ggml.c 574 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #ifdef GGML_USE_K_QUANTS
  5. #include "k_quants.h"
  6. #endif
  7. #if defined(_MSC_VER) || defined(__MINGW32__)
  8. #include <malloc.h> // using malloc.h with MSC/MINGW
  9. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  10. #include <alloca.h>
  11. #endif
  12. #include <assert.h>
  13. #include <errno.h>
  14. #include <time.h>
  15. #include <math.h>
  16. #include <stdlib.h>
  17. #include <string.h>
  18. #include <stdint.h>
  19. #include <inttypes.h>
  20. #include <stdio.h>
  21. #include <float.h>
  22. #include <limits.h>
  23. #ifdef GGML_USE_METAL
  24. #include <unistd.h>
  25. #endif
  26. // if C99 - static_assert is noop
  27. // ref: https://stackoverflow.com/a/53923785/4039976
  28. #ifndef static_assert
  29. #define static_assert(cond, msg) struct global_scope_noop_trick
  30. #endif
  31. #if defined(_MSC_VER)
  32. // disable "possible loss of data" to avoid hundreds of casts
  33. // we should just be careful :)
  34. #pragma warning(disable: 4244 4267)
  35. #endif
  36. #if defined(_WIN32)
  37. #include <windows.h>
  38. typedef volatile LONG atomic_int;
  39. typedef atomic_int atomic_bool;
  40. static void atomic_store(atomic_int* ptr, LONG val) {
  41. InterlockedExchange(ptr, val);
  42. }
  43. static LONG atomic_load(atomic_int* ptr) {
  44. return InterlockedCompareExchange(ptr, 0, 0);
  45. }
  46. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  47. return InterlockedExchangeAdd(ptr, inc);
  48. }
  49. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  50. return atomic_fetch_add(ptr, -(dec));
  51. }
  52. typedef HANDLE pthread_t;
  53. typedef DWORD thread_ret_t;
  54. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  55. (void) unused;
  56. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  57. if (handle == NULL)
  58. {
  59. return EAGAIN;
  60. }
  61. *out = handle;
  62. return 0;
  63. }
  64. static int pthread_join(pthread_t thread, void* unused) {
  65. (void) unused;
  66. return (int) WaitForSingleObject(thread, INFINITE);
  67. }
  68. static int sched_yield (void) {
  69. Sleep (0);
  70. return 0;
  71. }
  72. #else
  73. #include <pthread.h>
  74. #include <stdatomic.h>
  75. typedef void* thread_ret_t;
  76. #endif
  77. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  78. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  79. #ifndef __FMA__
  80. #define __FMA__
  81. #endif
  82. #ifndef __F16C__
  83. #define __F16C__
  84. #endif
  85. #ifndef __SSE3__
  86. #define __SSE3__
  87. #endif
  88. #endif
  89. #ifdef __HAIKU__
  90. #define static_assert(cond, msg) _Static_assert(cond, msg)
  91. #endif
  92. /*#define GGML_PERF*/
  93. #define GGML_DEBUG 0
  94. #define GGML_GELU_FP16
  95. #define GGML_SILU_FP16
  96. #define GGML_SOFT_MAX_UNROLL 4
  97. #define GGML_VEC_DOT_UNROLL 2
  98. #ifdef GGML_USE_ACCELERATE
  99. // uncomment to use vDSP for soft max computation
  100. // note: not sure if it is actually faster
  101. //#define GGML_SOFT_MAX_ACCELERATE
  102. #endif
  103. #if UINTPTR_MAX == 0xFFFFFFFF
  104. #define GGML_MEM_ALIGN 4
  105. #else
  106. #define GGML_MEM_ALIGN 16
  107. #endif
  108. #if defined(_MSC_VER) || defined(__MINGW32__)
  109. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  110. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  111. #else
  112. inline static void* ggml_aligned_malloc(size_t size) {
  113. void* aligned_memory = NULL;
  114. #ifdef GGML_USE_METAL
  115. int result = posix_memalign(&aligned_memory, getpagesize(), size);
  116. #else
  117. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  118. #endif
  119. if (result != 0) {
  120. // Handle allocation failure
  121. return NULL;
  122. }
  123. return aligned_memory;
  124. }
  125. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  126. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  127. #endif
  128. #define UNUSED(x) (void)(x)
  129. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  130. #if defined(GGML_USE_ACCELERATE)
  131. #include <Accelerate/Accelerate.h>
  132. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  133. #include "ggml-opencl.h"
  134. #endif
  135. #elif defined(GGML_USE_OPENBLAS)
  136. #include <cblas.h>
  137. #elif defined(GGML_USE_CUBLAS)
  138. #include "ggml-cuda.h"
  139. #elif defined(GGML_USE_CLBLAST)
  140. #include "ggml-opencl.h"
  141. #endif
  142. #undef MIN
  143. #undef MAX
  144. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  145. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  146. // floating point type used to accumulate sums
  147. typedef double ggml_float;
  148. // 16-bit float
  149. // on Arm, we use __fp16
  150. // on x86, we use uint16_t
  151. #ifdef __ARM_NEON
  152. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  153. //
  154. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  155. //
  156. #include <arm_neon.h>
  157. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  158. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  159. #define GGML_FP16_TO_FP32(x) ((float) (x))
  160. #define GGML_FP32_TO_FP16(x) (x)
  161. #else
  162. #ifdef __wasm_simd128__
  163. #include <wasm_simd128.h>
  164. #else
  165. #ifdef __POWER9_VECTOR__
  166. #include <altivec.h>
  167. #undef bool
  168. #define bool _Bool
  169. #else
  170. #if defined(_MSC_VER) || defined(__MINGW32__)
  171. #include <intrin.h>
  172. #else
  173. #if !defined(__riscv)
  174. #include <immintrin.h>
  175. #endif
  176. #endif
  177. #endif
  178. #endif
  179. #ifdef __F16C__
  180. #ifdef _MSC_VER
  181. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  182. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  183. #else
  184. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  185. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  186. #endif
  187. #elif defined(__POWER9_VECTOR__)
  188. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  189. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  190. /* the inline asm below is about 12% faster than the lookup method */
  191. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  192. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  193. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  194. register float f;
  195. register double d;
  196. __asm__(
  197. "mtfprd %0,%2\n"
  198. "xscvhpdp %0,%0\n"
  199. "frsp %1,%0\n" :
  200. /* temp */ "=d"(d),
  201. /* out */ "=f"(f):
  202. /* in */ "r"(h));
  203. return f;
  204. }
  205. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  206. register double d;
  207. register ggml_fp16_t r;
  208. __asm__( /* xscvdphp can work on double or single precision */
  209. "xscvdphp %0,%2\n"
  210. "mffprd %1,%0\n" :
  211. /* temp */ "=d"(d),
  212. /* out */ "=r"(r):
  213. /* in */ "f"(f));
  214. return r;
  215. }
  216. #else
  217. // FP16 <-> FP32
  218. // ref: https://github.com/Maratyszcza/FP16
  219. static inline float fp32_from_bits(uint32_t w) {
  220. union {
  221. uint32_t as_bits;
  222. float as_value;
  223. } fp32;
  224. fp32.as_bits = w;
  225. return fp32.as_value;
  226. }
  227. static inline uint32_t fp32_to_bits(float f) {
  228. union {
  229. float as_value;
  230. uint32_t as_bits;
  231. } fp32;
  232. fp32.as_value = f;
  233. return fp32.as_bits;
  234. }
  235. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  236. const uint32_t w = (uint32_t) h << 16;
  237. const uint32_t sign = w & UINT32_C(0x80000000);
  238. const uint32_t two_w = w + w;
  239. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  240. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  241. const float exp_scale = 0x1.0p-112f;
  242. #else
  243. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  244. #endif
  245. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  246. const uint32_t magic_mask = UINT32_C(126) << 23;
  247. const float magic_bias = 0.5f;
  248. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  249. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  250. const uint32_t result = sign |
  251. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  252. return fp32_from_bits(result);
  253. }
  254. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  255. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  256. const float scale_to_inf = 0x1.0p+112f;
  257. const float scale_to_zero = 0x1.0p-110f;
  258. #else
  259. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  260. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  261. #endif
  262. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  263. const uint32_t w = fp32_to_bits(f);
  264. const uint32_t shl1_w = w + w;
  265. const uint32_t sign = w & UINT32_C(0x80000000);
  266. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  267. if (bias < UINT32_C(0x71000000)) {
  268. bias = UINT32_C(0x71000000);
  269. }
  270. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  271. const uint32_t bits = fp32_to_bits(base);
  272. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  273. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  274. const uint32_t nonsign = exp_bits + mantissa_bits;
  275. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  276. }
  277. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  278. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  279. #endif // __F16C__
  280. #endif // __ARM_NEON
  281. //
  282. // global data
  283. //
  284. // precomputed gelu table for f16 (128 KB)
  285. static ggml_fp16_t table_gelu_f16[1 << 16];
  286. // precomputed silu table for f16 (128 KB)
  287. static ggml_fp16_t table_silu_f16[1 << 16];
  288. // precomputed exp table for f16 (128 KB)
  289. static ggml_fp16_t table_exp_f16[1 << 16];
  290. // precomputed f32 table for f16 (256 KB)
  291. static float table_f32_f16[1 << 16];
  292. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  293. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  294. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  295. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  296. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  297. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  298. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  299. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  300. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  301. // precomputed tables for expanding 8bits to 8 bytes:
  302. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  303. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  304. #endif
  305. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  306. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  307. // This is also true for POWER9.
  308. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  309. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  310. uint16_t s;
  311. memcpy(&s, &f, sizeof(uint16_t));
  312. return table_f32_f16[s];
  313. }
  314. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  315. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  316. #endif
  317. // note: do not use these inside ggml.c
  318. // these are meant to be used via the ggml.h API
  319. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  320. return (float) GGML_FP16_TO_FP32(x);
  321. }
  322. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  323. return GGML_FP32_TO_FP16(x);
  324. }
  325. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n) {
  326. for (size_t i = 0; i < n; i++) {
  327. y[i] = GGML_FP16_TO_FP32(x[i]);
  328. }
  329. }
  330. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n) {
  331. size_t i = 0;
  332. #if defined(__F16C__)
  333. for (; i + 7 < n; i += 8) {
  334. __m256 x_vec = _mm256_loadu_ps(x + i);
  335. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  336. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  337. }
  338. for(; i + 3 < n; i += 4) {
  339. __m128 x_vec = _mm_loadu_ps(x + i);
  340. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  341. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  342. }
  343. #endif
  344. for (; i < n; i++) {
  345. y[i] = GGML_FP32_TO_FP16(x[i]);
  346. }
  347. }
  348. //
  349. // timing
  350. //
  351. #if defined(_MSC_VER) || defined(__MINGW32__)
  352. static int64_t timer_freq, timer_start;
  353. void ggml_time_init(void) {
  354. LARGE_INTEGER t;
  355. QueryPerformanceFrequency(&t);
  356. timer_freq = t.QuadPart;
  357. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  358. // and the uptime is high enough.
  359. // We subtract the program start time to reduce the likelihood of that happening.
  360. QueryPerformanceCounter(&t);
  361. timer_start = t.QuadPart;
  362. }
  363. int64_t ggml_time_ms(void) {
  364. LARGE_INTEGER t;
  365. QueryPerformanceCounter(&t);
  366. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  367. }
  368. int64_t ggml_time_us(void) {
  369. LARGE_INTEGER t;
  370. QueryPerformanceCounter(&t);
  371. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  372. }
  373. #else
  374. void ggml_time_init(void) {}
  375. int64_t ggml_time_ms(void) {
  376. struct timespec ts;
  377. clock_gettime(CLOCK_MONOTONIC, &ts);
  378. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  379. }
  380. int64_t ggml_time_us(void) {
  381. struct timespec ts;
  382. clock_gettime(CLOCK_MONOTONIC, &ts);
  383. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  384. }
  385. #endif
  386. int64_t ggml_cycles(void) {
  387. return clock();
  388. }
  389. int64_t ggml_cycles_per_ms(void) {
  390. return CLOCKS_PER_SEC/1000;
  391. }
  392. #ifdef GGML_PERF
  393. #define ggml_perf_time_ms() ggml_time_ms()
  394. #define ggml_perf_time_us() ggml_time_us()
  395. #define ggml_perf_cycles() ggml_cycles()
  396. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  397. #else
  398. #define ggml_perf_time_ms() 0
  399. #define ggml_perf_time_us() 0
  400. #define ggml_perf_cycles() 0
  401. #define ggml_perf_cycles_per_ms() 0
  402. #endif
  403. //
  404. // cache line
  405. //
  406. #if defined(__cpp_lib_hardware_interference_size)
  407. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  408. #else
  409. #if defined(__POWER9_VECTOR__)
  410. #define CACHE_LINE_SIZE 128
  411. #else
  412. #define CACHE_LINE_SIZE 64
  413. #endif
  414. #endif
  415. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  416. //
  417. // quantization
  418. //
  419. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  420. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  421. // multiply int8_t, add results pairwise twice
  422. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  423. // Get absolute values of x vectors
  424. const __m128i ax = _mm_sign_epi8(x, x);
  425. // Sign the values of the y vectors
  426. const __m128i sy = _mm_sign_epi8(y, x);
  427. // Perform multiplication and create 16-bit values
  428. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  429. const __m128i ones = _mm_set1_epi16(1);
  430. return _mm_madd_epi16(ones, dot);
  431. }
  432. #if __AVX__ || __AVX2__ || __AVX512F__
  433. // horizontally add 8 floats
  434. static inline float hsum_float_8(const __m256 x) {
  435. __m128 res = _mm256_extractf128_ps(x, 1);
  436. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  437. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  438. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  439. return _mm_cvtss_f32(res);
  440. }
  441. // horizontally add 8 int32_t
  442. static inline int hsum_i32_8(const __m256i a) {
  443. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  444. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  445. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  446. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  447. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  448. }
  449. // horizontally add 4 int32_t
  450. static inline int hsum_i32_4(const __m128i a) {
  451. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  452. const __m128i sum64 = _mm_add_epi32(hi64, a);
  453. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  454. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  455. }
  456. #if defined(__AVX2__) || defined(__AVX512F__)
  457. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  458. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  459. uint32_t x32;
  460. memcpy(&x32, x, sizeof(uint32_t));
  461. const __m256i shuf_mask = _mm256_set_epi64x(
  462. 0x0303030303030303, 0x0202020202020202,
  463. 0x0101010101010101, 0x0000000000000000);
  464. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  465. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  466. bytes = _mm256_or_si256(bytes, bit_mask);
  467. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  468. }
  469. // Unpack 32 4-bit fields into 32 bytes
  470. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  471. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  472. {
  473. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  474. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  475. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  476. return _mm256_and_si256(lowMask, bytes);
  477. }
  478. // add int16_t pairwise and return as float vector
  479. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  480. const __m256i ones = _mm256_set1_epi16(1);
  481. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  482. return _mm256_cvtepi32_ps(summed_pairs);
  483. }
  484. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  485. #if __AVXVNNI__
  486. const __m256i zero = _mm256_setzero_si256();
  487. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  488. return _mm256_cvtepi32_ps(summed_pairs);
  489. #else
  490. // Perform multiplication and create 16-bit values
  491. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  492. return sum_i16_pairs_float(dot);
  493. #endif
  494. }
  495. // multiply int8_t, add results pairwise twice and return as float vector
  496. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  497. #if __AVXVNNIINT8__
  498. const __m256i zero = _mm256_setzero_si256();
  499. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  500. return _mm256_cvtepi32_ps(summed_pairs);
  501. #else
  502. // Get absolute values of x vectors
  503. const __m256i ax = _mm256_sign_epi8(x, x);
  504. // Sign the values of the y vectors
  505. const __m256i sy = _mm256_sign_epi8(y, x);
  506. return mul_sum_us8_pairs_float(ax, sy);
  507. #endif
  508. }
  509. static inline __m128i packNibbles( __m256i bytes )
  510. {
  511. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  512. #if __AVX512F__
  513. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  514. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  515. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  516. #else
  517. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  518. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  519. __m256i low = _mm256_and_si256( lowByte, bytes );
  520. high = _mm256_srli_epi16( high, 4 );
  521. bytes = _mm256_or_si256( low, high );
  522. // Compress uint16_t lanes into bytes
  523. __m128i r0 = _mm256_castsi256_si128( bytes );
  524. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  525. return _mm_packus_epi16( r0, r1 );
  526. #endif
  527. }
  528. #elif defined(__AVX__)
  529. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  530. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  531. uint32_t x32;
  532. memcpy(&x32, x, sizeof(uint32_t));
  533. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  534. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  535. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  536. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  537. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  538. bytesl = _mm_or_si128(bytesl, bit_mask);
  539. bytesh = _mm_or_si128(bytesh, bit_mask);
  540. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  541. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  542. return MM256_SET_M128I(bytesh, bytesl);
  543. }
  544. // Unpack 32 4-bit fields into 32 bytes
  545. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  546. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  547. {
  548. // Load 16 bytes from memory
  549. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  550. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  551. const __m128i lowMask = _mm_set1_epi8(0xF);
  552. tmpl = _mm_and_si128(lowMask, tmpl);
  553. tmph = _mm_and_si128(lowMask, tmph);
  554. return MM256_SET_M128I(tmph, tmpl);
  555. }
  556. // add int16_t pairwise and return as float vector
  557. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  558. const __m128i ones = _mm_set1_epi16(1);
  559. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  560. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  561. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  562. return _mm256_cvtepi32_ps(summed_pairs);
  563. }
  564. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  565. const __m128i axl = _mm256_castsi256_si128(ax);
  566. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  567. const __m128i syl = _mm256_castsi256_si128(sy);
  568. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  569. // Perform multiplication and create 16-bit values
  570. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  571. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  572. return sum_i16_pairs_float(doth, dotl);
  573. }
  574. // multiply int8_t, add results pairwise twice and return as float vector
  575. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  576. const __m128i xl = _mm256_castsi256_si128(x);
  577. const __m128i xh = _mm256_extractf128_si256(x, 1);
  578. const __m128i yl = _mm256_castsi256_si128(y);
  579. const __m128i yh = _mm256_extractf128_si256(y, 1);
  580. // Get absolute values of x vectors
  581. const __m128i axl = _mm_sign_epi8(xl, xl);
  582. const __m128i axh = _mm_sign_epi8(xh, xh);
  583. // Sign the values of the y vectors
  584. const __m128i syl = _mm_sign_epi8(yl, xl);
  585. const __m128i syh = _mm_sign_epi8(yh, xh);
  586. // Perform multiplication and create 16-bit values
  587. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  588. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  589. return sum_i16_pairs_float(doth, dotl);
  590. }
  591. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  592. {
  593. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  594. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  595. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  596. __m128i low = _mm_and_si128( lowByte, bytes1 );
  597. high = _mm_srli_epi16( high, 4 );
  598. bytes1 = _mm_or_si128( low, high );
  599. high = _mm_andnot_si128( lowByte, bytes2 );
  600. low = _mm_and_si128( lowByte, bytes2 );
  601. high = _mm_srli_epi16( high, 4 );
  602. bytes2 = _mm_or_si128( low, high );
  603. return _mm_packus_epi16( bytes1, bytes2);
  604. }
  605. #endif
  606. #elif defined(__SSSE3__)
  607. // horizontally add 4x4 floats
  608. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  609. __m128 res_0 =_mm_hadd_ps(a, b);
  610. __m128 res_1 =_mm_hadd_ps(c, d);
  611. __m128 res =_mm_hadd_ps(res_0, res_1);
  612. res =_mm_hadd_ps(res, res);
  613. res =_mm_hadd_ps(res, res);
  614. return _mm_cvtss_f32(res);
  615. }
  616. #endif // __AVX__ || __AVX2__ || __AVX512F__
  617. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  618. #if defined(__ARM_NEON)
  619. #if !defined(__aarch64__)
  620. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  621. return
  622. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  623. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  624. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  625. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  626. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  627. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  628. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  629. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  630. }
  631. inline static int16_t vaddvq_s8(int8x16_t v) {
  632. return
  633. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  634. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  635. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  636. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  637. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  638. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  639. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  640. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  641. }
  642. inline static int32_t vaddvq_s16(int16x8_t v) {
  643. return
  644. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  645. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  646. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  647. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  648. }
  649. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  650. return
  651. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  652. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  653. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  654. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  655. }
  656. inline static int32_t vaddvq_s32(int32x4_t v) {
  657. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  658. }
  659. inline static float vaddvq_f32(float32x4_t v) {
  660. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  661. }
  662. inline static float vminvq_f32(float32x4_t v) {
  663. return
  664. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  665. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  666. }
  667. inline static float vmaxvq_f32(float32x4_t v) {
  668. return
  669. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  670. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  671. }
  672. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  673. int32x4_t res;
  674. res[0] = roundf(vgetq_lane_f32(v, 0));
  675. res[1] = roundf(vgetq_lane_f32(v, 1));
  676. res[2] = roundf(vgetq_lane_f32(v, 2));
  677. res[3] = roundf(vgetq_lane_f32(v, 3));
  678. return res;
  679. }
  680. #endif
  681. #endif
  682. #define QK4_0 32
  683. typedef struct {
  684. ggml_fp16_t d; // delta
  685. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  686. } block_q4_0;
  687. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
  688. #define QK4_1 32
  689. typedef struct {
  690. ggml_fp16_t d; // delta
  691. ggml_fp16_t m; // min
  692. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  693. } block_q4_1;
  694. static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
  695. #define QK5_0 32
  696. typedef struct {
  697. ggml_fp16_t d; // delta
  698. uint8_t qh[4]; // 5-th bit of quants
  699. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  700. } block_q5_0;
  701. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  702. #define QK5_1 32
  703. typedef struct {
  704. ggml_fp16_t d; // delta
  705. ggml_fp16_t m; // min
  706. uint8_t qh[4]; // 5-th bit of quants
  707. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  708. } block_q5_1;
  709. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  710. #define QK8_0 32
  711. typedef struct {
  712. ggml_fp16_t d; // delta
  713. int8_t qs[QK8_0]; // quants
  714. } block_q8_0;
  715. static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
  716. #define QK8_1 32
  717. typedef struct {
  718. float d; // delta
  719. float s; // d * sum(qs[i])
  720. int8_t qs[QK8_1]; // quants
  721. } block_q8_1;
  722. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  723. // reference implementation for deterministic creation of model files
  724. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  725. static const int qk = QK4_0;
  726. assert(k % qk == 0);
  727. const int nb = k / qk;
  728. for (int i = 0; i < nb; i++) {
  729. float amax = 0.0f; // absolute max
  730. float max = 0.0f;
  731. for (int j = 0; j < qk; j++) {
  732. const float v = x[i*qk + j];
  733. if (amax < fabsf(v)) {
  734. amax = fabsf(v);
  735. max = v;
  736. }
  737. }
  738. const float d = max / -8;
  739. const float id = d ? 1.0f/d : 0.0f;
  740. y[i].d = GGML_FP32_TO_FP16(d);
  741. for (int j = 0; j < qk/2; ++j) {
  742. const float x0 = x[i*qk + 0 + j]*id;
  743. const float x1 = x[i*qk + qk/2 + j]*id;
  744. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  745. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  746. y[i].qs[j] = xi0;
  747. y[i].qs[j] |= xi1 << 4;
  748. }
  749. }
  750. }
  751. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  752. quantize_row_q4_0_reference(x, y, k);
  753. }
  754. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  755. const int qk = QK4_1;
  756. assert(k % qk == 0);
  757. const int nb = k / qk;
  758. for (int i = 0; i < nb; i++) {
  759. float min = FLT_MAX;
  760. float max = -FLT_MAX;
  761. for (int j = 0; j < qk; j++) {
  762. const float v = x[i*qk + j];
  763. if (v < min) min = v;
  764. if (v > max) max = v;
  765. }
  766. const float d = (max - min) / ((1 << 4) - 1);
  767. const float id = d ? 1.0f/d : 0.0f;
  768. y[i].d = GGML_FP32_TO_FP16(d);
  769. y[i].m = GGML_FP32_TO_FP16(min);
  770. for (int j = 0; j < qk/2; ++j) {
  771. const float x0 = (x[i*qk + 0 + j] - min)*id;
  772. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  773. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  774. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  775. y[i].qs[j] = xi0;
  776. y[i].qs[j] |= xi1 << 4;
  777. }
  778. }
  779. }
  780. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  781. quantize_row_q4_1_reference(x, y, k);
  782. }
  783. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  784. static const int qk = QK5_0;
  785. assert(k % qk == 0);
  786. const int nb = k / qk;
  787. for (int i = 0; i < nb; i++) {
  788. float amax = 0.0f; // absolute max
  789. float max = 0.0f;
  790. for (int j = 0; j < qk; j++) {
  791. const float v = x[i*qk + j];
  792. if (amax < fabsf(v)) {
  793. amax = fabsf(v);
  794. max = v;
  795. }
  796. }
  797. const float d = max / -16;
  798. const float id = d ? 1.0f/d : 0.0f;
  799. y[i].d = GGML_FP32_TO_FP16(d);
  800. uint32_t qh = 0;
  801. for (int j = 0; j < qk/2; ++j) {
  802. const float x0 = x[i*qk + 0 + j]*id;
  803. const float x1 = x[i*qk + qk/2 + j]*id;
  804. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  805. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  806. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  807. // get the 5-th bit and store it in qh at the right position
  808. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  809. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  810. }
  811. memcpy(&y[i].qh, &qh, sizeof(qh));
  812. }
  813. }
  814. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  815. quantize_row_q5_0_reference(x, y, k);
  816. }
  817. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  818. const int qk = QK5_1;
  819. assert(k % qk == 0);
  820. const int nb = k / qk;
  821. for (int i = 0; i < nb; i++) {
  822. float min = FLT_MAX;
  823. float max = -FLT_MAX;
  824. for (int j = 0; j < qk; j++) {
  825. const float v = x[i*qk + j];
  826. if (v < min) min = v;
  827. if (v > max) max = v;
  828. }
  829. const float d = (max - min) / ((1 << 5) - 1);
  830. const float id = d ? 1.0f/d : 0.0f;
  831. y[i].d = GGML_FP32_TO_FP16(d);
  832. y[i].m = GGML_FP32_TO_FP16(min);
  833. uint32_t qh = 0;
  834. for (int j = 0; j < qk/2; ++j) {
  835. const float x0 = (x[i*qk + 0 + j] - min)*id;
  836. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  837. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  838. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  839. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  840. // get the 5-th bit and store it in qh at the right position
  841. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  842. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  843. }
  844. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  845. }
  846. }
  847. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  848. quantize_row_q5_1_reference(x, y, k);
  849. }
  850. // reference implementation for deterministic creation of model files
  851. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  852. assert(k % QK8_0 == 0);
  853. const int nb = k / QK8_0;
  854. for (int i = 0; i < nb; i++) {
  855. float amax = 0.0f; // absolute max
  856. for (int j = 0; j < QK8_0; j++) {
  857. const float v = x[i*QK8_0 + j];
  858. amax = MAX(amax, fabsf(v));
  859. }
  860. const float d = amax / ((1 << 7) - 1);
  861. const float id = d ? 1.0f/d : 0.0f;
  862. y[i].d = GGML_FP32_TO_FP16(d);
  863. for (int j = 0; j < QK8_0; ++j) {
  864. const float x0 = x[i*QK8_0 + j]*id;
  865. y[i].qs[j] = roundf(x0);
  866. }
  867. }
  868. }
  869. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  870. assert(QK8_0 == 32);
  871. assert(k % QK8_0 == 0);
  872. const int nb = k / QK8_0;
  873. block_q8_0 * restrict y = vy;
  874. #if defined(__ARM_NEON)
  875. for (int i = 0; i < nb; i++) {
  876. float32x4_t srcv [8];
  877. float32x4_t asrcv[8];
  878. float32x4_t amaxv[8];
  879. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  880. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  881. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  882. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  883. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  884. const float amax = vmaxvq_f32(amaxv[0]);
  885. const float d = amax / ((1 << 7) - 1);
  886. const float id = d ? 1.0f/d : 0.0f;
  887. y[i].d = GGML_FP32_TO_FP16(d);
  888. for (int j = 0; j < 8; j++) {
  889. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  890. const int32x4_t vi = vcvtnq_s32_f32(v);
  891. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  892. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  893. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  894. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  895. }
  896. }
  897. #elif defined(__wasm_simd128__)
  898. for (int i = 0; i < nb; i++) {
  899. v128_t srcv [8];
  900. v128_t asrcv[8];
  901. v128_t amaxv[8];
  902. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  903. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  904. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  905. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  906. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  907. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  908. wasm_f32x4_extract_lane(amaxv[0], 1)),
  909. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  910. wasm_f32x4_extract_lane(amaxv[0], 3)));
  911. const float d = amax / ((1 << 7) - 1);
  912. const float id = d ? 1.0f/d : 0.0f;
  913. y[i].d = GGML_FP32_TO_FP16(d);
  914. for (int j = 0; j < 8; j++) {
  915. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  916. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  917. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  918. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  919. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  920. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  921. }
  922. }
  923. #elif defined(__AVX2__) || defined(__AVX__)
  924. for (int i = 0; i < nb; i++) {
  925. // Load elements into 4 AVX vectors
  926. __m256 v0 = _mm256_loadu_ps( x );
  927. __m256 v1 = _mm256_loadu_ps( x + 8 );
  928. __m256 v2 = _mm256_loadu_ps( x + 16 );
  929. __m256 v3 = _mm256_loadu_ps( x + 24 );
  930. x += 32;
  931. // Compute max(abs(e)) for the block
  932. const __m256 signBit = _mm256_set1_ps( -0.0f );
  933. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  934. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  935. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  936. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  937. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  938. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  939. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  940. const float maxScalar = _mm_cvtss_f32( max4 );
  941. // Quantize these floats
  942. const float d = maxScalar / 127.f;
  943. y[i].d = GGML_FP32_TO_FP16(d);
  944. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  945. const __m256 mul = _mm256_set1_ps( id );
  946. // Apply the multiplier
  947. v0 = _mm256_mul_ps( v0, mul );
  948. v1 = _mm256_mul_ps( v1, mul );
  949. v2 = _mm256_mul_ps( v2, mul );
  950. v3 = _mm256_mul_ps( v3, mul );
  951. // Round to nearest integer
  952. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  953. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  954. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  955. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  956. // Convert floats to integers
  957. __m256i i0 = _mm256_cvtps_epi32( v0 );
  958. __m256i i1 = _mm256_cvtps_epi32( v1 );
  959. __m256i i2 = _mm256_cvtps_epi32( v2 );
  960. __m256i i3 = _mm256_cvtps_epi32( v3 );
  961. #if defined(__AVX2__)
  962. // Convert int32 to int16
  963. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  964. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  965. // Convert int16 to int8
  966. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  967. // We got our precious signed bytes, but the order is now wrong
  968. // These AVX2 pack instructions process 16-byte pieces independently
  969. // The following instruction is fixing the order
  970. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  971. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  972. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  973. #else
  974. // Since we don't have in AVX some necessary functions,
  975. // we split the registers in half and call AVX2 analogs from SSE
  976. __m128i ni0 = _mm256_castsi256_si128( i0 );
  977. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  978. __m128i ni2 = _mm256_castsi256_si128( i1 );
  979. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  980. __m128i ni4 = _mm256_castsi256_si128( i2 );
  981. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  982. __m128i ni6 = _mm256_castsi256_si128( i3 );
  983. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  984. // Convert int32 to int16
  985. ni0 = _mm_packs_epi32( ni0, ni1 );
  986. ni2 = _mm_packs_epi32( ni2, ni3 );
  987. ni4 = _mm_packs_epi32( ni4, ni5 );
  988. ni6 = _mm_packs_epi32( ni6, ni7 );
  989. // Convert int16 to int8
  990. ni0 = _mm_packs_epi16( ni0, ni2 );
  991. ni4 = _mm_packs_epi16( ni4, ni6 );
  992. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  993. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  994. #endif
  995. }
  996. #else
  997. // scalar
  998. quantize_row_q8_0_reference(x, y, k);
  999. #endif
  1000. }
  1001. // reference implementation for deterministic creation of model files
  1002. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1003. assert(QK8_1 == 32);
  1004. assert(k % QK8_1 == 0);
  1005. const int nb = k / QK8_1;
  1006. for (int i = 0; i < nb; i++) {
  1007. float amax = 0.0f; // absolute max
  1008. for (int j = 0; j < QK8_1; j++) {
  1009. const float v = x[i*QK8_1 + j];
  1010. amax = MAX(amax, fabsf(v));
  1011. }
  1012. const float d = amax / ((1 << 7) - 1);
  1013. const float id = d ? 1.0f/d : 0.0f;
  1014. y[i].d = d;
  1015. int sum = 0;
  1016. for (int j = 0; j < QK8_1/2; ++j) {
  1017. const float v0 = x[i*QK8_1 + j]*id;
  1018. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  1019. y[i].qs[ j] = roundf(v0);
  1020. y[i].qs[QK8_1/2 + j] = roundf(v1);
  1021. sum += y[i].qs[ j];
  1022. sum += y[i].qs[QK8_1/2 + j];
  1023. }
  1024. y[i].s = sum*d;
  1025. }
  1026. }
  1027. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1028. assert(k % QK8_1 == 0);
  1029. const int nb = k / QK8_1;
  1030. block_q8_1 * restrict y = vy;
  1031. #if defined(__ARM_NEON)
  1032. for (int i = 0; i < nb; i++) {
  1033. float32x4_t srcv [8];
  1034. float32x4_t asrcv[8];
  1035. float32x4_t amaxv[8];
  1036. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1037. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1038. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1039. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1040. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1041. const float amax = vmaxvq_f32(amaxv[0]);
  1042. const float d = amax / ((1 << 7) - 1);
  1043. const float id = d ? 1.0f/d : 0.0f;
  1044. y[i].d = d;
  1045. int32x4_t accv = vdupq_n_s32(0);
  1046. for (int j = 0; j < 8; j++) {
  1047. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1048. const int32x4_t vi = vcvtnq_s32_f32(v);
  1049. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1050. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1051. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1052. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1053. accv = vaddq_s32(accv, vi);
  1054. }
  1055. y[i].s = d * vaddvq_s32(accv);
  1056. }
  1057. #elif defined(__wasm_simd128__)
  1058. for (int i = 0; i < nb; i++) {
  1059. v128_t srcv [8];
  1060. v128_t asrcv[8];
  1061. v128_t amaxv[8];
  1062. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1063. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1064. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1065. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1066. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1067. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1068. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1069. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1070. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1071. const float d = amax / ((1 << 7) - 1);
  1072. const float id = d ? 1.0f/d : 0.0f;
  1073. y[i].d = d;
  1074. v128_t accv = wasm_i32x4_splat(0);
  1075. for (int j = 0; j < 8; j++) {
  1076. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1077. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1078. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1079. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1080. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1081. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1082. accv = wasm_i32x4_add(accv, vi);
  1083. }
  1084. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  1085. wasm_i32x4_extract_lane(accv, 1) +
  1086. wasm_i32x4_extract_lane(accv, 2) +
  1087. wasm_i32x4_extract_lane(accv, 3));
  1088. }
  1089. #elif defined(__AVX2__) || defined(__AVX__)
  1090. for (int i = 0; i < nb; i++) {
  1091. // Load elements into 4 AVX vectors
  1092. __m256 v0 = _mm256_loadu_ps( x );
  1093. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1094. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1095. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1096. x += 32;
  1097. // Compute max(abs(e)) for the block
  1098. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1099. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1100. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1101. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1102. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1103. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1104. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1105. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1106. const float maxScalar = _mm_cvtss_f32( max4 );
  1107. // Quantize these floats
  1108. const float d = maxScalar / 127.f;
  1109. y[i].d = d;
  1110. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1111. const __m256 mul = _mm256_set1_ps( id );
  1112. // Apply the multiplier
  1113. v0 = _mm256_mul_ps( v0, mul );
  1114. v1 = _mm256_mul_ps( v1, mul );
  1115. v2 = _mm256_mul_ps( v2, mul );
  1116. v3 = _mm256_mul_ps( v3, mul );
  1117. // Round to nearest integer
  1118. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1119. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1120. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1121. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1122. // Convert floats to integers
  1123. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1124. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1125. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1126. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1127. #if defined(__AVX2__)
  1128. // Compute the sum of the quants and set y[i].s
  1129. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1130. // Convert int32 to int16
  1131. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1132. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1133. // Convert int16 to int8
  1134. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1135. // We got our precious signed bytes, but the order is now wrong
  1136. // These AVX2 pack instructions process 16-byte pieces independently
  1137. // The following instruction is fixing the order
  1138. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1139. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1140. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1141. #else
  1142. // Since we don't have in AVX some necessary functions,
  1143. // we split the registers in half and call AVX2 analogs from SSE
  1144. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1145. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1146. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1147. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1148. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1149. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1150. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1151. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1152. // Compute the sum of the quants and set y[i].s
  1153. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1154. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1155. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1156. // Convert int32 to int16
  1157. ni0 = _mm_packs_epi32( ni0, ni1 );
  1158. ni2 = _mm_packs_epi32( ni2, ni3 );
  1159. ni4 = _mm_packs_epi32( ni4, ni5 );
  1160. ni6 = _mm_packs_epi32( ni6, ni7 );
  1161. // Convert int16 to int8
  1162. ni0 = _mm_packs_epi16( ni0, ni2 );
  1163. ni4 = _mm_packs_epi16( ni4, ni6 );
  1164. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1165. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1166. #endif
  1167. }
  1168. #else
  1169. // scalar
  1170. quantize_row_q8_1_reference(x, y, k);
  1171. #endif
  1172. }
  1173. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1174. static const int qk = QK4_0;
  1175. assert(k % qk == 0);
  1176. const int nb = k / qk;
  1177. for (int i = 0; i < nb; i++) {
  1178. const float d = GGML_FP16_TO_FP32(x[i].d);
  1179. for (int j = 0; j < qk/2; ++j) {
  1180. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1181. const int x1 = (x[i].qs[j] >> 4) - 8;
  1182. y[i*qk + j + 0 ] = x0*d;
  1183. y[i*qk + j + qk/2] = x1*d;
  1184. }
  1185. }
  1186. }
  1187. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1188. static const int qk = QK4_1;
  1189. assert(k % qk == 0);
  1190. const int nb = k / qk;
  1191. for (int i = 0; i < nb; i++) {
  1192. const float d = GGML_FP16_TO_FP32(x[i].d);
  1193. const float m = GGML_FP16_TO_FP32(x[i].m);
  1194. for (int j = 0; j < qk/2; ++j) {
  1195. const int x0 = (x[i].qs[j] & 0x0F);
  1196. const int x1 = (x[i].qs[j] >> 4);
  1197. y[i*qk + j + 0 ] = x0*d + m;
  1198. y[i*qk + j + qk/2] = x1*d + m;
  1199. }
  1200. }
  1201. }
  1202. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1203. static const int qk = QK5_0;
  1204. assert(k % qk == 0);
  1205. const int nb = k / qk;
  1206. for (int i = 0; i < nb; i++) {
  1207. const float d = GGML_FP16_TO_FP32(x[i].d);
  1208. uint32_t qh;
  1209. memcpy(&qh, x[i].qh, sizeof(qh));
  1210. for (int j = 0; j < qk/2; ++j) {
  1211. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1212. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1213. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1214. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1215. y[i*qk + j + 0 ] = x0*d;
  1216. y[i*qk + j + qk/2] = x1*d;
  1217. }
  1218. }
  1219. }
  1220. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1221. static const int qk = QK5_1;
  1222. assert(k % qk == 0);
  1223. const int nb = k / qk;
  1224. for (int i = 0; i < nb; i++) {
  1225. const float d = GGML_FP16_TO_FP32(x[i].d);
  1226. const float m = GGML_FP16_TO_FP32(x[i].m);
  1227. uint32_t qh;
  1228. memcpy(&qh, x[i].qh, sizeof(qh));
  1229. for (int j = 0; j < qk/2; ++j) {
  1230. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1231. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1232. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1233. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1234. y[i*qk + j + 0 ] = x0*d + m;
  1235. y[i*qk + j + qk/2] = x1*d + m;
  1236. }
  1237. }
  1238. }
  1239. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1240. static const int qk = QK8_0;
  1241. assert(k % qk == 0);
  1242. const int nb = k / qk;
  1243. const block_q8_0 * restrict x = vx;
  1244. for (int i = 0; i < nb; i++) {
  1245. const float d = GGML_FP16_TO_FP32(x[i].d);
  1246. for (int j = 0; j < qk; ++j) {
  1247. y[i*qk + j] = x[i].qs[j]*d;
  1248. }
  1249. }
  1250. }
  1251. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1252. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1253. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1254. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1255. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1256. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1257. [GGML_TYPE_Q4_0] = {
  1258. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_0,
  1259. .quantize_row_q = quantize_row_q4_0,
  1260. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1261. .quantize_row_q_dot = quantize_row_q8_0,
  1262. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1263. .vec_dot_type = GGML_TYPE_Q8_0,
  1264. },
  1265. [GGML_TYPE_Q4_1] = {
  1266. .dequantize_row_q = (dequantize_row_q_t)dequantize_row_q4_1,
  1267. .quantize_row_q = quantize_row_q4_1,
  1268. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1269. .quantize_row_q_dot = quantize_row_q8_1,
  1270. .vec_dot_q = ggml_vec_dot_q4_1_q8_1,
  1271. .vec_dot_type = GGML_TYPE_Q8_1,
  1272. },
  1273. [GGML_TYPE_Q5_0] = {
  1274. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_0,
  1275. .quantize_row_q = quantize_row_q5_0,
  1276. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference,
  1277. .quantize_row_q_dot = quantize_row_q8_0,
  1278. .vec_dot_q = ggml_vec_dot_q5_0_q8_0,
  1279. .vec_dot_type = GGML_TYPE_Q8_0,
  1280. },
  1281. [GGML_TYPE_Q5_1] = {
  1282. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_1,
  1283. .quantize_row_q = quantize_row_q5_1,
  1284. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference,
  1285. .quantize_row_q_dot = quantize_row_q8_1,
  1286. .vec_dot_q = ggml_vec_dot_q5_1_q8_1,
  1287. .vec_dot_type = GGML_TYPE_Q8_1,
  1288. },
  1289. [GGML_TYPE_Q8_0] = {
  1290. .dequantize_row_q = dequantize_row_q8_0,
  1291. .quantize_row_q = quantize_row_q8_0,
  1292. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1293. .quantize_row_q_dot = quantize_row_q8_0,
  1294. .vec_dot_q = ggml_vec_dot_q8_0_q8_0,
  1295. .vec_dot_type = GGML_TYPE_Q8_0,
  1296. },
  1297. [GGML_TYPE_Q8_1] = {
  1298. .dequantize_row_q = NULL, // TODO
  1299. .quantize_row_q = quantize_row_q8_1,
  1300. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference,
  1301. .quantize_row_q_dot = quantize_row_q8_1,
  1302. .vec_dot_q = NULL, // TODO
  1303. .vec_dot_type = GGML_TYPE_Q8_1,
  1304. },
  1305. #ifdef GGML_USE_K_QUANTS
  1306. [GGML_TYPE_Q2_K] = {
  1307. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q2_K,
  1308. .quantize_row_q = quantize_row_q2_K,
  1309. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q2_K_reference,
  1310. .quantize_row_q_dot = quantize_row_q8_K,
  1311. .vec_dot_q = ggml_vec_dot_q2_K_q8_K,
  1312. .vec_dot_type = GGML_TYPE_Q8_K,
  1313. },
  1314. [GGML_TYPE_Q3_K] = {
  1315. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q3_K,
  1316. .quantize_row_q = quantize_row_q3_K,
  1317. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q3_K_reference,
  1318. .quantize_row_q_dot = quantize_row_q8_K,
  1319. .vec_dot_q = ggml_vec_dot_q3_K_q8_K,
  1320. .vec_dot_type = GGML_TYPE_Q8_K,
  1321. },
  1322. [GGML_TYPE_Q4_K] = {
  1323. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_K,
  1324. .quantize_row_q = quantize_row_q4_K,
  1325. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_K_reference,
  1326. .quantize_row_q_dot = quantize_row_q8_K,
  1327. .vec_dot_q = ggml_vec_dot_q4_K_q8_K,
  1328. .vec_dot_type = GGML_TYPE_Q8_K,
  1329. },
  1330. [GGML_TYPE_Q5_K] = {
  1331. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_K,
  1332. .quantize_row_q = quantize_row_q5_K,
  1333. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_K_reference,
  1334. .quantize_row_q_dot = quantize_row_q8_K,
  1335. .vec_dot_q = ggml_vec_dot_q5_K_q8_K,
  1336. .vec_dot_type = GGML_TYPE_Q8_K,
  1337. },
  1338. [GGML_TYPE_Q6_K] = {
  1339. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q6_K,
  1340. .quantize_row_q = quantize_row_q6_K,
  1341. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q6_K_reference,
  1342. .quantize_row_q_dot = quantize_row_q8_K,
  1343. .vec_dot_q = ggml_vec_dot_q6_K_q8_K,
  1344. .vec_dot_type = GGML_TYPE_Q8_K,
  1345. },
  1346. #endif
  1347. };
  1348. // For internal test use
  1349. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1350. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1351. return quantize_fns[i];
  1352. }
  1353. //
  1354. // simd mappings
  1355. //
  1356. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1357. // we then implement the fundamental computation operations below using only these macros
  1358. // adding support for new architectures requires to define the corresponding SIMD macros
  1359. //
  1360. // GGML_F32_STEP / GGML_F16_STEP
  1361. // number of elements to process in a single step
  1362. //
  1363. // GGML_F32_EPR / GGML_F16_EPR
  1364. // number of elements to fit in a single register
  1365. //
  1366. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1367. #define GGML_SIMD
  1368. // F32 NEON
  1369. #define GGML_F32_STEP 16
  1370. #define GGML_F32_EPR 4
  1371. #define GGML_F32x4 float32x4_t
  1372. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1373. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1374. #define GGML_F32x4_LOAD vld1q_f32
  1375. #define GGML_F32x4_STORE vst1q_f32
  1376. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1377. #define GGML_F32x4_ADD vaddq_f32
  1378. #define GGML_F32x4_MUL vmulq_f32
  1379. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1380. #define GGML_F32x4_REDUCE(res, x) \
  1381. { \
  1382. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1383. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1384. } \
  1385. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1386. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1387. } \
  1388. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1389. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1390. } \
  1391. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1392. }
  1393. #define GGML_F32_VEC GGML_F32x4
  1394. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1395. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1396. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1397. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1398. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1399. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1400. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1401. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1402. // F16 NEON
  1403. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1404. #define GGML_F16_STEP 32
  1405. #define GGML_F16_EPR 8
  1406. #define GGML_F16x8 float16x8_t
  1407. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1408. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1409. #define GGML_F16x8_LOAD vld1q_f16
  1410. #define GGML_F16x8_STORE vst1q_f16
  1411. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1412. #define GGML_F16x8_ADD vaddq_f16
  1413. #define GGML_F16x8_MUL vmulq_f16
  1414. #define GGML_F16x8_REDUCE(res, x) \
  1415. { \
  1416. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1417. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1418. } \
  1419. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1420. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1421. } \
  1422. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1423. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1424. } \
  1425. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1426. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1427. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1428. }
  1429. #define GGML_F16_VEC GGML_F16x8
  1430. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1431. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1432. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1433. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1434. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1435. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1436. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1437. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1438. #else
  1439. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1440. // and take advantage of the vcvt_ functions to convert to/from FP16
  1441. #define GGML_F16_STEP 16
  1442. #define GGML_F16_EPR 4
  1443. #define GGML_F32Cx4 float32x4_t
  1444. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1445. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1446. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1447. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1448. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1449. #define GGML_F32Cx4_ADD vaddq_f32
  1450. #define GGML_F32Cx4_MUL vmulq_f32
  1451. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1452. #define GGML_F16_VEC GGML_F32Cx4
  1453. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1454. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1455. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1456. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1457. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1458. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1459. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1460. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1461. #endif
  1462. #elif defined(__AVX__)
  1463. #define GGML_SIMD
  1464. // F32 AVX
  1465. #define GGML_F32_STEP 32
  1466. #define GGML_F32_EPR 8
  1467. #define GGML_F32x8 __m256
  1468. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1469. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1470. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1471. #define GGML_F32x8_STORE _mm256_storeu_ps
  1472. #if defined(__FMA__)
  1473. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1474. #else
  1475. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1476. #endif
  1477. #define GGML_F32x8_ADD _mm256_add_ps
  1478. #define GGML_F32x8_MUL _mm256_mul_ps
  1479. #define GGML_F32x8_REDUCE(res, x) \
  1480. { \
  1481. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1482. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1483. } \
  1484. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1485. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1486. } \
  1487. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1488. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1489. } \
  1490. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1491. _mm256_extractf128_ps(x[0], 1)); \
  1492. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1493. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1494. }
  1495. // TODO: is this optimal ?
  1496. #define GGML_F32_VEC GGML_F32x8
  1497. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1498. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1499. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1500. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1501. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1502. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1503. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1504. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1505. // F16 AVX
  1506. #define GGML_F16_STEP 32
  1507. #define GGML_F16_EPR 8
  1508. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1509. #define GGML_F32Cx8 __m256
  1510. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1511. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1512. #if defined(__F16C__)
  1513. // the _mm256_cvt intrinsics require F16C
  1514. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1515. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1516. #else
  1517. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1518. float tmp[8];
  1519. for (int i = 0; i < 8; i++) {
  1520. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1521. }
  1522. return _mm256_loadu_ps(tmp);
  1523. }
  1524. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1525. float arr[8];
  1526. _mm256_storeu_ps(arr, y);
  1527. for (int i = 0; i < 8; i++)
  1528. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1529. }
  1530. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1531. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1532. #endif
  1533. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1534. #define GGML_F32Cx8_ADD _mm256_add_ps
  1535. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1536. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1537. #define GGML_F16_VEC GGML_F32Cx8
  1538. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1539. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1540. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1541. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1542. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1543. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1544. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1545. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1546. #elif defined(__POWER9_VECTOR__)
  1547. #define GGML_SIMD
  1548. // F32 POWER9
  1549. #define GGML_F32_STEP 32
  1550. #define GGML_F32_EPR 4
  1551. #define GGML_F32x4 vector float
  1552. #define GGML_F32x4_ZERO 0.0f
  1553. #define GGML_F32x4_SET1 vec_splats
  1554. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1555. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1556. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1557. #define GGML_F32x4_ADD vec_add
  1558. #define GGML_F32x4_MUL vec_mul
  1559. #define GGML_F32x4_REDUCE(res, x) \
  1560. { \
  1561. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1562. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1563. } \
  1564. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1565. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1566. } \
  1567. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1568. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1569. } \
  1570. res = vec_extract(x[0], 0) + \
  1571. vec_extract(x[0], 1) + \
  1572. vec_extract(x[0], 2) + \
  1573. vec_extract(x[0], 3); \
  1574. }
  1575. #define GGML_F32_VEC GGML_F32x4
  1576. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1577. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1578. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1579. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1580. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1581. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1582. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1583. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1584. // F16 POWER9
  1585. #define GGML_F16_STEP GGML_F32_STEP
  1586. #define GGML_F16_EPR GGML_F32_EPR
  1587. #define GGML_F16_VEC GGML_F32x4
  1588. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1589. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1590. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1591. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1592. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1593. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1594. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1595. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1596. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1597. #define GGML_F16_VEC_STORE(p, r, i) \
  1598. if (i & 0x1) \
  1599. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1600. r[i - GGML_ENDIAN_BYTE(0)]), \
  1601. 0, p - GGML_F16_EPR)
  1602. #elif defined(__wasm_simd128__)
  1603. #define GGML_SIMD
  1604. // F32 WASM
  1605. #define GGML_F32_STEP 16
  1606. #define GGML_F32_EPR 4
  1607. #define GGML_F32x4 v128_t
  1608. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1609. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1610. #define GGML_F32x4_LOAD wasm_v128_load
  1611. #define GGML_F32x4_STORE wasm_v128_store
  1612. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1613. #define GGML_F32x4_ADD wasm_f32x4_add
  1614. #define GGML_F32x4_MUL wasm_f32x4_mul
  1615. #define GGML_F32x4_REDUCE(res, x) \
  1616. { \
  1617. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1618. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1619. } \
  1620. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1621. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1622. } \
  1623. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1624. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1625. } \
  1626. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1627. wasm_f32x4_extract_lane(x[0], 1) + \
  1628. wasm_f32x4_extract_lane(x[0], 2) + \
  1629. wasm_f32x4_extract_lane(x[0], 3); \
  1630. }
  1631. #define GGML_F32_VEC GGML_F32x4
  1632. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1633. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1634. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1635. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1636. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1637. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1638. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1639. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1640. // F16 WASM
  1641. #define GGML_F16_STEP 16
  1642. #define GGML_F16_EPR 4
  1643. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1644. float tmp[4];
  1645. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1646. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1647. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1648. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1649. return wasm_v128_load(tmp);
  1650. }
  1651. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1652. float tmp[4];
  1653. wasm_v128_store(tmp, x);
  1654. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1655. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1656. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1657. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1658. }
  1659. #define GGML_F16x4 v128_t
  1660. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1661. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1662. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1663. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1664. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1665. #define GGML_F16x4_ADD wasm_f32x4_add
  1666. #define GGML_F16x4_MUL wasm_f32x4_mul
  1667. #define GGML_F16x4_REDUCE(res, x) \
  1668. { \
  1669. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1670. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1671. } \
  1672. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1673. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1674. } \
  1675. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1676. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1677. } \
  1678. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1679. wasm_f32x4_extract_lane(x[0], 1) + \
  1680. wasm_f32x4_extract_lane(x[0], 2) + \
  1681. wasm_f32x4_extract_lane(x[0], 3); \
  1682. }
  1683. #define GGML_F16_VEC GGML_F16x4
  1684. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1685. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1686. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1687. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1688. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1689. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1690. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1691. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1692. #elif defined(__SSE3__)
  1693. #define GGML_SIMD
  1694. // F32 SSE
  1695. #define GGML_F32_STEP 32
  1696. #define GGML_F32_EPR 4
  1697. #define GGML_F32x4 __m128
  1698. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1699. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1700. #define GGML_F32x4_LOAD _mm_loadu_ps
  1701. #define GGML_F32x4_STORE _mm_storeu_ps
  1702. #if defined(__FMA__)
  1703. // TODO: Does this work?
  1704. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1705. #else
  1706. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1707. #endif
  1708. #define GGML_F32x4_ADD _mm_add_ps
  1709. #define GGML_F32x4_MUL _mm_mul_ps
  1710. #define GGML_F32x4_REDUCE(res, x) \
  1711. { \
  1712. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1713. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1714. } \
  1715. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1716. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1717. } \
  1718. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1719. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1720. } \
  1721. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1722. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1723. }
  1724. // TODO: is this optimal ?
