test-backend-ops.cpp 321 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395
  1. // This file defines tests for various GGML ops and backends.
  2. // For the forward pass it asserts that the results of multiple backends computing the same GGML ops are consistent.
  3. // For the backward pass it asserts that the gradients from backpropagation are consistent
  4. // with the gradients obtained via the method of finite differences ("grad" mode, this is optional).
  5. // It is also possible to check the performance ("perf" mode).
  6. //
  7. // this file has three sections: Section 1 does general setup, section 2 defines the GGML ops to be tested,
  8. // and section 3 defines which tests to run.
  9. // Quick start for adding a new GGML op: Go to section 2 and create a struct that inherits from test_case,
  10. // then go to section 3 and add an instantiation of your struct.
  11. // ##############################
  12. // ## Section 1: General Setup ##
  13. // ##############################
  14. #include <ggml.h>
  15. #include <ggml-alloc.h>
  16. #include <ggml-backend.h>
  17. #include <ggml-cpp.h>
  18. #include <algorithm>
  19. #include <array>
  20. #include <cfloat>
  21. #include <cinttypes>
  22. #include <cstdarg>
  23. #include <cstdint>
  24. #include <cstdio>
  25. #include <cstdlib>
  26. #include <cstring>
  27. #include <ctime>
  28. #include <future>
  29. #include <memory>
  30. #include <random>
  31. #include <regex>
  32. #include <set>
  33. #include <string>
  34. #include <string_view>
  35. #include <thread>
  36. #include <vector>
  37. #include <unordered_map>
  38. static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
  39. size_t nels = ggml_nelements(tensor);
  40. std::vector<float> data(nels);
  41. {
  42. // parallel initialization
  43. static const size_t n_threads = std::thread::hardware_concurrency();
  44. // static RNG initialization (revisit if n_threads stops being constant)
  45. static std::vector<std::default_random_engine> generators = []() {
  46. std::random_device rd;
  47. std::vector<std::default_random_engine> vec;
  48. vec.reserve(n_threads);
  49. //for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(1234 + i); } // fixed seed
  50. for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(rd()); }
  51. return vec;
  52. }();
  53. auto init_thread = [&](size_t ith, size_t start, size_t end) {
  54. std::uniform_real_distribution<float> distribution(min, max);
  55. auto & gen = generators[ith];
  56. for (size_t i = start; i < end; i++) {
  57. data[i] = distribution(gen);
  58. }
  59. };
  60. std::vector<std::future<void>> tasks;
  61. tasks.reserve(n_threads);
  62. for (size_t i = 0; i < n_threads; i++) {
  63. size_t start = i*nels/n_threads;
  64. size_t end = (i+1)*nels/n_threads;
  65. tasks.push_back(std::async(std::launch::async, init_thread, i, start, end));
  66. }
  67. for (auto & t : tasks) {
  68. t.get();
  69. }
  70. }
  71. if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) {
  72. ggml_backend_tensor_set(tensor, data.data(), 0, nels * sizeof(float));
  73. } else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16 || tensor->type == GGML_TYPE_BF16) {
  74. GGML_ASSERT(nels % ggml_blck_size(tensor->type) == 0);
  75. // dummy importance matrix
  76. std::vector<float> imatrix(tensor->ne[0], 1.0f);
  77. const float * im = imatrix.data();
  78. if (!ggml_quantize_requires_imatrix(tensor->type)) {
  79. // when the imatrix is optional, we want to test both quantization with and without imatrix
  80. // use one of the random numbers to decide
  81. if (data[0] > 0.5f*(min + max)) {
  82. im = nullptr;
  83. }
  84. }
  85. std::vector<uint8_t> dataq(ggml_row_size(tensor->type, nels));
  86. {
  87. // parallel quantization by block
  88. size_t blck_size = ggml_blck_size(tensor->type);
  89. size_t n_blocks = nels / blck_size;
  90. auto quantize_thread = [&](size_t start, size_t end) {
  91. ggml_quantize_chunk(tensor->type, data.data(), dataq.data(),
  92. start * blck_size, end - start, blck_size, im);
  93. };
  94. const size_t min_blocks_per_thread = 1;
  95. const size_t n_threads = std::min<size_t>(std::thread::hardware_concurrency()/2,
  96. std::max<size_t>(1, n_blocks / min_blocks_per_thread));
  97. std::vector<std::future<void>> tasks;
  98. tasks.reserve(n_threads);
  99. for (size_t i = 0; i < n_threads; i++) {
  100. size_t start = i*n_blocks/n_threads;
  101. size_t end = (i+1)*n_blocks/n_threads;
  102. tasks.push_back(std::async(std::launch::async, quantize_thread, start, end));
  103. }
  104. for (auto & t : tasks) {
  105. t.get();
  106. }
  107. }
  108. ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size());
  109. } else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) {
  110. // This is going to create some weird integers though.
  111. ggml_backend_tensor_set(tensor, data.data(), 0, ggml_nbytes(tensor));
  112. } else if (tensor->type == GGML_TYPE_I64) {
  113. // Integers with a size of 8 bytes can be set by mirroring the float data, the specific values are again not really meaningful.
  114. const size_t nbytes_half = ggml_nbytes(tensor)/2;
  115. ggml_backend_tensor_set(tensor, data.data(), 0*nbytes_half, nbytes_half);
  116. ggml_backend_tensor_set(tensor, data.data(), 1*nbytes_half, nbytes_half);
  117. } else {
  118. GGML_ABORT("fatal error");
  119. }
  120. }
  121. // generate an F16 mask where certain blocks are randomly masked with -INF value
  122. static void init_tensor_kq_mask(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
  123. GGML_ASSERT(tensor->type == GGML_TYPE_F16);
  124. GGML_TENSOR_LOCALS( int32_t, ne, tensor, ne);
  125. std::vector<float> data_f32(ne0*ne1*ne2*ne3);
  126. std::vector<ggml_fp16_t> data_f16(ne0*ne1*ne2*ne3);
  127. std::random_device rd;
  128. std::mt19937 gen(rd());
  129. std::uniform_real_distribution<float> dis(min, max);
  130. for (size_t i = 0; i < data_f32.size(); i++) {
  131. data_f32[i] = dis(gen);
  132. }
  133. // block size
  134. const int blck0 = 128;
  135. const int blck1 = 64;
  136. // number of INF blocks
  137. const int n_inf_blocks = 0.1*(ne0*ne1*ne2*ne3)/(blck0*blck1);
  138. for (int b = 0; b < n_inf_blocks; b++) {
  139. const int p3 = (rd() % ne3);
  140. const int p2 = (rd() % ne2);
  141. const int p1 = (rd() % ne1);
  142. const int p0 = (rd() % ne0);
  143. for (int i1 = 0; i1 < blck1 && p1 + i1 < ne1; i1++) {
  144. const int idx = p3*ne2*ne1*ne0 + p2*ne1*ne0 + (p1 + i1)*ne0 + p0;
  145. for (int i0 = 0; i0 < blck0 && p0 + i0 < ne0; i0++) {
  146. data_f32[idx + i0] = -INFINITY;
  147. }
  148. }
  149. }
  150. ggml_fp32_to_fp16_row(data_f32.data(), data_f16.data(), ne0*ne1*ne2*ne3);
  151. ggml_backend_tensor_set(tensor, data_f16.data(), 0, data_f16.size()*sizeof(ggml_fp16_t));
  152. }
  153. // generate a lower triangular matrix
  154. static void init_tensor_tril(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
  155. GGML_ASSERT(tensor->type == GGML_TYPE_F32);
  156. GGML_ASSERT(tensor->ne[0] == tensor->ne[1]);
  157. GGML_TENSOR_LOCALS(int32_t, ne, tensor, ne);
  158. GGML_TENSOR_LOCALS(size_t, nb, tensor, nb);
  159. std::vector<float> data_f32(ne0*ne1*ne2*ne3);
  160. std::random_device rd;
  161. std::mt19937 gen(rd());
  162. std::uniform_real_distribution<float> dis(min, max);
  163. for (int64_t i3 = 0; i3 < ne3; i3++) {
  164. for (int64_t i2 = 0; i2 < ne2; i2++) {
  165. for (int64_t i1 = 0; i1 < ne1; i1++) {
  166. for (int64_t i0 = 0; i0 < ne0; i0++) {
  167. int64_t idx = (i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3) / sizeof(float);
  168. if (i0 <= i1) {
  169. data_f32[idx] = dis(gen);
  170. } else {
  171. data_f32[idx] = 0.0f;
  172. }
  173. }
  174. }
  175. }
  176. }
  177. ggml_backend_tensor_set(tensor, data_f32.data(), 0, ggml_nbytes(tensor));
  178. }
  179. static std::vector<float> tensor_to_float(const ggml_tensor * t) {
  180. std::vector<float> tv;
  181. tv.reserve(ggml_nelements(t));
  182. std::vector<uint8_t> buf(ggml_nbytes(t));
  183. ggml_backend_tensor_get(t, buf.data(), 0, ggml_nbytes(t));
  184. const auto * tt = ggml_get_type_traits(t->type);
  185. size_t bs = ggml_blck_size(t->type);
  186. std::vector<float> vq(ggml_blck_size(t->type));
  187. bool quantized = ggml_is_quantized(t->type);
  188. // access elements by index to avoid gaps in views
  189. for (int64_t i3 = 0; i3 < t->ne[3]; i3++) {
  190. for (int64_t i2 = 0; i2 < t->ne[2]; i2++) {
  191. for (int64_t i1 = 0; i1 < t->ne[1]; i1++) {
  192. for (int64_t i0 = 0; i0 < t->ne[0]; i0 += bs) {
  193. size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0/bs*t->nb[0];
  194. if (t->type == GGML_TYPE_F16) {
  195. tv.push_back(ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i]));
  196. } else if (t->type == GGML_TYPE_BF16) {
  197. tv.push_back(ggml_bf16_to_fp32(*(ggml_bf16_t*)&buf[i]));
  198. } else if (t->type == GGML_TYPE_F32) {
  199. tv.push_back(*(float *) &buf[i]);
  200. } else if (t->type == GGML_TYPE_I64) {
  201. tv.push_back((float)*(int64_t *) &buf[i]);
  202. } else if (t->type == GGML_TYPE_I32) {
  203. tv.push_back((float)*(int32_t *) &buf[i]);
  204. } else if (t->type == GGML_TYPE_I16) {
  205. tv.push_back((float)*(int16_t *) &buf[i]);
  206. } else if (t->type == GGML_TYPE_I8) {
  207. tv.push_back((float)*(int8_t *) &buf[i]);
  208. } else if (quantized) {
  209. tt->to_float(&buf[i], vq.data(), bs);
  210. tv.insert(tv.end(), vq.begin(), vq.end());
  211. } else {
  212. GGML_ABORT("fatal error");
  213. }
  214. }
  215. }
  216. }
  217. }
  218. return tv;
  219. }
  220. // normalized mean squared error = mse(a, b) / mse(a, 0)
  221. static double nmse(const float * a, const float * b, size_t n) {
  222. double mse_a_b = 0.0;
  223. double mse_a_0 = 0.0;
  224. for (size_t i = 0; i < n; i++) {
  225. float a_i = a[i];
  226. float b_i = b[i];
  227. mse_a_b += (a_i - b_i) * (a_i - b_i);
  228. mse_a_0 += a_i * a_i;
  229. }
  230. return mse_a_b / mse_a_0;
  231. }
  232. // difference between 2 integer sets (Jaccard distance, 0 - no difference, 1 - no overlap)
  233. static double jdst(const int32_t * a, const int32_t * b, size_t n) {
  234. std::unordered_map<int32_t, size_t> set_a;
  235. std::unordered_map<int32_t, size_t> set_b;
  236. for (size_t i = 0; i < n; ++i) {
  237. set_a[a[i]]++;
  238. set_b[b[i]]++;
  239. }
  240. size_t diff = 0;
  241. for (const auto & p : set_a) {
  242. const int64_t na = p.second;
  243. const int64_t nb = set_b.find(p.first) != set_b.end() ? set_b.at(p.first) : 0;
  244. diff += std::abs(na - nb);
  245. }
  246. for (const auto & p : set_b) {
  247. if (set_a.find(p.first) == set_a.end()) {
  248. diff += p.second;
  249. }
  250. }
  251. return (double) diff / (2*n);
  252. }
  253. // maximum absolute asymmetry between a and b
  254. // asymmetry: (a - b) / (a + b)
  255. // This is more stable than relative error if one of the values fluctuates towards zero.
  256. // n: number of values to compare.
  257. // expected_vals: optional vector of expected values for a. If expected_vals is not empty, filter out all comparisons where
  258. // a does not match any of the expected values. Needed for noncontinuous gradients where the numerical calculation can fail.
  259. static double mean_abs_asymm(const float * a, const float * b, const size_t n, const std::vector<float> & expected_vals) {
  260. double sum = 0.0f;
  261. size_t nvalid = 0;
  262. for (size_t i = 0; i < n; i++) {
  263. if (!expected_vals.empty()) {
  264. bool matches_any = false;
  265. for (const float & ev : expected_vals) {
  266. if (fabsf(a[i] - ev) < 1e-3f) {
  267. matches_any = true;
  268. break;
  269. }
  270. }
  271. if (!matches_any) {
  272. continue;
  273. }
  274. }
  275. const float asymm = (a[i] - b[i]) / (a[i] + b[i]);
  276. sum += fabsf(asymm);
  277. nvalid++;
  278. }
  279. return sum/nvalid;
  280. }
  281. // utils for printing the variables of the test cases
  282. static std::string var_to_str(const std::string & x) {
  283. return x;
  284. }
  285. template<typename T>
  286. static std::string var_to_str(const T & x) {
  287. return std::to_string(x);
  288. }
  289. template<typename T, size_t N>
  290. static std::string var_to_str(const T (&x)[N]) {
  291. std::string s = "[";
  292. for (size_t i = 0; i < N; i++) {
  293. if (i > 0) {
  294. s += ",";
  295. }
  296. s += var_to_str(x[i]);
  297. }
  298. s += "]";
  299. return s;
  300. }
  301. template<typename T, size_t N>
  302. static std::string var_to_str(const std::array<T, N> & x) {
  303. std::string s = "[";
  304. for (size_t i = 0; i < N; i++) {
  305. if (i > 0) {
  306. s += ",";
  307. }
  308. s += var_to_str(x[i]);
  309. }
  310. s += "]";
  311. return s;
  312. }
  313. static std::string var_to_str(ggml_type type) {
  314. return ggml_type_name(type);
  315. }
  316. static std::string var_to_str(ggml_prec prec) {
  317. return prec == GGML_PREC_F32 ? "f32" : "def";
  318. }
  319. static std::string var_to_str(ggml_op_pool pool) {
  320. switch (pool) {
  321. case GGML_OP_POOL_AVG: return "avg";
  322. case GGML_OP_POOL_MAX: return "max";
  323. default: return std::to_string(pool);
  324. }
  325. }
  326. static std::string var_to_str(ggml_scale_mode mode) {
  327. switch (mode) {
  328. case GGML_SCALE_MODE_NEAREST: return "nearest";
  329. case GGML_SCALE_MODE_BILINEAR: return "bilinear";
  330. case GGML_SCALE_MODE_BICUBIC: return "bicubic";
  331. default: return std::to_string(mode);
  332. }
  333. }
  334. #define VAR_TO_STR(x) (#x "=" + var_to_str(x))
  335. #define VARS_TO_STR1(a) VAR_TO_STR(a)
  336. #define VARS_TO_STR2(a, b) VAR_TO_STR(a) + "," + VAR_TO_STR(b)
  337. #define VARS_TO_STR3(a, b, c) VAR_TO_STR(a) + "," + VARS_TO_STR2(b, c)
  338. #define VARS_TO_STR4(a, b, c, d) VAR_TO_STR(a) + "," + VARS_TO_STR3(b, c, d)
  339. #define VARS_TO_STR5(a, b, c, d, e) VAR_TO_STR(a) + "," + VARS_TO_STR4(b, c, d, e)
  340. #define VARS_TO_STR6(a, b, c, d, e, f) VAR_TO_STR(a) + "," + VARS_TO_STR5(b, c, d, e, f)
  341. #define VARS_TO_STR7(a, b, c, d, e, f, g) VAR_TO_STR(a) + "," + VARS_TO_STR6(b, c, d, e, f, g)
  342. #define VARS_TO_STR8(a, b, c, d, e, f, g, h) VAR_TO_STR(a) + "," + VARS_TO_STR7(b, c, d, e, f, g, h)
  343. #define VARS_TO_STR9(a, b, c, d, e, f, g, h, i) VAR_TO_STR(a) + "," + VARS_TO_STR8(b, c, d, e, f, g, h, i)
  344. #define VARS_TO_STR10(a, b, c, d, e, f, g, h, i, j) VAR_TO_STR(a) + "," + VARS_TO_STR9(b, c, d, e, f, g, h, i, j)
  345. #define VARS_TO_STR11(a, b, c, d, e, f, g, h, i, j, k) VAR_TO_STR(a) + "," + VARS_TO_STR10(b, c, d, e, f, g, h, i, j, k)
  346. #define VARS_TO_STR12(a, b, c, d, e, f, g, h, i, j, k, l) VAR_TO_STR(a) + "," + VARS_TO_STR11(b, c, d, e, f, g, h, i, j, k, l)
  347. #define VARS_TO_STR13(a, b, c, d, e, f, g, h, i, j, k, l, m) VAR_TO_STR(a) + "," + VARS_TO_STR12(b, c, d, e, f, g, h, i, j, k, l, m)
  348. #define VARS_TO_STR14(a, b, c, d, e, f, g, h, i, j, k, l, m, n) VAR_TO_STR(a) + "," + VARS_TO_STR13(b, c, d, e, f, g, h, i, j, k, l, m, n)
  349. #define VARS_TO_STR15(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) VAR_TO_STR(a) + "," + VARS_TO_STR14(b, c, d, e, f, g, h, i, j, k, l, m, n, o)
  350. #define VARS_TO_STR16(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) VAR_TO_STR(a) + "," + VARS_TO_STR15(b, c, d, e, f, g, h, i, j, k, l, m, n, o, p)
  351. #ifdef GGML_USE_SYCL
  352. static bool inline _isinf(float f) {
  353. return (*(uint32_t *)&f & 0x7fffffff) == 0x7f800000;
  354. }
  355. #else
  356. static bool inline _isinf(float f) { return std::isinf(f); }
  357. #endif
  358. // accept FLT_MAX as infinity
  359. static bool isinf_or_max(float f) {
  360. return _isinf(f) || f == FLT_MAX || f == -FLT_MAX;
  361. }
  362. static bool ggml_is_view_op(enum ggml_op op) {
  363. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  364. }
  365. enum test_mode {
  366. MODE_TEST,
  367. MODE_PERF,
  368. MODE_GRAD,
  369. MODE_SUPPORT,
  370. };
  371. // Output format support similar to llama-bench
  372. enum output_formats { CONSOLE, SQL, CSV };
  373. static const char * output_format_str(output_formats format) {
  374. switch (format) {
  375. case CONSOLE:
  376. return "console";
  377. case SQL:
  378. return "sql";
  379. case CSV:
  380. return "csv";
  381. default:
  382. GGML_ABORT("invalid output format");
  383. }
  384. }
  385. static bool output_format_from_str(const std::string & s, output_formats & format) {
  386. if (s == "console") {
  387. format = CONSOLE;
  388. } else if (s == "sql") {
  389. format = SQL;
  390. } else if (s == "csv") {
  391. format = CSV;
  392. } else {
  393. return false;
  394. }
  395. return true;
  396. }
  397. // Test result structure for SQL output
  398. struct test_result {
  399. std::string test_time;
  400. std::string build_commit;
  401. std::string backend_name;
  402. std::string op_name;
  403. std::string op_params;
  404. std::string test_mode;
  405. bool supported;
  406. bool passed;
  407. std::string error_message;
  408. double time_us;
  409. double flops;
  410. double bandwidth_gb_s;
  411. size_t memory_kb;
  412. int n_runs;
  413. std::string device_description;
  414. std::string backend_reg_name;
  415. test_result() {
  416. // Initialize with default values
  417. time_us = 0.0;
  418. flops = 0.0;
  419. bandwidth_gb_s = 0.0;
  420. memory_kb = 0;
  421. n_runs = 0;
  422. supported = false;
  423. passed = false;
  424. // Set test time
  425. time_t t = time(NULL);
  426. char buf[32];
  427. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  428. test_time = buf;
  429. // Set build info
  430. build_commit = ggml_commit();
  431. }
  432. test_result(const std::string & backend_name, const std::string & op_name, const std::string & op_params,
  433. const std::string & test_mode, bool supported, bool passed, const std::string & error_message = "",
  434. double time_us = 0.0, double flops = 0.0, double bandwidth_gb_s = 0.0, size_t memory_kb = 0,
  435. int n_runs = 0, const std::string & device_description = "", const std::string & backend_reg_name = "") :
  436. backend_name(backend_name),
  437. op_name(op_name),
  438. op_params(op_params),
  439. test_mode(test_mode),
  440. supported(supported),
  441. passed(passed),
  442. error_message(error_message),
  443. time_us(time_us),
  444. flops(flops),
  445. bandwidth_gb_s(bandwidth_gb_s),
  446. memory_kb(memory_kb),
  447. n_runs(n_runs),
  448. device_description(device_description),
  449. backend_reg_name(backend_reg_name) {
  450. // Set test time
  451. time_t t = time(NULL);
  452. char buf[32];
  453. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  454. test_time = buf;
  455. // Set build info
  456. build_commit = ggml_commit();
  457. }
  458. static const std::vector<std::string> & get_fields() {
  459. static const std::vector<std::string> fields = {
  460. "test_time", "build_commit", "backend_name", "op_name", "op_params", "test_mode", "supported",
  461. "passed", "error_message", "time_us", "flops", "bandwidth_gb_s", "memory_kb", "n_runs",
  462. "device_description", "backend_reg_name"
  463. };
  464. return fields;
  465. }
  466. enum field_type { STRING, BOOL, INT, FLOAT };
  467. static field_type get_field_type(const std::string & field) {
  468. if (field == "supported" || field == "passed") {
  469. return BOOL;
  470. }
  471. if (field == "memory_kb" || field == "n_runs") {
  472. return INT;
  473. }
  474. if (field == "time_us" || field == "flops" || field == "bandwidth_gb_s") {
  475. return FLOAT;
  476. }
  477. return STRING;
  478. }
  479. std::vector<std::string> get_values() const {
  480. return { test_time,
  481. build_commit,
  482. backend_name,
  483. op_name,
  484. op_params,
  485. test_mode,
  486. std::to_string(supported),
  487. std::to_string(passed),
  488. error_message,
  489. std::to_string(time_us),
  490. std::to_string(flops),
  491. std::to_string(bandwidth_gb_s),
  492. std::to_string(memory_kb),
  493. std::to_string(n_runs),
  494. device_description,
  495. backend_reg_name };
  496. }
  497. };
  498. // Printer classes for different output formats
  499. enum class test_status_t { NOT_SUPPORTED, OK, FAIL, SKIPPED };
  500. struct test_operation_info {
  501. std::string op_name;
  502. std::string op_params;
  503. std::string backend_name;
  504. test_status_t status = test_status_t::OK;
  505. std::string failure_reason;
  506. // Additional information fields that were previously in separate structs
  507. std::string error_component;
  508. std::string error_details;
  509. // Gradient info
  510. int64_t gradient_index = -1;
  511. std::string gradient_param_name;
  512. float gradient_value = 0.0f;
  513. // MAA error info
  514. double maa_error = 0.0;
  515. double maa_threshold = 0.0;
  516. // Flags for different types of information
  517. bool has_error = false;
  518. bool has_gradient_info = false;
  519. bool has_maa_error = false;
  520. bool is_compare_failure = false;
  521. bool is_large_tensor_skip = false;
  522. test_operation_info() = default;
  523. test_operation_info(const std::string & op_name, const std::string & op_params, const std::string & backend_name,
  524. test_status_t status = test_status_t::OK, const std::string & failure_reason = "") :
  525. op_name(op_name),
  526. op_params(op_params),
  527. backend_name(backend_name),
  528. status(status),
  529. failure_reason(failure_reason) {}
  530. // Set error information
  531. void set_error(const std::string & component, const std::string & details) {
  532. has_error = true;
  533. error_component = component;
  534. error_details = details;
  535. if (status == test_status_t::OK) {
  536. status = test_status_t::FAIL;
  537. }
  538. }
  539. // Set gradient information
  540. void set_gradient_info(int64_t index, const std::string & param_name, float value) {
  541. has_gradient_info = true;
  542. gradient_index = index;
  543. gradient_param_name = param_name;
  544. gradient_value = value;
  545. if (status == test_status_t::OK) {
  546. status = test_status_t::FAIL;
  547. }
  548. }
  549. // Set MAA error information
  550. void set_maa_error(double error, double threshold) {
  551. has_maa_error = true;
  552. maa_error = error;
  553. maa_threshold = threshold;
  554. if (status == test_status_t::OK) {
  555. status = test_status_t::FAIL;
  556. }
  557. }
  558. // Set compare failure
  559. void set_compare_failure() {
  560. is_compare_failure = true;
  561. if (status == test_status_t::OK) {
  562. status = test_status_t::FAIL;
  563. }
  564. }
  565. // Set large tensor skip
  566. void set_large_tensor_skip() { is_large_tensor_skip = true; }
  567. };
  568. struct test_summary_info {
  569. size_t tests_passed;
  570. size_t tests_total;
  571. bool is_backend_summary = false; // true for backend summary, false for test summary
  572. test_summary_info() = default;
  573. test_summary_info(size_t tests_passed, size_t tests_total, bool is_backend_summary = false) :
  574. tests_passed(tests_passed),
  575. tests_total(tests_total),
  576. is_backend_summary(is_backend_summary) {}
  577. };
  578. struct testing_start_info {
  579. size_t device_count;
  580. testing_start_info() = default;
  581. testing_start_info(size_t device_count) : device_count(device_count) {}
  582. };
  583. struct backend_init_info {
  584. size_t device_index;
  585. size_t total_devices;
  586. std::string device_name;
  587. bool skipped = false;
  588. std::string skip_reason;
  589. std::string description;
  590. size_t memory_total_mb = 0;
  591. size_t memory_free_mb = 0;
  592. bool has_memory_info = false;
  593. backend_init_info() = default;
  594. backend_init_info(size_t device_index, size_t total_devices, const std::string & device_name, bool skipped = false,
  595. const std::string & skip_reason = "", const std::string & description = "",
  596. size_t memory_total_mb = 0, size_t memory_free_mb = 0, bool has_memory_info = false) :
  597. device_index(device_index),
  598. total_devices(total_devices),
  599. device_name(device_name),
  600. skipped(skipped),
  601. skip_reason(skip_reason),
  602. description(description),
  603. memory_total_mb(memory_total_mb),
  604. memory_free_mb(memory_free_mb),
  605. has_memory_info(has_memory_info) {}
  606. };
  607. struct backend_status_info {
  608. std::string backend_name;
  609. test_status_t status;
  610. backend_status_info() = default;
  611. backend_status_info(const std::string & backend_name, test_status_t status) :
  612. backend_name(backend_name),
  613. status(status) {}
  614. };
  615. struct overall_summary_info {
  616. size_t backends_passed;
  617. size_t backends_total;
  618. bool all_passed;
  619. overall_summary_info() = default;
  620. overall_summary_info(size_t backends_passed, size_t backends_total, bool all_passed) :
  621. backends_passed(backends_passed),
  622. backends_total(backends_total),
  623. all_passed(all_passed) {}
  624. };
  625. struct printer {
  626. virtual ~printer() {}
  627. FILE * fout = stdout;
  628. virtual void print_header() {}
  629. virtual void print_test_result(const test_result & result) = 0;
  630. virtual void print_footer() {}
  631. virtual void print_operation(const test_operation_info & info) { (void) info; }
  632. virtual void print_summary(const test_summary_info & info) { (void) info; }
  633. virtual void print_testing_start(const testing_start_info & info) { (void) info; }
  634. virtual void print_backend_init(const backend_init_info & info) { (void) info; }
  635. virtual void print_backend_status(const backend_status_info & info) { (void) info; }
  636. virtual void print_overall_summary(const overall_summary_info & info) { (void) info; }
  637. virtual void print_failed_tests(const std::vector<std::string> & failed_tests) { (void) failed_tests; }
  638. };
  639. struct console_printer : public printer {
  640. void print_test_result(const test_result & result) override {
  641. if (result.test_mode == "test") {
  642. print_test_console(result);
  643. } else if (result.test_mode == "perf") {
  644. print_perf_console(result);
  645. } else if (result.test_mode == "support") {
  646. print_support_console(result);
  647. }
  648. }
  649. void print_operation(const test_operation_info & info) override {
  650. printf(" %s(%s): ", info.op_name.c_str(), info.op_params.c_str());
  651. fflush(stdout);
  652. // Handle large tensor skip first
  653. if (info.is_large_tensor_skip) {
  654. printf("skipping large tensors for speed \n");
  655. return;
  656. }
  657. // Handle not supported status
  658. if (info.status == test_status_t::NOT_SUPPORTED) {
  659. if (!info.failure_reason.empty()) {
  660. printf("not supported [%s]\n", info.failure_reason.c_str());
  661. } else {
  662. printf("not supported [%s]\n", info.backend_name.c_str());
  663. }
  664. return;
  665. }
  666. // Handle errors and additional information
  667. if (info.has_error) {
  668. if (info.error_component == "allocation") {
  669. fprintf(stderr, "failed to allocate tensors [%s] ", info.backend_name.c_str());
  670. } else if (info.error_component == "backend") {
  671. fprintf(stderr, " Failed to initialize %s backend\n", info.backend_name.c_str());
  672. } else {
  673. fprintf(stderr, "Error in %s: %s\n", info.error_component.c_str(), info.error_details.c_str());
  674. }
  675. }
  676. // Handle gradient info
  677. if (info.has_gradient_info) {
  678. printf("[%s] nonfinite gradient at index %" PRId64 " (%s=%f) ", info.op_name.c_str(), info.gradient_index,
  679. info.gradient_param_name.c_str(), info.gradient_value);
  680. }
  681. // Handle MAA error
  682. if (info.has_maa_error) {
  683. printf("[%s] MAA = %.9f > %.9f ", info.op_name.c_str(), info.maa_error, info.maa_threshold);
  684. }
  685. // Handle compare failure
  686. if (info.is_compare_failure) {
  687. printf("compare failed ");
  688. }
  689. // Print final status
  690. if (info.status == test_status_t::OK) {
  691. printf("\033[1;32mOK\033[0m\n");
  692. } else {
  693. printf("\033[1;31mFAIL\033[0m\n");
  694. }
  695. }
  696. void print_summary(const test_summary_info & info) override {
  697. if (info.is_backend_summary) {
  698. printf("%zu/%zu backends passed\n", info.tests_passed, info.tests_total);
  699. } else {
  700. printf(" %zu/%zu tests passed\n", info.tests_passed, info.tests_total);
  701. }
  702. }
  703. void print_backend_status(const backend_status_info & info) override {
  704. printf(" Backend %s: ", info.backend_name.c_str());
  705. if (info.status == test_status_t::OK) {
  706. printf("\033[1;32mOK\033[0m\n");
  707. } else {
  708. printf("\033[1;31mFAIL\033[0m\n");
  709. }
  710. }
  711. void print_testing_start(const testing_start_info & info) override {
  712. printf("Testing %zu devices\n\n", info.device_count);
  713. }
  714. void print_backend_init(const backend_init_info & info) override {
  715. printf("Backend %zu/%zu: %s\n", info.device_index + 1, info.total_devices, info.device_name.c_str());
  716. if (info.skipped) {
  717. printf(" %s\n", info.skip_reason.c_str());
  718. return;
  719. }
  720. if (!info.description.empty()) {
  721. printf(" Device description: %s\n", info.description.c_str());
  722. }
  723. if (info.has_memory_info) {
  724. printf(" Device memory: %zu MB (%zu MB free)\n", info.memory_total_mb, info.memory_free_mb);
  725. }
  726. printf("\n");
  727. }
  728. void print_overall_summary(const overall_summary_info & info) override {
  729. printf("%zu/%zu backends passed\n", info.backends_passed, info.backends_total);
  730. if (info.all_passed) {
  731. printf("\033[1;32mOK\033[0m\n");
  732. } else {
  733. printf("\033[1;31mFAIL\033[0m\n");
  734. }
  735. }
  736. void print_failed_tests(const std::vector<std::string> & failed_tests) override {
  737. if (failed_tests.empty()) {
  738. return;
  739. }
  740. printf("\nFailing tests:\n");
  741. for (const auto & test_name : failed_tests) {
  742. printf(" %s\n", test_name.c_str());
  743. }
  744. }
  745. private:
  746. void print_test_console(const test_result & result) {
  747. printf(" %s(%s): ", result.op_name.c_str(), result.op_params.c_str());
  748. fflush(stdout);
  749. if (!result.supported) {
  750. printf("not supported [%s] ", result.backend_name.c_str());
  751. printf("\n");
  752. return;
  753. }
  754. if (result.passed) {
  755. printf("\033[1;32mOK\033[0m\n");
  756. } else {
  757. printf("\033[1;31mFAIL\033[0m\n");
  758. }
  759. }
  760. void print_perf_console(const test_result & result) {
  761. int len = printf(" %s(%s): ", result.op_name.c_str(), result.op_params.c_str());
  762. fflush(stdout);
  763. if (!result.supported) {
  764. printf("not supported\n");
  765. return;
  766. }
  767. // align while also leaving some margin for variations in parameters
  768. int align = 8;
  769. int last = (len + align - 1) / align * align;
  770. if (last - len < 5) {
  771. last += align;
  772. }
  773. printf("%*s", last - len, "");
  774. printf(" %8d runs - %8.2f us/run - ", result.n_runs, result.time_us);
  775. if (result.flops > 0) {
  776. auto format_flops = [](double flops) -> std::string {
  777. char buf[256];
  778. if (flops >= 1e12) {
  779. snprintf(buf, sizeof(buf), "%6.2f TFLOP", flops / 1e12);
  780. } else if (flops >= 1e9) {
  781. snprintf(buf, sizeof(buf), "%6.2f GFLOP", flops / 1e9);
  782. } else if (flops >= 1e6) {
  783. snprintf(buf, sizeof(buf), "%6.2f MFLOP", flops / 1e6);
  784. } else {
  785. snprintf(buf, sizeof(buf), "%6.2f kFLOP", flops / 1e3);
  786. }
  787. return buf;
  788. };
  789. uint64_t op_flops_per_run = result.flops * result.time_us / 1e6;
  790. printf("%s/run - \033[1;34m%sS\033[0m", format_flops(op_flops_per_run).c_str(),
  791. format_flops(result.flops).c_str());
  792. } else {
  793. printf("%8zu kB/run - \033[1;34m%7.2f GB/s\033[0m", result.memory_kb, result.bandwidth_gb_s);
  794. }
  795. printf("\n");
  796. }
  797. void print_support_console(const test_result & result) {
  798. printf(" %s(%s): ", result.op_name.c_str(), result.op_params.c_str());
  799. fflush(stdout);
  800. if (result.supported) {
  801. printf("\033[1;32mSUPPORTED\033[0m\n");
  802. } else {
  803. printf("\033[1;31mNOT SUPPORTED\033[0m\n");
  804. }
  805. }
  806. };
  807. struct sql_printer : public printer {
  808. static std::string get_sql_field_type(const std::string & field) {
  809. switch (test_result::get_field_type(field)) {
  810. case test_result::STRING:
  811. return "TEXT";
  812. case test_result::BOOL:
  813. case test_result::INT:
  814. return "INTEGER";
  815. case test_result::FLOAT:
  816. return "REAL";
  817. default:
  818. GGML_ABORT("invalid field type");
  819. }
  820. }
  821. void print_header() override {
  822. std::vector<std::string> fields = test_result::get_fields();
  823. fprintf(fout, "CREATE TABLE IF NOT EXISTS test_backend_ops (\n");
  824. for (size_t i = 0; i < fields.size(); i++) {
  825. fprintf(fout, " %s %s%s\n", fields[i].c_str(), get_sql_field_type(fields[i]).c_str(),
  826. i < fields.size() - 1 ? "," : "");
  827. }
  828. fprintf(fout, ");\n\n");
  829. }
  830. void print_test_result(const test_result & result) override {
  831. fprintf(fout, "INSERT INTO test_backend_ops (");
  832. std::vector<std::string> fields = test_result::get_fields();
  833. for (size_t i = 0; i < fields.size(); i++) {
  834. fprintf(fout, "%s%s", fields[i].c_str(), i < fields.size() - 1 ? ", " : "");
  835. }
  836. fprintf(fout, ") VALUES (");
  837. std::vector<std::string> values = result.get_values();
  838. for (size_t i = 0; i < values.size(); i++) {
  839. fprintf(fout, "'%s'%s", values[i].c_str(), i < values.size() - 1 ? ", " : "");
  840. }
  841. fprintf(fout, ");\n");
  842. }
  843. };
  844. struct csv_printer : public printer {
  845. void print_header() override {
  846. std::vector<std::string> fields = test_result::get_fields();
  847. std::vector<std::string> fields_csv = get_fields_csv();
  848. for (size_t i = 0; i < fields.size(); i++) {
  849. if (std::find(std::begin(fields_csv), std::end(fields_csv), fields[i]) == std::end(fields_csv)) {
  850. continue;
  851. }
  852. printf("\"%s\"%s", fields[i].c_str(), i < fields.size() - 1 ? "," : "");
  853. }
  854. printf("\n");
  855. }
  856. void print_test_result(const test_result & result) override {
  857. std::vector<std::string> values = result.get_values();
  858. std::vector<std::string> fields = test_result::get_fields();
  859. std::vector<std::string> fields_csv = get_fields_csv();
  860. for (size_t i = 0; i < values.size(); i++) {
  861. if (std::find(std::begin(fields_csv), std::end(fields_csv), fields[i]) == std::end(fields_csv)) {
  862. continue;
  863. }
  864. // Escape quotes and wrap in quotes for CSV
  865. std::string escaped_value = values[i];
  866. size_t pos = 0;
  867. while ((pos = escaped_value.find("\"", pos)) != std::string::npos) {
  868. escaped_value.replace(pos, 1, "\"\"");
  869. pos += 2;
  870. }
  871. printf("\"%s\"%s", escaped_value.c_str(), i < values.size() - 1 ? "," : "");
  872. }
  873. printf("\n");
  874. }
  875. static std::vector<std::string> get_fields_csv() {
  876. return {
  877. "op_name",
  878. "op_params",
  879. "supported",
  880. "error_message",
  881. "test_mode",
  882. "backend_reg_name",
  883. "backend_name",
  884. };
  885. }
  886. };
  887. static std::unique_ptr<printer> create_printer(output_formats format) {
  888. switch (format) {
  889. case CONSOLE:
  890. return std::make_unique<console_printer>();
  891. case SQL:
  892. return std::make_unique<sql_printer>();
  893. case CSV:
  894. return std::make_unique<csv_printer>();
  895. }
  896. GGML_ABORT("invalid output format");
  897. }
  898. struct test_case {
  899. virtual ~test_case() {}
  900. virtual std::string op_desc(ggml_tensor * t) {
  901. return ggml_op_desc(t);
  902. }
  903. virtual std::string vars() {
  904. return "";
  905. }
  906. virtual ggml_tensor * build_graph(ggml_context * ctx) = 0;
  907. virtual double max_nmse_err() {
  908. return 1e-7;
  909. }
  910. virtual double max_maa_err() {
  911. return 1e-4;
  912. }
  913. virtual double max_err() {
  914. return max_nmse_err();
  915. }
  916. virtual double err(const float * a, const float * b, size_t n) {
  917. return nmse(a, b, n);
  918. }
  919. virtual float grad_eps() {
  920. return 1e-1f;
  921. }
  922. // If false, estimate gradient with 2 points, neglects 3rd order derivative and higher.
  923. // If true, estimate gradient with 4 points, neglects 5th order derivative and higher.
  924. virtual bool grad_precise() {
  925. return false;
  926. }
  927. // Skip gradient checks if total number of gradients to be checked is larger than this (to speed up the tests).
  928. virtual int64_t grad_nmax() {
  929. return 10000;
  930. }
  931. // No effect if empty.
  932. // If not empty, skip all gradient checks where the numerical result does not match any of the values.
  933. // Needed for dealing with noncontinuous gradients (e.g. ReLU) where estimation using finite differences is unreliable.
