| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575 |
- // This file defines tests for various GGML ops and backends.
- // For the forward pass it asserts that the results of multiple backends computing the same GGML ops are consistent.
- // For the backward pass it asserts that the gradients from backpropagation are consistent
- // with the gradients obtained via the method of finite differences ("grad" mode, this is optional).
- // It is also possible to check the performance ("perf" mode).
- //
- // this file has three sections: Section 1 does general setup, section 2 defines the GGML ops to be tested,
- // and section 3 defines which tests to run.
- // Quick start for adding a new GGML op: Go to section 2 and create a struct that inherits from test_case,
- // then go to section 3 and add an instantiation of your struct.
- // ##############################
- // ## Section 1: General Setup ##
- // ##############################
- #include <ggml.h>
- #include <ggml-alloc.h>
- #include <ggml-backend.h>
- #include <ggml-cpp.h>
- #include <algorithm>
- #include <array>
- #include <cfloat>
- #include <cinttypes>
- #include <cstdint>
- #include <cstdio>
- #include <cstdlib>
- #include <cstring>
- #include <future>
- #include <memory>
- #include <random>
- #include <regex>
- #include <string>
- #include <thread>
- #include <vector>
- static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
- size_t nels = ggml_nelements(tensor);
- std::vector<float> data(nels);
- {
- // parallel initialization
- static const size_t n_threads = std::thread::hardware_concurrency();
- // static RNG initialization (revisit if n_threads stops being constant)
- static std::vector<std::default_random_engine> generators = []() {
- std::random_device rd;
- std::vector<std::default_random_engine> vec;
- vec.reserve(n_threads);
- //for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(1234 + i); } // fixed seed
- for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(rd()); }
- return vec;
- }();
- auto init_thread = [&](size_t ith, size_t start, size_t end) {
- std::uniform_real_distribution<float> distribution(min, max);
- auto & gen = generators[ith];
- for (size_t i = start; i < end; i++) {
- data[i] = distribution(gen);
- }
- };
- std::vector<std::future<void>> tasks;
- tasks.reserve(n_threads);
- for (size_t i = 0; i < n_threads; i++) {
- size_t start = i*nels/n_threads;
- size_t end = (i+1)*nels/n_threads;
- tasks.push_back(std::async(std::launch::async, init_thread, i, start, end));
- }
- for (auto & t : tasks) {
- t.get();
- }
- }
- if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) {
- ggml_backend_tensor_set(tensor, data.data(), 0, nels * sizeof(float));
- } else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16 || tensor->type == GGML_TYPE_BF16) {
- GGML_ASSERT(nels % ggml_blck_size(tensor->type) == 0);
- // dummy importance matrix
- std::vector<float> imatrix(tensor->ne[0], 1.0f);
- const float * im = imatrix.data();
- if (!ggml_quantize_requires_imatrix(tensor->type)) {
- // when the imatrix is optional, we want to test both quantization with and without imatrix
- // use one of the random numbers to decide
- if (data[0] > 0.5f*(min + max)) {
- im = nullptr;
- }
- }
- std::vector<uint8_t> dataq(ggml_row_size(tensor->type, nels));
- {
- // parallel quantization by block
- size_t blck_size = ggml_blck_size(tensor->type);
- size_t n_blocks = nels / blck_size;
- auto quantize_thread = [&](size_t start, size_t end) {
- ggml_quantize_chunk(tensor->type, data.data(), dataq.data(),
- start * blck_size, end - start, blck_size, im);
- };
- const size_t min_blocks_per_thread = 1;
- const size_t n_threads = std::min<size_t>(std::thread::hardware_concurrency()/2,
- std::max<size_t>(1, n_blocks / min_blocks_per_thread));
- std::vector<std::future<void>> tasks;
- tasks.reserve(n_threads);
- for (size_t i = 0; i < n_threads; i++) {
- size_t start = i*n_blocks/n_threads;
- size_t end = (i+1)*n_blocks/n_threads;
- tasks.push_back(std::async(std::launch::async, quantize_thread, start, end));
- }
- for (auto & t : tasks) {
- t.get();
- }
- }
- ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size());
- } else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) {
- // This is going to create some weird integers though.
- ggml_backend_tensor_set(tensor, data.data(), 0, ggml_nbytes(tensor));
- } else if (tensor->type == GGML_TYPE_I64) {
- // Integers with a size of 8 bytes can be set by mirroring the float data, the specific values are again not really meaningful.
- const size_t nbytes_half = ggml_nbytes(tensor)/2;
- ggml_backend_tensor_set(tensor, data.data(), 0*nbytes_half, nbytes_half);
- ggml_backend_tensor_set(tensor, data.data(), 1*nbytes_half, nbytes_half);
- } else {
- GGML_ABORT("fatal error");
- }
- }
- static std::vector<float> tensor_to_float(const ggml_tensor * t) {
- std::vector<float> tv;
- tv.reserve(ggml_nelements(t));
- std::vector<uint8_t> buf(ggml_nbytes(t));
- ggml_backend_tensor_get(t, buf.data(), 0, ggml_nbytes(t));
- const auto * tt = ggml_get_type_traits(t->type);
- size_t bs = ggml_blck_size(t->type);
- std::vector<float> vq(ggml_blck_size(t->type));
- bool quantized = ggml_is_quantized(t->type);
- // access elements by index to avoid gaps in views
- for (int64_t i3 = 0; i3 < t->ne[3]; i3++) {
- for (int64_t i2 = 0; i2 < t->ne[2]; i2++) {
- for (int64_t i1 = 0; i1 < t->ne[1]; i1++) {
- for (int64_t i0 = 0; i0 < t->ne[0]; i0 += bs) {
- size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0/bs*t->nb[0];
- if (t->type == GGML_TYPE_F16) {
- tv.push_back(ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i]));
- } else if (t->type == GGML_TYPE_BF16) {
- tv.push_back(ggml_bf16_to_fp32(*(ggml_bf16_t*)&buf[i]));
- } else if (t->type == GGML_TYPE_F32) {
- tv.push_back(*(float *) &buf[i]);
- } else if (t->type == GGML_TYPE_I64) {
- tv.push_back((float)*(int64_t *) &buf[i]);
- } else if (t->type == GGML_TYPE_I32) {
- tv.push_back((float)*(int32_t *) &buf[i]);
- } else if (t->type == GGML_TYPE_I16) {
- tv.push_back((float)*(int16_t *) &buf[i]);
- } else if (t->type == GGML_TYPE_I8) {
- tv.push_back((float)*(int8_t *) &buf[i]);
- } else if (quantized) {
- tt->to_float(&buf[i], vq.data(), bs);
- tv.insert(tv.end(), vq.begin(), vq.end());
- } else {
- GGML_ABORT("fatal error");
- }
- }
- }
- }
- }
- return tv;
- }
- // normalized mean squared error = mse(a, b) / mse(a, 0)
- static double nmse(const float * a, const float * b, size_t n) {
- double mse_a_b = 0.0;
- double mse_a_0 = 0.0;
- for (size_t i = 0; i < n; i++) {
- float a_i = a[i];
- float b_i = b[i];
- mse_a_b += (a_i - b_i) * (a_i - b_i);
- mse_a_0 += a_i * a_i;
- }
- return mse_a_b / mse_a_0;
- }
- // maximum absolute asymmetry between a and b
- // asymmetry: (a - b) / (a + b)
- // This is more stable than relative error if one of the values fluctuates towards zero.
- // n: number of values to compare.
- // expected_vals: optional vector of expected values for a. If expected_vals is not empty, filter out all comparisons where
- // a does not match any of the expected values. Needed for noncontinuous gradients where the numerical calculation can fail.
- static double mean_abs_asymm(const float * a, const float * b, const size_t n, const std::vector<float> & expected_vals) {
- double sum = 0.0f;
- size_t nvalid = 0;
- for (size_t i = 0; i < n; i++) {
- if (!expected_vals.empty()) {
- bool matches_any = false;
- for (const float & ev : expected_vals) {
- if (fabsf(a[i] - ev) < 1e-3f) {
- matches_any = true;
- break;
- }
- }
- if (!matches_any) {
- continue;
- }
- }
- const float asymm = (a[i] - b[i]) / (a[i] + b[i]);
- sum += fabsf(asymm);
- nvalid++;
- }
- return sum/nvalid;
- }
- // utils for printing the variables of the test cases
- template<typename T>
- static std::string var_to_str(const T & x) {
- return std::to_string(x);
- }
- template<typename T, size_t N>
- static std::string var_to_str(const T (&x)[N]) {
- std::string s = "[";
- for (size_t i = 0; i < N; i++) {
- if (i > 0) {
- s += ",";
- }
- s += var_to_str(x[i]);
- }
- s += "]";
- return s;
- }
- template<typename T, size_t N>
- static std::string var_to_str(const std::array<T, N> & x) {
- std::string s = "[";
- for (size_t i = 0; i < N; i++) {
- if (i > 0) {
- s += ",";
- }
- s += var_to_str(x[i]);
- }
- s += "]";
- return s;
- }
- static std::string var_to_str(ggml_type type) {
- return ggml_type_name(type);
- }
- static std::string var_to_str(ggml_op_pool pool) {
- switch (pool) {
- case GGML_OP_POOL_AVG: return "avg";
- case GGML_OP_POOL_MAX: return "max";
- default: return std::to_string(pool);
- }
- }
- #define VAR_TO_STR(x) (#x "=" + var_to_str(x))
- #define VARS_TO_STR1(a) VAR_TO_STR(a)
- #define VARS_TO_STR2(a, b) VAR_TO_STR(a) + "," + VAR_TO_STR(b)
- #define VARS_TO_STR3(a, b, c) VAR_TO_STR(a) + "," + VARS_TO_STR2(b, c)
- #define VARS_TO_STR4(a, b, c, d) VAR_TO_STR(a) + "," + VARS_TO_STR3(b, c, d)
- #define VARS_TO_STR5(a, b, c, d, e) VAR_TO_STR(a) + "," + VARS_TO_STR4(b, c, d, e)
- #define VARS_TO_STR6(a, b, c, d, e, f) VAR_TO_STR(a) + "," + VARS_TO_STR5(b, c, d, e, f)
- #define VARS_TO_STR7(a, b, c, d, e, f, g) VAR_TO_STR(a) + "," + VARS_TO_STR6(b, c, d, e, f, g)
- #define VARS_TO_STR8(a, b, c, d, e, f, g, h) VAR_TO_STR(a) + "," + VARS_TO_STR7(b, c, d, e, f, g, h)
- #define VARS_TO_STR9(a, b, c, d, e, f, g, h, i) VAR_TO_STR(a) + "," + VARS_TO_STR8(b, c, d, e, f, g, h, i)
- #define VARS_TO_STR10(a, b, c, d, e, f, g, h, i, j) VAR_TO_STR(a) + "," + VARS_TO_STR9(b, c, d, e, f, g, h, i, j)
- #define VARS_TO_STR11(a, b, c, d, e, f, g, h, i, j, k) VAR_TO_STR(a) + "," + VARS_TO_STR10(b, c, d, e, f, g, h, i, j, k)
- #define VARS_TO_STR12(a, b, c, d, e, f, g, h, i, j, k, l) VAR_TO_STR(a) + "," + VARS_TO_STR11(b, c, d, e, f, g, h, i, j, k, l)
- #ifdef GGML_USE_SYCL
- static bool inline _isinf(float f) {
- return (*(uint32_t *)&f & 0x7fffffff) == 0x7f800000;
- }
- #else
- static bool inline _isinf(float f) { return std::isinf(f); }
- #endif
- // accept FLT_MAX as infinity
- static bool isinf_or_max(float f) {
- return _isinf(f) || f == FLT_MAX || f == -FLT_MAX;
- }
- static bool ggml_is_view_op(enum ggml_op op) {
- return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
- }
- enum test_mode {
- MODE_TEST,
- MODE_PERF,
- MODE_GRAD,
- };
- struct test_case {
- virtual ~test_case() {}
- virtual std::string op_desc(ggml_tensor * t) {
- return ggml_op_desc(t);
- }
- virtual std::string vars() {
- return "";
- }
- virtual ggml_tensor * build_graph(ggml_context * ctx) = 0;
- virtual double max_nmse_err() {
- return 1e-7;
- }
- virtual double max_maa_err() {
- return 1e-4;
- }
- virtual float grad_eps() {
- return 1e-1f;
- }
- // If false, estimate gradient with 2 points, neglects 3rd order derivative and higher.
- // If true, estimate gradient with 4 points, neglects 5th order derivative and higher.
- virtual bool grad_precise() {
- return false;
- }
- // Skip gradient checks if total number of gradients to be checked is larger than this (to speed up the tests).
- virtual int64_t grad_nmax() {
- return 10000;
- }
- // No effect if empty.
- // If not empty, skip all gradient checks where the numerical result does not match any of the values.
- // Needed for dealing with noncontinuous gradients (e.g. ReLU) where estimation using finite differences is unreliable.
