238. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
  5239. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, (char *) a->data + offset);
  5240. ggml_format_name(result, "%s (view)", a->name);
  5241. ggml_set_op_params(result, &offset, sizeof(offset));
  5242. result->nb[1] = nb1;
  5243. result->nb[2] = nb2;
  5244. result->nb[3] = nb3;
  5245. result->op = GGML_OP_VIEW;
  5246. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5247. result->src[0] = a;
  5248. return result;
  5249. }
  5250. // ggml_permute
  5251. struct ggml_tensor * ggml_permute(
  5252. struct ggml_context * ctx,
  5253. struct ggml_tensor * a,
  5254. int axis0,
  5255. int axis1,
  5256. int axis2,
  5257. int axis3) {
  5258. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  5259. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  5260. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  5261. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  5262. GGML_ASSERT(axis0 != axis1);
  5263. GGML_ASSERT(axis0 != axis2);
  5264. GGML_ASSERT(axis0 != axis3);
  5265. GGML_ASSERT(axis1 != axis2);
  5266. GGML_ASSERT(axis1 != axis3);
  5267. GGML_ASSERT(axis2 != axis3);
  5268. bool is_node = false;
  5269. if (a->grad) {
  5270. is_node = true;
  5271. }
  5272. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5273. ggml_format_name(result, "%s (permuted)", a->name);
  5274. int ne[GGML_MAX_DIMS];
  5275. int nb[GGML_MAX_DIMS];
  5276. ne[axis0] = a->ne[0];
  5277. ne[axis1] = a->ne[1];
  5278. ne[axis2] = a->ne[2];
  5279. ne[axis3] = a->ne[3];
  5280. nb[axis0] = a->nb[0];
  5281. nb[axis1] = a->nb[1];
  5282. nb[axis2] = a->nb[2];
  5283. nb[axis3] = a->nb[3];
  5284. result->ne[0] = ne[0];
  5285. result->ne[1] = ne[1];
  5286. result->ne[2] = ne[2];
  5287. result->ne[3] = ne[3];
  5288. result->nb[0] = nb[0];
  5289. result->nb[1] = nb[1];
  5290. result->nb[2] = nb[2];
  5291. result->nb[3] = nb[3];
  5292. result->op = GGML_OP_PERMUTE;
  5293. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5294. result->src[0] = a;
  5295. int32_t params[] = { axis0, axis1, axis2, axis3 };
  5296. ggml_set_op_params(result, &params, sizeof(params));
  5297. return result;
  5298. }
  5299. // ggml_transpose
  5300. struct ggml_tensor * ggml_transpose(
  5301. struct ggml_context * ctx,
  5302. struct ggml_tensor * a) {
  5303. bool is_node = false;
  5304. if (a->grad) {
  5305. is_node = true;
  5306. }
  5307. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5308. ggml_format_name(result, "%s (transposed)", a->name);
  5309. result->ne[0] = a->ne[1];
  5310. result->ne[1] = a->ne[0];
  5311. result->nb[0] = a->nb[1];
  5312. result->nb[1] = a->nb[0];
  5313. result->op = GGML_OP_TRANSPOSE;
  5314. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5315. result->src[0] = a;
  5316. return result;
  5317. }
  5318. // ggml_get_rows
  5319. struct ggml_tensor * ggml_get_rows(
  5320. struct ggml_context * ctx,
  5321. struct ggml_tensor * a,
  5322. struct ggml_tensor * b) {
  5323. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5324. bool is_node = false;
  5325. if (a->grad || b->grad) {
  5326. is_node = true;
  5327. }
  5328. // TODO: implement non F32 return
  5329. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5330. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  5331. result->op = GGML_OP_GET_ROWS;
  5332. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5333. result->src[0] = a;
  5334. result->src[1] = b;
  5335. return result;
  5336. }
  5337. // ggml_get_rows_back
  5338. struct ggml_tensor * ggml_get_rows_back(
  5339. struct ggml_context * ctx,
  5340. struct ggml_tensor * a,
  5341. struct ggml_tensor * b,
  5342. struct ggml_tensor * c) {
  5343. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5344. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5345. bool is_node = false;
  5346. if (a->grad || b->grad) {
  5347. is_node = true;
  5348. }
  5349. // TODO: implement non F32 return
  5350. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5351. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5352. result->op = GGML_OP_GET_ROWS_BACK;
  5353. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5354. result->src[0] = a;
  5355. result->src[1] = b;
  5356. result->src[2] = c;
  5357. return result;
  5358. }
  5359. // ggml_diag
  5360. struct ggml_tensor * ggml_diag(
  5361. struct ggml_context * ctx,
  5362. struct ggml_tensor * a) {
  5363. GGML_ASSERT(a->ne[1] == 1);
  5364. bool is_node = false;
  5365. if (a->grad) {
  5366. is_node = true;
  5367. }
  5368. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5369. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  5370. result->op = GGML_OP_DIAG;
  5371. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5372. result->src[0] = a;
  5373. return result;
  5374. }
  5375. // ggml_diag_mask_inf
  5376. struct ggml_tensor * ggml_diag_mask_inf_impl(
  5377. struct ggml_context * ctx,
  5378. struct ggml_tensor * a,
  5379. int n_past,
  5380. bool inplace) {
  5381. bool is_node = false;
  5382. if (a->grad) {
  5383. is_node = true;
  5384. }
  5385. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5386. int32_t params[] = { n_past, inplace ? 1 : 0 };
  5387. ggml_set_op_params(result, &params, sizeof(params));
  5388. result->op = GGML_OP_DIAG_MASK_INF;
  5389. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5390. result->src[0] = a;
  5391. return result;
  5392. }
  5393. struct ggml_tensor * ggml_diag_mask_inf(
  5394. struct ggml_context * ctx,
  5395. struct ggml_tensor * a,
  5396. int n_past) {
  5397. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5398. }
  5399. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5400. struct ggml_context * ctx,
  5401. struct ggml_tensor * a,
  5402. int n_past) {
  5403. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5404. }
  5405. // ggml_diag_mask_zero
  5406. struct ggml_tensor * ggml_diag_mask_zero_impl(
  5407. struct ggml_context * ctx,
  5408. struct ggml_tensor * a,
  5409. int n_past,
  5410. bool inplace) {
  5411. bool is_node = false;
  5412. if (a->grad) {
  5413. is_node = true;
  5414. }
  5415. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5416. int32_t params[] = { n_past, inplace ? 1 : 0 };
  5417. ggml_set_op_params(result, &params, sizeof(params));
  5418. result->op = GGML_OP_DIAG_MASK_ZERO;
  5419. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5420. result->src[0] = a;
  5421. return result;
  5422. }
  5423. struct ggml_tensor * ggml_diag_mask_zero(
  5424. struct ggml_context * ctx,
  5425. struct ggml_tensor * a,
  5426. int n_past) {
  5427. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5428. }
  5429. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5430. struct ggml_context * ctx,
  5431. struct ggml_tensor * a,
  5432. int n_past) {
  5433. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5434. }
  5435. // ggml_soft_max
  5436. struct ggml_tensor * ggml_soft_max_impl(
  5437. struct ggml_context * ctx,
  5438. struct ggml_tensor * a,
  5439. bool inplace) {
  5440. bool is_node = false;
  5441. if (a->grad) {
  5442. is_node = true;
  5443. }
  5444. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5445. result->op = GGML_OP_SOFT_MAX;
  5446. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5447. result->src[0] = a;
  5448. return result;
  5449. }
  5450. struct ggml_tensor * ggml_soft_max(
  5451. struct ggml_context * ctx,
  5452. struct ggml_tensor * a) {
  5453. return ggml_soft_max_impl(ctx, a, false);
  5454. }
  5455. struct ggml_tensor * ggml_soft_max_inplace(
  5456. struct ggml_context * ctx,
  5457. struct ggml_tensor * a) {
  5458. return ggml_soft_max_impl(ctx, a, true);
  5459. }
  5460. // ggml_soft_max_back
  5461. struct ggml_tensor * ggml_soft_max_back_impl(
  5462. struct ggml_context * ctx,
  5463. struct ggml_tensor * a,
  5464. struct ggml_tensor * b,
  5465. bool inplace) {
  5466. bool is_node = false;
  5467. if (a->grad || b->grad) {
  5468. is_node = true; // TODO : implement backward pass
  5469. }
  5470. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5471. result->op = GGML_OP_SOFT_MAX_BACK;
  5472. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5473. result->src[0] = a;
  5474. result->src[1] = b;
  5475. return result;
  5476. }
  5477. struct ggml_tensor * ggml_soft_max_back(
  5478. struct ggml_context * ctx,
  5479. struct ggml_tensor * a,
  5480. struct ggml_tensor * b) {
  5481. return ggml_soft_max_back_impl(ctx, a, b, false);
  5482. }
  5483. struct ggml_tensor * ggml_soft_max_back_inplace(
  5484. struct ggml_context * ctx,
  5485. struct ggml_tensor * a,
  5486. struct ggml_tensor * b) {
  5487. return ggml_soft_max_back_impl(ctx, a, b, true);
  5488. }
  5489. // ggml_rope
  5490. struct ggml_tensor * ggml_rope_impl(
  5491. struct ggml_context * ctx,
  5492. struct ggml_tensor * a,
  5493. int n_past,
  5494. int n_dims,
  5495. int mode,
  5496. int n_ctx,
  5497. float freq_base,
  5498. float freq_scale,
  5499. bool inplace) {
  5500. GGML_ASSERT(n_past >= 0);
  5501. bool is_node = false;
  5502. if (a->grad) {
  5503. is_node = true;
  5504. }
  5505. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5506. int32_t params[6] = { n_past, n_dims, mode, n_ctx };
  5507. memcpy(params + 4, &freq_base, sizeof(float));
  5508. memcpy(params + 5, &freq_scale, sizeof(float));
  5509. ggml_set_op_params(result, &params, sizeof(params));
  5510. result->op = GGML_OP_ROPE;
  5511. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5512. result->src[0] = a;
  5513. return result;
  5514. }
  5515. struct ggml_tensor * ggml_rope(
  5516. struct ggml_context * ctx,
  5517. struct ggml_tensor * a,
  5518. int n_past,
  5519. int n_dims,
  5520. int mode,
  5521. int n_ctx) {
  5522. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, 10000.0f, 1.0f, false);
  5523. }
  5524. struct ggml_tensor * ggml_rope_inplace(
  5525. struct ggml_context * ctx,
  5526. struct ggml_tensor * a,
  5527. int n_past,
  5528. int n_dims,
  5529. int mode,
  5530. int n_ctx) {
  5531. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, 10000.0f, 1.0f, true);
  5532. }
  5533. struct ggml_tensor * ggml_rope_custom_inplace(
  5534. struct ggml_context * ctx,
  5535. struct ggml_tensor * a,
  5536. int n_past,
  5537. int n_dims,
  5538. int mode,
  5539. int n_ctx,
  5540. float freq_base,
  5541. float freq_scale) {
  5542. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, freq_base, freq_scale, true);
  5543. }
  5544. // ggml_rope_back
  5545. struct ggml_tensor * ggml_rope_back(
  5546. struct ggml_context * ctx,
  5547. struct ggml_tensor * a,
  5548. int n_past,
  5549. int n_dims,
  5550. int mode,
  5551. int n_ctx) {
  5552. GGML_ASSERT(n_past >= 0);
  5553. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  5554. bool is_node = false;
  5555. if (a->grad) {
  5556. is_node = false; // TODO: implement backward
  5557. }
  5558. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5559. int32_t params[] = { n_past, n_dims, mode, n_ctx };
  5560. ggml_set_op_params(result, &params, sizeof(params));
  5561. result->op = GGML_OP_ROPE_BACK;
  5562. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5563. result->src[0] = a;
  5564. return result;
  5565. }
  5566. // ggml_alibi
  5567. struct ggml_tensor * ggml_alibi(
  5568. struct ggml_context * ctx,
  5569. struct ggml_tensor * a,
  5570. int n_past,
  5571. int n_head,
  5572. float bias_max) {
  5573. GGML_ASSERT(n_past >= 0);
  5574. bool is_node = false;
  5575. if (a->grad) {
  5576. GGML_ASSERT(false); // TODO: implement backward
  5577. is_node = true;
  5578. }
  5579. // TODO: when implement backward, fix this:
  5580. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5581. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5582. int32_t op_params[3] = { n_past, n_head };
  5583. memcpy(op_params + 2, &bias_max, sizeof(float));
  5584. ggml_set_op_params(result, &op_params, sizeof(op_params));
  5585. result->op = GGML_OP_ALIBI;
  5586. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5587. result->src[0] = a;
  5588. return result;
  5589. }
  5590. // ggml_clamp
  5591. struct ggml_tensor * ggml_clamp(
  5592. struct ggml_context * ctx,
  5593. struct ggml_tensor * a,
  5594. float min,
  5595. float max) {
  5596. bool is_node = false;
  5597. if (a->grad) {
  5598. GGML_ASSERT(false); // TODO: implement backward
  5599. is_node = true;
  5600. }
  5601. // TODO: when implement backward, fix this:
  5602. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5603. float params[] = { min, max };
  5604. ggml_set_op_params(result, &params, sizeof(params));
  5605. result->op = GGML_OP_CLAMP;
  5606. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5607. result->src[0] = a;
  5608. return result;
  5609. }
  5610. // ggml_conv_1d
  5611. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5612. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5613. }
  5614. GGML_API struct ggml_tensor * ggml_conv_1d(
  5615. struct ggml_context * ctx,
  5616. struct ggml_tensor * a,
  5617. struct ggml_tensor * b,
  5618. int s0,
  5619. int p0,
  5620. int d0) {
  5621. GGML_ASSERT(ggml_is_matrix(b));
  5622. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5623. bool is_node = false;
  5624. if (a->grad || b->grad) {
  5625. GGML_ASSERT(false); // TODO: implement backward
  5626. is_node = true;
  5627. }
  5628. const int64_t ne[4] = {
  5629. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5630. a->ne[2], 1, 1,
  5631. };
  5632. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5633. int32_t params[] = { s0, p0, d0 };
  5634. ggml_set_op_params(result, &params, sizeof(params));
  5635. result->op = GGML_OP_CONV_1D;
  5636. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5637. result->src[0] = a;
  5638. result->src[1] = b;
  5639. return result;
  5640. }
  5641. // ggml_conv_2d
  5642. struct ggml_tensor* ggml_conv_2d(
  5643. struct ggml_context* ctx,
  5644. struct ggml_tensor * a,
  5645. struct ggml_tensor * b,
  5646. int s0,
  5647. int s1,
  5648. int p0,
  5649. int p1,
  5650. int d0,
  5651. int d1) {
  5652. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5653. bool is_node = false;
  5654. if (a->grad || b->grad) {
  5655. GGML_ASSERT(false); // TODO: implement backward
  5656. is_node = true;
  5657. }
  5658. const int64_t ne[4] = {
  5659. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5660. ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1),
  5661. a->ne[3], b->ne[3],
  5662. };
  5663. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5664. int32_t params[] = { s0, s1, p0, p1, d0, d1 };
  5665. ggml_set_op_params(result, &params, sizeof(params));
  5666. result->op = GGML_OP_CONV_2D;
  5667. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5668. result->src[0] = a;
  5669. result->src[1] = b;
  5670. return result;
  5671. }
  5672. // ggml_conv_1d_ph
  5673. struct ggml_tensor* ggml_conv_1d_ph(
  5674. struct ggml_context * ctx,
  5675. struct ggml_tensor * a,
  5676. struct ggml_tensor * b,
  5677. int s,
  5678. int d) {
  5679. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  5680. }
  5681. // ggml_pool_*
  5682. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, int p) {
  5683. return (ins + 2 * p - ks) / s + 1;
  5684. }
  5685. // ggml_pool_1d
  5686. struct ggml_tensor* ggml_pool_1d(
  5687. struct ggml_context * ctx,
  5688. struct ggml_tensor * a,
  5689. enum ggml_op_pool op,
  5690. int k0,
  5691. int s0,
  5692. int p0) {
  5693. bool is_node = false;
  5694. if (a->grad) {
  5695. GGML_ASSERT(false); // TODO: implement backward
  5696. is_node = true;
  5697. }
  5698. const int64_t ne[3] = {
  5699. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5700. a->ne[1],
  5701. };
  5702. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5703. int32_t params[] = { op, k0, s0, p0 };
  5704. ggml_set_op_params(result, &params, sizeof(params));
  5705. result->op = GGML_OP_POOL_1D;
  5706. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5707. result->src[0] = a;
  5708. return result;
  5709. }
  5710. // ggml_pool_2d
  5711. struct ggml_tensor* ggml_pool_2d(
  5712. struct ggml_context * ctx,
  5713. struct ggml_tensor * a,
  5714. enum ggml_op_pool op,
  5715. int k0,
  5716. int k1,
  5717. int s0,
  5718. int s1,
  5719. int p0,
  5720. int p1) {
  5721. bool is_node = false;
  5722. if (a->grad) {
  5723. GGML_ASSERT(false); // TODO: implement backward
  5724. is_node = true;
  5725. }
  5726. const int64_t ne[3] = {
  5727. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5728. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  5729. a->ne[2],
  5730. };
  5731. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5732. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  5733. ggml_set_op_params(result, &params, sizeof(params));
  5734. result->op = GGML_OP_POOL_2D;
  5735. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5736. result->src[0] = a;
  5737. return result;
  5738. }
  5739. // ggml_flash_attn
  5740. struct ggml_tensor * ggml_flash_attn(
  5741. struct ggml_context * ctx,
  5742. struct ggml_tensor * q,
  5743. struct ggml_tensor * k,
  5744. struct ggml_tensor * v,
  5745. bool masked) {
  5746. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5747. // TODO: check if vT can be multiplied by (k*qT)
  5748. bool is_node = false;
  5749. if (q->grad || k->grad || v->grad) {
  5750. is_node = true;
  5751. }
  5752. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5753. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  5754. result->op = GGML_OP_FLASH_ATTN;
  5755. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5756. result->src[0] = q;
  5757. result->src[1] = k;
  5758. result->src[2] = v;
  5759. result->src[3] = ggml_new_i32(ctx, masked ? 1 : 0);
  5760. return result;
  5761. }
  5762. // ggml_flash_ff
  5763. struct ggml_tensor * ggml_flash_ff(
  5764. struct ggml_context * ctx,
  5765. struct ggml_tensor * a,
  5766. struct ggml_tensor * b0,
  5767. struct ggml_tensor * b1,
  5768. struct ggml_tensor * c0,
  5769. struct ggml_tensor * c1) {
  5770. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5771. // TODO: more checks
  5772. bool is_node = false;
  5773. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5774. is_node = true;
  5775. }
  5776. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5777. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  5778. result->op = GGML_OP_FLASH_FF;
  5779. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5780. result->src[0] = a;
  5781. result->src[1] = b0;
  5782. result->src[2] = b1;
  5783. result->src[3] = c0;
  5784. result->src[4] = c1;
  5785. return result;
  5786. }
  5787. // ggml_flash_attn_back
  5788. struct ggml_tensor * ggml_flash_attn_back(
  5789. struct ggml_context * ctx,
  5790. struct ggml_tensor * q,
  5791. struct ggml_tensor * k,
  5792. struct ggml_tensor * v,
  5793. struct ggml_tensor * d,
  5794. bool masked) {
  5795. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5796. // TODO: check if vT can be multiplied by (k*qT)
  5797. // d shape [D,N,ne2,ne3]
  5798. // q shape [D,N,ne2,ne3]
  5799. // k shape [D,M,ne2,ne3]
  5800. // v shape [M,D,ne2,ne3]
  5801. const int64_t D = q->ne[0];
  5802. const int64_t N = q->ne[1];
  5803. const int64_t M = k->ne[1];
  5804. const int64_t ne2 = q->ne[2];
  5805. const int64_t ne3 = q->ne[3];
  5806. GGML_ASSERT(k->ne[0] == D);
  5807. GGML_ASSERT(v->ne[0] == M);
  5808. GGML_ASSERT(v->ne[1] == D);
  5809. GGML_ASSERT(d->ne[0] == D);
  5810. GGML_ASSERT(d->ne[1] == N);
  5811. GGML_ASSERT(k->ne[2] == ne2);
  5812. GGML_ASSERT(k->ne[3] == ne3);
  5813. GGML_ASSERT(v->ne[2] == ne2);
  5814. GGML_ASSERT(v->ne[3] == ne3);
  5815. GGML_ASSERT(d->ne[2] == ne2);
  5816. GGML_ASSERT(d->ne[3] == ne3);
  5817. bool is_node = false;
  5818. if (q->grad || k->grad || v->grad) {
  5819. // when using this operation (in backwards pass) these grads are set.
  5820. // we don't want to create (big) grad of our result, so is_node is false.
  5821. is_node = false;
  5822. }
  5823. // store gradients of q, k and v as continuous tensors concatenated in result.
  5824. // q shape[D,N,ne2,ne3] ; k shape [D,M,ne2,ne3] ; v shape [M,D,ne2,ne3]
  5825. // gradq->data = result->data
  5826. // gradk->data = result->data + nb0*D*N*ne2*ne3
  5827. // gradv->data = result->data + nb0*D*N*ne2*ne3 + nb0*D*M*ne2*ne3
  5828. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5829. int64_t ne[4] = {D,M+N+M,ne2,ne3};
  5830. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5831. result->op = GGML_OP_FLASH_ATTN_BACK;
  5832. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5833. result->src[0] = q;
  5834. result->src[1] = k;
  5835. result->src[2] = v;
  5836. result->src[3] = d;
  5837. result->src[4] = ggml_new_i32(ctx, masked ? 1 : 0);
  5838. return result;
  5839. }
  5840. // ggml_win_part
  5841. struct ggml_tensor * ggml_win_part(
  5842. struct ggml_context * ctx,
  5843. struct ggml_tensor * a,
  5844. int w) {
  5845. GGML_ASSERT(a->ne[3] == 1);
  5846. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5847. bool is_node = false;
  5848. if (a->grad) {
  5849. GGML_ASSERT(false); // TODO: implement backward
  5850. is_node = true;
  5851. }
  5852. // padding
  5853. const int px = (w - a->ne[1]%w)%w;
  5854. const int py = (w - a->ne[2]%w)%w;
  5855. const int npx = (px + a->ne[1])/w;
  5856. const int npy = (py + a->ne[2])/w;
  5857. const int np = npx*npy;
  5858. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5859. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5860. int32_t params[] = { npx, npy, w };
  5861. ggml_set_op_params(result, &params, sizeof(params));
  5862. result->op = GGML_OP_WIN_PART;
  5863. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5864. result->src[0] = a;
  5865. return result;
  5866. }
  5867. // ggml_win_unpart
  5868. struct ggml_tensor * ggml_win_unpart(
  5869. struct ggml_context * ctx,
  5870. struct ggml_tensor * a,
  5871. int w0,
  5872. int h0,
  5873. int w) {
  5874. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5875. bool is_node = false;
  5876. if (a->grad) {
  5877. GGML_ASSERT(false); // TODO: implement backward
  5878. is_node = true;
  5879. }
  5880. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5881. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5882. int32_t params[] = { w };
  5883. ggml_set_op_params(result, &params, sizeof(params));
  5884. result->op = GGML_OP_WIN_UNPART;
  5885. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5886. result->src[0] = a;
  5887. return result;
  5888. }
  5889. // ggml_map_unary
  5890. struct ggml_tensor * ggml_map_unary_impl_f32(
  5891. struct ggml_context * ctx,
  5892. struct ggml_tensor * a,
  5893. const ggml_unary_op_f32_t fun,
  5894. bool inplace) {
  5895. bool is_node = false;
  5896. if (!inplace && a->grad) {
  5897. is_node = true;
  5898. }
  5899. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5900. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5901. result->op = GGML_OP_MAP_UNARY;
  5902. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5903. result->src[0] = a;
  5904. return result;
  5905. }
  5906. struct ggml_tensor * ggml_map_unary_f32(
  5907. struct ggml_context * ctx,
  5908. struct ggml_tensor * a,
  5909. const ggml_unary_op_f32_t fun) {
  5910. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5911. }
  5912. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5913. struct ggml_context * ctx,
  5914. struct ggml_tensor * a,
  5915. const ggml_unary_op_f32_t fun) {
  5916. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5917. }
  5918. // ggml_map_binary
  5919. struct ggml_tensor * ggml_map_binary_impl_f32(
  5920. struct ggml_context * ctx,
  5921. struct ggml_tensor * a,
  5922. struct ggml_tensor * b,
  5923. const ggml_binary_op_f32_t fun,
  5924. bool inplace) {
  5925. GGML_ASSERT(ggml_are_same_shape(a, b));
  5926. bool is_node = false;
  5927. if (!inplace && (a->grad || b->grad)) {
  5928. is_node = true;
  5929. }
  5930. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5931. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5932. result->op = GGML_OP_MAP_BINARY;
  5933. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5934. result->src[0] = a;
  5935. result->src[1] = b;
  5936. return result;
  5937. }
  5938. struct ggml_tensor * ggml_map_binary_f32(
  5939. struct ggml_context * ctx,
  5940. struct ggml_tensor * a,
  5941. struct ggml_tensor * b,
  5942. const ggml_binary_op_f32_t fun) {
  5943. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5944. }
  5945. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5946. struct ggml_context * ctx,
  5947. struct ggml_tensor * a,
  5948. struct ggml_tensor * b,
  5949. const ggml_binary_op_f32_t fun) {
  5950. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5951. }
  5952. // ggml_map_custom1
  5953. struct ggml_tensor * ggml_map_custom1_impl_f32(
  5954. struct ggml_context * ctx,
  5955. struct ggml_tensor * a,
  5956. const ggml_custom1_op_f32_t fun,
  5957. bool inplace) {
  5958. bool is_node = false;
  5959. if (!inplace && a->grad) {
  5960. is_node = true;
  5961. }
  5962. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5963. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5964. result->op = GGML_OP_MAP_CUSTOM1;
  5965. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5966. result->src[0] = a;
  5967. return result;
  5968. }
  5969. struct ggml_tensor * ggml_map_custom1_f32(
  5970. struct ggml_context * ctx,
  5971. struct ggml_tensor * a,
  5972. const ggml_custom1_op_f32_t fun) {
  5973. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  5974. }
  5975. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  5976. struct ggml_context * ctx,
  5977. struct ggml_tensor * a,
  5978. const ggml_custom1_op_f32_t fun) {
  5979. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  5980. }
  5981. // ggml_map_custom2
  5982. struct ggml_tensor * ggml_map_custom2_impl_f32(
  5983. struct ggml_context * ctx,
  5984. struct ggml_tensor * a,
  5985. struct ggml_tensor * b,
  5986. const ggml_custom2_op_f32_t fun,
  5987. bool inplace) {
  5988. bool is_node = false;
  5989. if (!inplace && (a->grad || b->grad)) {
  5990. is_node = true;
  5991. }
  5992. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5993. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5994. result->op = GGML_OP_MAP_CUSTOM2;
  5995. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5996. result->src[0] = a;
  5997. result->src[1] = b;
  5998. return result;
  5999. }
  6000. struct ggml_tensor * ggml_map_custom2_f32(
  6001. struct ggml_context * ctx,
  6002. struct ggml_tensor * a,
  6003. struct ggml_tensor * b,
  6004. const ggml_custom2_op_f32_t fun) {
  6005. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  6006. }
  6007. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  6008. struct ggml_context * ctx,
  6009. struct ggml_tensor * a,
  6010. struct ggml_tensor * b,
  6011. const ggml_custom2_op_f32_t fun) {
  6012. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  6013. }
  6014. // ggml_map_custom3
  6015. struct ggml_tensor * ggml_map_custom3_impl_f32(
  6016. struct ggml_context * ctx,
  6017. struct ggml_tensor * a,
  6018. struct ggml_tensor * b,
  6019. struct ggml_tensor * c,
  6020. const ggml_custom3_op_f32_t fun,
  6021. bool inplace) {
  6022. bool is_node = false;
  6023. if (!inplace && (a->grad || b->grad || c->grad)) {
  6024. is_node = true;
  6025. }
  6026. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6027. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6028. result->op = GGML_OP_MAP_CUSTOM3;
  6029. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6030. result->src[0] = a;
  6031. result->src[1] = b;
  6032. result->src[2] = c;
  6033. return result;
  6034. }
  6035. struct ggml_tensor * ggml_map_custom3_f32(
  6036. struct ggml_context * ctx,
  6037. struct ggml_tensor * a,
  6038. struct ggml_tensor * b,
  6039. struct ggml_tensor * c,
  6040. const ggml_custom3_op_f32_t fun) {
  6041. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  6042. }
  6043. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  6044. struct ggml_context * ctx,
  6045. struct ggml_tensor * a,
  6046. struct ggml_tensor * b,
  6047. struct ggml_tensor * c,
  6048. const ggml_custom3_op_f32_t fun) {
  6049. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  6050. }
  6051. // ggml_cross_entropy_loss
  6052. struct ggml_tensor * ggml_cross_entropy_loss(
  6053. struct ggml_context * ctx,
  6054. struct ggml_tensor * a,
  6055. struct ggml_tensor * b) {
  6056. GGML_ASSERT(ggml_are_same_shape(a, b));
  6057. bool is_node = false;
  6058. if (a->grad || b->grad) {
  6059. is_node = true;
  6060. }
  6061. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6062. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6063. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6064. result->src[0] = a;
  6065. result->src[1] = b;
  6066. return result;
  6067. }
  6068. // ggml_cross_entropy_loss_back
  6069. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6070. struct ggml_context * ctx,
  6071. struct ggml_tensor * a,
  6072. struct ggml_tensor * b,
  6073. struct ggml_tensor * c) {
  6074. GGML_ASSERT(ggml_are_same_shape(a, b));
  6075. GGML_ASSERT(ggml_is_scalar(c));
  6076. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6077. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6078. result->grad = NULL;
  6079. result->src[0] = a;
  6080. result->src[1] = b;
  6081. result->src[2] = c;
  6082. return result;
  6083. }
  6084. ////////////////////////////////////////////////////////////////////////////////
  6085. void ggml_set_param(
  6086. struct ggml_context * ctx,
  6087. struct ggml_tensor * tensor) {
  6088. tensor->is_param = true;
  6089. GGML_ASSERT(tensor->grad == NULL);
  6090. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6091. }
  6092. // ggml_compute_forward_dup
  6093. static void ggml_compute_forward_dup_same_cont(
  6094. const struct ggml_compute_params * params,
  6095. const struct ggml_tensor * src0,
  6096. struct ggml_tensor * dst) {
  6097. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6098. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6099. GGML_ASSERT(src0->type == dst->type);
  6100. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6101. return;
  6102. }
  6103. const size_t nb00 = src0->nb[0];
  6104. const size_t nb0 = dst->nb[0];
  6105. const int ith = params->ith; // thread index
  6106. const int nth = params->nth; // number of threads
  6107. // parallelize by elements
  6108. const int ne = ggml_nelements(dst);
  6109. const int dr = (ne + nth - 1) / nth;
  6110. const int ie0 = dr * ith;
  6111. const int ie1 = MIN(ie0 + dr, ne);
  6112. if (ie0 < ie1) {
  6113. memcpy(
  6114. ((char *) dst->data + ie0*nb0),
  6115. ((char *) src0->data + ie0*nb00),
  6116. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  6117. }
  6118. }
  6119. static void ggml_compute_forward_dup_f16(
  6120. const struct ggml_compute_params * params,
  6121. const struct ggml_tensor * src0,
  6122. struct ggml_tensor * dst) {
  6123. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6124. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6125. return;
  6126. }
  6127. GGML_TENSOR_UNARY_OP_LOCALS;
  6128. const int ith = params->ith; // thread index
  6129. const int nth = params->nth; // number of threads
  6130. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6131. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6132. return;
  6133. }
  6134. // parallelize by rows
  6135. const int nr = ne01;
  6136. // number of rows per thread
  6137. const int dr = (nr + nth - 1) / nth;
  6138. // row range for this thread
  6139. const int ir0 = dr * ith;
  6140. const int ir1 = MIN(ir0 + dr, nr);
  6141. if (src0->type == dst->type &&
  6142. ne00 == ne0 &&
  6143. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  6144. // copy by rows
  6145. const size_t rs = ne00*nb00;
  6146. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6147. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6148. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6149. memcpy(
  6150. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6151. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6152. rs);
  6153. }
  6154. }
  6155. }
  6156. return;
  6157. }
  6158. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6159. if (ggml_is_contiguous(dst)) {
  6160. if (nb00 == sizeof(ggml_fp16_t)) {
  6161. if (dst->type == GGML_TYPE_F16) {
  6162. size_t id = 0;
  6163. const size_t rs = ne00 * nb00;
  6164. char * dst_ptr = (char *) dst->data;
  6165. for (int i03 = 0; i03 < ne03; i03++) {
  6166. for (int i02 = 0; i02 < ne02; i02++) {
  6167. id += rs * ir0;
  6168. for (int i01 = ir0; i01 < ir1; i01++) {
  6169. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6170. memcpy(dst_ptr + id, src0_ptr, rs);
  6171. id += rs;
  6172. }
  6173. id += rs * (ne01 - ir1);
  6174. }
  6175. }
  6176. } else if (dst->type == GGML_TYPE_F32) {
  6177. size_t id = 0;
  6178. float * dst_ptr = (float *) dst->data;
  6179. for (int i03 = 0; i03 < ne03; i03++) {
  6180. for (int i02 = 0; i02 < ne02; i02++) {
  6181. id += ne00 * ir0;
  6182. for (int i01 = ir0; i01 < ir1; i01++) {
  6183. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6184. for (int i00 = 0; i00 < ne00; i00++) {
  6185. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6186. id++;
  6187. }
  6188. }
  6189. id += ne00 * (ne01 - ir1);
  6190. }
  6191. }
  6192. } else if (type_traits[dst->type].from_float) {
  6193. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6194. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6195. size_t id = 0;
  6196. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  6197. char * dst_ptr = (char *) dst->data;
  6198. for (int i03 = 0; i03 < ne03; i03++) {
  6199. for (int i02 = 0; i02 < ne02; i02++) {
  6200. id += rs * ir0;
  6201. for (int i01 = ir0; i01 < ir1; i01++) {
  6202. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6203. for (int i00 = 0; i00 < ne00; i00++) {
  6204. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6205. }
  6206. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6207. id += rs;
  6208. }
  6209. id += rs * (ne01 - ir1);
  6210. }
  6211. }
  6212. } else {
  6213. GGML_ASSERT(false); // TODO: implement
  6214. }
  6215. } else {
  6216. //printf("%s: this is not optimal - fix me\n", __func__);
  6217. if (dst->type == GGML_TYPE_F32) {
  6218. size_t id = 0;
  6219. float * dst_ptr = (float *) dst->data;
  6220. for (int i03 = 0; i03 < ne03; i03++) {
  6221. for (int i02 = 0; i02 < ne02; i02++) {
  6222. id += ne00 * ir0;
  6223. for (int i01 = ir0; i01 < ir1; i01++) {
  6224. for (int i00 = 0; i00 < ne00; i00++) {
  6225. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6226. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6227. id++;
  6228. }
  6229. }
  6230. id += ne00 * (ne01 - ir1);
  6231. }
  6232. }
  6233. } else if (dst->type == GGML_TYPE_F16) {
  6234. size_t id = 0;
  6235. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6236. for (int i03 = 0; i03 < ne03; i03++) {
  6237. for (int i02 = 0; i02 < ne02; i02++) {
  6238. id += ne00 * ir0;
  6239. for (int i01 = ir0; i01 < ir1; i01++) {
  6240. for (int i00 = 0; i00 < ne00; i00++) {
  6241. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6242. dst_ptr[id] = *src0_ptr;
  6243. id++;
  6244. }
  6245. }
  6246. id += ne00 * (ne01 - ir1);
  6247. }
  6248. }
  6249. } else {
  6250. GGML_ASSERT(false); // TODO: implement
  6251. }
  6252. }
  6253. return;
  6254. }
  6255. // dst counters
  6256. int64_t i10 = 0;
  6257. int64_t i11 = 0;
  6258. int64_t i12 = 0;
  6259. int64_t i13 = 0;
  6260. if (dst->type == GGML_TYPE_F16) {
  6261. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6262. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6263. i10 += ne00 * ir0;
  6264. while (i10 >= ne0) {
  6265. i10 -= ne0;
  6266. if (++i11 == ne1) {
  6267. i11 = 0;
  6268. if (++i12 == ne2) {
  6269. i12 = 0;
  6270. if (++i13 == ne3) {
  6271. i13 = 0;
  6272. }
  6273. }
  6274. }
  6275. }
  6276. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6277. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6278. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6279. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6280. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6281. if (++i10 == ne00) {
  6282. i10 = 0;
  6283. if (++i11 == ne01) {
  6284. i11 = 0;
  6285. if (++i12 == ne02) {
  6286. i12 = 0;
  6287. if (++i13 == ne03) {
  6288. i13 = 0;
  6289. }
  6290. }
  6291. }
  6292. }
  6293. }
  6294. }
  6295. i10 += ne00 * (ne01 - ir1);
  6296. while (i10 >= ne0) {
  6297. i10 -= ne0;
  6298. if (++i11 == ne1) {
  6299. i11 = 0;
  6300. if (++i12 == ne2) {
  6301. i12 = 0;
  6302. if (++i13 == ne3) {
  6303. i13 = 0;
  6304. }
  6305. }
  6306. }
  6307. }
  6308. }
  6309. }
  6310. } else if (dst->type == GGML_TYPE_F32) {
  6311. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6312. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6313. i10 += ne00 * ir0;
  6314. while (i10 >= ne0) {
  6315. i10 -= ne0;
  6316. if (++i11 == ne1) {
  6317. i11 = 0;
  6318. if (++i12 == ne2) {
  6319. i12 = 0;
  6320. if (++i13 == ne3) {
  6321. i13 = 0;
  6322. }
  6323. }
  6324. }
  6325. }
  6326. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6327. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6328. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6329. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6330. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6331. if (++i10 == ne0) {
  6332. i10 = 0;
  6333. if (++i11 == ne1) {
  6334. i11 = 0;
  6335. if (++i12 == ne2) {
  6336. i12 = 0;
  6337. if (++i13 == ne3) {
  6338. i13 = 0;
  6339. }
  6340. }
  6341. }
  6342. }
  6343. }
  6344. }
  6345. i10 += ne00 * (ne01 - ir1);
  6346. while (i10 >= ne0) {
  6347. i10 -= ne0;
  6348. if (++i11 == ne1) {
  6349. i11 = 0;
  6350. if (++i12 == ne2) {
  6351. i12 = 0;
  6352. if (++i13 == ne3) {
  6353. i13 = 0;
  6354. }
  6355. }
  6356. }
  6357. }
  6358. }
  6359. }
  6360. } else {
  6361. GGML_ASSERT(false); // TODO: implement
  6362. }
  6363. }
  6364. static void ggml_compute_forward_dup_f32(
  6365. const struct ggml_compute_params * params,
  6366. const struct ggml_tensor * src0,
  6367. struct ggml_tensor * dst) {
  6368. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6369. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6370. return;
  6371. }
  6372. GGML_TENSOR_UNARY_OP_LOCALS;
  6373. const int ith = params->ith; // thread index
  6374. const int nth = params->nth; // number of threads
  6375. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6376. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6377. return;
  6378. }
  6379. // parallelize by rows
  6380. const int nr = ne01;
  6381. // number of rows per thread
  6382. const int dr = (nr + nth - 1) / nth;
  6383. // row range for this thread
  6384. const int ir0 = dr * ith;
  6385. const int ir1 = MIN(ir0 + dr, nr);
  6386. if (src0->type == dst->type &&
  6387. ne00 == ne0 &&
  6388. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  6389. // copy by rows
  6390. const size_t rs = ne00*nb00;
  6391. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6392. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6393. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6394. memcpy(
  6395. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6396. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6397. rs);
  6398. }
  6399. }
  6400. }
  6401. return;
  6402. }
  6403. if (ggml_is_contiguous(dst)) {
  6404. // TODO: simplify
  6405. if (nb00 == sizeof(float)) {
  6406. if (dst->type == GGML_TYPE_F32) {
  6407. size_t id = 0;
  6408. const size_t rs = ne00 * nb00;
  6409. char * dst_ptr = (char *) dst->data;
  6410. for (int i03 = 0; i03 < ne03; i03++) {
  6411. for (int i02 = 0; i02 < ne02; i02++) {
  6412. id += rs * ir0;
  6413. for (int i01 = ir0; i01 < ir1; i01++) {
  6414. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6415. memcpy(dst_ptr + id, src0_ptr, rs);
  6416. id += rs;
  6417. }
  6418. id += rs * (ne01 - ir1);
  6419. }
  6420. }
  6421. } else if (type_traits[dst->type].from_float) {
  6422. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6423. size_t id = 0;
  6424. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  6425. char * dst_ptr = (char *) dst->data;
  6426. for (int i03 = 0; i03 < ne03; i03++) {
  6427. for (int i02 = 0; i02 < ne02; i02++) {
  6428. id += rs * ir0;
  6429. for (int i01 = ir0; i01 < ir1; i01++) {
  6430. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6431. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  6432. id += rs;
  6433. }
  6434. id += rs * (ne01 - ir1);
  6435. }
  6436. }
  6437. } else {
  6438. GGML_ASSERT(false); // TODO: implement
  6439. }
  6440. } else {
  6441. //printf("%s: this is not optimal - fix me\n", __func__);
  6442. if (dst->type == GGML_TYPE_F32) {
  6443. size_t id = 0;
  6444. float * dst_ptr = (float *) dst->data;
  6445. for (int i03 = 0; i03 < ne03; i03++) {
  6446. for (int i02 = 0; i02 < ne02; i02++) {
  6447. id += ne00 * ir0;
  6448. for (int i01 = ir0; i01 < ir1; i01++) {
  6449. for (int i00 = 0; i00 < ne00; i00++) {
  6450. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6451. dst_ptr[id] = *src0_ptr;
  6452. id++;
  6453. }
  6454. }
  6455. id += ne00 * (ne01 - ir1);
  6456. }
  6457. }
  6458. } else if (dst->type == GGML_TYPE_F16) {
  6459. size_t id = 0;
  6460. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6461. for (int i03 = 0; i03 < ne03; i03++) {
  6462. for (int i02 = 0; i02 < ne02; i02++) {
  6463. id += ne00 * ir0;
  6464. for (int i01 = ir0; i01 < ir1; i01++) {
  6465. for (int i00 = 0; i00 < ne00; i00++) {
  6466. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6467. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6468. id++;
  6469. }
  6470. }
  6471. id += ne00 * (ne01 - ir1);
  6472. }
  6473. }
  6474. } else {
  6475. GGML_ASSERT(false); // TODO: implement
  6476. }
  6477. }
  6478. return;
  6479. }
  6480. // dst counters
  6481. int64_t i10 = 0;
  6482. int64_t i11 = 0;
  6483. int64_t i12 = 0;
  6484. int64_t i13 = 0;
  6485. if (dst->type == GGML_TYPE_F32) {
  6486. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6487. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6488. i10 += ne00 * ir0;
  6489. while (i10 >= ne0) {
  6490. i10 -= ne0;
  6491. if (++i11 == ne1) {
  6492. i11 = 0;
  6493. if (++i12 == ne2) {
  6494. i12 = 0;
  6495. if (++i13 == ne3) {
  6496. i13 = 0;
  6497. }
  6498. }
  6499. }
  6500. }
  6501. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6502. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6503. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6504. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6505. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6506. if (++i10 == ne0) {
  6507. i10 = 0;
  6508. if (++i11 == ne1) {
  6509. i11 = 0;
  6510. if (++i12 == ne2) {
  6511. i12 = 0;
  6512. if (++i13 == ne3) {
  6513. i13 = 0;