  934. virtual std::vector<float> grad_expect() {
  935. return {};
  936. }
  937. virtual void initialize_tensors(ggml_context * ctx) {
  938. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
  939. init_tensor_uniform(t);
  940. }
  941. }
  942. virtual size_t op_size(ggml_tensor * t) {
  943. size_t size = ggml_nbytes(t);
  944. // add source tensors
  945. for (int i = 0; i < GGML_MAX_SRC; i++) {
  946. if (t->src[i] != NULL) {
  947. size += ggml_nbytes(t->src[i]);
  948. }
  949. }
  950. return size;
  951. }
  952. virtual uint64_t op_flops(ggml_tensor * t) {
  953. GGML_UNUSED(t);
  954. return 0;
  955. }
  956. virtual bool run_whole_graph() { return false; }
  957. ggml_cgraph * gf = nullptr;
  958. ggml_cgraph * gb = nullptr;
  959. static const int sentinel_size = 1024;
  960. test_mode mode;
  961. std::vector<ggml_tensor *> sentinels;
  962. std::string current_op_name;
  963. void add_sentinel(ggml_context * ctx) {
  964. if (mode == MODE_PERF || mode == MODE_GRAD || mode == MODE_SUPPORT) {
  965. return;
  966. }
  967. ggml_tensor * sentinel = ::ggml_new_tensor_1d(ctx, GGML_TYPE_F32, sentinel_size);
  968. ggml_format_name(sentinel, "sent_%zu", sentinels.size());
  969. sentinels.push_back(sentinel);
  970. }
  971. // hijack ggml_new_tensor to add sentinels after each tensor to check for overflows in the backend
  972. ggml_tensor * ggml_new_tensor(ggml_context * ctx, ggml_type type, int n_dims, const int64_t * ne) {
  973. ggml_tensor * t = ::ggml_new_tensor(ctx, type, n_dims, ne);
  974. add_sentinel(ctx);
  975. return t;
  976. }
  977. ggml_tensor * ggml_new_tensor_1d(ggml_context * ctx, ggml_type type, int64_t ne0) {
  978. ggml_tensor * t = ::ggml_new_tensor_1d(ctx, type, ne0);
  979. add_sentinel(ctx);
  980. return t;
  981. }
  982. ggml_tensor * ggml_new_tensor_2d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1) {
  983. ggml_tensor * t = ::ggml_new_tensor_2d(ctx, type, ne0, ne1);
  984. add_sentinel(ctx);
  985. return t;
  986. }
  987. ggml_tensor * ggml_new_tensor_3d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2) {
  988. ggml_tensor * t = ::ggml_new_tensor_3d(ctx, type, ne0, ne1, ne2);
  989. add_sentinel(ctx);
  990. return t;
  991. }
  992. ggml_tensor * ggml_new_tensor_4d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
  993. ggml_tensor * t = ::ggml_new_tensor_4d(ctx, type, ne0, ne1, ne2, ne3);
  994. add_sentinel(ctx);
  995. return t;
  996. }
  997. // Checks an op against the test filter, which is a comma separated list of OP names or specific variations
  998. bool matches_filter(ggml_tensor * op, const char * op_names_filter) {
  999. if (op_names_filter) {
  1000. const auto op_name = op_desc(op);
  1001. const auto op_full_name = op_name + "(" + vars() + ")";
  1002. std::string_view filter(op_names_filter);
  1003. while (!filter.empty()) {
  1004. auto comma_pos = filter.find_first_of(',');
  1005. const auto lparen_pos = filter.find_first_of('(');
  1006. if (lparen_pos < comma_pos) {
  1007. auto rparen_pos = filter.find_first_of(')');
  1008. comma_pos = filter.find_first_of(',', rparen_pos);
  1009. const auto op_filter = filter.substr(0, comma_pos);
  1010. if (op_filter == op_full_name) {
  1011. return true;
  1012. }
  1013. } else {
  1014. const auto op_filter = filter.substr(0, comma_pos);
  1015. if (op_filter == op_name) {
  1016. return true;
  1017. }
  1018. }
  1019. filter = comma_pos != std::string_view::npos ? filter.substr(comma_pos + 1) : "";
  1020. }
  1021. return false;
  1022. } else {
  1023. return true;
  1024. }
  1025. }
  1026. test_status_t eval(ggml_backend_t backend1,
  1027. ggml_backend_t backend2,
  1028. const char * op_names_filter,
  1029. printer * output_printer) {
  1030. mode = MODE_TEST;
  1031. ggml_init_params params = {
  1032. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  1033. /* .mem_base = */ NULL,
  1034. /* .no_alloc = */ true,
  1035. };
  1036. ggml_context * ctx = ggml_init(params);
  1037. GGML_ASSERT(ctx);
  1038. gf = ggml_new_graph(ctx);
  1039. // pre-graph sentinel
  1040. add_sentinel(ctx);
  1041. ggml_tensor * out = build_graph(ctx);
  1042. current_op_name = op_desc(out);
  1043. if (!matches_filter(out, op_names_filter)) {
  1044. //printf(" %s: skipping\n", op_desc(out).c_str());
  1045. ggml_free(ctx);
  1046. return test_status_t::SKIPPED;
  1047. }
  1048. // check if the backends support the ops
  1049. bool supported = true;
  1050. for (ggml_backend_t backend : {backend1, backend2}) {
  1051. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1052. if (!ggml_backend_supports_op(backend, t)) {
  1053. supported = false;
  1054. break;
  1055. }
  1056. }
  1057. }
  1058. if (!supported) {
  1059. // Create test result for unsupported operation
  1060. test_result result(ggml_backend_name(backend1), current_op_name, vars(), "test",
  1061. false, false, "not supported");
  1062. if (output_printer) {
  1063. output_printer->print_test_result(result);
  1064. }
  1065. ggml_free(ctx);
  1066. return test_status_t::NOT_SUPPORTED;
  1067. }
  1068. // post-graph sentinel
  1069. add_sentinel(ctx);
  1070. // allocate
  1071. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1);
  1072. if (buf == NULL) {
  1073. printf("failed to allocate tensors [%s] ", ggml_backend_name(backend1));
  1074. ggml_free(ctx);
  1075. return test_status_t::FAIL;
  1076. }
  1077. // build graph
  1078. ggml_build_forward_expand(gf, out);
  1079. // add sentinels as graph nodes so that they are checked in the callback
  1080. for (ggml_tensor * sentinel : sentinels) {
  1081. ggml_graph_add_node(gf, sentinel);
  1082. }
  1083. // randomize tensors
  1084. initialize_tensors(ctx);
  1085. // compare
  1086. struct callback_userdata {
  1087. bool ok;
  1088. test_case * tc;
  1089. ggml_backend_t backend1;
  1090. ggml_backend_t backend2;
  1091. };
  1092. callback_userdata ud {
  1093. true,
  1094. this,
  1095. backend1,
  1096. backend2,
  1097. };
  1098. auto callback = [](int index, ggml_tensor * t1, ggml_tensor * t2, void * user_data) -> bool {
  1099. callback_userdata * ud = (callback_userdata *) user_data;
  1100. const char * bn1 = ggml_backend_name(ud->backend1);
  1101. const char * bn2 = ggml_backend_name(ud->backend2);
  1102. if (t1->op == GGML_OP_NONE) {
  1103. // sentinels must be unchanged
  1104. std::vector<uint8_t> t1_data(ggml_nbytes(t1));
  1105. std::vector<uint8_t> t2_data(ggml_nbytes(t2));
  1106. ggml_backend_tensor_get(t1, t1_data.data(), 0, ggml_nbytes(t1));
  1107. ggml_backend_tensor_get(t2, t2_data.data(), 0, ggml_nbytes(t2));
  1108. if (memcmp(t1_data.data(), t2_data.data(), ggml_nbytes(t1)) != 0) {
  1109. printf("sentinel mismatch: %s ", t1->name);
  1110. ud->ok = false;
  1111. return true;
  1112. }
  1113. }
  1114. std::vector<float> f1 = tensor_to_float(t1);
  1115. std::vector<float> f2 = tensor_to_float(t2);
  1116. for (size_t i = 0; i < f1.size(); i++) {
  1117. // check for nans
  1118. if (std::isnan(f1[i]) || std::isnan(f2[i])) {
  1119. printf("[%s] NaN at index %zu (%s=%f %s=%f) ", ggml_op_desc(t1), i, bn1, f1[i], bn2, f2[i]);
  1120. ud->ok = false;
  1121. return true;
  1122. }
  1123. // check for infs: both must be inf of the same sign, or both must be finite
  1124. if (isinf_or_max(f1[i]) || isinf_or_max(f2[i])) {
  1125. if (isinf_or_max(f1[i]) && isinf_or_max(f2[i])) {
  1126. if (std::signbit(f1[i]) != std::signbit(f2[i])) {
  1127. printf("[%s] inf sign mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  1128. ud->ok = false;
  1129. return true;
  1130. }
  1131. } else {
  1132. printf("[%s] inf mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  1133. ud->ok = false;
  1134. return true;
  1135. }
  1136. }
  1137. }
  1138. double err = ud->tc->err(f1.data(), f2.data(), f1.size());
  1139. if (err > ud->tc->max_err()) {
  1140. printf("[%s] ERR = %.9f > %.9f ", ggml_op_desc(t1), err, ud->tc->max_err());
  1141. //for (int i = 0; i < (int) f1.size(); i++) {
  1142. // printf("%5d %9.6f %9.6f, diff = %9.6f\n", i, f1[i], f2[i], f1[i] - f2[i]);
  1143. //}
  1144. //printf("\n");
  1145. //exit(1);
  1146. ud->ok = false;
  1147. }
  1148. return true;
  1149. GGML_UNUSED(index);
  1150. };
  1151. const bool cmp_ok = ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud, run_whole_graph() ? out : nullptr);
  1152. ggml_backend_buffer_free(buf);
  1153. ggml_free(ctx);
  1154. // Create test result
  1155. bool test_passed = ud.ok && cmp_ok;
  1156. std::string error_msg = test_passed ? "" : (!cmp_ok ? "compare failed" : "test failed");
  1157. test_result result(ggml_backend_name(backend1), current_op_name, vars(), "test", supported, test_passed,
  1158. error_msg);
  1159. if (output_printer) {
  1160. output_printer->print_test_result(result);
  1161. }
  1162. return test_passed ? test_status_t::OK : test_status_t::FAIL;
  1163. }
  1164. bool eval_perf(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) {
  1165. mode = MODE_PERF;
  1166. static const size_t graph_nodes = 8192;
  1167. ggml_init_params params = {
  1168. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
  1169. /* .mem_base = */ NULL,
  1170. /* .no_alloc = */ true,
  1171. };
  1172. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  1173. GGML_ASSERT(ctx);
  1174. ggml_tensor * out = build_graph(ctx.get());
  1175. current_op_name = op_desc(out);
  1176. if (!matches_filter(out, op_names_filter)) {
  1177. //printf(" %s: skipping\n", op_desc(out).c_str());
  1178. return true;
  1179. }
  1180. if (!ggml_backend_supports_op(backend, out)) {
  1181. // Create test result for unsupported performance test
  1182. test_result result(ggml_backend_name(backend), current_op_name, vars(), "perf", false, false,
  1183. "not supported");
  1184. output_printer->print_test_result(result);
  1185. return true;
  1186. }
  1187. // allocate
  1188. ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
  1189. if (buf == NULL) {
  1190. printf("failed to allocate tensors\n");
  1191. return false;
  1192. }
  1193. // randomize tensors
  1194. initialize_tensors(ctx.get());
  1195. // build graph
  1196. ggml_cgraph * gf = ggml_new_graph_custom(ctx.get(), graph_nodes, false);
  1197. ggml_build_forward_expand(gf, out);
  1198. // warmup run
  1199. ggml_status status = ggml_backend_graph_compute(backend, gf);
  1200. if (status != GGML_STATUS_SUCCESS) {
  1201. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1202. return false;
  1203. }
  1204. // determine number of runs
  1205. int n_runs;
  1206. bool is_cpu = ggml_backend_dev_type(ggml_backend_get_device(backend)) == GGML_BACKEND_DEVICE_TYPE_CPU;
  1207. if (op_flops(out) > 0) {
  1208. // based on flops
  1209. const uint64_t GFLOP = 1000 * 1000 * 1000;
  1210. const uint64_t target_flops_cpu = 8ULL * GFLOP;
  1211. const uint64_t target_flops_gpu = 100ULL * GFLOP;
  1212. uint64_t target_flops = is_cpu ? target_flops_cpu : target_flops_gpu;
  1213. n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_flops / op_flops(out)) + 1;
  1214. } else {
  1215. // based on memory size
  1216. const size_t GB = 1ULL << 30;
  1217. const size_t target_size_cpu = 8 * GB;
  1218. const size_t target_size_gpu = 32 * GB;
  1219. size_t target_size = is_cpu ? target_size_cpu : target_size_gpu;
  1220. n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_size / op_size(out)) + 1;
  1221. }
  1222. // duplicate the op
  1223. for (int i = 1; i < n_runs; i++) {
  1224. ggml_graph_add_node(gf, out);
  1225. }
  1226. // calculate memory
  1227. size_t mem = n_runs * op_size(out);
  1228. auto tensor_op_size = [](ggml_tensor * t) {
  1229. size_t size = ggml_nbytes(t);
  1230. // add source tensors
  1231. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1232. if (t->src[i] != NULL) {
  1233. size += ggml_nbytes(t->src[i]);
  1234. }
  1235. }
  1236. return size;
  1237. };
  1238. for (int i = 0; i < ggml_graph_n_nodes(gf); ++i) {
  1239. if (ggml_is_view_op(ggml_graph_node(gf, i)->op) || ggml_graph_node(gf, i) == out) {
  1240. continue;
  1241. }
  1242. mem += tensor_op_size(ggml_graph_node(gf, i));
  1243. }
  1244. // run
  1245. int64_t total_time_us = 0;
  1246. int64_t total_mem = 0;
  1247. int total_runs = 0;
  1248. do {
  1249. int64_t start_time = ggml_time_us();
  1250. ggml_status status = ggml_backend_graph_compute(backend, gf);
  1251. if (status != GGML_STATUS_SUCCESS) {
  1252. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1253. return false;
  1254. }
  1255. int64_t end_time = ggml_time_us();
  1256. total_time_us += end_time - start_time;
  1257. total_mem += mem;
  1258. total_runs += n_runs;
  1259. } while (total_time_us < 1000*1000); // run for at least 1 second
  1260. // Create test result
  1261. double avg_time_us = (double) total_time_us / total_runs;
  1262. double calculated_flops = (op_flops(out) > 0) ? (op_flops(out) * total_runs) / (total_time_us / 1e6) : 0.0;
  1263. double calculated_bandwidth =
  1264. (op_flops(out) == 0) ? total_mem / (total_time_us / 1e6) / 1024.0 / 1024.0 / 1024.0 : 0.0;
  1265. size_t calculated_memory_kb = op_size(out) / 1024;
  1266. test_result result(ggml_backend_name(backend), current_op_name, vars(), "perf", true, true, "", avg_time_us,
  1267. calculated_flops, calculated_bandwidth, calculated_memory_kb, total_runs);
  1268. if (output_printer) {
  1269. output_printer->print_test_result(result);
  1270. }
  1271. return true;
  1272. }
  1273. bool eval_support(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) {
  1274. mode = MODE_SUPPORT;
  1275. static const size_t graph_nodes = 8192;
  1276. ggml_init_params params = {
  1277. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
  1278. /* .mem_base = */ NULL,
  1279. /* .no_alloc = */ true,
  1280. };
  1281. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  1282. GGML_ASSERT(ctx);
  1283. gf = ggml_new_graph_custom(ctx.get(), graph_nodes, false);
  1284. ggml_tensor * out = build_graph(ctx.get());
  1285. current_op_name = op_desc(out);
  1286. if (!matches_filter(out, op_names_filter)) {
  1287. return true;
  1288. }
  1289. bool supported = ggml_backend_supports_op(backend, out);
  1290. std::string device_desc = ggml_backend_dev_description(ggml_backend_get_device(backend));
  1291. std::string backend_reg_name = ggml_backend_reg_name(ggml_backend_dev_backend_reg(ggml_backend_get_device(backend)));
  1292. test_result result(ggml_backend_name(backend), current_op_name, vars(), "support", supported, supported,
  1293. supported ? "yes" : "no", 0.0, 0.0, 0.0, 0, 0, device_desc, backend_reg_name);
  1294. output_printer->print_test_result(result);
  1295. return true;
  1296. }
  1297. bool eval_grad(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) {
  1298. mode = MODE_GRAD;
  1299. const std::vector<float> expect = grad_expect();
  1300. ggml_init_params params = {
  1301. /* .mem_size = */ ggml_tensor_overhead()*128 + 2*ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, true),
  1302. /* .mem_base = */ NULL,
  1303. /* .no_alloc = */ true,
  1304. };
  1305. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  1306. GGML_ASSERT(ctx);
  1307. gf = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
  1308. gb = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
  1309. ggml_tensor * out = build_graph(ctx.get());
  1310. if (!matches_filter(out, op_names_filter) || out->op == GGML_OP_OPT_STEP_ADAMW) {
  1311. return true;
  1312. }
  1313. if (out->type != GGML_TYPE_F32) {
  1314. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1315. test_status_t::NOT_SUPPORTED,
  1316. out->name + std::string("->type != FP32")));
  1317. return true;
  1318. }
  1319. // Print operation info first
  1320. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend)));
  1321. // check if the backend supports the ops
  1322. bool supported = true;
  1323. bool any_params = false;
  1324. std::string failure_reason;
  1325. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1326. if (!ggml_backend_supports_op(backend, t)) {
  1327. supported = false;
  1328. failure_reason = ggml_backend_name(backend);
  1329. break;
  1330. }
  1331. if ((t->flags & GGML_TENSOR_FLAG_PARAM)) {
  1332. any_params = true;
  1333. if (t->type != GGML_TYPE_F32) {
  1334. supported = false;
  1335. failure_reason = std::string(t->name) + "->type != FP32";
  1336. break;
  1337. }
  1338. }
  1339. }
  1340. if (!any_params) {
  1341. supported = false;
  1342. failure_reason = op_desc(out);
  1343. }
  1344. if (!supported) {
  1345. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1346. test_status_t::NOT_SUPPORTED, failure_reason));
  1347. return true;
  1348. }
  1349. int64_t ngrads = 0;
  1350. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1351. if (t->flags & GGML_TENSOR_FLAG_PARAM) {
  1352. ngrads += ggml_nelements(t);
  1353. }
  1354. }
  1355. if (ngrads > grad_nmax()) {
  1356. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1357. info.set_large_tensor_skip();
  1358. output_printer->print_operation(info);
  1359. return true;
  1360. }
  1361. if (!ggml_is_scalar(out)) {
  1362. out = ggml_sum(ctx.get(), out);
  1363. ggml_set_name(out, "sum_of_out");
  1364. }
  1365. ggml_set_loss(out);
  1366. ggml_build_forward_expand(gf, out);
  1367. ggml_graph_cpy(gf, gb);
  1368. ggml_build_backward_expand(ctx.get(), gb, nullptr);
  1369. if (expect.size() != 1 || expect[0] != 0.0f) {
  1370. GGML_ASSERT(ggml_graph_n_nodes(gb) > ggml_graph_n_nodes(gf));
  1371. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1372. GGML_ASSERT(!(t->flags & GGML_TENSOR_FLAG_PARAM) || ggml_graph_get_grad(gb, t)->op != GGML_OP_NONE);
  1373. }
  1374. }
  1375. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1376. if (!ggml_backend_supports_op(backend, t)) {
  1377. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1378. test_status_t::NOT_SUPPORTED,
  1379. ggml_backend_name(backend)));
  1380. supported = false;
  1381. break;
  1382. }
  1383. if ((t->flags & GGML_TENSOR_FLAG_PARAM) && t->type != GGML_TYPE_F32) {
  1384. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1385. test_status_t::NOT_SUPPORTED,
  1386. std::string(t->name) + "->type != FP32"));
  1387. supported = false;
  1388. break;
  1389. }
  1390. }
  1391. if (!supported) {
  1392. return true;
  1393. }
  1394. // allocate
  1395. ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
  1396. if (buf == NULL) {
  1397. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1398. info.set_error("allocation", "");
  1399. output_printer->print_operation(info);
  1400. return false;
  1401. }
  1402. initialize_tensors(ctx.get()); // Randomizes all tensors (including gradients).
  1403. ggml_graph_reset(gb); // Sets gradients to 1 if loss, 0 otherwise.
  1404. ggml_status status = ggml_backend_graph_compute(backend, gf);
  1405. if (status != GGML_STATUS_SUCCESS) {
  1406. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1407. return false;
  1408. }
  1409. status = ggml_backend_graph_compute(backend, gb);
  1410. if (status != GGML_STATUS_SUCCESS) {
  1411. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1412. return false;
  1413. }
  1414. bool ok = true;
  1415. for (struct ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != nullptr; t = ggml_get_next_tensor(ctx.get(), t)) {
  1416. if (!(t->flags & GGML_TENSOR_FLAG_PARAM)) {
  1417. continue;
  1418. }
  1419. const char * bn = ggml_backend_name(backend);
  1420. const int64_t ne = ggml_nelements(t);
  1421. std::vector<float> ga;
  1422. struct ggml_tensor * grad = ggml_graph_get_grad(gb, t);
  1423. if (grad) {
  1424. ga = tensor_to_float(grad);
  1425. } else {
  1426. ga.resize(ne); // default value is 0.0f
  1427. }
  1428. for (int64_t i = 0; i < ne; ++i) { // gradient algebraic
  1429. // check for nans
  1430. if (!std::isfinite(ga[i])) {
  1431. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1432. info.set_gradient_info(i, bn, ga[i]);
  1433. output_printer->print_operation(info);
  1434. ok = false;
  1435. break;
  1436. }
  1437. }
  1438. if (!ok) {
  1439. break;
  1440. }
  1441. std::vector<float> gn(ne); // gradient numeric
  1442. GGML_ASSERT(ga.size() == gn.size());
  1443. std::vector<float> x0 = tensor_to_float(t); // original t data
  1444. GGML_ASSERT(ggml_is_scalar(out));
  1445. GGML_ASSERT(out->type == GGML_TYPE_F32);
  1446. const float eps = grad_eps();
  1447. for (int64_t i = 0; i < ne; ++i) {
  1448. const float xiu = x0[i] + 1.0f*eps; // x, index i, up
  1449. const float xiuh = x0[i] + 0.5f*eps; // x, index i, up half
  1450. const float xidh = x0[i] - 0.5f*eps; // x, index i, down half
  1451. const float xid = x0[i] - 1.0f*eps; // x, index i, down
  1452. float fu, fuh, fdh, fd; // output values for xiu, xiuh, xid, xidh
  1453. ggml_backend_tensor_set(t, &xiu, i*sizeof(float), sizeof(float));
  1454. status = ggml_backend_graph_compute(backend, gf);
  1455. if (status != GGML_STATUS_SUCCESS) {
  1456. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1457. return false;
  1458. }
  1459. ggml_backend_tensor_get(out, &fu, 0, ggml_nbytes(out));
  1460. ggml_backend_tensor_set(t, &xid, i*sizeof(float), sizeof(float));
  1461. status = ggml_backend_graph_compute(backend, gf);
  1462. if (status != GGML_STATUS_SUCCESS) {
  1463. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1464. return false;
  1465. }
  1466. ggml_backend_tensor_get(out, &fd, 0, ggml_nbytes(out));
  1467. if (grad_precise()) {
  1468. ggml_backend_tensor_set(t, &xiuh, i*sizeof(float), sizeof(float));
  1469. status = ggml_backend_graph_compute(backend, gf);
  1470. if (status != GGML_STATUS_SUCCESS) {
  1471. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1472. return false;
  1473. }
  1474. ggml_backend_tensor_get(out, &fuh, 0, ggml_nbytes(out));
  1475. ggml_backend_tensor_set(t, &xidh, i*sizeof(float), sizeof(float));
  1476. status = ggml_backend_graph_compute(backend, gf);
  1477. if (status != GGML_STATUS_SUCCESS) {
  1478. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1479. return false;
  1480. }
  1481. ggml_backend_tensor_get(out, &fdh, 0, ggml_nbytes(out));
  1482. gn[i] = (8.0*(double)fuh + (double)fd - (8.0*(double)fdh + (double)fu)) / (6.0*(double)eps);
  1483. } else {
  1484. gn[i] = (fu - fd) / (2.0f*eps);
  1485. }
  1486. ggml_backend_tensor_set(t, x0.data(), 0, ggml_nbytes(t));
  1487. }
  1488. const double err = mean_abs_asymm(gn.data(), ga.data(), gn.size(), expect);
  1489. if (err > max_maa_err()) {
  1490. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1491. info.set_maa_error(err, max_maa_err());
  1492. output_printer->print_operation(info);
  1493. ok = false;
  1494. break;
  1495. }
  1496. if (!ok) {
  1497. break;
  1498. }
  1499. }
  1500. // Create final test result
  1501. test_operation_info final_info(op_desc(out), vars(), ggml_backend_name(backend));
  1502. if (!ok) {
  1503. final_info.set_compare_failure();
  1504. }
  1505. final_info.status = ok ? test_status_t::OK : test_status_t::FAIL;
  1506. output_printer->print_operation(final_info);
  1507. if (ok) {
  1508. return true;
  1509. }
  1510. return false;
  1511. }
  1512. };
  1513. // ###################################
  1514. // ## Section 2: GGML Op Defintions ##
  1515. // ###################################
  1516. // The following is an example showing the bare minimum for creating a test for a GGML op.
  1517. // GGML_OP_EXAMPLE
  1518. struct test_example : public test_case {
  1519. // Always define these 2 or variants thereof:
  1520. const ggml_type type; // The type of the input tensors.
  1521. const std::array<int64_t, 4> ne; // The shape of the input tensors.
  1522. // For some ops it's necessary to define multiple types or shapes for the inputs.
  1523. // Or they may need additional parameters.
  1524. // Put all parameters needed to fully define the test into one of the VARS_TO_STR macros.
  1525. // In most cases these are just the properties of the struct that you defined above.
  1526. // This is needed for info prints.
  1527. std::string vars() override {
  1528. return VARS_TO_STR2(type, ne);
  1529. }
  1530. // Define a constructor for the struct.
  1531. // In most cases it will be sufficient to have the same arguments as the struct has properties
  1532. // and just use initializer lists.
  1533. test_example(ggml_type type = GGML_TYPE_F32,
  1534. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  1535. : type(type), ne(ne) {}
  1536. // Define how a simple GGML compute graph can be constructed for the new GGML op.
  1537. ggml_tensor * build_graph(ggml_context * ctx) override {
  1538. // Step 1: create input tensors that don't depend on any other tensors:
  1539. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1540. ggml_set_name(a, "a"); // Setting names is optional but it's useful for debugging.
  1541. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1542. ggml_set_name(b, "b");
  1543. // Step 2: use the op that you want to test in the GGML compute graph.
  1544. ggml_tensor * out = ggml_add(ctx, a, b); // For this example we're just doing a simple addition.
  1545. ggml_set_name(out, "out");
  1546. // Step 3: return the output tensor.
  1547. return out;
  1548. }
  1549. // In order to also check the gradients for your op, add calls like ggml_set_param(a)
  1550. // immediately after you create the tensors.
  1551. // This is optional and only makes sense if a backward pass has actually been implemented for the new op.
  1552. };
  1553. // GGML_OP_UNARY
  1554. struct test_unary : public test_case {
  1555. const ggml_unary_op op;
  1556. const ggml_type type;
  1557. const std::array<int64_t, 4> ne_a;
  1558. int v; // view (1 : non-contiguous a)
  1559. std::string vars() override {
  1560. return VARS_TO_STR3(type, ne_a, v);
  1561. }
  1562. test_unary(ggml_unary_op op,
  1563. ggml_type type = GGML_TYPE_F32,
  1564. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1565. int v = 0)
  1566. : op(op), type(type), ne_a(ne_a), v(v) {}
  1567. ggml_tensor * build_graph(ggml_context * ctx) override {
  1568. const bool grad_supported = op == GGML_UNARY_OP_ABS || op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_NEG ||
  1569. op == GGML_UNARY_OP_STEP || op == GGML_UNARY_OP_RELU || op == GGML_UNARY_OP_SILU ||
  1570. op == GGML_UNARY_OP_EXPM1 || op == GGML_UNARY_OP_SOFTPLUS;
  1571. ggml_tensor * a;
  1572. if (v & 1) {
  1573. auto ne = ne_a; ne[0] *= 3;
  1574. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1575. if (grad_supported) {
  1576. ggml_set_param(a);
  1577. }
  1578. ggml_set_name(a, "a");
  1579. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1580. ggml_set_name(a, "view_of_a");
  1581. } else {
  1582. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1583. if (grad_supported) {
  1584. ggml_set_param(a);
  1585. }
  1586. ggml_set_name(a, "a");
  1587. }
  1588. ggml_tensor * out = ggml_unary(ctx, a, op);
  1589. ggml_set_name(out, "out");
  1590. return out;
  1591. }
  1592. void initialize_tensors(ggml_context * ctx) override {
  1593. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1594. // test extended range of values to check for NaNs in GELU
  1595. init_tensor_uniform(t, -150.f, 150.f);
  1596. }
  1597. }
  1598. float grad_eps() override {
  1599. return 15.0f;
  1600. }
  1601. std::vector<float> grad_expect() override {
  1602. if (op == GGML_UNARY_OP_ABS) {
  1603. return {-1.0f, 1.0f};
  1604. }
  1605. if (op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_STEP) {
  1606. return {0.0f};
  1607. }
  1608. if (op == GGML_UNARY_OP_RELU) {
  1609. return {0.0f, 1.0f};
  1610. }
  1611. return {};
  1612. }
  1613. };
  1614. // GGML_OP_GLU
  1615. struct test_glu : public test_case {
  1616. const ggml_glu_op op;
  1617. const ggml_type type;
  1618. const std::array<int64_t, 4> ne_a;
  1619. int v; // view (1 : non-contiguous a)
  1620. bool swapped;
  1621. std::string vars() override {
  1622. return VARS_TO_STR4(type, ne_a, v, swapped);
  1623. }
  1624. test_glu(ggml_glu_op op,
  1625. ggml_type type = GGML_TYPE_F32,
  1626. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1627. int v = 0,
  1628. bool swapped = false)
  1629. : op(op), type(type), ne_a(ne_a), v(v), swapped(swapped) {}
  1630. ggml_tensor * build_graph(ggml_context * ctx) override {
  1631. ggml_tensor * a;
  1632. if (v & 1) {
  1633. auto ne = ne_a; ne[0] *= 3;
  1634. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1635. ggml_set_name(a, "a");
  1636. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1637. ggml_set_name(a, "view_of_a");
  1638. } else {
  1639. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1640. ggml_set_name(a, "a");
  1641. }
  1642. ggml_tensor * out = ggml_glu(ctx, a, op, swapped);
  1643. ggml_set_name(out, "out");
  1644. return out;
  1645. }
  1646. void initialize_tensors(ggml_context * ctx) override {
  1647. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1648. // test extended range of values to check for NaNs in GELU
  1649. init_tensor_uniform(t, -150.f, 150.f);
  1650. }
  1651. }
  1652. };
  1653. struct test_glu_split : public test_case {
  1654. const ggml_glu_op op;
  1655. const ggml_type type;
  1656. const std::array<int64_t, 4> ne_a;
  1657. int v; // view (1 : non-contiguous a)
  1658. std::string vars() override {
  1659. return VARS_TO_STR3(type, ne_a, v) + ",split";
  1660. }
  1661. test_glu_split(ggml_glu_op op,
  1662. ggml_type type = GGML_TYPE_F32,
  1663. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1664. int v = 0)
  1665. : op(op), type(type), ne_a(ne_a), v(v) {}
  1666. ggml_tensor * build_graph(ggml_context * ctx) override {
  1667. ggml_tensor * a;
  1668. ggml_tensor * b;
  1669. if (v & 1) {
  1670. auto ne = ne_a; ne[0] *= 3;
  1671. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1672. ggml_set_param(a);
  1673. ggml_set_name(a, "a");
  1674. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1675. ggml_set_name(a, "view_of_a");
  1676. b = ggml_new_tensor(ctx, type, 4, ne.data());
  1677. ggml_set_param(b);
  1678. ggml_set_name(b, "b");
  1679. b = ggml_view_4d(ctx, b, ne_a[0], ne_a[1], ne_a[2], ne_a[3], b->nb[1], b->nb[2], b->nb[3], 0);
  1680. ggml_set_name(a, "view_of_b");
  1681. } else {
  1682. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1683. ggml_set_param(a);
  1684. ggml_set_name(a, "a");
  1685. b = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1686. ggml_set_param(b);
  1687. ggml_set_name(b, "b");
  1688. }
  1689. ggml_tensor * out = ggml_glu_split(ctx, a, b, op);
  1690. ggml_set_name(out, "out");
  1691. return out;
  1692. }
  1693. void initialize_tensors(ggml_context * ctx) override {
  1694. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1695. // test extended range of values to check for NaNs in GELU
  1696. init_tensor_uniform(t, -150.f, 150.f);
  1697. }
  1698. }
  1699. };
  1700. struct test_swiglu_oai : public test_case {
  1701. const ggml_type type;
  1702. const std::array<int64_t, 4> ne_a;
  1703. int v; // view (1 : non-contiguous a)
  1704. float alpha;
  1705. float limit;
  1706. std::string vars() override {
  1707. return VARS_TO_STR5(type, ne_a, v, alpha, limit);
  1708. }
  1709. test_swiglu_oai(ggml_type type = GGML_TYPE_F32,
  1710. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1711. int v = 0,
  1712. float alpha = 1.702f,
  1713. float limit = 7.0f)
  1714. : type(type), ne_a(ne_a), v(v), alpha(alpha), limit(limit) {}
  1715. ggml_tensor * build_graph(ggml_context * ctx) override {
  1716. ggml_tensor * a;
  1717. ggml_tensor * b;
  1718. if (v & 1) {
  1719. auto ne = ne_a; ne[0] *= 3;
  1720. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1721. ggml_set_param(a);
  1722. ggml_set_name(a, "a");
  1723. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1724. ggml_set_name(a, "view_of_a");
  1725. b = ggml_new_tensor(ctx, type, 4, ne.data());
  1726. ggml_set_param(b);
  1727. ggml_set_name(b, "b");
  1728. b = ggml_view_4d(ctx, b, ne_a[0], ne_a[1], ne_a[2], ne_a[3], b->nb[1], b->nb[2], b->nb[3], 0);
  1729. ggml_set_name(a, "view_of_b");
  1730. } else {
  1731. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1732. ggml_set_param(a);
  1733. ggml_set_name(a, "a");
  1734. b = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1735. ggml_set_param(b);
  1736. ggml_set_name(b, "b");
  1737. }
  1738. ggml_tensor * out = ggml_swiglu_oai(ctx, a, b, alpha, limit);
  1739. ggml_set_name(out, "out");
  1740. return out;
  1741. }
  1742. void initialize_tensors(ggml_context * ctx) override {
  1743. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1744. // test extended range of values to check for NaNs in GELU
  1745. init_tensor_uniform(t, -150.f, 150.f);
  1746. }
  1747. }
  1748. };
  1749. // GGML_OP_GET_ROWS
  1750. struct test_get_rows : public test_case {
  1751. const ggml_type type;
  1752. const int n; // cols
  1753. const int m; // rows
  1754. const int r; // rows to get
  1755. const int be1; // batch size
  1756. const int be2; // batch size
  1757. const bool v; // view (non-contiguous src1)
  1758. std::string vars() override {
  1759. return VARS_TO_STR7(type, n, m, r, be1, be2, v);
  1760. }
  1761. test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int be1 = 1, int be2 = 1, bool v = false)
  1762. : type(type), n(n), m(m), r(r), be1(be1), be2(be2), v(v) {}
  1763. ggml_tensor * build_graph(ggml_context * ctx) override {
  1764. ggml_tensor * in = ggml_new_tensor_4d(ctx, type, n, m, be1, be2);
  1765. ggml_set_name(in, "in");
  1766. ggml_tensor * rows = ggml_new_tensor_3d(ctx, GGML_TYPE_I32, r, be1, be2);
  1767. ggml_set_name(rows, "rows");
  1768. if (v) {
  1769. rows = ggml_view_3d(ctx, rows, r/2, be1, be2, rows->nb[1], rows->nb[2], 0);
  1770. ggml_set_name(rows, "view_of_rows");
  1771. }
  1772. const bool grad_supported = ggml_is_matrix(in) && ggml_is_vector(rows);
  1773. if (grad_supported) {
  1774. ggml_set_param(in);
  1775. // rows is a constant input -> no gradients
  1776. }
  1777. ggml_tensor * out = ggml_get_rows(ctx, in, rows);
  1778. ggml_set_name(out, "out");
  1779. return out;
  1780. }
  1781. void initialize_tensors(ggml_context * ctx) override {
  1782. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1783. if (t->type == GGML_TYPE_I32) {
  1784. if (ggml_is_view_op(t->op)) { continue; }
  1785. // rows
  1786. std::vector<int> data(r*be1*be2);
  1787. for (int i = 0; i < r*be1*be2; i++) {
  1788. data[i] = rand() % m;
  1789. }
  1790. ggml_backend_tensor_set(t, data.data(), 0, r * be1 * be2 * sizeof(int));
  1791. } else {
  1792. init_tensor_uniform(t);
  1793. }
  1794. }
  1795. }
  1796. };
  1797. // GGML_OP_GET_ROWS_BACK
  1798. struct test_get_rows_back : public test_case {
  1799. const ggml_type type;
  1800. const int n; // cols
  1801. const int m; // rows
  1802. const int r; // rows to get
  1803. const int b; // batch size
  1804. const bool v; // view (non-contiguous src1)
  1805. std::string vars() override {
  1806. return VARS_TO_STR6(type, n, m, r, b, v);
  1807. }
  1808. test_get_rows_back(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
  1809. : type(type), n(n), m(m), r(r), b(b), v(v) {}
  1810. ggml_tensor * build_graph(ggml_context * ctx) override {
  1811. ggml_tensor * in_forward = ggml_new_tensor_3d(ctx, type, n, m, b);
  1812. ggml_set_name(in_forward, "in_forward");
  1813. ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
  1814. ggml_set_name(rows, "rows");
  1815. if (v) {
  1816. rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
  1817. ggml_set_name(rows, "view_of_rows");
  1818. }
  1819. ggml_tensor * grad = ggml_new_tensor_3d(ctx, type, n, r, b);
  1820. ggml_set_name(grad, "grad");
  1821. ggml_tensor * out = ggml_get_rows_back(ctx, grad, rows, in_forward);
  1822. ggml_set_name(out, "out");
  1823. return out;
  1824. }
  1825. void initialize_tensors(ggml_context * ctx) override {
  1826. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1827. if (t->type == GGML_TYPE_I32) {
  1828. if (ggml_is_view_op(t->op)) { continue; }
  1829. // rows
  1830. std::vector<int> data(r*b);
  1831. for (int i = 0; i < r*b; i++) {
  1832. data[i] = rand() % m;
  1833. }
  1834. ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
  1835. } else {
  1836. init_tensor_uniform(t);
  1837. }
  1838. }
  1839. }
  1840. };
  1841. static void init_set_rows_row_ids(ggml_tensor * t, int num_rows) {
  1842. std::random_device rd;
  1843. std::default_random_engine rng(rd());
  1844. for (int i2 = 0; i2 < t->ne[2]; i2++) {
  1845. for (int i1 = 0; i1 < t->ne[1]; i1++) {
  1846. // generate a shuffled subset of row indices
  1847. std::vector<int64_t> data(num_rows);
  1848. for (int i = 0; i < num_rows; i++) {
  1849. data[i] = i;
  1850. }
  1851. std::shuffle(data.begin(), data.end(), rng);
  1852. data.resize(t->ne[0]);
  1853. const size_t offs = i1*t->nb[1] + i2*t->nb[2];
  1854. if (t->type == GGML_TYPE_I32) {
  1855. // TODO: Make a template or something
  1856. std::vector<int32_t> data_i32(t->ne[0]);
  1857. for (int i = 0; i < t->ne[0]; i++) {
  1858. data_i32[i] = static_cast<int32_t>(data[i]);
  1859. }
  1860. ggml_backend_tensor_set(t, data_i32.data(), offs, t->ne[0]*sizeof(int32_t));
  1861. } else {
  1862. ggml_backend_tensor_set(t, data.data(), offs, t->ne[0]*sizeof(int64_t));
  1863. }
  1864. }
  1865. }
  1866. }
  1867. // GGML_OP_SET_ROWS
  1868. struct test_set_rows : public test_case {
  1869. const ggml_type type;
  1870. const ggml_type type_idx;
  1871. const std::array<int64_t, 4> ne;
  1872. const std::array<int, 2> nr23; // broadcast only dims 2 and 3
  1873. const int r; // rows to set
  1874. const bool v; // view (non-contiguous src1)
  1875. std::string vars() override {
  1876. return VARS_TO_STR6(type, type_idx, ne, nr23, r, v);
  1877. }
  1878. test_set_rows(ggml_type type,
  1879. ggml_type type_idx,
  1880. std::array<int64_t, 4> ne,
  1881. std::array<int, 2> nr23,
  1882. int r, bool v = false)
  1883. : type(type), type_idx(type_idx), ne(ne), nr23(nr23), r(r), v(v) {}
  1884. ggml_tensor * build_graph(ggml_context * ctx) override {
  1885. ggml_tensor * dst = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2]*nr23[0], ne[3]*nr23[1]);
  1886. ggml_set_name(dst, "dst");
  1887. ggml_tensor * src = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne[0], r, ne[2]*nr23[0], ne[3]*nr23[1]);
  1888. ggml_set_name(src, "src");
  1889. ggml_tensor * row_idxs = ggml_new_tensor_3d(ctx, type_idx, r, ne[2], ne[3]);
  1890. ggml_set_name(row_idxs, "row_idxs");
  1891. if (v) {
  1892. src = ggml_view_4d(ctx, src, ne[0], r/2, ne[2]*nr23[0], ne[3]*nr23[1], src->nb[1], src->nb[2], src->nb[3], 0);
  1893. row_idxs = ggml_view_3d(ctx, row_idxs, r/2, ne[2], ne[3], row_idxs->nb[1], row_idxs->nb[2], 0);
  1894. ggml_set_name(row_idxs, "view_of_rows");
  1895. }
  1896. ggml_tensor * out = ggml_set_rows(ctx, dst, src, row_idxs);
  1897. ggml_set_name(out, "out");
  1898. return out;
  1899. }
  1900. void initialize_tensors(ggml_context * ctx) override {
  1901. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1902. if (t->type == GGML_TYPE_I64 || t->type == GGML_TYPE_I32) {
  1903. if (ggml_is_view_op(t->op)) {
  1904. continue;
  1905. }
  1906. init_set_rows_row_ids(t, ne[1]);
  1907. } else {
  1908. init_tensor_uniform(t);
  1909. }
  1910. }
  1911. }
  1912. double max_nmse_err() override {
  1913. if (type == GGML_TYPE_Q4_0 || type == GGML_TYPE_Q4_1 || type == GGML_TYPE_IQ4_NL ||
  1914. type == GGML_TYPE_Q5_0 || type == GGML_TYPE_Q5_1 || type == GGML_TYPE_Q8_0) {
  1915. // estimate what the max nmse error would be if one quantized value is
  1916. // off by one. The test values are distributed in [-1,1], so it'll be
  1917. // roughly (2.0 / 2^bits)^2, divided by the mean square value of the reference,
  1918. // which is roughly 0.25 times the number of elements.