  1725. #define GGML_F32_VEC GGML_F32x4
  1726. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1727. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1728. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1729. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1730. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1731. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1732. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1733. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1734. // F16 SSE
  1735. #define GGML_F16_STEP 32
  1736. #define GGML_F16_EPR 4
  1737. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1738. float tmp[4];
  1739. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1740. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1741. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1742. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1743. return _mm_loadu_ps(tmp);
  1744. }
  1745. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1746. float arr[4];
  1747. _mm_storeu_ps(arr, y);
  1748. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1749. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1750. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1751. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1752. }
  1753. #define GGML_F32Cx4 __m128
  1754. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1755. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1756. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1757. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1758. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1759. #define GGML_F32Cx4_ADD _mm_add_ps
  1760. #define GGML_F32Cx4_MUL _mm_mul_ps
  1761. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1762. #define GGML_F16_VEC GGML_F32Cx4
  1763. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1764. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1765. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1766. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1767. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1768. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1769. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1770. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1771. #endif
  1772. // GGML_F32_ARR / GGML_F16_ARR
  1773. // number of registers to use per step
  1774. #ifdef GGML_SIMD
  1775. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1776. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1777. #endif
  1778. //
  1779. // fundamental operations
  1780. //
  1781. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1782. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1783. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1784. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1785. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1786. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1787. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1788. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1789. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1790. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1791. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1792. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1793. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1794. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1795. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1796. #ifdef GGML_SIMD
  1797. float sumf = 0.0f;
  1798. const int np = (n & ~(GGML_F32_STEP - 1));
  1799. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1800. GGML_F32_VEC ax[GGML_F32_ARR];
  1801. GGML_F32_VEC ay[GGML_F32_ARR];
  1802. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1803. for (int j = 0; j < GGML_F32_ARR; j++) {
  1804. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1805. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1806. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1807. }
  1808. }
  1809. // reduce sum0..sum3 to sum0
  1810. GGML_F32_VEC_REDUCE(sumf, sum);
  1811. // leftovers
  1812. for (int i = np; i < n; ++i) {
  1813. sumf += x[i]*y[i];
  1814. }
  1815. #else
  1816. // scalar
  1817. ggml_float sumf = 0.0;
  1818. for (int i = 0; i < n; ++i) {
  1819. sumf += (ggml_float)(x[i]*y[i]);
  1820. }
  1821. #endif
  1822. *s = sumf;
  1823. }
  1824. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1825. ggml_float sumf = 0.0;
  1826. #if defined(GGML_SIMD)
  1827. const int np = (n & ~(GGML_F16_STEP - 1));
  1828. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1829. GGML_F16_VEC ax[GGML_F16_ARR];
  1830. GGML_F16_VEC ay[GGML_F16_ARR];
  1831. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1832. for (int j = 0; j < GGML_F16_ARR; j++) {
  1833. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1834. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1835. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1836. }
  1837. }
  1838. // reduce sum0..sum3 to sum0
  1839. GGML_F16_VEC_REDUCE(sumf, sum);
  1840. // leftovers
  1841. for (int i = np; i < n; ++i) {
  1842. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1843. }
  1844. #else
  1845. for (int i = 0; i < n; ++i) {
  1846. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1847. }
  1848. #endif
  1849. *s = sumf;
  1850. }
  1851. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1852. const int qk = QK8_0;
  1853. const int nb = n / qk;
  1854. assert(n % qk == 0);
  1855. assert(nb % 2 == 0);
  1856. const block_q4_0 * restrict x = vx;
  1857. const block_q8_0 * restrict y = vy;
  1858. #if defined(__ARM_NEON)
  1859. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1860. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1861. for (int i = 0; i < nb; i += 2) {
  1862. const block_q4_0 * restrict x0 = &x[i + 0];
  1863. const block_q4_0 * restrict x1 = &x[i + 1];
  1864. const block_q8_0 * restrict y0 = &y[i + 0];
  1865. const block_q8_0 * restrict y1 = &y[i + 1];
  1866. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1867. const int8x16_t s8b = vdupq_n_s8(0x8);
  1868. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1869. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1870. // 4-bit -> 8-bit
  1871. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1872. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1873. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1874. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1875. // sub 8
  1876. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1877. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1878. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1879. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1880. // load y
  1881. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1882. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1883. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1884. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1885. #if defined(__ARM_FEATURE_DOTPROD)
  1886. // dot product into int32x4_t
  1887. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  1888. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  1889. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1890. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1891. #else
  1892. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  1893. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  1894. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  1895. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  1896. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  1897. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  1898. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  1899. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  1900. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  1901. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  1902. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  1903. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  1904. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1905. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1906. #endif
  1907. }
  1908. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  1909. #elif defined(__AVX2__)
  1910. // Initialize accumulator with zeros
  1911. __m256 acc = _mm256_setzero_ps();
  1912. // Main loop
  1913. for (int i = 0; i < nb; ++i) {
  1914. /* Compute combined scale for the block */
  1915. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1916. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  1917. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1918. const __m256i off = _mm256_set1_epi8( 8 );
  1919. bx = _mm256_sub_epi8( bx, off );
  1920. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  1921. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  1922. /* Multiply q with scale and accumulate */
  1923. acc = _mm256_fmadd_ps( d, q, acc );
  1924. }
  1925. *s = hsum_float_8(acc);
  1926. #elif defined(__AVX__)
  1927. // Initialize accumulator with zeros
  1928. __m256 acc = _mm256_setzero_ps();
  1929. // Main loop
  1930. for (int i = 0; i < nb; ++i) {
  1931. // Compute combined scale for the block
  1932. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1933. const __m128i lowMask = _mm_set1_epi8(0xF);
  1934. const __m128i off = _mm_set1_epi8(8);
  1935. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  1936. __m128i bx = _mm_and_si128(lowMask, tmp);
  1937. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  1938. bx = _mm_sub_epi8(bx, off);
  1939. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  1940. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  1941. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  1942. bx = _mm_sub_epi8(bx, off);
  1943. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  1944. // Convert int32_t to float
  1945. __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
  1946. // Apply the scale, and accumulate
  1947. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  1948. }
  1949. *s = hsum_float_8(acc);
  1950. #elif defined(__SSSE3__)
  1951. // set constants
  1952. const __m128i lowMask = _mm_set1_epi8(0xF);
  1953. const __m128i off = _mm_set1_epi8(8);
  1954. // Initialize accumulator with zeros
  1955. __m128 acc_0 = _mm_setzero_ps();
  1956. __m128 acc_1 = _mm_setzero_ps();
  1957. __m128 acc_2 = _mm_setzero_ps();
  1958. __m128 acc_3 = _mm_setzero_ps();
  1959. // First round without accumulation
  1960. {
  1961. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  1962. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  1963. // Compute combined scale for the block 0 and 1
  1964. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  1965. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  1966. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  1967. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  1968. bx_0 = _mm_sub_epi8(bx_0, off);
  1969. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  1970. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  1971. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  1972. bx_1 = _mm_sub_epi8(bx_1, off);
  1973. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  1974. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  1975. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  1976. // Compute combined scale for the block 2 and 3
  1977. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  1978. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  1979. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  1980. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  1981. bx_2 = _mm_sub_epi8(bx_2, off);
  1982. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  1983. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  1984. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  1985. bx_3 = _mm_sub_epi8(bx_3, off);
  1986. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  1987. // Convert int32_t to float
  1988. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  1989. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  1990. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  1991. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  1992. // Apply the scale
  1993. acc_0 = _mm_mul_ps( d_0_1, p0 );
  1994. acc_1 = _mm_mul_ps( d_0_1, p1 );
  1995. acc_2 = _mm_mul_ps( d_2_3, p2 );
  1996. acc_3 = _mm_mul_ps( d_2_3, p3 );
  1997. }
  1998. // Main loop
  1999. for (int i = 2; i < nb; i+=2) {
  2000. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  2001. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  2002. // Compute combined scale for the block 0 and 1
  2003. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2004. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  2005. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2006. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  2007. bx_0 = _mm_sub_epi8(bx_0, off);
  2008. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2009. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2010. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2011. bx_1 = _mm_sub_epi8(bx_1, off);
  2012. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2013. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  2014. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  2015. // Compute combined scale for the block 2 and 3
  2016. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  2017. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  2018. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2019. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  2020. bx_2 = _mm_sub_epi8(bx_2, off);
  2021. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2022. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2023. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  2024. bx_3 = _mm_sub_epi8(bx_3, off);
  2025. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2026. // Convert int32_t to float
  2027. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2028. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2029. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2030. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2031. // Apply the scale
  2032. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  2033. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  2034. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  2035. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  2036. // Acummulate
  2037. acc_0 = _mm_add_ps(p0_d, acc_0);
  2038. acc_1 = _mm_add_ps(p1_d, acc_1);
  2039. acc_2 = _mm_add_ps(p2_d, acc_2);
  2040. acc_3 = _mm_add_ps(p3_d, acc_3);
  2041. }
  2042. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  2043. #else
  2044. // scalar
  2045. float sumf = 0.0;
  2046. for (int i = 0; i < nb; i++) {
  2047. int sumi = 0;
  2048. for (int j = 0; j < qk/2; ++j) {
  2049. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  2050. const int v1 = (x[i].qs[j] >> 4) - 8;
  2051. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2052. }
  2053. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2054. }
  2055. *s = sumf;
  2056. #endif
  2057. }
  2058. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2059. const int qk = QK8_1;
  2060. const int nb = n / qk;
  2061. assert(n % qk == 0);
  2062. assert(nb % 2 == 0);
  2063. const block_q4_1 * restrict x = vx;
  2064. const block_q8_1 * restrict y = vy;
  2065. // TODO: add WASM SIMD
  2066. #if defined(__ARM_NEON)
  2067. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2068. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2069. float summs = 0;
  2070. for (int i = 0; i < nb; i += 2) {
  2071. const block_q4_1 * restrict x0 = &x[i + 0];
  2072. const block_q4_1 * restrict x1 = &x[i + 1];
  2073. const block_q8_1 * restrict y0 = &y[i + 0];
  2074. const block_q8_1 * restrict y1 = &y[i + 1];
  2075. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  2076. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2077. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2078. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2079. // 4-bit -> 8-bit
  2080. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2081. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2082. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2083. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2084. // load y
  2085. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2086. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2087. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2088. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2089. #if defined(__ARM_FEATURE_DOTPROD)
  2090. // dot product into int32x4_t
  2091. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2092. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2093. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2094. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2095. #else
  2096. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  2097. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  2098. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  2099. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  2100. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  2101. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  2102. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  2103. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  2104. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2105. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2106. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2107. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2108. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2109. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2110. #endif
  2111. }
  2112. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2113. #elif defined(__AVX2__) || defined(__AVX__)
  2114. // Initialize accumulator with zeros
  2115. __m256 acc = _mm256_setzero_ps();
  2116. float summs = 0;
  2117. // Main loop
  2118. for (int i = 0; i < nb; ++i) {
  2119. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  2120. const float d1 = y[i].d;
  2121. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2122. const __m256 d0v = _mm256_set1_ps( d0 );
  2123. const __m256 d1v = _mm256_set1_ps( d1 );
  2124. // Compute combined scales
  2125. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2126. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2127. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2128. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2129. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2130. // Accumulate d0*d1*x*y
  2131. #if defined(__AVX2__)
  2132. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2133. #else
  2134. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2135. #endif
  2136. }
  2137. *s = hsum_float_8(acc) + summs;
  2138. #else
  2139. // scalar
  2140. float sumf = 0.0;
  2141. for (int i = 0; i < nb; i++) {
  2142. int sumi = 0;
  2143. for (int j = 0; j < qk/2; ++j) {
  2144. const int v0 = (x[i].qs[j] & 0x0F);
  2145. const int v1 = (x[i].qs[j] >> 4);
  2146. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2147. }
  2148. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2149. }
  2150. *s = sumf;
  2151. #endif
  2152. }
  2153. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2154. const int qk = QK8_0;
  2155. const int nb = n / qk;
  2156. assert(n % qk == 0);
  2157. assert(nb % 2 == 0);
  2158. assert(qk == QK5_0);
  2159. const block_q5_0 * restrict x = vx;
  2160. const block_q8_0 * restrict y = vy;
  2161. #if defined(__ARM_NEON)
  2162. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2163. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2164. uint32_t qh0;
  2165. uint32_t qh1;
  2166. uint64_t tmp0[4];
  2167. uint64_t tmp1[4];
  2168. for (int i = 0; i < nb; i += 2) {
  2169. const block_q5_0 * restrict x0 = &x[i];
  2170. const block_q5_0 * restrict x1 = &x[i + 1];
  2171. const block_q8_0 * restrict y0 = &y[i];
  2172. const block_q8_0 * restrict y1 = &y[i + 1];
  2173. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2174. // extract the 5th bit via lookup table ((!b) << 4)
  2175. memcpy(&qh0, x0->qh, sizeof(qh0));
  2176. memcpy(&qh1, x1->qh, sizeof(qh1));
  2177. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2178. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2179. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2180. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2181. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2182. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2183. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2184. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2185. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2186. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2187. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2188. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2189. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2190. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2191. // 4-bit -> 8-bit
  2192. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2193. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2194. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2195. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2196. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2197. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2198. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2199. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2200. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2201. // load y
  2202. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2203. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2204. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2205. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2206. #if defined(__ARM_FEATURE_DOTPROD)
  2207. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2208. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2209. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2210. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2211. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2212. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2213. #else
  2214. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2215. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2216. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2217. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2218. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2219. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2220. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2221. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2222. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2223. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2224. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2225. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2226. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2227. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2228. #endif
  2229. }
  2230. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2231. #elif defined(__wasm_simd128__)
  2232. v128_t sumv = wasm_f32x4_splat(0.0f);
  2233. uint32_t qh;
  2234. uint64_t tmp[4];
  2235. // TODO: check if unrolling this is better
  2236. for (int i = 0; i < nb; ++i) {
  2237. const block_q5_0 * restrict x0 = &x[i];
  2238. const block_q8_0 * restrict y0 = &y[i];
  2239. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2240. // extract the 5th bit
  2241. memcpy(&qh, x0->qh, sizeof(qh));
  2242. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2243. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2244. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2245. tmp[3] = table_b2b_1[(qh >> 24) ];
  2246. const v128_t qhl = wasm_v128_load(tmp + 0);
  2247. const v128_t qhh = wasm_v128_load(tmp + 2);
  2248. const v128_t v0 = wasm_v128_load(x0->qs);
  2249. // 4-bit -> 8-bit
  2250. const v128_t v0l = wasm_v128_and (v0, m4b);
  2251. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2252. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2253. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2254. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2255. // load y
  2256. const v128_t v1l = wasm_v128_load(y0->qs);
  2257. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2258. // int8x16 -> int16x8
  2259. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2260. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2261. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2262. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2263. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2264. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2265. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2266. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2267. // dot product
  2268. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2269. wasm_i32x4_add(
  2270. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2271. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2272. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2273. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2274. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2275. }
  2276. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2277. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2278. #elif defined(__AVX2__)
  2279. // Initialize accumulator with zeros
  2280. __m256 acc = _mm256_setzero_ps();
  2281. // Main loop
  2282. for (int i = 0; i < nb; i++) {
  2283. /* Compute combined scale for the block */
  2284. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2285. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2286. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2287. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2288. bx = _mm256_or_si256(bx, bxhi);
  2289. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2290. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2291. /* Multiply q with scale and accumulate */
  2292. acc = _mm256_fmadd_ps(d, q, acc);
  2293. }
  2294. *s = hsum_float_8(acc);
  2295. #elif defined(__AVX__)
  2296. // Initialize accumulator with zeros
  2297. __m256 acc = _mm256_setzero_ps();
  2298. __m128i mask = _mm_set1_epi8((char)0xF0);
  2299. // Main loop
  2300. for (int i = 0; i < nb; i++) {
  2301. /* Compute combined scale for the block */
  2302. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2303. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2304. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2305. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2306. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2307. bxhil = _mm_andnot_si128(bxhil, mask);
  2308. bxhih = _mm_andnot_si128(bxhih, mask);
  2309. __m128i bxl = _mm256_castsi256_si128(bx);
  2310. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2311. bxl = _mm_or_si128(bxl, bxhil);
  2312. bxh = _mm_or_si128(bxh, bxhih);
  2313. bx = MM256_SET_M128I(bxh, bxl);
  2314. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2315. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2316. /* Multiply q with scale and accumulate */
  2317. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2318. }
  2319. *s = hsum_float_8(acc);
  2320. #else
  2321. // scalar
  2322. float sumf = 0.0;
  2323. for (int i = 0; i < nb; i++) {
  2324. uint32_t qh;
  2325. memcpy(&qh, x[i].qh, sizeof(qh));
  2326. int sumi = 0;
  2327. for (int j = 0; j < qk/2; ++j) {
  2328. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2329. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2330. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2331. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2332. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2333. }
  2334. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2335. }
  2336. *s = sumf;
  2337. #endif
  2338. }
  2339. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2340. const int qk = QK8_1;
  2341. const int nb = n / qk;
  2342. assert(n % qk == 0);
  2343. assert(nb % 2 == 0);
  2344. assert(qk == QK5_1);
  2345. const block_q5_1 * restrict x = vx;
  2346. const block_q8_1 * restrict y = vy;
  2347. #if defined(__ARM_NEON)
  2348. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2349. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2350. float summs0 = 0.0f;
  2351. float summs1 = 0.0f;
  2352. uint32_t qh0;
  2353. uint32_t qh1;
  2354. uint64_t tmp0[4];
  2355. uint64_t tmp1[4];
  2356. for (int i = 0; i < nb; i += 2) {
  2357. const block_q5_1 * restrict x0 = &x[i];
  2358. const block_q5_1 * restrict x1 = &x[i + 1];
  2359. const block_q8_1 * restrict y0 = &y[i];
  2360. const block_q8_1 * restrict y1 = &y[i + 1];
  2361. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2362. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2363. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2364. // extract the 5th bit via lookup table ((b) << 4)
  2365. memcpy(&qh0, x0->qh, sizeof(qh0));
  2366. memcpy(&qh1, x1->qh, sizeof(qh1));
  2367. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2368. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2369. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2370. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2371. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2372. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2373. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2374. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2375. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2376. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2377. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2378. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2379. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2380. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2381. // 4-bit -> 8-bit
  2382. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2383. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2384. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2385. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2386. // add high bit
  2387. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2388. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2389. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2390. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2391. // load y
  2392. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2393. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2394. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2395. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2396. #if defined(__ARM_FEATURE_DOTPROD)
  2397. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2398. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2399. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2400. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2401. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2402. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2403. #else
  2404. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2405. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2406. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2407. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2408. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2409. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2410. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2411. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2412. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2413. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2414. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2415. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2416. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2417. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2418. #endif
  2419. }
  2420. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2421. #elif defined(__wasm_simd128__)
  2422. v128_t sumv = wasm_f32x4_splat(0.0f);
  2423. float summs = 0.0f;
  2424. uint32_t qh;
  2425. uint64_t tmp[4];
  2426. // TODO: check if unrolling this is better
  2427. for (int i = 0; i < nb; ++i) {
  2428. const block_q5_1 * restrict x0 = &x[i];
  2429. const block_q8_1 * restrict y0 = &y[i];
  2430. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2431. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2432. // extract the 5th bit
  2433. memcpy(&qh, x0->qh, sizeof(qh));
  2434. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2435. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2436. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2437. tmp[3] = table_b2b_0[(qh >> 24) ];
  2438. const v128_t qhl = wasm_v128_load(tmp + 0);
  2439. const v128_t qhh = wasm_v128_load(tmp + 2);
  2440. const v128_t v0 = wasm_v128_load(x0->qs);
  2441. // 4-bit -> 8-bit
  2442. const v128_t v0l = wasm_v128_and (v0, m4b);
  2443. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2444. // add high bit
  2445. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2446. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2447. // load y
  2448. const v128_t v1l = wasm_v128_load(y0->qs);
  2449. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2450. // int8x16 -> int16x8
  2451. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2452. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2453. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2454. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2455. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2456. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2457. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2458. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2459. // dot product
  2460. sumv = wasm_f32x4_add(sumv,
  2461. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2462. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2463. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2464. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2465. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2466. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  2467. }
  2468. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2469. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2470. #elif defined(__AVX2__)
  2471. // Initialize accumulator with zeros
  2472. __m256 acc = _mm256_setzero_ps();
  2473. float summs = 0.0f;
  2474. // Main loop
  2475. for (int i = 0; i < nb; i++) {
  2476. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2477. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2478. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2479. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2480. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2481. bx = _mm256_or_si256(bx, bxhi);
  2482. const __m256 dy = _mm256_set1_ps(y[i].d);
  2483. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2484. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2485. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2486. }
  2487. *s = hsum_float_8(acc) + summs;
  2488. #elif defined(__AVX__)
  2489. // Initialize accumulator with zeros
  2490. __m256 acc = _mm256_setzero_ps();
  2491. __m128i mask = _mm_set1_epi8(0x10);
  2492. float summs = 0.0f;
  2493. // Main loop
  2494. for (int i = 0; i < nb; i++) {
  2495. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2496. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2497. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2498. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2499. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2500. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2501. bxhil = _mm_and_si128(bxhil, mask);
  2502. bxhih = _mm_and_si128(bxhih, mask);
  2503. __m128i bxl = _mm256_castsi256_si128(bx);
  2504. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2505. bxl = _mm_or_si128(bxl, bxhil);
  2506. bxh = _mm_or_si128(bxh, bxhih);
  2507. bx = MM256_SET_M128I(bxh, bxl);
  2508. const __m256 dy = _mm256_set1_ps(y[i].d);
  2509. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2510. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2511. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2512. }
  2513. *s = hsum_float_8(acc) + summs;
  2514. #else
  2515. // scalar
  2516. float sumf = 0.0;
  2517. for (int i = 0; i < nb; i++) {
  2518. uint32_t qh;
  2519. memcpy(&qh, x[i].qh, sizeof(qh));
  2520. int sumi = 0;
  2521. for (int j = 0; j < qk/2; ++j) {
  2522. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2523. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2524. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2525. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2526. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2527. }
  2528. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2529. }
  2530. *s = sumf;
  2531. #endif
  2532. }
  2533. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2534. const int qk = QK8_0;
  2535. const int nb = n / qk;
  2536. assert(n % qk == 0);
  2537. assert(nb % 2 == 0);
  2538. const block_q8_0 * restrict x = vx;
  2539. const block_q8_0 * restrict y = vy;
  2540. #if defined(__ARM_NEON)
  2541. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2542. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2543. for (int i = 0; i < nb; i += 2) {
  2544. const block_q8_0 * restrict x0 = &x[i + 0];
  2545. const block_q8_0 * restrict x1 = &x[i + 1];
  2546. const block_q8_0 * restrict y0 = &y[i + 0];
  2547. const block_q8_0 * restrict y1 = &y[i + 1];
  2548. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2549. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2550. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2551. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2552. // load y
  2553. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2554. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2555. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2556. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2557. #if defined(__ARM_FEATURE_DOTPROD)
  2558. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2559. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2560. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2561. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2562. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2563. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2564. #else
  2565. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2566. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2567. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2568. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2569. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2570. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2571. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2572. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2573. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2574. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2575. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2576. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2577. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2578. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2579. #endif
  2580. }
  2581. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2582. #elif defined(__AVX2__) || defined(__AVX__)
  2583. // Initialize accumulator with zeros
  2584. __m256 acc = _mm256_setzero_ps();
  2585. // Main loop
  2586. for (int i = 0; i < nb; ++i) {
  2587. // Compute combined scale for the block
  2588. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2589. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2590. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2591. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2592. // Multiply q with scale and accumulate
  2593. #if defined(__AVX2__)
  2594. acc = _mm256_fmadd_ps( d, q, acc );
  2595. #else
  2596. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2597. #endif
  2598. }
  2599. *s = hsum_float_8(acc);
  2600. #else
  2601. // scalar
  2602. float sumf = 0.0;
  2603. for (int i = 0; i < nb; i++) {
  2604. int sumi = 0;
  2605. for (int j = 0; j < qk; j++) {
  2606. sumi += x[i].qs[j]*y[i].qs[j];
  2607. }
  2608. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2609. }
  2610. *s = sumf;
  2611. #endif
  2612. }
  2613. // compute GGML_VEC_DOT_UNROLL dot products at once
  2614. // xs - x row stride in bytes
  2615. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2616. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2617. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2618. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2619. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2620. }
  2621. #if defined(GGML_SIMD)
  2622. const int np = (n & ~(GGML_F16_STEP - 1));
  2623. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2624. GGML_F16_VEC ax[GGML_F16_ARR];
  2625. GGML_F16_VEC ay[GGML_F16_ARR];
  2626. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2627. for (int j = 0; j < GGML_F16_ARR; j++) {
  2628. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2629. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2630. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2631. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2632. }
  2633. }
  2634. }
  2635. // reduce sum0..sum3 to sum0
  2636. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2637. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2638. }
  2639. // leftovers
  2640. for (int i = np; i < n; ++i) {
  2641. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2642. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2643. }
  2644. }
  2645. #else
  2646. for (int i = 0; i < n; ++i) {
  2647. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2648. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2649. }
  2650. }
  2651. #endif
  2652. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2653. s[i] = sumf[i];
  2654. }
  2655. }
  2656. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2657. #if defined(GGML_SIMD)
  2658. const int np = (n & ~(GGML_F32_STEP - 1));
  2659. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2660. GGML_F32_VEC ax[GGML_F32_ARR];
  2661. GGML_F32_VEC ay[GGML_F32_ARR];
  2662. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2663. for (int j = 0; j < GGML_F32_ARR; j++) {
  2664. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2665. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2666. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2667. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2668. }
  2669. }
  2670. // leftovers
  2671. for (int i = np; i < n; ++i) {
  2672. y[i] += x[i]*v;
  2673. }
  2674. #else
  2675. // scalar
  2676. for (int i = 0; i < n; ++i) {
  2677. y[i] += x[i]*v;
  2678. }
  2679. #endif
  2680. }
  2681. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2682. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2683. #if defined(GGML_SIMD)
  2684. const int np = (n & ~(GGML_F32_STEP - 1));
  2685. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2686. GGML_F32_VEC ay[GGML_F32_ARR];
  2687. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2688. for (int j = 0; j < GGML_F32_ARR; j++) {
  2689. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2690. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2691. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2692. }
  2693. }
  2694. // leftovers
  2695. for (int i = np; i < n; ++i) {
  2696. y[i] *= v;
  2697. }
  2698. #else
  2699. // scalar
  2700. for (int i = 0; i < n; ++i) {
  2701. y[i] *= v;
  2702. }
  2703. #endif
  2704. }
  2705. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2706. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2707. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2708. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  2709. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2710. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2711. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2712. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2713. static const float GELU_COEF_A = 0.044715f;
  2714. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2715. inline static float ggml_gelu_f32(float x) {
  2716. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2717. }
  2718. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2719. const uint16_t * i16 = (const uint16_t *) x;
  2720. for (int i = 0; i < n; ++i) {
  2721. y[i] = table_gelu_f16[i16[i]];
  2722. }
  2723. }
  2724. #ifdef GGML_GELU_FP16
  2725. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2726. uint16_t t;
  2727. for (int i = 0; i < n; ++i) {
  2728. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2729. memcpy(&t, &fp16, sizeof(uint16_t));
  2730. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2731. }
  2732. }
  2733. #else
  2734. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2735. for (int i = 0; i < n; ++i) {
  2736. y[i] = ggml_gelu_f32(x[i]);
  2737. }
  2738. }
  2739. #endif
  2740. // Sigmoid Linear Unit (SiLU) function
  2741. inline static float ggml_silu_f32(float x) {
  2742. return x/(1.0f + expf(-x));
  2743. }
  2744. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2745. // const uint16_t * i16 = (const uint16_t *) x;
  2746. // for (int i = 0; i < n; ++i) {
  2747. // y[i] = table_silu_f16[i16[i]];
  2748. // }
  2749. //}
  2750. #ifdef GGML_SILU_FP16
  2751. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2752. uint16_t t;
  2753. for (int i = 0; i < n; ++i) {
  2754. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2755. memcpy(&t, &fp16, sizeof(uint16_t));
  2756. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2757. }
  2758. }
  2759. #else
  2760. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2761. for (int i = 0; i < n; ++i) {
  2762. y[i] = ggml_silu_f32(x[i]);
  2763. }
  2764. }
  2765. #endif
  2766. inline static float ggml_silu_backward_f32(float x, float dy) {
  2767. const float s = 1.0f/(1.0f + expf(-x));
  2768. return dy*s*(1.0f + x*(1.0f - s));
  2769. }
  2770. #ifdef GGML_SILU_FP16
  2771. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2772. for (int i = 0; i < n; ++i) {
  2773. // we did not use x[i] to compute forward silu but its f16 equivalent
  2774. // take derivative at f16 of x[i]:
  2775. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2776. float usedx = GGML_FP16_TO_FP32(fp16);
  2777. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  2778. }
  2779. }
  2780. #else
  2781. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2782. for (int i = 0; i < n; ++i) {
  2783. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2784. }
  2785. }
  2786. #endif
  2787. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2788. #ifndef GGML_USE_ACCELERATE
  2789. ggml_float sum = 0.0;
  2790. for (int i = 0; i < n; ++i) {
  2791. sum += (ggml_float)x[i];
  2792. }
  2793. *s = sum;
  2794. #else
  2795. vDSP_sve(x, 1, s, n);
  2796. #endif
  2797. }
  2798. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  2799. ggml_float sum = 0.0;
  2800. for (int i = 0; i < n; ++i) {
  2801. sum += (ggml_float)x[i];
  2802. }
  2803. *s = sum;
  2804. }
  2805. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2806. #ifndef GGML_USE_ACCELERATE
  2807. float max = -INFINITY;
  2808. for (int i = 0; i < n; ++i) {
  2809. max = MAX(max, x[i]);
  2810. }
  2811. *s = max;
  2812. #else
  2813. vDSP_maxv(x, 1, s, n);
  2814. #endif
  2815. }
  2816. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2817. ggml_vec_norm_f32(n, s, x);
  2818. *s = 1.f/(*s);
  2819. }
  2820. //
  2821. // logging
  2822. //
  2823. #if (GGML_DEBUG >= 1)
  2824. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2825. #else
  2826. #define GGML_PRINT_DEBUG(...)
  2827. #endif
  2828. #if (GGML_DEBUG >= 5)
  2829. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2830. #else
  2831. #define GGML_PRINT_DEBUG_5(...)
  2832. #endif
  2833. #if (GGML_DEBUG >= 10)
  2834. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2835. #else
  2836. #define GGML_PRINT_DEBUG_10(...)
  2837. #endif
  2838. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2839. //
  2840. // data types
  2841. //
  2842. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2843. [GGML_TYPE_F32] = 1,
  2844. [GGML_TYPE_F16] = 1,
  2845. [GGML_TYPE_Q4_0] = QK4_0,
  2846. [GGML_TYPE_Q4_1] = QK4_1,
  2847. [GGML_TYPE_Q5_0] = QK5_0,
  2848. [GGML_TYPE_Q5_1] = QK5_1,
  2849. [GGML_TYPE_Q8_0] = QK8_0,
  2850. [GGML_TYPE_Q8_1] = QK8_1,
  2851. #ifdef GGML_USE_K_QUANTS
  2852. [GGML_TYPE_Q2_K] = QK_K,
  2853. [GGML_TYPE_Q3_K] = QK_K,
  2854. [GGML_TYPE_Q4_K] = QK_K,
  2855. [GGML_TYPE_Q5_K] = QK_K,
  2856. [GGML_TYPE_Q6_K] = QK_K,
  2857. [GGML_TYPE_Q8_K] = QK_K,
  2858. #endif
  2859. [GGML_TYPE_I8] = 1,
  2860. [GGML_TYPE_I16] = 1,
  2861. [GGML_TYPE_I32] = 1,
  2862. };
  2863. static_assert(GGML_TYPE_COUNT == 19, "GGML_BLCK_SIZE is outdated");
  2864. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2865. [GGML_TYPE_F32] = sizeof(float),
  2866. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2867. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2868. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2869. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  2870. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  2871. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2872. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  2873. #ifdef GGML_USE_K_QUANTS
  2874. [GGML_TYPE_Q2_K] = sizeof(block_q2_K),
  2875. [GGML_TYPE_Q3_K] = sizeof(block_q3_K),
  2876. [GGML_TYPE_Q4_K] = sizeof(block_q4_K),
  2877. [GGML_TYPE_Q5_K] = sizeof(block_q5_K),
  2878. [GGML_TYPE_Q6_K] = sizeof(block_q6_K),
  2879. [GGML_TYPE_Q8_K] = sizeof(block_q8_K),
  2880. #endif
  2881. [GGML_TYPE_I8] = sizeof(int8_t),
  2882. [GGML_TYPE_I16] = sizeof(int16_t),
  2883. [GGML_TYPE_I32] = sizeof(int32_t),
  2884. };
  2885. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_SIZE is outdated");
  2886. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  2887. [GGML_TYPE_F32] = "f32",
  2888. [GGML_TYPE_F16] = "f16",
  2889. [GGML_TYPE_Q4_0] = "q4_0",
  2890. [GGML_TYPE_Q4_1] = "q4_1",
  2891. [GGML_TYPE_Q5_0] = "q5_0",
  2892. [GGML_TYPE_Q5_1] = "q5_1",
  2893. [GGML_TYPE_Q8_0] = "q8_0",
  2894. [GGML_TYPE_Q8_1] = "q8_1",
  2895. [GGML_TYPE_Q2_K] = "q2_K",
  2896. [GGML_TYPE_Q3_K] = "q3_K",
  2897. [GGML_TYPE_Q4_K] = "q4_K",
  2898. [GGML_TYPE_Q5_K] = "q5_K",
  2899. [GGML_TYPE_Q6_K] = "q6_K",
  2900. [GGML_TYPE_Q8_K] = "q8_K",
  2901. [GGML_TYPE_I8] = "i8",
  2902. [GGML_TYPE_I16] = "i16",
  2903. [GGML_TYPE_I32] = "i32",
  2904. };
  2905. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_NAME is outdated");
  2906. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  2907. [GGML_TYPE_F32] = false,
  2908. [GGML_TYPE_F16] = false,
  2909. [GGML_TYPE_Q4_0] = true,
  2910. [GGML_TYPE_Q4_1] = true,
  2911. [GGML_TYPE_Q5_0] = true,
  2912. [GGML_TYPE_Q5_1] = true,
  2913. [GGML_TYPE_Q8_0] = true,
  2914. [GGML_TYPE_Q8_1] = true,
  2915. [GGML_TYPE_Q2_K] = true,
  2916. [GGML_TYPE_Q3_K] = true,
  2917. [GGML_TYPE_Q4_K] = true,
  2918. [GGML_TYPE_Q5_K] = true,
  2919. [GGML_TYPE_Q6_K] = true,
  2920. [GGML_TYPE_Q8_K] = true,
  2921. [GGML_TYPE_I8] = false,
  2922. [GGML_TYPE_I16] = false,
  2923. [GGML_TYPE_I32] = false,
  2924. };
  2925. static_assert(GGML_TYPE_COUNT == 19, "GGML_IS_QUANTIZED is outdated");
  2926. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  2927. "NONE",
  2928. "DUP",
  2929. "ADD",
  2930. "ADD1",
  2931. "ACC",
  2932. "SUB",
  2933. "MUL",
  2934. "DIV",
  2935. "SQR",
  2936. "SQRT",
  2937. "LOG",
  2938. "SUM",
  2939. "SUM_ROWS",
  2940. "MEAN",
  2941. "REPEAT",
  2942. "REPEAT_BACK",
  2943. "ABS",
  2944. "SGN",
  2945. "NEG",
  2946. "STEP",
  2947. "RELU",
  2948. "GELU",
  2949. "SILU",
  2950. "SILU_BACK",
  2951. "NORM",
  2952. "RMS_NORM",
  2953. "RMS_NORM_BACK",
  2954. "MUL_MAT",
  2955. "OUT_PROD",
  2956. "SCALE",
  2957. "SET",
  2958. "CPY",
  2959. "CONT",
  2960. "RESHAPE",
  2961. "VIEW",
  2962. "PERMUTE",
  2963. "TRANSPOSE",
  2964. "GET_ROWS",
  2965. "GET_ROWS_BACK",
  2966. "DIAG",
  2967. "DIAG_MASK_INF",
  2968. "DIAG_MASK_ZERO",
  2969. "SOFT_MAX",
  2970. "SOFT_MAX_BACK",
  2971. "ROPE",
  2972. "ROPE_BACK",
  2973. "ALIBI",
  2974. "CLAMP",
  2975. "CONV_1D_1S",
  2976. "CONV_1D_2S",
  2977. "FLASH_ATTN",
  2978. "FLASH_FF",
  2979. "FLASH_ATTN_BACK",
  2980. "MAP_UNARY",
  2981. "MAP_BINARY",
  2982. "CROSS_ENTROPY_LOSS",
  2983. "CROSS_ENTROPY_LOSS_BACK",
  2984. };
  2985. static_assert(GGML_OP_COUNT == 57, "GGML_OP_COUNT != 57");
  2986. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2987. "none",
  2988. "x",
  2989. "x+y",
  2990. "x+y",
  2991. "view(x,nb,offset)+=y->x",
  2992. "x-y",
  2993. "x*y",
  2994. "x/y",
  2995. "x^2",
  2996. "√x",
  2997. "log(x)",
  2998. "Σx",
  2999. "Σx_k",
  3000. "Σx/n",
  3001. "repeat(x)",
  3002. "repeat_back(x)",
  3003. "abs(x)",
  3004. "sgn(x)",
  3005. "-x",
  3006. "step(x)",
  3007. "relu(x)",
  3008. "gelu(x)",
  3009. "silu(x)",
  3010. "silu_back(x)",
  3011. "norm(x)",
  3012. "rms_norm(x)",
  3013. "rms_norm_back(x)",
  3014. "X*Y",
  3015. "X*Y",
  3016. "x*v",
  3017. "y-\\>view(x)",
  3018. "x-\\>y",
  3019. "cont(x)",
  3020. "reshape(x)",
  3021. "view(x)",
  3022. "permute(x)",
  3023. "transpose(x)",
  3024. "get_rows(x)",
  3025. "get_rows_back(x)",
  3026. "diag(x)",
  3027. "diag_mask_inf(x)",
  3028. "diag_mask_zero(x)",
  3029. "soft_max(x)",
  3030. "soft_max_back(x)",
  3031. "rope(x)",
  3032. "rope_back(x)",
  3033. "alibi(x)",
  3034. "clamp(x)",
  3035. "conv_1d_1s(x)",
  3036. "conv_1d_2s(x)",
  3037. "flash_attn(x)",
  3038. "flash_ff(x)",
  3039. "flash_attn_back(x)",
  3040. "f(x)",
  3041. "f(x,y)",
  3042. "cross_entropy_loss(x,y)",
  3043. "cross_entropy_loss_back(x,y)",
  3044. };
  3045. static_assert(GGML_OP_COUNT == 57, "GGML_OP_COUNT != 57");
  3046. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3047. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3048. //
  3049. // ggml context
  3050. //
  3051. struct ggml_context {
  3052. size_t mem_size;
  3053. void * mem_buffer;
  3054. bool mem_buffer_owned;
  3055. bool no_alloc;
  3056. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  3057. int n_objects;
  3058. struct ggml_object * objects_begin;
  3059. struct ggml_object * objects_end;
  3060. struct ggml_scratch scratch;
  3061. struct ggml_scratch scratch_save;
  3062. };
  3063. struct ggml_context_container {
  3064. bool used;
  3065. struct ggml_context context;
  3066. };
  3067. //
  3068. // ggml state
  3069. //
  3070. struct ggml_state {
  3071. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3072. };
  3073. // global state
  3074. static struct ggml_state g_state;
  3075. static atomic_int g_state_barrier = 0;
  3076. // barrier via spin lock
  3077. inline static void ggml_critical_section_start(void) {
  3078. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3079. while (processing > 0) {
  3080. // wait for other threads to finish
  3081. atomic_fetch_sub(&g_state_barrier, 1);
  3082. sched_yield(); // TODO: reconsider this
  3083. processing = atomic_fetch_add(&g_state_barrier, 1);
  3084. }
  3085. }
  3086. // TODO: make this somehow automatically executed
  3087. // some sort of "sentry" mechanism
  3088. inline static void ggml_critical_section_end(void) {
  3089. atomic_fetch_sub(&g_state_barrier, 1);
  3090. }
  3091. ////////////////////////////////////////////////////////////////////////////////
  3092. void ggml_print_object(const struct ggml_object * obj) {
  3093. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  3094. obj->offs, obj->size, (const void *) obj->next);
  3095. }
  3096. void ggml_print_objects(const struct ggml_context * ctx) {
  3097. struct ggml_object * obj = ctx->objects_begin;
  3098. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3099. while (obj != NULL) {
  3100. ggml_print_object(obj);
  3101. obj = obj->next;
  3102. }
  3103. GGML_PRINT("%s: --- end ---\n", __func__);
  3104. }
  3105. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3106. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3107. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3108. }
  3109. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  3110. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3111. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3112. }
  3113. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3114. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3115. // this should handle cases where the tensor is not contiguous in memory
  3116. // probaby just:
  3117. //
  3118. // return tensor->ne[3]*tensor->nb[3]
  3119. //
  3120. // is enough, but just in case, adding the second part
  3121. return MAX(tensor->ne[3]*tensor->nb[3], (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type]);
  3122. }
  3123. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  3124. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3125. return (nrows_split*tensor->ne[0]*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  3126. }
  3127. int ggml_blck_size(enum ggml_type type) {
  3128. return GGML_BLCK_SIZE[type];
  3129. }
  3130. size_t ggml_type_size(enum ggml_type type) {
  3131. return GGML_TYPE_SIZE[type];
  3132. }
  3133. float ggml_type_sizef(enum ggml_type type) {
  3134. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  3135. }
  3136. const char * ggml_type_name(enum ggml_type type) {
  3137. return GGML_TYPE_NAME[type];
  3138. }
  3139. const char * ggml_op_name(enum ggml_op op) {
  3140. return GGML_OP_NAME[op];
  3141. }
  3142. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3143. return GGML_TYPE_SIZE[tensor->type];
  3144. }
  3145. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3146. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3147. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3148. }
  3149. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3150. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3151. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3152. }
  3153. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3154. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3155. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3156. }
  3157. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3158. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3159. return
  3160. (t0->ne[0] == t1->ne[0]) &&
  3161. (t0->ne[2] == t1->ne[2]) &&
  3162. (t0->ne[3] == t1->ne[3]);
  3163. }
  3164. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3165. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3166. return
  3167. (t0->ne[1] == t1->ne[1]) &&
  3168. (t0->ne[2] == t1->ne[2]) &&
  3169. (t0->ne[3] == t1->ne[3]);
  3170. }
  3171. bool ggml_is_quantized(enum ggml_type type) {
  3172. return GGML_IS_QUANTIZED[type];
  3173. }
  3174. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3175. enum ggml_type wtype = GGML_TYPE_COUNT;
  3176. switch (ftype) {
  3177. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3178. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3179. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3180. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3181. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3182. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3183. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3184. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  3185. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  3186. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  3187. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  3188. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  3189. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3190. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3191. }
  3192. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3193. return wtype;
  3194. }
  3195. size_t ggml_tensor_overhead(void) {
  3196. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE + 16;
  3197. }
  3198. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3199. return tensor->nb[0] > tensor->nb[1];
  3200. }
  3201. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3202. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3203. return
  3204. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3205. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3206. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3207. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3208. }
  3209. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  3210. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3211. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  3212. }
  3213. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3214. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3215. return
  3216. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3217. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3218. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3219. }
  3220. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3221. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3222. return
  3223. (t0->ne[0] == t1->ne[0] ) &&
  3224. (t0->ne[1] == t1->ne[1] ) &&
  3225. (t0->ne[2] == t1->ne[2] ) &&
  3226. (t0->ne[3] == t1->ne[3] );
  3227. }
  3228. // check if t1 can be represented as a repeatition of t0
  3229. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3230. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3231. return
  3232. (t1->ne[0]%t0->ne[0] == 0) &&
  3233. (t1->ne[1]%t0->ne[1] == 0) &&
  3234. (t1->ne[2]%t0->ne[2] == 0) &&
  3235. (t1->ne[3]%t0->ne[3] == 0);
  3236. }
  3237. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3238. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3239. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3240. }
  3241. static inline int ggml_up32(int n) {
  3242. return (n + 31) & ~31;
  3243. }
  3244. //static inline int ggml_up64(int n) {
  3245. // return (n + 63) & ~63;
  3246. //}
  3247. static inline int ggml_up(int n, int m) {
  3248. // assert m is a power of 2
  3249. GGML_ASSERT((m & (m - 1)) == 0);
  3250. return (n + m - 1) & ~(m - 1);
  3251. }
  3252. // assert that pointer is aligned to GGML_MEM_ALIGN
  3253. #define ggml_assert_aligned(ptr) \
  3254. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3255. ////////////////////////////////////////////////////////////////////////////////
  3256. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3257. // make this function thread safe
  3258. ggml_critical_section_start();
  3259. static bool is_first_call = true;
  3260. if (is_first_call) {
  3261. // initialize time system (required on Windows)
  3262. ggml_time_init();
  3263. // initialize GELU, SILU and EXP F32 tables
  3264. {
  3265. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3266. ggml_fp16_t ii;
  3267. for (int i = 0; i < (1 << 16); ++i) {
  3268. uint16_t ui = i;
  3269. memcpy(&ii, &ui, sizeof(ii));
  3270. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3271. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3272. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3273. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3274. }
  3275. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3276. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3277. }
  3278. // initialize g_state
  3279. {
  3280. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3281. g_state = (struct ggml_state) {
  3282. /*.contexts =*/ { { 0 } },
  3283. };
  3284. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3285. g_state.contexts[i].used = false;
  3286. }
  3287. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3288. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3289. }
  3290. #if defined(GGML_USE_CUBLAS)
  3291. ggml_init_cublas();
  3292. #elif defined(GGML_USE_CLBLAST)
  3293. ggml_cl_init();
  3294. #endif
  3295. is_first_call = false;
  3296. }
  3297. // find non-used context in g_state
  3298. struct ggml_context * ctx = NULL;
  3299. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3300. if (!g_state.contexts[i].used) {
  3301. g_state.contexts[i].used = true;
  3302. ctx = &g_state.contexts[i].context;
  3303. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3304. break;
  3305. }
  3306. }
  3307. if (ctx == NULL) {
  3308. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3309. ggml_critical_section_end();
  3310. return NULL;
  3311. }
  3312. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3313. *ctx = (struct ggml_context) {
  3314. /*.mem_size =*/ mem_size,
  3315. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3316. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3317. /*.no_alloc =*/ params.no_alloc,
  3318. /*.no_alloc_save =*/ params.no_alloc,
  3319. /*.n_objects =*/ 0,
  3320. /*.objects_begin =*/ NULL,
  3321. /*.objects_end =*/ NULL,
  3322. /*.scratch =*/ { 0, 0, NULL, },
  3323. /*.scratch_save =*/ { 0, 0, NULL, },
  3324. };
  3325. GGML_ASSERT(ctx->mem_buffer != NULL);
  3326. ggml_assert_aligned(ctx->mem_buffer);
  3327. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3328. ggml_critical_section_end();
  3329. return ctx;
  3330. }
  3331. void ggml_free(struct ggml_context * ctx) {
  3332. // make this function thread safe
  3333. ggml_critical_section_start();
  3334. bool found = false;
  3335. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3336. if (&g_state.contexts[i].context == ctx) {
  3337. g_state.contexts[i].used = false;
  3338. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3339. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3340. if (ctx->mem_buffer_owned) {
  3341. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3342. }
  3343. found = true;
  3344. break;
  3345. }
  3346. }
  3347. if (!found) {
  3348. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3349. }
  3350. ggml_critical_section_end();
  3351. }
  3352. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3353. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3354. }
  3355. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3356. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3357. ctx->scratch = scratch;
  3358. return result;
  3359. }
  3360. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3361. ctx->no_alloc = no_alloc;
  3362. }
  3363. void * ggml_get_mem_buffer(struct ggml_context * ctx) {
  3364. return ctx->mem_buffer;
  3365. }
  3366. size_t ggml_get_mem_size(struct ggml_context * ctx) {
  3367. return ctx->mem_size;
  3368. }
  3369. // IMPORTANT:
  3370. // when creating "opt" tensors, always save and load the scratch buffer
  3371. // this is an error prone process, but it is necessary to support inplace
  3372. // operators when using scratch buffers
  3373. // TODO: implement a better way
  3374. void ggml_scratch_save(struct ggml_context * ctx) {
  3375. // this is needed to allow opt tensors to store their data
  3376. // TODO: again, need to find a better way
  3377. ctx->no_alloc_save = ctx->no_alloc;
  3378. ctx->no_alloc = false;
  3379. ctx->scratch_save = ctx->scratch;
  3380. ctx->scratch.data = NULL;
  3381. }
  3382. void ggml_scratch_load(struct ggml_context * ctx) {
  3383. ctx->no_alloc = ctx->no_alloc_save;
  3384. ctx->scratch = ctx->scratch_save;
  3385. }
  3386. ////////////////////////////////////////////////////////////////////////////////
  3387. struct ggml_tensor * ggml_new_tensor_impl(
  3388. struct ggml_context * ctx,
  3389. enum ggml_type type,
  3390. int n_dims,
  3391. const int64_t* ne,
  3392. void* data) {
  3393. // always insert objects at the end of the context's memory pool
  3394. struct ggml_object * obj_cur = ctx->objects_end;
  3395. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3396. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3397. const size_t cur_end = cur_offs + cur_size;
  3398. size_t size_needed = 0;
  3399. if (data == NULL && !ctx->no_alloc) {
  3400. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3401. for (int i = 1; i < n_dims; i++) {
  3402. size_needed *= ne[i];
  3403. }
  3404. // align to GGML_MEM_ALIGN
  3405. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3406. }
  3407. char * const mem_buffer = ctx->mem_buffer;
  3408. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3409. if (ctx->scratch.data == NULL || data != NULL) {
  3410. size_needed += GGML_TENSOR_SIZE;
  3411. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3412. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3413. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3414. assert(false);
  3415. return NULL;
  3416. }
  3417. *obj_new = (struct ggml_object) {
  3418. .offs = cur_end + GGML_OBJECT_SIZE,
  3419. .size = size_needed,
  3420. .next = NULL,
  3421. };
  3422. } else {
  3423. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3424. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3425. __func__, ctx->scratch.offs + size_needed, ctx->scratch.size);
  3426. assert(false);
  3427. return NULL;
  3428. }
  3429. if (cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE > ctx->mem_size) {
  3430. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3431. __func__, cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE, ctx->mem_size);
  3432. assert(false);
  3433. return NULL;
  3434. }
  3435. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3436. *obj_new = (struct ggml_object) {
  3437. .offs = cur_end + GGML_OBJECT_SIZE,
  3438. .size = GGML_TENSOR_SIZE,
  3439. .next = NULL,
  3440. };
  3441. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3442. ctx->scratch.offs += size_needed;
  3443. }
  3444. if (obj_cur != NULL) {
  3445. obj_cur->next = obj_new;
  3446. } else {
  3447. // this is the first object in this context
  3448. ctx->objects_begin = obj_new;
  3449. }
  3450. ctx->objects_end = obj_new;
  3451. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3452. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3453. ggml_assert_aligned(result);
  3454. *result = (struct ggml_tensor) {
  3455. /*.type =*/ type,
  3456. /*.backend =*/ GGML_BACKEND_CPU,
  3457. /*.n_dims =*/ n_dims,
  3458. /*.ne =*/ { 1, 1, 1, 1 },
  3459. /*.nb =*/ { 0, 0, 0, 0 },
  3460. /*.op =*/ GGML_OP_NONE,
  3461. /*.is_param =*/ false,
  3462. /*.grad =*/ NULL,
  3463. /*.src0 =*/ NULL,
  3464. /*.src1 =*/ NULL,
  3465. /*.opt =*/ { NULL },
  3466. /*.n_tasks =*/ 0,
  3467. /*.perf_runs =*/ 0,
  3468. /*.perf_cycles =*/ 0,
  3469. /*.perf_time_us =*/ 0,
  3470. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3471. /*.name =*/ { 0 },
  3472. /*.extra =*/ NULL,
  3473. /*.pad =*/ { 0 },
  3474. };
  3475. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3476. //ggml_assert_aligned(result->data);
  3477. for (int i = 0; i < n_dims; i++) {
  3478. result->ne[i] = ne[i];
  3479. }
  3480. result->nb[0] = GGML_TYPE_SIZE[type];
  3481. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3482. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3483. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3484. }
  3485. ctx->n_objects++;
  3486. return result;
  3487. }
  3488. struct ggml_tensor * ggml_new_tensor(
  3489. struct ggml_context * ctx,
  3490. enum ggml_type type,
  3491. int n_dims,
  3492. const int64_t * ne) {
  3493. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3494. }
  3495. struct ggml_tensor * ggml_new_tensor_1d(
  3496. struct ggml_context * ctx,
  3497. enum ggml_type type,
  3498. int64_t ne0) {
  3499. return ggml_new_tensor(ctx, type, 1, &ne0);
  3500. }
  3501. struct ggml_tensor * ggml_new_tensor_2d(
  3502. struct ggml_context * ctx,
  3503. enum ggml_type type,
  3504. int64_t ne0,
  3505. int64_t ne1) {
  3506. const int64_t ne[2] = { ne0, ne1 };
  3507. return ggml_new_tensor(ctx, type, 2, ne);
  3508. }
  3509. struct ggml_tensor * ggml_new_tensor_3d(
  3510. struct ggml_context * ctx,
  3511. enum ggml_type type,
  3512. int64_t ne0,
  3513. int64_t ne1,
  3514. int64_t ne2) {
  3515. const int64_t ne[3] = { ne0, ne1, ne2 };
  3516. return ggml_new_tensor(ctx, type, 3, ne);
  3517. }
  3518. struct ggml_tensor * ggml_new_tensor_4d(
  3519. struct ggml_context * ctx,
  3520. enum ggml_type type,
  3521. int64_t ne0,
  3522. int64_t ne1,
  3523. int64_t ne2,
  3524. int64_t ne3) {
  3525. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3526. return ggml_new_tensor(ctx, type, 4, ne);
  3527. }
  3528. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3529. ggml_scratch_save(ctx);
  3530. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3531. ggml_scratch_load(ctx);
  3532. ggml_set_i32(result, value);
  3533. return result;
  3534. }
  3535. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3536. ggml_scratch_save(ctx);
  3537. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3538. ggml_scratch_load(ctx);
  3539. ggml_set_f32(result, value);
  3540. return result;
  3541. }
  3542. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3543. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3544. }
  3545. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3546. memset(tensor->data, 0, ggml_nbytes(tensor));
  3547. return tensor;
  3548. }
  3549. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3550. const int n = ggml_nrows(tensor);
  3551. const int nc = tensor->ne[0];
  3552. const size_t n1 = tensor->nb[1];
  3553. char * const data = tensor->data;
  3554. switch (tensor->type) {
  3555. case GGML_TYPE_I8:
  3556. {
  3557. assert(tensor->nb[0] == sizeof(int8_t));
  3558. for (int i = 0; i < n; i++) {
  3559. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3560. }
  3561. } break;
  3562. case GGML_TYPE_I16:
  3563. {
  3564. assert(tensor->nb[0] == sizeof(int16_t));
  3565. for (int i = 0; i < n; i++) {
  3566. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3567. }
  3568. } break;
  3569. case GGML_TYPE_I32:
  3570. {
  3571. assert(tensor->nb[0] == sizeof(int32_t));
  3572. for (int i = 0; i < n; i++) {
  3573. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3574. }
  3575. } break;
  3576. case GGML_TYPE_F16:
  3577. {
  3578. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3579. for (int i = 0; i < n; i++) {
  3580. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3581. }
  3582. } break;
  3583. case GGML_TYPE_F32:
  3584. {
  3585. assert(tensor->nb[0] == sizeof(float));
  3586. for (int i = 0; i < n; i++) {
  3587. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3588. }
  3589. } break;
  3590. default:
  3591. {
  3592. GGML_ASSERT(false);
  3593. } break;
  3594. }
  3595. return tensor;
  3596. }
  3597. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3598. const int n = ggml_nrows(tensor);
  3599. const int nc = tensor->ne[0];
  3600. const size_t n1 = tensor->nb[1];
  3601. char * const data = tensor->data;
  3602. switch (tensor->type) {
  3603. case GGML_TYPE_I8:
  3604. {
  3605. assert(tensor->nb[0] == sizeof(int8_t));
  3606. for (int i = 0; i < n; i++) {
  3607. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3608. }
  3609. } break;
  3610. case GGML_TYPE_I16:
  3611. {
  3612. assert(tensor->nb[0] == sizeof(int16_t));
  3613. for (int i = 0; i < n; i++) {
  3614. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3615. }
  3616. } break;
  3617. case GGML_TYPE_I32:
  3618. {
  3619. assert(tensor->nb[0] == sizeof(int32_t));
  3620. for (int i = 0; i < n; i++) {
  3621. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3622. }
  3623. } break;
  3624. case GGML_TYPE_F16:
  3625. {
  3626. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3627. for (int i = 0; i < n; i++) {
  3628. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3629. }
  3630. } break;
  3631. case GGML_TYPE_F32:
  3632. {
  3633. assert(tensor->nb[0] == sizeof(float));
  3634. for (int i = 0; i < n; i++) {
  3635. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3636. }
  3637. } break;
  3638. default:
  3639. {
  3640. GGML_ASSERT(false);
  3641. } break;
  3642. }
  3643. return tensor;
  3644. }
  3645. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3646. switch (tensor->type) {
  3647. case GGML_TYPE_I8:
  3648. {
  3649. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3650. return ((int8_t *)(tensor->data))[i];
  3651. } break;
  3652. case GGML_TYPE_I16:
  3653. {
  3654. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3655. return ((int16_t *)(tensor->data))[i];
  3656. } break;
  3657. case GGML_TYPE_I32:
  3658. {
  3659. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3660. return ((int32_t *)(tensor->data))[i];
  3661. } break;
  3662. case GGML_TYPE_F16:
  3663. {
  3664. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3665. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3666. } break;
  3667. case GGML_TYPE_F32:
  3668. {
  3669. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3670. return ((float *)(tensor->data))[i];
  3671. } break;
  3672. default:
  3673. {
  3674. GGML_ASSERT(false);
  3675. } break;
  3676. }
  3677. return 0.0f;
  3678. }
  3679. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3680. switch (tensor->type) {
  3681. case GGML_TYPE_I8:
  3682. {
  3683. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3684. ((int8_t *)(tensor->data))[i] = value;
  3685. } break;
  3686. case GGML_TYPE_I16:
  3687. {
  3688. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3689. ((int16_t *)(tensor->data))[i] = value;
  3690. } break;
  3691. case GGML_TYPE_I32:
  3692. {
  3693. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3694. ((int32_t *)(tensor->data))[i] = value;
  3695. } break;
  3696. case GGML_TYPE_F16:
  3697. {
  3698. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3699. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3700. } break;
  3701. case GGML_TYPE_F32:
  3702. {
  3703. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3704. ((float *)(tensor->data))[i] = value;
  3705. } break;
  3706. default:
  3707. {
  3708. GGML_ASSERT(false);
  3709. } break;
  3710. }
  3711. }
  3712. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3713. switch (tensor->type) {
  3714. case GGML_TYPE_I8:
  3715. {
  3716. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3717. return ((int8_t *)(tensor->data))[i];
  3718. } break;
  3719. case GGML_TYPE_I16:
  3720. {
  3721. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3722. return ((int16_t *)(tensor->data))[i];
  3723. } break;
  3724. case GGML_TYPE_I32:
  3725. {
  3726. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3727. return ((int32_t *)(tensor->data))[i];
  3728. } break;
  3729. case GGML_TYPE_F16:
  3730. {
  3731. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3732. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3733. } break;
  3734. case GGML_TYPE_F32:
  3735. {
  3736. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3737. return ((float *)(tensor->data))[i];
  3738. } break;
  3739. default:
  3740. {
  3741. GGML_ASSERT(false);
  3742. } break;
  3743. }
  3744. return 0.0f;
  3745. }
  3746. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3747. switch (tensor->type) {
  3748. case GGML_TYPE_I8:
  3749. {
  3750. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3751. ((int8_t *)(tensor->data))[i] = value;
  3752. } break;
  3753. case GGML_TYPE_I16:
  3754. {
  3755. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3756. ((int16_t *)(tensor->data))[i] = value;
  3757. } break;
  3758. case GGML_TYPE_I32:
  3759. {
  3760. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3761. ((int32_t *)(tensor->data))[i] = value;
  3762. } break;
  3763. case GGML_TYPE_F16:
  3764. {
  3765. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3766. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3767. } break;
  3768. case GGML_TYPE_F32:
  3769. {
  3770. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3771. ((float *)(tensor->data))[i] = value;
  3772. } break;
  3773. default:
  3774. {
  3775. GGML_ASSERT(false);
  3776. } break;
  3777. }
  3778. }
  3779. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3780. return tensor->data;
  3781. }
  3782. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3783. assert(tensor->type == GGML_TYPE_F32);
  3784. return (float *)(tensor->data);
  3785. }
  3786. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3787. return tensor->name;
  3788. }
  3789. void ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3790. strncpy(tensor->name, name, sizeof(tensor->name));
  3791. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3792. }
  3793. struct ggml_tensor * ggml_view_tensor(
  3794. struct ggml_context * ctx,
  3795. const struct ggml_tensor * src) {
  3796. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3797. result->nb[0] = src->nb[0];
  3798. result->nb[1] = src->nb[1];
  3799. result->nb[2] = src->nb[2];
  3800. result->nb[3] = src->nb[3];
  3801. return result;
  3802. }
  3803. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3804. struct ggml_object * obj = ctx->objects_begin;
  3805. char * const mem_buffer = ctx->mem_buffer;
  3806. while (obj != NULL) {
  3807. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3808. if (strcmp(cur->name, name) == 0) {
  3809. return cur;
  3810. }
  3811. obj = obj->next;
  3812. }
  3813. return NULL;
  3814. }
  3815. ////////////////////////////////////////////////////////////////////////////////
  3816. // ggml_dup
  3817. struct ggml_tensor * ggml_dup_impl(
  3818. struct ggml_context * ctx,
  3819. struct ggml_tensor * a,
  3820. bool inplace) {
  3821. bool is_node = false;
  3822. if (!inplace && (a->grad)) {
  3823. is_node = true;
  3824. }
  3825. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3826. result->op = GGML_OP_DUP;
  3827. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3828. result->src0 = a;
  3829. result->src1 = NULL;
  3830. return result;
  3831. }
  3832. struct ggml_tensor * ggml_dup(
  3833. struct ggml_context * ctx,
  3834. struct ggml_tensor * a) {
  3835. return ggml_dup_impl(ctx, a, false);
  3836. }
  3837. struct ggml_tensor * ggml_dup_inplace(
  3838. struct ggml_context * ctx,
  3839. struct ggml_tensor * a) {
  3840. return ggml_dup_impl(ctx, a, true);
  3841. }
  3842. // ggml_add
  3843. struct ggml_tensor * ggml_add_impl(
  3844. struct ggml_context * ctx,
  3845. struct ggml_tensor * a,
  3846. struct ggml_tensor * b,
  3847. bool inplace) {
  3848. GGML_ASSERT(ggml_are_same_shape(a, b));
  3849. bool is_node = false;
  3850. if (a->grad || b->grad) {
  3851. is_node = true;
  3852. }
  3853. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3854. result->op = GGML_OP_ADD;
  3855. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3856. result->src0 = a;
  3857. result->src1 = b;
  3858. return result;
  3859. }
  3860. struct ggml_tensor * ggml_add(
  3861. struct ggml_context * ctx,
  3862. struct ggml_tensor * a,
  3863. struct ggml_tensor * b) {
  3864. return ggml_add_impl(ctx, a, b, false);
  3865. }
  3866. struct ggml_tensor * ggml_add_inplace(
  3867. struct ggml_context * ctx,
  3868. struct ggml_tensor * a,
  3869. struct ggml_tensor * b) {
  3870. return ggml_add_impl(ctx, a, b, true);
  3871. }
  3872. // ggml_add1
  3873. struct ggml_tensor * ggml_add1_impl(
  3874. struct ggml_context * ctx,
  3875. struct ggml_tensor * a,
  3876. struct ggml_tensor * b,
  3877. bool inplace) {
  3878. GGML_ASSERT(ggml_is_scalar(b));
  3879. GGML_ASSERT(ggml_is_padded_1d(a));
  3880. bool is_node = false;
  3881. if (a->grad || b->grad) {
  3882. is_node = true;
  3883. }
  3884. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3885. result->op = GGML_OP_ADD1;
  3886. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3887. result->src0 = a;
  3888. result->src1 = b;
  3889. return result;
  3890. }
  3891. struct ggml_tensor * ggml_add1(
  3892. struct ggml_context * ctx,
  3893. struct ggml_tensor * a,
  3894. struct ggml_tensor * b) {
  3895. return ggml_add1_impl(ctx, a, b, false);
  3896. }
  3897. struct ggml_tensor * ggml_add1_inplace(
  3898. struct ggml_context * ctx,
  3899. struct ggml_tensor * a,
  3900. struct ggml_tensor * b) {
  3901. return ggml_add1_impl(ctx, a, b, true);
  3902. }
  3903. // ggml_acc
  3904. struct ggml_tensor * ggml_acc_impl(
  3905. struct ggml_context * ctx,
  3906. struct ggml_tensor * a,
  3907. struct ggml_tensor * b,
  3908. size_t nb1,
  3909. size_t nb2,
  3910. size_t nb3,
  3911. size_t offset,
  3912. bool inplace) {
  3913. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3914. GGML_ASSERT(ggml_is_contiguous(a));
  3915. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3916. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3917. bool is_node = false;
  3918. if (!inplace && (a->grad || b->grad)) {
  3919. is_node = true;
  3920. }
  3921. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3922. ggml_scratch_save(ctx);
  3923. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  3924. ((int32_t *) c->data)[0] = nb1;
  3925. ((int32_t *) c->data)[1] = nb2;
  3926. ((int32_t *) c->data)[2] = nb3;
  3927. ((int32_t *) c->data)[3] = offset;
  3928. ((int32_t *) c->data)[4] = inplace ? 1 : 0;
  3929. ggml_scratch_load(ctx);
  3930. result->op = GGML_OP_ACC;
  3931. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3932. result->src0 = a;
  3933. result->src1 = b;
  3934. result->opt[0] = c;
  3935. return result;
  3936. }
  3937. struct ggml_tensor * ggml_acc(
  3938. struct ggml_context * ctx,
  3939. struct ggml_tensor * a,
  3940. struct ggml_tensor * b,
  3941. size_t nb1,
  3942. size_t nb2,
  3943. size_t nb3,
  3944. size_t offset) {
  3945. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3946. }
  3947. struct ggml_tensor * ggml_acc_inplace(
  3948. struct ggml_context * ctx,
  3949. struct ggml_tensor * a,
  3950. struct ggml_tensor * b,
  3951. size_t nb1,
  3952. size_t nb2,
  3953. size_t nb3,
  3954. size_t offset) {
  3955. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3956. }
  3957. // ggml_sub
  3958. struct ggml_tensor * ggml_sub_impl(
  3959. struct ggml_context * ctx,
  3960. struct ggml_tensor * a,
  3961. struct ggml_tensor * b,
  3962. bool inplace) {
  3963. GGML_ASSERT(ggml_are_same_shape(a, b));
  3964. bool is_node = false;
  3965. if (!inplace && (a->grad || b->grad)) {
  3966. is_node = true;
  3967. }
  3968. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3969. result->op = GGML_OP_SUB;
  3970. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3971. result->src0 = a;
  3972. result->src1 = b;
  3973. return result;
  3974. }
  3975. struct ggml_tensor * ggml_sub(
  3976. struct ggml_context * ctx,
  3977. struct ggml_tensor * a,
  3978. struct ggml_tensor * b) {
  3979. return ggml_sub_impl(ctx, a, b, false);
  3980. }
  3981. struct ggml_tensor * ggml_sub_inplace(
  3982. struct ggml_context * ctx,
  3983. struct ggml_tensor * a,
  3984. struct ggml_tensor * b) {
  3985. return ggml_sub_impl(ctx, a, b, true);
  3986. }
  3987. // ggml_mul
  3988. struct ggml_tensor * ggml_mul_impl(
  3989. struct ggml_context * ctx,
  3990. struct ggml_tensor * a,
  3991. struct ggml_tensor * b,
  3992. bool inplace) {
  3993. // TODO: support less-strict constraint
  3994. // GGML_ASSERT(ggml_can_repeat(b, a));
  3995. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3996. bool is_node = false;
  3997. if (!inplace && (a->grad || b->grad)) {
  3998. // TODO: support backward pass for broadcasting
  3999. GGML_ASSERT(ggml_are_same_shape(a, b));
  4000. is_node = true;
  4001. }
  4002. if (inplace) {
  4003. GGML_ASSERT(is_node == false);
  4004. }
  4005. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4006. result->op = GGML_OP_MUL;
  4007. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4008. result->src0 = a;
  4009. result->src1 = b;
  4010. return result;
  4011. }
  4012. struct ggml_tensor * ggml_mul(
  4013. struct ggml_context * ctx,
  4014. struct ggml_tensor * a,
  4015. struct ggml_tensor * b) {
  4016. return ggml_mul_impl(ctx, a, b, false);
  4017. }
  4018. struct ggml_tensor * ggml_mul_inplace(
  4019. struct ggml_context * ctx,
  4020. struct ggml_tensor * a,
  4021. struct ggml_tensor * b) {
  4022. return ggml_mul_impl(ctx, a, b, true);
  4023. }
  4024. // ggml_div
  4025. struct ggml_tensor * ggml_div_impl(
  4026. struct ggml_context * ctx,
  4027. struct ggml_tensor * a,
  4028. struct ggml_tensor * b,
  4029. bool inplace) {
  4030. GGML_ASSERT(ggml_are_same_shape(a, b));
  4031. bool is_node = false;
  4032. if (!inplace && (a->grad || b->grad)) {
  4033. is_node = true;
  4034. }
  4035. if (inplace) {
  4036. GGML_ASSERT(is_node == false);
  4037. }
  4038. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4039. result->op = GGML_OP_DIV;
  4040. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4041. result->src0 = a;
  4042. result->src1 = b;
  4043. return result;
  4044. }
  4045. struct ggml_tensor * ggml_div(
  4046. struct ggml_context * ctx,
  4047. struct ggml_tensor * a,
  4048. struct ggml_tensor * b) {
  4049. return ggml_div_impl(ctx, a, b, false);
  4050. }
  4051. struct ggml_tensor * ggml_div_inplace(
  4052. struct ggml_context * ctx,
  4053. struct ggml_tensor * a,
  4054. struct ggml_tensor * b) {
  4055. return ggml_div_impl(ctx, a, b, true);
  4056. }
  4057. // ggml_sqr
  4058. struct ggml_tensor * ggml_sqr_impl(
  4059. struct ggml_context * ctx,
  4060. struct ggml_tensor * a,
  4061. bool inplace) {
  4062. bool is_node = false;
  4063. if (!inplace && (a->grad)) {
  4064. is_node = true;
  4065. }
  4066. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4067. result->op = GGML_OP_SQR;
  4068. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4069. result->src0 = a;
  4070. result->src1 = NULL;
  4071. return result;
  4072. }
  4073. struct ggml_tensor * ggml_sqr(
  4074. struct ggml_context * ctx,
  4075. struct ggml_tensor * a) {
  4076. return ggml_sqr_impl(ctx, a, false);
  4077. }
  4078. struct ggml_tensor * ggml_sqr_inplace(
  4079. struct ggml_context * ctx,
  4080. struct ggml_tensor * a) {
  4081. return ggml_sqr_impl(ctx, a, true);
  4082. }
  4083. // ggml_sqrt
  4084. struct ggml_tensor * ggml_sqrt_impl(
  4085. struct ggml_context * ctx,
  4086. struct ggml_tensor * a,
  4087. bool inplace) {
  4088. bool is_node = false;
  4089. if (!inplace && (a->grad)) {
  4090. is_node = true;
  4091. }
  4092. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4093. result->op = GGML_OP_SQRT;
  4094. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4095. result->src0 = a;
  4096. result->src1 = NULL;
  4097. return result;
  4098. }
  4099. struct ggml_tensor * ggml_sqrt(
  4100. struct ggml_context * ctx,
  4101. struct ggml_tensor * a) {
  4102. return ggml_sqrt_impl(ctx, a, false);
  4103. }
  4104. struct ggml_tensor * ggml_sqrt_inplace(
  4105. struct ggml_context * ctx,
  4106. struct ggml_tensor * a) {
  4107. return ggml_sqrt_impl(ctx, a, true);
  4108. }
  4109. // ggml_log
  4110. struct ggml_tensor * ggml_log_impl(
  4111. struct ggml_context * ctx,
  4112. struct ggml_tensor * a,
  4113. bool inplace) {
  4114. bool is_node = false;
  4115. if (!inplace && (a->grad)) {
  4116. is_node = true;
  4117. }
  4118. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4119. result->op = GGML_OP_LOG;
  4120. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4121. result->src0 = a;
  4122. result->src1 = NULL;
  4123. return result;
  4124. }
  4125. struct ggml_tensor * ggml_log(
  4126. struct ggml_context * ctx,
  4127. struct ggml_tensor * a) {
  4128. return ggml_log_impl(ctx, a, false);
  4129. }
  4130. struct ggml_tensor * ggml_log_inplace(
  4131. struct ggml_context * ctx,
  4132. struct ggml_tensor * a) {
  4133. return ggml_log_impl(ctx, a, true);
  4134. }
  4135. // ggml_sum
  4136. struct ggml_tensor * ggml_sum(
  4137. struct ggml_context * ctx,
  4138. struct ggml_tensor * a) {
  4139. bool is_node = false;
  4140. if (a->grad) {
  4141. is_node = true;
  4142. }
  4143. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4144. result->op = GGML_OP_SUM;
  4145. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4146. result->src0 = a;
  4147. result->src1 = NULL;
  4148. return result;
  4149. }
  4150. // ggml_sum_rows
  4151. struct ggml_tensor * ggml_sum_rows(
  4152. struct ggml_context * ctx,
  4153. struct ggml_tensor * a) {
  4154. bool is_node = false;
  4155. if (a->grad) {
  4156. is_node = true;
  4157. }
  4158. int64_t ne[4] = {1,1,1,1};
  4159. for (int i=1; i<a->n_dims; ++i) {
  4160. ne[i] = a->ne[i];
  4161. }
  4162. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  4163. result->op = GGML_OP_SUM_ROWS;
  4164. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4165. result->src0 = a;
  4166. result->src1 = NULL;
  4167. return result;
  4168. }
  4169. // ggml_mean
  4170. struct ggml_tensor * ggml_mean(
  4171. struct ggml_context * ctx,
  4172. struct ggml_tensor * a) {
  4173. bool is_node = false;
  4174. if (a->grad) {
  4175. GGML_ASSERT(false); // TODO: implement
  4176. is_node = true;
  4177. }
  4178. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4179. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4180. result->op = GGML_OP_MEAN;
  4181. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4182. result->src0 = a;
  4183. result->src1 = NULL;
  4184. return result;
  4185. }
  4186. // ggml_repeat
  4187. struct ggml_tensor * ggml_repeat(
  4188. struct ggml_context * ctx,
  4189. struct ggml_tensor * a,
  4190. struct ggml_tensor * b) {
  4191. GGML_ASSERT(ggml_can_repeat(a, b));
  4192. bool is_node = false;
  4193. if (a->grad) {
  4194. is_node = true;
  4195. }
  4196. if (ggml_are_same_shape(a, b) && !is_node) {
  4197. return a;
  4198. }
  4199. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4200. result->op = GGML_OP_REPEAT;
  4201. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4202. result->src0 = a;
  4203. result->src1 = b;
  4204. return result;
  4205. }
  4206. // ggml_repeat_back
  4207. struct ggml_tensor * ggml_repeat_back(
  4208. struct ggml_context * ctx,
  4209. struct ggml_tensor * a,
  4210. struct ggml_tensor * b) {
  4211. GGML_ASSERT(ggml_can_repeat(b, a));
  4212. bool is_node = false;
  4213. if (a->grad) {
  4214. is_node = true;
  4215. }
  4216. if (ggml_are_same_shape(a, b) && !is_node) {
  4217. return a;
  4218. }
  4219. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4220. result->op = GGML_OP_REPEAT_BACK;
  4221. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4222. result->src0 = a;
  4223. result->src1 = b;
  4224. return result;
  4225. }
  4226. // ggml_abs
  4227. struct ggml_tensor * ggml_abs_impl(
  4228. struct ggml_context * ctx,
  4229. struct ggml_tensor * a,
  4230. bool inplace) {
  4231. bool is_node = false;
  4232. if (!inplace && (a->grad)) {
  4233. is_node = true;
  4234. }
  4235. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4236. result->op = GGML_OP_ABS;
  4237. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4238. result->src0 = a;
  4239. result->src1 = NULL;
  4240. return result;
  4241. }
  4242. struct ggml_tensor * ggml_abs(
  4243. struct ggml_context * ctx,
  4244. struct ggml_tensor * a) {
  4245. return ggml_abs_impl(ctx, a, false);
  4246. }
  4247. struct ggml_tensor * ggml_abs_inplace(
  4248. struct ggml_context * ctx,
  4249. struct ggml_tensor * a) {
  4250. return ggml_abs_impl(ctx, a, true);
  4251. }
  4252. // ggml_sgn
  4253. struct ggml_tensor * ggml_sgn_impl(
  4254. struct ggml_context * ctx,
  4255. struct ggml_tensor * a,
  4256. bool inplace) {
  4257. bool is_node = false;
  4258. if (!inplace && (a->grad)) {
  4259. is_node = true;
  4260. }
  4261. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4262. result->op = GGML_OP_SGN;
  4263. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4264. result->src0 = a;
  4265. result->src1 = NULL;
  4266. return result;
  4267. }
  4268. struct ggml_tensor * ggml_sgn(
  4269. struct ggml_context * ctx,
  4270. struct ggml_tensor * a) {
  4271. return ggml_sgn_impl(ctx, a, false);
  4272. }
  4273. struct ggml_tensor * ggml_sgn_inplace(
  4274. struct ggml_context * ctx,
  4275. struct ggml_tensor * a) {
  4276. return ggml_sgn_impl(ctx, a, true);
  4277. }
  4278. // ggml_neg
  4279. struct ggml_tensor * ggml_neg_impl(
  4280. struct ggml_context * ctx,
  4281. struct ggml_tensor * a,
  4282. bool inplace) {
  4283. bool is_node = false;
  4284. if (!inplace && (a->grad)) {
  4285. is_node = true;
  4286. }
  4287. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4288. result->op = GGML_OP_NEG;
  4289. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4290. result->src0 = a;
  4291. result->src1 = NULL;
  4292. return result;
  4293. }
  4294. struct ggml_tensor * ggml_neg(
  4295. struct ggml_context * ctx,
  4296. struct ggml_tensor * a) {
  4297. return ggml_neg_impl(ctx, a, false);
  4298. }
  4299. struct ggml_tensor * ggml_neg_inplace(
  4300. struct ggml_context * ctx,
  4301. struct ggml_tensor * a) {
  4302. return ggml_neg_impl(ctx, a, true);
  4303. }
  4304. // ggml_step
  4305. struct ggml_tensor * ggml_step_impl(
  4306. struct ggml_context * ctx,
  4307. struct ggml_tensor * a,
  4308. bool inplace) {
  4309. bool is_node = false;
  4310. if (!inplace && (a->grad)) {
  4311. is_node = true;
  4312. }
  4313. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4314. result->op = GGML_OP_STEP;
  4315. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4316. result->src0 = a;
  4317. result->src1 = NULL;
  4318. return result;
  4319. }
  4320. struct ggml_tensor * ggml_step(
  4321. struct ggml_context * ctx,
  4322. struct ggml_tensor * a) {
  4323. return ggml_step_impl(ctx, a, false);
  4324. }
  4325. struct ggml_tensor * ggml_step_inplace(
  4326. struct ggml_context * ctx,
  4327. struct ggml_tensor * a) {
  4328. return ggml_step_impl(ctx, a, true);
  4329. }
  4330. // ggml_relu
  4331. struct ggml_tensor * ggml_relu_impl(
  4332. struct ggml_context * ctx,
  4333. struct ggml_tensor * a,
  4334. bool inplace) {
  4335. bool is_node = false;
  4336. if (!inplace && (a->grad)) {
  4337. is_node = true;
  4338. }
  4339. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4340. result->op = GGML_OP_RELU;
  4341. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4342. result->src0 = a;
  4343. result->src1 = NULL;
  4344. return result;
  4345. }
  4346. struct ggml_tensor * ggml_relu(
  4347. struct ggml_context * ctx,
  4348. struct ggml_tensor * a) {
  4349. return ggml_relu_impl(ctx, a, false);
  4350. }
  4351. struct ggml_tensor * ggml_relu_inplace(
  4352. struct ggml_context * ctx,
  4353. struct ggml_tensor * a) {
  4354. return ggml_relu_impl(ctx, a, true);
  4355. }
  4356. // ggml_gelu
  4357. struct ggml_tensor * ggml_gelu_impl(
  4358. struct ggml_context * ctx,
  4359. struct ggml_tensor * a,
  4360. bool inplace) {
  4361. bool is_node = false;
  4362. if (!inplace && (a->grad)) {
  4363. is_node = true;
  4364. }
  4365. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4366. result->op = GGML_OP_GELU;
  4367. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4368. result->src0 = a;
  4369. result->src1 = NULL;
  4370. return result;
  4371. }
  4372. struct ggml_tensor * ggml_gelu(
  4373. struct ggml_context * ctx,
  4374. struct ggml_tensor * a) {
  4375. return ggml_gelu_impl(ctx, a, false);
  4376. }
  4377. struct ggml_tensor * ggml_gelu_inplace(
  4378. struct ggml_context * ctx,
  4379. struct ggml_tensor * a) {
  4380. return ggml_gelu_impl(ctx, a, true);
  4381. }
  4382. // ggml_silu
  4383. struct ggml_tensor * ggml_silu_impl(
  4384. struct ggml_context * ctx,
  4385. struct ggml_tensor * a,
  4386. bool inplace) {
  4387. bool is_node = false;
  4388. if (!inplace && (a->grad)) {
  4389. is_node = true;
  4390. }
  4391. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4392. result->op = GGML_OP_SILU;
  4393. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4394. result->src0 = a;
  4395. result->src1 = NULL;
  4396. return result;
  4397. }
  4398. struct ggml_tensor * ggml_silu(
  4399. struct ggml_context * ctx,
  4400. struct ggml_tensor * a) {
  4401. return ggml_silu_impl(ctx, a, false);
  4402. }
  4403. struct ggml_tensor * ggml_silu_inplace(
  4404. struct ggml_context * ctx,
  4405. struct ggml_tensor * a) {
  4406. return ggml_silu_impl(ctx, a, true);
  4407. }
  4408. // ggml_silu_back
  4409. struct ggml_tensor * ggml_silu_back(
  4410. struct ggml_context * ctx,
  4411. struct ggml_tensor * a,
  4412. struct ggml_tensor * b) {
  4413. bool is_node = false;
  4414. if (a->grad || b->grad) {
  4415. // TODO: implement backward
  4416. is_node = true;
  4417. }
  4418. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4419. result->op = GGML_OP_SILU_BACK;
  4420. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4421. result->src0 = a;
  4422. result->src1 = b;
  4423. return result;
  4424. }
  4425. // ggml_norm
  4426. struct ggml_tensor * ggml_norm_impl(
  4427. struct ggml_context * ctx,
  4428. struct ggml_tensor * a,
  4429. bool inplace) {
  4430. bool is_node = false;
  4431. if (!inplace && (a->grad)) {
  4432. GGML_ASSERT(false); // TODO: implement backward
  4433. is_node = true;
  4434. }
  4435. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4436. result->op = GGML_OP_NORM;
  4437. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4438. result->src0 = a;
  4439. result->src1 = NULL; // TODO: maybe store epsilon here?