  6514. }
  6515. }
  6516. }
  6517. }
  6518. }
  6519. }
  6520. i10 += ne00 * (ne01 - ir1);
  6521. while (i10 >= ne0) {
  6522. i10 -= ne0;
  6523. if (++i11 == ne1) {
  6524. i11 = 0;
  6525. if (++i12 == ne2) {
  6526. i12 = 0;
  6527. if (++i13 == ne3) {
  6528. i13 = 0;
  6529. }
  6530. }
  6531. }
  6532. }
  6533. }
  6534. }
  6535. } else if (dst->type == GGML_TYPE_F16) {
  6536. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6537. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6538. i10 += ne00 * ir0;
  6539. while (i10 >= ne0) {
  6540. i10 -= ne0;
  6541. if (++i11 == ne1) {
  6542. i11 = 0;
  6543. if (++i12 == ne2) {
  6544. i12 = 0;
  6545. if (++i13 == ne3) {
  6546. i13 = 0;
  6547. }
  6548. }
  6549. }
  6550. }
  6551. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6552. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6553. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6554. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6555. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6556. if (++i10 == ne0) {
  6557. i10 = 0;
  6558. if (++i11 == ne1) {
  6559. i11 = 0;
  6560. if (++i12 == ne2) {
  6561. i12 = 0;
  6562. if (++i13 == ne3) {
  6563. i13 = 0;
  6564. }
  6565. }
  6566. }
  6567. }
  6568. }
  6569. }
  6570. i10 += ne00 * (ne01 - ir1);
  6571. while (i10 >= ne0) {
  6572. i10 -= ne0;
  6573. if (++i11 == ne1) {
  6574. i11 = 0;
  6575. if (++i12 == ne2) {
  6576. i12 = 0;
  6577. if (++i13 == ne3) {
  6578. i13 = 0;
  6579. }
  6580. }
  6581. }
  6582. }
  6583. }
  6584. }
  6585. } else {
  6586. GGML_ASSERT(false); // TODO: implement
  6587. }
  6588. }
  6589. static void ggml_compute_forward_dup(
  6590. const struct ggml_compute_params * params,
  6591. const struct ggml_tensor * src0,
  6592. struct ggml_tensor * dst) {
  6593. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6594. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6595. return;
  6596. }
  6597. switch (src0->type) {
  6598. case GGML_TYPE_F16:
  6599. {
  6600. ggml_compute_forward_dup_f16(params, src0, dst);
  6601. } break;
  6602. case GGML_TYPE_F32:
  6603. {
  6604. ggml_compute_forward_dup_f32(params, src0, dst);
  6605. } break;
  6606. default:
  6607. {
  6608. GGML_ASSERT(false);
  6609. } break;
  6610. }
  6611. }
  6612. // ggml_compute_forward_add
  6613. static void ggml_compute_forward_add_f32(
  6614. const struct ggml_compute_params * params,
  6615. const struct ggml_tensor * src0,
  6616. const struct ggml_tensor * src1,
  6617. struct ggml_tensor * dst) {
  6618. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  6619. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6620. return;
  6621. }
  6622. const int ith = params->ith;
  6623. const int nth = params->nth;
  6624. const int nr = ggml_nrows(src0);
  6625. GGML_TENSOR_BINARY_OP_LOCALS;
  6626. GGML_ASSERT( nb0 == sizeof(float));
  6627. GGML_ASSERT(nb00 == sizeof(float));
  6628. // rows per thread
  6629. const int dr = (nr + nth - 1)/nth;
  6630. // row range for this thread
  6631. const int ir0 = dr*ith;
  6632. const int ir1 = MIN(ir0 + dr, nr);
  6633. if (nb10 == sizeof(float)) {
  6634. for (int ir = ir0; ir < ir1; ++ir) {
  6635. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6636. const int64_t i03 = ir/(ne02*ne01);
  6637. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6638. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6639. const int64_t i13 = i03 % ne13;
  6640. const int64_t i12 = i02 % ne12;
  6641. const int64_t i11 = i01 % ne11;
  6642. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6643. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6644. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6645. #ifdef GGML_USE_ACCELERATE
  6646. vDSP_vadd(src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  6647. #else
  6648. ggml_vec_add_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  6649. #endif
  6650. // }
  6651. // }
  6652. }
  6653. } else {
  6654. // src1 is not contiguous
  6655. for (int ir = ir0; ir < ir1; ++ir) {
  6656. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6657. const int64_t i03 = ir/(ne02*ne01);
  6658. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6659. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6660. const int64_t i13 = i03 % ne13;
  6661. const int64_t i12 = i02 % ne12;
  6662. const int64_t i11 = i01 % ne11;
  6663. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6664. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6665. for (int i0 = 0; i0 < ne0; i0++) {
  6666. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  6667. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6668. }
  6669. }
  6670. }
  6671. }
  6672. static void ggml_compute_forward_add_f16_f32(
  6673. const struct ggml_compute_params * params,
  6674. const struct ggml_tensor * src0,
  6675. const struct ggml_tensor * src1,
  6676. struct ggml_tensor * dst) {
  6677. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6678. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6679. return;
  6680. }
  6681. const int ith = params->ith;
  6682. const int nth = params->nth;
  6683. const int nr = ggml_nrows(src0);
  6684. GGML_TENSOR_BINARY_OP_LOCALS;
  6685. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6686. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6687. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6688. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6689. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6690. // rows per thread
  6691. const int dr = (nr + nth - 1)/nth;
  6692. // row range for this thread
  6693. const int ir0 = dr*ith;
  6694. const int ir1 = MIN(ir0 + dr, nr);
  6695. if (nb10 == sizeof(float)) {
  6696. for (int ir = ir0; ir < ir1; ++ir) {
  6697. // src0, src1 and dst are same shape => same indices
  6698. const int i3 = ir/(ne2*ne1);
  6699. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6700. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6701. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6702. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6703. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6704. for (int i = 0; i < ne0; i++) {
  6705. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6706. }
  6707. }
  6708. }
  6709. else {
  6710. // src1 is not contiguous
  6711. GGML_ASSERT(false);
  6712. }
  6713. }
  6714. static void ggml_compute_forward_add_f16_f16(
  6715. const struct ggml_compute_params * params,
  6716. const struct ggml_tensor * src0,
  6717. const struct ggml_tensor * src1,
  6718. struct ggml_tensor * dst) {
  6719. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6720. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6721. return;
  6722. }
  6723. const int ith = params->ith;
  6724. const int nth = params->nth;
  6725. const int nr = ggml_nrows(src0);
  6726. GGML_TENSOR_BINARY_OP_LOCALS;
  6727. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6728. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6729. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6730. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6731. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6732. // rows per thread
  6733. const int dr = (nr + nth - 1)/nth;
  6734. // row range for this thread
  6735. const int ir0 = dr*ith;
  6736. const int ir1 = MIN(ir0 + dr, nr);
  6737. if (nb10 == sizeof(ggml_fp16_t)) {
  6738. for (int ir = ir0; ir < ir1; ++ir) {
  6739. // src0, src1 and dst are same shape => same indices
  6740. const int i3 = ir/(ne2*ne1);
  6741. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6742. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6743. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6744. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6745. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6746. for (int i = 0; i < ne0; i++) {
  6747. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6748. }
  6749. }
  6750. }
  6751. else {
  6752. // src1 is not contiguous
  6753. GGML_ASSERT(false);
  6754. }
  6755. }
  6756. static void ggml_compute_forward_add_q_f32(
  6757. const struct ggml_compute_params * params,
  6758. const struct ggml_tensor * src0,
  6759. const struct ggml_tensor * src1,
  6760. struct ggml_tensor * dst) {
  6761. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6762. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6763. return;
  6764. }
  6765. const int nr = ggml_nrows(src0);
  6766. GGML_TENSOR_BINARY_OP_LOCALS;
  6767. const int ith = params->ith;
  6768. const int nth = params->nth;
  6769. const enum ggml_type type = src0->type;
  6770. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6771. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6772. // we don't support permuted src0 or src1
  6773. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6774. GGML_ASSERT(nb10 == sizeof(float));
  6775. // dst cannot be transposed or permuted
  6776. GGML_ASSERT(nb0 <= nb1);
  6777. GGML_ASSERT(nb1 <= nb2);
  6778. GGML_ASSERT(nb2 <= nb3);
  6779. GGML_ASSERT(ggml_is_quantized(src0->type));
  6780. GGML_ASSERT(dst->type == src0->type);
  6781. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6782. // rows per thread
  6783. const int dr = (nr + nth - 1)/nth;
  6784. // row range for this thread
  6785. const int ir0 = dr*ith;
  6786. const int ir1 = MIN(ir0 + dr, nr);
  6787. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6788. for (int ir = ir0; ir < ir1; ++ir) {
  6789. // src0 indices
  6790. const int i03 = ir/(ne02*ne01);
  6791. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6792. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6793. // src1 and dst are same shape as src0 => same indices
  6794. const int i13 = i03;
  6795. const int i12 = i02;
  6796. const int i11 = i01;
  6797. const int i3 = i03;
  6798. const int i2 = i02;
  6799. const int i1 = i01;
  6800. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6801. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6802. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6803. assert(ne00 % 32 == 0);
  6804. // unquantize row from src0 to temp buffer
  6805. dequantize_row_q(src0_row, wdata, ne00);
  6806. // add src1
  6807. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6808. // quantize row to dst
  6809. quantize_row_q(wdata, dst_row, ne00);
  6810. }
  6811. }
  6812. static void ggml_compute_forward_add(
  6813. const struct ggml_compute_params * params,
  6814. const struct ggml_tensor * src0,
  6815. const struct ggml_tensor * src1,
  6816. struct ggml_tensor * dst) {
  6817. switch (src0->type) {
  6818. case GGML_TYPE_F32:
  6819. {
  6820. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6821. } break;
  6822. case GGML_TYPE_F16:
  6823. {
  6824. if (src1->type == GGML_TYPE_F16) {
  6825. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6826. }
  6827. else if (src1->type == GGML_TYPE_F32) {
  6828. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6829. }
  6830. else {
  6831. GGML_ASSERT(false);
  6832. }
  6833. } break;
  6834. case GGML_TYPE_Q4_0:
  6835. case GGML_TYPE_Q4_1:
  6836. case GGML_TYPE_Q5_0:
  6837. case GGML_TYPE_Q5_1:
  6838. case GGML_TYPE_Q8_0:
  6839. case GGML_TYPE_Q2_K:
  6840. case GGML_TYPE_Q3_K:
  6841. case GGML_TYPE_Q4_K:
  6842. case GGML_TYPE_Q5_K:
  6843. case GGML_TYPE_Q6_K:
  6844. {
  6845. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6846. } break;
  6847. default:
  6848. {
  6849. GGML_ASSERT(false);
  6850. } break;
  6851. }
  6852. }
  6853. // ggml_compute_forward_add1
  6854. static void ggml_compute_forward_add1_f32(
  6855. const struct ggml_compute_params * params,
  6856. const struct ggml_tensor * src0,
  6857. const struct ggml_tensor * src1,
  6858. struct ggml_tensor * dst) {
  6859. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6860. GGML_ASSERT(ggml_is_scalar(src1));
  6861. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6862. return;
  6863. }
  6864. const int ith = params->ith;
  6865. const int nth = params->nth;
  6866. const int nr = ggml_nrows(src0);
  6867. GGML_TENSOR_UNARY_OP_LOCALS;
  6868. GGML_ASSERT( nb0 == sizeof(float));
  6869. GGML_ASSERT(nb00 == sizeof(float));
  6870. // rows per thread
  6871. const int dr = (nr + nth - 1)/nth;
  6872. // row range for this thread
  6873. const int ir0 = dr*ith;
  6874. const int ir1 = MIN(ir0 + dr, nr);
  6875. for (int ir = ir0; ir < ir1; ++ir) {
  6876. // src0 and dst are same shape => same indices
  6877. const int i3 = ir/(ne2*ne1);
  6878. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6879. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6880. #ifdef GGML_USE_ACCELERATE
  6881. UNUSED(ggml_vec_add1_f32);
  6882. vDSP_vadd(
  6883. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6884. (float *) ((char *) src1->data), 0,
  6885. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6886. ne0);
  6887. #else
  6888. ggml_vec_add1_f32(ne0,
  6889. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6890. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6891. *(float *) src1->data);
  6892. #endif
  6893. }
  6894. }
  6895. static void ggml_compute_forward_add1_f16_f32(
  6896. const struct ggml_compute_params * params,
  6897. const struct ggml_tensor * src0,
  6898. const struct ggml_tensor * src1,
  6899. struct ggml_tensor * dst) {
  6900. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6901. GGML_ASSERT(ggml_is_scalar(src1));
  6902. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6903. return;
  6904. }
  6905. // scalar to add
  6906. const float v = *(float *) src1->data;
  6907. const int ith = params->ith;
  6908. const int nth = params->nth;
  6909. const int nr = ggml_nrows(src0);
  6910. GGML_TENSOR_UNARY_OP_LOCALS;
  6911. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6912. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6913. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6914. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6915. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6916. // rows per thread
  6917. const int dr = (nr + nth - 1)/nth;
  6918. // row range for this thread
  6919. const int ir0 = dr*ith;
  6920. const int ir1 = MIN(ir0 + dr, nr);
  6921. for (int ir = ir0; ir < ir1; ++ir) {
  6922. // src0 and dst are same shape => same indices
  6923. const int i3 = ir/(ne2*ne1);
  6924. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6925. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6926. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6927. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6928. for (int i = 0; i < ne0; i++) {
  6929. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6930. }
  6931. }
  6932. }
  6933. static void ggml_compute_forward_add1_f16_f16(
  6934. const struct ggml_compute_params * params,
  6935. const struct ggml_tensor * src0,
  6936. const struct ggml_tensor * src1,
  6937. struct ggml_tensor * dst) {
  6938. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6939. GGML_ASSERT(ggml_is_scalar(src1));
  6940. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6941. return;
  6942. }
  6943. // scalar to add
  6944. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6945. const int ith = params->ith;
  6946. const int nth = params->nth;
  6947. const int nr = ggml_nrows(src0);
  6948. GGML_TENSOR_UNARY_OP_LOCALS;
  6949. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6950. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6951. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6952. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6953. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6954. // rows per thread
  6955. const int dr = (nr + nth - 1)/nth;
  6956. // row range for this thread
  6957. const int ir0 = dr*ith;
  6958. const int ir1 = MIN(ir0 + dr, nr);
  6959. for (int ir = ir0; ir < ir1; ++ir) {
  6960. // src0 and dst are same shape => same indices
  6961. const int i3 = ir/(ne2*ne1);
  6962. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6963. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6964. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6965. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6966. for (int i = 0; i < ne0; i++) {
  6967. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6968. }
  6969. }
  6970. }
  6971. static void ggml_compute_forward_add1_q_f32(
  6972. const struct ggml_compute_params * params,
  6973. const struct ggml_tensor * src0,
  6974. const struct ggml_tensor * src1,
  6975. struct ggml_tensor * dst) {
  6976. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6977. GGML_ASSERT(ggml_is_scalar(src1));
  6978. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6979. return;
  6980. }
  6981. // scalar to add
  6982. const float v = *(float *) src1->data;
  6983. const int ith = params->ith;
  6984. const int nth = params->nth;
  6985. const int nr = ggml_nrows(src0);
  6986. GGML_TENSOR_UNARY_OP_LOCALS;
  6987. const enum ggml_type type = src0->type;
  6988. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6989. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6990. // we don't support permuted src0
  6991. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6992. // dst cannot be transposed or permuted
  6993. GGML_ASSERT(nb0 <= nb1);
  6994. GGML_ASSERT(nb1 <= nb2);
  6995. GGML_ASSERT(nb2 <= nb3);
  6996. GGML_ASSERT(ggml_is_quantized(src0->type));
  6997. GGML_ASSERT(dst->type == src0->type);
  6998. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6999. // rows per thread
  7000. const int dr = (nr + nth - 1)/nth;
  7001. // row range for this thread
  7002. const int ir0 = dr*ith;
  7003. const int ir1 = MIN(ir0 + dr, nr);
  7004. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  7005. for (int ir = ir0; ir < ir1; ++ir) {
  7006. // src0 and dst are same shape => same indices
  7007. const int i3 = ir/(ne2*ne1);
  7008. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7009. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7010. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  7011. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  7012. assert(ne0 % 32 == 0);
  7013. // unquantize row from src0 to temp buffer
  7014. dequantize_row_q(src0_row, wdata, ne0);
  7015. // add src1
  7016. ggml_vec_acc1_f32(ne0, wdata, v);
  7017. // quantize row to dst
  7018. quantize_row_q(wdata, dst_row, ne0);
  7019. }
  7020. }
  7021. static void ggml_compute_forward_add1(
  7022. const struct ggml_compute_params * params,
  7023. const struct ggml_tensor * src0,
  7024. const struct ggml_tensor * src1,
  7025. struct ggml_tensor * dst) {
  7026. switch (src0->type) {
  7027. case GGML_TYPE_F32:
  7028. {
  7029. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  7030. } break;
  7031. case GGML_TYPE_F16:
  7032. {
  7033. if (src1->type == GGML_TYPE_F16) {
  7034. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  7035. }
  7036. else if (src1->type == GGML_TYPE_F32) {
  7037. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  7038. }
  7039. else {
  7040. GGML_ASSERT(false);
  7041. }
  7042. } break;
  7043. case GGML_TYPE_Q4_0:
  7044. case GGML_TYPE_Q4_1:
  7045. case GGML_TYPE_Q5_0:
  7046. case GGML_TYPE_Q5_1:
  7047. case GGML_TYPE_Q8_0:
  7048. case GGML_TYPE_Q8_1:
  7049. case GGML_TYPE_Q2_K:
  7050. case GGML_TYPE_Q3_K:
  7051. case GGML_TYPE_Q4_K:
  7052. case GGML_TYPE_Q5_K:
  7053. case GGML_TYPE_Q6_K:
  7054. {
  7055. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  7056. } break;
  7057. default:
  7058. {
  7059. GGML_ASSERT(false);
  7060. } break;
  7061. }
  7062. }
  7063. // ggml_compute_forward_acc
  7064. static void ggml_compute_forward_acc_f32(
  7065. const struct ggml_compute_params * params,
  7066. const struct ggml_tensor * src0,
  7067. const struct ggml_tensor * src1,
  7068. struct ggml_tensor * dst) {
  7069. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7070. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  7071. // view src0 and dst with these strides and data offset inbytes during acc
  7072. // nb0 is implicitely element_size because src0 and dst are contiguous
  7073. size_t nb1 = ((int32_t *) dst->op_params)[0];
  7074. size_t nb2 = ((int32_t *) dst->op_params)[1];
  7075. size_t nb3 = ((int32_t *) dst->op_params)[2];
  7076. size_t offset = ((int32_t *) dst->op_params)[3];
  7077. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  7078. if (!inplace && (params->type == GGML_TASK_INIT)) {
  7079. // memcpy needs to be synchronized across threads to avoid race conditions.
  7080. // => do it in INIT phase
  7081. memcpy(
  7082. ((char *) dst->data),
  7083. ((char *) src0->data),
  7084. ggml_nbytes(dst));
  7085. }
  7086. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7087. return;
  7088. }
  7089. const int ith = params->ith;
  7090. const int nth = params->nth;
  7091. const int nr = ggml_nrows(src1);
  7092. const int nc = src1->ne[0];
  7093. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  7094. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  7095. // src0 and dst as viewed during acc
  7096. const size_t nb0 = ggml_element_size(src0);
  7097. const size_t nb00 = nb0;
  7098. const size_t nb01 = nb1;
  7099. const size_t nb02 = nb2;
  7100. const size_t nb03 = nb3;
  7101. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  7102. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  7103. GGML_ASSERT(nb10 == sizeof(float));
  7104. // rows per thread
  7105. const int dr = (nr + nth - 1)/nth;
  7106. // row range for this thread
  7107. const int ir0 = dr*ith;
  7108. const int ir1 = MIN(ir0 + dr, nr);
  7109. for (int ir = ir0; ir < ir1; ++ir) {
  7110. // src0 and dst are viewed with shape of src1 and offset
  7111. // => same indices
  7112. const int i3 = ir/(ne12*ne11);
  7113. const int i2 = (ir - i3*ne12*ne11)/ne11;
  7114. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  7115. #ifdef GGML_USE_ACCELERATE
  7116. vDSP_vadd(
  7117. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  7118. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7119. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  7120. #else
  7121. ggml_vec_add_f32(nc,
  7122. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  7123. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  7124. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7125. #endif
  7126. }
  7127. }
  7128. static void ggml_compute_forward_acc(
  7129. const struct ggml_compute_params * params,
  7130. const struct ggml_tensor * src0,
  7131. const struct ggml_tensor * src1,
  7132. struct ggml_tensor * dst) {
  7133. switch (src0->type) {
  7134. case GGML_TYPE_F32:
  7135. {
  7136. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  7137. } break;
  7138. case GGML_TYPE_F16:
  7139. case GGML_TYPE_Q4_0:
  7140. case GGML_TYPE_Q4_1:
  7141. case GGML_TYPE_Q5_0:
  7142. case GGML_TYPE_Q5_1:
  7143. case GGML_TYPE_Q8_0:
  7144. case GGML_TYPE_Q8_1:
  7145. case GGML_TYPE_Q2_K:
  7146. case GGML_TYPE_Q3_K:
  7147. case GGML_TYPE_Q4_K:
  7148. case GGML_TYPE_Q5_K:
  7149. case GGML_TYPE_Q6_K:
  7150. default:
  7151. {
  7152. GGML_ASSERT(false);
  7153. } break;
  7154. }
  7155. }
  7156. // ggml_compute_forward_sub
  7157. static void ggml_compute_forward_sub_f32(
  7158. const struct ggml_compute_params * params,
  7159. const struct ggml_tensor * src0,
  7160. const struct ggml_tensor * src1,
  7161. struct ggml_tensor * dst) {
  7162. assert(params->ith == 0);
  7163. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7164. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7165. return;
  7166. }
  7167. const int nr = ggml_nrows(src0);
  7168. GGML_TENSOR_BINARY_OP_LOCALS;
  7169. GGML_ASSERT( nb0 == sizeof(float));
  7170. GGML_ASSERT(nb00 == sizeof(float));
  7171. if (nb10 == sizeof(float)) {
  7172. for (int ir = 0; ir < nr; ++ir) {
  7173. // src0, src1 and dst are same shape => same indices
  7174. const int i3 = ir/(ne2*ne1);
  7175. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7176. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7177. #ifdef GGML_USE_ACCELERATE
  7178. vDSP_vsub(
  7179. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7180. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7181. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7182. ne0);
  7183. #else
  7184. ggml_vec_sub_f32(ne0,
  7185. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7186. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7187. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7188. #endif
  7189. // }
  7190. // }
  7191. }
  7192. } else {
  7193. // src1 is not contiguous
  7194. for (int ir = 0; ir < nr; ++ir) {
  7195. // src0, src1 and dst are same shape => same indices
  7196. const int i3 = ir/(ne2*ne1);
  7197. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7198. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7199. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7200. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7201. for (int i0 = 0; i0 < ne0; i0++) {
  7202. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7203. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7204. }
  7205. }
  7206. }
  7207. }
  7208. static void ggml_compute_forward_sub(
  7209. const struct ggml_compute_params * params,
  7210. const struct ggml_tensor * src0,
  7211. const struct ggml_tensor * src1,
  7212. struct ggml_tensor * dst) {
  7213. switch (src0->type) {
  7214. case GGML_TYPE_F32:
  7215. {
  7216. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  7217. } break;
  7218. default:
  7219. {
  7220. GGML_ASSERT(false);
  7221. } break;
  7222. }
  7223. }
  7224. // ggml_compute_forward_mul
  7225. static void ggml_compute_forward_mul_f32(
  7226. const struct ggml_compute_params * params,
  7227. const struct ggml_tensor * src0,
  7228. const struct ggml_tensor * src1,
  7229. struct ggml_tensor * dst) {
  7230. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  7231. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7232. return;
  7233. }
  7234. const int ith = params->ith;
  7235. const int nth = params->nth;
  7236. #ifdef GGML_USE_CLBLAST
  7237. if (src1->backend == GGML_BACKEND_GPU) {
  7238. if (ith == 0) {
  7239. ggml_cl_mul(src0, src1, dst);
  7240. }
  7241. return;
  7242. }
  7243. #endif
  7244. const int64_t nr = ggml_nrows(src0);
  7245. GGML_TENSOR_BINARY_OP_LOCALS;
  7246. GGML_ASSERT( nb0 == sizeof(float));
  7247. GGML_ASSERT(nb00 == sizeof(float));
  7248. GGML_ASSERT(ne00 == ne10);
  7249. if (nb10 == sizeof(float)) {
  7250. for (int64_t ir = ith; ir < nr; ir += nth) {
  7251. // src0 and dst are same shape => same indices
  7252. const int64_t i03 = ir/(ne02*ne01);
  7253. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7254. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7255. const int64_t i13 = i03 % ne13;
  7256. const int64_t i12 = i02 % ne12;
  7257. const int64_t i11 = i01 % ne11;
  7258. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7259. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7260. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7261. #ifdef GGML_USE_ACCELERATE
  7262. UNUSED(ggml_vec_mul_f32);
  7263. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  7264. #else
  7265. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  7266. #endif
  7267. // }
  7268. // }
  7269. }
  7270. } else {
  7271. // src1 is not contiguous
  7272. for (int64_t ir = ith; ir < nr; ir += nth) {
  7273. // src0 and dst are same shape => same indices
  7274. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7275. const int64_t i03 = ir/(ne02*ne01);
  7276. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7277. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7278. const int64_t i13 = i03 % ne13;
  7279. const int64_t i12 = i02 % ne12;
  7280. const int64_t i11 = i01 % ne11;
  7281. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7282. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7283. for (int64_t i0 = 0; i0 < ne00; i0++) {
  7284. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  7285. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  7286. }
  7287. }
  7288. }
  7289. }
  7290. static void ggml_compute_forward_mul(
  7291. const struct ggml_compute_params * params,
  7292. const struct ggml_tensor * src0,
  7293. const struct ggml_tensor * src1,
  7294. struct ggml_tensor * dst) {
  7295. switch (src0->type) {
  7296. case GGML_TYPE_F32:
  7297. {
  7298. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  7299. } break;
  7300. default:
  7301. {
  7302. GGML_ASSERT(false);
  7303. } break;
  7304. }
  7305. }
  7306. // ggml_compute_forward_div
  7307. static void ggml_compute_forward_div_f32(
  7308. const struct ggml_compute_params * params,
  7309. const struct ggml_tensor * src0,
  7310. const struct ggml_tensor * src1,
  7311. struct ggml_tensor * dst) {
  7312. assert(params->ith == 0);
  7313. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7314. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7315. return;
  7316. }
  7317. const int nr = ggml_nrows(src0);
  7318. GGML_TENSOR_BINARY_OP_LOCALS;
  7319. GGML_ASSERT( nb0 == sizeof(float));
  7320. GGML_ASSERT(nb00 == sizeof(float));
  7321. if (nb10 == sizeof(float)) {
  7322. for (int ir = 0; ir < nr; ++ir) {
  7323. // src0, src1 and dst are same shape => same indices
  7324. const int i3 = ir/(ne2*ne1);
  7325. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7326. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7327. #ifdef GGML_USE_ACCELERATE
  7328. vDSP_vdiv(
  7329. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7330. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7331. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7332. ne0);
  7333. #else
  7334. ggml_vec_div_f32(ne0,
  7335. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7336. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7337. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7338. #endif
  7339. // }
  7340. // }
  7341. }
  7342. } else {
  7343. // src1 is not contiguous
  7344. for (int ir = 0; ir < nr; ++ir) {
  7345. // src0, src1 and dst are same shape => same indices
  7346. const int i3 = ir/(ne2*ne1);
  7347. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7348. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7349. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7350. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7351. for (int i0 = 0; i0 < ne0; i0++) {
  7352. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7353. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  7354. }
  7355. }
  7356. }
  7357. }
  7358. static void ggml_compute_forward_div(
  7359. const struct ggml_compute_params * params,
  7360. const struct ggml_tensor * src0,
  7361. const struct ggml_tensor * src1,
  7362. struct ggml_tensor * dst) {
  7363. switch (src0->type) {
  7364. case GGML_TYPE_F32:
  7365. {
  7366. ggml_compute_forward_div_f32(params, src0, src1, dst);
  7367. } break;
  7368. default:
  7369. {
  7370. GGML_ASSERT(false);
  7371. } break;
  7372. }
  7373. }
  7374. // ggml_compute_forward_sqr
  7375. static void ggml_compute_forward_sqr_f32(
  7376. const struct ggml_compute_params * params,
  7377. const struct ggml_tensor * src0,
  7378. struct ggml_tensor * dst) {
  7379. assert(params->ith == 0);
  7380. assert(ggml_are_same_shape(src0, dst));
  7381. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7382. return;
  7383. }
  7384. const int n = ggml_nrows(src0);
  7385. const int nc = src0->ne[0];
  7386. assert( dst->nb[0] == sizeof(float));
  7387. assert(src0->nb[0] == sizeof(float));
  7388. for (int i = 0; i < n; i++) {
  7389. ggml_vec_sqr_f32(nc,
  7390. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7391. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7392. }
  7393. }
  7394. static void ggml_compute_forward_sqr(
  7395. const struct ggml_compute_params * params,
  7396. const struct ggml_tensor * src0,
  7397. struct ggml_tensor * dst) {
  7398. switch (src0->type) {
  7399. case GGML_TYPE_F32:
  7400. {
  7401. ggml_compute_forward_sqr_f32(params, src0, dst);
  7402. } break;
  7403. default:
  7404. {
  7405. GGML_ASSERT(false);
  7406. } break;
  7407. }
  7408. }
  7409. // ggml_compute_forward_sqrt
  7410. static void ggml_compute_forward_sqrt_f32(
  7411. const struct ggml_compute_params * params,
  7412. const struct ggml_tensor * src0,
  7413. struct ggml_tensor * dst) {
  7414. assert(params->ith == 0);
  7415. assert(ggml_are_same_shape(src0, dst));
  7416. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7417. return;
  7418. }
  7419. const int n = ggml_nrows(src0);
  7420. const int nc = src0->ne[0];
  7421. assert( dst->nb[0] == sizeof(float));
  7422. assert(src0->nb[0] == sizeof(float));
  7423. for (int i = 0; i < n; i++) {
  7424. ggml_vec_sqrt_f32(nc,
  7425. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7426. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7427. }
  7428. }
  7429. static void ggml_compute_forward_sqrt(
  7430. const struct ggml_compute_params * params,
  7431. const struct ggml_tensor * src0,
  7432. struct ggml_tensor * dst) {
  7433. switch (src0->type) {
  7434. case GGML_TYPE_F32:
  7435. {
  7436. ggml_compute_forward_sqrt_f32(params, src0, dst);
  7437. } break;
  7438. default:
  7439. {
  7440. GGML_ASSERT(false);
  7441. } break;
  7442. }
  7443. }
  7444. // ggml_compute_forward_log
  7445. static void ggml_compute_forward_log_f32(
  7446. const struct ggml_compute_params * params,
  7447. const struct ggml_tensor * src0,
  7448. struct ggml_tensor * dst) {
  7449. GGML_ASSERT(params->ith == 0);
  7450. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7451. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7452. return;
  7453. }
  7454. const int n = ggml_nrows(src0);
  7455. const int nc = src0->ne[0];
  7456. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7457. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7458. for (int i = 0; i < n; i++) {
  7459. ggml_vec_log_f32(nc,
  7460. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7461. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7462. }
  7463. }
  7464. static void ggml_compute_forward_log(
  7465. const struct ggml_compute_params * params,
  7466. const struct ggml_tensor * src0,
  7467. struct ggml_tensor * dst) {
  7468. switch (src0->type) {
  7469. case GGML_TYPE_F32:
  7470. {
  7471. ggml_compute_forward_log_f32(params, src0, dst);
  7472. } break;
  7473. default:
  7474. {
  7475. GGML_ASSERT(false);
  7476. } break;
  7477. }
  7478. }
  7479. // ggml_compute_forward_sum
  7480. static void ggml_compute_forward_sum_f32(
  7481. const struct ggml_compute_params * params,
  7482. const struct ggml_tensor * src0,
  7483. struct ggml_tensor * dst) {
  7484. assert(params->ith == 0);
  7485. assert(ggml_is_scalar(dst));
  7486. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7487. return;
  7488. }
  7489. assert(ggml_is_scalar(dst));
  7490. assert(src0->nb[0] == sizeof(float));
  7491. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  7492. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb);
  7493. ggml_float sum = 0;
  7494. ggml_float row_sum = 0;
  7495. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7496. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7497. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7498. ggml_vec_sum_ggf(ne00,
  7499. &row_sum,
  7500. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7501. sum += row_sum;
  7502. }
  7503. }
  7504. }
  7505. ((float *) dst->data)[0] = sum;
  7506. }
  7507. static void ggml_compute_forward_sum(
  7508. const struct ggml_compute_params * params,
  7509. const struct ggml_tensor * src0,
  7510. struct ggml_tensor * dst) {
  7511. switch (src0->type) {
  7512. case GGML_TYPE_F32:
  7513. {
  7514. ggml_compute_forward_sum_f32(params, src0, dst);
  7515. } break;
  7516. default:
  7517. {
  7518. GGML_ASSERT(false);
  7519. } break;
  7520. }
  7521. }
  7522. // ggml_compute_forward_sum_rows
  7523. static void ggml_compute_forward_sum_rows_f32(
  7524. const struct ggml_compute_params * params,
  7525. const struct ggml_tensor * src0,
  7526. struct ggml_tensor * dst) {
  7527. GGML_ASSERT(params->ith == 0);
  7528. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7529. return;
  7530. }
  7531. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7532. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7533. GGML_TENSOR_UNARY_OP_LOCALS;
  7534. GGML_ASSERT(ne0 == 1);
  7535. GGML_ASSERT(ne1 == ne01);
  7536. GGML_ASSERT(ne2 == ne02);
  7537. GGML_ASSERT(ne3 == ne03);
  7538. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7539. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7540. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7541. float* src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7542. float* dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7543. float row_sum = 0;
  7544. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7545. dst_row[0] = row_sum;
  7546. }
  7547. }
  7548. }
  7549. }
  7550. static void ggml_compute_forward_sum_rows(
  7551. const struct ggml_compute_params * params,
  7552. const struct ggml_tensor * src0,
  7553. struct ggml_tensor * dst) {
  7554. switch (src0->type) {
  7555. case GGML_TYPE_F32:
  7556. {
  7557. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  7558. } break;
  7559. default:
  7560. {
  7561. GGML_ASSERT(false);
  7562. } break;
  7563. }
  7564. }
  7565. // ggml_compute_forward_mean
  7566. static void ggml_compute_forward_mean_f32(
  7567. const struct ggml_compute_params * params,
  7568. const struct ggml_tensor * src0,
  7569. struct ggml_tensor * dst) {
  7570. assert(params->ith == 0);
  7571. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7572. return;
  7573. }
  7574. assert(src0->nb[0] == sizeof(float));
  7575. GGML_TENSOR_UNARY_OP_LOCALS;
  7576. assert(ne0 == 1);
  7577. assert(ne1 == ne01);
  7578. assert(ne2 == ne02);
  7579. assert(ne3 == ne03);
  7580. UNUSED(ne0);
  7581. UNUSED(ne1);
  7582. UNUSED(ne2);
  7583. UNUSED(ne3);
  7584. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7585. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7586. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7587. ggml_vec_sum_f32(ne00,
  7588. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7589. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7590. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7591. }
  7592. }
  7593. }
  7594. }
  7595. static void ggml_compute_forward_mean(
  7596. const struct ggml_compute_params * params,
  7597. const struct ggml_tensor * src0,
  7598. struct ggml_tensor * dst) {
  7599. switch (src0->type) {
  7600. case GGML_TYPE_F32:
  7601. {
  7602. ggml_compute_forward_mean_f32(params, src0, dst);
  7603. } break;
  7604. default:
  7605. {
  7606. GGML_ASSERT(false);
  7607. } break;
  7608. }
  7609. }
  7610. // ggml_compute_forward_argmax
  7611. static void ggml_compute_forward_argmax_f32(
  7612. const struct ggml_compute_params * params,
  7613. const struct ggml_tensor * src0,
  7614. struct ggml_tensor * dst) {
  7615. assert(params->ith == 0);
  7616. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7617. return;
  7618. }
  7619. assert(src0->nb[0] == sizeof(float));
  7620. assert(dst->nb[0] == sizeof(float));
  7621. const int64_t ne00 = src0->ne[0];
  7622. const int64_t ne01 = src0->ne[1];
  7623. const size_t nb01 = src0->nb[1];
  7624. const size_t nb0 = dst->nb[0];
  7625. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7626. float * src = (float *) ((char *) src0->data + i1*nb01);
  7627. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7628. int v = 0;
  7629. ggml_vec_argmax_f32(ne00, &v, src);
  7630. dst_[0] = v;
  7631. }
  7632. }
  7633. static void ggml_compute_forward_argmax(
  7634. const struct ggml_compute_params * params,
  7635. const struct ggml_tensor * src0,
  7636. struct ggml_tensor * dst) {
  7637. switch (src0->type) {
  7638. case GGML_TYPE_F32:
  7639. {
  7640. ggml_compute_forward_argmax_f32(params, src0, dst);
  7641. } break;
  7642. default:
  7643. {
  7644. GGML_ASSERT(false);
  7645. } break;
  7646. }
  7647. }
  7648. // ggml_compute_forward_repeat
  7649. static void ggml_compute_forward_repeat_f32(
  7650. const struct ggml_compute_params * params,
  7651. const struct ggml_tensor * src0,
  7652. struct ggml_tensor * dst) {
  7653. GGML_ASSERT(params->ith == 0);
  7654. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7655. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7656. return;
  7657. }
  7658. GGML_TENSOR_UNARY_OP_LOCALS;
  7659. // guaranteed to be an integer due to the check in ggml_can_repeat
  7660. const int nr0 = (int)(ne0/ne00);
  7661. const int nr1 = (int)(ne1/ne01);
  7662. const int nr2 = (int)(ne2/ne02);
  7663. const int nr3 = (int)(ne3/ne03);
  7664. // TODO: support for transposed / permuted tensors
  7665. GGML_ASSERT(nb0 == sizeof(float));
  7666. GGML_ASSERT(nb00 == sizeof(float));
  7667. // TODO: maybe this is not optimal?
  7668. for (int i3 = 0; i3 < nr3; i3++) {
  7669. for (int k3 = 0; k3 < ne03; k3++) {
  7670. for (int i2 = 0; i2 < nr2; i2++) {
  7671. for (int k2 = 0; k2 < ne02; k2++) {
  7672. for (int i1 = 0; i1 < nr1; i1++) {
  7673. for (int k1 = 0; k1 < ne01; k1++) {
  7674. for (int i0 = 0; i0 < nr0; i0++) {
  7675. ggml_vec_cpy_f32(ne00,
  7676. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7677. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7678. }
  7679. }
  7680. }
  7681. }
  7682. }
  7683. }
  7684. }
  7685. }
  7686. static void ggml_compute_forward_repeat(
  7687. const struct ggml_compute_params * params,
  7688. const struct ggml_tensor * src0,
  7689. struct ggml_tensor * dst) {
  7690. switch (src0->type) {
  7691. case GGML_TYPE_F32:
  7692. {
  7693. ggml_compute_forward_repeat_f32(params, src0, dst);
  7694. } break;
  7695. default:
  7696. {
  7697. GGML_ASSERT(false);
  7698. } break;
  7699. }
  7700. }
  7701. // ggml_compute_forward_repeat_back
  7702. static void ggml_compute_forward_repeat_back_f32(
  7703. const struct ggml_compute_params * params,
  7704. const struct ggml_tensor * src0,
  7705. struct ggml_tensor * dst) {
  7706. GGML_ASSERT(params->ith == 0);
  7707. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7708. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7709. return;
  7710. }
  7711. GGML_TENSOR_UNARY_OP_LOCALS;
  7712. // guaranteed to be an integer due to the check in ggml_can_repeat
  7713. const int nr0 = (int)(ne00/ne0);
  7714. const int nr1 = (int)(ne01/ne1);
  7715. const int nr2 = (int)(ne02/ne2);
  7716. const int nr3 = (int)(ne03/ne3);
  7717. // TODO: support for transposed / permuted tensors
  7718. GGML_ASSERT(nb0 == sizeof(float));
  7719. GGML_ASSERT(nb00 == sizeof(float));
  7720. if (ggml_is_contiguous(dst)) {
  7721. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7722. } else {
  7723. for (int k3 = 0; k3 < ne3; k3++) {
  7724. for (int k2 = 0; k2 < ne2; k2++) {
  7725. for (int k1 = 0; k1 < ne1; k1++) {
  7726. ggml_vec_set_f32(ne0,
  7727. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7728. 0);
  7729. }
  7730. }
  7731. }
  7732. }
  7733. // TODO: maybe this is not optimal?