- virtual std::vector<float> grad_expect() {
- return {};
- }
- virtual void initialize_tensors(ggml_context * ctx) {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
- init_tensor_uniform(t);
- }
- }
- virtual size_t op_size(ggml_tensor * t) {
- size_t size = ggml_nbytes(t);
- // add source tensors
- for (int i = 0; i < GGML_MAX_SRC; i++) {
- if (t->src[i] != NULL) {
- size += ggml_nbytes(t->src[i]);
- }
- }
- return size;
- }
- virtual uint64_t op_flops(ggml_tensor * t) {
- GGML_UNUSED(t);
- return 0;
- }
- ggml_cgraph * gf = nullptr;
- ggml_cgraph * gb = nullptr;
- static const int sentinel_size = 1024;
- test_mode mode;
- std::vector<ggml_tensor *> sentinels;
- void add_sentinel(ggml_context * ctx) {
- if (mode == MODE_PERF || mode == MODE_GRAD) {
- return;
- }
- ggml_tensor * sentinel = ::ggml_new_tensor_1d(ctx, GGML_TYPE_F32, sentinel_size);
- ggml_format_name(sentinel, "sent_%zu", sentinels.size());
- sentinels.push_back(sentinel);
- }
- // hijack ggml_new_tensor to add sentinels after each tensor to check for overflows in the backend
- ggml_tensor * ggml_new_tensor(ggml_context * ctx, ggml_type type, int n_dims, const int64_t * ne) {
- ggml_tensor * t = ::ggml_new_tensor(ctx, type, n_dims, ne);
- add_sentinel(ctx);
- return t;
- }
- ggml_tensor * ggml_new_tensor_1d(ggml_context * ctx, ggml_type type, int64_t ne0) {
- ggml_tensor * t = ::ggml_new_tensor_1d(ctx, type, ne0);
- add_sentinel(ctx);
- return t;
- }
- ggml_tensor * ggml_new_tensor_2d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1) {
- ggml_tensor * t = ::ggml_new_tensor_2d(ctx, type, ne0, ne1);
- add_sentinel(ctx);
- return t;
- }
- ggml_tensor * ggml_new_tensor_3d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2) {
- ggml_tensor * t = ::ggml_new_tensor_3d(ctx, type, ne0, ne1, ne2);
- add_sentinel(ctx);
- return t;
- }
- ggml_tensor * ggml_new_tensor_4d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
- ggml_tensor * t = ::ggml_new_tensor_4d(ctx, type, ne0, ne1, ne2, ne3);
- add_sentinel(ctx);
- return t;
- }
- bool eval(ggml_backend_t backend1, ggml_backend_t backend2, const char * op_name) {
- mode = MODE_TEST;
- ggml_init_params params = {
- /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
- /* .mem_base = */ NULL,
- /* .no_alloc = */ true,
- };
- ggml_context * ctx = ggml_init(params);
- GGML_ASSERT(ctx);
- gf = ggml_new_graph(ctx);
- // pre-graph sentinel
- add_sentinel(ctx);
- ggml_tensor * out = build_graph(ctx);
- if (op_name != nullptr && op_desc(out) != op_name) {
- //printf(" %s: skipping\n", op_desc(out).c_str());
- ggml_free(ctx);
- return true;
- }
- printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
- fflush(stdout);
- // check if the backends support the ops
- bool supported = true;
- for (ggml_backend_t backend : {backend1, backend2}) {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- if (!ggml_backend_supports_op(backend, t)) {
- printf("not supported [%s] ", ggml_backend_name(backend));
- supported = false;
- break;
- }
- }
- }
- if (!supported) {
- printf("\n");
- ggml_free(ctx);
- return true;
- }
- // post-graph sentinel
- add_sentinel(ctx);
- // allocate
- ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1);
- if (buf == NULL) {
- printf("failed to allocate tensors [%s] ", ggml_backend_name(backend1));
- ggml_free(ctx);
- return false;
- }
- // build graph
- ggml_build_forward_expand(gf, out);
- // add sentinels as graph nodes so that they are checked in the callback
- for (ggml_tensor * sentinel : sentinels) {
- ggml_graph_add_node(gf, sentinel);
- }
- // randomize tensors
- initialize_tensors(ctx);
- // compare
- struct callback_userdata {
- bool ok;
- double max_err;
- ggml_backend_t backend1;
- ggml_backend_t backend2;
- };
- callback_userdata ud {
- true,
- max_nmse_err(),
- backend1,
- backend2
- };
- auto callback = [](int index, ggml_tensor * t1, ggml_tensor * t2, void * user_data) -> bool {
- callback_userdata * ud = (callback_userdata *) user_data;
- const char * bn1 = ggml_backend_name(ud->backend1);
- const char * bn2 = ggml_backend_name(ud->backend2);
- if (t1->op == GGML_OP_NONE) {
- // sentinels must be unchanged
- std::vector<uint8_t> t1_data(ggml_nbytes(t1));
- std::vector<uint8_t> t2_data(ggml_nbytes(t2));
- ggml_backend_tensor_get(t1, t1_data.data(), 0, ggml_nbytes(t1));
- ggml_backend_tensor_get(t2, t2_data.data(), 0, ggml_nbytes(t2));
- if (memcmp(t1_data.data(), t2_data.data(), ggml_nbytes(t1)) != 0) {
- printf("sentinel mismatch: %s ", t1->name);
- ud->ok = false;
- return true;
- }
- }
- std::vector<float> f1 = tensor_to_float(t1);
- std::vector<float> f2 = tensor_to_float(t2);
- for (size_t i = 0; i < f1.size(); i++) {
- // check for nans
- if (std::isnan(f1[i]) || std::isnan(f2[i])) {
- printf("[%s] NaN at index %zu (%s=%f %s=%f) ", ggml_op_desc(t1), i, bn1, f1[i], bn2, f2[i]);
- ud->ok = false;
- return true;
- }
- // check for infs: both must be inf of the same sign, or both must be finite
- if (isinf_or_max(f1[i]) || isinf_or_max(f2[i])) {
- if (isinf_or_max(f1[i]) && isinf_or_max(f2[i])) {
- if (std::signbit(f1[i]) != std::signbit(f2[i])) {
- printf("[%s] inf sign mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
- ud->ok = false;
- return true;
- }
- } else {
- printf("[%s] inf mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
- ud->ok = false;
- return true;
- }
- }
- }
- double err = nmse(f1.data(), f2.data(), f1.size());
- if (err > ud->max_err) {
- printf("[%s] NMSE = %.9f > %.9f ", ggml_op_desc(t1), err, ud->max_err);
- //for (int i = 0; i < (int) f1.size(); i++) {
- // printf("%5d %9.6f %9.6f, diff = %9.6f\n", i, f1[i], f2[i], f1[i] - f2[i]);
- //}
- //printf("\n");
- //exit(1);
- ud->ok = false;
- }
- return true;
- GGML_UNUSED(index);
- };
- const bool cmp_ok = ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud);
- if (!cmp_ok) {
- printf("compare failed ");
- }
- ggml_backend_buffer_free(buf);
- ggml_free(ctx);
- if (ud.ok && cmp_ok) {
- printf("\033[1;32mOK\033[0m\n");
- return true;
- }
- printf("\033[1;31mFAIL\033[0m\n");
- return false;
- }
- bool eval_perf(ggml_backend_t backend, const char * op_name) {
- mode = MODE_PERF;
- static const size_t graph_nodes = 8192;
- ggml_init_params params = {
- /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
- /* .mem_base = */ NULL,
- /* .no_alloc = */ true,
- };
- ggml_context_ptr ctx(ggml_init(params)); // smart ptr
- GGML_ASSERT(ctx);
- ggml_tensor * out = build_graph(ctx.get());
- if (op_name != nullptr && op_desc(out) != op_name) {
- //printf(" %s: skipping\n", op_desc(out).c_str());
- return true;
- }
- int len = printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
- fflush(stdout);
- // check if backends support op
- if (!ggml_backend_supports_op(backend, out)) {
- printf("not supported\n");
- return true;
- }
- // align while also leaving some margin for variations in parameters
- int align = 8;
- int last = (len + align - 1) / align * align;
- if (last - len < 5) {
- last += align;
- }
- printf("%*s", last - len, "");
- // allocate
- ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
- if (buf == NULL) {
- printf("failed to allocate tensors\n");
- return false;
- }
- // randomize tensors
- initialize_tensors(ctx.get());
- // build graph
- ggml_cgraph * gf = ggml_new_graph_custom(ctx.get(), graph_nodes, false);
- ggml_build_forward_expand(gf, out);
- // warmup run
- ggml_status status = ggml_backend_graph_compute(backend, gf);
- if (status != GGML_STATUS_SUCCESS) {
- fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
- return false;
- }
- // determine number of runs
- int n_runs;
- bool is_cpu = ggml_backend_dev_type(ggml_backend_get_device(backend)) == GGML_BACKEND_DEVICE_TYPE_CPU;
- if (op_flops(out) > 0) {
- // based on flops
- const uint64_t GFLOP = 1000 * 1000 * 1000;
- const uint64_t target_flops_cpu = 8ULL * GFLOP;
- const uint64_t target_flops_gpu = 100ULL * GFLOP;
- uint64_t target_flops = is_cpu ? target_flops_cpu : target_flops_gpu;
- n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_flops / op_flops(out)) + 1;
- } else {
- // based on memory size
- const size_t GB = 1ULL << 30;
- const size_t target_size_cpu = 8 * GB;
- const size_t target_size_gpu = 32 * GB;
- size_t target_size = is_cpu ? target_size_cpu : target_size_gpu;
- n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_size / op_size(out)) + 1;
- }
- // duplicate the op
- for (int i = 1; i < n_runs; i++) {
- ggml_graph_add_node(gf, out);
- }
- // calculate memory
- size_t mem = n_runs * op_size(out);
- auto tensor_op_size = [](ggml_tensor * t) {
- size_t size = ggml_nbytes(t);
- // add source tensors
- for (int i = 0; i < GGML_MAX_SRC; i++) {
- if (t->src[i] != NULL) {
- size += ggml_nbytes(t->src[i]);
- }
- }
- return size;
- };
- for (int i = 0; i < ggml_graph_n_nodes(gf); ++i) {
- if (ggml_is_view_op(ggml_graph_node(gf, i)->op) || ggml_graph_node(gf, i) == out) {
- continue;
- }
- mem += tensor_op_size(ggml_graph_node(gf, i));
- }
- // run
- int64_t total_time_us = 0;
- int64_t total_mem = 0;
- int total_runs = 0;
- do {
- int64_t start_time = ggml_time_us();
- ggml_status status = ggml_backend_graph_compute(backend, gf);
- if (status != GGML_STATUS_SUCCESS) {
- fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
- return false;
- }
- int64_t end_time = ggml_time_us();
- total_time_us += end_time - start_time;
- total_mem += mem;
- total_runs += n_runs;
- } while (total_time_us < 1000*1000); // run for at least 1 second
- printf(" %8d runs - %8.2f us/run - ",
- total_runs,
- (double)total_time_us / total_runs);
- if (op_flops(out) > 0) {
- double flops_per_sec = (op_flops(out) * total_runs) / (total_time_us / 1e6);
- auto format_flops = [](double flops) -> std::string {
- char buf[256];
- if (flops >= 1e12) {
- snprintf(buf, sizeof(buf), "%6.2f TFLOP", flops / 1e12);
- } else if (flops >= 1e9) {
- snprintf(buf, sizeof(buf), "%6.2f GFLOP", flops / 1e9);
- } else if (flops >= 1e6) {
- snprintf(buf, sizeof(buf), "%6.2f MFLOP", flops / 1e6);
- } else {
- snprintf(buf, sizeof(buf), "%6.2f KFLOP", flops / 1e3);
- }
- return buf;
- };
- printf("%s/run - \033[1;34m%sS\033[0m",
- format_flops(op_flops(out)).c_str(),
- format_flops(flops_per_sec).c_str());
- } else {
- printf("%8zu kB/run - \033[1;34m%7.2f GB/s\033[0m",
- op_size(out) / 1024,
- total_mem / (total_time_us / 1e6) / 1024.0 / 1024.0 / 1024.0);
- }
- printf("\n");
- return true;
- }
- bool eval_grad(ggml_backend_t backend, const char * op_name) {
- mode = MODE_GRAD;
- const std::vector<float> expect = grad_expect();
- ggml_init_params params = {
- /* .mem_size = */ ggml_tensor_overhead()*128 + 2*ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, true),
- /* .mem_base = */ NULL,
- /* .no_alloc = */ true,
- };
- ggml_context_ptr ctx(ggml_init(params)); // smart ptr
- GGML_ASSERT(ctx);
- gf = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
- gb = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
- ggml_tensor * out = build_graph(ctx.get());
- if ((op_name != nullptr && op_desc(out) != op_name) || out->op == GGML_OP_OPT_STEP_ADAMW) {
- //printf(" %s: skipping\n", op_desc(out).c_str());
- return true;
- }
- printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
- fflush(stdout);
- if (out->type != GGML_TYPE_F32) {
- printf("not supported [%s->type != FP32]\n", out->name);
- return true;
- }
- // check if the backend supports the ops
- bool supported = true;
- bool any_params = false;
- for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
- if (!ggml_backend_supports_op(backend, t)) {
- printf("not supported [%s] ", ggml_backend_name(backend));
- supported = false;
- break;
- }
- if ((t->flags & GGML_TENSOR_FLAG_PARAM)) {
- any_params = true;
- if (t->type != GGML_TYPE_F32) {
- printf("not supported [%s->type != FP32] ", t->name);
- supported = false;
- break;
- }
- }
- }
- if (!any_params) {
- printf("not supported [%s] \n", op_desc(out).c_str());
- supported = false;
- }
- if (!supported) {
- printf("\n");
- return true;
- }
- int64_t ngrads = 0;
- for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
- if (t->flags & GGML_TENSOR_FLAG_PARAM) {
- ngrads += ggml_nelements(t);
- }
- }
- if (ngrads > grad_nmax()) {
- printf("skipping large tensors for speed \n");
- return true;
- }
- if (!ggml_is_scalar(out)) {
- out = ggml_sum(ctx.get(), out);
- ggml_set_name(out, "sum_of_out");
- }
- ggml_set_loss(out);
- ggml_build_forward_expand(gf, out);
- ggml_graph_cpy(gf, gb);
- ggml_build_backward_expand(ctx.get(), ctx.get(), gb, false);
- if (expect.size() != 1 || expect[0] != 0.0f) {
- GGML_ASSERT(ggml_graph_n_nodes(gb) > ggml_graph_n_nodes(gf));
- for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
- GGML_ASSERT(!(t->flags & GGML_TENSOR_FLAG_PARAM) || ggml_graph_get_grad(gb, t)->op != GGML_OP_NONE);
- }
- }
- for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
- if (!ggml_backend_supports_op(backend, t)) {
- printf("not supported [%s] ", ggml_backend_name(backend));
- supported = false;
- break;
- }
- if ((t->flags & GGML_TENSOR_FLAG_PARAM) && t->type != GGML_TYPE_F32) {
- printf("not supported [%s->type != FP32] ", t->name);
- supported = false;
- break;
- }
- }
- if (!supported) {
- printf("\n");
- return true;
- }
- // allocate
- ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
- if (buf == NULL) {
- printf("failed to allocate tensors [%s] ", ggml_backend_name(backend));
- return false;
- }
- initialize_tensors(ctx.get()); // Randomizes all tensors (including gradients).
- ggml_graph_reset(gb); // Sets gradients to 1 if loss, 0 otherwise.
- ggml_status status = ggml_backend_graph_compute(backend, gf);
- if (status != GGML_STATUS_SUCCESS) {
- fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
- return false;
- }
- status = ggml_backend_graph_compute(backend, gb);
- if (status != GGML_STATUS_SUCCESS) {
- fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
- return false;
- }
- bool ok = true;
- for (struct ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != nullptr; t = ggml_get_next_tensor(ctx.get(), t)) {
- if (!(t->flags & GGML_TENSOR_FLAG_PARAM)) {
- continue;
- }
- const char * bn = ggml_backend_name(backend);
- const int64_t ne = ggml_nelements(t);
- std::vector<float> ga;
- struct ggml_tensor * grad = ggml_graph_get_grad(gb, t);
- if (grad) {
- ga = tensor_to_float(grad);
- } else {
- ga.resize(ne); // default value is 0.0f
- }
- for (int64_t i = 0; i < ne; ++i) { // gradient algebraic
- // check for nans
- if (!std::isfinite(ga[i])) {
- printf("[%s] nonfinite gradient at index %" PRId64 " (%s=%f) ", ggml_op_desc(t), i, bn, ga[i]);
- ok = false;
- break;
- }
- }
- if (!ok) {
- break;
- }
- std::vector<float> gn(ne); // gradient numeric
- GGML_ASSERT(ga.size() == gn.size());
- std::vector<float> x0 = tensor_to_float(t); // original t data
- GGML_ASSERT(ggml_is_scalar(out));
- GGML_ASSERT(out->type == GGML_TYPE_F32);
- const float eps = grad_eps();
- for (int64_t i = 0; i < ne; ++i) {
- const float xiu = x0[i] + 1.0f*eps; // x, index i, up
- const float xiuh = x0[i] + 0.5f*eps; // x, index i, up half
- const float xidh = x0[i] - 0.5f*eps; // x, index i, down half
- const float xid = x0[i] - 1.0f*eps; // x, index i, down
- float fu, fuh, fdh, fd; // output values for xiu, xiuh, xid, xidh
- ggml_backend_tensor_set(t, &xiu, i*sizeof(float), sizeof(float));
- status = ggml_backend_graph_compute(backend, gf);
- if (status != GGML_STATUS_SUCCESS) {
- fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
- return false;
- }
- ggml_backend_tensor_get(out, &fu, 0, ggml_nbytes(out));
- ggml_backend_tensor_set(t, &xid, i*sizeof(float), sizeof(float));
- status = ggml_backend_graph_compute(backend, gf);
- if (status != GGML_STATUS_SUCCESS) {
- fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
- return false;
- }
- ggml_backend_tensor_get(out, &fd, 0, ggml_nbytes(out));
- if (grad_precise()) {
- ggml_backend_tensor_set(t, &xiuh, i*sizeof(float), sizeof(float));
- status = ggml_backend_graph_compute(backend, gf);
- if (status != GGML_STATUS_SUCCESS) {
- fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
- return false;
- }
- ggml_backend_tensor_get(out, &fuh, 0, ggml_nbytes(out));
- ggml_backend_tensor_set(t, &xidh, i*sizeof(float), sizeof(float));
- status = ggml_backend_graph_compute(backend, gf);
- if (status != GGML_STATUS_SUCCESS) {
- fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
- return false;
- }
- ggml_backend_tensor_get(out, &fdh, 0, ggml_nbytes(out));
- gn[i] = (8.0*(double)fuh + (double)fd - (8.0*(double)fdh + (double)fu)) / (6.0*(double)eps);
- } else {
- gn[i] = (fu - fd) / (2.0f*eps);
- }
- ggml_backend_tensor_set(t, x0.data(), 0, ggml_nbytes(t));
- }
- const double err = mean_abs_asymm(gn.data(), ga.data(), gn.size(), expect);
- if (err > max_maa_err()) {
- printf("[%s] MAA = %.9f > %.9f ", ggml_op_desc(t), err, max_maa_err());
- ok = false;
- break;
- }
- if (!ok) {
- break;
- }
- }
- if (!ok) {
- printf("compare failed ");
- }
- if (ok) {
- printf("\033[1;32mOK\033[0m\n");
- return true;
- }
- printf("\033[1;31mFAIL\033[0m\n");
- return false;
- }
- };
- // ###################################
- // ## Section 2: GGML Op Defintions ##
- // ###################################
- // The following is an example showing the bare minimum for creating a test for a GGML op.