  1919. double err_estimate = 1.0f/8.0f;
  1920. if (type == GGML_TYPE_Q5_0 || type == GGML_TYPE_Q5_1) {
  1921. err_estimate /= 2.0f;
  1922. }
  1923. if (type == GGML_TYPE_Q8_0) {
  1924. err_estimate /= 8.0f;
  1925. }
  1926. err_estimate *= err_estimate;
  1927. err_estimate /= 0.25f*float(ne[0] * r * ne[2]*nr23[0] * ne[3]*nr23[1]);
  1928. return err_estimate;
  1929. }
  1930. return 1e-7;
  1931. }
  1932. };
  1933. // GGML_OP_ROPE + GGML_OP_VIEW + GGML_OP_SET_ROWS
  1934. struct test_rope_set_rows : public test_case {
  1935. const ggml_type type;
  1936. const ggml_type type_idx;
  1937. const std::array<int64_t, 4> ne;
  1938. int mode;
  1939. std::string vars() override {
  1940. return VARS_TO_STR4(type, type_idx, ne, mode);
  1941. }
  1942. std::string op_desc(ggml_tensor * t) override {
  1943. GGML_UNUSED(t);
  1944. return "ROPE_SET_ROWS";
  1945. }
  1946. bool run_whole_graph() override { return true; }
  1947. test_rope_set_rows(ggml_type type,
  1948. ggml_type type_idx,
  1949. std::array<int64_t, 4> ne,
  1950. int mode)
  1951. : type(type), type_idx(type_idx), ne(ne), mode(mode) {}
  1952. ggml_tensor * build_graph(ggml_context * ctx) override {
  1953. ggml_tensor * src = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne[0], ne[1], ne[2], 1);
  1954. ggml_set_name(src, "src");
  1955. ggml_tensor * pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne[2]);
  1956. ggml_tensor * rope = ggml_rope(ctx, src, pos, ne[0], mode);
  1957. ggml_tensor * view = ggml_view_2d(ctx, rope, ne[0] * ne[1], ne[2], rope->nb[2], 0);
  1958. ggml_tensor * dst = ggml_new_tensor_4d(ctx, type, ne[0] * ne[1], ne[2] * ne[3], 1, 1);
  1959. ggml_set_name(dst, "dst");
  1960. ggml_tensor * row_idxs = ggml_new_tensor_3d(ctx, type_idx, ne[2], 1, 1);
  1961. ggml_set_name(row_idxs, "row_idxs");
  1962. ggml_tensor * out = ggml_set_rows(ctx, dst, view, row_idxs);
  1963. ggml_set_name(out, "out");
  1964. return out;
  1965. }
  1966. void initialize_tensors(ggml_context * ctx) override {
  1967. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1968. if (t->type == GGML_TYPE_I64 || t->type == GGML_TYPE_I32) {
  1969. if (ggml_is_view_op(t->op)) {
  1970. continue;
  1971. }
  1972. init_set_rows_row_ids(t, ne[2]);
  1973. } else {
  1974. init_tensor_uniform(t);
  1975. }
  1976. }
  1977. }
  1978. };
  1979. // GGML_OP_RMS_NORM + GGML_OP_MUL + GGML_OP_ROPE (+ GGML_OP_VIEW + GGML_OP_SET_ROWS)
  1980. struct test_rms_norm_mul_rope : public test_case {
  1981. const std::array<int64_t, 4> ne;
  1982. const float eps;
  1983. const bool multi_add; // test a sequence of adds feeding into rms_norm
  1984. const bool set_rows;
  1985. int mode;
  1986. std::string op_desc(ggml_tensor * t) override {
  1987. GGML_UNUSED(t);
  1988. return "RMS_NORM_MUL_ROPE";
  1989. }
  1990. bool run_whole_graph() override { return true; }
  1991. std::string vars() override {
  1992. return VARS_TO_STR5(ne, eps, multi_add, set_rows, mode);
  1993. }
  1994. test_rms_norm_mul_rope(std::array<int64_t, 4> ne, float eps = 1e-6f, bool multi_add = false,
  1995. bool set_rows = false, int mode = GGML_ROPE_TYPE_NORMAL)
  1996. : ne(ne), eps(eps), multi_add(multi_add), set_rows(set_rows), mode(mode) {}
  1997. ggml_tensor * build_graph(ggml_context * ctx) override {
  1998. ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne[0], ne[1], ne[2], 1);
  1999. ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne[0], ne[1], ne[2], 1);
  2000. ggml_tensor * c = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne[0], ne[1], ne[2], 1);
  2001. if (multi_add) {
  2002. a = ggml_add(ctx, ggml_add(ctx, a, b), c);
  2003. }
  2004. a = ggml_mul(ctx, ggml_rms_norm(ctx, a, eps), b);
  2005. ggml_tensor * pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne[2]);
  2006. ggml_tensor * rope = ggml_rope(ctx, a, pos, ne[0], mode);
  2007. ggml_tensor * out;
  2008. if (set_rows) {
  2009. ggml_tensor * view = ggml_view_2d(ctx, rope, ne[0] * ne[1], ne[2], rope->nb[2], 0);
  2010. ggml_tensor * dst = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, ne[0] * ne[1], ne[2] * ne[3], 1, 1);
  2011. ggml_set_name(dst, "dst");
  2012. ggml_tensor * row_idxs = ggml_new_tensor_3d(ctx, GGML_TYPE_I64, ne[2], 1, 1);
  2013. ggml_set_name(row_idxs, "row_idxs");
  2014. out = ggml_set_rows(ctx, dst, view, row_idxs);
  2015. ggml_set_name(out, "out");
  2016. } else {
  2017. out = rope;
  2018. }
  2019. return out;
  2020. }
  2021. void initialize_tensors(ggml_context * ctx) override {
  2022. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2023. if (t->type == GGML_TYPE_I64 || t->type == GGML_TYPE_I32) {
  2024. if (ggml_is_view_op(t->op)) {
  2025. continue;
  2026. }
  2027. init_set_rows_row_ids(t, ne[2]);
  2028. } else {
  2029. init_tensor_uniform(t);
  2030. }
  2031. }
  2032. }
  2033. };
  2034. // GGML_OP_ARGMAX
  2035. struct test_argmax : public test_case {
  2036. const ggml_type type;
  2037. const std::array<int64_t, 4> ne;
  2038. std::string vars() override {
  2039. return VARS_TO_STR2(type, ne);
  2040. }
  2041. test_argmax(ggml_type type = GGML_TYPE_F32,
  2042. std::array<int64_t, 4> ne = {10, 100, 1, 1})
  2043. : type(type), ne(ne) {}
  2044. ggml_tensor * build_graph(ggml_context * ctx) override {
  2045. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2046. ggml_set_name(a, "a");
  2047. ggml_tensor * out = ggml_argmax(ctx, a);
  2048. ggml_set_name(out, "out");
  2049. return out;
  2050. }
  2051. void initialize_tensors(ggml_context * ctx) override {
  2052. std::random_device rd;
  2053. std::default_random_engine rng(rd());
  2054. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2055. if (t->type == GGML_TYPE_F32) {
  2056. // initialize with unique values to avoid ties
  2057. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2058. std::vector<float> data(t->ne[0]);
  2059. for (int i = 0; i < t->ne[0]; i++) {
  2060. data[i] = i;
  2061. }
  2062. std::shuffle(data.begin(), data.end(), rng);
  2063. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  2064. }
  2065. } else {
  2066. init_tensor_uniform(t);
  2067. }
  2068. }
  2069. }
  2070. double max_nmse_err() override {
  2071. return 0.0;
  2072. }
  2073. };
  2074. // GGML_OP_COUNT_EQUAL
  2075. struct test_count_equal : public test_case {
  2076. const ggml_type type;
  2077. const std::array<int64_t, 4> ne;
  2078. std::string vars() override {
  2079. return VARS_TO_STR2(type, ne);
  2080. }
  2081. test_count_equal(ggml_type type = GGML_TYPE_F32,
  2082. std::array<int64_t, 4> ne = {4, 500, 1, 1})
  2083. : type(type), ne(ne) {}
  2084. ggml_tensor * build_graph(ggml_context * ctx) override {
  2085. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2086. ggml_set_name(a, "a");
  2087. ggml_tensor * a_argmax = ggml_argmax(ctx, a);
  2088. ggml_set_name(a_argmax, "a_argmax");
  2089. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2090. ggml_set_name(b, "b");
  2091. ggml_tensor * b_argmax = ggml_argmax(ctx, b);
  2092. ggml_set_name(b_argmax, "b_argmax");
  2093. ggml_tensor * out = ggml_count_equal(ctx, a_argmax, b_argmax);
  2094. ggml_set_name(out, "out");
  2095. return out;
  2096. }
  2097. double max_nmse_err() override {
  2098. return 0.0;
  2099. }
  2100. void initialize_tensors(ggml_context * ctx) override {
  2101. std::random_device rd;
  2102. std::default_random_engine rng(rd());
  2103. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2104. if (t->type == GGML_TYPE_F32) {
  2105. // initialize with unique values to avoid ties
  2106. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2107. std::vector<float> data(t->ne[0]);
  2108. for (int i = 0; i < t->ne[0]; i++) {
  2109. data[i] = i;
  2110. }
  2111. std::shuffle(data.begin(), data.end(), rng);
  2112. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  2113. }
  2114. } else {
  2115. init_tensor_uniform(t);
  2116. }
  2117. }
  2118. }
  2119. };
  2120. // GGML_OP_REPEAT
  2121. struct test_repeat : public test_case {
  2122. const ggml_type type;
  2123. const std::array<int64_t, 4> ne;
  2124. const std::array<int, 4> nr;
  2125. std::string vars() override {
  2126. return VARS_TO_STR3(type, ne, nr);
  2127. }
  2128. size_t op_size(ggml_tensor * t) override {
  2129. return ggml_nbytes(t) * 2;
  2130. }
  2131. test_repeat(ggml_type type = GGML_TYPE_F32,
  2132. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  2133. std::array<int, 4> nr = {2, 2, 2, 2})
  2134. : type(type), ne(ne), nr(nr) {}
  2135. ggml_tensor * build_graph(ggml_context * ctx) override {
  2136. ggml_tensor * target = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  2137. ggml_set_name(target, "target");
  2138. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  2139. ggml_set_param(src);
  2140. ggml_set_name(src, "src");
  2141. ggml_tensor * out = ggml_repeat(ctx, src, target);
  2142. ggml_set_name(out, "out");
  2143. return out;
  2144. }
  2145. };
  2146. // GGML_OP_REPEAT_BACK
  2147. struct test_repeat_back : public test_case {
  2148. const ggml_type type;
  2149. const std::array<int64_t, 4> ne;
  2150. const std::array<int, 4> nr;
  2151. const bool v; // whether src is a noncontiguous view
  2152. std::string vars() override {
  2153. return VARS_TO_STR4(type, ne, nr, v);
  2154. }
  2155. size_t op_size(ggml_tensor * t) override {
  2156. return ggml_nbytes(t) * 2;
  2157. }
  2158. test_repeat_back(ggml_type type = GGML_TYPE_F32,
  2159. std::array<int64_t, 4> ne = {8, 6, 4, 2},
  2160. std::array<int, 4> nr = {2, 2, 2, 2},
  2161. bool v = false)
  2162. : type(type), ne(ne), nr(nr), v(v) {}
  2163. ggml_tensor * build_graph(ggml_context * ctx) override {
  2164. ggml_tensor * src = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  2165. ggml_set_name(src, "src");
  2166. if (v) {
  2167. GGML_ASSERT(ne[0] % 2 == 0);
  2168. GGML_ASSERT(ne[1] % 2 == 0);
  2169. GGML_ASSERT(ne[2] % 2 == 0);
  2170. GGML_ASSERT(ne[3] % 2 == 0);
  2171. GGML_ASSERT(nr[0] % 2 == 0 || nr[0] == 1);
  2172. GGML_ASSERT(nr[1] % 2 == 0 || nr[1] == 1);
  2173. GGML_ASSERT(nr[2] % 2 == 0 || nr[2] == 1);
  2174. GGML_ASSERT(nr[3] % 2 == 0 || nr[3] == 1);
  2175. const int64_t ne00 = nr[0] == 1 ? src->ne[0] : src->ne[0] / 2;
  2176. const int64_t ne01 = nr[1] == 1 ? src->ne[1] : src->ne[1] / 2;
  2177. const int64_t ne02 = nr[2] == 1 ? src->ne[2] : src->ne[2] / 2;
  2178. const int64_t ne03 = nr[3] == 1 ? src->ne[3] : src->ne[3] / 2;
  2179. src = ggml_view_4d(ctx, src, ne00, ne01, ne02, ne03, src->nb[1], src->nb[2], src->nb[3], 0);
  2180. }
  2181. ggml_tensor * target = ggml_new_tensor(ctx, type, 4, ne.data());
  2182. ggml_set_name(target, "target");
  2183. ggml_tensor * out = ggml_repeat_back(ctx, src, target);
  2184. ggml_set_name(out, "out");
  2185. return out;
  2186. }
  2187. };
  2188. // GGML_OP_DUP
  2189. struct test_dup : public test_case {
  2190. const ggml_type type;
  2191. const std::array<int64_t, 4> ne;
  2192. const std::array<int64_t, 4> permute;
  2193. bool _use_permute;
  2194. std::string vars() override {
  2195. std::string v = VARS_TO_STR2(type, ne);
  2196. if (_use_permute) v += "," + VAR_TO_STR(permute);
  2197. return v;
  2198. }
  2199. test_dup(ggml_type type = GGML_TYPE_F32,
  2200. std::array<int64_t, 4> ne = {10, 10, 20, 1},
  2201. std::array<int64_t, 4> permute = {0, 0, 0, 0})
  2202. : type(type), ne(ne), permute(permute),
  2203. _use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
  2204. ggml_tensor * build_graph(ggml_context * ctx) override {
  2205. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  2206. ggml_set_param(src);
  2207. ggml_set_name(src, "src");
  2208. if (_use_permute) {
  2209. src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]);
  2210. ggml_set_name(src, "src_permuted");
  2211. }
  2212. ggml_tensor * out = ggml_dup(ctx, src);
  2213. ggml_set_name(out, "out");
  2214. return out;
  2215. }
  2216. };
  2217. // GGML_OP_SET
  2218. struct test_set : public test_case {
  2219. const ggml_type type_src;
  2220. const ggml_type type_dst;
  2221. const std::array<int64_t, 4> ne;
  2222. const int dim;
  2223. std::string vars() override {
  2224. return VARS_TO_STR4(type_src, type_dst, ne, dim);
  2225. }
  2226. size_t op_size(ggml_tensor * t) override {
  2227. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  2228. }
  2229. test_set(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  2230. std::array<int64_t, 4> ne = {6, 5, 4, 3}, int dim = 1)
  2231. : type_src(type_src), type_dst(type_dst), ne(ne), dim(dim) {}
  2232. ggml_tensor * build_graph(ggml_context * ctx) override {
  2233. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  2234. ggml_set_param(src);
  2235. ggml_set_name(src, "src");
  2236. auto ne_dst = ne;
  2237. for (int i = 0; i < dim; ++i) {
  2238. ne_dst[i] *= 2;
  2239. }
  2240. ggml_tensor* dst = ggml_new_tensor(ctx, type_dst, 4, ne_dst.data());
  2241. ggml_set_param(dst);
  2242. ggml_set_name(dst, "dst");
  2243. size_t offset = 0;
  2244. for (int i = 0; i < dim; ++i) {
  2245. offset += ((ne_dst[i] - ne[i])/2)*dst->nb[i];
  2246. }
  2247. ggml_tensor * out = ggml_set(ctx, dst, src,
  2248. // The backward pass requires setting a contiguous region:
  2249. src->nb[1], src->nb[2], src->nb[3], offset);
  2250. ggml_set_name(out, "out");
  2251. return out;
  2252. }
  2253. };
  2254. // GGML_OP_CPY
  2255. struct test_cpy : public test_case {
  2256. const ggml_type type_src;
  2257. const ggml_type type_dst;
  2258. const std::array<int64_t, 4> ne;
  2259. const std::array<int64_t, 4> permute_src;
  2260. const std::array<int64_t, 4> permute_dst;
  2261. bool _src_use_permute;
  2262. bool _dst_use_permute;
  2263. bool _src_transpose;
  2264. std::string vars() override {
  2265. return VARS_TO_STR6(type_src, type_dst, ne, permute_src, permute_dst, _src_transpose);
  2266. }
  2267. double max_nmse_err() override {
  2268. if (type_src == type_dst) {
  2269. return 0.0;
  2270. }
  2271. if (type_dst == GGML_TYPE_Q4_0 || type_dst == GGML_TYPE_Q4_1 || type_dst == GGML_TYPE_IQ4_NL ||
  2272. type_dst == GGML_TYPE_Q5_0 || type_dst == GGML_TYPE_Q5_1 || type_dst == GGML_TYPE_Q8_0) {
  2273. // estimate what the max nmse error would be if one quantized value is
  2274. // off by one. The test values are distributed in [-150,150], so it'll be
  2275. // roughly (150*2.0 / 2^bits)^2, divided by the mean square value of the reference,
  2276. // which is roughly 0.25*150^2 times the number of elements.
  2277. double err_estimate = 1.0f/8.0f * 150.0f;
  2278. if (type_dst == GGML_TYPE_IQ4_NL) {
  2279. // iq4_nl values are a bit more spread out
  2280. err_estimate *= 2.0f;
  2281. }
  2282. if (type_dst == GGML_TYPE_Q5_0 || type_dst == GGML_TYPE_Q5_1) {
  2283. err_estimate /= 2.0f;
  2284. }
  2285. if (type_dst == GGML_TYPE_Q8_0) {
  2286. err_estimate /= 8.0f;
  2287. }
  2288. err_estimate *= err_estimate;
  2289. err_estimate /= (150.0f*150.0f*0.25f)*float(ne[0] * ne[1] * ne[2] * ne[3]);
  2290. return err_estimate;
  2291. }
  2292. return 1e-6;
  2293. }
  2294. size_t op_size(ggml_tensor * t) override {
  2295. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  2296. }
  2297. test_cpy(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  2298. std::array<int64_t, 4> ne = {10, 10, 10, 1},
  2299. std::array<int64_t, 4> permute_src = {0, 0, 0, 0},
  2300. std::array<int64_t, 4> permute_dst = {0, 0, 0, 0},
  2301. bool transpose_src = false)
  2302. : type_src(type_src), type_dst(type_dst), ne(ne), permute_src(permute_src), permute_dst(permute_dst),
  2303. _src_use_permute(permute_src[0] + permute_src[1] + permute_src[2] + permute_src[3] > 0),
  2304. _dst_use_permute(permute_dst[0] + permute_dst[1] + permute_dst[2] + permute_dst[3] > 0),
  2305. _src_transpose(transpose_src){}
  2306. ggml_tensor * build_graph(ggml_context * ctx) override {
  2307. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  2308. ggml_set_param(src);
  2309. ggml_set_name(src, "src");
  2310. if (_src_use_permute) {
  2311. src = ggml_permute(ctx, src, permute_src[0], permute_src[1], permute_src[2], permute_src[3]);
  2312. ggml_set_name(src, "src_permuted");
  2313. }
  2314. if (_src_transpose) {
  2315. src = ggml_transpose(ctx, src);
  2316. ggml_set_name(src, "src_transposed");
  2317. }
  2318. ggml_tensor * dst = ggml_new_tensor(ctx, type_dst, 4, src->ne);
  2319. ggml_set_name(dst, "dst");
  2320. if (_dst_use_permute) {
  2321. dst = ggml_permute(ctx, dst, permute_dst[0], permute_dst[1], permute_dst[2], permute_dst[3]);
  2322. ggml_set_name(dst, "dst_permuted");
  2323. }
  2324. ggml_tensor * out = ggml_cpy(ctx, src, dst);
  2325. ggml_set_name(out, "out");
  2326. return out;
  2327. }
  2328. void initialize_tensors(ggml_context * ctx) override {
  2329. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2330. // test extended range of values to check if casting between f32 and i32 is consistent
  2331. init_tensor_uniform(t, -150.f, 150.f);
  2332. }
  2333. }
  2334. };
  2335. // GGML_OP_CONT
  2336. struct test_cont : public test_case {
  2337. const ggml_type type;
  2338. const std::array<int64_t, 4> ne;
  2339. bool use_view_slice;
  2340. std::string vars() override {
  2341. return VARS_TO_STR3(type, ne, use_view_slice);
  2342. }
  2343. test_cont(ggml_type type = GGML_TYPE_F32,
  2344. std::array<int64_t, 4> ne = {10, 10, 10, 1},
  2345. bool use_view_slice = false)
  2346. : type(type), ne(ne), use_view_slice(use_view_slice) {}
  2347. ggml_tensor * build_graph(ggml_context * ctx) override {
  2348. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  2349. ggml_set_param(src);
  2350. ggml_set_name(src, "src");
  2351. ggml_tensor * dst;
  2352. if (use_view_slice) {
  2353. dst = ggml_view_4d(ctx, src, src->ne[0], 1, src->ne[2], src->ne[3],
  2354. src->nb[1], src->nb[2], src->nb[3], src->nb[0] * (src->ne[1] - 1));
  2355. ggml_set_name(dst, "src_view_slice");
  2356. } else {
  2357. dst = ggml_transpose(ctx, src);
  2358. ggml_set_name(dst, "src_transposed");
  2359. }
  2360. ggml_tensor * out = ggml_cont(ctx, dst);
  2361. ggml_set_name(out, "out");
  2362. return out;
  2363. }
  2364. };
  2365. // GGML_OP_ADD
  2366. // GGML_OP_SUB
  2367. // GGML_OP_MUL
  2368. // GGML_OP_DIV
  2369. struct test_bin_bcast : public test_case {
  2370. using op_t = ggml_tensor * (*) (ggml_context *, ggml_tensor *, ggml_tensor *);
  2371. op_t op;
  2372. const ggml_type type;
  2373. const std::array<int64_t, 4> ne;
  2374. const std::array<int, 4> nr;
  2375. int nf; // number of fused ops, nf == 1 -> single op (no fusion)
  2376. bool run_whole_graph() override { return nf > 1; }
  2377. std::string vars() override {
  2378. return VARS_TO_STR4(type, ne, nr, nf);
  2379. }
  2380. size_t op_size(ggml_tensor * t) override {
  2381. return ggml_nbytes(t) * 3;
  2382. }
  2383. test_bin_bcast(op_t op, ggml_type type = GGML_TYPE_F32,
  2384. std::array<int64_t, 4> ne = {10, 10, 1, 1},
  2385. std::array<int, 4> nr = {1, 2, 1, 1},
  2386. int nf = 1)
  2387. : op(op), type(type), ne(ne), nr(nr), nf(nf) {}
  2388. ggml_tensor * build_graph(ggml_context * ctx) override {
  2389. GGML_ASSERT(nf <= 16);
  2390. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  2391. ggml_set_name(a, "a");
  2392. ggml_tensor * b[16];
  2393. for (int i = 0; i < nf; ++i) {
  2394. b[i] = ggml_new_tensor(ctx, type, 4, ne.data());
  2395. ggml_set_name(b[i], (std::string("b") + std::to_string(i)).c_str());
  2396. }
  2397. // The backward pass supports broadcasting only for GGML_ADD:
  2398. const bool grad_supported = op == ggml_add && ggml_are_same_shape(a, b[0]) && nf == 1;
  2399. if (grad_supported) {
  2400. ggml_set_param(a);
  2401. ggml_set_param(b[0]);
  2402. }
  2403. ggml_tensor * out = a;
  2404. for (int i = 0; i < nf; ++i) {
  2405. out = op(ctx, out, b[i]);
  2406. }
  2407. ggml_set_name(out, "out");
  2408. return out;
  2409. }
  2410. void initialize_tensors(ggml_context * ctx) override {
  2411. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2412. if (op == ggml_mul || op == ggml_div) {
  2413. // MUL and DIV have numerical issues around zero:
  2414. init_tensor_uniform(t, 0.9f, 1.1f);
  2415. } else {
  2416. init_tensor_uniform(t);
  2417. }
  2418. }
  2419. }
  2420. float grad_eps() override {
  2421. return 0.1f * (op == ggml_mul ? ne[0]*ne[1]*ne[2]*ne[3] : 1);
  2422. }
  2423. bool grad_precise() override {
  2424. return op == ggml_div;
  2425. }
  2426. double max_maa_err() override {
  2427. return op == ggml_add ? 1e-4 : 1e-3;
  2428. }
  2429. };
  2430. // GGML_OP_ADD_ID
  2431. struct test_add_id : public test_case {
  2432. const ggml_type type_a;
  2433. const ggml_type type_b;
  2434. const int64_t n_embd;
  2435. const int64_t n_experts;
  2436. const int64_t n_experts_used;
  2437. const int64_t n_token;
  2438. std::string vars() override {
  2439. return VARS_TO_STR6(type_a, type_b, n_embd, n_experts, n_experts_used, n_token);
  2440. }
  2441. size_t op_size(ggml_tensor * t) override {
  2442. return ggml_nbytes(t) + ggml_nbytes(t->src[0]) + ggml_nbytes(t->src[2]);
  2443. }
  2444. test_add_id(ggml_type type_a = GGML_TYPE_F32,
  2445. ggml_type type_b = GGML_TYPE_F32,
  2446. int64_t n_embd = 128,
  2447. int64_t n_experts = 16,
  2448. int64_t n_experts_used = 8,
  2449. int64_t n_token = 10)
  2450. : type_a(type_a), type_b(type_b), n_embd(n_embd),
  2451. n_experts(n_experts), n_experts_used(n_experts_used), n_token(n_token) {}
  2452. ggml_tensor * build_graph(ggml_context * ctx) override {
  2453. ggml_tensor * a = ggml_new_tensor_3d(ctx, type_a, n_embd, n_experts_used, n_token);
  2454. ggml_tensor * b = ggml_new_tensor_2d(ctx, type_b, n_embd, n_experts);
  2455. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_experts, n_token);
  2456. if (n_experts_used != n_experts) {
  2457. ids = ggml_view_2d(ctx, ids, n_experts_used, n_token, ids->nb[1], 0);
  2458. ggml_set_name(ids, "view_of_ids");
  2459. }
  2460. ggml_tensor * out = ggml_add_id(ctx, a, b, ids);
  2461. ggml_set_name(out, "out");
  2462. return out;
  2463. }
  2464. void initialize_tensors(ggml_context * ctx) override {
  2465. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2466. if (t->type == GGML_TYPE_I32) {
  2467. if (ggml_is_view_op(t->op)) { continue; }
  2468. std::random_device rd;
  2469. std::default_random_engine rng(rd());
  2470. // ids
  2471. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2472. std::vector<int32_t> data(t->ne[0]);
  2473. for (int i = 0; i < t->ne[0]; i++) {
  2474. data[i] = i % n_experts;
  2475. }
  2476. std::shuffle(data.begin(), data.end(), rng);
  2477. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  2478. }
  2479. } else {
  2480. init_tensor_uniform(t);
  2481. }
  2482. }
  2483. }
  2484. };
  2485. // GGML_OP_ADD1
  2486. struct test_add1 : public test_case {
  2487. const ggml_type type;
  2488. const std::array<int64_t, 4> ne;
  2489. std::string vars() override {
  2490. return VARS_TO_STR2(type, ne);
  2491. }
  2492. test_add1(ggml_type type = GGML_TYPE_F32,
  2493. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2494. : type(type), ne(ne) {}
  2495. ggml_tensor * build_graph(ggml_context * ctx) override {
  2496. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2497. ggml_set_param(a);
  2498. ggml_set_name(a, "a");
  2499. ggml_tensor * b = ggml_new_tensor_1d(ctx, type, 1);
  2500. // ggml_set_param(b); // TODO: implement
  2501. ggml_set_name(b, "b");
  2502. ggml_tensor * out = ggml_add1(ctx, a, b);
  2503. ggml_set_name(out, "out");
  2504. return out;
  2505. }
  2506. float grad_eps() override {
  2507. return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
  2508. }
  2509. };
  2510. // GGML_OP_SCALE
  2511. struct test_scale : public test_case {
  2512. const ggml_type type;
  2513. const std::array<int64_t, 4> ne;
  2514. float scale;
  2515. float bias;
  2516. bool inplace;
  2517. std::string vars() override {
  2518. return VARS_TO_STR5(type, ne, scale, bias, inplace);
  2519. }
  2520. test_scale(ggml_type type = GGML_TYPE_F32,
  2521. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  2522. float scale = 2.0f,
  2523. float bias = 0.0f,
  2524. bool inplace = false)
  2525. : type(type), ne(ne), scale(scale), bias(bias), inplace(inplace) {}
  2526. ggml_tensor * build_graph(ggml_context * ctx) override {
  2527. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2528. ggml_set_param(a);
  2529. ggml_set_name(a, "a");
  2530. ggml_tensor * out;
  2531. if (inplace) {
  2532. out = ggml_scale_bias_inplace(ctx, a, scale, bias);
  2533. } else {
  2534. out = ggml_scale_bias(ctx, a, scale, bias);
  2535. }
  2536. ggml_set_name(out, "out");
  2537. return out;
  2538. }
  2539. };
  2540. // GGML_OP_SCALE + GGML_UNARY_OP_TANH + GGML_OP_SCALE
  2541. struct test_softcap : public test_case {
  2542. const ggml_type type;
  2543. const std::array<int64_t, 4> ne;
  2544. float softcap;
  2545. std::string op_desc(ggml_tensor * t) override {
  2546. GGML_UNUSED(t);
  2547. return "SOFTCAP";
  2548. }
  2549. bool run_whole_graph() override { return true; }
  2550. std::string vars() override {
  2551. return VARS_TO_STR3(type, ne, softcap);
  2552. }
  2553. test_softcap(ggml_type type = GGML_TYPE_F32,
  2554. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  2555. float softcap = 30.0f)
  2556. : type(type), ne(ne), softcap(softcap) {}
  2557. ggml_tensor * build_graph(ggml_context * ctx) override {
  2558. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2559. ggml_set_param(a);
  2560. ggml_set_name(a, "a");
  2561. ggml_tensor * out = ggml_scale(ctx, ggml_tanh(ctx, ggml_scale(ctx, a, 1.0f / softcap)), softcap);
  2562. ggml_set_name(out, "out");
  2563. return out;
  2564. }
  2565. };
  2566. // GGML_OP_SILU_BACK
  2567. struct test_silu_back : public test_case {
  2568. const ggml_type type;
  2569. const std::array<int64_t, 4> ne;
  2570. float eps;
  2571. std::string vars() override {
  2572. return VARS_TO_STR3(type, ne, eps);
  2573. }
  2574. test_silu_back(ggml_type type = GGML_TYPE_F32,
  2575. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2576. float eps = 1e-6f)
  2577. : type(type), ne(ne), eps(eps) {}
  2578. ggml_tensor * build_graph(ggml_context * ctx) override {
  2579. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2580. ggml_set_name(a, "a");
  2581. ggml_tensor * grad = ggml_new_tensor(ctx, type, 4, ne.data());
  2582. ggml_set_name(grad, "grad");
  2583. ggml_tensor * out = ggml_silu_back(ctx, a, grad);
  2584. ggml_set_name(out, "out");
  2585. return out;
  2586. }
  2587. bool grad_precise() override {
  2588. return true;
  2589. }
  2590. };
  2591. // GGML_OP_NORM
  2592. struct test_norm : public test_case {
  2593. const ggml_type type;
  2594. const std::array<int64_t, 4> ne;
  2595. const bool v; // whether a is a non-contiguous view
  2596. const float eps;
  2597. std::string vars() override {
  2598. return VARS_TO_STR4(type, ne, v, eps);
  2599. }
  2600. test_norm(ggml_type type = GGML_TYPE_F32,
  2601. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2602. bool v = false,
  2603. float eps = 1e-6f)
  2604. : type(type), ne(ne), v(v), eps(eps) {}
  2605. ggml_tensor * build_graph(ggml_context * ctx) override {
  2606. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2607. ggml_set_name(a, "a");
  2608. if (v) {
  2609. a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
  2610. ggml_set_name(a, "view of a");
  2611. }
  2612. ggml_tensor * out = ggml_norm(ctx, a, eps);
  2613. ggml_set_name(out, "out");
  2614. return out;
  2615. }
  2616. };
  2617. // GGML_OP_NORM + GGML_OP_MUL + GGML_OP_ADD
  2618. struct test_norm_mul_add : public test_case {
  2619. const ggml_type type;
  2620. const std::array<int64_t, 4> ne;
  2621. float eps;
  2622. const bool broadcast;
  2623. std::string op_desc(ggml_tensor * t) override {
  2624. GGML_UNUSED(t);
  2625. return "NORM_MUL_ADD";
  2626. }
  2627. bool run_whole_graph() override { return true; }
  2628. std::string vars() override {
  2629. return VARS_TO_STR4(type, ne, eps, broadcast);
  2630. }
  2631. test_norm_mul_add(ggml_type type = GGML_TYPE_F32,
  2632. std::array<int64_t, 4> ne = {128, 2, 1, 1},
  2633. float eps = 1e-5f,
  2634. bool broadcast = false)
  2635. : type(type), ne(ne), eps(eps), broadcast(broadcast) {}
  2636. ggml_tensor * build_graph(ggml_context * ctx) override {
  2637. std::array<int64_t, 4> broadcast_dims = {ne[0], ne[1] * 2, ne[2] * 2, ne[3] * 2};
  2638. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, broadcast ? broadcast_dims.data() : ne.data());
  2639. ggml_tensor * w = ggml_new_tensor(ctx, type, 4, ne.data());
  2640. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2641. ggml_set_param(a); ggml_set_param(w); ggml_set_param(b);
  2642. ggml_set_name(a, "a"); ggml_set_name(w, "w"); ggml_set_name(b, "b");
  2643. // Use a, w and b early to avoid OP_NONE in graph
  2644. a = ggml_add(ctx, ggml_add(ctx, a, w), b);
  2645. ggml_tensor * n = ggml_norm(ctx, a, eps);
  2646. ggml_tensor * m = ggml_mul(ctx, n, w);
  2647. ggml_tensor * out = ggml_add(ctx, m, b);
  2648. ggml_set_name(out, "out");
  2649. return out;
  2650. }
  2651. };
  2652. // GGML_OP_RMS_NORM
  2653. struct test_rms_norm : public test_case {
  2654. const ggml_type type;
  2655. const std::array<int64_t, 4> ne;
  2656. const bool v; // whether a is a non-contiguous view
  2657. const float eps;
  2658. const bool inplace; // whether to do the operation inplace
  2659. std::string vars() override {
  2660. return VARS_TO_STR5(type, ne, v, eps, inplace);
  2661. }
  2662. test_rms_norm(ggml_type type = GGML_TYPE_F32,
  2663. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2664. bool v = false,
  2665. float eps = 1e-6f,
  2666. bool inplace = false)
  2667. : type(type), ne(ne), v(v), eps(eps), inplace(inplace) {}
  2668. ggml_tensor * build_graph(ggml_context * ctx) override {
  2669. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2670. ggml_set_param(a);
  2671. ggml_set_name(a, "a");
  2672. if (v) {
  2673. a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
  2674. ggml_set_name(a, "view of a");
  2675. }
  2676. ggml_tensor * out;
  2677. if (inplace) {
  2678. out = ggml_rms_norm_inplace(ctx, a, eps);
  2679. } else {
  2680. out = ggml_rms_norm(ctx, a, eps);
  2681. }
  2682. ggml_set_name(out, "out");
  2683. return out;
  2684. }
  2685. void initialize_tensors(ggml_context * ctx) override {
  2686. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2687. init_tensor_uniform(t, -10.f, 10.f);
  2688. }
  2689. }
  2690. float grad_eps() override {
  2691. return 1.0f;
  2692. }
  2693. bool grad_precise() override {
  2694. return true;
  2695. }
  2696. };
  2697. // GGML_OP_RMS_NORM_BACK
  2698. struct test_rms_norm_back : public test_case {
  2699. const ggml_type type;
  2700. const std::array<int64_t, 4> ne;
  2701. const float eps;
  2702. std::string vars() override {
  2703. return VARS_TO_STR3(type, ne, eps);
  2704. }
  2705. test_rms_norm_back(ggml_type type = GGML_TYPE_F32,
  2706. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2707. float eps = 1e-6f)
  2708. : type(type), ne(ne), eps(eps) {}
  2709. ggml_tensor * build_graph(ggml_context * ctx) override {
  2710. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2711. ggml_set_name(a, "a");
  2712. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2713. ggml_set_name(b, "b");
  2714. ggml_tensor * out = ggml_rms_norm_back(ctx, a, b, eps);
  2715. ggml_set_name(out, "out");
  2716. return out;
  2717. }
  2718. void initialize_tensors(ggml_context * ctx) override {
  2719. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2720. init_tensor_uniform(t, -10.f, 10.f);
  2721. }
  2722. }
  2723. };
  2724. // GGML_OP_RMS_NORM + GGML_OP_MUL + GGML_OP_ADD
  2725. struct test_rms_norm_mul_add : public test_case {
  2726. const ggml_type type;
  2727. const std::array<int64_t, 4> ne;
  2728. const float eps;
  2729. const bool broadcast;
  2730. const bool multi_add; // test a sequence of adds feeding into rms_norm
  2731. std::string op_desc(ggml_tensor * t) override {
  2732. GGML_UNUSED(t);
  2733. return "RMS_NORM_MUL_ADD";
  2734. }
  2735. bool run_whole_graph() override { return true; }
  2736. std::string vars() override {
  2737. return VARS_TO_STR5(type, ne, eps, broadcast, multi_add);
  2738. }
  2739. test_rms_norm_mul_add(ggml_type type = GGML_TYPE_F32,
  2740. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2741. float eps = 1e-6f, bool broadcast = false, bool multi_add = false)
  2742. : type(type), ne(ne), eps(eps), broadcast(broadcast), multi_add(multi_add) {}
  2743. ggml_tensor * build_graph(ggml_context * ctx) override {
  2744. std::array<int64_t, 4> broadcast_dims = {ne[0]*2, ne[1]*3, ne[2]*3, ne[3]*4};
  2745. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, broadcast ? broadcast_dims.data() : ne.data());
  2746. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2747. ggml_tensor * c = ggml_new_tensor(ctx, type, 4, ne.data());
  2748. ggml_set_param(a);
  2749. ggml_set_name(a, "a");
  2750. ggml_set_param(b);
  2751. ggml_set_name(b, "b");
  2752. ggml_set_param(c);
  2753. ggml_set_name(c, "c");
  2754. // Use a, b and c early, so we don't end up with an OP_NONE between rms_norm and mul
  2755. a = ggml_add(ctx, ggml_add(ctx, a, b), c);
  2756. if (multi_add) {
  2757. a = ggml_add(ctx, ggml_add(ctx, a, b), c);
  2758. }
  2759. ggml_tensor * out = ggml_add(ctx, ggml_mul(ctx, ggml_rms_norm(ctx, a, eps), b), c);
  2760. ggml_set_name(out, "out");
  2761. return out;
  2762. }
  2763. void initialize_tensors(ggml_context * ctx) override {
  2764. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2765. init_tensor_uniform(t, -10.f, 10.f);
  2766. }
  2767. }
  2768. float grad_eps() override {
  2769. return 1.0f;
  2770. }
  2771. bool grad_precise() override {
  2772. return true;
  2773. }
  2774. };
  2775. // GGML_OP_SSM_CONV
  2776. struct test_ssm_conv : public test_case {
  2777. const ggml_type type;
  2778. const std::array<int64_t, 4> ne_a;
  2779. const std::array<int64_t, 4> ne_b;
  2780. std::string vars() override {
  2781. return VARS_TO_STR3(type, ne_a, ne_b);
  2782. }
  2783. test_ssm_conv(ggml_type type = GGML_TYPE_F32,
  2784. std::array<int64_t, 4> ne_a = {10, 10, 10, 1},
  2785. std::array<int64_t, 4> ne_b = {3, 3, 1, 1})
  2786. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  2787. ggml_tensor * build_graph(ggml_context * ctx) override {
  2788. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2789. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  2790. ggml_tensor * out = ggml_ssm_conv(ctx, a, b);
  2791. return out;
  2792. }
  2793. };
  2794. // GGML_OP_SSM_SCAN
  2795. struct test_ssm_scan : public test_case {
  2796. const ggml_type type;
  2797. const int64_t d_state;
  2798. const int64_t head_dim;
  2799. const int64_t n_head;
  2800. const int64_t n_group;
  2801. const int64_t n_seq_tokens;
  2802. const int64_t n_seqs;
  2803. std::string vars() override {
  2804. return VARS_TO_STR7(type, d_state, head_dim, n_head, n_group, n_seq_tokens, n_seqs);
  2805. }
  2806. test_ssm_scan(ggml_type type = GGML_TYPE_F32,
  2807. int64_t d_state = 32,
  2808. int64_t head_dim = 1, // non-zero for Mamba-2
  2809. int64_t n_head = 32,
  2810. int64_t n_group = 1,
  2811. int64_t n_seq_tokens = 32,
  2812. int64_t n_seqs = 32)
  2813. : type(type), d_state(d_state), head_dim(head_dim), n_head(n_head), n_group(n_group), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2814. ggml_tensor * build_graph(ggml_context * ctx) override {
  2815. ggml_tensor * s = ggml_new_tensor_4d(ctx, type, d_state, head_dim, n_head, n_seqs);
  2816. ggml_tensor * x = ggml_new_tensor_4d(ctx, type, head_dim, n_head, n_seq_tokens, n_seqs);
  2817. ggml_tensor * dt = ggml_new_tensor_3d(ctx, type, n_head, n_seq_tokens, n_seqs);
  2818. ggml_tensor * A = ggml_new_tensor_2d(ctx, type, (head_dim > 1) ? 1 : d_state, n_head);
  2819. ggml_tensor * B = ggml_new_tensor_4d(ctx, type, d_state, n_group, n_seq_tokens, n_seqs);
  2820. ggml_tensor * C = ggml_new_tensor_4d(ctx, type, d_state, n_group, n_seq_tokens, n_seqs);
  2821. ggml_tensor * ids = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, n_seqs);
  2822. ggml_tensor * out = ggml_ssm_scan(ctx, s, x, dt, A, B, C, ids);
  2823. return out;
  2824. }
  2825. // similar to test_mul_mat_id
  2826. void initialize_tensors(ggml_context * ctx) override {
  2827. std::random_device rd;
  2828. std::default_random_engine rng(rd());
  2829. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2830. if (t->type == GGML_TYPE_I32) {
  2831. if (ggml_is_view_op(t->op)) { continue; }
  2832. // ids
  2833. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2834. std::vector<int32_t> data(t->ne[0]);
  2835. for (int i = 0; i < t->ne[0]; i++) {
  2836. data[i] = i;
  2837. }
  2838. std::shuffle(data.begin(), data.end(), rng);
  2839. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  2840. }
  2841. } else {
  2842. init_tensor_uniform(t);
  2843. }
  2844. }
  2845. }
  2846. };
  2847. // GGML_OP_RWKV_WKV6
  2848. struct test_rwkv_wkv6 : public test_case {
  2849. const ggml_type type;
  2850. const int64_t head_count;
  2851. const int64_t head_size;
  2852. const int64_t n_seq_tokens;
  2853. const int64_t n_seqs;
  2854. std::string vars() override {
  2855. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  2856. }
  2857. test_rwkv_wkv6(ggml_type type = GGML_TYPE_F32,
  2858. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  2859. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2860. ggml_tensor * build_graph(ggml_context * ctx) override {
  2861. const int64_t n_tokens = n_seq_tokens * n_seqs;
  2862. ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2863. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2864. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2865. ggml_tensor * tf = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size, head_count }.data());
  2866. ggml_tensor * td = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2867. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  2868. ggml_tensor * out = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, s);
  2869. return out;
  2870. }
  2871. };
  2872. // GGML_OP_GATED_LINEAR_ATTN
  2873. struct test_gla : public test_case {
  2874. const ggml_type type;
  2875. const int64_t head_count;
  2876. const int64_t head_size;
  2877. const int64_t n_seq_tokens;
  2878. const int64_t n_seqs;
  2879. std::string vars() override {
  2880. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  2881. }
  2882. test_gla(ggml_type type = GGML_TYPE_F32,
  2883. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  2884. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2885. ggml_tensor * build_graph(ggml_context * ctx) override {
  2886. const int64_t n_tokens = n_seq_tokens * n_seqs;
  2887. ggml_tensor * q = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2888. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2889. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2890. ggml_tensor * g = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2891. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  2892. ggml_tensor * out = ggml_gated_linear_attn(ctx, k, v, q, g, s, pow(head_size, -0.5));
  2893. return out;
  2894. }
  2895. };
  2896. // GGML_OP_RWKV_WKV7
  2897. struct test_rwkv_wkv7 : public test_case {
  2898. const ggml_type type;
  2899. const int64_t head_count;
  2900. const int64_t head_size;
  2901. const int64_t n_seq_tokens;
  2902. const int64_t n_seqs;
  2903. std::string vars() override {
  2904. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  2905. }
  2906. test_rwkv_wkv7(ggml_type type = GGML_TYPE_F32,
  2907. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  2908. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2909. ggml_tensor * build_graph(ggml_context * ctx) override {
  2910. const int64_t n_tokens = n_seq_tokens * n_seqs;
  2911. ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2912. ggml_tensor * w = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2913. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2914. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2915. ggml_tensor * a = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2916. ggml_tensor * b = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2917. // Outputs may become NaN with long seqlen without these normalization
  2918. a = ggml_l2_norm(ctx, a, 1e-7F);
  2919. b = ggml_l2_norm(ctx, b, 1e-7F);
  2920. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  2921. ggml_tensor * out = ggml_rwkv_wkv7(ctx, r, w, k, v, a, b, s);
  2922. return out;
  2923. }
  2924. };
  2925. // GGML_OP_MUL_MAT
  2926. struct test_mul_mat : public test_case {
  2927. const ggml_type type_a;
  2928. const ggml_type type_b;
  2929. const int64_t m;
  2930. const int64_t n;
  2931. const int64_t k;
  2932. const std::array<int64_t, 2> bs; // dims 3 and 4
  2933. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  2934. const std::array<int64_t, 4> per; // permutation of dimensions
  2935. const int64_t k_v; // size of k in memory, resulting in a non-contiguous view for k_v > k, no view for k_v == 0
  2936. const uint32_t o; // number of outputs
  2937. std::string vars() override {
  2938. return VARS_TO_STR10(type_a, type_b, m, n, k, bs, nr, per, k_v, o);
  2939. }
  2940. double max_nmse_err() override {
  2941. return 5e-4;
  2942. }
  2943. int64_t grad_nmax() override {
  2944. return 20000;
  2945. }
  2946. uint64_t op_flops(ggml_tensor * t) override {
  2947. GGML_UNUSED(t);
  2948. return 2 * m * n * k * bs[0] * nr[0] * bs[1] * nr[1];
  2949. }
  2950. test_mul_mat(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  2951. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  2952. std::array<int64_t, 2> bs = {10, 10},
  2953. std::array<int64_t, 2> nr = {2, 2},
  2954. std::array<int64_t, 4> per = {0, 1, 2, 3},
  2955. int64_t k_v = 0, uint32_t o = 1)
  2956. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), per(per), k_v(k_v), o(o) {}
  2957. ggml_tensor * build_graph(ggml_context * ctx) override {
  2958. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  2959. ggml_tensor * a;
  2960. ggml_tensor * b;
  2961. const int npermuted = (per[0] != 0) + (per[1] != 1) + (per[2] != 2) + (per[3] != 3);
  2962. if (npermuted > 0) {
  2963. GGML_ASSERT(npermuted == 2);
  2964. GGML_ASSERT(k_v == 0); // not handled
  2965. GGML_ASSERT(!ggml_is_quantized(type_a) || per[0] == 0);
  2966. GGML_ASSERT(!ggml_is_quantized(type_b) || per[0] == 0);
  2967. // Create tensors with the permuted dimensions, then permute them back to the dimensions given by m,n,k.