  7734. for (int i3 = 0; i3 < nr3; i3++) {
  7735. for (int k3 = 0; k3 < ne3; k3++) {
  7736. for (int i2 = 0; i2 < nr2; i2++) {
  7737. for (int k2 = 0; k2 < ne2; k2++) {
  7738. for (int i1 = 0; i1 < nr1; i1++) {
  7739. for (int k1 = 0; k1 < ne1; k1++) {
  7740. for (int i0 = 0; i0 < nr0; i0++) {
  7741. ggml_vec_acc_f32(ne0,
  7742. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7743. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7744. }
  7745. }
  7746. }
  7747. }
  7748. }
  7749. }
  7750. }
  7751. }
  7752. static void ggml_compute_forward_repeat_back(
  7753. const struct ggml_compute_params * params,
  7754. const struct ggml_tensor * src0,
  7755. struct ggml_tensor * dst) {
  7756. switch (src0->type) {
  7757. case GGML_TYPE_F32:
  7758. {
  7759. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  7760. } break;
  7761. default:
  7762. {
  7763. GGML_ASSERT(false);
  7764. } break;
  7765. }
  7766. }
  7767. // ggml_compute_forward_abs
  7768. static void ggml_compute_forward_abs_f32(
  7769. const struct ggml_compute_params * params,
  7770. const struct ggml_tensor * src0,
  7771. struct ggml_tensor * dst) {
  7772. assert(params->ith == 0);
  7773. assert(ggml_are_same_shape(src0, dst));
  7774. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7775. return;
  7776. }
  7777. const int n = ggml_nrows(src0);
  7778. const int nc = src0->ne[0];
  7779. assert(dst->nb[0] == sizeof(float));
  7780. assert(src0->nb[0] == sizeof(float));
  7781. for (int i = 0; i < n; i++) {
  7782. ggml_vec_abs_f32(nc,
  7783. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7784. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7785. }
  7786. }
  7787. static void ggml_compute_forward_abs(
  7788. const struct ggml_compute_params * params,
  7789. const struct ggml_tensor * src0,
  7790. struct ggml_tensor * dst) {
  7791. switch (src0->type) {
  7792. case GGML_TYPE_F32:
  7793. {
  7794. ggml_compute_forward_abs_f32(params, src0, dst);
  7795. } break;
  7796. default:
  7797. {
  7798. GGML_ASSERT(false);
  7799. } break;
  7800. }
  7801. }
  7802. // ggml_compute_forward_sgn
  7803. static void ggml_compute_forward_sgn_f32(
  7804. const struct ggml_compute_params * params,
  7805. const struct ggml_tensor * src0,
  7806. struct ggml_tensor * dst) {
  7807. assert(params->ith == 0);
  7808. assert(ggml_are_same_shape(src0, dst));
  7809. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7810. return;
  7811. }
  7812. const int n = ggml_nrows(src0);
  7813. const int nc = src0->ne[0];
  7814. assert(dst->nb[0] == sizeof(float));
  7815. assert(src0->nb[0] == sizeof(float));
  7816. for (int i = 0; i < n; i++) {
  7817. ggml_vec_sgn_f32(nc,
  7818. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7819. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7820. }
  7821. }
  7822. static void ggml_compute_forward_sgn(
  7823. const struct ggml_compute_params * params,
  7824. const struct ggml_tensor * src0,
  7825. struct ggml_tensor * dst) {
  7826. switch (src0->type) {
  7827. case GGML_TYPE_F32:
  7828. {
  7829. ggml_compute_forward_sgn_f32(params, src0, dst);
  7830. } break;
  7831. default:
  7832. {
  7833. GGML_ASSERT(false);
  7834. } break;
  7835. }
  7836. }
  7837. // ggml_compute_forward_neg
  7838. static void ggml_compute_forward_neg_f32(
  7839. const struct ggml_compute_params * params,
  7840. const struct ggml_tensor * src0,
  7841. struct ggml_tensor * dst) {
  7842. assert(params->ith == 0);
  7843. assert(ggml_are_same_shape(src0, dst));
  7844. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7845. return;
  7846. }
  7847. const int n = ggml_nrows(src0);
  7848. const int nc = src0->ne[0];
  7849. assert(dst->nb[0] == sizeof(float));
  7850. assert(src0->nb[0] == sizeof(float));
  7851. for (int i = 0; i < n; i++) {
  7852. ggml_vec_neg_f32(nc,
  7853. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7854. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7855. }
  7856. }
  7857. static void ggml_compute_forward_neg(
  7858. const struct ggml_compute_params * params,
  7859. const struct ggml_tensor * src0,
  7860. struct ggml_tensor * dst) {
  7861. switch (src0->type) {
  7862. case GGML_TYPE_F32:
  7863. {
  7864. ggml_compute_forward_neg_f32(params, src0, dst);
  7865. } break;
  7866. default:
  7867. {
  7868. GGML_ASSERT(false);
  7869. } break;
  7870. }
  7871. }
  7872. // ggml_compute_forward_step
  7873. static void ggml_compute_forward_step_f32(
  7874. const struct ggml_compute_params * params,
  7875. const struct ggml_tensor * src0,
  7876. struct ggml_tensor * dst) {
  7877. assert(params->ith == 0);
  7878. assert(ggml_are_same_shape(src0, dst));
  7879. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7880. return;
  7881. }
  7882. const int n = ggml_nrows(src0);
  7883. const int nc = src0->ne[0];
  7884. assert(dst->nb[0] == sizeof(float));
  7885. assert(src0->nb[0] == sizeof(float));
  7886. for (int i = 0; i < n; i++) {
  7887. ggml_vec_step_f32(nc,
  7888. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7889. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7890. }
  7891. }
  7892. static void ggml_compute_forward_step(
  7893. const struct ggml_compute_params * params,
  7894. const struct ggml_tensor * src0,
  7895. struct ggml_tensor * dst) {
  7896. switch (src0->type) {
  7897. case GGML_TYPE_F32:
  7898. {
  7899. ggml_compute_forward_step_f32(params, src0, dst);
  7900. } break;
  7901. default:
  7902. {
  7903. GGML_ASSERT(false);
  7904. } break;
  7905. }
  7906. }
  7907. // ggml_compute_forward_tanh
  7908. static void ggml_compute_forward_tanh_f32(
  7909. const struct ggml_compute_params * params,
  7910. const struct ggml_tensor * src0,
  7911. struct ggml_tensor * dst) {
  7912. assert(params->ith == 0);
  7913. assert(ggml_are_same_shape(src0, dst));
  7914. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7915. return;
  7916. }
  7917. const int n = ggml_nrows(src0);
  7918. const int nc = src0->ne[0];
  7919. assert(dst->nb[0] == sizeof(float));
  7920. assert(src0->nb[0] == sizeof(float));
  7921. for (int i = 0; i < n; i++) {
  7922. ggml_vec_tanh_f32(nc,
  7923. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7924. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7925. }
  7926. }
  7927. static void ggml_compute_forward_tanh(
  7928. const struct ggml_compute_params * params,
  7929. const struct ggml_tensor * src0,
  7930. struct ggml_tensor * dst) {
  7931. switch (src0->type) {
  7932. case GGML_TYPE_F32:
  7933. {
  7934. ggml_compute_forward_tanh_f32(params, src0, dst);
  7935. } break;
  7936. default:
  7937. {
  7938. GGML_ASSERT(false);
  7939. } break;
  7940. }
  7941. }
  7942. // ggml_compute_forward_elu
  7943. static void ggml_compute_forward_elu_f32(
  7944. const struct ggml_compute_params * params,
  7945. const struct ggml_tensor * src0,
  7946. struct ggml_tensor * dst) {
  7947. assert(params->ith == 0);
  7948. assert(ggml_are_same_shape(src0, dst));
  7949. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7950. return;
  7951. }
  7952. const int n = ggml_nrows(src0);
  7953. const int nc = src0->ne[0];
  7954. assert(dst->nb[0] == sizeof(float));
  7955. assert(src0->nb[0] == sizeof(float));
  7956. for (int i = 0; i < n; i++) {
  7957. ggml_vec_elu_f32(nc,
  7958. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7959. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7960. }
  7961. }
  7962. static void ggml_compute_forward_elu(
  7963. const struct ggml_compute_params * params,
  7964. const struct ggml_tensor * src0,
  7965. struct ggml_tensor * dst) {
  7966. switch (src0->type) {
  7967. case GGML_TYPE_F32:
  7968. {
  7969. ggml_compute_forward_elu_f32(params, src0, dst);
  7970. } break;
  7971. default:
  7972. {
  7973. GGML_ASSERT(false);
  7974. } break;
  7975. }
  7976. }
  7977. // ggml_compute_forward_relu
  7978. static void ggml_compute_forward_relu_f32(
  7979. const struct ggml_compute_params * params,
  7980. const struct ggml_tensor * src0,
  7981. struct ggml_tensor * dst) {
  7982. assert(params->ith == 0);
  7983. assert(ggml_are_same_shape(src0, dst));
  7984. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7985. return;
  7986. }
  7987. const int n = ggml_nrows(src0);
  7988. const int nc = src0->ne[0];
  7989. assert(dst->nb[0] == sizeof(float));
  7990. assert(src0->nb[0] == sizeof(float));
  7991. for (int i = 0; i < n; i++) {
  7992. ggml_vec_relu_f32(nc,
  7993. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7994. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7995. }
  7996. }
  7997. static void ggml_compute_forward_relu(
  7998. const struct ggml_compute_params * params,
  7999. const struct ggml_tensor * src0,
  8000. struct ggml_tensor * dst) {
  8001. switch (src0->type) {
  8002. case GGML_TYPE_F32:
  8003. {
  8004. ggml_compute_forward_relu_f32(params, src0, dst);
  8005. } break;
  8006. default:
  8007. {
  8008. GGML_ASSERT(false);
  8009. } break;
  8010. }
  8011. }
  8012. // ggml_compute_forward_gelu
  8013. static void ggml_compute_forward_gelu_f32(
  8014. const struct ggml_compute_params * params,
  8015. const struct ggml_tensor * src0,
  8016. struct ggml_tensor * dst) {
  8017. GGML_ASSERT(ggml_is_contiguous(src0));
  8018. GGML_ASSERT(ggml_is_contiguous(dst));
  8019. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8020. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8021. return;
  8022. }
  8023. const int ith = params->ith;
  8024. const int nth = params->nth;
  8025. const int nc = src0->ne[0];
  8026. const int nr = ggml_nrows(src0);
  8027. // rows per thread
  8028. const int dr = (nr + nth - 1)/nth;
  8029. // row range for this thread
  8030. const int ir0 = dr*ith;
  8031. const int ir1 = MIN(ir0 + dr, nr);
  8032. for (int i1 = ir0; i1 < ir1; i1++) {
  8033. ggml_vec_gelu_f32(nc,
  8034. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8035. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8036. #ifndef NDEBUG
  8037. for (int k = 0; k < nc; k++) {
  8038. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8039. UNUSED(x);
  8040. assert(!isnan(x));
  8041. assert(!isinf(x));
  8042. }
  8043. #endif
  8044. }
  8045. }
  8046. static void ggml_compute_forward_gelu(
  8047. const struct ggml_compute_params * params,
  8048. const struct ggml_tensor * src0,
  8049. struct ggml_tensor * dst) {
  8050. switch (src0->type) {
  8051. case GGML_TYPE_F32:
  8052. {
  8053. ggml_compute_forward_gelu_f32(params, src0, dst);
  8054. } break;
  8055. default:
  8056. {
  8057. GGML_ASSERT(false);
  8058. } break;
  8059. }
  8060. }
  8061. // ggml_compute_forward_gelu_quick
  8062. static void ggml_compute_forward_gelu_quick_f32(
  8063. const struct ggml_compute_params * params,
  8064. const struct ggml_tensor * src0,
  8065. struct ggml_tensor * dst) {
  8066. GGML_ASSERT(ggml_is_contiguous(src0));
  8067. GGML_ASSERT(ggml_is_contiguous(dst));
  8068. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8069. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8070. return;
  8071. }
  8072. const int ith = params->ith;
  8073. const int nth = params->nth;
  8074. const int nc = src0->ne[0];
  8075. const int nr = ggml_nrows(src0);
  8076. // rows per thread
  8077. const int dr = (nr + nth - 1)/nth;
  8078. // row range for this thread
  8079. const int ir0 = dr*ith;
  8080. const int ir1 = MIN(ir0 + dr, nr);
  8081. for (int i1 = ir0; i1 < ir1; i1++) {
  8082. ggml_vec_gelu_quick_f32(nc,
  8083. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8084. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8085. #ifndef NDEBUG
  8086. for (int k = 0; k < nc; k++) {
  8087. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8088. UNUSED(x);
  8089. assert(!isnan(x));
  8090. assert(!isinf(x));
  8091. }
  8092. #endif
  8093. }
  8094. }
  8095. static void ggml_compute_forward_gelu_quick(
  8096. const struct ggml_compute_params * params,
  8097. const struct ggml_tensor * src0,
  8098. struct ggml_tensor * dst) {
  8099. switch (src0->type) {
  8100. case GGML_TYPE_F32:
  8101. {
  8102. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  8103. } break;
  8104. default:
  8105. {
  8106. GGML_ASSERT(false);
  8107. } break;
  8108. }
  8109. }
  8110. // ggml_compute_forward_silu
  8111. static void ggml_compute_forward_silu_f32(
  8112. const struct ggml_compute_params * params,
  8113. const struct ggml_tensor * src0,
  8114. struct ggml_tensor * dst) {
  8115. GGML_ASSERT(ggml_is_contiguous(src0));
  8116. GGML_ASSERT(ggml_is_contiguous(dst));
  8117. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8118. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8119. return;
  8120. }
  8121. const int ith = params->ith;
  8122. const int nth = params->nth;
  8123. const int nc = src0->ne[0];
  8124. const int nr = ggml_nrows(src0);
  8125. // rows per thread
  8126. const int dr = (nr + nth - 1)/nth;
  8127. // row range for this thread
  8128. const int ir0 = dr*ith;
  8129. const int ir1 = MIN(ir0 + dr, nr);
  8130. for (int i1 = ir0; i1 < ir1; i1++) {
  8131. ggml_vec_silu_f32(nc,
  8132. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8133. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8134. #ifndef NDEBUG
  8135. for (int k = 0; k < nc; k++) {
  8136. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8137. UNUSED(x);
  8138. assert(!isnan(x));
  8139. assert(!isinf(x));
  8140. }
  8141. #endif
  8142. }
  8143. }
  8144. static void ggml_compute_forward_silu(
  8145. const struct ggml_compute_params * params,
  8146. const struct ggml_tensor * src0,
  8147. struct ggml_tensor * dst) {
  8148. switch (src0->type) {
  8149. case GGML_TYPE_F32:
  8150. {
  8151. ggml_compute_forward_silu_f32(params, src0, dst);
  8152. } break;
  8153. default:
  8154. {
  8155. GGML_ASSERT(false);
  8156. } break;
  8157. }
  8158. }
  8159. // ggml_compute_forward_silu_back
  8160. static void ggml_compute_forward_silu_back_f32(
  8161. const struct ggml_compute_params * params,
  8162. const struct ggml_tensor * src0,
  8163. const struct ggml_tensor * grad,
  8164. struct ggml_tensor * dst) {
  8165. GGML_ASSERT(ggml_is_contiguous(grad));
  8166. GGML_ASSERT(ggml_is_contiguous(src0));
  8167. GGML_ASSERT(ggml_is_contiguous(dst));
  8168. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8169. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  8170. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8171. return;
  8172. }
  8173. const int ith = params->ith;
  8174. const int nth = params->nth;
  8175. const int nc = src0->ne[0];
  8176. const int nr = ggml_nrows(src0);
  8177. // rows per thread
  8178. const int dr = (nr + nth - 1)/nth;
  8179. // row range for this thread
  8180. const int ir0 = dr*ith;
  8181. const int ir1 = MIN(ir0 + dr, nr);
  8182. for (int i1 = ir0; i1 < ir1; i1++) {
  8183. ggml_vec_silu_backward_f32(nc,
  8184. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8185. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  8186. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  8187. #ifndef NDEBUG
  8188. for (int k = 0; k < nc; k++) {
  8189. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8190. UNUSED(x);
  8191. assert(!isnan(x));
  8192. assert(!isinf(x));
  8193. }
  8194. #endif
  8195. }
  8196. }
  8197. static void ggml_compute_forward_silu_back(
  8198. const struct ggml_compute_params * params,
  8199. const struct ggml_tensor * src0,
  8200. const struct ggml_tensor * grad,
  8201. struct ggml_tensor * dst) {
  8202. switch (src0->type) {
  8203. case GGML_TYPE_F32:
  8204. {
  8205. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  8206. } break;
  8207. default:
  8208. {
  8209. GGML_ASSERT(false);
  8210. } break;
  8211. }
  8212. }
  8213. // ggml_compute_forward_norm
  8214. static void ggml_compute_forward_norm_f32(
  8215. const struct ggml_compute_params * params,
  8216. const struct ggml_tensor * src0,
  8217. struct ggml_tensor * dst) {
  8218. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8219. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8220. return;
  8221. }
  8222. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8223. const int ith = params->ith;
  8224. const int nth = params->nth;
  8225. GGML_TENSOR_UNARY_OP_LOCALS;
  8226. const float eps = 1e-5f; // TODO: make this a parameter
  8227. // TODO: optimize
  8228. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8229. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8230. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8231. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8232. ggml_float sum = 0.0;
  8233. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8234. sum += (ggml_float)x[i00];
  8235. }
  8236. float mean = sum/ne00;
  8237. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8238. ggml_float sum2 = 0.0;
  8239. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8240. float v = x[i00] - mean;
  8241. y[i00] = v;
  8242. sum2 += (ggml_float)(v*v);
  8243. }
  8244. float variance = sum2/ne00;
  8245. const float scale = 1.0f/sqrtf(variance + eps);
  8246. ggml_vec_scale_f32(ne00, y, scale);
  8247. }
  8248. }
  8249. }
  8250. }
  8251. static void ggml_compute_forward_norm(
  8252. const struct ggml_compute_params * params,
  8253. const struct ggml_tensor * src0,
  8254. struct ggml_tensor * dst) {
  8255. switch (src0->type) {
  8256. case GGML_TYPE_F32:
  8257. {
  8258. ggml_compute_forward_norm_f32(params, src0, dst);
  8259. } break;
  8260. default:
  8261. {
  8262. GGML_ASSERT(false);
  8263. } break;
  8264. }
  8265. }
  8266. static void ggml_compute_forward_rms_norm_f32(
  8267. const struct ggml_compute_params * params,
  8268. const struct ggml_tensor * src0,
  8269. struct ggml_tensor * dst) {
  8270. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8271. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8272. return;
  8273. }
  8274. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8275. const int ith = params->ith;
  8276. const int nth = params->nth;
  8277. GGML_TENSOR_UNARY_OP_LOCALS;
  8278. const float eps = 1e-6f; // TODO: make this a parameter
  8279. // TODO: optimize
  8280. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8281. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8282. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8283. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8284. ggml_float sum = 0.0;
  8285. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8286. sum += (ggml_float)(x[i00] * x[i00]);
  8287. }
  8288. const float mean = sum/ne00;
  8289. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8290. memcpy(y, x, ne00 * sizeof(float));
  8291. // for (int i00 = 0; i00 < ne00; i00++) {
  8292. // y[i00] = x[i00];
  8293. // }
  8294. const float scale = 1.0f/sqrtf(mean + eps);
  8295. ggml_vec_scale_f32(ne00, y, scale);
  8296. }
  8297. }
  8298. }
  8299. }
  8300. static void ggml_compute_forward_rms_norm(
  8301. const struct ggml_compute_params * params,
  8302. const struct ggml_tensor * src0,
  8303. struct ggml_tensor * dst) {
  8304. switch (src0->type) {
  8305. case GGML_TYPE_F32:
  8306. {
  8307. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  8308. } break;
  8309. default:
  8310. {
  8311. GGML_ASSERT(false);
  8312. } break;
  8313. }
  8314. }
  8315. static void ggml_compute_forward_rms_norm_back_f32(
  8316. const struct ggml_compute_params * params,
  8317. const struct ggml_tensor * src0,
  8318. const struct ggml_tensor * src1,
  8319. struct ggml_tensor * dst) {
  8320. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8321. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8322. return;
  8323. }
  8324. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8325. const int ith = params->ith;
  8326. const int nth = params->nth;
  8327. GGML_TENSOR_BINARY_OP_LOCALS;
  8328. const float eps = 1e-6f; // TODO: make this a parameter
  8329. // TODO: optimize
  8330. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8331. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8332. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8333. // src1 is same shape as src0 => same indices
  8334. const int64_t i11 = i01;
  8335. const int64_t i12 = i02;
  8336. const int64_t i13 = i03;
  8337. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8338. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8339. ggml_float sum_xx = 0.0;
  8340. ggml_float sum_xdz = 0.0;
  8341. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8342. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8343. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8344. }
  8345. //const float mean = (float)(sum_xx)/ne00;
  8346. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8347. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8348. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8349. // we could cache rms from forward pass to improve performance.
  8350. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8351. //const float rms = sqrtf(mean_eps);
  8352. const float rrms = 1.0f / sqrtf(mean_eps);
  8353. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8354. {
  8355. // z = rms_norm(x)
  8356. //
  8357. // rms_norm(src0) =
  8358. // scale(
  8359. // src0,
  8360. // div(
  8361. // 1,
  8362. // sqrt(
  8363. // add(
  8364. // scale(
  8365. // sum(
  8366. // sqr(
  8367. // src0)),
  8368. // (1.0/N)),
  8369. // eps))));
  8370. // postorder:
  8371. // ## op args grad
  8372. // 00 param src0 grad[#00]
  8373. // 01 const 1
  8374. // 02 sqr (#00) grad[#02]
  8375. // 03 sum (#02) grad[#03]
  8376. // 04 const 1/N
  8377. // 05 scale (#03, #04) grad[#05]
  8378. // 06 const eps
  8379. // 07 add (#05, #06) grad[#07]
  8380. // 08 sqrt (#07) grad[#08]
  8381. // 09 div (#01,#08) grad[#09]
  8382. // 10 scale (#00,#09) grad[#10]
  8383. //
  8384. // backward pass, given grad[#10]
  8385. // #10: scale
  8386. // grad[#00] += scale(grad[#10],#09)
  8387. // grad[#09] += sum(mul(grad[#10],#00))
  8388. // #09: div
  8389. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8390. // #08: sqrt
  8391. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8392. // #07: add
  8393. // grad[#05] += grad[#07]
  8394. // #05: scale
  8395. // grad[#03] += scale(grad[#05],#04)
  8396. // #03: sum
  8397. // grad[#02] += repeat(grad[#03], #02)
  8398. // #02:
  8399. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8400. //
  8401. // substitute and simplify:
  8402. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8403. // grad[#02] = repeat(grad[#03], #02)
  8404. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8405. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8406. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8407. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8408. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8409. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8410. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8411. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8412. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8413. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8414. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8415. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8416. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8417. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8418. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8419. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8420. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8421. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8422. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8423. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8424. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8425. // a = b*c + d*e
  8426. // a = b*c*f/f + d*e*f/f
  8427. // a = (b*c*f + d*e*f)*(1/f)
  8428. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8429. // a = (b + d*e/c)*c
  8430. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8431. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8432. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8433. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8434. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8435. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8436. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8437. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8438. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8439. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8440. }
  8441. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8442. // post-order:
  8443. // dx := x
  8444. // dx := scale(dx,-mean_xdz/mean_eps)
  8445. // dx := add(dx, dz)
  8446. // dx := scale(dx, rrms)
  8447. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8448. ggml_vec_cpy_f32 (ne00, dx, x);
  8449. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8450. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8451. ggml_vec_acc_f32 (ne00, dx, dz);
  8452. ggml_vec_scale_f32(ne00, dx, rrms);
  8453. }
  8454. }
  8455. }
  8456. }
  8457. static void ggml_compute_forward_rms_norm_back(
  8458. const struct ggml_compute_params * params,
  8459. const struct ggml_tensor * src0,
  8460. const struct ggml_tensor * src1,
  8461. struct ggml_tensor * dst) {
  8462. switch (src0->type) {
  8463. case GGML_TYPE_F32:
  8464. {
  8465. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  8466. } break;
  8467. default:
  8468. {
  8469. GGML_ASSERT(false);
  8470. } break;
  8471. }
  8472. }
  8473. // ggml_compute_forward_mul_mat
  8474. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8475. // helper function to determine if it is better to use BLAS or not
  8476. // for large matrices, BLAS is faster
  8477. static bool ggml_compute_forward_mul_mat_use_blas(
  8478. const struct ggml_tensor * src0,
  8479. const struct ggml_tensor * src1,
  8480. struct ggml_tensor * dst) {
  8481. //const int64_t ne00 = src0->ne[0];
  8482. //const int64_t ne01 = src0->ne[1];
  8483. const int64_t ne10 = src1->ne[0];
  8484. const int64_t ne0 = dst->ne[0];
  8485. const int64_t ne1 = dst->ne[1];
  8486. // TODO: find the optimal values for these
  8487. if (ggml_is_contiguous(src0) &&
  8488. ggml_is_contiguous(src1) &&
  8489. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8490. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8491. return true;
  8492. }
  8493. return false;
  8494. }
  8495. #endif
  8496. static void ggml_compute_forward_mul_mat(
  8497. const struct ggml_compute_params * params,
  8498. const struct ggml_tensor * src0,
  8499. const struct ggml_tensor * src1,
  8500. struct ggml_tensor * dst) {
  8501. int64_t t0 = ggml_perf_time_us();
  8502. UNUSED(t0);
  8503. GGML_TENSOR_BINARY_OP_LOCALS;
  8504. const int ith = params->ith;
  8505. const int nth = params->nth;
  8506. const enum ggml_type type = src0->type;
  8507. const bool src1_cont = ggml_is_contiguous(src1);
  8508. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8509. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8510. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8511. GGML_ASSERT(ne0 == ne01);
  8512. GGML_ASSERT(ne1 == ne11);
  8513. GGML_ASSERT(ne2 == ne12);
  8514. GGML_ASSERT(ne3 == ne13);
  8515. // we don't support permuted src0 or src1
  8516. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  8517. GGML_ASSERT(nb10 == sizeof(float));
  8518. // dst cannot be transposed or permuted
  8519. GGML_ASSERT(nb0 == sizeof(float));
  8520. GGML_ASSERT(nb0 <= nb1);
  8521. GGML_ASSERT(nb1 <= nb2);
  8522. GGML_ASSERT(nb2 <= nb3);
  8523. // nb01 >= nb00 - src0 is not transposed
  8524. // compute by src0 rows
  8525. #if defined(GGML_USE_CLBLAST)
  8526. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8527. // TODO: handle case when src0 is broadcast-able into src1 across 2nd,3rd dimension
  8528. // ref: https://github.com/ggerganov/ggml/pull/224
  8529. GGML_ASSERT(ne02 == ne12);
  8530. GGML_ASSERT(ne03 == ne13);
  8531. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8532. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8533. }
  8534. return;
  8535. }
  8536. #endif
  8537. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8538. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8539. // TODO: handle case when src0 is broadcast-able into src1 across 2nd,3rd dimension
  8540. // ref: https://github.com/ggerganov/ggml/pull/224
  8541. GGML_ASSERT(ne02 == ne12);
  8542. GGML_ASSERT(ne03 == ne13);
  8543. if (params->ith != 0) {
  8544. return;
  8545. }
  8546. if (params->type == GGML_TASK_INIT) {
  8547. return;
  8548. }
  8549. if (params->type == GGML_TASK_FINALIZE) {
  8550. return;
  8551. }
  8552. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8553. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8554. const void * x = (char *) src0->data + i03*nb03 + i02*nb02;
  8555. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8556. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8557. if (type != GGML_TYPE_F32) {
  8558. float * const wdata = params->wdata;
  8559. ggml_to_float_t const to_float = type_traits[type].to_float;
  8560. size_t id = 0;
  8561. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8562. to_float((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  8563. id += ne00;
  8564. }
  8565. assert(id*sizeof(float) <= params->wsize);
  8566. x = wdata;
  8567. }
  8568. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8569. ne11, ne01, ne10,
  8570. 1.0f, y, ne10,
  8571. x, ne00,
  8572. 0.0f, d, ne01);
  8573. }
  8574. }
  8575. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8576. return;
  8577. }
  8578. #endif
  8579. if (params->type == GGML_TASK_INIT) {
  8580. if (src1->type != vec_dot_type) {
  8581. char * wdata = params->wdata;
  8582. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8583. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8584. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8585. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8586. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8587. wdata += row_size;
  8588. }
  8589. }
  8590. }
  8591. }
  8592. return;
  8593. }
  8594. if (params->type == GGML_TASK_FINALIZE) {
  8595. return;
  8596. }
  8597. // parallelize by src0 rows
  8598. const int64_t dr = (ne01 + nth - 1)/nth;
  8599. const int64_t ir10 = dr*ith;
  8600. const int64_t ir11 = MIN(ir10 + dr, ne01);
  8601. // src1 rows
  8602. const int64_t nr1 = ne11*ne12*ne13;
  8603. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8604. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8605. for (int64_t ir1 = 0; ir1 < nr1; ++ir1) {
  8606. const int64_t i13 = (ir1/(ne12*ne11));
  8607. const int64_t i12 = (ir1 - i13*ne12*ne11)/ne11;
  8608. const int64_t i11 = (ir1 - i13*ne12*ne11 - i12*ne11);
  8609. const int64_t ir0 = (ir1/ne11)%(ne02*ne03);
  8610. const int64_t i03 = (ir0/(ne02));
  8611. // Hack for "Falcon multi-query-attention key stutter" / alternative to ggml_repeat2.
  8612. // See https://github.com/ggerganov/llama.cpp/issues/1602#issuecomment-1606087470:
  8613. // GG: this is likely the correct way to broadcast, though need some more thought
  8614. // therefore leaving the comments to remind us for now
  8615. const int64_t i02 = (i12 / (ne12 / ne02));
  8616. // Original from PR/224 (and also essential/correct for non-broadcast matmuls in Falcon)
  8617. // const int64_t i02 = (ir0 - i03*ne02);
  8618. const int64_t i1 = i11;
  8619. const int64_t i2 = i12;
  8620. const int64_t i3 = i13;
  8621. const char * src0_row = (const char *) src0->data + ( 0 + i02*nb02 + i03*nb03 );
  8622. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8623. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8624. // the original src1 data pointer, so we should index using the indices directly
  8625. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8626. const char * src1_col = (const char *) wdata +
  8627. (src1_cont || src1->type != vec_dot_type
  8628. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8629. : (i11*nb11 + i12*nb12 + i13*nb13));
  8630. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8631. for (int64_t ir = ir10; ir < ir11; ++ir) {
  8632. vec_dot(ne00, &dst_col[ir], src0_row + ir*nb01, src1_col);
  8633. }
  8634. }
  8635. //int64_t t1 = ggml_time_us();
  8636. //static int64_t acc = 0;
  8637. //acc += t1 - t0;
  8638. //if (t1 - t0 > 10) {
  8639. // printf("\n");
  8640. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8641. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8642. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8643. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8644. //}
  8645. }
  8646. // ggml_compute_forward_out_prod
  8647. static void ggml_compute_forward_out_prod_f32(
  8648. const struct ggml_compute_params * params,
  8649. const struct ggml_tensor * src0,
  8650. const struct ggml_tensor * src1,
  8651. struct ggml_tensor * dst) {
  8652. int64_t t0 = ggml_perf_time_us();
  8653. UNUSED(t0);
  8654. GGML_TENSOR_BINARY_OP_LOCALS;
  8655. const int ith = params->ith;
  8656. const int nth = params->nth;
  8657. GGML_ASSERT(ne02 == ne12);
  8658. GGML_ASSERT(ne03 == ne13);
  8659. GGML_ASSERT(ne2 == ne12);
  8660. GGML_ASSERT(ne3 == ne13);
  8661. // we don't support permuted src0 or src1
  8662. GGML_ASSERT(nb00 == sizeof(float));
  8663. // dst cannot be transposed or permuted
  8664. GGML_ASSERT(nb0 == sizeof(float));
  8665. // GGML_ASSERT(nb0 <= nb1);
  8666. // GGML_ASSERT(nb1 <= nb2);
  8667. // GGML_ASSERT(nb2 <= nb3);
  8668. GGML_ASSERT(ne0 == ne00);
  8669. GGML_ASSERT(ne1 == ne10);
  8670. GGML_ASSERT(ne2 == ne02);
  8671. GGML_ASSERT(ne3 == ne03);
  8672. // nb01 >= nb00 - src0 is not transposed
  8673. // compute by src0 rows
  8674. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8675. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8676. if (params->type == GGML_TASK_INIT) {
  8677. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8678. return;
  8679. }
  8680. if (params->type == GGML_TASK_FINALIZE) {
  8681. return;
  8682. }
  8683. // parallelize by last three dimensions
  8684. // total rows in dst
  8685. const int64_t nr = ne1*ne2*ne3;
  8686. // rows per thread
  8687. const int64_t dr = (nr + nth - 1)/nth;
  8688. // row range for this thread
  8689. const int64_t ir0 = dr*ith;
  8690. const int64_t ir1 = MIN(ir0 + dr, nr);
  8691. // dst[:,:,:,:] = 0
  8692. // for i2,i3:
  8693. // for i1:
  8694. // for i01:
  8695. // for i0:
  8696. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8697. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8698. // dst indices
  8699. const int64_t i3 = ir/(ne2*ne1);
  8700. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8701. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8702. const int64_t i02 = i2;
  8703. const int64_t i03 = i3;
  8704. //const int64_t i10 = i1;
  8705. const int64_t i12 = i2;
  8706. const int64_t i13 = i3;
  8707. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8708. const int64_t i11 = i01;
  8709. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8710. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8711. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8712. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8713. // for (int64_t i0 = 0; i0 < ne0; ++i0) {
  8714. // d[i0] += s0[i0] * s1[i1];
  8715. // }
  8716. }
  8717. }
  8718. //int64_t t1 = ggml_perf_time_us();
  8719. //static int64_t acc = 0;
  8720. //acc += t1 - t0;
  8721. //if (t1 - t0 > 10) {
  8722. // printf("\n");
  8723. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8724. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8725. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8726. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8727. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8728. //}
  8729. }
  8730. static void ggml_compute_forward_out_prod(
  8731. const struct ggml_compute_params * params,
  8732. const struct ggml_tensor * src0,
  8733. const struct ggml_tensor * src1,
  8734. struct ggml_tensor * dst) {
  8735. switch (src0->type) {
  8736. case GGML_TYPE_Q4_0:
  8737. case GGML_TYPE_Q4_1:
  8738. case GGML_TYPE_Q5_0:
  8739. case GGML_TYPE_Q5_1:
  8740. case GGML_TYPE_Q8_0:
  8741. case GGML_TYPE_Q8_1:
  8742. {
  8743. GGML_ASSERT(false); // todo
  8744. // ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8745. } break;
  8746. case GGML_TYPE_F16:
  8747. {
  8748. GGML_ASSERT(false); // todo
  8749. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8750. } break;
  8751. case GGML_TYPE_F32:
  8752. {
  8753. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8754. } break;
  8755. default:
  8756. {
  8757. GGML_ASSERT(false);
  8758. } break;
  8759. }
  8760. }
  8761. // ggml_compute_forward_scale
  8762. static void ggml_compute_forward_scale_f32(
  8763. const struct ggml_compute_params * params,
  8764. const struct ggml_tensor * src0,
  8765. const struct ggml_tensor * src1,
  8766. struct ggml_tensor * dst) {
  8767. GGML_ASSERT(ggml_is_contiguous(src0));
  8768. GGML_ASSERT(ggml_is_contiguous(dst));
  8769. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8770. GGML_ASSERT(ggml_is_scalar(src1));
  8771. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8772. return;
  8773. }
  8774. // scale factor
  8775. const float v = *(float *) src1->data;
  8776. const int ith = params->ith;
  8777. const int nth = params->nth;
  8778. const int nc = src0->ne[0];
  8779. const int nr = ggml_nrows(src0);
  8780. // rows per thread
  8781. const int dr = (nr + nth - 1)/nth;
  8782. // row range for this thread
  8783. const int ir0 = dr*ith;
  8784. const int ir1 = MIN(ir0 + dr, nr);
  8785. const size_t nb01 = src0->nb[1];
  8786. const size_t nb1 = dst->nb[1];
  8787. for (int i1 = ir0; i1 < ir1; i1++) {
  8788. if (dst->data != src0->data) {
  8789. // src0 is same shape as dst => same indices
  8790. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8791. }
  8792. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8793. }
  8794. }
  8795. static void ggml_compute_forward_scale(
  8796. const struct ggml_compute_params * params,
  8797. const struct ggml_tensor * src0,
  8798. const struct ggml_tensor * src1,
  8799. struct ggml_tensor * dst) {
  8800. switch (src0->type) {
  8801. case GGML_TYPE_F32:
  8802. {
  8803. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  8804. } break;
  8805. default:
  8806. {
  8807. GGML_ASSERT(false);
  8808. } break;
  8809. }
  8810. }
  8811. // ggml_compute_forward_set
  8812. static void ggml_compute_forward_set_f32(
  8813. const struct ggml_compute_params * params,
  8814. const struct ggml_tensor * src0,
  8815. const struct ggml_tensor * src1,
  8816. struct ggml_tensor * dst) {
  8817. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8818. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8819. // view src0 and dst with these strides and data offset inbytes during set
  8820. // nb0 is implicitely element_size because src0 and dst are contiguous
  8821. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8822. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8823. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8824. size_t offset = ((int32_t *) dst->op_params)[3];
  8825. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8826. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8827. // memcpy needs to be synchronized across threads to avoid race conditions.