- // GGML_OP_EXAMPLE
- struct test_example : public test_case {
- // Always define these 2 or variants thereof:
- const ggml_type type; // The type of the input tensors.
- const std::array<int64_t, 4> ne; // The shape of the input tensors.
- // For some ops it's necessary to define multiple types or shapes for the inputs.
- // Or they may need additional parameters.
- // Put all parameters needed to fully define the test into one of the VARS_TO_STR macros.
- // In most cases these are just the properties of the struct that you defined above.
- // This is needed for info prints.
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- // Define a constructor for the struct.
- // In most cases it will be sufficient to have the same arguments as the struct has properties
- // and just use initializer lists.
- test_example(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 5, 4, 3})
- : type(type), ne(ne) {}
- // Define how a simple GGML compute graph can be constructed for the new GGML op.
- ggml_tensor * build_graph(ggml_context * ctx) override {
- // Step 1: create input tensors that don't depend on any other tensors:
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(a, "a"); // Setting names is optional but it's useful for debugging.
- ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(b, "b");
- // Step 2: use the op that you want to test in the GGML compute graph.
- ggml_tensor * out = ggml_add(ctx, a, b); // For this example we're just doing a simple addition.
- ggml_set_name(out, "out");
- // Step 3: return the output tensor.
- return out;
- }
- // In order to also check the gradients for your op, add calls like ggml_set_param(ctx, a)
- // immediately after you create the tensors.
- // This is optional and only makes sense if a backward pass has actually been implemented for the new op.
- };
- // GGML_OP_UNARY
- struct test_unary : public test_case {
- const ggml_unary_op op;
- const ggml_type type;
- const std::array<int64_t, 4> ne_a;
- int v; // view (1 : non-contiguous a)
- std::string vars() override {
- return VARS_TO_STR3(type, ne_a, v);
- }
- test_unary(ggml_unary_op op,
- ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
- int v = 0)
- : op(op), type(type), ne_a(ne_a), v(v) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- const bool grad_supported = op == GGML_UNARY_OP_ABS || op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_NEG ||
- op == GGML_UNARY_OP_STEP || op == GGML_UNARY_OP_RELU || op == GGML_UNARY_OP_SILU;
- ggml_tensor * a;
- if (v & 1) {
- auto ne = ne_a; ne[0] *= 3;
- a = ggml_new_tensor(ctx, type, 4, ne.data());
- if (grad_supported) {
- ggml_set_param(ctx, a);
- }
- ggml_set_name(a, "a");
- a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
- ggml_set_name(a, "view_of_a");
- } else {
- a = ggml_new_tensor(ctx, type, 4, ne_a.data());
- if (grad_supported) {
- ggml_set_param(ctx, a);
- }
- ggml_set_name(a, "a");
- }
- ggml_tensor * out = ggml_unary(ctx, a, op);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- // test extended range of values to check for NaNs in GELU
- init_tensor_uniform(t, -150.f, 150.f);
- }
- }
- float grad_eps() override {
- return 15.0f;
- }
- std::vector<float> grad_expect() override {
- if (op == GGML_UNARY_OP_ABS) {
- return {-1.0f, 1.0f};
- }
- if (op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_STEP) {
- return {0.0f};
- }
- if (op == GGML_UNARY_OP_RELU) {
- return {0.0f, 1.0f};
- }
- return {};
- }
- };
- // GGML_OP_GET_ROWS
- struct test_get_rows : public test_case {
- const ggml_type type;
- const int n; // cols
- const int m; // rows
- const int r; // rows to get
- const int b; // batch size
- const bool v; // view (non-contiguous src1)
- std::string vars() override {
- return VARS_TO_STR6(type, n, m, r, b, v);
- }
- test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
- : type(type), n(n), m(m), r(r), b(b), v(v) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * in = ggml_new_tensor_3d(ctx, type, n, m, b);
- ggml_set_name(in, "in");
- ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
- ggml_set_name(rows, "rows");
- if (v) {
- rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
- ggml_set_name(rows, "view_of_rows");
- }
- const bool grad_supported = ggml_is_matrix(in) && ggml_is_vector(rows);
- if (grad_supported) {
- ggml_set_param(ctx, in);
- // rows is a constant input -> no gradients
- }
- ggml_tensor * out = ggml_get_rows(ctx, in, rows);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- if (t->type == GGML_TYPE_I32) {
- if (ggml_is_view_op(t->op)) { continue; }
- // rows
- std::vector<int> data(r*b);
- for (int i = 0; i < r*b; i++) {
- data[i] = rand() % m;
- }
- ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
- } else {
- init_tensor_uniform(t);
- }
- }
- }
- };
- // GGML_OP_GET_ROWS_BACK
- struct test_get_rows_back : public test_case {
- const ggml_type type;
- const int n; // cols
- const int m; // rows
- const int r; // rows to get
- const int b; // batch size
- const bool v; // view (non-contiguous src1)
- std::string vars() override {
- return VARS_TO_STR6(type, n, m, r, b, v);
- }
- test_get_rows_back(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
- : type(type), n(n), m(m), r(r), b(b), v(v) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * in_forward = ggml_new_tensor_3d(ctx, type, n, m, b);
- ggml_set_name(in_forward, "in_forward");
- ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
- ggml_set_name(rows, "rows");
- if (v) {
- rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
- ggml_set_name(rows, "view_of_rows");
- }
- ggml_tensor * grad = ggml_new_tensor_3d(ctx, type, n, r, b);
- ggml_set_name(grad, "grad");
- ggml_tensor * out = ggml_get_rows_back(ctx, grad, rows, in_forward);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- if (t->type == GGML_TYPE_I32) {
- if (ggml_is_view_op(t->op)) { continue; }
- // rows
- std::vector<int> data(r*b);
- for (int i = 0; i < r*b; i++) {
- data[i] = rand() % m;
- }
- ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
- } else {
- init_tensor_uniform(t);
- }
- }
- }
- };
- // GGML_OP_ARGMAX
- struct test_argmax : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- test_argmax(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 100, 1, 1})
- : type(type), ne(ne) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_argmax(ctx, a);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- std::random_device rd;
- std::default_random_engine rng(rd());
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- if (t->type == GGML_TYPE_F32) {
- // initialize with unique values to avoid ties
- for (int64_t r = 0; r < ggml_nrows(t); r++) {
- std::vector<float> data(t->ne[0]);
- for (int i = 0; i < t->ne[0]; i++) {
- data[i] = i;
- }
- std::shuffle(data.begin(), data.end(), rng);
- ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
- }
- } else {
- init_tensor_uniform(t);
- }
- }
- }
- double max_nmse_err() override {
- return 0.0;
- }
- };
- // GGML_OP_COUNT_EQUAL
- struct test_count_equal : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- test_count_equal(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {4, 500, 1, 1})
- : type(type), ne(ne) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(a, "a");
- ggml_tensor * a_argmax = ggml_argmax(ctx, a);
- ggml_set_name(a_argmax, "a_argmax");
- ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(b, "b");
- ggml_tensor * b_argmax = ggml_argmax(ctx, b);
- ggml_set_name(b_argmax, "b_argmax");
- ggml_tensor * out = ggml_count_equal(ctx, a_argmax, b_argmax);
- ggml_set_name(out, "out");
- return out;
- }
- double max_nmse_err() override {
- return 0.0;
- }
- };
- // GGML_OP_REPEAT
- struct test_repeat : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- const std::array<int, 4> nr;
- std::string vars() override {
- return VARS_TO_STR3(type, ne, nr);
- }
- size_t op_size(ggml_tensor * t) override {
- return ggml_nbytes(t) * 2;
- }
- test_repeat(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 5, 4, 3},
- std::array<int, 4> nr = {2, 2, 2, 2})
- : type(type), ne(ne), nr(nr) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * target = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
- ggml_set_name(target, "target");
- ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(ctx, src);
- ggml_set_name(src, "src");
- ggml_tensor * out = ggml_repeat(ctx, src, target);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_REPEAT_BACK
- struct test_repeat_back : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- const std::array<int, 4> nr;
- const bool v; // whether src is a noncontiguous view
- std::string vars() override {
- return VARS_TO_STR4(type, ne, nr, v);
- }
- size_t op_size(ggml_tensor * t) override {
- return ggml_nbytes(t) * 2;
- }
- test_repeat_back(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {8, 6, 4, 2},
- std::array<int, 4> nr = {2, 2, 2, 2},
- bool v = false)
- : type(type), ne(ne), nr(nr), v(v) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * src = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
- ggml_set_name(src, "src");
- if (v) {
- GGML_ASSERT(ne[0] % 2 == 0);
- GGML_ASSERT(ne[1] % 2 == 0);
- GGML_ASSERT(ne[2] % 2 == 0);
- GGML_ASSERT(ne[3] % 2 == 0);
- GGML_ASSERT(nr[0] % 2 == 0 || nr[0] == 1);
- GGML_ASSERT(nr[1] % 2 == 0 || nr[1] == 1);
- GGML_ASSERT(nr[2] % 2 == 0 || nr[2] == 1);
- GGML_ASSERT(nr[3] % 2 == 0 || nr[3] == 1);
- const int64_t ne00 = nr[0] == 1 ? src->ne[0] : src->ne[0] / 2;
- const int64_t ne01 = nr[1] == 1 ? src->ne[1] : src->ne[1] / 2;
- const int64_t ne02 = nr[2] == 1 ? src->ne[2] : src->ne[2] / 2;
- const int64_t ne03 = nr[3] == 1 ? src->ne[3] : src->ne[3] / 2;
- src = ggml_view_4d(ctx, src, ne00, ne01, ne02, ne03, src->nb[1], src->nb[2], src->nb[3], 0);
- }
- ggml_tensor * target = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(target, "target");
- ggml_tensor * out = ggml_repeat_back(ctx, src, target);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_DUP
- struct test_dup : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- const std::array<int64_t, 4> permute;
- bool _use_permute;
- std::string vars() override {
- std::string v = VARS_TO_STR2(type, ne);
- if (_use_permute) v += "," + VAR_TO_STR(permute);
- return v;
- }
- test_dup(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 10, 20, 1},
- std::array<int64_t, 4> permute = {0, 0, 0, 0})
- : type(type), ne(ne), permute(permute),
- _use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(ctx, src);
- ggml_set_name(src, "src");
- if (_use_permute) {
- src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]);
- ggml_set_name(src, "src_permuted");
- }
- ggml_tensor * out = ggml_dup(ctx, src);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_SET
- struct test_set : public test_case {
- const ggml_type type_src;
- const ggml_type type_dst;
- const std::array<int64_t, 4> ne;
- const int dim;
- std::string vars() override {
- return VARS_TO_STR4(type_src, type_dst, ne, dim);
- }
- size_t op_size(ggml_tensor * t) override {
- return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
- }
- test_set(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {6, 5, 4, 3}, int dim = 1)
- : type_src(type_src), type_dst(type_dst), ne(ne), dim(dim) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
- ggml_set_param(ctx, src);
- ggml_set_name(src, "src");
- auto ne_dst = ne;
- for (int i = 0; i < dim; ++i) {
- ne_dst[i] *= 2;
- }
- ggml_tensor* dst = ggml_new_tensor(ctx, type_dst, 4, ne_dst.data());
- ggml_set_param(ctx, dst);
- ggml_set_name(dst, "dst");
- size_t offset = 0;
- for (int i = 0; i < dim; ++i) {
- offset += ((ne_dst[i] - ne[i])/2)*dst->nb[i];
- }
- ggml_tensor * out = ggml_set(ctx, dst, src,
- // The backward pass requires setting a contiguous region:
- src->nb[1], src->nb[2], src->nb[3], offset);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_CPY
- struct test_cpy : public test_case {
- const ggml_type type_src;
- const ggml_type type_dst;
- const std::array<int64_t, 4> ne;
- const std::array<int64_t, 4> permute;
- bool _src_use_permute;
- std::string vars() override {
- return VARS_TO_STR4(type_src, type_dst, ne, permute);
- }
- double max_nmse_err() override {
- return 1e-6;
- }
- size_t op_size(ggml_tensor * t) override {
- return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
- }
- test_cpy(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 10, 10, 1},
- std::array<int64_t, 4> permute = {0, 0, 0, 0})
- : type_src(type_src), type_dst(type_dst), ne(ne), permute(permute),
- _src_use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
- ggml_set_param(ctx, src);
- ggml_set_name(src, "src");
- if (_src_use_permute) {
- src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]);
- ggml_set_name(src, "src_permuted");
- }
- ggml_tensor* dst = ggml_new_tensor(ctx, type_dst, 4, src->ne);
- ggml_set_name(dst, "dst");
- ggml_tensor * out = ggml_cpy(ctx, src, dst);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_CONT
- struct test_cont : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- test_cont(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 10, 10, 1})
- : type(type), ne(ne) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(ctx, src);
- ggml_set_name(src, "src");
- src = ggml_transpose(ctx, src);
- ggml_set_name(src, "src_transposed");
- ggml_tensor * out = ggml_cont(ctx, src);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_ADD
- // GGML_OP_SUB
- // GGML_OP_MUL
- // GGML_OP_DIV
- struct test_bin_bcast : public test_case {
- using op_t = ggml_tensor * (*) (ggml_context *, ggml_tensor *, ggml_tensor *);
- op_t op;
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- const std::array<int, 4> nr;
- std::string vars() override {
- return VARS_TO_STR3(type, ne, nr);
- }
- size_t op_size(ggml_tensor * t) override {
- return ggml_nbytes(t) * 3;
- }
- test_bin_bcast(op_t op, ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 10, 1, 1},
- std::array<int, 4> nr = {1, 2, 1, 1})
- : op(op), type(type), ne(ne), nr(nr) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
- ggml_set_name(a, "a");
- ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(b, "b");
- // The backward pass supports broadcasting only for GGML_ADD:
- const bool grad_supported = op == ggml_add || ggml_are_same_shape(a, b);
- if (grad_supported) {
- ggml_set_param(ctx, a);
- ggml_set_param(ctx, b);
- }
