llama.cpp 80 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418
  1. // Defines fileno on msys:
  2. #ifndef _GNU_SOURCE
  3. #define _GNU_SOURCE
  4. #include <cstdint>
  5. #include <cstdio>
  6. #endif
  7. #include "llama_util.h"
  8. #include "llama.h"
  9. #include "ggml.h"
  10. #include <array>
  11. #include <ctime>
  12. #include <cinttypes>
  13. #include <fstream>
  14. #include <random>
  15. #include <map>
  16. #include <unordered_map>
  17. #include <queue>
  18. #include <cassert>
  19. #include <cstring>
  20. #include <climits>
  21. #include <memory>
  22. #include <algorithm>
  23. #include <initializer_list>
  24. #include <thread>
  25. #include <atomic>
  26. #include <mutex>
  27. #include <sstream>
  28. #define LLAMA_USE_SCRATCH
  29. #define LLAMA_MAX_SCRATCH_BUFFERS 16
  30. // available llama models
  31. enum e_model {
  32. MODEL_UNKNOWN,
  33. MODEL_7B,
  34. MODEL_13B,
  35. MODEL_30B,
  36. MODEL_65B,
  37. };
  38. static const size_t MB = 1024*1024;
  39. // computed for n_ctx == 2048
  40. // TODO: dynamically determine these sizes
  41. // needs modifications in ggml
  42. static const std::map<e_model, size_t> & MEM_REQ_SCRATCH0()
  43. {
  44. static std::map<e_model, size_t> _MEM_REQ_SCRATCH0 = {
  45. { MODEL_7B, 512ull * MB },
  46. { MODEL_13B, 512ull * MB },
  47. { MODEL_30B, 512ull * MB },
  48. { MODEL_65B, 1024ull * MB },
  49. };
  50. return _MEM_REQ_SCRATCH0;
  51. }
  52. static const std::map<e_model, size_t> & MEM_REQ_SCRATCH1()
  53. {
  54. static std::map<e_model, size_t> _MEM_REQ_SCRATCH1 = {
  55. { MODEL_7B, 512ull * MB },
  56. { MODEL_13B, 512ull * MB },
  57. { MODEL_30B, 512ull * MB },
  58. { MODEL_65B, 1024ull * MB },
  59. };
  60. return _MEM_REQ_SCRATCH1;
  61. }
  62. // 2*n_embd*n_ctx*n_layer*sizeof(float16)
  63. static const std::map<e_model, size_t> & MEM_REQ_KV_SELF()
  64. {
  65. static std::map<e_model, size_t> _MEM_REQ_KV_SELF = {
  66. { MODEL_7B, 1026ull * MB },
  67. { MODEL_13B, 1608ull * MB },
  68. { MODEL_30B, 3124ull * MB },
  69. { MODEL_65B, 5120ull * MB },
  70. };
  71. return _MEM_REQ_KV_SELF;
  72. }
  73. // this is mostly needed for temporary mul_mat buffers to dequantize the data
  74. // not actually needed if BLAS is disabled
  75. static const std::map<e_model, size_t> & MEM_REQ_EVAL()
  76. {
  77. static std::map<e_model, size_t> _MEM_REQ_EVAL = {
  78. { MODEL_7B, 768ull * MB },
  79. { MODEL_13B, 1024ull * MB },
  80. { MODEL_30B, 1280ull * MB },
  81. { MODEL_65B, 1536ull * MB },
  82. };
  83. return _MEM_REQ_EVAL;
  84. }
  85. // default hparams (LLaMA 7B)
  86. struct llama_hparams {
  87. uint32_t n_vocab = 32000;
  88. uint32_t n_ctx = 512; // this is provided as user input?
  89. uint32_t n_embd = 4096;
  90. uint32_t n_mult = 256;
  91. uint32_t n_head = 32;
  92. uint32_t n_layer = 32;
  93. uint32_t n_rot = 64;
  94. enum llama_ftype ftype = LLAMA_FTYPE_MOSTLY_F16;
  95. bool operator!=(const llama_hparams & other) const {
  96. return memcmp(this, &other, sizeof(llama_hparams));
  97. }
  98. };
  99. struct llama_layer {
  100. // normalization
  101. struct ggml_tensor * attention_norm;
  102. // attention
  103. struct ggml_tensor * wq;
  104. struct ggml_tensor * wk;
  105. struct ggml_tensor * wv;
  106. struct ggml_tensor * wo;
  107. // normalization
  108. struct ggml_tensor * ffn_norm;
  109. // ff
  110. struct ggml_tensor * w1;
  111. struct ggml_tensor * w2;
  112. struct ggml_tensor * w3;
  113. };
  114. struct llama_kv_cache {
  115. struct ggml_tensor * k;
  116. struct ggml_tensor * v;
  117. struct ggml_context * ctx = NULL;
  118. llama_buffer buf;
  119. int n; // number of tokens currently in the cache
  120. ~llama_kv_cache() {
  121. if (ctx) {
  122. ggml_free(ctx);
  123. }
  124. }
  125. };
  126. struct llama_model {
  127. e_model type = MODEL_UNKNOWN;
  128. llama_hparams hparams;
  129. struct ggml_tensor * tok_embeddings;
  130. struct ggml_tensor * norm;
  131. struct ggml_tensor * output;
  132. std::vector<llama_layer> layers;
  133. // context
  134. struct ggml_context * ctx = NULL;
  135. // key + value cache for the self attention
  136. // TODO: move to llama_state
  137. struct llama_kv_cache kv_self;
  138. // the model memory buffer
  139. llama_buffer buf;
  140. // model memory mapped file
  141. std::unique_ptr<llama_mmap> mapping;
  142. // objects representing data potentially being locked in memory
  143. llama_mlock mlock_buf;
  144. llama_mlock mlock_mmap;
  145. // for quantize-stats only
  146. std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
  147. ~llama_model() {
  148. if (ctx) {
  149. ggml_free(ctx);
  150. }
  151. }
  152. };
  153. struct llama_vocab {
  154. using id = int32_t;
  155. using token = std::string;
  156. struct token_score {
  157. token tok;
  158. float score;
  159. };
  160. std::unordered_map<token, id> token_to_id;
  161. std::vector<token_score> id_to_token;
  162. };
  163. struct llama_context {
  164. std::mt19937 rng;
  165. int64_t t_load_us = 0;
  166. int64_t t_start_us = 0;
  167. bool has_evaluated_once = false;
  168. int64_t t_sample_us = 0;
  169. int64_t t_eval_us = 0;
  170. int64_t t_p_eval_us = 0;
  171. int32_t n_sample = 0; // number of tokens sampled
  172. int32_t n_eval = 0; // number of eval calls
  173. int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
  174. llama_model model;
  175. llama_vocab vocab;
  176. size_t mem_per_token = 0;
  177. // decode output (2-dimensional array: [n_tokens][n_vocab])
  178. std::vector<float> logits;
  179. bool logits_all = false;
  180. // input embedding (1-dimensional array: [n_embd])
  181. std::vector<float> embedding;
  182. // memory buffers used to evaluate the model
  183. // TODO: move in llama_state
  184. llama_buffer buf_compute;
  185. llama_buffer buf_scratch[LLAMA_MAX_SCRATCH_BUFFERS];
  186. int buf_last = 0;
  187. size_t buf_max_size[LLAMA_MAX_SCRATCH_BUFFERS] = { 0 };
  188. void use_buf(struct ggml_context * ctx, int i) {
  189. #if defined(LLAMA_USE_SCRATCH)
  190. size_t last_size = 0;
  191. if (i == -1) {
  192. last_size = ggml_set_scratch(ctx, { 0, 0, nullptr, });
  193. } else {
  194. auto & buf = buf_scratch[i];
  195. last_size = ggml_set_scratch(ctx, { 0, buf.size, buf.addr, });
  196. }
  197. if (buf_last >= 0) {
  198. buf_max_size[buf_last] = std::max(buf_max_size[buf_last], last_size);
  199. }
  200. buf_last = i;
  201. #else
  202. (void) i;
  203. (void) ctx;
  204. #endif
  205. }
  206. size_t get_buf_max_mem(int i) const {
  207. #if defined(LLAMA_USE_SCRATCH)
  208. return buf_max_size[i];
  209. #else
  210. (void) i;
  211. return 0;
  212. #endif
  213. }
  214. };
  215. template <typename T>
  216. static T checked_mul(T a, T b) {
  217. T ret = a * b;
  218. if (a != 0 && ret / a != b) {
  219. throw format("overflow multiplying %llu * %llu",
  220. (unsigned long long) a, (unsigned long long) b);
  221. }
  222. return ret;
  223. }
  224. static size_t checked_div(size_t a, size_t b) {
  225. if (b == 0 || a % b != 0) {
  226. throw format("error dividing %zu / %zu", a, b);
  227. }
  228. return a / b;
  229. }
  230. static std::string llama_format_tensor_shape(const std::vector<uint32_t> & ne) {
  231. char buf[256];
  232. snprintf(buf, sizeof(buf), "%5u", ne.at(0));
  233. for (size_t i = 1; i < ne.size(); i++) {
  234. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), " x %5u", ne.at(i));
  235. }
  236. return buf;
  237. }
  238. static size_t llama_calc_tensor_size(const std::vector<uint32_t> & ne, enum ggml_type type) {
  239. size_t size = ggml_type_size(type);
  240. for (uint32_t dim : ne) {
  241. size = checked_mul<size_t>(size, dim);
  242. }
  243. return size / ggml_blck_size(type);
  244. }
  245. struct llama_load_tensor_shard {
  246. std::vector<uint32_t> ne;
  247. size_t size;
  248. enum ggml_type type;
  249. size_t file_idx;
  250. size_t file_off;
  251. void calc_size() {
  252. size = llama_calc_tensor_size(ne, type);
  253. }
  254. };
  255. enum llama_split_type {
  256. SPLIT_NONE,
  257. SPLIT_BY_COLUMNS,
  258. SPLIT_BY_ROWS
  259. };
  260. struct llama_load_tensor {
  261. std::vector<llama_load_tensor_shard> shards;
  262. std::string name;
  263. enum ggml_type type = GGML_TYPE_F32;
  264. llama_split_type split_type = SPLIT_NONE;
  265. std::vector<uint32_t> ne;
  266. size_t size;
  267. struct ggml_tensor * ggml_tensor = NULL;
  268. uint8_t * data;
  269. llama_load_tensor(const std::string & name) : name(name) {}
  270. void calc_all() {
  271. calc_type();
  272. calc_split_type();
  273. calc_ne();
  274. calc_size();
  275. }
  276. void calc_type() {
  277. const auto & first_shard = shards.at(0);
  278. for (const auto & shard : shards) {
  279. if (shard.type != first_shard.type) {
  280. throw format("inconsistent tensor shard type in '%s'", name.c_str());
  281. }
  282. }
  283. type = first_shard.type;
  284. }
  285. void calc_split_type() {
  286. if (shards.at(0).ne.size() == 1 || // 1D tensors are just duplicated in every file
  287. shards.size() == 1) { // only one file?