  4440. return result;
  4441. }
  4442. struct ggml_tensor * ggml_norm(
  4443. struct ggml_context * ctx,
  4444. struct ggml_tensor * a) {
  4445. return ggml_norm_impl(ctx, a, false);
  4446. }
  4447. struct ggml_tensor * ggml_norm_inplace(
  4448. struct ggml_context * ctx,
  4449. struct ggml_tensor * a) {
  4450. return ggml_norm_impl(ctx, a, true);
  4451. }
  4452. struct ggml_tensor * ggml_rms_norm_impl(
  4453. struct ggml_context * ctx,
  4454. struct ggml_tensor * a,
  4455. bool inplace) {
  4456. bool is_node = false;
  4457. if (!inplace && (a->grad)) {
  4458. is_node = true;
  4459. }
  4460. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4461. result->op = GGML_OP_RMS_NORM;
  4462. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4463. result->src0 = a;
  4464. result->src1 = NULL; // TODO: maybe store epsilon here?
  4465. return result;
  4466. }
  4467. struct ggml_tensor * ggml_rms_norm(
  4468. struct ggml_context * ctx,
  4469. struct ggml_tensor * a) {
  4470. return ggml_rms_norm_impl(ctx, a, false);
  4471. }
  4472. struct ggml_tensor * ggml_rms_norm_inplace(
  4473. struct ggml_context * ctx,
  4474. struct ggml_tensor * a) {
  4475. return ggml_rms_norm_impl(ctx, a, true);
  4476. }
  4477. struct ggml_tensor * ggml_rms_norm_back(
  4478. struct ggml_context * ctx,
  4479. struct ggml_tensor * a,
  4480. struct ggml_tensor * b) {
  4481. bool is_node = false;
  4482. if (a->grad) {
  4483. // TODO: implement backward
  4484. is_node = true;
  4485. }
  4486. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4487. result->op = GGML_OP_RMS_NORM_BACK;
  4488. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4489. result->src0 = a;
  4490. result->src1 = b;
  4491. return result;
  4492. }
  4493. // ggml_mul_mat
  4494. struct ggml_tensor * ggml_mul_mat(
  4495. struct ggml_context * ctx,
  4496. struct ggml_tensor * a,
  4497. struct ggml_tensor * b) {
  4498. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4499. GGML_ASSERT(!ggml_is_transposed(a));
  4500. bool is_node = false;
  4501. if (a->grad || b->grad) {
  4502. is_node = true;
  4503. }
  4504. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  4505. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4506. result->op = GGML_OP_MUL_MAT;
  4507. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4508. result->src0 = a;
  4509. result->src1 = b;
  4510. return result;
  4511. }
  4512. // ggml_out_prod
  4513. struct ggml_tensor * ggml_out_prod(
  4514. struct ggml_context * ctx,
  4515. struct ggml_tensor * a,
  4516. struct ggml_tensor * b) {
  4517. GGML_ASSERT(ggml_can_out_prod(a, b));
  4518. GGML_ASSERT(!ggml_is_transposed(a));
  4519. bool is_node = false;
  4520. if (a->grad || b->grad) {
  4521. is_node = true;
  4522. }
  4523. const int64_t ne[4] = { a->ne[0], b->ne[0], a->ne[2], b->ne[3] };
  4524. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4525. result->op = GGML_OP_OUT_PROD;
  4526. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4527. result->src0 = a;
  4528. result->src1 = b;
  4529. return result;
  4530. }
  4531. // ggml_scale
  4532. struct ggml_tensor * ggml_scale_impl(
  4533. struct ggml_context * ctx,
  4534. struct ggml_tensor * a,
  4535. struct ggml_tensor * b,
  4536. bool inplace) {
  4537. GGML_ASSERT(ggml_is_scalar(b));
  4538. GGML_ASSERT(ggml_is_padded_1d(a));
  4539. bool is_node = false;
  4540. if (a->grad || b->grad) {
  4541. is_node = true;
  4542. }
  4543. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4544. result->op = GGML_OP_SCALE;
  4545. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4546. result->src0 = a;
  4547. result->src1 = b;
  4548. return result;
  4549. }
  4550. struct ggml_tensor * ggml_scale(
  4551. struct ggml_context * ctx,
  4552. struct ggml_tensor * a,
  4553. struct ggml_tensor * b) {
  4554. return ggml_scale_impl(ctx, a, b, false);
  4555. }
  4556. struct ggml_tensor * ggml_scale_inplace(
  4557. struct ggml_context * ctx,
  4558. struct ggml_tensor * a,
  4559. struct ggml_tensor * b) {
  4560. return ggml_scale_impl(ctx, a, b, true);
  4561. }
  4562. // ggml_set
  4563. struct ggml_tensor * ggml_set_impl(
  4564. struct ggml_context * ctx,
  4565. struct ggml_tensor * a,
  4566. struct ggml_tensor * b,
  4567. size_t nb1,
  4568. size_t nb2,
  4569. size_t nb3,
  4570. size_t offset,
  4571. bool inplace) {
  4572. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4573. bool is_node = false;
  4574. if (a->grad || b->grad) {
  4575. is_node = true;
  4576. }
  4577. // make a view of the destination
  4578. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4579. ggml_scratch_save(ctx);
  4580. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  4581. (( int32_t * ) c->data)[0] = nb1;
  4582. (( int32_t * ) c->data)[1] = nb2;
  4583. (( int32_t * ) c->data)[2] = nb3;
  4584. (( int32_t * ) c->data)[3] = offset;
  4585. (( int32_t * ) c->data)[4] = inplace ? 1 : 0;
  4586. ggml_scratch_load(ctx);
  4587. result->op = GGML_OP_SET;
  4588. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4589. result->src0 = a;
  4590. result->src1 = b;
  4591. result->opt[0] = c;
  4592. return result;
  4593. }
  4594. struct ggml_tensor * ggml_set(
  4595. struct ggml_context * ctx,
  4596. struct ggml_tensor * a,
  4597. struct ggml_tensor * b,
  4598. size_t nb1,
  4599. size_t nb2,
  4600. size_t nb3,
  4601. size_t offset) {
  4602. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4603. }
  4604. struct ggml_tensor * ggml_set_inplace(
  4605. struct ggml_context * ctx,
  4606. struct ggml_tensor * a,
  4607. struct ggml_tensor * b,
  4608. size_t nb1,
  4609. size_t nb2,
  4610. size_t nb3,
  4611. size_t offset) {
  4612. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4613. }
  4614. struct ggml_tensor * ggml_set_1d(
  4615. struct ggml_context * ctx,
  4616. struct ggml_tensor * a,
  4617. struct ggml_tensor * b,
  4618. size_t offset) {
  4619. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4620. }
  4621. struct ggml_tensor * ggml_set_1d_inplace(
  4622. struct ggml_context * ctx,
  4623. struct ggml_tensor * a,
  4624. struct ggml_tensor * b,
  4625. size_t offset) {
  4626. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4627. }
  4628. struct ggml_tensor * ggml_set_2d(
  4629. struct ggml_context * ctx,
  4630. struct ggml_tensor * a,
  4631. struct ggml_tensor * b,
  4632. size_t nb1,
  4633. size_t offset) {
  4634. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4635. }
  4636. struct ggml_tensor * ggml_set_2d_inplace(
  4637. struct ggml_context * ctx,
  4638. struct ggml_tensor * a,
  4639. struct ggml_tensor * b,
  4640. size_t nb1,
  4641. size_t offset) {
  4642. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4643. }
  4644. // ggml_cpy
  4645. struct ggml_tensor * ggml_cpy_impl(
  4646. struct ggml_context * ctx,
  4647. struct ggml_tensor * a,
  4648. struct ggml_tensor * b,
  4649. bool inplace) {
  4650. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4651. bool is_node = false;
  4652. if (!inplace && (a->grad || b->grad)) {
  4653. is_node = true;
  4654. }
  4655. // make a view of the destination
  4656. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4657. result->op = GGML_OP_CPY;
  4658. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4659. result->src0 = a;
  4660. result->src1 = b;
  4661. return result;
  4662. }
  4663. struct ggml_tensor * ggml_cpy(
  4664. struct ggml_context * ctx,
  4665. struct ggml_tensor * a,
  4666. struct ggml_tensor * b) {
  4667. return ggml_cpy_impl(ctx, a, b, false);
  4668. }
  4669. struct ggml_tensor * ggml_cpy_inplace(
  4670. struct ggml_context * ctx,
  4671. struct ggml_tensor * a,
  4672. struct ggml_tensor * b) {
  4673. return ggml_cpy_impl(ctx, a, b, true);
  4674. }
  4675. // ggml_cont
  4676. struct ggml_tensor * ggml_cont_impl(
  4677. struct ggml_context * ctx,
  4678. struct ggml_tensor * a,
  4679. bool inplace) {
  4680. bool is_node = false;
  4681. if (!inplace && a->grad) {
  4682. is_node = true;
  4683. }
  4684. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4685. result->op = GGML_OP_CONT;
  4686. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4687. result->src0 = a;
  4688. result->src1 = NULL;
  4689. return result;
  4690. }
  4691. struct ggml_tensor * ggml_cont(
  4692. struct ggml_context * ctx,
  4693. struct ggml_tensor * a) {
  4694. return ggml_cont_impl(ctx, a, false);
  4695. }
  4696. struct ggml_tensor * ggml_cont_inplace(
  4697. struct ggml_context * ctx,
  4698. struct ggml_tensor * a) {
  4699. return ggml_cont_impl(ctx, a, true);
  4700. }
  4701. // ggml_reshape
  4702. struct ggml_tensor * ggml_reshape(
  4703. struct ggml_context * ctx,
  4704. struct ggml_tensor * a,
  4705. struct ggml_tensor * b) {
  4706. GGML_ASSERT(ggml_is_contiguous(a));
  4707. GGML_ASSERT(ggml_is_contiguous(b));
  4708. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4709. bool is_node = false;
  4710. if (a->grad) {
  4711. is_node = true;
  4712. }
  4713. if (b->grad) {
  4714. // gradient propagation is not supported
  4715. //GGML_ASSERT(false);
  4716. }
  4717. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4718. result->op = GGML_OP_RESHAPE;
  4719. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4720. result->src0 = a;
  4721. result->src1 = NULL;
  4722. return result;
  4723. }
  4724. struct ggml_tensor * ggml_reshape_1d(
  4725. struct ggml_context * ctx,
  4726. struct ggml_tensor * a,
  4727. int64_t ne0) {
  4728. GGML_ASSERT(ggml_is_contiguous(a));
  4729. GGML_ASSERT(ggml_nelements(a) == ne0);
  4730. bool is_node = false;
  4731. if (a->grad) {
  4732. is_node = true;
  4733. }
  4734. const int64_t ne[1] = { ne0 };
  4735. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data);
  4736. result->op = GGML_OP_RESHAPE;
  4737. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4738. result->src0 = a;
  4739. result->src1 = NULL;
  4740. return result;
  4741. }
  4742. struct ggml_tensor * ggml_reshape_2d(
  4743. struct ggml_context * ctx,
  4744. struct ggml_tensor * a,
  4745. int64_t ne0,
  4746. int64_t ne1) {
  4747. GGML_ASSERT(ggml_is_contiguous(a));
  4748. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4749. bool is_node = false;
  4750. if (a->grad) {
  4751. is_node = true;
  4752. }
  4753. const int64_t ne[2] = { ne0, ne1 };
  4754. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4755. result->op = GGML_OP_RESHAPE;
  4756. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4757. result->src0 = a;
  4758. result->src1 = NULL;
  4759. return result;
  4760. }
  4761. struct ggml_tensor * ggml_reshape_3d(
  4762. struct ggml_context * ctx,
  4763. struct ggml_tensor * a,
  4764. int64_t ne0,
  4765. int64_t ne1,
  4766. int64_t ne2) {
  4767. GGML_ASSERT(ggml_is_contiguous(a));
  4768. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4769. bool is_node = false;
  4770. if (a->grad) {
  4771. is_node = true;
  4772. }
  4773. const int64_t ne[3] = { ne0, ne1, ne2 };
  4774. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4775. result->op = GGML_OP_RESHAPE;
  4776. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4777. result->src0 = a;
  4778. result->src1 = NULL;
  4779. return result;
  4780. }
  4781. struct ggml_tensor * ggml_reshape_4d(
  4782. struct ggml_context * ctx,
  4783. struct ggml_tensor * a,
  4784. int64_t ne0,
  4785. int64_t ne1,
  4786. int64_t ne2,
  4787. int64_t ne3) {
  4788. GGML_ASSERT(ggml_is_contiguous(a));
  4789. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4790. bool is_node = false;
  4791. if (a->grad) {
  4792. is_node = true;
  4793. }
  4794. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4795. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data);
  4796. result->op = GGML_OP_RESHAPE;
  4797. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4798. result->src0 = a;
  4799. result->src1 = NULL;
  4800. return result;
  4801. }
  4802. // ggml_view_1d
  4803. struct ggml_tensor * ggml_view_1d(
  4804. struct ggml_context * ctx,
  4805. struct ggml_tensor * a,
  4806. int64_t ne0,
  4807. size_t offset) {
  4808. bool is_node = false;
  4809. if (a->grad) {
  4810. is_node = true;
  4811. }
  4812. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4813. ggml_scratch_save(ctx);
  4814. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4815. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  4816. ggml_scratch_load(ctx);
  4817. result->op = GGML_OP_VIEW;
  4818. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4819. result->src0 = a;
  4820. result->src1 = NULL;
  4821. result->opt[0] = offs;
  4822. return result;
  4823. }
  4824. // ggml_view_2d
  4825. struct ggml_tensor * ggml_view_2d(
  4826. struct ggml_context * ctx,
  4827. struct ggml_tensor * a,
  4828. int64_t ne0,
  4829. int64_t ne1,
  4830. size_t nb1,
  4831. size_t offset) {
  4832. bool is_node = false;
  4833. if (a->grad) {
  4834. is_node = true;
  4835. }
  4836. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4837. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4838. ggml_scratch_save(ctx);
  4839. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4840. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  4841. ggml_scratch_load(ctx);
  4842. result->nb[1] = nb1;
  4843. result->nb[2] = result->nb[1]*ne1;
  4844. result->nb[3] = result->nb[2];
  4845. result->op = GGML_OP_VIEW;
  4846. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4847. result->src0 = a;
  4848. result->src1 = NULL;
  4849. result->opt[0] = offs;
  4850. return result;
  4851. }
  4852. // ggml_view_3d
  4853. struct ggml_tensor * ggml_view_3d(
  4854. struct ggml_context * ctx,
  4855. struct ggml_tensor * a,
  4856. int64_t ne0,
  4857. int64_t ne1,
  4858. int64_t ne2,
  4859. size_t nb1,
  4860. size_t nb2,
  4861. size_t offset) {
  4862. bool is_node = false;
  4863. if (a->grad) {
  4864. is_node = true;
  4865. }
  4866. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4867. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4868. ggml_scratch_save(ctx);
  4869. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4870. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  4871. ggml_scratch_load(ctx);
  4872. result->nb[1] = nb1;
  4873. result->nb[2] = nb2;
  4874. result->nb[3] = result->nb[2]*ne2;
  4875. result->op = GGML_OP_VIEW;
  4876. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4877. result->src0 = a;
  4878. result->src1 = NULL;
  4879. result->opt[0] = offs;
  4880. return result;
  4881. }
  4882. // ggml_view_4d
  4883. struct ggml_tensor * ggml_view_4d(
  4884. struct ggml_context * ctx,
  4885. struct ggml_tensor * a,
  4886. int64_t ne0,
  4887. int64_t ne1,
  4888. int64_t ne2,
  4889. int64_t ne3,
  4890. size_t nb1,
  4891. size_t nb2,
  4892. size_t nb3,
  4893. size_t offset) {
  4894. bool is_node = false;
  4895. if (a->grad) {
  4896. is_node = true;
  4897. }
  4898. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
  4899. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, (char *) a->data + offset);
  4900. ggml_scratch_save(ctx);
  4901. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4902. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  4903. ggml_scratch_load(ctx);
  4904. result->nb[1] = nb1;
  4905. result->nb[2] = nb2;
  4906. result->nb[3] = nb3;
  4907. result->op = GGML_OP_VIEW;
  4908. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4909. result->src0 = a;
  4910. result->src1 = NULL;
  4911. result->opt[0] = offs;
  4912. return result;
  4913. }
  4914. // ggml_permute
  4915. struct ggml_tensor * ggml_permute(
  4916. struct ggml_context * ctx,
  4917. struct ggml_tensor * a,
  4918. int axis0,
  4919. int axis1,
  4920. int axis2,
  4921. int axis3) {
  4922. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4923. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4924. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4925. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4926. GGML_ASSERT(axis0 != axis1);
  4927. GGML_ASSERT(axis0 != axis2);
  4928. GGML_ASSERT(axis0 != axis3);
  4929. GGML_ASSERT(axis1 != axis2);
  4930. GGML_ASSERT(axis1 != axis3);
  4931. GGML_ASSERT(axis2 != axis3);
  4932. bool is_node = false;
  4933. if (a->grad) {
  4934. is_node = true;
  4935. }
  4936. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4937. int ne[GGML_MAX_DIMS];
  4938. int nb[GGML_MAX_DIMS];
  4939. ne[axis0] = a->ne[0];
  4940. ne[axis1] = a->ne[1];
  4941. ne[axis2] = a->ne[2];
  4942. ne[axis3] = a->ne[3];
  4943. nb[axis0] = a->nb[0];
  4944. nb[axis1] = a->nb[1];
  4945. nb[axis2] = a->nb[2];
  4946. nb[axis3] = a->nb[3];
  4947. result->ne[0] = ne[0];
  4948. result->ne[1] = ne[1];
  4949. result->ne[2] = ne[2];
  4950. result->ne[3] = ne[3];
  4951. result->nb[0] = nb[0];
  4952. result->nb[1] = nb[1];
  4953. result->nb[2] = nb[2];
  4954. result->nb[3] = nb[3];
  4955. result->op = GGML_OP_PERMUTE;
  4956. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4957. result->src0 = a;
  4958. result->src1 = NULL;
  4959. if (is_node) {
  4960. ggml_scratch_save(ctx);
  4961. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 4);
  4962. ((int32_t *) b->data)[0] = axis0;
  4963. ((int32_t *) b->data)[1] = axis1;
  4964. ((int32_t *) b->data)[2] = axis2;
  4965. ((int32_t *) b->data)[3] = axis3;
  4966. ggml_scratch_load(ctx);
  4967. result->opt[0] = b;
  4968. }
  4969. return result;
  4970. }
  4971. // ggml_transpose
  4972. struct ggml_tensor * ggml_transpose(
  4973. struct ggml_context * ctx,
  4974. struct ggml_tensor * a) {
  4975. bool is_node = false;
  4976. if (a->grad) {
  4977. is_node = true;
  4978. }
  4979. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4980. result->ne[0] = a->ne[1];
  4981. result->ne[1] = a->ne[0];
  4982. result->nb[0] = a->nb[1];
  4983. result->nb[1] = a->nb[0];
  4984. result->op = GGML_OP_TRANSPOSE;
  4985. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4986. result->src0 = a;
  4987. result->src1 = NULL;
  4988. return result;
  4989. }
  4990. // ggml_get_rows
  4991. struct ggml_tensor * ggml_get_rows(
  4992. struct ggml_context * ctx,
  4993. struct ggml_tensor * a,
  4994. struct ggml_tensor * b) {
  4995. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4996. bool is_node = false;
  4997. if (a->grad || b->grad) {
  4998. is_node = true;
  4999. }
  5000. // TODO: implement non F32 return
  5001. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5002. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  5003. result->op = GGML_OP_GET_ROWS;
  5004. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5005. result->src0 = a;
  5006. result->src1 = b;
  5007. return result;
  5008. }
  5009. // ggml_get_rows_back
  5010. struct ggml_tensor * ggml_get_rows_back(
  5011. struct ggml_context * ctx,
  5012. struct ggml_tensor * a,
  5013. struct ggml_tensor * b,
  5014. struct ggml_tensor * c) {
  5015. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5016. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5017. bool is_node = false;
  5018. if (a->grad || b->grad) {
  5019. is_node = true;
  5020. }
  5021. // TODO: implement non F32 return
  5022. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5023. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5024. result->op = GGML_OP_GET_ROWS_BACK;
  5025. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5026. result->src0 = a;
  5027. result->src1 = b;
  5028. result->opt[0] = c;
  5029. return result;
  5030. }
  5031. // ggml_diag
  5032. struct ggml_tensor * ggml_diag(
  5033. struct ggml_context * ctx,
  5034. struct ggml_tensor * a) {
  5035. GGML_ASSERT(a->ne[1] == 1);
  5036. bool is_node = false;
  5037. if (a->grad) {
  5038. is_node = true;
  5039. }
  5040. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5041. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  5042. result->op = GGML_OP_DIAG;
  5043. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5044. result->src0 = a;
  5045. result->src1 = NULL;
  5046. return result;
  5047. }
  5048. // ggml_diag_mask_inf
  5049. struct ggml_tensor * ggml_diag_mask_inf_impl(
  5050. struct ggml_context * ctx,
  5051. struct ggml_tensor * a,
  5052. int n_past,
  5053. bool inplace) {
  5054. bool is_node = false;
  5055. if (a->grad) {
  5056. is_node = true;
  5057. }
  5058. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5059. ggml_scratch_save(ctx);
  5060. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5061. ((int32_t *) b->data)[0] = n_past;
  5062. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  5063. ggml_scratch_load(ctx);
  5064. result->op = GGML_OP_DIAG_MASK_INF;
  5065. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5066. result->src0 = a;
  5067. result->src1 = b;
  5068. return result;
  5069. }
  5070. struct ggml_tensor * ggml_diag_mask_inf(
  5071. struct ggml_context * ctx,
  5072. struct ggml_tensor * a,
  5073. int n_past) {
  5074. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5075. }
  5076. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5077. struct ggml_context * ctx,
  5078. struct ggml_tensor * a,
  5079. int n_past) {
  5080. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5081. }
  5082. // ggml_diag_mask_zero
  5083. struct ggml_tensor * ggml_diag_mask_zero_impl(
  5084. struct ggml_context * ctx,
  5085. struct ggml_tensor * a,
  5086. int n_past,
  5087. bool inplace) {
  5088. bool is_node = false;
  5089. if (a->grad) {
  5090. is_node = true;
  5091. }
  5092. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5093. ggml_scratch_save(ctx);
  5094. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5095. ggml_set_name(b, "n_past, inplace");
  5096. ((int32_t *) b->data)[0] = n_past;
  5097. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  5098. ggml_scratch_load(ctx);
  5099. result->op = GGML_OP_DIAG_MASK_ZERO;
  5100. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5101. result->src0 = a;
  5102. result->src1 = b;
  5103. return result;
  5104. }
  5105. struct ggml_tensor * ggml_diag_mask_zero(
  5106. struct ggml_context * ctx,
  5107. struct ggml_tensor * a,
  5108. int n_past) {
  5109. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5110. }
  5111. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5112. struct ggml_context * ctx,
  5113. struct ggml_tensor * a,
  5114. int n_past) {
  5115. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5116. }
  5117. // ggml_soft_max
  5118. struct ggml_tensor * ggml_soft_max_impl(
  5119. struct ggml_context * ctx,
  5120. struct ggml_tensor * a,
  5121. bool inplace) {
  5122. bool is_node = false;
  5123. if (a->grad) {
  5124. is_node = true;
  5125. }
  5126. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5127. result->op = GGML_OP_SOFT_MAX;
  5128. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5129. result->src0 = a;
  5130. result->src1 = NULL;
  5131. return result;
  5132. }
  5133. struct ggml_tensor * ggml_soft_max(
  5134. struct ggml_context * ctx,
  5135. struct ggml_tensor * a) {
  5136. return ggml_soft_max_impl(ctx, a, false);
  5137. }
  5138. struct ggml_tensor * ggml_soft_max_inplace(
  5139. struct ggml_context * ctx,
  5140. struct ggml_tensor * a) {
  5141. return ggml_soft_max_impl(ctx, a, true);
  5142. }
  5143. // ggml_soft_max_back
  5144. struct ggml_tensor * ggml_soft_max_back_impl(
  5145. struct ggml_context * ctx,
  5146. struct ggml_tensor * a,
  5147. struct ggml_tensor * b,
  5148. bool inplace) {
  5149. bool is_node = false;
  5150. if (a->grad || b->grad) {
  5151. is_node = true; // TODO : implement backward pass
  5152. }
  5153. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5154. result->op = GGML_OP_SOFT_MAX_BACK;
  5155. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5156. result->src0 = a;
  5157. result->src1 = b;
  5158. return result;
  5159. }
  5160. struct ggml_tensor * ggml_soft_max_back(
  5161. struct ggml_context * ctx,
  5162. struct ggml_tensor * a,
  5163. struct ggml_tensor * b) {
  5164. return ggml_soft_max_back_impl(ctx, a, b, false);
  5165. }
  5166. struct ggml_tensor * ggml_soft_max_back_inplace(
  5167. struct ggml_context * ctx,
  5168. struct ggml_tensor * a,
  5169. struct ggml_tensor * b) {
  5170. return ggml_soft_max_back_impl(ctx, a, b, true);
  5171. }
  5172. // ggml_rope
  5173. struct ggml_tensor * ggml_rope_impl(
  5174. struct ggml_context * ctx,
  5175. struct ggml_tensor * a,
  5176. int n_past,
  5177. int n_dims,
  5178. int mode,
  5179. bool inplace) {
  5180. GGML_ASSERT(n_past >= 0);
  5181. bool is_node = false;
  5182. if (a->grad) {
  5183. is_node = true;
  5184. }
  5185. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5186. ggml_scratch_save(ctx);
  5187. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5188. ((int32_t *) b->data)[0] = n_past;
  5189. ((int32_t *) b->data)[1] = n_dims;
  5190. ((int32_t *) b->data)[2] = mode;
  5191. ggml_scratch_load(ctx);
  5192. result->op = GGML_OP_ROPE;
  5193. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5194. result->src0 = a;
  5195. result->src1 = b;
  5196. return result;
  5197. }
  5198. struct ggml_tensor * ggml_rope(
  5199. struct ggml_context * ctx,
  5200. struct ggml_tensor * a,
  5201. int n_past,
  5202. int n_dims,
  5203. int mode) {
  5204. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, false);
  5205. }
  5206. struct ggml_tensor * ggml_rope_inplace(
  5207. struct ggml_context * ctx,
  5208. struct ggml_tensor * a,
  5209. int n_past,
  5210. int n_dims,
  5211. int mode) {
  5212. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, true);
  5213. }
  5214. // ggml_rope_back
  5215. struct ggml_tensor * ggml_rope_back(
  5216. struct ggml_context * ctx,
  5217. struct ggml_tensor * a,
  5218. int n_past,
  5219. int n_dims,
  5220. int mode) {
  5221. GGML_ASSERT(n_past >= 0);
  5222. bool is_node = false;
  5223. if (a->grad) {
  5224. is_node = false; // TODO: implement backward
  5225. }
  5226. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5227. ggml_scratch_save(ctx);
  5228. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5229. ggml_set_name(b, "n_past, n_dims, mode");
  5230. ((int32_t *) b->data)[0] = n_past;
  5231. ((int32_t *) b->data)[1] = n_dims;
  5232. ((int32_t *) b->data)[2] = mode;
  5233. ggml_scratch_load(ctx);
  5234. result->op = GGML_OP_ROPE_BACK;
  5235. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5236. result->src0 = a;
  5237. result->src1 = b;
  5238. return result;
  5239. }
  5240. // ggml_alibi
  5241. struct ggml_tensor * ggml_alibi(
  5242. struct ggml_context * ctx,
  5243. struct ggml_tensor * a,
  5244. int n_past,
  5245. int n_head,
  5246. float bias_max) {
  5247. GGML_ASSERT(n_past >= 0);
  5248. bool is_node = false;
  5249. if (a->grad) {
  5250. GGML_ASSERT(false); // TODO: implement backward
  5251. is_node = true;
  5252. }
  5253. // TODO: when implement backward, fix this:
  5254. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5255. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5256. ggml_scratch_save(ctx);
  5257. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5258. ((int32_t *) b->data)[0] = n_past;
  5259. ((int32_t *) b->data)[1] = n_head;
  5260. GGML_ASSERT(sizeof(float) == sizeof(int32_t));
  5261. (((float *) b->data)[2]) = bias_max;
  5262. ggml_scratch_load(ctx);
  5263. result->op = GGML_OP_ALIBI;
  5264. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5265. result->src0 = a;
  5266. result->src1 = b;
  5267. return result;
  5268. }
  5269. // ggml_clamp
  5270. struct ggml_tensor * ggml_clamp(
  5271. struct ggml_context * ctx,
  5272. struct ggml_tensor * a,
  5273. float min,
  5274. float max) {
  5275. bool is_node = false;
  5276. if (a->grad) {
  5277. GGML_ASSERT(false); // TODO: implement backward
  5278. is_node = true;
  5279. }
  5280. // TODO: when implement backward, fix this:
  5281. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5282. ggml_scratch_save(ctx);
  5283. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5284. ((float *) b->data)[0] = min;
  5285. ((float *) b->data)[1] = max;
  5286. ggml_scratch_load(ctx);
  5287. result->op = GGML_OP_CLAMP;
  5288. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5289. result->src0 = a;
  5290. result->src1 = b;
  5291. return result;
  5292. }
  5293. // ggml_conv_1d_1s
  5294. struct ggml_tensor * ggml_conv_1d_1s(
  5295. struct ggml_context * ctx,
  5296. struct ggml_tensor * a,
  5297. struct ggml_tensor * b) {
  5298. GGML_ASSERT(ggml_is_matrix(b));
  5299. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5300. GGML_ASSERT(a->ne[3] == 1);
  5301. bool is_node = false;
  5302. if (a->grad || b->grad) {
  5303. GGML_ASSERT(false); // TODO: implement backward
  5304. is_node = true;
  5305. }
  5306. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  5307. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5308. result->op = GGML_OP_CONV_1D_1S;
  5309. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5310. result->src0 = a;
  5311. result->src1 = b;
  5312. return result;
  5313. }
  5314. // ggml_conv_1d_2s
  5315. struct ggml_tensor * ggml_conv_1d_2s(
  5316. struct ggml_context * ctx,
  5317. struct ggml_tensor * a,
  5318. struct ggml_tensor * b) {
  5319. GGML_ASSERT(ggml_is_matrix(b));
  5320. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5321. GGML_ASSERT(a->ne[3] == 1);
  5322. bool is_node = false;
  5323. if (a->grad || b->grad) {
  5324. GGML_ASSERT(false); // TODO: implement backward
  5325. is_node = true;
  5326. }
  5327. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  5328. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5329. result->op = GGML_OP_CONV_1D_2S;
  5330. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5331. result->src0 = a;
  5332. result->src1 = b;
  5333. return result;
  5334. }
  5335. // ggml_flash_attn
  5336. struct ggml_tensor * ggml_flash_attn(
  5337. struct ggml_context * ctx,
  5338. struct ggml_tensor * q,
  5339. struct ggml_tensor * k,
  5340. struct ggml_tensor * v,
  5341. bool masked) {
  5342. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5343. // TODO: check if vT can be multiplied by (k*qT)
  5344. bool is_node = false;
  5345. if (q->grad || k->grad || v->grad) {
  5346. is_node = true;
  5347. }
  5348. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5349. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  5350. result->op = GGML_OP_FLASH_ATTN;
  5351. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5352. result->src0 = q;
  5353. result->src1 = k;
  5354. result->opt[0] = v;
  5355. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  5356. return result;
  5357. }
  5358. // ggml_flash_ff
  5359. struct ggml_tensor * ggml_flash_ff(
  5360. struct ggml_context * ctx,
  5361. struct ggml_tensor * a,
  5362. struct ggml_tensor * b0,
  5363. struct ggml_tensor * b1,
  5364. struct ggml_tensor * c0,
  5365. struct ggml_tensor * c1) {
  5366. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5367. // TODO: more checks
  5368. bool is_node = false;
  5369. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5370. is_node = true;
  5371. }
  5372. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5373. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  5374. result->op = GGML_OP_FLASH_FF;
  5375. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5376. result->src0 = a;
  5377. result->src1 = b0;
  5378. result->opt[0] = b1;
  5379. result->opt[1] = c0;
  5380. result->opt[2] = c1;
  5381. return result;
  5382. }
  5383. // ggml_flash_attn_back
  5384. struct ggml_tensor * ggml_flash_attn_back(
  5385. struct ggml_context * ctx,
  5386. struct ggml_tensor * q,
  5387. struct ggml_tensor * k,
  5388. struct ggml_tensor * v,
  5389. struct ggml_tensor * d,
  5390. bool masked) {
  5391. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5392. // TODO: check if vT can be multiplied by (k*qT)
  5393. // d shape [D,N,ne2,ne3]
  5394. // q shape [D,N,ne2,ne3]
  5395. // k shape [D,M,ne2,ne3]
  5396. // v shape [M,D,ne2,ne3]
  5397. const int64_t D = q->ne[0];
  5398. const int64_t N = q->ne[1];
  5399. const int64_t M = k->ne[1];
  5400. const int64_t ne2 = q->ne[2];
  5401. const int64_t ne3 = q->ne[3];
  5402. GGML_ASSERT(k->ne[0] == D);
  5403. GGML_ASSERT(v->ne[0] == M);
  5404. GGML_ASSERT(v->ne[1] == D);
  5405. GGML_ASSERT(d->ne[0] == D);
  5406. GGML_ASSERT(d->ne[1] == N);
  5407. GGML_ASSERT(k->ne[2] == ne2);
  5408. GGML_ASSERT(k->ne[3] == ne3);
  5409. GGML_ASSERT(v->ne[2] == ne2);
  5410. GGML_ASSERT(v->ne[3] == ne3);
  5411. GGML_ASSERT(d->ne[2] == ne2);
  5412. GGML_ASSERT(d->ne[3] == ne3);
  5413. bool is_node = false;
  5414. if (q->grad || k->grad || v->grad) {
  5415. // when using this operation (in backwards pass) these grads are set.
  5416. // we don't want to create (big) grad of our result, so is_node is false.
  5417. is_node = false;
  5418. }
  5419. // store gradients of q, k and v as continuous tensors concatenated in result.