- ggml_tensor * out = op(ctx, a, b);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- if (op == ggml_mul || op == ggml_div) {
- // MUL and DIV have numerical issues around zero:
- init_tensor_uniform(t, 0.9f, 1.1f);
- } else {
- init_tensor_uniform(t);
- }
- }
- }
- float grad_eps() override {
- return 0.1f * (op == ggml_mul ? ne[0]*ne[1]*ne[2]*ne[3] : 1);
- }
- bool grad_precise() override {
- return op == ggml_div;
- }
- double max_maa_err() override {
- return op == ggml_add ? 1e-4 : 1e-3;
- }
- };
- // GGML_OP_ADD1
- struct test_add1 : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- test_add1(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 5, 4, 3})
- : type(type), ne(ne) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(ctx, a);
- ggml_set_name(a, "a");
- ggml_tensor * b = ggml_new_tensor_1d(ctx, type, 1);
- // ggml_set_param(ctx, b); // TODO: implement
- ggml_set_name(b, "b");
- ggml_tensor * out = ggml_add1(ctx, a, b);
- ggml_set_name(out, "out");
- return out;
- }
- float grad_eps() override {
- return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
- }
- };
- // GGML_OP_SCALE
- struct test_scale : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- float scale;
- std::string vars() override {
- return VARS_TO_STR3(type, ne, scale);
- }
- test_scale(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 10, 10, 10},
- float scale = 2.0f)
- : type(type), ne(ne), scale(scale) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(ctx, a);
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_scale(ctx, a, scale);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_SILU_BACK
- struct test_silu_back : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- float eps;
- std::string vars() override {
- return VARS_TO_STR3(type, ne, eps);
- }
- test_silu_back(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {64, 5, 4, 3},
- float eps = 1e-6f)
- : type(type), ne(ne), eps(eps) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(a, "a");
- ggml_tensor * grad = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(grad, "grad");
- ggml_tensor * out = ggml_silu_back(ctx, a, grad);
- ggml_set_name(out, "out");
- return out;
- }
- bool grad_precise() override {
- return true;
- }
- };
- // GGML_OP_NORM
- struct test_norm : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- const bool v; // whether a is a non-contiguous view
- const float eps;
- std::string vars() override {
- return VARS_TO_STR4(type, ne, v, eps);
- }
- test_norm(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {64, 5, 4, 3},
- bool v = false,
- float eps = 1e-6f)
- : type(type), ne(ne), v(v), eps(eps) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(a, "a");
- if (v) {
- a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
- ggml_set_name(a, "view of a");
- }
- ggml_tensor * out = ggml_norm(ctx, a, eps);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_RMS_NORM
- struct test_rms_norm : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- const bool v; // whether a is a non-contiguous view
- const float eps;
- std::string vars() override {
- return VARS_TO_STR4(type, ne, v, eps);
- }
- test_rms_norm(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {64, 5, 4, 3},
- bool v = false,
- float eps = 1e-6f)
- : type(type), ne(ne), v(v), eps(eps) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(ctx, a);
- ggml_set_name(a, "a");
- if (v) {
- a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
- ggml_set_name(a, "view of a");
- }
- ggml_tensor * out = ggml_rms_norm(ctx, a, eps);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- init_tensor_uniform(t, -10.f, 10.f);
- }
- }
- float grad_eps() override {
- return 1.0f;
- }
- bool grad_precise() override {
- return true;
- }
- };
- // GGML_OP_RMS_NORM_BACK
- struct test_rms_norm_back : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- const float eps;
- std::string vars() override {
- return VARS_TO_STR3(type, ne, eps);
- }
- test_rms_norm_back(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {64, 5, 4, 3},
- float eps = 1e-6f)
- : type(type), ne(ne), eps(eps) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(a, "a");
- ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(b, "b");
- ggml_tensor * out = ggml_rms_norm_back(ctx, a, b, eps);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- init_tensor_uniform(t, -10.f, 10.f);
- }
- }
- };
- // GGML_OP_SSM_CONV
- struct test_ssm_conv : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne_a;
- const std::array<int64_t, 4> ne_b;
- std::string vars() override {
- return VARS_TO_STR3(type, ne_a, ne_b);
- }
- test_ssm_conv(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne_a = {10, 10, 10, 1},
- std::array<int64_t, 4> ne_b = {3, 3, 1, 1})
- : type(type), ne_a(ne_a), ne_b(ne_b) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
- ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
- ggml_tensor * out = ggml_ssm_conv(ctx, a, b);
- return out;
- }
- };
- // GGML_OP_SSM_SCAN
- struct test_ssm_scan : public test_case {
- const ggml_type type;
- const int64_t d_state;
- const int64_t d_inner;
- const int64_t n_seq_tokens;
- const int64_t n_seqs;
- std::string vars() override {
- return VARS_TO_STR5(type, d_state, d_inner, n_seq_tokens, n_seqs);
- }
- test_ssm_scan(ggml_type type = GGML_TYPE_F32,
- int64_t d_state = 32, int64_t d_inner = 32, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
- : type(type), d_state(d_state), d_inner(d_inner), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * s = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, d_inner, n_seqs, 1 }.data());
- ggml_tensor * x = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_inner, n_seq_tokens, n_seqs, 1 }.data());
- ggml_tensor * dt = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_inner, n_seq_tokens, n_seqs, 1 }.data());
- ggml_tensor * A = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, d_inner, 1 , 1 }.data());
- ggml_tensor * B = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, n_seq_tokens, n_seqs, 1 }.data());
- ggml_tensor * C = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, n_seq_tokens, n_seqs, 1 }.data());
- ggml_tensor * out = ggml_ssm_scan(ctx, s, x, dt, A, B, C);
- return out;
- }
- };
- // GGML_OP_RWKV_WKV6
- struct test_rwkv_wkv6 : public test_case {
- const ggml_type type;
- const int64_t head_count;
- const int64_t head_size;
- const int64_t n_seq_tokens;
- const int64_t n_seqs;
- std::string vars() override {
- return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
- }
- test_rwkv_wkv6(ggml_type type = GGML_TYPE_F32,
- int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
- : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- const int64_t n_tokens = n_seq_tokens * n_seqs;
- ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
- ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
- ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
- ggml_tensor * tf = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size, head_count }.data());
- ggml_tensor * td = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
- ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
- ggml_tensor * out = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, s);
- return out;
- }
- };
- // GGML_OP_GATED_LINEAR_ATTN
- struct test_gla : public test_case {
- const ggml_type type;
- const int64_t head_count;
- const int64_t head_size;
- const int64_t n_seq_tokens;
- const int64_t n_seqs;
- std::string vars() override {
- return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
- }
- test_gla(ggml_type type = GGML_TYPE_F32,
- int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
- : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- const int64_t n_tokens = n_seq_tokens * n_seqs;
- ggml_tensor * q = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
- ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
- ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
- ggml_tensor * g = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
- ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
- ggml_tensor * out = ggml_gated_linear_attn(ctx, k, v, q, g, s, pow(head_size, -0.5));
- return out;
- }
- };
- // GGML_OP_MUL_MAT
- struct test_mul_mat : public test_case {
- const ggml_type type_a;
- const ggml_type type_b;
- const int64_t m;
- const int64_t n;
- const int64_t k;
- const std::array<int64_t, 2> bs; // dims 3 and 4
- const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
- const std::array<int64_t, 4> per; // permutation of dimensions
- std::string vars() override {
- return VARS_TO_STR8(type_a, type_b, m, n, k, bs, nr, per);
- }
- double max_nmse_err() override {
- return 5e-4;
- }
- int64_t grad_nmax() override {
- return 20000;
- }
- uint64_t op_flops(ggml_tensor * t) override {
- GGML_UNUSED(t);
- return 2 * m * n * k * bs[0] * nr[0] * bs[1] * nr[1];
- }
- test_mul_mat(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
- int64_t m = 32, int64_t n = 32, int64_t k = 32,
- std::array<int64_t, 2> bs = {10, 10},
- std::array<int64_t, 2> nr = {2, 2},
- std::array<int64_t, 4> per = {0, 1, 2, 3})
- : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), per(per) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- // C^T = A * B^T: (k, m) * (k, n) => (m, n)
- ggml_tensor * a;
- ggml_tensor * b;
- const int npermuted = (per[0] != 0) + (per[1] != 1) + (per[2] != 2) + (per[3] != 3);
- if (npermuted > 0) {
- GGML_ASSERT(npermuted == 2);
- GGML_ASSERT(!ggml_is_quantized(type_a) || per[0] == 0);
- GGML_ASSERT(!ggml_is_quantized(type_b) || per[0] == 0);
- // Create tensors with the permuted dimensions, then permute them back to the dimensions given by m,n,k.
- const int64_t ne_a[4] = {k, m, bs[0], bs[1]};
- const int64_t ne_b[4] = {k, n, bs[0]*nr[0], bs[1]*nr[1]};
- a = ggml_new_tensor_4d(ctx, type_a, ne_a[per[0]], ne_a[per[1]], ne_a[per[2]], ne_a[per[3]]);
- b = ggml_new_tensor_4d(ctx, type_b, ne_b[per[0]], ne_b[per[1]], ne_b[per[2]], ne_b[per[3]]);
- if (!ggml_is_quantized(type_a)) {
- if (bs[1] == 1 && nr[1] == 1) {
- ggml_set_param(ctx, a);
- }
- ggml_set_param(ctx, b);
- }
- ggml_set_name(a, "a");
- ggml_set_name(b, "b");
- a = ggml_permute(ctx, a, per[0], per[1], per[2], per[3]);
- b = ggml_permute(ctx, b, per[0], per[1], per[2], per[3]);
- ggml_set_name(a, "a_permuted");
- ggml_set_name(b, "b_permuted");
- } else {
- a = ggml_new_tensor_4d(ctx, type_a, k, m, bs[0], bs[1]);
- b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
- if (!ggml_is_quantized(type_a)) {
- if (bs[1] == 1 && nr[1] == 1) {
- ggml_set_param(ctx, a);
- }
- ggml_set_param(ctx, b);
- }
- ggml_set_name(a, "a");
- ggml_set_name(b, "b");
- }
- ggml_tensor * out = ggml_mul_mat(ctx, a, b);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_MUL_MAT_ID
- struct test_mul_mat_id : public test_case {
- const ggml_type type_a;
- const ggml_type type_b;
- const int n_mats;
- const int n_used;
- const bool b; // brodcast b matrix
- const int64_t m;
- const int64_t n;
- const int64_t k;
- std::string vars() override {
- return VARS_TO_STR8(type_a, type_b, n_mats, n_used, b, m, n, k);
- }
- double max_nmse_err() override {
- return 5e-4;
- }
- uint64_t op_flops(ggml_tensor * t) override {
- GGML_UNUSED(t);
- return 2 * m * k * n * n_used;
- }
- test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
- int n_mats = 8, int n_used = 2, bool b = false,
- int64_t m = 32, int64_t n = 32, int64_t k = 32)
- : type_a(type_a), type_b(type_b), n_mats(n_mats), n_used(n_used), b(b),
- m(m), n(n), k(k) {
- GGML_ASSERT(n_used <= n_mats);
- }
- ggml_tensor * build_graph(ggml_context * ctx) override {
- // C^T = A * B^T: (k, m) * (k, n) => (m, n)
- ggml_tensor * as = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
- ggml_set_name(as, "as");
- ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
- ggml_set_name(ids, "ids");
- if (n_used != n_mats) {
- ids = ggml_view_2d(ctx, ids, n_used, n, ids->nb[1], 0);
- ggml_set_name(ids, "view_of_ids");
- }
- ggml_tensor * b = ggml_new_tensor_3d(ctx, type_b, k, this->b ? 1 : n_used, n);
- ggml_set_name(b, "b");
- ggml_tensor * out = ggml_mul_mat_id(ctx, as, b, ids);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- std::random_device rd;
- std::default_random_engine rng(rd());
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- if (t->type == GGML_TYPE_I32) {
- if (ggml_is_view_op(t->op)) { continue; }
- // ids
- for (int64_t r = 0; r < ggml_nrows(t); r++) {
- std::vector<int32_t> data(t->ne[0]);
- for (int i = 0; i < t->ne[0]; i++) {
- data[i] = i % n_mats;
- }
- std::shuffle(data.begin(), data.end(), rng);
- ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
- }
- } else {
- init_tensor_uniform(t);
- }
- }
- }
- };
- // GGML_OP_OUT_PROD
- struct test_out_prod : public test_case {
- const ggml_type type_a;
- const ggml_type type_b;
- const int64_t m;
- const int64_t n;
- const int64_t k;
- const std::array<int64_t, 2> bs; // dims 3 and 4
- const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
- const bool trans_b;
- std::string vars() override {
- return VARS_TO_STR8(type_a, type_b, m, n, k, bs, nr, trans_b);
- }
- double max_nmse_err() override {
- return 5e-4;
- }
- test_out_prod(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
- int64_t m = 32, int64_t n = 32, int64_t k = 32,
- std::array<int64_t, 2> bs = {10, 10},
- std::array<int64_t, 2> nr = {2, 2},
- bool trans_b = false)
- : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), trans_b(trans_b) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor_4d(ctx, type_a, m, k, bs[0], bs[1]);
- ggml_set_name(a, "a");
- ggml_tensor * b;
- if (trans_b) {
- b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
- b = ggml_transpose(ctx, b);
- } else {
- b = ggml_new_tensor_4d(ctx, type_b, n, k, bs[0]*nr[0], bs[1]*nr[1]);
- }
- ggml_set_name(b, "b");
- ggml_tensor * out = ggml_out_prod(ctx, a, b);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_SQR
- struct test_sqr : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- test_sqr(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 5, 4, 3})
- : type(type), ne(ne) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(ctx, a);
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_sqr(ctx, a);
- ggml_set_name(out, "out");
- return out;
- }
- float grad_eps() override {
- return 0.1f * 0.25f*ne[0]*ne[1]*ne[2]*ne[3]; // 10% of expected value of sum.