  288. split_type = SPLIT_NONE;
  289. } else if (name.find("tok_embeddings.") == 0 ||
  290. name.find(".attention.wo.weight") != std::string::npos ||
  291. name.find(".feed_forward.w2.weight") != std::string::npos) {
  292. split_type = SPLIT_BY_COLUMNS;
  293. } else {
  294. split_type = SPLIT_BY_ROWS;
  295. }
  296. }
  297. void calc_ne() {
  298. const auto & first_shard = shards.at(0);
  299. for (const auto & shard : shards) {
  300. if (shard.ne != first_shard.ne) {
  301. throw format("inconsistent tensor shard shape in '%s': first was %s, other was %s",
  302. name.c_str(), llama_format_tensor_shape(first_shard.ne).c_str(), llama_format_tensor_shape(shard.ne).c_str());
  303. }
  304. }
  305. ne = first_shard.ne;
  306. LLAMA_ASSERT(shards.size() <= UINT32_MAX);
  307. uint32_t n_shards = (uint32_t) shards.size();
  308. switch (split_type) {
  309. case SPLIT_NONE:
  310. ne = first_shard.ne;
  311. break;
  312. case SPLIT_BY_COLUMNS:
  313. ne = {checked_mul<uint32_t>(first_shard.ne[0], n_shards),
  314. first_shard.ne[1]};
  315. break;
  316. case SPLIT_BY_ROWS:
  317. ne = {first_shard.ne[0],
  318. checked_mul<uint32_t>(first_shard.ne[1], n_shards)};
  319. break;
  320. }
  321. }
  322. void calc_size() {
  323. size = llama_calc_tensor_size(ne, type);
  324. }
  325. };
  326. struct llama_load_tensors_map {
  327. // tensors is kept in a separate vector to preserve file order
  328. std::vector<llama_load_tensor> tensors;
  329. std::unordered_map<std::string, size_t> name_to_idx;
  330. };
  331. enum llama_file_version {
  332. LLAMA_FILE_VERSION_GGML,
  333. LLAMA_FILE_VERSION_GGMF_V1, // added version field and scores in vocab
  334. LLAMA_FILE_VERSION_GGJT_V1, // added padding
  335. };
  336. struct llama_file_loader {
  337. llama_file file;
  338. llama_file_version file_version;
  339. llama_hparams hparams;
  340. llama_vocab vocab;
  341. llama_file_loader(const char * fname, size_t file_idx, llama_load_tensors_map & tensors_map)
  342. : file(fname, "rb") {
  343. fprintf(stderr, "llama.cpp: loading model from %s\n", fname);
  344. read_magic();
  345. read_hparams();
  346. read_vocab();
  347. read_tensor_metadata(file_idx, tensors_map);
  348. }
  349. void read_magic() {
  350. uint32_t magic = file.read_u32();
  351. uint32_t version = 0;
  352. if (magic != 'ggml') {
  353. version = file.read_u32();
  354. }
  355. if (magic == 'ggml' && version == 0) {
  356. file_version = LLAMA_FILE_VERSION_GGML;
  357. } else if (magic == 'ggmf' && version == 1) {
  358. file_version = LLAMA_FILE_VERSION_GGMF_V1;
  359. } else if (magic == 'ggjt' && version == 1) {
  360. file_version = LLAMA_FILE_VERSION_GGJT_V1;
  361. } else {
  362. throw format("unknown (magic, version) combination: %08x, %08x; is this really a GGML file?",
  363. magic, version);
  364. }
  365. }
  366. void read_hparams() {
  367. hparams.n_vocab = file.read_u32();
  368. hparams.n_embd = file.read_u32();
  369. hparams.n_mult = file.read_u32();
  370. hparams.n_head = file.read_u32();
  371. hparams.n_layer = file.read_u32();
  372. hparams.n_rot = file.read_u32();
  373. hparams.ftype = (enum llama_ftype) file.read_u32();
  374. }
  375. void read_vocab() {
  376. vocab.id_to_token.resize(hparams.n_vocab);
  377. for (uint32_t i = 0; i < hparams.n_vocab; i++) {
  378. uint32_t len = file.read_u32();
  379. std::string word = file.read_string(len);
  380. float score = 0.0f;
  381. if (file_version >= LLAMA_FILE_VERSION_GGMF_V1) {
  382. file.read_raw(&score, sizeof(score));
  383. }
  384. vocab.token_to_id[word] = i;
  385. auto & tok_score = vocab.id_to_token[i];
  386. tok_score.tok = std::move(word);
  387. tok_score.score = score;
  388. }
  389. }
  390. void read_tensor_metadata(size_t file_idx, llama_load_tensors_map & tensors_map) {
  391. while (file.tell() < file.size) {
  392. llama_load_tensor_shard shard;
  393. uint32_t n_dims = file.read_u32();
  394. uint32_t name_len = file.read_u32();
  395. shard.type = (enum ggml_type) file.read_u32();
  396. shard.ne.resize(n_dims);
  397. file.read_raw(shard.ne.data(), sizeof(shard.ne[0]) * n_dims);
  398. std::string name = file.read_string(name_len);
  399. if (n_dims < 1 || n_dims > 2) {
  400. throw format("llama.cpp: tensor '%s' should not be %u-dimensional", name.c_str(), n_dims);
  401. }
  402. switch (shard.type) {
  403. case GGML_TYPE_F32:
  404. case GGML_TYPE_F16:
  405. case GGML_TYPE_Q4_0:
  406. case GGML_TYPE_Q4_1:
  407. case GGML_TYPE_Q4_2:
  408. case GGML_TYPE_Q4_3:
  409. case GGML_TYPE_Q8_0:
  410. break;
  411. default: {
  412. throw format("unrecognized tensor type %u\n", shard.type);
  413. }
  414. }
  415. if (file_version >= LLAMA_FILE_VERSION_GGJT_V1) {
  416. // skip to the next multiple of 32 bytes
  417. file.seek(-file.tell() & 31, SEEK_CUR);
  418. }
  419. shard.file_idx = file_idx;
  420. shard.file_off = file.tell();
  421. shard.calc_size();
  422. file.seek(shard.size, SEEK_CUR);
  423. auto it = tensors_map.name_to_idx.find(name);
  424. size_t idx;
  425. if (it != tensors_map.name_to_idx.end()) {
  426. idx = it->second;
  427. } else {
  428. tensors_map.tensors.emplace_back(name);
  429. idx = tensors_map.tensors.size() - 1;
  430. tensors_map.name_to_idx.emplace(name, idx);
  431. }
  432. tensors_map.tensors.at(idx).shards.push_back(shard);
  433. }
  434. }
  435. };
  436. struct llama_file_saver {
  437. llama_file file;
  438. llama_file_loader * any_file_loader;
  439. llama_file_saver(const char * fname, llama_file_loader * any_file_loader, enum llama_ftype new_ftype)
  440. : file(fname, "wb"), any_file_loader(any_file_loader) {
  441. fprintf(stderr, "llama.cpp: saving model to %s\n", fname);
  442. write_magic();
  443. write_hparams(new_ftype);
  444. write_vocab();
  445. }
  446. void write_magic() {
  447. file.write_u32('ggjt'); // magic
  448. file.write_u32(1); // version
  449. }
  450. void write_hparams(enum llama_ftype new_ftype) {
  451. const llama_hparams & hparams = any_file_loader->hparams;
  452. file.write_u32(hparams.n_vocab);
  453. file.write_u32(hparams.n_embd);
  454. file.write_u32(hparams.n_mult);
  455. file.write_u32(hparams.n_head);
  456. file.write_u32(hparams.n_layer);
  457. file.write_u32(hparams.n_rot);
  458. file.write_u32(new_ftype);
  459. }
  460. void write_vocab() {
  461. if (any_file_loader->file_version == LLAMA_FILE_VERSION_GGML) {
  462. fprintf(stderr, "llama.cpp: WARNING: input is an old file that doesn't have scores; will add dummy scores\n");
  463. }
  464. uint32_t n_vocab = any_file_loader->hparams.n_vocab;
  465. for (uint32_t i = 0; i < n_vocab; i++) {
  466. const auto & token_score = any_file_loader->vocab.id_to_token.at(i);
  467. file.write_u32((uint32_t) token_score.tok.size());
  468. file.write_raw(token_score.tok.data(), token_score.tok.size());
  469. file.write_raw(&token_score.score, sizeof(token_score.score));
  470. }
  471. }
  472. void write_tensor(llama_load_tensor & tensor, enum ggml_type new_type, const void * new_data, size_t new_size) {
  473. switch (new_type) {
  474. case GGML_TYPE_F32:
  475. case GGML_TYPE_F16:
  476. case GGML_TYPE_Q4_0:
  477. case GGML_TYPE_Q4_1:
  478. case GGML_TYPE_Q4_2:
  479. case GGML_TYPE_Q4_3:
  480. case GGML_TYPE_Q8_0:
  481. break;
  482. default: LLAMA_ASSERT(false);
  483. }
  484. file.write_u32((uint32_t) tensor.ne.size());
  485. file.write_u32((uint32_t) tensor.name.size());
  486. file.write_u32(new_type);
  487. file.write_raw(tensor.ne.data(), sizeof(tensor.ne[0]) * tensor.ne.size());
  488. file.write_raw(tensor.name.data(), tensor.name.size());
  489. file.seek(-file.tell() & 31, SEEK_CUR);
  490. LLAMA_ASSERT(new_size == llama_calc_tensor_size(tensor.ne, new_type));
  491. file.write_raw(new_data, new_size);
  492. }
  493. };
  494. struct llama_model_loader {
  495. std::vector<std::unique_ptr<llama_file_loader>> file_loaders;
  496. llama_load_tensors_map tensors_map;
  497. bool use_mmap;
  498. size_t num_ggml_tensors_created = 0;
  499. struct ggml_context * ggml_ctx = NULL;
  500. std::unique_ptr<llama_mmap> mapping;
  501. llama_model_loader(const std::string & fname_base, bool use_mmap, bool vocab_only) {
  502. auto first_file = new llama_file_loader(fname_base.c_str(), 0, tensors_map);
  503. file_loaders.emplace_back(first_file);
  504. uint32_t n_parts = vocab_only ? 1 : guess_n_parts();
  505. for (uint32_t i = 1; i < n_parts; i++) {
  506. std::string fname = fname_base + "." + std::to_string(i);
  507. auto ith_file = new llama_file_loader(fname.c_str(), i, tensors_map);
  508. file_loaders.emplace_back(ith_file);
  509. if (ith_file->hparams != first_file->hparams) {
  510. throw format("llama.cpp: hparams inconsistent between files");
  511. }
  512. }
  513. if (!llama_mmap::SUPPORTED) {
  514. use_mmap = false;
  515. }
  516. if (use_mmap && alignment_prevents_mmap()) {
  517. fprintf(stderr, "llama.cpp: can't use mmap because tensors are not aligned; convert to new format to avoid this\n");
  518. use_mmap = false;
  519. }
  520. this->use_mmap = use_mmap;
  521. for (llama_load_tensor & lt : tensors_map.tensors) {
  522. lt.calc_all();
  523. }
  524. }
  525. bool alignment_prevents_mmap() {
  526. for (const llama_load_tensor & lt : tensors_map.tensors) {
  527. for (const llama_load_tensor_shard & shard : lt.shards) {
  528. if (shard.file_off & 3) {
  529. return true;
  530. }
  531. }
  532. }
  533. return false;
  534. }
  535. uint32_t guess_n_parts() const {
  536. auto it = tensors_map.name_to_idx.find("tok_embeddings.weight");
  537. if (it == tensors_map.name_to_idx.end()) {
  538. throw std::string("missing tok_embeddings.weight");
  539. }
  540. const llama_load_tensor & lt = tensors_map.tensors.at(it->second);
  541. return file_loaders.at(0)->hparams.n_embd / lt.shards.at(0).ne.at(0);
  542. }
  543. void calc_sizes(size_t * ctx_size_p, size_t * mmapped_size_p) const {
  544. *ctx_size_p = *mmapped_size_p = 0;
  545. for (const llama_load_tensor & lt : tensors_map.tensors) {
  546. *ctx_size_p += sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE;
  547. *(use_mmap ? mmapped_size_p : ctx_size_p) += lt.size;
  548. }
  549. }
  550. struct ggml_tensor * get_tensor(const std::string & name, std::vector<uint32_t> ne) {
  551. auto it = tensors_map.name_to_idx.find(name);
  552. if (it == tensors_map.name_to_idx.end()) {
  553. throw format("llama.cpp: tensor '%s' is missing from model", name.c_str());
  554. }
  555. llama_load_tensor & lt = tensors_map.tensors.at(it->second);
  556. if (lt.ne != ne) {
  557. throw format("llama.cpp: tensor '%s' has wrong shape; expected %s, got %s",
  558. name.c_str(), llama_format_tensor_shape(ne).c_str(), llama_format_tensor_shape(lt.ne).c_str());
  559. }
  560. return get_tensor_for(lt);
  561. }
  562. struct ggml_tensor * get_tensor_for(llama_load_tensor & lt) {
  563. struct ggml_tensor * tensor;
  564. if (lt.ne.size() == 2) {
  565. tensor = ggml_new_tensor_2d(ggml_ctx, lt.type, lt.ne.at(0), lt.ne.at(1));
  566. } else {
  567. LLAMA_ASSERT(lt.ne.size() == 1);
  568. tensor = ggml_new_tensor_1d(ggml_ctx, lt.type, lt.ne.at(0));
  569. }
  570. LLAMA_ASSERT(lt.ggml_tensor == NULL); // if this fails, we called get_tensor twice on the same tensor
  571. lt.ggml_tensor = tensor;
  572. num_ggml_tensors_created++;
  573. return tensor;
  574. }
  575. void done_getting_tensors() {
  576. if (num_ggml_tensors_created != tensors_map.tensors.size()) {
  577. throw std::string("llama.cpp: file contained more tensors than expected");
  578. }
  579. }
  580. void load_all_data(llama_progress_callback progress_callback, void * progress_callback_user_data, llama_mlock * lmlock) {
  581. size_t data_size = 0;
  582. for (const llama_load_tensor & lt : tensors_map.tensors) {
  583. data_size += lt.size;
  584. }
  585. if (use_mmap) {
  586. mapping.reset(new llama_mmap(&file_loaders.at(0)->file));
  587. if (!lmlock) {
  588. // Don't call the callback since the actual loading will be lazy
  589. // and we can't measure it.