  2968. const int64_t ne_a[4] = {k, m, bs[0], bs[1]};
  2969. const int64_t ne_b[4] = {k, n, bs[0]*nr[0], bs[1]*nr[1]};
  2970. a = ggml_new_tensor_4d(ctx, type_a, ne_a[per[0]], ne_a[per[1]], ne_a[per[2]], ne_a[per[3]]);
  2971. b = ggml_new_tensor_4d(ctx, type_b, ne_b[per[0]], ne_b[per[1]], ne_b[per[2]], ne_b[per[3]]);
  2972. if (!ggml_is_quantized(type_a)) {
  2973. if (bs[1] == 1 && nr[1] == 1) {
  2974. ggml_set_param(a);
  2975. }
  2976. ggml_set_param(b);
  2977. }
  2978. ggml_set_name(a, "a");
  2979. ggml_set_name(b, "b");
  2980. a = ggml_permute(ctx, a, per[0], per[1], per[2], per[3]);
  2981. b = ggml_permute(ctx, b, per[0], per[1], per[2], per[3]);
  2982. ggml_set_name(a, "a_permuted");
  2983. ggml_set_name(b, "b_permuted");
  2984. } else {
  2985. const int64_t k_physical = k_v == 0 ? k : k_v;
  2986. a = ggml_new_tensor_4d(ctx, type_a, k_physical, m, bs[0], bs[1]);
  2987. b = ggml_new_tensor_4d(ctx, type_b, k_physical, n, bs[0]*nr[0], bs[1]*nr[1]);
  2988. if (!ggml_is_quantized(type_a)) {
  2989. if (bs[1] == 1 && nr[1] == 1) {
  2990. ggml_set_param(a);
  2991. }
  2992. ggml_set_param(b);
  2993. }
  2994. if (k_v != 0) {
  2995. GGML_ASSERT(k_v > k);
  2996. a = ggml_view_4d(ctx, a, k, m, bs[0], bs[1], a->nb[1], a->nb[2], a->nb[3], 0);
  2997. b = ggml_view_4d(ctx, b, k, n, bs[0]*nr[0], bs[1]*nr[1], b->nb[1], b->nb[2], b->nb[3], 0);
  2998. }
  2999. ggml_set_name(a, "a");
  3000. ggml_set_name(b, "b");
  3001. }
  3002. ggml_tensor * out = ggml_mul_mat(ctx, a, b);
  3003. ggml_set_name(out, "out");
  3004. for (uint32_t i = 1; i < o; ++i) {
  3005. ggml_tensor * out2 = ggml_mul_mat(ctx, a, b);
  3006. ggml_set_name(out2, "out2");
  3007. out = ggml_add(ctx, out, out2);
  3008. }
  3009. return out;
  3010. }
  3011. bool run_whole_graph() override { return o > 1; }
  3012. std::string op_desc(ggml_tensor * t) override {
  3013. GGML_UNUSED(t);
  3014. return ggml_op_name(GGML_OP_MUL_MAT);
  3015. }
  3016. };
  3017. static void init_mul_mat_id_tensors(ggml_context * ctx, int n_mats) {
  3018. std::random_device rd;
  3019. std::default_random_engine rng(rd());
  3020. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3021. if (t->type == GGML_TYPE_I32) {
  3022. if (ggml_is_view_op(t->op)) { continue; }
  3023. // ids
  3024. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  3025. std::vector<int32_t> data(t->ne[0]);
  3026. for (int i = 0; i < t->ne[0]; i++) {
  3027. data[i] = i % n_mats;
  3028. }
  3029. std::shuffle(data.begin(), data.end(), rng);
  3030. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  3031. }
  3032. } else {
  3033. init_tensor_uniform(t);
  3034. }
  3035. }
  3036. }
  3037. // GGML_OP_MUL_MAT_ID
  3038. struct test_mul_mat_id : public test_case {
  3039. const ggml_type type_a;
  3040. const ggml_type type_b;
  3041. const int n_mats;
  3042. const int n_used;
  3043. const bool b; // broadcast b matrix
  3044. const int64_t m;
  3045. const int64_t n;
  3046. const int64_t k;
  3047. std::string vars() override {
  3048. return VARS_TO_STR8(type_a, type_b, n_mats, n_used, b, m, n, k);
  3049. }
  3050. double max_nmse_err() override {
  3051. return 5e-4;
  3052. }
  3053. uint64_t op_flops(ggml_tensor * t) override {
  3054. GGML_UNUSED(t);
  3055. return 2 * m * k * n * n_used;
  3056. }
  3057. test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  3058. int n_mats = 8, int n_used = 2, bool b = false,
  3059. int64_t m = 32, int64_t n = 32, int64_t k = 32)
  3060. : type_a(type_a), type_b(type_b), n_mats(n_mats), n_used(n_used), b(b),
  3061. m(m), n(n), k(k) {
  3062. GGML_ASSERT(n_used <= n_mats);
  3063. }
  3064. ggml_tensor * build_graph(ggml_context * ctx) override {
  3065. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  3066. ggml_tensor * as = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
  3067. ggml_set_name(as, "as");
  3068. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
  3069. ggml_set_name(ids, "ids");
  3070. if (n_used != n_mats) {
  3071. ids = ggml_view_2d(ctx, ids, n_used, n, ids->nb[1], 0);
  3072. ggml_set_name(ids, "view_of_ids");
  3073. }
  3074. ggml_tensor * b = ggml_new_tensor_3d(ctx, type_b, k, this->b ? 1 : n_used, n);
  3075. ggml_set_name(b, "b");
  3076. ggml_tensor * out = ggml_mul_mat_id(ctx, as, b, ids);
  3077. ggml_set_name(out, "out");
  3078. return out;
  3079. }
  3080. void initialize_tensors(ggml_context * ctx) override {
  3081. init_mul_mat_id_tensors(ctx, n_mats);
  3082. }
  3083. };
  3084. // GGML_OP_MUL_MAT_ID + GGML_OP_ADD or GGML_OP_MUL
  3085. struct test_mul_mat_id_fusion : public test_case {
  3086. const ggml_type type_a;
  3087. const ggml_type type_b;
  3088. const int n_mats;
  3089. const int n_used;
  3090. const bool b; // broadcast b matrix
  3091. const int64_t m;
  3092. const int64_t n;
  3093. const int64_t k;
  3094. const uint32_t o; // number of outputs
  3095. const bool mul;
  3096. std::string vars() override {
  3097. return VARS_TO_STR10(type_a, type_b, n_mats, n_used, b, m, n, k, o, mul);
  3098. }
  3099. double max_nmse_err() override {
  3100. return 5e-4;
  3101. }
  3102. uint64_t op_flops(ggml_tensor * t) override {
  3103. GGML_UNUSED(t);
  3104. return 2 * m * k * n * n_used;
  3105. }
  3106. test_mul_mat_id_fusion(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  3107. int n_mats = 8, int n_used = 2, bool b = false,
  3108. int64_t m = 32, int64_t n = 32, int64_t k = 32, uint32_t o = 1, bool mul = false)
  3109. : type_a(type_a), type_b(type_b), n_mats(n_mats), n_used(n_used), b(b),
  3110. m(m), n(n), k(k), o(o), mul(mul) {
  3111. GGML_ASSERT(n_used <= n_mats);
  3112. }
  3113. ggml_tensor * build_graph(ggml_context * ctx) override {
  3114. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  3115. ggml_tensor * as = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
  3116. ggml_set_name(as, "as");
  3117. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
  3118. ggml_set_name(ids, "ids");
  3119. if (n_used != n_mats) {
  3120. ids = ggml_view_2d(ctx, ids, n_used, n, ids->nb[1], 0);
  3121. ggml_set_name(ids, "view_of_ids");
  3122. }
  3123. ggml_tensor * b = ggml_new_tensor_3d(ctx, type_b, k, this->b ? 1 : n_used, n);
  3124. ggml_set_name(b, "b");
  3125. ggml_tensor * out = ggml_mul_mat_id(ctx, as, b, ids);
  3126. ggml_set_name(out, "out");
  3127. for (uint32_t i = 1; i < o; ++i) {
  3128. ggml_tensor * a2 = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
  3129. ggml_tensor * out2 = ggml_mul_mat_id(ctx, a2, b, ids);
  3130. ggml_set_name(out2, "out2");
  3131. out = ggml_add(ctx, out, out2);
  3132. }
  3133. if (mul) {
  3134. std::array<int64_t, 4> ne { 1, out->ne[1], out->ne[2], out->ne[3] };
  3135. ne[0] = 1;
  3136. ggml_tensor * m = ggml_new_tensor(ctx, out->type, 4, ne.data());
  3137. out = ggml_mul(ctx, out, m);
  3138. }
  3139. return out;
  3140. }
  3141. void initialize_tensors(ggml_context * ctx) override {
  3142. init_mul_mat_id_tensors(ctx, n_mats);
  3143. }
  3144. bool run_whole_graph() override { return true; }
  3145. std::string op_desc(ggml_tensor * t) override {
  3146. GGML_UNUSED(t);
  3147. return "MUL_MAT_ID_FUSION";
  3148. }
  3149. };
  3150. // GGML_OP_OUT_PROD
  3151. struct test_out_prod : public test_case {
  3152. const ggml_type type_a;
  3153. const ggml_type type_b;
  3154. const int64_t m;
  3155. const int64_t n;
  3156. const int64_t k;
  3157. const std::array<int64_t, 2> bs; // dims 3 and 4
  3158. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  3159. const bool trans_b;
  3160. std::string vars() override {
  3161. return VARS_TO_STR8(type_a, type_b, m, n, k, bs, nr, trans_b);
  3162. }
  3163. double max_nmse_err() override {
  3164. return 5e-4;
  3165. }
  3166. test_out_prod(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  3167. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  3168. std::array<int64_t, 2> bs = {10, 10},
  3169. std::array<int64_t, 2> nr = {2, 2},
  3170. bool trans_b = false)
  3171. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), trans_b(trans_b) {}
  3172. ggml_tensor * build_graph(ggml_context * ctx) override {
  3173. ggml_tensor * a = ggml_new_tensor_4d(ctx, type_a, m, k, bs[0], bs[1]);
  3174. ggml_set_name(a, "a");
  3175. ggml_tensor * b;
  3176. if (trans_b) {
  3177. b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
  3178. b = ggml_transpose(ctx, b);
  3179. } else {
  3180. b = ggml_new_tensor_4d(ctx, type_b, n, k, bs[0]*nr[0], bs[1]*nr[1]);
  3181. }
  3182. ggml_set_name(b, "b");
  3183. ggml_tensor * out = ggml_out_prod(ctx, a, b);
  3184. ggml_set_name(out, "out");
  3185. return out;
  3186. }
  3187. };
  3188. // GGML_OP_SQR
  3189. struct test_sqr : public test_case {
  3190. const ggml_type type;
  3191. const std::array<int64_t, 4> ne;
  3192. std::string vars() override {
  3193. return VARS_TO_STR2(type, ne);
  3194. }
  3195. test_sqr(ggml_type type = GGML_TYPE_F32,
  3196. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  3197. : type(type), ne(ne) {}
  3198. ggml_tensor * build_graph(ggml_context * ctx) override {
  3199. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3200. ggml_set_param(a);
  3201. ggml_set_name(a, "a");
  3202. ggml_tensor * out = ggml_sqr(ctx, a);
  3203. ggml_set_name(out, "out");
  3204. return out;
  3205. }
  3206. float grad_eps() override {
  3207. return 0.1f * 0.25f*ne[0]*ne[1]*ne[2]*ne[3]; // 10% of expected value of sum.
  3208. }
  3209. };
  3210. // GGML_OP_SQRT
  3211. struct test_sqrt : public test_case {
  3212. const ggml_type type;
  3213. const std::array<int64_t, 4> ne;
  3214. std::string vars() override {
  3215. return VARS_TO_STR2(type, ne);
  3216. }
  3217. test_sqrt(ggml_type type = GGML_TYPE_F32,
  3218. std::array<int64_t, 4> ne = {10, 3, 3, 2})
  3219. : type(type), ne(ne) {}
  3220. ggml_tensor * build_graph(ggml_context * ctx) override {
  3221. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3222. ggml_set_param(a);
  3223. ggml_set_name(a, "a");
  3224. ggml_tensor * out = ggml_sqrt(ctx, a);
  3225. ggml_set_name(out, "out");
  3226. return out;
  3227. }
  3228. void initialize_tensors(ggml_context * ctx) override {
  3229. // fill with positive values
  3230. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3231. init_tensor_uniform(t, 50.0f, 100.0f);
  3232. }
  3233. }
  3234. float grad_eps() override {
  3235. return 20.0f;
  3236. }
  3237. bool grad_precise() override {
  3238. return true;
  3239. }
  3240. };
  3241. // GGML_OP_LOG
  3242. struct test_log : public test_case {
  3243. const ggml_type type;
  3244. const std::array<int64_t, 4> ne;
  3245. std::string vars() override {
  3246. return VARS_TO_STR2(type, ne);
  3247. }
  3248. test_log(ggml_type type = GGML_TYPE_F32,
  3249. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  3250. : type(type), ne(ne) {}
  3251. ggml_tensor * build_graph(ggml_context * ctx) override {
  3252. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3253. ggml_set_param(a);
  3254. ggml_set_name(a, "a");
  3255. ggml_tensor * out = ggml_log(ctx, a);
  3256. ggml_set_name(out, "out");
  3257. return out;
  3258. }
  3259. void initialize_tensors(ggml_context * ctx) override {
  3260. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3261. // log(1) == 0, cluster values there to keep the sum low for better precision in the backward pass:
  3262. init_tensor_uniform(t, 0.9f, 1.1f);
  3263. }
  3264. }
  3265. bool grad_precise() override {
  3266. return true;
  3267. }
  3268. };
  3269. // GGML_OP_SIN
  3270. struct test_sin : public test_case {
  3271. const ggml_type type;
  3272. const std::array<int64_t, 4> ne;
  3273. std::string vars() override {
  3274. return VARS_TO_STR2(type, ne);
  3275. }
  3276. test_sin(ggml_type type = GGML_TYPE_F32,
  3277. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3278. : type(type), ne(ne) {}
  3279. ggml_tensor * build_graph(ggml_context * ctx) override {
  3280. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3281. ggml_set_param(a);
  3282. ggml_set_name(a, "a");
  3283. ggml_tensor * out = ggml_sin(ctx, a);
  3284. ggml_set_name(out, "out");
  3285. return out;
  3286. }
  3287. void initialize_tensors(ggml_context * ctx) override {
  3288. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3289. init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
  3290. }
  3291. }
  3292. double max_maa_err() override {
  3293. return 1e-3;
  3294. }
  3295. float grad_eps() override {
  3296. return 0.2f;
  3297. }
  3298. bool grad_precise() override {
  3299. return true;
  3300. }
  3301. };
  3302. // GGML_OP_COS
  3303. struct test_cos : public test_case {
  3304. const ggml_type type;
  3305. const std::array<int64_t, 4> ne;
  3306. std::string vars() override {
  3307. return VARS_TO_STR2(type, ne);
  3308. }
  3309. test_cos(ggml_type type = GGML_TYPE_F32,
  3310. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3311. : type(type), ne(ne) {}
  3312. ggml_tensor * build_graph(ggml_context * ctx) override {
  3313. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3314. ggml_set_param(a);
  3315. ggml_set_name(a, "a");
  3316. ggml_tensor * out = ggml_cos(ctx, a);
  3317. ggml_set_name(out, "out");
  3318. return out;
  3319. }
  3320. void initialize_tensors(ggml_context * ctx) override {
  3321. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3322. init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
  3323. }
  3324. }
  3325. double max_maa_err() override {
  3326. return 1e-3;
  3327. }
  3328. float grad_eps() override {
  3329. return 0.2f;
  3330. }
  3331. bool grad_precise() override {
  3332. return true;
  3333. }
  3334. };
  3335. // GGML_OP_CLAMP
  3336. struct test_clamp : public test_case {
  3337. const ggml_type type;
  3338. const std::array<int64_t, 4> ne;
  3339. float min;
  3340. float max;
  3341. std::string vars() override {
  3342. return VARS_TO_STR4(type, ne, min, max);
  3343. }
  3344. test_clamp(ggml_type type = GGML_TYPE_F32,
  3345. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  3346. float min = -0.5f, float max = 0.5f)
  3347. : type(type), ne(ne), min(min), max(max) {}
  3348. ggml_tensor * build_graph(ggml_context * ctx) override {
  3349. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3350. ggml_set_name(a, "a");
  3351. ggml_tensor * out = ggml_clamp(ctx, a, min, max);
  3352. ggml_set_name(out, "out");
  3353. return out;
  3354. }
  3355. float grad_eps() override {
  3356. return 1e-2f;
  3357. }
  3358. std::vector<float> grad_expect() override {
  3359. return {0.0f, 1.0f};
  3360. }
  3361. };
  3362. // GGML_OP_FLOOR
  3363. struct test_floor : public test_case {
  3364. const ggml_type type;
  3365. const std::array<int64_t, 4> ne;
  3366. std::string vars() override {
  3367. return VARS_TO_STR2(type, ne);
  3368. }
  3369. test_floor(ggml_type type = GGML_TYPE_F32,
  3370. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3371. : type(type), ne(ne) {}
  3372. ggml_tensor * build_graph(ggml_context * ctx) override {
  3373. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3374. ggml_set_param(a);
  3375. ggml_set_name(a, "a");
  3376. ggml_tensor * out = ggml_floor(ctx, a);
  3377. ggml_set_name(out, "out");
  3378. return out;
  3379. }
  3380. void initialize_tensors(ggml_context * ctx) override {
  3381. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3382. init_tensor_uniform(t, -10.0f, 10.0f);
  3383. }
  3384. }
  3385. };
  3386. // GGML_OP_CEIL
  3387. struct test_ceil : public test_case {
  3388. const ggml_type type;
  3389. const std::array<int64_t, 4> ne;
  3390. std::string vars() override {
  3391. return VARS_TO_STR2(type, ne);
  3392. }
  3393. test_ceil(ggml_type type = GGML_TYPE_F32,
  3394. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3395. : type(type), ne(ne) {}
  3396. ggml_tensor * build_graph(ggml_context * ctx) override {
  3397. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3398. ggml_set_param(a);
  3399. ggml_set_name(a, "a");
  3400. ggml_tensor * out = ggml_ceil(ctx, a);
  3401. ggml_set_name(out, "out");
  3402. return out;
  3403. }
  3404. void initialize_tensors(ggml_context * ctx) override {
  3405. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3406. init_tensor_uniform(t, -10.0f, 10.0f);
  3407. }
  3408. }
  3409. };
  3410. // GGML_OP_ROUND
  3411. struct test_round : public test_case {
  3412. const ggml_type type;
  3413. const std::array<int64_t, 4> ne;
  3414. std::string vars() override {
  3415. return VARS_TO_STR2(type, ne);
  3416. }
  3417. test_round(ggml_type type = GGML_TYPE_F32,
  3418. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3419. : type(type), ne(ne) {}
  3420. ggml_tensor * build_graph(ggml_context * ctx) override {
  3421. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3422. ggml_set_param(a);
  3423. ggml_set_name(a, "a");
  3424. ggml_tensor * out = ggml_round(ctx, a);
  3425. ggml_set_name(out, "out");
  3426. return out;
  3427. }
  3428. void initialize_tensors(ggml_context * ctx) override {
  3429. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3430. init_tensor_uniform(t, -10.0f, 10.0f);
  3431. }
  3432. }
  3433. };
  3434. // GGML_OP_TRUNC
  3435. struct test_trunc : public test_case {
  3436. const ggml_type type;
  3437. const std::array<int64_t, 4> ne;
  3438. std::string vars() override {
  3439. return VARS_TO_STR2(type, ne);
  3440. }
  3441. test_trunc(ggml_type type = GGML_TYPE_F32,
  3442. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3443. : type(type), ne(ne) {}
  3444. ggml_tensor * build_graph(ggml_context * ctx) override {
  3445. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3446. ggml_set_param(a);
  3447. ggml_set_name(a, "a");
  3448. ggml_tensor * out = ggml_trunc(ctx, a);
  3449. ggml_set_name(out, "out");
  3450. return out;
  3451. }
  3452. void initialize_tensors(ggml_context * ctx) override {
  3453. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3454. init_tensor_uniform(t, -10.0f, 10.0f);
  3455. }
  3456. }
  3457. };
  3458. // GGML_OP_DIAG_MASK_INF
  3459. struct test_diag_mask_inf : public test_case {
  3460. const ggml_type type;
  3461. const std::array<int64_t, 4> ne;
  3462. const int n_past;
  3463. std::string vars() override {
  3464. return VARS_TO_STR3(type, ne, n_past);
  3465. }
  3466. test_diag_mask_inf(ggml_type type = GGML_TYPE_F32,
  3467. std::array<int64_t, 4> ne = {10, 10, 3, 2},
  3468. int n_past = 5)
  3469. : type(type), ne(ne), n_past(n_past) {}
  3470. ggml_tensor * build_graph(ggml_context * ctx) override {
  3471. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3472. ggml_set_param(a);
  3473. ggml_set_name(a, "a");
  3474. ggml_tensor * out = ggml_diag_mask_inf(ctx, a, n_past);
  3475. ggml_set_name(out, "out");
  3476. return out;
  3477. }
  3478. };
  3479. // GGML_OP_SOFT_MAX
  3480. struct test_soft_max : public test_case {
  3481. const ggml_type type;
  3482. const std::array<int64_t, 4> ne;
  3483. const bool mask;
  3484. const bool sinks;
  3485. const ggml_type m_prec;
  3486. const std::array<int64_t, 2> nr23; // broadcast only dims 2 and 3
  3487. const float scale;
  3488. const float max_bias;
  3489. const bool inplace;
  3490. std::string vars() override {
  3491. return VARS_TO_STR9(type, ne, mask, sinks, m_prec, nr23, scale, max_bias, inplace);
  3492. }
  3493. // the 1024 test with bias occasionally fails:
  3494. // SOFT_MAX(type=f32,ne=[1024,16,1,1],mask=1,scale=1.000000,max_bias=8.000000): [SOFT_MAX] NMSE = 0.000000103 > 0.000000100 FAIL
  3495. virtual double max_nmse_err() override {
  3496. return 1e-6;
  3497. }
  3498. test_soft_max(ggml_type type = GGML_TYPE_F32,
  3499. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  3500. bool mask = false,
  3501. bool sinks = false,
  3502. ggml_type m_prec = GGML_TYPE_F32,
  3503. std::array<int64_t, 2> nr23 = {1, 1},
  3504. float scale = 1.0f,
  3505. float max_bias = 0.0f,
  3506. bool inplace = false)
  3507. : type(type), ne(ne), mask(mask), sinks(sinks), m_prec(m_prec), nr23(nr23), scale(scale), max_bias(max_bias), inplace(inplace) {}
  3508. ggml_tensor * build_graph(ggml_context * ctx) override {
  3509. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2]*nr23[0], ne[3]*nr23[1]);
  3510. ggml_set_param(a);
  3511. ggml_set_name(a, "a");
  3512. ggml_tensor * mask = nullptr;
  3513. if (this->mask) {
  3514. mask = ggml_new_tensor_4d(ctx, m_prec, ne[0], ne[1], ne[2], ne[3]);
  3515. ggml_set_name(mask, "mask");
  3516. }
  3517. ggml_tensor * sinks = nullptr;
  3518. if (this->sinks) {
  3519. sinks = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ne[2]*nr23[0]);
  3520. ggml_set_name(sinks, "sinks");
  3521. }
  3522. ggml_tensor * out;
  3523. if (inplace) {
  3524. out = ggml_soft_max_ext_inplace(ctx, a, mask, scale, max_bias);
  3525. } else {
  3526. out = ggml_soft_max_ext(ctx, a, mask, scale, max_bias);
  3527. }
  3528. ggml_soft_max_add_sinks(out, sinks);
  3529. ggml_set_name(out, "out");
  3530. return out;
  3531. }
  3532. bool grad_precise() override {
  3533. return true;
  3534. }
  3535. };
  3536. // GGML_OP_SOFT_MAX_BACK
  3537. struct test_soft_max_back : public test_case {
  3538. const ggml_type type;
  3539. const std::array<int64_t, 4> ne;
  3540. const float scale;
  3541. const float max_bias;
  3542. std::string vars() override {
  3543. return VARS_TO_STR4(type, ne, scale, max_bias);
  3544. }
  3545. test_soft_max_back(ggml_type type = GGML_TYPE_F32,
  3546. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  3547. float scale = 1.0f,
  3548. float max_bias = 0.0f)
  3549. : type(type), ne(ne), scale(scale), max_bias(max_bias) {}
  3550. ggml_tensor * build_graph(ggml_context * ctx) override {
  3551. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3552. ggml_set_name(a, "a");
  3553. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  3554. ggml_set_name(a, "a");
  3555. ggml_tensor * out = ggml_soft_max_ext_back(ctx, a, b, scale, max_bias);
  3556. ggml_set_name(out, "out");
  3557. return out;
  3558. }
  3559. };
  3560. // GGML_OP_ROPE + GGML_OP_ROPE_BACK
  3561. struct test_rope : public test_case {
  3562. const ggml_type type;
  3563. const std::array<int64_t, 4> ne_a;
  3564. int n_dims;
  3565. int mode;
  3566. int n_ctx; // used to generate positions
  3567. float fs; // freq_scale
  3568. float ef; // ext_factor
  3569. float af; // attn_factor
  3570. bool ff;
  3571. int v; // view (1 : non-contiguous a)
  3572. bool forward;
  3573. bool inplace;
  3574. std::string vars() override {
  3575. // forward can be inferred from the op, does not need to be printed
  3576. return VARS_TO_STR11(type, ne_a, n_dims, mode, n_ctx, fs, ef, af, ff, v, inplace);
  3577. }
  3578. test_rope(ggml_type type = GGML_TYPE_F32,
  3579. std::array<int64_t, 4> ne_a = {10, 5, 3, 1},
  3580. int n_dims = 10, int mode = GGML_ROPE_TYPE_NORMAL, int n_ctx = 512, float fs = 1.0f,
  3581. float ef = 0.0f, float af = 0.0f, bool ff = false, int v = 0, bool forward = true, bool inplace = false)
  3582. : type(type), ne_a(ne_a), n_dims(n_dims), mode(mode), n_ctx(n_ctx), fs(fs), ef(ef), af(af), ff(ff), v(v), forward(forward), inplace(inplace) {}
  3583. ggml_tensor * build_graph(ggml_context * ctx) override {
  3584. ggml_tensor * a;
  3585. if (v & 1) {
  3586. auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
  3587. a = ggml_new_tensor(ctx, type, 4, ne.data());
  3588. if (forward) {
  3589. ggml_set_param(a);
  3590. }
  3591. ggml_set_name(a, "a");
  3592. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  3593. ggml_set_name(a, "view_of_a");
  3594. } else {
  3595. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  3596. if (forward) {
  3597. ggml_set_param(a);
  3598. }
  3599. ggml_set_name(a, "a");
  3600. }
  3601. const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
  3602. const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
  3603. ggml_tensor * pos;
  3604. if (is_mrope || is_vision) {
  3605. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2] * 4);
  3606. } else {
  3607. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2]);
  3608. }
  3609. ggml_set_name(pos, "pos");
  3610. ggml_tensor * freq = nullptr;
  3611. if (ff) {
  3612. freq = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_dims/2);
  3613. ggml_set_name(freq, "freq");
  3614. }
  3615. ggml_tensor * out;
  3616. if (is_mrope) {
  3617. if (is_vision) {
  3618. GGML_ASSERT(n_dims/4 > 0);
  3619. int rope_sections[4] = {n_dims/4, n_dims/4, 0, 0}; // Vision-RoPE only use first two dimension for image (x, y) coordinate
  3620. if (forward) {
  3621. if (inplace) {
  3622. out = ggml_rope_multi_inplace(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3623. } else {
  3624. out = ggml_rope_multi(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3625. }
  3626. } else {
  3627. out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3628. }
  3629. } else {
  3630. GGML_ASSERT(n_dims/3 > 0);
  3631. int rope_sections[4] = {n_dims/3, n_dims/3, n_dims/3, 0};
  3632. if (forward) {
  3633. if (inplace) {
  3634. out = ggml_rope_multi_inplace(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3635. } else {
  3636. out = ggml_rope_multi(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3637. }
  3638. } else {
  3639. out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3640. }
  3641. }
  3642. } else {
  3643. if (forward) {
  3644. if (inplace) {
  3645. out = ggml_rope_ext_inplace(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3646. } else {
  3647. out = ggml_rope_ext(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3648. }
  3649. } else {
  3650. out = ggml_rope_ext_back(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3651. }
  3652. // TODO: add test with a non-contiguous view as input ; this case is needed for build_rope_2d in clip.cpp
  3653. }
  3654. ggml_set_name(out, "out");
  3655. return out;
  3656. }
  3657. void initialize_tensors(ggml_context * ctx) override {
  3658. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3659. if (t->type == GGML_TYPE_I32) {
  3660. // pos
  3661. const int num_pos_ids = (mode & GGML_ROPE_TYPE_MROPE) ? ne_a[2] * 4 : ne_a[2];
  3662. std::vector<int> data(num_pos_ids);
  3663. for (int i = 0; i < num_pos_ids; i++) {
  3664. data[i] = rand() % n_ctx;
  3665. }
  3666. ggml_backend_tensor_set(t, data.data(), 0, num_pos_ids * sizeof(int));
  3667. } else {
  3668. if (t->ne[0] == n_dims/2) {
  3669. // frequency factors in the range [0.9f, 1.1f]
  3670. init_tensor_uniform(t, 0.9f, 1.1f);
  3671. } else {
  3672. init_tensor_uniform(t);
  3673. }
  3674. }
  3675. }
  3676. }
  3677. double max_maa_err() override {
  3678. return 1e-3;
  3679. }
  3680. bool grad_precise() override {
  3681. return true;
  3682. }
  3683. };
  3684. // GGML_OP_POOL2D
  3685. struct test_pool2d : public test_case {
  3686. enum ggml_op_pool pool_type;
  3687. const ggml_type type_input;
  3688. const std::array<int64_t, 4> ne_input;
  3689. // kernel size
  3690. const int k0;
  3691. const int k1;
  3692. // stride
  3693. const int s0;
  3694. const int s1;
  3695. // padding
  3696. const int p0;
  3697. const int p1;
  3698. std::string vars() override {
  3699. return VARS_TO_STR9(pool_type, type_input, ne_input, k0, k1, s0, s1, p0, p1);
  3700. }
  3701. test_pool2d(ggml_op_pool pool_type = GGML_OP_POOL_AVG,
  3702. ggml_type type_input = GGML_TYPE_F32,
  3703. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  3704. int k0 = 3, int k1 = 3,
  3705. int s0 = 1, int s1 = 1,
  3706. int p0 = 1, int p1 = 1)
  3707. : pool_type(pool_type), type_input(type_input), ne_input(ne_input), k0(k0), k1(k1), s0(s0), s1(s1), p0(p0), p1(p1) {}
  3708. ggml_tensor * build_graph(ggml_context * ctx) override {
  3709. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  3710. ggml_set_param(input);
  3711. ggml_set_name(input, "input");
  3712. ggml_tensor * out = ggml_pool_2d(ctx, input, pool_type, k0, k1, s0, s1, p0, p1);
  3713. ggml_set_name(out, "out");
  3714. return out;
  3715. }
  3716. };
  3717. // GGML_OP_CONV_TRANSPOSE_1D
  3718. struct test_conv_transpose_1d : public test_case {
  3719. const std::array<int64_t, 4> ne_input;
  3720. const std::array<int64_t, 4> ne_kernel;
  3721. const int s0; // stride
  3722. const int p0; // padding
  3723. const int d0; // dilation
  3724. std::string vars() override {
  3725. return VARS_TO_STR5(ne_input, ne_kernel, s0, p0, d0);
  3726. }
  3727. test_conv_transpose_1d(std::array<int64_t, 4> ne_input = {197, 32, 1, 1}, // [input_width, input_channels, 1 /* assert in cpu kernel*/, 1 (should be batch)]
  3728. std::array<int64_t, 4> ne_kernel = {16, 32, 32, 1}, // [kernel_width, output_channels, input_channels, 1 (should be batch)]
  3729. int s0 = 1, int p0 = 0, int d0 = 1)
  3730. : ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), p0(p0), d0(d0) {}
  3731. ggml_tensor * build_graph(ggml_context * ctx) override {
  3732. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3733. ggml_set_name(input, "input");
  3734. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
  3735. ggml_set_name(kernel, "kernel");
  3736. ggml_tensor * out = ggml_conv_transpose_1d(ctx, kernel, input, s0, p0, d0);
  3737. ggml_set_name(out, "out");
  3738. return out;
  3739. }
  3740. };
  3741. // GGML_OP_CONV_TRANSPOSE_2D
  3742. struct test_conv_transpose_2d : public test_case {
  3743. const std::array<int64_t, 4> ne_input;
  3744. const std::array<int64_t, 4> ne_kernel;
  3745. const int stride;
  3746. std::string vars() override {
  3747. return VARS_TO_STR3(ne_input, ne_kernel, stride);
  3748. }
  3749. double max_nmse_err() override {
  3750. return 5e-4; // The default 1e-7 is too small for Vulkan.