- }
- };
- // GGML_OP_SQRT
- struct test_sqrt : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- test_sqrt(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 3, 3, 2})
- : type(type), ne(ne) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(ctx, a);
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_sqrt(ctx, a);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- // fill with positive values
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- init_tensor_uniform(t, 50.0f, 100.0f);
- }
- }
- float grad_eps() override {
- return 20.0f;
- }
- bool grad_precise() override {
- return true;
- }
- };
- // GGML_OP_LOG
- struct test_log : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- test_log(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 5, 4, 3})
- : type(type), ne(ne) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(ctx, a);
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_log(ctx, a);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- // log(1) == 0, cluster values there to keep the sum low for better precision in the backward pass:
- init_tensor_uniform(t, 0.9f, 1.1f);
- }
- }
- bool grad_precise() override {
- return true;
- }
- };
- // GGML_OP_SIN
- struct test_sin : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- test_sin(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 2, 2, 2})
- : type(type), ne(ne) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(ctx, a);
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_sin(ctx, a);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
- }
- }
- double max_maa_err() override {
- return 1e-3;
- }
- float grad_eps() override {
- return 0.2f;
- }
- bool grad_precise() override {
- return true;
- }
- };
- // GGML_OP_COS
- struct test_cos : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- test_cos(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 2, 2, 2})
- : type(type), ne(ne) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(ctx, a);
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_cos(ctx, a);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
- }
- }
- double max_maa_err() override {
- return 1e-3;
- }
- float grad_eps() override {
- return 0.2f;
- }
- bool grad_precise() override {
- return true;
- }
- };
- // GGML_OP_CLAMP
- struct test_clamp : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- float min;
- float max;
- std::string vars() override {
- return VARS_TO_STR4(type, ne, min, max);
- }
- test_clamp(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 5, 4, 3},
- float min = -0.5f, float max = 0.5f)
- : type(type), ne(ne), min(min), max(max) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_clamp(ctx, a, min, max);
- ggml_set_name(out, "out");
- return out;
- }
- float grad_eps() override {
- return 1e-2f;
- }
- std::vector<float> grad_expect() override {
- return {0.0f, 1.0f};
- }
- };
- // GGML_OP_DIAG_MASK_INF
- struct test_diag_mask_inf : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- const int n_past;
- std::string vars() override {
- return VARS_TO_STR3(type, ne, n_past);
- }
- test_diag_mask_inf(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 10, 3, 2},
- int n_past = 5)
- : type(type), ne(ne), n_past(n_past) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(ctx, a);
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_diag_mask_inf(ctx, a, n_past);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_SOFT_MAX
- struct test_soft_max : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- const bool mask;
- const ggml_type m_prec;
- const float scale;
- const float max_bias;
- std::string vars() override {
- return VARS_TO_STR6(type, ne, mask, m_prec, scale, max_bias);
- }
- // the 1024 test with bias occasionally fails:
- // SOFT_MAX(type=f32,ne=[1024,16,1,1],mask=1,scale=1.000000,max_bias=8.000000): [SOFT_MAX] NMSE = 0.000000103 > 0.000000100 FAIL
- virtual double max_nmse_err() override {
- return 1e-6;
- }
- test_soft_max(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 5, 4, 3},
- bool mask = false,
- ggml_type m_prec = GGML_TYPE_F32,
- float scale = 1.0f,
- float max_bias = 0.0f)
- : type(type), ne(ne), mask(mask), m_prec(m_prec), scale(scale), max_bias(max_bias) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(ctx, a);
- ggml_set_name(a, "a");
- ggml_tensor * mask = nullptr;
- if (this->mask) {
- mask = ggml_new_tensor_2d(ctx, m_prec, ne[0], ne[1]);
- ggml_set_name(mask, "mask");
- }
- ggml_tensor * out = ggml_soft_max_ext(ctx, a, mask, scale, max_bias);
- ggml_set_name(out, "out");
- return out;
- }
- bool grad_precise() override {
- return true;
- }
- };
- // GGML_OP_SOFT_MAX_BACK
- struct test_soft_max_back : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- const float scale;
- const float max_bias;
- std::string vars() override {
- return VARS_TO_STR4(type, ne, scale, max_bias);
- }
- test_soft_max_back(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 5, 4, 3},
- float scale = 1.0f,
- float max_bias = 0.0f)
- : type(type), ne(ne), scale(scale), max_bias(max_bias) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(a, "a");
- ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_soft_max_ext_back(ctx, a, b, scale, max_bias);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_ROPE + GGML_OP_ROPE_BACK
- struct test_rope : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne_a;
- int n_dims;
- int mode;
- int n_ctx; // used to generate positions
- float fs; // freq_scale
- float ef; // ext_factor
- float af; // attn_factor
- bool ff;
- int v; // view (1 : non-contiguous a)
- bool forward;
- std::string vars() override {
- // forward can be inferred from the op, does not need to be printed
- return VARS_TO_STR10(type, ne_a, n_dims, mode, n_ctx, fs, ef, af, ff, v);
- }
- test_rope(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne_a = {10, 5, 3, 1},
- int n_dims = 10, int mode = 0, int n_ctx = 512, float fs = 1.0f,
- float ef = 0.0f, float af = 0.0f, bool ff = false, int v = 0, bool forward = true)
- : type(type), ne_a(ne_a), n_dims(n_dims), mode(mode), n_ctx(n_ctx), fs(fs), ef(ef), af(af), ff(ff), v(v), forward(forward) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a;
- if (v & 1) {
- auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
- a = ggml_new_tensor(ctx, type, 4, ne.data());
- if (forward) {
- ggml_set_param(ctx, a);
- }
- ggml_set_name(a, "a");
- a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
- ggml_set_name(a, "view_of_a");
- } else {
- a = ggml_new_tensor(ctx, type, 4, ne_a.data());
- if (forward) {
- ggml_set_param(ctx, a);
- }
- ggml_set_name(a, "a");
- }
- const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
- const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
- ggml_tensor * pos;
- if (is_mrope || is_vision) {
- pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2] * 4);
- } else {
- pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2]);
- }
- ggml_set_name(pos, "pos");
- ggml_tensor * freq = nullptr;
- if (ff) {
- freq = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_dims/2);
- ggml_set_name(freq, "freq");
- }
- ggml_tensor * out;
- if (is_mrope) {
- if (is_vision) {
- GGML_ASSERT(n_dims/4 > 0);
- int rope_sections[4] = {n_dims/4, n_dims/4, 0, 0}; // Vision-RoPE only use first two dimension for image (x, y) coordinate
- if (forward) {
- out = ggml_rope_multi (ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
- } else {
- out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
- }
- } else {
- GGML_ASSERT(n_dims/3 > 0);
- int rope_sections[4] = {n_dims/3, n_dims/3, n_dims/3, 0};
- if (forward) {
- out = ggml_rope_multi (ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
- } else {
- out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
- }
- }
- } else {
- if (forward) {
- out = ggml_rope_ext (ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
- } else {
- out = ggml_rope_ext_back(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
- }
- }
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- if (t->type == GGML_TYPE_I32) {
- // pos
- const int num_pos_ids = (mode & GGML_ROPE_TYPE_MROPE) ? ne_a[2] * 4 : ne_a[2];
- std::vector<int> data(num_pos_ids);
- for (int i = 0; i < num_pos_ids; i++) {
- data[i] = rand() % n_ctx;
- }
- ggml_backend_tensor_set(t, data.data(), 0, num_pos_ids * sizeof(int));
- } else {
- if (t->ne[0] == n_dims/2) {
- // frequency factors in the range [0.9f, 1.1f]
- init_tensor_uniform(t, 0.9f, 1.1f);
- } else {
- init_tensor_uniform(t);
- }
- }
- }
- }
- double max_maa_err() override {
- return 1e-3;
- }
- bool grad_precise() override {
- return true;
- }
- };
- // GGML_OP_POOL2D
- struct test_pool2d : public test_case {
- enum ggml_op_pool pool_type;
- const ggml_type type_input;
- const std::array<int64_t, 4> ne_input;
- // kernel size
- const int k0;
- const int k1;
- // stride
- const int s0;
- const int s1;
- // padding
- const int p0;
- const int p1;
- std::string vars() override {
- return VARS_TO_STR9(pool_type, type_input, ne_input, k0, k1, s0, s1, p0, p1);
- }
- test_pool2d(ggml_op_pool pool_type = GGML_OP_POOL_AVG,
- ggml_type type_input = GGML_TYPE_F32,
- std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
- int k0 = 3, int k1 = 3,
- int s0 = 1, int s1 = 1,
- int p0 = 1, int p1 = 1)
- : pool_type(pool_type), type_input(type_input), ne_input(ne_input), k0(k0), k1(k1), s0(s0), s1(s1), p0(p0), p1(p1) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
- ggml_set_param(ctx, input);
- ggml_set_name(input, "input");
- ggml_tensor * out = ggml_pool_2d(ctx, input, pool_type, k0, k1, s0, s1, p0, p1);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_CONV_TRANSPOSE_1D
- struct test_conv_transpose_1d : public test_case {
- const std::array<int64_t, 4> ne_input;
- const std::array<int64_t, 4> ne_kernel;
- const int s0; // stride
- const int p0; // padding
- const int d0; // dilation
- std::string vars() override {
- return VARS_TO_STR5(ne_input, ne_kernel, s0, p0, d0);
- }
- test_conv_transpose_1d(std::array<int64_t, 4> ne_input = {197, 32, 1, 1}, // [input_width, input_height, input_channels, 1]
- std::array<int64_t, 4> ne_kernel = {16, 32, 32, 1}, // [kernel_width, kernel_height, input_channels, 1]
- int s0 = 1, int p0 = 0, int d0 = 1)
- : ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), p0(p0), d0(d0) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
- ggml_set_name(input, "input");
- ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
- ggml_set_name(kernel, "kernel");
- ggml_tensor * out = ggml_conv_transpose_1d(ctx, kernel, input, s0, p0, d0);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_IM2COL
- struct test_im2col : public test_case {
- const ggml_type type_input;
- const ggml_type type_kernel;
- const ggml_type dst_type;
- const std::array<int64_t, 4> ne_input;
- const std::array<int64_t, 4> ne_kernel;
- // stride
- const int s0;
- const int s1;
- // padding
- const int p0;
- const int p1;
- // dilation
- const int d0;
- const int d1;
- // mode
- const bool is_2D;
- std::string vars() override {
- return VARS_TO_STR12(type_input, type_kernel, dst_type, ne_input, ne_kernel, s0, s1, p0, p1, d0, d1, is_2D);
- }
- test_im2col(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
- std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
- int s0 = 1, int s1 = 1,
- int p0 = 1, int p1 = 1,
- int d0 = 1, int d1 = 1,
- bool is_2D = true)
- : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), p0(p0), p1(p1), d0(d0), d1(d1), is_2D(is_2D) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
- ggml_set_param(ctx, input);
- ggml_set_name(input, "input");
- ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
- ggml_set_name(kernel, "kernel");
- ggml_tensor * out = ggml_im2col(ctx, kernel, input, s0, s1, p0, p1, d0, d1, is_2D, dst_type);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_CONCAT
- struct test_concat : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne_a;
- const int64_t ne_b_d;
- const int dim;
- const int v; // view (1 << 0: non-cont a, 1 << 1: non-cont b)
- std::string vars() override {
- return VARS_TO_STR5(type, ne_a, ne_b_d, dim, v);
- }
- test_concat(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne_a = {10, 5, 5, 5},
- int64_t ne_b_d = 5,
- int dim = 2, int v = 0)
- : type(type), ne_a(ne_a), ne_b_d(ne_b_d), dim(dim), v(v) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- auto ne_b = ne_a;
- ne_b[dim] = ne_b_d;
- ggml_tensor * a;
- if (v & 1) {
- auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
- a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(a, "a");
- a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
- ggml_set_name(a, "view_of_a");
- } else {
- a = ggml_new_tensor(ctx, type, 4, ne_a.data());
- ggml_set_name(a, "a");
- }
- ggml_tensor * b;
- if (v & 2) {
- auto ne = ne_b; ne[0] *= 3; ne[1] *= 2; ne[2] *= 4;
- b = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(b, "b");
- b = ggml_view_4d(ctx, b, ne_b[0], ne_b[1], ne_b[2], ne_b[3], b->nb[1], b->nb[2], b->nb[3], 0);
- ggml_set_name(b, "view_of_b");
- } else {
- b = ggml_new_tensor(ctx, type, 4, ne_b.data());
- ggml_set_name(b, "b");
- }
- ggml_tensor * out = ggml_concat(ctx, a, b, dim);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_ARGSORT
- struct test_argsort : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- ggml_sort_order order;
- std::string vars() override {
- return VARS_TO_STR3(type, ne, order);
- }
- test_argsort(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {16, 10, 10, 10},
- ggml_sort_order order = GGML_SORT_ORDER_ASC)
- : type(type), ne(ne), order(order) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_argsort(ctx, a, order);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- std::random_device rd;
- std::default_random_engine rng(rd());
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- if (t->type == GGML_TYPE_I32) {
- // indices
- std::vector<int> data(ggml_nelements(t));
- for (int i = 0; i < ggml_nelements(t); i++) {
- data[i] = rand();
- }
- std::shuffle(data.begin(), data.end(), rng);
- ggml_backend_tensor_set(t, data.data(), 0, ne[0]*ne[1]*ne[2]*ne[3] * sizeof(int));
- } else if (t->type == GGML_TYPE_F32) {
- // initialize with unique values to avoid ties
- for (int64_t r = 0; r < ggml_nrows(t); r++) {
- std::vector<float> data(t->ne[0]);
- for (int i = 0; i < t->ne[0]; i++) {
- data[i] = i;
- }
- std::shuffle(data.begin(), data.end(), rng);
- ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
- }
- } else {
- GGML_ABORT("fatal error");
- }
- }
- }
- };
- // GGML_OP_SUM
- struct test_sum : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- test_sum(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 5, 4, 3})
- : type(type), ne(ne) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(ctx, a);
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_sum(ctx, a);
- ggml_set_name(out, "out");
- return out;
- }
- float grad_eps() override {
- return 0.1f * sqrtf(ne[0]*ne[1]*ne[2]*ne[3]);
- }
- };
- // GGML_OP_SUM_ROWS
- struct test_sum_rows : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- test_sum_rows(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 5, 4, 3})
- : type(type), ne(ne) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(ctx, a);
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_sum_rows(ctx, a);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_MEAN
- struct test_mean : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- test_mean(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 5, 4, 3})
- : type(type), ne(ne) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(ctx, a);
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_mean(ctx, a);
- ggml_set_name(out, "out");
- return out;
- }
- float grad_eps() override {
- return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
- }
- };
- // GGML_OP_UPSCALE
- struct test_upscale : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- const int32_t scale_factor;
- const bool transpose;
- std::string vars() override {
- return VARS_TO_STR4(type, ne, scale_factor, transpose);
- }
- test_upscale(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {512, 512, 3, 1},
- int32_t scale_factor = 2, bool transpose = false)
- : type(type), ne(ne), scale_factor(scale_factor), transpose(transpose) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(a, "a");
- if (transpose) {
- a = ggml_transpose(ctx, a);
- ggml_set_name(a, "a_transposed");
- }
- ggml_tensor * out = ggml_upscale(ctx, a, scale_factor);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_UPSCALE (ext)
- struct test_upscale_ext : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- const std::array<int64_t, 4> ne_tgt;
- std::string vars() override {
- return VARS_TO_STR3(type, ne, ne_tgt);
- }
- test_upscale_ext(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {2, 5, 7, 11},
- std::array<int64_t, 4> ne_tgt = {5, 7, 11, 13})
- : type(type), ne(ne), ne_tgt(ne_tgt) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_upscale_ext(ctx, a, ne_tgt[0], ne_tgt[1],ne_tgt[2], ne_tgt[3]);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_GROUP_NORM
- struct test_group_norm : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- const int32_t num_groups;
- const float eps;
- std::string vars() override {
- return VARS_TO_STR4(type, ne, num_groups, eps);
- }
- test_group_norm(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {64, 64, 320, 1},
- int32_t num_groups = 32,
- float eps = 1e-6f)
- : type(type), ne(ne), num_groups(num_groups), eps(eps) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_group_norm(ctx, a, num_groups, eps);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_ACC
- struct test_acc : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne_a;
- const std::array<int64_t, 4> ne_b;
- std::string vars() override {
- return VARS_TO_STR3(type, ne_a, ne_b);
- }