  590. progress_callback = NULL;
  591. }
  592. if (lmlock) {
  593. lmlock->init(mapping->addr);
  594. }
  595. }
  596. size_t done_size = 0;
  597. for (llama_load_tensor & lt : tensors_map.tensors) {
  598. if (progress_callback) {
  599. progress_callback((float) done_size / data_size, progress_callback_user_data);
  600. }
  601. LLAMA_ASSERT(lt.ggml_tensor); // unused tensors should have been caught by load_data already
  602. lt.data = (uint8_t *) lt.ggml_tensor->data;
  603. load_data_for(lt);
  604. lt.ggml_tensor->data = lt.data;
  605. done_size += lt.size;
  606. if (use_mmap && lmlock) {
  607. lmlock->grow_to(done_size);
  608. }
  609. }
  610. if (progress_callback) {
  611. progress_callback(1.0f, progress_callback_user_data);
  612. }
  613. }
  614. void load_data_for(llama_load_tensor & lt) {
  615. if (use_mmap) {
  616. LLAMA_ASSERT(lt.shards.size() == 1);
  617. lt.data = (uint8_t *) mapping->addr + lt.shards.at(0).file_off;
  618. } else if (lt.split_type == SPLIT_NONE) {
  619. llama_file & file = file_loaders.at(lt.shards.at(0).file_idx)->file;
  620. file.seek(lt.shards.at(0).file_off, SEEK_SET);
  621. file.read_raw(lt.data, lt.size);
  622. } else if (lt.split_type == SPLIT_BY_ROWS) {
  623. size_t offset = 0;
  624. for (llama_load_tensor_shard & shard : lt.shards) {
  625. llama_file & file = file_loaders.at(shard.file_idx)->file;
  626. file.seek(shard.file_off, SEEK_SET);
  627. file.read_raw(lt.data + offset, shard.size);
  628. offset += shard.size;
  629. }
  630. LLAMA_ASSERT(offset == lt.size);
  631. } else if (lt.split_type == SPLIT_BY_COLUMNS) {
  632. // Let's load the data into temporary buffers to ensure the OS performs large loads.
  633. std::vector<llama_buffer> tmp_bufs;
  634. tmp_bufs.resize(lt.shards.size());
  635. for (size_t i = 0; i < lt.shards.size(); i++) {
  636. llama_load_tensor_shard & shard = lt.shards.at(i);
  637. llama_file & file = file_loaders.at(shard.file_idx)->file;
  638. file.seek(shard.file_off, SEEK_SET);
  639. tmp_bufs.at(i).resize(shard.size);
  640. file.read_raw(tmp_bufs.at(i).addr, shard.size);
  641. }
  642. // Then reshape.
  643. size_t num_rows = lt.ne.at(1);
  644. size_t per_shard_row_size = lt.shards.at(0).size / num_rows;
  645. size_t out_offset = 0;
  646. for (size_t row = 0; row < num_rows; row++) {
  647. for (llama_buffer & tmp_buf : tmp_bufs) {
  648. memcpy(lt.data + out_offset,
  649. tmp_buf.addr + row * per_shard_row_size,
  650. per_shard_row_size);
  651. out_offset += per_shard_row_size;
  652. }
  653. }
  654. LLAMA_ASSERT(out_offset == lt.size);
  655. }
  656. if (0) {
  657. print_checksum(lt);
  658. }
  659. }
  660. static void print_checksum(llama_load_tensor & lt) {
  661. uint32_t sum = 0;
  662. for (size_t i = 0; i < lt.size; i++) {
  663. uint8_t byte = lt.data[i];
  664. sum = byte + (sum << 6) + (sum << 16) - sum; // sdbm hash
  665. }
  666. fprintf(stderr, "%s checksum: %#08x (%s, size %zu)\n", lt.name.c_str(), sum,
  667. llama_format_tensor_shape(lt.ne).c_str(), lt.size);
  668. }
  669. };
  670. //
  671. // kv cache
  672. //
  673. static bool kv_cache_init(
  674. const struct llama_hparams & hparams,
  675. struct llama_kv_cache & cache,
  676. ggml_type wtype,
  677. int n_ctx) {
  678. const int n_embd = hparams.n_embd;
  679. const int n_layer = hparams.n_layer;
  680. const int64_t n_mem = (int64_t)n_layer*n_ctx;
  681. const int64_t n_elements = n_embd*n_mem;
  682. cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB);
  683. struct ggml_init_params params;
  684. params.mem_size = cache.buf.size;
  685. params.mem_buffer = cache.buf.addr;
  686. params.no_alloc = false;
  687. cache.ctx = ggml_init(params);
  688. if (!cache.ctx) {
  689. fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__);
  690. return false;
  691. }
  692. cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
  693. cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
  694. return true;
  695. }
  696. struct llama_context_params llama_context_default_params() {
  697. struct llama_context_params result = {
  698. /*.n_ctx =*/ 512,
  699. /*.n_parts =*/ -1,
  700. /*.seed =*/ 0,
  701. /*.f16_kv =*/ false,
  702. /*.logits_all =*/ false,
  703. /*.vocab_only =*/ false,
  704. /*.use_mmap =*/ true,
  705. /*.use_mlock =*/ false,
  706. /*.embedding =*/ false,
  707. /*.progress_callback =*/ nullptr,
  708. /*.progress_callback_user_data =*/ nullptr,
  709. };
  710. return result;
  711. }
  712. bool llama_mmap_supported() {
  713. return llama_mmap::SUPPORTED;
  714. }
  715. bool llama_mlock_supported() {
  716. return llama_mlock::SUPPORTED;
  717. }
  718. //
  719. // model loading
  720. //
  721. static const char *llama_file_version_name(llama_file_version version) {
  722. switch (version) {
  723. case LLAMA_FILE_VERSION_GGML: return "'ggml' (old version with low tokenizer quality and no mmap support)";
  724. case LLAMA_FILE_VERSION_GGMF_V1: return "ggmf v1 (old version with no mmap support)";
  725. case LLAMA_FILE_VERSION_GGJT_V1: return "ggjt v1 (latest)";
  726. default: LLAMA_ASSERT(false);
  727. }
  728. }
  729. static const char *llama_ftype_name(enum llama_ftype ftype) {
  730. switch (ftype) {
  731. case LLAMA_FTYPE_ALL_F32: return "all F32";
  732. case LLAMA_FTYPE_MOSTLY_F16: return "mostly F16";
  733. case LLAMA_FTYPE_MOSTLY_Q4_0: return "mostly Q4_0";
  734. case LLAMA_FTYPE_MOSTLY_Q4_1: return "mostly Q4_1";
  735. case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
  736. return "mostly Q4_1, some F16";
  737. case LLAMA_FTYPE_MOSTLY_Q4_2: return "mostly Q4_2";
  738. case LLAMA_FTYPE_MOSTLY_Q4_3: return "mostly Q4_3";
  739. case LLAMA_FTYPE_MOSTLY_Q8_0: return "mostly Q8_0";
  740. default: return "unknown, may not work";
  741. }
  742. }
  743. static const char *llama_model_type_name(e_model type) {
  744. switch (type) {
  745. case MODEL_7B: return "7B";
  746. case MODEL_13B: return "13B";
  747. case MODEL_30B: return "30B";
  748. case MODEL_65B: return "65B";
  749. default: LLAMA_ASSERT(false);
  750. }
  751. }
  752. static void llama_model_load_internal(
  753. const std::string & fname,
  754. llama_context & lctx,
  755. int n_ctx,
  756. ggml_type memory_type,
  757. bool use_mmap,
  758. bool use_mlock,
  759. bool vocab_only,
  760. llama_progress_callback progress_callback,
  761. void * progress_callback_user_data) {
  762. lctx.t_start_us = ggml_time_us();
  763. std::unique_ptr<llama_model_loader> ml(new llama_model_loader(fname, use_mmap, vocab_only));
  764. lctx.vocab = std::move(ml->file_loaders.at(0)->vocab);
  765. auto & model = lctx.model;
  766. model.hparams = ml->file_loaders.at(0)->hparams;
  767. llama_file_version file_version = ml->file_loaders.at(0)->file_version;
  768. auto & hparams = model.hparams;
  769. uint32_t n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult;
  770. {
  771. switch (hparams.n_layer) {
  772. case 32: model.type = e_model::MODEL_7B; break;
  773. case 40: model.type = e_model::MODEL_13B; break;
  774. case 60: model.type = e_model::MODEL_30B; break;
  775. case 80: model.type = e_model::MODEL_65B; break;
  776. }
  777. hparams.n_ctx = n_ctx;
  778. }
  779. {
  780. fprintf(stderr, "%s: format = %s\n", __func__, llama_file_version_name(file_version));
  781. fprintf(stderr, "%s: n_vocab = %u\n", __func__, hparams.n_vocab);
  782. fprintf(stderr, "%s: n_ctx = %u\n", __func__, hparams.n_ctx);
  783. fprintf(stderr, "%s: n_embd = %u\n", __func__, hparams.n_embd);
  784. fprintf(stderr, "%s: n_mult = %u\n", __func__, hparams.n_mult);
  785. fprintf(stderr, "%s: n_head = %u\n", __func__, hparams.n_head);
  786. fprintf(stderr, "%s: n_layer = %u\n", __func__, hparams.n_layer);
  787. fprintf(stderr, "%s: n_rot = %u\n", __func__, hparams.n_rot);
  788. fprintf(stderr, "%s: ftype = %u (%s)\n", __func__, hparams.ftype, llama_ftype_name(hparams.ftype));
  789. fprintf(stderr, "%s: n_ff = %u\n", __func__, n_ff);
  790. fprintf(stderr, "%s: n_parts = %zu\n", __func__, ml->file_loaders.size());
  791. fprintf(stderr, "%s: model size = %s\n", __func__, llama_model_type_name(model.type));
  792. }
  793. if (vocab_only) {
  794. return;
  795. }
  796. auto & ctx = model.ctx;
  797. size_t ctx_size, mmapped_size;
  798. ml->calc_sizes(&ctx_size, &mmapped_size);