  8828. // => do it in INIT phase
  8829. memcpy(
  8830. ((char *) dst->data),
  8831. ((char *) src0->data),
  8832. ggml_nbytes(dst));
  8833. }
  8834. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8835. return;
  8836. }
  8837. const int ith = params->ith;
  8838. const int nth = params->nth;
  8839. const int nr = ggml_nrows(src1);
  8840. const int nc = src1->ne[0];
  8841. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  8842. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  8843. // src0 and dst as viewed during set
  8844. const size_t nb0 = ggml_element_size(src0);
  8845. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8846. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8847. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8848. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8849. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  8850. GGML_ASSERT(nb10 == sizeof(float));
  8851. // rows per thread
  8852. const int dr = (nr + nth - 1)/nth;
  8853. // row range for this thread
  8854. const int ir0 = dr*ith;
  8855. const int ir1 = MIN(ir0 + dr, nr);
  8856. for (int ir = ir0; ir < ir1; ++ir) {
  8857. // src0 and dst are viewed with shape of src1 and offset
  8858. // => same indices
  8859. const int i3 = ir/(ne12*ne11);
  8860. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8861. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8862. ggml_vec_cpy_f32(nc,
  8863. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8864. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8865. }
  8866. }
  8867. static void ggml_compute_forward_set(
  8868. const struct ggml_compute_params * params,
  8869. const struct ggml_tensor * src0,
  8870. const struct ggml_tensor * src1,
  8871. struct ggml_tensor * dst) {
  8872. switch (src0->type) {
  8873. case GGML_TYPE_F32:
  8874. {
  8875. ggml_compute_forward_set_f32(params, src0, src1, dst);
  8876. } break;
  8877. case GGML_TYPE_F16:
  8878. case GGML_TYPE_Q4_0:
  8879. case GGML_TYPE_Q4_1:
  8880. case GGML_TYPE_Q5_0:
  8881. case GGML_TYPE_Q5_1:
  8882. case GGML_TYPE_Q8_0:
  8883. case GGML_TYPE_Q8_1:
  8884. case GGML_TYPE_Q2_K:
  8885. case GGML_TYPE_Q3_K:
  8886. case GGML_TYPE_Q4_K:
  8887. case GGML_TYPE_Q5_K:
  8888. case GGML_TYPE_Q6_K:
  8889. default:
  8890. {
  8891. GGML_ASSERT(false);
  8892. } break;
  8893. }
  8894. }
  8895. // ggml_compute_forward_cpy
  8896. static void ggml_compute_forward_cpy(
  8897. const struct ggml_compute_params * params,
  8898. const struct ggml_tensor * src0,
  8899. struct ggml_tensor * dst) {
  8900. ggml_compute_forward_dup(params, src0, dst);
  8901. }
  8902. // ggml_compute_forward_cont
  8903. static void ggml_compute_forward_cont(
  8904. const struct ggml_compute_params * params,
  8905. const struct ggml_tensor * src0,
  8906. struct ggml_tensor * dst) {
  8907. ggml_compute_forward_dup(params, src0, dst);
  8908. }
  8909. // ggml_compute_forward_reshape
  8910. static void ggml_compute_forward_reshape(
  8911. const struct ggml_compute_params * params,
  8912. const struct ggml_tensor * src0,
  8913. struct ggml_tensor * dst) {
  8914. // NOP
  8915. UNUSED(params);
  8916. UNUSED(src0);
  8917. UNUSED(dst);
  8918. }
  8919. // ggml_compute_forward_view
  8920. static void ggml_compute_forward_view(
  8921. const struct ggml_compute_params * params,
  8922. const struct ggml_tensor * src0) {
  8923. // NOP
  8924. UNUSED(params);
  8925. UNUSED(src0);
  8926. }
  8927. // ggml_compute_forward_permute
  8928. static void ggml_compute_forward_permute(
  8929. const struct ggml_compute_params * params,
  8930. const struct ggml_tensor * src0) {
  8931. // NOP
  8932. UNUSED(params);
  8933. UNUSED(src0);
  8934. }
  8935. // ggml_compute_forward_transpose
  8936. static void ggml_compute_forward_transpose(
  8937. const struct ggml_compute_params * params,
  8938. const struct ggml_tensor * src0) {
  8939. // NOP
  8940. UNUSED(params);
  8941. UNUSED(src0);
  8942. }
  8943. // ggml_compute_forward_get_rows
  8944. static void ggml_compute_forward_get_rows_q(
  8945. const struct ggml_compute_params * params,
  8946. const struct ggml_tensor * src0,
  8947. const struct ggml_tensor * src1,
  8948. struct ggml_tensor * dst) {
  8949. assert(params->ith == 0);
  8950. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8951. return;
  8952. }
  8953. const int nc = src0->ne[0];
  8954. const int nr = ggml_nelements(src1);
  8955. const enum ggml_type type = src0->type;
  8956. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8957. assert( dst->ne[0] == nc);
  8958. assert( dst->ne[1] == nr);
  8959. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  8960. for (int i = 0; i < nr; ++i) {
  8961. const int r = ((int32_t *) src1->data)[i];
  8962. dequantize_row_q(
  8963. (const void *) ((char *) src0->data + r*src0->nb[1]),
  8964. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  8965. }
  8966. }
  8967. static void ggml_compute_forward_get_rows_f16(
  8968. const struct ggml_compute_params * params,
  8969. const struct ggml_tensor * src0,
  8970. const struct ggml_tensor * src1,
  8971. struct ggml_tensor * dst) {
  8972. assert(params->ith == 0);
  8973. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8974. return;
  8975. }
  8976. const int nc = src0->ne[0];
  8977. const int nr = ggml_nelements(src1);
  8978. assert( dst->ne[0] == nc);
  8979. assert( dst->ne[1] == nr);
  8980. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8981. for (int i = 0; i < nr; ++i) {
  8982. const int r = ((int32_t *) src1->data)[i];
  8983. for (int j = 0; j < nc; ++j) {
  8984. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  8985. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  8986. }
  8987. }
  8988. }
  8989. static void ggml_compute_forward_get_rows_f32(
  8990. const struct ggml_compute_params * params,
  8991. const struct ggml_tensor * src0,
  8992. const struct ggml_tensor * src1,
  8993. struct ggml_tensor * dst) {
  8994. assert(params->ith == 0);
  8995. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8996. return;
  8997. }
  8998. const int nc = src0->ne[0];
  8999. const int nr = ggml_nelements(src1);
  9000. assert( dst->ne[0] == nc);
  9001. assert( dst->ne[1] == nr);
  9002. assert(src0->nb[0] == sizeof(float));
  9003. for (int i = 0; i < nr; ++i) {
  9004. const int r = ((int32_t *) src1->data)[i];
  9005. ggml_vec_cpy_f32(nc,
  9006. (float *) ((char *) dst->data + i*dst->nb[1]),
  9007. (float *) ((char *) src0->data + r*src0->nb[1]));
  9008. }
  9009. }
  9010. static void ggml_compute_forward_get_rows(
  9011. const struct ggml_compute_params * params,
  9012. const struct ggml_tensor * src0,
  9013. const struct ggml_tensor * src1,
  9014. struct ggml_tensor * dst) {
  9015. switch (src0->type) {
  9016. case GGML_TYPE_Q4_0:
  9017. case GGML_TYPE_Q4_1:
  9018. case GGML_TYPE_Q5_0:
  9019. case GGML_TYPE_Q5_1:
  9020. case GGML_TYPE_Q8_0:
  9021. case GGML_TYPE_Q8_1:
  9022. case GGML_TYPE_Q2_K:
  9023. case GGML_TYPE_Q3_K:
  9024. case GGML_TYPE_Q4_K:
  9025. case GGML_TYPE_Q5_K:
  9026. case GGML_TYPE_Q6_K:
  9027. {
  9028. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  9029. } break;
  9030. case GGML_TYPE_F16:
  9031. {
  9032. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  9033. } break;
  9034. case GGML_TYPE_F32:
  9035. {
  9036. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  9037. } break;
  9038. default:
  9039. {
  9040. GGML_ASSERT(false);
  9041. } break;
  9042. }
  9043. //static bool first = true;
  9044. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9045. //if (first) {
  9046. // first = false;
  9047. //} else {
  9048. // for (int k = 0; k < dst->ne[1]; ++k) {
  9049. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9050. // for (int i = 0; i < 16; ++i) {
  9051. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9052. // }
  9053. // printf("\n");
  9054. // }
  9055. // printf("\n");
  9056. // }
  9057. // printf("\n");
  9058. // exit(0);
  9059. //}
  9060. }
  9061. // ggml_compute_forward_get_rows_back
  9062. static void ggml_compute_forward_get_rows_back_f32_f16(
  9063. const struct ggml_compute_params * params,
  9064. const struct ggml_tensor * src0,
  9065. const struct ggml_tensor * src1,
  9066. const struct ggml_tensor * opt0,
  9067. struct ggml_tensor * dst) {
  9068. GGML_ASSERT(params->ith == 0);
  9069. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9070. GGML_ASSERT(ggml_is_contiguous(opt0));
  9071. GGML_ASSERT(ggml_is_contiguous(dst));
  9072. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9073. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9074. return;
  9075. }
  9076. const int nc = src0->ne[0];
  9077. const int nr = ggml_nelements(src1);
  9078. GGML_ASSERT( dst->ne[0] == nc);
  9079. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9080. for (int i = 0; i < nr; ++i) {
  9081. const int r = ((int32_t *) src1->data)[i];
  9082. for (int j = 0; j < nc; ++j) {
  9083. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9084. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9085. }
  9086. }
  9087. }
  9088. static void ggml_compute_forward_get_rows_back_f32(
  9089. const struct ggml_compute_params * params,
  9090. const struct ggml_tensor * src0,
  9091. const struct ggml_tensor * src1,
  9092. const struct ggml_tensor * opt0,
  9093. struct ggml_tensor * dst) {
  9094. GGML_ASSERT(params->ith == 0);
  9095. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9096. GGML_ASSERT(ggml_is_contiguous(opt0));
  9097. GGML_ASSERT(ggml_is_contiguous(dst));
  9098. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9099. if (params->type == GGML_TASK_INIT) {
  9100. memset(dst->data, 0, ggml_nbytes(dst));
  9101. }
  9102. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9103. return;
  9104. }
  9105. const int nc = src0->ne[0];
  9106. const int nr = ggml_nelements(src1);
  9107. GGML_ASSERT( dst->ne[0] == nc);
  9108. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9109. for (int i = 0; i < nr; ++i) {
  9110. const int r = ((int32_t *) src1->data)[i];
  9111. ggml_vec_add_f32(nc,
  9112. (float *) ((char *) dst->data + r*dst->nb[1]),
  9113. (float *) ((char *) dst->data + r*dst->nb[1]),
  9114. (float *) ((char *) src0->data + i*src0->nb[1]));
  9115. }
  9116. }
  9117. static void ggml_compute_forward_get_rows_back(
  9118. const struct ggml_compute_params * params,
  9119. const struct ggml_tensor * src0,
  9120. const struct ggml_tensor * src1,
  9121. const struct ggml_tensor * opt0,
  9122. struct ggml_tensor * dst) {
  9123. switch (src0->type) {
  9124. case GGML_TYPE_F16:
  9125. {
  9126. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  9127. } break;
  9128. case GGML_TYPE_F32:
  9129. {
  9130. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  9131. } break;
  9132. default:
  9133. {
  9134. GGML_ASSERT(false);
  9135. } break;
  9136. }
  9137. //static bool first = true;
  9138. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9139. //if (first) {
  9140. // first = false;
  9141. //} else {
  9142. // for (int k = 0; k < dst->ne[1]; ++k) {
  9143. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9144. // for (int i = 0; i < 16; ++i) {
  9145. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9146. // }
  9147. // printf("\n");
  9148. // }
  9149. // printf("\n");
  9150. // }
  9151. // printf("\n");
  9152. // exit(0);
  9153. //}
  9154. }
  9155. // ggml_compute_forward_diag
  9156. static void ggml_compute_forward_diag_f32(
  9157. const struct ggml_compute_params * params,
  9158. const struct ggml_tensor * src0,
  9159. struct ggml_tensor * dst) {
  9160. GGML_ASSERT(params->ith == 0);
  9161. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9162. return;
  9163. }
  9164. // TODO: handle transposed/permuted matrices
  9165. GGML_TENSOR_UNARY_OP_LOCALS;
  9166. GGML_ASSERT(ne00 == ne0);
  9167. GGML_ASSERT(ne00 == ne1);
  9168. GGML_ASSERT(ne01 == 1);
  9169. GGML_ASSERT(ne02 == ne2);
  9170. GGML_ASSERT(ne03 == ne3);
  9171. GGML_ASSERT(nb00 == sizeof(float));
  9172. GGML_ASSERT(nb0 == sizeof(float));
  9173. for (int i3 = 0; i3 < ne3; i3++) {
  9174. for (int i2 = 0; i2 < ne2; i2++) {
  9175. for (int i1 = 0; i1 < ne1; i1++) {
  9176. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9177. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9178. for (int i0 = 0; i0 < i1; i0++) {
  9179. d[i0] = 0;
  9180. }
  9181. d[i1] = s[i1];
  9182. for (int i0 = i1+1; i0 < ne0; i0++) {
  9183. d[i0] = 0;
  9184. }
  9185. }
  9186. }
  9187. }
  9188. }
  9189. static void ggml_compute_forward_diag(
  9190. const struct ggml_compute_params * params,
  9191. const struct ggml_tensor * src0,
  9192. struct ggml_tensor * dst) {
  9193. switch (src0->type) {
  9194. case GGML_TYPE_F32:
  9195. {
  9196. ggml_compute_forward_diag_f32(params, src0, dst);
  9197. } break;
  9198. default:
  9199. {
  9200. GGML_ASSERT(false);
  9201. } break;
  9202. }
  9203. }
  9204. // ggml_compute_forward_diag_mask_inf
  9205. static void ggml_compute_forward_diag_mask_f32(
  9206. const struct ggml_compute_params * params,
  9207. const struct ggml_tensor * src0,
  9208. struct ggml_tensor * dst,
  9209. const float value) {
  9210. const int ith = params->ith;
  9211. const int nth = params->nth;
  9212. const int n_past = ((int32_t *) dst->op_params)[0];
  9213. const bool inplace = (bool)((int32_t *) dst->op_params)[1];
  9214. GGML_ASSERT(n_past >= 0);
  9215. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9216. // memcpy needs to be synchronized across threads to avoid race conditions.
  9217. // => do it in INIT phase
  9218. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9219. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9220. memcpy(
  9221. ((char *) dst->data),
  9222. ((char *) src0->data),
  9223. ggml_nbytes(dst));
  9224. }
  9225. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9226. return;
  9227. }
  9228. // TODO: handle transposed/permuted matrices
  9229. const int n = ggml_nrows(src0);
  9230. const int nc = src0->ne[0];
  9231. const int nr = src0->ne[1];
  9232. const int nz = n/nr;
  9233. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9234. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9235. for (int k = 0; k < nz; k++) {
  9236. for (int j = ith; j < nr; j += nth) {
  9237. for (int i = n_past; i < nc; i++) {
  9238. if (i > n_past + j) {
  9239. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9240. }
  9241. }
  9242. }
  9243. }
  9244. }
  9245. static void ggml_compute_forward_diag_mask_inf(
  9246. const struct ggml_compute_params * params,
  9247. const struct ggml_tensor * src0,
  9248. struct ggml_tensor * dst) {
  9249. switch (src0->type) {
  9250. case GGML_TYPE_F32:
  9251. {
  9252. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  9253. } break;
  9254. default:
  9255. {
  9256. GGML_ASSERT(false);
  9257. } break;
  9258. }
  9259. }
  9260. static void ggml_compute_forward_diag_mask_zero(
  9261. const struct ggml_compute_params * params,
  9262. const struct ggml_tensor * src0,
  9263. struct ggml_tensor * dst) {
  9264. switch (src0->type) {
  9265. case GGML_TYPE_F32:
  9266. {
  9267. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  9268. } break;
  9269. default:
  9270. {
  9271. GGML_ASSERT(false);
  9272. } break;
  9273. }
  9274. }
  9275. // ggml_compute_forward_soft_max
  9276. static void ggml_compute_forward_soft_max_f32(
  9277. const struct ggml_compute_params * params,
  9278. const struct ggml_tensor * src0,
  9279. struct ggml_tensor * dst) {
  9280. GGML_ASSERT(ggml_is_contiguous(src0));
  9281. GGML_ASSERT(ggml_is_contiguous(dst));
  9282. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9283. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9284. return;
  9285. }
  9286. // TODO: handle transposed/permuted matrices
  9287. const int ith = params->ith;
  9288. const int nth = params->nth;
  9289. const int nc = src0->ne[0];
  9290. const int nr = ggml_nrows(src0);
  9291. // rows per thread
  9292. const int dr = (nr + nth - 1)/nth;
  9293. // row range for this thread
  9294. const int ir0 = dr*ith;
  9295. const int ir1 = MIN(ir0 + dr, nr);
  9296. for (int i1 = ir0; i1 < ir1; i1++) {
  9297. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9298. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9299. #ifndef NDEBUG
  9300. for (int i = 0; i < nc; ++i) {
  9301. //printf("p[%d] = %f\n", i, p[i]);
  9302. assert(!isnan(sp[i]));
  9303. }
  9304. #endif
  9305. float max = -INFINITY;
  9306. ggml_vec_max_f32(nc, &max, sp);
  9307. ggml_float sum = 0.0;
  9308. uint16_t scvt;
  9309. for (int i = 0; i < nc; i++) {
  9310. if (sp[i] == -INFINITY) {
  9311. dp[i] = 0.0f;
  9312. } else {
  9313. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  9314. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  9315. memcpy(&scvt, &s, sizeof(scvt));
  9316. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  9317. sum += (ggml_float)val;
  9318. dp[i] = val;
  9319. }
  9320. }
  9321. assert(sum > 0.0);
  9322. sum = 1.0/sum;
  9323. ggml_vec_scale_f32(nc, dp, sum);
  9324. #ifndef NDEBUG
  9325. for (int i = 0; i < nc; ++i) {
  9326. assert(!isnan(dp[i]));
  9327. assert(!isinf(dp[i]));
  9328. }
  9329. #endif
  9330. }
  9331. }
  9332. static void ggml_compute_forward_soft_max(
  9333. const struct ggml_compute_params * params,
  9334. const struct ggml_tensor * src0,
  9335. struct ggml_tensor * dst) {
  9336. switch (src0->type) {
  9337. case GGML_TYPE_F32:
  9338. {
  9339. ggml_compute_forward_soft_max_f32(params, src0, dst);
  9340. } break;
  9341. default:
  9342. {
  9343. GGML_ASSERT(false);
  9344. } break;
  9345. }
  9346. }
  9347. // ggml_compute_forward_soft_max_back
  9348. static void ggml_compute_forward_soft_max_back_f32(
  9349. const struct ggml_compute_params * params,
  9350. const struct ggml_tensor * src0,
  9351. const struct ggml_tensor * src1,
  9352. struct ggml_tensor * dst) {
  9353. GGML_ASSERT(ggml_is_contiguous(src0));
  9354. GGML_ASSERT(ggml_is_contiguous(src1));
  9355. GGML_ASSERT(ggml_is_contiguous(dst));
  9356. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9357. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9358. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9359. return;
  9360. }
  9361. // TODO: handle transposed/permuted matrices
  9362. const int ith = params->ith;
  9363. const int nth = params->nth;
  9364. const int nc = src0->ne[0];
  9365. const int nr = ggml_nrows(src0);
  9366. // rows per thread
  9367. const int dr = (nr + nth - 1)/nth;
  9368. // row range for this thread
  9369. const int ir0 = dr*ith;
  9370. const int ir1 = MIN(ir0 + dr, nr);
  9371. for (int i1 = ir0; i1 < ir1; i1++) {
  9372. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9373. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9374. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9375. #ifndef NDEBUG
  9376. for (int i = 0; i < nc; ++i) {
  9377. //printf("p[%d] = %f\n", i, p[i]);
  9378. assert(!isnan(dy[i]));
  9379. assert(!isnan(y[i]));
  9380. }
  9381. #endif
  9382. // Jii = yi - yi*yi
  9383. // Jij = -yi*yj
  9384. // J = diag(y)-y.T*y
  9385. // dx = J * dy
  9386. // dxk = sum_i(Jki * dyi)
  9387. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9388. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9389. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9390. // dxk = -yk * dot(y, dy) + yk*dyk
  9391. // dxk = yk * (- dot(y, dy) + dyk)
  9392. // dxk = yk * (dyk - dot(y, dy))
  9393. //
  9394. // post-order:
  9395. // dot_y_dy := dot(y, dy)
  9396. // dx := dy
  9397. // dx := dx - dot_y_dy
  9398. // dx := dx * y
  9399. // linear runtime, no additional memory
  9400. float dot_y_dy = 0;
  9401. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  9402. ggml_vec_cpy_f32 (nc, dx, dy);
  9403. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9404. ggml_vec_mul_f32 (nc, dx, dx, y);
  9405. #ifndef NDEBUG
  9406. for (int i = 0; i < nc; ++i) {
  9407. assert(!isnan(dx[i]));
  9408. assert(!isinf(dx[i]));
  9409. }
  9410. #endif
  9411. }
  9412. }
  9413. static void ggml_compute_forward_soft_max_back(
  9414. const struct ggml_compute_params * params,
  9415. const struct ggml_tensor * src0,
  9416. const struct ggml_tensor * src1,
  9417. struct ggml_tensor * dst) {
  9418. switch (src0->type) {
  9419. case GGML_TYPE_F32:
  9420. {
  9421. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  9422. } break;
  9423. default:
  9424. {
  9425. GGML_ASSERT(false);
  9426. } break;
  9427. }
  9428. }
  9429. // ggml_compute_forward_alibi
  9430. static void ggml_compute_forward_alibi_f32(
  9431. const struct ggml_compute_params * params,
  9432. const struct ggml_tensor * src0,
  9433. struct ggml_tensor * dst) {
  9434. assert(params->ith == 0);
  9435. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9436. return;
  9437. }
  9438. const int n_past = ((int32_t *) dst->op_params)[0];
  9439. const int n_head = ((int32_t *) dst->op_params)[1];
  9440. float max_bias;
  9441. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9442. assert(n_past >= 0);
  9443. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9444. const int ne1 = src0->ne[1]; // seq_len_without_past
  9445. const int ne2 = src0->ne[2]; // n_head -> this is k
  9446. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9447. const int n = ggml_nrows(src0);
  9448. const int ne2_ne3 = n/ne1; // ne2*ne3
  9449. const int nb0 = src0->nb[0];
  9450. const int nb1 = src0->nb[1];
  9451. const int nb2 = src0->nb[2];
  9452. //const int nb3 = src0->nb[3];
  9453. GGML_ASSERT(nb0 == sizeof(float));
  9454. GGML_ASSERT(ne1 + n_past == ne0);
  9455. GGML_ASSERT(n_head == ne2);
  9456. // add alibi to src0 (KQ_scaled)
  9457. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9458. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9459. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9460. for (int i = 0; i < ne0; i++) {
  9461. for (int j = 0; j < ne1; j++) {
  9462. for (int k = 0; k < ne2_ne3; k++) {
  9463. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9464. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9465. // TODO: k*nb2 or k*nb3
  9466. float m_k;
  9467. if (k < n_heads_log2_floor) {
  9468. m_k = powf(m0, k + 1);
  9469. } else {
  9470. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9471. }
  9472. pdst[0] = i * m_k + src[0];
  9473. }
  9474. }
  9475. }
  9476. }
  9477. static void ggml_compute_forward_alibi_f16(
  9478. const struct ggml_compute_params * params,
  9479. const struct ggml_tensor * src0,
  9480. struct ggml_tensor * dst) {
  9481. assert(params->ith == 0);
  9482. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9483. return;
  9484. }
  9485. const int n_past = ((int32_t *) dst->op_params)[0];
  9486. const int n_head = ((int32_t *) dst->op_params)[1];
  9487. float max_bias;
  9488. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9489. assert(n_past >= 0);
  9490. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9491. const int ne1 = src0->ne[1]; // seq_len_without_past
  9492. const int ne2 = src0->ne[2]; // n_head -> this is k
  9493. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9494. const int n = ggml_nrows(src0);
  9495. const int ne2_ne3 = n/ne1; // ne2*ne3
  9496. const int nb0 = src0->nb[0];
  9497. const int nb1 = src0->nb[1];
  9498. const int nb2 = src0->nb[2];
  9499. //const int nb3 = src0->nb[3];
  9500. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9501. GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  9502. GGML_ASSERT(n_head == ne2);
  9503. // add alibi to src0 (KQ_scaled)
  9504. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9505. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9506. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9507. for (int i = 0; i < ne0; i++) {
  9508. for (int j = 0; j < ne1; j++) {
  9509. for (int k = 0; k < ne2_ne3; k++) {
  9510. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9511. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9512. // TODO: k*nb2 or k*nb3
  9513. float m_k;
  9514. if (k < n_heads_log2_floor) {
  9515. m_k = powf(m0, k + 1);
  9516. } else {
  9517. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9518. }
  9519. // we return F32
  9520. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  9521. }
  9522. }
  9523. }
  9524. }
  9525. static void ggml_compute_forward_alibi(
  9526. const struct ggml_compute_params * params,
  9527. const struct ggml_tensor * src0,
  9528. struct ggml_tensor * dst) {
  9529. switch (src0->type) {
  9530. case GGML_TYPE_F16:
  9531. {
  9532. ggml_compute_forward_alibi_f16(params, src0, dst);
  9533. } break;
  9534. case GGML_TYPE_F32:
  9535. {
  9536. ggml_compute_forward_alibi_f32(params, src0, dst);
  9537. } break;
  9538. case GGML_TYPE_Q4_0:
  9539. case GGML_TYPE_Q4_1:
  9540. case GGML_TYPE_Q5_0:
  9541. case GGML_TYPE_Q5_1:
  9542. case GGML_TYPE_Q8_0:
  9543. case GGML_TYPE_Q8_1:
  9544. case GGML_TYPE_Q2_K:
  9545. case GGML_TYPE_Q3_K:
  9546. case GGML_TYPE_Q4_K:
  9547. case GGML_TYPE_Q5_K:
  9548. case GGML_TYPE_Q6_K:
  9549. case GGML_TYPE_Q8_K:
  9550. case GGML_TYPE_I8:
  9551. case GGML_TYPE_I16:
  9552. case GGML_TYPE_I32:
  9553. case GGML_TYPE_COUNT:
  9554. {
  9555. GGML_ASSERT(false);
  9556. } break;
  9557. }
  9558. }
  9559. // ggml_compute_forward_clamp
  9560. static void ggml_compute_forward_clamp_f32(
  9561. const struct ggml_compute_params * params,
  9562. const struct ggml_tensor * src0,
  9563. struct ggml_tensor * dst) {
  9564. assert(params->ith == 0);
  9565. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9566. return;
  9567. }
  9568. float min;
  9569. float max;
  9570. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  9571. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  9572. const int ith = params->ith;
  9573. const int nth = params->nth;
  9574. const int n = ggml_nrows(src0);
  9575. const int nc = src0->ne[0];
  9576. const size_t nb00 = src0->nb[0];
  9577. const size_t nb01 = src0->nb[1];
  9578. const size_t nb0 = dst->nb[0];
  9579. const size_t nb1 = dst->nb[1];
  9580. GGML_ASSERT( nb0 == sizeof(float));
  9581. GGML_ASSERT(nb00 == sizeof(float));
  9582. for (int j = ith; j < n; j += nth) {
  9583. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9584. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9585. for (int i = 0; i < nc; i++) {
  9586. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9587. }
  9588. }
  9589. }
  9590. static void ggml_compute_forward_clamp(
  9591. const struct ggml_compute_params * params,
  9592. const struct ggml_tensor * src0,
  9593. struct ggml_tensor * dst) {
  9594. switch (src0->type) {
  9595. case GGML_TYPE_F32:
  9596. {
  9597. ggml_compute_forward_clamp_f32(params, src0, dst);
  9598. } break;
  9599. case GGML_TYPE_F16:
  9600. case GGML_TYPE_Q4_0:
  9601. case GGML_TYPE_Q4_1:
  9602. case GGML_TYPE_Q5_0:
  9603. case GGML_TYPE_Q5_1:
  9604. case GGML_TYPE_Q8_0:
  9605. case GGML_TYPE_Q8_1:
  9606. case GGML_TYPE_Q2_K:
  9607. case GGML_TYPE_Q3_K:
  9608. case GGML_TYPE_Q4_K:
  9609. case GGML_TYPE_Q5_K:
  9610. case GGML_TYPE_Q6_K:
  9611. case GGML_TYPE_Q8_K:
  9612. case GGML_TYPE_I8:
  9613. case GGML_TYPE_I16:
  9614. case GGML_TYPE_I32:
  9615. case GGML_TYPE_COUNT:
  9616. {
  9617. GGML_ASSERT(false);
  9618. } break;
  9619. }
  9620. }
  9621. // ggml_compute_forward_rope
  9622. static void ggml_compute_forward_rope_f32(
  9623. const struct ggml_compute_params * params,
  9624. const struct ggml_tensor * src0,
  9625. struct ggml_tensor * dst) {
  9626. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9627. return;
  9628. }
  9629. float freq_base;
  9630. float freq_scale;
  9631. const int n_past = ((int32_t *) dst->op_params)[0];
  9632. const int n_dims = ((int32_t *) dst->op_params)[1];
  9633. const int mode = ((int32_t *) dst->op_params)[2];
  9634. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9635. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  9636. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  9637. assert(n_past >= 0);
  9638. GGML_TENSOR_UNARY_OP_LOCALS;
  9639. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9640. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9641. GGML_ASSERT(nb00 == sizeof(float));
  9642. const int ith = params->ith;
  9643. const int nth = params->nth;
  9644. const int nr = ggml_nrows(dst);
  9645. GGML_ASSERT(n_dims <= ne0);
  9646. GGML_ASSERT(n_dims % 2 == 0);
  9647. // rows per thread
  9648. const int dr = (nr + nth - 1)/nth;
  9649. // row range for this thread
  9650. const int ir0 = dr*ith;
  9651. const int ir1 = MIN(ir0 + dr, nr);
  9652. // row index used to determine which thread to use
  9653. int ir = 0;
  9654. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9655. const bool is_neox = mode & 2;
  9656. const bool is_glm = mode & 4;
  9657. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9658. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9659. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9660. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9661. if (ir++ < ir0) continue;
  9662. if (ir > ir1) break;
  9663. float theta = freq_scale * (float)p;
  9664. if (is_glm) {
  9665. theta = MIN(p, n_ctx - 2);
  9666. float block_theta = MAX(p - (n_ctx - 2), 0);
  9667. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9668. const float cos_theta = cosf(theta);
  9669. const float sin_theta = sinf(theta);
  9670. const float cos_block_theta = cosf(block_theta);
  9671. const float sin_block_theta = sinf(block_theta);
  9672. theta *= theta_scale;
  9673. block_theta *= theta_scale;
  9674. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9675. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9676. const float x0 = src[0];
  9677. const float x1 = src[n_dims/2];
  9678. const float x2 = src[n_dims];
  9679. const float x3 = src[n_dims/2*3];
  9680. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9681. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9682. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  9683. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  9684. }
  9685. } else if (!is_neox) {
  9686. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9687. const float cos_theta = cosf(theta);
  9688. const float sin_theta = sinf(theta);
  9689. theta *= theta_scale;
  9690. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9691. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9692. const float x0 = src[0];
  9693. const float x1 = src[1];
  9694. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9695. dst_data[1] = x0*sin_theta + x1*cos_theta;
  9696. }
  9697. } else {
  9698. // TODO: this is probably wrong, but I can't figure it out ..
  9699. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9700. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9701. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9702. const float cos_theta = cosf(theta);
  9703. const float sin_theta = sinf(theta);
  9704. theta *= theta_scale;
  9705. const int64_t i0 = ib*n_dims + ic/2;
  9706. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9707. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9708. const float x0 = src[0];
  9709. const float x1 = src[n_dims/2];
  9710. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9711. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9712. }
  9713. }
  9714. }
  9715. }
  9716. }
  9717. }
  9718. }
  9719. static void ggml_compute_forward_rope_f16(
  9720. const struct ggml_compute_params * params,
  9721. const struct ggml_tensor * src0,
  9722. struct ggml_tensor * dst) {
  9723. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9724. return;
  9725. }
  9726. float freq_base;
  9727. float freq_scale;
  9728. const int n_past = ((int32_t *) dst->op_params)[0];
  9729. const int n_dims = ((int32_t *) dst->op_params)[1];
  9730. const int mode = ((int32_t *) dst->op_params)[2];
  9731. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9732. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  9733. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  9734. assert(n_past >= 0);
  9735. GGML_TENSOR_UNARY_OP_LOCALS;
  9736. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9737. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9738. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9739. const int ith = params->ith;
  9740. const int nth = params->nth;
  9741. const int nr = ggml_nrows(dst);
  9742. GGML_ASSERT(n_dims <= ne0);
  9743. GGML_ASSERT(n_dims % 2 == 0);
  9744. // rows per thread
  9745. const int dr = (nr + nth - 1)/nth;
  9746. // row range for this thread
  9747. const int ir0 = dr*ith;
  9748. const int ir1 = MIN(ir0 + dr, nr);
  9749. // row index used to determine which thread to use
  9750. int ir = 0;
  9751. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9752. const bool is_neox = mode & 2;
  9753. const bool is_glm = mode & 4;
  9754. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9755. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9756. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9757. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9758. if (ir++ < ir0) continue;
  9759. if (ir > ir1) break;
  9760. float theta = freq_scale * (float)p;
  9761. if (is_glm) {
  9762. theta = MIN(p, n_ctx - 2);
  9763. float block_theta = MAX(p - (n_ctx - 2), 0);
  9764. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9765. const float cos_theta = cosf(theta);
  9766. const float sin_theta = sinf(theta);
  9767. const float cos_block_theta = cosf(block_theta);
  9768. const float sin_block_theta = sinf(block_theta);
  9769. theta *= theta_scale;
  9770. block_theta *= theta_scale;
  9771. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9772. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9773. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9774. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9775. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  9776. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  9777. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9778. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9779. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  9780. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  9781. }
  9782. } if (!is_neox) {
  9783. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9784. const float cos_theta = cosf(theta);
  9785. const float sin_theta = sinf(theta);
  9786. theta *= theta_scale;
  9787. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9788. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9789. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9790. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9791. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9792. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9793. }
  9794. } else {
  9795. // TODO: this is probably wrong, but I can't figure it out ..
  9796. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9797. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9798. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9799. const float cos_theta = cosf(theta);
  9800. const float sin_theta = sinf(theta);
  9801. theta *= theta_scale;
  9802. const int64_t i0 = ib*n_dims + ic/2;
  9803. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9804. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9805. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9806. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9807. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9808. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9809. }
  9810. }
  9811. }
  9812. }
  9813. }
  9814. }
  9815. }
  9816. static void ggml_compute_forward_rope(
  9817. const struct ggml_compute_params * params,
  9818. const struct ggml_tensor * src0,
  9819. struct ggml_tensor * dst) {
  9820. switch (src0->type) {
  9821. case GGML_TYPE_F16:
  9822. {
  9823. ggml_compute_forward_rope_f16(params, src0, dst);
  9824. } break;
  9825. case GGML_TYPE_F32:
  9826. {
  9827. ggml_compute_forward_rope_f32(params, src0, dst);
  9828. } break;
  9829. default:
  9830. {
  9831. GGML_ASSERT(false);
  9832. } break;
  9833. }
  9834. }
  9835. // ggml_compute_forward_rope_back
  9836. static void ggml_compute_forward_rope_back_f32(
  9837. const struct ggml_compute_params * params,
  9838. const struct ggml_tensor * src0,
  9839. struct ggml_tensor * dst) {
  9840. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9841. return;
  9842. }
  9843. // y = rope(x, src1)
  9844. // dx = rope_back(dy, src1)
  9845. // src0 is dy, src1 contains options
  9846. const int n_past = ((int32_t *) dst->op_params)[0];
  9847. const int n_dims = ((int32_t *) dst->op_params)[1];
  9848. const int mode = ((int32_t *) dst->op_params)[2];
  9849. assert(n_past >= 0);
  9850. GGML_TENSOR_UNARY_OP_LOCALS;
  9851. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9852. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9853. assert(nb0 == sizeof(float));
  9854. const int ith = params->ith;
  9855. const int nth = params->nth;
  9856. const int nr = ggml_nrows(dst);
  9857. // rows per thread
  9858. const int dr = (nr + nth - 1)/nth;
  9859. // row range for this thread
  9860. const int ir0 = dr*ith;
  9861. const int ir1 = MIN(ir0 + dr, nr);
  9862. // row index used to determine which thread to use
  9863. int ir = 0;
  9864. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9865. const bool is_neox = mode & 2;
  9866. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9867. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9868. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9869. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9870. if (ir++ < ir0) continue;
  9871. if (ir > ir1) break;
  9872. float theta = (float)p;
  9873. if (!is_neox) {
  9874. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9875. const float cos_theta = cosf(theta);
  9876. const float sin_theta = sinf(theta);
  9877. theta *= theta_scale;
  9878. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9879. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9880. const float dy0 = dy[0];
  9881. const float dy1 = dy[1];
  9882. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9883. dx[1] = - dy0*sin_theta + dy1*cos_theta;
  9884. }
  9885. } else {
  9886. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9887. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9888. const float cos_theta = cosf(theta);
  9889. const float sin_theta = sinf(theta);
  9890. theta *= theta_scale;
  9891. const int64_t i0 = ib*n_dims + ic/2;
  9892. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9893. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9894. const float dy0 = dy[0];
  9895. const float dy1 = dy[n_dims/2];
  9896. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9897. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  9898. }
  9899. }
  9900. }
  9901. }
  9902. }
  9903. }
  9904. }
  9905. static void ggml_compute_forward_rope_back_f16(
  9906. const struct ggml_compute_params * params,
  9907. const struct ggml_tensor * src0,
  9908. struct ggml_tensor * dst) {
  9909. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9910. return;
  9911. }
  9912. // y = rope(x, src1)
  9913. // dx = rope_back(dy, src1)
  9914. // src0 is dy, src1 contains options
  9915. const int n_past = ((int32_t *) dst->op_params)[0];
  9916. const int n_dims = ((int32_t *) dst->op_params)[1];
  9917. const int mode = ((int32_t *) dst->op_params)[2];
  9918. assert(n_past >= 0);
  9919. GGML_TENSOR_UNARY_OP_LOCALS;
  9920. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9921. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9922. assert(nb0 == sizeof(ggml_fp16_t));
  9923. const int ith = params->ith;
  9924. const int nth = params->nth;
  9925. const int nr = ggml_nrows(dst);
  9926. // rows per thread
  9927. const int dr = (nr + nth - 1)/nth;
  9928. // row range for this thread
  9929. const int ir0 = dr*ith;
  9930. const int ir1 = MIN(ir0 + dr, nr);
  9931. // row index used to determine which thread to use
  9932. int ir = 0;
  9933. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9934. const bool is_neox = mode & 2;
  9935. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9936. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9937. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9938. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9939. if (ir++ < ir0) continue;
  9940. if (ir > ir1) break;
  9941. float theta = (float)p;
  9942. if (!is_neox) {
  9943. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9944. const float cos_theta = cosf(theta);
  9945. const float sin_theta = sinf(theta);
  9946. theta *= theta_scale;
  9947. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9948. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9949. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9950. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  9951. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9952. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9953. }
  9954. } else {
  9955. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9956. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9957. const float cos_theta = cosf(theta);
  9958. const float sin_theta = sinf(theta);
  9959. theta *= theta_scale;
  9960. const int64_t i0 = ib*n_dims + ic/2;
  9961. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9962. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9963. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9964. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  9965. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9966. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9967. }
  9968. }
  9969. }
  9970. }
  9971. }
  9972. }
  9973. }