  5420. // q shape[D,N,ne2,ne3] ; k shape [D,M,ne2,ne3] ; v shape [M,D,ne2,ne3]
  5421. // gradq->data = result->data
  5422. // gradk->data = result->data + nb0*D*N*ne2*ne3
  5423. // gradv->data = result->data + nb0*D*N*ne2*ne3 + nb0*D*M*ne2*ne3
  5424. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5425. int64_t ne[4] = {D,M+N+M,ne2,ne3};
  5426. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5427. result->op = GGML_OP_FLASH_ATTN_BACK;
  5428. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5429. result->src0 = q;
  5430. result->src1 = k;
  5431. result->opt[0] = v;
  5432. result->opt[1] = d;
  5433. result->opt[2] = ggml_new_i32(ctx, masked ? 1 : 0);
  5434. return result;
  5435. }
  5436. // ggml_map_unary
  5437. struct ggml_tensor * ggml_map_unary_impl_f32(
  5438. struct ggml_context * ctx,
  5439. struct ggml_tensor * a,
  5440. const ggml_unary_op_f32_t fun,
  5441. bool inplace) {
  5442. bool is_node = false;
  5443. if (!inplace && a->grad) {
  5444. is_node = true;
  5445. }
  5446. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5447. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5448. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5449. result->op = GGML_OP_MAP_UNARY;
  5450. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5451. result->src0 = a;
  5452. result->opt[0] = addr_tensor;
  5453. return result;
  5454. }
  5455. struct ggml_tensor * ggml_map_unary_f32(
  5456. struct ggml_context * ctx,
  5457. struct ggml_tensor * a,
  5458. const ggml_unary_op_f32_t fun) {
  5459. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5460. }
  5461. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5462. struct ggml_context * ctx,
  5463. struct ggml_tensor * a,
  5464. const ggml_unary_op_f32_t fun) {
  5465. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5466. }
  5467. // ggml_map_binary
  5468. struct ggml_tensor * ggml_map_binary_impl_f32(
  5469. struct ggml_context * ctx,
  5470. struct ggml_tensor * a,
  5471. struct ggml_tensor * b,
  5472. const ggml_binary_op_f32_t fun,
  5473. bool inplace) {
  5474. GGML_ASSERT(ggml_are_same_shape(a, b));
  5475. bool is_node = false;
  5476. if (!inplace && (a->grad || b->grad)) {
  5477. is_node = true;
  5478. }
  5479. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5480. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5481. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5482. result->op = GGML_OP_MAP_BINARY;
  5483. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5484. result->src0 = a;
  5485. result->src1 = b;
  5486. result->opt[0] = addr_tensor;
  5487. return result;
  5488. }
  5489. struct ggml_tensor * ggml_map_binary_f32(
  5490. struct ggml_context * ctx,
  5491. struct ggml_tensor * a,
  5492. struct ggml_tensor * b,
  5493. const ggml_binary_op_f32_t fun) {
  5494. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5495. }
  5496. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5497. struct ggml_context * ctx,
  5498. struct ggml_tensor * a,
  5499. struct ggml_tensor * b,
  5500. const ggml_binary_op_f32_t fun) {
  5501. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5502. }
  5503. // ggml_cross_entropy_loss
  5504. struct ggml_tensor * ggml_cross_entropy_loss(
  5505. struct ggml_context * ctx,
  5506. struct ggml_tensor * a,
  5507. struct ggml_tensor * b) {
  5508. GGML_ASSERT(ggml_are_same_shape(a, b));
  5509. bool is_node = false;
  5510. if (a->grad || b->grad) {
  5511. is_node = true;
  5512. }
  5513. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5514. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5515. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5516. result->src0 = a;
  5517. result->src1 = b;
  5518. return result;
  5519. }
  5520. // ggml_cross_entropy_loss_back
  5521. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5522. struct ggml_context * ctx,
  5523. struct ggml_tensor * a,
  5524. struct ggml_tensor * b,
  5525. struct ggml_tensor * c) {
  5526. GGML_ASSERT(ggml_are_same_shape(a, b));
  5527. GGML_ASSERT(ggml_is_scalar(c));
  5528. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5529. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5530. result->grad = NULL;
  5531. result->src0 = a;
  5532. result->src1 = b;
  5533. result->opt[0] = c;
  5534. return result;
  5535. }
  5536. ////////////////////////////////////////////////////////////////////////////////
  5537. void ggml_set_param(
  5538. struct ggml_context * ctx,
  5539. struct ggml_tensor * tensor) {
  5540. tensor->is_param = true;
  5541. GGML_ASSERT(tensor->grad == NULL);
  5542. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5543. }
  5544. // ggml_compute_forward_dup
  5545. static void ggml_compute_forward_dup_same_cont(
  5546. const struct ggml_compute_params * params,
  5547. const struct ggml_tensor * src0,
  5548. struct ggml_tensor * dst) {
  5549. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5550. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5551. GGML_ASSERT(src0->type == dst->type);
  5552. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5553. return;
  5554. }
  5555. const size_t nb00 = src0->nb[0];
  5556. const size_t nb0 = dst->nb[0];
  5557. const int ith = params->ith; // thread index
  5558. const int nth = params->nth; // number of threads
  5559. // parallelize by elements
  5560. const int ne = ggml_nelements(dst);
  5561. const int dr = (ne + nth - 1) / nth;
  5562. const int ie0 = dr * ith;
  5563. const int ie1 = MIN(ie0 + dr, ne);
  5564. if (ie0 < ie1) {
  5565. memcpy(
  5566. ((char *) dst->data + ie0*nb0),
  5567. ((char *) src0->data + ie0*nb00),
  5568. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  5569. }
  5570. }
  5571. static void ggml_compute_forward_dup_f16(
  5572. const struct ggml_compute_params * params,
  5573. const struct ggml_tensor * src0,
  5574. struct ggml_tensor * dst) {
  5575. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5576. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5577. return;
  5578. }
  5579. const int64_t ne00 = src0->ne[0];
  5580. const int64_t ne01 = src0->ne[1];
  5581. const int64_t ne02 = src0->ne[2];
  5582. const int64_t ne03 = src0->ne[3];
  5583. const int64_t ne0 = dst->ne[0];
  5584. const int64_t ne1 = dst->ne[1];
  5585. const int64_t ne2 = dst->ne[2];
  5586. const int64_t ne3 = dst->ne[3];
  5587. const size_t nb00 = src0->nb[0];
  5588. const size_t nb01 = src0->nb[1];
  5589. const size_t nb02 = src0->nb[2];
  5590. const size_t nb03 = src0->nb[3];
  5591. const size_t nb0 = dst->nb[0];
  5592. const size_t nb1 = dst->nb[1];
  5593. const size_t nb2 = dst->nb[2];
  5594. const size_t nb3 = dst->nb[3];
  5595. const int ith = params->ith; // thread index
  5596. const int nth = params->nth; // number of threads
  5597. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5598. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5599. return;
  5600. }
  5601. // parallelize by rows
  5602. const int nr = ne01;
  5603. // number of rows per thread
  5604. const int dr = (nr + nth - 1) / nth;
  5605. // row range for this thread
  5606. const int ir0 = dr * ith;
  5607. const int ir1 = MIN(ir0 + dr, nr);
  5608. if (src0->type == dst->type &&
  5609. ne00 == ne0 &&
  5610. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5611. // copy by rows
  5612. const size_t rs = ne00*nb00;
  5613. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5614. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5615. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5616. memcpy(
  5617. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5618. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5619. rs);
  5620. }
  5621. }
  5622. }
  5623. return;
  5624. }
  5625. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5626. if (ggml_is_contiguous(dst)) {
  5627. if (nb00 == sizeof(ggml_fp16_t)) {
  5628. if (dst->type == GGML_TYPE_F16) {
  5629. size_t id = 0;
  5630. const size_t rs = ne00 * nb00;
  5631. char * dst_ptr = (char *) dst->data;
  5632. for (int i03 = 0; i03 < ne03; i03++) {
  5633. for (int i02 = 0; i02 < ne02; i02++) {
  5634. id += rs * ir0;
  5635. for (int i01 = ir0; i01 < ir1; i01++) {
  5636. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5637. memcpy(dst_ptr + id, src0_ptr, rs);
  5638. id += rs;
  5639. }
  5640. id += rs * (ne01 - ir1);
  5641. }
  5642. }
  5643. } else if (dst->type == GGML_TYPE_F32) {
  5644. size_t id = 0;
  5645. float * dst_ptr = (float *) dst->data;
  5646. for (int i03 = 0; i03 < ne03; i03++) {
  5647. for (int i02 = 0; i02 < ne02; i02++) {
  5648. id += ne00 * ir0;
  5649. for (int i01 = ir0; i01 < ir1; i01++) {
  5650. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5651. for (int i00 = 0; i00 < ne00; i00++) {
  5652. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5653. id++;
  5654. }
  5655. }
  5656. id += ne00 * (ne01 - ir1);
  5657. }
  5658. }
  5659. } else if (ggml_is_quantized(dst->type)) {
  5660. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5661. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5662. size_t id = 0;
  5663. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5664. char * dst_ptr = (char *) dst->data;
  5665. for (int i03 = 0; i03 < ne03; i03++) {
  5666. for (int i02 = 0; i02 < ne02; i02++) {
  5667. id += rs * ir0;
  5668. for (int i01 = ir0; i01 < ir1; i01++) {
  5669. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5670. for (int i00 = 0; i00 < ne00; i00++) {
  5671. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5672. }
  5673. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5674. id += rs;
  5675. }
  5676. id += rs * (ne01 - ir1);
  5677. }
  5678. }
  5679. } else {
  5680. GGML_ASSERT(false); // TODO: implement
  5681. }
  5682. } else {
  5683. //printf("%s: this is not optimal - fix me\n", __func__);
  5684. if (dst->type == GGML_TYPE_F32) {
  5685. size_t id = 0;
  5686. float * dst_ptr = (float *) dst->data;
  5687. for (int i03 = 0; i03 < ne03; i03++) {
  5688. for (int i02 = 0; i02 < ne02; i02++) {
  5689. id += ne00 * ir0;
  5690. for (int i01 = ir0; i01 < ir1; i01++) {
  5691. for (int i00 = 0; i00 < ne00; i00++) {
  5692. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5693. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5694. id++;
  5695. }
  5696. }
  5697. id += ne00 * (ne01 - ir1);
  5698. }
  5699. }
  5700. } else if (dst->type == GGML_TYPE_F16) {
  5701. size_t id = 0;
  5702. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5703. for (int i03 = 0; i03 < ne03; i03++) {
  5704. for (int i02 = 0; i02 < ne02; i02++) {
  5705. id += ne00 * ir0;
  5706. for (int i01 = ir0; i01 < ir1; i01++) {
  5707. for (int i00 = 0; i00 < ne00; i00++) {
  5708. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5709. dst_ptr[id] = *src0_ptr;
  5710. id++;
  5711. }
  5712. }
  5713. id += ne00 * (ne01 - ir1);
  5714. }
  5715. }
  5716. } else {
  5717. GGML_ASSERT(false); // TODO: implement
  5718. }
  5719. }
  5720. return;
  5721. }
  5722. // dst counters
  5723. int64_t i10 = 0;
  5724. int64_t i11 = 0;
  5725. int64_t i12 = 0;
  5726. int64_t i13 = 0;
  5727. if (dst->type == GGML_TYPE_F16) {
  5728. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5729. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5730. i10 += ne00 * ir0;
  5731. while (i10 >= ne0) {
  5732. i10 -= ne0;
  5733. if (++i11 == ne1) {
  5734. i11 = 0;
  5735. if (++i12 == ne2) {
  5736. i12 = 0;
  5737. if (++i13 == ne3) {
  5738. i13 = 0;
  5739. }
  5740. }
  5741. }
  5742. }
  5743. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5744. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5745. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5746. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5747. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5748. if (++i10 == ne00) {
  5749. i10 = 0;
  5750. if (++i11 == ne01) {
  5751. i11 = 0;
  5752. if (++i12 == ne02) {
  5753. i12 = 0;
  5754. if (++i13 == ne03) {
  5755. i13 = 0;
  5756. }
  5757. }
  5758. }
  5759. }
  5760. }
  5761. }
  5762. i10 += ne00 * (ne01 - ir1);
  5763. while (i10 >= ne0) {
  5764. i10 -= ne0;
  5765. if (++i11 == ne1) {
  5766. i11 = 0;
  5767. if (++i12 == ne2) {
  5768. i12 = 0;
  5769. if (++i13 == ne3) {
  5770. i13 = 0;
  5771. }
  5772. }
  5773. }
  5774. }
  5775. }
  5776. }
  5777. } else if (dst->type == GGML_TYPE_F32) {
  5778. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5779. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5780. i10 += ne00 * ir0;
  5781. while (i10 >= ne0) {
  5782. i10 -= ne0;
  5783. if (++i11 == ne1) {
  5784. i11 = 0;
  5785. if (++i12 == ne2) {
  5786. i12 = 0;
  5787. if (++i13 == ne3) {
  5788. i13 = 0;
  5789. }
  5790. }
  5791. }
  5792. }
  5793. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5794. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5795. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5796. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5797. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5798. if (++i10 == ne0) {
  5799. i10 = 0;
  5800. if (++i11 == ne1) {
  5801. i11 = 0;
  5802. if (++i12 == ne2) {
  5803. i12 = 0;
  5804. if (++i13 == ne3) {
  5805. i13 = 0;
  5806. }
  5807. }
  5808. }
  5809. }
  5810. }
  5811. }
  5812. i10 += ne00 * (ne01 - ir1);
  5813. while (i10 >= ne0) {
  5814. i10 -= ne0;
  5815. if (++i11 == ne1) {
  5816. i11 = 0;
  5817. if (++i12 == ne2) {
  5818. i12 = 0;
  5819. if (++i13 == ne3) {
  5820. i13 = 0;
  5821. }
  5822. }
  5823. }
  5824. }
  5825. }
  5826. }
  5827. } else {
  5828. GGML_ASSERT(false); // TODO: implement
  5829. }
  5830. }
  5831. static void ggml_compute_forward_dup_f32(
  5832. const struct ggml_compute_params * params,
  5833. const struct ggml_tensor * src0,
  5834. struct ggml_tensor * dst) {
  5835. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5836. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5837. return;
  5838. }
  5839. const int64_t ne00 = src0->ne[0];
  5840. const int64_t ne01 = src0->ne[1];
  5841. const int64_t ne02 = src0->ne[2];
  5842. const int64_t ne03 = src0->ne[3];
  5843. const int64_t ne0 = dst->ne[0];
  5844. const int64_t ne1 = dst->ne[1];
  5845. const int64_t ne2 = dst->ne[2];
  5846. const int64_t ne3 = dst->ne[3];
  5847. const size_t nb00 = src0->nb[0];
  5848. const size_t nb01 = src0->nb[1];
  5849. const size_t nb02 = src0->nb[2];
  5850. const size_t nb03 = src0->nb[3];
  5851. const size_t nb0 = dst->nb[0];
  5852. const size_t nb1 = dst->nb[1];
  5853. const size_t nb2 = dst->nb[2];
  5854. const size_t nb3 = dst->nb[3];
  5855. const int ith = params->ith; // thread index
  5856. const int nth = params->nth; // number of threads
  5857. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5858. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5859. return;
  5860. }
  5861. // parallelize by rows
  5862. const int nr = ne01;
  5863. // number of rows per thread
  5864. const int dr = (nr + nth - 1) / nth;
  5865. // row range for this thread
  5866. const int ir0 = dr * ith;
  5867. const int ir1 = MIN(ir0 + dr, nr);
  5868. if (src0->type == dst->type &&
  5869. ne00 == ne0 &&
  5870. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5871. // copy by rows
  5872. const size_t rs = ne00*nb00;
  5873. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5874. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5875. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5876. memcpy(
  5877. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5878. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5879. rs);
  5880. }
  5881. }
  5882. }
  5883. return;
  5884. }
  5885. if (ggml_is_contiguous(dst)) {
  5886. // TODO: simplify
  5887. if (nb00 == sizeof(float)) {
  5888. if (dst->type == GGML_TYPE_F32) {
  5889. size_t id = 0;
  5890. const size_t rs = ne00 * nb00;
  5891. char * dst_ptr = (char *) dst->data;
  5892. for (int i03 = 0; i03 < ne03; i03++) {
  5893. for (int i02 = 0; i02 < ne02; i02++) {
  5894. id += rs * ir0;
  5895. for (int i01 = ir0; i01 < ir1; i01++) {
  5896. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5897. memcpy(dst_ptr + id, src0_ptr, rs);
  5898. id += rs;
  5899. }
  5900. id += rs * (ne01 - ir1);
  5901. }
  5902. }
  5903. } else if (dst->type == GGML_TYPE_F16) {
  5904. size_t id = 0;
  5905. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5906. for (int i03 = 0; i03 < ne03; i03++) {
  5907. for (int i02 = 0; i02 < ne02; i02++) {
  5908. id += ne00 * ir0;
  5909. for (int i01 = ir0; i01 < ir1; i01++) {
  5910. for (int i00 = 0; i00 < ne00; i00++) {
  5911. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5912. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5913. id++;
  5914. }
  5915. }
  5916. id += ne00 * (ne01 - ir1);
  5917. }
  5918. }
  5919. } else if (ggml_is_quantized(dst->type)) {
  5920. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5921. size_t id = 0;
  5922. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5923. char * dst_ptr = (char *) dst->data;
  5924. for (int i03 = 0; i03 < ne03; i03++) {
  5925. for (int i02 = 0; i02 < ne02; i02++) {
  5926. id += rs * ir0;
  5927. for (int i01 = ir0; i01 < ir1; i01++) {
  5928. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5929. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5930. id += rs;
  5931. }
  5932. id += rs * (ne01 - ir1);
  5933. }
  5934. }
  5935. } else {
  5936. GGML_ASSERT(false); // TODO: implement
  5937. }
  5938. } else {
  5939. //printf("%s: this is not optimal - fix me\n", __func__);
  5940. if (dst->type == GGML_TYPE_F32) {
  5941. size_t id = 0;
  5942. float * dst_ptr = (float *) dst->data;
  5943. for (int i03 = 0; i03 < ne03; i03++) {
  5944. for (int i02 = 0; i02 < ne02; i02++) {
  5945. id += ne00 * ir0;
  5946. for (int i01 = ir0; i01 < ir1; i01++) {
  5947. for (int i00 = 0; i00 < ne00; i00++) {
  5948. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5949. dst_ptr[id] = *src0_ptr;
  5950. id++;
  5951. }
  5952. }
  5953. id += ne00 * (ne01 - ir1);
  5954. }
  5955. }
  5956. } else if (dst->type == GGML_TYPE_F16) {
  5957. size_t id = 0;
  5958. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5959. for (int i03 = 0; i03 < ne03; i03++) {
  5960. for (int i02 = 0; i02 < ne02; i02++) {
  5961. id += ne00 * ir0;
  5962. for (int i01 = ir0; i01 < ir1; i01++) {
  5963. for (int i00 = 0; i00 < ne00; i00++) {
  5964. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5965. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5966. id++;
  5967. }
  5968. }
  5969. id += ne00 * (ne01 - ir1);
  5970. }
  5971. }
  5972. } else {
  5973. GGML_ASSERT(false); // TODO: implement
  5974. }
  5975. }
  5976. return;
  5977. }
  5978. // dst counters
  5979. int64_t i10 = 0;
  5980. int64_t i11 = 0;
  5981. int64_t i12 = 0;
  5982. int64_t i13 = 0;
  5983. if (dst->type == GGML_TYPE_F32) {
  5984. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5985. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5986. i10 += ne00 * ir0;
  5987. while (i10 >= ne0) {
  5988. i10 -= ne0;
  5989. if (++i11 == ne1) {
  5990. i11 = 0;
  5991. if (++i12 == ne2) {
  5992. i12 = 0;
  5993. if (++i13 == ne3) {
  5994. i13 = 0;
  5995. }
  5996. }
  5997. }
  5998. }
  5999. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6000. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6001. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6002. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6003. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6004. if (++i10 == ne0) {
  6005. i10 = 0;
  6006. if (++i11 == ne1) {
  6007. i11 = 0;
  6008. if (++i12 == ne2) {
  6009. i12 = 0;
  6010. if (++i13 == ne3) {
  6011. i13 = 0;
  6012. }
  6013. }
  6014. }
  6015. }
  6016. }
  6017. }
  6018. i10 += ne00 * (ne01 - ir1);
  6019. while (i10 >= ne0) {
  6020. i10 -= ne0;
  6021. if (++i11 == ne1) {
  6022. i11 = 0;
  6023. if (++i12 == ne2) {
  6024. i12 = 0;
  6025. if (++i13 == ne3) {
  6026. i13 = 0;
  6027. }
  6028. }
  6029. }
  6030. }
  6031. }
  6032. }
  6033. } else if (dst->type == GGML_TYPE_F16) {
  6034. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6035. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6036. i10 += ne00 * ir0;
  6037. while (i10 >= ne0) {
  6038. i10 -= ne0;
  6039. if (++i11 == ne1) {
  6040. i11 = 0;
  6041. if (++i12 == ne2) {
  6042. i12 = 0;
  6043. if (++i13 == ne3) {
  6044. i13 = 0;
  6045. }
  6046. }
  6047. }
  6048. }
  6049. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6050. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6051. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6052. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6053. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6054. if (++i10 == ne0) {
  6055. i10 = 0;
  6056. if (++i11 == ne1) {
  6057. i11 = 0;
  6058. if (++i12 == ne2) {
  6059. i12 = 0;
  6060. if (++i13 == ne3) {
  6061. i13 = 0;
  6062. }
  6063. }
  6064. }
  6065. }
  6066. }
  6067. }
  6068. i10 += ne00 * (ne01 - ir1);
  6069. while (i10 >= ne0) {
  6070. i10 -= ne0;
  6071. if (++i11 == ne1) {
  6072. i11 = 0;
  6073. if (++i12 == ne2) {
  6074. i12 = 0;
  6075. if (++i13 == ne3) {
  6076. i13 = 0;
  6077. }
  6078. }
  6079. }
  6080. }
  6081. }
  6082. }
  6083. } else {
  6084. GGML_ASSERT(false); // TODO: implement
  6085. }
  6086. }
  6087. static void ggml_compute_forward_dup(
  6088. const struct ggml_compute_params * params,
  6089. const struct ggml_tensor * src0,
  6090. struct ggml_tensor * dst) {
  6091. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6092. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6093. return;
  6094. }
  6095. switch (src0->type) {
  6096. case GGML_TYPE_F16:
  6097. {
  6098. ggml_compute_forward_dup_f16(params, src0, dst);
  6099. } break;
  6100. case GGML_TYPE_F32:
  6101. {
  6102. ggml_compute_forward_dup_f32(params, src0, dst);
  6103. } break;
  6104. default:
  6105. {
  6106. GGML_ASSERT(false);
  6107. } break;
  6108. }
  6109. }
  6110. // ggml_compute_forward_add
  6111. static void ggml_compute_forward_add_f32(
  6112. const struct ggml_compute_params * params,
  6113. const struct ggml_tensor * src0,
  6114. const struct ggml_tensor * src1,
  6115. struct ggml_tensor * dst) {
  6116. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6117. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6118. return;
  6119. }
  6120. const int ith = params->ith;
  6121. const int nth = params->nth;
  6122. const int nr = ggml_nrows(src0);
  6123. const int64_t ne0 = src0->ne[0];
  6124. const int64_t ne1 = src0->ne[1];
  6125. const int64_t ne2 = src0->ne[2];
  6126. const size_t nb00 = src0->nb[0];
  6127. const size_t nb01 = src0->nb[1];
  6128. const size_t nb02 = src0->nb[2];
  6129. const size_t nb03 = src0->nb[3];
  6130. const size_t nb10 = src1->nb[0];
  6131. const size_t nb11 = src1->nb[1];
  6132. const size_t nb12 = src1->nb[2];
  6133. const size_t nb13 = src1->nb[3];
  6134. const size_t nb0 = dst->nb[0];
  6135. const size_t nb1 = dst->nb[1];
  6136. const size_t nb2 = dst->nb[2];
  6137. const size_t nb3 = dst->nb[3];
  6138. GGML_ASSERT( nb0 == sizeof(float));
  6139. GGML_ASSERT(nb00 == sizeof(float));
  6140. // rows per thread
  6141. const int dr = (nr + nth - 1)/nth;
  6142. // row range for this thread
  6143. const int ir0 = dr*ith;
  6144. const int ir1 = MIN(ir0 + dr, nr);
  6145. if (nb10 == sizeof(float)) {
  6146. for (int ir = ir0; ir < ir1; ++ir) {
  6147. // src0, src1 and dst are same shape => same indices
  6148. const int i3 = ir/(ne2*ne1);
  6149. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6150. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6151. #ifdef GGML_USE_ACCELERATE
  6152. vDSP_vadd(
  6153. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6154. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6155. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6156. ne0);
  6157. #else
  6158. ggml_vec_add_f32(ne0,
  6159. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6160. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6161. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6162. #endif
  6163. // }
  6164. // }
  6165. }
  6166. } else {
  6167. // src1 is not contiguous
  6168. for (int ir = ir0; ir < ir1; ++ir) {
  6169. // src0, src1 and dst are same shape => same indices
  6170. const int i3 = ir/(ne2*ne1);
  6171. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6172. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6173. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6174. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6175. for (int i0 = 0; i0 < ne0; i0++) {
  6176. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6177. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6178. }
  6179. }
  6180. }
  6181. }
  6182. static void ggml_compute_forward_add_f16_f32(
  6183. const struct ggml_compute_params * params,
  6184. const struct ggml_tensor * src0,
  6185. const struct ggml_tensor * src1,
  6186. struct ggml_tensor * dst) {
  6187. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6188. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6189. return;
  6190. }
  6191. const int ith = params->ith;
  6192. const int nth = params->nth;
  6193. const int nr = ggml_nrows(src0);
  6194. const int64_t ne0 = src0->ne[0];
  6195. const int64_t ne1 = src0->ne[1];
  6196. const int64_t ne2 = src0->ne[2];
  6197. const size_t nb00 = src0->nb[0];
  6198. const size_t nb01 = src0->nb[1];
  6199. const size_t nb02 = src0->nb[2];
  6200. const size_t nb03 = src0->nb[3];
  6201. const size_t nb10 = src1->nb[0];
  6202. const size_t nb11 = src1->nb[1];
  6203. const size_t nb12 = src1->nb[2];
  6204. const size_t nb13 = src1->nb[3];
  6205. const size_t nb0 = dst->nb[0];
  6206. const size_t nb1 = dst->nb[1];
  6207. const size_t nb2 = dst->nb[2];
  6208. const size_t nb3 = dst->nb[3];
  6209. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6210. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6211. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6212. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6213. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6214. // rows per thread
  6215. const int dr = (nr + nth - 1)/nth;
  6216. // row range for this thread
  6217. const int ir0 = dr*ith;
  6218. const int ir1 = MIN(ir0 + dr, nr);
  6219. if (nb10 == sizeof(float)) {
  6220. for (int ir = ir0; ir < ir1; ++ir) {
  6221. // src0, src1 and dst are same shape => same indices
  6222. const int i3 = ir/(ne2*ne1);
  6223. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6224. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6225. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6226. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6227. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6228. for (int i = 0; i < ne0; i++) {
  6229. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6230. }
  6231. }
  6232. }
  6233. else {
  6234. // src1 is not contiguous
  6235. GGML_ASSERT(false);
  6236. }
  6237. }
  6238. static void ggml_compute_forward_add_f16_f16(
  6239. const struct ggml_compute_params * params,
  6240. const struct ggml_tensor * src0,
  6241. const struct ggml_tensor * src1,
  6242. struct ggml_tensor * dst) {
  6243. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6244. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6245. return;
  6246. }
  6247. const int ith = params->ith;
  6248. const int nth = params->nth;
  6249. const int nr = ggml_nrows(src0);
  6250. const int64_t ne0 = src0->ne[0];
  6251. const int64_t ne1 = src0->ne[1];
  6252. const int64_t ne2 = src0->ne[2];
  6253. const size_t nb00 = src0->nb[0];
  6254. const size_t nb01 = src0->nb[1];
  6255. const size_t nb02 = src0->nb[2];
  6256. const size_t nb03 = src0->nb[3];
  6257. const size_t nb10 = src1->nb[0];
  6258. const size_t nb11 = src1->nb[1];
  6259. const size_t nb12 = src1->nb[2];
  6260. const size_t nb13 = src1->nb[3];
  6261. const size_t nb0 = dst->nb[0];
  6262. const size_t nb1 = dst->nb[1];
  6263. const size_t nb2 = dst->nb[2];
  6264. const size_t nb3 = dst->nb[3];
  6265. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6266. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6267. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6268. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6269. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6270. // rows per thread
  6271. const int dr = (nr + nth - 1)/nth;
  6272. // row range for this thread
  6273. const int ir0 = dr*ith;
  6274. const int ir1 = MIN(ir0 + dr, nr);
  6275. if (nb10 == sizeof(ggml_fp16_t)) {
  6276. for (int ir = ir0; ir < ir1; ++ir) {
  6277. // src0, src1 and dst are same shape => same indices
  6278. const int i3 = ir/(ne2*ne1);
  6279. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6280. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6281. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6282. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6283. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6284. for (int i = 0; i < ne0; i++) {
  6285. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6286. }
  6287. }
  6288. }
  6289. else {
  6290. // src1 is not contiguous
  6291. GGML_ASSERT(false);
  6292. }
  6293. }
  6294. static void ggml_compute_forward_add_q_f32(
  6295. const struct ggml_compute_params * params,
  6296. const struct ggml_tensor * src0,
  6297. const struct ggml_tensor * src1,
  6298. struct ggml_tensor * dst) {
  6299. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6300. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6301. return;
  6302. }
  6303. const int nr = ggml_nrows(src0);
  6304. const int64_t ne00 = src0->ne[0];
  6305. const int64_t ne01 = src0->ne[1];
  6306. const int64_t ne02 = src0->ne[2];
  6307. //const int64_t ne03 = src0->ne[3];
  6308. const size_t nb00 = src0->nb[0];
  6309. const size_t nb01 = src0->nb[1];
  6310. const size_t nb02 = src0->nb[2];
  6311. const size_t nb03 = src0->nb[3];
  6312. const size_t nb10 = src1->nb[0];
  6313. const size_t nb11 = src1->nb[1];
  6314. const size_t nb12 = src1->nb[2];
  6315. const size_t nb13 = src1->nb[3];
  6316. const size_t nb0 = dst->nb[0];
  6317. const size_t nb1 = dst->nb[1];
  6318. const size_t nb2 = dst->nb[2];
  6319. const size_t nb3 = dst->nb[3];
  6320. const int ith = params->ith;
  6321. const int nth = params->nth;
  6322. const enum ggml_type type = src0->type;
  6323. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6324. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  6325. // we don't support permuted src0 or src1
  6326. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6327. GGML_ASSERT(nb10 == sizeof(float));
  6328. // dst cannot be transposed or permuted
  6329. GGML_ASSERT(nb0 <= nb1);
  6330. GGML_ASSERT(nb1 <= nb2);
  6331. GGML_ASSERT(nb2 <= nb3);
  6332. GGML_ASSERT(ggml_is_quantized(src0->type));
  6333. GGML_ASSERT(dst->type == src0->type);
  6334. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6335. // rows per thread
  6336. const int dr = (nr + nth - 1)/nth;
  6337. // row range for this thread
  6338. const int ir0 = dr*ith;
  6339. const int ir1 = MIN(ir0 + dr, nr);
  6340. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6341. for (int ir = ir0; ir < ir1; ++ir) {
  6342. // src0 indices
  6343. const int i03 = ir/(ne02*ne01);
  6344. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6345. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6346. // src1 and dst are same shape as src0 => same indices
  6347. const int i13 = i03;
  6348. const int i12 = i02;
  6349. const int i11 = i01;
  6350. const int i3 = i03;
  6351. const int i2 = i02;
  6352. const int i1 = i01;
  6353. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6354. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6355. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  6356. assert(ne00 % 32 == 0);
  6357. // unquantize row from src0 to temp buffer
  6358. dequantize_row_q(src0_row, wdata, ne00);
  6359. // add src1
  6360. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6361. // quantize row to dst
  6362. quantize_row_q(wdata, dst_row, ne00);
  6363. }
  6364. }
  6365. static void ggml_compute_forward_add(
  6366. const struct ggml_compute_params * params,
  6367. const struct ggml_tensor * src0,
  6368. const struct ggml_tensor * src1,
  6369. struct ggml_tensor * dst) {
  6370. switch (src0->type) {
  6371. case GGML_TYPE_F32:
  6372. {
  6373. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6374. } break;
  6375. case GGML_TYPE_F16:
  6376. {
  6377. if (src1->type == GGML_TYPE_F16) {
  6378. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6379. }
  6380. else if (src1->type == GGML_TYPE_F32) {
  6381. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6382. }
  6383. else {
  6384. GGML_ASSERT(false);
  6385. }
  6386. } break;
  6387. case GGML_TYPE_Q4_0:
  6388. case GGML_TYPE_Q4_1:
  6389. case GGML_TYPE_Q5_0:
  6390. case GGML_TYPE_Q5_1:
  6391. case GGML_TYPE_Q8_0:
  6392. case GGML_TYPE_Q2_K:
  6393. case GGML_TYPE_Q3_K:
  6394. case GGML_TYPE_Q4_K:
  6395. case GGML_TYPE_Q5_K:
  6396. case GGML_TYPE_Q6_K:
  6397. {
  6398. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6399. } break;
  6400. default:
  6401. {
  6402. GGML_ASSERT(false);
  6403. } break;
  6404. }
  6405. }
  6406. // ggml_compute_forward_add1
  6407. static void ggml_compute_forward_add1_f32(
  6408. const struct ggml_compute_params * params,
  6409. const struct ggml_tensor * src0,
  6410. const struct ggml_tensor * src1,
  6411. struct ggml_tensor * dst) {
  6412. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6413. GGML_ASSERT(ggml_is_scalar(src1));
  6414. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6415. return;
  6416. }
  6417. const int ith = params->ith;
  6418. const int nth = params->nth;
  6419. const int nr = ggml_nrows(src0);
  6420. const int64_t ne0 = src0->ne[0];
  6421. const int64_t ne1 = src0->ne[1];
  6422. const int64_t ne2 = src0->ne[2];
  6423. const size_t nb00 = src0->nb[0];
  6424. const size_t nb01 = src0->nb[1];
  6425. const size_t nb02 = src0->nb[2];
  6426. const size_t nb03 = src0->nb[3];
  6427. const size_t nb0 = dst->nb[0];
  6428. const size_t nb1 = dst->nb[1];
  6429. const size_t nb2 = dst->nb[2];
  6430. const size_t nb3 = dst->nb[3];
  6431. GGML_ASSERT( nb0 == sizeof(float));
  6432. GGML_ASSERT(nb00 == sizeof(float));
  6433. // rows per thread
  6434. const int dr = (nr + nth - 1)/nth;
  6435. // row range for this thread
  6436. const int ir0 = dr*ith;
  6437. const int ir1 = MIN(ir0 + dr, nr);
  6438. for (int ir = ir0; ir < ir1; ++ir) {
  6439. // src0 and dst are same shape => same indices
  6440. const int i3 = ir/(ne2*ne1);
  6441. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6442. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6443. #ifdef GGML_USE_ACCELERATE
  6444. UNUSED(ggml_vec_add1_f32);
  6445. vDSP_vadd(
  6446. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6447. (float *) ((char *) src1->data), 0,
  6448. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6449. ne0);
  6450. #else
  6451. ggml_vec_add1_f32(ne0,
  6452. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6453. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6454. *(float *) src1->data);
  6455. #endif
  6456. }
  6457. }
  6458. static void ggml_compute_forward_add1_f16_f32(
  6459. const struct ggml_compute_params * params,
  6460. const struct ggml_tensor * src0,
  6461. const struct ggml_tensor * src1,
  6462. struct ggml_tensor * dst) {
  6463. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6464. GGML_ASSERT(ggml_is_scalar(src1));
  6465. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6466. return;
  6467. }
  6468. // scalar to add
  6469. const float v = *(float *) src1->data;
  6470. const int ith = params->ith;
  6471. const int nth = params->nth;
  6472. const int nr = ggml_nrows(src0);
  6473. const int64_t ne0 = src0->ne[0];
  6474. const int64_t ne1 = src0->ne[1];
  6475. const int64_t ne2 = src0->ne[2];
  6476. const size_t nb00 = src0->nb[0];
  6477. const size_t nb01 = src0->nb[1];
  6478. const size_t nb02 = src0->nb[2];
  6479. const size_t nb03 = src0->nb[3];
  6480. const size_t nb0 = dst->nb[0];
  6481. const size_t nb1 = dst->nb[1];
  6482. const size_t nb2 = dst->nb[2];
  6483. const size_t nb3 = dst->nb[3];
  6484. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6485. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6486. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6487. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6488. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6489. // rows per thread
  6490. const int dr = (nr + nth - 1)/nth;
  6491. // row range for this thread
  6492. const int ir0 = dr*ith;
  6493. const int ir1 = MIN(ir0 + dr, nr);
  6494. for (int ir = ir0; ir < ir1; ++ir) {
  6495. // src0 and dst are same shape => same indices
  6496. const int i3 = ir/(ne2*ne1);
  6497. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6498. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6499. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6500. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6501. for (int i = 0; i < ne0; i++) {
  6502. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6503. }
  6504. }
  6505. }
  6506. static void ggml_compute_forward_add1_f16_f16(
  6507. const struct ggml_compute_params * params,
  6508. const struct ggml_tensor * src0,
  6509. const struct ggml_tensor * src1,
  6510. struct ggml_tensor * dst) {
  6511. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6512. GGML_ASSERT(ggml_is_scalar(src1));
  6513. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6514. return;
  6515. }
  6516. // scalar to add
  6517. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6518. const int ith = params->ith;
  6519. const int nth = params->nth;
  6520. const int nr = ggml_nrows(src0);
  6521. const int64_t ne0 = src0->ne[0];
  6522. const int64_t ne1 = src0->ne[1];
  6523. const int64_t ne2 = src0->ne[2];
  6524. const size_t nb00 = src0->nb[0];
  6525. const size_t nb01 = src0->nb[1];
  6526. const size_t nb02 = src0->nb[2];
  6527. const size_t nb03 = src0->nb[3];
  6528. const size_t nb0 = dst->nb[0];
  6529. const size_t nb1 = dst->nb[1];
  6530. const size_t nb2 = dst->nb[2];
  6531. const size_t nb3 = dst->nb[3];
  6532. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6533. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6534. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6535. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6536. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6537. // rows per thread
  6538. const int dr = (nr + nth - 1)/nth;
  6539. // row range for this thread
  6540. const int ir0 = dr*ith;
  6541. const int ir1 = MIN(ir0 + dr, nr);
  6542. for (int ir = ir0; ir < ir1; ++ir) {
  6543. // src0 and dst are same shape => same indices
  6544. const int i3 = ir/(ne2*ne1);
  6545. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6546. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6547. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6548. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6549. for (int i = 0; i < ne0; i++) {
  6550. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6551. }
  6552. }
  6553. }
  6554. static void ggml_compute_forward_add1_q_f32(
  6555. const struct ggml_compute_params * params,
  6556. const struct ggml_tensor * src0,
  6557. const struct ggml_tensor * src1,
  6558. struct ggml_tensor * dst) {
  6559. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6560. GGML_ASSERT(ggml_is_scalar(src1));
  6561. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6562. return;
  6563. }
  6564. // scalar to add
  6565. const float v = *(float *) src1->data;
  6566. const int ith = params->ith;
  6567. const int nth = params->nth;
  6568. const int nr = ggml_nrows(src0);
  6569. const int64_t ne0 = src0->ne[0];
  6570. const int64_t ne1 = src0->ne[1];
  6571. const int64_t ne2 = src0->ne[2];
  6572. const size_t nb00 = src0->nb[0];
  6573. const size_t nb01 = src0->nb[1];
  6574. const size_t nb02 = src0->nb[2];
  6575. const size_t nb03 = src0->nb[3];
  6576. const size_t nb0 = dst->nb[0];
  6577. const size_t nb1 = dst->nb[1];
  6578. const size_t nb2 = dst->nb[2];
  6579. const size_t nb3 = dst->nb[3];
  6580. const enum ggml_type type = src0->type;
  6581. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6582. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  6583. // we don't support permuted src0
  6584. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6585. // dst cannot be transposed or permuted
  6586. GGML_ASSERT(nb0 <= nb1);
  6587. GGML_ASSERT(nb1 <= nb2);
  6588. GGML_ASSERT(nb2 <= nb3);
  6589. GGML_ASSERT(ggml_is_quantized(src0->type));
  6590. GGML_ASSERT(dst->type == src0->type);
  6591. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6592. // rows per thread
  6593. const int dr = (nr + nth - 1)/nth;
  6594. // row range for this thread
  6595. const int ir0 = dr*ith;
  6596. const int ir1 = MIN(ir0 + dr, nr);
  6597. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6598. for (int ir = ir0; ir < ir1; ++ir) {
  6599. // src0 and dst are same shape => same indices
  6600. const int i3 = ir/(ne2*ne1);
  6601. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6602. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6603. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6604. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6605. assert(ne0 % 32 == 0);
  6606. // unquantize row from src0 to temp buffer
  6607. dequantize_row_q(src0_row, wdata, ne0);
  6608. // add src1
  6609. ggml_vec_acc1_f32(ne0, wdata, v);
  6610. // quantize row to dst
  6611. quantize_row_q(wdata, dst_row, ne0);
  6612. }
  6613. }
  6614. static void ggml_compute_forward_add1(
  6615. const struct ggml_compute_params * params,
  6616. const struct ggml_tensor * src0,
  6617. const struct ggml_tensor * src1,
  6618. struct ggml_tensor * dst) {
  6619. switch (src0->type) {
  6620. case GGML_TYPE_F32:
  6621. {
  6622. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6623. } break;
  6624. case GGML_TYPE_F16:
  6625. {
  6626. if (src1->type == GGML_TYPE_F16) {
  6627. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6628. }
  6629. else if (src1->type == GGML_TYPE_F32) {
  6630. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6631. }
  6632. else {
  6633. GGML_ASSERT(false);
  6634. }
  6635. } break;
  6636. case GGML_TYPE_Q4_0:
  6637. case GGML_TYPE_Q4_1:
  6638. case GGML_TYPE_Q5_0:
  6639. case GGML_TYPE_Q5_1:
  6640. case GGML_TYPE_Q8_0:
  6641. case GGML_TYPE_Q8_1:
  6642. case GGML_TYPE_Q2_K:
  6643. case GGML_TYPE_Q3_K:
  6644. case GGML_TYPE_Q4_K:
  6645. case GGML_TYPE_Q5_K:
  6646. case GGML_TYPE_Q6_K:
  6647. {
  6648. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6649. } break;
  6650. default:
  6651. {
  6652. GGML_ASSERT(false);
  6653. } break;
  6654. }
  6655. }
  6656. // ggml_compute_forward_acc
  6657. static void ggml_compute_forward_acc_f32(
  6658. const struct ggml_compute_params * params,
  6659. const struct ggml_tensor * src0,
  6660. const struct ggml_tensor * src1,
  6661. const struct ggml_tensor * opt0,
  6662. struct ggml_tensor * dst) {
  6663. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6664. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6665. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  6666. GGML_ASSERT(ggml_nelements(opt0) == 5);
  6667. // view src0 and dst with these strides and data offset inbytes during acc
  6668. // nb0 is implicitely element_size because src0 and dst are contiguous
  6669. size_t nb1 = ((int32_t *) opt0->data)[0];
  6670. size_t nb2 = ((int32_t *) opt0->data)[1];
  6671. size_t nb3 = ((int32_t *) opt0->data)[2];
  6672. size_t offset = ((int32_t *) opt0->data)[3];
  6673. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  6674. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6675. // memcpy needs to be synchronized across threads to avoid race conditions.
  6676. // => do it in INIT phase
  6677. memcpy(
  6678. ((char *) dst->data),
  6679. ((char *) src0->data),
  6680. ggml_nbytes(dst));
  6681. }
  6682. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6683. return;
  6684. }
  6685. const int ith = params->ith;
  6686. const int nth = params->nth;
  6687. const int nr = ggml_nrows(src1);
  6688. const int nc = src1->ne[0];
  6689. const int64_t ne10 = src1->ne[0];
  6690. const int64_t ne11 = src1->ne[1];
  6691. const int64_t ne12 = src1->ne[2];
  6692. const int64_t ne13 = src1->ne[3];
  6693. const size_t nb10 = src1->nb[0];
  6694. const size_t nb11 = src1->nb[1];
  6695. const size_t nb12 = src1->nb[2];
  6696. const size_t nb13 = src1->nb[3];
  6697. // src0 and dst as viewed during acc
  6698. const size_t nb0 = ggml_element_size(src0);
  6699. const size_t nb00 = nb0;
  6700. const size_t nb01 = nb1;
  6701. const size_t nb02 = nb2;
  6702. const size_t nb03 = nb3;
  6703. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6704. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6705. GGML_ASSERT(nb10 == sizeof(float));
  6706. // rows per thread
  6707. const int dr = (nr + nth - 1)/nth;
  6708. // row range for this thread
  6709. const int ir0 = dr*ith;
  6710. const int ir1 = MIN(ir0 + dr, nr);
  6711. for (int ir = ir0; ir < ir1; ++ir) {
  6712. // src0 and dst are viewed with shape of src1 and offset
  6713. // => same indices
  6714. const int i3 = ir/(ne12*ne11);
  6715. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6716. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6717. #ifdef GGML_USE_ACCELERATE
  6718. vDSP_vadd(
  6719. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6720. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6721. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6722. #else
  6723. ggml_vec_add_f32(nc,
  6724. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6725. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6726. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6727. #endif
  6728. }
  6729. }
  6730. static void ggml_compute_forward_acc(
  6731. const struct ggml_compute_params * params,
  6732. const struct ggml_tensor * src0,
  6733. const struct ggml_tensor * src1,
  6734. const struct ggml_tensor * opt0,
  6735. struct ggml_tensor * dst) {
  6736. switch (src0->type) {
  6737. case GGML_TYPE_F32:
  6738. {
  6739. ggml_compute_forward_acc_f32(params, src0, src1, opt0, dst);
  6740. } break;
  6741. case GGML_TYPE_F16:
  6742. case GGML_TYPE_Q4_0:
  6743. case GGML_TYPE_Q4_1:
  6744. case GGML_TYPE_Q5_0:
  6745. case GGML_TYPE_Q5_1:
  6746. case GGML_TYPE_Q8_0:
  6747. case GGML_TYPE_Q8_1:
  6748. case GGML_TYPE_Q2_K:
  6749. case GGML_TYPE_Q3_K:
  6750. case GGML_TYPE_Q4_K:
  6751. case GGML_TYPE_Q5_K:
  6752. case GGML_TYPE_Q6_K:
  6753. default:
  6754. {
  6755. GGML_ASSERT(false);
  6756. } break;
  6757. }
  6758. }
  6759. // ggml_compute_forward_sub
  6760. static void ggml_compute_forward_sub_f32(
  6761. const struct ggml_compute_params * params,
  6762. const struct ggml_tensor * src0,
  6763. const struct ggml_tensor * src1,
  6764. struct ggml_tensor * dst) {
  6765. assert(params->ith == 0);
  6766. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6767. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6768. return;
  6769. }
  6770. const int nr = ggml_nrows(src0);
  6771. const int64_t ne0 = src0->ne[0];
  6772. const int64_t ne1 = src0->ne[1];
  6773. const int64_t ne2 = src0->ne[2];
  6774. const size_t nb00 = src0->nb[0];
  6775. const size_t nb01 = src0->nb[1];
  6776. const size_t nb02 = src0->nb[2];
  6777. const size_t nb03 = src0->nb[3];
  6778. const size_t nb10 = src1->nb[0];
  6779. const size_t nb11 = src1->nb[1];
  6780. const size_t nb12 = src1->nb[2];
  6781. const size_t nb13 = src1->nb[3];
  6782. const size_t nb0 = dst->nb[0];
  6783. const size_t nb1 = dst->nb[1];
  6784. const size_t nb2 = dst->nb[2];
  6785. const size_t nb3 = dst->nb[3];
  6786. GGML_ASSERT( nb0 == sizeof(float));
  6787. GGML_ASSERT(nb00 == sizeof(float));
  6788. if (nb10 == sizeof(float)) {
  6789. for (int ir = 0; ir < nr; ++ir) {
  6790. // src0, src1 and dst are same shape => same indices
  6791. const int i3 = ir/(ne2*ne1);
  6792. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6793. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6794. #ifdef GGML_USE_ACCELERATE
  6795. vDSP_vsub(
  6796. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6797. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6798. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6799. ne0);
  6800. #else
  6801. ggml_vec_sub_f32(ne0,
  6802. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6803. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6804. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6805. #endif
  6806. // }
  6807. // }
  6808. }
  6809. } else {
  6810. // src1 is not contiguous
  6811. for (int ir = 0; ir < nr; ++ir) {
  6812. // src0, src1 and dst are same shape => same indices
  6813. const int i3 = ir/(ne2*ne1);
  6814. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6815. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6816. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6817. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6818. for (int i0 = 0; i0 < ne0; i0++) {
  6819. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6820. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6821. }
  6822. }
  6823. }
  6824. }
  6825. static void ggml_compute_forward_sub(
  6826. const struct ggml_compute_params * params,
  6827. const struct ggml_tensor * src0,
  6828. const struct ggml_tensor * src1,
  6829. struct ggml_tensor * dst) {
  6830. switch (src0->type) {
  6831. case GGML_TYPE_F32:
  6832. {
  6833. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6834. } break;
  6835. default:
  6836. {
  6837. GGML_ASSERT(false);
  6838. } break;
  6839. }
  6840. }
  6841. // ggml_compute_forward_mul
  6842. static void ggml_compute_forward_mul_f32(
  6843. const struct ggml_compute_params * params,
  6844. const struct ggml_tensor * src0,
  6845. const struct ggml_tensor * src1,
  6846. struct ggml_tensor * dst) {
  6847. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  6848. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6849. return;
  6850. }
  6851. const int ith = params->ith;
  6852. const int nth = params->nth;
  6853. #ifdef GGML_USE_CLBLAST
  6854. if (src1->backend == GGML_BACKEND_GPU) {
  6855. if (ith == 0) {
  6856. ggml_cl_mul(src0, src1, dst);
  6857. }
  6858. return;
  6859. }
  6860. #endif
  6861. const int64_t nr = ggml_nrows(src0);
  6862. const int64_t ne00 = src0->ne[0];
  6863. const int64_t ne01 = src0->ne[1];
  6864. const int64_t ne02 = src0->ne[2];
  6865. const int64_t ne10 = src1->ne[0];
  6866. const int64_t ne11 = src1->ne[1];
  6867. const int64_t ne12 = src1->ne[2];
  6868. const int64_t ne13 = src1->ne[3];
  6869. const size_t nb00 = src0->nb[0];
  6870. const size_t nb01 = src0->nb[1];
  6871. const size_t nb02 = src0->nb[2];
  6872. const size_t nb03 = src0->nb[3];
  6873. const size_t nb10 = src1->nb[0];
  6874. const size_t nb11 = src1->nb[1];
  6875. const size_t nb12 = src1->nb[2];
  6876. const size_t nb13 = src1->nb[3];
  6877. const size_t nb0 = dst->nb[0];
  6878. const size_t nb1 = dst->nb[1];
  6879. const size_t nb2 = dst->nb[2];
  6880. const size_t nb3 = dst->nb[3];
  6881. GGML_ASSERT( nb0 == sizeof(float));
  6882. GGML_ASSERT(nb00 == sizeof(float));
  6883. GGML_ASSERT(ne00 == ne10);
  6884. if (nb10 == sizeof(float)) {
  6885. for (int64_t ir = ith; ir < nr; ir += nth) {
  6886. // src0 and dst are same shape => same indices
  6887. const int64_t i03 = ir/(ne02*ne01);
  6888. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6889. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6890. const int64_t i13 = i03 % ne13;
  6891. const int64_t i12 = i02 % ne12;
  6892. const int64_t i11 = i01 % ne11;
  6893. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6894. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6895. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6896. #ifdef GGML_USE_ACCELERATE
  6897. UNUSED(ggml_vec_mul_f32);
  6898. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  6899. #else
  6900. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  6901. #endif
  6902. // }
  6903. // }
  6904. }
  6905. } else {
  6906. // src1 is not contiguous
  6907. for (int64_t ir = ith; ir < nr; ir += nth) {
  6908. // src0 and dst are same shape => same indices
  6909. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6910. const int64_t i03 = ir/(ne02*ne01);
  6911. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6912. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6913. const int64_t i13 = i03 % ne13;
  6914. const int64_t i12 = i02 % ne12;
  6915. const int64_t i11 = i01 % ne11;
  6916. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6917. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6918. for (int64_t i0 = 0; i0 < ne00; i0++) {
  6919. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  6920. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6921. }
  6922. }
  6923. }
  6924. }
  6925. static void ggml_compute_forward_mul(
  6926. const struct ggml_compute_params * params,
  6927. const struct ggml_tensor * src0,
  6928. const struct ggml_tensor * src1,
  6929. struct ggml_tensor * dst) {
  6930. switch (src0->type) {
  6931. case GGML_TYPE_F32:
  6932. {
  6933. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6934. } break;
  6935. default:
  6936. {
  6937. GGML_ASSERT(false);
  6938. } break;
  6939. }
  6940. }
  6941. // ggml_compute_forward_div
  6942. static void ggml_compute_forward_div_f32(
  6943. const struct ggml_compute_params * params,
  6944. const struct ggml_tensor * src0,
  6945. const struct ggml_tensor * src1,
  6946. struct ggml_tensor * dst) {
  6947. assert(params->ith == 0);
  6948. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6949. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6950. return;
  6951. }
  6952. const int nr = ggml_nrows(src0);
  6953. const int64_t ne0 = src0->ne[0];
  6954. const int64_t ne1 = src0->ne[1];
  6955. const int64_t ne2 = src0->ne[2];
  6956. const size_t nb00 = src0->nb[0];
  6957. const size_t nb01 = src0->nb[1];
  6958. const size_t nb02 = src0->nb[2];
  6959. const size_t nb03 = src0->nb[3];
  6960. const size_t nb10 = src1->nb[0];
  6961. const size_t nb11 = src1->nb[1];
  6962. const size_t nb12 = src1->nb[2];
  6963. const size_t nb13 = src1->nb[3];
  6964. const size_t nb0 = dst->nb[0];
  6965. const size_t nb1 = dst->nb[1];
  6966. const size_t nb2 = dst->nb[2];
  6967. const size_t nb3 = dst->nb[3];
  6968. GGML_ASSERT( nb0 == sizeof(float));
  6969. GGML_ASSERT(nb00 == sizeof(float));
  6970. if (nb10 == sizeof(float)) {
  6971. for (int ir = 0; ir < nr; ++ir) {
  6972. // src0, src1 and dst are same shape => same indices
  6973. const int i3 = ir/(ne2*ne1);
  6974. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6975. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6976. #ifdef GGML_USE_ACCELERATE
  6977. vDSP_vdiv(
  6978. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6979. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6980. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6981. ne0);
  6982. #else
  6983. ggml_vec_div_f32(ne0,
  6984. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6985. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6986. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6987. #endif
  6988. // }
  6989. // }
  6990. }
  6991. } else {
  6992. // src1 is not contiguous
  6993. for (int ir = 0; ir < nr; ++ir) {
  6994. // src0, src1 and dst are same shape => same indices
  6995. const int i3 = ir/(ne2*ne1);
  6996. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6997. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6998. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6999. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7000. for (int i0 = 0; i0 < ne0; i0++) {
  7001. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7002. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  7003. }
  7004. }
  7005. }
  7006. }
  7007. static void ggml_compute_forward_div(
  7008. const struct ggml_compute_params * params,
  7009. const struct ggml_tensor * src0,
  7010. const struct ggml_tensor * src1,
  7011. struct ggml_tensor * dst) {
  7012. switch (src0->type) {
  7013. case GGML_TYPE_F32:
  7014. {
  7015. ggml_compute_forward_div_f32(params, src0, src1, dst);
  7016. } break;
  7017. default:
  7018. {
  7019. GGML_ASSERT(false);
  7020. } break;
  7021. }
  7022. }
  7023. // ggml_compute_forward_sqr
  7024. static void ggml_compute_forward_sqr_f32(
  7025. const struct ggml_compute_params * params,
  7026. const struct ggml_tensor * src0,
  7027. struct ggml_tensor * dst) {
  7028. assert(params->ith == 0);
  7029. assert(ggml_are_same_shape(src0, dst));
  7030. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7031. return;
  7032. }
  7033. const int n = ggml_nrows(src0);
  7034. const int nc = src0->ne[0];
  7035. assert( dst->nb[0] == sizeof(float));
  7036. assert(src0->nb[0] == sizeof(float));
  7037. for (int i = 0; i < n; i++) {
  7038. ggml_vec_sqr_f32(nc,
  7039. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7040. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7041. }
  7042. }
  7043. static void ggml_compute_forward_sqr(
  7044. const struct ggml_compute_params * params,
  7045. const struct ggml_tensor * src0,
  7046. struct ggml_tensor * dst) {
  7047. switch (src0->type) {
  7048. case GGML_TYPE_F32:
  7049. {
  7050. ggml_compute_forward_sqr_f32(params, src0, dst);
  7051. } break;
  7052. default:
  7053. {
  7054. GGML_ASSERT(false);
  7055. } break;
  7056. }
  7057. }
  7058. // ggml_compute_forward_sqrt
  7059. static void ggml_compute_forward_sqrt_f32(
  7060. const struct ggml_compute_params * params,
  7061. const struct ggml_tensor * src0,
  7062. struct ggml_tensor * dst) {
  7063. assert(params->ith == 0);
  7064. assert(ggml_are_same_shape(src0, dst));
  7065. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7066. return;
  7067. }
  7068. const int n = ggml_nrows(src0);
  7069. const int nc = src0->ne[0];
  7070. assert( dst->nb[0] == sizeof(float));
  7071. assert(src0->nb[0] == sizeof(float));
  7072. for (int i = 0; i < n; i++) {
  7073. ggml_vec_sqrt_f32(nc,
  7074. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7075. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7076. }
  7077. }
  7078. static void ggml_compute_forward_sqrt(
  7079. const struct ggml_compute_params * params,
  7080. const struct ggml_tensor * src0,
  7081. struct ggml_tensor * dst) {
  7082. switch (src0->type) {
  7083. case GGML_TYPE_F32:
  7084. {
  7085. ggml_compute_forward_sqrt_f32(params, src0, dst);
  7086. } break;
  7087. default:
  7088. {
  7089. GGML_ASSERT(false);
  7090. } break;
  7091. }
  7092. }
  7093. // ggml_compute_forward_log
  7094. static void ggml_compute_forward_log_f32(
  7095. const struct ggml_compute_params * params,
  7096. const struct ggml_tensor * src0,
  7097. struct ggml_tensor * dst) {
  7098. GGML_ASSERT(params->ith == 0);
  7099. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7100. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7101. return;
  7102. }
  7103. const int n = ggml_nrows(src0);
  7104. const int nc = src0->ne[0];
  7105. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7106. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7107. for (int i = 0; i < n; i++) {
  7108. ggml_vec_log_f32(nc,
  7109. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7110. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7111. }
  7112. }
  7113. static void ggml_compute_forward_log(
  7114. const struct ggml_compute_params * params,
  7115. const struct ggml_tensor * src0,
  7116. struct ggml_tensor * dst) {
  7117. switch (src0->type) {
  7118. case GGML_TYPE_F32:
  7119. {
  7120. ggml_compute_forward_log_f32(params, src0, dst);
  7121. } break;
  7122. default:
  7123. {
  7124. GGML_ASSERT(false);
  7125. } break;
  7126. }
  7127. }
  7128. // ggml_compute_forward_sum
  7129. static void ggml_compute_forward_sum_f32(
  7130. const struct ggml_compute_params * params,
  7131. const struct ggml_tensor * src0,
  7132. struct ggml_tensor * dst) {
  7133. assert(params->ith == 0);
  7134. assert(ggml_is_scalar(dst));
  7135. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7136. return;
  7137. }
  7138. assert(ggml_is_scalar(dst));
  7139. assert(src0->nb[0] == sizeof(float));
  7140. const int64_t ne00 = src0->ne[0];
  7141. const int64_t ne01 = src0->ne[1];
  7142. const int64_t ne02 = src0->ne[2];
  7143. const int64_t ne03 = src0->ne[3];
  7144. const size_t nb01 = src0->nb[1];
  7145. const size_t nb02 = src0->nb[2];
  7146. const size_t nb03 = src0->nb[3];
  7147. ggml_float sum = 0;
  7148. ggml_float row_sum = 0;
  7149. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7150. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7151. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7152. ggml_vec_sum_ggf(ne00,
  7153. &row_sum,
  7154. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7155. sum += row_sum;
  7156. }
  7157. }
  7158. }
  7159. ((float *) dst->data)[0] = sum;
  7160. }
  7161. static void ggml_compute_forward_sum(
  7162. const struct ggml_compute_params * params,
  7163. const struct ggml_tensor * src0,
  7164. struct ggml_tensor * dst) {
  7165. switch (src0->type) {
  7166. case GGML_TYPE_F32:
  7167. {
  7168. ggml_compute_forward_sum_f32(params, src0, dst);
  7169. } break;
  7170. default:
  7171. {
  7172. GGML_ASSERT(false);
  7173. } break;
  7174. }
  7175. }
  7176. // ggml_compute_forward_sum_rows
  7177. static void ggml_compute_forward_sum_rows_f32(
  7178. const struct ggml_compute_params * params,
  7179. const struct ggml_tensor * src0,
  7180. struct ggml_tensor * dst) {
  7181. GGML_ASSERT(params->ith == 0);
  7182. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7183. return;
  7184. }
  7185. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7186. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7187. const int64_t ne00 = src0->ne[0];
  7188. const int64_t ne01 = src0->ne[1];
  7189. const int64_t ne02 = src0->ne[2];
  7190. const int64_t ne03 = src0->ne[3];
  7191. const int64_t ne0 = dst->ne[0];
  7192. const int64_t ne1 = dst->ne[1];
  7193. const int64_t ne2 = dst->ne[2];
  7194. const int64_t ne3 = dst->ne[3];
  7195. GGML_ASSERT(ne0 == 1);
  7196. GGML_ASSERT(ne1 == ne01);
  7197. GGML_ASSERT(ne2 == ne02);
  7198. GGML_ASSERT(ne3 == ne03);
  7199. const size_t nb01 = src0->nb[1];
  7200. const size_t nb02 = src0->nb[2];
  7201. const size_t nb03 = src0->nb[3];
  7202. const size_t nb1 = dst->nb[1];
  7203. const size_t nb2 = dst->nb[2];
  7204. const size_t nb3 = dst->nb[3];
  7205. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7206. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7207. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7208. float* src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7209. float* dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7210. float row_sum = 0;
  7211. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7212. dst_row[0] = row_sum;
  7213. }
  7214. }
  7215. }
  7216. }
  7217. static void ggml_compute_forward_sum_rows(
  7218. const struct ggml_compute_params * params,
  7219. const struct ggml_tensor * src0,
  7220. struct ggml_tensor * dst) {
  7221. switch (src0->type) {
  7222. case GGML_TYPE_F32:
  7223. {
  7224. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  7225. } break;
  7226. default:
  7227. {
  7228. GGML_ASSERT(false);
  7229. } break;
  7230. }
  7231. }
  7232. // ggml_compute_forward_mean
  7233. static void ggml_compute_forward_mean_f32(
  7234. const struct ggml_compute_params * params,
  7235. const struct ggml_tensor * src0,
  7236. struct ggml_tensor * dst) {
  7237. assert(params->ith == 0);
  7238. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7239. return;
  7240. }
  7241. assert(src0->nb[0] == sizeof(float));
  7242. const int64_t ne00 = src0->ne[0];
  7243. const int64_t ne01 = src0->ne[1];
  7244. const int64_t ne02 = src0->ne[2];
  7245. const int64_t ne03 = src0->ne[3];
  7246. const size_t nb01 = src0->nb[1];
  7247. const size_t nb02 = src0->nb[2];
  7248. const size_t nb03 = src0->nb[3];
  7249. const int64_t ne0 = dst->ne[0];
  7250. const int64_t ne1 = dst->ne[1];
  7251. const int64_t ne2 = dst->ne[2];
  7252. const int64_t ne3 = dst->ne[3];
  7253. assert(ne0 == 1);
  7254. assert(ne1 == ne01);
  7255. assert(ne2 == ne02);
  7256. assert(ne3 == ne03);
  7257. UNUSED(ne0);
  7258. UNUSED(ne1);
  7259. UNUSED(ne2);
  7260. UNUSED(ne3);
  7261. const size_t nb1 = dst->nb[1];
  7262. const size_t nb2 = dst->nb[2];
  7263. const size_t nb3 = dst->nb[3];
  7264. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7265. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7266. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7267. ggml_vec_sum_f32(ne00,
  7268. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7269. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7270. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7271. }
  7272. }
  7273. }
  7274. }
  7275. static void ggml_compute_forward_mean(
  7276. const struct ggml_compute_params * params,
  7277. const struct ggml_tensor * src0,
  7278. struct ggml_tensor * dst) {
  7279. switch (src0->type) {
  7280. case GGML_TYPE_F32:
  7281. {
  7282. ggml_compute_forward_mean_f32(params, src0, dst);
  7283. } break;
  7284. default:
  7285. {
  7286. GGML_ASSERT(false);
  7287. } break;
  7288. }
  7289. }
  7290. // ggml_compute_forward_repeat
  7291. static void ggml_compute_forward_repeat_f32(
  7292. const struct ggml_compute_params * params,
  7293. const struct ggml_tensor * src0,
  7294. struct ggml_tensor * dst) {
  7295. GGML_ASSERT(params->ith == 0);
  7296. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7297. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7298. return;
  7299. }
  7300. const int64_t ne0 = dst->ne[0];
  7301. const int64_t ne1 = dst->ne[1];
  7302. const int64_t ne2 = dst->ne[2];
  7303. const int64_t ne3 = dst->ne[3];
  7304. const int64_t ne00 = src0->ne[0];
  7305. const int64_t ne01 = src0->ne[1];
  7306. const int64_t ne02 = src0->ne[2];
  7307. const int64_t ne03 = src0->ne[3];
  7308. const size_t nb0 = dst->nb[0];
  7309. const size_t nb1 = dst->nb[1];
  7310. const size_t nb2 = dst->nb[2];
  7311. const size_t nb3 = dst->nb[3];
  7312. const size_t nb00 = src0->nb[0];
  7313. const size_t nb01 = src0->nb[1];
  7314. const size_t nb02 = src0->nb[2];
  7315. const size_t nb03 = src0->nb[3];
  7316. // guaranteed to be an integer due to the check in ggml_can_repeat
  7317. const int nr0 = (int)(ne0/ne00);
  7318. const int nr1 = (int)(ne1/ne01);
  7319. const int nr2 = (int)(ne2/ne02);
  7320. const int nr3 = (int)(ne3/ne03);
  7321. // TODO: support for transposed / permuted tensors
  7322. GGML_ASSERT(nb0 == sizeof(float));
  7323. GGML_ASSERT(nb00 == sizeof(float));
  7324. // TODO: maybe this is not optimal?
  7325. for (int i3 = 0; i3 < nr3; i3++) {
  7326. for (int k3 = 0; k3 < ne03; k3++) {
  7327. for (int i2 = 0; i2 < nr2; i2++) {
  7328. for (int k2 = 0; k2 < ne02; k2++) {
  7329. for (int i1 = 0; i1 < nr1; i1++) {
  7330. for (int k1 = 0; k1 < ne01; k1++) {
  7331. for (int i0 = 0; i0 < nr0; i0++) {
  7332. ggml_vec_cpy_f32(ne00,
  7333. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7334. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7335. }
  7336. }
  7337. }
  7338. }
  7339. }
  7340. }
  7341. }
  7342. }
  7343. static void ggml_compute_forward_repeat(
  7344. const struct ggml_compute_params * params,
  7345. const struct ggml_tensor * src0,
  7346. struct ggml_tensor * dst) {
  7347. switch (src0->type) {
  7348. case GGML_TYPE_F32:
  7349. {
  7350. ggml_compute_forward_repeat_f32(params, src0, dst);
  7351. } break;
  7352. default:
  7353. {
  7354. GGML_ASSERT(false);
  7355. } break;
  7356. }
  7357. }
  7358. // ggml_compute_forward_repeat_back
  7359. static void ggml_compute_forward_repeat_back_f32(
  7360. const struct ggml_compute_params * params,
  7361. const struct ggml_tensor * src0,
  7362. struct ggml_tensor * dst) {
  7363. GGML_ASSERT(params->ith == 0);
  7364. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7365. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7366. return;
  7367. }
  7368. const int64_t ne0 = dst->ne[0];
  7369. const int64_t ne1 = dst->ne[1];
  7370. const int64_t ne2 = dst->ne[2];
  7371. const int64_t ne3 = dst->ne[3];
  7372. const int64_t ne00 = src0->ne[0];
  7373. const int64_t ne01 = src0->ne[1];
  7374. const int64_t ne02 = src0->ne[2];
  7375. const int64_t ne03 = src0->ne[3];
  7376. const size_t nb0 = dst->nb[0];
  7377. const size_t nb1 = dst->nb[1];
  7378. const size_t nb2 = dst->nb[2];
  7379. const size_t nb3 = dst->nb[3];
  7380. const size_t nb00 = src0->nb[0];
  7381. const size_t nb01 = src0->nb[1];
  7382. const size_t nb02 = src0->nb[2];
  7383. const size_t nb03 = src0->nb[3];
  7384. // guaranteed to be an integer due to the check in ggml_can_repeat
  7385. const int nr0 = (int)(ne00/ne0);
  7386. const int nr1 = (int)(ne01/ne1);
  7387. const int nr2 = (int)(ne02/ne2);
  7388. const int nr3 = (int)(ne03/ne3);
  7389. // TODO: support for transposed / permuted tensors
  7390. GGML_ASSERT(nb0 == sizeof(float));
  7391. GGML_ASSERT(nb00 == sizeof(float));
  7392. if (ggml_is_contiguous(dst)) {
  7393. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7394. } else {
  7395. for (int k3 = 0; k3 < ne3; k3++) {
  7396. for (int k2 = 0; k2 < ne2; k2++) {
  7397. for (int k1 = 0; k1 < ne1; k1++) {
  7398. ggml_vec_set_f32(ne0,
  7399. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7400. 0);
  7401. }
  7402. }
  7403. }
  7404. }
  7405. // TODO: maybe this is not optimal?
  7406. for (int i3 = 0; i3 < nr3; i3++) {
  7407. for (int k3 = 0; k3 < ne3; k3++) {
  7408. for (int i2 = 0; i2 < nr2; i2++) {
  7409. for (int k2 = 0; k2 < ne2; k2++) {
  7410. for (int i1 = 0; i1 < nr1; i1++) {
  7411. for (int k1 = 0; k1 < ne1; k1++) {
  7412. for (int i0 = 0; i0 < nr0; i0++) {
  7413. ggml_vec_acc_f32(ne0,
  7414. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7415. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7416. }
  7417. }
  7418. }
  7419. }
  7420. }
  7421. }
  7422. }
  7423. }
  7424. static void ggml_compute_forward_repeat_back(
  7425. const struct ggml_compute_params * params,
  7426. const struct ggml_tensor * src0,
  7427. struct ggml_tensor * dst) {
  7428. switch (src0->type) {
  7429. case GGML_TYPE_F32:
  7430. {
  7431. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  7432. } break;
  7433. default:
  7434. {
  7435. GGML_ASSERT(false);
  7436. } break;
  7437. }
  7438. }
  7439. // ggml_compute_forward_abs
  7440. static void ggml_compute_forward_abs_f32(
  7441. const struct ggml_compute_params * params,
  7442. const struct ggml_tensor * src0,
  7443. struct ggml_tensor * dst) {
  7444. assert(params->ith == 0);
  7445. assert(ggml_are_same_shape(src0, dst));
  7446. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7447. return;
  7448. }
  7449. const int n = ggml_nrows(src0);
  7450. const int nc = src0->ne[0];
  7451. assert(dst->nb[0] == sizeof(float));
  7452. assert(src0->nb[0] == sizeof(float));
  7453. for (int i = 0; i < n; i++) {
  7454. ggml_vec_abs_f32(nc,
  7455. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7456. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7457. }
  7458. }
  7459. static void ggml_compute_forward_abs(
  7460. const struct ggml_compute_params * params,
  7461. const struct ggml_tensor * src0,
  7462. struct ggml_tensor * dst) {
  7463. switch (src0->type) {
  7464. case GGML_TYPE_F32:
  7465. {
  7466. ggml_compute_forward_abs_f32(params, src0, dst);
  7467. } break;
  7468. default:
  7469. {
  7470. GGML_ASSERT(false);
  7471. } break;
  7472. }
  7473. }
  7474. // ggml_compute_forward_sgn
  7475. static void ggml_compute_forward_sgn_f32(
  7476. const struct ggml_compute_params * params,
  7477. const struct ggml_tensor * src0,
  7478. struct ggml_tensor * dst) {
  7479. assert(params->ith == 0);
  7480. assert(ggml_are_same_shape(src0, dst));
  7481. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7482. return;
  7483. }
  7484. const int n = ggml_nrows(src0);
  7485. const int nc = src0->ne[0];
  7486. assert(dst->nb[0] == sizeof(float));
  7487. assert(src0->nb[0] == sizeof(float));
  7488. for (int i = 0; i < n; i++) {
  7489. ggml_vec_sgn_f32(nc,
  7490. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7491. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7492. }
  7493. }
  7494. static void ggml_compute_forward_sgn(
  7495. const struct ggml_compute_params * params,
  7496. const struct ggml_tensor * src0,
  7497. struct ggml_tensor * dst) {
  7498. switch (src0->type) {
  7499. case GGML_TYPE_F32:
  7500. {
  7501. ggml_compute_forward_sgn_f32(params, src0, dst);
  7502. } break;
  7503. default:
  7504. {
  7505. GGML_ASSERT(false);
  7506. } break;
  7507. }
  7508. }
  7509. // ggml_compute_forward_neg
  7510. static void ggml_compute_forward_neg_f32(
  7511. const struct ggml_compute_params * params,
  7512. const struct ggml_tensor * src0,
  7513. struct ggml_tensor * dst) {
  7514. assert(params->ith == 0);
  7515. assert(ggml_are_same_shape(src0, dst));
  7516. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7517. return;
  7518. }
  7519. const int n = ggml_nrows(src0);
  7520. const int nc = src0->ne[0];
  7521. assert(dst->nb[0] == sizeof(float));
  7522. assert(src0->nb[0] == sizeof(float));
  7523. for (int i = 0; i < n; i++) {
  7524. ggml_vec_neg_f32(nc,
  7525. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7526. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7527. }
  7528. }
  7529. static void ggml_compute_forward_neg(
  7530. const struct ggml_compute_params * params,
  7531. const struct ggml_tensor * src0,
  7532. struct ggml_tensor * dst) {
  7533. switch (src0->type) {
  7534. case GGML_TYPE_F32:
  7535. {
  7536. ggml_compute_forward_neg_f32(params, src0, dst);
  7537. } break;
  7538. default:
  7539. {
  7540. GGML_ASSERT(false);
  7541. } break;
  7542. }
  7543. }
  7544. // ggml_compute_forward_step
  7545. static void ggml_compute_forward_step_f32(
  7546. const struct ggml_compute_params * params,
  7547. const struct ggml_tensor * src0,
  7548. struct ggml_tensor * dst) {
  7549. assert(params->ith == 0);
  7550. assert(ggml_are_same_shape(src0, dst));
  7551. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7552. return;
  7553. }
  7554. const int n = ggml_nrows(src0);
  7555. const int nc = src0->ne[0];
  7556. assert(dst->nb[0] == sizeof(float));
  7557. assert(src0->nb[0] == sizeof(float));
  7558. for (int i = 0; i < n; i++) {
  7559. ggml_vec_step_f32(nc,
  7560. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7561. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7562. }
  7563. }
  7564. static void ggml_compute_forward_step(
  7565. const struct ggml_compute_params * params,
  7566. const struct ggml_tensor * src0,
  7567. struct ggml_tensor * dst) {
  7568. switch (src0->type) {
  7569. case GGML_TYPE_F32:
  7570. {
  7571. ggml_compute_forward_step_f32(params, src0, dst);
  7572. } break;
  7573. default:
  7574. {
  7575. GGML_ASSERT(false);
  7576. } break;
  7577. }
  7578. }
  7579. // ggml_compute_forward_relu
  7580. static void ggml_compute_forward_relu_f32(
  7581. const struct ggml_compute_params * params,
  7582. const struct ggml_tensor * src0,
  7583. struct ggml_tensor * dst) {
  7584. assert(params->ith == 0);
  7585. assert(ggml_are_same_shape(src0, dst));
  7586. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7587. return;
  7588. }
  7589. const int n = ggml_nrows(src0);
  7590. const int nc = src0->ne[0];
  7591. assert(dst->nb[0] == sizeof(float));
  7592. assert(src0->nb[0] == sizeof(float));
  7593. for (int i = 0; i < n; i++) {
  7594. ggml_vec_relu_f32(nc,
  7595. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7596. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7597. }
  7598. }
  7599. static void ggml_compute_forward_relu(
  7600. const struct ggml_compute_params * params,
  7601. const struct ggml_tensor * src0,
  7602. struct ggml_tensor * dst) {
  7603. switch (src0->type) {
  7604. case GGML_TYPE_F32:
  7605. {
  7606. ggml_compute_forward_relu_f32(params, src0, dst);
  7607. } break;
  7608. default:
  7609. {
  7610. GGML_ASSERT(false);
  7611. } break;
  7612. }
  7613. }
  7614. // ggml_compute_forward_gelu
  7615. static void ggml_compute_forward_gelu_f32(
  7616. const struct ggml_compute_params * params,
  7617. const struct ggml_tensor * src0,
  7618. struct ggml_tensor * dst) {
  7619. GGML_ASSERT(ggml_is_contiguous(src0));
  7620. GGML_ASSERT(ggml_is_contiguous(dst));
  7621. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7622. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7623. return;
  7624. }
  7625. const int ith = params->ith;
  7626. const int nth = params->nth;
  7627. const int nc = src0->ne[0];
  7628. const int nr = ggml_nrows(src0);
  7629. // rows per thread
  7630. const int dr = (nr + nth - 1)/nth;
  7631. // row range for this thread
  7632. const int ir0 = dr*ith;
  7633. const int ir1 = MIN(ir0 + dr, nr);
  7634. for (int i1 = ir0; i1 < ir1; i1++) {
  7635. ggml_vec_gelu_f32(nc,
  7636. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7637. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7638. #ifndef NDEBUG
  7639. for (int k = 0; k < nc; k++) {
  7640. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7641. UNUSED(x);
  7642. assert(!isnan(x));
  7643. assert(!isinf(x));
  7644. }
  7645. #endif
  7646. }
  7647. }
  7648. static void ggml_compute_forward_gelu(
  7649. const struct ggml_compute_params * params,
  7650. const struct ggml_tensor * src0,
  7651. struct ggml_tensor * dst) {
  7652. switch (src0->type) {
  7653. case GGML_TYPE_F32:
  7654. {
  7655. ggml_compute_forward_gelu_f32(params, src0, dst);
  7656. } break;
  7657. default:
  7658. {
  7659. GGML_ASSERT(false);
  7660. } break;
  7661. }
  7662. //printf("XXXXXXXX gelu\n");
  7663. }
  7664. // ggml_compute_forward_silu
  7665. static void ggml_compute_forward_silu_f32(
  7666. const struct ggml_compute_params * params,
  7667. const struct ggml_tensor * src0,
  7668. struct ggml_tensor * dst) {
  7669. GGML_ASSERT(ggml_is_contiguous(src0));
  7670. GGML_ASSERT(ggml_is_contiguous(dst));
  7671. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7672. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7673. return;
  7674. }
  7675. const int ith = params->ith;
  7676. const int nth = params->nth;
  7677. const int nc = src0->ne[0];
  7678. const int nr = ggml_nrows(src0);
  7679. // rows per thread
  7680. const int dr = (nr + nth - 1)/nth;
  7681. // row range for this thread
  7682. const int ir0 = dr*ith;
  7683. const int ir1 = MIN(ir0 + dr, nr);
  7684. for (int i1 = ir0; i1 < ir1; i1++) {
  7685. ggml_vec_silu_f32(nc,
  7686. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7687. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7688. #ifndef NDEBUG
  7689. for (int k = 0; k < nc; k++) {
  7690. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7691. UNUSED(x);
  7692. assert(!isnan(x));
  7693. assert(!isinf(x));
  7694. }
  7695. #endif
  7696. }
  7697. }
  7698. static void ggml_compute_forward_silu(
  7699. const struct ggml_compute_params * params,
  7700. const struct ggml_tensor * src0,
  7701. struct ggml_tensor * dst) {
  7702. switch (src0->type) {
  7703. case GGML_TYPE_F32:
  7704. {
  7705. ggml_compute_forward_silu_f32(params, src0, dst);
  7706. } break;
  7707. default:
  7708. {
  7709. GGML_ASSERT(false);
  7710. } break;
  7711. }
  7712. }
  7713. // ggml_compute_forward_silu_back
  7714. static void ggml_compute_forward_silu_back_f32(
  7715. const struct ggml_compute_params * params,
  7716. const struct ggml_tensor * src0,
  7717. const struct ggml_tensor * grad,
  7718. struct ggml_tensor * dst) {
  7719. GGML_ASSERT(ggml_is_contiguous(grad));
  7720. GGML_ASSERT(ggml_is_contiguous(src0));
  7721. GGML_ASSERT(ggml_is_contiguous(dst));
  7722. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7723. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7724. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7725. return;
  7726. }
  7727. const int ith = params->ith;
  7728. const int nth = params->nth;
  7729. const int nc = src0->ne[0];
  7730. const int nr = ggml_nrows(src0);
  7731. // rows per thread
  7732. const int dr = (nr + nth - 1)/nth;
  7733. // row range for this thread
  7734. const int ir0 = dr*ith;
  7735. const int ir1 = MIN(ir0 + dr, nr);
  7736. for (int i1 = ir0; i1 < ir1; i1++) {
  7737. ggml_vec_silu_backward_f32(nc,
  7738. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7739. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7740. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7741. #ifndef NDEBUG
  7742. for (int k = 0; k < nc; k++) {
  7743. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7744. UNUSED(x);
  7745. assert(!isnan(x));
  7746. assert(!isinf(x));
  7747. }
  7748. #endif
  7749. }
  7750. }
  7751. static void ggml_compute_forward_silu_back(
  7752. const struct ggml_compute_params * params,
  7753. const struct ggml_tensor * src0,
  7754. const struct ggml_tensor * grad,
  7755. struct ggml_tensor * dst) {
  7756. switch (src0->type) {
  7757. case GGML_TYPE_F32:
  7758. {
  7759. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7760. } break;
  7761. default:
  7762. {
  7763. GGML_ASSERT(false);
  7764. } break;
  7765. }
  7766. }
  7767. // ggml_compute_forward_norm
  7768. static void ggml_compute_forward_norm_f32(
  7769. const struct ggml_compute_params * params,
  7770. const struct ggml_tensor * src0,
  7771. struct ggml_tensor * dst) {
  7772. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7773. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7774. return;
  7775. }
  7776. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7777. const int ith = params->ith;
  7778. const int nth = params->nth;
  7779. const int64_t ne00 = src0->ne[0];
  7780. const int64_t ne01 = src0->ne[1];
  7781. const int64_t ne02 = src0->ne[2];
  7782. const int64_t ne03 = src0->ne[3];
  7783. const size_t nb01 = src0->nb[1];
  7784. const size_t nb02 = src0->nb[2];
  7785. const size_t nb03 = src0->nb[3];
  7786. const size_t nb1 = dst->nb[1];
  7787. const size_t nb2 = dst->nb[2];
  7788. const size_t nb3 = dst->nb[3];
  7789. const float eps = 1e-5f; // TODO: make this a parameter
  7790. // TODO: optimize
  7791. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7792. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7793. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7794. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7795. ggml_float sum = 0.0;
  7796. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7797. sum += (ggml_float)x[i00];
  7798. }
  7799. float mean = sum/ne00;
  7800. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7801. ggml_float sum2 = 0.0;
  7802. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7803. float v = x[i00] - mean;
  7804. y[i00] = v;
  7805. sum2 += (ggml_float)(v*v);
  7806. }
  7807. float variance = sum2/ne00;
  7808. const float scale = 1.0f/sqrtf(variance + eps);
  7809. ggml_vec_scale_f32(ne00, y, scale);
  7810. }
  7811. }
  7812. }
  7813. }
  7814. static void ggml_compute_forward_norm(
  7815. const struct ggml_compute_params * params,
  7816. const struct ggml_tensor * src0,
  7817. struct ggml_tensor * dst) {
  7818. switch (src0->type) {
  7819. case GGML_TYPE_F32:
  7820. {
  7821. ggml_compute_forward_norm_f32(params, src0, dst);
  7822. } break;
  7823. default:
  7824. {
  7825. GGML_ASSERT(false);
  7826. } break;
  7827. }
  7828. }
  7829. static void ggml_compute_forward_rms_norm_f32(
  7830. const struct ggml_compute_params * params,
  7831. const struct ggml_tensor * src0,
  7832. struct ggml_tensor * dst) {
  7833. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7834. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7835. return;
  7836. }
  7837. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7838. const int ith = params->ith;
  7839. const int nth = params->nth;
  7840. const int64_t ne00 = src0->ne[0];
  7841. const int64_t ne01 = src0->ne[1];
  7842. const int64_t ne02 = src0->ne[2];
  7843. const int64_t ne03 = src0->ne[3];
  7844. const size_t nb01 = src0->nb[1];
  7845. const size_t nb02 = src0->nb[2];
  7846. const size_t nb03 = src0->nb[3];
  7847. const size_t nb1 = dst->nb[1];
  7848. const size_t nb2 = dst->nb[2];
  7849. const size_t nb3 = dst->nb[3];
  7850. const float eps = 1e-6f; // TODO: make this a parameter
  7851. // TODO: optimize
  7852. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7853. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7854. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7855. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7856. ggml_float sum = 0.0;
  7857. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7858. sum += (ggml_float)(x[i00] * x[i00]);
  7859. }
  7860. const float mean = sum/ne00;
  7861. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7862. memcpy(y, x, ne00 * sizeof(float));
  7863. // for (int i00 = 0; i00 < ne00; i00++) {
  7864. // y[i00] = x[i00];
  7865. // }
  7866. const float scale = 1.0f/sqrtf(mean + eps);
  7867. ggml_vec_scale_f32(ne00, y, scale);
  7868. }
  7869. }
  7870. }
  7871. }
  7872. static void ggml_compute_forward_rms_norm(
  7873. const struct ggml_compute_params * params,
  7874. const struct ggml_tensor * src0,
  7875. struct ggml_tensor * dst) {
  7876. switch (src0->type) {
  7877. case GGML_TYPE_F32:
  7878. {
  7879. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  7880. } break;
  7881. default:
  7882. {
  7883. GGML_ASSERT(false);
  7884. } break;
  7885. }
  7886. }
  7887. static void ggml_compute_forward_rms_norm_back_f32(
  7888. const struct ggml_compute_params * params,
  7889. const struct ggml_tensor * src0,
  7890. const struct ggml_tensor * src1,
  7891. struct ggml_tensor * dst) {
  7892. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  7893. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7894. return;
  7895. }
  7896. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7897. const int ith = params->ith;
  7898. const int nth = params->nth;
  7899. const int64_t ne00 = src0->ne[0];
  7900. const int64_t ne01 = src0->ne[1];
  7901. const int64_t ne02 = src0->ne[2];
  7902. const int64_t ne03 = src0->ne[3];
  7903. const size_t nb01 = src0->nb[1];
  7904. const size_t nb02 = src0->nb[2];
  7905. const size_t nb03 = src0->nb[3];
  7906. const size_t nb11 = src1->nb[1];
  7907. const size_t nb12 = src1->nb[2];
  7908. const size_t nb13 = src1->nb[3];
  7909. const size_t nb1 = dst->nb[1];
  7910. const size_t nb2 = dst->nb[2];
  7911. const size_t nb3 = dst->nb[3];
  7912. const float eps = 1e-6f; // TODO: make this a parameter
  7913. // TODO: optimize
  7914. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7915. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7916. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7917. // src1 is same shape as src0 => same indices
  7918. const int64_t i11 = i01;
  7919. const int64_t i12 = i02;
  7920. const int64_t i13 = i03;
  7921. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7922. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  7923. ggml_float sum_xx = 0.0;
  7924. ggml_float sum_xdz = 0.0;
  7925. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7926. sum_xx += (ggml_float)(x[i00] * x[i00]);
  7927. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  7928. }
  7929. //const float mean = (float)(sum_xx)/ne00;
  7930. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  7931. const float sum_eps = (float)(sum_xx) + eps*ne00;
  7932. //const float mean_xdz = (float)(sum_xdz)/ne00;
  7933. // we could cache rms from forward pass to improve performance.