  799. fprintf(stderr, "%s: ggml ctx size = %6.2f KB\n", __func__, ctx_size/1024.0);
  800. // print memory requirements
  801. {
  802. const size_t scale = memory_type == GGML_TYPE_F32 ? 2 : 1;
  803. // this is the total memory required to run the inference
  804. const size_t mem_required =
  805. ctx_size +
  806. mmapped_size +
  807. MEM_REQ_SCRATCH0().at(model.type) +
  808. MEM_REQ_SCRATCH1().at(model.type) +
  809. MEM_REQ_EVAL().at(model.type);
  810. // this is the memory required by one llama_state
  811. const size_t mem_required_state =
  812. scale*MEM_REQ_KV_SELF().at(model.type);
  813. fprintf(stderr, "%s: mem required = %7.2f MB (+ %7.2f MB per state)\n", __func__,
  814. mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0);
  815. }
  816. // create the ggml context
  817. {
  818. lctx.model.buf.resize(ctx_size);
  819. if (use_mlock) {
  820. lctx.model.mlock_buf.init(lctx.model.buf.addr);
  821. lctx.model.mlock_buf.grow_to(lctx.model.buf.size);
  822. }
  823. struct ggml_init_params params = {
  824. /*.mem_size =*/ lctx.model.buf.size,
  825. /*.mem_buffer =*/ lctx.model.buf.addr,
  826. /*.no_alloc =*/ ml->use_mmap,
  827. };
  828. model.ctx = ggml_init(params);
  829. if (!model.ctx) {
  830. throw format("ggml_init() failed");
  831. }
  832. }
  833. // prepare memory for the weights
  834. {
  835. const auto & hparams = model.hparams;
  836. const uint32_t n_embd = hparams.n_embd;
  837. const uint32_t n_layer = hparams.n_layer;
  838. const uint32_t n_vocab = hparams.n_vocab;
  839. ml->ggml_ctx = ctx;
  840. model.tok_embeddings = ml->get_tensor("tok_embeddings.weight", {n_embd, n_vocab});
  841. model.norm = ml->get_tensor("norm.weight", {n_embd});
  842. model.output = ml->get_tensor("output.weight", {n_embd, n_vocab});
  843. model.layers.resize(n_layer);
  844. for (uint32_t i = 0; i < n_layer; ++i) {
  845. auto & layer = model.layers[i];
  846. std::string layers_i = "layers." + std::to_string(i);
  847. layer.attention_norm = ml->get_tensor(layers_i + ".attention_norm.weight", {n_embd});
  848. layer.wq = ml->get_tensor(layers_i + ".attention.wq.weight", {n_embd, n_embd});
  849. layer.wk = ml->get_tensor(layers_i + ".attention.wk.weight", {n_embd, n_embd});
  850. layer.wv = ml->get_tensor(layers_i + ".attention.wv.weight", {n_embd, n_embd});
  851. layer.wo = ml->get_tensor(layers_i + ".attention.wo.weight", {n_embd, n_embd});
  852. layer.ffn_norm = ml->get_tensor(layers_i + ".ffn_norm.weight", {n_embd});
  853. layer.w1 = ml->get_tensor(layers_i + ".feed_forward.w1.weight", {n_embd, n_ff});
  854. layer.w2 = ml->get_tensor(layers_i + ".feed_forward.w2.weight", { n_ff, n_embd});
  855. layer.w3 = ml->get_tensor(layers_i + ".feed_forward.w3.weight", {n_embd, n_ff});
  856. }
  857. }
  858. ml->done_getting_tensors();
  859. // populate `tensors_by_name`
  860. for (llama_load_tensor & lt : ml->tensors_map.tensors) {
  861. model.tensors_by_name.emplace_back(lt.name, lt.ggml_tensor);
  862. }
  863. ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &lctx.model.mlock_mmap : NULL);
  864. model.mapping = std::move(ml->mapping);
  865. // loading time will be recalculate after the first eval, so
  866. // we take page faults deferred by mmap() into consideration
  867. lctx.t_load_us = ggml_time_us() - lctx.t_start_us;
  868. }
  869. static bool llama_model_load(
  870. const std::string & fname,
  871. llama_context & lctx,
  872. int n_ctx,
  873. ggml_type memory_type,
  874. bool use_mmap,
  875. bool use_mlock,
  876. bool vocab_only,
  877. llama_progress_callback progress_callback,
  878. void *progress_callback_user_data) {
  879. try {
  880. llama_model_load_internal(fname, lctx, n_ctx, memory_type, use_mmap, use_mlock,
  881. vocab_only, progress_callback, progress_callback_user_data);
  882. return true;
  883. } catch (const std::string & err) {
  884. fprintf(stderr, "error loading model: %s\n", err.c_str());
  885. return false;
  886. }
  887. }
  888. // evaluate the transformer
  889. //
  890. // - lctx: llama context
  891. // - tokens: new batch of tokens to process
  892. // - n_past: the context size so far
  893. // - n_threads: number of threads to use
  894. //
  895. static bool llama_eval_internal(
  896. llama_context & lctx,
  897. const llama_token * tokens,
  898. const int n_tokens,
  899. const int n_past,
  900. const int n_threads) {
  901. const int64_t t_start_us = ggml_time_us();
  902. const int N = n_tokens;
  903. const auto & model = lctx.model;
  904. const auto & hparams = model.hparams;
  905. auto & kv_self = model.kv_self;
  906. LLAMA_ASSERT(!!kv_self.ctx);
  907. const int n_embd = hparams.n_embd;
  908. const int n_layer = hparams.n_layer;
  909. const int n_ctx = hparams.n_ctx;
  910. const int n_head = hparams.n_head;
  911. const int n_vocab = hparams.n_vocab;
  912. const int n_rot = hparams.n_embd/hparams.n_head;
  913. auto & mem_per_token = lctx.mem_per_token;
  914. auto & buf_compute = lctx.buf_compute;
  915. struct ggml_init_params params = {
  916. /*.mem_size =*/ buf_compute.size,
  917. /*.mem_buffer =*/ buf_compute.addr,
  918. /*.no_alloc =*/ false,
  919. };
  920. struct ggml_context * ctx0 = ggml_init(params);
  921. // for big prompts, if BLAS is enabled, it is better to use only one thread
  922. // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
  923. ggml_cgraph gf = {};
  924. gf.n_threads = N >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_cublas() ? 1 : n_threads;
  925. struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
  926. memcpy(embd->data, tokens, N*ggml_element_size(embd));
  927. struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.tok_embeddings, embd);
  928. for (int il = 0; il < n_layer; ++il) {
  929. struct ggml_tensor * inpSA = inpL;
  930. struct ggml_tensor * cur;
  931. lctx.use_buf(ctx0, 0);
  932. // norm
  933. {
  934. cur = ggml_rms_norm(ctx0, inpL);
  935. // cur = attention_norm*cur
  936. cur = ggml_mul(ctx0,
  937. ggml_repeat(ctx0, model.layers[il].attention_norm, cur),
  938. cur);
  939. }
  940. // self-attention
  941. {
  942. // compute Q and K and RoPE them
  943. struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0);
  944. struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0);
  945. // store key and value to memory
  946. {
  947. // compute the transposed [N, n_embd] V matrix
  948. struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, cur), n_embd, N));
  949. struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past));
  950. struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd,
  951. ( n_ctx)*ggml_element_size(kv_self.v),
  952. (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v));
  953. // important: storing RoPE-ed version of K in the KV cache!
  954. ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
  955. ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
  956. }
  957. struct ggml_tensor * Q =
  958. ggml_permute(ctx0,
  959. Qcur,
  960. 0, 2, 1, 3);
  961. struct ggml_tensor * K =
  962. ggml_permute(ctx0,
  963. ggml_reshape_3d(ctx0,
  964. ggml_view_1d(ctx0, kv_self.k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(kv_self.k)*n_embd),
  965. n_embd/n_head, n_head, n_past + N),
  966. 0, 2, 1, 3);
  967. // K * Q
  968. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  969. // KQ_scaled = KQ / sqrt(n_embd/n_head)
  970. struct ggml_tensor * KQ_scaled =
  971. ggml_scale(ctx0,
  972. KQ,
  973. ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head)));
  974. // KQ_masked = mask_past(KQ_scaled)
  975. struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past);
  976. // KQ = soft_max(KQ_masked)
  977. struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
  978. // split cached V into n_head heads
  979. struct ggml_tensor * V =
  980. ggml_view_3d(ctx0, kv_self.v,
  981. n_past + N, n_embd/n_head, n_head,
  982. n_ctx*ggml_element_size(kv_self.v),
  983. n_ctx*ggml_element_size(kv_self.v)*n_embd/n_head,
  984. il*n_ctx*ggml_element_size(kv_self.v)*n_embd);
  985. #if 1
  986. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
  987. #else
  988. // make V contiguous in memory to speed up the matmul, however we waste time on the copy
  989. // on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation
  990. // is there a better way?