  9974. static void ggml_compute_forward_rope_back(
  9975. const struct ggml_compute_params * params,
  9976. const struct ggml_tensor * src0,
  9977. struct ggml_tensor * dst) {
  9978. switch (src0->type) {
  9979. case GGML_TYPE_F16:
  9980. {
  9981. ggml_compute_forward_rope_back_f16(params, src0, dst);
  9982. } break;
  9983. case GGML_TYPE_F32:
  9984. {
  9985. ggml_compute_forward_rope_back_f32(params, src0, dst);
  9986. } break;
  9987. default:
  9988. {
  9989. GGML_ASSERT(false);
  9990. } break;
  9991. }
  9992. }
  9993. // ggml_compute_forward_conv_1d
  9994. static void ggml_compute_forward_conv_1d_s1_ph_f16_f32(
  9995. const struct ggml_compute_params * params,
  9996. const struct ggml_tensor * src0,
  9997. const struct ggml_tensor * src1,
  9998. struct ggml_tensor * dst) {
  9999. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10000. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10001. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10002. int64_t t0 = ggml_perf_time_us();
  10003. UNUSED(t0);
  10004. GGML_TENSOR_BINARY_OP_LOCALS;
  10005. const int ith = params->ith;
  10006. const int nth = params->nth;
  10007. const int nk = ne00;
  10008. const int nh = nk/2;
  10009. const int ew0 = ggml_up32(ne01);
  10010. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10011. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10012. GGML_ASSERT(nb10 == sizeof(float));
  10013. if (params->type == GGML_TASK_INIT) {
  10014. // TODO: fix this memset (wsize is overestimated)
  10015. memset(params->wdata, 0, params->wsize);
  10016. // prepare kernel data (src0)
  10017. {
  10018. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10019. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10020. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10021. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10022. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10023. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10024. dst_data[i00*ew0 + i01] = src[i00];
  10025. }
  10026. }
  10027. }
  10028. }
  10029. // prepare source data (src1)
  10030. {
  10031. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10032. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10033. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10034. ggml_fp16_t * dst_data = wdata;
  10035. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10036. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10037. }
  10038. }
  10039. }
  10040. return;
  10041. }
  10042. if (params->type == GGML_TASK_FINALIZE) {
  10043. return;
  10044. }
  10045. // total rows in dst
  10046. const int nr = ne02;
  10047. // rows per thread
  10048. const int dr = (nr + nth - 1)/nth;
  10049. // row range for this thread
  10050. const int ir0 = dr*ith;
  10051. const int ir1 = MIN(ir0 + dr, nr);
  10052. for (int i1 = ir0; i1 < ir1; i1++) {
  10053. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10054. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10055. dst_data[i0] = 0;
  10056. for (int k = -nh; k <= nh; k++) {
  10057. float v = 0.0f;
  10058. ggml_vec_dot_f16(ew0, &v,
  10059. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10060. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10061. dst_data[i0] += v;
  10062. }
  10063. }
  10064. }
  10065. }
  10066. static void ggml_compute_forward_conv_1d_s1_ph_f32(
  10067. const struct ggml_compute_params * params,
  10068. const struct ggml_tensor * src0,
  10069. const struct ggml_tensor * src1,
  10070. struct ggml_tensor * dst) {
  10071. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10072. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10073. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10074. int64_t t0 = ggml_perf_time_us();
  10075. UNUSED(t0);
  10076. GGML_TENSOR_BINARY_OP_LOCALS;
  10077. const int ith = params->ith;
  10078. const int nth = params->nth;
  10079. const int nk = ne00;
  10080. const int nh = nk/2;
  10081. const int ew0 = ggml_up32(ne01);
  10082. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10083. GGML_ASSERT(nb00 == sizeof(float));
  10084. GGML_ASSERT(nb10 == sizeof(float));
  10085. if (params->type == GGML_TASK_INIT) {
  10086. // TODO: fix this memset (wsize is overestimated)
  10087. memset(params->wdata, 0, params->wsize);
  10088. // prepare kernel data (src0)
  10089. {
  10090. float * const wdata = (float *) params->wdata + 0;
  10091. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10092. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10093. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10094. float * dst_data = wdata + i02*ew0*ne00;
  10095. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10096. dst_data[i00*ew0 + i01] = src[i00];
  10097. }
  10098. }
  10099. }
  10100. }
  10101. // prepare source data (src1)
  10102. {
  10103. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10104. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10105. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10106. float * dst_data = wdata;
  10107. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10108. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10109. }
  10110. }
  10111. }
  10112. return;
  10113. }
  10114. if (params->type == GGML_TASK_FINALIZE) {
  10115. return;
  10116. }
  10117. // total rows in dst
  10118. const int nr = ne02;
  10119. // rows per thread
  10120. const int dr = (nr + nth - 1)/nth;
  10121. // row range for this thread
  10122. const int ir0 = dr*ith;
  10123. const int ir1 = MIN(ir0 + dr, nr);
  10124. for (int i1 = ir0; i1 < ir1; i1++) {
  10125. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10126. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10127. dst_data[i0] = 0;
  10128. for (int k = -nh; k <= nh; k++) {
  10129. float v = 0.0f;
  10130. ggml_vec_dot_f32(ew0, &v,
  10131. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10132. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10133. dst_data[i0] += v;
  10134. }
  10135. }
  10136. }
  10137. }
  10138. static void ggml_compute_forward_conv_1d_s1_ph(
  10139. const struct ggml_compute_params * params,
  10140. const struct ggml_tensor * src0,
  10141. const struct ggml_tensor * src1,
  10142. struct ggml_tensor * dst) {
  10143. switch (src0->type) {
  10144. case GGML_TYPE_F16:
  10145. {
  10146. ggml_compute_forward_conv_1d_s1_ph_f16_f32(params, src0, src1, dst);
  10147. } break;
  10148. case GGML_TYPE_F32:
  10149. {
  10150. ggml_compute_forward_conv_1d_s1_ph_f32(params, src0, src1, dst);
  10151. } break;
  10152. default:
  10153. {
  10154. GGML_ASSERT(false);
  10155. } break;
  10156. }
  10157. }
  10158. static void ggml_compute_forward_conv_1d_s2_ph_f16_f32(
  10159. const struct ggml_compute_params * params,
  10160. const struct ggml_tensor * src0,
  10161. const struct ggml_tensor * src1,
  10162. struct ggml_tensor * dst) {
  10163. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10164. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10165. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10166. int64_t t0 = ggml_perf_time_us();
  10167. UNUSED(t0);
  10168. GGML_TENSOR_BINARY_OP_LOCALS;
  10169. const int ith = params->ith;
  10170. const int nth = params->nth;
  10171. const int nk = ne00;
  10172. const int nh = nk/2;
  10173. const int ew0 = ggml_up32(ne01);
  10174. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10175. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10176. GGML_ASSERT(nb10 == sizeof(float));
  10177. if (params->type == GGML_TASK_INIT) {
  10178. // TODO: fix this memset (wsize is overestimated)
  10179. memset(params->wdata, 0, params->wsize);
  10180. // prepare kernel data (src0)
  10181. {
  10182. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10183. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10184. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10185. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10186. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10187. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10188. dst_data[i00*ew0 + i01] = src[i00];
  10189. }
  10190. }
  10191. }
  10192. }
  10193. // prepare source data (src1)
  10194. {
  10195. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10196. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10197. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10198. ggml_fp16_t * dst_data = wdata;
  10199. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10200. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10201. }
  10202. }
  10203. }
  10204. return;
  10205. }
  10206. if (params->type == GGML_TASK_FINALIZE) {
  10207. return;
  10208. }
  10209. // total rows in dst
  10210. const int nr = ne02;
  10211. // rows per thread
  10212. const int dr = (nr + nth - 1)/nth;
  10213. // row range for this thread
  10214. const int ir0 = dr*ith;
  10215. const int ir1 = MIN(ir0 + dr, nr);
  10216. for (int i1 = ir0; i1 < ir1; i1++) {
  10217. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10218. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10219. dst_data[i0/2] = 0;
  10220. for (int k = -nh; k <= nh; k++) {
  10221. float v = 0.0f;
  10222. ggml_vec_dot_f16(ew0, &v,
  10223. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10224. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10225. dst_data[i0/2] += v;
  10226. }
  10227. }
  10228. }
  10229. }
  10230. static void ggml_compute_forward_conv_1d_s2_ph_f32(
  10231. const struct ggml_compute_params * params,
  10232. const struct ggml_tensor * src0,
  10233. const struct ggml_tensor * src1,
  10234. struct ggml_tensor * dst) {
  10235. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10236. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10237. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10238. int64_t t0 = ggml_perf_time_us();
  10239. UNUSED(t0);
  10240. GGML_TENSOR_BINARY_OP_LOCALS;
  10241. const int ith = params->ith;
  10242. const int nth = params->nth;
  10243. const int nk = ne00;
  10244. const int nh = nk/2;
  10245. const int ew0 = ggml_up32(ne01);
  10246. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10247. GGML_ASSERT(nb00 == sizeof(float));
  10248. GGML_ASSERT(nb10 == sizeof(float));
  10249. if (params->type == GGML_TASK_INIT) {
  10250. // TODO: fix this memset (wsize is overestimated)
  10251. memset(params->wdata, 0, params->wsize);
  10252. // prepare kernel data (src0)
  10253. {
  10254. float * const wdata = (float *) params->wdata + 0;
  10255. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10256. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10257. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10258. float * dst_data = wdata + i02*ew0*ne00;
  10259. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10260. dst_data[i00*ew0 + i01] = src[i00];
  10261. }
  10262. }
  10263. }
  10264. }
  10265. // prepare source data (src1)
  10266. {
  10267. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10268. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10269. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10270. float * dst_data = wdata;
  10271. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10272. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10273. }
  10274. }
  10275. }
  10276. return;
  10277. }
  10278. if (params->type == GGML_TASK_FINALIZE) {
  10279. return;
  10280. }
  10281. // total rows in dst
  10282. const int nr = ne02;
  10283. // rows per thread
  10284. const int dr = (nr + nth - 1)/nth;
  10285. // row range for this thread
  10286. const int ir0 = dr*ith;
  10287. const int ir1 = MIN(ir0 + dr, nr);
  10288. for (int i1 = ir0; i1 < ir1; i1++) {
  10289. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10290. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10291. dst_data[i0/2] = 0;
  10292. for (int k = -nh; k <= nh; k++) {
  10293. float v = 0.0f;
  10294. ggml_vec_dot_f32(ew0, &v,
  10295. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10296. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10297. dst_data[i0/2] += v;
  10298. }
  10299. }
  10300. }
  10301. }
  10302. static void ggml_compute_forward_conv_1d_s2_ph(
  10303. const struct ggml_compute_params * params,
  10304. const struct ggml_tensor * src0,
  10305. const struct ggml_tensor * src1,
  10306. struct ggml_tensor * dst) {
  10307. switch (src0->type) {
  10308. case GGML_TYPE_F16:
  10309. {
  10310. ggml_compute_forward_conv_1d_s2_ph_f16_f32(params, src0, src1, dst);
  10311. } break;
  10312. case GGML_TYPE_F32:
  10313. {
  10314. ggml_compute_forward_conv_1d_s2_ph_f32(params, src0, src1, dst);
  10315. } break;
  10316. default:
  10317. {
  10318. GGML_ASSERT(false);
  10319. } break;
  10320. }
  10321. }
  10322. // ggml_compute_forward_conv_1d
  10323. static void ggml_compute_forward_conv_1d(
  10324. const struct ggml_compute_params * params,
  10325. const struct ggml_tensor * src0,
  10326. const struct ggml_tensor * src1,
  10327. struct ggml_tensor * dst) {
  10328. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10329. const int32_t p0 = ((const int32_t*)(dst->op_params))[1];
  10330. const int32_t d0 = ((const int32_t*)(dst->op_params))[2];
  10331. GGML_ASSERT(d0 == 1); // dilation not supported
  10332. GGML_ASSERT(p0 == src0->ne[0]/2); // only half padding supported
  10333. if (s0 == 1) {
  10334. ggml_compute_forward_conv_1d_s1_ph(params, src0, src1, dst);
  10335. } else if (s0 == 2) {
  10336. ggml_compute_forward_conv_1d_s2_ph(params, src0, src1, dst);
  10337. } else {
  10338. GGML_ASSERT(false); // only stride 1 and 2 supported
  10339. };
  10340. }
  10341. // ggml_compute_forward_conv_2d
  10342. static void ggml_compute_forward_conv_2d_f16_f32(
  10343. const struct ggml_compute_params * params,
  10344. const struct ggml_tensor * src0,
  10345. const struct ggml_tensor * src1,
  10346. struct ggml_tensor * dst) {
  10347. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10348. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10349. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10350. int64_t t0 = ggml_perf_time_us();
  10351. UNUSED(t0);
  10352. GGML_TENSOR_BINARY_OP_LOCALS;
  10353. const int ith = params->ith;
  10354. const int nth = params->nth;
  10355. const int nk0 = ne00;
  10356. const int nk1 = ne01;
  10357. // size of the convolution row - the kernel size unrolled across all channels
  10358. const int ew0 = nk0*nk1*ne02;
  10359. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10360. const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
  10361. const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
  10362. const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
  10363. const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
  10364. const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
  10365. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10366. GGML_ASSERT(nb10 == sizeof(float));
  10367. if (params->type == GGML_TASK_INIT) {
  10368. memset(params->wdata, 0, params->wsize);
  10369. // prepare source data (src1)
  10370. {
  10371. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10372. for (int i12 = 0; i12 < ne12; i12++) {
  10373. const float * const src = (float *)((char *) src1->data + i12*nb12);
  10374. ggml_fp16_t * dst_data = wdata;
  10375. for (int i1 = 0; i1 < ne1; i1++) {
  10376. for (int i0 = 0; i0 < ne0; i0++) {
  10377. for (int ik1 = 0; ik1 < nk1; ik1++) {
  10378. for (int ik0 = 0; ik0 < nk0; ik0++) {
  10379. const int idx0 = i0*s0 + ik0*d0 - p0;
  10380. const int idx1 = i1*s1 + ik1*d1 - p1;
  10381. if (!(idx1 < 0 || idx1 >= ne11 || idx0 < 0 || idx0 >= ne10)) {
  10382. dst_data[(i1*ne0 + i0)*ew0 + i12*(nk0*nk1) + ik1*nk0 + ik0] =
  10383. GGML_FP32_TO_FP16(src[idx1*ne10 + idx0]);
  10384. }
  10385. }
  10386. }
  10387. }
  10388. }
  10389. }
  10390. }
  10391. return;
  10392. }
  10393. if (params->type == GGML_TASK_FINALIZE) {
  10394. return;
  10395. }
  10396. // total patches in dst
  10397. const int np = ne2;
  10398. // patches per thread
  10399. const int dp = (np + nth - 1)/nth;
  10400. // patch range for this thread
  10401. const int ip0 = dp*ith;
  10402. const int ip1 = MIN(ip0 + dp, np);
  10403. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10404. for (int i3 = 0; i3 < ne3; i3++) {
  10405. for (int i2 = ip0; i2 < ip1; i2++) {
  10406. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2);
  10407. for (int i1 = 0; i1 < ne1; ++i1) {
  10408. for (int i0 = 0; i0 < ne0; ++i0) {
  10409. ggml_vec_dot_f16(ew0, dst_data + i1*ne0 + i0,
  10410. (ggml_fp16_t *) ((char *) src0->data + i2*nb03),
  10411. (ggml_fp16_t *) wdata + i3*nb3 + (i1*ne0 + i0)*ew0);
  10412. }
  10413. }
  10414. }
  10415. }
  10416. }
  10417. static void ggml_compute_forward_conv_2d(
  10418. const struct ggml_compute_params * params,
  10419. const struct ggml_tensor * src0,
  10420. const struct ggml_tensor * src1,
  10421. struct ggml_tensor * dst) {
  10422. switch (src0->type) {
  10423. case GGML_TYPE_F16:
  10424. {
  10425. ggml_compute_forward_conv_2d_f16_f32(params, src0, src1, dst);
  10426. } break;
  10427. case GGML_TYPE_F32:
  10428. {
  10429. //ggml_compute_forward_conv_2d_f32(params, src0, src1, dst);
  10430. GGML_ASSERT(false);
  10431. } break;
  10432. default:
  10433. {
  10434. GGML_ASSERT(false);
  10435. } break;
  10436. }
  10437. }
  10438. // ggml_compute_forward_pool_1d_sk_p0
  10439. static void ggml_compute_forward_pool_1d_sk_p0(
  10440. const struct ggml_compute_params * params,
  10441. const enum ggml_op_pool op,
  10442. const struct ggml_tensor * src,
  10443. const int k,
  10444. struct ggml_tensor * dst) {
  10445. assert(src->type == GGML_TYPE_F32);
  10446. assert(params->ith == 0);
  10447. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10448. return;
  10449. }
  10450. const char * cdata = (const char *)src->data;
  10451. const char * const data_end = cdata + ggml_nbytes(src);
  10452. float * drow = (float *)dst->data;
  10453. const int64_t rs = dst->ne[0];
  10454. while (cdata < data_end) {
  10455. const float * const srow = (const float *)cdata;
  10456. int j = 0;
  10457. for (int64_t i = 0; i < rs; ++i) {
  10458. switch (op) {
  10459. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  10460. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  10461. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10462. }
  10463. for (int ki = 0; ki < k; ++ki) {
  10464. switch (op) {
  10465. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  10466. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  10467. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10468. }
  10469. ++j;
  10470. }
  10471. switch (op) {
  10472. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  10473. case GGML_OP_POOL_MAX: break;
  10474. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10475. }
  10476. }
  10477. cdata += src->nb[1];
  10478. drow += rs;
  10479. }
  10480. }
  10481. // ggml_compute_forward_pool_1d
  10482. static void ggml_compute_forward_pool_1d(
  10483. const struct ggml_compute_params * params,
  10484. const struct ggml_tensor * src0,
  10485. struct ggml_tensor * dst) {
  10486. const int32_t* opts = (const int32_t*)dst->op_params;
  10487. enum ggml_op_pool op = opts[0];
  10488. const int k0 = opts[1];
  10489. const int s0 = opts[2];
  10490. const int p0 = opts[3];
  10491. GGML_ASSERT(p0 == 0); // padding not supported
  10492. GGML_ASSERT(k0 == s0); // only s = k supported
  10493. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  10494. }
  10495. // ggml_compute_forward_pool_2d_sk_p0
  10496. static void ggml_compute_forward_pool_2d_sk_p0(
  10497. const struct ggml_compute_params * params,
  10498. const enum ggml_op_pool op,
  10499. const struct ggml_tensor * src,
  10500. const int k0,
  10501. const int k1,
  10502. struct ggml_tensor * dst) {
  10503. assert(src->type == GGML_TYPE_F32);
  10504. assert(params->ith == 0);
  10505. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10506. return;
  10507. }
  10508. const char * cdata = (const char*)src->data;
  10509. const char * const data_end = cdata + ggml_nbytes(src);
  10510. const int64_t px = dst->ne[0];
  10511. const int64_t py = dst->ne[1];
  10512. const int64_t pa = px * py;
  10513. float * dplane = (float *)dst->data;
  10514. const int ka = k0 * k1;
  10515. while (cdata < data_end) {
  10516. for (int oy = 0; oy < py; ++oy) {
  10517. float * const drow = dplane + oy * px;
  10518. for (int ox = 0; ox < px; ++ox) {
  10519. float * const out = drow + ox;
  10520. switch (op) {
  10521. case GGML_OP_POOL_AVG: *out = 0; break;
  10522. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  10523. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10524. }
  10525. const int ix = ox * k0;
  10526. const int iy = oy * k1;
  10527. for (int ky = 0; ky < k1; ++ky) {
  10528. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  10529. for (int kx = 0; kx < k0; ++kx) {
  10530. int j = ix + kx;
  10531. switch (op) {
  10532. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  10533. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  10534. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10535. }
  10536. }
  10537. }
  10538. switch (op) {
  10539. case GGML_OP_POOL_AVG: *out /= ka; break;
  10540. case GGML_OP_POOL_MAX: break;
  10541. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10542. }
  10543. }
  10544. }
  10545. cdata += src->nb[2];
  10546. dplane += pa;
  10547. }
  10548. }
  10549. // ggml_compute_forward_pool_2d
  10550. static void ggml_compute_forward_pool_2d(
  10551. const struct ggml_compute_params * params,
  10552. const struct ggml_tensor * src0,
  10553. struct ggml_tensor * dst) {
  10554. const int32_t * opts = (const int32_t *)dst->op_params;
  10555. enum ggml_op_pool op = opts[0];
  10556. const int k0 = opts[1];
  10557. const int k1 = opts[2];
  10558. const int s0 = opts[3];
  10559. const int s1 = opts[4];
  10560. const int p0 = opts[5];
  10561. const int p1 = opts[6];
  10562. GGML_ASSERT(p0 == 0);
  10563. GGML_ASSERT(p1 == 0); // padding not supported
  10564. GGML_ASSERT(k0 == s0);
  10565. GGML_ASSERT(k1 == s1); // only s = k supported
  10566. ggml_compute_forward_pool_2d_sk_p0(params, op, src0, k0, k1, dst);
  10567. }
  10568. // ggml_compute_forward_flash_attn
  10569. static void ggml_compute_forward_flash_attn_f32(
  10570. const struct ggml_compute_params * params,
  10571. const struct ggml_tensor * q,
  10572. const struct ggml_tensor * k,
  10573. const struct ggml_tensor * v,
  10574. const bool masked,
  10575. struct ggml_tensor * dst) {
  10576. int64_t t0 = ggml_perf_time_us();
  10577. UNUSED(t0);
  10578. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  10579. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  10580. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  10581. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  10582. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  10583. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  10584. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  10585. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  10586. const int ith = params->ith;
  10587. const int nth = params->nth;
  10588. const int64_t D = neq0;
  10589. const int64_t N = neq1;
  10590. const int64_t P = nek1 - N;
  10591. const int64_t M = P + N;
  10592. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10593. GGML_ASSERT(ne0 == D);
  10594. GGML_ASSERT(ne1 == N);
  10595. GGML_ASSERT(P >= 0);
  10596. GGML_ASSERT(nbq0 == sizeof(float));
  10597. GGML_ASSERT(nbk0 == sizeof(float));
  10598. GGML_ASSERT(nbv0 == sizeof(float));
  10599. GGML_ASSERT(neq0 == D);
  10600. GGML_ASSERT(nek0 == D);
  10601. GGML_ASSERT(nev1 == D);
  10602. GGML_ASSERT(neq1 == N);
  10603. GGML_ASSERT(nek1 == N + P);
  10604. GGML_ASSERT(nev1 == D);
  10605. // dst cannot be transposed or permuted
  10606. GGML_ASSERT(nb0 == sizeof(float));
  10607. GGML_ASSERT(nb0 <= nb1);
  10608. GGML_ASSERT(nb1 <= nb2);
  10609. GGML_ASSERT(nb2 <= nb3);
  10610. if (params->type == GGML_TASK_INIT) {
  10611. return;
  10612. }
  10613. if (params->type == GGML_TASK_FINALIZE) {
  10614. return;
  10615. }
  10616. // parallelize by q rows using ggml_vec_dot_f32
  10617. // total rows in q
  10618. const int nr = neq1*neq2*neq3;
  10619. // rows per thread
  10620. const int dr = (nr + nth - 1)/nth;
  10621. // row range for this thread
  10622. const int ir0 = dr*ith;
  10623. const int ir1 = MIN(ir0 + dr, nr);
  10624. const float scale = 1.0f/sqrtf(D);
  10625. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10626. for (int ir = ir0; ir < ir1; ++ir) {
  10627. // q indices
  10628. const int iq3 = ir/(neq2*neq1);
  10629. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10630. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10631. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10632. for (int i = M; i < Mup; ++i) {
  10633. S[i] = -INFINITY;
  10634. }
  10635. for (int64_t ic = 0; ic < nek1; ++ic) {
  10636. // k indices
  10637. const int ik3 = iq3;
  10638. const int ik2 = iq2;
  10639. const int ik1 = ic;
  10640. // S indices
  10641. const int i1 = ik1;
  10642. ggml_vec_dot_f32(neq0,
  10643. S + i1,
  10644. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10645. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10646. }
  10647. // scale
  10648. ggml_vec_scale_f32(nek1, S, scale);
  10649. if (masked) {
  10650. for (int64_t i = P; i < M; i++) {
  10651. if (i > P + iq1) {
  10652. S[i] = -INFINITY;
  10653. }
  10654. }
  10655. }
  10656. // softmax
  10657. {
  10658. float max = -INFINITY;
  10659. ggml_vec_max_f32(M, &max, S);
  10660. ggml_float sum = 0.0;
  10661. {
  10662. #ifdef GGML_SOFT_MAX_ACCELERATE
  10663. max = -max;
  10664. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10665. vvexpf(S, S, &Mup);
  10666. ggml_vec_sum_f32(Mup, &sum, S);
  10667. #else
  10668. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10669. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10670. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10671. float * SS = S + i;
  10672. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10673. if (SS[j] == -INFINITY) {
  10674. SS[j] = 0.0f;
  10675. } else {
  10676. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10677. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10678. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10679. sump[j] += (ggml_float)val;
  10680. SS[j] = val;
  10681. }
  10682. }
  10683. }
  10684. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10685. sum += sump[i];
  10686. }
  10687. #endif
  10688. }
  10689. assert(sum > 0.0);
  10690. sum = 1.0/sum;
  10691. ggml_vec_scale_f32(M, S, sum);
  10692. #ifndef NDEBUG
  10693. for (int i = 0; i < M; ++i) {
  10694. assert(!isnan(S[i]));
  10695. assert(!isinf(S[i]));
  10696. }
  10697. #endif
  10698. }
  10699. for (int64_t ic = 0; ic < nev1; ++ic) {
  10700. // dst indices
  10701. const int i1 = iq1;
  10702. const int i2 = iq2;
  10703. const int i3 = iq3;
  10704. ggml_vec_dot_f32(nek1,
  10705. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10706. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10707. S);
  10708. }
  10709. }
  10710. }
  10711. static void ggml_compute_forward_flash_attn_f16(
  10712. const struct ggml_compute_params * params,
  10713. const struct ggml_tensor * q,
  10714. const struct ggml_tensor * k,
  10715. const struct ggml_tensor * v,
  10716. const bool masked,
  10717. struct ggml_tensor * dst) {
  10718. int64_t t0 = ggml_perf_time_us();
  10719. UNUSED(t0);
  10720. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  10721. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  10722. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  10723. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  10724. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  10725. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  10726. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  10727. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  10728. const int ith = params->ith;
  10729. const int nth = params->nth;
  10730. const int64_t D = neq0;
  10731. const int64_t N = neq1;
  10732. const int64_t P = nek1 - N;
  10733. const int64_t M = P + N;
  10734. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10735. GGML_ASSERT(ne0 == D);
  10736. GGML_ASSERT(ne1 == N);
  10737. GGML_ASSERT(P >= 0);
  10738. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10739. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10740. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10741. GGML_ASSERT(neq0 == D);
  10742. GGML_ASSERT(nek0 == D);
  10743. GGML_ASSERT(nev1 == D);
  10744. GGML_ASSERT(neq1 == N);
  10745. GGML_ASSERT(nek1 == N + P);
  10746. GGML_ASSERT(nev1 == D);
  10747. // dst cannot be transposed or permuted
  10748. GGML_ASSERT(nb0 == sizeof(float));
  10749. GGML_ASSERT(nb0 <= nb1);
  10750. GGML_ASSERT(nb1 <= nb2);
  10751. GGML_ASSERT(nb2 <= nb3);
  10752. if (params->type == GGML_TASK_INIT) {
  10753. return;
  10754. }
  10755. if (params->type == GGML_TASK_FINALIZE) {
  10756. return;
  10757. }
  10758. // parallelize by q rows using ggml_vec_dot_f32
  10759. // total rows in q
  10760. const int nr = neq1*neq2*neq3;
  10761. // rows per thread
  10762. const int dr = (nr + nth - 1)/nth;
  10763. // row range for this thread
  10764. const int ir0 = dr*ith;
  10765. const int ir1 = MIN(ir0 + dr, nr);
  10766. const float scale = 1.0f/sqrtf(D);
  10767. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10768. for (int ir = ir0; ir < ir1; ++ir) {
  10769. // q indices
  10770. const int iq3 = ir/(neq2*neq1);
  10771. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10772. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10773. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10774. for (int i = M; i < Mup; ++i) {
  10775. S[i] = -INFINITY;
  10776. }
  10777. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10778. for (int64_t ic = 0; ic < nek1; ++ic) {
  10779. // k indices
  10780. const int ik3 = iq3;
  10781. const int ik2 = iq2;
  10782. const int ik1 = ic;
  10783. // S indices
  10784. const int i1 = ik1;
  10785. ggml_vec_dot_f16(neq0,
  10786. S + i1,
  10787. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10788. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10789. }
  10790. } else {
  10791. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10792. // k indices
  10793. const int ik3 = iq3;
  10794. const int ik2 = iq2;
  10795. const int ik1 = ic;
  10796. // S indices
  10797. const int i1 = ik1;
  10798. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10799. S + i1,
  10800. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10801. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10802. }
  10803. }
  10804. // scale
  10805. ggml_vec_scale_f32(nek1, S, scale);
  10806. if (masked) {
  10807. for (int64_t i = P; i < M; i++) {
  10808. if (i > P + iq1) {
  10809. S[i] = -INFINITY;
  10810. }
  10811. }
  10812. }
  10813. // softmax
  10814. {
  10815. float max = -INFINITY;
  10816. ggml_vec_max_f32(M, &max, S);
  10817. ggml_float sum = 0.0;
  10818. {
  10819. #ifdef GGML_SOFT_MAX_ACCELERATE
  10820. max = -max;
  10821. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10822. vvexpf(S, S, &Mup);
  10823. ggml_vec_sum_f32(Mup, &sum, S);
  10824. #else
  10825. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10826. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10827. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10828. float * SS = S + i;
  10829. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10830. if (SS[j] == -INFINITY) {
  10831. SS[j] = 0.0f;
  10832. } else {
  10833. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10834. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10835. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10836. sump[j] += (ggml_float)val;
  10837. SS[j] = val;
  10838. }
  10839. }
  10840. }
  10841. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10842. sum += sump[i];
  10843. }
  10844. #endif
  10845. }
  10846. assert(sum > 0.0);
  10847. sum = 1.0/sum;
  10848. ggml_vec_scale_f32(M, S, sum);
  10849. #ifndef NDEBUG
  10850. for (int i = 0; i < M; ++i) {
  10851. assert(!isnan(S[i]));
  10852. assert(!isinf(S[i]));
  10853. }
  10854. #endif
  10855. }
  10856. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10857. for (int64_t i = 0; i < M; i++) {
  10858. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10859. }
  10860. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10861. for (int64_t ic = 0; ic < nev1; ++ic) {
  10862. // dst indices
  10863. const int i1 = iq1;
  10864. const int i2 = iq2;
  10865. const int i3 = iq3;
  10866. ggml_vec_dot_f16(nek1,
  10867. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10868. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10869. S16);
  10870. }
  10871. } else {
  10872. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10873. // dst indices
  10874. const int i1 = iq1;
  10875. const int i2 = iq2;
  10876. const int i3 = iq3;
  10877. ggml_vec_dot_f16_unroll(nek1, nbv1,
  10878. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10879. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10880. S16);
  10881. }
  10882. }
  10883. }
  10884. }
  10885. static void ggml_compute_forward_flash_attn(
  10886. const struct ggml_compute_params * params,
  10887. const struct ggml_tensor * q,
  10888. const struct ggml_tensor * k,
  10889. const struct ggml_tensor * v,
  10890. const bool masked,
  10891. struct ggml_tensor * dst) {
  10892. switch (q->type) {
  10893. case GGML_TYPE_F16:
  10894. {
  10895. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  10896. } break;
  10897. case GGML_TYPE_F32:
  10898. {
  10899. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  10900. } break;
  10901. default:
  10902. {
  10903. GGML_ASSERT(false);
  10904. } break;
  10905. }
  10906. }
  10907. // ggml_compute_forward_flash_ff
  10908. static void ggml_compute_forward_flash_ff_f16(
  10909. const struct ggml_compute_params * params,
  10910. const struct ggml_tensor * a, // F16
  10911. const struct ggml_tensor * b0, // F16 fc_w
  10912. const struct ggml_tensor * b1, // F32 fc_b
  10913. const struct ggml_tensor * c0, // F16 proj_w
  10914. const struct ggml_tensor * c1, // F32 proj_b
  10915. struct ggml_tensor * dst) {
  10916. int64_t t0 = ggml_perf_time_us();
  10917. UNUSED(t0);
  10918. GGML_TENSOR_LOCALS(int64_t, nea, a, ne);
  10919. GGML_TENSOR_LOCALS(size_t, nba, a, nb);
  10920. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne);
  10921. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb);
  10922. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne);
  10923. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb);
  10924. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne);
  10925. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb);
  10926. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne);
  10927. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb);
  10928. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  10929. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  10930. const int ith = params->ith;
  10931. const int nth = params->nth;
  10932. const int64_t D = nea0;
  10933. //const int64_t N = nea1;
  10934. const int64_t M = neb01;
  10935. GGML_ASSERT(ne0 == nea0);
  10936. GGML_ASSERT(ne1 == nea1);
  10937. GGML_ASSERT(ne2 == nea2);
  10938. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  10939. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  10940. GGML_ASSERT(nbb10 == sizeof(float));
  10941. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  10942. GGML_ASSERT(nbc10 == sizeof(float));
  10943. GGML_ASSERT(neb00 == D);
  10944. GGML_ASSERT(neb01 == M);
  10945. GGML_ASSERT(neb10 == M);
  10946. GGML_ASSERT(neb11 == 1);
  10947. GGML_ASSERT(nec00 == M);
  10948. GGML_ASSERT(nec01 == D);
  10949. GGML_ASSERT(nec10 == D);
  10950. GGML_ASSERT(nec11 == 1);
  10951. // dst cannot be transposed or permuted
  10952. GGML_ASSERT(nb0 == sizeof(float));
  10953. GGML_ASSERT(nb0 <= nb1);
  10954. GGML_ASSERT(nb1 <= nb2);
  10955. GGML_ASSERT(nb2 <= nb3);
  10956. if (params->type == GGML_TASK_INIT) {
  10957. return;
  10958. }
  10959. if (params->type == GGML_TASK_FINALIZE) {
  10960. return;
  10961. }
  10962. // parallelize by a rows using ggml_vec_dot_f32
  10963. // total rows in a
  10964. const int nr = nea1*nea2*nea3;
  10965. // rows per thread
  10966. const int dr = (nr + nth - 1)/nth;
  10967. // row range for this thread
  10968. const int ir0 = dr*ith;
  10969. const int ir1 = MIN(ir0 + dr, nr);
  10970. for (int ir = ir0; ir < ir1; ++ir) {
  10971. // a indices
  10972. const int ia3 = ir/(nea2*nea1);
  10973. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  10974. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  10975. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  10976. for (int64_t ic = 0; ic < neb01; ++ic) {
  10977. // b0 indices
  10978. const int ib03 = ia3;
  10979. const int ib02 = ia2;
  10980. const int ib01 = ic;
  10981. // S indices
  10982. const int i1 = ib01;
  10983. ggml_vec_dot_f16(nea0,
  10984. S + i1,
  10985. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  10986. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  10987. }
  10988. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  10989. //ggml_vec_gelu_f32(neb01, S, S);
  10990. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  10991. for (int64_t i = 0; i < M; i++) {
  10992. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10993. }
  10994. ggml_vec_gelu_f16(neb01, S16, S16);
  10995. {
  10996. // dst indices
  10997. const int i1 = ia1;
  10998. const int i2 = ia2;
  10999. const int i3 = ia3;
  11000. for (int64_t ic = 0; ic < nec01; ++ic) {
  11001. ggml_vec_dot_f16(neb01,
  11002. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11003. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  11004. S16);
  11005. }
  11006. ggml_vec_add_f32(nec01,
  11007. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11008. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11009. (float *) c1->data);
  11010. }
  11011. }
  11012. }
  11013. static void ggml_compute_forward_flash_ff(
  11014. const struct ggml_compute_params * params,
  11015. const struct ggml_tensor * a,
  11016. const struct ggml_tensor * b0,
  11017. const struct ggml_tensor * b1,
  11018. const struct ggml_tensor * c0,
  11019. const struct ggml_tensor * c1,
  11020. struct ggml_tensor * dst) {
  11021. switch (b0->type) {
  11022. case GGML_TYPE_F16:
  11023. {
  11024. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  11025. } break;
  11026. case GGML_TYPE_F32:
  11027. {
  11028. GGML_ASSERT(false); // TODO
  11029. } break;
  11030. default:
  11031. {
  11032. GGML_ASSERT(false);
  11033. } break;
  11034. }
  11035. }
  11036. // ggml_compute_forward_flash_attn_back
  11037. static void ggml_compute_forward_flash_attn_back_f32(
  11038. const struct ggml_compute_params * params,
  11039. const struct ggml_tensor * q,
  11040. const struct ggml_tensor * k,
  11041. const struct ggml_tensor * v,
  11042. const struct ggml_tensor * d,
  11043. const bool masked,
  11044. struct ggml_tensor * dst) {
  11045. int64_t t0 = ggml_perf_time_us();
  11046. UNUSED(t0);
  11047. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  11048. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  11049. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  11050. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  11051. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  11052. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  11053. GGML_TENSOR_LOCALS(int64_t, ned, d, ne);
  11054. GGML_TENSOR_LOCALS(size_t, nbd, d, nb);
  11055. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11056. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11057. const int ith = params->ith;
  11058. const int nth = params->nth;
  11059. const int64_t D = neq0;
  11060. const int64_t N = neq1;
  11061. const int64_t P = nek1 - N;
  11062. const int64_t M = P + N;
  11063. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11064. const int mxDM = MAX(D, Mup);
  11065. // GGML_ASSERT(ne0 == D);
  11066. // GGML_ASSERT(ne1 == N);
  11067. GGML_ASSERT(P >= 0);
  11068. GGML_ASSERT(nbq0 == sizeof(float));
  11069. GGML_ASSERT(nbk0 == sizeof(float));
  11070. GGML_ASSERT(nbv0 == sizeof(float));
  11071. GGML_ASSERT(neq0 == D);
  11072. GGML_ASSERT(nek0 == D);
  11073. GGML_ASSERT(nev1 == D);
  11074. GGML_ASSERT(ned0 == D);
  11075. GGML_ASSERT(neq1 == N);
  11076. GGML_ASSERT(nek1 == N + P);
  11077. GGML_ASSERT(nev1 == D);
  11078. GGML_ASSERT(ned1 == N);
  11079. // dst cannot be transposed or permuted
  11080. GGML_ASSERT(nb0 == sizeof(float));
  11081. GGML_ASSERT(nb0 <= nb1);
  11082. GGML_ASSERT(nb1 <= nb2);
  11083. GGML_ASSERT(nb2 <= nb3);
  11084. if (params->type == GGML_TASK_INIT) {
  11085. if (ith == 0) {
  11086. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11087. }
  11088. return;
  11089. }
  11090. if (params->type == GGML_TASK_FINALIZE) {
  11091. return;
  11092. }
  11093. // parallelize by q rows using ggml_vec_dot_f32
  11094. // total rows in q
  11095. const int nr = neq2*neq3;
  11096. // rows per thread
  11097. const int dr = (nr + nth - 1)/nth;
  11098. // row range for this thread
  11099. const int ir0 = dr*ith;
  11100. const int ir1 = MIN(ir0 + dr, nr);
  11101. const float scale = 1.0f/sqrtf(D);
  11102. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11103. for (int ir = ir0; ir < ir1; ++ir) {
  11104. // q indices
  11105. const int iq3 = ir/(neq2);
  11106. const int iq2 = ir - iq3*neq2;
  11107. for ( int iq1 = 0; iq1 < neq1; ++iq1) {
  11108. // not sure about CACHE_LINE_SIZE_F32..