  7934. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  7935. //const float rms = sqrtf(mean_eps);
  7936. const float rrms = 1.0f / sqrtf(mean_eps);
  7937. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  7938. {
  7939. // z = rms_norm(x)
  7940. //
  7941. // rms_norm(src0) =
  7942. // scale(
  7943. // src0,
  7944. // div(
  7945. // 1,
  7946. // sqrt(
  7947. // add(
  7948. // scale(
  7949. // sum(
  7950. // sqr(
  7951. // src0)),
  7952. // (1.0/N)),
  7953. // eps))));
  7954. // postorder:
  7955. // ## op args grad
  7956. // 00 param src0 grad[#00]
  7957. // 01 const 1
  7958. // 02 sqr (#00) grad[#02]
  7959. // 03 sum (#02) grad[#03]
  7960. // 04 const 1/N
  7961. // 05 scale (#03, #04) grad[#05]
  7962. // 06 const eps
  7963. // 07 add (#05, #06) grad[#07]
  7964. // 08 sqrt (#07) grad[#08]
  7965. // 09 div (#01,#08) grad[#09]
  7966. // 10 scale (#00,#09) grad[#10]
  7967. //
  7968. // backward pass, given grad[#10]
  7969. // #10: scale
  7970. // grad[#00] += scale(grad[#10],#09)
  7971. // grad[#09] += sum(mul(grad[#10],#00))
  7972. // #09: div
  7973. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  7974. // #08: sqrt
  7975. // grad[#07] += mul(grad[#08], div(0.5, #08))
  7976. // #07: add
  7977. // grad[#05] += grad[#07]
  7978. // #05: scale
  7979. // grad[#03] += scale(grad[#05],#04)
  7980. // #03: sum
  7981. // grad[#02] += repeat(grad[#03], #02)
  7982. // #02:
  7983. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  7984. //
  7985. // substitute and simplify:
  7986. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7987. // grad[#02] = repeat(grad[#03], #02)
  7988. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  7989. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  7990. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  7991. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  7992. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  7993. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  7994. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  7995. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  7996. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  7997. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7998. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  7999. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8000. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8001. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8002. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8003. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8004. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8005. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8006. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8007. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8008. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8009. // a = b*c + d*e
  8010. // a = b*c*f/f + d*e*f/f
  8011. // a = (b*c*f + d*e*f)*(1/f)
  8012. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8013. // a = (b + d*e/c)*c
  8014. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8015. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8016. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8017. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8018. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8019. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8020. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8021. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8022. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8023. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8024. }
  8025. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8026. // post-order:
  8027. // dx := x
  8028. // dx := scale(dx,-mean_xdz/mean_eps)
  8029. // dx := add(dx, dz)
  8030. // dx := scale(dx, rrms)
  8031. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8032. ggml_vec_cpy_f32 (ne00, dx, x);
  8033. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8034. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8035. ggml_vec_acc_f32 (ne00, dx, dz);
  8036. ggml_vec_scale_f32(ne00, dx, rrms);
  8037. }
  8038. }
  8039. }
  8040. }
  8041. static void ggml_compute_forward_rms_norm_back(
  8042. const struct ggml_compute_params * params,
  8043. const struct ggml_tensor * src0,
  8044. const struct ggml_tensor * src1,
  8045. struct ggml_tensor * dst) {
  8046. switch (src0->type) {
  8047. case GGML_TYPE_F32:
  8048. {
  8049. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  8050. } break;
  8051. default:
  8052. {
  8053. GGML_ASSERT(false);
  8054. } break;
  8055. }
  8056. }
  8057. // ggml_compute_forward_mul_mat
  8058. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8059. // helper function to determine if it is better to use BLAS or not
  8060. // for large matrices, BLAS is faster
  8061. static bool ggml_compute_forward_mul_mat_use_blas(
  8062. const struct ggml_tensor * src0,
  8063. const struct ggml_tensor * src1,
  8064. struct ggml_tensor * dst) {
  8065. //const int64_t ne00 = src0->ne[0];
  8066. //const int64_t ne01 = src0->ne[1];
  8067. const int64_t ne10 = src1->ne[0];
  8068. const int64_t ne0 = dst->ne[0];
  8069. const int64_t ne1 = dst->ne[1];
  8070. // TODO: find the optimal values for these
  8071. if (ggml_is_contiguous(src0) &&
  8072. ggml_is_contiguous(src1) &&
  8073. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8074. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8075. return true;
  8076. }
  8077. return false;
  8078. }
  8079. #endif
  8080. static void ggml_compute_forward_mul_mat_f32(
  8081. const struct ggml_compute_params * params,
  8082. const struct ggml_tensor * src0,
  8083. const struct ggml_tensor * src1,
  8084. struct ggml_tensor * dst) {
  8085. int64_t t0 = ggml_perf_time_us();
  8086. UNUSED(t0);
  8087. const int64_t ne00 = src0->ne[0];
  8088. const int64_t ne01 = src0->ne[1];
  8089. const int64_t ne02 = src0->ne[2];
  8090. const int64_t ne03 = src0->ne[3];
  8091. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8092. const int64_t ne10 = src1->ne[0];
  8093. #endif
  8094. const int64_t ne11 = src1->ne[1];
  8095. #ifndef NDEBUG
  8096. const int64_t ne12 = src1->ne[2];
  8097. const int64_t ne13 = src1->ne[3];
  8098. const int64_t ne0 = dst->ne[0];
  8099. const int64_t ne1 = dst->ne[1];
  8100. const int64_t ne2 = dst->ne[2];
  8101. const int64_t ne3 = dst->ne[3];
  8102. const int nb00 = src0->nb[0];
  8103. #endif
  8104. const int nb01 = src0->nb[1];
  8105. const int nb02 = src0->nb[2];
  8106. const int nb03 = src0->nb[3];
  8107. #ifndef NDEBUG
  8108. const int nb10 = src1->nb[0];
  8109. #endif
  8110. const int nb11 = src1->nb[1];
  8111. const int nb12 = src1->nb[2];
  8112. const int nb13 = src1->nb[3];
  8113. const int nb0 = dst->nb[0];
  8114. const int nb1 = dst->nb[1];
  8115. const int nb2 = dst->nb[2];
  8116. const int nb3 = dst->nb[3];
  8117. const int ith = params->ith;
  8118. const int nth = params->nth;
  8119. assert(ne02 == ne12);
  8120. assert(ne03 == ne13);
  8121. assert(ne2 == ne12);
  8122. assert(ne3 == ne13);
  8123. // we don't support permuted src0 or src1
  8124. assert(nb00 == sizeof(float));
  8125. assert(nb10 == sizeof(float));
  8126. // dst cannot be transposed or permuted
  8127. assert(nb0 == sizeof(float));
  8128. assert(nb0 <= nb1);
  8129. assert(nb1 <= nb2);
  8130. assert(nb2 <= nb3);
  8131. assert(ne0 == ne01);
  8132. assert(ne1 == ne11);
  8133. assert(ne2 == ne02);
  8134. assert(ne3 == ne03);
  8135. // nb01 >= nb00 - src0 is not transposed
  8136. // compute by src0 rows
  8137. #if defined(GGML_USE_CLBLAST)
  8138. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8139. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8140. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8141. }
  8142. return;
  8143. }
  8144. #endif
  8145. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8146. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8147. if (params->ith != 0) {
  8148. return;
  8149. }
  8150. if (params->type == GGML_TASK_INIT) {
  8151. return;
  8152. }
  8153. if (params->type == GGML_TASK_FINALIZE) {
  8154. return;
  8155. }
  8156. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8157. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8158. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  8159. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8160. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8161. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8162. ne11, ne01, ne10,
  8163. 1.0f, y, ne10,
  8164. x, ne00,
  8165. 0.0f, d, ne01);
  8166. }
  8167. }
  8168. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8169. return;
  8170. }
  8171. #endif
  8172. if (params->type == GGML_TASK_INIT) {
  8173. return;
  8174. }
  8175. if (params->type == GGML_TASK_FINALIZE) {
  8176. return;
  8177. }
  8178. // parallelize by src0 rows using ggml_vec_dot_f32
  8179. // total rows in src0
  8180. const int nr = ne01*ne02*ne03;
  8181. // rows per thread
  8182. const int dr = (nr + nth - 1)/nth;
  8183. // row range for this thread
  8184. const int ir0 = dr*ith;
  8185. const int ir1 = MIN(ir0 + dr, nr);
  8186. for (int ir = ir0; ir < ir1; ++ir) {
  8187. // src0 indices
  8188. const int i03 = ir/(ne02*ne01);
  8189. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8190. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8191. for (int64_t ic = 0; ic < ne11; ++ic) {
  8192. // src1 indices
  8193. const int i13 = i03;
  8194. const int i12 = i02;
  8195. const int i11 = ic;
  8196. // dst indices
  8197. const int i0 = i01;
  8198. const int i1 = i11;
  8199. const int i2 = i02;
  8200. const int i3 = i03;
  8201. ggml_vec_dot_f32(ne00,
  8202. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8203. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  8204. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  8205. }
  8206. }
  8207. //int64_t t1 = ggml_perf_time_us();
  8208. //static int64_t acc = 0;
  8209. //acc += t1 - t0;
  8210. //if (t1 - t0 > 10) {
  8211. // printf("\n");
  8212. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8213. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8214. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8215. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8216. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8217. //}
  8218. }
  8219. static void ggml_compute_forward_mul_mat_f16_f32(
  8220. const struct ggml_compute_params * params,
  8221. const struct ggml_tensor * src0,
  8222. const struct ggml_tensor * src1,
  8223. struct ggml_tensor * dst) {
  8224. int64_t t0 = ggml_perf_time_us();
  8225. UNUSED(t0);
  8226. const int64_t ne00 = src0->ne[0];
  8227. const int64_t ne01 = src0->ne[1];
  8228. const int64_t ne02 = src0->ne[2];
  8229. const int64_t ne03 = src0->ne[3];
  8230. const int64_t ne10 = src1->ne[0];
  8231. const int64_t ne11 = src1->ne[1];
  8232. const int64_t ne12 = src1->ne[2];
  8233. const int64_t ne13 = src1->ne[3];
  8234. const int64_t ne0 = dst->ne[0];
  8235. const int64_t ne1 = dst->ne[1];
  8236. const int64_t ne2 = dst->ne[2];
  8237. const int64_t ne3 = dst->ne[3];
  8238. //const int64_t ne = ne0*ne1*ne2*ne3;
  8239. const int nb00 = src0->nb[0];
  8240. const int nb01 = src0->nb[1];
  8241. const int nb02 = src0->nb[2];
  8242. const int nb03 = src0->nb[3];
  8243. const int nb10 = src1->nb[0];
  8244. const int nb11 = src1->nb[1];
  8245. const int nb12 = src1->nb[2];
  8246. const int nb13 = src1->nb[3];
  8247. const int nb0 = dst->nb[0];
  8248. const int nb1 = dst->nb[1];
  8249. const int nb2 = dst->nb[2];
  8250. const int nb3 = dst->nb[3];
  8251. const int ith = params->ith;
  8252. const int nth = params->nth;
  8253. GGML_ASSERT(ne02 == ne12);
  8254. GGML_ASSERT(ne03 == ne13);
  8255. GGML_ASSERT(ne2 == ne12);
  8256. GGML_ASSERT(ne3 == ne13);
  8257. // TODO: we don't support permuted src0
  8258. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8259. // dst cannot be transposed or permuted
  8260. GGML_ASSERT(nb0 == sizeof(float));
  8261. GGML_ASSERT(nb0 <= nb1);
  8262. GGML_ASSERT(nb1 <= nb2);
  8263. GGML_ASSERT(nb2 <= nb3);
  8264. GGML_ASSERT(ne0 == ne01);
  8265. GGML_ASSERT(ne1 == ne11);
  8266. GGML_ASSERT(ne2 == ne02);
  8267. GGML_ASSERT(ne3 == ne03);
  8268. // nb01 >= nb00 - src0 is not transposed
  8269. // compute by src0 rows
  8270. #if defined(GGML_USE_CLBLAST)
  8271. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8272. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8273. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8274. }
  8275. return;
  8276. }
  8277. #endif
  8278. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8279. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8280. GGML_ASSERT(nb10 == sizeof(float));
  8281. if (params->ith != 0) {
  8282. return;
  8283. }
  8284. if (params->type == GGML_TASK_INIT) {
  8285. return;
  8286. }
  8287. if (params->type == GGML_TASK_FINALIZE) {
  8288. return;
  8289. }
  8290. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8291. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8292. float * const wdata = params->wdata;
  8293. {
  8294. size_t id = 0;
  8295. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8296. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  8297. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  8298. }
  8299. }
  8300. assert(id*sizeof(float) <= params->wsize);
  8301. }
  8302. const float * x = wdata;
  8303. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8304. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8305. // zT = y * xT
  8306. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8307. ne11, ne01, ne10,
  8308. 1.0f, y, ne10,
  8309. x, ne00,
  8310. 0.0f, d, ne01);
  8311. }
  8312. }
  8313. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  8314. return;
  8315. }
  8316. #endif
  8317. if (params->type == GGML_TASK_INIT) {
  8318. ggml_fp16_t * const wdata = params->wdata;
  8319. size_t id = 0;
  8320. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8321. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8322. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8323. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8324. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  8325. }
  8326. }
  8327. }
  8328. }
  8329. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  8330. return;
  8331. }
  8332. if (params->type == GGML_TASK_FINALIZE) {
  8333. return;
  8334. }
  8335. // fp16 -> half the size, so divide by 2
  8336. // TODO: do not support transposed src1
  8337. assert(nb10/2 == sizeof(ggml_fp16_t));
  8338. // parallelize by src0 rows using ggml_vec_dot_f16
  8339. // total rows in src0
  8340. const int nr = ne01*ne02*ne03;
  8341. // rows per thread
  8342. const int dr = (nr + nth - 1)/nth;
  8343. // row range for this thread
  8344. const int ir0 = dr*ith;
  8345. const int ir1 = MIN(ir0 + dr, nr);
  8346. ggml_fp16_t * wdata = params->wdata;
  8347. for (int ir = ir0; ir < ir1; ++ir) {
  8348. // src0 indices
  8349. const int i03 = ir/(ne02*ne01);
  8350. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8351. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8352. const int i13 = i03;
  8353. const int i12 = i02;
  8354. const int i0 = i01;
  8355. const int i2 = i02;
  8356. const int i3 = i03;
  8357. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  8358. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  8359. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  8360. for (int64_t ic = 0; ic < ne11; ++ic) {
  8361. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  8362. }
  8363. }
  8364. //int64_t t1 = ggml_time_us();
  8365. //static int64_t acc = 0;
  8366. //acc += t1 - t0;
  8367. //if (t1 - t0 > 10) {
  8368. // printf("\n");
  8369. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8370. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8371. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8372. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8373. //}
  8374. }
  8375. static void ggml_compute_forward_mul_mat_q_f32(
  8376. const struct ggml_compute_params * params,
  8377. const struct ggml_tensor * src0,
  8378. const struct ggml_tensor * src1,
  8379. struct ggml_tensor * dst) {
  8380. int64_t t0 = ggml_perf_time_us();
  8381. UNUSED(t0);
  8382. const int64_t ne00 = src0->ne[0];
  8383. const int64_t ne01 = src0->ne[1];
  8384. const int64_t ne02 = src0->ne[2];
  8385. const int64_t ne03 = src0->ne[3];
  8386. const int64_t ne10 = src1->ne[0];
  8387. const int64_t ne11 = src1->ne[1];
  8388. const int64_t ne12 = src1->ne[2];
  8389. const int64_t ne13 = src1->ne[3];
  8390. const int64_t ne0 = dst->ne[0];
  8391. const int64_t ne1 = dst->ne[1];
  8392. const int64_t ne2 = dst->ne[2];
  8393. const int64_t ne3 = dst->ne[3];
  8394. const int nb00 = src0->nb[0];
  8395. const int nb01 = src0->nb[1];
  8396. const int nb02 = src0->nb[2];
  8397. const int nb03 = src0->nb[3];
  8398. const int nb10 = src1->nb[0];
  8399. const int nb11 = src1->nb[1];
  8400. const int nb12 = src1->nb[2];
  8401. const int nb13 = src1->nb[3];
  8402. const int nb0 = dst->nb[0];
  8403. const int nb1 = dst->nb[1];
  8404. const int nb2 = dst->nb[2];
  8405. const int nb3 = dst->nb[3];
  8406. const int ith = params->ith;
  8407. const int nth = params->nth;
  8408. GGML_ASSERT(ne02 == ne12);
  8409. GGML_ASSERT(ne03 == ne13);
  8410. GGML_ASSERT(ne2 == ne12);
  8411. GGML_ASSERT(ne3 == ne13);
  8412. const enum ggml_type type = src0->type;
  8413. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  8414. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  8415. enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type;
  8416. // we don't support permuted src0 or src1
  8417. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  8418. GGML_ASSERT(nb10 == sizeof(float));
  8419. // dst cannot be transposed or permuted
  8420. GGML_ASSERT(nb0 == sizeof(float));
  8421. GGML_ASSERT(nb0 <= nb1);
  8422. GGML_ASSERT(nb1 <= nb2);
  8423. GGML_ASSERT(nb2 <= nb3);
  8424. GGML_ASSERT(ne0 == ne01);
  8425. GGML_ASSERT(ne1 == ne11);
  8426. GGML_ASSERT(ne2 == ne02);
  8427. GGML_ASSERT(ne3 == ne03);
  8428. // nb01 >= nb00 - src0 is not transposed
  8429. // compute by src0 rows
  8430. #if defined(GGML_USE_CLBLAST)
  8431. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8432. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8433. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8434. }
  8435. return;
  8436. }
  8437. #endif
  8438. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8439. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8440. if (params->ith != 0) {
  8441. return;
  8442. }
  8443. if (params->type == GGML_TASK_INIT) {
  8444. return;
  8445. }
  8446. if (params->type == GGML_TASK_FINALIZE) {
  8447. return;
  8448. }
  8449. float * const wdata = params->wdata;
  8450. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  8451. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8452. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8453. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8454. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8455. {
  8456. size_t id = 0;
  8457. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8458. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  8459. id += ne00;
  8460. }
  8461. assert(id*sizeof(float) <= params->wsize);
  8462. }
  8463. const float * x = wdata;
  8464. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8465. ne11, ne01, ne10,
  8466. 1.0f, y, ne10,
  8467. x, ne00,
  8468. 0.0f, d, ne01);
  8469. }
  8470. }
  8471. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8472. return;
  8473. }
  8474. #endif
  8475. if (params->type == GGML_TASK_INIT) {
  8476. char * wdata = params->wdata;
  8477. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8478. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8479. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8480. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8481. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8482. wdata += row_size;
  8483. }
  8484. }
  8485. }
  8486. return;
  8487. }
  8488. if (params->type == GGML_TASK_FINALIZE) {
  8489. return;
  8490. }
  8491. // parallelize by src0 rows using ggml_vec_dot_q
  8492. // total rows in src0
  8493. const int nr = ne01*ne02*ne03;
  8494. // rows per thread
  8495. const int dr = (nr + nth - 1)/nth;
  8496. // row range for this thread
  8497. const int ir0 = dr*ith;
  8498. const int ir1 = MIN(ir0 + dr, nr);
  8499. void * wdata = params->wdata;
  8500. const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8501. for (int ir = ir0; ir < ir1; ++ir) {
  8502. // src0 indices
  8503. const int i03 = ir/(ne02*ne01);
  8504. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8505. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8506. const int i13 = i03;
  8507. const int i12 = i02;
  8508. const int i0 = i01;
  8509. const int i2 = i02;
  8510. const int i3 = i03;
  8511. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  8512. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  8513. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  8514. assert(ne00 % 32 == 0);
  8515. for (int64_t ic = 0; ic < ne11; ++ic) {
  8516. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  8517. }
  8518. }
  8519. //int64_t t1 = ggml_time_us();
  8520. //static int64_t acc = 0;
  8521. //acc += t1 - t0;
  8522. //if (t1 - t0 > 10) {
  8523. // printf("\n");
  8524. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8525. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8526. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8527. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8528. //}
  8529. }
  8530. static void ggml_compute_forward_mul_mat(
  8531. const struct ggml_compute_params * params,
  8532. const struct ggml_tensor * src0,
  8533. const struct ggml_tensor * src1,
  8534. struct ggml_tensor * dst) {
  8535. switch (src0->type) {
  8536. case GGML_TYPE_Q4_0:
  8537. case GGML_TYPE_Q4_1:
  8538. case GGML_TYPE_Q5_0:
  8539. case GGML_TYPE_Q5_1:
  8540. case GGML_TYPE_Q8_0:
  8541. case GGML_TYPE_Q8_1:
  8542. case GGML_TYPE_Q2_K:
  8543. case GGML_TYPE_Q3_K:
  8544. case GGML_TYPE_Q4_K:
  8545. case GGML_TYPE_Q5_K:
  8546. case GGML_TYPE_Q6_K:
  8547. {
  8548. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  8549. } break;
  8550. case GGML_TYPE_F16:
  8551. {
  8552. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  8553. } break;
  8554. case GGML_TYPE_F32:
  8555. {
  8556. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  8557. } break;
  8558. default:
  8559. {
  8560. GGML_ASSERT(false);
  8561. } break;
  8562. }
  8563. }
  8564. // ggml_compute_forward_out_prod
  8565. static void ggml_compute_forward_out_prod_f32(
  8566. const struct ggml_compute_params * params,
  8567. const struct ggml_tensor * src0,
  8568. const struct ggml_tensor * src1,
  8569. struct ggml_tensor * dst) {
  8570. int64_t t0 = ggml_perf_time_us();
  8571. UNUSED(t0);
  8572. const int64_t ne00 = src0->ne[0];
  8573. const int64_t ne01 = src0->ne[1];
  8574. const int64_t ne02 = src0->ne[2];
  8575. const int64_t ne03 = src0->ne[3];
  8576. const int64_t ne10 = src1->ne[0];
  8577. //const int64_t ne11 = src1->ne[1];
  8578. const int64_t ne12 = src1->ne[2];
  8579. const int64_t ne13 = src1->ne[3];
  8580. const int64_t ne0 = dst->ne[0];
  8581. const int64_t ne1 = dst->ne[1];
  8582. const int64_t ne2 = dst->ne[2];
  8583. const int64_t ne3 = dst->ne[3];
  8584. const int nb00 = src0->nb[0];
  8585. const int nb01 = src0->nb[1];
  8586. const int nb02 = src0->nb[2];
  8587. const int nb03 = src0->nb[3];
  8588. const int nb10 = src1->nb[0];
  8589. const int nb11 = src1->nb[1];
  8590. const int nb12 = src1->nb[2];
  8591. const int nb13 = src1->nb[3];
  8592. const int nb0 = dst->nb[0];
  8593. const int nb1 = dst->nb[1];
  8594. const int nb2 = dst->nb[2];
  8595. const int nb3 = dst->nb[3];
  8596. const int ith = params->ith;
  8597. const int nth = params->nth;
  8598. GGML_ASSERT(ne02 == ne12);
  8599. GGML_ASSERT(ne03 == ne13);
  8600. GGML_ASSERT(ne2 == ne12);
  8601. GGML_ASSERT(ne3 == ne13);
  8602. // we don't support permuted src0 or src1
  8603. GGML_ASSERT(nb00 == sizeof(float));
  8604. // dst cannot be transposed or permuted
  8605. GGML_ASSERT(nb0 == sizeof(float));
  8606. // GGML_ASSERT(nb0 <= nb1);
  8607. // GGML_ASSERT(nb1 <= nb2);
  8608. // GGML_ASSERT(nb2 <= nb3);
  8609. GGML_ASSERT(ne0 == ne00);
  8610. GGML_ASSERT(ne1 == ne10);
  8611. GGML_ASSERT(ne2 == ne02);
  8612. GGML_ASSERT(ne3 == ne03);
  8613. // nb01 >= nb00 - src0 is not transposed
  8614. // compute by src0 rows
  8615. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8616. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8617. if (params->type == GGML_TASK_INIT) {
  8618. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8619. return;
  8620. }
  8621. if (params->type == GGML_TASK_FINALIZE) {
  8622. return;
  8623. }
  8624. // parallelize by last three dimensions
  8625. // total rows in dst
  8626. const int64_t nr = ne1*ne2*ne3;
  8627. // rows per thread
  8628. const int64_t dr = (nr + nth - 1)/nth;
  8629. // row range for this thread
  8630. const int64_t ir0 = dr*ith;
  8631. const int64_t ir1 = MIN(ir0 + dr, nr);
  8632. // dst[:,:,:,:] = 0
  8633. // for i2,i3:
  8634. // for i1:
  8635. // for i01:
  8636. // for i0:
  8637. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8638. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8639. // dst indices
  8640. const int64_t i3 = ir/(ne2*ne1);
  8641. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8642. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8643. const int64_t i02 = i2;
  8644. const int64_t i03 = i3;
  8645. //const int64_t i10 = i1;
  8646. const int64_t i12 = i2;
  8647. const int64_t i13 = i3;
  8648. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8649. const int64_t i11 = i01;
  8650. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8651. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8652. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8653. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8654. // for (int64_t i0 = 0; i0 < ne0; ++i0) {
  8655. // d[i0] += s0[i0] * s1[i1];
  8656. // }
  8657. }
  8658. }
  8659. //int64_t t1 = ggml_perf_time_us();
  8660. //static int64_t acc = 0;
  8661. //acc += t1 - t0;
  8662. //if (t1 - t0 > 10) {
  8663. // printf("\n");
  8664. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8665. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8666. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8667. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8668. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8669. //}
  8670. }
  8671. static void ggml_compute_forward_out_prod(
  8672. const struct ggml_compute_params * params,
  8673. const struct ggml_tensor * src0,
  8674. const struct ggml_tensor * src1,
  8675. struct ggml_tensor * dst) {
  8676. switch (src0->type) {
  8677. case GGML_TYPE_Q4_0:
  8678. case GGML_TYPE_Q4_1:
  8679. case GGML_TYPE_Q5_0:
  8680. case GGML_TYPE_Q5_1:
  8681. case GGML_TYPE_Q8_0:
  8682. case GGML_TYPE_Q8_1:
  8683. {
  8684. GGML_ASSERT(false); // todo
  8685. // ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8686. } break;
  8687. case GGML_TYPE_F16:
  8688. {
  8689. GGML_ASSERT(false); // todo
  8690. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8691. } break;
  8692. case GGML_TYPE_F32:
  8693. {
  8694. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8695. } break;
  8696. default:
  8697. {
  8698. GGML_ASSERT(false);
  8699. } break;
  8700. }
  8701. }
  8702. // ggml_compute_forward_scale
  8703. static void ggml_compute_forward_scale_f32(
  8704. const struct ggml_compute_params * params,
  8705. const struct ggml_tensor * src0,
  8706. const struct ggml_tensor * src1,
  8707. struct ggml_tensor * dst) {
  8708. GGML_ASSERT(ggml_is_contiguous(src0));
  8709. GGML_ASSERT(ggml_is_contiguous(dst));
  8710. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8711. GGML_ASSERT(ggml_is_scalar(src1));
  8712. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8713. return;
  8714. }
  8715. // scale factor
  8716. const float v = *(float *) src1->data;
  8717. const int ith = params->ith;
  8718. const int nth = params->nth;
  8719. const int nc = src0->ne[0];
  8720. const int nr = ggml_nrows(src0);
  8721. // rows per thread
  8722. const int dr = (nr + nth - 1)/nth;
  8723. // row range for this thread
  8724. const int ir0 = dr*ith;
  8725. const int ir1 = MIN(ir0 + dr, nr);
  8726. const size_t nb01 = src0->nb[1];
  8727. const size_t nb1 = dst->nb[1];
  8728. for (int i1 = ir0; i1 < ir1; i1++) {
  8729. if (dst->data != src0->data) {
  8730. // src0 is same shape as dst => same indices
  8731. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8732. }
  8733. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8734. }
  8735. }
  8736. static void ggml_compute_forward_scale(
  8737. const struct ggml_compute_params * params,
  8738. const struct ggml_tensor * src0,
  8739. const struct ggml_tensor * src1,
  8740. struct ggml_tensor * dst) {
  8741. switch (src0->type) {
  8742. case GGML_TYPE_F32:
  8743. {
  8744. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  8745. } break;
  8746. default:
  8747. {
  8748. GGML_ASSERT(false);
  8749. } break;
  8750. }
  8751. }
  8752. // ggml_compute_forward_set
  8753. static void ggml_compute_forward_set_f32(
  8754. const struct ggml_compute_params * params,
  8755. const struct ggml_tensor * src0,
  8756. const struct ggml_tensor * src1,
  8757. const struct ggml_tensor * opt0,
  8758. struct ggml_tensor * dst) {
  8759. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8760. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8761. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  8762. GGML_ASSERT(ggml_nelements(opt0) == 5);
  8763. // view src0 and dst with these strides and data offset inbytes during set
  8764. // nb0 is implicitely element_size because src0 and dst are contiguous
  8765. size_t nb1 = ((int32_t *) opt0->data)[0];
  8766. size_t nb2 = ((int32_t *) opt0->data)[1];
  8767. size_t nb3 = ((int32_t *) opt0->data)[2];
  8768. size_t offset = ((int32_t *) opt0->data)[3];
  8769. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  8770. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8771. // memcpy needs to be synchronized across threads to avoid race conditions.
  8772. // => do it in INIT phase
  8773. memcpy(
  8774. ((char *) dst->data),
  8775. ((char *) src0->data),
  8776. ggml_nbytes(dst));
  8777. }
  8778. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8779. return;
  8780. }
  8781. const int ith = params->ith;
  8782. const int nth = params->nth;
  8783. const int nr = ggml_nrows(src1);
  8784. const int nc = src1->ne[0];
  8785. const int64_t ne10 = src1->ne[0];
  8786. const int64_t ne11 = src1->ne[1];
  8787. const int64_t ne12 = src1->ne[2];
  8788. const int64_t ne13 = src1->ne[3];
  8789. const size_t nb10 = src1->nb[0];
  8790. const size_t nb11 = src1->nb[1];
  8791. const size_t nb12 = src1->nb[2];
  8792. const size_t nb13 = src1->nb[3];
  8793. // src0 and dst as viewed during set
  8794. const size_t nb0 = ggml_element_size(src0);
  8795. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8796. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8797. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8798. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8799. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 < ggml_nbytes(dst));
  8800. GGML_ASSERT(nb10 == sizeof(float));
  8801. // rows per thread
  8802. const int dr = (nr + nth - 1)/nth;
  8803. // row range for this thread
  8804. const int ir0 = dr*ith;
  8805. const int ir1 = MIN(ir0 + dr, nr);
  8806. for (int ir = ir0; ir < ir1; ++ir) {
  8807. // src0 and dst are viewed with shape of src1 and offset
  8808. // => same indices
  8809. const int i3 = ir/(ne12*ne11);
  8810. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8811. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8812. ggml_vec_cpy_f32(nc,
  8813. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8814. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8815. }
  8816. }
  8817. static void ggml_compute_forward_set(
  8818. const struct ggml_compute_params * params,
  8819. const struct ggml_tensor * src0,
  8820. const struct ggml_tensor * src1,
  8821. const struct ggml_tensor * opt0,
  8822. struct ggml_tensor * dst) {
  8823. switch (src0->type) {
  8824. case GGML_TYPE_F32:
  8825. {
  8826. ggml_compute_forward_set_f32(params, src0, src1, opt0, dst);
  8827. } break;
  8828. case GGML_TYPE_F16:
  8829. case GGML_TYPE_Q4_0:
  8830. case GGML_TYPE_Q4_1:
  8831. case GGML_TYPE_Q5_0:
  8832. case GGML_TYPE_Q5_1:
  8833. case GGML_TYPE_Q8_0:
  8834. case GGML_TYPE_Q8_1:
  8835. case GGML_TYPE_Q2_K:
  8836. case GGML_TYPE_Q3_K:
  8837. case GGML_TYPE_Q4_K:
  8838. case GGML_TYPE_Q5_K:
  8839. case GGML_TYPE_Q6_K:
  8840. default:
  8841. {
  8842. GGML_ASSERT(false);
  8843. } break;
  8844. }
  8845. }
  8846. // ggml_compute_forward_cpy
  8847. static void ggml_compute_forward_cpy(
  8848. const struct ggml_compute_params * params,
  8849. const struct ggml_tensor * src0,
  8850. struct ggml_tensor * dst) {
  8851. ggml_compute_forward_dup(params, src0, dst);
  8852. }
  8853. // ggml_compute_forward_cont
  8854. static void ggml_compute_forward_cont(
  8855. const struct ggml_compute_params * params,
  8856. const struct ggml_tensor * src0,
  8857. struct ggml_tensor * dst) {
  8858. ggml_compute_forward_dup(params, src0, dst);
  8859. }
  8860. // ggml_compute_forward_reshape
  8861. static void ggml_compute_forward_reshape(
  8862. const struct ggml_compute_params * params,
  8863. const struct ggml_tensor * src0,
  8864. struct ggml_tensor * dst) {
  8865. // NOP
  8866. UNUSED(params);
  8867. UNUSED(src0);
  8868. UNUSED(dst);
  8869. }
  8870. // ggml_compute_forward_view
  8871. static void ggml_compute_forward_view(
  8872. const struct ggml_compute_params * params,
  8873. const struct ggml_tensor * src0) {
  8874. // NOP
  8875. UNUSED(params);
  8876. UNUSED(src0);
  8877. }
  8878. // ggml_compute_forward_permute
  8879. static void ggml_compute_forward_permute(
  8880. const struct ggml_compute_params * params,
  8881. const struct ggml_tensor * src0) {
  8882. // NOP
  8883. UNUSED(params);
  8884. UNUSED(src0);
  8885. }
  8886. // ggml_compute_forward_transpose
  8887. static void ggml_compute_forward_transpose(
  8888. const struct ggml_compute_params * params,
  8889. const struct ggml_tensor * src0) {
  8890. // NOP
  8891. UNUSED(params);
  8892. UNUSED(src0);
  8893. }
  8894. // ggml_compute_forward_get_rows
  8895. static void ggml_compute_forward_get_rows_q(
  8896. const struct ggml_compute_params * params,
  8897. const struct ggml_tensor * src0,
  8898. const struct ggml_tensor * src1,
  8899. struct ggml_tensor * dst) {
  8900. assert(params->ith == 0);
  8901. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8902. return;
  8903. }
  8904. const int nc = src0->ne[0];
  8905. const int nr = ggml_nelements(src1);
  8906. const enum ggml_type type = src0->type;
  8907. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  8908. assert( dst->ne[0] == nc);
  8909. assert( dst->ne[1] == nr);
  8910. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  8911. for (int i = 0; i < nr; ++i) {
  8912. const int r = ((int32_t *) src1->data)[i];
  8913. dequantize_row_q(
  8914. (const void *) ((char *) src0->data + r*src0->nb[1]),
  8915. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  8916. }
  8917. }
  8918. static void ggml_compute_forward_get_rows_f16(
  8919. const struct ggml_compute_params * params,
  8920. const struct ggml_tensor * src0,
  8921. const struct ggml_tensor * src1,
  8922. struct ggml_tensor * dst) {
  8923. assert(params->ith == 0);
  8924. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8925. return;
  8926. }
  8927. const int nc = src0->ne[0];
  8928. const int nr = ggml_nelements(src1);
  8929. assert( dst->ne[0] == nc);
  8930. assert( dst->ne[1] == nr);
  8931. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8932. for (int i = 0; i < nr; ++i) {
  8933. const int r = ((int32_t *) src1->data)[i];
  8934. for (int j = 0; j < nc; ++j) {
  8935. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  8936. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  8937. }
  8938. }
  8939. }
  8940. static void ggml_compute_forward_get_rows_f32(
  8941. const struct ggml_compute_params * params,
  8942. const struct ggml_tensor * src0,
  8943. const struct ggml_tensor * src1,
  8944. struct ggml_tensor * dst) {
  8945. assert(params->ith == 0);
  8946. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8947. return;
  8948. }
  8949. const int nc = src0->ne[0];
  8950. const int nr = ggml_nelements(src1);
  8951. assert( dst->ne[0] == nc);
  8952. assert( dst->ne[1] == nr);
  8953. assert(src0->nb[0] == sizeof(float));
  8954. for (int i = 0; i < nr; ++i) {
  8955. const int r = ((int32_t *) src1->data)[i];
  8956. ggml_vec_cpy_f32(nc,
  8957. (float *) ((char *) dst->data + i*dst->nb[1]),
  8958. (float *) ((char *) src0->data + r*src0->nb[1]));
  8959. }
  8960. }
  8961. static void ggml_compute_forward_get_rows(
  8962. const struct ggml_compute_params * params,
  8963. const struct ggml_tensor * src0,
  8964. const struct ggml_tensor * src1,
  8965. struct ggml_tensor * dst) {
  8966. switch (src0->type) {
  8967. case GGML_TYPE_Q4_0:
  8968. case GGML_TYPE_Q4_1:
  8969. case GGML_TYPE_Q5_0:
  8970. case GGML_TYPE_Q5_1:
  8971. case GGML_TYPE_Q8_0:
  8972. case GGML_TYPE_Q8_1:
  8973. case GGML_TYPE_Q2_K:
  8974. case GGML_TYPE_Q3_K:
  8975. case GGML_TYPE_Q4_K:
  8976. case GGML_TYPE_Q5_K:
  8977. case GGML_TYPE_Q6_K:
  8978. {
  8979. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  8980. } break;
  8981. case GGML_TYPE_F16:
  8982. {
  8983. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  8984. } break;
  8985. case GGML_TYPE_F32:
  8986. {
  8987. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  8988. } break;
  8989. default:
  8990. {
  8991. GGML_ASSERT(false);
  8992. } break;
  8993. }
  8994. //static bool first = true;
  8995. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8996. //if (first) {
  8997. // first = false;
  8998. //} else {
  8999. // for (int k = 0; k < dst->ne[1]; ++k) {
  9000. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9001. // for (int i = 0; i < 16; ++i) {
  9002. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9003. // }
  9004. // printf("\n");
  9005. // }
  9006. // printf("\n");
  9007. // }
  9008. // printf("\n");
  9009. // exit(0);
  9010. //}
  9011. }
  9012. // ggml_compute_forward_get_rows_back
  9013. static void ggml_compute_forward_get_rows_back_f32_f16(
  9014. const struct ggml_compute_params * params,
  9015. const struct ggml_tensor * src0,
  9016. const struct ggml_tensor * src1,
  9017. const struct ggml_tensor * opt0,
  9018. struct ggml_tensor * dst) {
  9019. GGML_ASSERT(params->ith == 0);
  9020. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9021. GGML_ASSERT(ggml_is_contiguous(opt0));
  9022. GGML_ASSERT(ggml_is_contiguous(dst));
  9023. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9024. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9025. return;
  9026. }
  9027. const int nc = src0->ne[0];
  9028. const int nr = ggml_nelements(src1);
  9029. GGML_ASSERT( dst->ne[0] == nc);
  9030. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9031. for (int i = 0; i < nr; ++i) {
  9032. const int r = ((int32_t *) src1->data)[i];
  9033. for (int j = 0; j < nc; ++j) {
  9034. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9035. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9036. }
  9037. }
  9038. }
  9039. static void ggml_compute_forward_get_rows_back_f32(
  9040. const struct ggml_compute_params * params,
  9041. const struct ggml_tensor * src0,
  9042. const struct ggml_tensor * src1,
  9043. const struct ggml_tensor * opt0,
  9044. struct ggml_tensor * dst) {
  9045. GGML_ASSERT(params->ith == 0);
  9046. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9047. GGML_ASSERT(ggml_is_contiguous(opt0));
  9048. GGML_ASSERT(ggml_is_contiguous(dst));
  9049. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9050. if (params->type == GGML_TASK_INIT) {
  9051. memset(dst->data, 0, ggml_nbytes(dst));
  9052. }
  9053. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9054. return;
  9055. }
  9056. const int nc = src0->ne[0];
  9057. const int nr = ggml_nelements(src1);
  9058. GGML_ASSERT( dst->ne[0] == nc);
  9059. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9060. for (int i = 0; i < nr; ++i) {
  9061. const int r = ((int32_t *) src1->data)[i];
  9062. ggml_vec_add_f32(nc,
  9063. (float *) ((char *) dst->data + r*dst->nb[1]),
  9064. (float *) ((char *) dst->data + r*dst->nb[1]),
  9065. (float *) ((char *) src0->data + i*src0->nb[1]));
  9066. }
  9067. }
  9068. static void ggml_compute_forward_get_rows_back(
  9069. const struct ggml_compute_params * params,
  9070. const struct ggml_tensor * src0,
  9071. const struct ggml_tensor * src1,
  9072. const struct ggml_tensor * opt0,
  9073. struct ggml_tensor * dst) {
  9074. switch (src0->type) {
  9075. case GGML_TYPE_F16:
  9076. {
  9077. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  9078. } break;
  9079. case GGML_TYPE_F32:
  9080. {
  9081. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  9082. } break;
  9083. default:
  9084. {
  9085. GGML_ASSERT(false);
  9086. } break;
  9087. }
  9088. //static bool first = true;
  9089. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9090. //if (first) {
  9091. // first = false;
  9092. //} else {
  9093. // for (int k = 0; k < dst->ne[1]; ++k) {
  9094. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9095. // for (int i = 0; i < 16; ++i) {
  9096. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9097. // }
  9098. // printf("\n");
  9099. // }
  9100. // printf("\n");
  9101. // }
  9102. // printf("\n");
  9103. // exit(0);
  9104. //}
  9105. }
  9106. // ggml_compute_forward_diag
  9107. static void ggml_compute_forward_diag_f32(
  9108. const struct ggml_compute_params * params,
  9109. const struct ggml_tensor * src0,
  9110. struct ggml_tensor * dst) {
  9111. GGML_ASSERT(params->ith == 0);
  9112. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9113. return;
  9114. }
  9115. // TODO: handle transposed/permuted matrices
  9116. const int ne00 = src0->ne[0];
  9117. const int ne01 = src0->ne[1];
  9118. const int ne02 = src0->ne[2];
  9119. const int ne03 = src0->ne[3];
  9120. const int ne0 = dst->ne[0];
  9121. const int ne1 = dst->ne[1];
  9122. const int ne2 = dst->ne[2];
  9123. const int ne3 = dst->ne[3];
  9124. GGML_ASSERT(ne00 == ne0);
  9125. GGML_ASSERT(ne00 == ne1);
  9126. GGML_ASSERT(ne01 == 1);
  9127. GGML_ASSERT(ne02 == ne2);
  9128. GGML_ASSERT(ne03 == ne3);
  9129. const int nb00 = src0->nb[0];
  9130. //const int nb01 = src0->nb[1];
  9131. const int nb02 = src0->nb[2];
  9132. const int nb03 = src0->nb[3];
  9133. const int nb0 = dst->nb[0];
  9134. const int nb1 = dst->nb[1];
  9135. const int nb2 = dst->nb[2];
  9136. const int nb3 = dst->nb[3];
  9137. GGML_ASSERT(nb00 == sizeof(float));
  9138. GGML_ASSERT(nb0 == sizeof(float));
  9139. for (int i3 = 0; i3 < ne3; i3++) {
  9140. for (int i2 = 0; i2 < ne2; i2++) {
  9141. for (int i1 = 0; i1 < ne1; i1++) {
  9142. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9143. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9144. for (int i0 = 0; i0 < i1; i0++) {
  9145. d[i0] = 0;
  9146. }
  9147. d[i1] = s[i1];
  9148. for (int i0 = i1+1; i0 < ne0; i0++) {
  9149. d[i0] = 0;
  9150. }
  9151. }
  9152. }
  9153. }
  9154. }
  9155. static void ggml_compute_forward_diag(
  9156. const struct ggml_compute_params * params,
  9157. const struct ggml_tensor * src0,
  9158. struct ggml_tensor * dst) {
  9159. switch (src0->type) {
  9160. case GGML_TYPE_F32:
  9161. {
  9162. ggml_compute_forward_diag_f32(params, src0, dst);
  9163. } break;
  9164. default:
  9165. {
  9166. GGML_ASSERT(false);
  9167. } break;
  9168. }
  9169. }
  9170. // ggml_compute_forward_diag_mask_inf
  9171. static void ggml_compute_forward_diag_mask_f32(
  9172. const struct ggml_compute_params * params,
  9173. const struct ggml_tensor * src0,
  9174. const struct ggml_tensor * src1,
  9175. struct ggml_tensor * dst,
  9176. const float value) {
  9177. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9178. GGML_ASSERT(ggml_nelements(src1) == 2);
  9179. const int ith = params->ith;
  9180. const int nth = params->nth;
  9181. const int n_past = ((int32_t *) src1->data)[0];
  9182. const bool inplace = (bool)((int32_t *) src1->data)[1];
  9183. GGML_ASSERT(n_past >= 0);
  9184. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9185. // memcpy needs to be synchronized across threads to avoid race conditions.
  9186. // => do it in INIT phase
  9187. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9188. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9189. memcpy(
  9190. ((char *) dst->data),
  9191. ((char *) src0->data),
  9192. ggml_nbytes(dst));
  9193. }
  9194. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9195. return;
  9196. }
  9197. // TODO: handle transposed/permuted matrices
  9198. const int n = ggml_nrows(src0);
  9199. const int nc = src0->ne[0];
  9200. const int nr = src0->ne[1];
  9201. const int nz = n/nr;
  9202. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9203. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9204. for (int k = 0; k < nz; k++) {
  9205. for (int j = ith; j < nr; j += nth) {
  9206. for (int i = n_past; i < nc; i++) {
  9207. if (i > n_past + j) {
  9208. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9209. }
  9210. }
  9211. }
  9212. }
  9213. }
  9214. static void ggml_compute_forward_diag_mask_inf(
  9215. const struct ggml_compute_params * params,
  9216. const struct ggml_tensor * src0,
  9217. const struct ggml_tensor * src1,
  9218. struct ggml_tensor * dst) {
  9219. switch (src0->type) {
  9220. case GGML_TYPE_F32:
  9221. {
  9222. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, -INFINITY);
  9223. } break;
  9224. default:
  9225. {
  9226. GGML_ASSERT(false);
  9227. } break;
  9228. }
  9229. }
  9230. static void ggml_compute_forward_diag_mask_zero(
  9231. const struct ggml_compute_params * params,
  9232. const struct ggml_tensor * src0,
  9233. const struct ggml_tensor * src1,
  9234. struct ggml_tensor * dst) {
  9235. switch (src0->type) {
  9236. case GGML_TYPE_F32:
  9237. {
  9238. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, 0);
  9239. } break;
  9240. default:
  9241. {
  9242. GGML_ASSERT(false);
  9243. } break;
  9244. }
  9245. }
  9246. // ggml_compute_forward_soft_max
  9247. static void ggml_compute_forward_soft_max_f32(
  9248. const struct ggml_compute_params * params,
  9249. const struct ggml_tensor * src0,
  9250. struct ggml_tensor * dst) {
  9251. GGML_ASSERT(ggml_is_contiguous(src0));
  9252. GGML_ASSERT(ggml_is_contiguous(dst));
  9253. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9254. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9255. return;
  9256. }
  9257. // TODO: handle transposed/permuted matrices
  9258. const int ith = params->ith;
  9259. const int nth = params->nth;
  9260. const int nc = src0->ne[0];
  9261. const int nr = ggml_nrows(src0);
  9262. // rows per thread
  9263. const int dr = (nr + nth - 1)/nth;
  9264. // row range for this thread
  9265. const int ir0 = dr*ith;
  9266. const int ir1 = MIN(ir0 + dr, nr);
  9267. for (int i1 = ir0; i1 < ir1; i1++) {
  9268. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9269. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9270. #ifndef NDEBUG
  9271. for (int i = 0; i < nc; ++i) {
  9272. //printf("p[%d] = %f\n", i, p[i]);
  9273. assert(!isnan(sp[i]));
  9274. }
  9275. #endif
  9276. float max = -INFINITY;
  9277. ggml_vec_max_f32(nc, &max, sp);
  9278. ggml_float sum = 0.0;
  9279. uint16_t scvt;
  9280. for (int i = 0; i < nc; i++) {
  9281. if (sp[i] == -INFINITY) {
  9282. dp[i] = 0.0f;
  9283. } else {
  9284. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  9285. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  9286. memcpy(&scvt, &s, sizeof(scvt));
  9287. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  9288. sum += (ggml_float)val;
  9289. dp[i] = val;
  9290. }
  9291. }
  9292. assert(sum > 0.0);
  9293. sum = 1.0/sum;
  9294. ggml_vec_scale_f32(nc, dp, sum);
  9295. #ifndef NDEBUG
  9296. for (int i = 0; i < nc; ++i) {
  9297. assert(!isnan(dp[i]));
  9298. assert(!isinf(dp[i]));
  9299. }
  9300. #endif
  9301. }
  9302. }
  9303. static void ggml_compute_forward_soft_max(
  9304. const struct ggml_compute_params * params,
  9305. const struct ggml_tensor * src0,
  9306. struct ggml_tensor * dst) {
  9307. switch (src0->type) {
  9308. case GGML_TYPE_F32:
  9309. {
  9310. ggml_compute_forward_soft_max_f32(params, src0, dst);
  9311. } break;
  9312. default:
  9313. {
  9314. GGML_ASSERT(false);
  9315. } break;
  9316. }
  9317. }
  9318. // ggml_compute_forward_soft_max_back
  9319. static void ggml_compute_forward_soft_max_back_f32(
  9320. const struct ggml_compute_params * params,
  9321. const struct ggml_tensor * src0,
  9322. const struct ggml_tensor * src1,
  9323. struct ggml_tensor * dst) {
  9324. GGML_ASSERT(ggml_is_contiguous(src0));
  9325. GGML_ASSERT(ggml_is_contiguous(src1));
  9326. GGML_ASSERT(ggml_is_contiguous(dst));
  9327. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9328. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9329. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9330. return;
  9331. }
  9332. // TODO: handle transposed/permuted matrices
  9333. const int ith = params->ith;
  9334. const int nth = params->nth;
  9335. const int nc = src0->ne[0];
  9336. const int nr = ggml_nrows(src0);
  9337. // rows per thread
  9338. const int dr = (nr + nth - 1)/nth;
  9339. // row range for this thread
  9340. const int ir0 = dr*ith;
  9341. const int ir1 = MIN(ir0 + dr, nr);
  9342. for (int i1 = ir0; i1 < ir1; i1++) {
  9343. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9344. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9345. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9346. #ifndef NDEBUG
  9347. for (int i = 0; i < nc; ++i) {
  9348. //printf("p[%d] = %f\n", i, p[i]);
  9349. assert(!isnan(dy[i]));
  9350. assert(!isnan(y[i]));
  9351. }
  9352. #endif
  9353. // Jii = yi - yi*yi
  9354. // Jij = -yi*yj
  9355. // J = diag(y)-y.T*y
  9356. // dx = J * dy
  9357. // dxk = sum_i(Jki * dyi)
  9358. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9359. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9360. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9361. // dxk = -yk * dot(y, dy) + yk*dyk
  9362. // dxk = yk * (- dot(y, dy) + dyk)
  9363. // dxk = yk * (dyk - dot(y, dy))
  9364. //
  9365. // post-order:
  9366. // dot_y_dy := dot(y, dy)
  9367. // dx := dy
  9368. // dx := dx - dot_y_dy
  9369. // dx := dx * y
  9370. // linear runtime, no additional memory
  9371. float dot_y_dy = 0;
  9372. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  9373. ggml_vec_cpy_f32 (nc, dx, dy);
  9374. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9375. ggml_vec_mul_f32 (nc, dx, dx, y);
  9376. #ifndef NDEBUG
  9377. for (int i = 0; i < nc; ++i) {
  9378. assert(!isnan(dx[i]));
  9379. assert(!isinf(dx[i]));
  9380. }
  9381. #endif
  9382. }
  9383. }
  9384. static void ggml_compute_forward_soft_max_back(
  9385. const struct ggml_compute_params * params,
  9386. const struct ggml_tensor * src0,
  9387. const struct ggml_tensor * src1,
  9388. struct ggml_tensor * dst) {
  9389. switch (src0->type) {
  9390. case GGML_TYPE_F32:
  9391. {
  9392. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  9393. } break;
  9394. default:
  9395. {
  9396. GGML_ASSERT(false);
  9397. } break;
  9398. }
  9399. }
  9400. // ggml_compute_forward_alibi
  9401. static void ggml_compute_forward_alibi_f32(
  9402. const struct ggml_compute_params * params,
  9403. const struct ggml_tensor * src0,
  9404. const struct ggml_tensor * src1,
  9405. struct ggml_tensor * dst) {
  9406. assert(params->ith == 0);
  9407. assert(src1->type == GGML_TYPE_I32);
  9408. assert(ggml_nelements(src1) == 3);
  9409. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9410. return;
  9411. }
  9412. const int n_past = ((int32_t *) src1->data)[0];
  9413. const int n_head = ((int32_t *) src1->data)[1];
  9414. const float max_bias = ((float *) src1->data)[2];
  9415. assert(n_past >= 0);
  9416. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9417. const int ne1 = src0->ne[1]; // seq_len_without_past
  9418. //const int ne2 = src0->ne[2]; // n_head -> this is k
  9419. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9420. const int n = ggml_nrows(src0);
  9421. const int ne2_ne3 = n/ne1; // ne2*ne3
  9422. const int nb0 = src0->nb[0];
  9423. const int nb1 = src0->nb[1];
  9424. const int nb2 = src0->nb[2];
  9425. //const int nb3 = src0->nb[3];
  9426. assert(nb0 == sizeof(float));
  9427. assert(ne1 + n_past == ne0); (void) n_past;
  9428. // add alibi to src0 (KQ_scaled)
  9429. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9430. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9431. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9432. for (int i = 0; i < ne0; i++) {
  9433. for (int j = 0; j < ne1; j++) {
  9434. for (int k = 0; k < ne2_ne3; k++) {
  9435. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9436. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9437. // TODO: k*nb2 or k*nb3
  9438. float m_k;
  9439. if (k < n_heads_log2_floor) {
  9440. m_k = powf(m0, k + 1);
  9441. } else {
  9442. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9443. }
  9444. pdst[0] = (i-ne0+1) * m_k + src[0];
  9445. }
  9446. }
  9447. }
  9448. }
  9449. static void ggml_compute_forward_alibi_f16(
  9450. const struct ggml_compute_params * params,
  9451. const struct ggml_tensor * src0,
  9452. const struct ggml_tensor * src1,
  9453. struct ggml_tensor * dst) {
  9454. assert(params->ith == 0);
  9455. assert(src1->type == GGML_TYPE_I32);
  9456. assert(ggml_nelements(src1) == 3);
  9457. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9458. return;
  9459. }
  9460. const int n_past = ((int32_t *) src1->data)[0];
  9461. const int n_head = ((int32_t *) src1->data)[1];
  9462. const float max_bias = ((float *) src1->data)[2];
  9463. assert(n_past >= 0);
  9464. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9465. const int ne1 = src0->ne[1]; // seq_len_without_past
  9466. //const int ne2 = src0->ne[2]; // n_head -> this is k
  9467. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9468. const int n = ggml_nrows(src0);
  9469. const int ne2_ne3 = n/ne1; // ne2*ne3
  9470. const int nb0 = src0->nb[0];
  9471. const int nb1 = src0->nb[1];
  9472. const int nb2 = src0->nb[2];
  9473. //const int nb3 = src0->nb[3];
  9474. assert(nb0 == sizeof(ggml_fp16_t));
  9475. assert(ne1 + n_past == ne0); (void) n_past;
  9476. // add alibi to src0 (KQ_scaled)
  9477. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9478. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9479. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9480. for (int i = 0; i < ne0; i++) {
  9481. for (int j = 0; j < ne1; j++) {
  9482. for (int k = 0; k < ne2_ne3; k++) {
  9483. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9484. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9485. // TODO: k*nb2 or k*nb3
  9486. float m_k;
  9487. if (k < n_heads_log2_floor) {
  9488. m_k = powf(m0, k + 1);
  9489. } else {
  9490. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9491. }
  9492. // we return F32
  9493. pdst[0] = (i-ne0+1) * m_k + GGML_FP16_TO_FP32(src[0]);
  9494. }
  9495. }
  9496. }
  9497. }
  9498. static void ggml_compute_forward_alibi(
  9499. const struct ggml_compute_params * params,
  9500. const struct ggml_tensor * src0,
  9501. const struct ggml_tensor * src1,
  9502. struct ggml_tensor * dst) {
  9503. switch (src0->type) {
  9504. case GGML_TYPE_F16:
  9505. {
  9506. ggml_compute_forward_alibi_f16(params, src0, src1, dst);
  9507. } break;
  9508. case GGML_TYPE_F32:
  9509. {
  9510. ggml_compute_forward_alibi_f32(params, src0, src1, dst);
  9511. } break;
  9512. case GGML_TYPE_Q4_0:
  9513. case GGML_TYPE_Q4_1:
  9514. case GGML_TYPE_Q5_0:
  9515. case GGML_TYPE_Q5_1:
  9516. case GGML_TYPE_Q8_0:
  9517. case GGML_TYPE_Q8_1:
  9518. case GGML_TYPE_Q2_K:
  9519. case GGML_TYPE_Q3_K:
  9520. case GGML_TYPE_Q4_K:
  9521. case GGML_TYPE_Q5_K:
  9522. case GGML_TYPE_Q6_K:
  9523. case GGML_TYPE_Q8_K:
  9524. case GGML_TYPE_I8:
  9525. case GGML_TYPE_I16:
  9526. case GGML_TYPE_I32:
  9527. case GGML_TYPE_COUNT:
  9528. {
  9529. GGML_ASSERT(false);
  9530. } break;
  9531. }
  9532. }
  9533. // ggml_compute_forward_clamp
  9534. static void ggml_compute_forward_clamp_f32(
  9535. const struct ggml_compute_params * params,
  9536. const struct ggml_tensor * src0,
  9537. const struct ggml_tensor * src1,
  9538. struct ggml_tensor * dst) {
  9539. assert(params->ith == 0);
  9540. assert(src1->type == GGML_TYPE_I32);
  9541. assert(ggml_nelements(src1) == 2);
  9542. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9543. return;
  9544. }
  9545. const int min = ((float *) src1->data)[0];
  9546. const int max = ((float *) src1->data)[1];
  9547. const int ith = params->ith;
  9548. const int nth = params->nth;
  9549. const int n = ggml_nrows(src0);
  9550. const int nc = src0->ne[0];
  9551. const size_t nb00 = src0->nb[0];
  9552. const size_t nb01 = src0->nb[1];
  9553. const size_t nb0 = dst->nb[0];
  9554. const size_t nb1 = dst->nb[1];
  9555. GGML_ASSERT( nb0 == sizeof(float));
  9556. GGML_ASSERT(nb00 == sizeof(float));
  9557. for (int j = ith; j < n; j += nth) {
  9558. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9559. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9560. for (int i = 0; i < nc; i++) {
  9561. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9562. }
  9563. }
  9564. }
  9565. static void ggml_compute_forward_clamp(
  9566. const struct ggml_compute_params * params,
  9567. const struct ggml_tensor * src0,
  9568. const struct ggml_tensor * src1,
  9569. struct ggml_tensor * dst) {
  9570. switch (src0->type) {
  9571. case GGML_TYPE_F32:
  9572. {
  9573. ggml_compute_forward_clamp_f32(params, src0, src1, dst);
  9574. } break;
  9575. case GGML_TYPE_F16:
  9576. case GGML_TYPE_Q4_0:
  9577. case GGML_TYPE_Q4_1:
  9578. case GGML_TYPE_Q5_0:
  9579. case GGML_TYPE_Q5_1:
  9580. case GGML_TYPE_Q8_0:
  9581. case GGML_TYPE_Q8_1:
  9582. case GGML_TYPE_Q2_K:
  9583. case GGML_TYPE_Q3_K:
  9584. case GGML_TYPE_Q4_K:
  9585. case GGML_TYPE_Q5_K:
  9586. case GGML_TYPE_Q6_K:
  9587. case GGML_TYPE_Q8_K:
  9588. case GGML_TYPE_I8:
  9589. case GGML_TYPE_I16:
  9590. case GGML_TYPE_I32:
  9591. case GGML_TYPE_COUNT:
  9592. {
  9593. GGML_ASSERT(false);
  9594. } break;
  9595. }
  9596. }
  9597. // ggml_compute_forward_rope
  9598. static void ggml_compute_forward_rope_f32(
  9599. const struct ggml_compute_params * params,
  9600. const struct ggml_tensor * src0,
  9601. const struct ggml_tensor * src1,
  9602. struct ggml_tensor * dst) {
  9603. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9604. GGML_ASSERT(ggml_nelements(src1) == 3);
  9605. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9606. return;
  9607. }
  9608. const int n_past = ((int32_t *) src1->data)[0];
  9609. const int n_dims = ((int32_t *) src1->data)[1];
  9610. const int mode = ((int32_t *) src1->data)[2];
  9611. assert(n_past >= 0);
  9612. const size_t nb00 = src0->nb[0];
  9613. const size_t nb01 = src0->nb[1];
  9614. const size_t nb02 = src0->nb[2];
  9615. const size_t nb03 = src0->nb[3];
  9616. const int64_t ne0 = dst->ne[0];
  9617. const int64_t ne1 = dst->ne[1];
  9618. const int64_t ne2 = dst->ne[2];
  9619. const int64_t ne3 = dst->ne[3];
  9620. const size_t nb0 = dst->nb[0];
  9621. const size_t nb1 = dst->nb[1];
  9622. const size_t nb2 = dst->nb[2];
  9623. const size_t nb3 = dst->nb[3];
  9624. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9625. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9626. GGML_ASSERT(nb00 == sizeof(float));
  9627. const int ith = params->ith;
  9628. const int nth = params->nth;
  9629. const int nr = ggml_nrows(dst);
  9630. GGML_ASSERT(n_dims <= ne0);
  9631. GGML_ASSERT(n_dims % 2 == 0);
  9632. // rows per thread
  9633. const int dr = (nr + nth - 1)/nth;
  9634. // row range for this thread
  9635. const int ir0 = dr*ith;
  9636. const int ir1 = MIN(ir0 + dr, nr);
  9637. // row index used to determine which thread to use
  9638. int ir = 0;
  9639. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9640. const bool is_neox = mode & 2;
  9641. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9642. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9643. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9644. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9645. if (ir++ < ir0) continue;
  9646. if (ir > ir1) break;
  9647. float theta = (float)p;
  9648. if (!is_neox) {
  9649. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9650. const float cos_theta = cosf(theta);
  9651. const float sin_theta = sinf(theta);
  9652. theta *= theta_scale;
  9653. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9654. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9655. const float x0 = src[0];
  9656. const float x1 = src[1];
  9657. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9658. dst_data[1] = x0*sin_theta + x1*cos_theta;
  9659. }
  9660. } else {
  9661. // TODO: this is probably wrong, but I can't figure it out ..