  3751. }
  3752. test_conv_transpose_2d(std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  3753. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
  3754. int stride = 1)
  3755. : ne_input(ne_input), ne_kernel(ne_kernel), stride(stride){}
  3756. ggml_tensor * build_graph(ggml_context * ctx) override {
  3757. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3758. ggml_set_name(input, "input");
  3759. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne_kernel.data());
  3760. ggml_set_name(kernel, "kernel");
  3761. ggml_tensor * out = ggml_conv_transpose_2d_p0(ctx, kernel, input, stride);
  3762. ggml_set_name(out, "out");
  3763. return out;
  3764. }
  3765. };
  3766. // GGML_OP_IM2COL
  3767. struct test_im2col : public test_case {
  3768. const ggml_type type_input;
  3769. const ggml_type type_kernel;
  3770. const ggml_type dst_type;
  3771. const std::array<int64_t, 4> ne_input;
  3772. const std::array<int64_t, 4> ne_kernel;
  3773. // stride
  3774. const int s0;
  3775. const int s1;
  3776. // padding
  3777. const int p0;
  3778. const int p1;
  3779. // dilation
  3780. const int d0;
  3781. const int d1;
  3782. // mode
  3783. const bool is_2D;
  3784. std::string vars() override {
  3785. return VARS_TO_STR12(type_input, type_kernel, dst_type, ne_input, ne_kernel, s0, s1, p0, p1, d0, d1, is_2D);
  3786. }
  3787. test_im2col(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
  3788. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  3789. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
  3790. int s0 = 1, int s1 = 1,
  3791. int p0 = 1, int p1 = 1,
  3792. int d0 = 1, int d1 = 1,
  3793. bool is_2D = true)
  3794. : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), p0(p0), p1(p1), d0(d0), d1(d1), is_2D(is_2D) {}
  3795. ggml_tensor * build_graph(ggml_context * ctx) override {
  3796. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  3797. ggml_set_param(input);
  3798. ggml_set_name(input, "input");
  3799. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  3800. ggml_set_name(kernel, "kernel");
  3801. ggml_tensor * out = ggml_im2col(ctx, kernel, input, s0, s1, p0, p1, d0, d1, is_2D, dst_type);
  3802. ggml_set_name(out, "out");
  3803. return out;
  3804. }
  3805. };
  3806. // GGML_OP_IM2COL_3D
  3807. struct test_im2col_3d : public test_case {
  3808. const ggml_type type_input;
  3809. const ggml_type type_kernel;
  3810. const ggml_type dst_type;
  3811. const std::array<int64_t, 4> ne_input;
  3812. const std::array<int64_t, 4> ne_kernel;
  3813. // stride
  3814. const int s0;
  3815. const int s1;
  3816. const int s2;
  3817. // padding
  3818. const int p0;
  3819. const int p1;
  3820. const int p2;
  3821. // dilation
  3822. const int d0;
  3823. const int d1;
  3824. const int d2;
  3825. const int64_t IC;
  3826. const bool v;
  3827. std::string vars() override {
  3828. return VARS_TO_STR16(type_input, type_kernel, dst_type, ne_input, ne_kernel, IC, s0, s1, s2, p0, p1, p2, d0, d1, d2, v);
  3829. }
  3830. test_im2col_3d(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
  3831. std::array<int64_t, 4> ne_input = {10, 10, 10, 9}, // [OC*IC, KD, KH, KW]
  3832. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [N*IC, ID, IH, IW]
  3833. int64_t IC = 3,
  3834. int s0 = 1, int s1 = 1, int s2 = 1,
  3835. int p0 = 1, int p1 = 1, int p2 = 1,
  3836. int d0 = 1, int d1 = 1, int d2 = 1,
  3837. bool v = false)
  3838. : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), s2(s2), p0(p0), p1(p1), p2(p2), d0(d0), d1(d1), d2(d2), IC(IC), v(v) {}
  3839. ggml_tensor * build_graph(ggml_context * ctx) override {
  3840. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  3841. ggml_set_param(input);
  3842. ggml_set_name(input, "input");
  3843. if (v) {
  3844. input = ggml_view_4d(ctx, input, ne_input[0] - 2, ne_input[1] - 2, ne_input[2] - 2, ne_input[3] - 2, input->nb[1], input->nb[2], input->nb[3], 0);
  3845. ggml_set_name(input, "view_of_input");
  3846. }
  3847. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  3848. ggml_set_name(kernel, "kernel");
  3849. ggml_tensor * out = ggml_im2col_3d(ctx, kernel, input, IC, s0, s1, s2, p0, p1, p2, d0, d1, d2, dst_type);
  3850. ggml_set_name(out, "out");
  3851. return out;
  3852. }
  3853. };
  3854. // CONV_2D
  3855. struct test_conv_2d : public test_case {
  3856. const std::array<int64_t, 4> ne_input;
  3857. const std::array<int64_t, 4> ne_kernel;
  3858. const ggml_type type_kernel;
  3859. const int stride0;
  3860. const int stride1;
  3861. const int padding0;
  3862. const int padding1;
  3863. const int dilation0;
  3864. const int dilation1;
  3865. // Whether the inputs are contiguous in the channel dim or the width dim
  3866. const bool cwhn;
  3867. // If true, the direct CONV_2D will be used in the graph, otherwise it
  3868. // uses ggml_conv_2d:
  3869. // * if the program is called with -o CONV_2D_DIRECT_IMPL, the
  3870. // CONV_2D graph will be built, while
  3871. // * if the program is called with -o CONV_2D_INDIRECT_IMPL, the
  3872. // IM2COL -> MUL_MM graph will be built.
  3873. std::string vars() override {
  3874. return VARS_TO_STR10(ne_input, ne_kernel, type_kernel, stride0, stride1, padding0, padding1, dilation0, dilation1, cwhn);
  3875. }
  3876. double max_nmse_err() override {
  3877. return 5e-4;
  3878. }
  3879. uint64_t op_flops(ggml_tensor * t) override {
  3880. GGML_UNUSED(t);
  3881. // Just counting matmul costs:
  3882. // KxCRS @ CRSxNPQ = KxNPQ --> KxNPQx(CRS+CRS-1) flops
  3883. // Copied from ggml.c: int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d)
  3884. auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  3885. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  3886. };
  3887. int64_t W = ne_input[0];
  3888. int64_t H = ne_input[1];
  3889. int64_t KW = ne_kernel[0];
  3890. int64_t KH = ne_kernel[1];
  3891. int64_t Cin = ne_kernel[2];
  3892. int64_t Cout = ne_kernel[3];
  3893. int64_t N = ne_input[3];
  3894. int64_t OH = calc_conv_output_size(H, KH, stride0, padding0, dilation0);
  3895. int64_t OW = calc_conv_output_size(W, KW, stride0, padding0, dilation0);
  3896. int64_t K = Cout;
  3897. int64_t CRS = Cin * KH * KW;
  3898. int64_t NPQ = N * OH * OW;
  3899. return K * NPQ * (2 * CRS - 1);
  3900. }
  3901. test_conv_2d(std::array<int64_t, 4> ne_input = { 64, 64, 16, 1 },
  3902. std::array<int64_t, 4> ne_kernel = { 3, 3, 1, 16 }, ggml_type type_kernel = GGML_TYPE_F32, int stride0 = 1,
  3903. int stride1 = 1, int padding0 = 0, int padding1 = 0, int dilation0 = 1, int dilation1 = 1, bool cwhn = false) :
  3904. ne_input(ne_input),
  3905. ne_kernel(ne_kernel),
  3906. type_kernel(type_kernel),
  3907. stride0(stride0),
  3908. stride1(stride1),
  3909. padding0(padding0),
  3910. padding1(padding1),
  3911. dilation0(dilation0),
  3912. dilation1(dilation1),
  3913. cwhn(cwhn) {}
  3914. ggml_tensor * build_graph(ggml_context * ctx) override {
  3915. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3916. ggml_set_name(input, "input");
  3917. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  3918. ggml_set_name(kernel, "kernel");
  3919. if (cwhn) {
  3920. // change memory layout to channel-most-contiguous (CWHN),
  3921. // then permute it back so NE matches the original input
  3922. input = ggml_cont(ctx, ggml_permute(ctx, input, 1, 2, 0, 3));
  3923. input = ggml_permute(ctx, input, 2, 0, 1, 3);
  3924. kernel = ggml_cont(ctx, ggml_permute(ctx, kernel, 2, 3, 1, 0));
  3925. kernel = ggml_permute(ctx, kernel, 3, 2, 0, 1);
  3926. }
  3927. ggml_tensor * out =
  3928. ggml_conv_2d_direct(ctx, kernel, input, stride0, stride1, padding0, padding1, dilation0, dilation1);
  3929. ggml_set_name(out, "out");
  3930. return out;
  3931. }
  3932. };
  3933. // GGML_OP_CONV_2D_DW
  3934. struct test_conv_2d_dw : public test_case {
  3935. const std::array<int64_t, 4> ne_input;
  3936. const std::array<int64_t, 4> ne_kernel;
  3937. const int stride;
  3938. const int padding;
  3939. const int dilation;
  3940. const bool cwhn;
  3941. std::string vars() override {
  3942. return VARS_TO_STR6(ne_input, ne_kernel, stride, padding, dilation, cwhn);
  3943. }
  3944. test_conv_2d_dw(std::array<int64_t, 4> ne_input = {64, 64, 16, 1},
  3945. std::array<int64_t, 4> ne_kernel = {3, 3, 1, 16},
  3946. int stride = 1, int padding = 0, int dilation = 1, bool cwhn = false)
  3947. : ne_input(ne_input), ne_kernel(ne_kernel), stride(stride), padding(padding), dilation(dilation), cwhn(cwhn) {}
  3948. ggml_tensor * build_graph(ggml_context * ctx) override {
  3949. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3950. ggml_set_name(input, "input");
  3951. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
  3952. ggml_set_name(kernel, "kernel");
  3953. if (cwhn) {
  3954. // change memory layout to channel-most-contiguous (CWHN),
  3955. // then permute it back so NE matches the original input
  3956. input = ggml_cont(ctx, ggml_permute(ctx, input, 1, 2, 0, 3));
  3957. input = ggml_permute(ctx, input, 2, 0, 1, 3);
  3958. kernel = ggml_cont(ctx, ggml_permute(ctx, kernel, 2, 3, 1, 0));
  3959. kernel = ggml_permute(ctx, kernel, 3, 2, 0, 1);
  3960. }
  3961. ggml_tensor * out = ggml_conv_2d_dw_direct(
  3962. ctx, kernel, input,
  3963. stride, stride, padding, padding, dilation, dilation);
  3964. ggml_set_name(out, "out");
  3965. return out;
  3966. }
  3967. };
  3968. // GGML_OP_CONV_3D
  3969. struct test_conv_3d : public test_case {
  3970. // Logical 5D dimensions
  3971. const int64_t N, IC, ID, IH, IW;
  3972. const int64_t OC, KD, KH, KW;
  3973. // Conv params
  3974. const int s0, s1, s2;
  3975. const int p0, p1, p2;
  3976. const int d0, d1, d2;
  3977. // Types
  3978. const ggml_type type_kernel;
  3979. std::string op_desc(ggml_tensor * t) override {
  3980. GGML_UNUSED(t);
  3981. return "CONV_3D";
  3982. }
  3983. std::string vars() override {
  3984. return VARS_TO_STR11(N, IC, ID, IH, IW, OC, KD, KH, KW, s0, s1) + "," +
  3985. VARS_TO_STR8(s2, p0, p1, p2, d0, d1, d2, type_kernel);
  3986. }
  3987. double max_nmse_err() override {
  3988. return 5e-4;
  3989. }
  3990. uint64_t op_flops(ggml_tensor * t) override {
  3991. GGML_UNUSED(t);
  3992. auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  3993. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  3994. };
  3995. const int64_t OD = calc_conv_output_size(ID, KD, s2, p2, d2);
  3996. const int64_t OH = calc_conv_output_size(IH, KH, s1, p1, d1);
  3997. const int64_t OW = calc_conv_output_size(IW, KW, s0, p0, d0);
  3998. return (uint64_t)N * OC * OD * OH * OW * (2 * IC * KD * KH * KW - 1);
  3999. }
  4000. test_conv_3d(
  4001. int64_t N, int64_t IC, int64_t ID, int64_t IH, int64_t IW,
  4002. int64_t OC, int64_t KD, int64_t KH, int64_t KW,
  4003. int s0, int s1, int s2,
  4004. int p0, int p1, int p2,
  4005. int d0, int d1, int d2,
  4006. ggml_type type_kernel
  4007. ) : N(N), IC(IC), ID(ID), IH(IH), IW(IW),
  4008. OC(OC), KD(KD), KH(KH), KW(KW),
  4009. s0(s0), s1(s1), s2(s2),
  4010. p0(p0), p1(p1), p2(p2),
  4011. d0(d0), d1(d1), d2(d2),
  4012. type_kernel(type_kernel) {}
  4013. ggml_tensor * build_graph(ggml_context * ctx) override {
  4014. // GGML input tensor is packed as [W, H, D, C*N]
  4015. const int64_t ne_input[] = {IW, IH, ID, IC * N};
  4016. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input);
  4017. ggml_set_name(input, "input");
  4018. // GGML kernel tensor is packed as [KW, KH, KD, IC*OC]
  4019. const int64_t ne_kernel[] = {KW, KH, KD, IC * OC};
  4020. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel);
  4021. ggml_set_name(kernel, "kernel");
  4022. ggml_tensor * out = ggml_conv_3d_direct(ctx, kernel, input, s0, s1, s2, p0, p1, p2, d0, d1, d2, (int)IC, (int)N, (int)OC);
  4023. ggml_set_name(out, "out");
  4024. return out;
  4025. }
  4026. };
  4027. // GGML_OP_CONCAT
  4028. struct test_concat : public test_case {
  4029. const ggml_type type;
  4030. const std::array<int64_t, 4> ne_a;
  4031. const int64_t ne_b_d;
  4032. const int dim;
  4033. const int v; // view (1 << 0: non-cont a, 1 << 1: non-cont b)
  4034. std::string vars() override {
  4035. return VARS_TO_STR5(type, ne_a, ne_b_d, dim, v);
  4036. }
  4037. test_concat(ggml_type type = GGML_TYPE_F32,
  4038. std::array<int64_t, 4> ne_a = {10, 5, 5, 5},
  4039. int64_t ne_b_d = 5,
  4040. int dim = 2, int v = 0)
  4041. : type(type), ne_a(ne_a), ne_b_d(ne_b_d), dim(dim), v(v) {}
  4042. ggml_tensor * build_graph(ggml_context * ctx) override {
  4043. auto ne_b = ne_a;
  4044. ne_b[dim] = ne_b_d;
  4045. ggml_tensor * a;
  4046. if (v & 1) {
  4047. auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
  4048. a = ggml_new_tensor(ctx, type, 4, ne.data());
  4049. ggml_set_name(a, "a");
  4050. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  4051. ggml_set_name(a, "view_of_a");
  4052. } else {
  4053. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4054. ggml_set_name(a, "a");
  4055. }
  4056. ggml_tensor * b;
  4057. if (v & 2) {
  4058. auto ne = ne_b; ne[0] *= 3; ne[1] *= 2; ne[2] *= 4;
  4059. b = ggml_new_tensor(ctx, type, 4, ne.data());
  4060. ggml_set_name(b, "b");
  4061. b = ggml_view_4d(ctx, b, ne_b[0], ne_b[1], ne_b[2], ne_b[3], b->nb[1], b->nb[2], b->nb[3], 0);
  4062. ggml_set_name(b, "view_of_b");
  4063. } else {
  4064. b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  4065. ggml_set_name(b, "b");
  4066. }
  4067. ggml_tensor * out = ggml_concat(ctx, a, b, dim);
  4068. ggml_set_name(out, "out");
  4069. return out;
  4070. }
  4071. };
  4072. // GGML_OP_ARGSORT
  4073. struct test_argsort : public test_case {
  4074. const ggml_type type;
  4075. const std::array<int64_t, 4> ne;
  4076. ggml_sort_order order;
  4077. std::string vars() override {
  4078. return VARS_TO_STR3(type, ne, order);
  4079. }
  4080. test_argsort(ggml_type type = GGML_TYPE_F32,
  4081. std::array<int64_t, 4> ne = {16, 10, 10, 10},
  4082. ggml_sort_order order = GGML_SORT_ORDER_ASC)
  4083. : type(type), ne(ne), order(order) {}
  4084. ggml_tensor * build_graph(ggml_context * ctx) override {
  4085. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4086. ggml_set_name(a, "a");
  4087. ggml_tensor * out = ggml_argsort(ctx, a, order);
  4088. ggml_set_name(out, "out");
  4089. return out;
  4090. }
  4091. void initialize_tensors(ggml_context * ctx) override {
  4092. std::random_device rd;
  4093. std::default_random_engine rng(rd());
  4094. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4095. if (t->type == GGML_TYPE_I32) {
  4096. // indices
  4097. std::vector<int> data(ggml_nelements(t));
  4098. for (int i = 0; i < ggml_nelements(t); i++) {
  4099. data[i] = rand();
  4100. }
  4101. std::shuffle(data.begin(), data.end(), rng);
  4102. ggml_backend_tensor_set(t, data.data(), 0, ne[0]*ne[1]*ne[2]*ne[3] * sizeof(int));
  4103. } else if (t->type == GGML_TYPE_F32) {
  4104. // initialize with unique values to avoid ties
  4105. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  4106. std::vector<float> data(t->ne[0]);
  4107. for (int i = 0; i < t->ne[0]; i++) {
  4108. data[i] = i;
  4109. }
  4110. std::shuffle(data.begin(), data.end(), rng);
  4111. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  4112. }
  4113. } else {
  4114. GGML_ABORT("fatal error");
  4115. }
  4116. }
  4117. }
  4118. };
  4119. // GGML_OP_TOP_K
  4120. struct test_top_k : public test_case {
  4121. const ggml_type type;
  4122. const std::array<int64_t, 4> ne;
  4123. const int k;
  4124. std::string vars() override {
  4125. return VARS_TO_STR3(type, ne, k);
  4126. }
  4127. test_top_k(ggml_type type = GGML_TYPE_F32,
  4128. std::array<int64_t, 4> ne = {16, 10, 10, 10},
  4129. int k = 4)
  4130. : type(type), ne(ne), k(k) {}
  4131. double max_err() override {
  4132. return 0.0;
  4133. }
  4134. double err(const float * a, const float * b, size_t n) override {
  4135. std::vector<int32_t> ia(n);
  4136. std::vector<int32_t> ib(n);
  4137. double diff = 0.0f;
  4138. for (size_t i = 0; i < n; i++) {
  4139. ia[i] = (int32_t) a[i];
  4140. ib[i] = (int32_t) b[i];
  4141. // penalize the result if the data is not integer valued
  4142. diff += std::fabs(a[i] - ia[i]);
  4143. diff += std::fabs(b[i] - ib[i]);
  4144. }
  4145. return diff + jdst(ia.data(), ib.data(), n);
  4146. }
  4147. ggml_tensor * build_graph(ggml_context * ctx) override {
  4148. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4149. ggml_set_name(a, "a");
  4150. ggml_tensor * out = ggml_top_k(ctx, a, k);
  4151. ggml_set_name(out, "out");
  4152. return out;
  4153. }
  4154. void initialize_tensors(ggml_context * ctx) override {
  4155. std::random_device rd;
  4156. std::default_random_engine rng(rd());
  4157. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4158. // initialize with unique values to avoid ties
  4159. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  4160. std::vector<float> data(t->ne[0]);
  4161. for (int i = 0; i < t->ne[0]; i++) {
  4162. data[i] = i;
  4163. }
  4164. std::shuffle(data.begin(), data.end(), rng);
  4165. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  4166. }
  4167. }
  4168. }
  4169. };
  4170. struct test_topk_moe : public test_case {
  4171. const std::array<int64_t, 4> ne;
  4172. const int n_expert_used;
  4173. const bool with_norm;
  4174. const bool delayed_softmax;
  4175. test_topk_moe(std::array<int64_t, 4> ne = { 10, 5, 1, 1 },
  4176. int n_expert_used = 1,
  4177. bool with_norm = false,
  4178. bool delayed_softmax = false) :
  4179. ne(ne),
  4180. n_expert_used(n_expert_used),
  4181. with_norm(with_norm),
  4182. delayed_softmax(delayed_softmax) {
  4183. GGML_ASSERT(n_expert_used <= ne[0]);
  4184. GGML_ASSERT(!(with_norm && delayed_softmax));
  4185. }
  4186. std::string vars() override { return VARS_TO_STR4(ne, n_expert_used, with_norm, delayed_softmax); }
  4187. std::string op_desc(ggml_tensor * t) override {
  4188. GGML_UNUSED(t);
  4189. return "TOPK_MOE";
  4190. }
  4191. bool run_whole_graph() override { return true; }
  4192. ggml_tensor * build_graph(ggml_context * ctx) override {
  4193. const int n_expert = ne[0];
  4194. const int n_tokens = ne[1];
  4195. ggml_tensor * logits = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne.data());
  4196. ggml_tensor * probs = delayed_softmax ? logits : ggml_soft_max(ctx, logits);
  4197. ggml_tensor * selected_experts = ggml_argsort_top_k(ctx, probs, n_expert_used); // [n_expert_used, n_tokens]
  4198. ggml_tensor * out = ggml_get_rows(ctx, ggml_reshape_3d(ctx, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
  4199. if (delayed_softmax) {
  4200. out = ggml_reshape_2d(ctx, out, n_expert_used, n_tokens);
  4201. out = ggml_soft_max(ctx, out); // [n_expert_used, n_tokens]
  4202. out = ggml_reshape_3d(ctx, out, 1, n_expert_used, n_tokens);
  4203. }
  4204. if (with_norm) {
  4205. out = ggml_reshape_2d(ctx, out, n_expert_used, n_tokens);
  4206. ggml_tensor * weights_sum = ggml_sum_rows(ctx, out); // [1, n_tokens]
  4207. weights_sum = ggml_clamp(ctx, weights_sum, 6.103515625e-5, INFINITY);
  4208. out = ggml_div(ctx, out, weights_sum); // [n_expert_used, n_tokens]
  4209. out = ggml_reshape_3d(ctx, out, 1, n_expert_used, n_tokens);
  4210. }
  4211. ggml_set_name(out, "out");
  4212. return out;
  4213. }
  4214. };
  4215. struct test_mul_mat_vec_fusion : public test_case {
  4216. const ggml_type type;
  4217. const ggml_glu_op glu_op;
  4218. const int64_t m;
  4219. const int64_t n;
  4220. const int64_t k;
  4221. const bool use_id;
  4222. const int n_mats;
  4223. const int n_used;
  4224. const bool b; // broadcast b matrix (only for use_id)
  4225. const bool with_bias;
  4226. const bool with_gate;
  4227. std::array<int64_t, 2> batch_dims;
  4228. test_mul_mat_vec_fusion(ggml_type type, ggml_glu_op op, int64_t m, int64_t n, int64_t k,
  4229. bool use_id = false, int n_mats = 1, int n_used = 1, bool b = false, bool with_bias = false, bool with_gate = true,
  4230. std::array<int64_t, 2> batch_dims = {4, 2})
  4231. : type(type), glu_op(op), m(m), n(n), k(k), use_id(use_id), n_mats(n_mats), n_used(n_used), b(b), with_bias(with_bias), with_gate(with_gate), batch_dims(batch_dims) {
  4232. if (use_id) {
  4233. GGML_ASSERT(n_used <= n_mats);
  4234. }
  4235. }
  4236. std::string vars() override {
  4237. return VARS_TO_STR12(type, glu_op, m, n, k, use_id, n_mats, n_used, b, with_bias, with_gate, batch_dims);
  4238. }
  4239. std::string op_desc(ggml_tensor * t) override {
  4240. GGML_UNUSED(t);
  4241. return "MUL_MAT_VEC_FUSION";
  4242. }
  4243. bool run_whole_graph() override { return true; }
  4244. ggml_tensor * build_gate(ggml_context * ctx, ggml_tensor * ffn_gate, ggml_tensor * ffn_up) {
  4245. ggml_tensor * out = nullptr;
  4246. if (with_gate) {
  4247. if (glu_op == GGML_GLU_OP_SWIGLU_OAI) {
  4248. constexpr float alpha = 1.702f;
  4249. constexpr float limit = 7.0f;
  4250. out = ggml_swiglu_oai(ctx, ffn_gate, ffn_up, alpha, limit);
  4251. } else {
  4252. out = ggml_glu_split(ctx, ffn_gate, ffn_up, glu_op);
  4253. }
  4254. }
  4255. return out;
  4256. }
  4257. ggml_tensor * build_graph(ggml_context * ctx) override {
  4258. if (!use_id) {
  4259. const int channels = batch_dims[0];
  4260. const int samples = batch_dims[1];
  4261. std::array<int64_t, 4> ne = { k, m, channels, samples };
  4262. std::array<int64_t, 4> ne0 = { k, n, channels, samples };
  4263. ggml_tensor * cur = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne.data());
  4264. ggml_tensor * gate = with_gate ? ggml_new_tensor(ctx, type, 4, ne0.data()) : nullptr;
  4265. ggml_tensor * up = ggml_new_tensor(ctx, type, 4, ne0.data());
  4266. ggml_tensor * ffn_up = ggml_mul_mat(ctx, up, cur);
  4267. if (with_bias) {
  4268. std::array<int64_t, 4> bias_ne = { ffn_up->ne[0], 1, channels, samples };
  4269. ggml_tensor * up_bias = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, bias_ne.data());
  4270. ffn_up = ggml_add(ctx, ffn_up, up_bias);
  4271. }
  4272. ggml_tensor * ffn_gate = with_gate ? ggml_mul_mat(ctx, gate, cur) : nullptr;
  4273. if (with_bias && with_gate) {
  4274. std::array<int64_t, 4> bias_ne = { ffn_gate->ne[0], 1, channels, samples };
  4275. ggml_tensor * gate_bias = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, bias_ne.data());
  4276. ffn_gate = ggml_add(ctx, ffn_gate, gate_bias);
  4277. }
  4278. ggml_tensor * out = with_gate ? build_gate(ctx, ffn_gate, ffn_up) : ffn_up;
  4279. std::array<int64_t, 4> bias2_ne = { out->ne[0], 1, channels, samples };
  4280. ggml_tensor * bias2 = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, bias2_ne.data());
  4281. out = ggml_add(ctx, out, bias2);
  4282. ggml_set_name(out, "out");
  4283. return out;
  4284. } else {
  4285. ggml_tensor * gates = ggml_new_tensor_3d(ctx, type, k, n, n_mats);
  4286. ggml_tensor * ups = ggml_new_tensor_3d(ctx, type, k, n, n_mats);
  4287. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, m);
  4288. if (n_used != n_mats) {
  4289. ids = ggml_view_2d(ctx, ids, n_used, m, ids->nb[1], 0);
  4290. }
  4291. ggml_tensor * cur = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, k, this->b ? 1 : n_used, m);
  4292. ggml_set_name(cur, "cur");
  4293. ggml_tensor * ffn_up = ggml_mul_mat_id(ctx, ups, cur, ids);
  4294. if (with_bias) {
  4295. ggml_tensor * up_bias_param = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, ffn_up->ne[0], n_mats);
  4296. ffn_up = ggml_add_id(ctx, ffn_up, up_bias_param, ids);
  4297. }
  4298. ggml_tensor * ffn_gate = with_gate? ggml_mul_mat_id(ctx, gates, cur, ids) : nullptr;
  4299. if (with_bias && with_gate) {
  4300. ggml_tensor * gate_bias_param = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, ffn_gate->ne[0], n_mats);
  4301. ffn_gate = ggml_add_id(ctx, ffn_gate, gate_bias_param, ids);
  4302. }
  4303. ggml_tensor * out = with_gate ? build_gate(ctx, ffn_gate, ffn_up) : ffn_up;
  4304. std::array<int64_t, 4> scale_ne { 1, out->ne[1], out->ne[2], out->ne[3] };
  4305. ggml_tensor * scale = ggml_new_tensor(ctx, out->type, 4, scale_ne.data());
  4306. out = ggml_mul(ctx, out, scale);
  4307. ggml_set_name(out, "out");
  4308. return out;
  4309. }
  4310. }
  4311. void initialize_tensors(ggml_context * ctx) override {
  4312. if (!use_id) {
  4313. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4314. init_tensor_uniform(t);
  4315. }
  4316. } else {
  4317. init_mul_mat_id_tensors(ctx, n_mats);
  4318. }
  4319. }
  4320. double max_nmse_err() override {
  4321. return 5e-3;
  4322. }
  4323. };
  4324. // GGML_OP_SUM
  4325. struct test_sum : public test_case {
  4326. const ggml_type type;
  4327. const std::array<int64_t, 4> ne;
  4328. const std::array<int64_t, 4> permute;
  4329. bool _use_permute;
  4330. std::string vars() override {
  4331. std::string v = VARS_TO_STR2(type, ne);
  4332. if (_use_permute) v += "," + VAR_TO_STR(permute);
  4333. return v;
  4334. }
  4335. test_sum(ggml_type type = GGML_TYPE_F32,
  4336. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  4337. std::array<int64_t, 4> permute = {0, 0, 0, 0})
  4338. : type(type), ne(ne), permute(permute),
  4339. _use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
  4340. ggml_tensor * build_graph(ggml_context * ctx) override {
  4341. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4342. ggml_set_param(a);
  4343. ggml_set_name(a, "a");
  4344. if (_use_permute) {
  4345. a = ggml_permute(ctx, a, permute[0], permute[1], permute[2], permute[3]);
  4346. ggml_set_name(a, "a_permuted");
  4347. }
  4348. ggml_tensor * out = ggml_sum(ctx, a);
  4349. ggml_set_name(out, "out");
  4350. return out;
  4351. }
  4352. float grad_eps() override {
  4353. return 0.1f * sqrtf(ne[0]*ne[1]*ne[2]*ne[3]);
  4354. }
  4355. };
  4356. // GGML_OP_SUM_ROWS
  4357. struct test_sum_rows : public test_case {
  4358. const ggml_type type;
  4359. const std::array<int64_t, 4> ne;
  4360. const bool permute;
  4361. const bool slice;
  4362. std::string vars() override {
  4363. return VARS_TO_STR4(type, ne, permute, slice);
  4364. }
  4365. test_sum_rows(ggml_type type = GGML_TYPE_F32,
  4366. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  4367. bool permute = false, bool slice = false)
  4368. : type(type), ne(ne), permute(permute), slice(slice) {}
  4369. ggml_tensor * build_graph(ggml_context * ctx) override {
  4370. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4371. ggml_set_param(a);
  4372. ggml_set_name(a, "a");
  4373. if (slice) {
  4374. a = ggml_view_4d(ctx, a,
  4375. ne[0], ne[1], ne[2] / 2, ne[3] - 1,
  4376. a->nb[1], a->nb[2] * 2, a->nb[3], /*offset=*/a->nb[3]);
  4377. }
  4378. if (permute) {
  4379. a = ggml_permute(ctx, a, 0, 2, 3, 1);
  4380. }
  4381. ggml_tensor * out = ggml_sum_rows(ctx, a);
  4382. ggml_set_name(out, "out");
  4383. return out;
  4384. }
  4385. };
  4386. // GGML_OP_MEAN
  4387. struct test_mean : public test_case {
  4388. const ggml_type type;
  4389. const std::array<int64_t, 4> ne;
  4390. std::string vars() override {
  4391. return VARS_TO_STR2(type, ne);
  4392. }
  4393. test_mean(ggml_type type = GGML_TYPE_F32,
  4394. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  4395. : type(type), ne(ne) {}
  4396. ggml_tensor * build_graph(ggml_context * ctx) override {
  4397. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4398. ggml_set_param(a);
  4399. ggml_set_name(a, "a");
  4400. ggml_tensor * out = ggml_mean(ctx, a);
  4401. ggml_set_name(out, "out");
  4402. return out;
  4403. }
  4404. float grad_eps() override {
  4405. return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
  4406. }
  4407. };
  4408. // GGML_OP_UPSCALE
  4409. struct test_upscale : public test_case {
  4410. const ggml_type type;
  4411. const std::array<int64_t, 4> ne;
  4412. const int32_t scale_factor;
  4413. const bool transpose;
  4414. const ggml_scale_mode mode;
  4415. std::string vars() override {
  4416. return VARS_TO_STR5(type, ne, scale_factor, mode, transpose);
  4417. }
  4418. test_upscale(ggml_type type = GGML_TYPE_F32,
  4419. std::array<int64_t, 4> ne = {512, 512, 3, 1},
  4420. int32_t scale_factor = 2, ggml_scale_mode mode = GGML_SCALE_MODE_NEAREST, bool transpose = false)
  4421. : type(type), ne(ne), scale_factor(scale_factor), transpose(transpose), mode(mode) {}
  4422. ggml_tensor * build_graph(ggml_context * ctx) override {
  4423. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4424. ggml_set_name(a, "a");
  4425. if (transpose) {
  4426. a = ggml_transpose(ctx, a);
  4427. ggml_set_name(a, "a_transposed");
  4428. }
  4429. ggml_tensor * out = ggml_upscale(ctx, a, scale_factor, mode);
  4430. ggml_set_name(out, "out");
  4431. return out;
  4432. }
  4433. };
  4434. // GGML_OP_UPSCALE (via ggml_interpolate)
  4435. struct test_interpolate : public test_case {
  4436. const ggml_type type;
  4437. const std::array<int64_t, 4> ne;
  4438. const std::array<int64_t, 4> ne_tgt;
  4439. const uint32_t mode = GGML_SCALE_MODE_NEAREST;
  4440. std::string vars() override {
  4441. ggml_scale_mode mode = (ggml_scale_mode)(this->mode & 0xFF);
  4442. std::string flags = (this->mode & GGML_SCALE_FLAG_ALIGN_CORNERS) ? "align_corners" : "none";
  4443. return VARS_TO_STR5(type, ne, ne_tgt, mode, flags);
  4444. }
  4445. test_interpolate(ggml_type type = GGML_TYPE_F32,
  4446. std::array<int64_t, 4> ne = {2, 5, 7, 11},
  4447. std::array<int64_t, 4> ne_tgt = {5, 7, 11, 13},
  4448. uint32_t mode = GGML_SCALE_MODE_NEAREST)
  4449. : type(type), ne(ne), ne_tgt(ne_tgt), mode(mode) {}
  4450. ggml_tensor * build_graph(ggml_context * ctx) override {
  4451. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4452. ggml_set_name(a, "a");
  4453. ggml_tensor * out = ggml_interpolate(ctx, a, ne_tgt[0], ne_tgt[1],ne_tgt[2], ne_tgt[3], mode);
  4454. ggml_set_name(out, "out");
  4455. return out;
  4456. }
  4457. };
  4458. // GGML_OP_GROUP_NORM
  4459. struct test_group_norm : public test_case {
  4460. const ggml_type type;
  4461. const std::array<int64_t, 4> ne;
  4462. const int32_t num_groups;
  4463. const float eps;
  4464. std::string vars() override {
  4465. return VARS_TO_STR4(type, ne, num_groups, eps);
  4466. }
  4467. test_group_norm(ggml_type type = GGML_TYPE_F32,
  4468. std::array<int64_t, 4> ne = {64, 64, 320, 1},
  4469. int32_t num_groups = 32,
  4470. float eps = 1e-6f)
  4471. : type(type), ne(ne), num_groups(num_groups), eps(eps) {}
  4472. ggml_tensor * build_graph(ggml_context * ctx) override {
  4473. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4474. ggml_set_name(a, "a");
  4475. ggml_tensor * out = ggml_group_norm(ctx, a, num_groups, eps);
  4476. ggml_set_name(out, "out");
  4477. return out;
  4478. }
  4479. };
  4480. // GGML_OP_GROUP_NORM + GGML_OP_MUL + GGML_OP_ADD
  4481. struct test_group_norm_mul_add : public test_case {
  4482. const ggml_type type;
  4483. const std::array<int64_t, 4> ne;
  4484. int num_groups;
  4485. float eps;
  4486. std::string op_desc(ggml_tensor * t) override {
  4487. GGML_UNUSED(t);
  4488. return "GROUP_NORM_MUL_ADD";
  4489. }
  4490. bool run_whole_graph() override { return true; }
  4491. std::string vars() override {
  4492. return VARS_TO_STR4(type, ne, num_groups, eps);
  4493. }
  4494. test_group_norm_mul_add(ggml_type type = GGML_TYPE_F32,
  4495. std::array<int64_t, 4> ne = {128, 1, 1, 1},
  4496. int num_groups = 4,
  4497. float eps = 1e-5f)
  4498. : type(type), ne(ne), num_groups(num_groups), eps(eps) {}
  4499. ggml_tensor * build_graph(ggml_context * ctx) override {
  4500. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4501. ggml_tensor * w = ggml_new_tensor(ctx, type, 4, ne.data());
  4502. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  4503. ggml_set_param(a); ggml_set_param(w); ggml_set_param(b);
  4504. ggml_set_name(a, "a"); ggml_set_name(w, "w"); ggml_set_name(b, "b");
  4505. ggml_tensor * n = ggml_group_norm(ctx, a, num_groups, eps);
  4506. ggml_tensor * m = ggml_mul(ctx, n, w);
  4507. ggml_tensor * out = ggml_add(ctx, m, b);
  4508. ggml_set_name(out, "out");
  4509. return out;
  4510. }
  4511. };
  4512. // GGML_OP_L2_NORM
  4513. struct test_l2_norm : public test_case {
  4514. const ggml_type type;
  4515. const std::array<int64_t, 4> ne;
  4516. const float eps;
  4517. std::string vars() override {
  4518. return VARS_TO_STR2(type, ne);
  4519. }
  4520. test_l2_norm(ggml_type type = GGML_TYPE_F32,
  4521. std::array<int64_t, 4> ne = {64, 64, 320, 1},
  4522. float eps = 1e-12f)
  4523. : type(type), ne(ne), eps(eps) {}
  4524. ggml_tensor * build_graph(ggml_context * ctx) override {
  4525. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4526. ggml_set_name(a, "a");
  4527. ggml_tensor * out = ggml_l2_norm(ctx, a, eps);
  4528. ggml_set_name(out, "out");
  4529. return out;
  4530. }
  4531. };
  4532. // GGML_OP_ACC
  4533. struct test_acc : public test_case {
  4534. const ggml_type type;
  4535. const std::array<int64_t, 4> ne_a;
  4536. const std::array<int64_t, 4> ne_b;
  4537. std::string vars() override {
  4538. return VARS_TO_STR3(type, ne_a, ne_b);
  4539. }
  4540. test_acc(ggml_type type = GGML_TYPE_F32,
  4541. std::array<int64_t, 4> ne_a = {256, 17, 1, 1},
  4542. std::array<int64_t, 4> ne_b = {256, 16, 1, 1})
  4543. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  4544. ggml_tensor * build_graph(ggml_context * ctx) override {
  4545. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4546. ggml_set_param(a);
  4547. ggml_set_name(a, "a");
  4548. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  4549. ggml_set_param(b);
  4550. ggml_set_name(b, "b");
  4551. ggml_tensor * out = ggml_acc(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], b->nb[1]);
  4552. ggml_set_name(out, "out");
  4553. return out;
  4554. }
  4555. };
  4556. // GGML_OP_PAD
  4557. struct test_pad : public test_case {
  4558. const ggml_type type;
  4559. const std::array<int64_t, 4> ne_a;
  4560. const int pad_0;
  4561. const int pad_1;
  4562. std::string vars() override {
  4563. return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
  4564. }
  4565. test_pad(ggml_type type = GGML_TYPE_F32,
  4566. std::array<int64_t, 4> ne_a = {512, 512, 1, 1},
  4567. int pad_0 = 1, int pad_1 = 1)
  4568. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
  4569. ggml_tensor * build_graph(ggml_context * ctx) override {
  4570. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4571. ggml_set_name(a, "a");
  4572. ggml_tensor * out = ggml_pad(ctx, a, pad_0, pad_1, 0, 0);
  4573. ggml_set_name(out, "out");
  4574. return out;
  4575. }
  4576. };
  4577. // GGML_OP_PAD (with extension)
  4578. struct test_pad_ext : public test_case {
  4579. const ggml_type type;
  4580. const std::array<int64_t, 4> ne_a;
  4581. const int lp0;
  4582. const int rp0;
  4583. const int lp1;
  4584. const int rp1;
  4585. const int lp2;
  4586. const int rp2;
  4587. const int lp3;
  4588. const int rp3;
  4589. const bool v;
  4590. std::string vars() override {
  4591. return VARS_TO_STR11(type, ne_a, lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3, v);
  4592. }
  4593. test_pad_ext(ggml_type type = GGML_TYPE_F32,
  4594. std::array<int64_t, 4> ne_a = {512, 512, 3, 1},
  4595. int lp0 = 1, int rp0 = 1, int lp1 = 1, int rp1 = 1,
  4596. int lp2 = 1, int rp2 = 1, int lp3 = 1, int rp3 = 1,
  4597. bool v = false)
  4598. : type(type), ne_a(ne_a), lp0(lp0), rp0(rp0), lp1(lp1), rp1(rp1), lp2(lp2), rp2(rp2), lp3(lp3), rp3(rp3), v(v) {}
  4599. ggml_tensor * build_graph(ggml_context * ctx) override {
  4600. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4601. ggml_set_name(a, "a");
  4602. if (v) {
  4603. a = ggml_view_4d(ctx, a, (a->ne[0] + 1) / 2, (a->ne[1] + 1) / 2, (a->ne[2] + 1) / 2, (a->ne[3] + 1) / 2, a->nb[1], a->nb[2], a->nb[3], 0);
  4604. ggml_set_name(a, "view of a");
  4605. }
  4606. ggml_tensor * out = ggml_pad_ext(ctx, a, lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3);
  4607. ggml_set_name(out, "out");
  4608. return out;
  4609. }
  4610. };
  4611. // GGML_OP_PAD_REFLECT_1D
  4612. struct test_pad_reflect_1d : public test_case {
  4613. const ggml_type type;
  4614. const std::array<int64_t, 4> ne_a;
  4615. const int pad_0;
  4616. const int pad_1;
  4617. std::string vars() override {
  4618. return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
  4619. }
  4620. test_pad_reflect_1d(ggml_type type = GGML_TYPE_F32,
  4621. std::array<int64_t, 4> ne_a = {512, 34, 2, 1},
  4622. int pad_0 = 10, int pad_1 = 9)
  4623. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
  4624. ggml_tensor * build_graph(ggml_context * ctx) override {
  4625. ggml_tensor * a = ggml_new_tensor(ctx, type, 2, ne_a.data());
  4626. ggml_set_name(a, "a");
  4627. ggml_tensor * out = ggml_pad_reflect_1d(ctx, a, pad_0, pad_1);
  4628. ggml_set_name(out, "out");
  4629. return out;
  4630. }
  4631. };
  4632. // GGML_OP_ROLL
  4633. struct test_roll : public test_case {
  4634. const int shift0;
  4635. const int shift1;
  4636. const int shift3;
  4637. const int shift4;
  4638. std::string vars() override {
  4639. return VARS_TO_STR4(shift0, shift1, shift3, shift4);
  4640. }
  4641. test_roll(int shift0 = 3, int shift1 = -2, int shift3 = 1, int shift4 = -1)
  4642. : shift0(shift0), shift1(shift1), shift3(shift3), shift4(shift4) {}
  4643. ggml_tensor * build_graph(ggml_context * ctx) override {
  4644. int64_t ne[4] = {10, 5, 4, 3};
  4645. ggml_tensor * a = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4646. ggml_set_name(a, "a");
  4647. ggml_tensor * out = ggml_roll(ctx, a, shift0, shift1, shift3, shift4);
  4648. ggml_set_name(out, "out");
  4649. return out;
  4650. }
  4651. };
  4652. // GGML_OP_ARANGE
  4653. struct test_arange : public test_case {
  4654. const ggml_type type;
  4655. const float start;
  4656. const float stop;
  4657. const float step;
  4658. std::string vars() override {
  4659. return VARS_TO_STR4(type, start, stop, step);
  4660. }
  4661. test_arange(ggml_type type = GGML_TYPE_F32,
  4662. float start = 0.f, float stop = 10.f, float step = 1.f)
  4663. : type(type), start(start), stop(stop), step(step) {}
  4664. ggml_tensor * build_graph(ggml_context * ctx) override {
  4665. ggml_tensor * out = ggml_arange(ctx, start, stop, step);
  4666. ggml_set_name(out, "out");
  4667. return out;
  4668. }
  4669. };
  4670. // GGML_OP_TIMESTEP_EMBEDDING
  4671. struct test_timestep_embedding : public test_case {
  4672. const ggml_type type;
  4673. const std::array<int64_t, 4> ne_a;
  4674. const int dim;
  4675. const int max_period;
  4676. std::string vars() override {
  4677. return VARS_TO_STR4(type, ne_a, dim, max_period);
  4678. }
  4679. test_timestep_embedding(ggml_type type = GGML_TYPE_F32,
  4680. std::array<int64_t, 4> ne_a = {2, 1, 1, 1},
  4681. int dim = 320, int max_period=10000)
  4682. : type(type), ne_a(ne_a), dim(dim), max_period(max_period) {}
  4683. ggml_tensor * build_graph(ggml_context * ctx) override {
  4684. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4685. ggml_set_name(a, "a");
  4686. ggml_tensor * out = ggml_timestep_embedding(ctx, a, dim, max_period);
  4687. ggml_set_name(out, "out");
  4688. return out;
  4689. }
  4690. };
  4691. // GGML_OP_LEAKY_RELU
  4692. struct test_leaky_relu : public test_case {
  4693. const ggml_type type;
  4694. const std::array<int64_t, 4> ne_a;
  4695. const float negative_slope;
  4696. std::string vars() override {
  4697. return VARS_TO_STR3(type, ne_a, negative_slope);
  4698. }
  4699. test_leaky_relu(ggml_type type = GGML_TYPE_F32,
  4700. std::array<int64_t, 4> ne_a = {10, 5, 4, 3},
  4701. float negative_slope = 0.1f)
  4702. : type(type), ne_a(ne_a), negative_slope(negative_slope) {}
  4703. ggml_tensor * build_graph(ggml_context * ctx) override {
  4704. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4705. ggml_set_name(a, "a");
  4706. ggml_tensor * out = ggml_leaky_relu(ctx, a, negative_slope, true);
  4707. ggml_set_name(out, "out");
  4708. return out;
  4709. }
  4710. };
  4711. // GGML_OP_FLASH_ATTN_EXT
  4712. struct test_flash_attn_ext : public test_case {
  4713. const int64_t hsk; // K head size
  4714. const int64_t hsv; // V head size
  4715. const int64_t nh; // num heads
  4716. const std::array<int64_t, 2> nr23; // repeat in dim 2 and 3, tests for grouped-query attention
  4717. const int64_t kv; // kv size
  4718. const int64_t nb; // batch size
  4719. const bool mask; // use mask
  4720. const bool sinks; // use sinks
  4721. const float max_bias; // ALiBi
  4722. const float logit_softcap; // Gemma 2
  4723. const ggml_prec prec;
  4724. const ggml_type type_KV;
  4725. std::array<int32_t, 4> permute;
  4726. std::string vars() override {
  4727. return VARS_TO_STR13(hsk, hsv, nh, nr23, kv, nb, mask, sinks, max_bias, logit_softcap, prec, type_KV, permute);
  4728. }
  4729. double max_nmse_err() override {
  4730. return 5e-4;
  4731. }
  4732. uint64_t op_flops(ggml_tensor * t) override {
  4733. GGML_UNUSED(t);
  4734. // Just counting matmul costs:
  4735. // Q*K^T is nb x hsk x kv, P*V is nb x kv x hsv, per head
  4736. return (2 * nh*nr23[0] * nb * (hsk + hsv) * kv)*nr23[1];
  4737. }
  4738. test_flash_attn_ext(int64_t hsk = 128, int64_t hsv = 128, int64_t nh = 32, std::array<int64_t, 2> nr23 = {1, 1}, int64_t kv = 96, int64_t nb = 8,
  4739. bool mask = true, bool sinks = false, float max_bias = 0.0f, float logit_softcap = 0.0f, ggml_prec prec = GGML_PREC_F32,
  4740. ggml_type type_KV = GGML_TYPE_F16, std::array<int32_t, 4> permute = {0, 1, 2, 3})
  4741. : hsk(hsk), hsv(hsv), nh(nh), nr23(nr23), kv(kv), nb(nb), mask(mask), sinks(sinks), max_bias(max_bias), logit_softcap(logit_softcap), prec(prec), type_KV(type_KV), permute(permute) {}
  4742. ggml_tensor * build_graph(ggml_context * ctx) override {
  4743. const int64_t hsk_padded = GGML_PAD(hsk, ggml_blck_size(type_KV));
  4744. const int64_t hsv_padded = GGML_PAD(hsv, ggml_blck_size(type_KV));
  4745. auto const &create_permuted = [&](ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3, bool is_view) -> ggml_tensor * {
  4746. int64_t ne[4] = {ne0, ne1, ne2, ne3};
  4747. int64_t ne_perm[4];
  4748. for (int i = 0; i < 4; ++i) {
  4749. ne_perm[permute[i]] = ne[i];
  4750. }
  4751. ggml_tensor * t;
  4752. if (is_view) {
  4753. ggml_tensor * t0 = ggml_new_tensor_4d(ctx, type, ne_perm[0], 2*ne_perm[1], ne_perm[2], ne_perm[3]);
  4754. t = ggml_view_4d(ctx, t0, ne_perm[0], ne_perm[1], ne_perm[2], ne_perm[3], t0->nb[1], t0->nb[2], t0->nb[3], 0);
  4755. } else {
  4756. t = ggml_new_tensor_4d(ctx, type, ne_perm[0], ne_perm[1], ne_perm[2], ne_perm[3]);
  4757. }
  4758. if (permute != std::array<int32_t, 4>{0, 1, 2, 3}) {
  4759. t = ggml_permute(ctx, t, permute[0], permute[1], permute[2], permute[3]);
  4760. }
  4761. return t;
  4762. };
  4763. ggml_tensor * q = create_permuted(GGML_TYPE_F32, hsk_padded, nb, nh*nr23[0], nr23[1], false);
  4764. ggml_set_name(q, "q");
  4765. ggml_tensor * k = create_permuted(type_KV, hsk_padded, kv, nh, nr23[1], true); // the K tensor is usually a view of the K cache
  4766. ggml_set_name(k, "k");
  4767. ggml_tensor * v = create_permuted(type_KV, hsv_padded, kv, nh, nr23[1], true); // the V tensor is usually a view of the V cache
  4768. ggml_set_name(v, "v");
  4769. ggml_tensor * m = nullptr;
  4770. if (mask) {
  4771. m = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), 1, nr23[1]);
  4772. ggml_set_name(m, "m");
  4773. }
  4774. ggml_tensor * s = nullptr;
  4775. if (sinks) {
  4776. s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, q->ne[2]);
  4777. ggml_set_name(s, "s");
  4778. }
  4779. ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, m, 1.0f/sqrtf(hsk), max_bias, logit_softcap);
  4780. ggml_flash_attn_ext_add_sinks(out, s);
  4781. ggml_flash_attn_ext_set_prec (out, prec);
  4782. ggml_set_name(out, "out");
  4783. return out;
  4784. }
  4785. void initialize_tensors(ggml_context * ctx) override {
  4786. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4787. if (strcmp(t->name, "s") == 0) {
  4788. // make the sink values more noticable in order to trigger a test failure when the implementation is wrong
  4789. init_tensor_uniform(t, -10.0f, 10.0f);
  4790. } else if (strcmp(t->name, "m") == 0) {
  4791. init_tensor_kq_mask(t);
  4792. } else {
  4793. init_tensor_uniform(t);
  4794. }
  4795. }
  4796. }
  4797. bool grad_precise() override {
  4798. return true;
  4799. }
  4800. };
  4801. // GGML_OP_CROSS_ENTROPY_LOSS
  4802. struct test_cross_entropy_loss : public test_case {
  4803. const ggml_type type;
  4804. const std::array<int64_t, 4> ne;
  4805. std::string vars() override {
  4806. return VARS_TO_STR2(type, ne);
  4807. }
  4808. test_cross_entropy_loss(ggml_type type = GGML_TYPE_F32,
  4809. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  4810. : type(type), ne(ne) {}
  4811. ggml_tensor * build_graph(ggml_context * ctx) override {
  4812. ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
  4813. ggml_set_param(logits);
  4814. ggml_set_name(logits, "logits");
  4815. ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
  4816. // The labels are assumed to be constant -> no gradients.