  991. struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_past + N, n_embd/n_head, n_head));
  992. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max);
  993. #endif
  994. // KQV_merged = KQV.permute(0, 2, 1, 3)
  995. struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  996. // cur = KQV_merged.contiguous().view(n_embd, N)
  997. cur = ggml_cpy(ctx0,
  998. KQV_merged,
  999. ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
  1000. // projection (no bias)
  1001. cur = ggml_mul_mat(ctx0,
  1002. model.layers[il].wo,
  1003. cur);
  1004. }
  1005. lctx.use_buf(ctx0, 1);
  1006. struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
  1007. // feed-forward network
  1008. {
  1009. // norm
  1010. {
  1011. cur = ggml_rms_norm(ctx0, inpFF);
  1012. // cur = ffn_norm*cur
  1013. cur = ggml_mul(ctx0,
  1014. ggml_repeat(ctx0, model.layers[il].ffn_norm, cur),
  1015. cur);
  1016. }
  1017. struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
  1018. model.layers[il].w3,
  1019. cur);
  1020. cur = ggml_mul_mat(ctx0,
  1021. model.layers[il].w1,
  1022. cur);
  1023. // SILU activation
  1024. cur = ggml_silu(ctx0, cur);
  1025. cur = ggml_mul(ctx0, cur, tmp);
  1026. cur = ggml_mul_mat(ctx0,
  1027. model.layers[il].w2,
  1028. cur);
  1029. }
  1030. cur = ggml_add(ctx0, cur, inpFF);
  1031. // input for next layer
  1032. inpL = cur;
  1033. }
  1034. lctx.use_buf(ctx0, 0);
  1035. // used at the end to optionally extract the embeddings
  1036. struct ggml_tensor * embeddings = NULL;
  1037. // norm
  1038. {
  1039. inpL = ggml_rms_norm(ctx0, inpL);
  1040. // inpL = norm*inpL
  1041. inpL = ggml_mul(ctx0,
  1042. ggml_repeat(ctx0, model.norm, inpL),
  1043. inpL);
  1044. embeddings = inpL;
  1045. }
  1046. // lm_head
  1047. inpL = ggml_mul_mat(ctx0, model.output, inpL);
  1048. lctx.use_buf(ctx0, -1);
  1049. // logits -> probs
  1050. //inpL = ggml_soft_max(ctx0, inpL);
  1051. // run the computation
  1052. ggml_build_forward_expand(&gf, inpL);
  1053. ggml_graph_compute (ctx0, &gf);
  1054. #ifdef GGML_PERF
  1055. // print timing information per ggml operation (for debugging purposes)
  1056. // requires GGML_PERF to be defined
  1057. ggml_graph_print(&gf);
  1058. #endif
  1059. // plot the computation graph in dot format (for debugging purposes)
  1060. //if (n_past%100 == 0) {
  1061. // ggml_graph_dump_dot(&gf, NULL, "llama.dot");
  1062. //}
  1063. //embd_w.resize(n_vocab*N);
  1064. //memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N);
  1065. // extract logits
  1066. {
  1067. auto & logits_out = lctx.logits;
  1068. if (lctx.logits_all) {
  1069. logits_out.resize(n_vocab * N);
  1070. memcpy(logits_out.data(), (float *) ggml_get_data(inpL), sizeof(float)*n_vocab*N);
  1071. } else {
  1072. // return result for just the last token
  1073. logits_out.resize(n_vocab);
  1074. memcpy(logits_out.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
  1075. }
  1076. }
  1077. // extract embeddings
  1078. if (lctx.embedding.size()) {
  1079. auto & embedding_out = lctx.embedding;
  1080. embedding_out.resize(n_embd);
  1081. memcpy(embedding_out.data(), (float *) ggml_get_data(embeddings) + (n_embd*(N - 1)), sizeof(float)*n_embd);
  1082. }
  1083. if (mem_per_token == 0) {
  1084. mem_per_token = ggml_used_mem(ctx0)/N;
  1085. }
  1086. #if 0
  1087. printf("\n%s: used_mem = %.3f MB, scratch -- %.3f MB %.3f MB\n", __func__,
  1088. ggml_used_mem(ctx0)/1024.0/1024.0,
  1089. lctx.get_buf_max_mem(0)/1024.0/1024.0,
  1090. lctx.get_buf_max_mem(1)/1024.0/1024.0);
  1091. #endif
  1092. ggml_free(ctx0);
  1093. // measure the performance only for the single-token evals
  1094. if (N == 1) {
  1095. lctx.t_eval_us += ggml_time_us() - t_start_us;
  1096. lctx.n_eval++;
  1097. }
  1098. else if (N > 1) {
  1099. lctx.t_p_eval_us += ggml_time_us() - t_start_us;
  1100. lctx.n_p_eval += N;
  1101. }
  1102. return true;
  1103. }
  1104. //
  1105. // tokenizer
  1106. //
  1107. static size_t utf8_len(char src) {
  1108. const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
  1109. uint8_t highbits = static_cast<uint8_t>(src) >> 4;
  1110. return lookup[highbits];
  1111. }
  1112. struct llama_sp_symbol {
  1113. using index = int;
  1114. index prev;
  1115. index next;
  1116. const char * text;
  1117. size_t n;
  1118. };
  1119. struct llama_sp_bigram {
  1120. struct comparator {
  1121. bool operator()(llama_sp_bigram & l, llama_sp_bigram & r) {
  1122. return (l.score < r.score) || (l.score == r.score && l.left > r.left);
  1123. }
  1124. };
  1125. using queue_storage = std::vector<llama_sp_bigram>;
  1126. using queue = std::priority_queue<llama_sp_bigram, queue_storage, comparator>;
  1127. llama_sp_symbol::index left;
  1128. llama_sp_symbol::index right;
  1129. float score;
  1130. size_t size;
  1131. };
  1132. // original implementation:
  1133. // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
  1134. struct llama_tokenizer {
  1135. llama_tokenizer(const llama_vocab & vocab): vocab_(vocab) {}
  1136. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  1137. // split string into utf8 chars
  1138. int index = 0;
  1139. size_t offs = 0;
  1140. while (offs < text.size()) {
  1141. llama_sp_symbol sym;
  1142. size_t char_len = std::min(text.size() - offs, utf8_len(text[offs]));
  1143. sym.text = text.c_str() + offs;
  1144. sym.n = char_len;
  1145. offs += char_len;
  1146. sym.prev = index - 1;
  1147. sym.next = offs == text.size() ? -1 : index + 1;
  1148. index++;
  1149. symbols_.emplace_back(std::move(sym));
  1150. }
  1151. // seed the work queue with all possible 2-character tokens.
  1152. for (size_t i = 1; i < symbols_.size(); ++i) {
  1153. try_add_bigram(i - 1, i);
  1154. }
  1155. // keep substituting the highest frequency pairs for as long as we can.
  1156. while (!work_queue_.empty()) {
  1157. auto bigram = work_queue_.top();
  1158. work_queue_.pop();
  1159. auto & left_sym = symbols_[bigram.left];
  1160. auto & right_sym = symbols_[bigram.right];
  1161. // if one of the symbols already got merged, skip it.
  1162. if (left_sym.n == 0 || right_sym.n == 0 ||
  1163. left_sym.n + right_sym.n != bigram.size) {
  1164. continue;
  1165. }
  1166. // merge the right sym into the left one
  1167. left_sym.n += right_sym.n;
  1168. right_sym.n = 0;
  1169. //printf("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
  1170. // remove the right sym from the chain
  1171. left_sym.next = right_sym.next;
  1172. if (right_sym.next >= 0) {
  1173. symbols_[right_sym.next].prev = bigram.left;
  1174. }
  1175. // find more substitutions
  1176. try_add_bigram(left_sym.prev, bigram.left);
  1177. try_add_bigram(bigram.left, left_sym.next);
  1178. }
  1179. for (int i = 0; i != -1; i = symbols_[i].next) {
  1180. auto & symbol = symbols_[i];
  1181. auto token = vocab_.token_to_id.find(std::string(symbol.text, symbol.n));
  1182. if (token == vocab_.token_to_id.end()) {
  1183. // output any symbols that did not form tokens as bytes.
  1184. for (int j = 0; j < (int) symbol.n; ++j) {
  1185. llama_vocab::id token_id = static_cast<uint8_t>(symbol.text[j]) + 3;
  1186. output.push_back(token_id);
  1187. }
  1188. } else {
  1189. output.push_back((*token).second);
  1190. }
  1191. }
  1192. }
  1193. private:
  1194. void try_add_bigram(int left, int right) {
  1195. if (left == -1 || right == -1) {
  1196. return;
  1197. }
  1198. const std::string text = std::string(symbols_[left].text, symbols_[left].n + symbols_[right].n);
  1199. auto token = vocab_.token_to_id.find(text);
  1200. if (token == vocab_.token_to_id.end()) {
  1201. return;
  1202. }
  1203. if (static_cast<size_t>((*token).second) >= vocab_.id_to_token.size()) {
  1204. return;
  1205. }
  1206. const auto &tok_score = vocab_.id_to_token[(*token).second];
  1207. llama_sp_bigram bigram;
  1208. bigram.left = left;
  1209. bigram.right = right;
  1210. bigram.score = tok_score.score;
  1211. bigram.size = text.size();
  1212. work_queue_.push(bigram);
  1213. }
  1214. const llama_vocab & vocab_;
  1215. std::vector<llama_sp_symbol> symbols_;
  1216. llama_sp_bigram::queue work_queue_;
  1217. };
  1218. static std::vector<llama_vocab::id> llama_tokenize(const llama_vocab & vocab, const std::string & text, bool bos) {
  1219. llama_tokenizer tokenizer(vocab);
  1220. std::vector<llama_vocab::id> output;
  1221. if (text.size() == 0) {
  1222. return output;
  1223. }
  1224. if (bos) {
  1225. output.push_back(1);
  1226. }
  1227. tokenizer.tokenize(text, output);
  1228. return output;
  1229. }
  1230. //
  1231. // sampling
  1232. //
  1233. static void sample_top_k(std::vector<std::pair<float, llama_vocab::id>> & logits_id, int top_k) {
  1234. // find the top k tokens
  1235. std::partial_sort(
  1236. logits_id.begin(),
  1237. logits_id.begin() + top_k, logits_id.end(),
  1238. [](const std::pair<float, llama_vocab::id> & a, const std::pair<float, llama_vocab::id> & b) {
  1239. return a.first > b.first;
  1240. });
  1241. logits_id.resize(top_k);
  1242. }
  1243. static llama_vocab::id llama_sample_top_p_top_k(
  1244. llama_context & lctx,
  1245. const std::vector<llama_vocab::id> & last_n_tokens,
  1246. int top_k,
  1247. float top_p,
  1248. float temp,
  1249. float repeat_penalty) {
  1250. auto & rng = lctx.rng;
  1251. const int n_logits = lctx.model.hparams.n_vocab;
  1252. const auto & logits = lctx.logits;
  1253. const auto * plogits = logits.data() + logits.size() - n_logits;
  1254. if (temp <= 0) {
  1255. // select the token with the highest logit directly
  1256. float max_logit = plogits[0];
  1257. llama_vocab::id max_id = 0;
  1258. for (int i = 1; i < n_logits; ++i) {
  1259. if (plogits[i] > max_logit) {
  1260. max_logit = plogits[i];
  1261. max_id = i;
  1262. }
  1263. }
  1264. return max_id;
  1265. }
  1266. std::vector<std::pair<float, llama_vocab::id>> logits_id;