  11109. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11110. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11111. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11112. for (int i = M; i < Mup; ++i) {
  11113. S[i] = -INFINITY;
  11114. }
  11115. for (int64_t ic = 0; ic < nek1; ++ic) {
  11116. // k indices
  11117. const int ik3 = iq3;
  11118. const int ik2 = iq2;
  11119. const int ik1 = ic;
  11120. // S indices
  11121. const int i1 = ik1;
  11122. ggml_vec_dot_f32(neq0,
  11123. S + i1,
  11124. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11125. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11126. }
  11127. // scale
  11128. ggml_vec_scale_f32(nek1, S, scale);
  11129. if (masked) {
  11130. for (int64_t i = P; i < M; i++) {
  11131. if (i > P + iq1) {
  11132. S[i] = -INFINITY;
  11133. }
  11134. }
  11135. }
  11136. // softmax
  11137. {
  11138. float max = -INFINITY;
  11139. ggml_vec_max_f32(M, &max, S);
  11140. ggml_float sum = 0.0;
  11141. {
  11142. #ifdef GGML_SOFT_MAX_ACCELERATE
  11143. max = -max;
  11144. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11145. vvexpf(SM, SM, &Mup);
  11146. ggml_vec_sum_f32(Mup, &sum, SM);
  11147. #else
  11148. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11149. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11150. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11151. float * SR = S + i;
  11152. float * SW = SM + i;
  11153. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11154. if (SR[j] == -INFINITY) {
  11155. SW[j] = 0.0f;
  11156. } else {
  11157. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11158. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11159. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11160. sump[j] += (ggml_float)val;
  11161. SW[j] = val;
  11162. }
  11163. }
  11164. }
  11165. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11166. sum += sump[i];
  11167. }
  11168. #endif
  11169. }
  11170. assert(sum > 0.0);
  11171. sum = 1.0/sum;
  11172. ggml_vec_scale_f32(M, SM, sum);
  11173. }
  11174. // step-by-step explanation
  11175. {
  11176. // forward-process shape grads from backward process
  11177. // parallel_for iq2,iq3:
  11178. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,iq2,iq3] += grad[kcur]
  11179. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11180. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iq2,iq3] += grad[vcur]
  11181. // for iq1:
  11182. // kcur = k[:D,:M,iq2,iq3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11183. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11184. // vcur = v[:M,:D,iq2,iq3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11185. // S0 = -Inf [D,1,1,1]
  11186. // ~S1[i] = dot(kcur[:D,i], qcur)
  11187. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11188. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11189. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11190. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11191. // ~S5[i] = dot(vcur[:,i], S4)
  11192. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,iq1,iq2,iq3]
  11193. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11194. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,iq1,iq2,iq3]
  11195. // dst backward-/ grad[dst] = d
  11196. //
  11197. // output gradients with their dependencies:
  11198. //
  11199. // grad[kcur] = grad[S1].T @ qcur
  11200. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11201. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11202. // grad[S4] = grad[S5] @ vcur
  11203. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11204. // grad[qcur] = grad[S1] @ kcur
  11205. // grad[vcur] = grad[S5].T @ S4
  11206. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11207. //
  11208. // in post-order:
  11209. //
  11210. // S1 = qcur @ kcur.T
  11211. // S2 = S1 * scale
  11212. // S3 = diag_mask_inf(S2, P)
  11213. // S4 = softmax(S3)
  11214. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11215. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11216. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11217. // grad[qcur] = grad[S1] @ kcur
  11218. // grad[kcur] = grad[S1].T @ qcur
  11219. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11220. //
  11221. // using less variables (SM=S4):
  11222. //
  11223. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11224. // SM = softmax(S)
  11225. // S = d[:D,iq1,iq2,iq3] @ vcur
  11226. // dot_SM_gradSM = dot(SM, S)
  11227. // S = SM * (S - dot(SM, S))
  11228. // S = diag_mask_zero(S, P) * scale
  11229. //
  11230. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11231. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11232. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11233. }
  11234. // S = gradSM = d[:D,iq1,iq2,iq3] @ vcur
  11235. // S = d[:D,iq1,iq2,iq3] @ vcur
  11236. // S[:M] += vcur[:M,ic] * d[ic,iq1,iq2,iq3]
  11237. ggml_vec_set_f32(M, S, 0);
  11238. for (int64_t ic = 0; ic < D; ++ic) {
  11239. // dst indices
  11240. const int i1 = iq1;
  11241. const int i2 = iq2;
  11242. const int i3 = iq3;
  11243. ggml_vec_mad_f32(M,
  11244. S,
  11245. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11246. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11247. }
  11248. // S = SM * (S - dot(SM, S))
  11249. float dot_SM_gradSM = 0;
  11250. ggml_vec_dot_f32 (M, &dot_SM_gradSM, SM, S);
  11251. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11252. ggml_vec_mul_f32 (M, S, S, SM);
  11253. // S = diag_mask_zero(S, P) * scale
  11254. if (masked) {
  11255. // for (int64_t i = P + iq1 + 1; i < M; i++) {
  11256. // S[i] = 0;
  11257. // }
  11258. for (int64_t i = P; i < M; i++) {
  11259. if (i > P + iq1) {
  11260. S[i] = 0;
  11261. }
  11262. }
  11263. }
  11264. ggml_vec_scale_f32(M, S, scale);
  11265. void * grad_q = (char *) dst->data;
  11266. void * grad_k = (char *) dst->data + nb0*D*N*neq2*neq3;
  11267. void * grad_v = (char *) dst->data + nb0*D*N*neq2*neq3 + nb0*D*M*neq2*neq3;
  11268. const size_t nbgq1 = nb0*neq0;
  11269. const size_t nbgq2 = nb0*neq0*neq1;
  11270. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11271. const size_t nbgk1 = nb0*nek0;
  11272. const size_t nbgk2 = nb0*nek0*nek1;
  11273. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11274. const size_t nbgv1 = nb0*nev0;
  11275. const size_t nbgv2 = nb0*nev0*nev1;
  11276. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11277. // S shape [M,1]
  11278. // SM shape [M,1]
  11279. // kcur shape [D,M]
  11280. // qcur shape [D,1]
  11281. // vcur shape [M,D]
  11282. //
  11283. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11284. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11285. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic]
  11286. //
  11287. //// grad[q][ic,iq1,iq2,iq3] += dot(kcur[:,ic],S.T)
  11288. //// grad[q][ic,iq1,iq2,iq3] += dot(k[:D,ic,iq2,iq3],S.T)
  11289. for (int64_t ic = 0; ic < M; ++ic) {
  11290. // dst indices
  11291. const int i1 = iq1;
  11292. const int i2 = iq2;
  11293. const int i3 = iq3;
  11294. ggml_vec_mad_f32(D,
  11295. (float *) ((char *) grad_q + (i1*nbgq1 + i2*nbgq2 + i3*nbgq3)),
  11296. (float *) ((char *) k->data + (ic*nbk1 + i2*nbk2 + i3*nbk3)),
  11297. S[ic]);
  11298. }
  11299. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11300. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11301. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11302. for (int64_t ic = 0; ic < M; ++ic) {
  11303. // dst indices
  11304. const int i1 = iq1;
  11305. const int i2 = iq2;
  11306. const int i3 = iq3;
  11307. // ggml_vec_set_f32(D,
  11308. // (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11309. // 0);
  11310. ggml_vec_mad_f32(D,
  11311. (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11312. (float *) ((char *) q->data + (i1*nbq1 + i2*nbq2 + i3*nbq3)),
  11313. S[ic]);
  11314. }
  11315. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11316. // grad[v][:M,ic,iq2,iq3] += d[:D,iq1,iq2,iq3].T[0,ic] * SM[:M]
  11317. // grad[v][:M,ic,iq2,iq3] += d[ic,iq1,iq2,iq3] * SM[:M]
  11318. for (int64_t ic = 0; ic < D; ++ic) {
  11319. // dst indices
  11320. const int i1 = iq1;
  11321. const int i2 = iq2;
  11322. const int i3 = iq3;
  11323. // ggml_vec_set_f32(M,
  11324. // (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11325. // 0);
  11326. ggml_vec_mad_f32(M,
  11327. (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11328. SM,
  11329. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11330. }
  11331. }
  11332. }
  11333. }
  11334. static void ggml_compute_forward_flash_attn_back(
  11335. const struct ggml_compute_params * params,
  11336. const struct ggml_tensor * q,
  11337. const struct ggml_tensor * k,
  11338. const struct ggml_tensor * v,
  11339. const struct ggml_tensor * d,
  11340. const bool masked,
  11341. struct ggml_tensor * dst) {
  11342. switch (q->type) {
  11343. case GGML_TYPE_F32:
  11344. {
  11345. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11346. } break;
  11347. default:
  11348. {
  11349. GGML_ASSERT(false);
  11350. } break;
  11351. }
  11352. }
  11353. // ggml_compute_forward_win_part
  11354. static void ggml_compute_forward_win_part_f32(
  11355. const struct ggml_compute_params * params,
  11356. const struct ggml_tensor * src0,
  11357. struct ggml_tensor * dst) {
  11358. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11359. return;
  11360. }
  11361. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  11362. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11363. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  11364. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  11365. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  11366. assert(ne00 == ne0);
  11367. assert(ne3 == nep0*nep1);
  11368. // TODO: optimize / multi-thread
  11369. for (int py = 0; py < nep1; ++py) {
  11370. for (int px = 0; px < nep0; ++px) {
  11371. const int64_t i3 = py*nep0 + px;
  11372. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11373. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11374. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11375. const int64_t i02 = py*w + i2;
  11376. const int64_t i01 = px*w + i1;
  11377. const int64_t i00 = i0;
  11378. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11379. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11380. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11381. ((float *) dst->data)[i] = 0.0f;
  11382. } else {
  11383. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11384. }
  11385. }
  11386. }
  11387. }
  11388. }
  11389. }
  11390. }
  11391. static void ggml_compute_forward_win_part(
  11392. const struct ggml_compute_params * params,
  11393. const struct ggml_tensor * src0,
  11394. struct ggml_tensor * dst) {
  11395. switch (src0->type) {
  11396. case GGML_TYPE_F32:
  11397. {
  11398. ggml_compute_forward_win_part_f32(params, src0, dst);
  11399. } break;
  11400. default:
  11401. {
  11402. GGML_ASSERT(false);
  11403. } break;
  11404. }
  11405. }
  11406. // ggml_compute_forward_win_unpart
  11407. static void ggml_compute_forward_win_unpart_f32(
  11408. const struct ggml_compute_params * params,
  11409. const struct ggml_tensor * src0,
  11410. struct ggml_tensor * dst) {
  11411. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11412. return;
  11413. }
  11414. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  11415. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11416. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  11417. // padding
  11418. const int px = (w - ne1%w)%w;
  11419. //const int py = (w - ne2%w)%w;
  11420. const int npx = (px + ne1)/w;
  11421. //const int npy = (py + ne2)/w;
  11422. assert(ne0 == ne00);
  11423. // TODO: optimize / multi-thread
  11424. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11425. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11426. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11427. const int ip2 = i2/w;
  11428. const int ip1 = i1/w;
  11429. const int64_t i02 = i2%w;
  11430. const int64_t i01 = i1%w;
  11431. const int64_t i00 = i0;
  11432. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11433. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11434. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11435. }
  11436. }
  11437. }
  11438. }
  11439. static void ggml_compute_forward_win_unpart(
  11440. const struct ggml_compute_params * params,
  11441. const struct ggml_tensor * src0,
  11442. struct ggml_tensor * dst) {
  11443. switch (src0->type) {
  11444. case GGML_TYPE_F32:
  11445. {
  11446. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  11447. } break;
  11448. default:
  11449. {
  11450. GGML_ASSERT(false);
  11451. } break;
  11452. }
  11453. }
  11454. // ggml_compute_forward_map_unary
  11455. static void ggml_compute_forward_map_unary_f32(
  11456. const struct ggml_compute_params * params,
  11457. const struct ggml_tensor * src0,
  11458. struct ggml_tensor * dst,
  11459. const ggml_unary_op_f32_t fun) {
  11460. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11461. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11462. return;
  11463. }
  11464. const int n = ggml_nrows(src0);
  11465. const int nc = src0->ne[0];
  11466. assert( dst->nb[0] == sizeof(float));
  11467. assert(src0->nb[0] == sizeof(float));
  11468. for (int i = 0; i < n; i++) {
  11469. fun(nc,
  11470. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11471. (float *) ((char *) src0->data + i*(src0->nb[1])));
  11472. }
  11473. }
  11474. static void ggml_compute_forward_map_unary(
  11475. const struct ggml_compute_params * params,
  11476. const struct ggml_tensor * src0,
  11477. struct ggml_tensor * dst,
  11478. const ggml_unary_op_f32_t fun) {
  11479. switch (src0->type) {
  11480. case GGML_TYPE_F32:
  11481. {
  11482. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  11483. } break;
  11484. default:
  11485. {
  11486. GGML_ASSERT(false);
  11487. } break;
  11488. }
  11489. }
  11490. // ggml_compute_forward_map_binary
  11491. static void ggml_compute_forward_map_binary_f32(
  11492. const struct ggml_compute_params * params,
  11493. const struct ggml_tensor * src0,
  11494. const struct ggml_tensor * src1,
  11495. struct ggml_tensor * dst,
  11496. const ggml_binary_op_f32_t fun) {
  11497. assert(params->ith == 0);
  11498. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11499. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11500. return;
  11501. }
  11502. const int n = ggml_nrows(src0);
  11503. const int nc = src0->ne[0];
  11504. assert( dst->nb[0] == sizeof(float));
  11505. assert(src0->nb[0] == sizeof(float));
  11506. assert(src1->nb[0] == sizeof(float));
  11507. for (int i = 0; i < n; i++) {
  11508. fun(nc,
  11509. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11510. (float *) ((char *) src0->data + i*(src0->nb[1])),
  11511. (float *) ((char *) src1->data + i*(src1->nb[1])));
  11512. }
  11513. }
  11514. static void ggml_compute_forward_map_binary(
  11515. const struct ggml_compute_params * params,
  11516. const struct ggml_tensor * src0,
  11517. const struct ggml_tensor * src1,
  11518. struct ggml_tensor * dst,
  11519. const ggml_binary_op_f32_t fun) {
  11520. switch (src0->type) {
  11521. case GGML_TYPE_F32:
  11522. {
  11523. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  11524. } break;
  11525. default:
  11526. {
  11527. GGML_ASSERT(false);
  11528. } break;
  11529. }
  11530. }
  11531. // ggml_compute_forward_map_custom1
  11532. static void ggml_compute_forward_map_custom1_f32(
  11533. const struct ggml_compute_params * params,
  11534. const struct ggml_tensor * a,
  11535. struct ggml_tensor * dst,
  11536. const ggml_custom1_op_f32_t fun) {
  11537. assert(params->ith == 0);
  11538. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11539. return;
  11540. }
  11541. fun(dst, a);
  11542. }
  11543. static void ggml_compute_forward_map_custom1(
  11544. const struct ggml_compute_params * params,
  11545. const struct ggml_tensor * a,
  11546. struct ggml_tensor * dst,
  11547. const ggml_custom1_op_f32_t fun) {
  11548. switch (a->type) {
  11549. case GGML_TYPE_F32:
  11550. {
  11551. ggml_compute_forward_map_custom1_f32(params, a, dst, fun);
  11552. } break;
  11553. default:
  11554. {
  11555. GGML_ASSERT(false);
  11556. } break;
  11557. }
  11558. }
  11559. // ggml_compute_forward_map_custom2
  11560. static void ggml_compute_forward_map_custom2_f32(
  11561. const struct ggml_compute_params * params,
  11562. const struct ggml_tensor * a,
  11563. const struct ggml_tensor * b,
  11564. struct ggml_tensor * dst,
  11565. const ggml_custom2_op_f32_t fun) {
  11566. assert(params->ith == 0);
  11567. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11568. return;
  11569. }
  11570. fun(dst, a, b);
  11571. }
  11572. static void ggml_compute_forward_map_custom2(
  11573. const struct ggml_compute_params * params,
  11574. const struct ggml_tensor * a,
  11575. const struct ggml_tensor * b,
  11576. struct ggml_tensor * dst,
  11577. const ggml_custom2_op_f32_t fun) {
  11578. switch (a->type) {
  11579. case GGML_TYPE_F32:
  11580. {
  11581. ggml_compute_forward_map_custom2_f32(params, a, b, dst, fun);
  11582. } break;
  11583. default:
  11584. {
  11585. GGML_ASSERT(false);
  11586. } break;
  11587. }
  11588. }
  11589. // ggml_compute_forward_map_custom3
  11590. static void ggml_compute_forward_map_custom3_f32(
  11591. const struct ggml_compute_params * params,
  11592. const struct ggml_tensor * a,
  11593. const struct ggml_tensor * b,
  11594. const struct ggml_tensor * c,
  11595. struct ggml_tensor * dst,
  11596. const ggml_custom3_op_f32_t fun) {
  11597. assert(params->ith == 0);
  11598. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11599. return;
  11600. }
  11601. fun(dst, a, b, c);
  11602. }
  11603. static void ggml_compute_forward_map_custom3(
  11604. const struct ggml_compute_params * params,
  11605. const struct ggml_tensor * a,
  11606. const struct ggml_tensor * b,
  11607. const struct ggml_tensor * c,
  11608. struct ggml_tensor * dst,
  11609. const ggml_custom3_op_f32_t fun) {
  11610. switch (a->type) {
  11611. case GGML_TYPE_F32:
  11612. {
  11613. ggml_compute_forward_map_custom3_f32(params, a, b, c, dst, fun);
  11614. } break;
  11615. default:
  11616. {
  11617. GGML_ASSERT(false);
  11618. } break;
  11619. }
  11620. }
  11621. // ggml_compute_forward_cross_entropy_loss
  11622. static void ggml_compute_forward_cross_entropy_loss_f32(
  11623. const struct ggml_compute_params * params,
  11624. const struct ggml_tensor * src0,
  11625. const struct ggml_tensor * src1,
  11626. struct ggml_tensor * dst) {
  11627. GGML_ASSERT(ggml_is_contiguous(src0));
  11628. GGML_ASSERT(ggml_is_contiguous(src1));
  11629. GGML_ASSERT(ggml_is_scalar(dst));
  11630. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  11631. const int ith = params->ith;
  11632. const int nth = params->nth;
  11633. float * sums = (float *) params->wdata;
  11634. // TODO: handle transposed/permuted matrices
  11635. const int nc = src0->ne[0];
  11636. const int nr = ggml_nrows(src0);
  11637. if (params->type == GGML_TASK_INIT) {
  11638. if (ith == 0) {
  11639. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  11640. }
  11641. return;
  11642. }
  11643. if (params->type == GGML_TASK_FINALIZE) {
  11644. if (ith == 0) {
  11645. float * dp = (float *) dst->data;
  11646. ggml_vec_sum_f32(nth, dp, sums);
  11647. dp[0] *= -1.0f;
  11648. }
  11649. return;
  11650. }
  11651. const double eps = 1e-9;
  11652. // rows per thread
  11653. const int dr = (nr + nth - 1)/nth;
  11654. // row range for this thread
  11655. const int ir0 = dr*ith;
  11656. const int ir1 = MIN(ir0 + dr, nr);
  11657. for (int i1 = ir0; i1 < ir1; i1++) {
  11658. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11659. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11660. float * st = (float *) params->wdata + nth + ith*nc;
  11661. #ifndef NDEBUG
  11662. for (int i = 0; i < nc; ++i) {
  11663. //printf("p[%d] = %f\n", i, p[i]);
  11664. assert(!isnan(s0[i]));
  11665. assert(!isnan(s1[i]));
  11666. }
  11667. #endif
  11668. // soft_max
  11669. ggml_float sum = 0.0;
  11670. {
  11671. float max = -INFINITY;
  11672. ggml_vec_max_f32(nc, &max, s0);
  11673. uint16_t scvt;
  11674. for (int i = 0; i < nc; i++) {
  11675. if (s0[i] == -INFINITY) {
  11676. st[i] = 0.0f;
  11677. } else {
  11678. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  11679. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11680. memcpy(&scvt, &s, sizeof(scvt));
  11681. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  11682. sum += (ggml_float)val;
  11683. st[i] = val;
  11684. }
  11685. }
  11686. assert(sum > 0.0);
  11687. // sum = 1.0/sum;
  11688. }
  11689. // avoid log(0) by rescaling from [0..1] to [eps..1]
  11690. sum = (1.0 - eps) / sum;
  11691. ggml_vec_scale_f32(nc, st, sum);
  11692. ggml_vec_add1_f32(nc, st, st, eps);
  11693. ggml_vec_log_f32(nc, st, st);
  11694. ggml_vec_mul_f32(nc, st, st, s1);
  11695. ggml_vec_sum_f32(nc, sums + ith, st);
  11696. #ifndef NDEBUG
  11697. for (int i = 0; i < nc; ++i) {
  11698. assert(!isnan(st[i]));
  11699. assert(!isinf(st[i]));
  11700. }
  11701. #endif
  11702. }
  11703. }
  11704. static void ggml_compute_forward_cross_entropy_loss(
  11705. const struct ggml_compute_params * params,
  11706. const struct ggml_tensor * src0,
  11707. const struct ggml_tensor * src1,
  11708. struct ggml_tensor * dst) {
  11709. switch (src0->type) {
  11710. case GGML_TYPE_F32:
  11711. {
  11712. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  11713. } break;
  11714. default:
  11715. {
  11716. GGML_ASSERT(false);
  11717. } break;
  11718. }
  11719. }
  11720. // ggml_compute_forward_cross_entropy_loss_back
  11721. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  11722. const struct ggml_compute_params * params,
  11723. const struct ggml_tensor * src0,
  11724. const struct ggml_tensor * src1,
  11725. const struct ggml_tensor * opt0,
  11726. struct ggml_tensor * dst) {
  11727. GGML_ASSERT(ggml_is_contiguous(dst));
  11728. GGML_ASSERT(ggml_is_contiguous(src0));
  11729. GGML_ASSERT(ggml_is_contiguous(src1));
  11730. GGML_ASSERT(ggml_is_contiguous(opt0));
  11731. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11732. const int64_t ith = params->ith;
  11733. const int64_t nth = params->nth;
  11734. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11735. return;
  11736. }
  11737. const float eps = 1e-9f;
  11738. // TODO: handle transposed/permuted matrices
  11739. const int64_t nc = src0->ne[0];
  11740. const int64_t nr = ggml_nrows(src0);
  11741. // rows per thread
  11742. const int64_t dr = (nr + nth - 1)/nth;
  11743. // row range for this thread
  11744. const int64_t ir0 = dr*ith;
  11745. const int64_t ir1 = MIN(ir0 + dr, nr);
  11746. float * d = (float *) opt0->data;
  11747. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  11748. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  11749. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11750. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11751. float * sm = (float *) params->wdata + ith*nc;
  11752. #ifndef NDEBUG
  11753. for (int i = 0; i < nc; ++i) {
  11754. //printf("p[%d] = %f\n", i, p[i]);
  11755. assert(!isnan(s0[i]));
  11756. assert(!isnan(s1[i]));
  11757. }
  11758. #endif
  11759. // step by step explanation:
  11760. {
  11761. //float * sums = (float *) params->wdata;
  11762. // forward pass with annotated gradients from backward pass
  11763. // (built by going in reverse operation order, adding to gradients of current operation args)
  11764. // st0 = exp(s0-max(s0)) grad[st0] = grad[st1]*(1.0 - eps)/sum
  11765. // from softmax_back: grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  11766. // ggml_vec_scale_f32(nc, st, sum); // st1 = st0*/sum = softmax(s0) grad[st1] = grad[st2]*(1.0 - eps)
  11767. // ggml_vec_scale_f32(nc, st, (1.0f - eps)); // st2 = st1*(1.0 - eps) grad[st2] = grad[st3]
  11768. // ggml_vec_add1_f32(nc, st, st, eps); // st3 = st2 + eps grad[st3] = grad[st4]/st3
  11769. // ggml_vec_log_f32(nc, st, st); // st4 = log(st3) grad[st4] = grad[st5] * s1
  11770. // ggml_vec_mul_f32(nc, st, st, s1); // st5 = st4 * s1 grad[st5] = grad[sums[ith]]
  11771. // ggml_vec_sum_f32(nc, sums + ith, st); // sums[ith] = st5 grad[sums[ith]] = grad[cross_entropy_loss] = -grad[cel]
  11772. // substitute into grad[st1], because we can reuse softmax_back from this point on
  11773. // grad[st1] = -grad[cel]*s1*(1.0 - eps)/(eps + softmax(s0)*(1.0 - eps))
  11774. // postorder:
  11775. // grad[st1] := softmax(s0)
  11776. // grad[st1] := grad[st1]*(1.0 - eps)
  11777. // grad[st1] := grad[st1] + eps
  11778. // grad[st1] := s1 / grad[st1]
  11779. // grad[st1] := grad[st1]*(1.0-eps)*-grad[cel]
  11780. // src0 gradients by going through softmax_back
  11781. // grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  11782. // from softmax_back:
  11783. // dxk = yk * (dyk - dot(y, dy))
  11784. // dot_y_dy := dot(y, dy)
  11785. // dx := dy
  11786. // dx := dx - dot_y_dy
  11787. // dx := dx * y
  11788. // postorder:
  11789. // dot_st1_dst1 := dot(st1, grad[st1])
  11790. // grad[s0] := grad[st1]
  11791. // grad[s0] := grad[s0] - dot_st1_dst1
  11792. // grad[s0] := grad[s0] * st1
  11793. // prepend postorder from grad[st1] directly using grad[s0] as memory location, as we will grad[s0] := grad[st1]
  11794. // sm := softmax(s0)
  11795. // grad[s0] := sm*(1.0 - eps)
  11796. // grad[s0] := grad[s0] + eps
  11797. // grad[s0] := s1 / grad[s0]
  11798. // grad[s0] := grad[s0]*(1.0-eps)*-grad[cel]
  11799. // dot_st1_dst1 := dot(sm, grad[s0])
  11800. // grad[s0] := grad[s0] - dot_st1_dst1
  11801. // grad[s0] := grad[s0] * sm
  11802. }
  11803. // soft_max
  11804. ggml_float sum = 0.0;
  11805. {
  11806. float max = -INFINITY;
  11807. ggml_vec_max_f32(nc, &max, s0);
  11808. uint16_t scvt;
  11809. for (int i = 0; i < nc; i++) {
  11810. if (s0[i] == -INFINITY) {
  11811. sm[i] = 0.0f;
  11812. } else {
  11813. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  11814. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11815. memcpy(&scvt, &s, sizeof(scvt));
  11816. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  11817. sum += (ggml_float)val;
  11818. sm[i] = val;
  11819. }
  11820. }
  11821. assert(sum > 0.0);
  11822. sum = 1.0/sum;
  11823. }
  11824. float dot_st1_dst1 = 0;
  11825. ggml_vec_scale_f32(nc, sm, sum);
  11826. ggml_vec_cpy_f32 (nc, ds0, sm);
  11827. ggml_vec_scale_f32(nc, ds0, (1.0f - eps));
  11828. ggml_vec_add1_f32 (nc, ds0, ds0, eps);
  11829. ggml_vec_div_f32 (nc, ds0, s1, ds0);
  11830. ggml_vec_scale_f32(nc, ds0, -(1.0f - eps)*d[0]);
  11831. ggml_vec_dot_f32 (nc, &dot_st1_dst1, sm, ds0);
  11832. ggml_vec_acc1_f32 (nc, ds0, -dot_st1_dst1);
  11833. ggml_vec_mul_f32 (nc, ds0, ds0, sm);
  11834. #ifndef NDEBUG
  11835. for (int i = 0; i < nc; ++i) {
  11836. assert(!isnan(sm[i]));
  11837. assert(!isinf(sm[i]));
  11838. assert(!isnan(ds0[i]));
  11839. assert(!isinf(ds0[i]));
  11840. }
  11841. #endif
  11842. }
  11843. }
  11844. static void ggml_compute_forward_cross_entropy_loss_back(
  11845. const struct ggml_compute_params * params,
  11846. const struct ggml_tensor * src0,
  11847. const struct ggml_tensor * src1,
  11848. const struct ggml_tensor * opt0,
  11849. struct ggml_tensor * dst) {
  11850. switch (src0->type) {
  11851. case GGML_TYPE_F32:
  11852. {
  11853. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  11854. } break;
  11855. default:
  11856. {
  11857. GGML_ASSERT(false);
  11858. } break;
  11859. }
  11860. }
  11861. /////////////////////////////////
  11862. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  11863. GGML_ASSERT(params);
  11864. #ifdef GGML_USE_CUBLAS
  11865. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  11866. if (skip_cpu) {
  11867. return;
  11868. }
  11869. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  11870. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  11871. #endif // GGML_USE_CUBLAS
  11872. switch (tensor->op) {
  11873. case GGML_OP_DUP:
  11874. {
  11875. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  11876. } break;
  11877. case GGML_OP_ADD:
  11878. {
  11879. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  11880. } break;
  11881. case GGML_OP_ADD1:
  11882. {
  11883. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  11884. } break;
  11885. case GGML_OP_ACC:
  11886. {
  11887. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  11888. } break;
  11889. case GGML_OP_SUB:
  11890. {
  11891. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  11892. } break;
  11893. case GGML_OP_MUL:
  11894. {
  11895. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  11896. } break;
  11897. case GGML_OP_DIV:
  11898. {
  11899. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  11900. } break;
  11901. case GGML_OP_SQR:
  11902. {
  11903. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  11904. } break;
  11905. case GGML_OP_SQRT:
  11906. {
  11907. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  11908. } break;
  11909. case GGML_OP_LOG:
  11910. {
  11911. ggml_compute_forward_log(params, tensor->src[0], tensor);
  11912. } break;
  11913. case GGML_OP_SUM:
  11914. {
  11915. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  11916. } break;
  11917. case GGML_OP_SUM_ROWS:
  11918. {
  11919. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  11920. } break;
  11921. case GGML_OP_MEAN:
  11922. {
  11923. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  11924. } break;
  11925. case GGML_OP_ARGMAX:
  11926. {
  11927. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  11928. } break;
  11929. case GGML_OP_REPEAT:
  11930. {
  11931. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  11932. } break;
  11933. case GGML_OP_REPEAT_BACK:
  11934. {
  11935. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  11936. } break;
  11937. case GGML_OP_ABS:
  11938. {
  11939. ggml_compute_forward_abs(params, tensor->src[0], tensor);
  11940. } break;
  11941. case GGML_OP_SGN:
  11942. {
  11943. ggml_compute_forward_sgn(params, tensor->src[0], tensor);
  11944. } break;
  11945. case GGML_OP_NEG:
  11946. {
  11947. ggml_compute_forward_neg(params, tensor->src[0], tensor);
  11948. } break;
  11949. case GGML_OP_STEP:
  11950. {
  11951. ggml_compute_forward_step(params, tensor->src[0], tensor);
  11952. } break;
  11953. case GGML_OP_TANH:
  11954. {
  11955. ggml_compute_forward_tanh(params, tensor->src[0], tensor);
  11956. } break;
  11957. case GGML_OP_ELU:
  11958. {
  11959. ggml_compute_forward_elu(params, tensor->src[0], tensor);
  11960. } break;
  11961. case GGML_OP_RELU:
  11962. {
  11963. ggml_compute_forward_relu(params, tensor->src[0], tensor);
  11964. } break;
  11965. case GGML_OP_GELU:
  11966. {
  11967. ggml_compute_forward_gelu(params, tensor->src[0], tensor);
  11968. } break;
  11969. case GGML_OP_GELU_QUICK:
  11970. {
  11971. ggml_compute_forward_gelu_quick(params, tensor->src[0], tensor);
  11972. } break;
  11973. case GGML_OP_SILU:
  11974. {
  11975. ggml_compute_forward_silu(params, tensor->src[0], tensor);
  11976. } break;
  11977. case GGML_OP_SILU_BACK:
  11978. {
  11979. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  11980. } break;
  11981. case GGML_OP_NORM:
  11982. {
  11983. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  11984. } break;
  11985. case GGML_OP_RMS_NORM:
  11986. {
  11987. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  11988. } break;
  11989. case GGML_OP_RMS_NORM_BACK:
  11990. {
  11991. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  11992. } break;
  11993. case GGML_OP_MUL_MAT:
  11994. {
  11995. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  11996. } break;
  11997. case GGML_OP_OUT_PROD:
  11998. {
  11999. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  12000. } break;
  12001. case GGML_OP_SCALE:
  12002. {
  12003. ggml_compute_forward_scale(params, tensor->src[0], tensor->src[1], tensor);
  12004. } break;
  12005. case GGML_OP_SET:
  12006. {
  12007. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  12008. } break;
  12009. case GGML_OP_CPY:
  12010. {
  12011. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  12012. } break;
  12013. case GGML_OP_CONT:
  12014. {
  12015. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  12016. } break;
  12017. case GGML_OP_RESHAPE:
  12018. {
  12019. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  12020. } break;
  12021. case GGML_OP_VIEW:
  12022. {
  12023. ggml_compute_forward_view(params, tensor->src[0]);
  12024. } break;
  12025. case GGML_OP_PERMUTE:
  12026. {
  12027. ggml_compute_forward_permute(params, tensor->src[0]);
  12028. } break;
  12029. case GGML_OP_TRANSPOSE:
  12030. {
  12031. ggml_compute_forward_transpose(params, tensor->src[0]);
  12032. } break;
  12033. case GGML_OP_GET_ROWS:
  12034. {
  12035. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  12036. } break;
  12037. case GGML_OP_GET_ROWS_BACK:
  12038. {
  12039. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12040. } break;
  12041. case GGML_OP_DIAG:
  12042. {
  12043. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  12044. } break;
  12045. case GGML_OP_DIAG_MASK_INF:
  12046. {
  12047. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  12048. } break;
  12049. case GGML_OP_DIAG_MASK_ZERO:
  12050. {
  12051. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  12052. } break;
  12053. case GGML_OP_SOFT_MAX:
  12054. {
  12055. ggml_compute_forward_soft_max(params, tensor->src[0], tensor);
  12056. } break;
  12057. case GGML_OP_SOFT_MAX_BACK:
  12058. {
  12059. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  12060. } break;
  12061. case GGML_OP_ROPE:
  12062. {
  12063. ggml_compute_forward_rope(params, tensor->src[0], tensor);
  12064. } break;
  12065. case GGML_OP_ROPE_BACK:
  12066. {
  12067. ggml_compute_forward_rope_back(params, tensor->src[0], tensor);
  12068. } break;
  12069. case GGML_OP_ALIBI:
  12070. {
  12071. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  12072. } break;
  12073. case GGML_OP_CLAMP:
  12074. {
  12075. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  12076. } break;
  12077. case GGML_OP_CONV_1D:
  12078. {
  12079. ggml_compute_forward_conv_1d(params, tensor->src[0], tensor->src[1], tensor);
  12080. } break;
  12081. case GGML_OP_CONV_2D:
  12082. {
  12083. ggml_compute_forward_conv_2d(params, tensor->src[0], tensor->src[1], tensor);
  12084. } break;
  12085. case GGML_OP_POOL_1D:
  12086. {
  12087. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  12088. } break;
  12089. case GGML_OP_POOL_2D:
  12090. {
  12091. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  12092. } break;
  12093. case GGML_OP_FLASH_ATTN:
  12094. {
  12095. const int32_t t = ggml_get_i32_1d(tensor->src[3], 0);
  12096. GGML_ASSERT(t == 0 || t == 1);
  12097. const bool masked = t != 0;
  12098. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  12099. } break;
  12100. case GGML_OP_FLASH_FF:
  12101. {
  12102. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  12103. } break;
  12104. case GGML_OP_FLASH_ATTN_BACK:
  12105. {
  12106. int32_t t = ggml_get_i32_1d(tensor->src[4], 0);
  12107. GGML_ASSERT(t == 0 || t == 1);
  12108. bool masked = t != 0;
  12109. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  12110. } break;
  12111. case GGML_OP_WIN_PART:
  12112. {
  12113. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  12114. } break;
  12115. case GGML_OP_WIN_UNPART:
  12116. {
  12117. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  12118. } break;
  12119. case GGML_OP_MAP_UNARY:
  12120. {
  12121. ggml_unary_op_f32_t fun;
  12122. memcpy(&fun, tensor->op_params, sizeof(fun));
  12123. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  12124. }
  12125. break;
  12126. case GGML_OP_MAP_BINARY:
  12127. {
  12128. ggml_binary_op_f32_t fun;
  12129. memcpy(&fun, tensor->op_params, sizeof(fun));
  12130. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  12131. }
  12132. break;
  12133. case GGML_OP_MAP_CUSTOM1:
  12134. {
  12135. ggml_custom1_op_f32_t fun;
  12136. memcpy(&fun, tensor->op_params, sizeof(fun));
  12137. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor, fun);
  12138. }
  12139. break;
  12140. case GGML_OP_MAP_CUSTOM2:
  12141. {
  12142. ggml_custom2_op_f32_t fun;
  12143. memcpy(&fun, tensor->op_params, sizeof(fun));
  12144. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor, fun);
  12145. }
  12146. break;
  12147. case GGML_OP_MAP_CUSTOM3:
  12148. {
  12149. ggml_custom3_op_f32_t fun;
  12150. memcpy(&fun, tensor->op_params, sizeof(fun));
  12151. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  12152. }
  12153. break;
  12154. case GGML_OP_CROSS_ENTROPY_LOSS:
  12155. {
  12156. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  12157. }
  12158. break;
  12159. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12160. {
  12161. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12162. }
  12163. break;
  12164. case GGML_OP_NONE:
  12165. {
  12166. // nop
  12167. } break;
  12168. case GGML_OP_COUNT:
  12169. {
  12170. GGML_ASSERT(false);
  12171. } break;
  12172. }
  12173. }
  12174. ////////////////////////////////////////////////////////////////////////////////
  12175. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  12176. struct ggml_tensor * src0 = tensor->src[0];
  12177. struct ggml_tensor * src1 = tensor->src[1];
  12178. switch (tensor->op) {
  12179. case GGML_OP_DUP:
  12180. {
  12181. if (src0->grad) {
  12182. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12183. }
  12184. } break;
  12185. case GGML_OP_ADD:
  12186. {
  12187. if (src0->grad) {
  12188. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12189. }
  12190. if (src1->grad) {
  12191. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  12192. }
  12193. } break;
  12194. case GGML_OP_ADD1:
  12195. {
  12196. if (src0->grad) {
  12197. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12198. }
  12199. if (src1->grad) {
  12200. src1->grad = ggml_add_impl(ctx,
  12201. src1->grad,
  12202. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12203. inplace);
  12204. }
  12205. } break;
  12206. case GGML_OP_ACC:
  12207. {
  12208. if (src0->grad) {
  12209. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12210. }
  12211. if (src1->grad) {
  12212. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12213. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12214. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12215. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12216. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12217. tensor->grad,
  12218. src1->grad->ne[0],
  12219. src1->grad->ne[1],
  12220. src1->grad->ne[2],
  12221. src1->grad->ne[3],
  12222. nb1, nb2, nb3, offset);
  12223. src1->grad =
  12224. ggml_add_impl(ctx,
  12225. src1->grad,
  12226. ggml_reshape(ctx,
  12227. ggml_cont(ctx, tensor_grad_view),
  12228. src1->grad),
  12229. inplace);
  12230. }
  12231. } break;
  12232. case GGML_OP_SUB:
  12233. {
  12234. if (src0->grad) {
  12235. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12236. }
  12237. if (src1->grad) {
  12238. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  12239. }
  12240. } break;
  12241. case GGML_OP_MUL:
  12242. {
  12243. if (src0->grad) {
  12244. src0->grad =
  12245. ggml_add_impl(ctx,
  12246. src0->grad,
  12247. ggml_mul(ctx, src1, tensor->grad),
  12248. inplace);
  12249. }
  12250. if (src1->grad) {
  12251. src1->grad =
  12252. ggml_add_impl(ctx,
  12253. src1->grad,
  12254. ggml_mul(ctx, src0, tensor->grad),
  12255. inplace);
  12256. }
  12257. } break;
  12258. case GGML_OP_DIV:
  12259. {
  12260. if (src0->grad) {
  12261. src0->grad =
  12262. ggml_add_impl(ctx,
  12263. src0->grad,
  12264. ggml_div(ctx, tensor->grad, src1),
  12265. inplace);
  12266. }
  12267. if (src1->grad) {
  12268. src1->grad =
  12269. ggml_sub_impl(ctx,
  12270. src1->grad,
  12271. ggml_mul(ctx,
  12272. tensor->grad,
  12273. ggml_div(ctx, tensor, src1)),
  12274. inplace);
  12275. }
  12276. } break;
  12277. case GGML_OP_SQR:
  12278. {
  12279. if (src0->grad) {
  12280. src0->grad =
  12281. ggml_add_impl(ctx,
  12282. src0->grad,
  12283. ggml_scale(ctx,
  12284. ggml_mul(ctx, src0, tensor->grad),
  12285. ggml_new_f32(ctx, 2.0f)),
  12286. inplace);
  12287. }
  12288. } break;
  12289. case GGML_OP_SQRT:
  12290. {
  12291. if (src0->grad) {
  12292. src0->grad =
  12293. ggml_add_impl(ctx,
  12294. src0->grad,
  12295. ggml_scale(ctx,
  12296. ggml_div(ctx,
  12297. tensor->grad,
  12298. tensor),
  12299. ggml_new_f32(ctx, 0.5f)),
  12300. inplace);
  12301. }
  12302. } break;
  12303. case GGML_OP_LOG:
  12304. {
  12305. if (src0->grad) {
  12306. src0->grad =
  12307. ggml_add_impl(ctx,
  12308. src0->grad,
  12309. ggml_div(ctx,
  12310. tensor->grad,
  12311. src0),
  12312. inplace);
  12313. }
  12314. } break;
  12315. case GGML_OP_SUM:
  12316. {
  12317. if (src0->grad) {
  12318. src0->grad =
  12319. ggml_add1_impl(ctx,
  12320. src0->grad,
  12321. tensor->grad,
  12322. inplace);
  12323. }
  12324. } break;
  12325. case GGML_OP_SUM_ROWS:
  12326. {
  12327. if (src0->grad) {
  12328. src0->grad =
  12329. ggml_add_impl(ctx,
  12330. src0->grad,
  12331. ggml_repeat(ctx,
  12332. tensor->grad,
  12333. src0->grad),
  12334. inplace);
  12335. }
  12336. } break;
  12337. case GGML_OP_MEAN:
  12338. case GGML_OP_ARGMAX:
  12339. {
  12340. GGML_ASSERT(false); // TODO: implement
  12341. } break;
  12342. case GGML_OP_REPEAT:
  12343. {
  12344. // necessary for llama
  12345. if (src0->grad) {
  12346. src0->grad = ggml_add_impl(ctx,
  12347. src0->grad,
  12348. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  12349. inplace);
  12350. }
  12351. } break;
  12352. case GGML_OP_REPEAT_BACK:
  12353. {
  12354. if (src0->grad) {
  12355. // TODO: test this
  12356. src0->grad = ggml_add_impl(ctx,
  12357. src0->grad,
  12358. ggml_repeat(ctx, tensor->grad, src0->grad),
  12359. inplace);
  12360. }
  12361. } break;
  12362. case GGML_OP_ABS:
  12363. {
  12364. if (src0->grad) {
  12365. src0->grad =
  12366. ggml_add_impl(ctx,
  12367. src0->grad,
  12368. ggml_mul(ctx,
  12369. ggml_sgn(ctx, src0),
  12370. tensor->grad),
  12371. inplace);
  12372. }
  12373. } break;
  12374. case GGML_OP_SGN:
  12375. {
  12376. if (src0->grad) {
  12377. // noop
  12378. }
  12379. } break;
  12380. case GGML_OP_NEG:
  12381. {
  12382. if (src0->grad) {
  12383. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  12384. }
  12385. } break;
  12386. case GGML_OP_STEP:
  12387. {
  12388. if (src0->grad) {
  12389. // noop
  12390. }