  4817. ggml_set_name(labels, "labels");
  4818. // Ensure labels add up to 1:
  4819. labels = ggml_soft_max(ctx, labels);
  4820. ggml_set_name(labels, "labels_normalized");
  4821. ggml_tensor * out = ggml_cross_entropy_loss(ctx, logits, labels);
  4822. ggml_set_name(out, "out");
  4823. return out;
  4824. }
  4825. void initialize_tensors(ggml_context * ctx) override {
  4826. // For larger abs. diffs between logits softmax is more linear, therefore more precise num. gradients.
  4827. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4828. init_tensor_uniform(t, -100.0f, 100.0f);
  4829. }
  4830. }
  4831. float grad_eps() override {
  4832. return 1.0f;
  4833. }
  4834. bool grad_precise() override {
  4835. return true;
  4836. }
  4837. };
  4838. // GGML_OP_CROSS_ENTROPY_LOSS_BACK
  4839. struct test_cross_entropy_loss_back : public test_case {
  4840. const ggml_type type;
  4841. const std::array<int64_t, 4> ne;
  4842. std::string vars() override {
  4843. return VARS_TO_STR2(type, ne);
  4844. }
  4845. test_cross_entropy_loss_back(ggml_type type = GGML_TYPE_F32,
  4846. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  4847. : type(type), ne(ne) {}
  4848. ggml_tensor * build_graph(ggml_context * ctx) override {
  4849. ggml_tensor * grad = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  4850. ggml_set_name(grad, "grad");
  4851. ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
  4852. ggml_set_name(logits, "logits");
  4853. ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
  4854. ggml_set_name(labels, "labels");
  4855. // Ensure labels add up to 1:
  4856. labels = ggml_soft_max(ctx, labels);
  4857. ggml_set_name(labels, "labels_normalized");
  4858. ggml_tensor * out = ggml_cross_entropy_loss_back(ctx, grad, logits, labels);
  4859. ggml_set_name(out, "out");
  4860. return out;
  4861. }
  4862. };
  4863. // GGML_OP_OPT_STEP_ADAMW
  4864. struct test_opt_step_adamw : public test_case {
  4865. const ggml_type type;
  4866. const std::array<int64_t, 4> ne;
  4867. std::string vars() override {
  4868. return VARS_TO_STR2(type, ne);
  4869. }
  4870. test_opt_step_adamw(ggml_type type = GGML_TYPE_F32,
  4871. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  4872. : type(type), ne(ne) {}
  4873. ggml_tensor * build_graph(ggml_context * ctx) override {
  4874. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4875. ggml_set_param(a); // Despite tensor a having gradients the output tensor will not.
  4876. ggml_set_name(a, "a");
  4877. ggml_tensor * grad = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4878. ggml_set_name(grad, "grad");
  4879. ggml_tensor * grad_m = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4880. ggml_set_name(grad_m, "grad_m");
  4881. ggml_tensor * grad_v = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4882. ggml_set_name(grad_v, "grad_v");
  4883. ggml_tensor * adamw_params = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 7);
  4884. ggml_set_name(adamw_params, "adamw_params");
  4885. ggml_tensor * out = ggml_opt_step_adamw(ctx, a, grad, grad_m, grad_v, adamw_params);
  4886. ggml_set_name(out, "out");
  4887. return out;
  4888. }
  4889. void initialize_tensors(ggml_context * ctx) override {
  4890. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4891. init_tensor_uniform(t, 0.0f, 1.0f); // grad_v and adamw_params need non-negative values.
  4892. }
  4893. }
  4894. bool grad_precise() override {
  4895. return true;
  4896. }
  4897. };
  4898. // GGML_OP_OPT_STEP_SGD
  4899. struct test_opt_step_sgd : public test_case {
  4900. const ggml_type type;
  4901. const std::array<int64_t, 4> ne;
  4902. std::string vars() override { return VARS_TO_STR2(type, ne); }
  4903. test_opt_step_sgd(ggml_type type = GGML_TYPE_F32,
  4904. std::array<int64_t, 4> ne = { 10, 5, 4, 3 })
  4905. : type(type), ne(ne) {}
  4906. ggml_tensor * build_graph(ggml_context * ctx) override {
  4907. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4908. ggml_set_param(a); // Despite tensor a having gradients the output tensor will not.
  4909. ggml_set_name(a, "a");
  4910. ggml_tensor * grad = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4911. ggml_set_name(grad, "grad");
  4912. ggml_tensor * sgd_params = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 2);
  4913. ggml_set_name(sgd_params, "sgd_params");
  4914. ggml_tensor * out = ggml_opt_step_sgd(ctx, a, grad, sgd_params);
  4915. ggml_set_name(out, "out");
  4916. return out;
  4917. }
  4918. void initialize_tensors(ggml_context * ctx) override {
  4919. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4920. init_tensor_uniform(t, 0.0f, 1.0f); // sgd_params need non-negative values.
  4921. }
  4922. }
  4923. bool grad_precise() override {
  4924. return true;
  4925. }
  4926. };
  4927. // GGML_OP_CUMSUM
  4928. struct test_cumsum : public test_case {
  4929. const ggml_type type;
  4930. const std::array<int64_t, 4> ne;
  4931. std::string vars() override { return VARS_TO_STR2(type, ne); }
  4932. test_cumsum(ggml_type type = GGML_TYPE_F32,
  4933. std::array<int64_t, 4> ne = { 10, 5, 4, 3 })
  4934. : type(type), ne(ne) {}
  4935. ggml_tensor * build_graph(ggml_context * ctx) override {
  4936. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4937. ggml_set_param(a);
  4938. ggml_set_name(a, "a");
  4939. ggml_tensor * out = ggml_cumsum(ctx, a);
  4940. ggml_set_name(out, "out");
  4941. return out;
  4942. }
  4943. void initialize_tensors(ggml_context * ctx) override {
  4944. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4945. init_tensor_uniform(t, -1.0f, 1.0f);
  4946. }
  4947. }
  4948. };
  4949. // GGML_OP_XIELU
  4950. struct test_xielu : public test_case {
  4951. const ggml_type type;
  4952. const std::array<int64_t, 4> ne;
  4953. std::string vars() override { return VARS_TO_STR2(type, ne); }
  4954. test_xielu(ggml_type type = GGML_TYPE_F32,
  4955. std::array<int64_t, 4> ne = { 10, 5, 4, 3 })
  4956. : type(type), ne(ne) {}
  4957. ggml_tensor * build_graph(ggml_context * ctx) override {
  4958. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4959. ggml_set_param(a);
  4960. ggml_set_name(a, "a");
  4961. float alpha_n = 4.0f;
  4962. float alpha_p = 20.0f;
  4963. float beta = 0.5f;
  4964. float eps = 0.0000001f;
  4965. ggml_tensor * out = ggml_xielu(ctx, a, alpha_n, alpha_p, beta, eps);
  4966. ggml_set_name(out, "out");
  4967. return out;
  4968. }
  4969. void initialize_tensors(ggml_context * ctx) override {
  4970. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4971. init_tensor_uniform(t, -1.0f, 1.0f);
  4972. }
  4973. }
  4974. };
  4975. // GGML_OP_TRI
  4976. struct test_tri : public test_case {
  4977. const ggml_type type;
  4978. const std::array<int64_t, 4> ne;
  4979. const ggml_tri_type tri_type;
  4980. std::string vars() override { return VARS_TO_STR3(type, ne, tri_type); }
  4981. test_tri(ggml_tri_type tri_type, ggml_type type = GGML_TYPE_F32,
  4982. std::array<int64_t, 4> ne = { 10, 10, 4, 3 })
  4983. : type(type), ne(ne), tri_type(tri_type) {
  4984. GGML_ASSERT(ne[0] == ne[1]);
  4985. }
  4986. ggml_tensor * build_graph(ggml_context * ctx) override {
  4987. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4988. ggml_set_param(a);
  4989. ggml_set_name(a, "a");
  4990. ggml_tensor * out = ggml_tri(ctx, a, tri_type);
  4991. ggml_set_name(out, "out");
  4992. return out;
  4993. }
  4994. void initialize_tensors(ggml_context * ctx) override {
  4995. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4996. init_tensor_uniform(t, -1.0f, 1.0f);
  4997. }
  4998. }
  4999. };
  5000. // GGML_OP_FILL
  5001. struct test_fill : public test_case {
  5002. const ggml_type type;
  5003. const std::array<int64_t, 4> ne;
  5004. float c;
  5005. std::string vars() override { return VARS_TO_STR3(type, ne, c); }
  5006. test_fill(float c, ggml_type type = GGML_TYPE_F32,
  5007. std::array<int64_t, 4> ne = { 10, 10, 4, 3 })
  5008. : type(type), ne(ne), c(c) {}
  5009. ggml_tensor * build_graph(ggml_context * ctx) override {
  5010. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  5011. ggml_set_param(a);
  5012. ggml_set_name(a, "a");
  5013. ggml_tensor * out = ggml_fill(ctx, a, c);
  5014. ggml_set_name(out, "out");
  5015. return out;
  5016. }
  5017. };
  5018. // GGML_OP_SOLVE_TRI
  5019. struct test_solve_tri : public test_case {
  5020. const ggml_type type;
  5021. const std::array<int64_t, 4> ne_lhs;
  5022. const std::array<int64_t, 4> ne_rhs;
  5023. std::string vars() override { return VARS_TO_STR3(type, ne_lhs, ne_rhs); }
  5024. test_solve_tri(ggml_type type = GGML_TYPE_F32,
  5025. std::array<int64_t, 4> ne_lhs = { 10, 10, 4, 3 },
  5026. std::array<int64_t, 4> ne_rhs = { 3, 10, 4, 3 }
  5027. )
  5028. : type(type), ne_lhs(ne_lhs), ne_rhs(ne_rhs) {}
  5029. ggml_tensor * build_graph(ggml_context * ctx) override {
  5030. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne_lhs[0], ne_lhs[1], ne_lhs[2], ne_lhs[3]);
  5031. ggml_set_param(a);
  5032. ggml_set_name(a, "a");
  5033. ggml_tensor * b = ggml_new_tensor_4d(ctx, type, ne_rhs[0], ne_rhs[1], ne_rhs[2], ne_rhs[3]);
  5034. ggml_set_param(b);
  5035. ggml_set_name(b, "b");
  5036. ggml_tensor * out = ggml_solve_tri(ctx, a, b, true, true, false);
  5037. ggml_set_name(out, "out");
  5038. return out;
  5039. }
  5040. void initialize_tensors(ggml_context * ctx) override {
  5041. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  5042. if (strcmp(t->name, "a") == 0) {
  5043. // note: avoid zeros in the diagonal
  5044. init_tensor_tril(t, 0.1, 1.0f);
  5045. } else {
  5046. init_tensor_uniform(t, -1.0f, 1.0f);
  5047. }
  5048. }
  5049. }
  5050. };
  5051. enum llm_norm_type {
  5052. LLM_NORM,
  5053. LLM_NORM_RMS,
  5054. };
  5055. struct llama_hparams {
  5056. uint32_t n_vocab;
  5057. uint32_t n_embd;
  5058. uint32_t n_head;
  5059. uint32_t n_head_kv;
  5060. static constexpr uint32_t n_layer = 1;
  5061. uint32_t n_rot;
  5062. uint32_t n_embd_head; // dimension of values (d_v)
  5063. uint32_t n_ff;
  5064. float f_norm_eps;
  5065. float f_norm_rms_eps;
  5066. // cparams
  5067. static constexpr uint32_t n_ctx = 512; // user-specified context size
  5068. static constexpr uint32_t n_ctx_orig = n_ctx;
  5069. // batch
  5070. int32_t n_tokens;
  5071. // llm_build_context
  5072. static constexpr int32_t n_kv = 32; // size of KV cache to consider (n_kv <= n_ctx
  5073. static constexpr int32_t kv_head = 1; // index of where we store new KV data in the cache
  5074. uint32_t n_embd_gqa() const { // dimension of key embeddings across all k-v heads
  5075. return n_embd_head * n_head_kv;
  5076. }
  5077. };
  5078. // LLM base class
  5079. struct test_llm : public test_case {
  5080. llama_hparams hp;
  5081. protected:
  5082. test_llm(llama_hparams hp)
  5083. : hp(std::move(hp)) {
  5084. }
  5085. public:
  5086. struct ggml_tensor * llm_build_norm(
  5087. struct ggml_context * ctx,
  5088. struct ggml_tensor * cur,
  5089. struct ggml_tensor * mw,
  5090. struct ggml_tensor * mb,
  5091. llm_norm_type type) {
  5092. switch (type) {
  5093. case LLM_NORM: cur = ggml_norm (ctx, cur, hp.f_norm_eps); break;
  5094. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hp.f_norm_rms_eps); break;
  5095. }
  5096. cur = ggml_mul(ctx, cur, mw);
  5097. if (mb) {
  5098. cur = ggml_add(ctx, cur, mb);
  5099. }
  5100. return cur;
  5101. }
  5102. void llm_build_kv_store(
  5103. struct ggml_context * ctx,
  5104. struct ggml_tensor * k_l,
  5105. struct ggml_tensor * v_l,
  5106. struct ggml_tensor * k_cur,
  5107. struct ggml_tensor * v_cur) {
  5108. // compute the transposed [n_tokens, n_embd] V matrix
  5109. struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, hp.n_embd_gqa(), hp.n_tokens));
  5110. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, k_l, hp.n_tokens*hp.n_embd_gqa(),
  5111. (ggml_row_size(k_l->type, hp.n_embd_gqa()))*hp.kv_head);
  5112. struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, v_l, hp.n_tokens, hp.n_embd_gqa(),
  5113. ( hp.n_ctx)*ggml_element_size(v_l),
  5114. (hp.kv_head)*ggml_element_size(v_l));
  5115. // important: storing RoPE-ed version of K in the KV cache!
  5116. ggml_cpy(ctx, k_cur, k_cache_view);
  5117. ggml_cpy(ctx, v_cur_t, v_cache_view);
  5118. }
  5119. struct ggml_tensor * llm_build_kqv(
  5120. struct ggml_context * ctx,
  5121. struct ggml_tensor * k_l,
  5122. struct ggml_tensor * v_l,
  5123. struct ggml_tensor * q_cur,
  5124. struct ggml_tensor * kq_mask,
  5125. float kq_scale) {
  5126. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  5127. struct ggml_tensor * k =
  5128. ggml_view_3d(ctx, k_l,
  5129. hp.n_embd_head, hp.n_kv, hp.n_head_kv,
  5130. ggml_row_size(k_l->type, hp.n_embd_gqa()),
  5131. ggml_row_size(k_l->type, hp.n_embd_head),
  5132. 0);
  5133. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  5134. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, 0.0f);
  5135. // split cached v into n_head heads
  5136. struct ggml_tensor * v =
  5137. ggml_view_3d(ctx, v_l,
  5138. hp.n_kv, hp.n_embd_head, hp.n_head_kv,
  5139. ggml_element_size(v_l)*hp.n_ctx,
  5140. ggml_element_size(v_l)*hp.n_ctx*hp.n_embd_head,
  5141. 0);
  5142. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  5143. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  5144. struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, hp.n_embd_head*hp.n_head, hp.n_tokens);
  5145. struct ggml_tensor * wo = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  5146. cur = ggml_mul_mat(ctx, wo, cur);
  5147. return cur;
  5148. }
  5149. void initialize_tensors(ggml_context * ctx) override {
  5150. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  5151. if (t->type == GGML_TYPE_I32) {
  5152. // pos
  5153. std::vector<int> data(hp.n_tokens);
  5154. for (int i = 0; i < hp.n_tokens; i++) {
  5155. data[i] = rand() % hp.n_ctx;
  5156. }
  5157. ggml_backend_tensor_set(t, data.data(), 0, hp.n_tokens * sizeof(int));
  5158. } else {
  5159. init_tensor_uniform(t);
  5160. }
  5161. }
  5162. }
  5163. };
  5164. // Llama
  5165. struct test_llama : public test_llm {
  5166. static constexpr float freq_base = 10000.0f;
  5167. static constexpr float freq_scale = 1.0f;
  5168. static constexpr float ext_factor = 0.0f;
  5169. static constexpr float attn_factor = 1.0f;
  5170. static constexpr float beta_fast = 32.0f;
  5171. static constexpr float beta_slow = 1.0f;
  5172. bool fused;
  5173. std::string op_desc(ggml_tensor * t) override {
  5174. GGML_UNUSED(t);
  5175. return "LLAMA";
  5176. }
  5177. std::string vars() override {
  5178. auto n_tokens = hp.n_tokens;
  5179. return VARS_TO_STR1(n_tokens);
  5180. }
  5181. double max_nmse_err() override {
  5182. return 2e-3;
  5183. }
  5184. bool run_whole_graph() override { return fused; }
  5185. test_llama(int n_tokens = 1, bool fused = false)
  5186. : test_llm({
  5187. /*n_vocab =*/ 32000,
  5188. /*n_embd =*/ 3200,
  5189. /*n_head =*/ 32,
  5190. /*n_head_kv =*/ 32,
  5191. /*n_rot =*/ 100,
  5192. /*n_embd_head =*/ 100,
  5193. /*n_ff =*/ 8640,
  5194. /*f_norm_eps =*/ 0.f,
  5195. /*f_norm_rms_eps =*/ 1e-5f,
  5196. /*n_tokens =*/ n_tokens,
  5197. })
  5198. , fused(fused)
  5199. {
  5200. }
  5201. ggml_tensor * build_graph(ggml_context * ctx) override {
  5202. struct ggml_tensor * cur;
  5203. struct ggml_tensor * inpL;
  5204. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  5205. // inp_pos - contains the positions
  5206. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  5207. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5208. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  5209. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  5210. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  5211. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  5212. struct ggml_tensor * inpSA = inpL;
  5213. // norm
  5214. ggml_tensor * attn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  5215. cur = llm_build_norm(ctx, inpL, attn_norm, nullptr, LLM_NORM_RMS);
  5216. // self-attention
  5217. {
  5218. ggml_tensor * wq = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  5219. ggml_tensor * wk = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  5220. ggml_tensor * wv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  5221. // compute Q and K and RoPE them
  5222. struct ggml_tensor * Qcur = ggml_mul_mat(ctx, wq, cur);
  5223. struct ggml_tensor * Kcur = ggml_mul_mat(ctx, wk, cur);
  5224. struct ggml_tensor * Vcur = ggml_mul_mat(ctx, wv, cur);
  5225. Qcur = ggml_rope_ext(
  5226. ctx, ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens), inp_pos, nullptr,
  5227. hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
  5228. ext_factor, attn_factor, beta_fast, beta_slow
  5229. );
  5230. Kcur = ggml_rope_ext(
  5231. ctx, ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens), inp_pos, nullptr,
  5232. hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
  5233. ext_factor, attn_factor, beta_fast, beta_slow
  5234. );
  5235. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  5236. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  5237. }
  5238. struct ggml_tensor * ffn_inp = ggml_add(ctx, cur, inpSA);
  5239. // feed-forward network
  5240. ggml_tensor * ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  5241. cur = llm_build_norm(ctx, ffn_inp, ffn_norm, nullptr, LLM_NORM_RMS);
  5242. ggml_tensor * ffn_gate = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  5243. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  5244. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  5245. struct ggml_tensor * tmp = ggml_mul_mat(ctx, ffn_up, cur);
  5246. cur = ggml_mul_mat(ctx, ffn_gate, cur);
  5247. cur = ggml_silu(ctx, cur);
  5248. cur = ggml_mul(ctx, cur, tmp);
  5249. cur = ggml_mul_mat(ctx, ffn_down, cur);
  5250. cur = ggml_add(ctx, cur, ffn_inp);
  5251. // input for next layer
  5252. inpL = cur;
  5253. }
  5254. cur = inpL;
  5255. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  5256. cur = llm_build_norm(ctx, cur, output_norm, nullptr, LLM_NORM_RMS);
  5257. // lm_head
  5258. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_vocab);
  5259. cur = ggml_mul_mat(ctx, output, cur);
  5260. return cur;
  5261. }
  5262. };
  5263. // Falcon
  5264. struct test_falcon : public test_llm {
  5265. static constexpr float freq_base = 10000.0f;
  5266. static constexpr float freq_scale = 1.0f;
  5267. static constexpr float ext_factor = 0.0f;
  5268. static constexpr float attn_factor = 1.0f;
  5269. static constexpr float beta_fast = 32.0f;
  5270. static constexpr float beta_slow = 1.0f;
  5271. std::string op_desc(ggml_tensor * t) override {
  5272. GGML_UNUSED(t);
  5273. return "FALCON";
  5274. }
  5275. std::string vars() override {
  5276. auto n_tokens = hp.n_tokens;
  5277. return VARS_TO_STR1(n_tokens);
  5278. }
  5279. double max_nmse_err() override {
  5280. return 2e-3;
  5281. }
  5282. test_falcon(int n_tokens = 1)
  5283. : test_llm({
  5284. /*n_vocab =*/ 32000,
  5285. /*n_embd =*/ 3200,
  5286. /*n_head =*/ 50,
  5287. /*n_head_kv =*/ 1,
  5288. /*n_rot =*/ 64,
  5289. /*n_embd_head =*/ 64,
  5290. /*n_ff =*/ 8640,
  5291. /*f_norm_eps =*/ 1e-5f,
  5292. /*f_norm_rms_eps =*/ 0.f,
  5293. /*n_tokens =*/ n_tokens,
  5294. }) {
  5295. }
  5296. ggml_tensor * build_graph(ggml_context * ctx) override {
  5297. struct ggml_tensor * cur;
  5298. struct ggml_tensor * inpL;
  5299. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  5300. // inp_pos - contains the positions
  5301. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  5302. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5303. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  5304. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  5305. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  5306. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  5307. // norm
  5308. ggml_tensor * attn_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  5309. ggml_tensor * attn_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  5310. ggml_tensor * attn_norm = llm_build_norm(ctx, inpL, attn_norm_w, attn_norm_b, LLM_NORM);
  5311. // self-attention
  5312. {
  5313. cur = attn_norm;
  5314. ggml_tensor * wqkv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd + 2*hp.n_embd_gqa());
  5315. cur = ggml_mul_mat(ctx, wqkv, cur);
  5316. struct ggml_tensor * Qcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd, hp.n_tokens, cur->nb[1], 0*sizeof(float)*(hp.n_embd)));
  5317. struct ggml_tensor * Kcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd)));
  5318. struct ggml_tensor * Vcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd + hp.n_embd_gqa())));
  5319. Qcur = ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens);
  5320. Kcur = ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens);
  5321. // using mode = 2 for neox mode
  5322. Qcur = ggml_rope_ext(
  5323. ctx, Qcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
  5324. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  5325. );
  5326. Kcur = ggml_rope_ext(
  5327. ctx, Kcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
  5328. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  5329. );
  5330. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  5331. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  5332. }
  5333. struct ggml_tensor * ffn_inp = cur;
  5334. // feed forward
  5335. {
  5336. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  5337. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  5338. cur = attn_norm;
  5339. cur = ggml_mul_mat(ctx, ffn_up, cur);
  5340. cur = ggml_gelu(ctx, cur);
  5341. cur = ggml_mul_mat(ctx, ffn_down, cur);
  5342. }
  5343. cur = ggml_add(ctx, cur, ffn_inp);
  5344. cur = ggml_add(ctx, cur, inpL);
  5345. // input for next layer
  5346. inpL = cur;
  5347. }
  5348. cur = inpL;
  5349. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  5350. ggml_tensor * output_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  5351. cur = llm_build_norm(ctx, cur, output_norm, output_norm_b, LLM_NORM);
  5352. // lm_head
  5353. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q8_0, hp.n_embd, hp.n_vocab);
  5354. cur = ggml_mul_mat(ctx, output, cur);
  5355. return cur;
  5356. }
  5357. };
  5358. // ###########################################
  5359. // ## Section 3: GGML Op Test Instantiation ##
  5360. // ###########################################
  5361. static const ggml_type all_types[] = {
  5362. GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16,
  5363. GGML_TYPE_Q4_0, GGML_TYPE_Q4_1,
  5364. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  5365. GGML_TYPE_Q8_0,
  5366. GGML_TYPE_MXFP4,
  5367. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  5368. GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
  5369. GGML_TYPE_Q6_K,
  5370. // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
  5371. GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  5372. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  5373. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  5374. };
  5375. static const ggml_type base_types[] = {
  5376. GGML_TYPE_F32, GGML_TYPE_F16,
  5377. GGML_TYPE_Q8_0, // for I8MM tests
  5378. GGML_TYPE_Q4_0,
  5379. GGML_TYPE_Q4_1, // for I8MM tests
  5380. GGML_TYPE_Q4_K,
  5381. GGML_TYPE_MXFP4, // TODO: or "other"
  5382. GGML_TYPE_IQ2_XXS
  5383. };
  5384. static const ggml_type other_types[] = {
  5385. GGML_TYPE_Q4_1,
  5386. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  5387. GGML_TYPE_Q8_0,
  5388. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  5389. GGML_TYPE_Q5_K,
  5390. GGML_TYPE_Q6_K,
  5391. // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
  5392. GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  5393. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  5394. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  5395. GGML_TYPE_BF16,
  5396. };
  5397. // Test cases for evaluation: should try to cover edge cases while using small input sizes to keep the runtime low
  5398. static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
  5399. std::vector<std::unique_ptr<test_case>> test_cases;
  5400. std::default_random_engine rng(0);
  5401. // unary ops
  5402. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5403. for (int v : {0, 1}) {
  5404. for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) {
  5405. if (op == GGML_UNARY_OP_XIELU) {
  5406. continue; // need extra params, separate test
  5407. }
  5408. test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 128, 2, 2, 2 }, v));
  5409. test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 5, 7, 11, 13 }, v));
  5410. }
  5411. }
  5412. }
  5413. // glu ops
  5414. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5415. for (int v : {0, 1}) {
  5416. for (int op = 0; op < GGML_GLU_OP_COUNT; op++) {
  5417. if (op == GGML_GLU_OP_SWIGLU_OAI) {
  5418. // SWIGLU_OAI is handled separately
  5419. continue;
  5420. }
  5421. for (bool swapped : {false, true}) {
  5422. test_cases.emplace_back(new test_glu((ggml_glu_op) op, type, { 128, 2, 2, 2 }, v, swapped));
  5423. test_cases.emplace_back(new test_glu((ggml_glu_op) op, type, { 5, 7, 11, 13 }, v, swapped));
  5424. }
  5425. test_cases.emplace_back(new test_glu_split((ggml_glu_op) op, type, { 128, 2, 2, 2 }, v));
  5426. test_cases.emplace_back(new test_glu_split((ggml_glu_op) op, type, { 5, 7, 11, 13 }, v));
  5427. }
  5428. }
  5429. }
  5430. for (int v : {0, 1}) {
  5431. for (float alpha : {.5f, 1.702f}) {
  5432. for (float limit : {2.0f, 7.0f}) {
  5433. test_cases.emplace_back(new test_swiglu_oai(GGML_TYPE_F32, { 128, 2, 2, 2 }, v, alpha, limit));
  5434. }
  5435. }
  5436. }
  5437. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_Q4_0}) {
  5438. test_cases.emplace_back(new test_get_rows(type, 300*256, 5, 4, 1, 2, false));
  5439. test_cases.emplace_back(new test_get_rows(type, 256, 80000, 70000, 2, 1, false));
  5440. test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, 700, 100, false));
  5441. }
  5442. test_cases.emplace_back(new test_get_rows(GGML_TYPE_F32, 1, 8, 2, 1, 1, false));
  5443. for (ggml_type type : all_types) {
  5444. for (int b : {1, 7}) {
  5445. for (bool v : {false, true}) {
  5446. test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, b, 1, v));
  5447. }
  5448. }
  5449. }
  5450. for (int b : {1, 7}) {
  5451. for (bool v : {false, true}) {
  5452. test_cases.emplace_back(new test_get_rows(GGML_TYPE_I32, 256, 5, 4, b, 1, v));
  5453. }
  5454. }
  5455. test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_F32, 1, 8, 2, 1, false));
  5456. for (ggml_type type : all_types) {
  5457. for (bool v : {false, true}) {
  5458. test_cases.emplace_back(new test_get_rows_back(type, 256, 5, 4, 1, v));
  5459. }
  5460. }
  5461. for (bool v : {false, true}) {
  5462. test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_I32, 256, 5, 4, 1, v));
  5463. }
  5464. test_cases.emplace_back(new test_set_rows(GGML_TYPE_F32, GGML_TYPE_I64, { 1, 8, 1, 3 }, { 1, 1 }, 2, false));
  5465. test_cases.emplace_back(new test_set_rows(GGML_TYPE_F32, GGML_TYPE_I32, { 1, 8, 1, 3 }, { 1, 1 }, 2, false));
  5466. test_cases.emplace_back(new test_set_rows(GGML_TYPE_Q8_0, GGML_TYPE_I32, { 256, 5, 1, 3 }, { 1, 1, }, 1, false));
  5467. for (ggml_type type : all_types) {
  5468. for (int b : {1, 7}) {
  5469. for (bool v : {false, true}) {
  5470. test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 256, 5, b, 3 }, { 1, 1, }, 1, v));
  5471. test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 256, 11, 1, b }, { 2, 3, }, 7, v));
  5472. test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 3*ggml_blck_size(type), 3, b, 1 }, { 2, 3, }, 2, v));
  5473. if (ggml_blck_size(type) == 1) {
  5474. test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 31, 3, b, 1 }, { 2, 3, }, 2, v));
  5475. test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 33, 5, 1, b }, { 2, 3, }, 1, v));
  5476. }
  5477. }
  5478. }
  5479. }
  5480. for (int mode : { GGML_ROPE_TYPE_NORMAL, GGML_ROPE_TYPE_NEOX }) {
  5481. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5482. test_cases.emplace_back(new test_rope_set_rows(type, GGML_TYPE_I64, { 128, 32, 1, 100 }, mode));
  5483. test_cases.emplace_back(new test_rope_set_rows(type, GGML_TYPE_I64, { 128, 32, 512, 1 }, mode));
  5484. }
  5485. }
  5486. for (ggml_type type_input : {GGML_TYPE_F32}) {
  5487. for (ggml_op_pool pool_type : {GGML_OP_POOL_AVG, GGML_OP_POOL_MAX}) {
  5488. for (int k0 : {1, 3}) {
  5489. for (int k1 : {1, 3}) {
  5490. for (int s0 : {1, 2}) {
  5491. for (int s1 : {1, 2}) {
  5492. for (int p0 : {0, 1}) {
  5493. for (int p1 : {0, 1}) {
  5494. test_cases.emplace_back(new test_pool2d(pool_type, type_input, {10, 10, 3, 1}, k0, k1, s0, s1, p0, p1));
  5495. }
  5496. }
  5497. }
  5498. }
  5499. }
  5500. }
  5501. }
  5502. }
  5503. #if 0
  5504. // >4GB im2col destination. Too slow to run by default.