  9662. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9663. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9664. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9665. const float cos_theta = cosf(theta);
  9666. const float sin_theta = sinf(theta);
  9667. theta *= theta_scale;
  9668. const int64_t i0 = ib*n_dims + ic/2;
  9669. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9670. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9671. const float x0 = src[0];
  9672. const float x1 = src[n_dims/2];
  9673. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9674. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9675. }
  9676. }
  9677. }
  9678. }
  9679. }
  9680. }
  9681. }
  9682. static void ggml_compute_forward_rope_f16(
  9683. const struct ggml_compute_params * params,
  9684. const struct ggml_tensor * src0,
  9685. const struct ggml_tensor * src1,
  9686. struct ggml_tensor * dst) {
  9687. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9688. GGML_ASSERT(ggml_nelements(src1) == 3);
  9689. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9690. return;
  9691. }
  9692. const int n_past = ((int32_t *) src1->data)[0];
  9693. const int n_dims = ((int32_t *) src1->data)[1];
  9694. const int mode = ((int32_t *) src1->data)[2];
  9695. assert(n_past >= 0);
  9696. const size_t nb00 = src0->nb[0];
  9697. const size_t nb01 = src0->nb[1];
  9698. const size_t nb02 = src0->nb[2];
  9699. const size_t nb03 = src0->nb[3];
  9700. const int64_t ne0 = dst->ne[0];
  9701. const int64_t ne1 = dst->ne[1];
  9702. const int64_t ne2 = dst->ne[2];
  9703. const int64_t ne3 = dst->ne[3];
  9704. const size_t nb0 = dst->nb[0];
  9705. const size_t nb1 = dst->nb[1];
  9706. const size_t nb2 = dst->nb[2];
  9707. const size_t nb3 = dst->nb[3];
  9708. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9709. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9710. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9711. const int ith = params->ith;
  9712. const int nth = params->nth;
  9713. const int nr = ggml_nrows(dst);
  9714. GGML_ASSERT(n_dims <= ne0);
  9715. GGML_ASSERT(n_dims % 2 == 0);
  9716. // rows per thread
  9717. const int dr = (nr + nth - 1)/nth;
  9718. // row range for this thread
  9719. const int ir0 = dr*ith;
  9720. const int ir1 = MIN(ir0 + dr, nr);
  9721. // row index used to determine which thread to use
  9722. int ir = 0;
  9723. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9724. const bool is_neox = mode & 2;
  9725. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9726. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9727. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9728. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9729. if (ir++ < ir0) continue;
  9730. if (ir > ir1) break;
  9731. float theta = (float)p;
  9732. if (!is_neox) {
  9733. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9734. const float cos_theta = cosf(theta);
  9735. const float sin_theta = sinf(theta);
  9736. theta *= theta_scale;
  9737. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9738. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9739. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9740. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9741. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9742. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9743. }
  9744. } else {
  9745. // TODO: this is probably wrong, but I can't figure it out ..
  9746. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9747. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9748. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9749. const float cos_theta = cosf(theta);
  9750. const float sin_theta = sinf(theta);
  9751. theta *= theta_scale;
  9752. const int64_t i0 = ib*n_dims + ic/2;
  9753. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9754. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9755. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9756. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9757. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9758. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9759. }
  9760. }
  9761. }
  9762. }
  9763. }
  9764. }
  9765. }
  9766. static void ggml_compute_forward_rope(
  9767. const struct ggml_compute_params * params,
  9768. const struct ggml_tensor * src0,
  9769. const struct ggml_tensor * src1,
  9770. struct ggml_tensor * dst) {
  9771. switch (src0->type) {
  9772. case GGML_TYPE_F16:
  9773. {
  9774. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  9775. } break;
  9776. case GGML_TYPE_F32:
  9777. {
  9778. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  9779. } break;
  9780. default:
  9781. {
  9782. GGML_ASSERT(false);
  9783. } break;
  9784. }
  9785. }
  9786. // ggml_compute_forward_rope_back
  9787. static void ggml_compute_forward_rope_back_f32(
  9788. const struct ggml_compute_params * params,
  9789. const struct ggml_tensor * src0,
  9790. const struct ggml_tensor * src1,
  9791. struct ggml_tensor * dst) {
  9792. assert(src1->type == GGML_TYPE_I32);
  9793. assert(ggml_nelements(src1) == 3);
  9794. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9795. return;
  9796. }
  9797. // y = rope(x, src1)
  9798. // dx = rope_back(dy, src1)
  9799. // src0 is dy, src1 contains options
  9800. const int n_past = ((int32_t *) src1->data)[0];
  9801. const int n_dims = ((int32_t *) src1->data)[1];
  9802. const int mode = ((int32_t *) src1->data)[2];
  9803. assert(n_past >= 0);
  9804. const size_t nb00 = src0->nb[0];
  9805. const size_t nb01 = src0->nb[1];
  9806. const size_t nb02 = src0->nb[2];
  9807. const size_t nb03 = src0->nb[3];
  9808. const int64_t ne0 = dst->ne[0];
  9809. const int64_t ne1 = dst->ne[1];
  9810. const int64_t ne2 = dst->ne[2];
  9811. const int64_t ne3 = dst->ne[3];
  9812. const size_t nb0 = dst->nb[0];
  9813. const size_t nb1 = dst->nb[1];
  9814. const size_t nb2 = dst->nb[2];
  9815. const size_t nb3 = dst->nb[3];
  9816. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9817. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9818. assert(nb0 == sizeof(float));
  9819. const int ith = params->ith;
  9820. const int nth = params->nth;
  9821. const int nr = ggml_nrows(dst);
  9822. // rows per thread
  9823. const int dr = (nr + nth - 1)/nth;
  9824. // row range for this thread
  9825. const int ir0 = dr*ith;
  9826. const int ir1 = MIN(ir0 + dr, nr);
  9827. // row index used to determine which thread to use
  9828. int ir = 0;
  9829. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9830. const bool is_neox = mode & 2;
  9831. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9832. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9833. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9834. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9835. if (ir++ < ir0) continue;
  9836. if (ir > ir1) break;
  9837. float theta = (float)p;
  9838. if (!is_neox) {
  9839. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9840. const float cos_theta = cosf(theta);
  9841. const float sin_theta = sinf(theta);
  9842. theta *= theta_scale;
  9843. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9844. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9845. const float dy0 = dy[0];
  9846. const float dy1 = dy[1];
  9847. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9848. dx[1] = - dy0*sin_theta + dy1*cos_theta;
  9849. }
  9850. } else {
  9851. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9852. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9853. const float cos_theta = cosf(theta);
  9854. const float sin_theta = sinf(theta);
  9855. theta *= theta_scale;
  9856. const int64_t i0 = ib*n_dims + ic/2;
  9857. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9858. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9859. const float dy0 = dy[0];
  9860. const float dy1 = dy[n_dims/2];
  9861. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9862. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  9863. }
  9864. }
  9865. }
  9866. }
  9867. }
  9868. }
  9869. }
  9870. static void ggml_compute_forward_rope_back_f16(
  9871. const struct ggml_compute_params * params,
  9872. const struct ggml_tensor * src0,
  9873. const struct ggml_tensor * src1,
  9874. struct ggml_tensor * dst) {
  9875. assert(src1->type == GGML_TYPE_I32);
  9876. assert(ggml_nelements(src1) == 3);
  9877. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9878. return;
  9879. }
  9880. // y = rope(x, src1)
  9881. // dx = rope_back(dy, src1)
  9882. // src0 is dy, src1 contains options
  9883. const int n_past = ((int32_t *) src1->data)[0];
  9884. const int n_dims = ((int32_t *) src1->data)[1];
  9885. const int mode = ((int32_t *) src1->data)[2];
  9886. assert(n_past >= 0);
  9887. const size_t nb00 = src0->nb[0];
  9888. const size_t nb01 = src0->nb[1];
  9889. const size_t nb02 = src0->nb[2];
  9890. const size_t nb03 = src0->nb[3];
  9891. const int64_t ne0 = dst->ne[0];
  9892. const int64_t ne1 = dst->ne[1];
  9893. const int64_t ne2 = dst->ne[2];
  9894. const int64_t ne3 = dst->ne[3];
  9895. const size_t nb0 = dst->nb[0];
  9896. const size_t nb1 = dst->nb[1];
  9897. const size_t nb2 = dst->nb[2];
  9898. const size_t nb3 = dst->nb[3];
  9899. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9900. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9901. assert(nb0 == sizeof(ggml_fp16_t));
  9902. const int ith = params->ith;
  9903. const int nth = params->nth;
  9904. const int nr = ggml_nrows(dst);
  9905. // rows per thread
  9906. const int dr = (nr + nth - 1)/nth;
  9907. // row range for this thread
  9908. const int ir0 = dr*ith;
  9909. const int ir1 = MIN(ir0 + dr, nr);
  9910. // row index used to determine which thread to use
  9911. int ir = 0;
  9912. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9913. const bool is_neox = mode & 2;
  9914. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9915. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9916. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9917. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9918. if (ir++ < ir0) continue;
  9919. if (ir > ir1) break;
  9920. float theta = (float)p;
  9921. if (!is_neox) {
  9922. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9923. const float cos_theta = cosf(theta);
  9924. const float sin_theta = sinf(theta);
  9925. theta *= theta_scale;
  9926. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9927. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9928. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9929. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  9930. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9931. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9932. }
  9933. } else {
  9934. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9935. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9936. const float cos_theta = cosf(theta);
  9937. const float sin_theta = sinf(theta);
  9938. theta *= theta_scale;
  9939. const int64_t i0 = ib*n_dims + ic/2;
  9940. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9941. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9942. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9943. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  9944. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9945. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9946. }
  9947. }
  9948. }
  9949. }
  9950. }
  9951. }
  9952. }
  9953. static void ggml_compute_forward_rope_back(
  9954. const struct ggml_compute_params * params,
  9955. const struct ggml_tensor * src0,
  9956. const struct ggml_tensor * src1,
  9957. struct ggml_tensor * dst) {
  9958. switch (src0->type) {
  9959. case GGML_TYPE_F16:
  9960. {
  9961. ggml_compute_forward_rope_back_f16(params, src0, src1, dst);
  9962. } break;
  9963. case GGML_TYPE_F32:
  9964. {
  9965. ggml_compute_forward_rope_back_f32(params, src0, src1, dst);
  9966. } break;
  9967. default:
  9968. {
  9969. GGML_ASSERT(false);
  9970. } break;
  9971. }
  9972. }
  9973. // ggml_compute_forward_conv_1d_1s
  9974. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  9975. const struct ggml_compute_params * params,
  9976. const struct ggml_tensor * src0,
  9977. const struct ggml_tensor * src1,
  9978. struct ggml_tensor * dst) {
  9979. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9980. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9981. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9982. int64_t t0 = ggml_perf_time_us();
  9983. UNUSED(t0);
  9984. const int64_t ne00 = src0->ne[0];
  9985. const int64_t ne01 = src0->ne[1];
  9986. const int64_t ne02 = src0->ne[2];
  9987. //const int64_t ne03 = src0->ne[3];
  9988. const int64_t ne10 = src1->ne[0];
  9989. const int64_t ne11 = src1->ne[1];
  9990. //const int64_t ne12 = src1->ne[2];
  9991. //const int64_t ne13 = src1->ne[3];
  9992. //const int64_t ne0 = dst->ne[0];
  9993. //const int64_t ne1 = dst->ne[1];
  9994. //const int64_t ne2 = dst->ne[2];
  9995. //const int64_t ne3 = dst->ne[3];
  9996. //const int64_t ne = ne0*ne1*ne2*ne3;
  9997. const int nb00 = src0->nb[0];
  9998. const int nb01 = src0->nb[1];
  9999. const int nb02 = src0->nb[2];
  10000. //const int nb03 = src0->nb[3];
  10001. const int nb10 = src1->nb[0];
  10002. const int nb11 = src1->nb[1];
  10003. //const int nb12 = src1->nb[2];
  10004. //const int nb13 = src1->nb[3];
  10005. //const int nb0 = dst->nb[0];
  10006. const int nb1 = dst->nb[1];
  10007. //const int nb2 = dst->nb[2];
  10008. //const int nb3 = dst->nb[3];
  10009. const int ith = params->ith;
  10010. const int nth = params->nth;
  10011. const int nk = ne00;
  10012. const int nh = nk/2;
  10013. const int ew0 = ggml_up32(ne01);
  10014. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10015. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10016. GGML_ASSERT(nb10 == sizeof(float));
  10017. if (params->type == GGML_TASK_INIT) {
  10018. // TODO: fix this memset (wsize is overestimated)
  10019. memset(params->wdata, 0, params->wsize);
  10020. // prepare kernel data (src0)
  10021. {
  10022. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10023. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10024. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10025. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10026. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10027. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10028. dst_data[i00*ew0 + i01] = src[i00];
  10029. }
  10030. }
  10031. }
  10032. }
  10033. // prepare source data (src1)
  10034. {
  10035. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10036. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10037. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10038. ggml_fp16_t * dst_data = wdata;
  10039. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10040. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10041. }
  10042. }
  10043. }
  10044. return;
  10045. }
  10046. if (params->type == GGML_TASK_FINALIZE) {
  10047. return;
  10048. }
  10049. // total rows in dst
  10050. const int nr = ne02;
  10051. // rows per thread
  10052. const int dr = (nr + nth - 1)/nth;
  10053. // row range for this thread
  10054. const int ir0 = dr*ith;
  10055. const int ir1 = MIN(ir0 + dr, nr);
  10056. for (int i1 = ir0; i1 < ir1; i1++) {
  10057. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10058. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10059. dst_data[i0] = 0;
  10060. for (int k = -nh; k <= nh; k++) {
  10061. float v = 0.0f;
  10062. ggml_vec_dot_f16(ew0, &v,
  10063. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10064. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10065. dst_data[i0] += v;
  10066. }
  10067. }
  10068. }
  10069. }
  10070. static void ggml_compute_forward_conv_1d_1s_f32(
  10071. const struct ggml_compute_params * params,
  10072. const struct ggml_tensor * src0,
  10073. const struct ggml_tensor * src1,
  10074. struct ggml_tensor * dst) {
  10075. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10076. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10077. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10078. int64_t t0 = ggml_perf_time_us();
  10079. UNUSED(t0);
  10080. const int64_t ne00 = src0->ne[0];
  10081. const int64_t ne01 = src0->ne[1];
  10082. const int64_t ne02 = src0->ne[2];
  10083. //const int64_t ne03 = src0->ne[3];
  10084. const int64_t ne10 = src1->ne[0];
  10085. const int64_t ne11 = src1->ne[1];
  10086. //const int64_t ne12 = src1->ne[2];
  10087. //const int64_t ne13 = src1->ne[3];
  10088. //const int64_t ne0 = dst->ne[0];
  10089. //const int64_t ne1 = dst->ne[1];
  10090. //const int64_t ne2 = dst->ne[2];
  10091. //const int64_t ne3 = dst->ne[3];
  10092. //const int64_t ne = ne0*ne1*ne2*ne3;
  10093. const int nb00 = src0->nb[0];
  10094. const int nb01 = src0->nb[1];
  10095. const int nb02 = src0->nb[2];
  10096. //const int nb03 = src0->nb[3];
  10097. const int nb10 = src1->nb[0];
  10098. const int nb11 = src1->nb[1];
  10099. //const int nb12 = src1->nb[2];
  10100. //const int nb13 = src1->nb[3];
  10101. //const int nb0 = dst->nb[0];
  10102. const int nb1 = dst->nb[1];
  10103. //const int nb2 = dst->nb[2];
  10104. //const int nb3 = dst->nb[3];
  10105. const int ith = params->ith;
  10106. const int nth = params->nth;
  10107. const int nk = ne00;
  10108. const int nh = nk/2;
  10109. const int ew0 = ggml_up32(ne01);
  10110. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10111. GGML_ASSERT(nb00 == sizeof(float));
  10112. GGML_ASSERT(nb10 == sizeof(float));
  10113. if (params->type == GGML_TASK_INIT) {
  10114. // TODO: fix this memset (wsize is overestimated)
  10115. memset(params->wdata, 0, params->wsize);
  10116. // prepare kernel data (src0)
  10117. {
  10118. float * const wdata = (float *) params->wdata + 0;
  10119. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10120. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10121. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10122. float * dst_data = wdata + i02*ew0*ne00;
  10123. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10124. dst_data[i00*ew0 + i01] = src[i00];
  10125. }
  10126. }
  10127. }
  10128. }
  10129. // prepare source data (src1)
  10130. {
  10131. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10132. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10133. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10134. float * dst_data = wdata;
  10135. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10136. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10137. }
  10138. }
  10139. }
  10140. return;
  10141. }
  10142. if (params->type == GGML_TASK_FINALIZE) {
  10143. return;
  10144. }
  10145. // total rows in dst
  10146. const int nr = ne02;
  10147. // rows per thread
  10148. const int dr = (nr + nth - 1)/nth;
  10149. // row range for this thread
  10150. const int ir0 = dr*ith;
  10151. const int ir1 = MIN(ir0 + dr, nr);
  10152. for (int i1 = ir0; i1 < ir1; i1++) {
  10153. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10154. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10155. dst_data[i0] = 0;
  10156. for (int k = -nh; k <= nh; k++) {
  10157. float v = 0.0f;
  10158. ggml_vec_dot_f32(ew0, &v,
  10159. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10160. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10161. dst_data[i0] += v;
  10162. }
  10163. }
  10164. }
  10165. }
  10166. static void ggml_compute_forward_conv_1d_1s(
  10167. const struct ggml_compute_params * params,
  10168. const struct ggml_tensor * src0,
  10169. const struct ggml_tensor * src1,
  10170. struct ggml_tensor * dst) {
  10171. switch (src0->type) {
  10172. case GGML_TYPE_F16:
  10173. {
  10174. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  10175. } break;
  10176. case GGML_TYPE_F32:
  10177. {
  10178. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  10179. } break;
  10180. default:
  10181. {
  10182. GGML_ASSERT(false);
  10183. } break;
  10184. }
  10185. }
  10186. // ggml_compute_forward_conv_1d_2s
  10187. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  10188. const struct ggml_compute_params * params,
  10189. const struct ggml_tensor * src0,
  10190. const struct ggml_tensor * src1,
  10191. struct ggml_tensor * dst) {
  10192. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10193. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10194. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10195. int64_t t0 = ggml_perf_time_us();
  10196. UNUSED(t0);
  10197. const int64_t ne00 = src0->ne[0];
  10198. const int64_t ne01 = src0->ne[1];
  10199. const int64_t ne02 = src0->ne[2];
  10200. //const int64_t ne03 = src0->ne[3];
  10201. const int64_t ne10 = src1->ne[0];
  10202. const int64_t ne11 = src1->ne[1];
  10203. //const int64_t ne12 = src1->ne[2];
  10204. //const int64_t ne13 = src1->ne[3];
  10205. //const int64_t ne0 = dst->ne[0];
  10206. //const int64_t ne1 = dst->ne[1];
  10207. //const int64_t ne2 = dst->ne[2];
  10208. //const int64_t ne3 = dst->ne[3];
  10209. //const int64_t ne = ne0*ne1*ne2*ne3;
  10210. const int nb00 = src0->nb[0];
  10211. const int nb01 = src0->nb[1];
  10212. const int nb02 = src0->nb[2];
  10213. //const int nb03 = src0->nb[3];
  10214. const int nb10 = src1->nb[0];
  10215. const int nb11 = src1->nb[1];
  10216. //const int nb12 = src1->nb[2];
  10217. //const int nb13 = src1->nb[3];
  10218. //const int nb0 = dst->nb[0];
  10219. const int nb1 = dst->nb[1];
  10220. //const int nb2 = dst->nb[2];
  10221. //const int nb3 = dst->nb[3];
  10222. const int ith = params->ith;
  10223. const int nth = params->nth;
  10224. const int nk = ne00;
  10225. const int nh = nk/2;
  10226. const int ew0 = ggml_up32(ne01);
  10227. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10228. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10229. GGML_ASSERT(nb10 == sizeof(float));
  10230. if (params->type == GGML_TASK_INIT) {
  10231. // TODO: fix this memset (wsize is overestimated)
  10232. memset(params->wdata, 0, params->wsize);
  10233. // prepare kernel data (src0)
  10234. {
  10235. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10236. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10237. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10238. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10239. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10240. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10241. dst_data[i00*ew0 + i01] = src[i00];
  10242. }
  10243. }
  10244. }
  10245. }
  10246. // prepare source data (src1)
  10247. {
  10248. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10249. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10250. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10251. ggml_fp16_t * dst_data = wdata;
  10252. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10253. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10254. }
  10255. }
  10256. }
  10257. return;
  10258. }
  10259. if (params->type == GGML_TASK_FINALIZE) {
  10260. return;
  10261. }
  10262. // total rows in dst
  10263. const int nr = ne02;
  10264. // rows per thread
  10265. const int dr = (nr + nth - 1)/nth;
  10266. // row range for this thread
  10267. const int ir0 = dr*ith;
  10268. const int ir1 = MIN(ir0 + dr, nr);
  10269. for (int i1 = ir0; i1 < ir1; i1++) {
  10270. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10271. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10272. dst_data[i0/2] = 0;
  10273. for (int k = -nh; k <= nh; k++) {
  10274. float v = 0.0f;
  10275. ggml_vec_dot_f16(ew0, &v,
  10276. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10277. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10278. dst_data[i0/2] += v;
  10279. }
  10280. }
  10281. }
  10282. }
  10283. static void ggml_compute_forward_conv_1d_2s_f32(
  10284. const struct ggml_compute_params * params,
  10285. const struct ggml_tensor * src0,
  10286. const struct ggml_tensor * src1,
  10287. struct ggml_tensor * dst) {
  10288. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10289. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10290. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10291. int64_t t0 = ggml_perf_time_us();
  10292. UNUSED(t0);
  10293. const int64_t ne00 = src0->ne[0];
  10294. const int64_t ne01 = src0->ne[1];
  10295. const int64_t ne02 = src0->ne[2];
  10296. //const int64_t ne03 = src0->ne[3];
  10297. const int64_t ne10 = src1->ne[0];
  10298. const int64_t ne11 = src1->ne[1];
  10299. //const int64_t ne12 = src1->ne[2];
  10300. //const int64_t ne13 = src1->ne[3];
  10301. //const int64_t ne0 = dst->ne[0];
  10302. //const int64_t ne1 = dst->ne[1];
  10303. //const int64_t ne2 = dst->ne[2];
  10304. //const int64_t ne3 = dst->ne[3];
  10305. //const int64_t ne = ne0*ne1*ne2*ne3;
  10306. const int nb00 = src0->nb[0];
  10307. const int nb01 = src0->nb[1];
  10308. const int nb02 = src0->nb[2];
  10309. //const int nb03 = src0->nb[3];
  10310. const int nb10 = src1->nb[0];
  10311. const int nb11 = src1->nb[1];
  10312. //const int nb12 = src1->nb[2];
  10313. //const int nb13 = src1->nb[3];
  10314. //const int nb0 = dst->nb[0];
  10315. const int nb1 = dst->nb[1];
  10316. //const int nb2 = dst->nb[2];
  10317. //const int nb3 = dst->nb[3];
  10318. const int ith = params->ith;
  10319. const int nth = params->nth;
  10320. const int nk = ne00;
  10321. const int nh = nk/2;
  10322. const int ew0 = ggml_up32(ne01);
  10323. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10324. GGML_ASSERT(nb00 == sizeof(float));
  10325. GGML_ASSERT(nb10 == sizeof(float));
  10326. if (params->type == GGML_TASK_INIT) {
  10327. // TODO: fix this memset (wsize is overestimated)
  10328. memset(params->wdata, 0, params->wsize);
  10329. // prepare kernel data (src0)
  10330. {
  10331. float * const wdata = (float *) params->wdata + 0;
  10332. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10333. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10334. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10335. float * dst_data = wdata + i02*ew0*ne00;
  10336. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10337. dst_data[i00*ew0 + i01] = src[i00];
  10338. }
  10339. }
  10340. }
  10341. }
  10342. // prepare source data (src1)
  10343. {
  10344. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10345. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10346. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10347. float * dst_data = wdata;
  10348. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10349. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10350. }
  10351. }
  10352. }
  10353. return;
  10354. }
  10355. if (params->type == GGML_TASK_FINALIZE) {
  10356. return;
  10357. }
  10358. // total rows in dst
  10359. const int nr = ne02;
  10360. // rows per thread
  10361. const int dr = (nr + nth - 1)/nth;
  10362. // row range for this thread
  10363. const int ir0 = dr*ith;
  10364. const int ir1 = MIN(ir0 + dr, nr);
  10365. for (int i1 = ir0; i1 < ir1; i1++) {
  10366. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10367. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10368. dst_data[i0/2] = 0;
  10369. for (int k = -nh; k <= nh; k++) {
  10370. float v = 0.0f;
  10371. ggml_vec_dot_f32(ew0, &v,
  10372. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10373. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10374. dst_data[i0/2] += v;
  10375. }
  10376. }
  10377. }
  10378. }
  10379. static void ggml_compute_forward_conv_1d_2s(
  10380. const struct ggml_compute_params * params,
  10381. const struct ggml_tensor * src0,
  10382. const struct ggml_tensor * src1,
  10383. struct ggml_tensor * dst) {
  10384. switch (src0->type) {
  10385. case GGML_TYPE_F16:
  10386. {
  10387. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  10388. } break;
  10389. case GGML_TYPE_F32:
  10390. {
  10391. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  10392. } break;
  10393. default:
  10394. {
  10395. GGML_ASSERT(false);
  10396. } break;
  10397. }
  10398. }
  10399. // ggml_compute_forward_flash_attn
  10400. static void ggml_compute_forward_flash_attn_f32(
  10401. const struct ggml_compute_params * params,
  10402. const struct ggml_tensor * q,
  10403. const struct ggml_tensor * k,
  10404. const struct ggml_tensor * v,
  10405. const bool masked,
  10406. struct ggml_tensor * dst) {
  10407. int64_t t0 = ggml_perf_time_us();
  10408. UNUSED(t0);
  10409. const int64_t neq0 = q->ne[0];
  10410. const int64_t neq1 = q->ne[1];
  10411. const int64_t neq2 = q->ne[2];
  10412. const int64_t neq3 = q->ne[3];
  10413. const int64_t nek0 = k->ne[0];
  10414. const int64_t nek1 = k->ne[1];
  10415. //const int64_t nek2 = k->ne[2];
  10416. //const int64_t nek3 = k->ne[3];
  10417. //const int64_t nev0 = v->ne[0];
  10418. const int64_t nev1 = v->ne[1];
  10419. //const int64_t nev2 = v->ne[2];
  10420. //const int64_t nev3 = v->ne[3];
  10421. const int64_t ne0 = dst->ne[0];
  10422. const int64_t ne1 = dst->ne[1];
  10423. //const int64_t ne2 = dst->ne[2];
  10424. //const int64_t ne3 = dst->ne[3];
  10425. const int nbk0 = k->nb[0];
  10426. const int nbk1 = k->nb[1];
  10427. const int nbk2 = k->nb[2];
  10428. const int nbk3 = k->nb[3];
  10429. const int nbq0 = q->nb[0];
  10430. const int nbq1 = q->nb[1];
  10431. const int nbq2 = q->nb[2];
  10432. const int nbq3 = q->nb[3];
  10433. const int nbv0 = v->nb[0];
  10434. const int nbv1 = v->nb[1];
  10435. const int nbv2 = v->nb[2];
  10436. const int nbv3 = v->nb[3];
  10437. const int nb0 = dst->nb[0];
  10438. const int nb1 = dst->nb[1];
  10439. const int nb2 = dst->nb[2];
  10440. const int nb3 = dst->nb[3];
  10441. const int ith = params->ith;
  10442. const int nth = params->nth;
  10443. const int64_t D = neq0;
  10444. const int64_t N = neq1;
  10445. const int64_t P = nek1 - N;
  10446. const int64_t M = P + N;
  10447. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10448. GGML_ASSERT(ne0 == D);
  10449. GGML_ASSERT(ne1 == N);
  10450. GGML_ASSERT(P >= 0);
  10451. GGML_ASSERT(nbq0 == sizeof(float));
  10452. GGML_ASSERT(nbk0 == sizeof(float));
  10453. GGML_ASSERT(nbv0 == sizeof(float));
  10454. GGML_ASSERT(neq0 == D);
  10455. GGML_ASSERT(nek0 == D);
  10456. GGML_ASSERT(nev1 == D);
  10457. GGML_ASSERT(neq1 == N);
  10458. GGML_ASSERT(nek1 == N + P);
  10459. GGML_ASSERT(nev1 == D);
  10460. // dst cannot be transposed or permuted
  10461. GGML_ASSERT(nb0 == sizeof(float));
  10462. GGML_ASSERT(nb0 <= nb1);
  10463. GGML_ASSERT(nb1 <= nb2);
  10464. GGML_ASSERT(nb2 <= nb3);
  10465. if (params->type == GGML_TASK_INIT) {
  10466. return;
  10467. }
  10468. if (params->type == GGML_TASK_FINALIZE) {
  10469. return;
  10470. }
  10471. // parallelize by q rows using ggml_vec_dot_f32
  10472. // total rows in q
  10473. const int nr = neq1*neq2*neq3;
  10474. // rows per thread
  10475. const int dr = (nr + nth - 1)/nth;
  10476. // row range for this thread
  10477. const int ir0 = dr*ith;
  10478. const int ir1 = MIN(ir0 + dr, nr);
  10479. const float scale = 1.0f/sqrtf(D);
  10480. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10481. for (int ir = ir0; ir < ir1; ++ir) {
  10482. // q indices
  10483. const int iq3 = ir/(neq2*neq1);
  10484. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10485. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10486. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10487. for (int i = M; i < Mup; ++i) {
  10488. S[i] = -INFINITY;
  10489. }
  10490. for (int64_t ic = 0; ic < nek1; ++ic) {
  10491. // k indices
  10492. const int ik3 = iq3;
  10493. const int ik2 = iq2;
  10494. const int ik1 = ic;
  10495. // S indices
  10496. const int i1 = ik1;
  10497. ggml_vec_dot_f32(neq0,
  10498. S + i1,
  10499. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10500. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10501. }
  10502. // scale
  10503. ggml_vec_scale_f32(nek1, S, scale);
  10504. if (masked) {
  10505. for (int64_t i = P; i < M; i++) {
  10506. if (i > P + iq1) {
  10507. S[i] = -INFINITY;
  10508. }
  10509. }
  10510. }
  10511. // softmax
  10512. {
  10513. float max = -INFINITY;
  10514. ggml_vec_max_f32(M, &max, S);
  10515. ggml_float sum = 0.0;
  10516. {
  10517. #ifdef GGML_SOFT_MAX_ACCELERATE
  10518. max = -max;
  10519. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10520. vvexpf(S, S, &Mup);
  10521. ggml_vec_sum_f32(Mup, &sum, S);
  10522. #else
  10523. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10524. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10525. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10526. float * SS = S + i;
  10527. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10528. if (SS[j] == -INFINITY) {
  10529. SS[j] = 0.0f;
  10530. } else {
  10531. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10532. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10533. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10534. sump[j] += (ggml_float)val;
  10535. SS[j] = val;
  10536. }
  10537. }
  10538. }
  10539. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10540. sum += sump[i];
  10541. }
  10542. #endif
  10543. }
  10544. assert(sum > 0.0);
  10545. sum = 1.0/sum;
  10546. ggml_vec_scale_f32(M, S, sum);
  10547. #ifndef NDEBUG
  10548. for (int i = 0; i < M; ++i) {
  10549. assert(!isnan(S[i]));
  10550. assert(!isinf(S[i]));
  10551. }
  10552. #endif
  10553. }
  10554. for (int64_t ic = 0; ic < nev1; ++ic) {
  10555. // dst indices
  10556. const int i1 = iq1;
  10557. const int i2 = iq2;
  10558. const int i3 = iq3;
  10559. ggml_vec_dot_f32(nek1,
  10560. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10561. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10562. S);
  10563. }
  10564. }
  10565. }
  10566. static void ggml_compute_forward_flash_attn_f16(
  10567. const struct ggml_compute_params * params,
  10568. const struct ggml_tensor * q,
  10569. const struct ggml_tensor * k,
  10570. const struct ggml_tensor * v,
  10571. const bool masked,
  10572. struct ggml_tensor * dst) {
  10573. int64_t t0 = ggml_perf_time_us();
  10574. UNUSED(t0);
  10575. const int64_t neq0 = q->ne[0];
  10576. const int64_t neq1 = q->ne[1];
  10577. const int64_t neq2 = q->ne[2];
  10578. const int64_t neq3 = q->ne[3];
  10579. const int64_t nek0 = k->ne[0];
  10580. const int64_t nek1 = k->ne[1];
  10581. //const int64_t nek2 = k->ne[2];
  10582. //const int64_t nek3 = k->ne[3];
  10583. //const int64_t nev0 = v->ne[0];
  10584. const int64_t nev1 = v->ne[1];
  10585. //const int64_t nev2 = v->ne[2];
  10586. //const int64_t nev3 = v->ne[3];
  10587. const int64_t ne0 = dst->ne[0];
  10588. const int64_t ne1 = dst->ne[1];
  10589. //const int64_t ne2 = dst->ne[2];
  10590. //const int64_t ne3 = dst->ne[3];
  10591. const int nbk0 = k->nb[0];
  10592. const int nbk1 = k->nb[1];
  10593. const int nbk2 = k->nb[2];
  10594. const int nbk3 = k->nb[3];
  10595. const int nbq0 = q->nb[0];
  10596. const int nbq1 = q->nb[1];
  10597. const int nbq2 = q->nb[2];
  10598. const int nbq3 = q->nb[3];
  10599. const int nbv0 = v->nb[0];
  10600. const int nbv1 = v->nb[1];
  10601. const int nbv2 = v->nb[2];
  10602. const int nbv3 = v->nb[3];
  10603. const int nb0 = dst->nb[0];
  10604. const int nb1 = dst->nb[1];
  10605. const int nb2 = dst->nb[2];
  10606. const int nb3 = dst->nb[3];
  10607. const int ith = params->ith;
  10608. const int nth = params->nth;
  10609. const int64_t D = neq0;
  10610. const int64_t N = neq1;
  10611. const int64_t P = nek1 - N;
  10612. const int64_t M = P + N;
  10613. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10614. GGML_ASSERT(ne0 == D);
  10615. GGML_ASSERT(ne1 == N);
  10616. GGML_ASSERT(P >= 0);
  10617. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10618. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10619. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10620. GGML_ASSERT(neq0 == D);
  10621. GGML_ASSERT(nek0 == D);
  10622. GGML_ASSERT(nev1 == D);
  10623. GGML_ASSERT(neq1 == N);
  10624. GGML_ASSERT(nek1 == N + P);
  10625. GGML_ASSERT(nev1 == D);
  10626. // dst cannot be transposed or permuted
  10627. GGML_ASSERT(nb0 == sizeof(float));
  10628. GGML_ASSERT(nb0 <= nb1);
  10629. GGML_ASSERT(nb1 <= nb2);
  10630. GGML_ASSERT(nb2 <= nb3);
  10631. if (params->type == GGML_TASK_INIT) {
  10632. return;
  10633. }
  10634. if (params->type == GGML_TASK_FINALIZE) {
  10635. return;
  10636. }
  10637. // parallelize by q rows using ggml_vec_dot_f32
  10638. // total rows in q
  10639. const int nr = neq1*neq2*neq3;
  10640. // rows per thread
  10641. const int dr = (nr + nth - 1)/nth;
  10642. // row range for this thread
  10643. const int ir0 = dr*ith;
  10644. const int ir1 = MIN(ir0 + dr, nr);
  10645. const float scale = 1.0f/sqrtf(D);
  10646. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10647. for (int ir = ir0; ir < ir1; ++ir) {
  10648. // q indices
  10649. const int iq3 = ir/(neq2*neq1);
  10650. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10651. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10652. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10653. for (int i = M; i < Mup; ++i) {
  10654. S[i] = -INFINITY;
  10655. }
  10656. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10657. for (int64_t ic = 0; ic < nek1; ++ic) {
  10658. // k indices
  10659. const int ik3 = iq3;
  10660. const int ik2 = iq2;
  10661. const int ik1 = ic;
  10662. // S indices
  10663. const int i1 = ik1;
  10664. ggml_vec_dot_f16(neq0,
  10665. S + i1,
  10666. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10667. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10668. }
  10669. } else {
  10670. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10671. // k indices
  10672. const int ik3 = iq3;
  10673. const int ik2 = iq2;
  10674. const int ik1 = ic;
  10675. // S indices
  10676. const int i1 = ik1;
  10677. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10678. S + i1,
  10679. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10680. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10681. }
  10682. }
  10683. // scale
  10684. ggml_vec_scale_f32(nek1, S, scale);
  10685. if (masked) {
  10686. for (int64_t i = P; i < M; i++) {
  10687. if (i > P + iq1) {
  10688. S[i] = -INFINITY;
  10689. }
  10690. }
  10691. }
  10692. // softmax
  10693. {
  10694. float max = -INFINITY;
  10695. ggml_vec_max_f32(M, &max, S);
  10696. ggml_float sum = 0.0;
  10697. {
  10698. #ifdef GGML_SOFT_MAX_ACCELERATE
  10699. max = -max;
  10700. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10701. vvexpf(S, S, &Mup);
  10702. ggml_vec_sum_f32(Mup, &sum, S);
  10703. #else
  10704. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10705. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10706. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10707. float * SS = S + i;
  10708. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10709. if (SS[j] == -INFINITY) {
  10710. SS[j] = 0.0f;
  10711. } else {
  10712. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10713. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10714. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10715. sump[j] += (ggml_float)val;
  10716. SS[j] = val;
  10717. }
  10718. }
  10719. }
  10720. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10721. sum += sump[i];
  10722. }
  10723. #endif
  10724. }
  10725. assert(sum > 0.0);
  10726. sum = 1.0/sum;
  10727. ggml_vec_scale_f32(M, S, sum);
  10728. #ifndef NDEBUG
  10729. for (int i = 0; i < M; ++i) {
  10730. assert(!isnan(S[i]));
  10731. assert(!isinf(S[i]));
  10732. }
  10733. #endif
  10734. }
  10735. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10736. for (int64_t i = 0; i < M; i++) {
  10737. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10738. }
  10739. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10740. for (int64_t ic = 0; ic < nev1; ++ic) {
  10741. // dst indices
  10742. const int i1 = iq1;
  10743. const int i2 = iq2;
  10744. const int i3 = iq3;
  10745. ggml_vec_dot_f16(nek1,
  10746. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10747. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10748. S16);
  10749. }
  10750. } else {
  10751. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10752. // dst indices
  10753. const int i1 = iq1;
  10754. const int i2 = iq2;
  10755. const int i3 = iq3;
  10756. ggml_vec_dot_f16_unroll(nek1, nbv1,
  10757. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10758. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10759. S16);
  10760. }
  10761. }
  10762. }
  10763. }
  10764. static void ggml_compute_forward_flash_attn(
  10765. const struct ggml_compute_params * params,
  10766. const struct ggml_tensor * q,
  10767. const struct ggml_tensor * k,
  10768. const struct ggml_tensor * v,
  10769. const bool masked,
  10770. struct ggml_tensor * dst) {
  10771. switch (q->type) {
  10772. case GGML_TYPE_F16:
  10773. {
  10774. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  10775. } break;
  10776. case GGML_TYPE_F32:
  10777. {
  10778. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  10779. } break;
  10780. default:
  10781. {
  10782. GGML_ASSERT(false);
  10783. } break;
  10784. }
  10785. }
  10786. // ggml_compute_forward_flash_ff
  10787. static void ggml_compute_forward_flash_ff_f16(
  10788. const struct ggml_compute_params * params,
  10789. const struct ggml_tensor * a, // F16
  10790. const struct ggml_tensor * b0, // F16 fc_w
  10791. const struct ggml_tensor * b1, // F32 fc_b
  10792. const struct ggml_tensor * c0, // F16 proj_w
  10793. const struct ggml_tensor * c1, // F32 proj_b
  10794. struct ggml_tensor * dst) {
  10795. int64_t t0 = ggml_perf_time_us();
  10796. UNUSED(t0);
  10797. const int64_t nea0 = a->ne[0];
  10798. const int64_t nea1 = a->ne[1];
  10799. const int64_t nea2 = a->ne[2];
  10800. const int64_t nea3 = a->ne[3];
  10801. const int64_t neb00 = b0->ne[0];
  10802. const int64_t neb01 = b0->ne[1];
  10803. //const int64_t neb02 = b0->ne[2];
  10804. //const int64_t neb03 = b0->ne[3];
  10805. const int64_t neb10 = b1->ne[0];
  10806. const int64_t neb11 = b1->ne[1];
  10807. //const int64_t neb12 = b1->ne[2];
  10808. //const int64_t neb13 = b1->ne[3];
  10809. const int64_t nec00 = c0->ne[0];
  10810. const int64_t nec01 = c0->ne[1];
  10811. //const int64_t nec02 = c0->ne[2];
  10812. //const int64_t nec03 = c0->ne[3];
  10813. const int64_t nec10 = c1->ne[0];
  10814. const int64_t nec11 = c1->ne[1];
  10815. //const int64_t nec12 = c1->ne[2];
  10816. //const int64_t nec13 = c1->ne[3];
  10817. const int64_t ne0 = dst->ne[0];
  10818. const int64_t ne1 = dst->ne[1];
  10819. const int64_t ne2 = dst->ne[2];
  10820. //const int64_t ne3 = dst->ne[3];
  10821. const int nba0 = a->nb[0];
  10822. const int nba1 = a->nb[1];
  10823. const int nba2 = a->nb[2];
  10824. const int nba3 = a->nb[3];
  10825. const int nbb00 = b0->nb[0];
  10826. const int nbb01 = b0->nb[1];
  10827. const int nbb02 = b0->nb[2];
  10828. const int nbb03 = b0->nb[3];
  10829. const int nbb10 = b1->nb[0];
  10830. //const int nbb11 = b1->nb[1];
  10831. //const int nbb12 = b1->nb[2];
  10832. //const int nbb13 = b1->nb[3];
  10833. const int nbc00 = c0->nb[0];
  10834. const int nbc01 = c0->nb[1];
  10835. const int nbc02 = c0->nb[2];
  10836. const int nbc03 = c0->nb[3];
  10837. const int nbc10 = c1->nb[0];
  10838. //const int nbc11 = c1->nb[1];
  10839. //const int nbc12 = c1->nb[2];
  10840. //const int nbc13 = c1->nb[3];
  10841. const int nb0 = dst->nb[0];
  10842. const int nb1 = dst->nb[1];
  10843. const int nb2 = dst->nb[2];
  10844. const int nb3 = dst->nb[3];
  10845. const int ith = params->ith;
  10846. const int nth = params->nth;
  10847. const int64_t D = nea0;
  10848. //const int64_t N = nea1;
  10849. const int64_t M = neb01;
  10850. GGML_ASSERT(ne0 == nea0);
  10851. GGML_ASSERT(ne1 == nea1);
  10852. GGML_ASSERT(ne2 == nea2);
  10853. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  10854. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  10855. GGML_ASSERT(nbb10 == sizeof(float));
  10856. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  10857. GGML_ASSERT(nbc10 == sizeof(float));
  10858. GGML_ASSERT(neb00 == D);
  10859. GGML_ASSERT(neb01 == M);
  10860. GGML_ASSERT(neb10 == M);
  10861. GGML_ASSERT(neb11 == 1);
  10862. GGML_ASSERT(nec00 == M);
  10863. GGML_ASSERT(nec01 == D);
  10864. GGML_ASSERT(nec10 == D);
  10865. GGML_ASSERT(nec11 == 1);
  10866. // dst cannot be transposed or permuted
  10867. GGML_ASSERT(nb0 == sizeof(float));
  10868. GGML_ASSERT(nb0 <= nb1);
  10869. GGML_ASSERT(nb1 <= nb2);
  10870. GGML_ASSERT(nb2 <= nb3);
  10871. if (params->type == GGML_TASK_INIT) {
  10872. return;
  10873. }
  10874. if (params->type == GGML_TASK_FINALIZE) {
  10875. return;
  10876. }
  10877. // parallelize by a rows using ggml_vec_dot_f32
  10878. // total rows in a
  10879. const int nr = nea1*nea2*nea3;
  10880. // rows per thread
  10881. const int dr = (nr + nth - 1)/nth;
  10882. // row range for this thread
  10883. const int ir0 = dr*ith;
  10884. const int ir1 = MIN(ir0 + dr, nr);
  10885. for (int ir = ir0; ir < ir1; ++ir) {
  10886. // a indices
  10887. const int ia3 = ir/(nea2*nea1);
  10888. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  10889. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  10890. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  10891. for (int64_t ic = 0; ic < neb01; ++ic) {
  10892. // b0 indices
  10893. const int ib03 = ia3;
  10894. const int ib02 = ia2;
  10895. const int ib01 = ic;
  10896. // S indices
  10897. const int i1 = ib01;
  10898. ggml_vec_dot_f16(nea0,
  10899. S + i1,
  10900. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  10901. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  10902. }
  10903. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  10904. //ggml_vec_gelu_f32(neb01, S, S);
  10905. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  10906. for (int64_t i = 0; i < M; i++) {
  10907. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10908. }
  10909. ggml_vec_gelu_f16(neb01, S16, S16);
  10910. {
  10911. // dst indices
  10912. const int i1 = ia1;
  10913. const int i2 = ia2;
  10914. const int i3 = ia3;
  10915. for (int64_t ic = 0; ic < nec01; ++ic) {
  10916. ggml_vec_dot_f16(neb01,
  10917. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10918. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  10919. S16);
  10920. }
  10921. ggml_vec_add_f32(nec01,
  10922. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10923. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10924. (float *) c1->data);
  10925. }
  10926. }
  10927. }
  10928. static void ggml_compute_forward_flash_ff(
  10929. const struct ggml_compute_params * params,
  10930. const struct ggml_tensor * a,
  10931. const struct ggml_tensor * b0,
  10932. const struct ggml_tensor * b1,
  10933. const struct ggml_tensor * c0,
  10934. const struct ggml_tensor * c1,
  10935. struct ggml_tensor * dst) {
  10936. switch (b0->type) {
  10937. case GGML_TYPE_F16:
  10938. {
  10939. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  10940. } break;
  10941. case GGML_TYPE_F32:
  10942. {
  10943. GGML_ASSERT(false); // TODO
  10944. } break;
  10945. default:
  10946. {
  10947. GGML_ASSERT(false);
  10948. } break;
  10949. }
  10950. }
  10951. // ggml_compute_forward_flash_attn_back
  10952. static void ggml_compute_forward_flash_attn_back_f32(
  10953. const struct ggml_compute_params * params,
  10954. const struct ggml_tensor * q,
  10955. const struct ggml_tensor * k,
  10956. const struct ggml_tensor * v,
  10957. const struct ggml_tensor * d,
  10958. const bool masked,
  10959. struct ggml_tensor * dst) {
  10960. int64_t t0 = ggml_perf_time_us();
  10961. UNUSED(t0);
  10962. const int64_t neq0 = q->ne[0];
  10963. const int64_t neq1 = q->ne[1];
  10964. const int64_t neq2 = q->ne[2];
  10965. const int64_t neq3 = q->ne[3];
  10966. const int64_t nek0 = k->ne[0];
  10967. const int64_t nek1 = k->ne[1];
  10968. //const int64_t nek2 = k->ne[2];
  10969. //const int64_t nek3 = k->ne[3];
  10970. const int64_t nev0 = v->ne[0];
  10971. const int64_t nev1 = v->ne[1];
  10972. //const int64_t nev2 = v->ne[2];
  10973. //const int64_t nev3 = v->ne[3];
  10974. const int64_t ned0 = d->ne[0];
  10975. const int64_t ned1 = d->ne[1];
  10976. //const int64_t ned2 = d->ne[2];
  10977. //const int64_t ned3 = d->ne[3];
  10978. const int64_t ne0 = dst->ne[0];
  10979. const int64_t ne1 = dst->ne[1];
  10980. const int64_t ne2 = dst->ne[2];
  10981. const int64_t ne3 = dst->ne[3];
  10982. const int nbk0 = k->nb[0];
  10983. const int nbk1 = k->nb[1];
  10984. const int nbk2 = k->nb[2];
  10985. const int nbk3 = k->nb[3];
  10986. const int nbq0 = q->nb[0];
  10987. const int nbq1 = q->nb[1];
  10988. const int nbq2 = q->nb[2];
  10989. const int nbq3 = q->nb[3];
  10990. const int nbv0 = v->nb[0];
  10991. const int nbv1 = v->nb[1];
  10992. const int nbv2 = v->nb[2];
  10993. const int nbv3 = v->nb[3];
  10994. const int nbd0 = d->nb[0];
  10995. const int nbd1 = d->nb[1];
  10996. const int nbd2 = d->nb[2];
  10997. const int nbd3 = d->nb[3];
  10998. const int nb0 = dst->nb[0];
  10999. const int nb1 = dst->nb[1];
  11000. const int nb2 = dst->nb[2];
  11001. const int nb3 = dst->nb[3];
  11002. const int ith = params->ith;
  11003. const int nth = params->nth;
  11004. const int64_t D = neq0;
  11005. const int64_t N = neq1;
  11006. const int64_t P = nek1 - N;
  11007. const int64_t M = P + N;
  11008. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11009. const int mxDM = MAX(D, Mup);
  11010. // GGML_ASSERT(ne0 == D);
  11011. // GGML_ASSERT(ne1 == N);
  11012. GGML_ASSERT(P >= 0);
  11013. GGML_ASSERT(nbq0 == sizeof(float));
  11014. GGML_ASSERT(nbk0 == sizeof(float));
  11015. GGML_ASSERT(nbv0 == sizeof(float));
  11016. GGML_ASSERT(neq0 == D);
  11017. GGML_ASSERT(nek0 == D);
  11018. GGML_ASSERT(nev1 == D);
  11019. GGML_ASSERT(ned0 == D);
  11020. GGML_ASSERT(neq1 == N);
  11021. GGML_ASSERT(nek1 == N + P);
  11022. GGML_ASSERT(nev1 == D);
  11023. GGML_ASSERT(ned1 == N);
  11024. // dst cannot be transposed or permuted
  11025. GGML_ASSERT(nb0 == sizeof(float));
  11026. GGML_ASSERT(nb0 <= nb1);
  11027. GGML_ASSERT(nb1 <= nb2);
  11028. GGML_ASSERT(nb2 <= nb3);
  11029. if (params->type == GGML_TASK_INIT) {
  11030. if (ith == 0) {
  11031. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11032. }
  11033. return;
  11034. }
  11035. if (params->type == GGML_TASK_FINALIZE) {
  11036. return;
  11037. }
  11038. // parallelize by q rows using ggml_vec_dot_f32
  11039. // total rows in q
  11040. const int nr = neq2*neq3;
  11041. // rows per thread
  11042. const int dr = (nr + nth - 1)/nth;
  11043. // row range for this thread
  11044. const int ir0 = dr*ith;
  11045. const int ir1 = MIN(ir0 + dr, nr);
  11046. const float scale = 1.0f/sqrtf(D);
  11047. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11048. for (int ir = ir0; ir < ir1; ++ir) {
  11049. // q indices
  11050. const int iq3 = ir/(neq2);
  11051. const int iq2 = ir - iq3*neq2;
  11052. for ( int iq1 = 0; iq1 < neq1; ++iq1) {
  11053. // not sure about CACHE_LINE_SIZE_F32..