- test_acc(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne_a = {256, 17, 1, 1},
- std::array<int64_t, 4> ne_b = {256, 16, 1, 1})
- : type(type), ne_a(ne_a), ne_b(ne_b) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
- ggml_set_param(ctx, a);
- ggml_set_name(a, "a");
- ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
- ggml_set_param(ctx, b);
- ggml_set_name(b, "b");
- ggml_tensor * out = ggml_acc(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], b->nb[1]);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_PAD
- struct test_pad : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne_a;
- const int pad_0;
- const int pad_1;
- std::string vars() override {
- return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
- }
- test_pad(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne_a = {512, 512, 1, 1},
- int pad_0 = 1, int pad_1 = 1)
- : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_pad(ctx, a, pad_0, pad_1, 0, 0);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_PAD_REFLECT_1D
- struct test_pad_reflect_1d : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne_a;
- const int pad_0;
- const int pad_1;
- std::string vars() override {
- return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
- }
- test_pad_reflect_1d(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne_a = {512, 34, 2, 1},
- int pad_0 = 10, int pad_1 = 9)
- : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 2, ne_a.data());
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_pad_reflect_1d(ctx, a, pad_0, pad_1);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_ARANGE
- struct test_arange : public test_case {
- const ggml_type type;
- const float start;
- const float stop;
- const float step;
- std::string vars() override {
- return VARS_TO_STR4(type, start, stop, step);
- }
- test_arange(ggml_type type = GGML_TYPE_F32,
- float start = 0.f, float stop = 10.f, float step = 1.f)
- : type(type), start(start), stop(stop), step(step) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * out = ggml_arange(ctx, start, stop, step);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_TIMESTEP_EMBEDDING
- struct test_timestep_embedding : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne_a;
- const int dim;
- const int max_period;
- std::string vars() override {
- return VARS_TO_STR4(type, ne_a, dim, max_period);
- }
- test_timestep_embedding(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne_a = {2, 1, 1, 1},
- int dim = 320, int max_period=10000)
- : type(type), ne_a(ne_a), dim(dim), max_period(max_period) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_timestep_embedding(ctx, a, dim, max_period);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_LEAKY_RELU
- struct test_leaky_relu : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne_a;
- const float negative_slope;
- std::string vars() override {
- return VARS_TO_STR3(type, ne_a, negative_slope);
- }
- test_leaky_relu(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne_a = {10, 5, 4, 3},
- float negative_slope = 0.1f)
- : type(type), ne_a(ne_a), negative_slope(negative_slope) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_leaky_relu(ctx, a, negative_slope, true);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_FLASH_ATTN_EXT
- struct test_flash_attn_ext : public test_case {
- const int64_t hs; // head size
- const int64_t nh; // num heads
- const int64_t nr; // repeat in Q, tests for grouped-query attention
- const int64_t kv; // kv size
- const int64_t nb; // batch size
- const bool mask; // use mask
- const float max_bias; // ALiBi
- const float logit_softcap; // Gemma 2
- const ggml_type type_KV;
- std::array<int32_t, 4> permute;
- std::string vars() override {
- return VARS_TO_STR10(hs, nh, nr, kv, nb, mask, max_bias, logit_softcap, type_KV, permute);
- }
- double max_nmse_err() override {
- return 5e-4;
- }
- uint64_t op_flops(ggml_tensor * t) override {
- GGML_UNUSED(t);
- // Just counting matmul costs:
- // Q*K^T is nb x hs x kv, P*V is nb x kv x hs, per head
- return 2 * 2 * nh*nr * nb * hs * kv;
- }
- test_flash_attn_ext(int64_t hs = 128, int64_t nh = 32, int64_t nr = 1, int64_t kv = 96, int64_t nb = 8,
- bool mask = true, float max_bias = 0.0f, float logit_softcap = 0.0f, ggml_type type_KV = GGML_TYPE_F16,
- std::array<int32_t, 4> permute = {0, 1, 2, 3})
- : hs(hs), nh(nh), nr(nr), kv(kv), nb(nb), mask(mask), max_bias(max_bias), logit_softcap(logit_softcap), type_KV(type_KV), permute(permute) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- const int64_t hs_padded = GGML_PAD(hs, ggml_blck_size(type_KV));
- auto const &create_permuted = [&](ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) -> ggml_tensor * {
- int64_t ne[4] = {ne0, ne1, ne2, ne3};
- int64_t ne_perm[4];
- for (int i = 0; i < 4; ++i) {
- ne_perm[permute[i]] = ne[i];
- }
- ggml_tensor * t = ggml_new_tensor_4d(ctx, type, ne_perm[0], ne_perm[1], ne_perm[2], ne_perm[3]);
- if (permute != std::array<int32_t, 4>{0, 1, 2, 3}) {
- t = ggml_permute(ctx, t, permute[0], permute[1], permute[2], permute[3]);
- }
- return t;
- };
- ggml_tensor * q = create_permuted(GGML_TYPE_F32, hs_padded, nb, nh*nr, 1);
- ggml_set_name(q, "q");
- ggml_tensor * k = create_permuted(type_KV, hs_padded, kv, nh, 1);
- ggml_set_name(k, "k");
- ggml_tensor * v = create_permuted(type_KV, hs_padded, kv, nh, 1);
- ggml_set_name(v, "v");
- ggml_tensor * m = nullptr;
- if (mask) {
- m = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), 1, 1);
- ggml_set_name(m, "m");
- }
- ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, m, 1.0f/sqrtf(hs), max_bias, logit_softcap);
- ggml_set_name(out, "out");
- return out;
- }
- bool grad_precise() override {
- return true;
- }
- };
- // GGML_OP_CROSS_ENTROPY_LOSS
- struct test_cross_entropy_loss : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- test_cross_entropy_loss(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 5, 4, 3})
- : type(type), ne(ne) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(ctx, logits);
- ggml_set_name(logits, "logits");
- ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
- // The labels are assumed to be constant -> no gradients.
- ggml_set_name(labels, "labels");
- // Ensure labels add up to 1:
- labels = ggml_soft_max(ctx, labels);
- ggml_set_name(labels, "labels_normalized");
- ggml_tensor * out = ggml_cross_entropy_loss(ctx, logits, labels);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- // For larger abs. diffs between logits softmax is more linear, therefore more precise num. gradients.
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- init_tensor_uniform(t, -100.0f, 100.0f);
- }
- }
- float grad_eps() override {
- return 1.0f;
- }
- bool grad_precise() override {
- return true;
- }
- };
- // GGML_OP_CROSS_ENTROPY_LOSS_BACK
- struct test_cross_entropy_loss_back : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- test_cross_entropy_loss_back(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 5, 4, 3})
- : type(type), ne(ne) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * grad = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
- ggml_set_name(grad, "grad");
- ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(logits, "logits");
- ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(labels, "labels");
- // Ensure labels add up to 1:
- labels = ggml_soft_max(ctx, labels);
- ggml_set_name(labels, "labels_normalized");
- ggml_tensor * out = ggml_cross_entropy_loss_back(ctx, grad, logits, labels);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_OPT_STEP_ADAMW
- struct test_opt_step_adamw : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- test_opt_step_adamw(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 5, 4, 3})
- : type(type), ne(ne) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
- ggml_set_param(ctx, a); // Despite tensor a having gradients the output tensor will not.
- ggml_set_name(a, "a");
- ggml_tensor * grad = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
- ggml_set_name(grad, "grad");
- ggml_tensor * grad_m = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
- ggml_set_name(grad_m, "grad_m");
- ggml_tensor * grad_v = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
- ggml_set_name(grad_v, "grad_v");
- ggml_tensor * adamw_params = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 7);
- ggml_set_name(adamw_params, "adamw_params");
- ggml_tensor * out = ggml_opt_step_adamw(ctx, a, grad, grad_m, grad_v, adamw_params);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- init_tensor_uniform(t, 0.0f, 1.0f); // grad_v and adamw_params need non-negative values.
- }
- }
- bool grad_precise() override {
- return true;
- }
- };
- enum llm_norm_type {
- LLM_NORM,
- LLM_NORM_RMS,
- };
- struct llama_hparams {
- uint32_t n_vocab;
- uint32_t n_embd;
- uint32_t n_head;
- uint32_t n_head_kv;
- static constexpr uint32_t n_layer = 1;
- uint32_t n_rot;
- uint32_t n_embd_head; // dimension of values (d_v)
- uint32_t n_ff;
- float f_norm_eps;
- float f_norm_rms_eps;
- // cparams
- static constexpr uint32_t n_ctx = 512; // user-specified context size
- static constexpr uint32_t n_ctx_orig = n_ctx;
- // batch
- int32_t n_tokens;
- // llm_build_context
- static constexpr int32_t n_kv = 32; // size of KV cache to consider (n_kv <= n_ctx
- static constexpr int32_t kv_head = 1; // index of where we store new KV data in the cache
- uint32_t n_embd_gqa() const { // dimension of key embeddings across all k-v heads
- return n_embd_head * n_head_kv;
- }
- };
- // LLM base class
- struct test_llm : public test_case {
- llama_hparams hp;
- protected:
- test_llm(llama_hparams hp)
- : hp(std::move(hp)) {
- }
- public:
- struct ggml_tensor * llm_build_norm(
- struct ggml_context * ctx,
- struct ggml_tensor * cur,
- struct ggml_tensor * mw,
- struct ggml_tensor * mb,
- llm_norm_type type) {
- switch (type) {
- case LLM_NORM: cur = ggml_norm (ctx, cur, hp.f_norm_eps); break;
- case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hp.f_norm_rms_eps); break;
- }
- cur = ggml_mul(ctx, cur, mw);
- if (mb) {
- cur = ggml_add(ctx, cur, mb);
- }
- return cur;
- }
- void llm_build_kv_store(
- struct ggml_context * ctx,
- struct ggml_tensor * k_l,
- struct ggml_tensor * v_l,
- struct ggml_tensor * k_cur,
- struct ggml_tensor * v_cur) {
- // compute the transposed [n_tokens, n_embd] V matrix
- struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, hp.n_embd_gqa(), hp.n_tokens));
- struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, k_l, hp.n_tokens*hp.n_embd_gqa(),
- (ggml_row_size(k_l->type, hp.n_embd_gqa()))*hp.kv_head);
- struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, v_l, hp.n_tokens, hp.n_embd_gqa(),
- ( hp.n_ctx)*ggml_element_size(v_l),
- (hp.kv_head)*ggml_element_size(v_l));
- // important: storing RoPE-ed version of K in the KV cache!
- ggml_cpy(ctx, k_cur, k_cache_view);
- ggml_cpy(ctx, v_cur_t, v_cache_view);
- }
- struct ggml_tensor * llm_build_kqv(
- struct ggml_context * ctx,
- struct ggml_tensor * k_l,
- struct ggml_tensor * v_l,
- struct ggml_tensor * q_cur,
- struct ggml_tensor * kq_mask,
- float kq_scale) {
- struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
- struct ggml_tensor * k =
- ggml_view_3d(ctx, k_l,
- hp.n_embd_head, hp.n_kv, hp.n_head_kv,
- ggml_row_size(k_l->type, hp.n_embd_gqa()),
- ggml_row_size(k_l->type, hp.n_embd_head),
- 0);
- struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
- kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, 0.0f);
- // split cached v into n_head heads
- struct ggml_tensor * v =
- ggml_view_3d(ctx, v_l,
- hp.n_kv, hp.n_embd_head, hp.n_head_kv,
- ggml_element_size(v_l)*hp.n_ctx,
- ggml_element_size(v_l)*hp.n_ctx*hp.n_embd_head,
- 0);
- struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
- struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
- struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, hp.n_embd_head*hp.n_head, hp.n_tokens);
- struct ggml_tensor * wo = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
- cur = ggml_mul_mat(ctx, wo, cur);
- return cur;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- if (t->type == GGML_TYPE_I32) {
- // pos
- std::vector<int> data(hp.n_tokens);
- for (int i = 0; i < hp.n_tokens; i++) {
- data[i] = rand() % hp.n_ctx;
- }
- ggml_backend_tensor_set(t, data.data(), 0, hp.n_tokens * sizeof(int));
- } else {
- init_tensor_uniform(t);
- }
- }
- }
- };
- // Llama
- struct test_llama : public test_llm {
- static constexpr float freq_base = 10000.0f;
- static constexpr float freq_scale = 1.0f;
- static constexpr float ext_factor = 0.0f;
- static constexpr float attn_factor = 1.0f;
- static constexpr float beta_fast = 32.0f;
- static constexpr float beta_slow = 1.0f;
- std::string op_desc(ggml_tensor * t) override {
- GGML_UNUSED(t);
- return "LLAMA";
- }
- std::string vars() override {
- auto n_tokens = hp.n_tokens;
- return VARS_TO_STR1(n_tokens);
- }
- double max_nmse_err() override {
- return 2e-3;
- }
- test_llama(int n_tokens = 1)
- : test_llm({
- /*n_vocab =*/ 32000,
- /*n_embd =*/ 3200,
- /*n_head =*/ 32,
- /*n_head_kv =*/ 32,
- /*n_rot =*/ 100,
- /*n_embd_head =*/ 100,
- /*n_ff =*/ 8640,
- /*f_norm_eps =*/ 0.f,
- /*f_norm_rms_eps =*/ 1e-5f,
- /*n_tokens =*/ n_tokens,
- }) {
- }
- ggml_tensor * build_graph(ggml_context * ctx) override {
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
- ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
- ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
- for (uint32_t il = 0; il < hp.n_layer; ++il) {
- struct ggml_tensor * inpSA = inpL;
- // norm
- ggml_tensor * attn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
- cur = llm_build_norm(ctx, inpL, attn_norm, nullptr, LLM_NORM_RMS);
- // self-attention
- {
- ggml_tensor * wq = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
- ggml_tensor * wk = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
- ggml_tensor * wv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
- // compute Q and K and RoPE them
- struct ggml_tensor * Qcur = ggml_mul_mat(ctx, wq, cur);
- struct ggml_tensor * Kcur = ggml_mul_mat(ctx, wk, cur);
- struct ggml_tensor * Vcur = ggml_mul_mat(ctx, wv, cur);
- Qcur = ggml_rope_ext(
- ctx, ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens), inp_pos, nullptr,
- hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx, ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens), inp_pos, nullptr,
- hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
- cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
- }
- struct ggml_tensor * ffn_inp = ggml_add(ctx, cur, inpSA);
- // feed-forward network
- ggml_tensor * ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
- cur = llm_build_norm(ctx, ffn_inp, ffn_norm, nullptr, LLM_NORM_RMS);
- ggml_tensor * ffn_gate = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
- ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
- ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
- struct ggml_tensor * tmp = ggml_mul_mat(ctx, ffn_up, cur);
- cur = ggml_mul_mat(ctx, ffn_gate, cur);
- cur = ggml_silu(ctx, cur);
- cur = ggml_mul(ctx, cur, tmp);
- cur = ggml_mul_mat(ctx, ffn_down, cur);
- cur = ggml_add(ctx, cur, ffn_inp);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
- cur = llm_build_norm(ctx, cur, output_norm, nullptr, LLM_NORM_RMS);
- // lm_head
- ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_vocab);
- cur = ggml_mul_mat(ctx, output, cur);
- return cur;
- }
- };
- // Falcon
- struct test_falcon : public test_llm {
- static constexpr float freq_base = 10000.0f;
- static constexpr float freq_scale = 1.0f;
- static constexpr float ext_factor = 0.0f;
- static constexpr float attn_factor = 1.0f;
- static constexpr float beta_fast = 32.0f;
- static constexpr float beta_slow = 1.0f;
- std::string op_desc(ggml_tensor * t) override {
- GGML_UNUSED(t);
- return "FALCON";
- }
- std::string vars() override {
- auto n_tokens = hp.n_tokens;
- return VARS_TO_STR1(n_tokens);
- }
- double max_nmse_err() override {
- return 2e-3;
- }
- test_falcon(int n_tokens = 1)
- : test_llm({
- /*n_vocab =*/ 32000,
- /*n_embd =*/ 3200,
- /*n_head =*/ 50,
- /*n_head_kv =*/ 1,
- /*n_rot =*/ 64,
- /*n_embd_head =*/ 64,
- /*n_ff =*/ 8640,
- /*f_norm_eps =*/ 1e-5f,
- /*f_norm_rms_eps =*/ 0.f,
- /*n_tokens =*/ n_tokens,
- }) {
- }
- ggml_tensor * build_graph(ggml_context * ctx) override {
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
- ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
- ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
- for (uint32_t il = 0; il < hp.n_layer; ++il) {
- // norm
- ggml_tensor * attn_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
- ggml_tensor * attn_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
- ggml_tensor * attn_norm = llm_build_norm(ctx, inpL, attn_norm_w, attn_norm_b, LLM_NORM);
- // self-attention
- {
- cur = attn_norm;
- ggml_tensor * wqkv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd + 2*hp.n_embd_gqa());
- cur = ggml_mul_mat(ctx, wqkv, cur);
- struct ggml_tensor * Qcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd, hp.n_tokens, cur->nb[1], 0*sizeof(float)*(hp.n_embd)));
- struct ggml_tensor * Kcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd)));
- struct ggml_tensor * Vcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd + hp.n_embd_gqa())));
- Qcur = ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens);
- Kcur = ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens);
- // using mode = 2 for neox mode
- Qcur = ggml_rope_ext(
- ctx, Qcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
- freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx, Kcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
- freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
- );
- llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
- cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