  1267. logits_id.reserve(n_logits);
  1268. {
  1269. const float scale = 1.0f/temp;
  1270. for (int i = 0; i < n_logits; ++i) {
  1271. // repetition penalty from ctrl paper (https://arxiv.org/abs/1909.05858)
  1272. // credit https://github.com/facebookresearch/llama/compare/main...shawwn:llama:main
  1273. if (std::find(last_n_tokens.begin(), last_n_tokens.end(), i) != last_n_tokens.end()) {
  1274. // if score < 0 then repetition penalty has to multiplied to reduce the previous token probability
  1275. if (plogits[i] < 0.0f) {
  1276. logits_id.push_back(std::make_pair(plogits[i]*scale*repeat_penalty, i));
  1277. } else {
  1278. logits_id.push_back(std::make_pair(plogits[i]*scale/repeat_penalty, i));
  1279. }
  1280. } else {
  1281. logits_id.push_back(std::make_pair(plogits[i]*scale, i));
  1282. }
  1283. }
  1284. }
  1285. sample_top_k(logits_id, top_k > 0 ? std::min(top_k, n_logits) : n_logits);
  1286. // compute probs for the top k tokens
  1287. std::vector<float> probs;
  1288. probs.reserve(logits_id.size());
  1289. float maxl = logits_id[0].first;
  1290. double sum = 0.0;
  1291. for (const auto & kv : logits_id) {
  1292. const float p = expf(kv.first - maxl);
  1293. probs.push_back(p);
  1294. sum += p;
  1295. }
  1296. // normalize the probs
  1297. for (auto & p : probs) {
  1298. p /= sum;
  1299. }
  1300. if (top_p < 1.0) {
  1301. double cumsum = 0.0;
  1302. for (int i = 0; i < (int) probs.size(); i++) {
  1303. cumsum += probs[i];
  1304. if (cumsum >= top_p) {
  1305. probs.resize(i + 1);
  1306. logits_id.resize(i + 1);
  1307. break;
  1308. }
  1309. }
  1310. }
  1311. //printf("\n");
  1312. //for (int i = 0; i < (int) 10; i++) {
  1313. // printf("%d: '%s' %f\n", i, lctx.vocab.id_to_token.at(logits_id[i].second).tok.c_str(), probs[i]);
  1314. //}
  1315. //printf("\n\n");
  1316. //exit(0);
  1317. std::discrete_distribution<> dist(probs.begin(), probs.end());
  1318. int idx = dist(rng);
  1319. return logits_id[idx].second;
  1320. }
  1321. //
  1322. // quantization
  1323. //
  1324. static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, enum llama_ftype ftype, int nthread) {
  1325. ggml_type quantized_type;
  1326. switch (ftype) {
  1327. case LLAMA_FTYPE_MOSTLY_Q4_0: quantized_type = GGML_TYPE_Q4_0; break;
  1328. case LLAMA_FTYPE_MOSTLY_Q4_1: quantized_type = GGML_TYPE_Q4_1; break;
  1329. case LLAMA_FTYPE_MOSTLY_Q4_2: quantized_type = GGML_TYPE_Q4_2; break;
  1330. case LLAMA_FTYPE_MOSTLY_Q4_3: quantized_type = GGML_TYPE_Q4_3; break;
  1331. case LLAMA_FTYPE_MOSTLY_Q8_0: quantized_type = GGML_TYPE_Q8_0; break;
  1332. default: throw format("invalid output file type %d\n", ftype);
  1333. };
  1334. if (nthread <= 0) {
  1335. nthread = std::thread::hardware_concurrency();
  1336. }
  1337. std::unique_ptr<llama_model_loader> model_loader(new llama_model_loader(fname_inp.c_str(), /*use_mmap*/ false,
  1338. /*vocab_only*/ false));
  1339. llama_file_saver file_saver(fname_out.c_str(), model_loader->file_loaders.at(0).get(), ftype);
  1340. size_t total_size_org = 0;
  1341. size_t total_size_new = 0;
  1342. std::vector<int64_t> hist_all(1 << 4, 0);
  1343. std::vector<std::thread> workers;
  1344. std::mutex mutex;
  1345. size_t idx = 0;
  1346. for (llama_load_tensor & tensor : model_loader->tensors_map.tensors) {
  1347. llama_buffer read_data;
  1348. read_data.resize(tensor.size);
  1349. tensor.data = read_data.addr;
  1350. model_loader->load_data_for(tensor);
  1351. printf("[%4zu/%4zu] %36s - %16s, type = %6s, ",
  1352. ++idx, model_loader->tensors_map.tensors.size(),
  1353. tensor.name.c_str(), llama_format_tensor_shape(tensor.ne).c_str(),
  1354. ggml_type_name(tensor.type));
  1355. // This used to be a regex, but <regex> has an extreme cost to compile times.
  1356. bool quantize = tensor.name.rfind("weight") == tensor.name.size() - 6; // ends with 'weight'?
  1357. // quantize only 2D tensors
  1358. quantize &= (tensor.ne.size() == 2);
  1359. // uncomment this to keep the output layer in FP16
  1360. //if (tensor.name == "output.weight") {
  1361. // quantize = false;
  1362. //}
  1363. enum ggml_type new_type;
  1364. void * new_data;
  1365. size_t new_size;
  1366. llama_buffer work;
  1367. if (!quantize) {
  1368. new_type = tensor.type;
  1369. new_data = tensor.data;
  1370. new_size = tensor.size;
  1371. printf("size = %8.3f MB\n", tensor.size/1024.0/1024.0);
  1372. } else {
  1373. new_type = quantized_type;
  1374. float * f32_data;
  1375. size_t nelements = tensor.ne.at(0) * tensor.ne.at(1);
  1376. llama_buffer f32_conv_buf;
  1377. if (tensor.type == GGML_TYPE_F32) {
  1378. f32_data = (float *) tensor.data;
  1379. } else if (tensor.type == GGML_TYPE_F16) {
  1380. f32_conv_buf.resize(nelements * sizeof(float));
  1381. f32_data = (float *) f32_conv_buf.addr;
  1382. auto f16_data = (const ggml_fp16_t *) tensor.data;
  1383. for (size_t i = 0; i < nelements; i++) {
  1384. f32_data[i] = ggml_fp16_to_fp32(f16_data[i]);
  1385. }
  1386. } else {
  1387. throw format("type %s unsupported for integer quantization", ggml_type_name(tensor.type));
  1388. }
  1389. printf("quantizing .. ");
  1390. fflush(stdout);
  1391. work.resize(nelements * 4); // upper bound on size
  1392. new_data = work.addr;
  1393. std::vector<int64_t> hist_cur(1 << 4, 0);
  1394. int chunk_size = 32 * 512;
  1395. const int nchunk = (nelements + chunk_size - 1)/chunk_size;
  1396. const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1;
  1397. if (nthread_use < 2) {
  1398. new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nelements, hist_cur.data());
  1399. } else {
  1400. size_t counter = 0;
  1401. new_size = 0;
  1402. auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, nelements, chunk_size] () {
  1403. std::vector<int64_t> local_hist;
  1404. size_t local_size = 0;
  1405. while (true) {
  1406. std::unique_lock<std::mutex> lock(mutex);
  1407. size_t first = counter; counter += chunk_size;
  1408. if (first >= nelements) {
  1409. if (!local_hist.empty()) {
  1410. for (int j=0; j<int(local_hist.size()); ++j) hist_cur[j] += local_hist[j];
  1411. new_size += local_size;
  1412. }
  1413. break;
  1414. }
  1415. lock.unlock();
  1416. size_t last = std::min(nelements, first + chunk_size);
  1417. if (local_hist.empty()) local_hist.resize(hist_cur.size(), 0);
  1418. local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first, last - first, local_hist.data());
  1419. }
  1420. };
  1421. if (int(workers.size()) < nthread_use - 1) workers.resize(nthread_use - 1);
  1422. for (int it = 0; it < nthread_use - 1; ++it) workers[it] = std::thread(compute);
  1423. compute();
  1424. for (int it = 0; it < nthread_use - 1; ++it) workers[it].join();
  1425. }
  1426. printf("size = %8.2f MB -> %8.2f MB | hist: ", tensor.size/1024.0/1024.0, new_size/1024.0/1024.0);
  1427. for (size_t i = 0; i < hist_cur.size(); i++) {
  1428. hist_all[i] += hist_cur[i];
  1429. }
  1430. for (size_t i = 0; i < hist_cur.size(); i++) {
  1431. printf("%5.3f ", hist_cur[i] / float(nelements));
  1432. }
  1433. printf("\n");
  1434. }
  1435. total_size_org += tensor.size;
  1436. total_size_new += new_size;
  1437. file_saver.write_tensor(tensor, new_type, new_data, new_size);
  1438. }
  1439. printf("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
  1440. printf("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
  1441. {
  1442. int64_t sum_all = 0;
  1443. for (size_t i = 0; i < hist_all.size(); i++) {
  1444. sum_all += hist_all[i];
  1445. }
  1446. printf("%s: hist: ", __func__);
  1447. for (size_t i = 0; i < hist_all.size(); i++) {
  1448. printf("%5.3f ", hist_all[i] / float(sum_all));
  1449. }
  1450. printf("\n");
  1451. }
  1452. }
  1453. //
  1454. // interface implementation
  1455. //
  1456. struct llama_context * llama_init_from_file(
  1457. const char * path_model,
  1458. struct llama_context_params params) {
  1459. ggml_time_init();
  1460. llama_context * ctx = new llama_context;
  1461. if (params.seed <= 0) {
  1462. params.seed = time(NULL);
  1463. }
  1464. unsigned cur_percentage = 0;
  1465. if (params.progress_callback == NULL) {
  1466. params.progress_callback_user_data = &cur_percentage;
  1467. params.progress_callback = [](float progress, void * ctx) {
  1468. unsigned * cur_percentage_p = (unsigned *) ctx;
  1469. unsigned percentage = (unsigned) (100 * progress);
  1470. while (percentage > *cur_percentage_p) {
  1471. ++*cur_percentage_p;
  1472. fprintf(stderr, ".");
  1473. fflush(stderr);
  1474. if (percentage >= 100) {
  1475. fprintf(stderr, "\n");
  1476. }
  1477. }
  1478. };
  1479. }
  1480. ctx->rng = std::mt19937(params.seed);
  1481. ctx->logits_all = params.logits_all;
  1482. ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
  1483. if (!llama_model_load(path_model, *ctx, params.n_ctx, memory_type,
  1484. params.use_mmap, params.use_mlock, params.vocab_only,
  1485. params.progress_callback, params.progress_callback_user_data)) {
  1486. fprintf(stderr, "%s: failed to load model\n", __func__);
  1487. llama_free(ctx);
  1488. return nullptr;
  1489. }
  1490. // reserve memory for context buffers
  1491. if (!params.vocab_only) {
  1492. if (!kv_cache_init(ctx->model.hparams, ctx->model.kv_self, memory_type, ctx->model.hparams.n_ctx)) {
  1493. fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n", __func__);
  1494. llama_free(ctx);
  1495. return nullptr;
  1496. }
  1497. {
  1498. const size_t memory_size = ggml_nbytes(ctx->model.kv_self.k) + ggml_nbytes(ctx->model.kv_self.v);
  1499. fprintf(stderr, "%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
  1500. }
  1501. const auto & hparams = ctx->model.hparams;
  1502. // resized during inference
  1503. if (params.logits_all) {
  1504. ctx->logits.reserve(hparams.n_ctx*hparams.n_vocab);
  1505. } else {