  11054. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11055. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11056. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11057. for (int i = M; i < Mup; ++i) {
  11058. S[i] = -INFINITY;
  11059. }
  11060. for (int64_t ic = 0; ic < nek1; ++ic) {
  11061. // k indices
  11062. const int ik3 = iq3;
  11063. const int ik2 = iq2;
  11064. const int ik1 = ic;
  11065. // S indices
  11066. const int i1 = ik1;
  11067. ggml_vec_dot_f32(neq0,
  11068. S + i1,
  11069. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11070. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11071. }
  11072. // scale
  11073. ggml_vec_scale_f32(nek1, S, scale);
  11074. if (masked) {
  11075. for (int64_t i = P; i < M; i++) {
  11076. if (i > P + iq1) {
  11077. S[i] = -INFINITY;
  11078. }
  11079. }
  11080. }
  11081. // softmax
  11082. {
  11083. float max = -INFINITY;
  11084. ggml_vec_max_f32(M, &max, S);
  11085. ggml_float sum = 0.0;
  11086. {
  11087. #ifdef GGML_SOFT_MAX_ACCELERATE
  11088. max = -max;
  11089. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11090. vvexpf(SM, SM, &Mup);
  11091. ggml_vec_sum_f32(Mup, &sum, SM);
  11092. #else
  11093. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11094. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11095. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11096. float * SR = S + i;
  11097. float * SW = SM + i;
  11098. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11099. if (SR[j] == -INFINITY) {
  11100. SW[j] = 0.0f;
  11101. } else {
  11102. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11103. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11104. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11105. sump[j] += (ggml_float)val;
  11106. SW[j] = val;
  11107. }
  11108. }
  11109. }
  11110. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11111. sum += sump[i];
  11112. }
  11113. #endif
  11114. }
  11115. assert(sum > 0.0);
  11116. sum = 1.0/sum;
  11117. ggml_vec_scale_f32(M, SM, sum);
  11118. }
  11119. // step-by-step explanation
  11120. {
  11121. // forward-process shape grads from backward process
  11122. // parallel_for iq2,iq3:
  11123. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,iq2,iq3] += grad[kcur]
  11124. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11125. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iq2,iq3] += grad[vcur]
  11126. // for iq1:
  11127. // kcur = k[:D,:M,iq2,iq3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11128. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11129. // vcur = v[:M,:D,iq2,iq3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11130. // S0 = -Inf [D,1,1,1]
  11131. // ~S1[i] = dot(kcur[:D,i], qcur)
  11132. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11133. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11134. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11135. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11136. // ~S5[i] = dot(vcur[:,i], S4)
  11137. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,iq1,iq2,iq3]
  11138. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11139. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,iq1,iq2,iq3]
  11140. // dst backward-/ grad[dst] = d
  11141. //
  11142. // output gradients with their dependencies:
  11143. //
  11144. // grad[kcur] = grad[S1].T @ qcur
  11145. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11146. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11147. // grad[S4] = grad[S5] @ vcur
  11148. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11149. // grad[qcur] = grad[S1] @ kcur
  11150. // grad[vcur] = grad[S5].T @ S4
  11151. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11152. //
  11153. // in post-order:
  11154. //
  11155. // S1 = qcur @ kcur.T
  11156. // S2 = S1 * scale
  11157. // S3 = diag_mask_inf(S2, P)
  11158. // S4 = softmax(S3)
  11159. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11160. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11161. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11162. // grad[qcur] = grad[S1] @ kcur
  11163. // grad[kcur] = grad[S1].T @ qcur
  11164. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11165. //
  11166. // using less variables (SM=S4):
  11167. //
  11168. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11169. // SM = softmax(S)
  11170. // S = d[:D,iq1,iq2,iq3] @ vcur
  11171. // dot_SM_gradSM = dot(SM, S)
  11172. // S = SM * (S - dot(SM, S))
  11173. // S = diag_mask_zero(S, P) * scale
  11174. //
  11175. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11176. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11177. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11178. }
  11179. // S = gradSM = d[:D,iq1,iq2,iq3] @ vcur
  11180. // S = d[:D,iq1,iq2,iq3] @ vcur
  11181. // S[:M] += vcur[:M,ic] * d[ic,iq1,iq2,iq3]
  11182. ggml_vec_set_f32(M, S, 0);
  11183. for (int64_t ic = 0; ic < D; ++ic) {
  11184. // dst indices
  11185. const int i1 = iq1;
  11186. const int i2 = iq2;
  11187. const int i3 = iq3;
  11188. ggml_vec_mad_f32(M,
  11189. S,
  11190. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11191. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11192. }
  11193. // S = SM * (S - dot(SM, S))
  11194. float dot_SM_gradSM = 0;
  11195. ggml_vec_dot_f32 (M, &dot_SM_gradSM, SM, S);
  11196. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11197. ggml_vec_mul_f32 (M, S, S, SM);
  11198. // S = diag_mask_zero(S, P) * scale
  11199. if (masked) {
  11200. // for (int64_t i = P + iq1 + 1; i < M; i++) {
  11201. // S[i] = 0;
  11202. // }
  11203. for (int64_t i = P; i < M; i++) {
  11204. if (i > P + iq1) {
  11205. S[i] = 0;
  11206. }
  11207. }
  11208. }
  11209. ggml_vec_scale_f32(M, S, scale);
  11210. void * grad_q = (char *) dst->data;
  11211. void * grad_k = (char *) dst->data + nb0*D*N*neq2*neq3;
  11212. void * grad_v = (char *) dst->data + nb0*D*N*neq2*neq3 + nb0*D*M*neq2*neq3;
  11213. const size_t nbgq1 = nb0*neq0;
  11214. const size_t nbgq2 = nb0*neq0*neq1;
  11215. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11216. const size_t nbgk1 = nb0*nek0;
  11217. const size_t nbgk2 = nb0*nek0*nek1;
  11218. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11219. const size_t nbgv1 = nb0*nev0;
  11220. const size_t nbgv2 = nb0*nev0*nev1;
  11221. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11222. // S shape [M,1]
  11223. // SM shape [M,1]
  11224. // kcur shape [D,M]
  11225. // qcur shape [D,1]
  11226. // vcur shape [M,D]
  11227. //
  11228. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11229. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11230. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic]
  11231. //
  11232. //// grad[q][ic,iq1,iq2,iq3] += dot(kcur[:,ic],S.T)
  11233. //// grad[q][ic,iq1,iq2,iq3] += dot(k[:D,ic,iq2,iq3],S.T)
  11234. for (int64_t ic = 0; ic < M; ++ic) {
  11235. // dst indices
  11236. const int i1 = iq1;
  11237. const int i2 = iq2;
  11238. const int i3 = iq3;
  11239. ggml_vec_mad_f32(D,
  11240. (float *) ((char *) grad_q + (i1*nbgq1 + i2*nbgq2 + i3*nbgq3)),
  11241. (float *) ((char *) k->data + (ic*nbk1 + i2*nbk2 + i3*nbk3)),
  11242. S[ic]);
  11243. }
  11244. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11245. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11246. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11247. for (int64_t ic = 0; ic < M; ++ic) {
  11248. // dst indices
  11249. const int i1 = iq1;
  11250. const int i2 = iq2;
  11251. const int i3 = iq3;
  11252. // ggml_vec_set_f32(D,
  11253. // (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11254. // 0);
  11255. ggml_vec_mad_f32(D,
  11256. (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11257. (float *) ((char *) q->data + (i1*nbq1 + i2*nbq2 + i3*nbq3)),
  11258. S[ic]);
  11259. }
  11260. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11261. // grad[v][:M,ic,iq2,iq3] += d[:D,iq1,iq2,iq3].T[0,ic] * SM[:M]
  11262. // grad[v][:M,ic,iq2,iq3] += d[ic,iq1,iq2,iq3] * SM[:M]
  11263. for (int64_t ic = 0; ic < D; ++ic) {
  11264. // dst indices
  11265. const int i1 = iq1;
  11266. const int i2 = iq2;
  11267. const int i3 = iq3;
  11268. // ggml_vec_set_f32(M,
  11269. // (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11270. // 0);
  11271. ggml_vec_mad_f32(M,
  11272. (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11273. SM,
  11274. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11275. }
  11276. }
  11277. }
  11278. }
  11279. static void ggml_compute_forward_flash_attn_back(
  11280. const struct ggml_compute_params * params,
  11281. const struct ggml_tensor * q,
  11282. const struct ggml_tensor * k,
  11283. const struct ggml_tensor * v,
  11284. const struct ggml_tensor * d,
  11285. const bool masked,
  11286. struct ggml_tensor * dst) {
  11287. switch (q->type) {
  11288. case GGML_TYPE_F32:
  11289. {
  11290. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11291. } break;
  11292. default:
  11293. {
  11294. GGML_ASSERT(false);
  11295. } break;
  11296. }
  11297. }
  11298. // ggml_compute_forward_map_unary
  11299. static void ggml_compute_forward_map_unary_f32(
  11300. const struct ggml_compute_params * params,
  11301. const struct ggml_tensor * src0,
  11302. struct ggml_tensor * dst,
  11303. const ggml_unary_op_f32_t fun) {
  11304. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11305. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11306. return;
  11307. }
  11308. const int n = ggml_nrows(src0);
  11309. const int nc = src0->ne[0];
  11310. assert( dst->nb[0] == sizeof(float));
  11311. assert(src0->nb[0] == sizeof(float));
  11312. for (int i = 0; i < n; i++) {
  11313. fun(nc,
  11314. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11315. (float *) ((char *) src0->data + i*(src0->nb[1])));
  11316. }
  11317. }
  11318. static void ggml_compute_forward_map_unary(
  11319. const struct ggml_compute_params * params,
  11320. const struct ggml_tensor * src0,
  11321. struct ggml_tensor * dst,
  11322. const ggml_unary_op_f32_t fun) {
  11323. switch (src0->type) {
  11324. case GGML_TYPE_F32:
  11325. {
  11326. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  11327. } break;
  11328. default:
  11329. {
  11330. GGML_ASSERT(false);
  11331. } break;
  11332. }
  11333. }
  11334. // ggml_compute_forward_map_binary
  11335. static void ggml_compute_forward_map_binary_f32(
  11336. const struct ggml_compute_params * params,
  11337. const struct ggml_tensor * src0,
  11338. const struct ggml_tensor * src1,
  11339. struct ggml_tensor * dst,
  11340. const ggml_binary_op_f32_t fun) {
  11341. assert(params->ith == 0);
  11342. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11343. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11344. return;
  11345. }
  11346. const int n = ggml_nrows(src0);
  11347. const int nc = src0->ne[0];
  11348. assert( dst->nb[0] == sizeof(float));
  11349. assert(src0->nb[0] == sizeof(float));
  11350. assert(src1->nb[0] == sizeof(float));
  11351. for (int i = 0; i < n; i++) {
  11352. fun(nc,
  11353. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11354. (float *) ((char *) src0->data + i*(src0->nb[1])),
  11355. (float *) ((char *) src1->data + i*(src1->nb[1])));
  11356. }
  11357. }
  11358. static void ggml_compute_forward_map_binary(
  11359. const struct ggml_compute_params * params,
  11360. const struct ggml_tensor * src0,
  11361. const struct ggml_tensor * src1,
  11362. struct ggml_tensor * dst,
  11363. const ggml_binary_op_f32_t fun) {
  11364. switch (src0->type) {
  11365. case GGML_TYPE_F32:
  11366. {
  11367. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  11368. } break;
  11369. default:
  11370. {
  11371. GGML_ASSERT(false);
  11372. } break;
  11373. }
  11374. }
  11375. // ggml_compute_forward_cross_entropy_loss
  11376. static void ggml_compute_forward_cross_entropy_loss_f32(
  11377. const struct ggml_compute_params * params,
  11378. const struct ggml_tensor * src0,
  11379. const struct ggml_tensor * src1,
  11380. struct ggml_tensor * dst) {
  11381. GGML_ASSERT(ggml_is_contiguous(src0));
  11382. GGML_ASSERT(ggml_is_contiguous(src1));
  11383. GGML_ASSERT(ggml_is_scalar(dst));
  11384. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  11385. const int ith = params->ith;
  11386. const int nth = params->nth;
  11387. float * sums = (float *) params->wdata;
  11388. // TODO: handle transposed/permuted matrices
  11389. const int nc = src0->ne[0];
  11390. const int nr = ggml_nrows(src0);
  11391. if (params->type == GGML_TASK_INIT) {
  11392. if (ith == 0) {
  11393. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  11394. }
  11395. return;
  11396. }
  11397. if (params->type == GGML_TASK_FINALIZE) {
  11398. if (ith == 0) {
  11399. float * dp = (float *) dst->data;
  11400. ggml_vec_sum_f32(nth, dp, sums);
  11401. dp[0] *= -1.0f;
  11402. }
  11403. return;
  11404. }
  11405. const double eps = 1e-9;
  11406. // rows per thread
  11407. const int dr = (nr + nth - 1)/nth;
  11408. // row range for this thread
  11409. const int ir0 = dr*ith;
  11410. const int ir1 = MIN(ir0 + dr, nr);
  11411. for (int i1 = ir0; i1 < ir1; i1++) {
  11412. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11413. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11414. float * st = (float *) params->wdata + nth + ith*nc;
  11415. #ifndef NDEBUG
  11416. for (int i = 0; i < nc; ++i) {
  11417. //printf("p[%d] = %f\n", i, p[i]);
  11418. assert(!isnan(s0[i]));
  11419. assert(!isnan(s1[i]));
  11420. }
  11421. #endif
  11422. // soft_max
  11423. ggml_float sum = 0.0;
  11424. {
  11425. float max = -INFINITY;
  11426. ggml_vec_max_f32(nc, &max, s0);
  11427. uint16_t scvt;
  11428. for (int i = 0; i < nc; i++) {
  11429. if (s0[i] == -INFINITY) {
  11430. st[i] = 0.0f;
  11431. } else {
  11432. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  11433. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11434. memcpy(&scvt, &s, sizeof(scvt));
  11435. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  11436. sum += (ggml_float)val;
  11437. st[i] = val;
  11438. }
  11439. }
  11440. assert(sum > 0.0);
  11441. // sum = 1.0/sum;
  11442. }
  11443. // avoid log(0) by rescaling from [0..1] to [eps..1]
  11444. sum = (1.0 - eps) / sum;
  11445. ggml_vec_scale_f32(nc, st, sum);
  11446. ggml_vec_add1_f32(nc, st, st, eps);
  11447. ggml_vec_log_f32(nc, st, st);
  11448. ggml_vec_mul_f32(nc, st, st, s1);
  11449. ggml_vec_sum_f32(nc, sums + ith, st);
  11450. #ifndef NDEBUG
  11451. for (int i = 0; i < nc; ++i) {
  11452. assert(!isnan(st[i]));
  11453. assert(!isinf(st[i]));
  11454. }
  11455. #endif
  11456. }
  11457. }
  11458. static void ggml_compute_forward_cross_entropy_loss(
  11459. const struct ggml_compute_params * params,
  11460. const struct ggml_tensor * src0,
  11461. const struct ggml_tensor * src1,
  11462. struct ggml_tensor * dst) {
  11463. switch (src0->type) {
  11464. case GGML_TYPE_F32:
  11465. {
  11466. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  11467. } break;
  11468. default:
  11469. {
  11470. GGML_ASSERT(false);
  11471. } break;
  11472. }
  11473. }
  11474. // ggml_compute_forward_cross_entropy_loss_back
  11475. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  11476. const struct ggml_compute_params * params,
  11477. const struct ggml_tensor * src0,
  11478. const struct ggml_tensor * src1,
  11479. const struct ggml_tensor * opt0,
  11480. struct ggml_tensor * dst) {
  11481. GGML_ASSERT(ggml_is_contiguous(dst));
  11482. GGML_ASSERT(ggml_is_contiguous(src0));
  11483. GGML_ASSERT(ggml_is_contiguous(src1));
  11484. GGML_ASSERT(ggml_is_contiguous(opt0));
  11485. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11486. const int64_t ith = params->ith;
  11487. const int64_t nth = params->nth;
  11488. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11489. return;
  11490. }
  11491. const float eps = 1e-9f;
  11492. // TODO: handle transposed/permuted matrices
  11493. const int64_t nc = src0->ne[0];
  11494. const int64_t nr = ggml_nrows(src0);
  11495. // rows per thread
  11496. const int64_t dr = (nr + nth - 1)/nth;
  11497. // row range for this thread
  11498. const int64_t ir0 = dr*ith;
  11499. const int64_t ir1 = MIN(ir0 + dr, nr);
  11500. float * d = (float *) opt0->data;
  11501. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  11502. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  11503. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11504. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11505. float * sm = (float *) params->wdata + ith*nc;
  11506. #ifndef NDEBUG
  11507. for (int i = 0; i < nc; ++i) {
  11508. //printf("p[%d] = %f\n", i, p[i]);
  11509. assert(!isnan(s0[i]));
  11510. assert(!isnan(s1[i]));
  11511. }
  11512. #endif
  11513. // step by step explanation:
  11514. {
  11515. //float * sums = (float *) params->wdata;
  11516. // forward pass with annotated gradients from backward pass
  11517. // (built by going in reverse operation order, adding to gradients of current operation args)
  11518. // st0 = exp(s0-max(s0)) grad[st0] = grad[st1]*(1.0 - eps)/sum
  11519. // from softmax_back: grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  11520. // ggml_vec_scale_f32(nc, st, sum); // st1 = st0*/sum = softmax(s0) grad[st1] = grad[st2]*(1.0 - eps)
  11521. // ggml_vec_scale_f32(nc, st, (1.0f - eps)); // st2 = st1*(1.0 - eps) grad[st2] = grad[st3]
  11522. // ggml_vec_add1_f32(nc, st, st, eps); // st3 = st2 + eps grad[st3] = grad[st4]/st3
  11523. // ggml_vec_log_f32(nc, st, st); // st4 = log(st3) grad[st4] = grad[st5] * s1
  11524. // ggml_vec_mul_f32(nc, st, st, s1); // st5 = st4 * s1 grad[st5] = grad[sums[ith]]
  11525. // ggml_vec_sum_f32(nc, sums + ith, st); // sums[ith] = st5 grad[sums[ith]] = grad[cross_entropy_loss] = -grad[cel]
  11526. // substitute into grad[st1], because we can reuse softmax_back from this point on
  11527. // grad[st1] = -grad[cel]*s1*(1.0 - eps)/(eps + softmax(s0)*(1.0 - eps))
  11528. // postorder:
  11529. // grad[st1] := softmax(s0)
  11530. // grad[st1] := grad[st1]*(1.0 - eps)
  11531. // grad[st1] := grad[st1] + eps
  11532. // grad[st1] := s1 / grad[st1]
  11533. // grad[st1] := grad[st1]*(1.0-eps)*-grad[cel]
  11534. // src0 gradients by going through softmax_back
  11535. // grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  11536. // from softmax_back:
  11537. // dxk = yk * (dyk - dot(y, dy))
  11538. // dot_y_dy := dot(y, dy)
  11539. // dx := dy
  11540. // dx := dx - dot_y_dy
  11541. // dx := dx * y
  11542. // postorder:
  11543. // dot_st1_dst1 := dot(st1, grad[st1])
  11544. // grad[s0] := grad[st1]
  11545. // grad[s0] := grad[s0] - dot_st1_dst1
  11546. // grad[s0] := grad[s0] * st1
  11547. // prepend postorder from grad[st1] directly using grad[s0] as memory location, as we will grad[s0] := grad[st1]
  11548. // sm := softmax(s0)
  11549. // grad[s0] := sm*(1.0 - eps)
  11550. // grad[s0] := grad[s0] + eps
  11551. // grad[s0] := s1 / grad[s0]
  11552. // grad[s0] := grad[s0]*(1.0-eps)*-grad[cel]
  11553. // dot_st1_dst1 := dot(sm, grad[s0])
  11554. // grad[s0] := grad[s0] - dot_st1_dst1
  11555. // grad[s0] := grad[s0] * sm
  11556. }
  11557. // soft_max
  11558. ggml_float sum = 0.0;
  11559. {
  11560. float max = -INFINITY;
  11561. ggml_vec_max_f32(nc, &max, s0);
  11562. uint16_t scvt;
  11563. for (int i = 0; i < nc; i++) {
  11564. if (s0[i] == -INFINITY) {
  11565. sm[i] = 0.0f;
  11566. } else {
  11567. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  11568. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11569. memcpy(&scvt, &s, sizeof(scvt));
  11570. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  11571. sum += (ggml_float)val;
  11572. sm[i] = val;
  11573. }
  11574. }
  11575. assert(sum > 0.0);
  11576. sum = 1.0/sum;
  11577. }
  11578. float dot_st1_dst1 = 0;
  11579. ggml_vec_scale_f32(nc, sm, sum);
  11580. ggml_vec_cpy_f32 (nc, ds0, sm);
  11581. ggml_vec_scale_f32(nc, ds0, (1.0f - eps));
  11582. ggml_vec_add1_f32 (nc, ds0, ds0, eps);
  11583. ggml_vec_div_f32 (nc, ds0, s1, ds0);
  11584. ggml_vec_scale_f32(nc, ds0, -(1.0f - eps)*d[0]);
  11585. ggml_vec_dot_f32 (nc, &dot_st1_dst1, sm, ds0);
  11586. ggml_vec_acc1_f32 (nc, ds0, -dot_st1_dst1);
  11587. ggml_vec_mul_f32 (nc, ds0, ds0, sm);
  11588. #ifndef NDEBUG
  11589. for (int i = 0; i < nc; ++i) {
  11590. assert(!isnan(sm[i]));
  11591. assert(!isinf(sm[i]));
  11592. assert(!isnan(ds0[i]));
  11593. assert(!isinf(ds0[i]));
  11594. }
  11595. #endif
  11596. }
  11597. }
  11598. static void ggml_compute_forward_cross_entropy_loss_back(
  11599. const struct ggml_compute_params * params,
  11600. const struct ggml_tensor * src0,
  11601. const struct ggml_tensor * src1,
  11602. const struct ggml_tensor * opt0,
  11603. struct ggml_tensor * dst) {
  11604. switch (src0->type) {
  11605. case GGML_TYPE_F32:
  11606. {
  11607. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  11608. } break;
  11609. default:
  11610. {
  11611. GGML_ASSERT(false);
  11612. } break;
  11613. }
  11614. }
  11615. /////////////////////////////////
  11616. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  11617. GGML_ASSERT(params);
  11618. #ifdef GGML_USE_CUBLAS
  11619. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  11620. if (skip_cpu) {
  11621. return;
  11622. }
  11623. GGML_ASSERT(tensor->src0->backend == GGML_BACKEND_CPU);
  11624. GGML_ASSERT(tensor->src1 == NULL || tensor->src1->backend == GGML_BACKEND_CPU);
  11625. #endif // GGML_USE_CUBLAS
  11626. switch (tensor->op) {
  11627. case GGML_OP_DUP:
  11628. {
  11629. ggml_compute_forward_dup(params, tensor->src0, tensor);
  11630. } break;
  11631. case GGML_OP_ADD:
  11632. {
  11633. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  11634. } break;
  11635. case GGML_OP_ADD1:
  11636. {
  11637. ggml_compute_forward_add1(params, tensor->src0, tensor->src1, tensor);
  11638. } break;
  11639. case GGML_OP_ACC:
  11640. {
  11641. ggml_compute_forward_acc(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  11642. } break;
  11643. case GGML_OP_SUB:
  11644. {
  11645. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  11646. } break;
  11647. case GGML_OP_MUL:
  11648. {
  11649. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  11650. } break;
  11651. case GGML_OP_DIV:
  11652. {
  11653. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  11654. } break;
  11655. case GGML_OP_SQR:
  11656. {
  11657. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  11658. } break;
  11659. case GGML_OP_SQRT:
  11660. {
  11661. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  11662. } break;
  11663. case GGML_OP_LOG:
  11664. {
  11665. ggml_compute_forward_log(params, tensor->src0, tensor);
  11666. } break;
  11667. case GGML_OP_SUM:
  11668. {
  11669. ggml_compute_forward_sum(params, tensor->src0, tensor);
  11670. } break;
  11671. case GGML_OP_SUM_ROWS:
  11672. {
  11673. ggml_compute_forward_sum_rows(params, tensor->src0, tensor);
  11674. } break;
  11675. case GGML_OP_MEAN:
  11676. {
  11677. ggml_compute_forward_mean(params, tensor->src0, tensor);
  11678. } break;
  11679. case GGML_OP_REPEAT:
  11680. {
  11681. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  11682. } break;
  11683. case GGML_OP_REPEAT_BACK:
  11684. {
  11685. ggml_compute_forward_repeat_back(params, tensor->src0, tensor);
  11686. } break;
  11687. case GGML_OP_ABS:
  11688. {
  11689. ggml_compute_forward_abs(params, tensor->src0, tensor);
  11690. } break;
  11691. case GGML_OP_SGN:
  11692. {
  11693. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  11694. } break;
  11695. case GGML_OP_NEG:
  11696. {
  11697. ggml_compute_forward_neg(params, tensor->src0, tensor);
  11698. } break;
  11699. case GGML_OP_STEP:
  11700. {
  11701. ggml_compute_forward_step(params, tensor->src0, tensor);
  11702. } break;
  11703. case GGML_OP_RELU:
  11704. {
  11705. ggml_compute_forward_relu(params, tensor->src0, tensor);
  11706. } break;
  11707. case GGML_OP_GELU:
  11708. {
  11709. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  11710. } break;
  11711. case GGML_OP_SILU:
  11712. {
  11713. ggml_compute_forward_silu(params, tensor->src0, tensor);
  11714. } break;
  11715. case GGML_OP_SILU_BACK:
  11716. {
  11717. ggml_compute_forward_silu_back(params, tensor->src0, tensor->src1, tensor);
  11718. } break;
  11719. case GGML_OP_NORM:
  11720. {
  11721. ggml_compute_forward_norm(params, tensor->src0, tensor);
  11722. } break;
  11723. case GGML_OP_RMS_NORM:
  11724. {
  11725. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  11726. } break;
  11727. case GGML_OP_RMS_NORM_BACK:
  11728. {
  11729. ggml_compute_forward_rms_norm_back(params, tensor->src0, tensor->src1, tensor);
  11730. } break;
  11731. case GGML_OP_MUL_MAT:
  11732. {
  11733. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  11734. } break;
  11735. case GGML_OP_OUT_PROD:
  11736. {
  11737. ggml_compute_forward_out_prod(params, tensor->src0, tensor->src1, tensor);
  11738. } break;
  11739. case GGML_OP_SCALE:
  11740. {
  11741. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  11742. } break;
  11743. case GGML_OP_SET:
  11744. {
  11745. ggml_compute_forward_set(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  11746. } break;
  11747. case GGML_OP_CPY:
  11748. {
  11749. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  11750. } break;
  11751. case GGML_OP_CONT:
  11752. {
  11753. ggml_compute_forward_cont(params, tensor->src0, tensor);
  11754. } break;
  11755. case GGML_OP_RESHAPE:
  11756. {
  11757. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  11758. } break;
  11759. case GGML_OP_VIEW:
  11760. {
  11761. ggml_compute_forward_view(params, tensor->src0);
  11762. } break;
  11763. case GGML_OP_PERMUTE:
  11764. {
  11765. ggml_compute_forward_permute(params, tensor->src0);
  11766. } break;
  11767. case GGML_OP_TRANSPOSE:
  11768. {
  11769. ggml_compute_forward_transpose(params, tensor->src0);
  11770. } break;
  11771. case GGML_OP_GET_ROWS:
  11772. {
  11773. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  11774. } break;
  11775. case GGML_OP_GET_ROWS_BACK:
  11776. {
  11777. ggml_compute_forward_get_rows_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  11778. } break;
  11779. case GGML_OP_DIAG:
  11780. {
  11781. ggml_compute_forward_diag(params, tensor->src0, tensor);
  11782. } break;
  11783. case GGML_OP_DIAG_MASK_INF:
  11784. {
  11785. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  11786. } break;
  11787. case GGML_OP_DIAG_MASK_ZERO:
  11788. {
  11789. ggml_compute_forward_diag_mask_zero(params, tensor->src0, tensor->src1, tensor);
  11790. } break;
  11791. case GGML_OP_SOFT_MAX:
  11792. {
  11793. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  11794. } break;
  11795. case GGML_OP_SOFT_MAX_BACK:
  11796. {
  11797. ggml_compute_forward_soft_max_back(params, tensor->src0, tensor->src1, tensor);
  11798. } break;
  11799. case GGML_OP_ROPE:
  11800. {
  11801. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  11802. } break;
  11803. case GGML_OP_ROPE_BACK:
  11804. {
  11805. ggml_compute_forward_rope_back(params, tensor->src0, tensor->src1, tensor);
  11806. } break;
  11807. case GGML_OP_ALIBI:
  11808. {
  11809. ggml_compute_forward_alibi(params, tensor->src0, tensor->src1, tensor);
  11810. } break;
  11811. case GGML_OP_CLAMP:
  11812. {
  11813. ggml_compute_forward_clamp(params, tensor->src0, tensor->src1, tensor);
  11814. } break;
  11815. case GGML_OP_CONV_1D_1S:
  11816. {
  11817. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  11818. } break;
  11819. case GGML_OP_CONV_1D_2S:
  11820. {
  11821. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  11822. } break;
  11823. case GGML_OP_FLASH_ATTN:
  11824. {
  11825. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  11826. GGML_ASSERT(t == 0 || t == 1);
  11827. bool masked = t != 0;
  11828. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  11829. } break;
  11830. case GGML_OP_FLASH_FF:
  11831. {
  11832. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  11833. } break;
  11834. case GGML_OP_FLASH_ATTN_BACK:
  11835. {
  11836. int32_t t = ggml_get_i32_1d(tensor->opt[2], 0);
  11837. GGML_ASSERT(t == 0 || t == 1);
  11838. bool masked = t != 0;
  11839. ggml_compute_forward_flash_attn_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], masked, tensor);
  11840. } break;
  11841. case GGML_OP_MAP_UNARY:
  11842. {
  11843. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  11844. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  11845. }
  11846. break;
  11847. case GGML_OP_MAP_BINARY:
  11848. {
  11849. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  11850. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  11851. }
  11852. break;
  11853. case GGML_OP_CROSS_ENTROPY_LOSS:
  11854. {
  11855. ggml_compute_forward_cross_entropy_loss(params, tensor->src0, tensor->src1, tensor);
  11856. }
  11857. break;
  11858. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  11859. {
  11860. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  11861. }
  11862. break;
  11863. case GGML_OP_NONE:
  11864. {
  11865. // nop
  11866. } break;
  11867. case GGML_OP_COUNT:
  11868. {
  11869. GGML_ASSERT(false);
  11870. } break;
  11871. }
  11872. }
  11873. ////////////////////////////////////////////////////////////////////////////////
  11874. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  11875. struct ggml_tensor * src0 = tensor->src0;
  11876. struct ggml_tensor * src1 = tensor->src1;
  11877. switch (tensor->op) {
  11878. case GGML_OP_DUP:
  11879. {
  11880. if (src0->grad) {
  11881. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  11882. }
  11883. } break;
  11884. case GGML_OP_ADD:
  11885. {
  11886. if (src0->grad) {
  11887. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  11888. }
  11889. if (src1->grad) {
  11890. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  11891. }
  11892. } break;
  11893. case GGML_OP_ADD1:
  11894. {
  11895. if (src0->grad) {
  11896. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  11897. }
  11898. if (src1->grad) {
  11899. src1->grad = ggml_add_impl(ctx,
  11900. src1->grad,
  11901. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  11902. inplace);
  11903. }
  11904. } break;
  11905. case GGML_OP_ACC:
  11906. {
  11907. if (src0->grad) {
  11908. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  11909. }
  11910. if (src1->grad) {
  11911. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  11912. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  11913. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  11914. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  11915. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  11916. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  11917. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  11918. tensor->grad,
  11919. src1->grad->ne[0],
  11920. src1->grad->ne[1],
  11921. src1->grad->ne[2],
  11922. src1->grad->ne[3],
  11923. nb1, nb2, nb3, offset);
  11924. src1->grad =
  11925. ggml_add_impl(ctx,
  11926. src1->grad,
  11927. ggml_reshape(ctx,
  11928. ggml_cont(ctx, tensor_grad_view),
  11929. src1->grad),
  11930. inplace);
  11931. }
  11932. } break;
  11933. case GGML_OP_SUB:
  11934. {
  11935. if (src0->grad) {
  11936. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  11937. }
  11938. if (src1->grad) {
  11939. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  11940. }
  11941. } break;
  11942. case GGML_OP_MUL:
  11943. {
  11944. if (src0->grad) {
  11945. src0->grad =
  11946. ggml_add_impl(ctx,
  11947. src0->grad,
  11948. ggml_mul(ctx, src1, tensor->grad),
  11949. inplace);
  11950. }
  11951. if (src1->grad) {
  11952. src1->grad =
  11953. ggml_add_impl(ctx,
  11954. src1->grad,
  11955. ggml_mul(ctx, src0, tensor->grad),
  11956. inplace);
  11957. }
  11958. } break;
  11959. case GGML_OP_DIV:
  11960. {
  11961. if (src0->grad) {
  11962. src0->grad =
  11963. ggml_add_impl(ctx,
  11964. src0->grad,
  11965. ggml_div(ctx, tensor->grad, src1),
  11966. inplace);
  11967. }
  11968. if (src1->grad) {
  11969. src1->grad =
  11970. ggml_sub_impl(ctx,
  11971. src1->grad,
  11972. ggml_mul(ctx,
  11973. tensor->grad,
  11974. ggml_div(ctx, tensor, src1)),
  11975. inplace);
  11976. }
  11977. } break;
  11978. case GGML_OP_SQR:
  11979. {
  11980. if (src0->grad) {
  11981. src0->grad =
  11982. ggml_add_impl(ctx,
  11983. src0->grad,
  11984. ggml_scale(ctx,
  11985. ggml_mul(ctx, src0, tensor->grad),
  11986. ggml_new_f32(ctx, 2.0f)),
  11987. inplace);
  11988. }
  11989. } break;
  11990. case GGML_OP_SQRT:
  11991. {
  11992. if (src0->grad) {
  11993. src0->grad =
  11994. ggml_add_impl(ctx,
  11995. src0->grad,
  11996. ggml_scale(ctx,
  11997. ggml_div(ctx,
  11998. tensor->grad,
  11999. tensor),
  12000. ggml_new_f32(ctx, 0.5f)),
  12001. inplace);
  12002. }
  12003. } break;
  12004. case GGML_OP_LOG:
  12005. {
  12006. if (src0->grad) {
  12007. src0->grad =
  12008. ggml_add_impl(ctx,
  12009. src0->grad,
  12010. ggml_div(ctx,
  12011. tensor->grad,
  12012. src0),
  12013. inplace);
  12014. }
  12015. } break;
  12016. case GGML_OP_SUM:
  12017. {
  12018. if (src0->grad) {
  12019. src0->grad =
  12020. ggml_add1_impl(ctx,
  12021. src0->grad,
  12022. tensor->grad,
  12023. inplace);
  12024. }
  12025. } break;
  12026. case GGML_OP_SUM_ROWS:
  12027. {
  12028. if (src0->grad) {
  12029. src0->grad =
  12030. ggml_add_impl(ctx,
  12031. src0->grad,
  12032. ggml_repeat(ctx,
  12033. tensor->grad,
  12034. src0->grad),
  12035. inplace);
  12036. }
  12037. } break;
  12038. case GGML_OP_MEAN:
  12039. {
  12040. GGML_ASSERT(false); // TODO: implement
  12041. } break;
  12042. case GGML_OP_REPEAT:
  12043. {
  12044. // necessary for llama
  12045. if (src0->grad) {
  12046. src0->grad = ggml_add_impl(ctx,
  12047. src0->grad,
  12048. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  12049. inplace);
  12050. }
  12051. } break;
  12052. case GGML_OP_REPEAT_BACK:
  12053. {
  12054. if (src0->grad) {
  12055. // TODO: test this
  12056. src0->grad = ggml_add_impl(ctx,
  12057. src0->grad,
  12058. ggml_repeat(ctx, tensor->grad, src0->grad),
  12059. inplace);
  12060. }
  12061. } break;
  12062. case GGML_OP_ABS:
  12063. {
  12064. if (src0->grad) {
  12065. src0->grad =
  12066. ggml_add_impl(ctx,
  12067. src0->grad,
  12068. ggml_mul(ctx,
  12069. ggml_sgn(ctx, src0),
  12070. tensor->grad),
  12071. inplace);
  12072. }
  12073. } break;
  12074. case GGML_OP_SGN:
  12075. {
  12076. if (src0->grad) {
  12077. // noop
  12078. }
  12079. } break;
  12080. case GGML_OP_NEG:
  12081. {
  12082. if (src0->grad) {
  12083. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  12084. }
  12085. } break;
  12086. case GGML_OP_STEP:
  12087. {
  12088. if (src0->grad) {
  12089. // noop
  12090. }
  12091. } break;
  12092. case GGML_OP_RELU:
  12093. {
  12094. if (src0->grad) {
  12095. src0->grad = ggml_sub_impl(ctx,
  12096. src0->grad,
  12097. ggml_mul(ctx,
  12098. ggml_step(ctx, src0),
  12099. tensor->grad),
  12100. inplace);
  12101. }
  12102. } break;
  12103. case GGML_OP_GELU:
  12104. {
  12105. GGML_ASSERT(false); // TODO: not implemented
  12106. } break;
  12107. case GGML_OP_ALIBI:
  12108. {
  12109. GGML_ASSERT(false); // TODO: not implemented
  12110. } break;
  12111. case GGML_OP_CLAMP:
  12112. {
  12113. GGML_ASSERT(false); // TODO: not implemented
  12114. } break;
  12115. case GGML_OP_SILU:
  12116. {
  12117. // necessary for llama
  12118. if (src0->grad) {
  12119. src0->grad = ggml_add_impl(ctx,
  12120. src0->grad,
  12121. ggml_silu_back(ctx, src0, tensor->grad),
  12122. inplace);
  12123. }
  12124. } break;
  12125. case GGML_OP_SILU_BACK:
  12126. {
  12127. GGML_ASSERT(false); // TODO: not implemented
  12128. } break;
  12129. case GGML_OP_NORM:
  12130. {
  12131. GGML_ASSERT(false); // TODO: not implemented
  12132. } break;
  12133. case GGML_OP_RMS_NORM:
  12134. {
  12135. // necessary for llama
  12136. if (src0->grad) {
  12137. src0->grad = ggml_add_impl(ctx,
  12138. src0->grad,
  12139. ggml_rms_norm_back(ctx, src0, tensor->grad),
  12140. inplace);
  12141. }
  12142. } break;
  12143. case GGML_OP_RMS_NORM_BACK:
  12144. {
  12145. GGML_ASSERT(false); // TODO: not implemented
  12146. } break;
  12147. case GGML_OP_MUL_MAT:
  12148. {
  12149. // https://cs231n.github.io/optimization-2/#staged
  12150. // # forward pass
  12151. // s0 = np.random.randn(5, 10)
  12152. // s1 = np.random.randn(10, 3)
  12153. // t = s0.dot(s1)
  12154. // # now suppose we had the gradient on t from above in the circuit
  12155. // dt = np.random.randn(*t.shape) # same shape as t
  12156. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  12157. // ds1 = t.T.dot(dt)
  12158. // tensor.shape [m,p]
  12159. // src0.shape [n,m]
  12160. // src1.shape [n,p]
  12161. // necessary for llama
  12162. if (src0->grad) {
  12163. src0->grad =
  12164. ggml_add_impl(ctx,
  12165. src0->grad,
  12166. ggml_out_prod(ctx, // [n,m]
  12167. src1, // [n,p]
  12168. tensor->grad), // [m,p]
  12169. inplace);
  12170. }
  12171. if (src1->grad) {
  12172. src1->grad =
  12173. ggml_add_impl(ctx,
  12174. src1->grad,
  12175. // ggml_mul_mat(ctx, // [n,p]
  12176. // ggml_cont(ctx, // [m,n]
  12177. // ggml_transpose(ctx, src0)), // [m,n]
  12178. // tensor->grad), // [m,p]
  12179. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  12180. // // avoid transpose of src0, rather transpose smaller tensor->grad
  12181. // // and then use ggml_out_prod
  12182. ggml_out_prod(ctx, // [n,p]
  12183. src0, // [n,m]
  12184. ggml_transpose(ctx, // [p,m]
  12185. tensor->grad)), // [m,p]
  12186. inplace);
  12187. }
  12188. } break;
  12189. case GGML_OP_OUT_PROD:
  12190. {
  12191. GGML_ASSERT(false); // TODO: not implemented
  12192. } break;
  12193. case GGML_OP_SCALE:
  12194. {
  12195. // necessary for llama
  12196. if (src0->grad) {
  12197. src0->grad =
  12198. ggml_add_impl(ctx,
  12199. src0->grad,
  12200. ggml_scale_impl(ctx, tensor->grad, src1, false),
  12201. inplace);
  12202. }
  12203. if (src1->grad) {
  12204. src1->grad =
  12205. ggml_add_impl(ctx,
  12206. src1->grad,
  12207. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  12208. inplace);
  12209. }
  12210. } break;
  12211. case GGML_OP_SET:
  12212. {
  12213. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  12214. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  12215. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  12216. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  12217. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  12218. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  12219. struct ggml_tensor * tensor_grad_view = NULL;
  12220. if (src0->grad || src1->grad) {
  12221. GGML_ASSERT(src0->type == tensor->type);
  12222. GGML_ASSERT(tensor->grad->type == tensor->type);
  12223. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  12224. tensor_grad_view = ggml_view_4d(ctx,
  12225. tensor->grad,
  12226. src1->grad->ne[0],
  12227. src1->grad->ne[1],
  12228. src1->grad->ne[2],
  12229. src1->grad->ne[3],
  12230. nb1, nb2, nb3, offset);
  12231. }
  12232. if (src0->grad) {
  12233. src0->grad = ggml_add_impl(ctx,
  12234. src0->grad,
  12235. ggml_acc_impl(ctx,
  12236. tensor->grad,
  12237. ggml_neg(ctx, tensor_grad_view),
  12238. nb1, nb2, nb3, offset, false),
  12239. inplace);
  12240. }
  12241. if (src1->grad) {
  12242. src1->grad =
  12243. ggml_add_impl(ctx,
  12244. src1->grad,
  12245. ggml_reshape(ctx,
  12246. ggml_cont(ctx, tensor_grad_view),
  12247. src1->grad),
  12248. inplace);
  12249. }
  12250. } break;
  12251. case GGML_OP_CPY:
  12252. {
  12253. // necessary for llama
  12254. // cpy overwrites value of src1 by src0 and returns view(src1)
  12255. // the overwriting is mathematically equivalent to:
  12256. // tensor = src0 * 1 + src1 * 0
  12257. if (src0->grad) {
  12258. // dsrc0 = dtensor * 1
  12259. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12260. }
  12261. if (src1->grad) {
  12262. // dsrc1 = dtensor * 0 -> noop
  12263. }
  12264. } break;
  12265. case GGML_OP_CONT:
  12266. {
  12267. // same as cpy
  12268. if (src0->grad) {
  12269. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  12270. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  12271. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12272. }
  12273. } break;
  12274. case GGML_OP_RESHAPE:
  12275. {
  12276. // necessary for llama
  12277. if (src0->grad) {
  12278. src0->grad =
  12279. ggml_add_impl(ctx, src0->grad,
  12280. ggml_reshape(ctx, tensor->grad, src0->grad),
  12281. inplace);
  12282. }
  12283. } break;
  12284. case GGML_OP_VIEW:
  12285. {
  12286. // necessary for llama
  12287. if (src0->grad) {
  12288. size_t offset;
  12289. GGML_ASSERT(sizeof(offset) <= ggml_nbytes(tensor->opt[0]));
  12290. memcpy(&offset, tensor->opt[0]->data, sizeof(offset));
  12291. size_t nb1 = tensor->nb[1];
  12292. size_t nb2 = tensor->nb[2];
  12293. size_t nb3 = tensor->nb[3];
  12294. if (src0->type != src0->grad->type) {
  12295. // gradient is typically F32, but src0 could be other type
  12296. size_t ng = ggml_element_size(src0->grad);
  12297. size_t n0 = ggml_element_size(src0);
  12298. GGML_ASSERT(offset % n0 == 0);
  12299. GGML_ASSERT(nb1 % n0 == 0);
  12300. GGML_ASSERT(nb2 % n0 == 0);
  12301. GGML_ASSERT(nb3 % n0 == 0);
  12302. offset = (offset / n0) * ng;
  12303. nb1 = (nb1 / n0) * ng;
  12304. nb2 = (nb2 / n0) * ng;
  12305. nb3 = (nb3 / n0) * ng;
  12306. }
  12307. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  12308. }
  12309. } break;
  12310. case GGML_OP_PERMUTE:
  12311. {
  12312. // necessary for llama
  12313. if (src0->grad) {
  12314. int32_t * axes = (int32_t *) tensor->opt[0]->data;
  12315. int axis0 = axes[0] & 0x3;
  12316. int axis1 = axes[1] & 0x3;
  12317. int axis2 = axes[2] & 0x3;
  12318. int axis3 = axes[3] & 0x3;
  12319. int axes_backward[4] = {0,0,0,0};
  12320. axes_backward[axis0] = 0;
  12321. axes_backward[axis1] = 1;
  12322. axes_backward[axis2] = 2;
  12323. axes_backward[axis3] = 3;
  12324. src0->grad =
  12325. ggml_add_impl(ctx, src0->grad,
  12326. ggml_permute(ctx,
  12327. tensor->grad,
  12328. axes_backward[0],
  12329. axes_backward[1],
  12330. axes_backward[2],
  12331. axes_backward[3]),
  12332. inplace);
  12333. }
  12334. } break;
  12335. case GGML_OP_TRANSPOSE:
  12336. {
  12337. // necessary for llama
  12338. if (src0->grad) {
  12339. src0->grad =
  12340. ggml_add_impl(ctx, src0->grad,
  12341. ggml_transpose(ctx, tensor->grad),
  12342. inplace);
  12343. }
  12344. } break;
  12345. case GGML_OP_GET_ROWS:
  12346. {
  12347. // necessary for llama (only for tokenizer)
  12348. if (src0->grad) {
  12349. src0->grad =
  12350. ggml_add_impl(ctx, src0->grad,
  12351. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  12352. inplace);
  12353. }
  12354. if (src1->grad) {
  12355. // noop
  12356. }
  12357. } break;
  12358. case GGML_OP_GET_ROWS_BACK:
  12359. {
  12360. GGML_ASSERT(false); // TODO: not implemented
  12361. } break;
  12362. case GGML_OP_DIAG:
  12363. {
  12364. GGML_ASSERT(false); // TODO: not implemented
  12365. } break;
  12366. case GGML_OP_DIAG_MASK_INF:
  12367. {
  12368. // necessary for llama
  12369. if (src0->grad) {
  12370. assert(src1->type == GGML_TYPE_I32);
  12371. assert(ggml_nelements(src1) == 2);
  12372. const int n_past = ((int32_t *) src1->data)[0];
  12373. src0->grad =
  12374. ggml_add_impl(ctx, src0->grad,
  12375. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12376. inplace);
  12377. }
  12378. if (src1->grad) {
  12379. // noop
  12380. }
  12381. } break;
  12382. case GGML_OP_DIAG_MASK_ZERO:
  12383. {
  12384. // necessary for llama
  12385. if (src0->grad) {
  12386. assert(src1->type == GGML_TYPE_I32);
  12387. assert(ggml_nelements(src1) == 2);
  12388. const int n_past = ((int32_t *) src1->data)[0];
  12389. src0->grad =
  12390. ggml_add_impl(ctx, src0->grad,
  12391. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12392. inplace);
  12393. }
  12394. if (src1->grad) {
  12395. // noop
  12396. }
  12397. } break;
  12398. case GGML_OP_SOFT_MAX:
  12399. {
  12400. // necessary for llama
  12401. if (src0->grad) {
  12402. src0->grad =
  12403. ggml_add_impl(ctx, src0->grad,
  12404. ggml_soft_max_back(ctx, tensor->grad, tensor),
  12405. inplace);
  12406. }
  12407. } break;
  12408. case GGML_OP_SOFT_MAX_BACK:
  12409. {
  12410. GGML_ASSERT(false); // TODO: not implemented
  12411. } break;
  12412. case GGML_OP_ROPE:
  12413. {
  12414. // necessary for llama
  12415. if (src0->grad) {
  12416. assert(src1->type == GGML_TYPE_I32);
  12417. assert(ggml_nelements(src1) == 3);
  12418. const int n_past = ((int32_t *) src1->data)[0];
  12419. const int n_dims = ((int32_t *) src1->data)[1];
  12420. const int mode = ((int32_t *) src1->data)[2];
  12421. src0->grad = ggml_add_impl(ctx,
  12422. src0->grad,
  12423. ggml_rope_back(ctx,
  12424. tensor->grad,
  12425. n_past,
  12426. n_dims,
  12427. mode),
  12428. inplace);
  12429. }
  12430. if (src1->grad) {
  12431. // noop
  12432. }
  12433. } break;
  12434. case GGML_OP_ROPE_BACK:
  12435. {
  12436. if (src0->grad) {
  12437. assert(src1->type == GGML_TYPE_I32);
  12438. assert(ggml_nelements(src1) == 3);
  12439. const int n_past = ((int32_t *) src1->data)[0];
  12440. const int n_dims = ((int32_t *) src1->data)[1];
  12441. const int mode = ((int32_t *) src1->data)[2];
  12442. src0->grad = ggml_add_impl(ctx,
  12443. src0->grad,
  12444. ggml_rope(ctx,
  12445. tensor->grad,
  12446. n_past,
  12447. n_dims,
  12448. mode),
  12449. inplace);
  12450. }
  12451. if (src1->grad) {
  12452. // noop
  12453. }
  12454. } break;
  12455. case GGML_OP_CONV_1D_1S:
  12456. {
  12457. GGML_ASSERT(false); // TODO: not implemented
  12458. } break;
  12459. case GGML_OP_CONV_1D_2S:
  12460. {
  12461. GGML_ASSERT(false); // TODO: not implemented
  12462. } break;
  12463. case GGML_OP_FLASH_ATTN:
  12464. {
  12465. struct ggml_tensor * flash_grad = NULL;
  12466. if (src0->grad || src1->grad || tensor->opt[0]->grad) {
  12467. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  12468. GGML_ASSERT(t == 0 || t == 1);
  12469. bool masked = t != 0;
  12470. flash_grad =
  12471. ggml_flash_attn_back(ctx,
  12472. src0,
  12473. src1,
  12474. tensor->opt[0],
  12475. tensor->grad,
  12476. masked);
  12477. }
  12478. if (src0->grad) {
  12479. struct ggml_tensor * grad_q = NULL;
  12480. const size_t nb0 = flash_grad->nb[0];
  12481. const size_t offset = 0;
  12482. switch(src0->n_dims) {
  12483. case 2:
  12484. {
  12485. grad_q = ggml_view_2d(ctx,
  12486. flash_grad,
  12487. src0->ne[0],
  12488. src0->ne[1],
  12489. nb0*src0->ne[0],
  12490. offset);
  12491. } break;
  12492. case 3:
  12493. {
  12494. grad_q = ggml_view_3d(ctx,
  12495. flash_grad,
  12496. src0->ne[0],
  12497. src0->ne[1],
  12498. src0->ne[2],
  12499. nb0*src0->ne[0],
  12500. nb0*src0->ne[0]*src0->ne[1],
  12501. offset);
  12502. } break;
  12503. case 4:
  12504. {
  12505. grad_q = ggml_view_4d(ctx,
  12506. flash_grad,
  12507. src0->ne[0],
  12508. src0->ne[1],
  12509. src0->ne[2],
  12510. src0->ne[3],
  12511. nb0*src0->ne[0],
  12512. nb0*src0->ne[0]*src0->ne[1],
  12513. nb0*src0->ne[0]*src0->ne[1]*src0->ne[2],
  12514. offset);
  12515. } break;
  12516. }
  12517. src0->grad = ggml_add_impl(ctx,
  12518. src0->grad,
  12519. grad_q,
  12520. inplace);
  12521. }
  12522. if (src1->grad) {
  12523. struct ggml_tensor * grad_k = NULL;
  12524. const size_t nb0 = flash_grad->nb[0];
  12525. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3];
  12526. switch(src1->n_dims) {
  12527. case 2:
  12528. {
  12529. grad_k = ggml_view_2d(ctx,
  12530. flash_grad,
  12531. src1->ne[0],
  12532. src1->ne[1],
  12533. nb0*src1->ne[0],
  12534. offset);
  12535. } break;
  12536. case 3:
  12537. {
  12538. grad_k = ggml_view_3d(ctx,
  12539. flash_grad,
  12540. src1->ne[0],
  12541. src1->ne[1],
  12542. src1->ne[2],
  12543. nb0*src1->ne[0],
  12544. nb0*src1->ne[0]*src1->ne[1],
  12545. offset);
  12546. } break;
  12547. case 4:
  12548. {
  12549. grad_k = ggml_view_4d(ctx,
  12550. flash_grad,
  12551. src1->ne[0],
  12552. src1->ne[1],
  12553. src1->ne[2],
  12554. src1->ne[3],
  12555. nb0*src1->ne[0],
  12556. nb0*src1->ne[0]*src1->ne[1],
  12557. nb0*src1->ne[0]*src1->ne[1]*src1->ne[2],
  12558. offset);
  12559. } break;
  12560. }
  12561. src1->grad = ggml_add_impl(ctx,
  12562. src1->grad,
  12563. grad_k,
  12564. inplace);
  12565. }
  12566. struct ggml_tensor * opt0 = tensor->opt[0];
  12567. if (opt0->grad) {
  12568. struct ggml_tensor * grad_v = NULL;
  12569. const size_t nb0 = flash_grad->nb[0];
  12570. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3]
  12571. + nb0*src1->ne[0]*src1->ne[1]*src1->ne[2]*src1->ne[3];
  12572. switch(opt0->n_dims) {
  12573. case 2:
  12574. {
  12575. grad_v = ggml_view_2d(ctx,
  12576. flash_grad,
  12577. opt0->ne[0],
  12578. opt0->ne[1],
  12579. nb0*opt0->ne[0],
  12580. offset);
  12581. } break;
  12582. case 3:
  12583. {
  12584. grad_v = ggml_view_3d(ctx,
  12585. flash_grad,
  12586. opt0->ne[0],
  12587. opt0->ne[1],
  12588. opt0->ne[2],
  12589. nb0*opt0->ne[0],
  12590. nb0*opt0->ne[0]*opt0->ne[1],
  12591. offset);
  12592. } break;
  12593. case 4:
  12594. {
  12595. grad_v = ggml_view_4d(ctx,
  12596. flash_grad,
  12597. opt0->ne[0],
  12598. opt0->ne[1],
  12599. opt0->ne[2],
  12600. opt0->ne[3],
  12601. nb0*opt0->ne[0],
  12602. nb0*opt0->ne[0]*opt0->ne[1],
  12603. nb0*opt0->ne[0]*opt0->ne[1]*opt0->ne[2],
  12604. offset);
  12605. } break;
  12606. }
  12607. opt0->grad = ggml_add_impl(ctx,
  12608. opt0->grad,
  12609. grad_v,
  12610. inplace);
  12611. }
  12612. } break;
  12613. case GGML_OP_FLASH_FF:
  12614. {
  12615. GGML_ASSERT(false); // not supported
  12616. } break;
  12617. case GGML_OP_FLASH_ATTN_BACK:
  12618. {
  12619. GGML_ASSERT(false); // not supported
  12620. } break;
  12621. case GGML_OP_MAP_UNARY:
  12622. case GGML_OP_MAP_BINARY:
  12623. {
  12624. GGML_ASSERT(false); // not supported
  12625. } break;
  12626. case GGML_OP_CROSS_ENTROPY_LOSS:
  12627. {
  12628. if (src0->grad) {
  12629. src0->grad = ggml_add_impl(ctx,
  12630. src0->grad,
  12631. ggml_cross_entropy_loss_back(ctx,
  12632. src0,
  12633. src1,
  12634. tensor->grad),
  12635. inplace);
  12636. }
  12637. } break;
  12638. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12639. {
  12640. GGML_ASSERT(false); // not supported
  12641. } break;
  12642. case GGML_OP_NONE:
  12643. {
  12644. // nop
  12645. } break;
  12646. case GGML_OP_COUNT:
  12647. {
  12648. GGML_ASSERT(false);
  12649. } break;
  12650. }
  12651. }
  12652. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  12653. if (node->grad == NULL) {
  12654. // this usually happens when we generate intermediate nodes from constants in the backward pass
  12655. // it can also happen during forward pass, if the user performs computations with constants
  12656. if (node->op != GGML_OP_NONE) {
  12657. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  12658. }
  12659. }
  12660. // check if already visited
  12661. for (int i = 0; i < cgraph->n_nodes; i++) {
  12662. if (cgraph->nodes[i] == node) {
  12663. return;
  12664. }
  12665. }
  12666. for (int i = 0; i < cgraph->n_leafs; i++) {
  12667. if (cgraph->leafs[i] == node) {
  12668. return;
  12669. }
  12670. }
  12671. if (node->src0) {
  12672. ggml_visit_parents(cgraph, node->src0);
  12673. }
  12674. if (node->src1) {
  12675. ggml_visit_parents(cgraph, node->src1);
  12676. }
  12677. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  12678. if (node->opt[i]) {
  12679. ggml_visit_parents(cgraph, node->opt[i]);
  12680. }
  12681. }
  12682. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  12683. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  12684. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  12685. if (strlen(node->name) == 0) {
  12686. snprintf(node->name, sizeof(node->name), "leaf_%d", cgraph->n_leafs);
  12687. }
  12688. cgraph->leafs[cgraph->n_leafs] = node;
  12689. cgraph->n_leafs++;
  12690. } else {
  12691. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  12692. if (strlen(node->name) == 0) {
  12693. snprintf(node->name, sizeof(node->name), "node_%d", cgraph->n_nodes);
  12694. }
  12695. cgraph->nodes[cgraph->n_nodes] = node;
  12696. cgraph->grads[cgraph->n_nodes] = node->grad;
  12697. cgraph->n_nodes++;
  12698. }
  12699. }
  12700. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  12701. if (!expand) {
  12702. cgraph->n_nodes = 0;
  12703. cgraph->n_leafs = 0;
  12704. }
  12705. const int n0 = cgraph->n_nodes;
  12706. UNUSED(n0);
  12707. ggml_visit_parents(cgraph, tensor);
  12708. const int n_new = cgraph->n_nodes - n0;
  12709. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  12710. if (n_new > 0) {
  12711. // the last added node should always be starting point
  12712. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  12713. }
  12714. }
  12715. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  12716. ggml_build_forward_impl(cgraph, tensor, true);
  12717. }
  12718. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  12719. struct ggml_cgraph result = {
  12720. /*.n_nodes =*/ 0,
  12721. /*.n_leafs =*/ 0,
  12722. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  12723. /*.work_size =*/ 0,
  12724. /*.work =*/ NULL,
  12725. /*.nodes =*/ { NULL },
  12726. /*.grads =*/ { NULL },
  12727. /*.leafs =*/ { NULL },
  12728. /*.perf_runs =*/ 0,
  12729. /*.perf_cycles =*/ 0,
  12730. /*.perf_time_us =*/ 0,
  12731. };
  12732. ggml_build_forward_impl(&result, tensor, false);
  12733. return result;
  12734. }
  12735. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  12736. struct ggml_cgraph result = *gf;
  12737. GGML_ASSERT(gf->n_nodes > 0);
  12738. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  12739. if (keep) {
  12740. for (int i = 0; i < gf->n_nodes; i++) {
  12741. struct ggml_tensor * node = gf->nodes[i];
  12742. if (node->grad) {
  12743. node->grad = ggml_dup_tensor(ctx, node);
  12744. gf->grads[i] = node->grad;
  12745. }
  12746. }
  12747. }
  12748. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  12749. struct ggml_tensor * node = gf->nodes[i];
  12750. // because we detached the grad nodes from the original graph, we can afford inplace operations
  12751. if (node->grad) {
  12752. ggml_compute_backward(ctx, node, keep);
  12753. }
  12754. }
  12755. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  12756. struct ggml_tensor * node = gf->nodes[i];
  12757. if (node->is_param) {
  12758. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  12759. ggml_build_forward_impl(&result, node->grad, true);
  12760. }
  12761. }
  12762. return result;
  12763. }
  12764. //
  12765. // thread data
  12766. //
  12767. // synchronization is done via busy loops
  12768. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  12769. //
  12770. #ifdef __APPLE__
  12771. //#include <os/lock.h>
  12772. //
  12773. //typedef os_unfair_lock ggml_lock_t;
  12774. //
  12775. //#define ggml_lock_init(x) UNUSED(x)
  12776. //#define ggml_lock_destroy(x) UNUSED(x)
  12777. //#define ggml_lock_lock os_unfair_lock_lock
  12778. //#define ggml_lock_unlock os_unfair_lock_unlock
  12779. //
  12780. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  12781. typedef int ggml_lock_t;
  12782. #define ggml_lock_init(x) UNUSED(x)
  12783. #define ggml_lock_destroy(x) UNUSED(x)
  12784. #define ggml_lock_lock(x) UNUSED(x)
  12785. #define ggml_lock_unlock(x) UNUSED(x)
  12786. #define GGML_LOCK_INITIALIZER 0
  12787. typedef pthread_t ggml_thread_t;
  12788. #define ggml_thread_create pthread_create
  12789. #define ggml_thread_join pthread_join
  12790. #else
  12791. //typedef pthread_spinlock_t ggml_lock_t;
  12792. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  12793. //#define ggml_lock_destroy pthread_spin_destroy
  12794. //#define ggml_lock_lock pthread_spin_lock
  12795. //#define ggml_lock_unlock pthread_spin_unlock
  12796. typedef int ggml_lock_t;
  12797. #define ggml_lock_init(x) UNUSED(x)
  12798. #define ggml_lock_destroy(x) UNUSED(x)
  12799. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  12800. #define ggml_lock_lock(x) _mm_pause()
  12801. #else
  12802. #define ggml_lock_lock(x) UNUSED(x)
  12803. #endif
  12804. #define ggml_lock_unlock(x) UNUSED(x)
  12805. #define GGML_LOCK_INITIALIZER 0
  12806. typedef pthread_t ggml_thread_t;
  12807. #define ggml_thread_create pthread_create
  12808. #define ggml_thread_join pthread_join
  12809. #endif
  12810. struct ggml_compute_state_shared {
  12811. ggml_lock_t spin;
  12812. int n_threads;
  12813. // synchronization primitives
  12814. atomic_int n_ready;
  12815. atomic_bool has_work;
  12816. atomic_bool stop; // stop all threads
  12817. };
  12818. struct ggml_compute_state {
  12819. ggml_thread_t thrd;
  12820. struct ggml_compute_params params;
  12821. struct ggml_tensor * node;
  12822. struct ggml_compute_state_shared * shared;
  12823. };
  12824. static thread_ret_t ggml_graph_compute_thread(void * data) {
  12825. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  12826. const int n_threads = state->shared->n_threads;
  12827. while (true) {
  12828. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  12829. atomic_store(&state->shared->has_work, false);
  12830. } else {
  12831. while (atomic_load(&state->shared->has_work)) {
  12832. if (atomic_load(&state->shared->stop)) {
  12833. return 0;
  12834. }
  12835. ggml_lock_lock (&state->shared->spin);
  12836. ggml_lock_unlock(&state->shared->spin);
  12837. }
  12838. }
  12839. atomic_fetch_sub(&state->shared->n_ready, 1);
  12840. // wait for work
  12841. while (!atomic_load(&state->shared->has_work)) {
  12842. if (atomic_load(&state->shared->stop)) {
  12843. return 0;
  12844. }
  12845. ggml_lock_lock (&state->shared->spin);
  12846. ggml_lock_unlock(&state->shared->spin);
  12847. }
  12848. // check if we should stop
  12849. if (atomic_load(&state->shared->stop)) {
  12850. break;
  12851. }
  12852. if (state->node) {
  12853. if (state->params.ith < state->params.nth) {
  12854. ggml_compute_forward(&state->params, state->node);
  12855. }
  12856. state->node = NULL;
  12857. } else {
  12858. break;
  12859. }
  12860. }
  12861. return 0;
  12862. }
  12863. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  12864. const int n_threads = cgraph->n_threads;
  12865. struct ggml_compute_state_shared state_shared = {
  12866. /*.spin =*/ GGML_LOCK_INITIALIZER,
  12867. /*.n_threads =*/ n_threads,
  12868. /*.n_ready =*/ 0,
  12869. /*.has_work =*/ false,
  12870. /*.stop =*/ false,
  12871. };
  12872. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  12873. // create thread pool
  12874. if (n_threads > 1) {
  12875. ggml_lock_init(&state_shared.spin);
  12876. atomic_store(&state_shared.has_work, true);
  12877. for (int j = 0; j < n_threads - 1; j++) {
  12878. workers[j] = (struct ggml_compute_state) {
  12879. .thrd = 0,
  12880. .params = {
  12881. .type = GGML_TASK_COMPUTE,
  12882. .ith = j + 1,
  12883. .nth = n_threads,
  12884. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  12885. .wdata = cgraph->work ? cgraph->work->data : NULL,
  12886. },
  12887. .node = NULL,
  12888. .shared = &state_shared,
  12889. };
  12890. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  12891. GGML_ASSERT(rc == 0);
  12892. UNUSED(rc);
  12893. }
  12894. }
  12895. // initialize tasks + work buffer
  12896. {
  12897. size_t work_size = 0;
  12898. // thread scheduling for the different operations
  12899. for (int i = 0; i < cgraph->n_nodes; i++) {
  12900. struct ggml_tensor * node = cgraph->nodes[i];
  12901. switch (node->op) {
  12902. case GGML_OP_CPY:
  12903. case GGML_OP_DUP:
  12904. {
  12905. node->n_tasks = n_threads;
  12906. size_t cur = 0;
  12907. if (ggml_is_quantized(node->type)) {
  12908. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  12909. }
  12910. work_size = MAX(work_size, cur);
  12911. } break;
  12912. case GGML_OP_ADD:
  12913. case GGML_OP_ADD1:
  12914. {
  12915. node->n_tasks = n_threads;
  12916. size_t cur = 0;
  12917. if (ggml_is_quantized(node->src0->type)) {
  12918. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  12919. }
  12920. work_size = MAX(work_size, cur);
  12921. } break;
  12922. case GGML_OP_ACC:
  12923. {
  12924. node->n_tasks = n_threads;
  12925. size_t cur = 0;
  12926. if (ggml_is_quantized(node->src0->type)) {
  12927. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src1->ne[0] * n_threads;
  12928. }
  12929. work_size = MAX(work_size, cur);
  12930. } break;
  12931. case GGML_OP_SUB:
  12932. case GGML_OP_DIV:
  12933. case GGML_OP_SQR:
  12934. case GGML_OP_SQRT:
  12935. case GGML_OP_LOG:
  12936. case GGML_OP_SUM:
  12937. case GGML_OP_SUM_ROWS:
  12938. case GGML_OP_MEAN:
  12939. case GGML_OP_REPEAT:
  12940. case GGML_OP_REPEAT_BACK:
  12941. case GGML_OP_ABS:
  12942. case GGML_OP_SGN:
  12943. case GGML_OP_NEG:
  12944. case GGML_OP_STEP:
  12945. case GGML_OP_RELU:
  12946. {
  12947. node->n_tasks = 1;
  12948. } break;
  12949. case GGML_OP_MUL:
  12950. case GGML_OP_GELU:
  12951. case GGML_OP_SILU:
  12952. case GGML_OP_SILU_BACK:
  12953. case GGML_OP_NORM:
  12954. case GGML_OP_RMS_NORM:
  12955. case GGML_OP_RMS_NORM_BACK:
  12956. {
  12957. node->n_tasks = n_threads;
  12958. } break;
  12959. case GGML_OP_MUL_MAT:
  12960. case GGML_OP_OUT_PROD:
  12961. {
  12962. node->n_tasks = n_threads;
  12963. // TODO: use different scheduling for different matrix sizes
  12964. //const int nr0 = ggml_nrows(node->src0);
  12965. //const int nr1 = ggml_nrows(node->src1);
  12966. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  12967. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  12968. size_t cur = 0;
  12969. #if defined(GGML_USE_CUBLAS)
  12970. if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
  12971. node->n_tasks = 1; // TODO: this actually is doing nothing
  12972. // the threads are still spinning
  12973. }
  12974. else
  12975. #elif defined(GGML_USE_CLBLAST)
  12976. if (ggml_cl_can_mul_mat(node->src0, node->src1, node)) {
  12977. node->n_tasks = 1; // TODO: this actually is doing nothing
  12978. // the threads are still spinning
  12979. cur = ggml_cl_mul_mat_get_wsize(node->src0, node->src1, node);
  12980. }
  12981. else
  12982. #endif
  12983. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  12984. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  12985. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  12986. node->n_tasks = 1; // TODO: this actually is doing nothing
  12987. // the threads are still spinning
  12988. // here we need memory just for single 2D matrix from src0
  12989. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  12990. } else {
  12991. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  12992. }
  12993. #else
  12994. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  12995. #endif
  12996. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  12997. cur = 0;
  12998. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  12999. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  13000. node->n_tasks = 1;
  13001. }
  13002. #endif
  13003. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  13004. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13005. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  13006. node->n_tasks = 1;
  13007. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  13008. } else
  13009. #endif
  13010. {
  13011. const enum ggml_type type_q = quantize_fns[node->src0->type].vec_dot_type;
  13012. cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q];
  13013. }
  13014. } else {
  13015. GGML_ASSERT(false);
  13016. }
  13017. work_size = MAX(work_size, cur);
  13018. } break;
  13019. case GGML_OP_SCALE:
  13020. {
  13021. node->n_tasks = n_threads;
  13022. } break;
  13023. case GGML_OP_SET:
  13024. case GGML_OP_CONT:
  13025. case GGML_OP_RESHAPE:
  13026. case GGML_OP_VIEW:
  13027. case GGML_OP_PERMUTE:
  13028. case GGML_OP_TRANSPOSE:
  13029. case GGML_OP_GET_ROWS:
  13030. case GGML_OP_GET_ROWS_BACK:
  13031. case GGML_OP_DIAG:
  13032. case GGML_OP_DIAG_MASK_ZERO:
  13033. {
  13034. node->n_tasks = 1;
  13035. } break;
  13036. case GGML_OP_DIAG_MASK_INF:
  13037. case GGML_OP_SOFT_MAX:
  13038. case GGML_OP_SOFT_MAX_BACK:
  13039. case GGML_OP_ROPE:
  13040. case GGML_OP_ROPE_BACK:
  13041. {
  13042. node->n_tasks = n_threads;
  13043. } break;
  13044. case GGML_OP_ALIBI:
  13045. {
  13046. node->n_tasks = 1; //TODO
  13047. } break;
  13048. case GGML_OP_CLAMP:
  13049. {
  13050. node->n_tasks = 1; //TODO
  13051. } break;
  13052. case GGML_OP_CONV_1D_1S:
  13053. case GGML_OP_CONV_1D_2S:
  13054. {
  13055. node->n_tasks = n_threads;
  13056. GGML_ASSERT(node->src0->ne[3] == 1);
  13057. GGML_ASSERT(node->src1->ne[2] == 1);
  13058. GGML_ASSERT(node->src1->ne[3] == 1);
  13059. size_t cur = 0;
  13060. const int nk = node->src0->ne[0];
  13061. if (node->src0->type == GGML_TYPE_F16 &&
  13062. node->src1->type == GGML_TYPE_F32) {
  13063. cur = sizeof(ggml_fp16_t)*(
  13064. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  13065. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  13066. );
  13067. } else if (node->src0->type == GGML_TYPE_F32 &&
  13068. node->src1->type == GGML_TYPE_F32) {
  13069. cur = sizeof(float)*(
  13070. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  13071. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  13072. );
  13073. } else {
  13074. GGML_ASSERT(false);
  13075. }
  13076. work_size = MAX(work_size, cur);
  13077. } break;
  13078. case GGML_OP_FLASH_ATTN:
  13079. {
  13080. node->n_tasks = n_threads;
  13081. size_t cur = 0;
  13082. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  13083. if (node->src1->type == GGML_TYPE_F32) {
  13084. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  13085. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  13086. }
  13087. if (node->src1->type == GGML_TYPE_F16) {
  13088. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  13089. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  13090. }
  13091. work_size = MAX(work_size, cur);
  13092. } break;
  13093. case GGML_OP_FLASH_FF:
  13094. {
  13095. node->n_tasks = n_threads;
  13096. size_t cur = 0;
  13097. if (node->src1->type == GGML_TYPE_F32) {
  13098. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  13099. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  13100. }
  13101. if (node->src1->type == GGML_TYPE_F16) {
  13102. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  13103. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  13104. }
  13105. work_size = MAX(work_size, cur);
  13106. } break;
  13107. case GGML_OP_FLASH_ATTN_BACK:
  13108. {
  13109. node->n_tasks = n_threads;
  13110. size_t cur = 0;
  13111. const int64_t D = node->src0->ne[0];
  13112. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  13113. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  13114. if (node->src1->type == GGML_TYPE_F32) {
  13115. cur = sizeof(float)*mxDn*node->n_tasks; // TODO: this can become (n_tasks-1)
  13116. cur += sizeof(float)*mxDn*node->n_tasks; // this is overestimated by x2
  13117. }
  13118. if (node->src1->type == GGML_TYPE_F16) {
  13119. cur = sizeof(float)*mxDn*node->n_tasks; // TODO: this can become (n_tasks-1)
  13120. cur += sizeof(float)*mxDn*node->n_tasks; // this is overestimated by x2
  13121. }
  13122. work_size = MAX(work_size, cur);
  13123. } break;
  13124. case GGML_OP_MAP_UNARY:
  13125. case GGML_OP_MAP_BINARY:
  13126. {
  13127. node->n_tasks = 1;
  13128. } break;
  13129. case GGML_OP_CROSS_ENTROPY_LOSS:
  13130. {
  13131. node->n_tasks = n_threads;
  13132. size_t cur = ggml_type_size(node->type)*(node->n_tasks + node->src0->ne[0]*node->n_tasks);
  13133. work_size = MAX(work_size, cur);
  13134. } break;
  13135. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13136. {
  13137. node->n_tasks = n_threads;
  13138. size_t cur = ggml_type_size(node->type)*node->src0->ne[0]*node->n_tasks;
  13139. work_size = MAX(work_size, cur);
  13140. } break;
  13141. case GGML_OP_NONE:
  13142. {
  13143. node->n_tasks = 1;
  13144. } break;
  13145. case GGML_OP_COUNT:
  13146. {
  13147. GGML_ASSERT(false);
  13148. } break;
  13149. }
  13150. }
  13151. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  13152. GGML_ASSERT(false); // TODO: better handling
  13153. }
  13154. if (work_size > 0 && cgraph->work == NULL) {
  13155. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  13156. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  13157. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  13158. }
  13159. }
  13160. const int64_t perf_start_cycles = ggml_perf_cycles();
  13161. const int64_t perf_start_time_us = ggml_perf_time_us();
  13162. for (int i = 0; i < cgraph->n_nodes; i++) {
  13163. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  13164. struct ggml_tensor * node = cgraph->nodes[i];
  13165. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  13166. //if (node->grad == NULL && node->perf_runs > 0) {
  13167. // continue;
  13168. //}
  13169. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  13170. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  13171. // INIT
  13172. struct ggml_compute_params params = {
  13173. /*.type =*/ GGML_TASK_INIT,
  13174. /*.ith =*/ 0,
  13175. /*.nth =*/ node->n_tasks,
  13176. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  13177. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  13178. };
  13179. ggml_compute_forward(&params, node);
  13180. // COMPUTE
  13181. if (node->n_tasks > 1) {
  13182. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  13183. atomic_store(&state_shared.has_work, false);
  13184. }
  13185. while (atomic_load(&state_shared.has_work)) {
  13186. ggml_lock_lock (&state_shared.spin);
  13187. ggml_lock_unlock(&state_shared.spin);
  13188. }
  13189. // launch thread pool
  13190. for (int j = 0; j < n_threads - 1; j++) {
  13191. workers[j].params = (struct ggml_compute_params) {
  13192. .type = GGML_TASK_COMPUTE,
  13193. .ith = j + 1,
  13194. .nth = node->n_tasks,
  13195. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  13196. .wdata = cgraph->work ? cgraph->work->data : NULL,
  13197. };
  13198. workers[j].node = node;
  13199. }
  13200. atomic_fetch_sub(&state_shared.n_ready, 1);
  13201. while (atomic_load(&state_shared.n_ready) > 0) {
  13202. ggml_lock_lock (&state_shared.spin);
  13203. ggml_lock_unlock(&state_shared.spin);
  13204. }
  13205. atomic_store(&state_shared.has_work, true);
  13206. }
  13207. params.type = GGML_TASK_COMPUTE;
  13208. ggml_compute_forward(&params, node);
  13209. // wait for thread pool
  13210. if (node->n_tasks > 1) {
  13211. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  13212. atomic_store(&state_shared.has_work, false);
  13213. }
  13214. while (atomic_load(&state_shared.has_work)) {
  13215. ggml_lock_lock (&state_shared.spin);
  13216. ggml_lock_unlock(&state_shared.spin);
  13217. }
  13218. atomic_fetch_sub(&state_shared.n_ready, 1);
  13219. while (atomic_load(&state_shared.n_ready) != 0) {
  13220. ggml_lock_lock (&state_shared.spin);
  13221. ggml_lock_unlock(&state_shared.spin);
  13222. }
  13223. }
  13224. // FINALIZE
  13225. if (node->n_tasks > 1) {
  13226. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  13227. atomic_store(&state_shared.has_work, false);
  13228. }
  13229. while (atomic_load(&state_shared.has_work)) {
  13230. ggml_lock_lock (&state_shared.spin);
  13231. ggml_lock_unlock(&state_shared.spin);
  13232. }
  13233. // launch thread pool
  13234. for (int j = 0; j < n_threads - 1; j++) {
  13235. workers[j].params = (struct ggml_compute_params) {
  13236. .type = GGML_TASK_FINALIZE,
  13237. .ith = j + 1,
  13238. .nth = node->n_tasks,
  13239. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  13240. .wdata = cgraph->work ? cgraph->work->data : NULL,
  13241. };
  13242. workers[j].node = node;
  13243. }
  13244. atomic_fetch_sub(&state_shared.n_ready, 1);
  13245. while (atomic_load(&state_shared.n_ready) > 0) {
  13246. ggml_lock_lock (&state_shared.spin);
  13247. ggml_lock_unlock(&state_shared.spin);
  13248. }
  13249. atomic_store(&state_shared.has_work, true);
  13250. }
  13251. params.type = GGML_TASK_FINALIZE;
  13252. ggml_compute_forward(&params, node);
  13253. // wait for thread pool
  13254. if (node->n_tasks > 1) {
  13255. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  13256. atomic_store(&state_shared.has_work, false);
  13257. }
  13258. while (atomic_load(&state_shared.has_work)) {
  13259. ggml_lock_lock (&state_shared.spin);
  13260. ggml_lock_unlock(&state_shared.spin);
  13261. }
  13262. atomic_fetch_sub(&state_shared.n_ready, 1);
  13263. while (atomic_load(&state_shared.n_ready) != 0) {
  13264. ggml_lock_lock (&state_shared.spin);
  13265. ggml_lock_unlock(&state_shared.spin);
  13266. }
  13267. }
  13268. // performance stats (node)
  13269. {
  13270. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  13271. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  13272. node->perf_runs++;
  13273. node->perf_cycles += perf_cycles_cur;
  13274. node->perf_time_us += perf_time_us_cur;
  13275. }
  13276. }
  13277. // join thread pool
  13278. if (n_threads > 1) {
  13279. atomic_store(&state_shared.stop, true);
  13280. atomic_store(&state_shared.has_work, true);
  13281. for (int j = 0; j < n_threads - 1; j++) {
  13282. int rc = ggml_thread_join(workers[j].thrd, NULL);
  13283. GGML_ASSERT(rc == 0);
  13284. UNUSED(rc);
  13285. }
  13286. ggml_lock_destroy(&state_shared.spin);
  13287. }
  13288. // performance stats (graph)
  13289. {
  13290. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  13291. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  13292. cgraph->perf_runs++;
  13293. cgraph->perf_cycles += perf_cycles_cur;
  13294. cgraph->perf_time_us += perf_time_us_cur;
  13295. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  13296. __func__, cgraph->perf_runs,
  13297. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  13298. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  13299. (double) perf_time_us_cur / 1000.0,
  13300. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  13301. }
  13302. }
  13303. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13304. for (int i = 0; i < cgraph->n_nodes; i++) {
  13305. struct ggml_tensor * grad = cgraph->grads[i];
  13306. if (grad) {
  13307. ggml_set_zero(grad);
  13308. }
  13309. }
  13310. }
  13311. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  13312. for (int i = 0; i < cgraph->n_leafs; i++) {
  13313. struct ggml_tensor * leaf = cgraph->leafs[i];
  13314. if (strcmp(leaf->name, name) == 0) {
  13315. return leaf;
  13316. }
  13317. }
  13318. for (int i = 0; i < cgraph->n_nodes; i++) {
  13319. struct ggml_tensor * node = cgraph->nodes[i];
  13320. if (strcmp(node->name, name) == 0) {
  13321. return node;
  13322. }
  13323. }
  13324. return NULL;
  13325. }
  13326. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  13327. const int64_t * ne = tensor->ne;
  13328. const size_t * nb = tensor->nb;
  13329. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13330. ggml_type_name(tensor->type),
  13331. ggml_op_name (tensor->op),
  13332. tensor->n_dims,
  13333. ne[0], ne[1], ne[2], ne[3],
  13334. nb[0], nb[1], nb[2], nb[3],
  13335. tensor->data,
  13336. tensor->name);
  13337. }
  13338. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  13339. const int64_t * ne = tensor->ne;
  13340. const size_t * nb = tensor->nb;
  13341. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %8d %16p %32s\n",
  13342. arg,
  13343. ggml_type_name(tensor->type),
  13344. ggml_op_name (tensor->op),
  13345. tensor->n_dims,
  13346. ne[0], ne[1], ne[2], ne[3],
  13347. nb[0], nb[1], nb[2], nb[3],
  13348. tensor->n_tasks,
  13349. tensor->data,
  13350. tensor->name);
  13351. }
  13352. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  13353. //assert(cgraph->work == NULL);
  13354. //assert(cgraph->work_size == 0);
  13355. uint64_t size_eval = 0;
  13356. // compute size of intermediate results
  13357. // TODO: does not take into account scratch buffers !!!!