  5505. // Test cases taken from Wan2.1 T2V 1.3B.
  5506. test_cases.emplace_back(new test_im2col (GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {832, 480, 192, 4}, {3, 3, 192, 96}, 1, 1, 1, 1, 1, 1, true));
  5507. test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {834, 482, 6, 96}, {3, 3,3, 9216}, 96, 1, 1, 1, 0, 0, 0, 1, 1, 1, false));
  5508. #endif
  5509. // im2col 1D
  5510. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  5511. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  5512. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  5513. for (int s0 : {1, 3}) {
  5514. for (int p0 : {0, 3}) {
  5515. for (int d0 : {1, 3}) {
  5516. test_cases.emplace_back(new test_im2col(
  5517. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 2, 2, 1}, {3, 2, 2, 1},
  5518. s0, 0, p0, 0, d0, 0, false));
  5519. }
  5520. }
  5521. }
  5522. // im2col 2D
  5523. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32));
  5524. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
  5525. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
  5526. for (int s0 : {1, 3}) {
  5527. for (int s1 : {1, 3}) {
  5528. for (int p0 : {0, 3}) {
  5529. for (int p1 : {0, 3}) {
  5530. for (int d0 : {1, 3}) {
  5531. for (int d1 : {1, 3}) {
  5532. test_cases.emplace_back(new test_im2col(
  5533. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 20, 2, 2}, {3, 3, 2, 2},
  5534. s0, s1, p0, p1, d0, d1, true));
  5535. }
  5536. }
  5537. }
  5538. }
  5539. }
  5540. }
  5541. // extra tests for im2col 2D
  5542. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 32}, {3, 3, 1, 32}, 1, 1, 1, 1, 1, 1, true));
  5543. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 32}, {3, 3, 2, 32}, 1, 1, 1, 1, 1, 1, true));
  5544. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 1024}, {3, 3, 1, 1024}, 1, 1, 1, 1, 1, 1, true));
  5545. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 1024}, {3, 3, 2, 1024}, 1, 1, 1, 1, 1, 1, true));
  5546. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2048}, {3, 3, 1, 2048}, 1, 1, 1, 1, 1, 1, true));
  5547. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2048}, {3, 3, 2, 2048}, 1, 1, 1, 1, 1, 1, true));
  5548. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2560}, {3, 3, 1, 2560}, 1, 1, 1, 1, 1, 1, true));
  5549. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2560}, {3, 3, 2, 2560}, 1, 1, 1, 1, 1, 1, true));
  5550. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {5, 5, 1, 32}, {3, 4, 1, 32}, 1, 1, 0, 0, 1, 1, true));
  5551. // im2col 3D
  5552. test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32));
  5553. test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
  5554. test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
  5555. for (int s0 : {1, 3}) {
  5556. for (int s1 : {1, 3}) {
  5557. for (int s2 : {1, 3}) {
  5558. for (int p0 : {0, 3}) {
  5559. for (int p1 : {0, 3}) {
  5560. for (int p2 : {0, 3}) {
  5561. for (int d0 : {1, 3}) {
  5562. for (int d1 : {1, 3}) {
  5563. for (int d2 : {1, 3}) {
  5564. for (int IC : {1, 3}) {
  5565. for (bool v : {false, true}) {
  5566. test_cases.emplace_back(new test_im2col_3d(
  5567. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 20, 10, 3}, {3, 3, 3, 3},
  5568. IC, s0, s1, s2, p0, p1, p2, d0, d1, d2, v));
  5569. }
  5570. }
  5571. }
  5572. }
  5573. }
  5574. }
  5575. }
  5576. }
  5577. }
  5578. }
  5579. }
  5580. // Conv_2D test cases
  5581. #ifdef DETAILED_TESTS
  5582. // Probably we do not have enough time to execute these in the pipeline.
  5583. uint32_t iwh_idx = 0;
  5584. uint32_t kwh_idx = 1;
  5585. uint32_t Cout_idx = 2;
  5586. uint32_t Cin_idx = 3;
  5587. uint32_t B_idx = 4;
  5588. std::vector<std::array<int, 5>> cases = {
  5589. //{IWH, KWH, Cout, Cin, B}
  5590. // K=CRS=NPQ=4096 conv_2d matmul performance
  5591. {19, 4, 4096, 256, 16},
  5592. // K=128, CRS=128, NPQ=4096
  5593. { 19, 4, 128, 8, 16},
  5594. // K=130, CRS=128, NPQ=4096
  5595. { 19, 4, 130, 8, 16},
  5596. // Edge case: K x CRS is small
  5597. { 19, 2, 4, 4, 16},
  5598. // A ConvNet's first layer
  5599. { 224, 3, 8, 3, 1 },
  5600. // A ConvNet's first layer with 2x2 convolution, and 1 channel
  5601. { 224, 2, 8, 1, 1 },
  5602. // A ConvNet's first layer with 2x2 convolution, and 1 channel, several images in the batch
  5603. { 224, 2, 8, 1, 8 },
  5604. // A middle layer of a ConvNet
  5605. { 58, 3, 64, 32, 1 },
  5606. // A middle layer of a ConvNet, several images in the batch
  5607. { 58, 3, 64, 32, 8 },
  5608. // A deep layer of a ConvNet, several images in the batch
  5609. { 16, 3, 256, 128, 8 }
  5610. };
  5611. for (auto kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5612. for (auto act_case : cases) {
  5613. test_cases.emplace_back(new test_conv_2d(
  5614. { act_case[iwh_idx], act_case[iwh_idx], act_case[Cin_idx], act_case[B_idx] },
  5615. { act_case[kwh_idx], act_case[kwh_idx], act_case[Cin_idx], act_case[Cout_idx] },
  5616. kernel_type, 1, 1, 0, 0, 1, 1, false));
  5617. }
  5618. }
  5619. #endif
  5620. // CONV_2D:
  5621. auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  5622. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5623. };
  5624. //uint32_t s0 = 3;
  5625. uint32_t s1 = 5;
  5626. uint32_t p0 = 5;
  5627. //uint32_t p1 = 2;
  5628. uint32_t d0 = 2;
  5629. uint32_t d1 = 4;
  5630. for (uint32_t s0 : { 1, 3 }) {
  5631. for (uint32_t p1 : { 2, 5 }) {
  5632. for (uint32_t Cin : { 1, 25 }) {
  5633. for (uint32_t Cout : { 1, 12 }) {
  5634. for (uint32_t KH : { 1, 2, 3, 11 }) {
  5635. for (uint32_t KW : { 1, 2, 3, 11 }) {
  5636. for (uint32_t H : { 1, 133 }) {
  5637. for (uint32_t W : { 1, 141 }) {
  5638. if (calc_conv_output_size(W, KW, s0, p0, d0) > 0 &&
  5639. calc_conv_output_size(H, KH, s1, p1, d1) > 0) {
  5640. for (auto kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5641. test_cases.emplace_back(new test_conv_2d(
  5642. { W, H, Cin, 2 }, { KW, KH, Cin, Cout }, kernel_type, s0, s1, p0, p1, d0, d1, false));
  5643. }
  5644. }
  5645. }
  5646. }
  5647. }
  5648. }
  5649. }
  5650. }
  5651. }
  5652. }
  5653. // sycl backend will limit task global_range < MAX_INT
  5654. // test cases for 2D im2col with large input W and H (occurs in stable-diffusion)
  5655. // however these cases need to alloc more memory which may fail in some devices (Intel Arc770, etc.)
  5656. // these cases are verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
  5657. // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
  5658. // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
  5659. test_cases.emplace_back(new test_conv_2d_dw({17, 34, 9, 1}, {3, 3, 1, 9}, 1, 0, 1, false));
  5660. test_cases.emplace_back(new test_conv_2d_dw({17, 34, 9, 1}, {3, 3, 1, 9}, 1, 0, 1, true));
  5661. test_cases.emplace_back(new test_conv_2d_dw({32, 8, 64, 1}, {3, 3, 1, 64}, 2, 1, 1, false));
  5662. test_cases.emplace_back(new test_conv_2d_dw({32, 8, 64, 1}, {3, 3, 1, 64}, 2, 1, 1, true));
  5663. // CONV_3D
  5664. auto calc_conv_output_size_3d = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  5665. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5666. };
  5667. for (ggml_type kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5668. for (int N : {1, 2}) {
  5669. for (int IC : {1, 3}) {
  5670. for (int OC : {1, 4}) {
  5671. for (int s0 : {1, 2}) {
  5672. for (int p1 : {0, 1}) {
  5673. for (int d2 : {1, 2}) {
  5674. int64_t IW = 20, IH = 22, ID = 18;
  5675. int64_t KW = 3, KH = 3, KD = 3;
  5676. int s1 = s0, s2 = s0;
  5677. int p0 = p1, p2 = p1;
  5678. int d0 = d2, d1 = d2;
  5679. if (calc_conv_output_size_3d(IW, KW, s0, p0, d0) <= 0 ||
  5680. calc_conv_output_size_3d(IH, KH, s1, p1, d1) <= 0 ||
  5681. calc_conv_output_size_3d(ID, KD, s2, p2, d2) <= 0) {
  5682. continue;
  5683. }
  5684. test_cases.emplace_back(new test_conv_3d(
  5685. N, IC, ID, IH, IW,
  5686. OC, KD, KH, KW,
  5687. s0, s1, s2, p0, p1, p2, d0, d1, d2,
  5688. kernel_type));
  5689. // Asymmetric kernel and params
  5690. int64_t asym_KW = 5, asym_KH = 1, asym_KD = 3;
  5691. int asym_s0 = 2, asym_s1 = 1, asym_s2 = 1;
  5692. int asym_p0 = 2, asym_p1 = 0, asym_p2 = 1;
  5693. int asym_d0 = 1, asym_d1 = 1, asym_d2 = 2;
  5694. if (calc_conv_output_size_3d(IW, asym_KW, asym_s0, asym_p0, asym_d0) <= 0 ||
  5695. calc_conv_output_size_3d(IH, asym_KH, asym_s1, asym_p1, asym_d1) <= 0 ||
  5696. calc_conv_output_size_3d(ID, asym_KD, asym_s2, asym_p2, asym_d2) <= 0) {
  5697. continue;
  5698. }
  5699. test_cases.emplace_back(new test_conv_3d(
  5700. N, IC, ID, IH, IW,
  5701. OC, asym_KD, asym_KH, asym_KW,
  5702. asym_s0, asym_s1, asym_s2, asym_p0, asym_p1, asym_p2, asym_d0, asym_d1, asym_d2,
  5703. kernel_type));
  5704. }
  5705. }
  5706. }
  5707. }
  5708. }
  5709. }
  5710. // Case with kernel size 1
  5711. test_cases.emplace_back(new test_conv_3d(1, 4, 8, 8, 8, 8, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, kernel_type));
  5712. }
  5713. for(uint32_t Cout : {1, 9}){
  5714. for(uint32_t Cin : {1, 7}){
  5715. for(uint32_t K : {1, 3, 1337}){
  5716. for(uint32_t L : {1, 2, 13}){
  5717. for(uint32_t s0: {1, 2, 3}){
  5718. test_cases.emplace_back(new test_conv_transpose_1d({L,Cin,1,1}, {K,Cout,Cin,1}, s0, 0, 1));
  5719. }
  5720. }
  5721. }
  5722. }
  5723. }
  5724. test_cases.emplace_back(new test_conv_transpose_1d());
  5725. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 3, 0, 1));
  5726. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 2, 0, 1));
  5727. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 1, 0, 1));
  5728. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 2, 0, 1));
  5729. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 1, 0, 1));
  5730. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,1,2,1}, 1, 0, 1));
  5731. test_cases.emplace_back(new test_conv_transpose_1d({2,1,1,1}, {3,1,1,1}, 1, 0, 1));
  5732. test_cases.emplace_back(new test_conv_transpose_2d({3, 2, 3, 1}, {2, 2, 1, 3}, 1));
  5733. test_cases.emplace_back(new test_conv_transpose_2d({10, 10, 9, 1}, {3, 3, 1, 9}, 2));
  5734. test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 500, 1, 1}));
  5735. test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 5000, 1, 1}));
  5736. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 1, 1, 1}));
  5737. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 513, 1, 1}));
  5738. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {100, 10, 1, 1}));
  5739. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
  5740. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 12, 1, 1}));
  5741. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {2000, 10, 1, 1}));
  5742. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {5438, 3, 1, 1}));
  5743. for (int ne3 : {1, 3}) { // CUDA backward pass only supports ne3 == 1
  5744. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 1}));
  5745. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
  5746. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 2, 1, 1}));
  5747. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 2, 1}));
  5748. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 2}));
  5749. test_cases.emplace_back(new test_repeat(GGML_TYPE_I32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
  5750. test_cases.emplace_back(new test_repeat(GGML_TYPE_I16, {10, 5, 4, ne3}, {1, 1, 1, 2}));
  5751. }
  5752. for (bool view : {false, true}) {
  5753. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 1}, view));
  5754. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {2, 1, 1, 1}, view));
  5755. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 2, 1, 1}, view));
  5756. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 2, 1}, view));
  5757. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 2}, view));
  5758. }
  5759. test_cases.emplace_back(new test_dup(GGML_TYPE_F32));
  5760. test_cases.emplace_back(new test_dup(GGML_TYPE_F16));
  5761. test_cases.emplace_back(new test_dup(GGML_TYPE_I32));
  5762. test_cases.emplace_back(new test_dup(GGML_TYPE_I16));
  5763. test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {0, 2, 1, 3}));
  5764. test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {0, 2, 1, 3})); // dup by rows
  5765. test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {1, 0, 2, 3}));
  5766. test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {1, 0, 2, 3})); // dup dst not-contiguous
  5767. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {0, 2, 1, 3}));
  5768. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {1, 2, 0, 3}));
  5769. for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
  5770. test_cases.emplace_back(new test_set(GGML_TYPE_F32, GGML_TYPE_F32, {6, 5, 4, 3}, dim));
  5771. }
  5772. for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
  5773. test_cases.emplace_back(new test_set(GGML_TYPE_I32, GGML_TYPE_I32, {6, 5, 4, 3}, dim));
  5774. }
  5775. // same-type copy
  5776. for (ggml_type type : all_types) {
  5777. const auto nk = ggml_blck_size(type);
  5778. for (int k = 1; k < 4; ++k) {
  5779. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}));
  5780. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}, {0, 2, 1, 3}));
  5781. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}, {0, 3, 1, 2}, {0, 2, 1, 3}));
  5782. }
  5783. }
  5784. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_F32}) {
  5785. for (ggml_type type_dst : all_types) {
  5786. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  5787. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
  5788. }
  5789. }
  5790. for (ggml_type type_src : all_types) {
  5791. for (ggml_type type_dst : {GGML_TYPE_F32}) {
  5792. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  5793. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
  5794. }
  5795. }
  5796. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5797. for (ggml_type type_dst : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5798. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {1, 0, 2, 3})); // cpy not-contiguous
  5799. }
  5800. }
  5801. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_I32, {256, 2, 3, 4}));
  5802. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_I32, {256, 2, 3, 4}, {1, 0, 2, 3}));
  5803. test_cases.emplace_back(new test_cpy(GGML_TYPE_I32, GGML_TYPE_F32, {256, 2, 3, 4}));
  5804. test_cases.emplace_back(new test_cpy(GGML_TYPE_I32, GGML_TYPE_F32, {256, 2, 3, 4}, {1, 0, 2, 3}));
  5805. test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {256, 4, 3, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  5806. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {256, 4, 3, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  5807. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {256, 4, 3, 3}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  5808. test_cases.emplace_back(new test_cpy(GGML_TYPE_BF16, GGML_TYPE_BF16, {256, 4, 3, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  5809. test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {256, 4, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  5810. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {256, 4, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  5811. test_cases.emplace_back(new test_cpy(GGML_TYPE_BF16, GGML_TYPE_BF16, {256, 4, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  5812. test_cases.emplace_back(new test_cpy(GGML_TYPE_I32, GGML_TYPE_I32, {256, 4, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  5813. test_cases.emplace_back(new test_cpy(GGML_TYPE_I32, GGML_TYPE_I32, {256, 1, 4, 1}, {1, 2, 0, 3}, {0, 0, 0, 0}));
  5814. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {256, 1, 4, 1}, {1, 2, 0, 3}, {0, 0, 0, 0}));
  5815. for (ggml_type type_dst : { GGML_TYPE_F32, GGML_TYPE_I32, GGML_TYPE_F16, GGML_TYPE_BF16 }) {
  5816. for (bool use_view_slice : { true, false }) {
  5817. for (std::array<int64_t, 4> ne : std::initializer_list<std::array<int64_t, 4>>{ {2, 1, 1, 1}, {2, 1, 3, 5},
  5818. {2, 3, 5, 7}, {1, 4, 4, 1}, {1, 8, 17, 1}, {10, 10, 10, 1} }) {
  5819. if (use_view_slice && (type_dst == GGML_TYPE_F16 || type_dst == GGML_TYPE_BF16)) {
  5820. continue; // TODO: add after WebGPU is fixed
  5821. }
  5822. test_cases.emplace_back(new test_cont(type_dst, ne, use_view_slice));
  5823. }
  5824. }
  5825. }
  5826. auto add_test_bin_bcast = [&](ggml_type type, std::array<int64_t, 4> ne, std::array<int, 4> nr) {
  5827. for (auto op : {ggml_add, ggml_sub, ggml_mul, ggml_div}) {
  5828. test_cases.emplace_back(new test_bin_bcast(op, type, ne, nr));
  5829. }
  5830. };
  5831. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5832. add_test_bin_bcast(type, {1, 1, 8, 1}, {1, 1, 1, 1});
  5833. add_test_bin_bcast(type, {1, 1, 1, 1}, {32, 1, 1, 1});
  5834. add_test_bin_bcast(type, {1, 1, 320, 320}, {1, 1, 1, 1});
  5835. add_test_bin_bcast(type, {10, 5, 1, 1}, {1, 1, 1, 1});
  5836. add_test_bin_bcast(type, {10, 5, 4, 1}, {1, 1, 1, 1});
  5837. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 1});
  5838. add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 1, 1, 1});
  5839. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 1, 1});
  5840. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 1});
  5841. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 2});
  5842. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 2});
  5843. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 2, 2});
  5844. add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 2, 2, 2});
  5845. // test case for k_bin_bcast_unravel in CUDA backend
  5846. add_test_bin_bcast(type, {1, 1, 65536, 1}, {256, 1, 1, 1});
  5847. // stable diffusion
  5848. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 1, 1, 1});
  5849. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 16, 16, 1});
  5850. add_test_bin_bcast(type, {1280, 16, 16, 1}, {1, 1, 1, 1});
  5851. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 256, 1, 1});
  5852. add_test_bin_bcast(type, {1, 1, 1280, 1}, {16, 16, 1, 1});
  5853. add_test_bin_bcast(type, {16, 16, 1280, 1}, {1, 1, 1, 1});
  5854. add_test_bin_bcast(type, {1, 1, 1920, 1}, {16, 16, 1, 1});
  5855. add_test_bin_bcast(type, {1, 1, 2560, 1}, {16, 16, 1, 1});
  5856. add_test_bin_bcast(type, {1, 1, 1280, 1}, {32, 32, 1, 1});
  5857. add_test_bin_bcast(type, {1, 1, 1920, 1}, {32, 32, 1, 1});
  5858. add_test_bin_bcast(type, {1, 1, 640, 1}, {32, 32, 1, 1});
  5859. add_test_bin_bcast(type, {5120, 1, 1, 1}, {1, 256, 1, 1});
  5860. add_test_bin_bcast(type, {640, 1, 1, 1}, {1, 1, 1, 1});
  5861. add_test_bin_bcast(type, {64, 262144, 1, 1}, {1, 1, 1, 1});
  5862. //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {1, 1, 1, 1});
  5863. //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {2, 1, 1, 1});
  5864. }
  5865. // single inplace tests, especially important for WebGPU backend since kernels for inplace vs. not are different
  5866. test_cases.emplace_back(new test_bin_bcast(ggml_add_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  5867. test_cases.emplace_back(new test_bin_bcast(ggml_mul_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  5868. test_cases.emplace_back(new test_bin_bcast(ggml_sub_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  5869. test_cases.emplace_back(new test_bin_bcast(ggml_div_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  5870. // fusion
  5871. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {2, 1, 1, 1}, 2));
  5872. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 2, 1, 1}, 3));
  5873. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 2, 1}, 4));
  5874. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 2}, 5));
  5875. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 2, 2}, 6));
  5876. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 2, 2, 2}, 7));
  5877. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {2, 2, 2, 2}, 8));
  5878. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  5879. test_cases.emplace_back(new test_add1());
  5880. test_cases.emplace_back(new test_add1(GGML_TYPE_F32, {1024, 1024, 1, 1}));
  5881. test_cases.emplace_back(new test_scale());
  5882. test_cases.emplace_back(new test_scale(GGML_TYPE_F32, {10, 10, 10, 10}, 2.0f, 1.0f));
  5883. test_cases.emplace_back(new test_scale(GGML_TYPE_F32, {10, 10, 10, 10}, 2.0f, 1.0f, true)); // inplace test
  5884. test_cases.emplace_back(new test_scale(GGML_TYPE_F32, {100, 10, 10, 10}, 2.0f, 1.0f));
  5885. test_cases.emplace_back(new test_softcap(GGML_TYPE_F32, {10, 10, 10, 10}, 50.0f));
  5886. test_cases.emplace_back(new test_silu_back());
  5887. for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f}) {
  5888. for (bool v : {false, true}) {
  5889. test_cases.emplace_back(new test_norm (GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
  5890. test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
  5891. }
  5892. test_cases.emplace_back(new test_rms_norm_back(GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  5893. test_cases.emplace_back(new test_l2_norm (GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  5894. }
  5895. // in-place tests
  5896. test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 5, 4, 3}, false, 1e-6f, true));
  5897. for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f, 1.0f}) {
  5898. test_cases.emplace_back(new test_rms_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, false));
  5899. test_cases.emplace_back(new test_rms_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, true));
  5900. test_cases.emplace_back(new test_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, false));
  5901. test_cases.emplace_back(new test_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, true));
  5902. }
  5903. for (uint32_t n : {1, 511, 1025, 8192, 33*512}) {
  5904. for (bool multi_add : {false, true}) {
  5905. test_cases.emplace_back(new test_rms_norm_mul_add(GGML_TYPE_F32, {n, 1, 1, 1}, 1e-6f, false, multi_add));
  5906. }
  5907. }
  5908. for (auto multi_add : {false, true}) {
  5909. for (auto set_rows : {false, true}) {
  5910. for (auto rope : {GGML_ROPE_TYPE_NORMAL, GGML_ROPE_TYPE_NEOX}) {
  5911. test_cases.emplace_back(new test_rms_norm_mul_rope({768, 1, 1, 1}, 1e-6f, multi_add, set_rows, rope));
  5912. test_cases.emplace_back(new test_rms_norm_mul_rope({768, 3, 1, 1}, 1e-6f, multi_add, set_rows, rope));
  5913. test_cases.emplace_back(new test_rms_norm_mul_rope({768, 3, 5, 1}, 1e-6f, multi_add, set_rows, rope));
  5914. test_cases.emplace_back(new test_rms_norm_mul_rope({128, 32, 2, 1}, 1e-6f, multi_add, set_rows, rope));
  5915. test_cases.emplace_back(new test_rms_norm_mul_rope({128, 4, 2, 1}, 1e-6f, multi_add, set_rows, rope));
  5916. test_cases.emplace_back(new test_rms_norm_mul_rope({128, 32, 50, 1}, 1e-6f, multi_add, set_rows, rope));
  5917. test_cases.emplace_back(new test_rms_norm_mul_rope({128, 4, 50, 1}, 1e-6f, multi_add, set_rows, rope));
  5918. test_cases.emplace_back(new test_rms_norm_mul_rope({8192, 2, 2, 1}, 1e-6f, multi_add, set_rows, rope));
  5919. test_cases.emplace_back(new test_rms_norm_mul_rope({8192, 2, 2, 1}, 1e-6f, multi_add, set_rows, rope));
  5920. }
  5921. }
  5922. }
  5923. test_cases.emplace_back(new test_l2_norm(GGML_TYPE_F32, {64, 5, 4, 3}, 1e-12f));
  5924. for (int64_t d_conv : {3, 4}) {
  5925. for (int64_t d_inner: {1024, 1536, 2048}) {
  5926. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, d_inner, 1, 1}, {d_conv, d_inner, 1, 1}));
  5927. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {8, d_inner, 1, 1}, {d_conv, d_inner, 1, 1}));
  5928. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, d_inner, 4, 1}, {d_conv, d_inner, 1, 1}));
  5929. }
  5930. }
  5931. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 16, 1, 1024, 1, 32, 4)); // Mamba-1
  5932. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 128, 64, 16, 2, 32, 4)); // Mamba-2
  5933. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 256, 64, 8, 2, 32, 4)); // Falcon-H1
  5934. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 1, 1));
  5935. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 1));
  5936. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 4));
  5937. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 128, 4));
  5938. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 1, 1));
  5939. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 32, 1));
  5940. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 32, 4));
  5941. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 128, 4));
  5942. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 1, 1));
  5943. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 1));
  5944. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 4));
  5945. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 128, 4));
  5946. #if 0
  5947. // > 4GB A matrix. Too slow to be enabled by default.
  5948. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 900000, 3, 2592, {1, 1}, {1, 1}));
  5949. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 1700000, 96, 2592, {1, 1}, {1, 1}));
  5950. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 1700000, 3, 2592, {1, 1}, {1, 1}));
  5951. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 1700000, 1, 2592, {1, 1}, {1, 1}));
  5952. #endif
  5953. for (ggml_type type_a : all_types) {
  5954. for (int i = 1; i < 10; ++i) {
  5955. test_cases.emplace_back(new test_mul_mat(type_a, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
  5956. }
  5957. }
  5958. #if 0
  5959. {
  5960. // Test paths in OpenCL
  5961. std::vector<int> ns = {32, 64, 128, 256, 512, 1024, 4096};
  5962. std::vector<int> ks = {896, 1536, 4096};
  5963. for (auto n : ns) {
  5964. for (auto k : ks) {
  5965. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q8_0, GGML_TYPE_F32, 1024, n, k, {1, 1}, {1, 1}));
  5966. }
  5967. }
  5968. }
  5969. #endif
  5970. #if 1
  5971. for (ggml_type type_a : base_types) {
  5972. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5973. std::vector<int> ks = { 256 };
  5974. if (ggml_blck_size(type_a) == 1) {
  5975. ks.push_back(4);
  5976. }
  5977. for (auto k : ks) {
  5978. // test cases without permutation
  5979. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {1, 1}));
  5980. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {2, 1}));
  5981. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {1, 2}));
  5982. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 1}, {1, 1}));
  5983. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 1}, {2, 1}));
  5984. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {1, 1}));
  5985. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {2, 1}));
  5986. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {1, 2}));
  5987. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {2, 2}));
  5988. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {1, 1}));
  5989. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {2, 1}));
  5990. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {1, 2}));
  5991. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 1}, {1, 1}));
  5992. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 1}, {2, 1}));
  5993. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {1, 1}));
  5994. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {2, 1}));
  5995. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {1, 2}));
  5996. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {2, 2}));
  5997. // test cases with permutation
  5998. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  5999. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  6000. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  6001. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  6002. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  6003. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  6004. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  6005. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  6006. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  6007. }
  6008. // test cases with large ne00/ne10 to cover stream-k fixup
  6009. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 1024, {3, 2}, {1, 1}));
  6010. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 1024, {3, 2}, {1, 1}));
  6011. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 1024, {3, 2}, {1, 1}));
  6012. // test cases with large batch size
  6013. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, {1536, 1}, {1, 1}));
  6014. }
  6015. }
  6016. for (ggml_type type_a : other_types) {
  6017. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6018. if (ggml_blck_size(type_a) != 256) {
  6019. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, ggml_blck_size(type_a), {1, 1}, {1, 1}));
  6020. }
  6021. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 1}));
  6022. }
  6023. }
  6024. #else
  6025. // m = a rows
  6026. // n = b rows
  6027. // k = cols
  6028. std::uniform_int_distribution<> dist_m(1, 128);
  6029. std::uniform_int_distribution<> dist_n(16, 128);
  6030. std::uniform_int_distribution<> dist_k(1, 16);
  6031. for (int i = 0; i < 1000; i++) {
  6032. for (ggml_type type_a : all_types) {
  6033. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6034. int m = dist_m(rng);
  6035. int n = dist_n(rng);
  6036. int k = dist_k(rng) * ggml_blck_size(type_a);
  6037. test_cases.emplace_back(new test_mul_mat(type_a, type_b, m, n, k, { 1, 1}, {1, 1}));
  6038. }
  6039. }
  6040. }
  6041. #endif
  6042. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 128, { 8, 1}, {1, 1}));
  6043. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 128, { 8, 1}, {4, 1}));
  6044. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 64, { 8, 1}, {4, 1}));
  6045. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 64, { 8, 1}, {4, 1}));
  6046. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 45, 128, { 8, 1}, {4, 1}));
  6047. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 45, 64, { 8, 1}, {4, 1}));
  6048. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056, 1, 193, {1, 1}, {4, 1}, {0, 2, 1, 3}));
  6049. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056, 1, 67, {1, 1}, {4, 1}, {0, 2, 1, 3}));
  6050. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 16, 32, 32, { 1, 1}, {1, 1}, {0, 1, 2, 3}, 64, 3));
  6051. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 64, 77, 77, {12,1}, {1,1}));
  6052. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q4_0, GGML_TYPE_F32, 576, 512, 576, {1,1}, {1,1}));
  6053. #if 0
  6054. // test the mat-mat path for Metal
  6055. for (int k = 1; k < 512; ++k) {
  6056. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 127, k, {12,1}, {1,1}));
  6057. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 64, 127, k, {12,1}, {1,1}));
  6058. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 77, k, {12,1}, {1,1}));
  6059. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 64, 77, k, {12,1}, {1,1}));
  6060. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 128, k, {12,1}, {1,1}));
  6061. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 64, 128, k, {12,1}, {1,1}));
  6062. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, false, 50, 200, k));
  6063. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, true, 50, 200, k));
  6064. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F32, GGML_TYPE_F32, 16, 16, false, 50, 200, k));
  6065. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F32, GGML_TYPE_F32, 16, 16, true, 50, 200, k));
  6066. }
  6067. #endif
  6068. for (auto bs2 : {1,3}) {
  6069. for (auto bs : {1,2,4,8}) {
  6070. for (auto nr : {1,4}) {
  6071. for (uint32_t m = 0; m < 2; ++m) {
  6072. for (uint32_t k = 0; k < 2; ++k) {
  6073. for (ggml_type type: {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_F32}) {
  6074. test_cases.emplace_back(new test_mul_mat(type, GGML_TYPE_F32, 1056 + m, 1, 128 + k, {bs, bs2}, {nr, 1}, {0, 2, 1, 3}));
  6075. test_cases.emplace_back(new test_mul_mat(type, GGML_TYPE_F32, 128 + m, 1, 1056 + k, {bs, bs2}, {nr, 1}, {0, 1, 2, 3}, 2*1056 + k));
  6076. }
  6077. }
  6078. }
  6079. }
  6080. }
  6081. }
  6082. // sycl backend will limit task global_range < MAX_INT
  6083. // test case for f16-type-convert-to-fp32 kernel with large k under fp32 compute dtype (occurs in stable-diffusion)
  6084. // however this case needs to alloc more memory which may fail in some devices (Intel Arc770, etc.)