  1506. ctx->logits.reserve(hparams.n_vocab);
  1507. }
  1508. if (params.embedding){
  1509. ctx->embedding.resize(hparams.n_embd);
  1510. }
  1511. ctx->buf_compute.resize(MEM_REQ_EVAL().at(ctx->model.type));
  1512. ctx->buf_scratch[0].resize(MEM_REQ_SCRATCH0().at(ctx->model.type));
  1513. ctx->buf_scratch[1].resize(MEM_REQ_SCRATCH1().at(ctx->model.type));
  1514. }
  1515. return ctx;
  1516. }
  1517. void llama_free(struct llama_context * ctx) {
  1518. delete ctx;
  1519. }
  1520. int llama_model_quantize(
  1521. const char * fname_inp,
  1522. const char * fname_out,
  1523. enum llama_ftype ftype,
  1524. int nthread) {
  1525. try {
  1526. llama_model_quantize_internal(fname_inp, fname_out, ftype, nthread);
  1527. return 0;
  1528. } catch (const std::string & err) {
  1529. fprintf(stderr, "%s: failed to quantize: %s\n", __func__, err.c_str());
  1530. return 1;
  1531. }
  1532. }
  1533. int llama_apply_lora_from_file_internal(struct llama_context * ctx, const char * path_lora, const char * path_base_model, int n_threads) {
  1534. fprintf(stderr, "%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
  1535. auto & model = ctx->model;
  1536. const int64_t t_start_lora_us = ggml_time_us();
  1537. auto fin = std::ifstream(path_lora, std::ios::binary);
  1538. if (!fin) {
  1539. fprintf(stderr, "%s: failed to open '%s'\n", __func__, path_lora);
  1540. return 1;
  1541. }
  1542. // verify magic and version
  1543. {
  1544. uint32_t magic;
  1545. fin.read((char *) &magic, sizeof(magic));
  1546. if (magic != 'ggla') {
  1547. fprintf(stderr, "%s: bad file magic\n", __func__);
  1548. return 1;
  1549. }
  1550. uint32_t format_version;
  1551. fin.read((char *) &format_version, sizeof(format_version));
  1552. if (format_version != 1) {
  1553. fprintf(stderr, "%s: unsupported file version\n", __func__ );
  1554. return 1;
  1555. }
  1556. }
  1557. int32_t lora_r;
  1558. int32_t lora_alpha;
  1559. fin.read((char *) &lora_r, sizeof(lora_r));
  1560. fin.read((char *) &lora_alpha, sizeof(lora_alpha));
  1561. float scaling = (float)lora_alpha / (float)lora_r;
  1562. fprintf(stderr, "%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
  1563. // create a temporary ggml context to store the lora tensors
  1564. // todo: calculate size from biggest possible tensor
  1565. std::vector<uint8_t> lora_buf(1024ull * 1024ull * 1024ull);
  1566. struct ggml_init_params params;
  1567. params.mem_size = lora_buf.size();
  1568. params.mem_buffer = lora_buf.data();
  1569. params.no_alloc = false;
  1570. ggml_context * lora_ctx = ggml_init(params);
  1571. std::unordered_map<std::string, struct ggml_tensor *> lora_tensors;
  1572. // create a name -> tensor map of the model to accelerate lookups
  1573. std::unordered_map<std::string, struct ggml_tensor*> model_tensors;
  1574. for (auto & kv: model.tensors_by_name) {
  1575. model_tensors.insert(kv);
  1576. }
  1577. // load base model
  1578. std::unique_ptr<llama_model_loader> model_loader;
  1579. ggml_context * base_ctx = NULL;
  1580. llama_buffer base_buf;
  1581. if (path_base_model) {
  1582. fprintf(stderr, "%s: loading base model from '%s'\n", __func__, path_base_model);
  1583. model_loader.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*vocab_only*/ false));
  1584. size_t ctx_size, mmapped_size;
  1585. model_loader->calc_sizes(&ctx_size, &mmapped_size);
  1586. base_buf.resize(ctx_size);
  1587. ggml_init_params base_params;
  1588. base_params.mem_size = base_buf.size;
  1589. base_params.mem_buffer = base_buf.addr;
  1590. base_params.no_alloc = model_loader->use_mmap;
  1591. base_ctx = ggml_init(base_params);
  1592. model_loader->ggml_ctx = base_ctx;
  1593. // maybe this should in llama_model_loader
  1594. if (model_loader->use_mmap) {
  1595. model_loader->mapping.reset(new llama_mmap(&model_loader->file_loaders.at(0)->file, /* prefetch */ false));
  1596. }
  1597. }
  1598. // read tensors and apply
  1599. bool warned = false;
  1600. int n_tensors = 0;
  1601. while (true) {
  1602. int32_t n_dims;
  1603. int32_t length;
  1604. int32_t ftype;
  1605. fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
  1606. fin.read(reinterpret_cast<char *>(&length), sizeof(length));
  1607. fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
  1608. if (fin.eof()) {
  1609. break;
  1610. }
  1611. int32_t ne[2] = { 1, 1 };
  1612. for (int i = 0; i < n_dims; ++i) {
  1613. fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
  1614. }
  1615. std::string name(length, 0);
  1616. fin.read(&name[0], length);
  1617. // check for lora suffix and get the type of tensor
  1618. const std::string lora_suffix = ".lora";
  1619. size_t pos = name.rfind(lora_suffix);
  1620. if (pos == std::string::npos) {
  1621. fprintf(stderr, "%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
  1622. return 1;
  1623. }
  1624. std::string lora_type = name.substr(pos + lora_suffix.length());
  1625. std::string base_name = name;
  1626. base_name.erase(pos);
  1627. // fprintf(stderr, "%s: %s => %s (lora type %s) ", __func__, name.c_str(),base_name.c_str(), lora_type.c_str());
  1628. if (model_tensors.find(base_name.data()) == model_tensors.end()) {
  1629. fprintf(stderr, "%s: unknown tensor '%s' in lora adapter\n", __func__, name.data());
  1630. return 1;
  1631. }
  1632. // create ggml tensor
  1633. ggml_type wtype;
  1634. switch (ftype) {
  1635. case 0: wtype = GGML_TYPE_F32; break;
  1636. case 1: wtype = GGML_TYPE_F16; break;
  1637. default:
  1638. {
  1639. fprintf(stderr, "%s: invalid tensor data type '%d'\n",
  1640. __func__, ftype);
  1641. return false;
  1642. }
  1643. }
  1644. ggml_tensor* lora_tensor;
  1645. if (n_dims == 2) {
  1646. lora_tensor = ggml_new_tensor_2d(lora_ctx, wtype, ne[0], ne[1]);
  1647. }
  1648. else {
  1649. fprintf(stderr, "%s: unsupported tensor dimension %d\n", __func__, n_dims);
  1650. return 1;
  1651. }
  1652. // load tensor data
  1653. size_t offset = fin.tellg();
  1654. size_t tensor_data_size = ggml_nbytes(lora_tensor);
  1655. offset = (offset + 31) & -32;
  1656. fin.seekg(offset);
  1657. fin.read((char*)lora_tensor->data, tensor_data_size);
  1658. lora_tensors[name] = lora_tensor;
  1659. // check if we have both A and B tensors and apply
  1660. if (lora_tensors.find(base_name + ".loraA") != lora_tensors.end() &&
  1661. lora_tensors.find(base_name + ".loraB") != lora_tensors.end()) {
  1662. ggml_tensor * dest_t = model_tensors[base_name];
  1663. ggml_tensor * base_t;
  1664. if (model_loader) {
  1665. // load from base model
  1666. if (model_loader->tensors_map.name_to_idx.find(base_name) == model_loader->tensors_map.name_to_idx.end()) {
  1667. fprintf(stderr, "%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
  1668. return 1;
  1669. }
  1670. size_t idx = model_loader->tensors_map.name_to_idx[base_name];
  1671. llama_load_tensor & lt = model_loader->tensors_map.tensors[idx];
  1672. base_t = model_loader->get_tensor(base_name, { (uint32_t)dest_t->ne[0], (uint32_t)dest_t->ne[1] });
  1673. lt.data = (uint8_t *) lt.ggml_tensor->data;
  1674. model_loader->load_data_for(lt);
  1675. lt.ggml_tensor->data = lt.data;
  1676. }
  1677. else {
  1678. base_t = dest_t;
  1679. }
  1680. if (ggml_is_quantized(base_t->type)) {
  1681. if (!warned) {
  1682. fprintf(stderr, "%s: warning: using a lora adapter with a quantized model may result in poor quality, "
  1683. "use a f16 or f32 base model with --lora-base\n", __func__);
  1684. warned = true;
  1685. }
  1686. }
  1687. ggml_tensor * loraA = lora_tensors[base_name + ".loraA"];
  1688. ggml_tensor * loraB = lora_tensors[base_name + ".loraB"];
  1689. if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
  1690. fprintf(stderr, "%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
  1691. " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
  1692. return 1;
  1693. }
  1694. // w = w + BA*s
  1695. ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
  1696. if (scaling != 1.0f) {
  1697. ggml_tensor * scale_tensor = ggml_new_f32(lora_ctx, scaling);
  1698. BA = ggml_scale(lora_ctx, BA, scale_tensor);
  1699. }
  1700. ggml_tensor * r;
  1701. if (base_t == dest_t) {
  1702. r = ggml_add_inplace(lora_ctx, dest_t, BA);
  1703. }
  1704. else {
  1705. r = ggml_add(lora_ctx, base_t, BA);
  1706. r = ggml_cpy(lora_ctx, r, dest_t);
  1707. }
  1708. struct ggml_cgraph gf = ggml_build_forward(r);
  1709. gf.n_threads = n_threads;
  1710. ggml_graph_compute(lora_ctx, &gf);
  1711. // we won't need these tensors again, reset the context to save memory
  1712. ggml_free(lora_ctx);
  1713. lora_ctx = ggml_init(params);
  1714. lora_tensors.clear();
  1715. n_tensors++;
  1716. if (n_tensors % 4 == 0)
  1717. fprintf(stderr, ".");
  1718. }
  1719. }
  1720. // TODO: this should be in a destructor, it will leak on failure
  1721. ggml_free(lora_ctx);
  1722. if (base_ctx) {
  1723. ggml_free(base_ctx);
  1724. }
  1725. const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
  1726. fprintf(stderr, " done (%.2f ms)\n", t_lora_us / 1000.0);
  1727. return 0;
  1728. }
  1729. int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lora, const char * path_base_model, int n_threads) {
  1730. try {
  1731. return llama_apply_lora_from_file_internal(ctx, path_lora, path_base_model, n_threads);
  1732. } catch (const std::string & err) {
  1733. fprintf(stderr, "%s: failed to apply lora adapter: %s\n", __func__, err.c_str());
  1734. return 1;
  1735. }
  1736. }
  1737. int llama_get_kv_cache_token_count(struct llama_context * ctx) {
  1738. return ctx->model.kv_self.n;
  1739. }
  1740. #define LLAMA_MAX_RNG_STATE 64*1024
  1741. // Returns the size of the state
  1742. size_t llama_get_state_size(struct llama_context * ctx) {
  1743. // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
  1744. // for reference, std::mt19937(1337) serializes to 6701 bytes.