- }
- struct ggml_tensor * ffn_inp = cur;
- // feed forward
- {
- ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
- ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
- cur = attn_norm;
- cur = ggml_mul_mat(ctx, ffn_up, cur);
- cur = ggml_gelu(ctx, cur);
- cur = ggml_mul_mat(ctx, ffn_down, cur);
- }
- cur = ggml_add(ctx, cur, ffn_inp);
- cur = ggml_add(ctx, cur, inpL);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
- ggml_tensor * output_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
- cur = llm_build_norm(ctx, cur, output_norm, output_norm_b, LLM_NORM);
- // lm_head
- ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q8_0, hp.n_embd, hp.n_vocab);
- cur = ggml_mul_mat(ctx, output, cur);
- return cur;
- }
- };
- // ###########################################
- // ## Section 3: GGML Op Test Instantiation ##
- // ###########################################
- static const ggml_type all_types[] = {
- GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16,
- GGML_TYPE_Q4_0, GGML_TYPE_Q4_1,
- GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
- GGML_TYPE_Q8_0,
- GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
- GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
- GGML_TYPE_Q6_K,
- // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
- GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
- GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
- GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
- };
- static const ggml_type base_types[] = {
- GGML_TYPE_F32, GGML_TYPE_F16,
- GGML_TYPE_Q8_0, // for I8MM tests
- GGML_TYPE_Q4_0,
- GGML_TYPE_Q4_1, // for I8MM tests
- GGML_TYPE_Q4_K,
- GGML_TYPE_IQ2_XXS
- };
- static const ggml_type other_types[] = {
- GGML_TYPE_Q4_1,
- GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
- GGML_TYPE_Q8_0,
- GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
- GGML_TYPE_Q5_K,
- GGML_TYPE_Q6_K,
- // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
- GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
- GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
- GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
- GGML_TYPE_BF16,
- };
- // Test cases for evaluation: should try to cover edge cases while using small input sizes to keep the runtime low
- static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
- std::vector<std::unique_ptr<test_case>> test_cases;
- std::default_random_engine rng(0);
- // unary ops
- for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
- for (int v : {0, 1}) {
- for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) {
- test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 128, 2, 2, 2 }, v));
- test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 5, 7, 11, 13 }, v));
- }
- }
- }
- test_cases.emplace_back(new test_get_rows(GGML_TYPE_F32, 1, 8, 2, 1, false));
- for (ggml_type type : all_types) {
- for (int b : {1, 7}) {
- for (bool v : {false, true}) {
- test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, b, v));
- }
- }
- }
- for (int b : {1, 7}) {
- for (bool v : {false, true}) {
- test_cases.emplace_back(new test_get_rows(GGML_TYPE_I32, 256, 5, 4, b, v));
- }
- }
- test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_F32, 1, 8, 2, 1, false));
- for (ggml_type type : all_types) {
- for (bool v : {false, true}) {
- test_cases.emplace_back(new test_get_rows_back(type, 256, 5, 4, 1, v));
- }
- }
- for (bool v : {false, true}) {
- test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_I32, 256, 5, 4, 1, v));
- }
- for (ggml_type type_input : {GGML_TYPE_F32}) {
- for (ggml_op_pool pool_type : {GGML_OP_POOL_AVG, GGML_OP_POOL_MAX}) {
- for (int k0 : {1, 3}) {
- for (int k1 : {1, 3}) {
- for (int s0 : {1, 2}) {
- for (int s1 : {1, 2}) {
- for (int p0 : {0, 1}) {
- for (int p1 : {0, 1}) {
- test_cases.emplace_back(new test_pool2d(pool_type, type_input, {10, 10, 3, 1}, k0, k1, s0, s1, p0, p1));
- }
- }
- }
- }
- }
- }
- }
- }
- // im2col 1D
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
- for (int s0 : {1, 3}) {
- for (int p0 : {0, 3}) {
- for (int d0 : {1, 3}) {
- test_cases.emplace_back(new test_im2col(
- GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 2, 2, 1}, {3, 2, 2, 1},
- s0, 0, p0, 0, d0, 0, false));
- }
- }
- }
- // im2col 2D
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32));
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
- for (int s0 : {1, 3}) {
- for (int s1 : {1, 3}) {
- for (int p0 : {0, 3}) {
- for (int p1 : {0, 3}) {
- for (int d0 : {1, 3}) {
- for (int d1 : {1, 3}) {
- test_cases.emplace_back(new test_im2col(
- GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 20, 2, 2}, {3, 3, 2, 2},
- s0, s1, p0, p1, d0, d1, true));
- }
- }
- }
- }
- }
- }
- // extra tests for im2col 2D
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 32}, {3, 3, 1, 32}, 1, 1, 1, 1, 1, 1, true));
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 32}, {3, 3, 2, 32}, 1, 1, 1, 1, 1, 1, true));
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 1024}, {3, 3, 1, 1024}, 1, 1, 1, 1, 1, 1, true));
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 1024}, {3, 3, 2, 1024}, 1, 1, 1, 1, 1, 1, true));
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2048}, {3, 3, 1, 2048}, 1, 1, 1, 1, 1, 1, true));
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2048}, {3, 3, 2, 2048}, 1, 1, 1, 1, 1, 1, true));
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2560}, {3, 3, 1, 2560}, 1, 1, 1, 1, 1, 1, true));
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2560}, {3, 3, 2, 2560}, 1, 1, 1, 1, 1, 1, true));
- // sycl backend will limit task global_range < MAX_INT
- // test cases for 2D im2col with large input W and H (occurs in stable-diffusion)
- // however these cases need to alloc more memory which may fail in some devices (Intel Arc770, etc.)
- // these cases are verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
- // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
- // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
- test_cases.emplace_back(new test_conv_transpose_1d());
- test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 3, 0, 1));
- test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 2, 0, 1));
- test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 1, 0, 1));
- test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 2, 0, 1));
- test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 1, 0, 1));
- test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,1,2,1}, 1, 0, 1));
- test_cases.emplace_back(new test_conv_transpose_1d({2,1,1,1}, {3,1,1,1}, 1, 0, 1));
- test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 500, 1, 1}));
- test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 5000, 1, 1}));
- test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 1, 1, 1}));
- test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {100, 10, 1, 1}));
- test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
- test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 12, 1, 1}));
- test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {2000, 10, 1, 1}));
- test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {5438, 3, 1, 1}));
- for (int ne3 : {1, 3}) { // CUDA backward pass only supports ne3 == 1
- test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 1}));
- test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
- test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 2, 1, 1}));
- test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 2, 1}));
- test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 2}));
- test_cases.emplace_back(new test_repeat(GGML_TYPE_I32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
- test_cases.emplace_back(new test_repeat(GGML_TYPE_I16, {10, 5, 4, ne3}, {1, 1, 1, 2}));
- }
- for (bool view : {false, true}) {
- test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 1}, view));
- test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {2, 1, 1, 1}, view));
- test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 2, 1, 1}, view));
- test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 2, 1}, view));
- test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 2}, view));
- }
- test_cases.emplace_back(new test_dup(GGML_TYPE_F32));
- test_cases.emplace_back(new test_dup(GGML_TYPE_F16));
- test_cases.emplace_back(new test_dup(GGML_TYPE_I32));
- test_cases.emplace_back(new test_dup(GGML_TYPE_I16));
- test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {0, 2, 1, 3}));
- test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {0, 2, 1, 3})); // dup by rows
- test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {1, 0, 2, 3}));
- test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {1, 0, 2, 3})); // dup dst not-contiguous
- test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {0, 2, 1, 3}));
- test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {1, 2, 0, 3}));
- for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
- test_cases.emplace_back(new test_set(GGML_TYPE_F32, GGML_TYPE_F32, {6, 5, 4, 3}, dim));
- }
- for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
- test_cases.emplace_back(new test_set(GGML_TYPE_I32, GGML_TYPE_I32, {6, 5, 4, 3}, dim));
- }
- for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
- for (ggml_type type_dst : all_types) {
- test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
- test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
- }
- }
- for (ggml_type type_dst : {GGML_TYPE_F32}) {
- for (ggml_type type_src : all_types) {
- test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
- test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
- }
- }
- for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
- for (ggml_type type_dst : {GGML_TYPE_F16, GGML_TYPE_F32}) {
- test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {1, 0, 2, 3})); // cpy not-contiguous
- }
- }
- test_cases.emplace_back(new test_cont());
- test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 1 ,1}));
- test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 3 ,5}));
- test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 3, 5 ,7}));
- test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 1 ,1}));
- test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 3 ,5}));
- test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 3, 5 ,7}));
- test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 1 ,1}));
- test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 3 ,5}));
- test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 3, 5 ,7}));
- auto add_test_bin_bcast = [&](ggml_type type, std::array<int64_t, 4> ne, std::array<int, 4> nr) {
- for (auto op : {ggml_add, ggml_sub, ggml_mul, ggml_div}) {
- test_cases.emplace_back(new test_bin_bcast(op, type, ne, nr));
- }
- };
- for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
- add_test_bin_bcast(type, {1, 1, 8, 1}, {1, 1, 1, 1});
- add_test_bin_bcast(type, {1, 1, 1, 1}, {32, 1, 1, 1});
- add_test_bin_bcast(type, {1, 1, 320, 320}, {1, 1, 1, 1});
- add_test_bin_bcast(type, {10, 5, 1, 1}, {1, 1, 1, 1});
- add_test_bin_bcast(type, {10, 5, 4, 1}, {1, 1, 1, 1});
- add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 1});
- add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 1, 1, 1});
- add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 1, 1});
- add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 1});
- add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 2});
- add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 2});
- add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 2, 2});
- add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 2, 2, 2});
- // stable diffusion
- add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 1, 1, 1});
- add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 16, 16, 1});
- add_test_bin_bcast(type, {1280, 16, 16, 1}, {1, 1, 1, 1});
- add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 256, 1, 1});
- add_test_bin_bcast(type, {1, 1, 1280, 1}, {16, 16, 1, 1});
- add_test_bin_bcast(type, {16, 16, 1280, 1}, {1, 1, 1, 1});
- add_test_bin_bcast(type, {1, 1, 1920, 1}, {16, 16, 1, 1});
- add_test_bin_bcast(type, {1, 1, 2560, 1}, {16, 16, 1, 1});
- add_test_bin_bcast(type, {1, 1, 1280, 1}, {32, 32, 1, 1});
- add_test_bin_bcast(type, {1, 1, 1920, 1}, {32, 32, 1, 1});
- add_test_bin_bcast(type, {1, 1, 640, 1}, {32, 32, 1, 1});
- add_test_bin_bcast(type, {5120, 1, 1, 1}, {1, 256, 1, 1});
- add_test_bin_bcast(type, {640, 1, 1, 1}, {1, 1, 1, 1});
- //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {1, 1, 1, 1});
- //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {2, 1, 1, 1});
- }
- test_cases.emplace_back(new test_add1());
- test_cases.emplace_back(new test_scale());
- for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
- test_cases.emplace_back(new test_silu_back());
- }
- for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f}) {
- for (bool v : {false, true}) {
- test_cases.emplace_back(new test_norm (GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
- test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
- }
- test_cases.emplace_back(new test_rms_norm_back(GGML_TYPE_F32, {64, 5, 4, 3}, eps));
- }
- test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, 1536, 1, 1}, {4, 1536, 1, 1}));
- test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {8, 1536, 1, 1}, {4, 1536, 1, 1}));
- test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, 1536, 4, 1}, {4, 1536, 1, 1}));
- test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 16, 1024, 32, 4));
- test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 1, 1));
- test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 1));
- test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 4));
- test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 128, 4));
- test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 1, 1));
- test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 1));
- test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 4));
- test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 128, 4));
- for (ggml_type type_a : all_types) {
- for (int i = 1; i < 10; ++i) {
- test_cases.emplace_back(new test_mul_mat(type_a, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
- }
- }
- #if 1
- for (ggml_type type_a : base_types) {
- for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
- // test cases without permutation
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {2, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 2}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 1}, {1, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 1}, {2, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 2}, {1, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 2}, {2, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 2}, {1, 2}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 2}, {2, 2}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {1, 1}, {1, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {1, 1}, {2, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {1, 1}, {1, 2}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 1}, {1, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 1}, {2, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 2}, {1, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 2}, {2, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 2}, {1, 2}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 2}, {2, 2}));
- // test cases with permutation
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {2, 3}, {1, 1}, {0, 2, 1, 3}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {2, 3}, {1, 1}, {0, 1, 3, 2}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {2, 3}, {1, 1}, {0, 3, 2, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, {2, 3}, {1, 1}, {0, 2, 1, 3}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, {2, 3}, {1, 1}, {0, 1, 3, 2}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, {2, 3}, {1, 1}, {0, 3, 2, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {2, 3}, {1, 1}, {0, 2, 1, 3}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {2, 3}, {1, 1}, {0, 1, 3, 2}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {2, 3}, {1, 1}, {0, 3, 2, 1}));
- }
- }
- for (ggml_type type_a : other_types) {
- for (ggml_type type_b : {GGML_TYPE_F32}) {
- if (ggml_blck_size(type_a) != 256) {
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, ggml_blck_size(type_a), {1, 1}, {1, 1}));
- }
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 1}));
- }
- }
- #else
- // m = a rows
- // n = b rows
- // k = cols
- std::uniform_int_distribution<> dist_m(1, 128);
- std::uniform_int_distribution<> dist_n(16, 128);
- std::uniform_int_distribution<> dist_k(1, 16);
- for (int i = 0; i < 1000; i++) {
- for (ggml_type type_a : all_types) {
- for (ggml_type type_b : {GGML_TYPE_F32}) {
- int m = dist_m(rng);
- int n = dist_n(rng);
- int k = dist_k(rng) * ggml_blck_size(type_a);
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, m, n, k, { 1, 1}, {1, 1}));
- }
- }
- }
- #endif
- test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 128, { 8, 1}, {1, 1}));
- test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 128, { 8, 1}, {4, 1}));
- test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 64, { 8, 1}, {4, 1}));
- test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 64, { 8, 1}, {4, 1}));
- test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 45, 128, { 8, 1}, {4, 1}));
- test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 45, 64, { 8, 1}, {4, 1}));
- // sycl backend will limit task global_range < MAX_INT
- // test case for f16-type-convert-to-fp32 kernel with large k under fp32 compute dtype (occurs in stable-diffusion)
- // however this case needs to alloc more memory which may fail in some devices (Intel Arc770, etc.)