  6085. // this case is verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
  6086. // test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 512, 262144, 9216, {1, 1}, {1, 1}));
  6087. // test large experts*tokens
  6088. for (bool b : {false, true}) {
  6089. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, b, 32, 1024, 16));
  6090. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 2, 2, b, 32, 8192, 64));
  6091. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, b, 50, 200, 64));
  6092. }
  6093. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 1, 1, false, 8, 16, 1));
  6094. test_cases.emplace_back(new test_mul_mat_id_fusion(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, false, 32, 32, 32, 3));
  6095. // gpt-oss issue with Vulkan mmq_id
  6096. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_MXFP4, GGML_TYPE_F32, 32, 2, false, 2880, 32, 2880));
  6097. for (ggml_type type_a : base_types) {
  6098. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  6099. for (int n_mats : {4, 8}) {
  6100. for (int n_used : {1, 2, 4}) {
  6101. for (bool b : {false, true}) {
  6102. for (int n : {1, 4, 5, 17, 32, 129}) {
  6103. int m = 512;
  6104. int k = 256;
  6105. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  6106. }
  6107. }
  6108. }
  6109. }
  6110. }
  6111. }
  6112. for (ggml_type type_a : other_types) {
  6113. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  6114. for (int n_mats : {4}) {
  6115. for (int n_used : {2}) {
  6116. for (bool b : {false}) {
  6117. for (int n : {1, 32}) {
  6118. int m = 512;
  6119. int k = 256;
  6120. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  6121. }
  6122. }
  6123. }
  6124. }
  6125. }
  6126. }
  6127. for (int bs : {1, 4, 512}) {
  6128. for (ggml_type type_a : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_Q4_0, GGML_TYPE_Q4_K}) {
  6129. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6130. // test with mul after (ffn_moe_weighted)
  6131. test_cases.emplace_back(new test_mul_mat_id_fusion(type_a, type_b, 128, 8, false, 768, bs, 2048, 1, true));
  6132. }
  6133. }
  6134. }
  6135. for (ggml_type type_a : base_types) {
  6136. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  6137. for (int n : {1, 16}) {
  6138. for (int k : {1, 16}) {
  6139. for (int bs2 : {1, 3}) {
  6140. for (int bs3 : {1, 3}) {
  6141. for (int nr2 : {1, 2}) {
  6142. for (int nr3 : {1, 2}) {
  6143. test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, n, k, {bs2, bs3}, {nr2, nr3}));
  6144. }
  6145. }
  6146. }
  6147. }
  6148. }
  6149. }
  6150. }
  6151. }
  6152. // add_id
  6153. for (ggml_type type_a : {GGML_TYPE_F32}) {
  6154. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6155. for (int n_mats : {4, 8}) {
  6156. for (int n_used : {1, 2, 4}) {
  6157. for (int n_embd : {32, 129}) {
  6158. for (int n_token : {1, 32, 129}) {
  6159. test_cases.emplace_back(new test_add_id(type_a, type_b, n_embd, n_mats, n_used, n_token));
  6160. }
  6161. }
  6162. }
  6163. }
  6164. }
  6165. }
  6166. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  6167. test_cases.emplace_back(new test_sqr (type));
  6168. test_cases.emplace_back(new test_sqrt (type));
  6169. test_cases.emplace_back(new test_log (type));
  6170. test_cases.emplace_back(new test_sin (type));
  6171. test_cases.emplace_back(new test_cos (type));
  6172. test_cases.emplace_back(new test_clamp (type));
  6173. test_cases.emplace_back(new test_leaky_relu(type));
  6174. test_cases.emplace_back(new test_floor (type));
  6175. test_cases.emplace_back(new test_ceil (type));
  6176. test_cases.emplace_back(new test_round (type));
  6177. test_cases.emplace_back(new test_trunc (type));
  6178. test_cases.emplace_back(new test_sqr (type, {7, 1, 5, 3}));
  6179. test_cases.emplace_back(new test_sqrt (type, {7, 1, 5, 3}));
  6180. test_cases.emplace_back(new test_log (type, {7, 1, 5, 3}));
  6181. test_cases.emplace_back(new test_sin (type, {7, 1, 5, 3}));
  6182. test_cases.emplace_back(new test_cos (type, {7, 1, 5, 3}));
  6183. test_cases.emplace_back(new test_clamp (type, {7, 1, 5, 3}));
  6184. test_cases.emplace_back(new test_leaky_relu(type, {7, 1, 5, 3}));
  6185. test_cases.emplace_back(new test_floor (type, {7, 1, 5, 3}));
  6186. test_cases.emplace_back(new test_floor (type, { 1024, 1024, 1, 1 }));
  6187. test_cases.emplace_back(new test_ceil (type, {7, 1, 5, 3}));
  6188. test_cases.emplace_back(new test_ceil (type, { 1024, 1024, 1, 1 }));
  6189. test_cases.emplace_back(new test_round (type, {7, 1, 5, 3}));
  6190. test_cases.emplace_back(new test_round (type, { 1024, 1024, 1, 1 }));
  6191. test_cases.emplace_back(new test_trunc (type, {7, 1, 5, 3}));
  6192. test_cases.emplace_back(new test_trunc (type, { 1024, 1024, 1, 1 }));
  6193. }
  6194. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 1, 1}, 5));
  6195. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 1}, 5));
  6196. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 2}, 5));
  6197. #if 0
  6198. std::uniform_int_distribution<> dist_ne1(1, 50);
  6199. int exponent = 1;
  6200. while (exponent < (1 << 17)) {
  6201. std::uniform_int_distribution<> dist_ne0(exponent, 2*exponent);
  6202. for (int n = 0; n < 10; ++n) {
  6203. int64_t ne0 = dist_ne0(rng);
  6204. int64_t ne1 = dist_ne1(rng);
  6205. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, GGML_TYPE_F32, {ne0, ne1, 1, 1}, n/2 == 0, 0.1f, ne0 < 1000 ? 4.0f : 0.0f));
  6206. }
  6207. exponent <<= 1;
  6208. }
  6209. #endif
  6210. for (bool mask : {false, true}) {
  6211. for (bool sinks : {false, true}) {
  6212. for (float max_bias : {0.0f, 8.0f}) {
  6213. if (!mask && max_bias > 0.0f) continue;
  6214. for (float scale : {1.0f, 0.1f}) {
  6215. for (int64_t ne0 : {16, 1024}) {
  6216. for (int64_t ne1 : {16, 1024}) {
  6217. if (mask) {
  6218. for (ggml_type m_prec : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  6219. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, sinks, m_prec, {1, 1}, scale, max_bias));
  6220. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, sinks, m_prec, {1, 1}, scale, max_bias));
  6221. if (ne0 <= 32 && ne1 <= 32) {
  6222. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 3}, mask, sinks, m_prec, {3, 1}, scale, max_bias));
  6223. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, sinks, m_prec, {2, 3}, scale, max_bias));
  6224. }
  6225. }
  6226. } else {
  6227. /* The precision of mask here doesn't matter as boolean mask is false */
  6228. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, sinks, GGML_TYPE_F32, {1, 1}, scale, max_bias));
  6229. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, sinks, GGML_TYPE_F32, {1, 1}, scale, max_bias));
  6230. }
  6231. }
  6232. }
  6233. }
  6234. }
  6235. // inplace tests
  6236. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, mask, sinks, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f, true));
  6237. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, mask, sinks, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f, true));
  6238. }
  6239. }
  6240. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
  6241. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, false, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f));
  6242. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
  6243. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
  6244. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, false, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f));
  6245. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, true, GGML_TYPE_F32, {1, 1}, 0.1f, 8.0f));
  6246. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, true, GGML_TYPE_F16, {1, 1}, 0.1f, 8.0f));
  6247. for (float max_bias : {0.0f, 8.0f}) {
  6248. for (float scale : {1.0f, 0.1f}) {
  6249. for (int64_t ne0 : {16, 1024}) {
  6250. for (int64_t ne1 : {16, 1024}) {
  6251. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0, ne1, 1, 1}, scale, max_bias));
  6252. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, scale, max_bias));
  6253. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0, ne1, 2, 3}, scale, max_bias));
  6254. }
  6255. }
  6256. }
  6257. }
  6258. for (bool fw : {true, false}) { // fw == forward
  6259. bool all = true;
  6260. for (float fs : { 1.0f, 1.4245f }) {
  6261. for (float ef : { 0.0f, 0.7465f }) {
  6262. for (float af : { 1.0f, 1.4245f }) {
  6263. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  6264. for (bool ff : {false, true}) { // freq_factors
  6265. for (float v : { 0, 1 }) {
  6266. test_cases.emplace_back(new test_rope(type, {128, 32, 2, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw)); // llama 7B
  6267. if (all) {
  6268. test_cases.emplace_back(new test_rope(type, {128, 40, 2, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw)); // llama 13B
  6269. test_cases.emplace_back(new test_rope(type, {128, 52, 2, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw)); // llama 30B
  6270. test_cases.emplace_back(new test_rope(type, {128, 64, 2, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw)); // llama 65B
  6271. }
  6272. if (all) {
  6273. test_cases.emplace_back(new test_rope(type, { 64, 1, 2, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
  6274. test_cases.emplace_back(new test_rope(type, { 64, 71, 2, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
  6275. test_cases.emplace_back(new test_rope(type, { 64, 8, 2, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
  6276. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 20, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw));
  6277. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 32, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw));
  6278. test_cases.emplace_back(new test_rope(type, { 80, 32, 4, 1}, 32, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw));
  6279. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 20, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (stablelm)
  6280. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 32, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (phi-2)
  6281. test_cases.emplace_back(new test_rope(type, { 80, 32, 4, 1}, 32, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (phi-2)
  6282. }
  6283. if (all) {
  6284. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 2B)
  6285. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 7B)
  6286. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 20, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw));
  6287. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 32, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw));
  6288. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 128, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,imrope (qwen3vl 2B)
  6289. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 128, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,imrope (qwen3vl 7B)
  6290. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 20, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw));
  6291. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 32, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw));
  6292. test_cases.emplace_back(new test_rope(type, { 80, 16, 2, 1}, 80, GGML_ROPE_TYPE_VISION, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl ViT)
  6293. test_cases.emplace_back(new test_rope(type, {128, 16, 2, 1}, 128, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen3vl)
  6294. }
  6295. test_cases.emplace_back(new test_rope(type, { 64, 128, 2, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
  6296. }
  6297. }
  6298. all = false;
  6299. }
  6300. }
  6301. }
  6302. }
  6303. }
  6304. // single inplace test per type/mode/ff
  6305. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  6306. for (int mode : {GGML_ROPE_TYPE_NORMAL, GGML_ROPE_TYPE_NEOX, GGML_ROPE_TYPE_MROPE, GGML_ROPE_TYPE_IMROPE, GGML_ROPE_TYPE_VISION}) {
  6307. for (bool ff : {false, true}) {
  6308. test_cases.emplace_back(new test_rope(type, {128, 32, 2, 1}, 128, mode, 512, 1.4245f, 0.7465f, 1.4245f, ff, 0, true, true));
  6309. }
  6310. }
  6311. }
  6312. for (int v : { 0, 1, 2, 3 }) {
  6313. for (int dim : { 0, 1, 2, 3, }) {
  6314. test_cases.emplace_back(new test_concat(GGML_TYPE_F32, {11, 12, 13, 14}, 7, dim, v));
  6315. test_cases.emplace_back(new test_concat(GGML_TYPE_I32, {11, 12, 13, 14}, 7, dim, v));
  6316. }
  6317. }
  6318. for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) {
  6319. for (uint32_t i = 4; i <= 1024*1024; i *= 2) {
  6320. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {i-1, 1, 1, 1}));
  6321. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {i, 1, 1, 1}));
  6322. }
  6323. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order));
  6324. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {60, 10, 10, 10}, order)); // qwen
  6325. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {1023, 2, 1, 3}, order));
  6326. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {1024, 2, 1, 3}, order));
  6327. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {1025, 2, 1, 3}, order));
  6328. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {2047, 2, 1, 3}, order));
  6329. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {2048, 2, 1, 3}, order));
  6330. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {2049, 2, 1, 3}, order));
  6331. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {2, 8, 8192, 1}, order)); // bailingmoe2 (group selection)
  6332. }
  6333. for (int i = 0; i < 20; ++i) {
  6334. for (int k : {1, 2, 3, 7, 15, 100, 500, 1023, 9999}) {
  6335. if (k <= 1<<i) {
  6336. test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {(1<<i), 1, 1, 1}, k));
  6337. test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {(1<<i) + 11, 1, 2, 1}, k));
  6338. }
  6339. }
  6340. }
  6341. for (int k : {1, 2, 3, 7, 15}) {
  6342. test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {16, 10, 10, 10}, k));
  6343. test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {60, 10, 10, 10}, k));
  6344. test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {1023, 2, 1, 3}, k));
  6345. test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {1024, 2, 1, 3}, k));
  6346. test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {1025, 2, 1, 3}, k));
  6347. test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {16384, 1, 1, 1}, k));
  6348. test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {2047, 2, 1, 3}, k));
  6349. test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {2048, 2, 1, 3}, k));
  6350. test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {2049, 2, 1, 3}, k));
  6351. }
  6352. // exhaustive top_k tests
  6353. //for (int i = 1; i < 9999; ++i) {
  6354. // test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {i, 2, 1, 3}, rand() % i + 1));
  6355. //}
  6356. for (ggml_scale_mode mode : {GGML_SCALE_MODE_NEAREST, GGML_SCALE_MODE_BILINEAR, GGML_SCALE_MODE_BICUBIC}) {
  6357. test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, {512, 512, 3, 2}, 2, mode));
  6358. test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, {512, 512, 3, 2}, 2, mode, true));
  6359. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {2, 5, 7, 11}, {5, 7, 11, 13}, mode));
  6360. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {5, 7, 11, 13}, {2, 5, 7, 11}, mode));
  6361. }
  6362. for (ggml_scale_mode mode : {GGML_SCALE_MODE_BILINEAR, GGML_SCALE_MODE_BICUBIC}) {
  6363. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {2, 5, 7, 11}, {5, 7, 11, 13}, mode | GGML_SCALE_FLAG_ALIGN_CORNERS));
  6364. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {1, 4, 3, 2}, {2, 8, 3, 2}, mode | GGML_SCALE_FLAG_ALIGN_CORNERS));
  6365. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {4, 1, 3, 2}, {1, 1, 3, 2}, mode | GGML_SCALE_FLAG_ALIGN_CORNERS));
  6366. }
  6367. test_cases.emplace_back(new test_sum());
  6368. test_cases.emplace_back(new test_sum_rows());
  6369. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, {11, 5, 6, 3}, {0, 2, 1, 3})); // row-contiguous but non-contiguous
  6370. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, {11, 5, 6, 3}, {0, 3, 2, 1}));
  6371. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, {11, 5, 6, 3}, {0, 1, 3, 2}));
  6372. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 11, 5, 6, 3 }, true, false));
  6373. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 11, 5, 6, 3 }, false, true));
  6374. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 11, 5, 6, 3 }, true, true));
  6375. test_cases.emplace_back(new test_mean());
  6376. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 1, 1, 1 }));
  6377. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 33, 1, 1, 1 }));
  6378. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 33, 1, 1, 1 }));
  6379. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 1024, 1, 1 }));
  6380. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 33, 1024, 1, 1 }));
  6381. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 256, 1, 1 }));
  6382. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 256, 1, 1 }, { 1, 0, 2, 3 })); // sum dst not-contiguous
  6383. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 33, 256, 1, 1 }));
  6384. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 33, 256, 1, 1 }));
  6385. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 32769, 1, 1, 1 }));
  6386. test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {64, 64, 320, 1}));
  6387. test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {9, 9, 1280, 1}));
  6388. test_cases.emplace_back(new test_group_norm_mul_add(GGML_TYPE_F32, {64, 64, 320, 1}));
  6389. test_cases.emplace_back(new test_group_norm_mul_add(GGML_TYPE_F32, {9, 9, 1280, 1}));
  6390. test_cases.emplace_back(new test_acc());
  6391. test_cases.emplace_back(new test_pad());
  6392. test_cases.emplace_back(new test_pad_ext());
  6393. test_cases.emplace_back(new test_pad_reflect_1d());
  6394. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 384, 4, 1}));
  6395. test_cases.emplace_back(new test_roll());
  6396. test_cases.emplace_back(new test_arange());
  6397. test_cases.emplace_back(new test_arange(GGML_TYPE_F32, 0.0f, 1048576.0f, 1.0f));
  6398. test_cases.emplace_back(new test_timestep_embedding());
  6399. test_cases.emplace_back(new test_leaky_relu());
  6400. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 10, 5, 4, 3 }));
  6401. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 127, 5, 4, 3 }));
  6402. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 128, 5, 4, 3 }));
  6403. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 255, 5, 4, 3 }));
  6404. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 256, 5, 4, 3 }));
  6405. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 511, 5, 4, 3 }));
  6406. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 512, 5, 4, 3 }));
  6407. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 1023, 5, 4, 3 }));
  6408. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 1024, 5, 4, 3 }));
  6409. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 2047, 5, 4, 3 }));
  6410. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 2048, 5, 4, 3 }));
  6411. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 201*1204, 1, 1, 1 }));
  6412. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 312*1205, 1, 1, 1 }));
  6413. test_cases.emplace_back(new test_xielu());
  6414. test_cases.emplace_back(new test_tri(GGML_TRI_TYPE_LOWER));
  6415. test_cases.emplace_back(new test_tri(GGML_TRI_TYPE_LOWER_DIAG));
  6416. test_cases.emplace_back(new test_tri(GGML_TRI_TYPE_UPPER));
  6417. test_cases.emplace_back(new test_tri(GGML_TRI_TYPE_UPPER_DIAG));
  6418. test_cases.emplace_back(new test_fill(0.0f));
  6419. test_cases.emplace_back(new test_fill(2.0f, GGML_TYPE_F32, { 303, 207, 11, 3 }));
  6420. test_cases.emplace_back(new test_fill(-152.0f, GGML_TYPE_F32, { 800, 600, 4, 4 }));
  6421. test_cases.emplace_back(new test_fill(3.5f, GGML_TYPE_F32, { 2048, 512, 2, 2 }));
  6422. test_cases.emplace_back(new test_solve_tri());
  6423. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 11, 11, 1, 1 }, { 5, 11, 1, 1 }));
  6424. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 17, 17, 2, 4 }, { 9, 17, 2, 4 }));
  6425. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 30, 30, 7, 1 }, { 8, 30, 7, 1 }));
  6426. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 42, 42, 5, 2 }, { 10, 42, 5, 2 }));
  6427. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 64, 64, 2, 2 }, { 10, 64, 2, 2 }));
  6428. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 100, 100, 4, 4 }, { 41, 100, 4, 4 }));
  6429. for (bool v : {false, true}) {
  6430. test_cases.emplace_back(new test_pad_ext(GGML_TYPE_F32, {512, 512, 1, 1}, 0, 1, 0, 1, 0, 0, 0, 0, v));
  6431. test_cases.emplace_back(new test_pad_ext(GGML_TYPE_F32, {11, 22, 33, 44}, 1, 2, 3, 4, 5, 6, 7, 8, v));
  6432. }
  6433. for (int hsk : { 40, 64, 72, 80, 96, 128, 192, 256, 576 }) {
  6434. for (int hsv : { 40, 64, 72, 80, 96, 128, 192, 256, 512 }) {
  6435. if (hsk != 192 && hsk != 576 && hsk != hsv) continue;
  6436. if (hsk == 192 && (hsv != 128 && hsv != 192)) continue;
  6437. if (hsk == 576 && hsv != 512) continue; // DeepSeek MLA
  6438. for (bool mask : { true, false } ) {
  6439. for (bool sinks : { true, false } ) {
  6440. for (float max_bias : { 0.0f, 8.0f }) {
  6441. if (!mask && max_bias > 0.0f) continue;
  6442. for (float logit_softcap : {0.0f, 10.0f}) {
  6443. if (hsk != 128 && logit_softcap != 0.0f) continue;
  6444. for (int nh : { 4, }) {
  6445. for (int nr3 : { 1, 3, }) {
  6446. if (hsk > 64 && nr3 > 1) continue; // skip broadcast for large head sizes
  6447. for (int nr2 : { 1, 4, 16 }) {
  6448. if (nr2 == 16 && hsk != 128) continue;
  6449. //for (int kv : { 1, 17, 31, 33, 61, 113, 65, 127, 129, 130, 255, 260, 371, 380, 407, 512, 1024, }) {
  6450. for (int kv : { 113, 512, 1024, }) {
  6451. if (nr2 != 1 && kv != 512) continue;
  6452. for (int nb : { 1, 3, 32, 35, }) {
  6453. for (ggml_prec prec : {GGML_PREC_F32, GGML_PREC_DEFAULT}) {
  6454. if (hsk != 128 && prec == GGML_PREC_DEFAULT) continue;
  6455. for (ggml_type type_KV : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) {
  6456. test_cases.emplace_back(new test_flash_attn_ext(
  6457. hsk, hsv, nh, {nr2, nr3}, kv, nb, mask, sinks, max_bias, logit_softcap, prec, type_KV));
  6458. // run fewer test cases permuted
  6459. if (mask == true && max_bias == 0.0f && logit_softcap == 0 && kv == 512) {
  6460. test_cases.emplace_back(new test_flash_attn_ext(
  6461. hsk, hsv, nh, {nr2, nr3}, kv, nb, mask, sinks, max_bias, logit_softcap, prec, type_KV, {0, 2, 1, 3}));
  6462. }
  6463. }
  6464. }
  6465. }
  6466. }
  6467. }
  6468. }
  6469. }
  6470. }
  6471. }
  6472. }
  6473. }
  6474. }
  6475. }
  6476. test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, { 10, 5, 4, 3}));
  6477. test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, {30000, 1, 1, 1}));
  6478. test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, { 10, 5, 4, 3}));
  6479. test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, {30000, 1, 1, 1}));
  6480. test_cases.emplace_back(new test_opt_step_adamw(GGML_TYPE_F32, {10, 5, 4, 3}));
  6481. test_cases.emplace_back(new test_opt_step_sgd(GGML_TYPE_F32, {10, 5, 4, 3}));
  6482. for (ggml_type type : base_types) {
  6483. for (bool with_gate : {false, true}) {
  6484. for (bool use_id : {false, true}) {
  6485. for (bool b : {false, true}) {
  6486. if (!use_id && b) {
  6487. continue;
  6488. }
  6489. for (bool with_bias : {false, true}) {
  6490. if (!with_gate && !with_bias) {
  6491. continue;
  6492. }
  6493. for (ggml_glu_op glu_op : {GGML_GLU_OP_SWIGLU, GGML_GLU_OP_GEGLU}) {
  6494. if (!with_bias && glu_op == GGML_GLU_OP_SWIGLU_OAI) {
  6495. continue;
  6496. }
  6497. if (!with_gate && glu_op != GGML_GLU_OP_SWIGLU) {
  6498. continue;
  6499. }
  6500. test_cases.emplace_back(new test_mul_mat_vec_fusion(type, glu_op, 1, 32, 256,
  6501. use_id, 16, 8, b, with_bias, with_gate));
  6502. test_cases.emplace_back(new test_mul_mat_vec_fusion(type, glu_op, 1, 32, 256,
  6503. use_id, 16, 8, b, with_bias, with_gate, {1, 1}));
  6504. }
  6505. }
  6506. }
  6507. }
  6508. }
  6509. }
  6510. for (bool with_norm : {false, true}) {
  6511. test_cases.emplace_back(new test_topk_moe({8, 22, 1, 1}, 4, with_norm));
  6512. test_cases.emplace_back(new test_topk_moe({32, 22, 1, 1}, 8, with_norm));
  6513. test_cases.emplace_back(new test_topk_moe({128, 1, 1, 1}, 128, with_norm));
  6514. }
  6515. test_cases.emplace_back(new test_topk_moe({ 8, 22, 1, 1 }, 4, /*with_norm*/ false, /*delayed_softmax*/ true));
  6516. test_cases.emplace_back(new test_topk_moe({ 32, 22, 1, 1 }, 8, /*with_norm*/ false, /*delayed_softmax*/ true));
  6517. #if 0
  6518. // these tests are disabled to save execution time, sbut they can be handy for debugging
  6519. test_cases.emplace_back(new test_llama(2, true));
  6520. test_cases.emplace_back(new test_llama(1));
  6521. test_cases.emplace_back(new test_llama(2));
  6522. test_cases.emplace_back(new test_falcon(1));
  6523. test_cases.emplace_back(new test_falcon(2));
  6524. #endif
  6525. return test_cases;
  6526. }
  6527. // Test cases for performance evaluation: should be representative of real-world use cases
  6528. static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
  6529. std::vector<std::unique_ptr<test_case>> test_cases;
  6530. // Conv2d: K=CRS=NPQ=4096 matmul performance
  6531. uint32_t iwh_idx = 0;
  6532. uint32_t kwh_idx = 1;
  6533. uint32_t Cout_idx = 2;
  6534. uint32_t Cin_idx = 3;
  6535. uint32_t B_idx = 4;
  6536. std::vector<std::array<int, 5>> cases = {
  6537. //{IWH, KWH, Cout, Cin, B}
  6538. // K=CRS=NPQ=4096 conv2d matmul performance
  6539. {19, 4, 4096, 256, 16},
  6540. // K=128, CRS=128, NPQ=4096
  6541. { 19, 4, 128, 8, 16},
  6542. // K=130, CRS=128, NPQ=4096
  6543. { 19, 4, 130, 8, 16},
  6544. // Edge case: K x CRS is small
  6545. { 19, 2, 4, 4, 16},
  6546. // A ConvNet's first layer
  6547. { 224, 3, 8, 3, 1 },
  6548. // A ConvNet's first layer with 2x2 convolution, and 1 channel
  6549. { 224, 2, 8, 1, 1 },
  6550. // A ConvNet's first layer with 2x2 convolution, and 1 channel, several images in the batch
  6551. { 224, 2, 8, 1, 8 },
  6552. // A middle layer of a ConvNet
  6553. { 58, 3, 64, 32, 1 },
  6554. // A middle layer of a ConvNet, several images in the batch
  6555. { 58, 3, 64, 32, 8 },
  6556. // A deep layer of a ConvNet, several images in the batch
  6557. { 16, 3, 512, 128, 8 },
  6558. };
  6559. for (auto kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  6560. for (auto act_case : cases) {
  6561. // Direct CONV_2D
  6562. test_cases.emplace_back(new test_conv_2d(
  6563. { act_case[iwh_idx], act_case[iwh_idx], act_case[Cin_idx], act_case[B_idx] },
  6564. { act_case[kwh_idx], act_case[kwh_idx], act_case[Cin_idx], act_case[Cout_idx] },
  6565. kernel_type, 1, 1, 0, 0, 1, 1, false));
  6566. }
  6567. }
  6568. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 1, 1, 1}));
  6569. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 512, 1, 1}));
  6570. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F16, {512, 3072, 1, 1}));
  6571. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {8192, 512, 2, 1}, {0, 2, 1, 3}));
  6572. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {3072, 512, 2, 1}, {0, 2, 1, 3}));
  6573. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_Q4_0, {8192, 512, 2, 1}));
  6574. test_cases.emplace_back(new test_cpy(GGML_TYPE_Q4_0, GGML_TYPE_F32, {8192, 512, 2, 1}));
  6575. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {768*1024, 256, 1, 1}, {1, 0, 2, 3}, {0, 0, 0, 0}));
  6576. test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {768*1024, 256, 1, 1}, {1, 0, 2, 3}, {0, 0, 0, 0}));
  6577. test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {768, 1024, 256, 1}, {1, 0, 2, 3}, {0, 0, 0, 0}));
  6578. test_cases.emplace_back(new test_cpy(GGML_TYPE_BF16, GGML_TYPE_BF16, {768, 1024, 256, 1}, {1, 0, 2, 3}, {0, 0, 0, 0}));
  6579. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {768*1024, 256, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6580. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {768, 1024, 256, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6581. test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {768*1024, 256, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6582. test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {768, 1024, 256, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6583. test_cases.emplace_back(new test_cpy(GGML_TYPE_BF16, GGML_TYPE_BF16, {768, 1024, 256, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6584. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {4096, 4096, 5, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6585. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {12888, 256, 5, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6586. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 4096, 5, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6587. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {1024, 1024, 10, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6588. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 1024, 10, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6589. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {256, 256, 20, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6590. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {64, 64, 20, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6591. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 64, 20, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6592. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 10, 1, 1}));
  6593. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
  6594. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32000, 512, 1, 1}));
  6595. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {512, 34, 2, 1}));
  6596. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 80, 1, 1}));
  6597. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 80, 4, 1}));
  6598. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 384, 1, 1}));
  6599. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 384, 4, 1}));
  6600. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 16416, 1, 128, {8, 1}, {4, 1}, {0, 2, 1, 3}));
  6601. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 1, 16416, {8, 1}, {4, 1}, {0, 1, 2, 3}, 2*16416));
  6602. for (int bs : {1, 2, 3, 4, 5, 8, 512}) {
  6603. for (ggml_type type_a : all_types) {
  6604. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6605. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 4096, bs, 14336, {1, 1}, {1, 1}));
  6606. }
  6607. }
  6608. }
  6609. // qwen3-30b-a3b
  6610. for (int bs : {1, 4, 8, 32, 64, 128, 256, 512}) {
  6611. for (ggml_type type_a : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0, GGML_TYPE_Q4_K, GGML_TYPE_Q6_K, GGML_TYPE_IQ2_XS}) {
  6612. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6613. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, 128, 8, false, 768, bs, 2048));
  6614. test_cases.emplace_back(new test_mul_mat_id_fusion(type_a, type_b, 128, 8, false, 768, bs, 2048, 1));
  6615. }
  6616. }
  6617. }
  6618. for (int bs : {1, 4, 8, 32, 64, 128, 256, 512}) {
  6619. for (ggml_type type_a : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0, GGML_TYPE_Q4_K, GGML_TYPE_Q6_K, GGML_TYPE_IQ2_XS}) {
  6620. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6621. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, 32, 4, false, 1792, bs, 2048));
  6622. test_cases.emplace_back(new test_mul_mat_id_fusion(type_a, type_b, 32, 4, false, 1792, bs, 2048, 1));
  6623. }
  6624. }
  6625. }
  6626. // gpt-oss-20b
  6627. for (int bs : {1, 4, 8, 512}) {
  6628. for (ggml_type type_a : {GGML_TYPE_MXFP4}) {
  6629. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6630. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, 32, 4, false, 2880, bs, 2880));
  6631. test_cases.emplace_back(new test_mul_mat_id_fusion(type_a, type_b, 32, 4, false, 2880, bs, 2880, 1));
  6632. }
  6633. }
  6634. }
  6635. for (int K : {3, 5}) {
  6636. for (int IC : {256, 2560}) {
  6637. for (int IW_IH : {32, 64, 256}) {
  6638. if (IC == 2560 && IW_IH == 256) {
  6639. // too big
  6640. continue;
  6641. }
  6642. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {IW_IH, IW_IH, IC, 1}, {K, K, IC, 1}, 1, 1, 1, 1, 1, 1, true));
  6643. }
  6644. }
  6645. }
  6646. // Qwen3-VL-8B https://github.com/ggml-org/llama.cpp/issues/17012
  6647. test_cases.emplace_back(new test_flash_attn_ext(72, 72, 16, {1, 1}, 5776, 5776, false, false, 0, 0, GGML_PREC_F32, GGML_TYPE_F16));
  6648. for (int kv : { 4096, 8192, 16384, }) {
  6649. for (int hs : { 64, 128, }) {
  6650. for (int nr : { 1, 4, }) {
  6651. test_cases.emplace_back(new test_flash_attn_ext(hs, hs, 8, {nr, 1}, kv, 1, true, false, 0, 0, GGML_PREC_F32, GGML_TYPE_F16));
  6652. }
  6653. }
  6654. }
  6655. test_cases.emplace_back(new test_conv_2d_dw({512, 512, 256, 1}, {3, 3, 1, 256}, 1, 1, 1, false));
  6656. test_cases.emplace_back(new test_conv_2d_dw({512, 512, 256, 1}, {3, 3, 1, 256}, 1, 1, 1, true));
  6657. test_cases.emplace_back(new test_conv_transpose_2d({256, 256, 256, 1}, {3, 3, 16, 256}, 1));
  6658. test_cases.emplace_back(new test_conv_transpose_2d({16, 16, 16, 1}, {3, 3, 8, 16}, 1));
  6659. test_cases.emplace_back(new test_conv_transpose_2d({10, 10, 9, 1}, {3, 3, 1, 9}, 2));
  6660. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, {256, 256, 3, 1}));
  6661. for (int n_token : {1, 512}) {
  6662. test_cases.emplace_back(new test_add_id(GGML_TYPE_F32, GGML_TYPE_F32, 2880, 128, 4, n_token));
  6663. test_cases.emplace_back(new test_add_id(GGML_TYPE_F32, GGML_TYPE_F32, 2880, 32, 4, n_token));
  6664. }
  6665. for (bool fw : {true, false}) { // fw == forward
  6666. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  6667. for (bool ff : {false, true}) { // freq_factors
  6668. for (float v : { 0, 1 }) {
  6669. test_cases.emplace_back(new test_rope(type, {128, 32, 512, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, 1.0f, 0.0f, 1.0f, ff, v, fw)); // llama 7B
  6670. test_cases.emplace_back(new test_rope(type, {128, 64, 512, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, 1.0f, 0.0f, 1.0f, ff, v, fw)); // llama 65B
  6671. test_cases.emplace_back(new test_rope(type, { 80, 32, 512, 1}, 20, GGML_ROPE_TYPE_NEOX, 512, 1.0f, 0.0f, 1.0f, ff, v, fw)); // neox (stablelm)
  6672. test_cases.emplace_back(new test_rope(type, { 64, 8, 512, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, 1.0f, 0.0f, 1.0f, ff, v, fw)); // neox (falcon 40B)
  6673. test_cases.emplace_back(new test_rope(type, {128, 12, 512, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, 1.0f, 0.0f, 1.0f, ff, v, fw)); // rope_multi,m-rope (qwen2vl 2B)
  6674. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 128, GGML_ROPE_TYPE_IMROPE, 512, 1.0f, 0.0f, 1.0f, ff, v, fw)); // rope_multi,imrope (qwen3vl 2B)
  6675. test_cases.emplace_back(new test_rope(type, { 80, 16, 2, 1}, 80, GGML_ROPE_TYPE_VISION, 512, 1.0f, 0.0f, 1.0f, ff, v, fw)); // rope_multi,m-rope (qwen2vl ViT)
  6676. }
  6677. }
  6678. }
  6679. }
  6680. std::vector<std::array<int64_t, 4>> reduce_rows_cases = {
  6681. { 8192, 1, 1, 1 },
  6682. { 8192, 8192, 1, 1 },
  6683. { 128, 8192, 1, 1 },
  6684. };
  6685. for (auto it: reduce_rows_cases){
  6686. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, it));
  6687. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, it));
  6688. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, it));
  6689. }
  6690. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {65000, 16, 1, 1}));
  6691. for (auto k : {1, 10, 40}) {
  6692. for (auto nrows : {1, 16}) {
  6693. for (auto cols : {k, 1000, 65000, 200000}) {
  6694. test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {cols, nrows, 1, 1}, k));
  6695. }
  6696. }
  6697. }
  6698. return test_cases;
  6699. }
  6700. static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_names_filter, const char * params_filter,
  6701. printer * output_printer) {
  6702. auto filter_test_cases = [](std::vector<std::unique_ptr<test_case>> & test_cases, const char * params_filter) {
  6703. if (params_filter == nullptr) {
  6704. return;
  6705. }
  6706. std::regex params_filter_regex(params_filter);
  6707. for (auto it = test_cases.begin(); it != test_cases.end();) {
  6708. if (!std::regex_search((*it)->vars(), params_filter_regex)) {
  6709. it = test_cases.erase(it);
  6710. continue;
  6711. }
  6712. it++;
  6713. }
  6714. };
  6715. if (mode == MODE_TEST) {
  6716. auto test_cases = make_test_cases_eval();
  6717. filter_test_cases(test_cases, params_filter);
  6718. ggml_backend_t backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, NULL);
  6719. if (backend_cpu == NULL) {
  6720. test_operation_info info("", "", "CPU");
  6721. info.set_error("backend", "Failed to initialize CPU backend");
  6722. output_printer->print_operation(info);
  6723. return false;
  6724. }
  6725. size_t n_ok = 0;
  6726. size_t tests_run = 0;
  6727. std::vector<std::string> failed_tests;
  6728. for (auto & test : test_cases) {
  6729. test_status_t status = test->eval(backend, backend_cpu, op_names_filter, output_printer);
  6730. if (status == test_status_t::SKIPPED || status == test_status_t::NOT_SUPPORTED) {
  6731. continue;
  6732. }
  6733. tests_run++;
  6734. if (status == test_status_t::OK) {
  6735. n_ok++;
  6736. } else if (status == test_status_t::FAIL) {
  6737. failed_tests.push_back(test->current_op_name + "(" + test->vars() + ")");
  6738. }
  6739. }
  6740. output_printer->print_summary(test_summary_info(n_ok, tests_run, false));
  6741. output_printer->print_failed_tests(failed_tests);
  6742. ggml_backend_free(backend_cpu);
  6743. return n_ok == tests_run;
  6744. }
  6745. if (mode == MODE_GRAD) {
  6746. auto test_cases = make_test_cases_eval();
  6747. filter_test_cases(test_cases, params_filter);
  6748. size_t n_ok = 0;
  6749. for (auto & test : test_cases) {
  6750. if (test->eval_grad(backend, op_names_filter, output_printer)) {
  6751. n_ok++;
  6752. }
  6753. }
  6754. output_printer->print_summary(test_summary_info(n_ok, test_cases.size(), false));
  6755. return n_ok == test_cases.size();
  6756. }
  6757. if (mode == MODE_PERF) {
  6758. auto test_cases = make_test_cases_perf();
  6759. filter_test_cases(test_cases, params_filter);
  6760. for (auto & test : test_cases) {
  6761. test->eval_perf(backend, op_names_filter, output_printer);
  6762. }
  6763. return true;
  6764. }
  6765. if (mode == MODE_SUPPORT) {
  6766. auto test_cases = make_test_cases_eval();
  6767. filter_test_cases(test_cases, params_filter);
  6768. // Filter out fusion cases
  6769. test_cases.erase(
  6770. std::remove_if(test_cases.begin(), test_cases.end(), [](const std::unique_ptr<test_case> & tc) {
  6771. return tc->run_whole_graph();
  6772. }),
  6773. test_cases.end()
  6774. );
  6775. for (auto & test : test_cases) {
  6776. test->eval_support(backend, op_names_filter, output_printer);
  6777. }
  6778. return true;
  6779. }
  6780. GGML_ABORT("fatal error");
  6781. }
  6782. static void list_all_ops() {
  6783. printf("GGML operations:\n");
  6784. std::set<std::string> all_ops;
  6785. for (int i = 1; i < GGML_OP_COUNT; i++) {
  6786. all_ops.insert(ggml_op_name((enum ggml_op)i));
  6787. }
  6788. for (int i = 0; i < GGML_UNARY_OP_COUNT; i++) {
  6789. all_ops.insert(ggml_unary_op_name((enum ggml_unary_op)i));
  6790. }
  6791. for (int i = 0; i < GGML_GLU_OP_COUNT; i++) {
  6792. all_ops.insert(ggml_glu_op_name((enum ggml_glu_op)i));
  6793. }
  6794. for (const auto & op : all_ops) {
  6795. printf(" %s\n", op.c_str());
  6796. }
  6797. printf("\nTotal: %zu operations\n", all_ops.size());
  6798. }
  6799. static void show_test_coverage() {
  6800. std::set<std::string> all_ops;
  6801. for (int i = 1; i < GGML_OP_COUNT; i++) {
  6802. auto op = (enum ggml_op)i;
  6803. if (op == GGML_OP_VIEW ||
  6804. op == GGML_OP_RESHAPE ||
  6805. op == GGML_OP_PERMUTE ||
  6806. op == GGML_OP_TRANSPOSE ||
  6807. op == GGML_OP_CONT ||
  6808. op == GGML_OP_GLU ||
  6809. op == GGML_OP_UNARY) {
  6810. continue;
  6811. }
  6812. all_ops.insert(ggml_op_name(op));
  6813. }
  6814. for (int i = 0; i < GGML_UNARY_OP_COUNT; i++) {
  6815. all_ops.insert(ggml_unary_op_name((enum ggml_unary_op)i));
  6816. }
  6817. for (int i = 0; i < GGML_GLU_OP_COUNT; i++) {
  6818. all_ops.insert(ggml_glu_op_name((enum ggml_glu_op)i));
  6819. }
  6820. auto test_cases = make_test_cases_eval();
  6821. // Filter out fusion cases
  6822. test_cases.erase(
  6823. std::remove_if(test_cases.begin(), test_cases.end(), [](const std::unique_ptr<test_case> & tc) {
  6824. return tc->run_whole_graph();
  6825. }),
  6826. test_cases.end()
  6827. );
  6828. std::set<std::string> tested_ops;
  6829. ggml_init_params params = {
  6830. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  6831. /* .mem_base = */ NULL,
  6832. /* .no_alloc = */ true,
  6833. };
  6834. for (auto & test_case : test_cases) {
  6835. ggml_context * ctx = ggml_init(params);
  6836. if (ctx) {
  6837. test_case->mode = MODE_TEST;
  6838. ggml_tensor * out = test_case->build_graph(ctx);
  6839. if (out && out->op != GGML_OP_NONE) {
  6840. if (out->op == GGML_OP_UNARY) {
  6841. tested_ops.insert(ggml_unary_op_name(ggml_get_unary_op(out)));
  6842. } else if (out->op == GGML_OP_GLU) {
  6843. tested_ops.insert(ggml_glu_op_name(ggml_get_glu_op(out)));
  6844. } else {
  6845. tested_ops.insert(ggml_op_name(out->op));
  6846. }
  6847. }
  6848. ggml_free(ctx);
  6849. }
  6850. }
  6851. std::set<std::string> covered_ops;
  6852. std::set<std::string> uncovered_ops;
  6853. for (const auto & op : all_ops) {
  6854. if (tested_ops.count(op) > 0) {
  6855. covered_ops.insert(op);
  6856. } else {
  6857. uncovered_ops.insert(op);
  6858. }
  6859. }
  6860. printf("Operations covered by tests (%zu):\n", covered_ops.size());
  6861. for (const auto & op : covered_ops) {
  6862. printf(" ✓ %s\n", op.c_str());
  6863. }
  6864. printf("\nOperations without tests (%zu):\n", uncovered_ops.size());
  6865. for (const auto & op : uncovered_ops) {
  6866. printf(" ✗ %s\n", op.c_str());
  6867. }
  6868. printf("\nCoverage Summary:\n");
  6869. printf(" Total operations: %zu\n", all_ops.size());
  6870. printf(" Tested operations: %zu\n", covered_ops.size());
  6871. printf(" Untested operations: %zu\n", uncovered_ops.size());
  6872. printf(" Coverage: %.1f%%\n", (double)covered_ops.size() / all_ops.size() * 100.0);
  6873. }
  6874. static void usage(char ** argv) {
  6875. printf("Usage: %s [mode] [-o <op,..>] [-b <backend>] [-p <params regex>] [--output <console|sql|csv>] [--list-ops] [--show-coverage]\n", argv[0]);
  6876. printf(" valid modes:\n");
  6877. printf(" - test (default, compare with CPU backend for correctness)\n");
  6878. printf(" - grad (compare gradients from backpropagation with method of finite differences)\n");
  6879. printf(" - perf (performance evaluation)\n");
  6880. printf(" - support (probe backend operation support)\n");
  6881. printf(" op names for -o are as given by ggml_op_desc() (e.g. ADD, MUL_MAT, etc),\n");
  6882. printf(" optionally including the full test case string (e.g. \"ADD(type=f16,ne=[1,1,8,1],nr=[1,1,1,1],nf=1)\")\n");
  6883. printf(" --output specifies output format (default: console, options: console, sql, csv)\n");
  6884. printf(" --list-ops lists all available GGML operations\n");
  6885. printf(" --show-coverage shows test coverage\n");
  6886. }
  6887. int main(int argc, char ** argv) {
  6888. test_mode mode = MODE_TEST;
  6889. output_formats output_format = CONSOLE;
  6890. const char * op_names_filter = nullptr;
  6891. const char * backend_filter = nullptr;
  6892. const char * params_filter = nullptr;
  6893. for (int i = 1; i < argc; i++) {
  6894. if (strcmp(argv[i], "test") == 0) {
  6895. mode = MODE_TEST;
  6896. } else if (strcmp(argv[i], "perf") == 0) {
  6897. mode = MODE_PERF;
  6898. } else if (strcmp(argv[i], "grad") == 0) {
  6899. mode = MODE_GRAD;
  6900. } else if (strcmp(argv[i], "support") == 0) {
  6901. mode = MODE_SUPPORT;
  6902. } else if (strcmp(argv[i], "-o") == 0) {
  6903. if (i + 1 < argc) {
  6904. op_names_filter = argv[++i];
  6905. } else {
  6906. usage(argv);
  6907. return 1;
  6908. }
  6909. } else if (strcmp(argv[i], "-b") == 0) {
  6910. if (i + 1 < argc) {
  6911. backend_filter = argv[++i];
  6912. } else {
  6913. usage(argv);
  6914. return 1;
  6915. }
  6916. } else if (strcmp(argv[i], "-p") == 0) {
  6917. if (i + 1 < argc) {
  6918. params_filter = argv[++i];
  6919. } else {
  6920. usage(argv);
  6921. return 1;
  6922. }
  6923. } else if (strcmp(argv[i], "--output") == 0) {
  6924. if (i + 1 < argc) {
  6925. if (!output_format_from_str(argv[++i], output_format)) {
  6926. usage(argv);
  6927. return 1;
  6928. }
  6929. } else {
  6930. usage(argv);
  6931. return 1;
  6932. }
  6933. } else if (strcmp(argv[i], "--list-ops") == 0) {
  6934. list_all_ops();
  6935. return 0;
  6936. } else if (strcmp(argv[i], "--show-coverage") == 0) {
  6937. show_test_coverage();
  6938. return 0;
  6939. } else {
  6940. usage(argv);
  6941. return 1;
  6942. }
  6943. }
  6944. // load and enumerate backends
  6945. ggml_backend_load_all();
  6946. // Create printer for output format
  6947. std::unique_ptr<printer> output_printer = create_printer(output_format);
  6948. if (output_printer) {
  6949. output_printer->print_header();
  6950. }
  6951. output_printer->print_testing_start(testing_start_info(ggml_backend_dev_count()));
  6952. size_t n_ok = 0;
  6953. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  6954. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  6955. if (backend_filter != NULL && strcmp(backend_filter, ggml_backend_dev_name(dev)) != 0) {
  6956. output_printer->print_backend_init(
  6957. backend_init_info(i, ggml_backend_dev_count(), ggml_backend_dev_name(dev), true, "Skipping"));
  6958. n_ok++;
  6959. continue;
  6960. }
  6961. if (backend_filter == NULL && ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU && mode != MODE_GRAD) {
  6962. output_printer->print_backend_init(backend_init_info(
  6963. i, ggml_backend_dev_count(), ggml_backend_dev_name(dev), true, "Skipping CPU backend"));
  6964. n_ok++;
  6965. continue;
  6966. }
  6967. ggml_backend_t backend = ggml_backend_dev_init(dev, NULL);
  6968. GGML_ASSERT(backend != NULL);
  6969. ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
  6970. auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
  6971. if (ggml_backend_set_n_threads_fn) {
  6972. // TODO: better value for n_threads
  6973. ggml_backend_set_n_threads_fn(backend, std::thread::hardware_concurrency());
  6974. }
  6975. size_t free, total; // NOLINT
  6976. ggml_backend_dev_memory(dev, &free, &total);
  6977. output_printer->print_backend_init(backend_init_info(i, ggml_backend_dev_count(), ggml_backend_dev_name(dev),
  6978. false, "", ggml_backend_dev_description(dev),
  6979. total / 1024 / 1024, free / 1024 / 1024, true));
  6980. bool ok = test_backend(backend, mode, op_names_filter, params_filter, output_printer.get());
  6981. if (ok) {
  6982. n_ok++;
  6983. }
  6984. output_printer->print_backend_status(
  6985. backend_status_info(ggml_backend_name(backend), ok ? test_status_t::OK : test_status_t::FAIL));
  6986. ggml_backend_free(backend);
  6987. }
  6988. ggml_quantize_free();
  6989. if (output_printer) {
  6990. output_printer->print_footer();
  6991. }
  6992. output_printer->print_overall_summary(
  6993. overall_summary_info(n_ok, ggml_backend_dev_count(), n_ok == ggml_backend_dev_count()));
  6994. if (n_ok != ggml_backend_dev_count()) {
  6995. return 1;
  6996. }
  6997. return 0;
  6998. }