  1745. const size_t s_rng_size = sizeof(size_t);
  1746. const size_t s_rng = LLAMA_MAX_RNG_STATE;
  1747. const size_t s_logits_capacity = sizeof(size_t);
  1748. const size_t s_logits_size = sizeof(size_t);
  1749. const size_t s_logits = ctx->logits.capacity() * sizeof(float);
  1750. const size_t s_embedding_size = sizeof(size_t);
  1751. const size_t s_embedding = ctx->embedding.size() * sizeof(float);
  1752. const size_t s_kv_size = sizeof(size_t);
  1753. const size_t s_kv_ntok = sizeof(int);
  1754. const size_t s_kv = ctx->model.kv_self.buf.size;
  1755. const size_t s_total = (
  1756. + s_rng_size
  1757. + s_rng
  1758. + s_logits_capacity
  1759. + s_logits_size
  1760. + s_logits
  1761. + s_embedding_size
  1762. + s_embedding
  1763. + s_kv_size
  1764. + s_kv_ntok
  1765. + s_kv
  1766. );
  1767. return s_total;
  1768. }
  1769. // Copies the state to the specified destination address
  1770. size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dest) {
  1771. uint8_t * out = dest;
  1772. // copy rng
  1773. {
  1774. std::stringstream rng_ss;
  1775. rng_ss << ctx->rng;
  1776. const size_t rng_size = rng_ss.str().size();
  1777. char rng_buf[LLAMA_MAX_RNG_STATE];
  1778. memset(&rng_buf[0], 0, LLAMA_MAX_RNG_STATE);
  1779. memcpy(&rng_buf[0], rng_ss.str().data(), rng_ss.str().size());
  1780. memcpy(out, &rng_size, sizeof(rng_size)); out += sizeof(rng_size);
  1781. memcpy(out, &rng_buf[0], LLAMA_MAX_RNG_STATE); out += LLAMA_MAX_RNG_STATE;
  1782. }
  1783. // copy logits
  1784. {
  1785. const size_t logits_cap = ctx->logits.capacity();
  1786. const size_t logits_size = ctx->logits.size();
  1787. memcpy(out, &logits_cap, sizeof(logits_cap)); out += sizeof(logits_cap);
  1788. memcpy(out, &logits_size, sizeof(logits_size)); out += sizeof(logits_size);
  1789. if (logits_size) {
  1790. memcpy(out, ctx->logits.data(), logits_size * sizeof(float));
  1791. }
  1792. out += logits_cap * sizeof(float);
  1793. }
  1794. // copy embeddings
  1795. {
  1796. const size_t embedding_size = ctx->embedding.size();
  1797. memcpy(out, &embedding_size, sizeof(embedding_size)); out += sizeof(embedding_size);
  1798. if (embedding_size) {
  1799. memcpy(out, ctx->embedding.data(), embedding_size * sizeof(float));
  1800. out += embedding_size * sizeof(float);
  1801. }
  1802. }
  1803. // copy kv cache
  1804. {
  1805. const size_t kv_size = ctx->model.kv_self.buf.size;
  1806. const int kv_ntok = llama_get_kv_cache_token_count(ctx);
  1807. memcpy(out, &kv_size, sizeof(kv_size)); out += sizeof(kv_size);
  1808. memcpy(out, &kv_ntok, sizeof(kv_ntok)); out += sizeof(kv_ntok);
  1809. if (kv_size) {
  1810. memcpy(out, ctx->model.kv_self.buf.addr, kv_size); out += kv_size;
  1811. }
  1812. }
  1813. const size_t written = out - dest;
  1814. const size_t expected = llama_get_state_size(ctx);
  1815. LLAMA_ASSERT(written == expected);
  1816. return written;
  1817. }
  1818. // Sets the state reading from the specified source address
  1819. size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
  1820. const uint8_t * in = src;
  1821. // set rng
  1822. {
  1823. size_t rng_size;
  1824. char rng_buf[LLAMA_MAX_RNG_STATE];
  1825. memcpy(&rng_size, in, sizeof(rng_size)); in += sizeof(rng_size);
  1826. memcpy(&rng_buf[0], in, LLAMA_MAX_RNG_STATE); in += LLAMA_MAX_RNG_STATE;
  1827. std::stringstream rng_ss;
  1828. rng_ss.str(std::string(&rng_buf[0], rng_size));
  1829. rng_ss >> ctx->rng;
  1830. LLAMA_ASSERT(rng_ss.fail() == false);
  1831. }
  1832. // set logits
  1833. {
  1834. size_t logits_cap;
  1835. size_t logits_size;
  1836. memcpy(&logits_cap, in, sizeof(logits_cap)); in += sizeof(logits_cap);
  1837. memcpy(&logits_size, in, sizeof(logits_size)); in += sizeof(logits_size);
  1838. LLAMA_ASSERT(ctx->logits.capacity() == logits_cap);
  1839. if (logits_size) {
  1840. ctx->logits.resize(logits_size);
  1841. memcpy(ctx->logits.data(), in, logits_size * sizeof(float));
  1842. }
  1843. in += logits_cap * sizeof(float);
  1844. }
  1845. // set embeddings
  1846. {
  1847. size_t embedding_size;
  1848. memcpy(&embedding_size, in, sizeof(embedding_size)); in += sizeof(embedding_size);
  1849. LLAMA_ASSERT(ctx->embedding.capacity() == embedding_size);
  1850. if (embedding_size) {
  1851. memcpy(ctx->embedding.data(), in, embedding_size * sizeof(float));
  1852. in += embedding_size * sizeof(float);
  1853. }
  1854. }
  1855. // set kv cache
  1856. {
  1857. size_t kv_size;
  1858. int kv_ntok;
  1859. memcpy(&kv_size, in, sizeof(kv_size)); in += sizeof(kv_size);
  1860. memcpy(&kv_ntok, in, sizeof(kv_ntok)); in += sizeof(kv_ntok);
  1861. if (kv_size) {
  1862. LLAMA_ASSERT(ctx->model.kv_self.buf.size == kv_size);
  1863. void * k_data = ctx->model.kv_self.k->data; // remember data pointers
  1864. void * v_data = ctx->model.kv_self.v->data; // because their value is stored in buf and overwritten by memcpy
  1865. memcpy(ctx->model.kv_self.buf.addr, in, kv_size); in += kv_size;
  1866. ctx->model.kv_self.k->data = k_data; // restore correct data pointers
  1867. ctx->model.kv_self.v->data = v_data;
  1868. }
  1869. ctx->model.kv_self.n = kv_ntok;
  1870. }
  1871. const size_t nread = in - src;
  1872. const size_t expected = llama_get_state_size(ctx);
  1873. LLAMA_ASSERT(nread == expected);
  1874. return nread;
  1875. }
  1876. int llama_eval(
  1877. struct llama_context * ctx,
  1878. const llama_token * tokens,
  1879. int n_tokens,
  1880. int n_past,
  1881. int n_threads) {
  1882. if (!llama_eval_internal(*ctx, tokens, n_tokens, n_past, n_threads)) {
  1883. fprintf(stderr, "%s: failed to eval\n", __func__);
  1884. return 1;
  1885. }
  1886. // get a more accurate load time, upon first eval
  1887. if (!ctx->has_evaluated_once) {
  1888. ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
  1889. ctx->has_evaluated_once = true;
  1890. }
  1891. return 0;
  1892. }
  1893. int llama_tokenize(
  1894. struct llama_context * ctx,
  1895. const char * text,
  1896. llama_token * tokens,
  1897. int n_max_tokens,
  1898. bool add_bos) {
  1899. auto res = llama_tokenize(ctx->vocab, text, add_bos);
  1900. if (n_max_tokens < (int) res.size()) {
  1901. fprintf(stderr, "%s: too many tokens\n", __func__);
  1902. return -((int) res.size());
  1903. }
  1904. for (size_t i = 0; i < res.size(); i++) {
  1905. tokens[i] = res[i];
  1906. }
  1907. return res.size();
  1908. }
  1909. int llama_n_vocab(struct llama_context * ctx) {
  1910. return ctx->vocab.id_to_token.size();
  1911. }
  1912. int llama_n_ctx(struct llama_context * ctx) {
  1913. return ctx->model.hparams.n_ctx;
  1914. }
  1915. int llama_n_embd(struct llama_context * ctx) {
  1916. return ctx->model.hparams.n_embd;
  1917. }
  1918. float * llama_get_logits(struct llama_context * ctx) {
  1919. return ctx->logits.data();
  1920. }
  1921. float * llama_get_embeddings(struct llama_context * ctx) {
  1922. return ctx->embedding.data();
  1923. }
  1924. const char * llama_token_to_str(struct llama_context * ctx, llama_token token) {
  1925. if (token >= llama_n_vocab(ctx)) {
  1926. return nullptr;
  1927. }
  1928. return ctx->vocab.id_to_token[token].tok.c_str();
  1929. }
  1930. llama_token llama_token_bos() {
  1931. return 1;
  1932. }
  1933. llama_token llama_token_eos() {
  1934. return 2;
  1935. }
  1936. llama_token llama_sample_top_p_top_k(
  1937. llama_context * ctx,
  1938. const llama_token * last_n_tokens_data,
  1939. int last_n_tokens_size,
  1940. int top_k,
  1941. float top_p,
  1942. float temp,
  1943. float repeat_penalty) {
  1944. const int64_t t_start_sample_us = ggml_time_us();
  1945. llama_token result = 0;
  1946. // TODO: avoid this ...
  1947. const auto last_n_tokens = std::vector<llama_token>(last_n_tokens_data, last_n_tokens_data + last_n_tokens_size);
  1948. result = llama_sample_top_p_top_k(
  1949. *ctx,
  1950. last_n_tokens,
  1951. top_k,
  1952. top_p,
  1953. temp,
  1954. repeat_penalty);
  1955. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1956. ctx->n_sample++;
  1957. return result;
  1958. }
  1959. void llama_print_timings(struct llama_context * ctx) {
  1960. const int64_t t_end_us = ggml_time_us();
  1961. const int32_t n_sample = std::max(1, ctx->n_sample);
  1962. const int32_t n_eval = std::max(1, ctx->n_eval);
  1963. const int32_t n_p_eval = std::max(1, ctx->n_p_eval);
  1964. fprintf(stderr, "\n");
  1965. fprintf(stderr, "%s: load time = %8.2f ms\n", __func__, ctx->t_load_us / 1000.0);
  1966. fprintf(stderr, "%s: sample time = %8.2f ms / %5d runs (%8.2f ms per run)\n", __func__, 1e-3 * ctx->t_sample_us, n_sample, 1e-3 * ctx->t_sample_us / n_sample);
  1967. fprintf(stderr, "%s: prompt eval time = %8.2f ms / %5d tokens (%8.2f ms per token)\n", __func__, 1e-3 * ctx->t_p_eval_us, n_p_eval, 1e-3 * ctx->t_p_eval_us / n_p_eval);
  1968. fprintf(stderr, "%s: eval time = %8.2f ms / %5d runs (%8.2f ms per run)\n", __func__, 1e-3 * ctx->t_eval_us, n_eval, 1e-3 * ctx->t_eval_us / n_eval);
  1969. fprintf(stderr, "%s: total time = %8.2f ms\n", __func__, (t_end_us - ctx->t_start_us)/1000.0);
  1970. }
  1971. void llama_reset_timings(struct llama_context * ctx) {
  1972. ctx->t_start_us = ggml_time_us();
  1973. ctx->t_sample_us = ctx->n_sample = 0;
  1974. ctx->t_eval_us = ctx->n_eval = 0;
  1975. ctx->t_p_eval_us = ctx->n_p_eval = 0;
  1976. }
  1977. const char * llama_print_system_info(void) {
  1978. static std::string s;
  1979. s = "";
  1980. s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
  1981. s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
  1982. s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
  1983. s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
  1984. s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
  1985. s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
  1986. s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
  1987. s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
  1988. s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
  1989. s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
  1990. s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
  1991. s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
  1992. s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
  1993. s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
  1994. return s.c_str();
  1995. }
  1996. // For internal test use
  1997. std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx) {
  1998. return ctx->model.tensors_by_name;
  1999. }