  12391. } break;
  12392. case GGML_OP_TANH:
  12393. {
  12394. GGML_ASSERT(false); // TODO: not implemented
  12395. } break;
  12396. case GGML_OP_ELU:
  12397. {
  12398. GGML_ASSERT(false); // TODO: not implemented
  12399. } break;
  12400. case GGML_OP_RELU:
  12401. {
  12402. if (src0->grad) {
  12403. src0->grad = ggml_sub_impl(ctx,
  12404. src0->grad,
  12405. ggml_mul(ctx,
  12406. ggml_step(ctx, src0),
  12407. tensor->grad),
  12408. inplace);
  12409. }
  12410. } break;
  12411. case GGML_OP_GELU:
  12412. {
  12413. GGML_ASSERT(false); // TODO: not implemented
  12414. } break;
  12415. case GGML_OP_GELU_QUICK:
  12416. {
  12417. GGML_ASSERT(false); // TODO: not implemented
  12418. } break;
  12419. case GGML_OP_SILU:
  12420. {
  12421. // necessary for llama
  12422. if (src0->grad) {
  12423. src0->grad = ggml_add_impl(ctx,
  12424. src0->grad,
  12425. ggml_silu_back(ctx, src0, tensor->grad),
  12426. inplace);
  12427. }
  12428. } break;
  12429. case GGML_OP_SILU_BACK:
  12430. {
  12431. GGML_ASSERT(false); // TODO: not implemented
  12432. } break;
  12433. case GGML_OP_NORM:
  12434. {
  12435. GGML_ASSERT(false); // TODO: not implemented
  12436. } break;
  12437. case GGML_OP_RMS_NORM:
  12438. {
  12439. // necessary for llama
  12440. if (src0->grad) {
  12441. src0->grad = ggml_add_impl(ctx,
  12442. src0->grad,
  12443. ggml_rms_norm_back(ctx, src0, tensor->grad),
  12444. inplace);
  12445. }
  12446. } break;
  12447. case GGML_OP_RMS_NORM_BACK:
  12448. {
  12449. GGML_ASSERT(false); // TODO: not implemented
  12450. } break;
  12451. case GGML_OP_MUL_MAT:
  12452. {
  12453. // https://cs231n.github.io/optimization-2/#staged
  12454. // # forward pass
  12455. // s0 = np.random.randn(5, 10)
  12456. // s1 = np.random.randn(10, 3)
  12457. // t = s0.dot(s1)
  12458. // # now suppose we had the gradient on t from above in the circuit
  12459. // dt = np.random.randn(*t.shape) # same shape as t
  12460. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  12461. // ds1 = t.T.dot(dt)
  12462. // tensor.shape [m,p]
  12463. // src0.shape [n,m]
  12464. // src1.shape [n,p]
  12465. // necessary for llama
  12466. if (src0->grad) {
  12467. src0->grad =
  12468. ggml_add_impl(ctx,
  12469. src0->grad,
  12470. ggml_out_prod(ctx, // [n,m]
  12471. src1, // [n,p]
  12472. tensor->grad), // [m,p]
  12473. inplace);
  12474. }
  12475. if (src1->grad) {
  12476. src1->grad =
  12477. ggml_add_impl(ctx,
  12478. src1->grad,
  12479. // ggml_mul_mat(ctx, // [n,p]
  12480. // ggml_cont(ctx, // [m,n]
  12481. // ggml_transpose(ctx, src0)), // [m,n]
  12482. // tensor->grad), // [m,p]
  12483. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  12484. // // avoid transpose of src0, rather transpose smaller tensor->grad
  12485. // // and then use ggml_out_prod
  12486. ggml_out_prod(ctx, // [n,p]
  12487. src0, // [n,m]
  12488. ggml_transpose(ctx, // [p,m]
  12489. tensor->grad)), // [m,p]
  12490. inplace);
  12491. }
  12492. } break;
  12493. case GGML_OP_OUT_PROD:
  12494. {
  12495. GGML_ASSERT(false); // TODO: not implemented
  12496. } break;
  12497. case GGML_OP_SCALE:
  12498. {
  12499. // necessary for llama
  12500. if (src0->grad) {
  12501. src0->grad =
  12502. ggml_add_impl(ctx,
  12503. src0->grad,
  12504. ggml_scale_impl(ctx, tensor->grad, src1, false),
  12505. inplace);
  12506. }
  12507. if (src1->grad) {
  12508. src1->grad =
  12509. ggml_add_impl(ctx,
  12510. src1->grad,
  12511. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  12512. inplace);
  12513. }
  12514. } break;
  12515. case GGML_OP_SET:
  12516. {
  12517. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12518. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12519. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12520. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12521. struct ggml_tensor * tensor_grad_view = NULL;
  12522. if (src0->grad || src1->grad) {
  12523. GGML_ASSERT(src0->type == tensor->type);
  12524. GGML_ASSERT(tensor->grad->type == tensor->type);
  12525. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  12526. tensor_grad_view = ggml_view_4d(ctx,
  12527. tensor->grad,
  12528. src1->grad->ne[0],
  12529. src1->grad->ne[1],
  12530. src1->grad->ne[2],
  12531. src1->grad->ne[3],
  12532. nb1, nb2, nb3, offset);
  12533. }
  12534. if (src0->grad) {
  12535. src0->grad = ggml_add_impl(ctx,
  12536. src0->grad,
  12537. ggml_acc_impl(ctx,
  12538. tensor->grad,
  12539. ggml_neg(ctx, tensor_grad_view),
  12540. nb1, nb2, nb3, offset, false),
  12541. inplace);
  12542. }
  12543. if (src1->grad) {
  12544. src1->grad =
  12545. ggml_add_impl(ctx,
  12546. src1->grad,
  12547. ggml_reshape(ctx,
  12548. ggml_cont(ctx, tensor_grad_view),
  12549. src1->grad),
  12550. inplace);
  12551. }
  12552. } break;
  12553. case GGML_OP_CPY:
  12554. {
  12555. // necessary for llama
  12556. // cpy overwrites value of src1 by src0 and returns view(src1)
  12557. // the overwriting is mathematically equivalent to:
  12558. // tensor = src0 * 1 + src1 * 0
  12559. if (src0->grad) {
  12560. // dsrc0 = dtensor * 1
  12561. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12562. }
  12563. if (src1->grad) {
  12564. // dsrc1 = dtensor * 0 -> noop
  12565. }
  12566. } break;
  12567. case GGML_OP_CONT:
  12568. {
  12569. // same as cpy
  12570. if (src0->grad) {
  12571. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  12572. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  12573. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12574. }
  12575. } break;
  12576. case GGML_OP_RESHAPE:
  12577. {
  12578. // necessary for llama
  12579. if (src0->grad) {
  12580. src0->grad =
  12581. ggml_add_impl(ctx, src0->grad,
  12582. ggml_reshape(ctx, tensor->grad, src0->grad),
  12583. inplace);
  12584. }
  12585. } break;
  12586. case GGML_OP_VIEW:
  12587. {
  12588. // necessary for llama
  12589. if (src0->grad) {
  12590. size_t offset;
  12591. memcpy(&offset, tensor->op_params, sizeof(offset));
  12592. size_t nb1 = tensor->nb[1];
  12593. size_t nb2 = tensor->nb[2];
  12594. size_t nb3 = tensor->nb[3];
  12595. if (src0->type != src0->grad->type) {
  12596. // gradient is typically F32, but src0 could be other type
  12597. size_t ng = ggml_element_size(src0->grad);
  12598. size_t n0 = ggml_element_size(src0);
  12599. GGML_ASSERT(offset % n0 == 0);
  12600. GGML_ASSERT(nb1 % n0 == 0);
  12601. GGML_ASSERT(nb2 % n0 == 0);
  12602. GGML_ASSERT(nb3 % n0 == 0);
  12603. offset = (offset / n0) * ng;
  12604. nb1 = (nb1 / n0) * ng;
  12605. nb2 = (nb2 / n0) * ng;
  12606. nb3 = (nb3 / n0) * ng;
  12607. }
  12608. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  12609. }
  12610. } break;
  12611. case GGML_OP_PERMUTE:
  12612. {
  12613. // necessary for llama
  12614. if (src0->grad) {
  12615. int32_t * axes = (int32_t *) tensor->op_params;
  12616. int axis0 = axes[0] & 0x3;
  12617. int axis1 = axes[1] & 0x3;
  12618. int axis2 = axes[2] & 0x3;
  12619. int axis3 = axes[3] & 0x3;
  12620. int axes_backward[4] = {0,0,0,0};
  12621. axes_backward[axis0] = 0;
  12622. axes_backward[axis1] = 1;
  12623. axes_backward[axis2] = 2;
  12624. axes_backward[axis3] = 3;
  12625. src0->grad =
  12626. ggml_add_impl(ctx, src0->grad,
  12627. ggml_permute(ctx,
  12628. tensor->grad,
  12629. axes_backward[0],
  12630. axes_backward[1],
  12631. axes_backward[2],
  12632. axes_backward[3]),
  12633. inplace);
  12634. }
  12635. } break;
  12636. case GGML_OP_TRANSPOSE:
  12637. {
  12638. // necessary for llama
  12639. if (src0->grad) {
  12640. src0->grad =
  12641. ggml_add_impl(ctx, src0->grad,
  12642. ggml_transpose(ctx, tensor->grad),
  12643. inplace);
  12644. }
  12645. } break;
  12646. case GGML_OP_GET_ROWS:
  12647. {
  12648. // necessary for llama (only for tokenizer)
  12649. if (src0->grad) {
  12650. src0->grad =
  12651. ggml_add_impl(ctx, src0->grad,
  12652. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  12653. inplace);
  12654. }
  12655. if (src1->grad) {
  12656. // noop
  12657. }
  12658. } break;
  12659. case GGML_OP_GET_ROWS_BACK:
  12660. {
  12661. GGML_ASSERT(false); // TODO: not implemented
  12662. } break;
  12663. case GGML_OP_DIAG:
  12664. {
  12665. GGML_ASSERT(false); // TODO: not implemented
  12666. } break;
  12667. case GGML_OP_DIAG_MASK_INF:
  12668. {
  12669. // necessary for llama
  12670. if (src0->grad) {
  12671. const int n_past = ((int32_t *) tensor->op_params)[0];
  12672. src0->grad =
  12673. ggml_add_impl(ctx, src0->grad,
  12674. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12675. inplace);
  12676. }
  12677. if (src1->grad) {
  12678. // noop
  12679. }
  12680. } break;
  12681. case GGML_OP_DIAG_MASK_ZERO:
  12682. {
  12683. // necessary for llama
  12684. if (src0->grad) {
  12685. const int n_past = ((int32_t *) tensor->op_params)[0];
  12686. src0->grad =
  12687. ggml_add_impl(ctx, src0->grad,
  12688. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12689. inplace);
  12690. }
  12691. if (src1->grad) {
  12692. // noop
  12693. }
  12694. } break;
  12695. case GGML_OP_SOFT_MAX:
  12696. {
  12697. // necessary for llama
  12698. if (src0->grad) {
  12699. src0->grad =
  12700. ggml_add_impl(ctx, src0->grad,
  12701. ggml_soft_max_back(ctx, tensor->grad, tensor),
  12702. inplace);
  12703. }
  12704. } break;
  12705. case GGML_OP_SOFT_MAX_BACK:
  12706. {
  12707. GGML_ASSERT(false); // TODO: not implemented
  12708. } break;
  12709. case GGML_OP_ROPE:
  12710. {
  12711. // necessary for llama
  12712. if (src0->grad) {
  12713. const int n_past = ((int32_t *) tensor->op_params)[0];
  12714. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12715. const int mode = ((int32_t *) tensor->op_params)[2];
  12716. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12717. src0->grad = ggml_add_impl(ctx,
  12718. src0->grad,
  12719. ggml_rope_back(ctx,
  12720. tensor->grad,
  12721. n_past,
  12722. n_dims,
  12723. mode,
  12724. n_ctx),
  12725. inplace);
  12726. }
  12727. if (src1->grad) {
  12728. // noop
  12729. }
  12730. } break;
  12731. case GGML_OP_ROPE_BACK:
  12732. {
  12733. if (src0->grad) {
  12734. const int n_past = ((int32_t *) tensor->op_params)[0];
  12735. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12736. const int mode = ((int32_t *) tensor->op_params)[2];
  12737. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12738. src0->grad = ggml_add_impl(ctx,
  12739. src0->grad,
  12740. ggml_rope(ctx,
  12741. tensor->grad,
  12742. n_past,
  12743. n_dims,
  12744. mode,
  12745. n_ctx),
  12746. inplace);
  12747. }
  12748. if (src1->grad) {
  12749. // noop
  12750. }
  12751. } break;
  12752. case GGML_OP_ALIBI:
  12753. {
  12754. GGML_ASSERT(false); // TODO: not implemented
  12755. } break;
  12756. case GGML_OP_CLAMP:
  12757. {
  12758. GGML_ASSERT(false); // TODO: not implemented
  12759. } break;
  12760. case GGML_OP_CONV_1D:
  12761. {
  12762. GGML_ASSERT(false); // TODO: not implemented
  12763. } break;
  12764. case GGML_OP_CONV_2D:
  12765. {
  12766. GGML_ASSERT(false); // TODO: not implemented
  12767. } break;
  12768. case GGML_OP_POOL_1D:
  12769. {
  12770. GGML_ASSERT(false); // TODO: not implemented
  12771. } break;
  12772. case GGML_OP_POOL_2D:
  12773. {
  12774. GGML_ASSERT(false); // TODO: not implemented
  12775. } break;
  12776. case GGML_OP_FLASH_ATTN:
  12777. {
  12778. struct ggml_tensor * flash_grad = NULL;
  12779. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  12780. int32_t t = ggml_get_i32_1d(tensor->src[3], 0);
  12781. GGML_ASSERT(t == 0 || t == 1);
  12782. bool masked = t != 0;
  12783. flash_grad =
  12784. ggml_flash_attn_back(ctx,
  12785. src0,
  12786. src1,
  12787. tensor->src[2],
  12788. tensor->grad,
  12789. masked);
  12790. }
  12791. if (src0->grad) {
  12792. struct ggml_tensor * grad_q = NULL;
  12793. const size_t nb0 = flash_grad->nb[0];
  12794. const size_t offset = 0;
  12795. switch(src0->n_dims) {
  12796. case 2:
  12797. {
  12798. grad_q = ggml_view_2d(ctx,
  12799. flash_grad,
  12800. src0->ne[0],
  12801. src0->ne[1],
  12802. nb0*src0->ne[0],
  12803. offset);
  12804. } break;
  12805. case 3:
  12806. {
  12807. grad_q = ggml_view_3d(ctx,
  12808. flash_grad,
  12809. src0->ne[0],
  12810. src0->ne[1],
  12811. src0->ne[2],
  12812. nb0*src0->ne[0],
  12813. nb0*src0->ne[0]*src0->ne[1],
  12814. offset);
  12815. } break;
  12816. case 4:
  12817. {
  12818. grad_q = ggml_view_4d(ctx,
  12819. flash_grad,
  12820. src0->ne[0],
  12821. src0->ne[1],
  12822. src0->ne[2],
  12823. src0->ne[3],
  12824. nb0*src0->ne[0],
  12825. nb0*src0->ne[0]*src0->ne[1],
  12826. nb0*src0->ne[0]*src0->ne[1]*src0->ne[2],
  12827. offset);
  12828. } break;
  12829. }
  12830. src0->grad = ggml_add_impl(ctx,
  12831. src0->grad,
  12832. grad_q,
  12833. inplace);
  12834. }
  12835. if (src1->grad) {
  12836. struct ggml_tensor * grad_k = NULL;
  12837. const size_t nb0 = flash_grad->nb[0];
  12838. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3];
  12839. switch(src1->n_dims) {
  12840. case 2:
  12841. {
  12842. grad_k = ggml_view_2d(ctx,
  12843. flash_grad,
  12844. src1->ne[0],
  12845. src1->ne[1],
  12846. nb0*src1->ne[0],
  12847. offset);
  12848. } break;
  12849. case 3:
  12850. {
  12851. grad_k = ggml_view_3d(ctx,
  12852. flash_grad,
  12853. src1->ne[0],
  12854. src1->ne[1],
  12855. src1->ne[2],
  12856. nb0*src1->ne[0],
  12857. nb0*src1->ne[0]*src1->ne[1],
  12858. offset);
  12859. } break;
  12860. case 4:
  12861. {
  12862. grad_k = ggml_view_4d(ctx,
  12863. flash_grad,
  12864. src1->ne[0],
  12865. src1->ne[1],
  12866. src1->ne[2],
  12867. src1->ne[3],
  12868. nb0*src1->ne[0],
  12869. nb0*src1->ne[0]*src1->ne[1],
  12870. nb0*src1->ne[0]*src1->ne[1]*src1->ne[2],
  12871. offset);
  12872. } break;
  12873. }
  12874. src1->grad = ggml_add_impl(ctx,
  12875. src1->grad,
  12876. grad_k,
  12877. inplace);
  12878. }
  12879. struct ggml_tensor * opt0 = tensor->src[2];
  12880. if (opt0->grad) {
  12881. struct ggml_tensor * grad_v = NULL;
  12882. const size_t nb0 = flash_grad->nb[0];
  12883. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3]
  12884. + nb0*src1->ne[0]*src1->ne[1]*src1->ne[2]*src1->ne[3];
  12885. switch(opt0->n_dims) {
  12886. case 2:
  12887. {
  12888. grad_v = ggml_view_2d(ctx,
  12889. flash_grad,
  12890. opt0->ne[0],
  12891. opt0->ne[1],
  12892. nb0*opt0->ne[0],
  12893. offset);
  12894. } break;
  12895. case 3:
  12896. {
  12897. grad_v = ggml_view_3d(ctx,
  12898. flash_grad,
  12899. opt0->ne[0],
  12900. opt0->ne[1],
  12901. opt0->ne[2],
  12902. nb0*opt0->ne[0],
  12903. nb0*opt0->ne[0]*opt0->ne[1],
  12904. offset);
  12905. } break;
  12906. case 4:
  12907. {
  12908. grad_v = ggml_view_4d(ctx,
  12909. flash_grad,
  12910. opt0->ne[0],
  12911. opt0->ne[1],
  12912. opt0->ne[2],
  12913. opt0->ne[3],
  12914. nb0*opt0->ne[0],
  12915. nb0*opt0->ne[0]*opt0->ne[1],
  12916. nb0*opt0->ne[0]*opt0->ne[1]*opt0->ne[2],
  12917. offset);
  12918. } break;
  12919. }
  12920. opt0->grad = ggml_add_impl(ctx,
  12921. opt0->grad,
  12922. grad_v,
  12923. inplace);
  12924. }
  12925. } break;
  12926. case GGML_OP_FLASH_FF:
  12927. {
  12928. GGML_ASSERT(false); // not supported
  12929. } break;
  12930. case GGML_OP_FLASH_ATTN_BACK:
  12931. {
  12932. GGML_ASSERT(false); // not supported
  12933. } break;
  12934. case GGML_OP_WIN_PART:
  12935. case GGML_OP_WIN_UNPART:
  12936. case GGML_OP_MAP_UNARY:
  12937. case GGML_OP_MAP_BINARY:
  12938. case GGML_OP_MAP_CUSTOM1:
  12939. case GGML_OP_MAP_CUSTOM2:
  12940. case GGML_OP_MAP_CUSTOM3:
  12941. {
  12942. GGML_ASSERT(false); // not supported
  12943. } break;
  12944. case GGML_OP_CROSS_ENTROPY_LOSS:
  12945. {
  12946. if (src0->grad) {
  12947. src0->grad = ggml_add_impl(ctx,
  12948. src0->grad,
  12949. ggml_cross_entropy_loss_back(ctx,
  12950. src0,
  12951. src1,
  12952. tensor->grad),
  12953. inplace);
  12954. }
  12955. } break;
  12956. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12957. {
  12958. GGML_ASSERT(false); // not supported
  12959. } break;
  12960. case GGML_OP_NONE:
  12961. {
  12962. // nop
  12963. } break;
  12964. case GGML_OP_COUNT:
  12965. {
  12966. GGML_ASSERT(false);
  12967. } break;
  12968. }
  12969. }
  12970. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  12971. if (node->grad == NULL) {
  12972. // this usually happens when we generate intermediate nodes from constants in the backward pass
  12973. // it can also happen during forward pass, if the user performs computations with constants
  12974. if (node->op != GGML_OP_NONE) {
  12975. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  12976. }
  12977. }
  12978. // check if already visited
  12979. for (int i = 0; i < cgraph->n_nodes; i++) {
  12980. if (cgraph->nodes[i] == node) {
  12981. return;
  12982. }
  12983. }
  12984. for (int i = 0; i < cgraph->n_leafs; i++) {
  12985. if (cgraph->leafs[i] == node) {
  12986. return;
  12987. }
  12988. }
  12989. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  12990. if (node->src[i]) {
  12991. ggml_visit_parents(cgraph, node->src[i]);
  12992. }
  12993. }
  12994. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  12995. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  12996. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  12997. if (strlen(node->name) == 0) {
  12998. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  12999. }
  13000. cgraph->leafs[cgraph->n_leafs] = node;
  13001. cgraph->n_leafs++;
  13002. } else {
  13003. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  13004. if (strlen(node->name) == 0) {
  13005. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13006. }
  13007. cgraph->nodes[cgraph->n_nodes] = node;
  13008. cgraph->grads[cgraph->n_nodes] = node->grad;
  13009. cgraph->n_nodes++;
  13010. }
  13011. }
  13012. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13013. if (!expand) {
  13014. cgraph->n_nodes = 0;
  13015. cgraph->n_leafs = 0;
  13016. }
  13017. const int n0 = cgraph->n_nodes;
  13018. UNUSED(n0);
  13019. ggml_visit_parents(cgraph, tensor);
  13020. const int n_new = cgraph->n_nodes - n0;
  13021. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13022. if (n_new > 0) {
  13023. // the last added node should always be starting point
  13024. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13025. }
  13026. }
  13027. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13028. ggml_build_forward_impl(cgraph, tensor, true);
  13029. }
  13030. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  13031. struct ggml_cgraph result = {
  13032. /*.n_nodes =*/ 0,
  13033. /*.n_leafs =*/ 0,
  13034. /*.nodes =*/ { NULL },
  13035. /*.grads =*/ { NULL },
  13036. /*.leafs =*/ { NULL },
  13037. /*.perf_runs =*/ 0,
  13038. /*.perf_cycles =*/ 0,
  13039. /*.perf_time_us =*/ 0,
  13040. };
  13041. ggml_build_forward_impl(&result, tensor, false);
  13042. return result;
  13043. }
  13044. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  13045. struct ggml_cgraph result = *gf;
  13046. GGML_ASSERT(gf->n_nodes > 0);
  13047. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13048. if (keep) {
  13049. for (int i = 0; i < gf->n_nodes; i++) {
  13050. struct ggml_tensor * node = gf->nodes[i];
  13051. if (node->grad) {
  13052. node->grad = ggml_dup_tensor(ctx, node);
  13053. gf->grads[i] = node->grad;
  13054. }
  13055. }
  13056. }
  13057. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13058. struct ggml_tensor * node = gf->nodes[i];
  13059. // because we detached the grad nodes from the original graph, we can afford inplace operations
  13060. if (node->grad) {
  13061. ggml_compute_backward(ctx, node, keep);
  13062. }
  13063. }
  13064. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13065. struct ggml_tensor * node = gf->nodes[i];
  13066. if (node->is_param) {
  13067. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13068. ggml_build_forward_impl(&result, node->grad, true);
  13069. }
  13070. }
  13071. return result;
  13072. }
  13073. //
  13074. // thread data
  13075. //
  13076. // synchronization is done via busy loops
  13077. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13078. //
  13079. #ifdef __APPLE__
  13080. //#include <os/lock.h>
  13081. //
  13082. //typedef os_unfair_lock ggml_lock_t;
  13083. //
  13084. //#define ggml_lock_init(x) UNUSED(x)
  13085. //#define ggml_lock_destroy(x) UNUSED(x)
  13086. //#define ggml_lock_lock os_unfair_lock_lock
  13087. //#define ggml_lock_unlock os_unfair_lock_unlock
  13088. //
  13089. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13090. typedef int ggml_lock_t;
  13091. #define ggml_lock_init(x) UNUSED(x)
  13092. #define ggml_lock_destroy(x) UNUSED(x)
  13093. #define ggml_lock_lock(x) UNUSED(x)
  13094. #define ggml_lock_unlock(x) UNUSED(x)
  13095. #define GGML_LOCK_INITIALIZER 0
  13096. typedef pthread_t ggml_thread_t;
  13097. #define ggml_thread_create pthread_create
  13098. #define ggml_thread_join pthread_join
  13099. #else
  13100. //typedef pthread_spinlock_t ggml_lock_t;
  13101. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13102. //#define ggml_lock_destroy pthread_spin_destroy
  13103. //#define ggml_lock_lock pthread_spin_lock
  13104. //#define ggml_lock_unlock pthread_spin_unlock
  13105. typedef int ggml_lock_t;
  13106. #define ggml_lock_init(x) UNUSED(x)
  13107. #define ggml_lock_destroy(x) UNUSED(x)
  13108. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13109. #define ggml_lock_lock(x) _mm_pause()
  13110. #else
  13111. #define ggml_lock_lock(x) UNUSED(x)
  13112. #endif
  13113. #define ggml_lock_unlock(x) UNUSED(x)
  13114. #define GGML_LOCK_INITIALIZER 0
  13115. typedef pthread_t ggml_thread_t;
  13116. #define ggml_thread_create pthread_create
  13117. #define ggml_thread_join pthread_join
  13118. #endif
  13119. // Android's libc implementation "bionic" does not support setting affinity
  13120. #if defined(__linux__) && !defined(__BIONIC__)
  13121. void set_numa_thread_affinity(int thread_n, int n_threads) {
  13122. if (!ggml_is_numa()) {
  13123. return;
  13124. }
  13125. // run thread on node_num thread_n / (threads per node)
  13126. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  13127. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13128. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13129. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13130. CPU_ZERO_S(setsize, cpus);
  13131. for (size_t i = 0; i < node->n_cpus; ++i) {
  13132. CPU_SET_S(node->cpus[i], setsize, cpus);
  13133. }
  13134. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13135. if (rv) {
  13136. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13137. strerror(rv));
  13138. }
  13139. CPU_FREE(cpus);
  13140. }
  13141. void clear_numa_thread_affinity(void) {
  13142. if (!ggml_is_numa()) {
  13143. return;
  13144. }
  13145. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13146. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13147. CPU_ZERO_S(setsize, cpus);
  13148. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13149. CPU_SET_S(i, setsize, cpus);
  13150. }
  13151. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13152. if (rv) {
  13153. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13154. strerror(rv));
  13155. }
  13156. CPU_FREE(cpus);
  13157. }
  13158. #else
  13159. // TODO: Windows etc.
  13160. // (the linux implementation may also work on BSD, someone should test)
  13161. void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  13162. void clear_numa_thread_affinity(void) {}
  13163. #endif
  13164. struct ggml_compute_state_shared {
  13165. const struct ggml_cgraph * cgraph;
  13166. const struct ggml_cplan * cplan;
  13167. int64_t perf_node_start_cycles;
  13168. int64_t perf_node_start_time_us;
  13169. const int n_threads;
  13170. // synchronization primitives
  13171. atomic_int n_active; // num active threads
  13172. atomic_int node_n; // active graph node
  13173. bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
  13174. void * abort_callback_data;
  13175. };
  13176. struct ggml_compute_state {
  13177. ggml_thread_t thrd;
  13178. int ith;
  13179. struct ggml_compute_state_shared * shared;
  13180. };
  13181. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  13182. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  13183. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  13184. node->perf_runs++;
  13185. node->perf_cycles += cycles_cur;
  13186. node->perf_time_us += time_us_cur;
  13187. }
  13188. static thread_ret_t ggml_graph_compute_thread(void * data) {
  13189. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  13190. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  13191. const struct ggml_cplan * cplan = state->shared->cplan;
  13192. const int * n_tasks_arr = cplan->n_tasks;
  13193. const int n_threads = state->shared->n_threads;
  13194. set_numa_thread_affinity(state->ith, n_threads);
  13195. int node_n = -1;
  13196. while (true) {
  13197. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13198. state->shared->node_n += 1;
  13199. return (thread_ret_t) GGML_EXIT_ABORTED;
  13200. }
  13201. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  13202. // all other threads are finished and spinning
  13203. // do finalize and init here so we don't have synchronize again
  13204. struct ggml_compute_params params = {
  13205. /*.type =*/ GGML_TASK_FINALIZE,
  13206. /*.ith =*/ 0,
  13207. /*.nth =*/ 0,
  13208. /*.wsize =*/ cplan->work_size,
  13209. /*.wdata =*/ cplan->work_data,
  13210. };
  13211. if (node_n != -1) {
  13212. /* FINALIZE */
  13213. struct ggml_tensor * node = state->shared->cgraph->nodes[node_n];
  13214. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13215. params.nth = n_tasks_arr[node_n];
  13216. ggml_compute_forward(&params, node);
  13217. }
  13218. ggml_graph_compute_perf_stats_node(node, state->shared);
  13219. }
  13220. // distribute new work or execute it direct if 1T
  13221. while (++node_n < cgraph->n_nodes) {
  13222. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  13223. struct ggml_tensor * node = cgraph->nodes[node_n];
  13224. const int n_tasks = n_tasks_arr[node_n];
  13225. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  13226. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  13227. params.nth = n_tasks;
  13228. /* INIT */
  13229. if (GGML_OP_HAS_INIT[node->op]) {
  13230. params.type = GGML_TASK_INIT;
  13231. ggml_compute_forward(&params, node);
  13232. }
  13233. if (n_tasks == 1) {
  13234. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  13235. // they do something more efficient than spinning (?)
  13236. params.type = GGML_TASK_COMPUTE;
  13237. ggml_compute_forward(&params, node);
  13238. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13239. params.type = GGML_TASK_FINALIZE;
  13240. ggml_compute_forward(&params, node);
  13241. }
  13242. ggml_graph_compute_perf_stats_node(node, state->shared);
  13243. } else {
  13244. break;
  13245. }
  13246. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13247. break;
  13248. }
  13249. }
  13250. atomic_store(&state->shared->n_active, n_threads);
  13251. atomic_store(&state->shared->node_n, node_n);
  13252. } else {
  13253. // wait for other threads to finish
  13254. const int last = node_n;
  13255. do {
  13256. //sched_yield();
  13257. node_n = atomic_load(&state->shared->node_n);
  13258. } while (node_n == last);
  13259. }
  13260. // check if we should stop
  13261. if (node_n >= cgraph->n_nodes) break;
  13262. /* COMPUTE */
  13263. struct ggml_tensor * node = cgraph->nodes[node_n];
  13264. const int n_tasks = n_tasks_arr[node_n];
  13265. struct ggml_compute_params params = {
  13266. /*.type =*/ GGML_TASK_COMPUTE,
  13267. /*.ith =*/ state->ith,
  13268. /*.nth =*/ n_tasks,
  13269. /*.wsize =*/ cplan->work_size,
  13270. /*.wdata =*/ cplan->work_data,
  13271. };
  13272. if (state->ith < n_tasks) {
  13273. ggml_compute_forward(&params, node);
  13274. }
  13275. }
  13276. return GGML_EXIT_SUCCESS;
  13277. }
  13278. struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
  13279. if (n_threads <= 0) {
  13280. n_threads = GGML_DEFAULT_N_THREADS;
  13281. }
  13282. size_t work_size = 0;
  13283. struct ggml_cplan cplan;
  13284. memset(&cplan, 0, sizeof(struct ggml_cplan));
  13285. // thread scheduling for the different operations + work buffer size estimation
  13286. for (int i = 0; i < cgraph->n_nodes; i++) {
  13287. int n_tasks = 1;
  13288. struct ggml_tensor * node = cgraph->nodes[i];
  13289. switch (node->op) {
  13290. case GGML_OP_CPY:
  13291. case GGML_OP_DUP:
  13292. {
  13293. n_tasks = n_threads;
  13294. size_t cur = 0;
  13295. if (ggml_is_quantized(node->type)) {
  13296. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_tasks;
  13297. }
  13298. work_size = MAX(work_size, cur);
  13299. } break;
  13300. case GGML_OP_ADD:
  13301. case GGML_OP_ADD1:
  13302. {
  13303. n_tasks = n_threads;
  13304. size_t cur = 0;
  13305. if (ggml_is_quantized(node->src[0]->type)) {
  13306. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src[0]->ne[0] * n_tasks;
  13307. }
  13308. work_size = MAX(work_size, cur);
  13309. } break;
  13310. case GGML_OP_ACC:
  13311. {
  13312. n_tasks = n_threads;
  13313. size_t cur = 0;
  13314. if (ggml_is_quantized(node->src[0]->type)) {
  13315. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src[1]->ne[0] * n_tasks;
  13316. }
  13317. work_size = MAX(work_size, cur);
  13318. } break;
  13319. case GGML_OP_SUB:
  13320. case GGML_OP_DIV:
  13321. case GGML_OP_SQR:
  13322. case GGML_OP_SQRT:
  13323. case GGML_OP_LOG:
  13324. case GGML_OP_SUM:
  13325. case GGML_OP_SUM_ROWS:
  13326. case GGML_OP_MEAN:
  13327. case GGML_OP_ARGMAX:
  13328. case GGML_OP_REPEAT:
  13329. case GGML_OP_REPEAT_BACK:
  13330. case GGML_OP_ABS:
  13331. case GGML_OP_SGN:
  13332. case GGML_OP_NEG:
  13333. case GGML_OP_STEP:
  13334. case GGML_OP_TANH:
  13335. case GGML_OP_ELU:
  13336. case GGML_OP_RELU:
  13337. {
  13338. n_tasks = 1;
  13339. } break;
  13340. case GGML_OP_MUL:
  13341. case GGML_OP_GELU:
  13342. case GGML_OP_GELU_QUICK:
  13343. case GGML_OP_SILU:
  13344. case GGML_OP_SILU_BACK:
  13345. case GGML_OP_NORM:
  13346. case GGML_OP_RMS_NORM:
  13347. case GGML_OP_RMS_NORM_BACK:
  13348. {
  13349. n_tasks = n_threads;
  13350. } break;
  13351. case GGML_OP_MUL_MAT:
  13352. case GGML_OP_OUT_PROD:
  13353. {
  13354. n_tasks = n_threads;
  13355. // TODO: use different scheduling for different matrix sizes
  13356. //const int nr0 = ggml_nrows(node->src[0]);
  13357. //const int nr1 = ggml_nrows(node->src[1]);
  13358. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  13359. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  13360. size_t cur = 0;
  13361. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  13362. #if defined(GGML_USE_CUBLAS)
  13363. if (ggml_cuda_can_mul_mat(node->src[0], node->src[1], node)) {
  13364. n_tasks = 1; // TODO: this actually is doing nothing
  13365. // the threads are still spinning
  13366. } else
  13367. #elif defined(GGML_USE_CLBLAST)
  13368. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  13369. n_tasks = 1; // TODO: this actually is doing nothing
  13370. // the threads are still spinning
  13371. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  13372. } else
  13373. #endif
  13374. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13375. if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
  13376. n_tasks = 1; // TODO: this actually is doing nothing
  13377. // the threads are still spinning
  13378. if (node->src[0]->type != GGML_TYPE_F32) {
  13379. // here we need memory just for single 2D matrix from src0
  13380. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src[0]->ne[0]*node->src[0]->ne[1]);
  13381. }
  13382. } else
  13383. #endif
  13384. if (node->src[1]->type != vec_dot_type) {
  13385. cur = GGML_TYPE_SIZE[vec_dot_type]*ggml_nelements(node->src[1])/GGML_BLCK_SIZE[vec_dot_type];
  13386. } else {
  13387. cur = 0;
  13388. }
  13389. work_size = MAX(work_size, cur);
  13390. } break;
  13391. case GGML_OP_SCALE:
  13392. {
  13393. n_tasks = 1;
  13394. } break;
  13395. case GGML_OP_SET:
  13396. case GGML_OP_CONT:
  13397. case GGML_OP_RESHAPE:
  13398. case GGML_OP_VIEW:
  13399. case GGML_OP_PERMUTE:
  13400. case GGML_OP_TRANSPOSE:
  13401. case GGML_OP_GET_ROWS:
  13402. case GGML_OP_GET_ROWS_BACK:
  13403. case GGML_OP_DIAG:
  13404. {
  13405. n_tasks = 1;
  13406. } break;
  13407. case GGML_OP_DIAG_MASK_ZERO:
  13408. case GGML_OP_DIAG_MASK_INF:
  13409. case GGML_OP_SOFT_MAX:
  13410. case GGML_OP_SOFT_MAX_BACK:
  13411. case GGML_OP_ROPE:
  13412. case GGML_OP_ROPE_BACK:
  13413. {
  13414. n_tasks = n_threads;
  13415. } break;
  13416. case GGML_OP_ALIBI:
  13417. {
  13418. n_tasks = 1; //TODO
  13419. } break;
  13420. case GGML_OP_CLAMP:
  13421. {
  13422. n_tasks = 1; //TODO
  13423. } break;
  13424. case GGML_OP_CONV_1D:
  13425. {
  13426. n_tasks = n_threads;
  13427. GGML_ASSERT(node->src[0]->ne[3] == 1);
  13428. GGML_ASSERT(node->src[1]->ne[2] == 1);
  13429. GGML_ASSERT(node->src[1]->ne[3] == 1);
  13430. size_t cur = 0;
  13431. const int nk = node->src[0]->ne[0];
  13432. if (node->src[0]->type == GGML_TYPE_F16 &&
  13433. node->src[1]->type == GGML_TYPE_F32) {
  13434. cur = sizeof(ggml_fp16_t)*(
  13435. nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
  13436. ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
  13437. );
  13438. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13439. node->src[1]->type == GGML_TYPE_F32) {
  13440. cur = sizeof(float)*(
  13441. nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
  13442. ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
  13443. );
  13444. } else {
  13445. GGML_ASSERT(false);
  13446. }
  13447. work_size = MAX(work_size, cur);
  13448. } break;
  13449. case GGML_OP_CONV_2D:
  13450. {
  13451. n_tasks = n_threads;
  13452. const int64_t ne00 = node->src[0]->ne[0]; // W
  13453. const int64_t ne01 = node->src[0]->ne[1]; // H
  13454. const int64_t ne02 = node->src[0]->ne[2]; // C
  13455. const int64_t ne03 = node->src[0]->ne[3]; // N
  13456. const int64_t ne10 = node->src[1]->ne[0]; // W
  13457. const int64_t ne11 = node->src[1]->ne[1]; // H
  13458. const int64_t ne12 = node->src[1]->ne[2]; // C
  13459. const int64_t ne0 = node->ne[0];
  13460. const int64_t ne1 = node->ne[1];
  13461. const int64_t ne2 = node->ne[2];
  13462. const int64_t nk = ne00*ne01;
  13463. const int64_t ew0 = nk * ne02;
  13464. UNUSED(ne03);
  13465. UNUSED(ne2);
  13466. size_t cur = 0;
  13467. if (node->src[0]->type == GGML_TYPE_F16 &&
  13468. node->src[1]->type == GGML_TYPE_F32) {
  13469. cur = sizeof(ggml_fp16_t)*(ne0*ne1*ew0);
  13470. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13471. node->src[1]->type == GGML_TYPE_F32) {
  13472. cur = sizeof(float)* (ne10*ne11*ne12);
  13473. } else {
  13474. GGML_ASSERT(false);
  13475. }
  13476. work_size = MAX(work_size, cur);
  13477. } break;
  13478. case GGML_OP_POOL_1D:
  13479. case GGML_OP_POOL_2D:
  13480. {
  13481. n_tasks = 1;
  13482. } break;
  13483. case GGML_OP_FLASH_ATTN:
  13484. {
  13485. n_tasks = n_threads;
  13486. size_t cur = 0;
  13487. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13488. if (node->src[1]->type == GGML_TYPE_F32) {
  13489. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13490. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13491. }
  13492. if (node->src[1]->type == GGML_TYPE_F16) {
  13493. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13494. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13495. }
  13496. work_size = MAX(work_size, cur);
  13497. } break;
  13498. case GGML_OP_FLASH_FF:
  13499. {
  13500. n_tasks = n_threads;
  13501. size_t cur = 0;
  13502. if (node->src[1]->type == GGML_TYPE_F32) {
  13503. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13504. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13505. }
  13506. if (node->src[1]->type == GGML_TYPE_F16) {
  13507. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13508. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13509. }
  13510. work_size = MAX(work_size, cur);
  13511. } break;
  13512. case GGML_OP_FLASH_ATTN_BACK:
  13513. {
  13514. n_tasks = n_threads;
  13515. size_t cur = 0;
  13516. const int64_t D = node->src[0]->ne[0];
  13517. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13518. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  13519. if (node->src[1]->type == GGML_TYPE_F32) {
  13520. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13521. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13522. }
  13523. if (node->src[1]->type == GGML_TYPE_F16) {
  13524. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13525. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13526. }
  13527. work_size = MAX(work_size, cur);
  13528. } break;
  13529. case GGML_OP_WIN_PART:
  13530. case GGML_OP_WIN_UNPART:
  13531. case GGML_OP_MAP_UNARY:
  13532. case GGML_OP_MAP_BINARY:
  13533. case GGML_OP_MAP_CUSTOM1:
  13534. case GGML_OP_MAP_CUSTOM2:
  13535. case GGML_OP_MAP_CUSTOM3:
  13536. {
  13537. n_tasks = 1;
  13538. } break;
  13539. case GGML_OP_CROSS_ENTROPY_LOSS:
  13540. {
  13541. n_tasks = n_threads;
  13542. size_t cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  13543. work_size = MAX(work_size, cur);
  13544. } break;
  13545. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13546. {
  13547. n_tasks = n_threads;
  13548. size_t cur = ggml_type_size(node->type)*node->src[0]->ne[0]*n_tasks;
  13549. work_size = MAX(work_size, cur);
  13550. } break;
  13551. case GGML_OP_NONE:
  13552. {
  13553. n_tasks = 1;
  13554. } break;
  13555. case GGML_OP_COUNT:
  13556. {
  13557. GGML_ASSERT(false);
  13558. } break;
  13559. }
  13560. cplan.n_tasks[i] = n_tasks;
  13561. }
  13562. if (work_size > 0) {
  13563. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  13564. }
  13565. cplan.n_threads = n_threads;
  13566. cplan.work_size = work_size;
  13567. cplan.work_data = NULL;
  13568. return cplan;
  13569. }
  13570. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  13571. {
  13572. GGML_ASSERT(cplan);
  13573. GGML_ASSERT(cplan->n_threads > 0);
  13574. if (cplan->work_size > 0) {
  13575. GGML_ASSERT(cplan->work_data);
  13576. }
  13577. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13578. if (cgraph->nodes[i]->op != GGML_OP_NONE) {
  13579. GGML_ASSERT(cplan->n_tasks[i] > 0);
  13580. }
  13581. }
  13582. }
  13583. const int n_threads = cplan->n_threads;
  13584. struct ggml_compute_state_shared state_shared = {
  13585. /*.cgraph =*/ cgraph,
  13586. /*.cgraph_plan =*/ cplan,
  13587. /*.perf_node_start_cycles =*/ 0,
  13588. /*.perf_node_start_time_us =*/ 0,
  13589. /*.n_threads =*/ n_threads,
  13590. /*.n_active =*/ n_threads,
  13591. /*.node_n =*/ -1,
  13592. /*.abort_callback =*/ NULL,
  13593. /*.abort_callback_data =*/ NULL,
  13594. };
  13595. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  13596. // create thread pool
  13597. if (n_threads > 1) {
  13598. for (int j = 1; j < n_threads; ++j) {
  13599. workers[j] = (struct ggml_compute_state) {
  13600. .thrd = 0,
  13601. .ith = j,
  13602. .shared = &state_shared,
  13603. };
  13604. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  13605. GGML_ASSERT(rc == 0);
  13606. }
  13607. }
  13608. workers[0].ith = 0;
  13609. workers[0].shared = &state_shared;
  13610. const int64_t perf_start_cycles = ggml_perf_cycles();
  13611. const int64_t perf_start_time_us = ggml_perf_time_us();
  13612. // this is a work thread too
  13613. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  13614. // don't leave affinity set on the main thread
  13615. clear_numa_thread_affinity();
  13616. // join or kill thread pool
  13617. if (n_threads > 1) {
  13618. for (int j = 1; j < n_threads; j++) {
  13619. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  13620. GGML_ASSERT(rc == 0);
  13621. }
  13622. }
  13623. // performance stats (graph)
  13624. {
  13625. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  13626. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  13627. cgraph->perf_runs++;
  13628. cgraph->perf_cycles += perf_cycles_cur;
  13629. cgraph->perf_time_us += perf_time_us_cur;
  13630. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  13631. __func__, cgraph->perf_runs,
  13632. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  13633. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  13634. (double) perf_time_us_cur / 1000.0,
  13635. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  13636. }
  13637. return compute_status;
  13638. }
  13639. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13640. for (int i = 0; i < cgraph->n_nodes; i++) {
  13641. struct ggml_tensor * grad = cgraph->grads[i];
  13642. if (grad) {
  13643. ggml_set_zero(grad);
  13644. }
  13645. }
  13646. }
  13647. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  13648. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  13649. struct ggml_tensor * buf = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cplan.work_size);
  13650. GGML_ASSERT(buf);
  13651. cplan.work_data = buf->data;
  13652. ggml_graph_compute(cgraph, &cplan);
  13653. }
  13654. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  13655. for (int i = 0; i < cgraph->n_leafs; i++) {
  13656. struct ggml_tensor * leaf = cgraph->leafs[i];
  13657. if (strcmp(leaf->name, name) == 0) {
  13658. return leaf;
  13659. }
  13660. }
  13661. for (int i = 0; i < cgraph->n_nodes; i++) {
  13662. struct ggml_tensor * node = cgraph->nodes[i];
  13663. if (strcmp(node->name, name) == 0) {
  13664. return node;
  13665. }
  13666. }
  13667. return NULL;
  13668. }
  13669. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  13670. const int64_t * ne = tensor->ne;
  13671. const size_t * nb = tensor->nb;
  13672. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13673. ggml_type_name(tensor->type),
  13674. ggml_op_name (tensor->op),
  13675. tensor->n_dims,
  13676. ne[0], ne[1], ne[2], ne[3],
  13677. nb[0], nb[1], nb[2], nb[3],
  13678. tensor->data,
  13679. tensor->name);
  13680. }
  13681. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  13682. const int64_t * ne = tensor->ne;
  13683. const size_t * nb = tensor->nb;
  13684. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13685. arg,
  13686. ggml_type_name(tensor->type),
  13687. ggml_op_name (tensor->op),
  13688. tensor->n_dims,
  13689. ne[0], ne[1], ne[2], ne[3],
  13690. nb[0], nb[1], nb[2], nb[3],
  13691. tensor->data,
  13692. tensor->name);
  13693. }
  13694. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  13695. uint64_t size_eval = 0;
  13696. // compute size of intermediate results
  13697. // TODO: does not take into account scratch buffers !!!!