- // this case is verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
- // test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 512, 262144, 9216, {1, 1}, {1, 1}));
- for (ggml_type type_a : base_types) {
- for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
- for (int n_mats : {4, 8}) {
- for (int n_used : {1, 2, 4}) {
- for (bool b : {false, true}) {
- for (int n : {1, 32}) {
- int m = 512;
- int k = 256;
- test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
- }
- }
- }
- }
- }
- }
- for (ggml_type type_a : other_types) {
- for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
- for (int n_mats : {4}) {
- for (int n_used : {2}) {
- for (bool b : {false}) {
- for (int n : {1, 32}) {
- int m = 512;
- int k = 256;
- test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
- }
- }
- }
- }
- }
- }
- for (ggml_type type_a : base_types) {
- for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
- for (int n : {1, 16}) {
- for (int k : {1, 16}) {
- for (int bs2 : {1, 3}) {
- for (int bs3 : {1, 3}) {
- for (int nr2 : {1, 2}) {
- for (int nr3 : {1, 2}) {
- test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, n, k, {bs2, bs3}, {nr2, nr3}));
- }
- }
- }
- }
- }
- }
- }
- }
- for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
- test_cases.emplace_back(new test_sqr(type));
- test_cases.emplace_back(new test_sqrt(type));
- test_cases.emplace_back(new test_log(type));
- test_cases.emplace_back(new test_sin(type));
- test_cases.emplace_back(new test_cos(type));
- test_cases.emplace_back(new test_clamp(type));
- }
- test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 1, 1}, 5));
- test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 1}, 5));
- test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 2}, 5));
- #if 0
- std::uniform_int_distribution<> dist_ne1(1, 50);
- int exponent = 1;
- while (exponent < (1 << 17)) {
- std::uniform_int_distribution<> dist_ne0(exponent, 2*exponent);
- for (int n = 0; n < 10; ++n) {
- int64_t ne0 = dist_ne0(rng);
- int64_t ne1 = dist_ne1(rng);
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, GGML_TYPE_F32, {ne0, ne1, 1, 1}, n/2 == 0, 0.1f, ne0 < 1000 ? 4.0f : 0.0f));
- }
- exponent <<= 1;
- }
- #endif
- for (bool mask : {false, true}) {
- for (float max_bias : {0.0f, 8.0f}) {
- if (!mask && max_bias > 0.0f) continue;
- for (float scale : {1.0f, 0.1f}) {
- for (int64_t ne0 : {16, 1024}) {
- for (int64_t ne1 : {16, 1024}) {
- if (mask) {
- for (ggml_type m_prec : {GGML_TYPE_F32, GGML_TYPE_F16}) {
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, m_prec, scale, max_bias));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, m_prec, scale, max_bias));
- }
- } else {
- /* The precision of mask here doesn't matter as boolean mask is false */
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, GGML_TYPE_F32, scale, max_bias));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, GGML_TYPE_F32, scale, max_bias));
- }
- }
- }
- }
- }
- }
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, GGML_TYPE_F32, 0.1f, 0.0f));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, GGML_TYPE_F16, 0.1f, 0.0f));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, GGML_TYPE_F32, 0.1f, 0.0f));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F32, 0.1f, 0.0f));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F16, 0.1f, 0.0f));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F32, 0.1f, 8.0f));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F16, 0.1f, 8.0f));
- for (float max_bias : {0.0f, 8.0f}) {
- for (float scale : {1.0f, 0.1f}) {
- for (int64_t ne0 : {16, 1024}) {
- for (int64_t ne1 : {16, 1024}) {
- test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0, ne1, 1, 1}, scale, max_bias));
- test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, scale, max_bias));
- }
- }
- }
- }
- for (bool fw : {true, false}) { // fw == forward
- bool all = true;
- for (float v : { 0, 1 }) {
- for (float fs : { 1.0f, 1.4245f }) {
- for (float ef : { 0.0f, 0.7465f }) {
- for (float af : { 1.0f, 1.4245f }) {
- for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
- for (bool ff : {false, true}) { // freq_factors
- test_cases.emplace_back(new test_rope(type, {128, 32, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 7B
- if (all) {
- test_cases.emplace_back(new test_rope(type, {128, 40, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 13B
- test_cases.emplace_back(new test_rope(type, {128, 52, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 30B
- test_cases.emplace_back(new test_rope(type, {128, 64, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 65B
- }
- if (all) {
- test_cases.emplace_back(new test_rope(type, { 64, 1, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
- test_cases.emplace_back(new test_rope(type, { 64, 71, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
- test_cases.emplace_back(new test_rope(type, { 64, 8, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
- test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 20, 2, 512, fs, ef, af, ff, v, fw)); // neox (stablelm)
- test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 32, 2, 512, fs, ef, af, ff, v, fw)); // neox (phi-2)
- }
- if (all) {
- test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 2B)
- test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 7B)
- test_cases.emplace_back(new test_rope(type, { 80, 16, 2, 1}, 80, GGML_ROPE_TYPE_VISION, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl ViT)
- }
- test_cases.emplace_back(new test_rope(type, { 64, 128, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
- }
- }
- all = false;
- }
- }
- }
- }
- }
- for (int v : { 0, 1, 2, 3 }) {
- for (int dim : { 0, 1, 2, 3, }) {
- test_cases.emplace_back(new test_concat(GGML_TYPE_F32, {11, 12, 13, 14}, 7, dim, v));
- test_cases.emplace_back(new test_concat(GGML_TYPE_I32, {11, 12, 13, 14}, 7, dim, v));
- }
- }
- for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) {
- test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order));
- test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order));
- test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {60, 10, 10, 10}, order)); // qwen
- }
- test_cases.emplace_back(new test_sum());
- test_cases.emplace_back(new test_sum_rows());
- test_cases.emplace_back(new test_mean());
- test_cases.emplace_back(new test_upscale());
- test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, { 512, 512, 3, 1 }, 2, true));
- test_cases.emplace_back(new test_upscale_ext());
- test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {64, 64, 320, 1}));
- test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {9, 9, 1280, 1}));
- test_cases.emplace_back(new test_acc());
- test_cases.emplace_back(new test_pad());
- test_cases.emplace_back(new test_pad_reflect_1d());
- test_cases.emplace_back(new test_arange());
- test_cases.emplace_back(new test_timestep_embedding());
- test_cases.emplace_back(new test_leaky_relu());
- for (int hs : { 64, 80, 128, 256, }) {
- for (bool mask : { true, false } ) {
- for (float max_bias : { 0.0f, 8.0f }) {
- if (!mask && max_bias > 0.0f) continue;
- for (float logit_softcap : {0.0f, 10.0f}) {
- if (hs != 128 && logit_softcap != 0.0f) continue;
- for (int nh : { 4, }) {
- for (int nr : { 1, 4, 16 }) {
- if (nr == 16 && hs != 128) continue;
- for (int kv : { 512, 1024, }) {
- if (nr != 1 && kv != 512) continue;
- for (int nb : { 1, 3, 32, 35, }) {
- for (ggml_type type_KV : {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) {
- test_cases.emplace_back(new test_flash_attn_ext(hs, nh, nr, kv, nb, mask, max_bias, logit_softcap, type_KV));
- // run fewer test cases permuted
- if (mask == true && max_bias == 0.0f && logit_softcap == 0 && kv == 512) {
- test_cases.emplace_back(new test_flash_attn_ext(hs, nh, nr, kv, nb, mask, max_bias, logit_softcap, type_KV, {0, 2, 1, 3}));
- }
- }
- }
- }
- }
- }
- }
- }
- }
- }
- test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, { 10, 5, 4, 3}));
- test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, {30000, 1, 1, 1}));
- test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, { 10, 5, 4, 3}));
- test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, {30000, 1, 1, 1}));
- test_cases.emplace_back(new test_opt_step_adamw(GGML_TYPE_F32, {10, 5, 4, 3}));
- // these tests are disabled to save execution time, but they can be handy for debugging
- #if 0
- test_cases.emplace_back(new test_llama(1));
- test_cases.emplace_back(new test_llama(2));
- test_cases.emplace_back(new test_falcon(1));
- test_cases.emplace_back(new test_falcon(2));
- #endif
- return test_cases;
- }
- // Test cases for performance evaluation: should be representative of real-world use cases
- static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
- std::vector<std::unique_ptr<test_case>> test_cases;
- test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 1, 1, 1}));
- test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 512, 1, 1}));
- test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F16, {512, 3072, 1, 1}));
- test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {8192, 512, 2, 1}, {0, 2, 1, 3}));
- test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {3072, 512, 2, 1}, {0, 2, 1, 3}));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {4096, 4096, 5, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 4096, 5, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {1024, 1024, 10, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 1024, 10, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {256, 256, 20, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {64, 64, 20, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 64, 20, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
- test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 10, 1, 1}));
- test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
- test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32000, 512, 1, 1}));
- for (int bs : {1, 2, 3, 4, 5, 8, 512}) {
- for (ggml_type type_a : all_types) {
- for (ggml_type type_b : {GGML_TYPE_F32}) {
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 4096, bs, 14336, {1, 1}, {1, 1}));
- }
- }
- }
- for (int K : {3, 5}) {
- for (int IC : {256, 2560}) {
- for (int IW_IH : {32, 64, 256}) {
- if (IC == 2560 && IW_IH == 256) {
- // too big
- continue;
- }
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {IW_IH, IW_IH, IC, 1}, {K, K, IC, 1}, 1, 1, 1, 1, 1, 1, true));
- }
- }
- }
- return test_cases;
- }
- static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_name, const char * params_filter) {
- auto filter_test_cases = [](std::vector<std::unique_ptr<test_case>> & test_cases, const char * params_filter) {
- if (params_filter == nullptr) {
- return;
- }
- std::regex params_filter_regex(params_filter);
- for (auto it = test_cases.begin(); it != test_cases.end();) {
- if (!std::regex_search((*it)->vars(), params_filter_regex)) {
- it = test_cases.erase(it);
- continue;
- }
- it++;
- }
- };
- if (mode == MODE_TEST) {
- auto test_cases = make_test_cases_eval();
- filter_test_cases(test_cases, params_filter);
- ggml_backend_t backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, NULL);
- if (backend_cpu == NULL) {
- printf(" Failed to initialize CPU backend\n");
- return false;
- }
- size_t n_ok = 0;
- for (auto & test : test_cases) {
- if (test->eval(backend, backend_cpu, op_name)) {
- n_ok++;
- }
- }
- printf(" %zu/%zu tests passed\n", n_ok, test_cases.size());
- ggml_backend_free(backend_cpu);
- return n_ok == test_cases.size();
- }
- if (mode == MODE_GRAD) {
- auto test_cases = make_test_cases_eval();
- filter_test_cases(test_cases, params_filter);
- size_t n_ok = 0;
- for (auto & test : test_cases) {
- if (test->eval_grad(backend, op_name)) {
- n_ok++;
- }
- }
- printf(" %zu/%zu tests passed\n", n_ok, test_cases.size());
- return n_ok == test_cases.size();
- }
- if (mode == MODE_PERF) {
- auto test_cases = make_test_cases_perf();
- filter_test_cases(test_cases, params_filter);
- for (auto & test : test_cases) {
- test->eval_perf(backend, op_name);
- }
- return true;
- }
- GGML_ABORT("fatal error");
- }
- static void usage(char ** argv) {
- printf("Usage: %s [mode] [-o <op>] [-b <backend>] [-p <params regex>]\n", argv[0]);
- printf(" valid modes:\n");
- printf(" - test (default, compare with CPU backend for correctness)\n");
- printf(" - grad (compare gradients from backpropagation with method of finite differences)\n");
- printf(" - perf (performance evaluation)\n");
- printf(" op names for -o are as given by ggml_op_desc() (e.g. ADD, MUL_MAT, etc)\n");
- }
- int main(int argc, char ** argv) {
- test_mode mode = MODE_TEST;
- const char * op_name_filter = nullptr;
- const char * backend_filter = nullptr;
- const char * params_filter = nullptr;
- for (int i = 1; i < argc; i++) {
- if (strcmp(argv[i], "test") == 0) {
- mode = MODE_TEST;
- } else if (strcmp(argv[i], "perf") == 0) {
- mode = MODE_PERF;
- } else if (strcmp(argv[i], "grad") == 0) {
- mode = MODE_GRAD;
- } else if (strcmp(argv[i], "-o") == 0) {
- if (i + 1 < argc) {
- op_name_filter = argv[++i];
- } else {
- usage(argv);
- return 1;
- }
- } else if (strcmp(argv[i], "-b") == 0) {
- if (i + 1 < argc) {
- backend_filter = argv[++i];
- } else {
- usage(argv);
- return 1;
- }
- } else if (strcmp(argv[i], "-p") == 0) {
- if (i + 1 < argc) {
- params_filter = argv[++i];
- } else {
- usage(argv);
- return 1;
- }
- } else {
- usage(argv);
- return 1;
- }
- }
- // load and enumerate backends
- ggml_backend_load_all();
- printf("Testing %zu devices\n\n", ggml_backend_dev_count());
- size_t n_ok = 0;
- for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
- ggml_backend_dev_t dev = ggml_backend_dev_get(i);
- printf("Backend %zu/%zu: %s\n", i + 1, ggml_backend_dev_count(), ggml_backend_dev_name(dev));
- if (backend_filter != NULL && strcmp(backend_filter, ggml_backend_dev_name(dev)) != 0) {
- printf(" Skipping\n");
- n_ok++;
- continue;
- }
- if (backend_filter == NULL && ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU && mode != MODE_GRAD) {
- printf(" Skipping CPU backend\n");
- n_ok++;
- continue;
- }
- ggml_backend_t backend = ggml_backend_dev_init(dev, NULL);
- GGML_ASSERT(backend != NULL);
- ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
- auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
- if (ggml_backend_set_n_threads_fn) {
- // TODO: better value for n_threads
- ggml_backend_set_n_threads_fn(backend, std::thread::hardware_concurrency());
- }
- printf(" Device description: %s\n", ggml_backend_dev_description(dev));
- size_t free, total; // NOLINT
- ggml_backend_dev_memory(dev, &free, &total);
- printf(" Device memory: %zu MB (%zu MB free)\n", total / 1024 / 1024, free / 1024 / 1024);
- printf("\n");
- bool ok = test_backend(backend, mode, op_name_filter, params_filter);
- printf(" Backend %s: ", ggml_backend_name(backend));
- if (ok) {
- printf("\033[1;32mOK\033[0m\n");
- n_ok++;
- } else {
- printf("\033[1;31mFAIL\033[0m\n");
- }
- printf("\n");
- ggml_backend_free(backend);
- }
- ggml_quantize_free();
- printf("%zu/%zu backends passed\n", n_ok, ggml_backend_dev_count());
- if (n_ok != ggml_backend_dev_count()) {
- printf("\033[1;31mFAIL\033[0m\n");
- return 1;
- }
- printf("\033[1;32mOK\033[0m\n");
- return 0;
- }
|