  13358. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13359. size_eval += ggml_nbytes(cgraph->nodes[i]);
  13360. }
  13361. // print
  13362. {
  13363. FILE * fout = stdout;
  13364. fprintf(fout, "\n");
  13365. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  13366. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  13367. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  13368. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  13369. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  13370. // header
  13371. fprintf(fout, "\n");
  13372. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  13373. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  13374. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13375. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  13376. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  13377. GGML_ASSERT(cgraph->leafs[i]->src0 == NULL);
  13378. GGML_ASSERT(cgraph->leafs[i]->src1 == NULL);
  13379. }
  13380. // header
  13381. fprintf(fout, "\n");
  13382. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  13383. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  13384. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13385. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  13386. if (cgraph->nodes[i]->src0) {
  13387. ggml_graph_export_node(cgraph->nodes[i]->src0, "SRC0", fout);
  13388. }
  13389. if (cgraph->nodes[i]->src1) {
  13390. ggml_graph_export_node(cgraph->nodes[i]->src1, "SRC1", fout);
  13391. }
  13392. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  13393. if (cgraph->nodes[i]->opt[j]) {
  13394. ggml_graph_export_node(cgraph->nodes[i]->opt[j], "OPT", fout);
  13395. }
  13396. }
  13397. fprintf(fout, "\n");
  13398. }
  13399. fprintf(fout, "\n");
  13400. }
  13401. // write binary data
  13402. {
  13403. FILE * fout = fopen(fname, "wb");
  13404. if (!fout) {
  13405. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  13406. return;
  13407. }
  13408. // header
  13409. {
  13410. const uint32_t magic = GGML_FILE_MAGIC;
  13411. const uint32_t version = GGML_FILE_VERSION;
  13412. const uint32_t n_leafs = cgraph->n_leafs;
  13413. const uint32_t nodes = cgraph->n_nodes;
  13414. fwrite(&magic, sizeof(uint32_t), 1, fout);
  13415. fwrite(&version, sizeof(uint32_t), 1, fout);
  13416. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  13417. fwrite(&nodes, sizeof(uint32_t), 1, fout);
  13418. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  13419. }
  13420. // leafs
  13421. {
  13422. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13423. const struct ggml_tensor * tensor = cgraph->leafs[i];
  13424. const uint32_t type = tensor->type;
  13425. const uint32_t op = tensor->op;
  13426. const uint32_t n_dims = tensor->n_dims;
  13427. fwrite(&type, sizeof(uint32_t), 1, fout);
  13428. fwrite(&op, sizeof(uint32_t), 1, fout);
  13429. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  13430. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13431. const uint64_t ne = tensor->ne[j];
  13432. const uint64_t nb = tensor->nb[j];
  13433. fwrite(&ne, sizeof(uint64_t), 1, fout);
  13434. fwrite(&nb, sizeof(uint64_t), 1, fout);
  13435. }
  13436. // store the pointer address
  13437. {
  13438. const uint64_t ptr = (uint64_t) tensor->data;
  13439. fwrite(&ptr, sizeof(uint64_t), 1, fout);
  13440. }
  13441. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  13442. // dump the data
  13443. // TODO: pad this to 32 byte boundary
  13444. {
  13445. const size_t size = ggml_nbytes(tensor);
  13446. fwrite(tensor->data, sizeof(char), size, fout);
  13447. }
  13448. }
  13449. }
  13450. // nodes
  13451. {
  13452. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13453. const struct ggml_tensor * tensor = cgraph->nodes[i];
  13454. const uint32_t type = tensor->type;
  13455. const uint32_t op = tensor->op;
  13456. const uint32_t n_dims = tensor->n_dims;
  13457. fwrite(&type, sizeof(uint32_t), 1, fout);
  13458. fwrite(&op, sizeof(uint32_t), 1, fout);
  13459. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  13460. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13461. const uint64_t ne = tensor->ne[j];
  13462. const uint64_t nb = tensor->nb[j];
  13463. fwrite(&ne, sizeof(uint64_t), 1, fout);
  13464. fwrite(&nb, sizeof(uint64_t), 1, fout);
  13465. }
  13466. // store the pointer address
  13467. {
  13468. const uint64_t ptr = (uint64_t) tensor->data;
  13469. fwrite(&ptr, sizeof(uint64_t), 1, fout);
  13470. }
  13471. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  13472. // output the op arguments
  13473. {
  13474. struct ggml_tensor * args[2 + GGML_MAX_OPT] = { NULL };
  13475. args[0] = tensor->src0;
  13476. args[1] = tensor->src1;
  13477. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  13478. args[2 + j] = tensor->opt[j];
  13479. }
  13480. for (int j = 0; j < 2 + GGML_MAX_OPT; ++j) {
  13481. if (args[j]) {
  13482. int32_t idx = -1;
  13483. // check if leaf
  13484. {
  13485. for (int k = 0; k < cgraph->n_leafs; ++k) {
  13486. if (args[j] == cgraph->leafs[k]) {
  13487. idx = k;
  13488. break;
  13489. }
  13490. }
  13491. }
  13492. // check if node
  13493. if (idx == -1) {
  13494. for (int k = 0; k < cgraph->n_nodes; ++k) {
  13495. if (args[j] == cgraph->nodes[k]) {
  13496. idx = GGML_MAX_NODES + k;
  13497. break;
  13498. }
  13499. }
  13500. }
  13501. if (idx == -1) {
  13502. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  13503. return;
  13504. }
  13505. fwrite(&idx, sizeof(int32_t), 1, fout);
  13506. } else {
  13507. const int32_t nul = -1;
  13508. fwrite(&nul, sizeof(int32_t), 1, fout);
  13509. }
  13510. }
  13511. }
  13512. }
  13513. }
  13514. fclose(fout);
  13515. }
  13516. }
  13517. struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  13518. assert(*ctx_data == NULL);
  13519. assert(*ctx_eval == NULL);
  13520. struct ggml_cgraph result = { 0 };
  13521. struct ggml_tensor * data = NULL;
  13522. // read file into data
  13523. {
  13524. FILE * fin = fopen(fname, "rb");
  13525. if (!fin) {
  13526. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  13527. return result;
  13528. }
  13529. size_t fsize = 0;
  13530. fseek(fin, 0, SEEK_END);
  13531. fsize = ftell(fin);
  13532. fseek(fin, 0, SEEK_SET);
  13533. // create the data context
  13534. {
  13535. const size_t overhead = 1*ggml_tensor_overhead();
  13536. struct ggml_init_params params = {
  13537. .mem_size = fsize + overhead,
  13538. .mem_buffer = NULL,
  13539. .no_alloc = false,
  13540. };
  13541. *ctx_data = ggml_init(params);
  13542. if (!*ctx_data) {
  13543. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  13544. return result;
  13545. }
  13546. }
  13547. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  13548. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  13549. if (ret != fsize) {
  13550. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  13551. return result;
  13552. }
  13553. fclose(fin);
  13554. }
  13555. // populate result
  13556. {
  13557. char * ptr = (char *) data->data;
  13558. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  13559. if (magic != GGML_FILE_MAGIC) {
  13560. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  13561. return result;
  13562. }
  13563. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  13564. if (version != GGML_FILE_VERSION) {
  13565. fprintf(stderr, "%s: invalid version number\n", __func__);
  13566. return result;
  13567. }
  13568. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  13569. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  13570. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  13571. result.n_leafs = n_leafs;
  13572. result.n_nodes = n_nodes;
  13573. // create the data context
  13574. {
  13575. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
  13576. struct ggml_init_params params = {
  13577. .mem_size = size_eval + overhead,
  13578. .mem_buffer = NULL,
  13579. .no_alloc = true,
  13580. };
  13581. *ctx_eval = ggml_init(params);
  13582. if (!*ctx_eval) {
  13583. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  13584. return result;
  13585. }
  13586. }
  13587. // leafs
  13588. {
  13589. uint32_t type;
  13590. uint32_t op;
  13591. uint32_t n_dims;
  13592. for (uint32_t i = 0; i < n_leafs; ++i) {
  13593. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  13594. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  13595. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  13596. int64_t ne[GGML_MAX_DIMS];
  13597. size_t nb[GGML_MAX_DIMS];
  13598. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13599. uint64_t ne_cur;
  13600. uint64_t nb_cur;
  13601. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  13602. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  13603. ne[j] = ne_cur;
  13604. nb[j] = nb_cur;
  13605. }
  13606. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  13607. tensor->op = (enum ggml_op) op;
  13608. uint64_t ptr_cur = *(const uint64_t *) ptr; ptr += sizeof(ptr_cur);
  13609. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  13610. tensor->data = (void *) ptr;
  13611. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13612. tensor->nb[j] = nb[j];
  13613. }
  13614. result.leafs[i] = tensor;
  13615. ptr += ggml_nbytes(tensor);
  13616. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  13617. }
  13618. }
  13619. ggml_set_no_alloc(*ctx_eval, false);
  13620. // nodes
  13621. {
  13622. uint32_t type;
  13623. uint32_t op;
  13624. uint32_t n_dims;
  13625. for (uint32_t i = 0; i < n_nodes; ++i) {
  13626. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  13627. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  13628. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  13629. enum ggml_op eop = (enum ggml_op) op;
  13630. int64_t ne[GGML_MAX_DIMS];
  13631. size_t nb[GGML_MAX_DIMS];
  13632. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13633. uint64_t ne_cur;
  13634. uint64_t nb_cur;
  13635. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  13636. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  13637. ne[j] = ne_cur;
  13638. nb[j] = nb_cur;
  13639. }
  13640. uint64_t ptr_cur = *(const uint64_t *) ptr; ptr += sizeof(ptr_cur); // TODO: not yet used
  13641. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  13642. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += (2 + GGML_MAX_OPT)*sizeof(int32_t);
  13643. struct ggml_tensor * args[2 + GGML_MAX_OPT] = { NULL };
  13644. // parse args
  13645. for (int j = 0; j < 2 + GGML_MAX_OPT; ++j) {
  13646. const int32_t arg_idx = ptr_arg_idx[j];
  13647. if (arg_idx == -1) {
  13648. continue;
  13649. }
  13650. if (arg_idx < GGML_MAX_NODES) {
  13651. args[j] = result.leafs[arg_idx];
  13652. } else {
  13653. args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
  13654. }
  13655. }
  13656. // create the tensor
  13657. // "view" operations are handled differently
  13658. // TODO: handle inplace ops - currently a copy is always made
  13659. struct ggml_tensor * tensor = NULL;
  13660. switch (eop) {
  13661. // TODO: implement other view ops
  13662. case GGML_OP_RESHAPE:
  13663. {
  13664. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  13665. } break;
  13666. case GGML_OP_VIEW:
  13667. {
  13668. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  13669. uint64_t offs;
  13670. memcpy(&offs, args[2]->data, sizeof(offs));
  13671. tensor->data = ((char *) tensor->data) + offs;
  13672. } break;
  13673. case GGML_OP_TRANSPOSE:
  13674. {
  13675. tensor = ggml_transpose(*ctx_eval, args[0]);
  13676. } break;
  13677. case GGML_OP_PERMUTE:
  13678. {
  13679. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  13680. } break;
  13681. default:
  13682. {
  13683. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  13684. tensor->op = eop;
  13685. } break;
  13686. }
  13687. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  13688. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13689. tensor->nb[j] = nb[j];
  13690. }
  13691. tensor->src0 = args[0];
  13692. tensor->src1 = args[1];
  13693. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  13694. tensor->opt[j] = args[2 + j];
  13695. }
  13696. result.nodes[i] = tensor;
  13697. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  13698. }
  13699. }
  13700. }
  13701. return result;
  13702. }
  13703. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  13704. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  13705. GGML_PRINT("=== GRAPH ===\n");
  13706. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  13707. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  13708. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  13709. for (int i = 0; i < cgraph->n_nodes; i++) {
  13710. struct ggml_tensor * node = cgraph->nodes[i];
  13711. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  13712. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  13713. i,
  13714. node->ne[0], node->ne[1], node->ne[2],
  13715. GGML_OP_NAME[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  13716. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  13717. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  13718. (double) node->perf_time_us / 1000.0,
  13719. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  13720. }
  13721. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  13722. for (int i = 0; i < cgraph->n_leafs; i++) {
  13723. struct ggml_tensor * node = cgraph->leafs[i];
  13724. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  13725. i,
  13726. node->ne[0], node->ne[1],
  13727. GGML_OP_NAME[node->op]);
  13728. }
  13729. for (int i = 0; i < GGML_OP_COUNT; i++) {
  13730. if (perf_total_per_op_us[i] == 0) {
  13731. continue;
  13732. }
  13733. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_NAME[i], (double) perf_total_per_op_us[i] / 1000.0);
  13734. }
  13735. GGML_PRINT("========================================\n");
  13736. }
  13737. // check if node is part of the graph
  13738. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  13739. if (cgraph == NULL) {
  13740. return true;
  13741. }
  13742. for (int i = 0; i < cgraph->n_nodes; i++) {
  13743. if (cgraph->nodes[i] == node) {
  13744. return true;
  13745. }
  13746. }
  13747. return false;
  13748. }
  13749. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  13750. for (int i = 0; i < cgraph->n_nodes; i++) {
  13751. struct ggml_tensor * parent = cgraph->nodes[i];
  13752. if (parent->grad == node) {
  13753. return parent;
  13754. }
  13755. }
  13756. return NULL;
  13757. }
  13758. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  13759. char color[16];
  13760. FILE * fp = fopen(filename, "w");
  13761. GGML_ASSERT(fp);
  13762. fprintf(fp, "digraph G {\n");
  13763. fprintf(fp, " newrank = true;\n");
  13764. fprintf(fp, " rankdir = LR;\n");
  13765. for (int i = 0; i < gb->n_nodes; i++) {
  13766. struct ggml_tensor * node = gb->nodes[i];
  13767. if (ggml_graph_get_parent(gb, node) != NULL) {
  13768. continue;
  13769. }
  13770. if (node->is_param) {
  13771. snprintf(color, sizeof(color), "yellow");
  13772. } else if (node->grad) {
  13773. if (ggml_graph_find(gf, node)) {
  13774. snprintf(color, sizeof(color), "green");
  13775. } else {
  13776. snprintf(color, sizeof(color), "lightblue");
  13777. }
  13778. } else {
  13779. snprintf(color, sizeof(color), "white");
  13780. }
  13781. fprintf(fp, " \"%p\" [ "
  13782. "style = filled; fillcolor = %s; shape = record; "
  13783. "label=\"",
  13784. (void *) node, color);
  13785. if (strlen(node->name) > 0) {
  13786. fprintf(fp, "%s |", node->name);
  13787. }
  13788. if (node->n_dims == 2) {
  13789. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], GGML_OP_SYMBOL[node->op]);
  13790. } else {
  13791. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], GGML_OP_SYMBOL[node->op]);
  13792. }
  13793. if (node->grad) {
  13794. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  13795. } else {
  13796. fprintf(fp, "\"; ]\n");
  13797. }
  13798. }
  13799. for (int i = 0; i < gb->n_leafs; i++) {
  13800. struct ggml_tensor * node = gb->leafs[i];
  13801. snprintf(color, sizeof(color), "pink");
  13802. fprintf(fp, " \"%p\" [ "
  13803. "style = filled; fillcolor = %s; shape = record; "
  13804. "label=\"<x>",
  13805. (void *) node, color);
  13806. if (strlen(node->name) > 0) {
  13807. fprintf(fp, "%s | ", node->name);
  13808. }
  13809. if (ggml_nelements(node) == 1) {
  13810. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  13811. fprintf(fp, "%d", ggml_get_i32_1d(node, 0));
  13812. }
  13813. else {
  13814. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, 0));
  13815. }
  13816. }
  13817. else {
  13818. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  13819. }
  13820. fprintf(fp, "\"; ]\n");
  13821. }
  13822. for (int i = 0; i < gb->n_nodes; i++) {
  13823. struct ggml_tensor * node = gb->nodes[i];
  13824. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  13825. if (node->src0) {
  13826. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  13827. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  13828. parent0 ? (void *) parent0 : (void *) node->src0,
  13829. parent0 ? "g" : "x",
  13830. parent ? (void *) parent : (void *) node,
  13831. parent ? "g" : "x",
  13832. parent ? "empty" : "vee",
  13833. parent ? "dashed" : "solid");
  13834. }
  13835. if (node->src1) {
  13836. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  13837. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  13838. parent1 ? (void *) parent1 : (void *) node->src1,
  13839. parent1 ? "g" : "x",
  13840. parent ? (void *) parent : (void *) node,
  13841. parent ? "g" : "x",
  13842. parent ? "empty" : "vee",
  13843. parent ? "dashed" : "solid");
  13844. }
  13845. }
  13846. for (int i = 0; i < gb->n_leafs; i++) {
  13847. struct ggml_tensor * node = gb->leafs[i];
  13848. if (node->src0) {
  13849. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  13850. (void *) node->src0, "x",
  13851. (void *) node, "x");
  13852. }
  13853. if (node->src1) {
  13854. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  13855. (void *) node->src1, "x",
  13856. (void *) node, "x");
  13857. }
  13858. }
  13859. fprintf(fp, "}\n");
  13860. fclose(fp);
  13861. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  13862. }
  13863. ////////////////////////////////////////////////////////////////////////////////
  13864. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  13865. int i = 0;
  13866. for (int p = 0; p < np; ++p) {
  13867. const int64_t ne = ggml_nelements(ps[p]) ;
  13868. // TODO: add function to set tensor from array
  13869. for (int64_t j = 0; j < ne; ++j) {
  13870. ggml_set_f32_1d(ps[p], j, x[i++]);
  13871. }
  13872. }
  13873. }
  13874. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  13875. int i = 0;
  13876. for (int p = 0; p < np; ++p) {
  13877. const int64_t ne = ggml_nelements(ps[p]) ;
  13878. // TODO: add function to get all elements at once
  13879. for (int64_t j = 0; j < ne; ++j) {
  13880. x[i++] = ggml_get_f32_1d(ps[p], j);
  13881. }
  13882. }
  13883. }
  13884. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  13885. int i = 0;
  13886. for (int p = 0; p < np; ++p) {
  13887. const int64_t ne = ggml_nelements(ps[p]) ;
  13888. // TODO: add function to get all elements at once
  13889. for (int64_t j = 0; j < ne; ++j) {
  13890. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  13891. }
  13892. }
  13893. }
  13894. //
  13895. // ADAM
  13896. //
  13897. // ref: https://arxiv.org/pdf/1412.6980.pdf
  13898. //
  13899. static enum ggml_opt_result ggml_opt_adam(
  13900. struct ggml_context * ctx,
  13901. struct ggml_opt_context * opt,
  13902. struct ggml_opt_params params,
  13903. struct ggml_tensor * f,
  13904. struct ggml_cgraph * gf,
  13905. struct ggml_cgraph * gb) {
  13906. GGML_ASSERT(ggml_is_scalar(f));
  13907. gf->n_threads = params.n_threads;
  13908. gb->n_threads = params.n_threads;
  13909. // these will store the parameters we want to optimize
  13910. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  13911. int np = 0;
  13912. int nx = 0;
  13913. for (int i = 0; i < gf->n_nodes; ++i) {
  13914. if (gf->nodes[i]->is_param) {
  13915. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  13916. GGML_ASSERT(np < GGML_MAX_PARAMS);
  13917. ps[np++] = gf->nodes[i];
  13918. nx += ggml_nelements(gf->nodes[i]);
  13919. }
  13920. }
  13921. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  13922. int iter = opt->iter;
  13923. ggml_opt_init(opt->ctx, opt, params, nx);
  13924. opt->iter = iter;
  13925. }
  13926. // constants
  13927. const float sched = params.adam.sched;
  13928. const float decay = params.adam.decay * sched;
  13929. const float alpha = params.adam.alpha * sched;
  13930. const float beta1 = params.adam.beta1;
  13931. const float beta2 = params.adam.beta2;
  13932. const float eps = params.adam.eps;
  13933. float * x = opt->adam.x->data; // view of the parameters
  13934. float * g1 = opt->adam.g1->data; // gradient
  13935. float * g2 = opt->adam.g2->data; // gradient squared
  13936. float * m = opt->adam.m->data; // first moment
  13937. float * v = opt->adam.v->data; // second moment
  13938. float * mh = opt->adam.mh->data; // first moment hat
  13939. float * vh = opt->adam.vh->data; // second moment hat
  13940. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  13941. // update view
  13942. ggml_opt_get_params(np, ps, x);
  13943. // compute the function value
  13944. ggml_graph_reset (gf);
  13945. ggml_set_f32 (f->grad, 1.0f);
  13946. ggml_graph_compute(ctx, gb);
  13947. opt->adam.fx_prev = ggml_get_f32_1d(f, 0);
  13948. opt->adam.fx_best = opt->adam.fx_prev;
  13949. if (pf) {
  13950. pf[opt->iter % params.past] = opt->adam.fx_prev;
  13951. }
  13952. // initialize
  13953. if (opt->just_initialized) {
  13954. opt->adam.n_no_improvement = 0;
  13955. opt->just_initialized = false;
  13956. }
  13957. float * fx_best = &opt->adam.fx_best;
  13958. float * fx_prev = &opt->adam.fx_prev;
  13959. int * n_no_improvement = &opt->adam.n_no_improvement;
  13960. int iter0 = opt->iter;
  13961. // run the optimizer
  13962. for (int t = 0; t < params.adam.n_iter; ++t) {
  13963. opt->iter = iter0 + t + 1;
  13964. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  13965. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  13966. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  13967. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  13968. for (int i = 0; i < np; ++i) {
  13969. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  13970. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  13971. }
  13972. const int64_t t_start_wall = ggml_time_us();
  13973. const int64_t t_start_cpu = ggml_cycles();
  13974. UNUSED(t_start_wall);
  13975. UNUSED(t_start_cpu);
  13976. {
  13977. // update the gradient
  13978. ggml_opt_get_grad(np, ps, g1);
  13979. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  13980. ggml_vec_scale_f32(nx, m, beta1);
  13981. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  13982. // g2 = g1^2
  13983. ggml_vec_sqr_f32 (nx, g2, g1);
  13984. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  13985. ggml_vec_scale_f32(nx, v, beta2);
  13986. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  13987. // m^hat = m_t / (1 - beta1^t)
  13988. // v^hat = v_t / (1 - beta2^t)
  13989. // x_t = x_t-1 - sched*(alpha*m^hat/(sqrt(v^hat) + eps) + decay*x_t-1)
  13990. // x_t = x_t-1 - sched*alpha*m^hat/(sqrt(v^hat) + eps) - sched*decay*x_t-1
  13991. // x_t = x_t-1*(1-sched*decay) - sched*alpha*m^hat/(sqrt(v^hat) + eps)
  13992. // x_t = x_t-1*(1-sched*decay) + sched*decay*(-alpha/decay)*m^hat/(sqrt(v^hat) + eps)
  13993. // x_t = mix(x_t-1, (-alpha/decay)*m^hat/(sqrt(v^hat) + eps), sched*decay)
  13994. ggml_vec_cpy_f32 (nx, mh, m);
  13995. ggml_vec_cpy_f32 (nx, vh, v);
  13996. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, opt->iter)));
  13997. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, opt->iter)));
  13998. ggml_vec_sqrt_f32 (nx, vh, vh);
  13999. ggml_vec_acc1_f32 (nx, vh, eps);
  14000. ggml_vec_div_f32 (nx, mh, mh, vh);
  14001. ggml_vec_scale_f32(nx, x, 1.0f - decay);
  14002. ggml_vec_sub_f32 (nx, x, x, mh);
  14003. // update the parameters
  14004. ggml_opt_set_params(np, ps, x);
  14005. }
  14006. ggml_graph_reset (gf);
  14007. ggml_set_f32 (f->grad, 1.0f);
  14008. ggml_graph_compute(ctx, gb);
  14009. const float fx = ggml_get_f32_1d(f, 0);
  14010. // check convergence
  14011. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  14012. GGML_PRINT_DEBUG("converged\n");
  14013. return GGML_OPT_OK;
  14014. }
  14015. // delta-based convergence test
  14016. if (pf != NULL) {
  14017. // need at least params.past iterations to start checking for convergence
  14018. if (params.past <= iter0 + t) {
  14019. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  14020. if (fabsf(rate) < params.delta) {
  14021. return GGML_OPT_OK;
  14022. }
  14023. }
  14024. pf[(iter0 + t)%params.past] = fx;
  14025. }
  14026. // check for improvement
  14027. if (params.max_no_improvement > 0) {
  14028. if (fx_best[0] > fx) {
  14029. fx_best[0] = fx;
  14030. n_no_improvement[0] = 0;
  14031. } else {
  14032. ++n_no_improvement[0];
  14033. if (n_no_improvement[0] >= params.max_no_improvement) {
  14034. return GGML_OPT_OK;
  14035. }
  14036. }
  14037. }
  14038. fx_prev[0] = fx;
  14039. {
  14040. const int64_t t_end_cpu = ggml_cycles();
  14041. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  14042. UNUSED(t_end_cpu);
  14043. const int64_t t_end_wall = ggml_time_us();
  14044. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  14045. UNUSED(t_end_wall);
  14046. }
  14047. }
  14048. return GGML_OPT_DID_NOT_CONVERGE;
  14049. }
  14050. //
  14051. // L-BFGS
  14052. //
  14053. // the L-BFGS implementation below is based on the following implementation:
  14054. //
  14055. // https://github.com/chokkan/liblbfgs
  14056. //
  14057. struct ggml_lbfgs_iteration_data {
  14058. float alpha;
  14059. float ys;
  14060. float * s;
  14061. float * y;
  14062. };
  14063. static enum ggml_opt_result linesearch_backtracking(
  14064. struct ggml_context * ctx,
  14065. const struct ggml_opt_params * params,
  14066. int nx,
  14067. float * x,
  14068. float * fx,
  14069. float * g,
  14070. float * d,
  14071. float * step,
  14072. const float * xp,
  14073. struct ggml_tensor * f,
  14074. struct ggml_cgraph * gf,
  14075. struct ggml_cgraph * gb,
  14076. const int np,
  14077. struct ggml_tensor * ps[]) {
  14078. int count = 0;
  14079. float width = 0.0f;
  14080. float dg = 0.0f;
  14081. float finit = 0.0f;
  14082. float dginit = 0.0f;
  14083. float dgtest = 0.0f;
  14084. const float dec = 0.5f;
  14085. const float inc = 2.1f;
  14086. if (*step <= 0.f) {
  14087. return GGML_LINESEARCH_INVALID_PARAMETERS;
  14088. }
  14089. // compute the initial gradient in the search direction
  14090. ggml_vec_dot_f32(nx, &dginit, g, d);
  14091. // make sure that d points to a descent direction
  14092. if (0 < dginit) {
  14093. return GGML_LINESEARCH_FAIL;
  14094. }
  14095. // initialize local variables
  14096. finit = *fx;
  14097. dgtest = params->lbfgs.ftol*dginit;
  14098. while (true) {
  14099. ggml_vec_cpy_f32(nx, x, xp);
  14100. ggml_vec_mad_f32(nx, x, d, *step);
  14101. // evaluate the function and gradient values
  14102. {
  14103. ggml_opt_set_params(np, ps, x);
  14104. ggml_graph_reset (gf);
  14105. ggml_set_f32 (f->grad, 1.0f);
  14106. ggml_graph_compute(ctx, gb);
  14107. ggml_opt_get_grad(np, ps, g);
  14108. *fx = ggml_get_f32_1d(f, 0);
  14109. }
  14110. ++count;
  14111. if (*fx > finit + (*step)*dgtest) {
  14112. width = dec;
  14113. } else {
  14114. // Armijo condition is satisfied
  14115. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  14116. return count;
  14117. }
  14118. ggml_vec_dot_f32(nx, &dg, g, d);
  14119. // check the Wolfe condition
  14120. if (dg < params->lbfgs.wolfe * dginit) {
  14121. width = inc;
  14122. } else {
  14123. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  14124. // regular Wolfe conditions
  14125. return count;
  14126. }
  14127. if(dg > -params->lbfgs.wolfe*dginit) {
  14128. width = dec;
  14129. } else {
  14130. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  14131. return count;
  14132. }
  14133. return count;
  14134. }
  14135. }
  14136. if (*step < params->lbfgs.min_step) {
  14137. return GGML_LINESEARCH_MINIMUM_STEP;
  14138. }
  14139. if (*step > params->lbfgs.max_step) {
  14140. return GGML_LINESEARCH_MAXIMUM_STEP;
  14141. }
  14142. if (params->lbfgs.max_linesearch <= count) {
  14143. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  14144. }
  14145. (*step) *= width;
  14146. }
  14147. return GGML_LINESEARCH_FAIL;
  14148. }
  14149. static enum ggml_opt_result ggml_opt_lbfgs(
  14150. struct ggml_context * ctx,
  14151. struct ggml_opt_context * opt,
  14152. struct ggml_opt_params params,
  14153. struct ggml_tensor * f,
  14154. struct ggml_cgraph * gf,
  14155. struct ggml_cgraph * gb) {
  14156. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  14157. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  14158. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  14159. return GGML_OPT_INVALID_WOLFE;
  14160. }
  14161. }
  14162. gf->n_threads = params.n_threads;
  14163. gb->n_threads = params.n_threads;
  14164. const int m = params.lbfgs.m;
  14165. // these will store the parameters we want to optimize
  14166. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14167. int np = 0;
  14168. int nx = 0;
  14169. for (int i = 0; i < gf->n_nodes; ++i) {
  14170. if (gf->nodes[i]->is_param) {
  14171. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14172. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14173. ps[np++] = gf->nodes[i];
  14174. nx += ggml_nelements(gf->nodes[i]);
  14175. }
  14176. }
  14177. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  14178. int iter = opt->iter;
  14179. ggml_opt_init(ctx, opt, params, nx);
  14180. opt->iter = iter;
  14181. }
  14182. float * x = opt->lbfgs.x->data; // current parameters
  14183. float * xp = opt->lbfgs.xp->data; // previous parameters
  14184. float * g = opt->lbfgs.g->data; // current gradient
  14185. float * gp = opt->lbfgs.gp->data; // previous gradient
  14186. float * d = opt->lbfgs.d->data; // search direction
  14187. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  14188. float fx = 0.0f; // cost function value
  14189. float xnorm = 0.0f; // ||x||
  14190. float gnorm = 0.0f; // ||g||
  14191. // initialize x from the graph nodes
  14192. ggml_opt_get_params(np, ps, x);
  14193. // the L-BFGS memory
  14194. float * lm_alpha = opt->lbfgs.lmal->data;
  14195. float * lm_ys = opt->lbfgs.lmys->data;
  14196. float * lm_s = opt->lbfgs.lms->data;
  14197. float * lm_y = opt->lbfgs.lmy->data;
  14198. // evaluate the function value and its gradient
  14199. {
  14200. ggml_opt_set_params(np, ps, x);
  14201. ggml_graph_reset (gf);
  14202. ggml_set_f32 (f->grad, 1.0f);
  14203. ggml_graph_compute(ctx, gb);
  14204. ggml_opt_get_grad(np, ps, g);
  14205. fx = ggml_get_f32_1d(f, 0);
  14206. }
  14207. // search direction = -gradient
  14208. ggml_vec_neg_f32(nx, d, g);
  14209. // ||x||, ||g||
  14210. ggml_vec_norm_f32(nx, &xnorm, x);
  14211. ggml_vec_norm_f32(nx, &gnorm, g);
  14212. if (xnorm < 1.0f) {
  14213. xnorm = 1.0f;
  14214. }
  14215. // already optimized
  14216. if (gnorm/xnorm <= params.lbfgs.eps) {
  14217. return GGML_OPT_OK;
  14218. }
  14219. if (opt->just_initialized) {
  14220. if (pf) {
  14221. pf[0] = fx;
  14222. }
  14223. opt->lbfgs.fx_best = fx;
  14224. // initial step
  14225. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  14226. opt->lbfgs.j = 0;
  14227. opt->lbfgs.k = 1;
  14228. opt->lbfgs.end = 0;
  14229. opt->lbfgs.n_no_improvement = 0;
  14230. opt->just_initialized = false;
  14231. }
  14232. float * fx_best = &opt->lbfgs.fx_best;
  14233. float * step = &opt->lbfgs.step;
  14234. int * j = &opt->lbfgs.j;
  14235. int * k = &opt->lbfgs.k;
  14236. int * end = &opt->lbfgs.end;
  14237. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  14238. int ls = 0;
  14239. int bound = 0;
  14240. float ys = 0.0f;
  14241. float yy = 0.0f;
  14242. float beta = 0.0f;
  14243. int it = 0;
  14244. while (true) {
  14245. // store the current position and gradient vectors
  14246. ggml_vec_cpy_f32(nx, xp, x);
  14247. ggml_vec_cpy_f32(nx, gp, g);
  14248. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, step, xp, f, gf, gb, np, ps);
  14249. if (ls < 0) {
  14250. // linesearch failed - go back to the previous point and return
  14251. ggml_vec_cpy_f32(nx, x, xp);
  14252. ggml_vec_cpy_f32(nx, g, gp);
  14253. return ls;
  14254. }
  14255. ggml_vec_norm_f32(nx, &xnorm, x);
  14256. ggml_vec_norm_f32(nx, &gnorm, g);
  14257. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14258. if (xnorm < 1.0f) {
  14259. xnorm = 1.0f;
  14260. }
  14261. if (gnorm/xnorm <= params.lbfgs.eps) {
  14262. // converged
  14263. return GGML_OPT_OK;
  14264. }
  14265. // delta-based convergence test
  14266. if (pf != NULL) {
  14267. // need at least params.past iterations to start checking for convergence
  14268. if (params.past <= k[0]) {
  14269. const float rate = (pf[k[0]%params.past] - fx)/fx;
  14270. if (fabsf(rate) < params.delta) {
  14271. return GGML_OPT_OK;
  14272. }
  14273. }
  14274. pf[k[0]%params.past] = fx;
  14275. }
  14276. // check for improvement
  14277. if (params.max_no_improvement > 0) {
  14278. if (fx < fx_best[0]) {
  14279. fx_best[0] = fx;
  14280. n_no_improvement[0] = 0;
  14281. } else {
  14282. n_no_improvement[0]++;
  14283. if (n_no_improvement[0] >= params.max_no_improvement) {
  14284. return GGML_OPT_OK;
  14285. }
  14286. }
  14287. }
  14288. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  14289. // reached the maximum number of iterations
  14290. return GGML_OPT_DID_NOT_CONVERGE;
  14291. }
  14292. // update vectors s and y:
  14293. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  14294. // y_{k+1} = g_{k+1} - g_{k}.
  14295. //
  14296. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  14297. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  14298. // compute scalars ys and yy:
  14299. // ys = y^t \cdot s -> 1 / \rho.
  14300. // yy = y^t \cdot y.
  14301. //
  14302. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0] *nx]);
  14303. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  14304. lm_ys[end[0]] = ys;
  14305. // find new search direction
  14306. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  14307. bound = (m <= k[0]) ? m : k[0];
  14308. k[0]++;
  14309. it++;
  14310. end[0] = (end[0] + 1)%m;
  14311. // initialize search direction with -g
  14312. ggml_vec_neg_f32(nx, d, g);
  14313. j[0] = end[0];
  14314. for (int i = 0; i < bound; ++i) {
  14315. j[0] = (j[0] + m - 1) % m;
  14316. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  14317. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  14318. lm_alpha[j[0]] /= lm_ys[j[0]];
  14319. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  14320. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  14321. }
  14322. ggml_vec_scale_f32(nx, d, ys/yy);
  14323. for (int i = 0; i < bound; ++i) {
  14324. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  14325. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  14326. beta /= lm_ys[j[0]];
  14327. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  14328. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  14329. j[0] = (j[0] + 1)%m;
  14330. }
  14331. step[0] = 1.0;
  14332. }
  14333. return GGML_OPT_DID_NOT_CONVERGE;
  14334. }
  14335. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  14336. struct ggml_opt_params result;
  14337. switch (type) {
  14338. case GGML_OPT_ADAM:
  14339. {
  14340. result = (struct ggml_opt_params) {
  14341. .type = GGML_OPT_ADAM,
  14342. .n_threads = 1,
  14343. .past = 0,
  14344. .delta = 1e-5f,
  14345. .max_no_improvement = 100,
  14346. .print_forward_graph = true,
  14347. .print_backward_graph = true,
  14348. .adam = {
  14349. .n_iter = 10000,
  14350. .sched = 1.000f,
  14351. .decay = 0.001f,
  14352. .alpha = 0.001f,
  14353. .beta1 = 0.9f,
  14354. .beta2 = 0.999f,
  14355. .eps = 1e-8f,
  14356. .eps_f = 1e-5f,
  14357. .eps_g = 1e-3f,
  14358. },
  14359. };
  14360. } break;
  14361. case GGML_OPT_LBFGS:
  14362. {
  14363. result = (struct ggml_opt_params) {
  14364. .type = GGML_OPT_LBFGS,
  14365. .n_threads = 1,
  14366. .past = 0,
  14367. .delta = 1e-5f,
  14368. .max_no_improvement = 0,
  14369. .print_forward_graph = true,
  14370. .print_backward_graph = true,
  14371. .lbfgs = {
  14372. .m = 6,
  14373. .n_iter = 100,
  14374. .max_linesearch = 20,
  14375. .eps = 1e-5f,
  14376. .ftol = 1e-4f,
  14377. .wolfe = 0.9f,
  14378. .min_step = 1e-20f,
  14379. .max_step = 1e+20f,
  14380. .linesearch = GGML_LINESEARCH_DEFAULT,
  14381. },
  14382. };
  14383. } break;
  14384. }
  14385. return result;
  14386. }
  14387. GGML_API void ggml_opt_init(
  14388. struct ggml_context * ctx,
  14389. struct ggml_opt_context * opt,
  14390. struct ggml_opt_params params,
  14391. int64_t nx) {
  14392. opt->ctx = ctx;
  14393. opt->params = params;
  14394. opt->iter = 0;
  14395. opt->nx = nx;
  14396. opt->just_initialized = true;
  14397. switch (opt->params.type) {
  14398. case GGML_OPT_ADAM:
  14399. {
  14400. opt->adam.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14401. opt->adam.g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14402. opt->adam.g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14403. opt->adam.m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14404. opt->adam.v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14405. opt->adam.mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14406. opt->adam.vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14407. opt->adam.pf = params.past > 0
  14408. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  14409. : NULL;
  14410. ggml_set_zero(opt->adam.x);
  14411. ggml_set_zero(opt->adam.g1);
  14412. ggml_set_zero(opt->adam.g2);
  14413. ggml_set_zero(opt->adam.m);
  14414. ggml_set_zero(opt->adam.v);
  14415. ggml_set_zero(opt->adam.mh);
  14416. ggml_set_zero(opt->adam.vh);
  14417. if (opt->adam.pf) {
  14418. ggml_set_zero(opt->adam.pf);
  14419. }
  14420. } break;
  14421. case GGML_OPT_LBFGS:
  14422. {
  14423. opt->lbfgs.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14424. opt->lbfgs.xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14425. opt->lbfgs.g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14426. opt->lbfgs.gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14427. opt->lbfgs.d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14428. opt->lbfgs.pf = params.past > 0
  14429. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  14430. : NULL;
  14431. opt->lbfgs.lmal = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  14432. opt->lbfgs.lmys = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  14433. opt->lbfgs.lms = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  14434. opt->lbfgs.lmy = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  14435. ggml_set_zero(opt->lbfgs.x);
  14436. ggml_set_zero(opt->lbfgs.xp);
  14437. ggml_set_zero(opt->lbfgs.g);
  14438. ggml_set_zero(opt->lbfgs.gp);
  14439. ggml_set_zero(opt->lbfgs.d);
  14440. ggml_set_zero(opt->lbfgs.pf);
  14441. if (opt->lbfgs.pf) {
  14442. ggml_set_zero(opt->lbfgs.pf);
  14443. }
  14444. ggml_set_zero(opt->lbfgs.lmal);
  14445. ggml_set_zero(opt->lbfgs.lmys);
  14446. ggml_set_zero(opt->lbfgs.lms);
  14447. ggml_set_zero(opt->lbfgs.lmy);
  14448. } break;
  14449. }
  14450. }
  14451. enum ggml_opt_result ggml_opt(
  14452. struct ggml_context * ctx,
  14453. struct ggml_opt_params params,
  14454. struct ggml_tensor * f) {
  14455. bool free_ctx = false;
  14456. if (ctx == NULL) {
  14457. struct ggml_init_params params_ctx = {
  14458. .mem_size = 16*1024*1024,
  14459. .mem_buffer = NULL,
  14460. .no_alloc = false,
  14461. };
  14462. ctx = ggml_init(params_ctx);
  14463. if (ctx == NULL) {
  14464. return GGML_OPT_NO_CONTEXT;
  14465. }
  14466. free_ctx = true;
  14467. }
  14468. enum ggml_opt_result result = GGML_OPT_OK;
  14469. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  14470. ggml_opt_init(ctx, opt, params, 0);
  14471. result = ggml_opt_resume(ctx, opt, f);
  14472. if (free_ctx) {
  14473. ggml_free(ctx);
  14474. }
  14475. return result;
  14476. }
  14477. enum ggml_opt_result ggml_opt_resume(
  14478. struct ggml_context * ctx,
  14479. struct ggml_opt_context * opt,
  14480. struct ggml_tensor * f) {
  14481. // build forward + backward compute graphs
  14482. struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
  14483. struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
  14484. struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
  14485. struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;
  14486. *gf = ggml_build_forward (f);
  14487. *gb = ggml_build_backward(ctx, gf, true);
  14488. return ggml_opt_resume_g(ctx, opt, f, gf, gb);
  14489. }
  14490. enum ggml_opt_result ggml_opt_resume_g(
  14491. struct ggml_context * ctx,
  14492. struct ggml_opt_context * opt,
  14493. struct ggml_tensor * f,
  14494. struct ggml_cgraph * gf,
  14495. struct ggml_cgraph * gb) {
  14496. // build forward + backward compute graphs
  14497. enum ggml_opt_result result = GGML_OPT_OK;
  14498. switch (opt->params.type) {
  14499. case GGML_OPT_ADAM:
  14500. {
  14501. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb);
  14502. } break;
  14503. case GGML_OPT_LBFGS:
  14504. {
  14505. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb);
  14506. } break;
  14507. }
  14508. if (opt->params.print_forward_graph) {
  14509. ggml_graph_print (gf);
  14510. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  14511. }
  14512. if (opt->params.print_backward_graph) {
  14513. ggml_graph_print (gb);
  14514. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  14515. }
  14516. return result;
  14517. }
  14518. ////////////////////////////////////////////////////////////////////////////////
  14519. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  14520. assert(k % QK4_0 == 0);
  14521. const int nb = k / QK4_0;
  14522. for (int b = 0; b < n; b += k) {
  14523. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  14524. quantize_row_q4_0_reference(src + b, y, k);
  14525. for (int i = 0; i < nb; i++) {
  14526. for (int j = 0; j < QK4_0; j += 2) {
  14527. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  14528. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  14529. hist[vi0]++;
  14530. hist[vi1]++;
  14531. }
  14532. }
  14533. }
  14534. return (n/QK4_0*sizeof(block_q4_0));
  14535. }
  14536. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  14537. assert(k % QK4_1 == 0);
  14538. const int nb = k / QK4_1;
  14539. for (int b = 0; b < n; b += k) {
  14540. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  14541. quantize_row_q4_1_reference(src + b, y, k);
  14542. for (int i = 0; i < nb; i++) {
  14543. for (int j = 0; j < QK4_1; j += 2) {
  14544. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  14545. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  14546. hist[vi0]++;
  14547. hist[vi1]++;
  14548. }
  14549. }
  14550. }
  14551. return (n/QK4_1*sizeof(block_q4_1));
  14552. }
  14553. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  14554. assert(k % QK5_0 == 0);
  14555. const int nb = k / QK5_0;
  14556. for (int b = 0; b < n; b += k) {
  14557. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  14558. quantize_row_q5_0_reference(src + b, y, k);
  14559. for (int i = 0; i < nb; i++) {
  14560. uint32_t qh;
  14561. memcpy(&qh, &y[i].qh, sizeof(qh));
  14562. for (int j = 0; j < QK5_0; j += 2) {
  14563. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  14564. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  14565. // cast to 16 bins
  14566. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  14567. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  14568. hist[vi0]++;
  14569. hist[vi1]++;
  14570. }
  14571. }
  14572. }
  14573. return (n/QK5_0*sizeof(block_q5_0));
  14574. }
  14575. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  14576. assert(k % QK5_1 == 0);
  14577. const int nb = k / QK5_1;
  14578. for (int b = 0; b < n; b += k) {
  14579. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  14580. quantize_row_q5_1_reference(src + b, y, k);
  14581. for (int i = 0; i < nb; i++) {
  14582. uint32_t qh;
  14583. memcpy(&qh, &y[i].qh, sizeof(qh));
  14584. for (int j = 0; j < QK5_1; j += 2) {
  14585. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  14586. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  14587. // cast to 16 bins
  14588. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  14589. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  14590. hist[vi0]++;
  14591. hist[vi1]++;
  14592. }
  14593. }
  14594. }
  14595. return (n/QK5_1*sizeof(block_q5_1));
  14596. }
  14597. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  14598. assert(k % QK8_0 == 0);
  14599. const int nb = k / QK8_0;
  14600. for (int b = 0; b < n; b += k) {
  14601. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  14602. quantize_row_q8_0_reference(src + b, y, k);
  14603. for (int i = 0; i < nb; i++) {
  14604. for (int j = 0; j < QK8_0; ++j) {
  14605. const int8_t vi = y[i].qs[j];
  14606. hist[vi/16 + 8]++;
  14607. }
  14608. }
  14609. }
  14610. return (n/QK8_0*sizeof(block_q8_0));
  14611. }
  14612. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  14613. size_t result = 0;
  14614. switch (type) {
  14615. case GGML_TYPE_Q4_0:
  14616. {
  14617. GGML_ASSERT(start % QK4_0 == 0);
  14618. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  14619. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  14620. } break;
  14621. case GGML_TYPE_Q4_1:
  14622. {
  14623. GGML_ASSERT(start % QK4_1 == 0);
  14624. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  14625. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  14626. } break;
  14627. case GGML_TYPE_Q5_0:
  14628. {
  14629. GGML_ASSERT(start % QK5_0 == 0);
  14630. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  14631. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  14632. } break;
  14633. case GGML_TYPE_Q5_1:
  14634. {
  14635. GGML_ASSERT(start % QK5_1 == 0);
  14636. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  14637. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  14638. } break;
  14639. case GGML_TYPE_Q8_0:
  14640. {
  14641. GGML_ASSERT(start % QK8_0 == 0);
  14642. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  14643. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  14644. } break;
  14645. #ifdef GGML_USE_K_QUANTS
  14646. case GGML_TYPE_Q2_K:
  14647. {
  14648. GGML_ASSERT(start % QK_K == 0);
  14649. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  14650. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  14651. } break;
  14652. case GGML_TYPE_Q3_K:
  14653. {
  14654. GGML_ASSERT(start % QK_K == 0);
  14655. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  14656. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  14657. } break;
  14658. case GGML_TYPE_Q4_K:
  14659. {
  14660. GGML_ASSERT(start % QK_K == 0);
  14661. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  14662. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  14663. } break;
  14664. case GGML_TYPE_Q5_K:
  14665. {
  14666. GGML_ASSERT(start % QK_K == 0);
  14667. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  14668. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  14669. } break;
  14670. case GGML_TYPE_Q6_K:
  14671. {
  14672. GGML_ASSERT(start % QK_K == 0);
  14673. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  14674. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  14675. } break;
  14676. #endif
  14677. case GGML_TYPE_F16:
  14678. {
  14679. int elemsize = sizeof(ggml_fp16_t);
  14680. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  14681. result = n * elemsize;
  14682. } break;
  14683. case GGML_TYPE_F32:
  14684. {
  14685. int elemsize = sizeof(float);
  14686. result = n * elemsize;
  14687. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  14688. } break;
  14689. default:
  14690. assert(false);
  14691. }
  14692. return result;
  14693. }
  14694. ////////////////////////////////////////////////////////////////////////////////
  14695. int ggml_cpu_has_avx(void) {
  14696. #if defined(__AVX__)
  14697. return 1;
  14698. #else
  14699. return 0;
  14700. #endif
  14701. }
  14702. int ggml_cpu_has_avx2(void) {
  14703. #if defined(__AVX2__)
  14704. return 1;
  14705. #else
  14706. return 0;
  14707. #endif
  14708. }
  14709. int ggml_cpu_has_avx512(void) {
  14710. #if defined(__AVX512F__)
  14711. return 1;
  14712. #else
  14713. return 0;
  14714. #endif
  14715. }
  14716. int ggml_cpu_has_avx512_vbmi(void) {
  14717. #if defined(__AVX512VBMI__)
  14718. return 1;
  14719. #else
  14720. return 0;
  14721. #endif
  14722. }
  14723. int ggml_cpu_has_avx512_vnni(void) {
  14724. #if defined(__AVX512VNNI__)
  14725. return 1;
  14726. #else
  14727. return 0;
  14728. #endif
  14729. }
  14730. int ggml_cpu_has_fma(void) {
  14731. #if defined(__FMA__)
  14732. return 1;
  14733. #else
  14734. return 0;
  14735. #endif
  14736. }
  14737. int ggml_cpu_has_neon(void) {
  14738. #if defined(__ARM_NEON)
  14739. return 1;
  14740. #else
  14741. return 0;
  14742. #endif
  14743. }
  14744. int ggml_cpu_has_arm_fma(void) {
  14745. #if defined(__ARM_FEATURE_FMA)
  14746. return 1;
  14747. #else
  14748. return 0;
  14749. #endif
  14750. }
  14751. int ggml_cpu_has_f16c(void) {
  14752. #if defined(__F16C__)
  14753. return 1;
  14754. #else
  14755. return 0;
  14756. #endif
  14757. }
  14758. int ggml_cpu_has_fp16_va(void) {
  14759. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  14760. return 1;
  14761. #else
  14762. return 0;
  14763. #endif
  14764. }
  14765. int ggml_cpu_has_wasm_simd(void) {
  14766. #if defined(__wasm_simd128__)
  14767. return 1;
  14768. #else
  14769. return 0;
  14770. #endif
  14771. }
  14772. int ggml_cpu_has_blas(void) {
  14773. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  14774. return 1;
  14775. #else
  14776. return 0;
  14777. #endif
  14778. }
  14779. int ggml_cpu_has_cublas(void) {
  14780. #if defined(GGML_USE_CUBLAS)
  14781. return 1;
  14782. #else
  14783. return 0;
  14784. #endif
  14785. }
  14786. int ggml_cpu_has_clblast(void) {
  14787. #if defined(GGML_USE_CLBLAST)
  14788. return 1;
  14789. #else
  14790. return 0;
  14791. #endif
  14792. }
  14793. int ggml_cpu_has_gpublas(void) {
  14794. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  14795. }
  14796. int ggml_cpu_has_sse3(void) {
  14797. #if defined(__SSE3__)
  14798. return 1;
  14799. #else
  14800. return 0;
  14801. #endif
  14802. }
  14803. int ggml_cpu_has_vsx(void) {
  14804. #if defined(__POWER9_VECTOR__)
  14805. return 1;
  14806. #else
  14807. return 0;
  14808. #endif
  14809. }
  14810. ////////////////////////////////////////////////////////////////////////////////