  13698. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13699. size_eval += ggml_nbytes(cgraph->nodes[i]);
  13700. }
  13701. // print
  13702. {
  13703. FILE * fout = stdout;
  13704. fprintf(fout, "\n");
  13705. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  13706. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  13707. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  13708. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  13709. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  13710. // header
  13711. fprintf(fout, "\n");
  13712. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  13713. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  13714. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13715. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  13716. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  13717. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  13718. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  13719. }
  13720. // header
  13721. fprintf(fout, "\n");
  13722. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  13723. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  13724. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13725. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  13726. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13727. if (cgraph->nodes[i]->src[j]) {
  13728. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  13729. }
  13730. }
  13731. fprintf(fout, "\n");
  13732. }
  13733. fprintf(fout, "\n");
  13734. }
  13735. // write binary data
  13736. {
  13737. FILE * fout = fopen(fname, "wb");
  13738. if (!fout) {
  13739. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  13740. return;
  13741. }
  13742. // header
  13743. {
  13744. const uint32_t magic = GGML_FILE_MAGIC;
  13745. const uint32_t version = GGML_FILE_VERSION;
  13746. const uint32_t n_leafs = cgraph->n_leafs;
  13747. const uint32_t nodes = cgraph->n_nodes;
  13748. fwrite(&magic, sizeof(uint32_t), 1, fout);
  13749. fwrite(&version, sizeof(uint32_t), 1, fout);
  13750. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  13751. fwrite(&nodes, sizeof(uint32_t), 1, fout);
  13752. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  13753. }
  13754. // leafs
  13755. {
  13756. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13757. const struct ggml_tensor * tensor = cgraph->leafs[i];
  13758. const uint32_t type = tensor->type;
  13759. const uint32_t op = tensor->op;
  13760. const uint32_t n_dims = tensor->n_dims;
  13761. fwrite(&type, sizeof(uint32_t), 1, fout);
  13762. fwrite(&op, sizeof(uint32_t), 1, fout);
  13763. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  13764. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13765. const uint64_t ne = tensor->ne[j];
  13766. const uint64_t nb = tensor->nb[j];
  13767. fwrite(&ne, sizeof(uint64_t), 1, fout);
  13768. fwrite(&nb, sizeof(uint64_t), 1, fout);
  13769. }
  13770. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  13771. // dump the data
  13772. // TODO: pad this to 32 byte boundary
  13773. {
  13774. const size_t size = ggml_nbytes(tensor);
  13775. fwrite(tensor->data, sizeof(char), size, fout);
  13776. }
  13777. }
  13778. }
  13779. // nodes
  13780. {
  13781. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13782. const struct ggml_tensor * tensor = cgraph->nodes[i];
  13783. const uint32_t type = tensor->type;
  13784. const uint32_t op = tensor->op;
  13785. const uint32_t n_dims = tensor->n_dims;
  13786. fwrite(&type, sizeof(uint32_t), 1, fout);
  13787. fwrite(&op, sizeof(uint32_t), 1, fout);
  13788. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  13789. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13790. const uint64_t ne = tensor->ne[j];
  13791. const uint64_t nb = tensor->nb[j];
  13792. fwrite(&ne, sizeof(uint64_t), 1, fout);
  13793. fwrite(&nb, sizeof(uint64_t), 1, fout);
  13794. }
  13795. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  13796. // output the op arguments
  13797. {
  13798. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  13799. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13800. args[j] = tensor->src[j];
  13801. }
  13802. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13803. if (args[j]) {
  13804. int32_t idx = -1;
  13805. // check if leaf
  13806. {
  13807. for (int k = 0; k < cgraph->n_leafs; ++k) {
  13808. if (args[j] == cgraph->leafs[k]) {
  13809. idx = k;
  13810. break;
  13811. }
  13812. }
  13813. }
  13814. // check if node
  13815. if (idx == -1) {
  13816. for (int k = 0; k < cgraph->n_nodes; ++k) {
  13817. if (args[j] == cgraph->nodes[k]) {
  13818. idx = GGML_MAX_NODES + k;
  13819. break;
  13820. }
  13821. }
  13822. }
  13823. if (idx == -1) {
  13824. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  13825. return;
  13826. }
  13827. fwrite(&idx, sizeof(int32_t), 1, fout);
  13828. } else {
  13829. const int32_t nul = -1;
  13830. fwrite(&nul, sizeof(int32_t), 1, fout);
  13831. }
  13832. }
  13833. }
  13834. }
  13835. }
  13836. fclose(fout);
  13837. }
  13838. }
  13839. struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  13840. assert(*ctx_data == NULL);
  13841. assert(*ctx_eval == NULL);
  13842. struct ggml_cgraph result = { 0 };
  13843. struct ggml_tensor * data = NULL;
  13844. // read file into data
  13845. {
  13846. FILE * fin = fopen(fname, "rb");
  13847. if (!fin) {
  13848. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  13849. return result;
  13850. }
  13851. size_t fsize = 0;
  13852. fseek(fin, 0, SEEK_END);
  13853. fsize = ftell(fin);
  13854. fseek(fin, 0, SEEK_SET);
  13855. // create the data context
  13856. {
  13857. const size_t overhead = 1*ggml_tensor_overhead();
  13858. struct ggml_init_params params = {
  13859. .mem_size = fsize + overhead,
  13860. .mem_buffer = NULL,
  13861. .no_alloc = false,
  13862. };
  13863. *ctx_data = ggml_init(params);
  13864. if (!*ctx_data) {
  13865. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  13866. fclose(fin);
  13867. return result;
  13868. }
  13869. }
  13870. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  13871. {
  13872. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  13873. if (ret != fsize) {
  13874. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  13875. fclose(fin);
  13876. return result;
  13877. }
  13878. }
  13879. fclose(fin);
  13880. }
  13881. // populate result
  13882. {
  13883. char * ptr = (char *) data->data;
  13884. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  13885. if (magic != GGML_FILE_MAGIC) {
  13886. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  13887. return result;
  13888. }
  13889. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  13890. if (version != GGML_FILE_VERSION) {
  13891. fprintf(stderr, "%s: invalid version number\n", __func__);
  13892. return result;
  13893. }
  13894. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  13895. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  13896. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  13897. result.n_leafs = n_leafs;
  13898. result.n_nodes = n_nodes;
  13899. // create the data context
  13900. {
  13901. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
  13902. struct ggml_init_params params = {
  13903. .mem_size = size_eval + overhead,
  13904. .mem_buffer = NULL,
  13905. .no_alloc = true,
  13906. };
  13907. *ctx_eval = ggml_init(params);
  13908. if (!*ctx_eval) {
  13909. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  13910. return result;
  13911. }
  13912. }
  13913. // leafs
  13914. {
  13915. uint32_t type;
  13916. uint32_t op;
  13917. uint32_t n_dims;
  13918. for (uint32_t i = 0; i < n_leafs; ++i) {
  13919. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  13920. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  13921. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  13922. int64_t ne[GGML_MAX_DIMS];
  13923. size_t nb[GGML_MAX_DIMS];
  13924. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13925. uint64_t ne_cur;
  13926. uint64_t nb_cur;
  13927. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  13928. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  13929. ne[j] = ne_cur;
  13930. nb[j] = nb_cur;
  13931. }
  13932. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  13933. tensor->op = (enum ggml_op) op;
  13934. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  13935. tensor->data = (void *) ptr;
  13936. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13937. tensor->nb[j] = nb[j];
  13938. }
  13939. result.leafs[i] = tensor;
  13940. ptr += ggml_nbytes(tensor);
  13941. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  13942. }
  13943. }
  13944. ggml_set_no_alloc(*ctx_eval, false);
  13945. // nodes
  13946. {
  13947. uint32_t type;
  13948. uint32_t op;
  13949. uint32_t n_dims;
  13950. for (uint32_t i = 0; i < n_nodes; ++i) {
  13951. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  13952. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  13953. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  13954. enum ggml_op eop = (enum ggml_op) op;
  13955. int64_t ne[GGML_MAX_DIMS];
  13956. size_t nb[GGML_MAX_DIMS];
  13957. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13958. uint64_t ne_cur;
  13959. uint64_t nb_cur;
  13960. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  13961. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  13962. ne[j] = ne_cur;
  13963. nb[j] = nb_cur;
  13964. }
  13965. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  13966. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  13967. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  13968. // parse args
  13969. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13970. const int32_t arg_idx = ptr_arg_idx[j];
  13971. if (arg_idx == -1) {
  13972. continue;
  13973. }
  13974. if (arg_idx < GGML_MAX_NODES) {
  13975. args[j] = result.leafs[arg_idx];
  13976. } else {
  13977. args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
  13978. }
  13979. }
  13980. // create the tensor
  13981. // "view" operations are handled differently
  13982. // TODO: handle inplace ops - currently a copy is always made
  13983. struct ggml_tensor * tensor = NULL;
  13984. switch (eop) {
  13985. // TODO: implement other view ops
  13986. case GGML_OP_RESHAPE:
  13987. {
  13988. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  13989. } break;
  13990. case GGML_OP_VIEW:
  13991. {
  13992. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  13993. uint64_t offs;
  13994. memcpy(&offs, tensor->op_params, sizeof(offs));
  13995. tensor->data = ((char *) tensor->data) + offs;
  13996. } break;
  13997. case GGML_OP_TRANSPOSE:
  13998. {
  13999. tensor = ggml_transpose(*ctx_eval, args[0]);
  14000. } break;
  14001. case GGML_OP_PERMUTE:
  14002. {
  14003. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14004. } break;
  14005. default:
  14006. {
  14007. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14008. tensor->op = eop;
  14009. } break;
  14010. }
  14011. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  14012. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14013. tensor->nb[j] = nb[j];
  14014. }
  14015. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14016. tensor->src[j] = args[j];
  14017. }
  14018. result.nodes[i] = tensor;
  14019. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14020. }
  14021. }
  14022. }
  14023. return result;
  14024. }
  14025. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  14026. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  14027. GGML_PRINT("=== GRAPH ===\n");
  14028. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  14029. for (int i = 0; i < cgraph->n_nodes; i++) {
  14030. struct ggml_tensor * node = cgraph->nodes[i];
  14031. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  14032. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  14033. i,
  14034. node->ne[0], node->ne[1], node->ne[2],
  14035. GGML_OP_NAME[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  14036. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  14037. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  14038. (double) node->perf_time_us / 1000.0,
  14039. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  14040. }
  14041. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  14042. for (int i = 0; i < cgraph->n_leafs; i++) {
  14043. struct ggml_tensor * node = cgraph->leafs[i];
  14044. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  14045. i,
  14046. node->ne[0], node->ne[1],
  14047. GGML_OP_NAME[node->op]);
  14048. }
  14049. for (int i = 0; i < GGML_OP_COUNT; i++) {
  14050. if (perf_total_per_op_us[i] == 0) {
  14051. continue;
  14052. }
  14053. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_NAME[i], (double) perf_total_per_op_us[i] / 1000.0);
  14054. }
  14055. GGML_PRINT("========================================\n");
  14056. }
  14057. // check if node is part of the graph
  14058. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14059. if (cgraph == NULL) {
  14060. return true;
  14061. }
  14062. for (int i = 0; i < cgraph->n_nodes; i++) {
  14063. if (cgraph->nodes[i] == node) {
  14064. return true;
  14065. }
  14066. }
  14067. return false;
  14068. }
  14069. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14070. for (int i = 0; i < cgraph->n_nodes; i++) {
  14071. struct ggml_tensor * parent = cgraph->nodes[i];
  14072. if (parent->grad == node) {
  14073. return parent;
  14074. }
  14075. }
  14076. return NULL;
  14077. }
  14078. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14079. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  14080. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  14081. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  14082. gparent0 ? (void *) gparent0 : (void *) parent,
  14083. gparent0 ? "g" : "x",
  14084. gparent ? (void *) gparent : (void *) node,
  14085. gparent ? "g" : "x",
  14086. gparent ? "empty" : "vee",
  14087. gparent ? "dashed" : "solid",
  14088. label);
  14089. }
  14090. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14091. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  14092. (void *) parent, "x",
  14093. (void *) node, "x",
  14094. label);
  14095. }
  14096. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  14097. char color[16];
  14098. FILE * fp = fopen(filename, "w");
  14099. GGML_ASSERT(fp);
  14100. fprintf(fp, "digraph G {\n");
  14101. fprintf(fp, " newrank = true;\n");
  14102. fprintf(fp, " rankdir = LR;\n");
  14103. for (int i = 0; i < gb->n_nodes; i++) {
  14104. struct ggml_tensor * node = gb->nodes[i];
  14105. if (ggml_graph_get_parent(gb, node) != NULL) {
  14106. continue;
  14107. }
  14108. if (node->is_param) {
  14109. snprintf(color, sizeof(color), "yellow");
  14110. } else if (node->grad) {
  14111. if (ggml_graph_find(gf, node)) {
  14112. snprintf(color, sizeof(color), "green");
  14113. } else {
  14114. snprintf(color, sizeof(color), "lightblue");
  14115. }
  14116. } else {
  14117. snprintf(color, sizeof(color), "white");
  14118. }
  14119. fprintf(fp, " \"%p\" [ "
  14120. "style = filled; fillcolor = %s; shape = record; "
  14121. "label=\"",
  14122. (void *) node, color);
  14123. if (strlen(node->name) > 0) {
  14124. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14125. } else {
  14126. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14127. }
  14128. if (node->n_dims == 2) {
  14129. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], GGML_OP_SYMBOL[node->op]);
  14130. } else {
  14131. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], GGML_OP_SYMBOL[node->op]);
  14132. }
  14133. if (node->grad) {
  14134. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  14135. } else {
  14136. fprintf(fp, "\"; ]\n");
  14137. }
  14138. }
  14139. for (int i = 0; i < gb->n_leafs; i++) {
  14140. struct ggml_tensor * node = gb->leafs[i];
  14141. snprintf(color, sizeof(color), "pink");
  14142. fprintf(fp, " \"%p\" [ "
  14143. "style = filled; fillcolor = %s; shape = record; "
  14144. "label=\"<x>",
  14145. (void *) node, color);
  14146. if (strlen(node->name) > 0) {
  14147. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14148. } else {
  14149. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14150. }
  14151. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  14152. if (ggml_nelements(node) < 5) {
  14153. fprintf(fp, " | (");
  14154. for (int j = 0; j < ggml_nelements(node); j++) {
  14155. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  14156. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  14157. }
  14158. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  14159. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  14160. }
  14161. else {
  14162. fprintf(fp, "#");
  14163. }
  14164. if (j < ggml_nelements(node) - 1) {
  14165. fprintf(fp, ", ");
  14166. }
  14167. }
  14168. fprintf(fp, ")");
  14169. }
  14170. fprintf(fp, "\"; ]\n");
  14171. }
  14172. for (int i = 0; i < gb->n_nodes; i++) {
  14173. struct ggml_tensor * node = gb->nodes[i];
  14174. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14175. if (node->src[j]) {
  14176. char label[16];
  14177. snprintf(label, sizeof(label), "src %d", j);
  14178. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  14179. }
  14180. }
  14181. }
  14182. for (int i = 0; i < gb->n_leafs; i++) {
  14183. struct ggml_tensor * node = gb->leafs[i];
  14184. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14185. if (node->src[j]) {
  14186. char label[16];
  14187. snprintf(label, sizeof(label), "src %d", j);
  14188. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  14189. }
  14190. }
  14191. }
  14192. fprintf(fp, "}\n");
  14193. fclose(fp);
  14194. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  14195. }
  14196. ////////////////////////////////////////////////////////////////////////////////
  14197. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  14198. int i = 0;
  14199. for (int p = 0; p < np; ++p) {
  14200. const int64_t ne = ggml_nelements(ps[p]) ;
  14201. // TODO: add function to set tensor from array
  14202. for (int64_t j = 0; j < ne; ++j) {
  14203. ggml_set_f32_1d(ps[p], j, x[i++]);
  14204. }
  14205. }
  14206. }
  14207. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  14208. int i = 0;
  14209. for (int p = 0; p < np; ++p) {
  14210. const int64_t ne = ggml_nelements(ps[p]) ;
  14211. // TODO: add function to get all elements at once
  14212. for (int64_t j = 0; j < ne; ++j) {
  14213. x[i++] = ggml_get_f32_1d(ps[p], j);
  14214. }
  14215. }
  14216. }
  14217. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  14218. int i = 0;
  14219. for (int p = 0; p < np; ++p) {
  14220. const int64_t ne = ggml_nelements(ps[p]) ;
  14221. // TODO: add function to get all elements at once
  14222. for (int64_t j = 0; j < ne; ++j) {
  14223. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  14224. }
  14225. }
  14226. }
  14227. //
  14228. // ADAM
  14229. //
  14230. // ref: https://arxiv.org/pdf/1412.6980.pdf
  14231. //
  14232. static enum ggml_opt_result ggml_opt_adam(
  14233. struct ggml_context * ctx,
  14234. struct ggml_opt_context * opt,
  14235. struct ggml_opt_params params,
  14236. struct ggml_tensor * f,
  14237. struct ggml_cgraph * gf,
  14238. struct ggml_cgraph * gb) {
  14239. GGML_ASSERT(ggml_is_scalar(f));
  14240. // these will store the parameters we want to optimize
  14241. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14242. int np = 0;
  14243. int nx = 0;
  14244. for (int i = 0; i < gf->n_nodes; ++i) {
  14245. if (gf->nodes[i]->is_param) {
  14246. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14247. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14248. ps[np++] = gf->nodes[i];
  14249. nx += ggml_nelements(gf->nodes[i]);
  14250. }
  14251. }
  14252. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  14253. int iter = opt->iter;
  14254. ggml_opt_init(opt->ctx, opt, params, nx);
  14255. opt->iter = iter;
  14256. }
  14257. // constants
  14258. const float sched = params.adam.sched;
  14259. const float decay = params.adam.decay * sched;
  14260. const float alpha = params.adam.alpha * sched;
  14261. const float beta1 = params.adam.beta1;
  14262. const float beta2 = params.adam.beta2;
  14263. const float eps = params.adam.eps;
  14264. float * x = opt->adam.x->data; // view of the parameters
  14265. float * g1 = opt->adam.g1->data; // gradient
  14266. float * g2 = opt->adam.g2->data; // gradient squared
  14267. float * m = opt->adam.m->data; // first moment
  14268. float * v = opt->adam.v->data; // second moment
  14269. float * mh = opt->adam.mh->data; // first moment hat
  14270. float * vh = opt->adam.vh->data; // second moment hat
  14271. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  14272. // update view
  14273. ggml_opt_get_params(np, ps, x);
  14274. // compute the function value
  14275. ggml_graph_reset (gf);
  14276. ggml_set_f32 (f->grad, 1.0f);
  14277. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  14278. opt->adam.fx_prev = ggml_get_f32_1d(f, 0);
  14279. opt->adam.fx_best = opt->adam.fx_prev;
  14280. if (pf) {
  14281. pf[opt->iter % params.past] = opt->adam.fx_prev;
  14282. }
  14283. // initialize
  14284. if (opt->just_initialized) {
  14285. opt->adam.n_no_improvement = 0;
  14286. opt->just_initialized = false;
  14287. }
  14288. float * fx_best = &opt->adam.fx_best;
  14289. float * fx_prev = &opt->adam.fx_prev;
  14290. int * n_no_improvement = &opt->adam.n_no_improvement;
  14291. int iter0 = opt->iter;
  14292. // run the optimizer
  14293. for (int t = 0; t < params.adam.n_iter; ++t) {
  14294. opt->iter = iter0 + t + 1;
  14295. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  14296. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14297. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  14298. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  14299. for (int i = 0; i < np; ++i) {
  14300. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  14301. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  14302. }
  14303. const int64_t t_start_wall = ggml_time_us();
  14304. const int64_t t_start_cpu = ggml_cycles();
  14305. UNUSED(t_start_wall);
  14306. UNUSED(t_start_cpu);
  14307. {
  14308. // update the gradient
  14309. ggml_opt_get_grad(np, ps, g1);
  14310. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  14311. ggml_vec_scale_f32(nx, m, beta1);
  14312. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  14313. // g2 = g1^2
  14314. ggml_vec_sqr_f32 (nx, g2, g1);
  14315. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  14316. ggml_vec_scale_f32(nx, v, beta2);
  14317. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  14318. // m^hat = m_t / (1 - beta1^t)
  14319. // v^hat = v_t / (1 - beta2^t)
  14320. // x_t = x_t-1 - sched*(alpha*m^hat/(sqrt(v^hat) + eps) + decay*x_t-1)
  14321. // x_t = x_t-1 - sched*alpha*m^hat/(sqrt(v^hat) + eps) - sched*decay*x_t-1
  14322. // x_t = x_t-1*(1-sched*decay) - sched*alpha*m^hat/(sqrt(v^hat) + eps)
  14323. // x_t = x_t-1*(1-sched*decay) + sched*decay*(-alpha/decay)*m^hat/(sqrt(v^hat) + eps)
  14324. // x_t = mix(x_t-1, (-alpha/decay)*m^hat/(sqrt(v^hat) + eps), sched*decay)
  14325. ggml_vec_cpy_f32 (nx, mh, m);
  14326. ggml_vec_cpy_f32 (nx, vh, v);
  14327. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, opt->iter)));
  14328. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, opt->iter)));
  14329. ggml_vec_sqrt_f32 (nx, vh, vh);
  14330. ggml_vec_acc1_f32 (nx, vh, eps);
  14331. ggml_vec_div_f32 (nx, mh, mh, vh);
  14332. ggml_vec_scale_f32(nx, x, 1.0f - decay);
  14333. ggml_vec_sub_f32 (nx, x, x, mh);
  14334. // update the parameters
  14335. ggml_opt_set_params(np, ps, x);
  14336. }
  14337. ggml_graph_reset (gf);
  14338. ggml_set_f32 (f->grad, 1.0f);
  14339. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  14340. const float fx = ggml_get_f32_1d(f, 0);
  14341. // check convergence
  14342. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  14343. GGML_PRINT_DEBUG("converged\n");
  14344. return GGML_OPT_OK;
  14345. }
  14346. // delta-based convergence test
  14347. if (pf != NULL) {
  14348. // need at least params.past iterations to start checking for convergence
  14349. if (params.past <= iter0 + t) {
  14350. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  14351. if (fabsf(rate) < params.delta) {
  14352. return GGML_OPT_OK;
  14353. }
  14354. }
  14355. pf[(iter0 + t)%params.past] = fx;
  14356. }
  14357. // check for improvement
  14358. if (params.max_no_improvement > 0) {
  14359. if (fx_best[0] > fx) {
  14360. fx_best[0] = fx;
  14361. n_no_improvement[0] = 0;
  14362. } else {
  14363. ++n_no_improvement[0];
  14364. if (n_no_improvement[0] >= params.max_no_improvement) {
  14365. return GGML_OPT_OK;
  14366. }
  14367. }
  14368. }
  14369. fx_prev[0] = fx;
  14370. {
  14371. const int64_t t_end_cpu = ggml_cycles();
  14372. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  14373. UNUSED(t_end_cpu);
  14374. const int64_t t_end_wall = ggml_time_us();
  14375. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  14376. UNUSED(t_end_wall);
  14377. }
  14378. }
  14379. return GGML_OPT_DID_NOT_CONVERGE;
  14380. }
  14381. //
  14382. // L-BFGS
  14383. //
  14384. // the L-BFGS implementation below is based on the following implementation:
  14385. //
  14386. // https://github.com/chokkan/liblbfgs
  14387. //
  14388. struct ggml_lbfgs_iteration_data {
  14389. float alpha;
  14390. float ys;
  14391. float * s;
  14392. float * y;
  14393. };
  14394. static enum ggml_opt_result linesearch_backtracking(
  14395. struct ggml_context * ctx,
  14396. const struct ggml_opt_params * params,
  14397. int nx,
  14398. float * x,
  14399. float * fx,
  14400. float * g,
  14401. float * d,
  14402. float * step,
  14403. const float * xp,
  14404. struct ggml_tensor * f,
  14405. struct ggml_cgraph * gf,
  14406. struct ggml_cgraph * gb,
  14407. const int np,
  14408. struct ggml_tensor * ps[]) {
  14409. int count = 0;
  14410. float width = 0.0f;
  14411. float dg = 0.0f;
  14412. float finit = 0.0f;
  14413. float dginit = 0.0f;
  14414. float dgtest = 0.0f;
  14415. const float dec = 0.5f;
  14416. const float inc = 2.1f;
  14417. if (*step <= 0.f) {
  14418. return GGML_LINESEARCH_INVALID_PARAMETERS;
  14419. }
  14420. // compute the initial gradient in the search direction
  14421. ggml_vec_dot_f32(nx, &dginit, g, d);
  14422. // make sure that d points to a descent direction
  14423. if (0 < dginit) {
  14424. return GGML_LINESEARCH_FAIL;
  14425. }
  14426. // initialize local variables
  14427. finit = *fx;
  14428. dgtest = params->lbfgs.ftol*dginit;
  14429. while (true) {
  14430. ggml_vec_cpy_f32(nx, x, xp);
  14431. ggml_vec_mad_f32(nx, x, d, *step);
  14432. // evaluate the function and gradient values
  14433. {
  14434. ggml_opt_set_params(np, ps, x);
  14435. ggml_graph_reset (gf);
  14436. ggml_set_f32 (f->grad, 1.0f);
  14437. ggml_graph_compute_with_ctx(ctx, gb, params->n_threads);
  14438. ggml_opt_get_grad(np, ps, g);
  14439. *fx = ggml_get_f32_1d(f, 0);
  14440. }
  14441. ++count;
  14442. if (*fx > finit + (*step)*dgtest) {
  14443. width = dec;
  14444. } else {
  14445. // Armijo condition is satisfied
  14446. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  14447. return count;
  14448. }
  14449. ggml_vec_dot_f32(nx, &dg, g, d);
  14450. // check the Wolfe condition
  14451. if (dg < params->lbfgs.wolfe * dginit) {
  14452. width = inc;
  14453. } else {
  14454. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  14455. // regular Wolfe conditions
  14456. return count;
  14457. }
  14458. if(dg > -params->lbfgs.wolfe*dginit) {
  14459. width = dec;
  14460. } else {
  14461. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  14462. return count;
  14463. }
  14464. return count;
  14465. }
  14466. }
  14467. if (*step < params->lbfgs.min_step) {
  14468. return GGML_LINESEARCH_MINIMUM_STEP;
  14469. }
  14470. if (*step > params->lbfgs.max_step) {
  14471. return GGML_LINESEARCH_MAXIMUM_STEP;
  14472. }
  14473. if (params->lbfgs.max_linesearch <= count) {
  14474. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  14475. }
  14476. (*step) *= width;
  14477. }
  14478. return GGML_LINESEARCH_FAIL;
  14479. }
  14480. static enum ggml_opt_result ggml_opt_lbfgs(
  14481. struct ggml_context * ctx,
  14482. struct ggml_opt_context * opt,
  14483. struct ggml_opt_params params,
  14484. struct ggml_tensor * f,
  14485. struct ggml_cgraph * gf,
  14486. struct ggml_cgraph * gb) {
  14487. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  14488. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  14489. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  14490. return GGML_OPT_INVALID_WOLFE;
  14491. }
  14492. }
  14493. const int m = params.lbfgs.m;
  14494. // these will store the parameters we want to optimize
  14495. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14496. int np = 0;
  14497. int nx = 0;
  14498. for (int i = 0; i < gf->n_nodes; ++i) {
  14499. if (gf->nodes[i]->is_param) {
  14500. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14501. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14502. ps[np++] = gf->nodes[i];
  14503. nx += ggml_nelements(gf->nodes[i]);
  14504. }
  14505. }
  14506. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  14507. int iter = opt->iter;
  14508. ggml_opt_init(ctx, opt, params, nx);
  14509. opt->iter = iter;
  14510. }
  14511. float * x = opt->lbfgs.x->data; // current parameters
  14512. float * xp = opt->lbfgs.xp->data; // previous parameters
  14513. float * g = opt->lbfgs.g->data; // current gradient
  14514. float * gp = opt->lbfgs.gp->data; // previous gradient
  14515. float * d = opt->lbfgs.d->data; // search direction
  14516. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  14517. float fx = 0.0f; // cost function value
  14518. float xnorm = 0.0f; // ||x||
  14519. float gnorm = 0.0f; // ||g||
  14520. // initialize x from the graph nodes
  14521. ggml_opt_get_params(np, ps, x);
  14522. // the L-BFGS memory
  14523. float * lm_alpha = opt->lbfgs.lmal->data;
  14524. float * lm_ys = opt->lbfgs.lmys->data;
  14525. float * lm_s = opt->lbfgs.lms->data;
  14526. float * lm_y = opt->lbfgs.lmy->data;
  14527. // evaluate the function value and its gradient
  14528. {
  14529. ggml_opt_set_params(np, ps, x);
  14530. ggml_graph_reset (gf);
  14531. ggml_set_f32 (f->grad, 1.0f);
  14532. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  14533. ggml_opt_get_grad(np, ps, g);
  14534. fx = ggml_get_f32_1d(f, 0);
  14535. }
  14536. // search direction = -gradient
  14537. ggml_vec_neg_f32(nx, d, g);
  14538. // ||x||, ||g||
  14539. ggml_vec_norm_f32(nx, &xnorm, x);
  14540. ggml_vec_norm_f32(nx, &gnorm, g);
  14541. if (xnorm < 1.0f) {
  14542. xnorm = 1.0f;
  14543. }
  14544. // already optimized
  14545. if (gnorm/xnorm <= params.lbfgs.eps) {
  14546. return GGML_OPT_OK;
  14547. }
  14548. if (opt->just_initialized) {
  14549. if (pf) {
  14550. pf[0] = fx;
  14551. }
  14552. opt->lbfgs.fx_best = fx;
  14553. // initial step
  14554. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  14555. opt->lbfgs.j = 0;
  14556. opt->lbfgs.k = 1;
  14557. opt->lbfgs.end = 0;
  14558. opt->lbfgs.n_no_improvement = 0;
  14559. opt->just_initialized = false;
  14560. }
  14561. float * fx_best = &opt->lbfgs.fx_best;
  14562. float * step = &opt->lbfgs.step;
  14563. int * j = &opt->lbfgs.j;
  14564. int * k = &opt->lbfgs.k;
  14565. int * end = &opt->lbfgs.end;
  14566. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  14567. int ls = 0;
  14568. int bound = 0;
  14569. float ys = 0.0f;
  14570. float yy = 0.0f;
  14571. float beta = 0.0f;
  14572. int it = 0;
  14573. while (true) {
  14574. // store the current position and gradient vectors
  14575. ggml_vec_cpy_f32(nx, xp, x);
  14576. ggml_vec_cpy_f32(nx, gp, g);
  14577. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, step, xp, f, gf, gb, np, ps);
  14578. if (ls < 0) {
  14579. // linesearch failed - go back to the previous point and return
  14580. ggml_vec_cpy_f32(nx, x, xp);
  14581. ggml_vec_cpy_f32(nx, g, gp);
  14582. return ls;
  14583. }
  14584. ggml_vec_norm_f32(nx, &xnorm, x);
  14585. ggml_vec_norm_f32(nx, &gnorm, g);
  14586. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14587. if (xnorm < 1.0f) {
  14588. xnorm = 1.0f;
  14589. }
  14590. if (gnorm/xnorm <= params.lbfgs.eps) {
  14591. // converged
  14592. return GGML_OPT_OK;
  14593. }
  14594. // delta-based convergence test
  14595. if (pf != NULL) {
  14596. // need at least params.past iterations to start checking for convergence
  14597. if (params.past <= k[0]) {
  14598. const float rate = (pf[k[0]%params.past] - fx)/fx;
  14599. if (fabsf(rate) < params.delta) {
  14600. return GGML_OPT_OK;
  14601. }
  14602. }
  14603. pf[k[0]%params.past] = fx;
  14604. }
  14605. // check for improvement
  14606. if (params.max_no_improvement > 0) {
  14607. if (fx < fx_best[0]) {
  14608. fx_best[0] = fx;
  14609. n_no_improvement[0] = 0;
  14610. } else {
  14611. n_no_improvement[0]++;
  14612. if (n_no_improvement[0] >= params.max_no_improvement) {
  14613. return GGML_OPT_OK;
  14614. }
  14615. }
  14616. }
  14617. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  14618. // reached the maximum number of iterations
  14619. return GGML_OPT_DID_NOT_CONVERGE;
  14620. }
  14621. // update vectors s and y:
  14622. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  14623. // y_{k+1} = g_{k+1} - g_{k}.
  14624. //
  14625. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  14626. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  14627. // compute scalars ys and yy:
  14628. // ys = y^t \cdot s -> 1 / \rho.
  14629. // yy = y^t \cdot y.
  14630. //
  14631. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0] *nx]);
  14632. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  14633. lm_ys[end[0]] = ys;
  14634. // find new search direction
  14635. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  14636. bound = (m <= k[0]) ? m : k[0];
  14637. k[0]++;
  14638. it++;
  14639. end[0] = (end[0] + 1)%m;
  14640. // initialize search direction with -g
  14641. ggml_vec_neg_f32(nx, d, g);
  14642. j[0] = end[0];
  14643. for (int i = 0; i < bound; ++i) {
  14644. j[0] = (j[0] + m - 1) % m;
  14645. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  14646. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  14647. lm_alpha[j[0]] /= lm_ys[j[0]];
  14648. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  14649. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  14650. }
  14651. ggml_vec_scale_f32(nx, d, ys/yy);
  14652. for (int i = 0; i < bound; ++i) {
  14653. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  14654. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  14655. beta /= lm_ys[j[0]];
  14656. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  14657. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  14658. j[0] = (j[0] + 1)%m;
  14659. }
  14660. step[0] = 1.0;
  14661. }
  14662. return GGML_OPT_DID_NOT_CONVERGE;
  14663. }
  14664. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  14665. struct ggml_opt_params result;
  14666. switch (type) {
  14667. case GGML_OPT_ADAM:
  14668. {
  14669. result = (struct ggml_opt_params) {
  14670. .type = GGML_OPT_ADAM,
  14671. .n_threads = 1,
  14672. .past = 0,
  14673. .delta = 1e-5f,
  14674. .max_no_improvement = 100,
  14675. .print_forward_graph = true,
  14676. .print_backward_graph = true,
  14677. .adam = {
  14678. .n_iter = 10000,
  14679. .sched = 1.000f,
  14680. .decay = 0.001f,
  14681. .alpha = 0.001f,
  14682. .beta1 = 0.9f,
  14683. .beta2 = 0.999f,
  14684. .eps = 1e-8f,
  14685. .eps_f = 1e-5f,
  14686. .eps_g = 1e-3f,
  14687. },
  14688. };
  14689. } break;
  14690. case GGML_OPT_LBFGS:
  14691. {
  14692. result = (struct ggml_opt_params) {
  14693. .type = GGML_OPT_LBFGS,
  14694. .n_threads = 1,
  14695. .past = 0,
  14696. .delta = 1e-5f,
  14697. .max_no_improvement = 0,
  14698. .print_forward_graph = true,
  14699. .print_backward_graph = true,
  14700. .lbfgs = {
  14701. .m = 6,
  14702. .n_iter = 100,
  14703. .max_linesearch = 20,
  14704. .eps = 1e-5f,
  14705. .ftol = 1e-4f,
  14706. .wolfe = 0.9f,
  14707. .min_step = 1e-20f,
  14708. .max_step = 1e+20f,
  14709. .linesearch = GGML_LINESEARCH_DEFAULT,
  14710. },
  14711. };
  14712. } break;
  14713. }
  14714. return result;
  14715. }
  14716. GGML_API void ggml_opt_init(
  14717. struct ggml_context * ctx,
  14718. struct ggml_opt_context * opt,
  14719. struct ggml_opt_params params,
  14720. int64_t nx) {
  14721. opt->ctx = ctx;
  14722. opt->params = params;
  14723. opt->iter = 0;
  14724. opt->nx = nx;
  14725. opt->just_initialized = true;
  14726. switch (opt->params.type) {
  14727. case GGML_OPT_ADAM:
  14728. {
  14729. opt->adam.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14730. opt->adam.g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14731. opt->adam.g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14732. opt->adam.m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14733. opt->adam.v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14734. opt->adam.mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14735. opt->adam.vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14736. opt->adam.pf = params.past > 0
  14737. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  14738. : NULL;
  14739. ggml_set_zero(opt->adam.x);
  14740. ggml_set_zero(opt->adam.g1);
  14741. ggml_set_zero(opt->adam.g2);
  14742. ggml_set_zero(opt->adam.m);
  14743. ggml_set_zero(opt->adam.v);
  14744. ggml_set_zero(opt->adam.mh);
  14745. ggml_set_zero(opt->adam.vh);
  14746. if (opt->adam.pf) {
  14747. ggml_set_zero(opt->adam.pf);
  14748. }
  14749. } break;
  14750. case GGML_OPT_LBFGS:
  14751. {
  14752. opt->lbfgs.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14753. opt->lbfgs.xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14754. opt->lbfgs.g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14755. opt->lbfgs.gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14756. opt->lbfgs.d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14757. opt->lbfgs.pf = params.past > 0
  14758. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  14759. : NULL;
  14760. opt->lbfgs.lmal = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  14761. opt->lbfgs.lmys = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  14762. opt->lbfgs.lms = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  14763. opt->lbfgs.lmy = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  14764. ggml_set_zero(opt->lbfgs.x);
  14765. ggml_set_zero(opt->lbfgs.xp);
  14766. ggml_set_zero(opt->lbfgs.g);
  14767. ggml_set_zero(opt->lbfgs.gp);
  14768. ggml_set_zero(opt->lbfgs.d);
  14769. if (opt->lbfgs.pf) {
  14770. ggml_set_zero(opt->lbfgs.pf);
  14771. }
  14772. ggml_set_zero(opt->lbfgs.lmal);
  14773. ggml_set_zero(opt->lbfgs.lmys);
  14774. ggml_set_zero(opt->lbfgs.lms);
  14775. ggml_set_zero(opt->lbfgs.lmy);
  14776. } break;
  14777. }
  14778. }
  14779. enum ggml_opt_result ggml_opt(
  14780. struct ggml_context * ctx,
  14781. struct ggml_opt_params params,
  14782. struct ggml_tensor * f) {
  14783. bool free_ctx = false;
  14784. if (ctx == NULL) {
  14785. struct ggml_init_params params_ctx = {
  14786. .mem_size = 16*1024*1024,
  14787. .mem_buffer = NULL,
  14788. .no_alloc = false,
  14789. };
  14790. ctx = ggml_init(params_ctx);
  14791. if (ctx == NULL) {
  14792. return GGML_OPT_NO_CONTEXT;
  14793. }
  14794. free_ctx = true;
  14795. }
  14796. enum ggml_opt_result result = GGML_OPT_OK;
  14797. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  14798. ggml_opt_init(ctx, opt, params, 0);
  14799. result = ggml_opt_resume(ctx, opt, f);
  14800. if (free_ctx) {
  14801. ggml_free(ctx);
  14802. }
  14803. return result;
  14804. }
  14805. enum ggml_opt_result ggml_opt_resume(
  14806. struct ggml_context * ctx,
  14807. struct ggml_opt_context * opt,
  14808. struct ggml_tensor * f) {
  14809. // build forward + backward compute graphs
  14810. struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
  14811. struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
  14812. struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
  14813. struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;
  14814. *gf = ggml_build_forward (f);
  14815. *gb = ggml_build_backward(ctx, gf, true);
  14816. return ggml_opt_resume_g(ctx, opt, f, gf, gb);
  14817. }
  14818. enum ggml_opt_result ggml_opt_resume_g(
  14819. struct ggml_context * ctx,
  14820. struct ggml_opt_context * opt,
  14821. struct ggml_tensor * f,
  14822. struct ggml_cgraph * gf,
  14823. struct ggml_cgraph * gb) {
  14824. // build forward + backward compute graphs
  14825. enum ggml_opt_result result = GGML_OPT_OK;
  14826. switch (opt->params.type) {
  14827. case GGML_OPT_ADAM:
  14828. {
  14829. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb);
  14830. } break;
  14831. case GGML_OPT_LBFGS:
  14832. {
  14833. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb);
  14834. } break;
  14835. }
  14836. if (opt->params.print_forward_graph) {
  14837. ggml_graph_print (gf);
  14838. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  14839. }
  14840. if (opt->params.print_backward_graph) {
  14841. ggml_graph_print (gb);
  14842. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  14843. }
  14844. return result;
  14845. }
  14846. ////////////////////////////////////////////////////////////////////////////////
  14847. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  14848. assert(k % QK4_0 == 0);
  14849. const int nb = k / QK4_0;
  14850. for (int b = 0; b < n; b += k) {
  14851. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  14852. quantize_row_q4_0_reference(src + b, y, k);
  14853. for (int i = 0; i < nb; i++) {
  14854. for (int j = 0; j < QK4_0; j += 2) {
  14855. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  14856. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  14857. hist[vi0]++;
  14858. hist[vi1]++;
  14859. }
  14860. }
  14861. }
  14862. return (n/QK4_0*sizeof(block_q4_0));
  14863. }
  14864. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  14865. assert(k % QK4_1 == 0);
  14866. const int nb = k / QK4_1;
  14867. for (int b = 0; b < n; b += k) {
  14868. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  14869. quantize_row_q4_1_reference(src + b, y, k);
  14870. for (int i = 0; i < nb; i++) {
  14871. for (int j = 0; j < QK4_1; j += 2) {
  14872. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  14873. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  14874. hist[vi0]++;
  14875. hist[vi1]++;
  14876. }
  14877. }
  14878. }
  14879. return (n/QK4_1*sizeof(block_q4_1));
  14880. }
  14881. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  14882. assert(k % QK5_0 == 0);
  14883. const int nb = k / QK5_0;
  14884. for (int b = 0; b < n; b += k) {
  14885. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  14886. quantize_row_q5_0_reference(src + b, y, k);
  14887. for (int i = 0; i < nb; i++) {
  14888. uint32_t qh;
  14889. memcpy(&qh, &y[i].qh, sizeof(qh));
  14890. for (int j = 0; j < QK5_0; j += 2) {
  14891. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  14892. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  14893. // cast to 16 bins
  14894. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  14895. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  14896. hist[vi0]++;
  14897. hist[vi1]++;
  14898. }
  14899. }
  14900. }
  14901. return (n/QK5_0*sizeof(block_q5_0));
  14902. }
  14903. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  14904. assert(k % QK5_1 == 0);
  14905. const int nb = k / QK5_1;
  14906. for (int b = 0; b < n; b += k) {
  14907. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  14908. quantize_row_q5_1_reference(src + b, y, k);
  14909. for (int i = 0; i < nb; i++) {
  14910. uint32_t qh;
  14911. memcpy(&qh, &y[i].qh, sizeof(qh));
  14912. for (int j = 0; j < QK5_1; j += 2) {
  14913. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  14914. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  14915. // cast to 16 bins
  14916. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  14917. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  14918. hist[vi0]++;
  14919. hist[vi1]++;
  14920. }
  14921. }
  14922. }
  14923. return (n/QK5_1*sizeof(block_q5_1));
  14924. }
  14925. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  14926. assert(k % QK8_0 == 0);
  14927. const int nb = k / QK8_0;
  14928. for (int b = 0; b < n; b += k) {
  14929. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  14930. quantize_row_q8_0_reference(src + b, y, k);
  14931. for (int i = 0; i < nb; i++) {
  14932. for (int j = 0; j < QK8_0; ++j) {
  14933. const int8_t vi = y[i].qs[j];
  14934. hist[vi/16 + 8]++;
  14935. }
  14936. }
  14937. }
  14938. return (n/QK8_0*sizeof(block_q8_0));
  14939. }
  14940. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  14941. size_t result = 0;
  14942. switch (type) {
  14943. case GGML_TYPE_Q4_0:
  14944. {
  14945. GGML_ASSERT(start % QK4_0 == 0);
  14946. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  14947. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  14948. } break;
  14949. case GGML_TYPE_Q4_1:
  14950. {
  14951. GGML_ASSERT(start % QK4_1 == 0);
  14952. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  14953. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  14954. } break;
  14955. case GGML_TYPE_Q5_0:
  14956. {
  14957. GGML_ASSERT(start % QK5_0 == 0);
  14958. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  14959. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  14960. } break;
  14961. case GGML_TYPE_Q5_1:
  14962. {
  14963. GGML_ASSERT(start % QK5_1 == 0);
  14964. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  14965. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  14966. } break;
  14967. case GGML_TYPE_Q8_0:
  14968. {
  14969. GGML_ASSERT(start % QK8_0 == 0);
  14970. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  14971. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  14972. } break;
  14973. #ifdef GGML_USE_K_QUANTS
  14974. case GGML_TYPE_Q2_K:
  14975. {
  14976. GGML_ASSERT(start % QK_K == 0);
  14977. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  14978. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  14979. } break;
  14980. case GGML_TYPE_Q3_K:
  14981. {
  14982. GGML_ASSERT(start % QK_K == 0);
  14983. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  14984. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  14985. } break;
  14986. case GGML_TYPE_Q4_K:
  14987. {
  14988. GGML_ASSERT(start % QK_K == 0);
  14989. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  14990. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  14991. } break;
  14992. case GGML_TYPE_Q5_K:
  14993. {
  14994. GGML_ASSERT(start % QK_K == 0);
  14995. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  14996. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  14997. } break;
  14998. case GGML_TYPE_Q6_K:
  14999. {
  15000. GGML_ASSERT(start % QK_K == 0);
  15001. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  15002. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  15003. } break;
  15004. #endif
  15005. case GGML_TYPE_F16:
  15006. {
  15007. int elemsize = sizeof(ggml_fp16_t);
  15008. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  15009. result = n * elemsize;
  15010. } break;
  15011. case GGML_TYPE_F32:
  15012. {
  15013. int elemsize = sizeof(float);
  15014. result = n * elemsize;
  15015. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  15016. } break;
  15017. default:
  15018. assert(false);
  15019. }
  15020. return result;
  15021. }
  15022. ////////////////////////////////////////////////////////////////////////////////
  15023. int ggml_cpu_has_avx(void) {
  15024. #if defined(__AVX__)
  15025. return 1;
  15026. #else
  15027. return 0;
  15028. #endif
  15029. }
  15030. int ggml_cpu_has_avx2(void) {
  15031. #if defined(__AVX2__)
  15032. return 1;
  15033. #else
  15034. return 0;
  15035. #endif
  15036. }
  15037. int ggml_cpu_has_avx512(void) {
  15038. #if defined(__AVX512F__)
  15039. return 1;
  15040. #else
  15041. return 0;
  15042. #endif
  15043. }
  15044. int ggml_cpu_has_avx512_vbmi(void) {
  15045. #if defined(__AVX512VBMI__)
  15046. return 1;
  15047. #else
  15048. return 0;
  15049. #endif
  15050. }
  15051. int ggml_cpu_has_avx512_vnni(void) {
  15052. #if defined(__AVX512VNNI__)
  15053. return 1;
  15054. #else
  15055. return 0;
  15056. #endif
  15057. }
  15058. int ggml_cpu_has_fma(void) {
  15059. #if defined(__FMA__)
  15060. return 1;
  15061. #else
  15062. return 0;
  15063. #endif
  15064. }
  15065. int ggml_cpu_has_neon(void) {
  15066. #if defined(__ARM_NEON)
  15067. return 1;
  15068. #else
  15069. return 0;
  15070. #endif
  15071. }
  15072. int ggml_cpu_has_arm_fma(void) {
  15073. #if defined(__ARM_FEATURE_FMA)
  15074. return 1;
  15075. #else
  15076. return 0;
  15077. #endif
  15078. }
  15079. int ggml_cpu_has_f16c(void) {
  15080. #if defined(__F16C__)
  15081. return 1;
  15082. #else
  15083. return 0;
  15084. #endif
  15085. }
  15086. int ggml_cpu_has_fp16_va(void) {
  15087. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  15088. return 1;
  15089. #else
  15090. return 0;
  15091. #endif
  15092. }
  15093. int ggml_cpu_has_wasm_simd(void) {
  15094. #if defined(__wasm_simd128__)
  15095. return 1;
  15096. #else
  15097. return 0;
  15098. #endif
  15099. }
  15100. int ggml_cpu_has_blas(void) {
  15101. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  15102. return 1;
  15103. #else
  15104. return 0;
  15105. #endif
  15106. }
  15107. int ggml_cpu_has_cublas(void) {
  15108. #if defined(GGML_USE_CUBLAS)
  15109. return 1;
  15110. #else
  15111. return 0;
  15112. #endif
  15113. }
  15114. int ggml_cpu_has_clblast(void) {
  15115. #if defined(GGML_USE_CLBLAST)
  15116. return 1;
  15117. #else
  15118. return 0;
  15119. #endif
  15120. }
  15121. int ggml_cpu_has_gpublas(void) {
  15122. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  15123. }
  15124. int ggml_cpu_has_sse3(void) {
  15125. #if defined(__SSE3__)
  15126. return 1;
  15127. #else
  15128. return 0;
  15129. #endif
  15130. }
  15131. int ggml_cpu_has_vsx(void) {
  15132. #if defined(__POWER9_VECTOR__)
  15133. return 1;
  15134. #else
  15135. return 0;
  15136. #endif
  15137. }
  15138. ////////////////////////////////////////////////////////////////////////////////